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ABSTRACT 

  

The focus of this thesis is to study dissolved organic carbon composition and 

reactivity along the Colorado and Green Rivers. Dissolved organic carbon (DOC) in 

large-scale, managed rivers is relatively poorly studied as most literature has focused on 

pristine unmanaged rivers. The Colorado River System is the 7th largest in the North 

America; there are seventeen large dams along the Colorado and Green River. DOC in 

rivers and in the lakes formed by dams (reservoirs) undergo photo-chemical and bio-

degradation. DOC concentration and composition in these systems were investigated 

using bulk concentration, optical properties, and fluorescence spectroscopy. The riverine 

DOC concentration decreased from upstream to downstream but there was no change in 

the specific ultraviolet absorbance at 254 nm (SUVA254). Total fluorescence also 

decreased along the river. In general, the fluorescence index (FI) increased slightly, the 

humification index (HIX) decreased, and the freshness index (β/α) increased from 

upstream to downstream. Photo-oxidation and biodegradation experiments were used to 

determine if the observed changes in DOC composition along the river could be driven 

by these biogeochemical alteration processes.  

In two-week natural sunlight photo-oxidation experiments the DOC concentration 

did not change, while the SUVA254 and TF decreased. In addition, the FI and ‘freshness’ 

increased and HIX decreased during photo-oxidation. Photo-oxidation can explain the 

upstream to downstream trends for TF, FI, HIX, and freshness observed in river water. 

Serial photo-oxidation and biodegradation experiments were performed on water 

collected from three sites along the Colorado River. Bulk DOC concentration in all 



ii 

samples decreased during the biodegradation portion of the study, but DOC 

bioavailability was lower in samples that were photo-oxidized prior to the bioavailability 

study. 

The upstream to downstream trends in DOC concentration and composition along 

the river can be explained by a combination of photo-chemical and microbial 

degradation. The bulk DOC concentration change is primarily driven by microbial 

degradation, while the changes in the composition of the fluorescent DOC are driven by 

photo-oxidation.  



iii 

DEDICATION 

I dedicate this thesis to my loving husband, Chris, who even in the toughest of 

times is my best friend and biggest goof. His support, encouragement, and love have 

allowed me to become who I am today.  



iv 

ACKNOWLEDGMENTS  

 I give great thanks to my advisor Dr. Hilairy Hartnett, for without her teaching 

and guidance I would not have become a researcher. Her patience and encouragement 

have helped transform me into the scientist I know I can be. Thank you for always 

finding time to help me. 

In my years at Arizona State University I have had the opportunity to make 

lasting friendships. In my first semester at ASU I met Jeren Johnson who would become 

one of my closest friends and who has always believed in me even when I was skeptical. 

My research would not have been possible without the friendship, cooperation, and 

collaboration Zach Smith provided. Our conversations over tea will be missed but never 

forgotten.  

A special thanks to Jesse Coe, Marissa Raleigh, and Amisha Poret-Peterson for 

helping me with analytical techniques and sampling.  



v 

TABLE OF CONTENTS 

          Page 

LIST OF TABLES ................................................................................................................. vii  

LIST OF FIGURES .............................................................................................................. viii  

CHAPTER 

1     INTRODUCTION ................. .......................................................................................  1 

References Cited  ......................................................................................  6 

2    SHEDDING LIGHT ON THE PHOTO-REACTIVITY OF DISSOLVED 

ORGANIC CARBON IN THE COLORADO RIVER ................................................  8  

Abstract....................................................................................................... 8  

Introduction ................................................................................................ 9  

Methods and Materials ............................................................................. 12  

Results ...................................................................................................... 15  

Discussion ................................................................................................ 21  

Summary and Implications ...................................................................... 27 

References Cited ...................................................................................... 41  

3     DO MICROBES PREFER THEIR CARBON COOKED?; RESULTS OF SERIAL 

PHOTO-OXIDATION AND BIO-DEGRADATION ON DISSOLVED ORGAIC 

CARBON IN THE COLORADO RIVER SYSTEM  ................................................  46  

Abstract..................................................................................................... 46  

Introduction .............................................................................................. 47  

Methods and Materials ............................................................................. 48 

 



vi 

CHAPTER                                                                                                                             Page  

Results ...................................................................................................... 53  

Discussion ................................................................................................ 55  

Summary and Implications ...................................................................... 59  

References Cited ...................................................................................... 74  

4     SUMMARY AND CONCLUSION  ..........................................................................  78  

REFERENCES.......................................................................................................................  82 

APPENDIX 

A      FLUORESCENCE INDICES FROM SERIAL PHOTO-BIO EXPERIMENT .....  88  

B      LIST OF ACRONYMS  ............................................................................................  93 

 

  



vii 

LIST OF TABLES 

Table Page 

2.1. Sample Site Description ..........................................................................................  36 

2.2. Water Chemistry  .....................................................................................................  37 

2.3. Dissolved Organic Carbon Optical and Fluorescent Properites .............................  38 

2.4. Change in Dissoved Organic Carbon, Specific Ultraviolate Absorbance at 254nm 

and Fluorescence During Photo-oxidaiton Experiment ..........................................  39 

2.5. Change in Fluorescence Indices During Photo-oxidaiton Experiment ..................  40 

3.1. Sample Site Description ..........................................................................................  68 

3.2. Water Chemistry ......................................................................................................  69 

3.3. Dissolved Organic Carbon Concentration During Serial Photo-oxidation 

Biodegradation Experiment .....................................................................................  70 

3.4. Total Fluorescence During Serial Photo-oxidation Biodegradation Experiment ..  71 

3.5. Cell Counts During Serial Photo-oxidation Biodegradation Experiment ..............  72 

3.6. Ammonium and Nitrate + Nitrite Concentrations During Serial Photo-oxidation 

Biodegradation Experiment .....................................................................................  73 

4.1. Comparison of Patterns in Dissolved Organic Carbon Concentration and 

Composition  ............................................................................................................  81 

 

 

 

 

 

 

 

 



viii 

LIST OF FIGURES 

Figure Page 

1.1. Schematic Diagram of a Reservoir and Hydroelectric Dam ................................  4 

1.2. Map of the Colorado River Watershed .................................................................  5 

2.1. Map of the Colorado and Green River Watershed and Sample Sites ................  29 

2.2. DOC Concentration, Specific UV Absorbance at 254 nm, Total Fluorescence as 

a Function of Distance ........................................................................................  30 

2.3. Fluorescence Index, Humification Index, Freshness Index as a Function of 

Distance ...............................................................................................................  31 

2.4. Percent Change in DOC Concentration, Optical Properties, and in Fluorescence 

Incices  .................................................................................................................  32 

2.5. Representative Excitation Emission Matrix Plots from UV-Irradiated and Dark 

Treatments ...........................................................................................................  33 

2.6. Total Fluorescence, Fluorescence Index, Humification Index, and Freshness 

Index as a Function of DOC Concentration .......................................................  34 

2.7. Change in Freshness Index as a Function of Change in Humification Index ...  35 

3.1. Map of Grand Canyon Region with Sample Sites for Lake Powell, Lee’s Ferry, 

and Lake Mead ....................................................................................................  61 

3.2. Experimental Flow Chart  ...................................................................................  62 

3.3. DOC Concentration in Serial Photo-oxidation Biodegradation Experiments ...  63 

3.4. Total Fluorescence in Serial Photo-oxidation Biodegradation Experiments ....  64 

3.5. Representative Fluorescence Excitation Emission Matrix Plots from a Serial 

Photo-oxidaiton Biodegradation Exeriment .......................................................  65 



ix 

Figure Page 

3.6. Total Bacterial Cell Councts in Serial Photo-oxidation Biodegradation 

Experiments .........................................................................................................  66 

3.7. Ammonium and Nitrate+Nitrite Concentrations in Serial Photo-oxidation 

Biodegradation Experiments  ..............................................................................  67  

3.8. SUVA254 in Serial Photo-oxidation Biodegradation Experiments ....................  89 

3.9. Fluorescence Index in Serial Photo-oxidation Biodegradation Experiments ....  90 

3.10. Humification Index in Serial Photo-oxidation Biodegradation Experiments ...  91 

3.11. Freshness Index in Serial Photo-oxidation Biodegradation Experiments .........  92 

 

 

 

  



1 

CHAPTER 1 

INTRODUCTION 

 Water plays a critical role in all life; it carries food sources for microbial 

communities and is essential for human survival. This fact has resulted in the 

management of rivers via dams that form reservoirs. Reservoirs function as storage for 

drinking water, provide hydroelectric power generation, and flood control. Reservoirs 

along rivers increase residence time and decrease water flow; thus, particulate loads 

decrease in reservoirs forming large, clear bodies of water.  

 Water is particularly limited in the Western United States, making the 

management of water essential for life in the desert. The Colorado River is the 7th largest 

river in the United States in terms of both drainage basin size and length (Kammerer 

1987). The Colorado River system is comprised of two major rivers: the Green and 

Colorado River. According to the United States Bureau of Reclamation there are fifteen 

major dams (i.e., taller than 250 ft and/or with a storage volume greater than 50,000 acre-

ft) on the Colorado River and two on the Green River. The large reservoirs on the 

Colorado River increase the residence time of the river by ~2.5 years per reservoir (Rosen 

et al. 2012).  

 Natural waters contain dissolved organic carbon (DOC; dissolved is operationally 

defined as any material that can pass through a 0.45 µm filter; (Hedges 2002)) a complex 

mixture of molecules composed of carbon from various sources. DOC in rivers can be 

derived from either allochthonous (terrestrial) sources or autochthonous (primary 

production) sources. DOC is composed of > 4000 different individual chemical species 

(Kujawinski et al. 2004; Kujawinski et al. 2002a; Sleighter et al. 2009). Using mass 
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spectrometry it is possible to identify individual compounds, but mass spectrometry may 

not be the best tool for understanding the broad composition, source, and reactivity of the 

DOC because it is expensive, slow, and data intensive. Fluorescence spectroscopy can 

characterize a large fraction of the DOC and provides information about carbon 

composition and carbon sources. Different molecules with different sources and 

compositions fluoresce in different regions which provides bulk compositional 

information. Fluorescence spectroscopy is a nondestructive, cost-effective analytical tool 

that is becoming a routine technique for assessing organic matter composition in 

environmental systems (Cory & McKnight 2005; McKnight et al. 2001; Stedmon et al. 

2003; Zsolnay et al. 1999). 

 Photochemical oxidation or photo-oxidation is one process that may be 

significantly affected by the presence of reservoirs. Large reservoirs form deep large 

lakes, which allow water to be stored below the depth of UV light penetration (Figure 

1.1). This longer exposure to natural sunlight in surface waters allows increased photo-

oxidation, biodegradation, and primary production as compared to unmanaged rivers. 

Water that then flows out of the penstock in the dam is coming from deep water that has 

been stored in the dark, and has not recently undergone photo-oxidation (Figure 1.1). The 

increased water residence time in a managed river system allows for increased total 

biogeochemical processes. There are few studies of the effects of multiple, consecutive 

dams on riverine DOC reactivity. 

 There are very few published studies of DOC or DOC cycling in the Colorado 

River system. The Colorado River watershed extends across seven states (Arizona, 

California, Colorado, Nevada, New Mexico, Utah, and Wyoming; Figure 1.2). Most 
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studies of biogeochemical processes have been conducted on pristine, unmanaged rivers 

(Amon & Benner 1996a; Benner et al. 1995; Hedges et al. 2000; Richey et al. 1990). In 

my work, I start from the premise that heavily managed rivers should be the focus of 

biogeochemical studies because the water in these rivers plays a direct role in people’s 

lives. 

 The objective of this thesis is to report on investigations of DOC reactivity in the 

Colorado River system.  

 Chapter 2 is a study of DOC photo-oxidation and the resulting changes in carbon 

concentration and composition. Photo-oxidation generally did not cause significant 

changes in DOC concentration but imparted significant changes to DOC fluorescence 

characteristics. The changes in fluorescence characteristics are the result of a loss of 

aromatic DOC. 

 Chapter 3 is a study of DOC bioavailability comparing biodegradation of photo-

oxidized and raw riverine DOC. In this study photo-oxidation generally decreased DOC 

bioavailability.  

 Chapter 4 is a summary that relates the upstream-to-downstream patterns in DOC 

concentration and composition observed in the river to the changes observed in photo-

oxidation and biodegradation studies. In a broad way, my results indicate that photo-

oxidation and biodegradation are sufficient to describe the basic patterns in DOC 

concentration and composition observed in the Colorado River system. 
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Figure1.1. Schematic diagram of a reservoir and a hydroelectric dam. Note, the penstock 

is below the depth of light penetration. 
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Figure 1.2. Map of the Colorado River watershed. Map taken from USGS.gov. 
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CHAPTER 2 

SHEDDING LIGHT ON THE PHOTO-REACTIVITY OF DISSOLVED ORGANIC 

CARBON IN THE COLORADO RIVER SYSTEM 

Abstract 

The focus of this study is to determine the photo-reactivity of dissolved organic 

carbon (DOC) along the Colorado River-Reservoir system. Photo-oxidation by sunlight 

can alter the amount and form of carbon in rivers. In rivers with large reservoirs, the 

increased water residence time may enhance alteration due to photo-oxidation. Using 

bulk concentration measurements together with ultraviolet (UV) absorbance and 

fluorescence spectroscopy we assess changes in DOC concentration and composition 

during two-week natural sunlight exposure experiments. Initial DOC concentrations 

ranged from 2.5 to 5.5 mg C L-1. Fluorescence indices suggest that DOC is a mixture of 

both terrestrial and microbially-derived organic matter. Photo-oxidation by natural 

sunlight had little effect on DOC concentrations but had large effects on DOC 

composition. Losses of fluorescent components ranged from 38.8% to 85.8%. Based on 

changes in fluorescence indices, we conclude the decrease in fluorescence is due to the 

loss of aromatic components resulting from the photo-oxidation of terrestrial (humic) 

material. 
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Introduction 

Dissolved organic matter (DOM) is a complex mixture of organic species that 

varies widely in both source and molecular composition (Cory et al. 2007; Duan et al. 

2007a; Duan et al. 2007b; Hedges 2002; Jaffé et al. 2008; Osburn et al. 2011; Spencer et 

al. 2008). The number of different molecules present in a natural DOM sample has been 

shown to exceed 4,000 individual species (Kujawinski et al. 2004; Kujawinski et al. 

2002b; Sleighter et al. 2009; Stenson et al. 2003). This sheer number of molecules can be 

both overwhelming from an identification standpoint and providential from a 

fingerprinting perspective (Fellman et al. 2010; Hernes et al. 2009; Jaffé et al. 2008; 

Kaiser et al. 2003; Spencer et al. 2008) The amount, nature, and complexity of the DOM 

in rivers provide a tool that yields information about the source, transformation and fate 

of terrestrial and riverine organic matter. There is information to be gained from the basic 

concentration of carbon, as well as ever more detailed compositional and molecular-level 

information resulting from optical- and fluorescence-based method (Cory & McKnight 

2005; Fellman et al. 2010; Stedmon et al. 2003; Zepp et al. 2004; Zsolnay et al. 1999). 

Dissolved organic matter in rivers is a key pool of reactive carbon and it is dependent on 

a wide range of biogeochemical processes including primary production (Baines & Pace 

1991; Calbet & Landry 2004), microbial oxidation (Jurgensone & Aigars 2012; 

Kujawinski 2011; Seitzinger et al. 2005), photochemical oxidation (Moran & Zepp 

1997), and sorption to mineral surfaces (Hedges & Keil 1999; Mayer 1994). Optical and 

fluorescence techniques are particularly well-suited to examining DOM changes resulting 

from photochemical oxidation because the very properties (aromaticity and conjugation) 
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that make molecules fluorescent are the ones that make molecules susceptible to 

photochemical alteration by ultraviolet (UV) light. When organic carbon (both particulate 

and dissolved) is transported from the land surface to the oceans via rivers, there is 

significant alteration along the path (Cole et al. 2007; Del Giorgio & Pace 2008; Duan et 

al. 2007a; Medeiros et al. 2012), reservoirs in particular, increase water residence time 

and thus time for alteration and production which may in turn impart change in the 

composition and thus, reactivity of DOM (Del Giorgio & Pace 2008; Parks & Baker 

1997) 

Transformation of organic molecules by natural sunlight i.e., photo-oxidation 

alteration has been shown to alter the size, composition, and concentration of DOM. In 

particular, it has been shown that photo-oxidation of DOM will transform high molecular 

weight (HMW) molecules (> 1 kDa) to low molecular weight (LMW) molecule (< 1kDa; 

(Amador et al. 1989; Kieber et al. 1989)). DOM composition can be altered as UV-

absorbent and fluorescent molecules react with the ultraviolet radiation (Amador et al. 

1989; Cory et al. 2007; Jaffé et al. 2008; Kelton et al. 2007; Moran & Zepp 1997), and 

photo-oxidation can of course fully oxidize DOM to inorganic species such as CO and 

CO2 (Miller & Zepp 1995) . 

The Colorado River system is the 7th largest river system with respect to both 

drainage basin size and length in North America (Kammerer 1987). The river is highly 

managed by a series of dams and reservoirs that provide hydro-electric power production 

and flood control to regulate water supplies for drinking and irrigation. Dams and 

reservoirs along the Colorado River increase water residence times substantially, by as 
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much as 2.6 years in the very large reservoirs (i.e., Lakes Powell and Mead; (Rosen et al. 

2012). The combined hydrologic residence time (HRT) for Lake Powell and Lake Mead 

is ~4-5 year (Mash et al. 2004). This increased residence time allows increased time for 

photochemical alteration of DOC at the surfaces of these algae lakes. The Colorado River 

has been relatively under-studied, in part we surmise because it is a heavily managed 

river. Most studies of riverine biogeochemical processes have focused on more pristine 

rivers. We propose that understanding biogeochemical processes in large managed rivers 

is of the utmost importance because of the direct role in people’s lives as a source of 

drinking water, irrigation water, and for recreation. Moreover, there are few if any 

pristine rivers anymore and we as a society must understand the rivers we do have, in the 

form that we have them. 

The primary objective of this study is to assess the photochemical reactivity of 

Colorado River DOM through a series of natural sunlight-exposure studies. We assess 

twelve sites from the upper-basin to the lower basin in order to evaluate longitudinal 

variations in DOM photo-reactivity and the influence of large reservoirs on the DOM 

reactivity. We demonstrate that the DOM composition varies from upstream to 

downstream and that systematic loss of terrestrially-derived DOM may be a significant 

control on DOM composition along the river. 
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2. Methods 

2.1. Sampling Sites 

Surface water samples were collected from twelve locations on the Green, Yampa, and 

Colorado rivers during 2012 and 2013 (Figure 2.1, Table 2.1). The Yampa River, in 

contrast to the Green and Colorado Rivers, is essentially undammed except for two small 

reservoirs near the headwaters. Our sample locations included both river reaches and 

reservoir sites in the Upper Colorado Basin (upstream of Glen Canyon Dam) and Lower 

Colorado Basin (downstream of Glen Canyon Dam). The furthest upstream site was 

Flaming Gorge Reservoir (G1A) on the Green River in southern Wyoming and the 

furthest downstream site was the Colorado River at Blythe, CA (C4B). The Colorado 

basin comprises a wide range of ecosystems including (but not limited to) subalpine and 

montane forests, grasslands, and deserts as well as land uses that range from remote 

wilderness to highly urbanized. Sample sites included four major reservoirs (G1A, C2A, 

C3A, C4A) and four river reaches directly below the reservoirs (G1B, C2B, C3B, C4B), 

three additional river sites not associated with reservoirs (G2, G3, C1), and one site on an 

undammed tributary (Y1). One site was sampled during winter 2012 and again in spring 

2013 (C1 (Sp) and C1 (W). All samples were collected from the shoreline or from a boat 

dock when available. 

2.2. Field Methods 

Large volume (10 L) samples were collected from surface waters at the eight river sites 

and four reservoir sites. Water was collected at the shoreline using an electric pump and 
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filtered in the field through a string-wound (~1 µm) cartridge filter (Pentek, Milwaukee, 

WI). Samples were stored in 10 L acid-washed carboys in the dark, at 4°C until 

experiments were conducted. Small volume water samples (~200 mL) were collected and 

immediately syringe-filtered through 1.2 µm followed by 0.8/0.2 µm filters 

(polyethersulfone, PES; Suportm) in the field. Samples were acidified to a pH of 2.5 with 

50% aqueous HCl and stored in fluorinated high-density polyethylene (FLPE, Nalgene) 

bottles. Water temperature, pH, and dissolved oxygen were measured in the field using 

calibrated hand-held meters (Table 3.2.). 

2.3. Experimental Procedures 

Sub-samples of the large-volume water samples and blanks (deionized water, 18.2 

MΩ∙cm; Barnstead NANOpure Diamond; Dubuque, Iowa) were vacuum filtered through 

pre-combusted (500 °C, 4.5 hours) glass fiber filters (0.7 µm; GF/F; Whatman; 

Buckinghamshire, UK) and then sterile filtered through 0.2 µm hydrophilic 

polypropylene membrane filters (Pall Life Science; Ann Arbor, Michigan) prior to the 

photo-oxidation experiments. Filtered samples (~125 mL each; 8 light and 6 dark per 

sample) and blanks (~125 mL each; 6 light controls and 6 dark controls) were placed in 

UV-transparent quartz tubes (25 mm diameter x 150 mm long) and covered with inverted 

small glass beakers to prevent dust from falling into the tubes. Dark treatments are in a 

mix of quartz and borosilicate glass tubes. Half of the samples and blanks were wrapped 

in aluminum foil as “dark” controls. The samples and dark controls were placed in direct 

sunlight on the roof (36.5 m above sea level) of a building in Tempe, AZ for 14 to 21 

days. The tubes were partially submerged in a water bath to regulate temperature; roughly 
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¾ of the length of the quartz tube was exposed to direct sunlight. Samples were collected 

sacrificially for both experiments and controls on initial, intermediate, and final days. 

Three light and two dark samples were collected on initial and final days, on intermediate 

sampling days two light and two dark samples were collected. Aliquots (45 mL) for 

DOC, UV absorbance, and fluorescence analysis were collected in 45 mL polypropylene 

centrifuge tubes; samples were acidified to pH 2.5 with 50% aqueous HCl and stored at 

4°C in the dark until analysis. Aliquots for cell counting (two 10 mL samples) were 

collected on the initial and final days of the experiment to insure there was no microbial 

growth during the experiment; these samples were fixed using formaldehyde and cells 

were enumerated under light microscopy with DAPI staining (Yu et al. 1995). All 

laboratory glassware was acid-washed for 24 hours in an aqueous 20% HCl solution and 

ashed at 500°C for 4.5 hours. Laboratory plastic-ware was rinsed with deionized water 

and leached with deionized water for a minimum of 36 hours prior to use. 

2.4. DOC, UV, and Fluorescence Measurements 

DOC concentrations were measured using a Shimadzu TOC-V analyzer with NDIR 

detection (Hedges et al. 1993; Sharp et al. 2004; Sharp 1997; Sharp et al. 1993). UV-Visible 

absorbance spectra were collected using a Shimadzu UV-mini 1240 with a 20W halogen 

lamp. The UV-Vis spectra were collected from 190 nm to 1100 nm (step size: 0.1 nm). 

Fluorescence spectra (excitation-emission matrices, or EEMs) were determined using a 

Horiba Jobin Yvon Fluoromax-4 spectrofluorometer with a 150W xenon lamp using the 

method described in Cory & McKnight (2005). 
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Specific UV absorbance at 254 nm (SUVA254) was calculated as the UV absorbance at 254 

nm (in units of m-1) divided by the DOC concentration in mg C L-1
; thus, units for SUVA254 

are L mg C-1 m-1. Total fluorescence was calculated as the sum of the intensity of the entire 

blank-corrected Raman-normalized EEM, this calculation is instrument specific and the 

units are Raman-normalized arbitrary units (AU). Three fluorescence indices were 

calculated using the blank-corrected, Raman-normalized fluorescence EEMs (Zepp et al. 

2004). The fluorescence index (FI) is calculated at an excitation of 370 nm as the emission 

at 420 nm divided by the emission at 520 nm (McKnight et al. 2001). The humification 

index (HIX) is calculated for an excitation wavelength of 254 nm as the area under the 

emission peak from 435 to 480 nm divided by the area under the emission peak from 330 

to 345 nm (Zsolnay et al. 1999). The “freshness” index (β/α) is calculated as the emission 

at 380 nm (the β peak) divided by the maximum emission intensity between 420 nm and 

435 nm (the α peak) both measured at an excitation wavelength of 310 nm (Huguet et al. 

2009).  

3. Results  

3.1. DOC 

DOC concentrations along the Colorado River range from 2.5 to 5.6 mg C L-1, with an 

average DOC concentration of 3.88 ± 1.07 mg C L-1 (n = 13, Table 3.2.). Samples 

collected in the Upper Basin tend to have higher DOC concentrations and range from 2.5 

to 5.6 mg C L-1 (average 4.1 ± 0.95 mg C L-1, n=8). The highest DOC concentration was 

from the Yampa River sample (Y1) and the lowest was from the Moab, UT site collected 

in December 2012 (C1 (W), see Table 3.2). Samples collected from the Lower Basin 
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generally had lower DOC concentrations ranging from 2.9 to 4.3 mg C L-1 (average 3.7 ± 

1.23 mg C L-1, n=5).  

3.2. Specific UV absorbance at 254 nm 

Specific UV absorbance at 254 nm (SUVA254) is an indicator of aromatic content and 

ranges from 2.6 to 5.97 L mg C-1 m-1, with an average of 4.0 ± 0.69 L mg C-1 m-1 (n=13; 

Table 3). On average, samples collected in the Upper Basin have lower SUVA254 values 

(3.6 ± 0.74 L mg C-1 m-1) than samples collected in the Lower Basin (4.4 ± 0.28 L mg C-1 

m-1). The location with the highest SUVA254 (5.0 L mg C-1 m-1) was the Colorado River 

at Moab, UT (C1) in Winter 2012, and the location with the lowest SUVA254 (2.6 L mg 

C-1 m-1) was the Green River at Green River, UT (G3). For nearly all of the 

reservoir/river pairs there was no difference in the SUVA254. 

3.3. Total Fluorescence 

The total fluorescence is the sum of the intensity for the entire EEM; this value is 

somewhat instrument specific and the units are arbitrary. The total fluorescence ranges 

from 29.1 to 110.5 AU (Table 3). There is no apparent upstream to downstream trend. 

The average (n=12) total fluorescence is 54.5 ± 22.24 AU. The highest total fluorescence 

was observed for the Yampa River location at 110.5 AU (Y1), the lowest total 

fluorescence was observed for the Colorado River at Lake Havasu (29.1 AU; C4A). 

Samples collected from reservoir/river pairs had higher total fluorescence in the river 

reaches. 
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3.4. Fluorescence Indices 

The Fluorescence Index (FI) is a ratio of intensities, used to describe DOC sources. 

Carbon containing species in samples fluoresces with a FI of about < ~1.4 is thought to 

be from terrestrial sources while a FI of about 1.8 are thought to be from microbial 

sources (McKnight et al. 2001). The average FI for the Colorado River system is 1.49 ± 

0.045 (n=13; Table 3). The samples exhibit an upstream to downstream trend with a 

lower FI in the upper basin (average 1.46 ± 0.036, n=7) and a higher FI in the lower basin 

(average 1.52 ± 0.034, n=6; Figure 2.3.A). The sample from the Yampa River (Y1, 

square) had the lowest FI value of 1.40. The highest FI recorded was for the Colorado 

River at Lee’s Ferry (C2B) of 1.59. For nearly all of the reservoirs there does not appear 

to be a large difference in the FI between the river and reservoirs. 

The Humification Index (HIX) describes the H:C ratio; in general, higher HIX 

corresponds to lower H:C (i.e., more aromatic carbon). HIX values range from 1.2 to 8.6, 

(average 5.2 ± 2.02, n=12; Table 3). There appears to be an upstream to downstream 

trend with higher HIX (average 6.5 ± 1.06, n=7) in the upper basin and lower HIX 

(average 3.2 ± 1.27, n=5) in the lower basin (Figure 2.3.B, Table 2.3.). The sample with 

the highest HIX (8.6) was the Yampa River Sample, and the sample with the lowest HIX 

was 1.2. River samples below reservoirs tended to have a higher HIX than the 

corresponding reservoir. 

The “freshness” index (β/α) describes the proportion of presumably recently formed 

“protein-like” organic matter to older “humic-derived” organic matter (Coble et al. 2014). 

The freshness ranged from 0.63 to 0.84, with the average 0.74 ± 0.059 (n=13; Table 3). 
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The freshness index increases from the upper basin (average 0.70 ± 0.041, n=7) sites to 

the lower basin sites (average 0.79 ± 0.032, n=6; Figure 2.3.C, Table 3). The sample with 

the lowest freshness (0.63) was the Yampa River location (Y1), the highest freshness 

(0.84) was recorded at Lake Havasu (C4B). Samples collected from reservoir/river pairs 

show no large difference in the freshness. 

3.6. Experimental Results 

3.6.1. DOC 

Dissolved organic carbon concentrations were measured over the course of the natural 

sunlight photo-oxidation experiments (Figure 2.4.A). For most samples there was not a 

statistically significant change in DOC concentration. The Yampa River sample (Y1), 

Green River at Green River, UT (G3), and Colorado River at Lee’s Ferry (C2B), had a 

statistically significant decrease (p<0.05) in DOC concentration of 9.55%, 11.75%, and 

4.85% respectively (Table 2.4.). Two sample locations had in statistically significant 

(p<0.05) increase in DOC, Lake Mohave (C3B, 5.87%) and Colorado River at Blythe, 

CA (C4B, 3.48%). There appeared to be no upstream to downstream trend associated 

with the change in the DOC. 

3.6.2. SUVA254 

For all sample sites, SUVA254 decreased over the duration of the photo-oxidation 

experiment (p<0.05). The decreases in SUVA254 ranged from 5.6 to 39.4%, with an 

average decrease of 24.8 ± 10.33% (n=13; Table 2.4.). There appears to be no 

relationship between decrease in SUVA254 and sample location (Figure 2.4.A). The 
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sample with the largest decrease in SUVA254 was from the Colorado River at Moab, UT 

(39.4%, C1) from spring 2013. This sample had nearly three times greater percent 

decrease in SUVA254 (39.4 %) than the sample from the same location collect in winter 

2012 (13.5 %). The sample with the lowest decrease in SUVA254 was the Colorado River 

at Blythe, CA (5.6 %, C4B). For all reservoir/river pairs there was a greater decrease in 

SUVA254 for the reservoir sample compared to the corresponding river sample. Samples 

with lower initial SUVA254 also tended to have greater decreases in SUVA254 (Table 4). 

3.6.3. Total Fluorescence 

The total fluorescence decreased for all samples, with an average (n=13) percent decrease 

of 64.0 ± 15.22 % (Table 4). There is an upstream to downstream trend, with a greater 

decrease (average 72.3 ± 12.66 %, n=7) in the upper basin than the lower basin (average 

54.31 ± 12.41 %, n=6) in total fluorescence (Figure 2.4.A). The sample collected from 

the Colorado River at Moab, UT (C1) in spring 2013 had higher percent loss of total 

fluorescence (85.8 %) than the sample collected in winter 2012 (57.6 %). There does not 

appear to be a correlation between the initial total fluorescence and the percent loss of 

total fluorescence (Table 2.4). Samples collected from the reservoir/river pairs for 

Flaming Gorge Reservoir (G1A/G1B) and Lake Powell Reservoir (C2A/C2B) did not 

have a difference in the percent change in total fluorescence. The lowest two 

reservoir/river pairs, Lake Mead Reservoir (C3A/C3B) and Lake Havasu Reservoir 

(C4A/C4B) had a higher percent decrease in total fluorescence at the reservoir locations 

(Table 2.4). 
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3.6.4. Fluorescence Indices 

FI 

The change in FI ranged from an increase of 9.16% to a decrease of 4.42%, the average 

change in the FI was an increase of 2.16 ± 3.9 % (Table 2.5.).There did not appear to be a 

relationship between distance and the change in FI (Figure 2.4.B). The highest increase of 

FI (9.1%) was from the Yampa River (Y1), where the largest decrease in FI (4.42%) was 

from the Colorado River at Blythe, CA (C4B). In the lower basin the Lake Mead/Willow 

beach (C3A/C3B) and Lake Havasu/Blythe, CA (C4A/C4B) had increases in the FI for 

the reservoir samples and a decrease in the FI for the river samples (Table 5). 

HIX 

The humification index decreased for all samples, the percent decrease ranged from 38.5 

to 84.3 % (Table 2.5.). The average (n=13) percent decrease was 62.9 ± 13.71 % (Figure 

2.4.B). The HIX tends to have greater decrease in the upper basin (70.1 ±10.22 %, n=7) 

than the lower basin (54.5 ± 12.96 %, n=6). The sample collected from the Colorado 

River at Moab, UT (C1) in spring had a higher decrease (84.3 %) in HIX than the winter 

sample (59.1 %). For all reservoir/river pairs the reservoir had a higher decrease in HIX 

when compared to the corresponding river sample. 

Freshness 

The freshness for all sample locations increased during the photo-oxidation experiments, 

with and increase ranging from 2.0 to 26.4 %. The average (n=13) increase in freshness 
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was 12.4 ± 8.09 % (Figure 2.4.B, Table 2.5.). There is an apparent upstream to 

downstream trend (Table 6) with samples in the upper basis having a greater increase 

(17.2 ± 7.12%, n=7) than the lower basin (6.74 ± 5.03%, n=6). The sample collected from 

the Colorado River at Moab, UT (C1) in spring had an increase in FI three times higher 

(26.4%) than the sample collected in winter (8.0%). There does not appear to be a 

seasonal or locational pattern for the reservoir/river pairs. 

4. Discussion 

4.1. Initial Composition 

In previous studies it is has been shown that DOC can be degraded and removed through 

photo-chemical degradation (Miller & Zepp 1995; Moran & Zepp 1997; Morris & 

Hargreaves 1997). DOC is shown to re-mineralize to form CO2, transform aromatic 

humic and fulvic acids into less aromatic species, and form low molecular weight species 

(Morris & Hargreaves 1997). Concentration and composition of DOC in the Colorado 

River system varies. Using photo-oxidation experiments, the composition of the 

fluorescent DOC in the river can be explained.  

Dissolved organic carbon (DOC) concentrations in the Colorado River ranged from 

2.5±0.08 to 5.5±0.09 mg C L-1 and tends to decrease as the distance from upstream to 

downstream (Table 2.2, Figure 2.2A). SUVA254 ranged from 2.60 to 5.97 L mg C-1 L-1 

(Table 2.3, Figure 2.2B), and does not change along the river, this is because the DOC 

concentration and UV absorbance both decrease from upstream to downstream. The total 

fluorescence ranged from 29.1 to 110.5 AU (Table 2.3, Figure 2.2C) and tends to 
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decreases from upstream to downstream, suggesting the TF decreases as the river travels 

from upstream to downstream. 

The fluorescence index ranged from 1.40 to 1.59, indicating that all samples were a 

mixture of microbial and terrestrial DOC. The FI was higher in lower basin samples 

which suggests an increase in the amount of microbially derived organic matter in the 

lower basin (Figure 2.3A). The FI is related to the DOC concentration; samples with 

higher DOC concentrations generally had lower FI, suggesting that samples with higher 

DOC concentration are more terrestrially derived (Figure 2.6.B).The most terrestrially 

derived DOC was observed at the Yampa River location with an FI of 1.40. This suggests 

that in the lower basin, where the river becomes heavily managed with large reservoirs, 

terrestrial DOC comprises less of the organic matter than microbially derived carbon. 

This is likely a result of increased primary production in the large reservoirs. 

The humification index (HIX) ranged from 1.2 to 8.6 followed an upstream to 

downstream trend (Figure 2.3.) suggesting the amount of fluorescent humic material 

decreases along the river. HIX was dependent on the DOC concentration (Figure 2.6.C), 

this suggest that the DOC in the upper basin is more aromatic and the DOC in the lower 

basis is less aromatic. In the lower basin, the higher HIX at river sites below their 

associated reservoirs suggests the deep water in the reservoirs is more aromatic than the 

surface water in the reservoir.  

Freshness (β/α) has been described as the proportion of newly formed organic matter 

(i.e., protein-like or algal-derived material) to older organic matter (terrestrially derived). 

The initial freshness ranged from 0.63 to 0.84. Freshness exhibited an upstream to 
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downstream trend with lower freshness values in the upper basin, and higher freshness 

values in the lower basin (Table 6). This indicates that DOC in the upper basin was more 

terrestrially derived and that DOC in the lower basin was, in general, more microbially 

derived, consistent with the FI values. The reservoir/river pairs had similar freshness 

values. 

In Figure 2.6 it is shown that DOC composition varies with DOC concentration. As the 

DOC increases the total fluorescence (TF) increases, suggesting the more DOC present, 

the greater amount of fluorescent material is present (Figure 2.6.A); this is not 

unexpected because the amount of TF is not normalized to the amount of DOC in each 

sample. If TF were normalized to the bulk DOC concentration, TF would remain constant 

or exhibit minor changes with downstream distance. The fluorescence index decreases 

with higher DOC concentrations. This suggest samples with high DOC have low FI 

(more terrestrial organic matter), low freshness (older organic matter likely terrestrial), 

and variable HIX (H:C ratio). Higher carbon concentrations may be associated with 

terrestrial sources, whereas lower DOC concentrations are more likely associated with 

microbial sources. 

4.2. Experimental Results 

For most samples the DOC concentration did not change as a result of photo-oxidation. 

While a few samples from the Colorado River had a decrease in DOC concentration, the 

majority of the samples did not. Other studies have reported decreases in DOC 

concentration up to 57% in two week incubation using simulated sunlight (Lu et al. 
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2013). The difference in the loss of DOC may be attributed to source and composition. 

The DOC in the lower basin is less photo-labile than DOC in the upper basin. 

The changes in DOC composition are inferred from the changes in the optical properties 

determined using UV and fluorescence spectroscopy. SUVA254 does not depend on the 

location along the river which suggests that the aromatic content is not dependent on 

location. The amount of total fluorescent material in the river is dependent on location, 

with higher total fluorescence in the upper basin and lower total fluorescence in the lower 

basin. Total fluorescence is used to quantify the amount of fluorescent DOM, the change 

in the amount of total fluorescence implies that the composition of DOC changes along 

the river.  

In all samples there was a strong decrease in total fluorescence after photo-oxidation. 

This suggests UV light transforms fluorescent DOM into non-fluorescent DOM. Other 

studies have reported similar changes in total fluorescence with a decrease of 85% 

reported for forested streams and a decrease of ~91% reported for agricultural and urban 

waters (Lu et al. 2013). Other studies have reported a loss of 25-32% TF in Arctic surface 

waters (Cory et al. 2007). The range in the transformation of the TF suggests that the 

starting composition of the fluorescent DOM may control the photo-lability. 

After photo-oxidation nearly all of our samples exhibited an increase in the FI. An 

increase in FI suggests a larger fraction of terrestrial DOC is being removed. Three of our 

sample locations (Moab, UT, Willow Beach, and Blythe, CA) exhibited a decrease in the 

FI after photo-oxidation. All three locations are river sites along the main stem of the 

Colorado River (Table 5). In order for FI to decrease in our experiments the microbially 



25 

derived DOC must be removed through photo-oxidation. Other studies have shown an 

increase in FI after irradiation (72 hours in a solar simulator) of samples from streams in 

Canada (Kelton et al. 2007). A decrease in FI from samples in Arctic lakes and streams 

suggested that the decrease in FI was related to a greater decrease in microbial derived 

components (Cory et al. 2007). Decreases reported in the Arctic streams were on the 

order of 0.1 units in 12 hours natural sunlight experiments. Other works have shown a 

decrease up to 23% in samples collected from wetlands irradiated using a xenon lamp for 

72 hours (equivalent to 13.2 days; Brooks et al. 2007). 

All our samples exhibited decreases in HIX, with the greatest decrease in upper basin 

samples and the smallest decrease in lower basin samples. This suggests that all of the 

samples had a decrease in aromatic compounds, with samples in the upper basin HIX 

dropping to the level of the lower basin samples (Table 5). The observed decreases in 

HIX in our samples were similar to the observed HIX decreases of 5% over 2 days of 

natural sunlight exposure reported for prairie lakes in the U.S. as well as in peak C and 

peak A, which appear in the same area as HIX is calculated from in Arctic lakes (Coble et 

al. 1990; Cory et al. 2007; Osburn et al. 2011). This trend suggests the humic material in 

the upper basin is more easily removed via photo-oxidation and is therefore more reactive 

than humic material from the lower basin. The decrease in HIX is always greater in 

reservoirs than in the corresponding river samples (Table 5) suggesting DOM in 

reservoirs is more readily removed than in the corresponding river sample, even though 

there is higher HIX in the river samples. This may be related to the fact that samples 

collected in the river reach below dams did not have recent sun exposure. Samples with 
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higher HIX in the upper basin had a greater decrease HIX suggesting that the low-HIX, 

lower-basin samples were less photo-labile. 

Freshness increased in in all samples after photo-oxidation, suggesting that sun exposure 

caused a decrease in the terrestrial derived DOC. An increase in freshness can result 

either from the production of microbially derived DOM or from the removal of 

terrestrially derived humic DOM. There was no increase in bulk carbon, cell counts, or in 

FI which would support the production of new microbially-derived carbon. Samples with 

a lower initial freshness values had the greatest increase in the freshness. The greater 

change is indicative that a large portion of terrestrial derived DOM was altered. The 

percent change in the freshness was nearly the same in the river/reservoir pairs; this 

suggests similar amounts of terrestrial DOC was present in the sample pairs. 

The DOC that is being altered by photo-oxidation in these experiments is predominantly 

of terrestrial humic origin. This conclusion is supported by the concomitant changes in 

FI, HIX and ‘Freshness’. The increase in the FI suggests that the fluorescent DOM has 

been altered to appear more microbial because the terrestrial humic material is removed. 

The humification index decreases because humic material (both terrestrial and microbial) 

is removed. ’Freshness’ increased in all photo-oxidized samples, which can occur as a 

result of two possible situations: a decrease in the amount of older humic-terrestrial 

matter, or an increase in recently formed (microbially derived) organic matter. Samples 

with a large decrease in the HIX also had a large increase in the freshness, suggesting the 

increase in the freshness is a result of the loss in humic organic matter and not due to the 

production of new carbon. The change in HIX is directly proportional to the change in 
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freshness (Figure 2.7.). Because HIX is calculated as terrestrial humic divided by the sum 

of the microbial and terrestrial humic derived organic matter and freshness is calculated 

as the ratio of the microbial humic signal to the terrestrial humic signal, the only way to 

have an decrease in HIX with an increase in Freshness is a reduction in the amount of 

terrestrially-derived organic matter. The samples in the lower basin are likely less 

reactive which suggests that there is less terrestrial carbon to photo-oxidize. 

5. Summary and Implications  

DOC in the Colorado River system is photo-chemically labile in the presence of natural 

sunlight over a time scale of two weeks. Samples in the upper basin tended to be more 

labile, which is likely a result of the initial composition of the DOC. There are many 

factors that can alter the bulk composition such as source, water chemistry, and history. 

For example, the water collected at Blythe, CA has been in the river for a long time (1-2 

years per reservoir depending on rain fall and size of the dam in addition to water travel 

time). In the time it takes the water to travel from the upstream source to the sampling 

point DOC is actively undergoing transformation through photo-chemical alteration. 

Photo-oxidation can explain the trends in carbon composition as a function of distance 

along the river. The DOC in the Colorado River tended exhibit a decrease is 

concentration, no change in SUVA254, and a decrease total fluorescence from upstream to 

downstream. The fluorescence indices had an increase in FI, decrease in HIX, and 

increase in freshness from upstream to downstream. Though the DOC concentration did 

not change in our experiments, it is important to note that the experiments were only two 

weeks long and in the environment DOC is exposed to sunlight for far longer than two 
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weeks. The SUVA254 in our experiments decreases because we had a decrease in the UV 

absorbance and not in the DOC concentration. The total fluorescence in experiments 

decreased, suggesting that the decrease in TF along the river is related to the removal of 

fluorescent components through photo-oxidation. The fluorescence index did not change 

as a result of photo-oxidation, suggesting the change in FI in the river was not related to 

photo-oxidation. The Humification index decreased in all experimental samples, which 

suggests the decrease in the HIX along the river may be driven by photo-oxidation. The 

‘freshness’ in all experimental samples increased suggesting that the change in the rivers 

‘freshness’ was a result of photo-oxidation. 

In all samples terrestrial humic material is removed, this suggests that there must be 

terrestrial humic sources all along the river basin, because if the only input was at the 

headwaters there would not be terrestrial humic material in the lower basin. Photo-

oxidation of the DOM is selective and will form non-aromatic DOC. The composition of 

the DOC in all samples became less humic and appeared to be more microbially-derived 

after photo-oxidation. In the upper basin of the Colorado River there were greater 

decreases in the terrestrial humic DOM, this is likely attributed to the composition of the 

water in the upper river reaches.  

More research is needed to determine if photo-oxidation of DOC in the Colorado River 

(and potentially in other heavily managed river systems) increases the bioavailability of 

that carbon. Removal of terrestrial organic matter (which has been shown to turn over 

much more slowly compared to microbial organic matter; (Lancelot & Billen 1985) may 

also have implications for DOM cycling in estuaries.
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Figure 2.1. Map of the Colorado River watershed and sample sites. Site codes starting 

with G, Y, and C are from the Green, Yampa, and Colorado Rivers, respectively. Site 

codes ending in A indicate reservoirs, site codes ending in B are corresponding 

downstream river reaches. Map locations correspond to Table 1. Map taken from 

USGS.gov 
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Figure 2.2. DOC concentration (A), SUVA254 (B), and total fluorescence (C) as a 

function of distance from the mouth of the Colorado River. Circles (●) are Colorado 

River samples, triangles (▲) are Green River samples, squares (■) are Yampa River 

samples; open symbols are river sites and closed symbols are reservoir sites. Error bars in 

the DOC plot (A) are the standard deviation of replicate analyses; where error bars cannot 

be seen the error is smaller than the symbol size. Lines are linear regressions with 

distance, only the slope for DOC concentration in A is significant (p=0.02). 
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Figure 2.3. Fluorescence Index (FI, A), Humification Index (HIX, B), and “Freshness” 

(C) as a function of distance upstream of the mouth of the Colorado River. Circles (●) are 

Colorado River samples, triangles (▲) are Green River samples, squares (■) are Yampa 

River samples; open symbols are river sites and closed symbols are reservoir sites. Lines 

are the linear regression with distance; only the slope for freshness is significant 

(p<0.01).  
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Figure 2.4. Percent change in DOC concentration and optical properties (SUVA254, total fluorescence), left, and in 

Fluorescence Indices (FI, HIX, ‘Freshness’), right, after photo-oxidation. Solid lines within the boxes indicate the median 

value. The upper and lower box boundaries denote the 25th and 75th percentiles, respectively; the upper and lower 

whiskers denote the 90th and 10th percentiles respectively; the symbols are outlying points. Change is calculated as (final 

value – initial value) expressed as a percentage of the initial value; negative changes reflect decreases. 
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Figure 2.5. Representative excitation-emission matrix (EEM) plots from UV-irradiated 

(top panels: A, B) and dark (bottom panels: C, D) treatments. The right-hand panels (A, 

C) are initial spectra, the left-hand panels (B, D) are final spectra. The color scale is 

fluorescence intensity in Raman-normalized arbitrary units (AU). Note the near complete 

loss of fluorescence in the UV-irradiated samples compared with no change in 

fluorescence in the dark samples. 
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Figure 2.6. Total fluorescence (A), Fluorescence Index (B), Humification Index (C), and 

‘Freshness’ (D) as a function of DOC concentration. Circles (●) are Colorado River 

samples, triangles (▲) are Green River samples, squares (■) are Yampa River samples; 

open symbols are river sites and closed symbols are reservoir sites. Lines are linear 

regression with DOC concentration; relationships between DOC concentration and TF, 

FI, and Freshness are significant (p<0.05). Error bars are ± 1 SD of the mean of replicate 

injections for DOC, and ± the instrument error for each species. Where error bars cannot 

be seen the error bars are smaller than the symbol. 
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Figure 2.7. Change in ‘Freshness’ as a function of change in HIX (p<0.05). Circles (●) 

are Colorado River samples, triangles (▲) are Green River samples, squares (■) are 

Yampa River samples; open symbols are river sites and closed symbols are reservoir 

sites. Change is calculated as (final value – initial value) expressed as a percentage of the 

initial value; negative changes reflect a decrease. The line is a linear fit to the data and the 

slope is significant at the p=0.05 level. 
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Table 2.1. Sample site descriptions 

 

Sample Location  

Map 

Symbol 

Sample 

Type 

Distance 

from river 

mouth  

(Km) 

Collection 

Date Latitude Longitude 

Green River 

Flaming Gorge 

Reservoir G1A Reservoir 2113.3 Apr. 2013 40.9128 -109.4475 

Flaming Gorge 

Spillway G1B River 2111.1 Apr. 2013 40.9046 -109.4285 

Jensen, UT G2 River 1945.0 Apr. 2013 40.3649 -109.3335 

Green River, UT G3 River 1644.1 Mar. 2013 38.9885 -110.1504 

Yampa River 

Maybell, CO Y1 River 2153.1 Apr. 2013 40.5016 -108.0333 

Colorado River 

Moab, UT 

C1 

(Sp)a River 1542.7 Mar. 2013 38.6049 -109.5735 

Moab, UT 

C1 

(W)b River 1542.7 Dec. 2012 38.6049 -109.5735 

Lake Powell C2A Reservoir 1142.0 Feb. 2012 37.0071 -111.5092 

Lee's Ferry C2B River 1108.2 Feb. 2012 36.8658 -111.5859 

Lake Mead C3A Reservoir 551.8 Dec. 2012 36.0285 -114.7757 

Willow Beach C3B River 530.8 Dec. 2012 35.8759 -114.6618 

Lake Havasu C4A Reservoir 316.2 Dec. 2012 34.3510 -114.1701 

Blythe, CA C4B River 206.6 Dec. 2012 33.6711 -114.5330 
 

a Sp = spring 
b W = winter 
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Table 2.2. Water Chemistry 

 

Map 

Symbol 

Temperature 

(°C) pH 

Dissolved 

Oxygen 

(mg O2/L) 

DOC 

(mg C/L) 

G1A 4.5 8.34 11.2 3.9 ± 0.01a 

G1B 7.2 8.70 13.2 4.0 ± 0.05 

Y1 10.8 8.52 11.1 5.5 ± 0.1 

G2 13.5 8.53 11.0 4.1 ± 0.03 

G3 5.1 8.68 12.4 4.9 ± 0.03 

C1 (Sp) 8.1 8.18 9.2 3.5 ± 0.03 

C1 (W) 2.2 8.38 11.0 2.5 ± 0.1 

C2A 9.0 8.26 8.89 4.6 ± 0.02 

C2B 10.1 8.10 8.77 4.3 ± 0.04 

C3A 15.2 7.89 6.3 2.9 ± 0.1 

C3B 14.4 7.94 7.0 2.9 ± 0.1 

C4A 13.8 8.25 8.5 3.0 ± 0.1 

C4B 12.5 7.83 NDb 2.9 ± 0.1 
 

a uncertainty in DOC is expressed as ± 1 S.D. of the mean of replicate analyses 
b ND = no data  
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Table 2.3. DOC optical and fluorescence properties 

 

Map 

Symbol 

SUVA254       

(L mg C-1 m-1) 

Total 

Fluorescence 

(A.U.) 

Fluorescence 

Index, FI 

Humification 

Index, HIX 

‘Freshness’, 

β/α 

G1A 3.72 56.4 1.48 5.96 0.68 

G1B 3.68 52.7 1.44 6.77 0.69 

Y1 3.80 110.5 1.40 8.59 0.63 

G2 3.49 53.4 1.47 5.11 0.75 

G3 2.60 57.5 1.46 6.53 0.71 

C1 (Sp) 3.17 61.2 1.47 6.64 0.70 

C1 (W) 5.03 46.8 1.53 6.27 0.75 

C2A 4.12 NDa 1.50 ND 0.73 

C2B 5.97 77.9 1.49 1.17 0.74 

C3A 4.47 36.5 1.51 3.74 0.82 

C3B 4.39 37.8 1.50 4.31 0.79 

C4A 4.17 29.1 1.51 2.96 0.84 

C4B 4.26 34.8 1.53 4.10 0.79 
 
a ND = no data 
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Table 2.4. Changes in DOC, SUVA254, and Total Fluorescence during photo-oxidation experiments. Uncertainty is 

expressed as ± 1 S.E. of the mean of triplicate samples. Change is calculated as (final – initial) expressed as a percentage 

of the initial value. Negative percent change indicate a decrease. Bold text indicates changes that are statisically 

significant (p < 0.05). 
 

 DOC (mg C L-1) SUVA254 (L mg C-1 m-1) Total Fluorescence (A.U.) 

Map Symbol initial Final % change  initial final % change  Initial final % change  

G1A 3.6 ± 0.1 3.5 ± 0.1 -2.51 3.5 ± 0.2 2.8 ± 0.1 -19.44 43.0 ± 0.6 16.8 ± 0.1 -60.89 

G1B 3.6 ± 0.1 3.5 ± 0.1 -0.29 4.3 ± 0.04 3.6 ± 0.1 -17.72 49.8 ± 0.2 20.3 ± 1.7 -59.29 

Y1 4.8 ± 0.1 4.3 ± 0.2 -9.55 4.0 ± 0.1 2.5 ± 0.1 -37.71 90.1 ± 0.7 13.6 ± 1.7 -84.93 

G2 3.4 ± 0.03 3.4 ± 0.1 1.38 4.0 ± 0.1 2.8 ± 0.1 -30.03 52.4 ± 0.2 12.7 ± 0.6 -75.72 

G3 3.7 ± 0.2 3.2 ± 0.02 -11.75 2.7 ± 0.1 1.7 ± 0.04 -36.94 42.3 ± 0.3 7.6 ± 0.4 -81.95 

C1 (Sp) 2.6 ± 0.03 2.7 ± 0.1 3.64 3.5 ± 0.1 2.1 ± 0.1 -39.42 46.6 ± 0.2 6.6 ± 0.8 -85.84 

C1 (W) 2.3 ± 0.1 2.4 ± 0.04 4.29 6.1 ± 0.1 5.3 ± 0.4 -13.48 47.2 ± 2.1 20 ± 1 -57.64 

C2A 3.5 ± 0.2 3.5 ± 0.1 -0.20 4.3 ± 0.2 3.2 ± 0.1 -24.53 54.3 ± 0.1 17.4 ± 0.9 -67.98 

C2B 3.1 ± 0.002 2.9 ± 0.03 -4.85 5.2 ± 0.1 4.2 ± 0.1 -19.76 55.4 ± 0.7 17.6 ± 0.6 -68.16 

C3A 2.7 ± 0.03 2.7 ± 0.02 -0.23 4.6 ± 0.7 3.2 ± 0.03 -30.94 46.7 ± 1.0 19.4 ± 0.3 -58.35 

C3B 2.8 ± 0.02 3.0 ± 0.1 5.87 4.4 ± 0.1 3.7 ± 0.1 -15.17 37.4 ± 2.2 20.8 ± 1.9 -44.55 

C4A 2.6 ± 0.04 2.7 ± 0.04 4.60 3.4 ± 0.04 2.6 ± 0.05 -24.78 54.4 ± 0.9 28.3 ± 0.4 -47.99 

C4B 2.8 ± 0.003 2.9 ± 0.1 3.48 4.0 ± 0.1 3.8 ± 0.1 -5.65 35.0 ± 1.9 21.4 ± 2.4 -38.81 
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Table 2.5. Changes in fluorescence indices during photo-oxidation experiments. Uncertainty is expressed as ± 1 S.E. of 

the mean of triplicate samples. Change is calculated as (final – initial) expressed as a percentage of the initial value. 

Negative change indicates a decrease. Bold text indicates changes are statisically significant (p < 0.05). 

 Fluorescence Index, FI Humification Index, HIX ‘Freshness’, β/α 

Map 

Symbol Initial Final % change  Initial Final % change  Initial Final % change  

G1A 1.52 ± 0.01 1.53 ± 0.01 0.45 3.77 ± 0.01 1.38 ± 0.04 -63.39 0.77 ± 0.01 0.86 ± 0.01 11.32 

G1B 1.52 ± 0.004 1.54 ± 0.02 1.42 2.55 ± 0.04 1.08 ± 0.04 -57.60 0.77 ± 0.01 0.86 ± 0.01 10.85 

Y1 1.44 ± 0.01 1.57 ± 0.02 9.16 7.19 ± 0.12 1.6 ± 0.1 -78.20 0.67 ± 0.004 0.80 ± 0.02 19.91 

G2 1.49 ± 0.01 1.53 ± 0.02 2.71 4.22 ± 0.04 1.15 ± 0.04 -72.66 0.74 ± 0.002 0.89 ± 0.02 20.34 

G3 1.52 ± 0.01 1.62 ± 0.03 6.43 5.01 ± 0.04 1.22 ± 0.06 -75.54 0.78 ± 0.001 0.96 ± 0.05 23.77 

C1 (Sp) 1.52 ± 0.01 1.61 ± 0.03 5.95 8.40 ± 0.30 1.31 ± 0.02 -84.35 0.73 ± 0.001 0.93 ± 0.01 26.40 

C1 (W) 1.55 ± 0.01 1.50 ± 0.02 -2.89 6.2 ± 0.5 2.5 ± 0.4 -59.08 0.75 ± 0.01 0.81 ± 0.01 8.02 

C2A 1.48 ± 0.01 1.52 ± 0.01 2.43 5.7 ± 0.1 1.76 ± 0.05 -69.12 0.73 ± 0.003 0.83 ± 0.01 14.11 

C2B 1.49 ± 0.01 1.53 ± 0.01 2.69 5.3 ± 0.3 1.88 ± 0.05 -64.22 0.73 ± 0.003 0.82 ± 0.01 11.98 

C3A 1.55 ± 0.01 1.59 ± 0.02 2.56 0.62 ± 0.05 0.22 ± 0.01 -64.50 0.82 ± 0.01 0.85 ± 0.01 4.24 

C3B 1.53 ± 0.01 1.49 ± 0.02 -2.83 3.5 ± 0.4 2.1 ± 0.2 -38.55 0.80 ± 0.01 0.82 ± 0.03 1.99 

C4A 1.54 ± 0.02 1.61 ± 0.03 4.42 0.60 ± 0.04 0.31 ± 0.02 -47.43 0.82 ± 0.003 0.84 ± 0.01 3.21 

C4B 1.54 ± 0.01 1.51 ± 0.04 -1.84 3.4 ± 0.4 2.1 ± 0.1 -43.23 0.80 ± 0.01 0.83 ± 0.02 4.92 

4
0
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CHAPTER 3 

DO MICROBES PREFER THEIR CARBON COOKED?; RESULTS OF SERIAL 

PHOTO-OXIDATION AND BIO-DEGRADATION OF DISSOLVED ORGANIC 

CARBON IN THE COLORADO RIVER SYSTEM 

 

Abstract 

Dissolved organic carbon (DOC) in the Colorado River undergoes two major removal 

processes: photo-chemical and microbial degradation. Compositional changes that result 

from photo-oxidation very likely impact the microbial bioavailability of that carbon. We 

examined the biodegradation of riverine DOC that had been photo-oxidized for two 

weeks in natural sunlight immediately prior to the bioavailability study 

. We examined DOC from two reservoir sites and one river reach along the Colorado 

River. DOC from water collected in July (Lake Powell and Lee’s Ferry) was more 

bioavailable in non-irradiated controls (22.3 to 25.3% loss of DOC) than in samples 

exposed to natural sunlight. DOC from water collected in March (Lake Mead) was more 

bioavailable after exposure to natural sunlight (12.6% loss in DOC) than a non-irradiated 

control. The contrasting effects of photo-oxidation may be related to prior extents of sun 

exposure, or to longitudinal differences in riverine DOC composition. 
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1. Introduction 

Both photo-oxidation and microbial degradation play an important role in the cycling of 

dissolved organic carbon in natural systems (Amon & Benner 1996b; Arnosti 2002; 

Brooks et al. 2007; Carlson 2002). In rivers, dissolved organic matter is derived from 

terrestrial/land (allochthonous) and microbial (autochthonous) sources and is comprised 

of 10’s of thousands of different molecules that vary widely in both molecular structure 

and size (Amon & Benner 1996b; Kujawinski et al. 2004; Kujawinski et al. 2002a; 

Sleighter et al. 2009). DOC in rivers contains information about the amount and 

composition as well as embedded information about the source, reactivity, and fate of the 

DOC. Given the large number of molecules in DOC it can be both overwhelming and 

beneficial to identify individual compounds. A com (Jaffé et al. 2008)bination of optical 

and fluorescence spectroscopy methods can provide information about DOC composition 

(Amon & Benner 1996b; Cory & McKnight 2005; Fellman et al. 2010; Stedmon et al. 

2003; Zepp et al. 2004; Zsolnay et al. 1999). Fluorescence spectroscopy provides class 

level characterization which can be more useful than individual compound identification 

for broad ecosystem level characterization. 

Dissolved organic carbon in natural water is susceptible to many biogeochemical 

processes (thermal degradation, photo-oxidation, microbial degradation, and sorption), of 

which, photo-oxidation and microbial degradation play a critical role in altering the 

amount and the form of DOC (Amon & Benner 1996a; Cory et al. 2007; Moran & Zepp 

1997; Wiegner & Seitzinger 2001). There is a significant disparity in the literature on the 

effects of photo-oxidation on DOC bioavailability (i.e., the removal of carbon through 
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biological consumption). Photo-oxidation has been shown to increase bioavailability of 

DOC through the formation of low molecular weight (LMW) DOC (Amador et al. 1989; 

Lindell et al. 1995; Miller & Zepp 1995; Mopper et al. 1991; Salonen & Vähätalo 1994). 

Photo-oxidation has also been shown to form reactive oxygen species which can decrease 

carbon bioavailability (Cooper et al. 1988; Moffett & Zajiriou 1990; Obernosterer et al. 

1999). 

Previous studies have investigated bioavailability of carbon with different 

sources, compositions, and different histories (Lu et al. 2013; Wiegner & Seitzinger 

2001). These studies suggest that the differences in the bacterial response is related to the 

DOM composition (Kroer 1993; Seitzinger et al. 2005). In this study I focus on the 

reservoirs in the Lower Colorado River, using photo-oxidation and biodegradation 

experiments to investigate how the compositional changes in DOC from photo-oxidation 

affect microbial bioavailability.  

2. Methods and Materials 

2.1. Sample Sites 

Samples were collected at three sites along the Colorado River: Lake Powell (P), Lee’s 

Ferry (F), and Lake Mead (M; Figure 3.1). The sample collected from Lake Mead was 

collected in March 2014, and the samples collected from Lake Powell and Lee’s Ferry 

were collected in July 2014. The sample collected at Lake Powell (a reservoir) was 

collected from surface water at the Wahweap swim beach about two meters from the 

shoreline. The sample collected from Lee’s Ferry (a river reach, ~20 km below Glen 
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Canyon Dam) was collected from a floating boat dock, ~3 m from the shoreline, and the 

sample from Lake Mead (a reservoir) was sampled from the boat dock ~10 m from the 

shoreline at Hemingway Marina. 

2.2. Field Methods 

A large volume sample (10 L) was collected with an electric pump and filtered through 

an in-line, string-wound cartridge filter (~1 µm; Pentek, Milwaukee, WI) at all sample 

sites. Samples were collected in acid-washed polycarbonate carboys (Nalgene) and stored 

in the dark at 4 °C until experiments were conducted. Field measurements of pH, 

conductivity, temperature, and dissolved oxygen were obtained at each site using 

calibrated hand-held meters. 

2.3. Experimental Procedures 

Photo-oxidation 

The large volume (10 L) samples collected from Lake Powell (P), Lee’s Ferry (F), Lake 

Mead (M), as well as a deionized water blank (DI; 18.2 MΩ∙cm; Barnstead NANOpure 

Diamond, Dubuque, Iowa) were sterilized by filtering, serially, through a pre-combusted 

(500 °C, 4.5 hours) glass fiber filter (0.7 µm; GF/F; Whatman; Buckinghamshire, UK) 

followed by a 0.2 µm hydrophilic polypropylene membrane filter (Pall Life Science; Ann 

Arbor, Michigan) prior to each experiment. The filtered samples were placed in acid-

washed 1 L polymethylpentene (PMP; Nalgene) bottles. PMP is a UV-transparent plastic 

with approximately 80% of the UV transmission of quartz. Each experiment was 

comprised of eight or sixteen samples and four DI blanks. Half the bottles (i.e., four or 
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eight samples and two blanks) were wrapped in aluminum foil as a dark (non-irradiated) 

control treatment. Bottles were placed in temperature-controlled water baths with a clear 

view of the sky on the roof (45 m high) of a building in Tempe, AZ for two weeks of 

photo-oxidation by natural sunlight. Samples from each individual bottle were collected 

for analysis of DOC concentration, nutrient concentrations, and bacterial cell counts on 

day 0 and day 14. DOC samples were collected in water-leached, 45 mL polypropylene 

plastic centrifuge tubes; the samples were acidified to a pH of 2.5 with 50:50 aqueous 

HCl, and stored in the dark at 4 °C until analysis. Nutrient samples were collected in 

similarly prepared 15 mL centrifuge tubes and stored frozen. Small, 10 mL, unfiltered 

aliquots were collected for cell counts in 15 mL centrifuge tubes; samples for cell 

counting were fixed with formaldehyde, and stored in the dark at 4 °C.  

Biodegradation 

On the first day of the biodegradation portion of the experiment (day 16 of the full, 

coupled experiment) the 1 L samples from each photo-oxidation treatment were re-

filtered through a 0.2 µm PES filter and combined to make one composite sample (~4 L) 

for each treatment. A microbial inoculum was prepared from Tempe Town Lake water (a 

local freshwater lake). Briefly, whole lake water was collected and filtered through a pre-

combusted glass fiber A (GF/A, nominal pore-size: 1.6 µm) to remove particles and large 

protists. The inoculum was added to each sample at a 9:1 sample-to-inoculum ratio. After 

the initial samples were collected, the inoculated, photo-oxidized, composited samples 

were divided into pre-combusted (500 °C, 4.5 hours) 1 L amber glass bottles. The 

inoculated samples were shaken gently on an orbital shaker for 1 hour and samples were 
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collected for initial concentrations of DOC and nutrients, as well as cell counts. On each 

sampling day of the biodegradation experiment, the bottle caps were removed and the 

opening to the bottle was flame sterilized. A 125 mL sample was poured into a pre-

combusted glass beaker, two 10 mL aliquot for cell counting was removed immediately. 

The rest of the sample was filtered and nutrient and DOC samples were collected and 

treated as they were for the photo-oxidation experiment. 

2.4. Analysis 

DOC and total N concentrations were measured using a Shimadzu TOC-V analyzer with 

non-dispersive infrared (NDIR) detector for carbon and chemi-luminescence detector for 

nitrogen (Hedges et al. 1993; Sharp et al. 2004; Sharp 1997; Sharp et al. 1993). All DOC 

concentrations were blank corrected using the DI blank values from each day. The limit 

of detection on the TOC analyzer is 0.2 mg C L-1 and the limit of quantification is 0.3 mg 

C L-1.  UV absorbance and 3D fluorescence spectra were measured on a subsample of the 

DOC sample. UV-Visible absorbance spectra were collected from 190 nm to 1100 nm 

(step size: 0.1 nm) on a Shimadzu UV-mini 1240 with a 20 W halogen lamp. 

Fluorescence spectra were collected on a Horiba Jobin Yvon Fluoromax-4 

spectrofluorometer with a 150 W xenon lamp using the methods described in Cory & 

McKnight (2005). 

Total fluorescence (calculated as the sum of the intensity of the entire blank-corrected 

Raman-normalized EEM) is instrument specific and the units are Raman-normalized 

arbitrary units (AU). Analyses of nitrate + nitrite, and ammonium were conducted using a 

Lachat QC8000 according to the methods outlined in Wiegner & Seitzinger (2004). The 
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mean detection limit for ammonium was 0.003 mg N L-1, and for Nitrate + Nitrite is 

0.009 mg N L-1. 

Cell count samples were stained with DAPI and filtered onto black filters (Whatman 

Nuclepore Track-Etch Membrane and Whatman cellulose acetate filters, Dassel, 

Germany) that had been rinsed with deionized water. The filters were placed on a 

microscope slide and allowed to dry under a petri dish. Once dry, citifluor (Electron 

Microscope Sciences, Hatfield, PA) mounting oil and a slide cover were added as 

outlined in Yu et al. (1995). Using a Zeiss microscope (Axioplan2, Oberkochen, 

Germany) cells were fluoresced and imaged using a high resolution digital camera 

(AxioCam HRc, Axiovision software, Zeiss, Oberochen, Germany). The blue fluorescent 

cells were visualized using ImageJ software (http://imagej.nih.gov/ij/) and the number of 

cells per image was logged manually. Total bacterial cell counts were determined 

according to the method outlined in (O'Connor et al. 2008). The average number of cells 

per field area counted (32 mm x 44 mm) was multiplied by the number of fields on the 

filter and divided by the number of mL in each sample to yield cells per mL-1. 

2.5. Statistical Analysis 

Four replicate samples were collected on each sampling day, with the exception of the 

initial day of the biodegradation experiment (experimental day 16) when only two 

replicates were collected because the initial samples came from the large, irradiated and 

non-irradiated composite samples. All uncertainties are calculated as the standard error of 

the mean value.  
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Significance was calculated using a student t-test to determine statistical differences 

among the means and to determine if slopes were significantly different from zero. All p-

values are calculated using a two tailed t-test with a significance value of α=0.05. 

3. Results 

3.1. Field Samples 

DOC concentrations in the three Colorado River sites sampled ranged from 3.3 ± 0.1 to 

3.9 ± 0.1 mg C L-1, with an average of 3.6 ± 0.2 mg C L-1 (n=3, Table 2.2.). The reservoir 

sites, Lake Powell (P, 3.9 ± 0.13 mg C L-1) and Lake Mead (M, 3.5 ± 0.12 mg C L-1) had 

higher DOC concentrations than the river site, Lee’s Ferry (F, 3.3 ± 0.1 mg C L-1). 

3.2. Experimental Results 

3.2.1. Bulk DOC 

DOC generally decreased in all samples from the photo-oxidized treatments; the average 

DOC decrease was 8.4 ± 5.2 % (n=3, Table 3.3.). In the dark treatments, two samples 

exhibited increases in DOC (1.4% (F) and 8.1% (P), respectively), although these 

increases were not statistically significant; the other dark sample had a decrease of 2.7% 

(p=0.005, M) in bulk DOC concentration. DOC decreased in all samples during the 

biodegradation portion of the experiment (Table 3.3., Figure 3.3.); the decreases in DOC 

ranged from 3.3 to 25.3%. The samples that had been exposed to sunlight (light) had an 

average decrease of 13 ± 6% (n=3, Table 3.3., Figure 3.3.), the dark samples had an 

average decrease of 17.0 ± 11.93% (n=3).  
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3.2.2. Total Fluorescence 

Total fluorescence at the beginning of the experiment was 41.5 ± 0.5, 43.6 ± 0.1, and 

62.7 ± 0.1 for Lake Mead, Lake Powell, and Lee’s Ferry, respectively. (Table 3.4., Figure 

3.4.). During photo-oxidation, total fluorescence decreased in all samples exposed to 

sunlight and remained the same or increased slightly in all samples kept in the dark. The 

total fluorescence changes due to photo-oxidation can be observed in the EEMs as a 

decrease in fluorescence from day 0 to day 14 (Figure 3.5). Total Fluorescence did not 

change during biodegradation portion of the experiment (days 16-28; Figure 3.5.). The 

change in total fluorescence during biodegradation ranged from a decrease of 2.9% (P, 

Light) to an increase of 5.5% (M, Light) for both photo-oxidation treatments.  

3.2.3. Cell Counts 

Cell counts on day 0 ranged from 0.1x106 ± 0.04x106 to 3.1x106 ± 3.0x106 cells mL-1 

(Table 3.5., Figure 3.6.). On day 14, the final day of the photo-oxidation experiment, the 

cell counts averaged 2.8x106 ± 1.8x106 cells mL-1. Cell counts increased in all samples 

after the addition of the bacterial inoculum. The average number of cells on day 16, the 

start of biodegradation experiment, was 8.8x106 ± 2.3x106 cells mL-1 (n=6). Cell numbers 

increased and decreased over the course of the biodegradation experiment; the average 

cell count by the final day of the biodegradation experiment was 9.4x106 ± 2.9x106 cells 

mL-1 (n=6; Table 3.5, Figure 3.6) 
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3.2.4. Nutrients 

Ammonium concentrations in Lake Mead ranged from 0.014 to 0.016 mg N L-1; nitrate + 

nitrite ranged from 0.44 to 0.49 mg N L-1. Ammonium concentrations increased from 

0.014 to 0.020 mg N L-1 in the photo-oxidized samples and did not change in the dark 

samples. Nitrate + nitrite did not change in the photo-oxidized samples, and decreased 

slightly (from 0.49 to 0.47 mg N L-1) in the dark samples (Table 3.5.).  

Ammonium and nitrate + nitrite decreased in all samples over the first three days of the 

biodegradation experiment (Figure 3.7.). By day 3 of the biodegradation experiment 

(experiment day 18) ammonium in both treatments had dropped below the detection limit 

of 0.003 mg N L-1. Nitrate + nitrite decreased from 0.43 ± 0.03 to 0.35 ± 0.02 mg N L-1 (a 

17.8% decrease) in the light treatment and decreased from 0.48 ± 0.01 to 0.39 ± 0.03 mg 

N L-1 (a 5.5% decrease) in the dark treatment over the 12 days of the biodegradation 

experiment (Table 3.6., Figure .3.7.).  

4. Discussion 

DOC in the Colorado River undergoes two significant, simultaneous degradation 

processes: photo-oxidation and microbial degradation. As shown in chapter 2 the photo-

reactive portion of the DOC is predominantly the terrestrial humic fraction. 

The reservoir samples are collected surface water (P and M) and may have had higher 

DOC concentrations as a result of local primary production. Primary production 

generated DOC through photosynthesis. The river site at Lee’s Ferry is located below 

Glen Canyon Dam and Lake Powell; the water that arrives at Lee’s Ferry came through 
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the penstock of the dam at a depth of ~70 meters in the reservoir. Water at that depth has 

not been exposed to the sun or to primary producers in quite some time, but respiration in 

deep waters of the lake could remove labile DOC. 

The increase in DOC concentration during photo-oxidation may result from my inability 

to sterilize the PMP bottles while retaining the UV transparency. The PMP bottles cannot 

be autoclaved or heated to temperatures in excess of 125 oC. Even though the samples are 

sterile filtered, a small amount of very tiny bacteria may still pass through the 0.2 m 

filter. DOC bioavailability decreased after photo-oxidation in water collected from Lake 

Powell and Lee’s Ferry. DOC bioavailability increased after photo-oxidation in water 

collected from Lake Mead. The increased bioavailability after photo-oxidation for Lake 

Mead may be related to the fact that the water was collected during March while the Lake 

Powell (P) and Lee’s Ferry (F) samples were collected in June; although, this is unlikely 

to be the primary factor explaining the differences in bioavailability. Because each lake 

stores a large amount of water, the individual seasonal pulses in water chemistry are 

smaller. Moreover, it is likely the water collected at Lake Mead has at some point in time 

been both at the surface and in the deep waters of Lake Powell. Thus, water at Lake 

Mead has already undergone more photo-oxidation and biodegradation than that at the 

other two sample sites. The contrasting results are more likely related to the DOC 

composition; because of Lake Meads water history, the composition of the DOC in Lake 

Mead is different than at Lake Powell and Lee’s Ferry.  

These results are not entirely surprising given the conflicting evidence on the effects of 

photo-oxidation on carbon bioavailability provided in the primary literature. It has been 
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reported that photo-oxidation of DOC can decrease bioavailability by to the formation of 

reactive oxygen species which alter the redox conditions (Cooper et al. 1988; Moffett & 

Zajiriou 1990) while other reports have documented increased bioavailability as a result 

of formation of low molecular weight organic compounds (Hedges 1992; Kieber et al. 

1989; Moran & Zepp 1997). The differences in DOC bioavailability among the three sites 

investigated here may be related to differences in carbon source and carbon composition. 

Surface water collected from Lake Powell has undergone both photo-oxidation and 

microbial degradation. The water collected at Lee’s Ferry has been in Lake Powell for 

about two years and most recently, has been stored below the photic zone in the deep 

waters of Lake Powell. This suggests that it was only actively experiencing microbial 

degradation. Lake Mead is downstream of Lake Powell and Lee’s Ferry. Surface water 

collected in Lake Mead is actively undergoing photo-oxidation and microbial-

degradation and has previously been stored in Lake Powell. The extent of the photo-

oxidation and biodegradation that a sample has undergone (history) determines the 

composition of the DOC. One possible explanation for the increase in bio-degradable 

DOC after photo-oxidation of the Lake Mead sample is that the initial DOC did not have 

much bio-available carbon because it has already been removed through biodegradation 

while the water was stored in Lake Powell.  

Photo-oxidation decreased the Total Fluorescence (TF) in irradiated samples by 30.0 to 

48.3%, with the smallest decrease at Lake Powell and the largest decrease at Lake Mead. 

The decreases in TF in the photo-oxidized portion of the experiment are consistent with 

the decreases reported for similar photo-oxidation studies of Colorado samples reported 

in Chapter 2. The decreases in TF reported here are less than have been observed in a 
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study of streams in Virginia (an 85-91% loss in TF; (Lu et al. 2013). TF in the dark 

treatments increased slightly from 2.2% to 11.3% during the photo-oxidation phase of the 

experiment. This increase could be a result of the fact that the PMP bottles used during 

photo-oxidation are not completely sterile. All samples had negligible changes in TF 

during the biodegradation phase of the experiment.  

This suggests the DOC consumed during biodegradation is not fluorescent, and is 

supported by the fact that the fluorescence didn’t change during biodegradation for either 

the light or the dark photo-oxidation treatments. The fluorescent DOM only is a fraction 

of the total carbon pool and there is, of course, a significant amount of non-fluorescent 

DOM for the microbes to consume. The decrease in TF for Lake Powell (P) and Lee’s 

Ferry (F) did not increase the bioavailability, suggesting that the DOC transformed by 

photo-oxidation did not form bioavailable DOC. Fluorescence spectroscopy can only 

provide compositional information for a fraction of the DOC. Biodegradation did not 

alter or remove the fluorescent fraction, so the non-fluorescent composition must have 

been altered. I do not have direct information about the composition of the non-

fluorescent DOC but it appears the non-fluorescent component is what controls DOC 

bioavailability.  

Bacterial cell counts increased over the biodegradation phase of the experiment, the 

increases were larger in samples that were not irradiated during the photo-oxidation phase 

of the study. This is consistent with higher carbon bioavailability in the non-irradiated 

samples. There is high variability among samples, this could be due, in part to the PMP 

containers used not being sterile and could also be due to bottle effects. More samples are 
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needed to determine the exact changes in cell counts. Concomitant decreases in DOC and 

nutrients concentrations, with an increase in cell numbers, suggests the DOC is being 

removed by microbial processes. Cell numbers sometimes decreased toward the end of 

the biodegradation phase of the study, and it is likely that the samples became nutrient 

limited. Intermediate-day cell counts still need to be analyzed to determine if the decrease 

in cell density corresponds with the decreased in nutrient concentrations. Previous studies 

have indicated that the ability to tolerate photo-oxidation products (free radicals and 

hydrogen peroxide) may be directly related to bacterial community composition, 

therefore a decrease in cell density may suggest the bacterial community did not adapt to 

the formation of harmful products from photo-oxidation (Judd et al. 2007). 

5. Summary and Implications 

Between 3 and 25% DOC from the Colorado River was bioavailable on a time 

scale of 12 days. Microbial degradation in this experiment was selective, removing 

predominately non-fluorescent DOC. DOC was removed through biodegradation for both 

photo-oxidation treatments, but the decreases tended to be greater in the non-irradiated 

samples. There was no decrease in fluorescent DOM during biodegradation, this suggest 

that in all experiments the bioavailable DOC was non-fluorescent. The starting 

composition of the non-fluorescent DOC is likely controlling its bioavailability either 

because it was already broken down in to smaller compounds or because it had more 

available nutrients.  

The Colorado River reservoirs increase water residence time, thus increasing the 

time and extent of photo-oxidation and microbial degradation. Photo-oxidation of DOC 
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resulted in both increases and decreases in DOC bioavailability, suggesting the photo-

oxidation process affects the DOC in different ways. It is likely that the history of the 

DOC is a driving factor for the non-fluorescent DOC composition. More work is needed 

to determine the composition of the non-fluorescent DOC transformed during photo-

oxidation and removed during microbial degradation. 

  



61 

 
 

Figure 3.1. Map of the Grand Canyon region with sample sites at Lake Powell (P, blue), 

Lee’s Ferry (F, green), and Lake Mead (M, red). The yellow square on the inset map 

denotes the expanded area. Map taken from google maps.

Lake Powell (P) 

Lee’s Ferry (F) 

Lake Mead (M) 
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Figure 3.2. Experimental flow chart for the coupled photo-oxidation/biodegradation experiments. Yellow bottles were 

exposed to natural sunlight (i.e., light), grey bottles were wrapped in foil and kept out of sunlight (i.e., dark).   
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Figure 3.3. DOC concentration in the serial photo-oxidation/biodegradation experiments. 

Samples are from Lake Powell (blue), Lee’s Ferry (red), and Lake Mead (green). The top 

panel is samples that were exposed to sunlight (light) followed by dark incubation, the 

bottom panel is samples that were wrapped in foil (dark) followed by dark incubation. 

The line at day 15 separates the photo-oxidation and biodegradation portions of the 

experiment. Error bars are ± the standard error of the mean. Where the error bars cannot 

be seen, they are smaller than the symbols. 
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Figure 3.4. Total fluorescence in the serial photo-oxidation/biodegradation experiments. 

Samples are from Lake Powell (blue), Lee’s Ferry (red), and Lake Mead (green). The top 

panel is samples that were exposed to natural sunlight (light) followed by dark 

incubation, the bottom panel is samples that were wrapped in foil (dark) followed by dark 

incubation. The line at day 15 separates photo-oxidation and bio-degradation portions of 

the experiment. Error bars are ± the standard error of the mean, where error bars cannot 

be seen they are smaller than the symbol. 
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Figure 3.5. Representative fluorescence excitation-emission matrix plots from a serial photo-oxidation/biodegradation 

experiment. The left-hand panel is day 0, prior to sun exposure (A). The middle panels are after 2 week of sun exposure 

(B, day 14) and after the addition of the microbial inoculum (C, day 16). The right-hand panel is after 12 days of 

biological carbon degradation. The color scale is fluorescence intensity in Raman-normalized arbitrary units (AU). Note 

loss of fluorescence after photo-oxidation (B) and slight increase in fluorescence on day 16 (C) due to carbon added with 

the inoculum. There is no notable change in fluorescence after biodegradation (D). 
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Figure 3.6. Total bacterial cell counts in the serial photo-oxidation/biodegradation 

experiments. Symbols are: Lake Powell (blue), Lee’s Ferry (red), and Lake Mead (green). 

The top panel is samples that were exposed to sunlight (light) followed by dark 

incubation, the bottom panel is samples that were wrapped in foil (dark) followed by dark 

incubation. The line at day 15 separates the photo-oxidation and microbial degradation 

experiments. Error bars are one standard error of the mean (n=2). In general, there was 

little or no change in cell numbers during the photo-oxidation portion of the experiment. 

There is a small increase in cell numbers after the addition of the inoculum on day 16. 

Samples that were photo-oxidized show smaller increases in cell numbers than samples 

that were kept in the dark.  
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Figure 3.7. Nutrients concentrations in the photo-oxidation/biodegradation experiment for 

a sample collected Lake Mead. Ammonium (▲) and nitrate + nitrite (■) concentrations 

for sun exposed (top) and dark (bottom) photo-oxidation treatments. The line at day 15 

separates the photo-oxidation experiment from the biodegradation experiment. Error bars 

represent ± 1 standard deviation of the mean for replicate samples. Where error bars 

cannot be seen there was no replicate sample analyzed. 
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Table 3.1. Sample site description 

Sample 

Location 

Map 

Symbol 

Sample 

Type 

Distance 

from River 

Mouth (km) 

Collection 

Date Latitude Longitude 

Lake Powell P Reservoir 1142.0 June 2014 37.0071 -111.5092 

Lee's Ferry F River 1108.2 June 2014 36.8658 -111.5859 

Lake Mead M Reservoir 551.8 March 2014 36.0285 -114.7757 
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Table 3.2. Water Chemistry 

 

Map 

Symbol 

Temperature 

(°C) pH 

Dissolved Oxygen 

(mg O2 L
-1) 

Conductivity 

(µS cm-1) 

DOC 

(mg C L-1) 

P 23.8 5.7 5.46 445 3.9 ± 0.13  

F 11.1 8.5 6.65 437 3.3 ± 0.12 

M 15.7 8 8.65 492 3.5 ± 0.12 
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Table 3.3. DOC concentration (mg C L-1) in serial photo-oxidation/biodegradation experiments. Uncertainty is expressed 

as ± 1 S.E. of mean of replicate samples. Change is calculated as (final – initial) expressed as a percentage of the initial 

value. A negative decrease in percent change is the result of an increase in the DOC concentration. Bold text indicates 

changes that are statistically significant (p < 0.05). 

 

  Dissolved Organic Carbon  (mg C L-1)  

  Photo-oxidation Biodegradation  

Map 

Symbol Treatment Initial Final 

% 

Change Initial Final 

% 

Change 

Overall DOC 

decrease (%) 

P         

 Light 3.7 ± 0.15 3.5 ± 0.3 3.7 3.2 ± 0.61 2.6 ± 0.44 19.2 33.6 

 Dark 3.6 ± 0.15 3.9 ± 0.25 -8.1 3.8 ± 0.32 3.0 ± 0.24 22.3 22 

F         

 Light 3.1 ± 0.01 2.9 ± 0.24 6.1 3.2 ± 0.36 3.0 ± 0.22 6.8 12.9 

 Dark 3.1 ± 0.03 3.2 ± 0.22 -1.4 3.6 ± 0.23 2.7 ± 0.21 25.3 23.7 

M         

 Light 2.7 ± 0.01 2.6 ± 0.01 4.7 2.6 ± 0.01 2.2 ± 0.02 12.6 17.3 

 Dark 2.7 ± 0.02 2.6 ± 0.01 2.7 2.9 ± 0.02 2.8 ± 0.04 3.3 6.0 

 

 

 

 

 

 

 

 

 

 

 

7
0
 



71 

 

 

 

Table 3.4. Total fluorescence during serial photo-oxidation/biodegradation experiments. Total fluorescence is in Raman-

normalized arbitrary units (AU). Uncertainty is expressed as ± 1 S.E. of mean of replicate of one samples. Change is 

calculated as (final – initial) expressed as a percentage of the initial value. A negative change is an increase in total 

fluorescence. Bold text indicates changes that are statistically significant (p < 0.05). 

 

  Total Fluorescence  

  Photo-oxidation Biodegradation  

Map 

Symbol Treatment Initial Final 

% Photo-

degradable  Initial Final 

% Bio-

degradable 

Overall TF 

decrease 

(%) 

P         

 Light 43.6 ± 0.1 30.5 ± 1.8 30.0 42.0 ± 0.3 40.8 ± 0.2 2.9 32.9 

 Dark 43.9 ± 0.2 48.9 ± 0.3 -11.3 55.4 ± 1.4 55.8 ± 0.5 0.7 -10.6 

F         

 Light 62.2 ± 0.4 35.4 ± 1.6 43.4 45.0 ± 0.2 45.7 ± 0.2 -1.6 41.8 

 Dark 62.7 ± 0.1 65.8 ± 0.9 -5.0 71.9 ± 0.5 70.9 ± 0.2 1.4 -3.6 

M         

 Light 41.5 ± 0.5 21.4 ± 1.0 48.3 25.1 ± 0.4 26.5 ± 0.1 -5.5 42.8 

 Dark 42.0 ± 0.7 43.0 ± 0.9 -2.2 44.8 ± 0.2 46.6 ± 0.05 -4.1 -6.3 
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Table 3.5. Cell Counts during serial photo-oxidation/biodegradation. Uncertainty is expressed as ± 1 S.E. of the mean 

of duplicate samples. Change is calculated as (final – initial) expressed as a percentage of the initial value.  

 

  Cell Counts (x106 cells mL-1)  

  Photo-oxidation Biodegradation  

Map 

Symbol Treatment Initial Final 

Increase 

(fold) Initial Final 

Increase 

(fold) 

Overall 

Increase (fold) 

P         

 Light 0.4 ± 0.3 2 ± 2 3.7 8 ± 1 7 ± 3 -0.1 3.6 

 Dark 0.1 ± 0.04 1.1 ± 0.9 10.8 6 ± 1 9 ± 2 0.6 11.4 

F         

 Light 0.4 ± 0.3 5.3 ± 0.3 12.5 10 ± 3 9 ± 1 -0.1 12.4 

 
Dark 1.7 ± 1.1 4.8 ± 0.1 1.8 

12.0 ± 

0.1 
11 ± 3 -0.05 1.8 

M         

 Light 2.7 ± 0.8 1.6 ± 0.4 -0.4 10 ± 1 14 ± 2 0.4 0.02 

 Dark 3 ± 3 2 ± 2 -0.3 7 ± 5 6 ± 4 -0.1 -0.4 
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Table 3.6. Ammonium and Nitrate + Nitrate concentrations during serial photo-oxidation/biodegradation experiment. 

Uncertainty is expressed as ± 1 S.D. of the mean of replicate samples.  

 

 

Experiment day 

Number of 

replicates 
Ammonium (mg N L-1) Nitrate + Nitrite (mg N L-1) 

Dark Light Dark Light 

Photo-oxidation 

0 1 0.016 0.015 0.49 0.44 

14 1 0.018 0.020 0.47 0.43 

Biodegradation 

16 2 0.016 ± 0.0002 0.018 ± 0.001 0.42 ± 0.01 0.43 ± 0.03 

17 8 0.015 ± 0.001 0.017 ± 0.002 0.37 ± 0.05 0.40 ± 0.03 

18 8 BDa BD 0.41 ± 0.03 0.41 ± 0.03 

21 8 BD BD 0.39 ± 0.03 0.39 ± 0.04 

23 8 0.006 ± 0.004 0.01 ± 0.01 0.39 ± 0.05 0.40 ± 0.03 

28 8 BD BD 0.39 ± 0.03 0.35 ± 0.02 

 
a BD= below detection limit

7
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CHAPTER 4 

SUMMARY AND CONCLUSION 

 If DOC concentration and composition along the Colorado River are the result of 

photo-chemical and microbial degradation, then longitudinal patterns in riverine DOC 

composition should reflect the general patterns observed in my laboratory degradation 

experiments. DOC concentration in the Colorado River tends to decrease from upstream 

to downstream. The DOM composition also changes along the length of the river, 

presumably in response to carbon input, removal, and alteration processes. In particular, 

SUVA254 (the specific UV absorbance) remains generally constant along the river; since 

DOC concentration has decreased, this implies the UV absorbance has also decreased. In 

addition, fluorescence indices can be used to assess compositional changes along the 

river. The total fluorescence (TF) and humification index both decrease from upstream to 

downstream in the Colorado; in contrast, the fluorescence index and the freshness index 

increase from upstream to downstream (Table 4.1).  

Photo-oxidation controls the fluorescent composition of the DOC, by 

preferentially removing terrestrial humic material (Chapter 2). Photo-oxidation in my 

experiments did not change the bulk DOC concentration but induced significant changes 

in UV absorbance and in fluorescence characteristics. Because photo-oxidation causes a 

decrease in UV absorption at 254nm with no change in DOC concentration the specific 

UV absorbance at 254nm, SUVA254, also decreased. Despite significant variation in the 

initial DOC concentration and initial fluorescence characteristics, photo-oxidation had a 

remarkably uniform effect on TF, FI, HIX, and freshness. The total fluorescence 
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decreased in all samples, FI tended to increase slightly, HIX decreased in all samples, and 

freshness increased in all samples (Chapter 2, Table 4.1.). The simplest explanation that 

is consistent with all these patterns is the removal of terrestrially-derived humic material. 

This does not, of course, eliminate the possibility that some microbially-derived carbon 

was also added along the length of the river. 

Microbial degradation of Colorado River DOC changed carbon concentrations in 

my experiments but did not alter the optical and fluorescent characteristics of the carbon. 

DOC concentration decreased in all samples, while total fluorescence did not change 

(Chapter 3). SUVA254 increased as a result of bio-degradation because UV absorbance at 

254 nm remained constant while the DOC concentration decreased. There was no change 

in total fluorescence (TF) or in the fluorescence indices (FI, HIX, Freshness) during bio-

degradation of samples with prior sun exposure or in non-exposed samples (Appendix A, 

Table 4.1.). This suggests that while biodegradation is an important loss of carbon in the 

Colorado River, the bioavailable fraction of the DOC tends to be non-fluorescent. Further 

work to characterize the non-fluorescent component is definitely warranted, but beyond 

the scope of this thesis. 

 The Colorado River undergoes both photo-chemical and microbial 

degradation simultaneously, thus it is not surprising that both processes are needed to 

explain the concentration and compositional changes observed along the river. Based on 

these experiments, it appears that DOC concentration responds most strongly to 

biological processes and DOC composition reflects changes due to photo-chemical 

alteration. The cumulative effects of photo-oxidation and bio-degradation on DOC 
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concentration and composition in our experiments broadly match the downstream 

patterns observed in the river, suggesting photo-oxidation and bio-degradation are 

sufficient explanations for the biogeochemical processes of carbon in the Colorado River 

system (Table 4.1.).  
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Table 4.1. Comparison of patterns in DOC concentration and composition from upstream 

to downstream, after photo-oxidation, after microbial degradation, and the additive 

effects of photo-oxidation and microbial degradation. Green arrows identify trends from 

the experiments that match the upstream to downstream trend in the Colorado River 

system. 

Species  

Effects of 

Photo-

oxidation 

Effects of 

Bio-

degradation 

Additive 

effects of 

Photo- and 

Biodegradation 

Upstream to 

Downstream 

Bulk  DOC Concentration ↔ ↓ ↓ ↓ 

SUVA254 ↓ ↑ ↔ ↔ 

Total Fluorescence (TF) ↓ ↔ ↓ ↓ 

Fluorescence Index (FI) ↑ ↔ ↑ ↑ 

Humification Index (HIX) ↓ ↔ ↓ ↓ 

Freshness Index ↑ ↔ ↑ ↑ 
 

 

 

 

  



82 

REFERENCES  

Amador JA, Alexander M, Zika RG (1989) Sequential photochemical and microbial 

degradation of organic molecules bound to humic acid. Applied and Environmental 

Microbiology 55(11): 2843-2849 

Amon R, Benner R (1996a) Photochemical and microbial consumption of dissolved 

organic carbon and dissolved oxygen in the Amazon River system. Geochimica et 

Cosmochimica Acta 60(10): 1783-1792 

Amon RM, Benner R (1996b) Bacterial utilization of different size classes of dissolved 

organic matter. Limnology and Oceanography 41(1): 41-51 

Arnosti C (2002) Microbial extracellular enzymes and their role in dissolved organic 

matter cycling. Aquatic Ecosystems: Interactivity of Dissolved Organic Matter: 315-

342 

Baines SB, Pace ML (1991) The production of dissolved organic matter by 

phytoplankton and its importance to bacteria: patterns across marine and freshwater 

systems. Limnology and Oceanography 36(6): 1078-1090 

Benner R, Opsahl S, Chin-Leo G, Richey JE, Forsberg BR (1995) Bacterial carbon 

metabolism in the Amazon River system. Limnology and Oceanography 40(7): 1262-

1270 

Brooks M, Meyer J, McKnight D (2007) Photooxidation of wetland and riverine 

dissolved organic matter: altered copper complexation and organic composition. 

Hydrobiologia 579(1): 95-113 

Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, and 

carbon cycling in marine systems. Limnology and Oceanography 49(1): 51-57 

Carlson CA (2002) Production and removal processes. In:  Biogeochemistry of marine 

dissolved organic matter. p 91-151 

Coble P, Lead J, Baker A, Reynolds D, Spencer RGM (2014) Aquatic Organic Matter 

Fluorescence. Cambridge University Press,  

Coble PG, Green SA, Blough NV, Gagosian RB (1990) Characterization of dissolved 

organic matter in the Black Sea by fluorescence spectroscopy. Nature (348): 432-435 

Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, 

Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global 

carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 

10(1): 172-185 



83 

Cooper WJ, Zika RG, Petasne RG, Plane JMC (1988) Photochemical formation of 

hydrogen peroxide in natural waters exposed to sunlight. Environmental Science & 

Technology 22(10): 1156-1160 

Cory RM, McKnight DM (2005) Fluorescence Spectroscopy Reveals Ubiquitous 

Presence of Oxidized and Reduced Quinones in Dissolved Organic Matter. 

Environmental Science & Technology 39(21): 8142-8149 

Cory RM, McKnight DM, Chin Y-P, Miller P, Jaros CL (2007) Chemical characteristics 

of fulvic acids from Arctic surface waters: Microbial contributions and photochemical 

transformations. Journal of Geophysical Research: Biogeosciences 112(G4): G04S51 

Del Giorgio PA, Pace ML (2008) Relative independence of organic carbon transport and 

processing in a large temperate river: The Hudson River as both pipe and reactor. 

Limnology and Oceanography 53(1): 185-197 

Duan S, Bianchi TS, Shiller AM, Dria K, Hatcher PG, Carman KR (2007a) Variability in 

the bulk composition and abundance of dissolved organic matter in the lower 

Mississippi and Pearl rivers. Journal of Geophysical Research: Biogeosciences 

(2005–2012) 112(G2):  

Duan SW, Bianchi TS, Shiller AM, Dria K, Hatcher PG, Carman KR (2007b) Variability 

in the bulk composition and abundance of dissolved organic matter in the lower 

Mississippi and Pearl rivers. Journal of Geophysical Research-Biogeosciences 

112(G2):  

Fellman JB, Hood E, Spencer RG (2010) Fluorescence spectroscopy opens new windows 

into dissolved organic matter dynamics in freshwater ecosystems: A review. 

Limnology and Oceanography 55(6): 2452-2462 

Hedges JI (1992) Global biogeochemical cycles: Progress and problems. Marine 

Chemistry 39(1–3): 67-93 

Hedges JI (2002) Why dissolved organics matter. In: Hansell DA & Carlson CA (eds) 

Biogeochemistry of marine dissolved organic matter. Elsevier, London. p 1-33 

Hedges JI, Bergamaschi BA, Benner R (1993) Comparative analyses of DOC and DON 

in natural waters. Marine Chemistry 41: 121-134 

Hedges JI, Keil RG (1999) Organic geochemical perspectives on estuarine processes: 

sorption reactions and consequences. Marine Chemistry 65(1-2): 55-65 

Hedges JI, Mayorga E, Tsamakis E, McClain ME, Aufdenkampe A, Quay P, Richey JE, 

Benner R, Opsahl S, Black B (2000) Organic matter in Bolivian tributaries of the 

Amazon River: A comparison to the lower mainstream. Limnology and 

Oceanography 45(7): 1449-1466 



84 

Hernes PJ, Bergamaschi BA, Eckard RS, Spencer RG (2009) Fluorescence‐based proxies 

for lignin in freshwater dissolved organic matter. Journal of Geophysical Research: 

Biogeosciences (2005–2012) 114(G4):  

Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond JM, Parlanti E (2009) 

Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic 

Geochemistry 40(6): 706-719 

Jaffé R, McKnight D, Maie N, Cory R, McDowell WH, Campbell JL (2008) Spatial and 

temporal variations in DOM composition in ecosystems: The importance of long-term 

monitoring of optical properties. Journal of Geophysical Research: Biogeosciences 

113(G4): G04032 

Judd KE, Crump BC, Kling GW (2007) Bacterial responses in activity and community 

composition to photo-oxidation of dissolved organic matter from soil and surface 

waters. Aquatic Sciences 69(1): 96-107 

Jurgensone I, Aigars J (2012) Bioavailability of riverine dissolved organic matter to 

phytoplankton in the marine coastal waters. Estuarine, Coastal and Shelf Science 107: 

97-104 

Kaiser E, Simpson AJ, Dria KJ, Sulzberger B, Hatcher PG (2003) Solid-state and 

multidimensional solution-state NMR of solid phase extracted and ultrafiltered 

riverine dissolved organic matter. Environmental science & technology 37(13): 2929-

2935 

Kammerer JC (1987) Largest rivers in the United States. In:  Water Resources 

Investigations Open File Report. United Stated Geological Survey, Denver, CO 

80225. p 87-242 

Kelton N, Molot LA, Dillon PJ (2007) Spectrofluorometric properties of dissolved 

organic matter from Central and Southern Ontario streams and the influence of iron 

and irradiation. Water Research 41(3): 638-646 

Kieber DJ, McDaniel J, Mopper K (1989) Photochemical source of biological substrates 

in sea water: Implications for carbon cycling. Nature 341(6243): 637-639 

Kroer N (1993) Bacterial growth efficiency on natural dissolved organic matter. 

Limnology and Oceanography 38(6): 1282-1290 

Kujawinski EB (2011) The impact of microbial metabolism on marine dissolved organic 

matter. Annual review of marine science 3: 567-599 

Kujawinski EB, Del Vecchio R, Blough NV, Klein GC, Marshall AG (2004) Probing 

molecular-level transformations of dissolved organic matter: insights on 

photochemical degradation and protozoan modification of DOM from electrospray 



85 

ionization Fourier transform ion cyclotron resonance mass spectrometry. Marine 

Chemistry 92(1-4): 23-37 

Kujawinski EB, Farrington JW, Moffett JW (2002a) Evidence for grazing-mediated 

production of dissolved surface-active material by marine protists. Marine chemistry 

77(2): 133-142 

Kujawinski EB, Freitas MA, Zang X, Hatcher PG, Green-Church KB, Jones RB (2002b) 

The application of electrospray ionization mass spectrometry (ESI MS) to the 

structural characterization of natural organic matter. Organic Geochemistry 33: 171-

180 

Lancelot C, Billen G (1985) Carbon-nitrogen relationships in nutrient metabolism of 

coastal marine ecosystems. Advances in Aquatic Microbiology 3: 263-321 

Lindell MJ, Granéli W, Tranvik LJ (1995) Enhanced bacterial growth in response to 

photochemical transformation of dissolved organic matter. Limnology and 

Oceanography 40(1): 195-199 

Lu Y, Bauer JE, Canuel EA, Yamashita Y, Chambers R, Jaffé R (2013) Photochemical 

and microbial alteration of dissolved organic matter in temperate headwater streams 

associated with different land use. Journal of Geophysical Research: Biogeosciences 

118(2): 566-580 

Mash H, Westerhoff PK, Baker LA, Nieman RA, Nguyen M-L (2004) Dissolved organic 

matter in Arizona reservoirs: Assessment of carbonaceous sources. Organic 

Geochemistry 35(7): 831-843 

Mayer LM (1994) Relationships between mineral surfaces and organic carbon 

concentrations in soils and sediments. Chemical Geology 114: 347-363 

McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT (2001) 

Spectrofluorometric characterization of dissolved organic matter for indication of 

precursor organic material and aromaticity. Limnology and Oceanography 46(1): 38-

48 

Medeiros PM, Sikes EL, Thomas B, Freeman KH (2012) Flow discharge influences on 

input and transport of particulate and sedimentary organic carbon along a small 

temperate river. Geochimica et Cosmochimica Acta 77: 317-334 

Miller WL, Zepp RG (1995) Photochemical production of dissolved inorganic carbon 

from terrestrial organic matter: Significance to the oceanic organic carbon cycle. 

Geophysical Research Letters 22(4): 417-420 

Moffett JW, Zajiriou OC (1990) An investigation of hydrogen peroxide chemistry in 

surface waters of Vineyard Sound with H2
18O2 and 18O2 Limnology and 

Oceanography 35(6): 1221-1229 



86 

Mopper K, Zhou X, Kieber RJ, Kieber DJ, Sikorski RJ, Jones RD (1991) Photochemical 

degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. 

Nature 353(6339): 60-62 

Moran MA, Zepp RG (1997) Role of photoreactions in the formation of biologically 

labile compounds from dissolved organic matter. Limnology and Oceanography 

42(6): 1307-1316 

Morris DP, Hargreaves BR (1997) The role of photochemical degradation of dissolved 

organic carbon in regulating the UV transparency of three lakes on the Pocono 

Plateau. Limnology and Oceanography 42(2): 239-249 

O'Connor JT, O'Connor T, Twait R (2008) Appendix A: Procedures for Total Bacterial 

Cell Count by Epifluorescence Microscopy. In:  Water Treatment Plant Performance 

Evaluations and Operations. John Wiley & Sons, Inc. p 193-198 

Obernosterer I, Reitner B, Herndl GJ (1999) Contrasting effects of solar radiation on 

dissolved organic matter and its bioavailability to marine bacterioplankton. 

Limnology and Oceanography 44(7): 1645-1654 

Osburn CL, Wigdahl CR, Fritz SC, Saros JE (2011) Dissolved organic matter 

composition and photoreactivity in prairie lakes of the U.S. Great Plains. Limnology 

and Oceanography 56(6): 2371-2390 

Parks SJ, Baker LA (1997) Sources and transport of organic carbon in an Arizona river-

reservoir system. Water Research 31(7): 1751-1759 

Richey JE, Hedges JI, Devol AH, Quay PD, Victoria R, Martinelli L, Forsberg BR (1990) 

Biogeochemistry of carbon in the Amazon River. Limnology and Oceanography 

35(2): 352-371 

Rosen MR, Turner K, Goodbred SL, Miller JM (2012) A synthesis of aquatic science for 

management of Lakes Mead and Mohave. US Geological Survey Circular 1381:  

Salonen K, Vähätalo A (1994) Photochemical mineralisation of dissolved organic matter 

in Lake Skjervatjern. Environment International 20(3): 307-312 

Seitzinger S, Hartnett H, Lauck R, Mazurek M, Minegishi T, Spyres G, Styles R (2005) 

Molecular‐level chemical characterization and bioavailability of dissolved organic 

matter in stream water using electrospray‐ionization mass spectrometry. Limnology 

and Oceanography 50(1): 1-12 

Sharp J, Beauregard A, Burdige D, Cauwet G, Curless S, Lauck R, Nagel K, Ogawa H, 

Parker A, Primm O (2004) A direct instrument comparison for measurement of total 

dissolved nitrogen in seawater. Marine Chemistry 84(3): 181-193 



87 

Sharp JH (1997) Marine dissolved organic carbon: Are the older values correct? Marine 

Chemistry 56(3): 265-277 

Sharp JH, Benner R, Bennett L, Carlson CA, Dow R, Fitzwater SE (1993) Re-evaluation 

of high temperature combustion and chemical oxidation measurements of dissolved 

organic carbon in seawater. Limnology and Oceanography 38(8): 1774-1782 

Sleighter RL, McKee GA, Hatcher PG (2009) Direct Fourier transform mass spectral 

analysis of natural waters with low dissolved organic matter. Organic Geochemistry 

40(1): 119-125 

Spencer RGM, Aiken GR, Wickland KP, Striegl RG, Hernes PJ (2008) Seasonal and 

spatial variability in dissolved organic matter quantity and composition from the 

Yukon River basin, Alaska. Global Biogeochemical Cycles 22(4):  

Stedmon CA, Markager S, Bro R (2003) Tracing dissolved organic matter in aquatic 

environments using a new approach to fluorescence spectroscopy. Marine Chemistry 

82(3–4): 239-254 

Stenson AC, Marshall AG, Cooper WT (2003) Exact masses and chemical formulas of 

individual Suwannee River fulvic acids from ultrahigh resolution electrospray 

ionization fourier transform ion cyclotron resonance mass spectra. Analytical 

Chemistry 75: 1275-1284 

Wiegner TN, Seitzinger SP (2001) Photochemical and microbial degradation of external 

dissolved organic matter inputs to rivers. Aquatic Microbial Ecology 24(1): 27-40 

Wiegner TN, Seitzinger SP (2004) Seasonal bioavailability of dissolved organic carbon 

and nitrogen from pristine and polluted freshwater wetlands. Limnology and 

Oceanography 49(5): 1703-1712 

Yu W, Dodds WK, Banks MK, Skalsky J, Strauss EA (1995) Optimal staining and 

sample storage time for direct microscopic enumeration of total and active bacteria in 

soil with two fluorescent dyes. Applied Environmental Microbiology 61(9): 3367-

3372 

Zepp RG, Sheldon WM, Moran MA (2004) Dissolved organic fluorophores in 

southeastern US coastal waters: correction method for eliminating Rayleigh and 

Raman scattering peaks in excitation–emission matrices. Marine Chemistry 89(1–4): 

15-36 

Zsolnay A, Baigar E, Jimenez M, Steinweg B, Saccomandi F (1999) Differentiating with 

fluorescence spectroscopy the sources of dissolved organic matter in soils subjected 

to drying. Chemosphere 38(1): 45-50 



88 

APPENDIX A 

FLUORESCENCE INDICES FROM SERIAL PHOTO-BIO EXPERIMENT 
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Figure 3.8. SUVA254 in the serial photo-oxidation/biodegradation experiments. Samples 

are from Lake Powell (blue), Lee’s Ferry (red), and Lake Mead (green). The top panel is 

samples that were exposed to natural sunlight (light) followed by dark incubation, the 

bottom panel is samples that were wrapped in foil (dark) followed by dark incubation. 

The line at day 15 separates photo-oxidation and bio-degradation portions of the 

experiment. Error bars are ± the standard error of the mean, where error bars cannot be 

seen they are smaller than the symbol. 
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Figure 3.9. Fluorescence Index (FI) in the serial photo-oxidation/biodegradation 

experiments. Samples are from Lake Powell (blue), Lee’s Ferry (red), and Lake Mead 

(green). The top panel is samples that were exposed to natural sunlight (light) followed 

by dark incubation, the bottom panel is samples that were wrapped in foil (dark) followed 

by dark incubation. The line at day 15 separates photo-oxidation and bio-degradation 

portions of the experiment. Error bars are ± the standard error of the mean, where error 

bars cannot be seen they are smaller than the symbol. 
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Figure 3.10. Humification Index (HIX) in the serial photo-oxidation/biodegradation 

experiments. Samples are from Lake Powell (blue), Lee’s Ferry (red), and Lake Mead 

(green). The top panel is samples that were exposed to natural sunlight (light) followed 

by dark incubation, the bottom panel is samples that were wrapped in foil (dark) followed 

by dark incubation. The line at day 15 separates photo-oxidation and bio-degradation 

portions of the experiment. Error bars are ± the standard error of the mean, where error 

bars cannot be seen they are smaller than the symbol. 
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Figure 3.11. Freshness index (β/α) in the serial photo-oxidation/biodegradation 

experiments. Samples are from Lake Powell (blue), Lee’s Ferry (red), and Lake Mead 

(green). The top panel is samples that were exposed to natural sunlight (light) followed 

by dark incubation, the bottom panel is samples that were wrapped in foil (dark) followed 

by dark incubation. The line at day 15 separates photo-oxidation and bio-degradation 

portions of the experiment. Error bars are ± the standard error of the mean, where error 

bars cannot be seen they are smaller than the symbol. 
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APPENDIX B 

LIST OF ACRONYMS 
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DOC  Dissolved Organic Carbon 

DOM  Dissolved Organic Matter 

FI  Fluorescence Index 

HIX  Humification Index 

SUVA254 Specific UV Absorbance at 254nm 

TF  Total Fluorescence 

TN  Total Nitrogen 

UV  Ultra-violate 

 

 

 

 

 


