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ABSTRACT

The phycologist, M. R. Droop, studied vitamin B12 limitation in the flagellate

Monochrysis lutheri and concluded that its specific growth rate depended on the

concentration of the vitamin within the cell; i.e. the cell quota of the vitamin B12.

The Droop model provides a mathematical expression to link growth rate to the

intracellular concentration of a limiting nutrient. Although the Droop model has been

an important modeling tool in ecology, it has only recently been applied to study

cancer biology. Cancer cells live in an ecological setting, interacting and competing

with normal and other cancerous cells for nutrients and space, and evolving and

adapting to their environment. Here, the Droop equation is used to model three

cancers.

First, prostate cancer is modeled, where androgen is considered the limiting nutrient

since most tumors depend on androgen for proliferation and survival. The model’s

accuracy for predicting the biomarker for patients on intermittent androgen deprivation

therapy is tested by comparing the simulation results to clinical data as well as to

an existing simpler model. The results suggest that a simpler model may be more

beneficial for a predictive use, although further research is needed in this field prior to

implementing mathematical models as a predictive method in a clinical setting.

Next, two chronic myeloid leukemia models are compared that consider Imatinib

treatment, a drug that inhibits the constitutively active tyrosine kinase BCR-ABL.

Both models describe the competition of leukemic and normal cells, however the first

model also describes intracellular dynamics by considering BCR-ABL as the limiting

nutrient. Using clinical data, the differences in estimated parameters between the

models and the capacity for each model to predict drug resistance are analyzed.

Last, a simple model is presented that considers ovarian tumor growth and tumor

induced angiogenesis, subject to on and off anti-angiogenesis treatment. In this
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environment, the cell quota represents the intracellular concentration of necessary

nutrients provided through blood supply. Mathematical analysis of the model is

presented and model simulation results are compared to pre-clinical data. This simple

model is able to fit both on- and off-treatment data using the same biologically relevant

parameters.
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Chapter 1

INTRODUCTION

1.1 Investigating Tumor Dynamics with Mathematical Ecology

It is well-known that cancer is a major public health problem world-wide. Although

cancer mortality rates are declining and survival rates improving, one in three women

and one in two men will develop cancer in his or her lifetime in the United States

(Siegel et al., 2012). Cancer is still the cause of approximately a quarter of deaths

in the United States, a statistic that was also true about 40 years ago (Howlander

et al., 2011; Korolev et al., 2014). Thus, there is a need for new approaches and

interdisciplinary research in order to better understand cancer and improve treatment.

One recent interdisciplinary approach consists of applying a combination of math-

ematics and ecology to cancer biology. Cancerous cells live in an ecological setting,

interacting with each other, healthy cells, as well as their environment, and evolving

and adapting to changes in their environment (Nagy, 2004, 2005; Merlo et al., 2006;

Pienta et al., 2008; Nagy and Armbruster, 2012; Basanta and Anderson, 2013; Bickel

et al., 2014; Korolev et al., 2014). Studying tumor cells in this framework can provide

important insights. Merlo et al. (2006) discuss several types of ecological interactions

observed in cancer: competition exists between non-cancerous cells as well as other

cancerous cells for resources, nutrients, and space; the immune system acts as a

predator to cancerous cells; and parasitism, the benefit of one species at the expense of

another, can be seen in “free riders” in the example of angiogenesis, the development

of new blood vessels from pre-existing blood vessels. Here, the “free riders” are the

clones that do not produce the pro-angiogenic signals, saving metabolic energy, while
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still benefiting from their neighbor’s investments (Merlo et al., 2006; Bickel et al.,

2014).

Cancer treatment in an ecological setting would aim to ensure that the host, or

patient, out-competes the tumor, or at least establishes a stable coexistence that

does not harm the patient (Elser et al., 2003). A species can become extinct by

being directly killed. In terms of cancer therapy, this is represented through cytotoxic

chemotherapy and targeted drugs, although this rarely cures cancer. Alternative

extinction strategies are to alter the environment or to kill other species that support

the tumor cells (Pienta et al., 2008). Tumors are heterogeneous, consisting of several

genetically different subpopulations, with some clones being selected due to natural

selection (Kareva, 2011). One of the main problems with cancer therapy is that

it often selects for resistance (Merlo et al., 2006). Using evolutionary game theory,

Basanta and Anderson (2013) hypothesize that treatment results will improve by

embracing tumor evolution instead of ignoring it; instead of killing as many tumor

cells as possible, it might be more beneficial to find the correct sequence of treatments

that selects for tumors that are easier to treat. Merlo et al. (2006) state that the

timing of therapy can affect evolutionary dynamics; selective pressures in intermittent

compared to continuous treatment can produce different outcomes.

Ecological mathematical models have provided beneficial insights into tumor biology

(Kuang et al., 2004b; Nagy, 2004, 2005; Nagy and Armbruster, 2012; Basanta and

Anderson, 2013; Bickel et al., 2014; Korolev et al., 2014). Nagy (2005) presents a

review of mathematical models that investigate the causes of necrosis and tumor cell

diversity. Bickel et al. (2014) and Nagy and Armbruster (2012) use mathematical

models to understand why angiogenesis, a hallmark of cancer (Hanahan and Weinberg,

2000), occurs from an evolutionary standpoint, which is not a straightforward question

due to the “free riders” described above. Kuang et al. (2004b) use an ecological

2



mathematical model to propose reducing tumor cell phosphorus uptake as a potential

treatment for cancer.

Since ecological dynamics in tumors are not well understood, there are a few

common growth models that are often used, such as logistic growth. Korolev et al.

(2014) discuss treatment in the presence of Allee effects; with a strong Allee effect,

a population size greater than the Allee threshold will grow towards the carrying

capacity whereas a population size below the threshold will decrease to extinction. The

authors state that if this threshold exists in a tumor ecosystem, then treatment would

not need to kill all the tumor cells, but simply reduce the population size to below the

threshold. A new approach to therapy could focus on the size of the threshold and

increasing the Allee effect. Similarly, treatment could consider evolutionary thresholds;

“small tumors accumulate more damaging mutations, lose fitness and get smaller,

whereas large tumors accumulate more drivers, gain fitness and get bigger” (Korolev

et al., 2014).

The Droop model (Droop, 1968) is another growth model and was developed based

on laboratory data. This model links growth rate to an intracellular limiting nutrient

concentration. Since tumor growth is often dependent upon intracellular nutrients, we

propose using this ecological model to provide insights into cancer biology. Section

1.2 presents this Droop model and analysis of the model. Section 1.3 discusses the

motivations and goals of this research.

1.2 The Droop Model

The phycologist Droop studied the behavior of Monochrysis lutheri, a flagellate

later re-allocated to Pavlova, in limiting concentrations of vitamin B12, with a goal of

relating specific growth rate to the substrate vitamin B12 concentrations (Droop, 1968;

Leadbeater, 2006). Droop concluded that the specific growth rate µ did not depend

3
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directly on the concentration of vitamin in the media, but rather on the concentration

of the vitamin within the cell, or the cell quota Q:

µ = µm

(
1− q

Q

)
. (1.1)

The quota Q is defined as the quantity of nutrients in a cell. The parameter q

represents the minimum quota of nutrient needed for life (the Q value for which µ = 0).

The parameter µm is the value of the horizontal asymptote and represents the growth

rate for an infinite amount of intracellular nutrient. Figure 1.1 presents a plot of the

Droop function and Table 1.1 lists the symbols, their meanings, and their units from

Droop’s publications (Droop, 1968, 1973).

1.2.1 Population Model Formulation

Using Droop’s equation, we now build a population model to serve as the basis of

the tumor model. Let x(t) represent a population density. We assume the population
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Symbol Explanation Units

µ Specific growth rate day−1

(increase in biomass per unit biomass per unit time)

µm Maximum specific growth rate day−1

(at infinite internal substrate concentration)

q Subsistence quota of a limiting nutrient µµg/106 cells

Q Cell Quota (mass per unit biomass) µµg/106 cells

(internal substrate concentration), C/x

C Concentration of substrate within cells µµg/ml

x Cell mass (biomass, mass per unit volume) 106 cells/ml

Table 1.1: Droop Model Symbols, Meanings, and Units (Droop, 1968, 1973)

growth is governed by the cell quota model in equation (1.1) and assume a constant

per capita death rate D:

dx

dt
= µm

(
1− q

Q

)
x−Dx. (1.2)

We now need to consider how the cell quota Q changes over time. Let Nt represent

the total limiting nutrient concentration in the system, Nf represent the free nutrient

concentration in the environment, and Nx represent the nutrient concentration in the

cells. Then

Nt = Nf +Nx = Nf +Qx.

Solving for Q, we see

Q =
Nt −Nf

x
,

where Nt is a constant, and Nf and x change over time. Then

dQ

dt
=
−xN ′f − (Nt −Nf )x

′

x2
,
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where x′ is given by equation (1.2) and N ′f = −αxNf + DQx. The parameter α

represents the uptake rate of the nutrient and xNf represents the interaction between

the population and free nutrient. The term DQx represents the amount of nutrient

that returns to the environment as cells die. Then

dQ

dt
=
x(αxNf −DQx)− (Nt −Nf )

[
µmx

(
1− q

Q

)
−Dx

]
x2

= αNf − µm(Q− q)

= α(Nt −Qx)− µm(Q− q).

Thus we have the following system

dx

dt
= µm

(
1− q

Q

)
x−Dx (1.3a)

dQ

dt
= α(Nt −Qx)− µm(Q− q). (1.3b)

We assume that the parameters are all non-negative so that the model is biologically

meaningful.

1.2.2 Model Analysis

Boundedness and Positive Invariance

The following lemma provides a basic analysis of the model verifying the bounded-

ness and positive invariance of solutions.

Lemma 1.2.1. Solutions with initial conditions in the region Ω = {(x,Q) : 0 < x, q <

Q < αNt+µmq
µm

+ c,Nt > xQ}, where c > 0, remain there for all future time.

Proof. Assume, by contradiction, there exists a time t1 such that a trajectory with

initial conditions {(x0, Q0) : 0 < x0, q < Q0 <
αNt+µmq

µm
+ c,Nt > x0Q0}, where c > 0,

crosses a boundary of Ω for the first time.
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Case 1. Q(t1) = q: For t ∈ [0, t1],

Q′ = α(Nt −Qx)− µm(Q− q)

≥ −µm(Q− q).

Then

Q′ + µmQ ≥ µmq

and so

Q(t) ≥ q + (Q0 − q)e−µmt.

This implies that Q(t1) ≥ q + (Q0 − q)e−µmt1 > q. This contradicts Q(t1) = q and

proves that a trajectory cannot cross this boundary.

Case 2. x(t1) = 0: Let f̄ = min
{
µm

(
1− q

Q(t)

)
−D : t ∈ [0, t1]

}
, which does not

equal −∞ by Case 1. Then for t ∈ [0, t1],

x′ = µm

(
1− q

Q

)
x−Dx ≥ f̄x.

Then x(t) ≥ x0e
f̄ t and so x(t1) ≥ x0e

f̄ t1 > 0. This contradicts x(t1) = 0 and proves

that a trajectory cannot cross this boundary.

Case 3. Nt = Q(t1)x(t1): First we will show that x is bounded above by showing

x ≤ Nt/q. Then for t ∈ [0, t1],

x′ = µm

(
1− q

Q

)
x−Dx

≤ µm

(
1− q

Q

)
x

= µmx

(
1− x

(Qx)/q

)
≤ µmx

(
1− x

Nt/q

)
,

which is comparable to the logistic equation. Then x ≤ Nt/q by a standard comparison

argument.
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Now we will show that Nt > xQ. Let z = Nt − xQ with z0 > 0 and

x̄ = max {x(t) : t ∈ [0, t1]}, since x is bounded above by Nt/q.

Then for t ∈ [0, t1],

z′(t) = −x
(
α(Nt −Qx)− µm(Q− q)

)
−Q

(
µm

(
1− q

Q

)
x−Dx

)
= −x

(
α(Nt −Qx)−DQ

)
= −αxz +DQx

≥ −αx̄z.

Then z(t) ≥ z0e
−αx̄t and so z(t1) ≥ z0e

−αx̄t1 > 0. Thus Nt − x(t1)Q(t1) > 0 and so

Nt > x(t1)Q(t1). This contradicts Nt = x(t1)Q(t1) and so the trajectory cannot cross

this boundary.

Case 4. Q(t1) =
αNt + µmq

µm
+ c: Consider the vertical line Q =

αNt + µmq

µm
+ c

for some c > 0. The Q nullcline, x∗ =
αNt − µm(Q∗ − q)

αQ∗
, is a monotone decreasing

function of Q and intersects the Q axis at Q =
αNt + µmq

µm
. Since

αNt + µmq

µm
<

αNt + µmq

µm
+ c, the vertical line boundary is greater than the Q nullcline. To the

right of the Q nullcline, Q′ < 0 and so no trajectory can cross this vertical line

boundary.

See Figure 1.2 for a sketch of the phase plane and region Ω.

Equilibria and Global Stability

For the system (1.3), we have the following equilibrium points (x∗, Q∗):

E1 =

(
Nt

q
−D

(
Nt

qµm
+ α−1

)
,

qµm
µm −D

)
and E2 =

(
0,
αNt + µmq

µm

)
. In order for

E1 to be positive, we assume µm > D and

Nt

q
> D

(
Nt

qµm
+ α−1

)
, or equivalently, Nt >

qµmDα
−1

µm −D
. (1.4)
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Figure 1.2: (Q, x) Phase Plane with the Q Nullcline (solid red) and x Nullclines (dot-

dash blue). The curved black dotted black line represents xQ = Nt. The left vertical

black dotted black line represents Q = q and the right vertical black dotted black line

represents Q = αNt+µmq
µm

+ c. Nt = 0.03, µm = 1.2, q = .004, α = .2, D = .5, c = .02.

Biologically we are assuming the maximum growth rate is greater than the death rate,

and relation (1.4) specifies the minimum environmental nutrient concentration to make

the population viable. Note that E2 represents the case for population extinction.

The following theorems give results on the stability of these equilibria. The Jacobian

of the system (1.3) is

J =

µm
(

1− q
Q∗

)
−D µmx

∗ q
(Q∗)2

−αQ∗ −αx∗ − µm

 .
Theorem 1.2.1. (i) If (1.4) has the reverse inequality and µm > D, then E1 is a

saddle point.

(ii) If (1.4) has the reverse inequality and µm < D, then E1 is unstable.

(iii) If (1.4) holds, then the equilibrium E1 is locally asymptotically stable.
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Proof. The Jacobian takes the following form:

J(E1) =

 0 µm

[
Nt
q
−D

(
Nt
qµm

+ α−1
)]

q

( qµm
µm−D )

2

−α qµm
µm−D −

[
α
(
Nt
q
−D( Nt

qµm
+ α−1)

)
+ µm

]


with

Tr(JE1) = −
[
α

(
Nt

q
−D(

Nt

qµm
+ α−1)

)
+ µm

]
,

Det(JE1) = −(µm −D)2

qµm

(
Nt

q
−D(

Nt

qµm
+ α−1)

)(
−αqµm
µm −D

)
.

If (1.4) has the reverse inequality and µm > D, then Tr(JE1) > 0 and Det(JE1) < 0

and so E1 is a saddle point. If (1.4) has the reverse inequality and µm < D, then

Tr(JE1) > 0 and Det(JE1) > 0 and so E1 is unstable. If (1.4) holds, then Tr(JE1) < 0

and Det(JE1) > 0 and so E1 is a stable equilibrium point.

Theorem 1.2.2. (i) If (1.4) has the reverse inequality, then E2 is locally asymp-

totically stable.

(ii) If (1.4) holds, then E2 is a saddle point.

Proof. The Jacobian takes the following form:

J(E2) =

 µmαNt
αNt+µmq

−D 0

−α
(
αNt+µmq

µm

)
−µm

 .
Since JE2 is lower triangular, λ1 =

µmαNt

αNt + µmq
− D =

αNt(µm −D)−Dµmq
αNt + µmq

and

λ2 = −µm < 0. If (1.4) has the reverse inequality then λ1 < 0 and so E2 is locally

asymptotically stable. If (1.4) holds, then λ1 > 0 and so E2 is a saddle point.

Theorem 1.2.3. Assuming (1.4) holds, the equilibrium point E1 is globally asymptot-

ically stable.
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Proof. First we must show there are no periodic orbits. Consider the system

x′ = µm

(
1− q

Q

)
x−Dx = F (x,Q)

Q′ = α(Nt −Qx)− µm(Q− q) = G(x,Q).

Then

∂F

∂x
+
∂G

∂Q
= µm

(
1− q

Q

)
−D − αx− µm = −µmq

Q
−D − αx < 0.

Then by the Bendixson’s negative criterion theorem, there cannot be a closed orbit

contained within Ω (defined in Lemma 1.2.1). Therefore, since Ω is simply connected,

positively invariant by Lemma 1.2.1 and contains no orbits, then the Poincaré Bendix-

son Theorem implies that all solutions of the system (1.3) starting in Ω will converge

to E1. Therefore, E1 is globally asymptotically stable.

1.2.3 Comparison to Logistic Model

In 2004, Kuang et al. (2004a) mechanistically formulated a mathematically tractable

plant-herbivore model in a closed phosphorus-limiting environment using Droop’s

equation. Using their model, they showed a mechanistic derivation of the logistic

equation. Following their approach, since cell metabolic processes are much faster

compared to the growth of the population, we can apply a quasi-steady state argument

by letting Q′ = 0:

α(Nt −Qx)− µm(Q− q) = 0

and so

Q =
αNt + µmq

αx+ µm
.
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Then

dx

dt
= µm

(
1− q

Q

)
x−Dx

= µmx

(
1− x+ µmα

−1

Nt/q + µmα−1

)
−Dx

=
(µm −D)x

Nt/q + µmα−1

(
Nt/q + µmα

−1 − x+ µmα
−1

(µm −D)/µm

)
=

(µm −D)x

Nt/q + µmα−1

(
Nt(µm−D)

qµm
− α−1D − x

(µm −D)/µm

)

=
x

Nt/q + µmα−1

(
Nt/q(µm −D)− α−1µmD − xµm

)
=

(
Nt/q(µm −D)− α−1µmD

)
x

Nt/q + µmα−1

(
1− x

Nt
q

(µm−D)
µm

− α−1D

)

= rx
(

1− x

K

)
,

where

r =
(µm −D)Nt/q −Dµmα−1

Nt/q + µmα−1
and K =

(µm −D)Nt

µmq
−Dα−1,

or equivalently,

r =
(µm −D)Ntα−Dµmq

Ntα + µmq
and K =

(µm −D)Ntα−Dµmq
µmqα

.

Since r =
Kµm

Nt/q + µmα−1
, then the growth rate r and carrying capacity K are

proportionally related. Note that r and K are both increasing functions of α, meaning

that as the intake of nutrients increase, the growth rate and carrying capacity also

increase (boundedly). Also, r and K are both decreasing functions of D, meaning

as the death rate increases, the growth rate and carrying capacity decrease. Note

that when there is no population death, K = Nt
q

, which represents the total nutrient

divided by the minimum cell quota needed for life; it is the maximum population

possible given the amount of nutrient in the environment. This carrying capacity is

12



larger than the carrying capacity with a death rate, since now death is inhibiting the

population from reaching its possible maximum.

1.3 Motivation and Goals

The Droop model, originally derived from observation, provides a simple mathe-

matical expression to relate intracellular limiting nutrient concentration to growth

rate. Although the Droop model has been an important modeling tool in ecology, it

has only recently been applied to study cancer biology (e.g. (Nagy, 2007; Portz et al.,

2012; Saleem et al., 2014)). Using Droop’s model, Nagy (2007) applied ecological

stoichiometry to cancer, an idea proposed by Elser et al. (2003). Ecological stoichiom-

etry is the study of balance of energy and multiple chemical substances in ecological

processes and interactions; it investigates the role of essential elements, such as carbon

(C), nitrogen (N), and phosphorus (P), in ecological interactions (Sterner and Elser,

2002). An important hypothesis developed from ecological stoichiometry is the growth

rate hypothesis, which states that “organismal C:N:P ratios are caused by differential

allocations to RNA necessary to meet the protein synthesis demands of rapid rates

of biomass growth and development” (Sterner and Elser, 2002). This means that

organisms with high growth rates have high P:C ratios due to the increased allocation

of P to RNA, and thus their growth will be constrained in P-limited environments.

Since tumor cells often have high growth rates, it makes sense to apply this hypothesis

to cancer biology. Elser et al. (2007) tested this hypothesis and concluded that the

growth rate hypothesis might hold true for some cancers, but not for all. In order

to further study the growth rate hypothesis in cancer, Nagy (2007) modified a previ-

ous tumor model to include phosphorus as a limiting nutrient using Droop’s model.

Saleem et al. (2014) also used Droop’s model and applied stoichiometric principles to

tumor growth by modeling the tumor-immune cell interactions in a potassium limited
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environment. Portz et al. (2012) used Droop’s equation in modeling prostate cancer

treatment and interpreted the cell quota as the intracellular androgen concentration.

Here we build on the work of Portz et al. and present several cancer models using

Droop’s cell quota model, specifically for prostate cancer (Chapter 2), chronic myeloid

leukemia (Chapter 3), and ovarian cancer (Chapter 4).
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Chapter 2

PROSTATE CANCER

2.1 Introduction

2.1.1 Prostate Cancer and Treatment

The probability of an American man developing prostate cancer in a lifetime is 1

in 6 (Siegel et al., 2013). Although the incidence and death trends for prostate cancer

are declining, there is still no curative treament for patients with distant metastases

(Fong et al., 2012). Androgen deprivation therapy (ADT) is one of the most common

and effective therapies for patients with metastatic cancer (Nelson, 2012) and has

recently been used to also treat non-metastatic disease (Crook et al., 2012; Klotz and

Toren, 2012). Although the initial response rate of ADT is above 90% (assessed by a

decrease in the biomarker prostate specific antigen (PSA) levels (Amaral et al., 2012)),

most patients eventually develop castration-resistant prostate cancer (CRPC) (Nelson,

2012). CRPC is usually fatal, with a median survival time of 2.5 to 3 years (Nelson,

2012; Hussain et al., 2013).

Androgens, specifically testosterone and 5α-dihydrotestosterone (DHT), are es-

sential for maintenance of the prostate. Prostate secretory epithelial cells depend on

androgens for proliferation and survival. The testes produce 90-95% of the androgens

in the body with the adrenal gland producing the remainder (Fong et al., 2012).

Androgens regulate cellular proliferation and survival via activation of the androgen

receptor (AR), a nuclear hormone receptor. Around 90% of serum testosterone that

enters the prostate is enzymatically converted to DHT, which has a greater affinity for

AR than that of testosterone. Ligand binding to AR initiates a cascade of events that
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activate proliferation, survival, and PSA secretion pathways (Feldman and Feldman,

2001). Serum PSA is used as a biomarker for prostate cancer since PSA expression is

maintained by cancerous cells. While its effectiveness as a diagnostic tool is contro-

versial, PSA is useful for gauging the response of disease to ADT. ADT inhibits AR

signaling by blocking androgen production. Therapy induces regression of both mass

and PSA secretion by the prostate and cancer cells in particular.

ADT can be performed by surgical or chemical castration. Orchiectomy, the removal

of the testes, is a relatively simple procedure that results in a decrease of testosterone

levels. However, chemical castration is more common due to the psychological effects

of the surgery (Sharifi et al., 2005; Labrie, 2011). Current chemical castration options

include luteinizing hormone release hormone (LHRH) agonists, gonadotropin releasing

hormone (GnRH) antagonists, and anti-androgens. A combination of an anti-androgen

and a LHRH agonist is called total androgen blockade (Feldman and Feldman, 2001;

Fong et al., 2012).

Intermittent androgen deprivation (IAD) therapy consists of alternating periods

of on- and off-treatment and provides many benefits over continuous (CAD) therapy,

including increased health-related quality of life, reduced therapy costs (LHRH agonists

cost about $300 to $400 a month (Klotz and Toren, 2012)), and potentially delaying

resistance to treatment, although the latter remains controversial (Gleave et al., 2009;

Klotz and Toren, 2012; Mitin et al., 2012; Resnick, 2013). ADT causes numerous

side effects such as erectile dysfunction, loss of libido, gynecomastia, osteoporosis,

and anemia (Higano, 2003; Klotz and Toren, 2012). Some of these side effects can

potentially lead to more serious conditions, such as diabetes, hypertension, and

cardiovascular disease (Higano, 2003). Two recent studies by Crook et al. (2012) and

Hussain et al. (2013) compared IAD to CAD therapy in patients with prostate cancer.

Crook et al. concluded that IAD was not inferior to CAD in terms of survival, but
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improvements in quality of life were observed in IAD patients (Crook et al., 2012).

Hussain et al. observed small improvements in quality of life for IAD patients, but

their findings in terms of survival were statistically insignificant; they were not able to

rule out a greater risk of death from IAD compared to CAD nor rule out significant

inferiority of IAD (Hussain et al., 2013). Crook et al. and Hussian et al. provide two

examples of recent studies attempting to determine if IAD or CAD is more effective at

delaying resistance to treatment. Although this topic remains controversial, (Gleave

et al., 2009; Klotz and Toren, 2012; Mitin et al., 2012; Resnick, 2013) the European

Association of Urology (EAU) recommends IAD as the standard of care for patients

with metastatic or biochemically recurrent prostate cancer (Mitin et al., 2012).

2.1.2 Recent Works

While IAD offers several benefits, there are still controversies in how the treatment

should be applied, such as who should receive IAD therapy, when to start and stop

therapy, and what thresholds should be used for starting and stopping treatment

(Scholz et al., 2011; Klotz and Toren, 2012). Mathematical models can be important

tools for achieving improved therapy and might provide insights into some of these

controversies for individual patients.

Jackson (2004a,b)

In 2004, Jackson used a system of partial differential equations to investigate the

mechanisms for CRPC:

∂p

∂t︸︷︷︸
Time ROC

+ ∇ · (up)︸ ︷︷ ︸
Collective motion

= Dp∆p︸ ︷︷ ︸
Random motion

+ αpθp(a)p︸ ︷︷ ︸
a-mediated proliferation

− δpωp(a)p︸ ︷︷ ︸
a-mediated apoptosis

(2.1a)

∂q

∂t︸︷︷︸
Time ROC

+ ∇ · (uq)︸ ︷︷ ︸
Collective motion

= Dq∆q︸ ︷︷ ︸
Random motion

+ αqθq(a)q︸ ︷︷ ︸
a-mediated proliferation

− δqωq(a)q︸ ︷︷ ︸
a-mediated apoptosis

(2.1b)
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The model assumes the tumor is radially symmetric and composed of two types

of cells: androgen-dependent (AD), represented by p, and androgen-independent

(AI), represented by q, with the latter contributing to the AI tumor relapse and

resistance to therapy. The proliferation and death rates of both cell types, represented

by θp(a), θq(a), δp(a), δq(a), depend on androgen concentration a. During androgen

deprivation, the AD proliferation rate decreases and the AD death rate increases while

the AI proliferation rate remain constant and the AI death rate decreases. Parameters

Dp, Dq represent the constant random motility coefficients and u represents the local

cell velocity. In order to investigate the effects of ADT, Jackson follows the tumor

radius R(t):

dR

dt︸︷︷︸
Time ROC of tumor radius

= u(R(t), t).︸ ︷︷ ︸
Tumor velocity at boundary

The model begins with a given cell density and radius, has zero local velocity at the

tumor center, and no flux boundary conditions on the tumor center and outer boundary.

Jackson assumes the androgen levels remain at a steady state until treatment begins

and then decrease exponentially.

The behavior of this model agrees with experimental data, capturing the exponential

growth pre-treatment, androgen-sensitivity following therapy, and eventual tumor

regrowth. The results also predict that ADT can only be successful for a small range

of parameters.

Ideta et al. (2008)

Ideta et al. presented the following ordinary differential equation model consisting

of AI and AD cell populations in order to compare CAD and IAD with respect to
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relapses:

dx1(t)

dt
=
{
α1p1

(
a(t)

)︸ ︷︷ ︸
proliferation rate

− β1q1

(
a(t)

)︸ ︷︷ ︸
apoptosis rate

− m
(
a(t)

)︸ ︷︷ ︸
AD to AI mutation rate

}
x1(t) (2.2a)

dxx(t)

dt
= m

(
a(t)

)
x1(t)︸ ︷︷ ︸

AD to AI mutation rate

+
{
α2p2

(
a(t)

)︸ ︷︷ ︸
proliferation rate

− β2q2

(
a(t)

)︸ ︷︷ ︸
apoptosis rate

}
x2(t) (2.2b)

x1(t), x2(t) represent the size of the AD and AI populations, respectively. Similarly

to Jackson, Ideta et al. also assumes that both the proliferation rate αipi(a) and

apoptosis rate βiqi(a) for i = 1, 2 depend on androgen concentration a(t), with a

decrease in AD proliferation rate and increase in AD death rate during androgen

deprivation. However Ideta et al. considers three possible net growth rates for AI

cells. Their model also included mutations from AD to AI cells, where ma represents

the rate at which these mutations occur. In order to model IAD therapy, Ideta et al.

assume treatment is either present (u = 1) or absent (u = 0) and then they model the

androgen with the following ODE:

da(t)

dt
= γ(a(t)− a0)− γa0u(t).

When treatment is initiated, the androgen level decreases towards zero. When

treatment is discontinued, the androgen level increases toward a steady state a0. The

parameter γ determines the speed by which the androgen concentration increases

or decreases. Treatment switches from off to on when the PSA reaches an upper

threshold r1 and switches from on to off when the PSA reaches a lower threshold r0.

Both cell populations are assumed to contribute to the PSA concentration y(t) at a

constant rate:

y(t) = c1x1 + c2x2.

The numerical results demonstrated how the AI net growth rate influences whether

or not a relapse can be avoided. Both numerical results and bifurcation analysis
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showed that the parameters r0 and r1 greatly influence the time to relapse and

relapse prevention. The results also show how the mutation rate m influences relapse

prevention.

Hirata et al. (2010, 2012)

Hirata et al. considered three cell populations: AD (x1), reversibly AI (x2), and

irreversibly AI (x3) using the following model:

d

dt


x1(t)

x2(t)

x3(t)

 =


w1

1,1 0 0

w1
2,1 w1

2,2 0

w1
3,1 w1

3,2 w1
3,3



x1(t)

x2(t)

x3(t)

 for on-treatment periods, and (2.3a)

d

dt


x1(t)

x2(t)

x3(t)

 =


w0

1,1 w0
1,2 0

0 w0
2,2 0

0 0 w0
3,3



x1(t)

x2(t)

x3(t)

 for off-treatment periods. (2.3b)

The reversibly AI cells, possibly created by phenotypic plasticity, can revert back

to AD cells, whereas the irreversibly AI cells cannot. Similarly to Ideta et al., the

irreversible changes can be due to mutations. The PSA levels P are modeled by the

following:

P = x1 + x2 + x3 (2.4)

Hirata et al. (2010) fitted the model to clinical data and grouped patients into three

categories: IAD prevents a relapse whereas CAD does not, IAD is more effective in

delaying a relapse compared to CAD, and CAD is more effective in delaying a relapse

compared to IAD. The first two and one-half cycles of treatment were used to find

individualized parameters and then predict PSA responses to subsequent treatment.

This approach was presented as a basis for future methods of individualized cancer

treatment.
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Portz et al. (2012)

Portz et al. developed a novel model of ADT by extending mathematical frame-

works in ecology to the two-subpopulation models of ADT (Jackson, 2004b; Ideta

et al., 2008):

dX1

dt
= µm

(
1− q1

Q1

)
X1︸ ︷︷ ︸

proliferation

− d1X1︸ ︷︷ ︸
death

−λ1(Q1)X1 + λ2(Q2)X2︸ ︷︷ ︸
switching

(2.5a)

dX2

dt
= µm

(
1− q2

Q2

)
X2︸ ︷︷ ︸

proliferation

− d2X2︸ ︷︷ ︸
death

−λ2(Q2)X2 + λ1(Q1)X1︸ ︷︷ ︸
switching

(2.5b)

dQi

dt
= vm

qm −Qi

qm − qi
A

A+ vh︸ ︷︷ ︸
uptake

−µm(Qi − qi)︸ ︷︷ ︸
dilution

− bQi︸︷︷︸
degradation

(2.5c)

dP

dt
= σ0(X1 +X2)︸ ︷︷ ︸

baseline production

+σ1X1
Qm

1

Qm
1 + ρm1

+ σ2X2
Qm

2

Qm
2 + ρm2︸ ︷︷ ︸

androgen-dependent production

− εP︸︷︷︸
clearance

(2.5d)

where

λ1(Q) = c1
Kn

1

Qn +Kn
1︸ ︷︷ ︸

CS to CR

λ2(Q) = c2
Qn

Qn +Kn
2︸ ︷︷ ︸

CR to CS

The cell quota model (Droop, 1968) is used for proliferation of both the AD (X1)

and AI (X2) cell populations. Since AR signaling reflects the intracellular androgen-AR

interactions, the cell quota (Q) is conceived as intracellular androgen concentrations.

Two significant differences in this model from previous work (Ideta et al., 2008) are

how the AI cells are assumed be responsive to androgens and that PSA (P ) production

is androgen-dependent. The bidirectional mutation rates and cell-specific rates of PSA

production are also functions of the cell quota. Cells have a constant death rate and

also produce PSA at a constant, baseline rate. The model was validated with clinical

data from Akakura et al. (1993) and its accuracy compared to that of the model by

Ideta et al. (Ideta et al., 2008). The androgen quota model exhibited significantly
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greater accuracy for each patient data set. Portz et al.’s results supported the idea that

ADT models should assume that AI cells maintain sensitivity to androgens, though to

a lesser degree than AD cells. The model was also used to predict future hypothetical

treatment cycles. However, unlike the method used by Hirata et al. (2010), predictive

accuracy was not assessed using subsets of the data. While their conclusions provided

information about the mechanisms of resistance, their patient specific predictions lack

validity since they did not compare the predictions to ‘future’ data.

2.1.3 Methods and Findings

A mathematical model that accurately predicts the next cycle of treatment for an

individual patient undergoing IAD therapy is an important tool that can potentially

be used in a clinical setting. Here, we compare two models that are based on existing

models to determine which is more accurate in predicting individual patients’ PSA

levels. For both models, parameters found for the first treatment cycle are then used

to predict the observed response to the second cycle. We then compare this predicted

second cycle to the data, when possible, to test the accuracy of the prediction. The

process is then repeated in order to predict the third and fourth cycles, when possible.

For each model, we also compare two different predictive methods; one method is based

on previous cycles and the other depends on the PSA level. After comparing each

model and method, our results suggest that a simpler model may be more beneficial for

a predictive use and that further research is needed in this field prior to implementing

mathematical models as a predictive method in a clinical setting.
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2.2 Mathematical Models

2.2.1 Model 1: Extension of Model by Portz et al. (2012)

We propose the following prostate cancer model (Morken et al., 2014), which is an

extension of the model by Portz et al. with death rates dependent on cell androgen

quotas:

dX1

dt
= µm

(
1− q1

Q1

)
X1︸ ︷︷ ︸

proliferation

−D1(Q1)X1︸ ︷︷ ︸
death

−λ1(Q1)X1 + λ2(Q2)X2︸ ︷︷ ︸
switching

(2.6a)

dX2

dt
= µm

(
1− q2

Q2

)
X2︸ ︷︷ ︸

proliferation

−D2(Q2)X2︸ ︷︷ ︸
death

−λ2(Q2)X2 + λ1(Q1)X1︸ ︷︷ ︸
switching

(2.6b)

dQi

dt
= vm

qm −Qi

qm − qi
A

A+ vh︸ ︷︷ ︸
uptake

−µm(Qi − qi)︸ ︷︷ ︸
dilution

− bQi︸︷︷︸
degradation

(2.6c)

dP

dt
= σ0(X1 +X2)︸ ︷︷ ︸

baseline production

+σ1X1
Qm

1

Qm
1 + ρm1

+ σ2X2
Qm

2

Qm
2 + ρm2︸ ︷︷ ︸

androgen-dependent production

− εP︸︷︷︸
clearance

(2.6d)

where

Di(Qi) = di
Rα
i

Qα
i +Rα

i︸ ︷︷ ︸
AD Apoptosis

+ δi︸︷︷︸
AI Death

and

λ1(Q) = c1
Kn

1

Qn +Kn
1︸ ︷︷ ︸

CS to CR

λ2(Q) = c2
Qn

Qn +Kn
2︸ ︷︷ ︸

CR to CS

Variables X1 and X2 represent the AD and AI cell populations, respectively. The

terms ‘androgen-dependent’ and ‘androgen-independent’ have been used previously in

both mathematical models as well as in biological literature (Isaacs, 1999; Feldman

and Feldman, 2001; Jackson, 2004a; Ideta et al., 2008; Hirata et al., 2012). However,

‘androgen-independent’ cells are often not completely independent, but have a lower

threshold for androgens. Thus, we refer to AD and AI cells as ‘castration-sensitive’
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(CS) and ‘castration-resistant’ (CR), respectively, as seen in recent literature (Scher

et al., 2004; Labrie, 2011; Fong et al., 2012; Nelson, 2012). The proliferation rates are

given by Droop’s model, which is dependent upon some cell quota, or limiting nutrient.

Here, the cell quota (Q) is interpreted as the quantity of intracellular androgen. The

parameter µm represents the maximum proliferation rate and qi is the minimum cell

quota. Since CR cells are able to proliferate at lower levels of androgen, q2 < q1.

Portz et al. (2012) assume for simplicity the cell death rate is constant. Our

extension incorporates an androgen-dependent death rate in addition to the constant

death rate δi. The parameter di represents the maximum androgen-dependent death

rate. The shape parameters Ri and α represent the half saturation level and Hill

coefficient, respectively, which describe the cell death rate sensitivity to the cell quota

level. Whereas Jackson (2004a,b) and Ideta et al. (2008) assume the AI death rate

decreases as the androgen concentration decreases, we assume the death rate increases

as the androgen concentration decreases, which is supported by biological results

(Feldman and Feldman, 2001; Scher et al., 2004).

The model also assumes androgen-dependent mutation rates, λi, to account for

switching between the cell populations. The parameters c1 and c2 represent the

maximum switching rates. The parameters Ki and n represent the half saturation

level and Hill coefficient, respectively, which describe the cell switching sensitivity to

the cell quota level. We interpret these switching rates as both accommodative and

adaptive switching (Morken et al., 2014).

As serum androgen A increases, androgen uptake rate increases but saturates.

The asymptotic maximum uptake rate is regulated by the cell quota Q(t), maximum

cell quota qm, minimum cell quota qi, and maximum uptake rate vm. The parameter

vh represents the uptake half saturation level. The term µm(Qi − qi) represents the

amount of cell quota used by the cell for growth. Intracellular androgen degrades at

24



rate b.

Both cell populations contribute to the amount of PSA, P , at both a baseline rate

σ0 and an androgen-dependent rate. The parameters σ1,2 represent the maximum

androgen-dependent PSA productions by the two cell populations. The shape parame-

ters ρi and m represent the half saturation level and Hill coefficient, respectively, which

describe the PSA production rate sensitivity to the cell quota level. PSA is cleared

from the blood at rate ε. For further details on the Portz et al. model formulation

and explanation, see Section 2.1.2.

2.2.2 Model 2: Model by Hirata et al. (2010, 2012)

We compare the predictions produced using Model 1 to the predictions produced

from the model by Hirata et al., system (2.3). Whereas Model 1 captures the

intermittent property using serum androgen levels as an input, Model 2 uses a binary

on- or off-treatment input. Following Hirata et al., the parameters were constrained

so that the non-diagonal parameters are non-negative, w1
3,3 ≥ 0, and the cell class

can change its volume by at most 20% per day, namely
∣∣∣∑i∈{1,2,3}w

m
i,j

∣∣∣ < 0.2, where

j ∈ {1, 2, 3} and m ∈ {0, 1}. See (Hirata et al., 2010, 2012) for further model details.

2.3 Data and Simulations

Akakura et al. (1993) studied seven patients undergoing intermittent androgen

deprivation therapy. Four of the men (patients 1, 2, 3, 5) had stage C cancer, in which

the cancer had spread outside the prostate, but not yet to other parts of the body;

one man (patient 4) had stage D1 cancer, in which the cancer had only spread to local

lymph nodes; two men (patients 6, 7) had stage D2 or widely disseminated metastatic

cancer (National Cancer Institute, 2013). The data consisted of serum PSA and

testosterone levels, obtained at monthly intervals. Patients received goserelin acetate
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Para. Meaning Value Reference

µm Maximum proliferation rate 0.009 - 0.045 /day (Berges et al., 1995)

q1 Minimum CS cell quota 0.19 - 0.29 nM (Portz et al., 2012)

q2 Minimum CR cell quota 0.10 - 0.21 nM (Portz et al., 2012)

σ1 CS PSA production rate 0.0001 - 0.28 ng/mL/cell/day

σ2 CR PSA production rate 0.06 - 0.36 ng/mL/cell/day

σ0 Baseline PSA production rate 0 - 0.031 ng/mL/cell/day

d1 Maximum CS CDR 0.0035 - 0.029 day−1 *

d2 Maximum CR CDR 0.0019 - 0.0059 day−1 *

R1 CS CDR half-saturation level 0.46 - 3.02 nM *

R2 CR CDR half-saturation level 0.96 - 6.17 nM *

δ1 CS androgen independent death rate 0.0006 - 0.0083 day−1 *

δ2 CR androgen independent death rate 0.011 - 0.042 day−1 *

c1 Maximum CS to CR mutation rate 0.00016 day−1 (Portz et al. (2012)

Ideta et al. (2008))

c2 Maximum CR to CS mutation rate 0.00012 day−1 (Portz et al., 2012)

K1 CS to CR mutation half-saturation level 0.8 nM (Portz et al., 2012)

K2 CR to CS mutation half-saturation level 1.7 nM (Portz et al., 2012)

n Selection function exponent 3

qm Maximum cell quota 5 nM (Portz et al., 2012)

vm Maximum uptake rate 0.27 nM/day (Portz et al., 2012)

vh Uptake rate half-saturation level 4 nM (Portz et al., 2012)

b Intracellular androgen degradradation rate 0.09 day−1 (Portz et al., 2012)

ρ1 CS PSA production half-saturation level 1.3 nM (Portz et al., 2012)

ρ2 CR PSA production half-saturation level 1.1 nM (Portz et al., 2012)

m PSA production function exponent 3 (Portz et al., 2012)

ε PSA clearance rate 0.08 day−1 (Portz et al., 2012)

α CDR function exponent 3

Table 2.1: Model 1 Parameter Ranges. In the table, * indicates values such that total

cell death rate (CDR) is within biological ranges (Berges et al., 1995; Ideta et al.,

2008).
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Para. Meaning Value

w1
11 on-treat. AD growth rate -.15 - -.015

w1
22 on-treat. rAI growth rate -0.015 - .0009

w1
33 on-treat. irrAI growth rate 0.002-0.003

w1
21 on-treat. AD to rAI influx rate 0.0006 - 0.002

w1
31 on-treat. AD to irrAI influx rate 0.0003 - 0.001

w1
32 on-treat. rAI to irrAI influx rate 0-0

w0
11 off-treat. AD growth rate .001 - .003

w0
22 off-treat. rAI growth rate .002 - .008

w0
33 off-treat. irrAI growth rate -.13 - -.0044

w0
12 off-treat. rAI to AD influx rate 0.049 - 0.18

Table 2.2: Model 2 Parameter Ranges. In the table, rAI stands for reversible AI

cells, irrAI stands for irreversible AI cells, and treat. stands for treatment. The value

constraints follow Hirata et al. (2010, 2012).

(an LHRH agonist) and cyproterone acetate (an anti-androgen) until the PSA level

reached a normal level and remained in this range for about four months, although the

duration of remission varied greatly among the patients. The patients then stayed off

therapy until PSA levels reached about 20 ng/mL. It should be noted that Akakura et

al. state that the upper limit of 20 ng/mL was set arbitrarily and also seems to vary

among the patients. For more information on the study, see (Akakura et al., 1993).

Since we use the PSA data to verify the models, we are able to use the androgen

data directly for Model 1. Following Portz et al. (2012), we interpolated the androgen

data using piecewise cubic hermit splines and an exponential function between the

last off-treatment A(ti) and first on-treatment A(tf ) data points:

A(t) = A(tf ) +
(
A(ti)− A(tf )

)
e−(γ/l)(t−ti), (2.7)

where l = 1. This equation was also used for the predicted off-treatment PSA growth

with l = 100 for Method 2 (Section 2.3.2).
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After first fitting the free parameters by hand, we used the Nelder-Mead simplex

algorithm (Lagarias et al., 1998) to find the free parameters that minimized the mean

square error (MSE) between the PSA data and model. The fixed parameter values as

well as the free parameter ranges for Model 1 and Model 2 can be found in Table 2.1

and Table 2.2, respectively. In order to test the accuracy of the prediction, we first

find the parameters using only 1.5 cycles of data. Using these parameters, we then

run the model for another treatment cycle and compute the error between the future

model and the remaining, or ‘future’, data. We repeat this process using 2.5 cycles of

data and then 3.5 cycles of data when possible.

In order to make future PSA predictions, we must first generate future serum

androgen levels. We propose two different methods, described below, for generating

these future androgen levels and then apply these methods to the models. The models

and methods are summarized in Table 2.3. To compare these methods and models,

we compute both the MSE and mean relative error (MRE) (Table 2.6) as well as plot

the results. The figures compare Model 1 and Model 2, each using both prediction

methods, to clinical data for both the PSA levels (ng/mL) and the serum androgen

levels (nM) where applicable. The right of the vertical dashed line represents the

prediction with the ‘future’ data overlaid for comparison.

2.3.1 Prediction Method 1: Average Function

We implemented the method used by Portz et al. (2012) for generating future

serum androgen levels, which consists of generating a rectangular function based on

the average off- and on-treatment serum androgen values and off- and on-treatment

durations. To apply this method to Model 2, we set the on- and off-treatment binary

switch to occur after mean durations of on- and off-treatment.
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Model 1 Model 2

Method 1 Cell quota model with average function Piecewise linear model with average function

Method 2 Cell quota model with threshold function Piecewise linear model with threshold function

Table 2.3: Description of Methods and Models

2.3.2 Prediction Method 2: Threshold Function

During the clinical trial (Akakura et al., 1993), the treatment resumed once the

PSA levels reached the approximate threshold of 20 ng/mL. This implies that the

future androgen levels should depend on the future PSA level. In this method, once

the mean on-treatment duration ends, the androgen level increases using equation

(2.7) until a PSA threshold is reached and then decays according to equation (2.7).

Similarly, for Model 2, the treatment remained off until the PSA levels reached a

threshold and then the model switched to the on-treatment equations.

2.4 Results

Portz et al. (2012) used all the provided data to predict the observed response to

a hypothetical future cycle of treatment. However, in doing so, they were not able

to test the accuracy of their predictions because they lacked the future data. We

first use an extension of their model (Model 1) and their method (Method 1) and use

the technique described above (parameterize with part of the data set and use the

rest as the ‘future’ that the model is predicting) to determine the accuracy of the

predictions. We then repeat the process using Method 2. Finally, we perform the same

process on Model 2 (use methods 1 and 2 to make predictions) resulting in a total of

4 sets of predictions. The results are summarized in Table 2.4. A description of the

patient-specific predictions are found in Table 2.5 and the patient-specific errors are
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Model 1 Model 2

Method 1 Not accurate More accurate, incorrect timing or under

Method 2 More accurate, incorrect timing More accurate, incorrect timing

Table 2.4: Method and Model Prediction Comparison Summary. Under refers to

under-predicting the PSA levels.

Patient Cycle Description

Model 1 Model 2

Meth. 1 Meth. 2 Meth. 1 Meth. 2

1 1.5 under shift mostly accurate mostly accurate

1 2.5 over shift shift shift

2 1.5 under, shift shift under, shift shift

3 1.5 over, shift shift shift shift

4 1.5 under under, shift under over, shift

Table 2.5: Testable Patient-Specific Prediction Summary. Under refers to under-

predicts, over refers to over-predicts, and shift refers to a phase-shift. Cycle refers to

the number of cycles of data used to make the prediction

found in Table 2.6. In the following subsections, we discuss the patient 1 predictions

and the general results for each model and method.

2.4.1 Model 1, Method 1

The model is extremely accurate when fitting the data used to parameterize the

model; however, the model is not always accurate when predicting the future cycle

(Table 2.6). When using 1.5 cycles of data for patient 1 (Figure 2.1), the model

under-predicts the PSA levels, only reaching about 6 ng/mL, when in reality the

patient’s levels reached about 13 ng/mL. In a clinical setting, the model would indicate

that the patient could continue off-treatment when in reality the patient resumed
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Patient Cycle Future MSE Future MRE

Model 1 Model 2 Model 1 Model 2

Meth. 1 Meth. 2 Meth. 1 Meth. 2 Meth. 1 Meth. 2 Meth. 1 Meth. 2

1 1.5 20.26 34.50 17.02 17.05 .7190 2.076 .9650 .9665

1 2.5 111.7 42.23 22.41 22.62 2.433 1.278 .7278 .7519

2 1.5 27.80 47.83 22.67 50.628 .6249 .9888 .7510 1.0591

3 1.5 319.0 213.46 224.98 206.5 .5176 .2928 .4726 .4586

4 1.5 45.54 54.40 19.43 54.21 .5125 .5517 .3853 .7026

Table 2.6: Prediction Errors. Cycle refers to the number of cycles of data used to

make the prediction

treatment. When assuming 2.5 cycles of data, the model over-predicts the PSA

levels, reaching about 37 ng/mL, when in reality the patient reached levels around 20

ng/mL before resuming treatment. In this case, the model would recommend that the

patient resume treatment much sooner that apparently necessary, shortening their

off-treatment period, perhaps decreasing quality of life unnecessarily. With all 3.5

cycles of data, the model again suggests high PSA levels; however, we are not able to

test the accuracy of the fourth cycle due to a limited amount of data. Similarly for

patients 2-4 (Figures 2.2, 2.3, 2.4), the predictions are not very accurate in predicting

the PSA levels (Tables 2.5, 2.6). Since the data for patients 5-7 (Figure 2.5) consisted

of only 1.5 cycles of data, we were not able to test the accuracy of these predictions.

2.4.2 Model 1, Method 2

We repeated the process of predicting the outcomes of patients using Model 1 with

Method 2. For patient 1 (Figure 2.1), assuming 1.5 cycles of data, Method 2 much

more accurately predicts the maximum PSA level (about 13 ng/mL) compared to

Method 1, although it takes more days to reach this maximum compared to the data.

This ‘shift’ in the PSA levels explains the high error values (Table 2.6). Similarly,
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Figure 2.1: Patient 1 PSA levels (left) and serum androgen levels (right) using 1.5

cycles of data (top row), 2.5 cycles (second row), and all 3.5 cycles (third row). The

right of the vertical dashed line represents the prediction with the ‘future’ data overlaid

for comparison.
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Figure 2.2: Patient 2 PSA levels (left) and serum androgen levels (right) using 1.5

cycles of data (top row) and all 2.5 cycles (second row). The right of the vertical

dashed line represents the prediction with the ‘future’ data overlaid for comparison.

when using 2.5 cycles of data, the predicted PSA levels are ‘shifted’ compared to the

data and thus incorrectly recommended an earlier start for the fourth cycle. However,

the MSE and MRE values are smaller than with Method 1, suggesting a better overall

fit. When using all 3.5 cycles of data, Method 2 predicts a maximum PSA level similar

to that of the previous cycles, which is much smaller than the predicted PSA levels

using Method 1. In general, Method 2 more accurately predicts the PSA peak, as

expected, but the timing is often incorrect as seen by the ‘shift’ in PSA levels.
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Figure 2.3: Patient 3 PSA levels (left) and serum androgen levels (right) using 1.5

cycles of data (top row) and all 2.5 cycles (second row). The right of the vertical

dashed line represents the prediction with the ‘future’ data overlaid for comparison.

2.4.3 Model 2, Method 1

We repeated the process a third time using Model 2 with Method 1. For patient

1 using 1.5 cycles of data (Figure 2.1), the model accurately predicts the PSA level

outcome with the smallest MSE value, although the PSA levels are shifted slightly

(Table 2.6). Similarly, when assuming 2.5 cycles of data, the model produces the most

accurate prediction, as measured by both MSE and MRE, even though there is a slight

shift. In general, Model 2 using prediction Method 1 seems more accurate compared
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Figure 2.4: Patient 4 PSA levels (left) and serum androgen levels (right) using 1.5

cycles of data (top row) and all 2.5 cycles (second row). The right of the vertical

dashed line represents the prediction with the ‘future’ data overlaid for comparison.

to Model 1; however, the reasons for the errors vary among patients between a ‘shift’

in PSA levels and under-predicting the PSA peak (Table 2.5).

2.4.4 Model 2, Method 2

Model 2 with Method 2 produced similar results to Model 2 with Method 1. During

off-treatment, the PSA levels increase at the same rate for both methods; however, the

timing for the switch to on-treatment is different, by design of the methods. For patient
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Figure 2.5: PSA levels (left) and serum androgen levels (right) for patient 5 (top row),

patient 6 (second row), and patient 7 (third row) using all 1.5 cycles of data. The right

of the vertical dashed line represents the prediction with the ‘future’ data overlaid for

comparison.
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1 (Figure 2.1) assuming both 1.5 and 2.5 cycles of data, Methods 1 and 2 produce

very similar results. When using all 3.5 cycles, Method 2 switches to on-treatment

later than Method 1, producing a larger maximum PSA value. When using 1.5 cycles,

Model 2 produces a higher rate of increase in PSA levels than Model 1. However when

assuming 2.5 and 3.5 cycles, Model 1 produces higher rate of increase in PSA levels.

In general, as it did with Model 1, Method 2 here predicts the peak PSA values well,

but the timing is often incorrect (Tables 2.4, 2.5).

2.5 Discussion

Here we extend the work of Portz et al. (2012) by first modifying their model

to add biological realism and then testing the accuracy of the model’s predictions.

Similarly to Hirata et al. (2010, 2012), we use a portion of the data to find patient

specific parameters that minimize the error between the data and the model, and

then use these parameters to predict the next cycle of treatment. To determine the

accuracy of our prediction, we calculate the MSE and MRE values to quantify how

well the model predicted PSA dynamics for the portion of the data not used for

parameterization (Table 2.6). We use this same process in order to compare the

accuracy of the predictions produced by the two prostate cancer treatment models

using the two different predictive methods. The model by Hirata et al. is a system

of piecewise linear ordinary differential equations representing an AD and two AI

cell populations. This model is simpler than the extended Portz et al. model; it

contains fewer parameters and does not consider the serum androgen levels. While

the first predictive method is based on previous treatment cycles, Method 2 more

accurately follows the methods of the clinical study; the future serum androgen levels

are dependent upon the PSA levels and thus prevent the PSA levels from becoming

too high and biologically unreasonable. While Model 1, using the prediction method
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proposed by Portz et al., which we call “Method 1”, is able to fit the data used

for parameterization well, it is not very accurate in predicting the future cycle. In

fact while using Model 1, both prediction methods are about equally (in)accurate.

When comparing Model 1 to Model 2, Model 2 has smaller MSE values for all of the

predicted cycles that were compared to ‘future’ data. Using Model 2, the prediction

methods are again comparable, both in MSE and MRE values. Therefore, while

neither model is extremely accurate, Model 2 is more accurate in predicting PSA

values than Model 1 using the small sample of 7 patients. This implies that while a

biologically-based model is important in understanding the biological mechanisms of

the process, a simpler model is more accurate and may be more useful for predicting

future outcomes of individual patients.

In a clinical setting, the goal is not only to accurately predict the future PSA levels,

but to determine whether or not a patient can go off-treatment for another cycle,

thus improving their health-related quality of life. Ideally once the patient resumes

treatment, the PSA levels return back to normal and remain there while on-treatment.

However, it is possible that the patient has developed resistance to treatment and

the PSA levels remain higher than normal. Since doctors cannot know if a patient’s

tumor has become castration-resistant, the doctors must use their best judgment to

determine if and when a patient should go off-treatment.

Our goal is to provide the doctors with a computational tool to help them make a

more objective decision about a patient’s treatment. We test our mathematical model

to determine if it can predict whether or not a patient can go off-treatment. First we

consider the predictions that could be compared with ‘future’ data, which we describe

as testable, and we consider ‘normal levels’ to be the low PSA levels during the last

on-treatment period. Model 1 using Method 1 was only able to correctly predict a

return to normal levels for 3 out of the 5 testable predicted cycles. Model 1 using
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Method 2 and Model 2 using Method 1 were able to predict this return to normal

levels for all of the testable predicted cycles. With Method 2, Model 2 was only able

to predict the return to normal levels for 4 of the 5 testable predicted cycles. However,

for 4 of the 12 predicted cycles, the model had not yet predicted the full cycle in the

given time, since the model predicted a very slow increase in PSA levels. Thus, Model

1 using Method 2 and Model 2 using Method 1 were able to correctly predict that the

patient could go off-treatment for all the testable predicted cycles. Therefore Model

1 using Method 2 and Model 2 using Method 1 might be of some help in designing

treatment protocols in a clinical setting.

We then consider the predictions which could not be compared to data since there

was no more ‘future’ data, which we call non-testable. Here we consider a PSA level

of 4 ng/mL to be normal (Hirata et al., 2010). Model 1 using Method 1 predicted

a return to normal levels in 1 of the 7 non-testable predicted cycles, Model 1 using

Method 2 predicted this return for 5 of the 7, Model 2 using Method 1 predicted this

for 6 of the 7, and Model 2 using Method 2 predicted this for 1 of the 7. Since we do

not have data to compare these predictions to, we do not know if the levels return

to normal or not, i.e. if the patient has developed resistance to the treatment or not.

From the results above, Model 1 using Method 2 and Model 2 using Method 1 predict

that a majority of the patients do not develop resistance in the time shown whereas

Model 1, Method 1 and Model 2, Method 2 suggest that almost all the patients develop

resistance in the time shown.

2.6 Future Research

One possible direction for furthering this research is to reduce the length of

predicting time; you could predict a shorter time-span with the idea that you could

update the prediction as more data is collected. Also, using only the most recent
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1.5 cycles of data might produce a more accurate prediction. In order to test this

hypothesis, a dataset with several cycles for a patient would be needed. Modeling the

androgen levels, instead of using the serum levels as an input, might also be beneficial.

Another interesting question to research would be determining the optimal time for

switching between on- and off- treatment in individual patients. The goal would be

to find the times for switching that allow for the longest off-treatment duration, in

order to improve the patient’s quality of life, while also decreasing the probability of a

relapse.

In this research, the free parameters were determined using a method described

in literature (Portz et al., 2012). Additional biological insights might be gained by

performing parameter sensitivity analysis on these parameters. While the Nelder-Mead

simplex algorithm method finds a local minimum, it is not guaranteed to find a global

minimum and is thus very dependent upon the initial guesses of the free parameters.

Also, in the process parameterizing a model using a patient’s data, we are disregarding

the commonality of the parameters among all the patients. It would be interesting to

explore the use of Bayesian inference to estimate the parameters using all the data,

with the stochasticity being due to the measurement error when obtaining the serum

PSA levels. Since the likelihood functions would be dependent upon solving the model,

the Metropolis-Hastings algorithm, a Markov Chain Monte Carlo method, could be

used for sampling from the target distribution. This could be extended to incorporate

heterogeneity among patients by using hierarchal Bayesian methods and exploring

whether the parameters depend on the stage of cancer, the number of cycles of IAS

therapy, age, or other differences among the patients.
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Chapter 3

CHRONIC MYELOID LEUKEMIA

3.1 Introduction

3.1.1 Chronic Myeloid Leukemia and Treatment

Chronic myeloid leukemia (CML) is a cancer of the tissue that produces white

blood cells. It is a disorder of hematopoietic stem cells characterized by the increased

growth of myeloid cells in the bone marrow and the excessive presence of these cells

in the blood. CML can be molecularly diagnosed by detecting the presence of the

Philadelphia (Ph) chromosome and the fusion oncogene BCR-ABL. This oncogene is

the result of translocation of the BCR, or breakpoint cluster region, gene located on

chromosome 22 and the ABL, or Ableson leukemia virus, gene located on chromosome

9 (Sawyers, 1999). This oncogene encodes the protein BCR-ABL, a constitutively

active tyrosine kinase, which can result in deregulated cellular proliferation (Goldman

and Melo, 2003). The progression of CML consists of three phases. The first phase,

called the benign chronic phase, is typically asymptomatic and can last for several

years untreated. The accelerated phase then follows and leads to the last phase, called

blast crisis, which is characterized by an abnormally high number of stem cells and

precursor cells in the blood or bone marrow (Abbott and Michor, 2006). CML can

advance from the chronic phase to the fatal blast crisis phase in a timespan of 3 to 5

years (Sawyers, 1999).

For CML patients in which the BCR-ABL oncogene is detected, targeted molecular

therapy can be used to inhibit the growth of stem cells. Imatinib, also known as STI-

571 and Gleevec (Capdeville et al., 2002), binds to the ATP binding site of BCR-ABL,
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stopping cell-growth signals and decreasing cell proliferation (Frame, 2006). Previously,

treatment options included other drugs, such as hydroxyurea or interferon alpha, and

allogeneic bone marrow transplants. Imatinib, which is effective in all phases of CML

progression, is now a widely used primary treatment option for BCR-ABL positive

CML patients (Abbott and Michor, 2006).

Initial diagnosis of BCR-ABL-positive CML and subsequent treatment efficacy

is typically measured using BCR-ABL transcript levels obtained using quantitative

reverse transcription polymerase chain reaction (Roeder et al., 2006). The amount of

BCR-ABL transcript is then normalized using some control gene, usually BCR or ABL.

Thus the data is presented as BCR-ABL/control gene percentages (BCR-ABL/ABL%)

(Muller et al., 2003; Roeder et al., 2006).

Most CML patients with imatinib treatment exhibit a biphasic profile, which

means that the patients exhibit an initial rapid decline followed by a gradual decline in

BCR-ABL/ABL%. However, some patients exhibit a monophasic or triphasic profile.

The BCR-ABL/ABL% for a monophasic profile gradually declines over time. Patients

with a triphasic profile can exhibit a rapid BCR-ABL/ABL% decline followed by a

relatively gradual BCR-ABL/ABL% decline, followed by a rapid BCR-ABL/ABL%

increase (Stein et al., 2011). The increase in the triphasic profile is most likely caused

by mutations in the BCR-ABL gene that encode resistance to imatinib (Gorre et al.,

2001; Frame, 2006; Griswold et al., 2006; Stein et al., 2011), although gene amplification

is also a possible cause for resistance (Gorre et al., 2001). When treatment is stopped,

the BCR-ABL/ABL% of some patients rapidly increases to levels at or beyond pre-

treatment baseline (Michor et al., 2005). There are different hypotheses as to the

cause of this increase and mathematical modeling techniques have the potential to be

helpful in elucidating the underlying mechanisms of therapy resistance.
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3.1.2 Recent Works

Several groups have utilized mathematical modeling to study the effect of targeted

treatment and imatinib on CML, including Roeder et al. (2006) and Michor et al.

(2005); Michor (2007b).

Michor et al. (2005); Michor (2007b)

In 2005, Michor et al. (2005) proposed a mathematical model that describes the

abundances of normal (x), imatinib dependent leukemic (y), and imatinib-resistant

(z) cell populations in a CML patient. Each cell population comprises four cellular

subpopulations: stem cells (i0), progenitors (i1), differentiated cells (i2), and terminally

differentiated cells (i3), where i = x, y, z. The basic model is therefore described by

the following ODEs:

ẋ0 = [λ(x0)− d0]x0 ẏ0 = [ry(1− u)− d0]y0 ẋ0 = (rz − d0)z0 + ryy0u

ẋ1 = axx0 − d1x1 ẏ1 = ayy0 − d1y1 ż1 = azz0 − d1z1

ẋ2 = bxx1 − d2x2 ẏ2 = byy1 − d2y2 ż2 = bzz1 − d2z2

ẋ3 = cxx2 − d3x3 ẏ3 = cyy2 − d3y3 ż3 = czz2 − d3z3

(3.1)

The stem cells produce progenitor cells at a constant rate a, the progenitor cells

produce differentiated cells at a constant rate b, and the progenitor cells produce

terminally differentiated cells at a constant rate c. The parameters d0, d1, and d2

represent the per capita death rates for stem cells, progenitors, differentiated cells, and

terminally differentiated cells, respectively. Homeostasis of normal stem cells is given

by a decreasing function λ, although this function was never provided. Leukemic and

resistant stem cells divide at rate ry and rz, respectfully. They assume that imatinib

mainly reduces the proliferation rate of the leukemic cells. The authors extended their

model to include stochastic evolution of resistance. The parameter u represents the
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rate of resistant cells produced per cell division.

Michor et al.’s model can exhibit a biphasic decline in BCR-ABL/BCR% as well

as the rapid increase when treatment is stopped. The first phase of the biphasic

decline represents the decrease in differentiated leukemic cells while the second phase

represents the decline in leukemia progenitors. The authors concluded that leukemic

stem cells are not completely depleted during imatinib therapy and thus imatinib

therapy cannot eradicate the disease.

Glauche, Horn, and Roeder wrote a letter to the editor (Glauche et al., 2007),

discussing an inconsistency in the model by Michor et al. (2005). Data showed a

continuing decrease of BCR-ABL transcripts after more than a year of imatinib

treatment. The authors claim that the model by Michor et al. is not able to explain

this behavior due to the continuing increase of malignant stem cells. Michor (2007b)

responds to this letter by stating that the model was designed to reproduce the

dynamics over only the first year of treatment and that the leukemic stem cells were

not depleted during treatment so that the levels increased beyond pre-treatment

baseline once therapy was stopped. Michor then presented a modified version of their

model which takes into account density dependence of normal and leukemic stem cells:

ẋ0 = [rxΦ− d0]x0 ẏ0 = [ryφ− d0]y0

ẋ1 = axx0 − d1x1 ẏ1 = ayy0 − d1y1

ẋ2 = bxx1 − d2x2 ẏ2 = byy1 − d2y2

ẋ3 = cxx2 − d3x3 ẏ3 = cyy2 − d3y3

(3.2)

where

Φ =
1

1 + cx(x0 + y0)
, φ =

1

1 + cy(x0 + y0)
.

The parameters cx and cy represent the crowding effect that is seen in the bone

marrow microenvionrment. Michor shows that this model can reproduce the long-term

imatinib behavior described by Glauche, Horn, and Roeder. Michor (2007a) also claims
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that Roeder et al. (2006) are not able to explain the increase in BCR-ABL/BCR%

levels beyond pre-treatment baseline.

Roeder et al. (2006)

While Michor et al. assumed imatinib had no effect on stem cells, Roeder et al.

presents a single-cell based stochastic process model that assumes imatinib effects BCR-

ABL positive stem cells, and shows the results are consistent with two independent

datasets. In this model, the cells transition between two different growth environments

(GE), a quiescent GE-A and a proliferative GE-Ω. There are three properties for

each cell: GE membership m, position in the cell cycle c, and affinity for a cell to

be in GE-A environment a. A cell in GE-A can transition to GE-Ω when c = c1,

the beginning of the S cell cycle phase. If the cell remains in GE-A, then a(t) will

increase by a factor of r. If the cell is in GE-Ω, it can only transition to GE-A in the

G1 cell cycle phase. If the cell remains in GE-Ω, then a(t) decreases by a factor of

1/d and the cell cycle position is increased. Once a reaches amin, the cell becomes

terminally differentiated. Once a cell cycle is completed, the cell cycle restarts and a

new cell is generated, representing cell division. The transition probabilities depend

on a(t), amax, amin, and the total number of stem cells NA, NΩ. Without treatment,

the malignant clone outcompetes the normal cell population. With treatment, each

BCR-ABL positive cell has a probability of being affected by imatinib, which is

assumed to decrease proliferation of Ph+ cells by decreasing the transition from GE-A

to GE-Ω. Proliferating Ph+ cells are also killed with a given probability, representing

imatinib’s ability to induce apoptosis.

Roeder et al. demonstrated both a biphasic decline as well as the rapid increase in

BCR-ABL/ABL% when treatment is stopped. The authors conclude that the first

and steeper decline is due to the reduction in proliferating BCR-ABL positive cells,
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while the second decline is due to the changes in the regulatory response of the system

caused by the reduced stem cell population. Roeder et al. hypothesized a degradation

of proliferating stem cells during treatment and concluded that imatinib treatment

can eradicate the disease, assuming no mutations. When treatment is stopped, the

relapse can be attributed to the proliferation of dormant stem cells that were not

affected by the proliferation-specific degradation effect.

Stein et al. (2011)

Stein et al. compared different hypotheses of the models described above. Assuming

a biphasic decline in BCR-ABL/ABL%, which was demonstrated by both models,

there are two slopes: α, which corresponds to the initial rapid decrease and β, which

corresponds to the long-term response. One hypothesis, supported by Roeder et al., is

the proliferating-quiescent hypothesis, where α is due to the proliferating stem cells and

β is due to the quiescent stem cells. Another is the late-early progenitors hypothesis,

supported by Michor et al., where α is due to the late progenitor cells and β is due to

the early progenitor cells. Stein et al. also considered a third hypothesis, the early stem

cell hypothesis, which states that α is due to a decline of early progenitor cells and β

is due to a decline of late progenitor cells. This hypothesis was supported by Bottino

et al. (2009) in an abstract from the American Society of Clinical Oncology (ASCO)

Annual Meetings Proceedings. Their mathematical model considers both normal

and leukemic cells in four stages, with the stem cells being the only stage capable

of self-renewal. Using clinical data, Stein et al. rejected the late-early progenitors

hypothesis and concluded that β is due to late progenitor depletion. However, the

factors contributing to the parameter α are still unknown.
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3.1.3 Methods and Findings

These previous CML models described different cell environments and different

cell populations, but not intracellular dynamics, which may provide insights into

the intracellular origins of proliferation and resistance. Recently, Portz et al. (2012)

presented a cell quota model that describes a treatment for patients with prostate

cancer called intermittent androgen suppression, a hormone therapy (described in

Section 2.1.2). Normal prostate cells as well as most prostate cancer cells depend on

androgen signaling for survival and proliferation. Androgen suppression treatment

lowers the androgen levels, which prevents the growth of cancer cells. The treatment

can be initially successful; however, most patients experience a relapse. Portz et al.

suggest that during the relapse, androgen-independent cells (AI), which can grow in

low-androgen environments, replace androgen-dependent cells (AD). In one model, the

growth rate of both the AD and AI populations are described by Droop’s cell quota

models, which introduce two new variables to represent the cell quotas for androgen.

It is not always possible to determine the dependence of cancer cell phenotypes on

intracellular factors. Portz et al. exemplified how mathematical modeling can yield

insights into how intracellular dynamics may contribute to malignant cell growth.

Similar to prostate cancer, the proliferation of malignant cells in CML is dependent

on the production of intracellular factors, namely the BCR-ABL protein. Therefore,

it is natural to adapt the cell quota modeling approach of Portz et al. to CML.

Additionally, the increases in BCR-ABL/ABL% that occur in some CML patients

are comparable to the increases in androgen levels seen in prostate cancer patients

following cessation of androgen therapy. Portz et al. showed that a cell quota model

can accurately capture such increases in intracellular molecular factors that contribute

to malignant proliferation (Portz et al., 2012). Here, we compare two mathematical
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models, a cell quota model similar to that of Portz et al. (2012) and a density dependent

model based on a model described in Michor (2007a,b), for the treatment of CML.

Our results show that additional insights into imatinib treatment for CML patients

can be gained by accounting for the dynamics of BCR-ABL at the intracellular level.

3.2 Model 1: A Cell Quota Model

Our goal is to gain a more in-depth understanding of CML and imatinib treatment

by developing a model that may produce plausible solutions that reasonably match

clinical data. Our model is based on the model framework of Portz et al. (2012). The

growth rate of the BCR-ABL-dependent and -independent populations are modeled

using Droop’s cell quota model, where Q(t) represents the cell quota for BCR-ABL. The

BCR-ABL-dependent, BCR-ABL-independent, and normal populations are modeled,

respectively, by the following system of ODEs:

dx1

dt
= r1

(
1− q1

Q

)
x1 − d0x1 −m12(Q)x1 +m21(Q)x2, (3.3a)

dx2

dt
= r2

(
1− q2

Q

)
x2 − d0x2 +m12(Q)x1 −m21(Q)x2, (3.3b)

dx3

dt
=
( r3

1 + p3(x1 + x2 + x3)

)
x3 − d0x3. (3.3c)

The BCR-ABL dependent population is equivalent to non-resistant cells and the

BCR-ABL independent population is equivalent to the resistant cells. It should be

noted that the BCR-ABL independent population is assumed to not be completely in-

dependent, but have a lower threshold for BCR-ABL. We assume that the proliferation

rates, ri(1− qi
Q

), i = 1, 2, of both BCR-ABL dependent and independent populations

are BCR-ABL cell quota dependent while the proliferation rate, r3
1+p3(x1+x2+x3)

, for

the normal population is density dependent. Notice that ri, i = 1, 2, 3 are the corre-

sponding maximum proliferation rates, and p3 is the parameter that simulates the
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crowding effect. The parameters qi, i = 1, 2 are the minimum BCR-ABL cell quota

for BCR-ABL dependent and independent cells. We assume q1 > q2 since BCR-ABL

independent cells are more likely to proliferate than BCR-ABL dependent cells in

low BCR-ABL environment. The term ri(1− qi
Q

), i = 1, 2 implies that at minimum

BCR-ABL cell quota (Q = qi), corresponding leukaemia cells do not proliferate, while

the proliferation rate increases and approaches the maximum as the BCR-ABL cell

quota increases. The death rate, d0, is also assumed to be the same for all stem cells.

The mutation or switching rates between the BCR-ABL dependent and independent

populations are given by the Hill equations

m12(Q) = k1
Kn

1

Qn +Kn
1

,

m21(Q) = k2
Qn

Qn +Kn
2

.

The maximum BCR-ABL dependent to independent mutation rate is given by k1

and similarly, the maximum BCR-ABL independent to dependent mutation rate is

given by k2. K1 and K2 represent the half-saturation constants for their respective

mutation functions.

We assume the cell quotas for both the BCR-ABL dependent and independent

cells are the same and are modeled by

dQ

dt
= vm(qm1 −Q)− µm(Q− q1)− bQ. (3.3d)

The maximum cell quota is qm1 and the minimum cell quota is q1, with q1 > q2.

We assume that the utilization of BCR-ABL for growth in both the dependent and

independent population is µm(Q− q1), and that µm(q1 − q2) represents utilization of

BCR-ABL for some cellular process unique to the independent population, which we

do not consider here. The parameter vm represents the BCR-ABL protein production

rate. We assume BCR-ABL degrades at a constant rate b.
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Portz et al. (2012) assumed two cell quota variables, one for the dependent

population and one for the independent population. However, the two cell quotas

were very similar. Thus, for simplicity we assume that the cell quotas for both the

dependent and independent cells are the same. It should be noted that this was not a

biologic assumption but an assumption based on the results of Portz et al.. Future

works includes considering two cell quota variables.

3.3 Basic Analysis of the Cell Quota Model

In the following we show that solutions of (3.3a), (3.3b), (3.3c), and (3.3d), with

biologically appropriate initial values, stay positive. Specifically, we assume that

x1(0) ≥ 0, x2(0) ≥ 0, x3(0) ≥ 0, qm1 ≥ Q(0) ≥ q1, and all the parameters are positive.

These assumptions are natural for our application.

Proposition 1. Solutions of (3.3a), (3.3b), (3.3c), and (3.3d) stay in the region

{(x1, x2, x3, Q) : x1 ≥ 0, x2 ≥ 0, 0 ≤ x3 ≤ max{ 1
d0p3

(r3 − d0), x3(0)}, q1
µm
µm+b

≤ Q ≤

qm1} provided that x1(0) ≥ 0, x2(0) ≥ 0, x3(0) ≥ 0, qm1 ≥ Q(0) ≥ q1.

Proof. Observe that

Q′ = vm(qm1 −Q)− (µm + b)

(
Q− q1

µm
µm + b

)
.

It is easy to see that qm1 ≥ Q(t) ≥ q1
µm
µm+b

for t > 0 with initial condition qm1 ≥

Q(0) ≥ q1. A straightforward application of standard comparison argument will

establish the positivity of x1, x2 and x3.

We consider now the boundedness of x3.

x′3 =

(
r3

1 + p3(x1 + x2 + x3)
− d0

)
x3 ≤

(
r3

1 + p3x3

− d0

)
x3

=
1

1 + p3x3

(r3 − d0 − d0p3x3)x3.
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From this, we see that lim
t→∞

x3(t) ≤ max{ 1
d0p3

(r3 − d0), 0}, and x3(t) ≤ max{ 1
d0p3

(r3 −

d0), x3(0)} for t ≥ 0.

We are now in a position to consider the uniform boundedness of x1 and x2:

x′1 + x′2 = r1(1− q1

Q
)x1 + r2(1− q2

Q
)x2 − d0(x1 + x2).

Since Q(t) ≤ qm1, we have

x′1 + x′2 ≤M(x1 + x2)− d0(x1 + x2) = (M − d0)(x1 + x2),

where M = max{r1(1 − q1
qm1

), r2(1 − q2
qm1

)}. We see that x1 + x2 ≤ x1(0) + x2(0) if

M − d0 ≤ 0. Biologically, M − d0 ≤ 0 amounts to saying that even at the maximum

intracellular BCR-ABL concentration qm1, the populations x1 and x2 grow at a rate

less than their death rate d0, which trivializes this modeling task. A much more natural

mechanism that shall ensure the boundedness of solutions is the density dependent

death rate. In more plausible CML models with more desirable long term dynamics,

one can add an additional term such as d1x
2
1 to (3.3a) and d1x

2
2 to (3.3b).

In the following, we assume that

(
r1

(
1− q1

Q1

)
− d0 −m12(Q1)

)(
r2

(
1− q2

Q1

)
− d0 −m21(Q1)

)
6= m12(Q1)m21(Q1),

where

Q1 =
vmqm1 + µmq1

vm + µm + b
.

The following proposition provides some basic local stability results for the Cell Quota

Model.

Proposition 2. System (3.3a), (3.3b), (3.3c) and (3.3d) has no positive periodic solu-

tions. It has two possible boundary equilibria: E0 = (0, 0, 0, Q1), E1 = (0, 0, r3−d0
p3d0

, Q1)

and no interior equilibrium.
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1. Assume that r1(1− q1
Q1

) + r2(1− q2
Q1

)− 2d0 −m12(Q1)−m21(Q1) < 0 and(
r1(1− q1

Q1
)− d0 −m12(Q1)

)(
r2(1− q2

Q1
)− d0 −m21(Q1)

)
−m12(Q1)m21(Q1) > 0.

(a) If r3 < d0, then E0 is the unique equilibrium and it is (locally) stable.

(b) If r3 > d0, then we have equilibria E0 and E1, while E0 is unstable and E1

is (locally) stable.

2. If r1(1− q1
Q1

) + r2(1− q2
Q1

)− 2d0 −m12(Q1)−m21(Q1) > 0 or(
r1(1− q1

Q1
)− d0 −m12(Q1)

)(
r2(1− q2

Q1
)− d0 −m21(Q1)

)
−m12(Q1)m21(Q1) < 0, then both E0 and E1 are unstable.

Proof. Observe that

Q′ = −(vm + µm + b)Q+ vmqm1 + µmq1.

It is easy to see that lim
t→∞

Q(t) = Q1. Then we can look at the limiting case of (3.3a)

and (3.3b):

dx1

dt
= r1

(
1− q1

Q1

)
x1 − d0x1 −m12(Q1)x1 +m21(Q1)x2,

dx2

dt
= r2

(
1− q2

Q1

)
x2 − d0x2 +m12(Q1)x1 −m21(Q1)x2.

Since there is no positive steady state for the limiting case, then by the positivity of

the solutions and the fact that a periodic orbit must enclose at least one equilibrium,

there are no periodic solutions for the limiting case. Thus, (x1, x2) is either unbounded

or approaches the steady state (0,0), which makes x3 approach a steady state by (3.3c).

Hence there are no nontrivial periodic solutions for (3.3a), (3.3b), (3.3c), and (3.3d).

We now only need to consider the stability of (x1, x2, x3). Routine local stability

analysis shows that the eigenvalues of the Jacobian, λ1, λ2, and λ3, satisfy

λ1 + λ2 = r1(1− q1

Q1

) + r2(1− q2

Q1

)− 2d0 −m12(Q1)−m21(Q1),

52



λ1λ2 =

(
r1(1− q1

Q1

)− d0 −m12(Q1)

)(
r2(1− q2

Q1

)− d0 −m21(Q1)

)
−m12(Q1)m21(Q1),

and

λ3 = − r3p3x3

(1 + p3(x1 + x2 + x3))2 +
r3

1 + p3(x1 + x2 + x3)
− d0.

It is thus straightforward to conclude the linear stability for the three different

cases.

Proposition 2 implies that there is no oscillatory behavior of the BCR-ABL/ABL%

(see (3.6)), which suggests that the oscillatory nature of some individual patients’

data may be caused by stochastic factors not considered here or that the model

is incorrect. Also notice that E1 corresponds to 0% in BCR-ABL/ABL(%), while

BCR-ABL/ABL(%) does not apply to E0.

3.4 Model 2: A Simple Density Dependent Model

The second model, based on a model by Michor (2007a,b), describes the change in

abundances of normal stem cells x and leukemia stem cells y, respectively:

x′ = [rxΦ− d0]x where Φ =
1

[1 + cx(x+ y)]
(3.4)

y′ = [ryφ− d0]y where φ =
1

[1 + cy(x+ y)]
(3.5)

rxΦ, ryφ represent the density dependent cell division rates, and cx, cy are parame-

ters that simulate the crowding effect that is seen in the bone marrow microenvironment.

The normal and leukemia stem cells divide at rates at most rx, ry, respectively, per

day. The death rate of both normal and leukemia stem cells is represented by d0.

This model assumes that cells can reproduce both symmetrically and asymmetrically;

therefore, stem cell populations are capable of expansion.
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3.5 Basic Analysis of the Density Dependent Model

Our first proposition presents the positivity and boundedness results for the Density

Dependent Model.

Proposition 3. Solutions of (3.4) and (3.5) stay in {(x, y) : 0 ≤ x ≤ max{ 1
d0cx

(rx −

d0), x(0)}, 0 ≤ y ≤ max{ 1
d0cy

(ry − d0), y(0)}} provided that x(0) ≥ 0, y(0) ≥ 0.

Proof. We first establish the positivity of the solutions. If the contrary were true, then

there is a first time t1 > 0 such that x(t1) = 0 or y(t1) = 0. Assume first that x(t1) = 0.

Then for t ∈ [0, t1], we see that x′(t) ≥ −d0x(t) and hence x(t1) ≥ x(0)e−d0t1 > 0, a

contradiction. A similar contradiction can be obtained by assuming that y(t1) = 0,

proving the positivity of the solutions.

Next we establish the boundedness of solutions. Observe that

x′ =

[
rx

1 + cx(x+ y)
− d0

]
x ≤

(
rx

1 + cxx
− d0

)
x

y′ =

[
ry

1 + cy(x+ y)
− d0

]
y ≤

(
ry

1 + cyy
− d0

)
y.

By a comparison argument, we can conclude that x is bounded by max{ 1
d0cx

(rx −

d0), x(0)} and y is bounded by max{ 1
d0cy

(ry − d0), y(0)}.

The next proposition presents stability results for the Density Dependent Model.

Proposition 4. There are three possible boundary equilibria: E0 = (0, 0), E1 =

(0, 1
d0cy

(ry − d0)) (when ry > d0), E2 = ( 1
d0cx

(rx − d0), 0) (when rx > d0), and no

interior equilibrium. There are no periodic solutions of (3.4) and (3.5).

1. If rx < d0 and ry < d0, then E0 is the unique equilibrium and E0 is (globally)

stable.

2. If rx > d0 and ry < d0, we have equilibria E0 and E2, while E0 is unstable and

E2 is (globally) stable.
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3. If rx < d0 and ry > d0, we have equilibria E0 and E1, while E0 is unstable and

E1 is (globally) stable.

4. If rx > d0 and ry > d0, we have all three equilibria: E0, E1, and E2. E0 is

unstable.

(a) If 1
cx

(rx − d0) < 1
cy

(ry − d0), then E1 is (globally) stable and E2 is unstable;

(b) If 1
cx

(rx − d0) > 1
cy

(ry − d0), then E1 is unstable and E2 is (globally) stable.

Proof. All the equilibria can be easily calculated. Since there is no interior equilibrium

and the solutions are bounded, then by the fact that a periodic orbit must enclose at

least one equilibrium, there are no periodic solutions of (3.4) and (3.5).

Routine local stability analysis leads to the conclusion that stability of the equilibria

depends on eigenvalues

λ1 = rx − d0, λ2 = ry − d0 for E0;

λ1 =
cy(rx − d0)− cx(ry − d0)

cy + 1
d0
cx(ry − d0)

, λ2 = −d0

ry
(ry − d0) for E1;

and

λ1 = −d0

rx
(rx − d0), λ2 =

cx(ry − d0)− cy(rx − d0)

cx + 1
d0
cy(rx − d0)

for E2.

Then it is straightforward to establish the linear stability for the four different cases.

Since we have eliminated the existence of periodic solutions, local stability implies

global stability for cases (1), (2), and (3).

Proposition 4 implies that there is no oscillatory behavior of the BCR-ABL/ABL%,

again suggests that the oscillatory nature of some individual patients’ data may be

caused by stochastic factors not considered here or that the model is incorrect. Also

notice that E1 corresponds to 100% in BCR-ABL/ABL(%) and E2 corresponds to 0%

in BCR-ABL/ABL(%), while BCR-ABL/ABL(%) does not apply to E0.
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3.6 Data

We used data from a previous study (Muller et al., 2003; Roeder et al., 2006) that

consists of samples from 139 German patients who had been recently diagnosed BCR-

ABL positive, chronic phase CML and were recruited and enrolled in the International

Randomized Study of Interferon and STI571 (IRIS study) between June 2000 and

January 2001. Out of these patients, 69 were treated with imatinib and 70 were

treated with interferon (IFN)/Ara-C. Our analysis only considers the 69 patients

treated with imatinib. These patients received 400mg orally daily. The blood samples

were collected monthly for the first 3 months, and then once every 3 months thereafter.

The data consists of BCR-ABL/ABL% from months ranging from 0 to 66 from each

patient. For more information, see (Muller et al., 2003).

To compare the clinical data to the Cell Quota Model (Model 1), we used the

following formula to approximate the percentages:

0.5x1 + 0.5x2

0.5x1 + 0.5x2 + x3

× 100%. (3.6)

To compare the clinical data to the Density Dependent Model (Model 2), we used

the following to approximate the percentages:

0.5y

0.5y + x
× 100%. (3.7)

In using these approximations, we assume that a BCR-ABL positive cell also

contains a non mutated chromosome 9 and 22 and thus the BCR-ABL/ABL% values

cannot be over 100. Therefore we did not analyze any patients with BCR-ABL/ABL

values over 100% and only analyzed data from the remaining 51 patients. Since the

data ranges from 0 to 66 months and after month 3, the samples were collected every

3 months, ideally each patient should have 25 data points. Out of these 51 patients, 11

patients had fewer than 10 data points. Since we are comparing the two models to the
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Model Average Median Range (Max-Min)

Model 1 2.030 0.9939 18.13 (18.14-0.0137)

Model 2 2.181 1.080 17.06 (17.06-0.0047)

Model 1-Model 2 -0.1514 -0.0897 2.887 (1.185-(-1.702))

Table 3.1: Error Statistics Comparing the Cell Quota Model (Model 1) to the Density

Dependent Model (Model 2).

data, we only considered the 40 patients with more than 10 data points. We assume

that, for each patient, the initial BCR-ABL/ABL% value consists of 99% BCR-ABL

dependent cells and 1% BCR-ABL independent cells.

3.7 A Comparison of the Two Models

To compare the two models we ran simulations with MATLAB using the clinical

data of the 40 patients from the earlier study (Muller et al., 2003). We used the

MATLAB built-in function fminsearch, which uses the Nelder-Mead simlex algorithm

(Lagarias et al., 1998), to find the optimum parameters for each model for each patient.

We calculated the error using the following equation:

error 2 =

∑
i(yi − ŷi)2

N
(3.8)

where N represents the total number of data points, yi represents the actual value,

and ŷi represents the estimated value from the models.

After comparing the errors for each patient from each of the models, 26 out of

40 patients had a smaller error associated with the Cell Quota Model compared to

the Density Dependent Model. Table 3.1 contains statistical information about the

errors of the two models. The median error for the Cell Quota Model was 0.9939

whereas the median error for the Density Dependent Model was 1.080. The average
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Parameter Meaning

r1 Maximum proliferation rate of BCR-ABL D population

r2 Maximum proliferation rate of BCR-ABL I population

r3 Maximum proliferation rate of Normal population

p3 Parameter that simulates the crowding effect

n Hill coefficient

q1 Minimum BCR-ABL D cell quota

q2 Minimum BCR-ABL I cell quota

k1 Maximum BCR-ABL D to BCR-ABL I mutation rate

k2 Maximum BCR-ABL I to BCR-ABL D mutation rate

K1 BCR-ABL D to BCR-ABL I mutation half-saturation level

K2 BCR-ABL I to BCR-ABL D mutation half-saturation level

qm1 Maximum BCR-ABL cell quota

vm Cell quota production rate

b Cell quota degradation rate

µm Rate at which BCR-ABL is used within the cell for growth

Table 3.2: Cell Quota Model (Model 1) Parameter Meanings. BCR-ABL D refers to

BCR-ABL dependent and BCR-ABL I refers to BCR-ABL independent.
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error for the Cell Quota Model was 2.030 whereas the average error for the Density

Dependent Model was 2.181. When comparing the difference between the errors for

each model for each patient, only 4 out of the 40 patients had a difference in error that

was greater than 1. Figure 3.1 shows the data fitting for three patients whose error

was smaller with the Cell Quota Model compared to the Density Dependent Model.

Figure 3.2 shows the data fitting for three patients whose error was smaller with the

Density Dependent Model compared to the Cell Quota Model. Figure 3.3 shows the

data fitting for three patients where the two models were similar in terms of error.

3.7.1 Parameters

Tables 3.2 and 3.4 contain the parameter meanings for the Cell Quota Model and

the Density Dependent Model, respectively. Tables 3.3 and 3.5 contain statistical

information about the parameters for the 40 patients for the Cell Quota Model and the

Density Dependent Model, respectively. We used the fminsearch function in MATLAB

to find optimal model parameters with respect to the error defined in (3.8). The

initial guesses for the parameters of the models were initially fit by hand to provide

good qualitative agreement with the clinical CML data. Note that both models use

the stem cell death rate, d0 = 0.003/day (Michor et al., 2005). We can see that,

although Model 2 has fewer parameters, the range of the values is extremely large and

biologically unrealistic. The maximum value for r3 in the Cell Quota Model is about

0.015 per day, whereas the maximum dividing rate for normal stem cells in the Density

Dependent Model is 6.518× 109 per day. The average value for r3 in the Cell Quota

Model is 0.0061 per day whereas the average value for rx in the Density Dependent

Model is about 2.341× 108 per day. Previous literature (Foo et al., 2009) have used

the value of 0.005 per day to represent the growth rate of normal stem cells, which is

much closer to the maximum and average values for the Cell Quota Model. Although
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Figure 3.1: The three rows show the data fitting for patients 15, 48, and 53 respectively

where the blue solid line represents the Cell Quota Model (Model 1), the dashed red

line represents the Density Dependent Model (Model 2), and the blue circles represent

the clinical data. The left column and the right column both show the same data

fitting. The left column has a y-axis of BCR-ABL/ABL(%) whereas the right column

have y-axis as log10(BCR-ABL/ABL(%)) values.
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Figure 3.2: The three rows show the data fitting for patients 17, 18, and 30 respectively

where the blue solid line represents the Cell Quota Model (Model 1), the dashed red

line represents the Density Dependent Model (Model 2), and the blue circles represent

the clinical data. The left column and the right column both show the same data

fitting. The left column has a y-axis of BCR-ABL/ABL(%) whereas the right column

have y-axis as log10(BCR-ABL/ABL(%)) values.
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Figure 3.3: The three rows show the data fitting for patients 10, 20, and 29 respectively

where the blue solid line represents the Cell Quota Model (Model 1), the dashed red

line represents the Density Dependent Model (Model 2), and the blue circles represent

the clinical data. The left column and the right column both show the same data

fitting. The left column has a y-axis of BCR-ABL/ABL(%) whereas the right column

have y-axis as log10(BCR-ABL/ABL(%)) values.
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the averages and ranges are very different for the normal stem cell division rate for the

two models, the median values are close. The median value for r3 in the Cell Quota

Model is about 0.005 while the median value for rx in the Density Dependent Model

is about 0.048. Both the median value of rx in the Density Dependent Model and

the median value for r3 in the Cell Quota Model are similar to the values found in

literature.

In the Cell Quota Model, the growth rate of the nonresistant leukemic stem cells

has a maximum value of about 0.021 per day, which is somewhat close to the value of

0.008 per day used by Michor et al. (2005). However, the maximum value of ry in the

Density Dependent Model is about 4.392×107 per day, which is biologically unrealistic.

For the Cell Quota Model, the median and average values for r1 are 0.0036 and 0.0054

respectively, while the median and average values for ry in the Density Dependent

Model are 0.011 and 1.738× 106 respectively. Although the Density Dependent Model

seems to be a much simpler model and fit the data similarly to the Cell Quota Model,

we can see that the parameter ranges are biologically unrealistic, suggesting the Cell

Quota Model to be biologically more plausible.

3.7.2 Resistance

Some patients exhibit a triphasic profile where there is an increase in BCR-

ABL/ABL% values after the decline. This increase is most likely due to resistance to

imatinib. Although both models were able to show resistance for at least one patient,

the resistance described by the Cell Quota Model seems more biologically relevant.

The BCR-ABL dependent population in the Cell Quota Model represents the non-

resistant cells while the BCR-ABL independent population represents the resistant

cells. The Cell Quota Model suggests that a relapse occurs when the BCR-ABL

dependent population is replaced by the BCR-ABL independent population. Abbott
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Parameter Average Median Range (Max-Min)

r1 0.0054 0.0036 0.021 (0.021-2.713E-11)

r2 0.0225 0.0235 0.042 (0.042-2.587E-4)

r3 0.0061 0.0053 0.015 (0.015-4.919E-8)

p3 1.208E-6 9.454E-7 3.559E-6 (3.563E-6-4.145E-9)

n 2.363 2.050 6.138 (6.238-0.099)

q1 0.2854 0.3210 1.011 (1.011-1.722E-8)

q2 0.2149 0.2302 0.674 (0.675-2.704E-4)

k1 0.0001 0.0001 0.001 (0.001-3.973E-5)

k2 0.0001 0.0001 2.091E-04 (2.132E-4-4.132E-6)

K1 0.0730 0.0753 0.151 (0.162-0.011)

K2 1.6722 1.772 4.025 (4.300-0.275)

qm1 5.0489 4.993 14.42 (14.42-0.005)

vm 6.5600E-4 2.879E-4 0.0101 (0.0101-1.3886E-11)

b 0.1469 0.1143 0.470 (0.474-0.004)

µm 0.0125 0.0127 0.061 (0.061-2.058E-8)

Table 3.3: Cell Quota Model (Model 1) Parameter Statistics

Parameter Meaning

ry Maximum dividing rate of leukemic stem cells

rx Maximum dividing rate of normal stem cells

cy Parameter that simulates the crowding effect

cx Parameter that simulates the crowding effect

Table 3.4: Density Dependent Model (Model 2) Parameter Meanings
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Parameter Average Median Range (Max-Min)

ry 1.738E+6 0.0109 4.392E+7 (4.392E+7-5.202E-9)

rx 2.341E+8 0.0480 6.518E+9 (6.518E+9-0.002)

cy 1.387E+10 217.6 3.352E+11(3.352E+11-0.075)

cx 1.466E+9 0.1282 2.319E+10 (2.319E+10-3.499E-8)

Table 3.5: Density Dependent Model (Model 2) Parameter Statistics

and Michor (2006) describe a slightly more complex model, which also describes

resistance; however, the model was not available nor completely described in the paper,

so we were not able to compare the Cell Quota Model to their model with resistance.

Models that describe treatment resistance are important biologically since resistance

is a common problem in cancer treatments. A model by Foo et al. predicted that, for

every 100 patients treated with only imatinib, 89 will eventually develop resistance

(Foo et al., 2009). Models can provide insights into when a patient might stop

responding to treatment based on their previous data. For chronic phase patients who

start imatinib treatment early, only 12% develop resistance within the first two years

of treatment (Michor et al., 2005). This implies that resistance is probably not an

immediate occurrence.

We searched for signatures of resistance using the parameters estimated from

patient data. Although the clinical study at hand lasted only about 5.5 years, we ran

the simulations for a longer time span to compare the ability of the Cell Quota Model

and the Density Dependent Model to predict long-term resistance. The simulation for

patient 1 in the Density Dependent Model showed an increase in BCR-ABL/ABL%

around day 1000 (Figure 3.4), caused by the CML population outgrowing the normal

cell population. However, patient 1 had the largest error out of all of the other patients
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for both models. The error for patient 1 from the Cell Quota Model was 18.14 and

the error from the Density Dependent Model was 17.06. The next largest error out of

all the patients for the Cell Quota Model was 6.858 and for the Density Dependent

Model was 7.533, which are relatively small errors (errors for patient 20). Thus,

neither model accurately describes the patient 1 data, so it seems irrelevant that the

Density Dependent Model describes resistance for patient 1. Figure 3.4 also contains

graphs where resistance was predicted by the Cell Quota Model by an increase in

BCR-ABL/ABL%, an increase in the proportion of CML cells, and a decrease in the

proportion of normal cells. The errors for these patients were relatively smaller than

the errors for patient 1.

3.8 Discussion

The two models compared in this paper both describe the treatment of chronic

myeloid leukemia but do so in different ways. The Density Dependent Model describes

the competition of leukemic and normal stem cells. In the Cell Quota Model, normal

stem cells are in competition with leukemic cells and the growth of leukemic cells

depends on the concentration of BCR-ABL. The Cell Quota Model also incorporates

more biological detail than the Density Dependent Model by describing the intracellular

dynamics of BCR-ABL and allowing for phenotypic switching between BCR-ABL

dependent and independent leukemic cell populations. We compared these two

models using clinical data and simulations in order to gain insights into whether these

additional biological details are correct and relevant. We found that although the

Density Dependent Model is a much simpler model, it still describes the data well

for some patients. However, the parameter ranges for the Density Dependent Model

are extremely large and biologically unrealistic. In contrast, the Cell Quota Model

fits the clinical data better for more patients (26/40) and the estimated parameter
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Figure 3.4: The three rows show simulations for patients 1, 20, and 53 respectively.

The left column shows the data fitting for each patient with the y-axis as log10(BCR-

ABL/ABL(%)) values, where the blue solid line represents the Cell Quota Model

(Model 1), the dashed red line represents the Density Dependent Model (Model 2),

and the blue circles represent the clinical data. The right column shows the proportion

of the cell populations, where the green solid line represents the leukemic cells and

the dashed purple line represents the normal cells. The model that showed resistance

in the left column was used in the simulation for the right column. Model 1 was used

for the simulation of the proportion of cells for patients 20 and 53 and Model 2 was

used for the simulation of the proportion of cells for patient 1.
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ranges were more realistic, as discussed in Section 3.7. This result suggests that the

Cell Quota Model is a better hypothesis than the Density Dependent Model, but it

still needs independent verification from independent data before we can argue that it

accurately captures biological realism.

A novel mechanism encoded in the Cell Quota Model is the BCR-ABL dependent

switching between BCR-ABL dependent and independent populations. We speculate

that these transitions could have an epigenetic basis. This is in contrast to previous

CML models that have only considered transitions due to genetic mutations (Abbott

and Michor, 2006) or switching between a proliferative and non-proliferative state

(Roeder et al., 2006; Komarova and Wodarz, 2007). Indeed, recent studies have

elucidated important epigenetic changes that may cause resistance to the imatinib

drug. For example, imatinib therapy could cause drug resistance by affecting epigenetic

alterations in cells that down-regulates tumor suppressor genes (Nishioka et al., 2011).

Such alterations could lead to a reduced dependence of leukemic cells on BCR-ABL to

express a malignant phenotype, i.e. a BCR-ABL independent cell population. Another

study showed that aberrant changes in DNA methylation could be an epigenetic

marker associated with imatinib resistance (Jelinek et al., 2011). Our computational

work here highlights the importance of further experimental work to ascertain the

rate at which epigenetic transitions occur in CML, how this rate is related to imatinib

dosage, and how it affects imatinib resistance.

3.9 Future Research

The results we have discussed for the Cell Quota Model, although promising,

are mainly computational and in need of further exploration. A thorough mathe-

matical analysis of the Cell Quota Model can provide additional insights into how

the intracellular regulation of BCR-ABL levels dictates the long-term transition of
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CML cells to an imatinib resistant phenotype, i.e. BCR-ABL independent. In future

computational work, we can further evaluate the accuracy of the Cell Quota Model

to predict resistance by using patient data that exhibits long-term (i.e. > 2 years)

resistance to imatinib. For example, the simulations for the Cell Quota Model where

resistance occurs suggest that a more optimal patient data set for evaluating the

accuracy of this model is on the time scale of 5-10 years post-treatment initiation.

Another direction could investigate more methods for estimating parameters using the

same data, since these results were determined using only one method for determining

the parameters, as well as performing parameter sensitivity analysis.

Kareva et al. (2010) analyze the balance between immature and mature myeloid

cells and how this balance affects tumors. They claim that if there is a small enough

population of cancer cells, then there is a small region of initial conditions where the

immune system alone may cure the cancer and the patient will not need treatment.

Future work could look into incorporating the mature and immature myeloid cell

populations into the normal cell population in the Cell Quota Model as well as

combining intermittent imatinib therapy with the immune system’s defense. The work

can also be expanded in the future by using more biologically relevant function forms

of p(x) and mortality, considering two cell quota variables, and also comparing the

Cell Quota Model to the model by Roeder et al. (2006).
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Chapter 4

OVARIAN CANCER

4.1 Introduction

Ovarian cancer, also known as the ‘silent killer’ (Goff et al., 2000; Bast Jr et al.,

2009), causes more deaths than any other gynecological malignancies and is the 5th

leading cause of death from non-skin cancers among women (Gómez-Raposo et al.,

2009; Siegel et al., 2014). The American Cancer Society estimates 21,290 new cases

of ovarian cancer and 14,180 deaths due to ovarian cancer in the United States in

2015 (Siegel et al., 2015). Only about 20% of ovarian cancers are detected at an early

stage (Bast Jr et al., 2009), in part due to the lack of an effective screening strategy

and in part since the indications are often symptomatic of other diseases; symptoms

include abdominal discomfort or fullness, bloating, and dyspepsia (Aravantinos and

Pectasides, 2014). Ovarian cancer is characterized by intraperitoneal (IP) tumors and

ascitic fluid (Mesiano et al., 1998; Hu et al., 2000).

While cytoreductive surgery and chemotherapy are common treatments for ovarian

cancer, more than 70% of advanced-stage patients will develop drug resistance and

the disease recurs within 5 years (Bast Jr et al., 2009; Aravantinos and Pectasides,

2014). Thus molecular targeted therapy has been recently researched, particularly

anti-angiogenesis therapy (Aravantinos and Pectasides, 2014), an idea proposed by

Folkman more than 40 years ago (Folkman, 1971). Angiogenesis, the development

of new blood vessels from pre-existing vessels, is essential for tumor growth and

expansion by providing the necessary oxygen and nutrient support to the tumor

(Folkman, 1990; Mesiano et al., 1998; Folkman, 2002). Angiogenesis is regulated by
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pro-angiogenic and anti-angiogenic factors. When these factors become unbalanced

in favor of angiogenesis, the tumor acquires angiogeneic properties, known as the

‘angiogenic switch’ (Folkman, 2002). One of these pro-angiogenic factors, vascular

endothelial growth factor (VEGF), is expressed in most malignant tumors and is one

of the most important tumor angiogenesis factors (Sitochy et al., 2012), although its

role in tumor angiogenesis is still not understood completely (Waldner and Neurath,

2012). Although VEGF is involved in cyclic growth of ovarian follicles and corpus

luteum development and maintenance (Geva and Jaffe, 2000), it is expressed higher in

women with ovarian cancers compared to those with benign tumors (Gómez-Raposo

et al., 2009).

Several studies have investigated the relationship between VEGF and tumor growth.

In 1998, Mesiano et al. (1998) analyzed the role of VEGF in tumor growth, progression

and ascites formation in ovarian cancer in tumors induced in immunodeficient mice

using the human ovarian carcinoma cell line SKOV-3. The authors concluded that

tumor-derived VEGF is necessary for the formation of ascites, but may not be

obligatory for IP growth. In 2000, Hu et al. (2000) researched the effects of a PI3-K

inhibitor, LY294002, on tumor progression and ascites formation in the same mouse

model of IP ovarian carcinoma using the OVCAR-3 ovarian cancer cell line. The

authors concluded that LY294002 significantly inhibited growth and ascites formation.

While this study did not investigate VEGF directly, the authors believe LY294002

may have blocked the signal transduction pathway of VEGF. The monoclonal anti-

VEGF antibody bevacizumab became approved by the FDA in 2004 for first-line

treatment of metastatic colorectal cancer (Waldner and Neurath, 2012). In 2013, Ye

and Chen (2013) analyzed the efficacy and safety of bevacizumab in ovarian cancer

treatment using four, phase III randomized controlled trials. They concluded that

combining bevacizumab to chemotherapy provided improvement in objective response
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rate and progression-free survival for both first-line and recurrent disease treatment,

but provided no benefits to overall survival. These results were confirmed by a 2014

systematic review of bevacizumab combined with chemotherapy for ovarian cancer

treatment (Aravantinos and Pectasides, 2014). This result is typical of treatments

targeting angiogenesis in humans. Although many anticipated great benefits of anti-

VEGF/VEGF receptor therapy, studies across several cancers have shown only modest

results (Sitochy et al., 2012). One possible explanation for this is that tumors adapt

to anti-VEGF treatment by using secondary angiogenic pathways, such as the platelet

derived growth factor (PDGF) pathway, the fibroblast growth factor (FGF) pathway,

and the angiopoietin family (Ang) pathway (Burger, 2011; Davidson and Secord,

2014). Agents such as pazopanib, ninedanib, and trebananib, which target these other

pathways, are currently being studied (Burger, 2011; Coleman et al., 2013; Davidson

and Secord, 2014).

One approach to modeling angiogenesis and tumor growth is to apply ecological

modeling techniques to cancer modeling. Healthy and cancerous cells live in an ecologi-

cal system where they interact with each other, competing for resources, nutrition, and

space (Nagy, 2004, 2005; Merlo et al., 2006; Pienta et al., 2008; Nagy and Armbruster,

2012; Basanta and Anderson, 2013; Bickel et al., 2014; Korolev et al., 2014). Kuang

et al. (2004b), applied the theory of ecological stoichiometry to a model of tumor

angiogenesis. This theory considers the balance of multiple chemical substances, or

sometimes energy and materials, in ecological interactions and processes (Sterner

and Elser, 2002). One of the main hypothesis from this theory is the growth rate

hypothesis, which, “proposes that ecologically significant variations in the relative

requirements of an organism for C, N and P are determined by its mass-specific growth

rate because of the heavy demand for P-rich ribosomal RNA under rapid growth”

(Sterner and Elser, 2002; Kuang et al., 2004b); organisms with high growth rates have
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high P:C ratios due to the increased allocation of P to RNA. Since tumor cells often

have high growth rates, it makes sense to apply this hypothesis to cancer biology. Elser

et al. (2007) tested this and determined that the growth rate hypothesis might hold

true for some cancers, but not for all cancers. Kuang et al. (2004b) propose a model

which considers healthy cells, tumor cells, and tumor microvessels, or mature vascular

endothelial cells (VECs) in the tumor. The growth rate of these cells are possibly

limited by the nutrient phosphorus, depending on the concentration of extracellular

phosphorus. The growth of the cancerous cells can also be limited by a lack of blood

vessels, which carry important nutrients and supplies. The authors assume a time

delay τ , which represents the time it takes for the tumor vessels to form. This idea of

representing the micro vessel formation process using a time delay has also been used

in previous mathematical models of tumor-induced angiogenesis (Agur et al., 2004;

Jain et al., 2008).

We present a first approximation mathematical model of tumor growth and tumor-

induced angiogenesis in the simplest context, using a minimum number of parameters.

We apply the idea of nutrient limited induced angiogenesis from Kuang et al. (2004b)

through the use of Droop’s cell quota model (Droop, 1968). We also express the

processes of microvessel formation through the use of a time delay. We consider the

tumor growth both on and off anti-VEGF treatment using the same parameter set.

We present our mathematical model in Section 4.2 and then present the analysis of

the model in Sections 4.3 and 4.4. Section 4.5 contains simulations and comparisons

of the model to clinical data from Mesiano et al. (1998).

4.2 Tumor Model

We present a simple vascularized tumor growth model where tumor growth is

governed by the Droop equation (Droop, 1968). Let y represent the vascularized
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tumor volume and Q represent the intracellular concentration of necessary nutrients

provided by angiogenesis, or the cell quota of some limiting nutrient from angiogenesis.

Our model takes the following form:

y′ = µm

(
1− q

Q

)
y︸ ︷︷ ︸

growth

− dy︸︷︷︸
death

, (4.1a)

Q′ = α
y(t− τ)

y(t)︸ ︷︷ ︸
nutrient uptake

−µm (Q− q)︸ ︷︷ ︸
dilution

. (4.1b)

The growth of the tumor is given by the Droop equation, where µm represents the

maximum tumor growth rate and q represents the minimum cell quota, or minimum

concentration of limiting nutrient needed to sustain the cell. The tumor death rate

is assumed to be constant, represented by d. Similarly to Kuang et al. (2004b),

we assume that it takes τ time for the vascular endothelial cells to respond to the

angiogenic signal and mature to fully functional vessels. While a mechanistic model

would need to track the blood vessels, we simplify by assuming that the nutrient

uptake rate is proportional to the nutrient concentration in the interstitial fluid, which

in turn is proportional to the blood vessel density τ time units in the past. The delay

arises because the tumor is assumed to grow into regions that are unvascularized,

and it takes τ units of time for them to vascularize. Once a region is vascularized, it

remains static. VEGF is assumed to be the primary signal generating new blood vessel

growth and is secreted primarily where new tumor tissue is forming, since these are

the regions that are hypoxic. Parameter α represents both uptake rate of the nutrients

in the interstitial fluid and resulting nutrient concentration per tumor unit. Term

µm(Q− q) represents the dilution of the nutrient as the tumor grows. We assume that

when the cells die they release the nutrient, which remains in the nearby environment

(Kuang et al., 2004b). See Table 4.1 for a list of the variable and parameter meanings,
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units, and values.

We now consider the model when an anti-VEGF treatment is applied. During

treatment, the blood vessel growth will be impaired due to the inhibition of VEGF,

but existing vasculature is likely not to be affected by the treatment. In that case

nutrient delivery no longer depends upon the tumor volume τ days ago, but remains

constant due to the static vasculature. We assume that blood vessel sprouts that

began forming within τ time units before the onset of treatment will not be fully

formed and patent. Let t0 represent the time of treatment onset and ȳ = y(t0 − τ).

Then nutrient delivery is dependent upon ȳ, and the delay differential equation model

becomes an ordinary differential equation model:

y′ = µm

(
1− q

Q

)
y︸ ︷︷ ︸

growth

− dy︸︷︷︸
death

(4.2a)

Q′ = αp
ȳ

y(t)︸ ︷︷ ︸
nutrient uptake

−µm (Q− q)︸ ︷︷ ︸
dilution

. (4.2b)

When comparing the model to clinical data from Mesiano et al. (1998), the

parameter α was too large during treatment. Therefore, the α during treatment cannot

be the same as during off-treatment. Thus, we introduced a discount parameter p to

account for this biological observation. Since the nutrient uptake term is capturing

the processes of angiogenic signaling, angiogenesis itself, and uptake of nutrients,

the parameter p could represent an additional inhibition, above the treatment effect

originally modeled, in any of these processes. One possible explanation could be the

characteristic blood-filled cysts that form in untreated ovarian malignancies that are

often depleted once treatment is ongoing (Mesiano et al., 1998). If this explanation is

correct, then blood within these cysts must provide nutrients to the tumor.
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Par Meaning Unit Value Ref

y tumor volume mm3 - (Mesiano et al., 1998)

Q cell quota (cell nutrient density) mol/vol -

q minimum cell quota mol/vol 0.0021-0.0099

µm maximum growth rate day−1 0.47-1.58 (Panetta, 1997)

d death rate day−1 0.28-1.43 (Panetta, 1997)

α nutrient uptake coefficient mol/vol/day 0.0084-0.70

p reduction in nutrient uptake rate - 0.17-0.47

τ time delay day 10 (Leunig et al., 1992)

Table 4.1: Tumor Model Parameter Ranges. In the table, Par stands for Parameter,

vol stands for volume unit, and Ref stands for Reference.

4.3 Basic Analysis for the System (4.1)

The following section provides a mathematically basic but practically adequate

analysis of system (4.1), verifying the positivity of the solution in order to be biologically

meaningful, providing a simple condition ensuring the tumor cell population tends to

0, and discussing a condition for approximating the solution.

Theorem 4.3.1. Solutions system (4.1) with the initial conditions QM > Q(t) > q

and y(t) > 0 for t ∈ [−τ, 0] will remain in this region for all t > 0, where QM =

max
{
Q(s), q + α

µm
edτ , s ∈ [0, τ ]

}
. If µm ≤ d, then limt→∞ y(t) = 0.

Proof. We first establish the positivity of the solutions. Assume by contradiction,

there exists time t1 ∈ [0, τ ] such that a trajectory with initial conditions Q(t) > q and

y(t) > 0 for t ∈ [−τ, 0] crosses a boundary Q = q or y = 0 for the first time.

Case 1. Assume the trajectory crosses the boundary Q(t1) = q first. Then for
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t ∈ [0, t1], y(t) > 0 and

Q′(t) =
αy(t− τ)

y(t)
− µm(Q(t)− q)

≥ −µm(Q(t)− q).

Then

Q′(t) + µmQ(t) ≥ µmq

and so

Q(t) ≥ q + (Q(0)− q)e−µmt > q.

Thus Q(t1) > q, which contradicts Q(t1) = q. Therefore a trajectory cannot cross this

boundary first.

Case 2. Assume the trajectory crosses the boundary y(t1) = 0 first or the

trajectory crosses both y(t1) = 0 and Q(t1) = q at the same time. Then for t ∈ [0, t1],

Q(t) ≥ q and

y′(t) =

(
µm

(
1− q

Q(t)

)
− d
)
y(t) ≥ −dy(t).

Then y(t) ≥ y0e
−dt > 0. Therefore y(t1) > 0, which contradicts y(t1) = 0. Therefore

a trajectory cannot cross the boundary y = 0 first nor both boundaries at the same

time.

Now we will show Q is bounded above. Since y′ ≥ −dy, then y(t) ≥ y(t− τ)e−dτ

and so
y(t− τ)

y(t)
≤ edτ . Then for t > τ ,

Q′ ≤ αedτ − µm(Q− q),

which implies

Q(t) ≤ q +
α

µm
edτ +

(
Q(τ)− q − α

µm
edτ
)
e−µmt.

Then

lim sup
t→∞

Q(t) ≤ q +
α

µm
edτ
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and

Q(t) ≤ max

{
Q(s), q +

α

µm
edτ , s ∈ [0, τ ]

}
= QM .

Assume now µm ≤ d, we see that

y′ ≤ −µmq
Q

y ≤ −µmq
QM

y

and so

y′(t) ≤ y(0)e
−µmq
QM

t
.

Therefore as t→∞, y(t)→ 0.

In the following, we assume that µm > d.

The full system described in (4.1) is nonlinear with a time delay and so there is

no standard approach for handling the system in order to study the dynamics of the

solution. Biologically we can assume that the uptake of nutrients is on a faster time

scale than the population dynamics. Thus we apply a quasi-steady state argument by

allowing Q′ = 0. Then

Q′(t) = 0 =
αy(t− τ)

y(t)
− µm(Q∗(t)− q)

and so

Q∗(t) =
αy(t− τ)

µmy(t)
+ q.

Then

y′(t) = µm

(
1− q

Q∗(t)

)
y(t)− dy(t)

= µm

(
1− qµmy(t)

αy(t− τ) + qµmy(t)

)
y(t)− dy(t)

=

(
µmαy(t− τ)

αy(t− τ) + qµmy(t)
− d
)
y(t)

= f (y(t), y(t− τ)) . (4.3)
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Figure 4.1: Plot of (4.4) with µm = .64, d = .43, q = .006, α = .05, τ = 10

Motivated by the off-treatment tumor growth data in (Mesiano et al., 1998) (see

Section 4.5), we look for the existence of a dominating exponential solution. Let

y(t) = y0e
λt. Then

eλτ =
α(µm − λ− d)

µmq(λ+ d)
. (4.4)

Note that eλτ is a monotone increasing function of lambda and α(µm−λ−d)
µmq(λ+d)

is a monotone

decreasing function of lambda (see Figure 4.1). Observe that if α(µm − d) > µmqd,

we see that there exists a unique real eigenvalue, 0 < λ1 < µm − d, that satisfies (4.4).

Then a solution to the system is

(y1(t), Q∗) =

(
y0e

λ1t,
αe−λ1τ + µmq

µm

)
. (4.5)

However, there are also infinitely many complex solutions to the equation (4.4). The

following theorem provides a sufficient condition that ensures λ1 as the dominant

eigenvalue, i.e. when the solution can be approximated by (4.5). Also, note that since

y1(t) = y0e
λ1t is a solution to the system, we know that y(t) is not bounded above.

Theorem 4.3.2. If α(µm − d) > µmqd and α < µmqe
λ1τ , then λ1 ≥ sup{Re(λ) :
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λ is any solution of (4.4)}.

Proof. Consider the characteristic equation defined in (4.4) and let λ1 be the unique

positive real eigenvalue that satisfies the characteristic equation. Then∥∥eλ1τ∥∥ =

∥∥∥∥α(µm − λ1 − d)

µmq(λ1 + d)

∥∥∥∥
implies

e2λ1τ =
(α(µm − λ1 − d))2

(µmq(λ1 + d))2 .

We assume, by contradiction, that there exists a λ = a+ ib such that a > λ1. Then∥∥e(a+ib)τ
∥∥ =

∥∥∥∥α(µm − a− d) + i(−αb)
µmq(a+ d) + i(µmqb)

∥∥∥∥
implies

e2aτ =
(α(µm − a− d))2 + (αb)2

(µmq(a+ d))2 + (µmqb)
2 =

A+ C

B +D
, (4.6)

where A = (α(µm − a− d))2, B = (µmq(a+ d))2, C = (αb)2, and D = (µmqb)
2.

Since a > λ1 and 0 < λ1 < µm − d, we have

e2aτ > e2λ1τ =
(α(µm − λ1 − d))2

(µmq(λ1 + d))2 >
(α(µm − a− d))2

(µmq(a+ d))2 =
A

B
. (4.7)

Let E = e2λ1τ and F = 1. Then by (4.7),
A

B
<
E

F
.

Since
α

µmq
< eλ1τ , then

(αb)2

(µmqb)2
< e2λ1τ and so

C

D
<
E

F
.

Note that if
A

B
<
E

F
and

C

D
<
E

F
, then

A+ C

B +D
<
E

F
.

Then by (4.6), e2aτ =
A+ C

B +D
<
E

F
= e2λ1τ . However, by (4.7), e2aτ > e2λ1τ . Thus we

have reached a contradiction. Therefore λ1 ≥ sup{Re(λ) : λ is any solution of (4.4)}.

4.4 Global Analysis for the System (4.2)

The following section provides a global analysis of the model in system (4.2),

verifying the boundedness and invariance of the solution and discussing the stability
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and global stability of the positive equilibrium solution.

Theorem 4.4.1. The solutions of the system (4.2) are bounded away from zero.

Proof. First we will show y is bounded away from 0.

We will show by contradiction that y > L, where L is chosen to be sufficiently

small. Let tL = min{t > 0 : y(t) = L}, i.e., let tL be the first time y(t) reaches L. We

now choose M such that L < M < y0. Let tM = max{t < tL : y(t) = M}, i.e., let tM

be the last time y(t) reaches M before it reaches L. Then 0 < tM < tL and y(t) < M

for t ∈ (tM , tL]. See Figure 4.2 for a sketch.

M

L

tM tL

y

t

Figure 4.2: Sketch of Proof

We first choose M such that

M < min

{
y0,

αpȳ(µm − d)

qµ2
m

}
which implies that

αpȳ

Mµm
>

qµm
µm − d

.

We now choose L such that∣∣∣∣(M − αpȳ

Mµm
− q
)
e

−µm
d

ln(ML )
∣∣∣∣ < q,
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or equivalently

L < M

 q∣∣∣M − αpȳ
Mµm

− q
∣∣∣
 d

µm

.

Since tL is the first time y(t) reaches L and L < y0, then

y′(tL) =

(
µm

(
1− q

Q(tL)

)
− d
)
y(tL) ≤ 0

and so

µm

(
1− q

Q(tL)

)
≤ d

or equivalently

Q(tL) ≤ qµm
µm − d

. (4.8)

Since y < M for t ∈ (tM , tL], then for all t ∈ (tM , tL],

Q′ =
pαȳ

y
− µm(Q− q) > αpȳ

M
− µm(Q− q)

and so

Q(t) >
αpȳ

Mµm
+ q +

(
M − αpȳ

Mµm
− q
)
eµm(tM−t).

Then for t = tL,

Q(tL) >
αpȳ

Mµm
+ q +

(
M − αpȳ

Mµm
− q
)
e−µm(tL−tM ).

If
(
M − αpȳ

Mµm
− q
)
≥ 0, then

Q(tL) >
αpȳ

Mµm
+ q +

(
M − αpȳ

Mµm
− q
)
e−µm(tL−tM )

≥ αpȳ

Mµm
+ q

>
qµm
µm − d

,

a contradiction to equation (4.8).
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We now consider the case when
(
M − αpȳ

Mµm
− q
)
≤ 0. Since y′ ≥ −dy for all t > 0,

then y(tL) ≥ y(tM)e−d(tL−tM ) or equivalently

tL − tM ≥
1

d
ln

(
M

L

)
.

Then

e−µm(tL−tM ) ≤ e
−µm
d

ln(ML )

and so (
M − αpȳ

Mµm
− q
)
e−µm(tL−tM ) ≥

(
M − αpȳ

Mµm
− q
)
e

−µm
d

ln(ML ) > −q.

Then

Q(tL) >
αpȳ

Mµm
+ q +

(
M − αpȳ

Mµm
− q
)
e−µm(tL−tM )

>
αpȳ

Mµm

>
qµm
µm − d

.

However, this again contradicts (4.8) and therefore y > L.

Now we will show Q is bounded below by q. For t > 0,

Q′ =
αpȳ

y
− µm(Q− q)

≥ −µm(Q− q).

Then

Q′ + µmQ ≥ µmq

and so

Q(t) ≥ q + (Q0 − q)e−µmt > q.

Therefore Q(t) > q for all t > 0.

Therefore the solutions of the system (4.2) are bounded away from zero.
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Theorem 4.4.2. The solutions to the system (4.2) are bounded from above.

Proof. Let z = yQ and z0 = y0Q0. Then

z′ = αpȳ − dz

which implies

z(t) =
αpȳ

d
+
(
z0 −

αpȳ

d

)
e−dt.

Then

lim sup
t→∞

z(t) ≤ αpȳ

d

and

z(t) ≤ max
{
z0,

αpȳ

d

}
= M̄. (4.9)

Thus y(t)Q(t) ≤ M̄ .

Since Q > q by Theorem 4.4.1, then y(t) ≤ M̄
Q(t)

< M̄
q

. Therefore y is bounded.

Since y > L by Theorem 4.4.1, then Q(t) ≤ M̄
y(t)

< M̄
L

. Thus Q is bounded above.

Therefore the solutions of the system (4.2) are bounded.

The only steady state of the system is E1 = (y∗, Q∗) =

(
αpȳ(µm − d)

µmqd
,
qµm
µm − d

)
.

See Figure 4.3 for the phase plane. In order for the steady state to be positive, we

assume µm − d > 0. The following theorem discusses the global stability of this

positive equilibrium point.

Theorem 4.4.3. The equilibrium point E1 is globally asymptotically stable.

Proof. We will first show that E1 is locally asymptotically stable. Using the Jacobian,

we see

J(E1) =

 0
αpȳ(µm − d)

(qµm)2d
−(µmqd)2

αpȳ(µm − d)2
−µm

 .
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Figure 4.3: Phase Plane with Steady State Value (y∗, Q∗) =
(
αpȳ(µm−d)

µmqd
, qµm
µm−d

)

Then Tr(E1) = −µm < 0 and Det(E1) =
d

µm − d
> 0. Thus E1 is a stable equilibrium

point. Now we must show there are no periodic orbits. Let M̄ be defined as in (4.9)

and

Ω =

{
0 < y <

M̄

q
, q < Q <

M̄

L

}
.

Consider the system

y′ = µm

(
1− q

Q

)
y − dy = F (y,Q) (4.10)

Q′ = αp
ȳ

y(t)
− µm (Q− q) = G(y,Q). (4.11)

Then

dF

dy
+
dG

dQ
= µm

(
1− q

Q

)
− d− µm =

−µmq
Q
− d < 0.

Then by the Bendixon’s negative criterion theorem, there cannot be a closed orbit

contained within Ω. Therefore, since Ω is simply connected and positively invariant

and contains no orbits, by the Poincaré-Bendixson Theorem, all solutions of the system

(4.2) starting in Ω will converge to E1. Thus, E1 is globally asymptotically stable.
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4.5 Data and Simulation Results

We compare our model to clinical data from Mesiano et al. (1998). The authors

first studied subcutaneous (SC) tumors induced in immunodeficient mice using the

human ovarian carcinoma cell line SKOV-3, in order to monitor the tumor growth

directly. The data we compare to simulated values using our model consists of the SC

tumor volume (mm3) over time (days). Since ovarian cancer is not a subcutaneous

cancer, the authors also studied IP tumors. However, these tumors could not be

monitored directly due to the spread within the abdomen and the results were only

obtained from postmortem examination. Thus we do not have data for the IP tumor

volume over time to compare to our model.

We performed simulations in MATLAB. After first fitting parameters by hand, we

used the function fminsearchbnd, a bounded version of the built-in function fminsearch

that uses the Nelder-Mead simplex algorithm (Lagarias et al., 1998), to find values for

the free parameters that minimize mean square error (MSE) between the laboratory

data and model-generated data within a pre-determined bounded region. The delay

differential equation (4.1) simulations begin on the third data point in order to avoid

modeling the transitional dynamics. Since the first three data points are fairly constant,

we assume a constant y history of the average of the first three data points. We also

assume a constant Q = Q0 history, which was considered a parameter and found

using fminsearchbnd. The initial conditions for the ordinary differential equation (4.2)

simulations were assumed to be the value of the third data point for y and Q = Q0.

Figures 4.4-4.8 show the simulation results compared to the data as well as the

corresponding dynamics on the phase plane. In Figures 4.4-4.6, we are able to use

the same parameter values to model both the on-treatment and off-treatment tumor

volumes. To confirm computationally that the solution defined in equation (4.5) is
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in fact a solution to the off-treatment model, we ran the simulation with the history

equivalent to equation (4.5) (Figure 4.5). We can see that the off-treatment solution is

the same as y0e
λ1t and the Q value is equivalent to Q∗. As expected, the ratio between

the off-treatment solution and y0e
λ1t was equal to one at each time step. We then

considered a constant Q = Q0 history with the y history remaining the exponential

solution (Figure 4.6). The Q solution approached Q∗ and the ratio between the

off-treatment solution and y0e
λ1t approached a constant value. This suggests that

even when perturbing the initial condition, the solution still has the same exponential

form.

Figures 4.7 and 4.8 show solutions where the model reverses from off-treatment to

on-treatment and from on-treatment to off-treatment, respectively. When reversing

from off-treatment to on-treatment, the initial conditions of the ordinary differential

equations are last values of the off-treatment solution. When reversing from on-

treatment to off-treatment, we approximate the on-treatment solution for the last τ

days with a function and use this function as the history for the delay differential

equations. These approximations are plotted in Figure 4.8.
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Figure 4.4: y vs. t (left) and phase plane (right) simulation of (4.1) and (4.2) with

µm = 0.47, d = 0.28, q = 0.0064, a = 0.050, p = 0.17, Q0 = 0.014
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Figure 4.5: y vs. t (left) and phase plane (right) simulation of (4.1) and (4.2) with

µm = 0.87, d = 0.73, q = 0.0099, a = 0.36, p = 0.18, Q0 = 0.014
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Figure 4.6: y vs. t (left) and phase plane (right) simulation of (4.1) and (4.2) with

µm = 0.64, d = 0.43, q = 0.0063, a = 0.048, p = 0.23, Q0 = 0.011
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Figure 4.7: y vs. t (left) and phase plane (right) simulation of (4.1) and (4.2) with

µm = 1.58, d = 1.43, q = 0.0053, a = 0.70, p = 0.23, Q0 = 0.0060

4.6 Discussion

We present a simple yet biologically meaningful model that considers ovarian

tumor growth and tumor induced angiogenesis, subject to both on and off anti-VEGF

treatment. The growth of the tumor is governed by the intracellular limiting nutrient

concentration, or cell quota. We present analysis of the off-treatment model, and verify

positivity of the solutions so that the solutions are biologically meaningful. Motivated

by the data, we also discuss approximating the solution with an exponential solution.

We analyze the on-treatment model, proving positivity of solutions and the existence

of a globally stable equilibrium point.

We can see that the steady states makes sense biologically. When the nutrient

uptake decreases then the on-treatment tumor volume steady state y∗ = αpȳ(µm−d)
µmqd

also decreases. Similarly, the off-treatment solution y1(t) = y0e
λ1t grows at a slower

rate since λ1, the real solution of the characteristic equation eλτ = α(µm−λ−d)
µmq(λ+d)

, also

decreases. As the minimum intracellular nutrient concentration q increases or the

death rate d increases, y∗ and λ1 decrease. To consider the maximum growth rate
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Figure 4.8: First row: y vs. t (left) and phase plane (right) simulation of (4.1) and

(4.2) with µm = 0.67, d = 0.47, q = 0.0021, a = 0.0084, p = 0.47, Q0 = 0.0070. Second

row: corresponding plot of y (left) and Q (right) history functions that approximate

the on-treatment ODE solution in the top left figure.
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µm, we can rewrite the on-treatment tumor volume steady state as y∗ =
αpȳ(1− d

µm
)

qd

and the right hand side of the characteristic equation as
α(1− 1

µm
(λ+d))

q(λ+d)
. Then it is

easy to see that as µm increases, y∗ and λ1 also increase. However, if we consider a

proportional relationship between the death rate and maximum growth rate by letting

d = kµm where k < 1, then y∗ = αpȳ(1−k)
qkµm

. Assuming this relationship between µm and

d, then we can see that y∗ is inversely proportional to µm. This suggests that while

on-treatment and assuming a proportional relationship between µm and d, a faster

growing ovarian tumor may have a smaller equilibrium size.

We then compare the simulation results to both on and off treatment biological

data. The tumor-derived VEGF activity was inhibited using the function-blocking

monoclonal antibody A4.6.1, the murine-equivalent of bevacizumab (Avastin) (Gerber

and Ferrara, 2005), which blocks VEGF receptors VEGFR-1(flt-1) and VEGFR-2

(KDR/flk-1). The authors concluded that the antibody significantly inhibited the

growth of the SC tumors, by significantly inhibiting tumor vascularization, though

tumor growth resumed once treatment stopped. From postmortem examination of the

IP tumors, the authors observed partially inhibited tumor growth in the treatment

group compared to the controls for a variety of treatment regimes. Tumor burden in

treated IP mice varied from minimal to high. Therefore, Mesiano et al. suggested

that IP metastasis might contain both angiogenesis-independent (thin layer tumor

growth) and angiogenesis-dependent (large solid tumors) components. The simulations

fit both the on-treatment and off-treatment data using the same parameters as well

as reversing from off- to on-treatment and vice versa, which supports using Droop’s

model and applying ecological ideas to cancer biology.
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4.7 Future Work

Here, we assume that the limiting nutrient is delivered to the tumor via the blood

vessels, although we do not specify the limiting nutrient. However, a future direction

would be to consider a specific limiting nutrient supplied through the blood vessels,

such as oxygen, phosphorus, nitrogen, or glucose. When considering a specific nutrient,

parameter ranges can be more tightly specified, because it is likely that at least some

data regarding uptake of the specific nutrient and minimum cell quota can be obtained.

Nagy (2007) suggested a “best guess” minimum intracellular phosphorus concentration

parameter value of approximately 0.01. Since our simulations suggested a minimum

cell quota less than about 0.0099, perhaps phosphorus is the limiting nutrient provided

by angiogenesis. We hope that these results will motivate biologists to consider a

limiting nutrient when collecting data in the future.

Another possible direction for future work could consider an alternative ODE

model and compare the results to the model presented here. Following Kuang et al.

(2004b), we use a time delay to represent the time it takes for the tumor vessels to

form. However, an alternative ODE model could use a mechanistic modeling approach

and track the vessel growth directly.

The work presented here considers only anti-angiogenic therapy in mice. However,

until an anti-angiogenic agent that does not harm normal vessels is developed, humans

receive a combination of chemotherapy with anti-angiogenic therapy (Jain, 2005). The

benefit of this combination is that the cancerous cells are being attacked both directly

and indirectly; the chemotherapy kills the cells directly while the anti-angiogenic

therapy inhibits the cancerous cells from receiving nutrients. However, chemotherapy is

delivered through the vasculature. Applying chemotherapy along with anti-angiogenic

therapy could hinder the delivery of the chemotherapy. Jain (2005) hypothesizes that
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the anti-angiogenic agents “normalize” the abnormal tumor vasculature, balancing

the anti- and pro-angiogenic factors and allowing for more efficient drug delivery.

Furthermore, by continuing to apply anti-angiogenic therapy, the tumor vasculature

may continue to reduce, thus starving the tumor of blood supply. This presents

the problem of determining the best time to deliver chemotherapy along with anti-

angiogenic therapy (Jain, 2005; Burger, 2011).

Although the model we present is quite simple, there still remain open questions

in analyzing the system. We were able to show positivity of the solutions for the

off-treatment model as well as proving the dominance of λ1 given a condition. In the

simulations presented, that given condition does not hold, yet the solutions seem to

take the form y0e
λ1t. This suggests that Theorem 4.3.2 can be improved. We end this

paper with the following intriguing mathematical question:

Is it always true that λ1 ≥ sup{Re(λ) : λ is any solution of (4.4)}?
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