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ABSTRACT

Parkinsons disease is a neurodegenerative condition diagnosed on patients with

clinical history and motor signs of tremor, rigidity and bradykinesia, and the esti-

mated number of patients living with Parkinsons disease around the world is seven

to ten million. Deep brain stimulation (DBS) provides substantial relief of the motor

signs of Parkinsons disease patients. It is an advanced surgical technique that is used

when drug therapy is no longer sufficient for Parkinsons disease patients. DBS allevi-

ates the motor symptoms of Parkinsons disease by targeting the subthalamic nucleus

using high-frequency electrical stimulation.

This work proposes a behavior recognition model for patients with Parkinson’s

disease. In particular, an adaptive learning method is proposed to classify behavioral

tasks of Parkinsons disease patients using local field potential and electrocorticogra-

phy signals that are collected during DBS implantation surgeries. Unique patterns

exhibited between these signals in a matched feature space would lead to distinction

between motor and language behavioral tasks. Unique features are first extracted

from deep brain signals in the time-frequency space using the matching pursuit de-

composition algorithm. The Dirichlet process Gaussian mixture model uses the ex-

tracted features to cluster the different behavioral signal patterns, without training or

any prior information. The performance of the method is then compared with other

machine learning methods and the advantages of each method is discussed under

different conditions.
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Chapter 1

INTRODUCTION

Parkinson’s disease (PD) which is also known as idiopathic or primary Parkinson-

ism, hypokinetic rigid syndrome, or paralysis agitans, is a degenerative disorder of the

central nervous system [2]. It is recognized on the basis of clinical history and motor

signs of tremor, rigidity and bradykinesia [3]. The death of dopamine-generating cells

in the Substantia Nigra, a region of the mid-brain, causes the motor symptoms of

Parkinson’s disease. The reason of this cell death is unknown. As mentioned, the most

perceptible symptoms in the early progression of the disease are movement-related;

these include shaking, rigidity, and slowness of movement.

1.1 Motivation and Problem formulation

A large number of people suffer from PD in the United States and new patients

with PD are diagnosed each year [4]. When drug therapy is no longer efficient for

patients with PD, a state-of-the-art surgical technique named Deep Brain Stimula-

tion (DBS) is applied which provides relief form the motor symptoms of PD [3] [5].

The current DBS therapy method is an open-loop experiment that has proven to be

effective for treatment of PD as well as essential tremor which is another neurological

disorder that causes a rhythmic shaking. By open loop, we mean that a unidirectional

signal is generated from the device and delivered to the brain. However, the open-loop

therapy DBS has various shortcomings as discussed in [5]. The design and advance-

ment of a closed-loop implantable pulse generator (IPG) to sense and respond to

physiologic signals within or outside the brain is considered the next frontier in brain

stimulation research. By close-loop, we mean that bidirectional signals are sending
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and responding in both directions, thus enabling feedback to the simulation process.

As a consequence, advancements and accomplishments in diagnosing the behavior

of PD patients by analyzing and classifying the electrical signals of their brain with

and without DBS will aid the development of the next generation closed-loop DBS

system, which is the major goal of this study.

1.2 Background

Several studies have been published on the classification of certain behaviors shown

by patients with PD while performing certain tasks. Most of these studies were per-

formed by processing of electroencephalography (EEG) recordings taken from the

patients and very few using Local Field Potential (LFP) signals. Most classification

methods used in the studies were based on integrating a feature extraction algorithm

with a supervised classifier. In [6] different emotions such as happiness and sadness

were classified using EEF signals by first filtering the signals into an optimal frequency

band, using common spatial patterns as features, and the linear support vector ma-

chine (SVM) classifier. It was found that the gamma band (30-100 Hz) is suitable

for emotion classification from EEG signals. In [7], emotional states in PD patients

were compared to healthy controls using machine learning algorithms, taking into

account the fact that PD patients are characterized by emotional deficits. The study

involved the recording of EEG signals of PD patients and healthy controls while

evoking emotions using multimodal stimulus (audio-visual aids), and the dynamic

change in emotional state classified using different features. Four different types of

EEG features were considered: bispectrum feature, power spectrum feature, wavelet

feature and features extracted from non linear dynamical analysis. The study showed

that the best classification result was obtained using the bispectrum feature and that

higher frequency bands (alpha, beta and gamma) are more important in emotional
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activities than lower frequency bands (delta and theta). The paper also reveals that

the path of emotion changes can be visualized by reducing subject-independent fea-

tures with manifold learning. In [8] the same data was used to distinguish emotional

states such as happiness, sadness, fear, anger, surprise and disgust. In this case, fea-

tures such as absolute and relative power, frequency and asymmetry measures were

subjected to repeated ANOVA (a three-way repeated analysis of variance) in order to

compare different groups and to discriminate their functionality as feature candidates

in classification algorithm.

Of the few studies performed using LFP signals to classify patient behavior, the

work in [9] presented a method to enable a single trial behavioral task recognition

for random behavior, speech and motor. The approach was based on using wavelet

coefficients as features and the SVM classifier.

In the aforementioned studies on the classification of PD patients behavioral tasks,

most of the signals used are EEG signals, the features most commonly used are either

time-based or frequency-based, and the classifiers are in general based on supervised

classification methods. We thus want to consider LFP signals, which are collected

using an electrode inside the brain, use more localized features and classifiers that do

not require any training.

1.3 Thesis Contribution

As the number of people suffering from PD is increasing, the need of a better DBS

design, and in particular a closed-loop DBS system design, has become necessary.

For such a design, feedback signals in form of LFP signals need to be processed and

features need to be extracted from these signals that will provide the best matched

information on the patient behavior.

The use of time-frequency representations (TFRs) to analyze signals provides ac-
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curate information about signals that vary both in time and frequency; TFRs have

also been used to separate the time-varying signals from noise or interfering signals.

Signals like LFP, EEG or electrocorticography (ECOG) time-varying since their fre-

quency content changes with time. As a result, in this work, we use, time-frequency

features to represent LFP signals as they provide unique patterns for classification.

The extracted feature vectors are used as input to the Dirichlet process Gaussian

mixture model (DP-GMM) for unsupervised clustering. The approach allows for an

unlimited number of mixture components. This number is learned adaptively from

the provided features and does not need to be known as a priori. As a result, using

DP-GMM, we do not require to train the data for classification.

In our work, we consider four different behavior tasks: simple motor task, language

task, language with motor task and language without motor task. We use the match-

ing pursuit decomposition algorithm to extract informative time-frequency features

from the LFP signals corresponding to these for tasks. Clustering is then performed

using DP-GMM. More specifically, we perform clustering between: (a) simple motor

and language with motor (b) simple motor and language without motor (c) language

with motor and language without motor

(d) simple motor and language with motor and language without motor

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 provides a background on DBS and

explains the need for a closed loop DBS system for patients with PD. It also provides a

background on LFP signals and how they are collected. Chapter 3 explains the MPD

algorithm and how the LFP feature vectors are extracted using a Gaussian dictionary.

Chapter 4 discuss the DP-GMM and its implementation using blocked Gibbs sampler,

and it provides our proposed integrated MPD feature and DP-GMM classifier for the
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Figure 1.1: Block diagram summarizing the proposed method of adaptive clustering
of LFP signals.

behavior tasks. Chapter 5 provides the simulation results and compares our approach

with other methods. Finally, in Chapter 6, conclusions and extensions to future work

are discussed.

A block diagram representing the main contribution of this work is shown in

Figure 1.1. Also, the acronyms used throughout this thesis are summarized in Table

1.1
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Table 1.1: Alphabetical List of Acronyms used in this Dissertation

Acronym Definition

DBS Deep Brain Stimulation

DHMM Discrete Hidden Markov Model

DP Dirichlet Process

DP-GMM Dirichlet Process Gaussian Mixture Model

ECOG Electrocorticography

EEG Electroencephalography

GMM Gaussian Mixture Model

HMM Hidden Markov Model

LFP Local Field Potential

MCMC Markov Chain Monte Carlo

MPD Matching Pursuit Decomposition

PD Parkinson’s Disease

PDF Probability Distribution Function

SVM Support Vector Machine

IPG Implantable Pulse Generator
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Chapter 2

DEEP BRAIN STIMULATION AND LOCAL FIELD POTENTIAL

Parkinson’s disease (PD) is a progressive neurological condition, resulting from

the degeneration of neurons that produce dopamine in the substantia nigra located

at the lower pat of the brain [3]. It effects functional activities like writing, typing,

walking, speech and many other routine activities. Although the early treatments of

managing the motor symptoms of this disease are effective, drugs eventually become

ineffective as the disease progresses. When drugs no longer help PD patients, deep

brain stimulation (DBS) treatment can be used to alleviate motor symptoms.

2.1 Deep Brain Stimulation

Deep brain stimulation is a surgical procedure used to treat several disabling

neurological symptoms, and most commonly the debilitating motor symptoms of PD,

such as tremor, rigidity, stiffness, slowed movement, and walking problems. Over the

last two decades, the clinical success of DBS has contributed to a rapid expansion

of DBS into a wide range of neurological disorders. In 1997 the first commercial

DBS system was approved for the treatment of tremor [10]. DBS provides a train

of stimulatory pulses of certain frequencies to the brain. So far an open loop DBS

therapy has been used as an effective treatment of PD and essential tremor. An open

loop DBS system basically involves a one-way flow of the signal generated by the DBS

system to the brain. However, this open loop system has been shown to have some

side effects like impaired cognition, speech and balance.

Figure 2.1 shows a DBS device with thin coated wires (leads) that transmit the

electrical energy to the targeted portion of the brain, mostly to the subthalamic
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Figure 2.1: Electrodes to Record LFP Signals from the Subthalamic Nucleus.

nucleus for PD. The invasive microelectrodes record the LFP signals that reflect

the oscillatory activity within the nuclei of the basal ganglia. Figure 2.2 shows the

neurotransmitter which includes the computer chip that determines the waveform

and electric impulses that are sent to the brain. The computer chip is individually

programmable to fine tune the system to the patient.

The design of a closed loop implantable pulse generator (IPG) to sense and respond

to physiologic signals within or outside the brain is considered to be the next big

thing in brain stimulation research and will likely broaden the field to include new

applications for neuromodulation. A closed-loop system involves bidirectional signals

moving in both sensing and responding directions, allowing sensor signals to provide

feedback based on the stimulation. The goal of the closed-loop DBS in PD is to restore

the functionality of the targeted part of the brain. The DBS produces LFP signals

which are sent to a specific area of the brain, based on the motor task. Knowledge

8



Figure 2.2: Neurostimulator that contains Battery and Micro-Electronic Circuitry
[1]

of the LFP features of the PD patient while the patient is performing a specific

behavior task under normal conditions (no tremors or other motor symptoms), then

the DBS can be used to restore the LFP signals to the patient while the patient is

having severe tremors. As a result, it is very important to be able to correctly cluster

different behavior tasks under different conditions as this will be a stepping stone

toward the success of a closed loop DBS system.

2.2 Local Field Potential

Electrical events at deeper locations in the brain which can be recorded by in-

serting metal or glass electrodes, or silicon probes into the brain are called LFP (also

known as micro-EEG). Figure 2.3b shows an LFP signal while being recorded with

a microelectrode. The LFP signal is the most informative brain signal as it contains

action potentials and other membrane potentials-derived fluctuations in a small neu-

ron volume [11]. The LFP differs from normal EEG or ECOG signals, and it ranges

between 51,000 µV with frequency less than 200 Hz (see Figure 2.3a)

The LFP signals used to assess the performance of our proposed methods were

obtained from a study involving twelve patients undergoing DBS implantation for

9



(a) Different Brain Signals: EEG, ECoG (macro-

scopic), LFP, Action Potentials or Spikes (micro-

scopic).

(b) LFP Recordings with Microelectrodes [12]

Figure 2.3: Different types of brain signals

10



Figure 2.4: LFP of a PD Patient while performing a language task

treatment of idiopathic PD [3]. The signals were simultaneous LFP signals recorded

during behavioral tasks (see Figure 1b). The tasks described four types of behaviors:

simple motor task, language task, language with motor task, and language without

motor task.

For the DBS lead recording design, recordings were obtained from each of the four

contacts of the DBS lead (Medtronic 3389, see Figure 2.1). Although primarily de-

signed for stimulation, these electrodes have been used for LFP recording in humans,

as they do not require modification of standard surgical practice. The DBS lead con-

tact is platinum/iridium, has a surface area of 6.0 mm2 and impedance of 1.7 kΩ.

Signals were amplified,sampled using a sampling frequency of 5kHz, and combined

with event markers and subject response signals.

A typical LFP signal taken from one of the subjects with Idiopathic PD is shown

in Figure 2.4.
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Chapter 3

MATCHING PURSUIT DECOMPOSITION AND FEATURES EXTRACTION

3.1 Matching Pursuit Decomposition Algorithm

As loacl field potentials (LFPs) are signals whose frequency content changes with

time we apply the matching pursuit decomposition (MPD) algorithm to extract time-

frequency based features [13], [14]. Using the MPD, a signal is decomposed into a lin-

ear expansion of Gaussian basis functions that are selected from a redundant basic dic-

tionary. Each dictionary element is a Gaussian signal that is a time-shifted, frequency-

shifted and scaled version of a basic Gaussian signal at the time-frequency origin. The

feature obtained from each extracted dictionary element is a four-dimensional (4-D)

vector consisting of the extraction weight coefficient, time shift, frequency shift and

scale change parameters.

The MPD is a well known technique for sparse signal representations. It is a

greedy algorithm that expands a signal into a linear approximation of basis functions

by iteratively projecting the signal over a redundant, possibly non-orthogonal set

of signals called dictionary. Since it is a greedy algorithm, the approximation may

be sub-optimal. The dictionary functions are iteratively selected to best match the

signal structure, resulting in a sub-optimal expansion. The main steps of the MPD

algorithm are shown in Appendix A, and are discussed next in detail.

In general any basis function can be used as a dictionary to decompose the re-

quired signal, can be shown that the only signal that achieves the lower bound is the

Gaussian signal. However, the Gaussian signal is most often selected since it attains

Heisenberg’s uncertainty principle [ref]. According to this principle, a signal cannot
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simultaneously achieve high temporal resolution and high frequency resolution; the

signal that achieves the best trade-off in both time and frequency resolution is the

Gaussian signal. This can be shown by computing the time-bandwidth product of a

Gaussian signal

x(t) = e−bt
2

=⇒ TxFx =
1

4π
(3.1)

where Tx and Fx are the duration and bandwidth of the Gaussian signal, respectively.

For all other signals it can be shown that TxFx > (1/4π). The Gaussian dictionary

element gγ(t), γ = 1, . . . ,Γ is given by

gγ(t) = κe2πκ(t−tau)2ej2πtν (3.2)

This forms a dictionary D with Γ independent Gaussian waveforms. The MPD algo-

rithm begins by projecting the signal on each dictionary signal gγ(t) and computing

the residue after every iteration. After P iterations, the MPD results in a linear

weighted expansion of P selected Gaussian elements, gp(t) and their corresponding

weight coefficients αp, p = 1, . . . , P . This is given by

x(t) =
P∑
p=1

αpgp(t) + rP (t) (3.3)

where rP (t) is the residual signal after P iterations. The iterations start by setting

r0(t) = x(t); at the P th iteration, the best matched Gaussian signal gp(t) is selected

that results in the maximum correlation with the remainder signal rp(t). In particular,

gp(t) = arg max
gγ(t)∈Dγ=1,...,Γ

|
∫
rp−1(t)g∗γ(t)dt| (3.4)

The weight coefficient is then obtained using
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αp = |
∫
rp−1(t)g∗p(t)dt| = |〈rp−1(t), gp(t)〉 (3.5)

With this choice rp−1(t) is projected onto gp(t) and decomposed as follows:

rp−1(t) = rp(t) + αpgp(t), (3.6)

From Equation (3.6), we can see that the decomposition of x(t) is given by (3.3)

where αp is given by (3.5). It can be shown that rP (t) converges exponentially to 0

when p tends to ∞

lim
p→∞
‖rP (t)‖ = 0; (3.7)

Hence

x(t) =
∞∑
k=0

|〈rk(t), gk(t)〉|gk(t), (3.8)

and

|x(t)|2 =
∞∑
k=0

|〈rk(t), gk(t)〉|2, (3.9)

Thus, the original vector x(t) is decomposed into a sum of the dictionary signals that

matches best the signal and its residuals at each iterations. It can also be seen that

the decomposition preserves the signal energy assymptotically.

In this case the algorithm was repeated for 15 iterations on LFP signals of length

1000 samples each. The dictionary used was of the size 1000× 40000. Fig. 3.1 shows

the raw LFP signal and also the sum of 15 Gaussian waves from the dictionary that

matches the signal. The MPD algorithm is shown in Appendix A.
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Figure 3.1: Language task LFP signal after 15 Iterations of MPD

Figure 3.2: Residual energy at each MPD iterations

3.2 Matching Pursuit Decomposition of LFP signals

We applied the MPD algorithm to the LFP signals of behavior tasks that were

collected from PD patients during DBS implantation surgeries. We had LFP signals

from J experiments and M = 4 behavior tasks. We denote the LFP signal vector from

the jth experiment, j = 1, . . . , J , corresponding to the mth task, m = 1, 2, 3, 4, as

smi . After discretization, the signal has N samples, thus the signal vector is given by

smj = [smj [0] smj [1] . . . smj [N−1]]T , where T denotes vector transpose. Task m = 1 task

15



Figure 3.3: Gaussian waveforms for the first 5 MPD iterations

corresponds to the simple motor task, Task m = 2 is the language task, Task m = 3

is the the language with motor task, and Task m = 4 is the language without motor

task. The MPD is applied to the mth behavior task signal from the jth experiment,

smj , in Appendix A. If we assume that the MPD performed P iterations, then the

extracted feature matrix corresponding to smj is given by the 4×P matrix Fm
j whose

pth column is given by [Fm
j ]p = [αp τp νp κp]

T , p = 1, . . . , P . Here, αp is the MPD

weight coefficient, τp is the time shift parameter, νp is the frequency shift parameter,

and κp is the scaling parameter.

Using the actual experimental LFP signals, we run the MPD using P = 15 itera-

tions, and the length of the sampled LFP signals was N = 1, 000 samples. We used

an MPD dictionary with Γ = 100, 040, 000 Gaussian signal atoms. Figure 3.1 shows

an example of an LFP signal superimposed with its MPD linear expansion signal

after 15 iterations. Table 3.1 shows the resulting feature vectors [Fm
j ]p, p = 1, . . . , 15

(for all 15 MPD iterations). For this same example, the normalized residual energy

is shown to be decreasing monotonically at each iteration in Figure 3.2 and the first

5 extracted Gaussian signals are shown in time in Figure 3.3.
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Table 3.1: MPD feature vector of the LFP signal in Figure 3.1

iterations amplitude (α) time-shift (τ) frequency-shift (ν) scale change (σ)

1 5.853 1 1 533

2 -0.695 144 173 272

3 0.466 118 142 405

4 -0.370 148 0 612

5 -0.364 153 198 33

6 0.349 73 12 20

7 0.342 1 64 785

8 -0.251 127 0 367

9 0.243 136 149 849

10 0.214 168 0 478

11 -0.211 157 0 114

12 -0.170 161 0 919

13 0.168 201 0 302

14 -0.168 1 45 840

15 -0.151 1 165 771

The normalized residual energy with each iterations is shown in Figure. 3.2. It can

be seen that the energy is decreasing monotonously. Figure. 3.3 shows the gaussian

waveforms that matches the signal for the first 5 iterations.

Using the extracted features, these feature vectors are set at the input to DP-

GMM and the best feature sets are evaluated based on successful classification of the

behavior tasks.
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Chapter 4

CLUSTERING BEHAVIOR TASKS USING MPD FEATURES AND DIRICHLET

PROCESS GAUSSIAN MIXTURE MODELLING

4.1 Integrated Clustering Algorithm Using MPD Features

As discussed in Chapter 3, use use the matching pursuit decomposition (MPD)

algorithm to obtain time-frequency based feature vectors for the local field poten-

tial (LFP) behavior task signals. The feature vectors are then used as input to the

Dirichlet process Gaussian mixture model (DP-GMM). A Gaussian mixture model

(GMM) is a probabilistic model that assumes that all data points are generated from

a mixture of a finite number of Gaussian distributions with unknown parameters. The

DP-GMM can be thought of as a GMM with a variable number of components mod-

eled using the Dirichlet process. Dirichlet processes are often used in nonparametric

Bayesian statistics, where the number of statistical representations can grow as more

data are observed. They are thus specifically useful for unsupervised learning and

clustering applications. As a result, the DP-GMM allows for an unlimited number

of mixture components, the actual number of clusters does not need to be known a

priori [15, 16, 17, 18].

To model a given set of data to DP-GMM and get clusters from it we first need

to assume a prolific probabilistic model [19]. Let us consider the following joint

distribution over the data, in this case the feature vectors X = [α τ ν κ]T which we

obtain from the local field potential (LFP)

p(X,Z, µ,Σ, π) = p(X|Z, µ,Σ)p(Z|π)p(π|α)p(µ,Σ|λ) (4.1)
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where Z is the latent variable which are correspondent variables between clusters and

data points X, θk = {µ,Σ} are the parameters of the Gaussian distributions that

fit the data X and is sampled from a prior distribution which we assume here to be

a Normal-Wishart distribution with parameter λ, π is the parameter that specifies

the latent variable Z which is sampled from a Dirichlet distribution of parameter

α, p(X|Z, µ,Σ) is the data likelihood probability distribution which is thought of as

Gaussian in nature. p(Z|π) is the correspondence probability which is a multinomial

distribution that specifies the latent variable Z and p(π|α) is a mixture prior prob-

ability which follows a Dirichlet distribution. Taking the Dirichlet distribution as

the conjugate prior of any multinomial distribution, if we multiply them together we

always get a Dirichlet distribution, so we can compute the statistics in a closed form.

Lastly p(µ,Σ|λ) is the parameter prior probability where Normal-Wishart distribution

is chosen, for it is the conjugate prior of the Gaussian distribution.

In this problem we consider the same model as (4.1),but we let the latent variable

Z to be defined as θ̄i sampled from

p(θ̄i|π, θk) =
K∑
k=1

πkδ(θk, θ̄i) (4.2)

where δ is the Kronecker delta. The problem can be realized from the diagram given

in Figure 4.1 and is explained more clearly in 4.4. So we can say the following about

the parameters we need to estimate

π ∼ Dir(α)

θk ∼ H(λ)

θ̄i ∼ G(π, θk)

G(π, θk) =
K∑
k=1

πkδ(θk, θ̄i), K →∞
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Figure 4.1: DP-GMM Block Diagram

Before describing the entire algorithm some of the definitions need to be explained.

4.2 Conjugate Prior

The concept, as well as the term conjugate prior, was introduced by Howard Raiffa

and Robert Schlaifer in their work on Bayesian decision theory [20]. In Bayesian

probability theory, if the posterior distributions p(θ|x) are in the same family as the

prior probability distribution p(θ), the prior and posterior are then called conjugate

distributions, and the prior is called a conjugate prior for the likelihood function.

Consider the general problem of inferring a distribution for a parameter θ given some

datum or data x. From Bayes’ theorem, the posterior distribution is equal to the

product of the likelihood function og θ, p(x|θ) and prior p(θ), normalized by the

probability of data p(x):

p(θ|x) =
p(x|θ)p(θ)∫
p(x|θ′)p(θ′)dθ′

(4.3)

Let the likelihood function be considered fixed; the likelihood function is usually

well-determined from the data-generating process. It is clear that different choices of

the prior distribution p(θ) may make the integral more or less difficult to calculate,
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Figure 4.2: Dirichlet Distribution for k = 3 and (a) α = (2, 2, 2) (b) α = (20, 2, 2)

and the product p(x|θ) × p(θ) may take one algebraic form or another. For certain

choices of the prior, the posterior has the same algebraic form as the prior (generally

with different parameter values). Such a choice is a conjugate prior. The conjugate

priors of some distributions which are relevant to this work is given in the Table 4.1.

We also come across the term hyperparameters, which are PDF parameters that

have their own prior distributions and can be estimated using Markov chain Monte

Carlo (MCMC) methods [20]. Additional information on the Dirichlet-Multinomial

and Normal-Wishart conjugate prior are provided in Appendices C, D respectively.

4.3 Dirichlet Process and Distribution

A DP is described as a distribution over probability measures G, G(θ) ≥ 0 and∫
G(θ)dθ = 1, in other words it is a distribution over distributions [21]. If for any

partition (T1, ..., Tk) it holds:

(G(T1), ..., G(Tk)) ∼ Dir(αH(T1), ..., αH(Tk)) (4.4)

then G is sampled from a Dirichlet process

It is shown as G ∼ DP (α,H) where α is the concentration parameter and H is

the base distribution [22].

21



Table 4.1: Table of Conjugate Distributions

Likelihood Model

parame-

ters

Conjugate

prior dis-

tribution

Prior

hyper-

param-

eters

Posterior

hyperpa-

rameters

Interpretation

of hyperpa-

rameters

Posterior

predic-

tive

Categorical

(Discrete)

p (prob-

ability

vector), k

(number of

categories,

i.e. size of

p)

Dirichlet α α +

(c1, ..., ck),

where

ci is the

number

of obser-

vations in

category i

αi − 1 occur-

rences of cat-

egory i

p(x̃ = i) =

α′
i∑
i α

′
i

=

αi+ci∑
i α

′
i+n

Multinomial

(Discrete)

p (prob-

ability

vector), k

(number of

categories,

i.e. size of

p)

Dirichlet α α+
∑n

i=1 xi αi − 1 occur-

rences of cat-

egory i

DirMult(x̃

|α′)(Dirichlet-

Multinomial)

Multivariate

normal

(continu-

ous)

µ (mean

vector)

and λ

(precision

matrix)

Normal-

Wishart

µ0, κ0, ν0,

V

* ** tν′0−p+1

(x̃|µ′0,
κ′0+1

κ′0(ν′0−p+1)

V′−1)
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In Table 4.1, a star implies that

* mean was estimated from κ0 observations with sample mean µ0; covariance

matrix was estimated from ν0 observations with sample mean µ0 and with sum of

pairwise deviation products V−1

**

κ0µ0 + nx̄

κ0 + n
, κ0 + n, ν0 + n,

(V−1 + C +
κ0n

κ0 + n
(x̄− µ0)(x̄− µ0)T )

−1

x̄ is the sample mean

C =
n∑
i=1

(xi − x̄)(xi − x̄)T

The Dirichlet distribution is defined as:

Dir(µ|α) =
Γ(α0)

Γ(α1)...Γ(αK)

K∏
k=1

µαk−1
k , α0 =

K∑
k=1

αk

0 ≤ µk ≤ 1,
K∑
k=1

µk = 1

It is the conjugate prior for the multinomial distribution. The parameters can be

interpreted as the effective number of observations for every state. The parameter α0

controls the strength of the distribution and αk control the location of the peaks.

Every sample from a Dirichlet distribution is a vector of K positive values that

sum up to 1, which means that the sample itself is a finite distribution. Accordingly,

a sample from a Dirichlet process is an infinite discrete distribution.

4.4 Construction of the Dirichlet Process in this Problem

We have our feature vector X as defined in the beginning of this chapter, which

we are going to feed as an in input to DP-GMM, and find the number of clusters
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Figure 4.3: Stick Breaking Construction

based on these features. Let us assume that it is mixture of multivariate Gaussians

with unknown θk = {µk,Σk}. So we sample θk from its conjugate prior which is a

Normal-Wishart distribution H(λ) with parameter λ as shown in Table 4.1.

Next we have to construct the weight parameter πk from the Dirichlet distribu-

tion. The weight vector as defined before belongs to a discrete multinomial discrete

distribution, so we sample it from its conjugate pair which is the Dirichlet distribution

Dir(α) as shown in Table 4.1. The DP can be constructed using the ”Stick Breaking”

analogy [23]. Let us imagine a stick of length 1, we select a random number β between

0 and 1 from a Beta-distribution (univariate marginal and conditional distributions

being beta). Then we break the π = β length of the stick, save it and repeat this

infinite times as shown in Figure. 4.3. But practically in this case we set a truncation

limit to M based on the truncation error [14] [24] which is give by,

4N exp(
−(M − 1)

α
) (4.5)

So we have,
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βk ∼ Beta(1, α)

πk = βk

k−1∏
l=1

(1− βl) = βk(1−
k−1∑
l=1

πl)

Now we derive θ̄i from πk and θk, given as

G(θ̄i) =
∞∑
k=1

πkδ(θ̄i − θk) (4.6)

The size of each successive break is representative of πk = p(θ̄i − θk)

The weight vector is constructed using the Chinese Restaurant analogy [25], which

states that every time a new θ̄i comes in, its probability to enter the weights, which

is more filled is more that the weights which are less [26] [27] [28] [29]. It can shown

that the probability for a new θ̄i is

p(θ̄N+1 = θ|θ̄1:N , α,H) =
1

α +N

(
αH(θ) +

K∑
k=1

Nkδ(θ̄k, θ)

)
(4.7)

4.5 Blocked Gibbs Sampler

Gibbs sampling or a Gibbs sampler is a Markov chain Monte Carlo (MCMC)

algorithm for obtaining a sequence of observations which are approximated from a

specified multivariate probability distribution (i.e., from the joint probability distri-

bution of two or more random variables), when direct sampling is difficult. This

sequence can be used to approximate the joint distribution (e.g., to generate a his-

togram of the distribution); to approximate the marginal distribution of one of the

variables, or some subset of the variables (for example, the unknown parameters or

latent variables); or to compute an integral (such as the expected value of one of the

variables).
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The conjugate prior relationship is used extensively to simplify calculations for

posterior distributions estimated using the blocked Gibbs sampler algorithm. Con-

sidering the mixture model discussed before and using the same notation the blocked

Gibbs sampler, at the ith iteration in the Markov chain estimates [24] [30] :

θjk ∼ p(θk|cj−1, xn), k = 1, ...,M

cjn ∼ p(cn|θji , πj−1, xn), n = 1, ..., N

πjk ∼ p(πk|cj), k = 1, ...,M

These can be expressed in terms of conjugate prior relationships:

p(θk|c, xn) ∝ H(θk)
∏

n:cn=k

p(xn|θ), k = 1, ...,M

p(cn|θi, w, xn) =
M∑
k=1

(πkp(xn|θk))δ(cn − k), n = 1, ..., N

p(πk|c) = βk

k∏
j=1

−1(1− βj), k = 1, ...,M

where βk is defines as

βk = Beta(1 +N∗k , α +
M∑

k′=k+1

N∗k )

and n : cn = k denotes the indices in c such that cn = k and N∗k is the number

of elements in c that are equal to k. The DP-GMM algorithm with blocked Gibbs

Sampling is shown in Appendix B

The clustering results from DP-GMM are shown in the next chapter.
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Chapter 5

SIMULATION AND RESULTS

We use the local field potential (LFP) signals collected from twelve Parkinson’s

disease (PD) patients to demonstrate our clustering methods. The signal segments

associated with different behavioral tasks were labeled by physicians during data

collection. The behavioral tasks are: simple motor task (m = 1), language with

motor task (m = 3), and language without motor task (m = 4). The language tasks

(m = 2) combines tasks 3 and 4. The signal sampling rate is 4 kHz, and for different

behavioral tasks, the number of data segments varied from 80 to 109. For DP-GMM

clustering, first MPD features were extracted from signals from each behavioral class.

The MPD was run for 15 iterations for each signal set which gave a 300 × 4 feature

matrix. The best clustering results for two classes were obtained using the amplitude

and time-shift MPD parameters as the feature set, Fm
i,p = [αmi,p τ

m
i,p]

T . Let D be the

dimension on the feature vector. The parameters used in the DP-GMM were set

to: innovation parameter α = 0.6, truncation error err = 0.01, truncation size for

DP M = round(1 − α ∗ log(err/4/N)); 2000 burn-in and 1000 sampling iterations

for the Gibbs sampler. Parameters for the base (Normal-Wishart) distribution were,

µ0 = [0 0], τ0 = 1
1000

, W is an identity matrix of size D and df= D + 1. Figures 5.1,

5.3 and 5.5 show the contour plots for two classes clustering. Figures 5.2, 5.4 and 5.6

show the weight distribution for these two classes clustering.

For clustering of three classes (Simple motor, m = 1, Language with motor, m = 3

and Language without motor, m = 4), the feature set consisted of the MPD time shift

and scale change parameters Fm
i,p = [τmi,p κ

m
i,p]

T . The DP-GMM parameters were chosen

to be the same as in the previous cases.
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Figure 5.1: Simple Motor (m = 1) vs Language with Motor (m = 3) Contour Plot

Task m 1 3

1 0.92 0.08

3 0.22 0.78

Table 5.1: Simple Motor (m = 1), Language with Motor (m = 3)

Since equal weights of features from each class were taken,the weight distribution

should show equal proportions, 0.5 in case of clustering 2 classes, and 0.33 in case of

3 classes.

Tables 5.1, 5.2, 5.3 and 5.4 show the Confusion Matrices that summarize the

identification results:

28



Figure 5.2: Simple Motor (m = 1) vs Language with Motor (m = 3) Weight
Distributions

Figure 5.3: Simple Motor(m = 1) vs Language Without Motor (m = 4) Contour
Plot
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Figure 5.4: Simple Motor (m = 1) vs Language without Motor (m = 4) Weight
Distributions

Figure 5.5: Language with Motor (m = 3) vs Language without Motor (m = 4)
Contour Plot

30



Figure 5.6: Language with Motor (m = 3) vs Language without Motor (m = 4)
Weight Distributions

Task m 1 4

1 0.84 0.16

4 0.10 0.9

Table 5.2: Simple Motor (m = 1), Language Without Motor (m = 4)

Task m 3 4

3 0.96 0.04

4 0.28 0.72

Table 5.3: Language with Motor (m = 3), Language without Motor (m = 4)
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Figure 5.7: Simple Motor (m = 1) vs Language with Motor (m = 3) vs Language
without Motor (m = 4) Contour Plot

Task m 1 3 4

1 0.78 0.11 0.11

3 0.035 0.90 0.035

4 0.095 0.095 0.81

Table 5.4: Simple motor (m = 1), Language with motor (m = 3) and Language
without Motor (m = 4)

32



Figure 5.8: Simple Motor (m = 1) vs Language with Motor (m = 3) vs Language
without Motor (m = 4) Weight Distributions

33



Chapter 6

CONCLUSION AND FUTURE WORK

We provided a description of the data collection experiments and a complete math-

ematical formulation for the overall proposed behavioral task identification system.

We applied the matching pursuit decomposition (MPD) feature extraction method,

and employed an unsupervised adaptive learning method to classify the different be-

havioral tasks.

From the results in Chapter 5, we have shown that it is possible to cluster the

different behavior tasks performed by the Parkinson’s disease (PD) patients. The

confusion matrix shows the accuracy percentage of the classifications. For tasks simple

motor and language with motor the accuracy was 92% and 78% respectively. For

simple motor and language without motor it was 84% and 90% respectively. As for

language with motor and language without motor 96% and 72% of the respective

tasks were detected accurately.

In case of all the three classes, 78% of simple motor 90% of language with motor

and 81% of language without motor were classified accurately. Comparing these

results with that in [31] which was done using the same LFP data the hidden Markov

model- support vector machine (HMM-SVM) gave an accuracy of 89% and 90% for

classes simple motor and language with motor, 94% and 92% for classes simple motor

and language without motor and 92% and 92% for language with motor and language

without motor shown in Tables 6.1, 6.2 and 6.3.

This is the only work where the behavioral tasks performed by PD patients were

classified using an unsupervised learning method which did not require any prior

training and any prior knowledge of number of clusters. This work provides an im-
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Task simple motor language with motor

Our method 92% 78%

DHMM 89% 90%

Hybrid DHMM-SVM 91% 90%

Table 6.1: Comparison of methods used to classify Simple motor (m = 1), Language
with motor (m = 3)

Task simple motor language without motor

Our method 84% 90%

DHMM 94% 91%

Hybrid DHMM-SVM 91% 90%

Table 6.2: Comparison of methods used to classify Simple motor (m = 1), Language
without motor (m = 4)

portant contribution to the construction of a closed-loop DBS system which can be

the next revolutionary work for the treatment of PD patients.

6.1 Future Work

The immediate next step should be to extract relevant discriminatory information

for clustering for other low/high level brain activities. That way we can have a general

idea about the feature characteristics for different low/high level behavioral tasks. At

the end of this we can come up with the algorithm that works best in classifying these

Task language with motor language without motor

Our method 96% 72%

DHMM 93% 91%

Hybrid DHMM-SVM 92% 92%

Table 6.3: Comparison of methods used to classify Language with motor (m = 3),
Language without motor (m = 4)
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tasks. In this work, three tasks were classified at the same time, so our future target

should be to try our more than three tasks at a time. This will help us to construct

the closed loop feedback DBS system which will adaptively try to adjust the DBS

so that even during tremor and other motor symptoms the PD patients can perform

simple tasks.

Also another area of research is the effect of DBS when on the PD patients. We

have been working on this problem recently where the EEG data are collected from

PD patients performing certain tasks with and without DBS. So our target is to

investigate whether there is any change in the patients’ behavior due to DBS. We can

do that by seeing if there is any change in the feature vector and in the behavior task

clustering before and after DBS.

Thirdly another area of research would be to track PD characteristics using dy-

namical system modeling, be it linear or nonlinear. It can be used to track tremors in

Parkinson’s disease. The test is to come up with a model using data to estimate the

posterior PDF. This way we will be able to know the area in the brain which is re-

sponsible for the abnormal motor symptoms and how the neurons in those parts react

during such symptoms. We can use tracking methods like Kalman filter or Particle

filter to track the movement of the dipole based on the dynamic system model.
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APPENDIX A

MATCHING PURSUIT DECOMPOSITION ALGORITHM

Algorithm 1 Matching Pursuit Decomposition

Input to algorithm:
Signal vector y = [y[0] y[1] . . . , y[N − 1]]T

Dictionary matrix D = [g1 g2 . . . gΓ]T , with dictionary vector elements gγ =
[gγ[0] gγ[1] . . . , gγ[N − 1]]T , γ = 1, . . . ,Γ; the γth vector element has feature vector
qγ = [αγ τγ νγ κγ]

T

stopping iteration number Istop

initialization:
initialize extracted signal matrix s = zeros(N, Istop) and extracted features matrix
F = zeros(4, Istop)
initialize: residue r = y,
for i=1:Istop do

Compute the inner product of the residue with each dictionary element
αγ = 〈r,gγ〉 =

∑N−1
n=0 y[n]g∗γ[n]

Find dictionary element vector gp that yields the maximum inner product
gi = arg maxγ∈[1,...,Γ] αγ
Update the residue vector: r = r− αigi
Update extracted signal matrix and extracted feature matrix: s = s(:,gi) F =
F(:,qi)
set i = i+ 1

end for
output:
Extracted signal matrix s, extracted feature matrix F whose [F]p = [αp τp νp κp]

T

column corresponds to the features of the pth extracted signal, p = 1, . . . , Istop.
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APPENDIX B

DIRICHLET PROCESS GAUSSIAN MIXTURE MODEL WITH BLOCKED

GIBBS SAMPLING ALGORITHM

Algorithm 2 Blocked Gibbs sampling for DP-GMM using an D-dimensional dataset
X

input: Dataset X = {x1, ..., xN}, DP innovation parameter α, Normal-Wishart
hyperparameters µN , τN , ξW , νW , DP truncation limit M

output: Samples {µ(i)
m ,Σ

(i)
m , c(i), w(i)}

L

i=1
for i=1:Gibbs iteration do

1. update for θ
(i)
m = {µ(i)

m ,Σ
−1(i)
m } ∼ p(µm,Σm|c(i−1), X)m = 1, ...,M

(a) Let Xm = xn : c
(i−1)
n = m and Nm = |Xm|, for m = 1, ...,M

(b) For all clusters, m = 1, ...,M , compute
µxm = 1

Nm

∑
n xn

Σxm = 1
Nm

∑
n (xn − µxn)2

µ̃N ,m = τN µ̃N +Nmµxm
τN +Nm

τ̃N ,m = τN +Nm

ν̃W,m = νW + Σxm + τNNm
τN +Nm

(m− µxm)(m− µxm)T

ξ̃W,m = ξW +Nm

(c) draw samples for Σ
−1(i)
m from the Wishart distribution, W(Σ−1

m , ν̃W,m, ξ̃W,m),
for m = 1, ...,M

(d) draw sample for µ
(i)
m from the Normal distribution N (µm; µ̃N ,m,

Σ
(i)
m

τN ,m
) for

m = 1, ...,M

2. Update for c
(i)
n ∼ p(cn|µ(i),Σ−1(i), w(i−1), X), n = 1, ..., N

(a) let πm,n = w
(i−1)
m N (xn;µ

(i)
m ,Σ

(i)
m ), m = 1, ...,M , n = 1, ..., N

(b) Normalize π′m,n = πm,n∑M
m=1 πm,n

, m = 1, ...,M , n = 1, ..., N

(c) draw samples for c
(i)
n ∼

∑M
m=1 π

′
m,nδ(cn,m), n = 1, ..., n

3. Update for w
(i)
m ∼ p(wm, c

(i)), m = 1, ...,M

(a) draw samples βj ∼ Beta(1∗Nm , α+
∑M

m′=m+1N
′∗
m), where N∗m = |n : c

(i)
n = m|,

m = 1, ...,M

(b) finally evaluate w
(i)
m = βm

∏m−1
j=1 (1− βj), m = 1, ...,M

end for
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APPENDIX C

DIRICHLET-CATEGORICAL CONJUGATE PRIOR

p1, ..., pK ∼ Dir(α1, .., αK)

y ∼ Cat(p1, ..., pK)

C.1 Posterior

f(θ|D) ∝ f(θ,D)

= f(p1, ..., pK |α1, ..., αK)
∏
yi∈D

f(yi|p1, ..., pk)

∝
K∏
j=1

p
αj−1
j

∏
yi∈D

K∏
j=1

pIj{yi = j}

=
K∏
j=1

p
αj−1+

∑
yi∈D

I{yi=j}
j

This density is exactly that of a Dirichlet distribution, except we have

α′j = αj +
∑
yi∈D

I{yi = j}

That is, f(θ|D) = Dir(α′1, ..., α
′
K)
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C.2 Posterior Predictive

f(y = x|D) =

∫
f(y = x|θ)f(θ|D)dθ

=

∫
f(y = x|p1, ..., pK)f(p1, ..., pK |D)dSk

=

∫
px

Γ(
∑K

j=1 α
′
j)∏K

j=1 Γ(α′j)

K∏
j=1

p
α′
j−1

j dSk

=
Γ(
∑K

j=1 α
′
j)∏K

j=1 Γ(α′j)

∫ K∏
j=1

p
I{x=j}+α′

j−1

j dSk

=
Γ(
∑K

j=1 α
′
j)∏K

j=1 Γ(α′j)

∏K
j=1 Γ(I{x = j}+ α′j)

Γ(1 +
∑K

j=1)α′j

=
α′x∑K
j=1 α

′
j

where we used the fact that Γ(n+ 1) = Γ(n) to simplify the second to last line.
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APPENDIX D

NORMAL-WISHART CONJUGATE PRIOR

The multivariate analog of Normal prior is the Normal-Wishart prior. Here we

state the results. We assume X is a d-dimensional.

D.1 Likelihood

p(D|µ,Σ) = (2π)nd/2|Σ|n/2 exp (
1

2

n∑
i=1

(xi − µ)T (xi − µ))

D.2 Prior

p(µ,Σ) = NWi(µ,Σ|µ0, κ, ν, T ) = N (µ|µ0, (κΣ)−1)Wiν(Σ|T )

=
1

Z
Σ1/2 exp(−κ

2
(µ− µ0)TΣ(µ− µ0))|Σ|(κ−d−1)/2 exp(−1/2tr(T−1Σ))

Z = (
κ

2π
)
d/2

|T |κ/22dκ/2Γd(κ/2)

Here T si the prior covariance. To see the connection to the scalar case, make the

substitutions

α0 =
νo
2
, β0 =

T0

2
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D.3 Posterior

p(µ,Σ|D) = N (µ|µ0, (κΣ)−1)Wiν(Σ|T )

µn =
κµ0 + nx̄

κ+ n

Tn = T + S +
κn

κ+ n
(µ0 − x̄)(µ0 − x̄)T

S =
n∑
i=1

(xi − x̄)(xi − x̄)T

νn = ν + n

κn = κ+ n

posterior marginals

p(Σ|D) = Wiνn(Tn)

p(µ|D) = tνn−d+1(µ|µn,
Tn

κn(νn − d+ 1)
)

The MAP estimates are given by

(µ̂, Σ̂) = argmax p(D|µ,Σ)NWi(µ,Σ)

m̂u =
n∑
i=1

xi + κ0µ0N + κ0

Σ̂ =

∑n
i=1(xi − x̄)(xi − x̄)T + κ0(µ0 − x̄)(µ0 − x̄)T + T−1

0

N + ν0 − d

This reduces to the MLE if κ0 = 0, ν0 = d and |T0| = 0

D.4 Posterior Predictive

p(x|D) = tνn−d+1(µn,
Tn(κn + 1)

κn(νn − d+ 1)
)

46


