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ABSTRACT

Methods to test hypotheses of mediated effects in the pretest-posttest control group
design are understudied in the behavioral sciences (MacKinnon, 2008). Because many
studies aim to answer questions about mediating processes in the pretest-posttest control
group design, there is a need to determine which model is most appropriate to test
hypotheses about mediating processes and what happens to estimates of the mediated
effect when model assumptions are violated in this design. The goal of this project was
to outline estimator characteristics of four longitudinal mediation models and the cross-
sectional mediation model. Models were compared on type 1 error rates, statistical
power, accuracy of confidence interval coverage, and bias of parameter estimates. Four
traditional longitudinal models and the cross-sectional model were assessed. The four
longitudinal models were analysis of covariance (ANCOVA) using pretest scores as a
covariate, path analysis, difference scores, and residualized change scores. A Monte
Carlo simulation study was conducted to evaluate the different models across a wide
range of sample sizes and effect sizes. All models performed well in terms of type 1
error rates and the ANCOVA and path analysis models performed best in terms of bias
and empirical power. The difference score, residualized change score, and cross-
sectional models all performed well given certain conditions held about the pretest

measures. These conditions and future directions are discussed.
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Introduction

Many research designs consist of two-waves of measurement and aim to test
mediation hypotheses. A PsycINFO search of the terms “two-wave or pretest posttest or
two time points” and “mediation or mediating or mediator or process variable” during the
span 2000 — 2014 resulted in 485 peer-reviewed articles. There are four commonly used
models to test mediated effects in the pretest-posttest control group design: Analysis of
covariance (ANCOVA), Path analysis, difference score, and residualized change score.
Additionally, it is possible to estimate the mediated effect using a cross-sectional model
that ignores the pretest information on both the mediator and the outcome variable.

Given the wide use of these models in mediation analysis, it is surprising that few studies
have evaluated under what conditions these models have don’t type 1 error rates above
the nominal 0.05 alpha level, produce unbiased estimates of the mediated effect, have
confidence interval coverage that is close to 95%, and have high empirical power to
detect the mediated effect. This project aims to compare tests of the mediated effect in
the pretest-posttest control group design using these four common traditional longitudinal

models and the cross-sectional model.

Statistical Mediation

Most research focuses on assessing relations between two variables, with the
research question of whether or not there is a total effect of an independent variable X on
a dependent variable Y (Sobel, 1990). Additional variables can be included to further
investigate how or why there is a relation between the two variables. When variables are

added to bivariate relations, these additional variables can result in a variety of third

1



variable effects including confounding, moderating, or mediating effects. Of particular
interest in this project are third variables that are defined as mediating variables. A
mediating variable is a variable that is both a dependent variable and an independent
variable and is intermediate in a causal sequence between two variables (Lazarsfeld,
1955; MacKinnon, 2008; Sobel 1990). Inclusion of a mediating variable in a theoretical
model and statistical analyses allows researchers to test indirect effects of an independent
variable on a dependent variable through the independent variable’s effect on the

mediating variable (Lazarsfeld, 1955; MacKinnon, 2008; Sobel 1990).

Statistical mediation is important because it allows researchers to investigate how
two variables are related. Once researchers know two variables are related (e.g., X
causes Y) it may be of theoretical interest to investigate through what mechanism X and
Y are related. Statistical mediation is a tool by which causal mechanisms can be
investigated given assumptions (MacKinnon, 2008; VanderWeele & Vansteelandt, 2009).
Statistical mediation is typically conceptualized using a series of three linear regression
equations (MacKinnon, 2008). Equation 1 represents the total effect of X on Y (c
coefficient), Equation 2 represents the effect of X on M (a coefficient), and Equation 3
represents the effect of X on Y adjusted for M (¢’ coefficient) and the effect of M on Y
adjusted for X (b coefficient). Computing the product of a and b coefficients from
Equation 2 and Equation 3, respectively, represents the indirect effect of X on Y through

M (ab).

M:iz‘l‘aX‘l‘ez (2)



Y=i3+C,X+bM1+33 (3)

These three linear regression equations are used to assess statistical mediation in cross-
sectional experimental designs. A cross-sectional experimental design is one which
researchers measure variables at a single time point. Longitudinal experimental designs
are ones in which researchers measure variables over time or treatment effects at a later
time point (Shadish, Cook, & Campbell, 2002). One type of longitudinal design that
incorporates a randomized experiment is the pretest-posttest control group design

(Bonate, 2002; Shadish, Cook, & Campbell, 2002).

Pretest-Posttest Control Group Design

The pretest-posttest control group design is common in a wide range of research
areas. This design consists of randomly assigning units to either a control group or a
treatment group, measuring theoretically relevant variables before delivery of a treatment,
and then measuring these same variables again at a later point in time after treatment
(Bonate, 2002; Shadish, Cook, & Campbell, 2002). Random assignment of units to
treatment and initial measurement of variables occur at the pretest stage of an
experiment. Variables are measured again at the posttest stage of an experiment after
delivery of a treatment to the treatment group. This document describes the two groups
as the treatment and control groups but the control condition may actually be a standard

treatment or some other comparison for the treatment investigated.

Pretest-posttest control group designs can assess how much change, or gain, in
scores on measured variables has occurred for the treatment and control group between

pretest and posttest. Because this design allows researchers to measure variables twice
3



for each unit, and units are randomly assigned to different treatment groups, researchers
can answer questions about within-group changes between pretest and posttest and
between-group differences in change between pretest and posttest (Bonate, 2002;

Shadish, Cook, & Campbell, 2002).

The timing of posttest measurement is an important aspect of experimental design
and should be determined a priori and based on previous research. If timing of posttest
measurement does not match timing of a true effect, estimates of this true effect across
pretest and posttest will typically underestimate the actual true effect (Cohen, 1991,
Collins & Graham, 1991, 2002). In reality, it may be difficult to know exactly when a
true effect is going to occur, and it is likely that true effects will diminish with time after
the true effect occurs (Collins & Graham, 2002). Because predicting timing effects can
be difficult, researchers are often advised to take many repeated measures occurring at
short time intervals (Cohen, 1991; Collins & Graham, 1991, 2002). This project assumes

the posttest measurement matches the timing of the true effect.

Pretest-Posttest Control Group Design with A Mediating Variable

The pretest-posttest control group design can be extended to research questions
regarding mediating variables (as shown in Figure 1). When X is a randomized treatment
variable coded zero or one, a common way to assess mediated effects is by estimating a
series of linear regression equations similar to those used to assess mediated effects in
cross-sectional data. Equation 4 represents the effect of X on the mediator measured at
posttest adjusted for pretest mediator (amx coefficient) and the pretest outcome, the effect

of the mediator measured at pretest (stability) on the mediator measured at posttest (Smam1

4



coefficient) adjusted for X and the pretest outcome, and the effect of the outcome
measured at pretest on the mediator measured at posttest (bmoy1 coefficient) adjusted for X
and the pretest mediator. Equation 5 represents the effect of X on the outcome variable
measured at posttest (c’yox coefficient) adjusted for the other variables in the equation, the
effect of the outcome variable measured at pretest (stability) on the outcome variable
measured at posttest (Sy,,1 coefficient) adjusted for the other variables in the equation, the
effect of the mediator measured at pretest on the outcome variable measured at posttest
(byom1 coefficient) adjusted for the other variables in the equation, and the effect of the
mediator measured at posttest on the outcome variable measured at posttest (byom2
coefficient) adjusted for the other variables in the equation (see Appendices A — B for

further explanation of variables and notation).
M; =iy + amoxX + SmamiM1 + Doy Y1 + €4 (4)
Y, =5+ ¢'yoxX + Sy2y1 Y1 + by My + bypma M, + e (5)

Mediated effects of X on Y, through M in a pretest-posttest design can be
assessed by taking the product of amyx coefficient in Equation 4 and by, coefficient in
Equation 5 (amaxbyom2). This computation of mediated effects in a pretest posttest design
is similar to the computation of mediated effects in cross-sectional designs based on
Equations 1 — 3 except that it includes coefficients from regression equations with pretest
measures as predictors of M and Y at posttest. Equations 4 — 5 correspond to the
ANCOVA or path analysis model and represent all estimable parameters of the
covariance structure in the pretest — posttest control group design with a mediating

variable.



The pretest-posttest control group design is the focus of this study because it is
widely used for assessing mediation and little is known about the accuracy of different
models. The pretest — posttest control group design represents the simplest longitudinal
design making it ideal to compare with the commonly-used cross-sectional mediation
design. Several different models have been applied to assess mediation in pretest-posttest
control group designs such as analysis of covariance (Jang, Kim, & Reeve, 2012;
Schmiege, Broaddus, Levin, & Bryan, 2009), path analysis (Cribbie & Jamieson, 2004;
MacKinnon, 2001, 2008), difference scores (Hofmann, 2004; Jansen, et al., 2012;
MacKinnon et al., 1991), and residualized change scores (Cole, Kemeny, Fahey, Zack, &
Naliboff, 2003; Miller, Trost, & Brown, 2002; Reid & Aiken, 2013). The purpose of this
project is to evaluate models to assess mediation in the pretest-posttest control group
design which consists of two time points (i.e., pretest and posttest) assuming that timing

of posttest measurement matches timing of the true effect.

- Insert Figure 1 about here —

Analysis of Change in Mediation Models and Conditions to be Met

Assuming that there is successful randomization of units to the control group and
treatment group so that these groups do not differ systematically at pretest, any observed
change in a unit from the treatment group from pretest to posttest would not have

occurred had that unit been assigned to the control group (Van Breukelen, 2006, 2013).



It is also assumed that all measures of pretest and posttest variables in this study are
measured without error. Researchers have expounded on the results of violating these
assumptions using ANCOVA and difference score models outside the context of
mediation (Jamieson, 1999; Kisbu-Sakarya, MacKinnon, & Aiken, 2013; VVan Breukelen,

2006, 2013; Wright, 2006).

Cross-sectional model. The cross-sectional model is the simplest of the models because
it does not take into account the pretest measures of the mediator and outcome variable
and therefore does not address a question of change across time. The cross-sectional
model assumes the stabilities of the mediator and the outcome variable are equal to zero,
there is no pretest correlation between the mediator and the outcome, and there are no
cross-lagged relations between the mediator and the outcome or the outcome and the
mediator. Equation 6 represents the relation between the treatment variable and the
posttest mediator (am2x) and Equation 7 represents the relation between the treatment
variable and the posttest outcome (c'y2x) adjusted for the posttest mediator and the

relation between the posttest mediator and the posttest outcome (by2m2) adjusted for the

treatment.
MZ = i6 + amZxX + €q (6)
Yz = i7 + C’yZXX + byZmZMZ + (= (7)

The cross-sectional mediated effect is estimated by computing the product of amax
coefficient from Equation 6 and by,m, coefficient from Equation 7 (amaxbyomz). The cross-

sectional model does not explicitly take into account the pretest measures of the mediator



and the outcome in any way. This model assumes there are no relations between the
pretest measures of the mediator and the outcome and no relations between the pretest
measures of the mediator and the outcome and the posttest measures of the mediator and

the outcome.

Difference score model. Difference scores address the question “On average, how much
did each group change across time?” It can be seen that difference scores address a
question of change across time that is unconditional on pretest scores (Dwyer, 1983).
The difference score model assumes the same measure is used at pretest and at posttest
and that the correlation between the prestest and posttest measure (stability) is 1.0
(Bonate, 2002; Campbell & Kenny, 1999; Cronbach & Furby, 1970). Equation 8
represents the difference score that would be calculated for a mediator variable where Ay
indicates difference in scores on the mediator variable measured at pretest subtracted
from scores on the mediator variable measured at posttest. Equation 9 represents the
difference scores calculated for the outcome variable where Ay indicates change in scores
on the outcome variable measured at pretest subtracted from scores on the outcome

variable measured at posttest.

Ay= M, — M, (8)

Ay=Y, -V (9)

Equations 9 and 10 represent regression equations that are estimated using difference

scores for the mediator variable and outcome variable, respectively.

AM= i8 + aAX + eg (10)



Ayz ig + C,AX + bAAM + €9 (ll)

Mediated effects are estimated by computing the product of a, coefficient from Equation
10 and b, coefficient from Equation 11 (a4b,). When estimating the mediated effect this
way, it becomes clear that the relations between pretest measures of the mediator variable
and the outcome variable are not explicitly taken into account and the cross-lagged
relations between pretest measures and posttest measures are not explicitly taken into
account (pretest mediator to posttest outcome and pretest outcome to posttest mediator).
Therefore, the difference score model in the context of mediation, implicitly assumes

these relations are equal to zero.

Residualized change score model. Residualized change scores are computed by
regressing posttest scores on pretest scores and then computing the difference between
observed posttest scores and predicted posttest scores (residual). No treatment group
variable is included in the regression of posttest scores on pretest scores, which means
posttest scores for units in both treatment groups are adjusted for pretest scores based on
an aggregate of pretest scores across both treatment groups. The residualized change
score model assumes there are no between group differences in the correlation between
the pretest measure and the posttest measure (Cronbach & Furby, 1970). That is, the
correlation between the pretest measure and the posttest measure for the control group is
equal to the correlation between the pretest measure and the posttest measure for the

treatment group.

Residualized change scores answer the question “How different are treatment

group posttest scores given equal treatment group pretest scores?” Residualized change

9



scores address a conditional question of change. That is, given the treatment group and
the control group have equal pretest scores, how different are the treatment group and
control group posttest scores? Equation 12 represents residualized change scores
calculated for the mediator variable, where Ry indicates change in predicted scores on the
mediator variable measured at posttest subtracted from observed scores on the mediator
variable measured at posttest. Equation 13 represents residualized change scores
calculated for the outcome variable, where Ry indicates change in predicted scores on the
outcome variable measured at posttest subtracted from observed scores on the outcome

variable at posttest.

R,; = Observed M, — Predicted M, (12)

Ry = Observed Y, — Predicted Y, (13)

Equations 13 and 14 represent regression equations that are estimated using residualized

change scores for the mediator variable and the outcome variable, respectively.

RM = i10 + aRX + elo (14)

RY = ill + CIRX + bRRM + 611 (15)

Mediated effects are estimated by computing the product of ag coefficient from Equation
14 and bg coefficient from Equation 15 (arbg). Like the difference score model, the
residualized change score model does not explicitly take into account the pretest
correlation between the mediator and outcome variables and it does not explicitly take
into account the cross-lagged relations. Therefore, this model implicitly assumes these

relations are equal to zero.
10



ANCOVA. ANCOVA is used to assess change by using pretest scores as a covariate
when predicting posttest scores (Bonate, 2002; Campbell & Kenny, 2002). ANCOVA
removes the influence of pretest scores on posttest scores by computing a within-group
regression coefficient of posttest scores on pretest scores for each treatment and control
group, separately. Next, these within group regression coefficients are pooled to form a
single regression coefficient by which posttest scores are adjusted for pretest scores.
ANCOVA specifically addresses the question “On average, how different are the
treatment and control groups scores at posttest given that treatment and control groups
had equivalent pretest scores?” ANCOVA addresses a conditional question of change.
The ANCOVA model assumes that within group regression coefficients are homogenous,
there is no interaction of the covariate (e.g., pretest scores) and the treatment group, and
that the covariate is measured without error (Huitema, 2011; Maxwell & Delaney, 2004).
Equations 15 and 16 represent regression equations that are estimated using ANCOVA to

adjust for pretest scores for the mediator and the outcome variable, respectively.
M; =iy + QmoxX + Smami My + bpayi Vs + ey (16)
YZ = i5 + C,nyX + Syzyl Yl + by2m1M1 + byZszz + €x (17)

Sm2m1 1N Equation 16 represents a pooled regression coefficient relating pretest scores
measured on the mediator to posttest scores measured on the mediator within each
treatment and control group and then pooled across both groups. Sy, in Equation 17
represents a pooled regression coefficient relating pretest scores measured on the
outcome variable to posttest scores measured on the outcome variable within each

treatment and control group and then pooled across both groups. Mediated effects are
11



estimated by computing the product of amzx coefficient from Equation 16 and byom,
coefficient from Equation 17 (amaxby2m2). Unlike the difference score model and the
residualized change score model, the ANCOVA model explicitly takes into account the
cross-lagged relations (as long as they are included in the model equations) and takes into
account the pretest correlation between the mediator and outcome variables because the
predictors in the equations are adjusted for their relations with the other predictors in the

same equation (Cohen, Cohen, West, & Aiken, 2003).

Path analysis. An additional approach to analyzing change in the pretest-posttest control
group design is to analyze the relations specified by equations 16 and 17 using path
analysis. Like the ANCOVA model, path analysis explicitly takes into account the
pretest correlation between the mediator and outcome variables and the cross-lagged

relations (as long they are specified in the model).

Summary. Overall, the cross-sectional, difference score, and residualized change score
model all have specific conditions that need to be met about various model parameters
when testing the mediated effect in the pretest-posttest control group design. None of
these three models take into account any potential pretest correlation between the
mediator and outcome variables and none of the three models directly take into account
any potential cross-lagged relations. The difference score model assumes the stabilities
for the mediator and outcome variables are 1.0 and the cross-sectional model assumes the
stabilities for the mediator and outcome variables are 0.0. The ANCOVA and path
analysis models explicitly estimate or take into account the correlation between the

mediator and outcome at baseline, cross-lagged relations, and stabilities. Therefore, it is

12



expected that the mediated effect estimated with the difference score, residualized change
score, and the cross-sectional model will be biased across a variety of conditions whereas

the mediated effect estimated with the ANCOVA and the path analysis model will not.

The following hypotheses reflect that the performance of the models will be
negatively affected when parameters are non-zero in the true model but are not estimated.
For example, the residualized change score model does not explicitly take into account
any cross-lagged relations between pretest measures and posttest measures therefore
when these relations exist and the residualized change score model is used to estimate the

mediated effect, it is expected that the mediated effect will be biased.

Hypotheses

The first hypothesis is the difference score, residualized change score, ANCOVA,
and path analysis models will perform better than the cross-sectional model in general
because they use the pretest information. The second hypothesis is the cross-sectional,
difference score, and residualized change score models will be biased when either or both
the by2m1 and bm2y1, cross-lagged paths, are non-zero. The third hypothesis is the
cross-sectional, difference score, and residualized change score model will have
confidence interval coverage lower than 95% when either or both the by2m1 or bm2y1
paths are present. The by2m1 and bm2y1 paths are expected to bias the results and lead

to confidence interval coverage lower than 95% for the cross-sectional, difference score,
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and residualized change score models because these models do not directly take into
account these paths when estimating the mediated effect. The fourth hypothesis is the
cross-sectional, difference score, and residualized change score models will be biased and
have confidence interval coverage lower than 95% when there is a pretest correlation
between the mediator and outcome variables. The presence of the pretest correlation is
expected to bias the results of these models because these models do not take into
account this pretest correlation. The fifth hypothesis is that the difference score model
will have less power when the stability is low versus high because the difference score
model assumes the pretest-posttest correlation (stability) is 1.00. Overall, it is
hypothesized all models will not have type 1 error rates that are greater than the nominal
0.05 alpha level and will have increasing power as effect size of the mediated effect

increases and sample size increases.

The study hypotheses are important because if researchers use the cross-sectional,
difference score, or residualized change score model to estimate mediated effects in the
pretest — posttest control group design, there are specific conditions to be met regarding
the relations between the mediating and outcome variable at the pretest and the relations
of the pretest measures to the posttest measures (i.e., cross-lagged relations). The
conditions range from a zero pretest correlation between the mediator and the outcome to
zero cross-lagged relations between the pretest and posttest measures. It is unlikely that
these conditions are tenable in most research designs and specifically the pretest —
posttest control group design involving mediation effects. The proposed simulation is
designed to investigate how violating these conditions affects the accuracy of the five

models.
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Method

Data-Generating Model

The SAS 9.3 programming language was used to conduct a Monte Carlo simulation of a
pretest-posttest control group design with a mediating variable. The following equations
represent the data-generating model (see Appendix C) and correspond to the
ANCOVA/path analysis model in the Monte Carlo simulation where x is an observed

value of random variable X and ¥ is the sample median.

X~NO1:x=>2x=1x<xX=0 (34)
M;~N(0,1) (35)
Y1 = byymiM; + eq (36)
My = amaxX + biay1 Y1 + SmamiMy + e (37)
Y, = ¢'yoxX + byomiMy + byymaMy + Sy0p1 Y + €3 (38)
g4 =1 (39)
g% =1 (40)
o5 =1 (41)
Octe2 = 0 (42)
Oc1e3 = 0 (43)
Opze3 = 0 (44)
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The Monte Carlo simulation, varied sample size (N = 50, 100, 200, 500), effect
size of the a (amzx) (0 .10, .30, .50), b(by2m2) (0 .10, .30, .50), and ¢ ’(c y2x) (0 and .30)
paths, effect size of the path from the pretest mediator to the posttest outcome (byomi1) (0
and .50), effect size of the path from the pretest outcome to the posttest mediator (bmoy1)
(0 and .50), stability of the mediator (Smam1) and the outcome (Syzy1) (.3 and .7), and the
correlation between the mediator and outcome at pretest (0 and .5). The byim: coefficient
in Equation 36 was simulated to be equivalent to a correlation (py1m1) of 0 or .5. The
data-generating model diagram (see Appendix D) depicts a causal relation between the
mediator and outcome at pretest but this is to make the Equations 34 — 44 match exactly
with the diagram. That is, although there was a causal arrow relating the mediator at
pretest to the outcome at pretest we will investigate effects of varying the correlation

between these variables and do not assume a unidirectional causal effect between them.

To summarize, 13 combinations of effect sizes for the a, b, and ¢’ path were
studied. The effect sizes of these paths were all in the correlation metric and chosen to
reflect small, medium, and large effect sizes (Cohen, 1988). The 13 combinations of
effect size were adopted from MacKinnon, Lockwood, and Williams (2004) because they
demonstrated that all other combinations of effect sizes had identical results in their
study. A caveat should be made that the present study differs from the single mediator
model studied in MacKinnon et al. (2004). The combinations are as follows and
summarized in Table1:a=b=¢"=0;a=0,b=.10,¢’=0;a=0,b=.30¢’=0;a=0,b
=.50,¢’=0;a=.10,b=.10,¢'=0;a2=.30,b=.30,¢’=0;a=.50,b=.50,c’=0;a=

10,b=.30,¢’=0;a=.10,b=.50,¢’=0;a=.30,b=.50,¢’=0;a=.10,b =.10, ¢’

.30;a=.30,b=.30,¢’=.30; and a = .50, b = .50, ¢’ = .30. There was 832 conditions
16



defined by 13 effect size combinations, 4 sample sizes, 2 effect sizes of pretest mediator
on posttest outcome, 2 effect sizes or pretest outcome on posttest mediator, 2 stabilities of
mediator and outcome, and 2 correlations between mediator and outcome at pretest. This
resulted in an incomplete factorial design with all factors being fully crossed with one
another except for the last three combinations of effect sizes which included a non-zero
effect size for the ¢’ path. When this path is non-zero, it is known as a direct effect in the
mediation literature (MacKinnon, 2008). The presence of this direct effect did not occur
for all combinations of effect sizes for the a and b paths. Therefore, the direct effect was
not fully crossed with all the factors in this simulation study. A total of 1,000 replications
of each condition was conducted. The focus of this simulation study was to evaluate
estimator characteristics of the mediated effect (amax byomz) for the cross-sectional single
mediator model ignoring the pretest mediator and outcome variables and four
longitudinal models (i.e., difference scores, residualized change scores, ANCOVA, and

path analysis) for assessing change.
Bias of Parameter Estimates

For each replication in each condition, bias of the parameter estimates of the
mediated effect was the parameter estimate minus the true value of the parameter as in
Equation 45. All estimates of bias were averaged over all replications within each

condition.

Bias(8) =0-6 (45)

17



The relative bias of the parameter estimates of the mediated effect was computed by
dividing the bias of the parameter estimate from Equation 45 by the true value of the
parameter as in Equation 46. All estimates of relative bias were averaged over

replications within each condition.

RBias(8) = 2 (46)

An estimator was considered acceptable in terms of bias if the absolute value of relative
bias was less than .10 (Flora & Curran, 2004; Kaplan, 1988). One drawback of
calculating relative bias (i.e., Equation 44) is that it cannot be calculated when the true
value of the parameter is equal to zero. To remedy this, the standardized bias (SBias) of
the parameter estimates was computed by dividing the bias of the parameter estimate as
obtained from Equation 45 by the standard deviation of the parameter estimate across
replications (i.e., empirical standard error of the parameter estimate). This measure of
relative bias can be calculated when the true value of the parameter is equal to zero (see
Equation 47). All estimates of standardized bias were averaged over replications within

each condition.
. A\ _ (0-6)
SBLas(H) =07 (47)
Significance Testing

Type 1 error rates were the proportion of times across the 1000 replications per
condition a parameter estimate of the mediated effect was statistically significant at the
0.05 alpha level when the true value of the parameter estimate was 0. Bradley’s (1978)

liberal criterion was used to evaluate the performance of the methods in terms of Type 1
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error rates. That is, Type 1 error rates will be deemed acceptable if they fall within the
range of [0.025, 0.075]. Power was the proportion of times across the 1000 replications
per condition a parameter estimate of the mediated effect was statistically significant at
the 0.05 alpha level when the true value of the parameter was not equal to 0. The best
performing estimator in terms of statistical power has the highest statistical power given

the effect size and sample size generated for a given simulation condition.

Confidence Interval Estimation

Normal theory. Confidence interval coverage will be the proportion of 95%
confidence intervals that contain the true value of the parameter estimate of the mediated
effect across replications. The width of each arm of the normal theory confidence

interval (margin of error; M.O.E) was computed using the following equation:
M.0.E.(8) = (1.96 * SEp) (48)

The value of 1.96 refers to the critical value of the standard normal distribution (Z-

scores) that corresponds to an area above the value equal to 0.025 and SEj refers to the

estimated standard error for a given replication. In addition to confidence interval
coverage, the proportion of times the true value of the parameter fell above the upper
limit of the confidence interval was calculated and the proportion of times the true value
of the parameter fell below the lower limit of the confidence interval was calculated

across replications.
19



Percentile bootstrap. Confidence interval coverage was also computed using the
percentile bootstrap (Efron & Tibshirani, 1993). For each replication, 1000 bootstrap
samples were generated and confidence intervals were computed for each parameter
estimate in each bootstrap sample. A 95% percentile bootstrap confidence interval for
each replication was computed by rank ordering each bootstrap sample mediated effect
and taking the 25™ value from the 1000 bootstrapped samples as the lower bound of the
confidence interval and the 975" value from the 1000 bootstrapped samples as the upper
bound of the confidence interval. Coverage was the proportion of times the true value of
the parameter fell within the percentile bootstrap confidence interval. The proportion of
times the true value fell below the lower limit of the bootstrapped confidence interval and
the proportion of times the true value fell above the upper limit of the bootstrapped

confidence interval was calculated.

Distribution of a product. Confidence interval coverage was computed using
the PRODCLIN program to create asymmetric confidence intervals based on the non-
normal distribution of the product of two regression coefficients (e.g., ab; MacKinnon,
Fritz, Williams, & Lockwood, 2007). PRODCLIN was used to compute the 95%
asymmetric confidence interval for each estimate of the mediated effect for each
replication. Coverage was the proportion of times the true value of the mediated effect
fell within the asymmetric confidence intervals. The proportion of times the true value
fell below the lower limit of the asymmetric confidence interval and the proportion of
times the true value fell above the upper limit of the asymmetric confidence interval was

calculated.
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All else being equal, the best estimator of the mediated effect and the best method
for creating confidence intervals (i.e., normal theory, percentile bootstrap, or
PRODCLIN) had confidence interval coverage rates that fall within the range of [92.5,
97.5] and equal proportions of true values that fell above the upper limit of the
confidence interval within the range of [1.25, 3.75] and true values that fell below the
lower limit of the confidence interval within the range of [1.25, 3.75] based on Bradley’s

(1978) liberal robustness criterion.

The simulation was conducted in two parts. First, the data for each of the 832
conditions was generated with a SAS macro (see Appendix C). Second, the data for each

of the 832 conditions was analyzed using separate SAS macros (See Appendices F — K).
Data Analysis Models

Cross-Sectional Single Mediator Model. The following equations estimate the
cross-sectional mediated effect and ignore the pretest mediator and outcome variables

(see Appendix L).
Mz = i6 + am2xX + 66 (49)
YZ = i7 + CInyX + byZmZMZ + (= (50)

The estimate of the effect of treatment on the posttest mediator scores is @,;,2,, the

estimate of the effect of treatment on the posttest dependent variable scores adjusted for

the effect of posttest mediator scores is ¢ y2x, the estimate of the effect of the posttest
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mediator scores on the posttest dependent variable scores adjusted for the effect of the

treatment is ByZmz, and the estimate of the cross-sectional mediated effect is amzxﬁyzmz.

Difference Scores. Difference scores for the mediator and the dependent variable
will be computed and submitted to regression analyses using the following Equations (see

Appendix M for figure).

Ay=M, — M, (51)
Ay=Y, - Y, (52)
Ay=ig+ apX + eg (53)
Ay=ig+ '\ X + byl + e (54)

The estimate of the effect of treatment on the difference score for the mediator is @,, the
estimate of the effect of treatment on the difference score for the dependent variable
adjusted for the effect of the mediator change score on the difference score of the
dependent variable is ¢, the estimate of the effect of the mediator difference score on
the difference score for the dependent variable adjusted for the effect of the treatment on
the difference score of the dependent variable is b, and the estimate of the mediated

effect is a,by.

Residualized Change Scores. Residualized change scores for the mediator and
the dependent variable will be computed and used in regression analyses using the
following Equations (see Appendix N for figure).

PT'ediCted MZ = SmZmltotalMl (55)
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Ry = Observed M, — Predicted M, (56)

Predicted Y, = Syy1t0tatt (57)
Ry = Observed Y, — Predicted Y, (58)
Ry = i10 + arX + ey (59)
Ry =iy + ¢'gX + bgRy + €14 (60)

The estimate of the effect of treatment on the residualized change score for the mediator
IS dg, the estimate of the effect of treatment on the residualized change score for the

dependent variable adjusted for the effect of the mediator residualized change score on

the residualized change score of the dependent variable is ¢, the estimate of the effect
of the mediator residualized change score on the residualized change score for the

dependent variable adjusted for the effect of the treatment on the residualized change

score of the dependent variable is bg, and the estimate of the mediated effect is agbp.

Analysis of Covariance. The following equations represent estimating the
effects using ANCOVA with pretest scores as the covariate for the mediator and the

dependent variable (see Appendix D).
MZ = i4 + amZxX + bm2y1Y1 + SmZml pooledMl + €4 (61)
Y, = is + ¢’ yoxX + Syay1 pooteaVs + PyamiMi + byamaM, + es (62)

The estimate of the effect of treatment on the posttest mediator scores adjusted for pretest

mediator scores and pretest dependent variable scores is d,,,,, the estimate of the effect
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of treatment on the posttest dependent variable scores adjusted for the effect of the pretest
mediator scores, posttest mediator scores, and pretest dependent variable scores is ¢ y2x0
the estimate of the effect of the posttest mediator scores on the posttest dependent
variable scores adjusted for the effect of the treatment, pretest mediator scores, and

pretest dependent variable scores is ByZmz, and the estimate of the mediated effect is

ambeyZmZ-

Path Analysis. The following equations represent estimating the effects using
path analysis (see Appendix D). The effects estimated with path analysis will be similar
to the effects estimated using ANCOVA except for the estimated standard errors.
Standard errors estimated using path analysis model will differ from those from the
standard errors estimated using ANCOVA because path analysis uses maximum
likelihood estimation as opposed to ANCOVA which uses ordinary least squares
estimation. The formulas for standard errors using maximum likelihood estimation differ
slightly from those used in ordinary least squares estimation. Thus, the estimated standard

errors across the path analysis model results and the ANCOVA model results will differ

slightly.
My =iy + poxX + binzy1Ys + Smams My + €4 (63)
Y, = is + ¢'yoxX + Sy2y1 Y1 + byomiMy + byoma M, + e (64)
Cov(X,M;) =0 (65)
Cov(X,Y;) =0 (66)
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Cov(My,Y;) = Omiy1 (67)

The covariance between treatment variable (X) and pretest mediator (M) and between
treatment variable (X) and pretest outcome (Y1) will be fixed to zero under the
assumption of successful randomization of units to conditions. The covariance between
the pretest mediator and pretest outcome variable will be estimated. All covariance terms

between residuals will be fixed to zero and all residual variances will be estimated.

The estimate of the effect of treatment on the posttest mediator scores adjusted for
pretest mediator scores and pretest dependent variable scores is @,,,,,, the estimate of the
effect of treatment on the posttest dependent variable scores adjusted for the effect of the
pretest mediator scores, posttest mediator scores, and pretest dependent variable scores is
% y2x» the estimate of the effect of the posttest mediator scores on the posttest dependent
variable scores adjusted for the effect of the treatment, pretest mediator scores, and

pretest dependent variable scores is ByZmz, and the estimate of the mediated effect is

aszByZmz (see Appendices O — P for true covariances and correlations).

Results

Organization

The results section was organized in the following way. Type 1 error rates were
discussed first followed by bias, confidence interval coverage, and then power results.
All type lerror, confidence interval coverage, and power results were reported using the
distribution of a product. The distribution of a product results were reported because they

perform better than normal theory results and they performed similarly to the percentile
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bootstrap results when detecting mediated effects in this study and in prior research
(MacKinnon, Lockwood, & Williams, 2004). For each section (except for the type 1
error rates section) the results for a specific model were presented (e.g., ANCOVA) and
for each model there was a section of results for when there was no direct effect and a
section for when there was a direct effect. The results were analyzed separately for no
direct effect versus direct effect because the direct effect was not fully-crossed with the
other predictors in this simulation study. For example, there were 10 conditions of
different effect sizes of the mediated effect for which there was no direct effect and there
were 3 conditions of different effect sizes of the mediated effect for which there was a
direct effect. In most situations the patterns of results for different values of the direct
effect were identical. When results differed across values of the direct effect, they were

reported.

Type 1 Error Rates Regression Analyses

To assess the significant predictors of empirical type 1 error rates logistic
regression analyses were conducted with the dependent variable coded as ‘0’ for ‘non-
significant mediated effect’ and ‘1’ for ‘significant mediated effect’ for all simulation
conditions. Sample size was treated as a continuous predictor and was standardized to
have a mean of zero and a standard deviation of one prior to the analyses. Pretest
correlation was coded ‘-1’ for a pretest correlation of 0.00 and coded ‘1’ for a pretest
correlation of 0.50. Stability of the mediator and outcome variables was coded -1’ for
stability of 0.30 and coded ‘1’ for stability of 0.70. The bm2y1 path was coded-1" for the

bm2y1 path of 0.00 and coded ‘1’ for the bm2y1 path of 0.50. The by2m1 path was coded

26



‘-1’ for the by2m1 path of 0.00 and coded ‘1’ for the by2m1 path of 0.50. Because the
coding scheme for the categorical predictors was chosen to be contrast codes (-1 or 1),
this resulted in the mean of each categorical variable being equal to zero and the standard
deviation being equal to one given equal sample size in each simulation condition (i.e.,

1000 replications in each condition).

All possible higher-order interactions were included in these analyses and main
and interaction effects that were both statistically significant at o = 0.05 and had a
standardized beta coefficient (reported as b) of at least 0.10 were considered important
effects on type 1 error. For interaction terms, predictors were first standardized and then
products of the standardized predictors were formed to create the interaction terms.
Standardized beta coefficients were computed following the recommendations of Menard
(2004) for a fully standardized logistic regression coefficient. The coefficients were
standardized in order for all effects to be on a similar metric and 0.10 was chosen as a
cut-off point because it corresponds to a 0.20 standard deviation change for a 1-unit
change in the predictors that were coded using contrast codes (i.e., pretest correlation,
stability, cross-lags). Because the design of this study was an incomplete factorial design
with the incomplete factor being the presence of a direct effect, analyses were performed

separately for each of the two levels of direct effect.

Type 1 Error Rates

There were no significant interactions or main effects that were both statistically

significant and had standardized beta coefficients that were greater than the absolute
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value of 0.10 for the ANCOVA, path analysis, difference score, residualized change

score, or the cross-sectional model results.

The Type 1 error rates for all methods to assess the mediated effect (i.e., Cross-
sectional model, ANCOVA, path analysis, difference scores, and residualized change
scores) are not above the nominal cut-off point of 0.05 across any combination of
simulation conditions. Therefore, the statistical method that is the least biased and has
the most power for detecting the mediated effect given a particular effect size and sample
size will be considered the best model for detecting mediated effects in pretest-posttest

control group designs.

Bias Regression Analyses

To assess which predictors in this study significantly contributed to variation in
empirical bias, relative bias, and standardized bias, Ordinary Least Squares (OLS)
regression analyses were conducted for each model with bias, relative bias, and
standardized bias as the dependent variables for each model. The predictors were coded
the same way as for the type 1 error rates analyses and separate analyses were conducted
for each level of direct effect. Omega-squared values of 0.01 in combination with a
statistically significant main or interaction effect were considered practically significant

effects. The analyses were only conducted for standardized bias and relative bias because
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these measures of bias are generally more easily interpreted than bias because they are
not artificially inflated as the effect size of the mediated effect increases. All bias results

are presented in the tables alongside standardized bias and relative bias results.

Standardized Bias Results

ANCOVA. Asshown in Table 6, there were no main or interaction effects that
were both statistically significant and had omega-squared values of 0.01 or higher and

there were no conditions for which the standardized bias exceeded 0.10.

Path Analysis. As shown in Table 7, there were no main or interaction effects
that were both statistically significant and had omega-squared values of 0.01 or higher

and there were no conditions for which the standardized bias exceeded 0.10.

Difference Scores. As shown in Table 8, there were no main or interaction
effects that were both statistically significant and had omega-squared values of 0.01 or

higher and there were no conditions for which the standardized bias exceeded 0.10.
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Residualized change scores. Because of the number of practically significant
interactions of predictors on standardized bias for the residualized change score model,
only the results for when the bm2y1 path and the by2m1 path were equal to 0.50 are
presented. There were no cases when the absolute value of the standardized bias
exceeded 0.10 when both of these paths were equal to 0.00. As shown in Tables 9 — 10,
there were four-way interactions of effect size, pretest correlation, the bm2y1 path, and
the by2m1 path (w® = 0.01, F (1, 639,936) = 11,133, p < 0 .05) and effect size, sample
size, pretest correlation, and the bm2y1 path (w? = 0.01, F (1, 639,936) = 9,332.30, p< 0
.05) such that the absolute value of the standardized bias of the mediated effect for the
residualized change score model exceeded 0.10 for all sample sizes and effect sizes and
when the bm2y1 path was equal to 0.50 and whether or not the by2m1 path or pretest
correlation were equal to 0.00 or 0.50. There were main effects of pretest correlation (?
=0.05, F (1, 639,936) = 85,026.90, p < 0.05), the bm2y1 path (w? = 0.10, F (1, 639,936)
= 191,671, p < 0 .05), the by2m1 path (w?® = 0.02, F (1, 639,936) = 31,284.80, p < 0 .05),
effect size (w? = 0.08, F (1, 639,936) = 153,693, p < 0 .05), and sample size (w? = 0.02, F
(1, 639,936) = 42,107.50, p < 0.05) but there were no simple relations between either the
pretest correlation, the bm2y1 path, the by2m1 path, effect size, or sample size and

standardized bias.



Insert Tables 9-10 about here

Cross-Sectional.

Direct effect = 0.00. As shown in Table 11, the absolute value of the
standardized bias of the mediated effect with the cross-sectional model exceeded 0.10 for
all conditions and became larger when by2m1 increased from 0.00 to 0.50 and as sample
size increased (interaction of effect size, sample size, and the by2m1 path on the
standardized bias, ® = 0.01, F (1, 639,936) = 5,471.52, p < 0 .05). The standardized bias
was greater for effect sizes 0.01, 0.09, and 0.25 (w? = 0.16, F (1, 639,936) = 144,896, p <
0 .05), as sample size increased (w” = 0.03, F (1, 639,936) = 29,506.80, p < 0 .05), and as
the by2m1 path increased from 0.00 to 0.50 (w?® = 0.03, F (1, 639,936) = 26,019.70, p <0

05).

Direct effect = 0.30. As shown in Tables 12 — 15 there was no interaction of
effect size, sample size, and the by2m1 path when the direct effect was present. There
were, however, interactions of effect size and sample size (w? = 0.01, F (1, 191,936) =
5,036, p < 0 .05), effect size and the by2m1 path (w? = 0.02, F (1, 191,936) = 7,067.87, p
< 0.05), sample size and the by2m1 path (w® = 0.02, F (1, 191,936) = 7,193.63, p < 0

.05), pretest correlation and the bm2y1 path (w®=0.01, F (1, 191,936) = 1,987.96, p < 0
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.05), and the bm2y1 path and the by2m1 path (w® = 0.01, F (1, 191,936) = 3,990.23, p <
0 .05) such that the absolute value of the standardized bias exceeded 0.10 when the
bm2y1 path increased from 0.00 to 0.50 which increased when the pretest correlation
increased from 0.00 to 0.50, the by2m1 path increased from 0.00 to 0.50 and as effect size
and sample size increased. The standardized bias was the highest for N = 500 and large
effect sizes when the bm2y1 path was equal to 0.50, the by2m1 path was equal to 0.50,
and the pretest correlation was equal to 0.50. The only condition for which the absolute
value of the standardized bias did not exceed 0.10 was when the pretest correlation was

equal to 0.00, and both the bm2y1 path and the by2m1 path were equal to 0.00.

Relative Bias Results

ANCOVA. There were no main or interaction effects that were both statistically
significant and had omega-squared values of 0.01 or higher and there were no conditions

for which the relative bias exceeded 0.10.

Path Analysis. There were no main or interaction effects that were both
statistically significant and had omega-squared values of 0.01 or higher and there were no

conditions for which the relative bias exceeded 0.10.
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Difference Scores.

Direct effect = 0.00. There were no main or interaction effects that were both
statistically significant and had omega-squared values of 0.01 or higher. Subsequently,

there were no conditions for which the absolute value of relative bias exceeded 0.10.

Residualized change scores. As shown in Tables 9 — 10, the absolute value of
the relative bias of the mediated effect with the residualized change score model
exceeded 0.10 for all sample sizes and effect sizes, when the bm2y1 path was equal to
0.50 and became larger when the pretest correlation increased from 0.00 to 0.50 but was
unaffected by the by2m1 path (interaction of pretest correlation and the bm2y1 path, w? =
0.01, F (1, 383,936) = 5,571.36, p < 0.05). Additionally, there were a few other
conditions for which the relative bias was greater than 0.10. The relative bias increased
when the bm2y1 path increased from 0.00 to 0.50 (w? = 0.06, F (1, 383,936) = 25,662.40,
p < 0.05). There was a main effect of pretest correlation (w? = 0.01, F (1, 383,936) =
5,587.27, p < 0 .05) but there was no simple interpretation of pretest correlation and

relative bias.
Cross-Sectional.

Direct effect = 0.00. As shown in Table 11, the absolute value of the relative bias
of the mediated effect with the cross-sectional model exceeded 0.10 for all sample sizes
and effect sizes and whether or not the by2m1 path was equal to 0.00 or 0.50 but was

higher for small effect sizes and when the by2m1 path was equal to 0.50 (interaction of
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effect size and the by2m1 path, »® = 0.01, F (1, 383,936) = 2,939.90, p < 0.05). The
relative bias was larger when the pretest correlation increased from 0.00 to 0.50 (w?® =
0.01, F (1, 383,936) = 2,443.24, p < 0 .05), when the by2m1 path increased from 0.00 to
0.50 (w? = 0.04, F (1, 383,936) = 17,133.80, p < 0 .05), and as effect size decreased (w? =

0.02, F (1, 383,936) = 9,206.74, p < 0 .05).

Direct effect = 0.30. As shown in Tables 12 — 15, the same pattern of results
held for when there was a direct effect as compared to when there was not a direct effect.
The absolute value of relative bias of the mediated effect exceeded 0.10 for the cross-
sectional model when the by2m1 path increased from 0.00 to 0.50 and as effect size
decreased (interaction of effect size and by2m1 path, »® = 0.01, F (1, 191,936) = 3,265, p
< 0.05). The relative bias increased as effect size decreased (w” = 0.05, F (1, 191,936) =
10,570.10, p < 0 .05), when the pretest correlation increased from 0.00 to 0.50 (w? = 0.01,
F (1, 191,936) = 1,342.46, p < 0 .05), when stability increased from 0.30 to 0.70 (»” =
0.01, F (1, 191,936) = 1,166.56, p < 0 .05), when the bm2y1 path increased from 0.00 to
0.50 (w”® = 0.01, F (1, 191,936) = 1,138.91, p < 0 .05), and when the by2m1 path

increased from 0.00 to 0.50 (w” = 0.04, F (1, 191,936) = 9,089.92, p < 0 .05).
Summary.

In summary, the mediated effect was not biased when estimated with the
ANCOVA, path analysis, or difference score model. The mediated effect estimated with
the residualized change score model was biased when the pretest correlation was equal to
0.00 or 0.50 and the bm2y1 and by2m1 paths were equal to 0.50. When the bm2y1 and

by2m1 paths were equal to 0.00, the mediated effect was not biased and therefore
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comparable to the mediated effect estimated with the ANCOVA and path analysis
models. The mediated effect was biased with the cross-sectional model when there was
no direct effect present (0.00) and became more biased as effect size increased and as the
by2m1 path increased from 0.00 to 0.50. When a direct effect was present, the only time
the mediated effect was not biased was when the pretest correlation was equal to 0.00 and
the by2m1 path was equal to 0.00. For this combination of conditions, the mediated
effect estimated with the cross-sectional model was comparable to the mediated effect

estimated with the ANCOVA and path analysis models.

Confidence Interval Coverage and Power Regression Analyses

Logistic regression analyses were conducted in the same way for confidence
interval coverage and power as for type 1 error rates with the addition of effect size of the
mediated effect as a standardized predictor in the analyses of confidence interval
coverage and power. For confidence interval coverage and power, separate analyses
were conducted for the conditions with no direct effect and for the conditions with a
direct effect because the direct effect manipulation was not completely crossed for all

levels of the other factors in this simulation study.

When assessing the performance of confidence interval coverage, coverage values
below 92.5% were considered low and were highlighted in red in the results tables.
Coverage values above 97.5% were considered high and were highlighted in green in the
results tables. These cutoff points correspond to Bradley’s (1978) robustness criterion.
The percent of cases falling above the upper limit and the percent of cases falling below

the lower limit did not differ across the models so those results were not reported here.
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Confidence Interval Coverage.

ANCOVA. Asshown in Table 16, the confidence interval coverage for the
ANCOVA model never fell below 92.5% for any combination of sample size and effect
size. There were a few instances when the coverage exceeded 97.5% which generally
happened when the effect was small (0.01) or zero and sample size was small (50 to 200).
There were no significant predictors of the confidence interval coverage of the mediated
effect with the ANCOVA model. That is, there were no significant main or interaction
effects that were both statistically significant and had a standardized beta coefficient with

an absolute value greater than 0.10.

Path analysis. As shown in Table 17, the confidence interval coverage for the
path analysis model never fell below 92.5% for any combination of sample size and
effect size. There were a few instances when the coverage exceeded 97.5% which
generally happened when the effect size (0.01) and sample size was small (50 to 100).
There were no significant predictors of the confidence interval coverage of the mediated
effect with the path analysis model. That is, there were no significant main or interaction
effects that were both statistically significant and had a standardized beta coefficient with

an absolute value greater than 0.10.



Insert Table 17 about here

Difference scores. As shown in Table 18, the confidence interval coverage for
the path analysis model never fell below 92.5% for any combination of sample size and
effect size. There were a few instances when the coverage exceeded 97.5% which
generally happened when the effect size (0.01) and sample size was small (50 to 100).
There were no significant predictors of the confidence interval coverage of the mediated
effect with the path analysis model. That is, there were no significant main or interaction
effects that were both statistically significant and had a standardized beta coefficient with

an absolute value greater than 0.10.

Residualized change scores.

Direct effect = 0.00. As shown in Tables 19 — 20 confidence interval coverage
fell below 92.5% as sample size, pretest correlation, and the bm2y1 path increased
(interaction of sample size, pretest correlation, and the bm2y1 path, b =-0.11, 4 (1, N =
384,000) = 1,822.28, p < 0.05). Coverage was low for large sample sizes when the
pretest correlation the bm2y1 path both increased from 0.00 to 0.50. There was also an
interaction of pretest correlation, the bm2y1 path, and the by2m1 path (b = -0.11, 5* (1, N

= 384,000) = 2,043.63, p < 0.05) such that as pretest correlation, the bm2y1 path, and the
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by2m1 path all increased, coverage decreased. That is, coverage decreased when the
pretest correlation increased from 0.00 to 0.50 and when both the bm2y1 path and the
by2m1 path increased from 0.00 to 0.50. There were also main effects of the bm2y1 path
(b =-0.31, * (1, N = 384,000) = 16,827.79, p < 0.05), sample size (b = -0.17, »* (1, N =
384,000) = 4,303.29, p < 0.05), pretest correlation (b =-0.21, y* (1, N = 384,000) =
8,020.70, p < 0.05), and effect size (b = -0.13, »* (1, N = 384,000) = 2,529.66, p < 0.05)
but there were no simple interpretation of either the bm2y1 path, sample size, or effect

size and coverage.

The confidence interval coverage fell below 92.5% for the residualized change
score model for N = 50, when the effect size was 0.15 and 0.25 and when the bm2y1 path
was equal to 0.50 but the by2m1 path and the pretest correlation were equal to 0.00. The
confidence interval coverage was also low for N = 50, effect sizes 0.05, 0.09, 0.15, and
0.25 when the bm2y1 path and the pretest correlation were equal to 0.50 but the by2m1
path was equal to 0.00. When the by2m1 path increased from 0.00 to 0.50, the coverage
dropped to 92.5% for an additional effect size of 0.03. For N = 100, the confidence
interval coverage dropped below 92.5% for effect sizes 0.09, 0.15, and 0.25 when the
bm2y1 path, the by2m1 path, and the pretest correlation decreased from 0.50 to 0.00.
When the by2m1 path increased from 0.00 to 0.50, the coverage decreased for effect sizes
0.15 and 0.25. When the pretest correlation increased from 0.00 to 0.50, the coverage
decreased for effect sizes 0.03, 0.05, 0.09, 0.15, and 0.25 when the bm2y1 path increased

from 0.00 to 0.50 and whether or not the by2m1 path increased from 0.00 to 0.50.
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For N = 200, the coverage was low for effect sizes 0.09, 0.15, and 0.25 when the
bm2y1 path increased from 0.00 to 0.50 but the by2m1 path and the pretest correlation
decreased from 0.50 to 0.00. When the by2m1 path increased from 0.00 to 0.50, the
coverage decreased for effect sizes 0.15 and 0.25. When the pretest correlation increased
from 0.00 to 0.50 the coverage decreased for effect sizes 0.03, 0.05, 0.09, 0.15, and 0.25
when the bm2y1 path increased from 0.00 to 0.50 but the by2m1 path decreased from
0.50 to 0.00. When the by2m1 path increased from 0.00 to 0.50, the coverage also
decreased for effect size 0.01 with the coverage decreasing to 0% in some cases. For N =
500, coverage was low for effect sizes, 0.03, 0.05, 0.09, 0.15, and 0.25 when the bm2y1
path was equal to 0.50, the pretest correlation was equal to 0.00 and whether or not the
by2m1 path increased was equal to 0.00 or 0.50. When the pretest correlation increased
from 0.00 to 0.50, coverage decreased for all effect sizes when the bm2y1 path increased
from 0.00 to 0.50 and whether or not the by2m1 path increased from 0.00 to 0.50. In
some cases, the coverage went to 0%. The confidence interval coverage exceeded 97.5%
for N =50 and N = 100 when there was no effect or the effect size was small (0.01) and

occurred across both values of pretest correlation, the bm2y1 path, and the by2m1 path.



Direct effect = 0.30. As shown in Tables 21 — 22 there was an additional
interaction of sample size, pretest correlation and the by2m1 path (b =-0.10, * (1, N =
192,000) = 416.01, p < 0.05) on the confidence interval coverage for the residualized
change score model when there was a direct effect present. As sample size, pretest

correlation, and the by2m1 path increased, the coverage decreased.

For N = 50 and effect size 0.25 the confidence interval coverage dropped below
92.5% when the bm2y1 path and the pretest correlation both increased from 0.00 to 0.50,
and when the by2m1 path decreased from 0.50 to 0.00. For N =100 and effect size 0.09
and 0.25, the confidence interval coverage dropped to or below 92.5% when the bm2y1
path increased from 0.00 to 0.50, and when the pretest correlation and the by2m1 path
both decreased from 0.50 to 0.00. It was also low for effect size 0.25 when the bm2y1
path and the pretest correlation both increased from 0.00 to 0.50 and when the by2m1
path decreased from 0.50 to 0.00. The coverage was also low for effect size 0.25 when
the bm2y1 path and the by2m1 path both increased from 0.00 to 0.50, and when the
pretest correlation decreased from 0.50 to 0.00. When the pretest correlation increased
from 0.00 to 0.50, the coverage decreased for effect sizes 0.01 and 0.25. A similar
pattern emerged for N = 200 and N = 500. The coverage exceeded 97.5% when the
by2m1 path increased from 0.00 to 0.50 and the bm2y1 path decreased from 0.50 to 0.00

for a range of effect sizes and exceeded 97.5% when the effect size was small (0.01).



Cross Sectional.

Direct effect = 0.00. As shown in Table 23, as sample size and effect size
increased, the confidence interval coverage of the cross-sectional model decreased
(interaction of sample size and effect size, b = -0.10, »* (1, N = 384,000) = 2,976, p <
0.05). The coverage decreased as a function of effect size more for large sample sizes
than small sample sizes. There was also an interaction of effect size and the by2m1 path
(b=-0.11, »* (1, N = 384,000) = 3,418.07, p < 0.05) such that as effect size and the
by2m1 path increased, coverage decreased. Coverage decreased as a function of effect
size more when the by2m1 path was equal to 0.50 than when the by2m1 path was equal
0.00 with coverage being as low as 0.02 in one case. The coverage was the lowest for
large effect sizes, large sample sizes, and when the by2m1 path was equal to 0.50. There
were also main effects of sample size (b =-0.23, * (1, N = 384,000) = 16,296.86, p <
0.05), effect size (b = -0.23, * (1, N = 384,000) = 16,855.86, p < 0.05), and the by2m1
path (b =-0.21, »* (1, N = 384,000) = 12,807.41, p < 0.05). In this case, there was no

simple relation between either sample size, effect size, or the by2m1 path and coverage.

For N = 50, confidence interval coverage fell below 92.5% for effect sizes 0.09,
0.15, and 0.25 when the by2m1 path increased from 0.00 to 0.50. For N =100, coverage
decreased for effect size 0.25 when the by2m1 path decreased from 0.50 to 0.00 and for
effect sizes 0.09, 0.15, and 0.25 when the by2m1 path increased from 0.00 to 0.50. For N
=200, coverage decreased for effect sizes 0.09, 0.15, and 0.25 when the by2m1 path
increased from 0.00 to 0.50 and decreased for effect sizes 0.01, 0.03, 0.09, 0.15, and 0.25

when the by2m1 path increased from 0.00 to 0.50. For N =500, coverage decreased for
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effect sizes 0.01, 0.09, 0.15, and 0.25 when the by2m1 path decreased from 0.50 to 0.00
and decreased for effect sizes 0.01 and higher when the by2m1 path increased from 0.00

to 0.50. Confidence interval coverage never exceeded 97.5%.

Direct effect = 0.30. As shown in Table 24, there was an additional interaction of
sample size, effect size, and the by2m1 path (b =-0.12, y* (1, N = 192,000) = 2,243.01, p
< 0.05) on the confidence interval coverage of the cross-sectional model when there was
a direct effect present. That is, as sample size, effect size, and the by2m1 path increased,

the coverage decreased.

For N =50 and N = 100 and effect sizes 0.09 and 0.25, the confidence interval
coverage dropped below 92.5% when the by2m1 path increased from 0.00 to 0.50. For N
=200 and N=500 and effect sizes 0.01, 0.09, and 0.25, the coverage was low when the
by2m1 path increased from 0.00 to 0.50. There was a significant three-way interaction of
effect size, sample size, and by2m1 path (b = -0.12, »* (1, N = 192,000) = 2,243.01, p <
0.05) on the confidence interval coverage of the mediated effect for the cross-sectional

model. The confidence interval coverage never exceeded 97.5%.



Summary.

In summary, the confidence interval coverage for the ANCOVA, path analysis,
and difference score model were similar and generally fell within the range of 92.5% -
97.5% coverage. The confidence interval coverage for the residualized change score
model was low when the pretest correlation and both the bm2y1 path and the by2m1 path
were equal to 0.50 and as sample size and effect size increased. The confidence interval
coverage for the residualized change score model was comparable to the confidence
interval coverage for the path analysis model when the bm2y1 path was equal to 0.00 and
whether or not the by2m1 or the pretest correlation was equal to 0.00 or 0.50. The results
for the confidence interval coverage for the cross-sectional model were low when the
by2m1 path was equal to 0.50 and as effect size and sample size increased. The
confidence interval coverage for the cross-sectional model was comparable to the
confidence interval coverage for the path analysis model when the by2m1 path was equal
to 0.00, when the sample size was small (N = 50), and when the effect size was less than

0.25.
Power Results

ANCOVA. Asshown in Figure 2, as sample size and effect size increased
simultaneously, the power to detect the mediated effect increased substantially
(interaction of sample size and effect size, b = 0.25, »* (1, N = 384,000) = 9,748.88, p <
0.05). Power increased as a function of effect size faster for large sample sizes (N = 500)
compared to small sample sizes (N = 50). Power to detect the mediated effect using the

ANCOVA model increased as sample size (b = 0.36, »° (1, N = 384,000) = 27,071.26, p <
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0.05) and effect size (b = 0.55, y* (1, N = 384,000) = 61,739.35, p < 0.05) increased.
Overall, power reached 0.80 or higher for N = 50 when the effect size was 0.25, for N =
100 when the effect size was 0.15 or higher, for N = 200 when the effect size was 0.09 or

higher, and for N = 500 when the effect size was 0.09 or higher.
- Insert Figure 2 about here —

Path analysis. As shown in Figure 3, as sample size and effect size increased
simultaneously, the power to detect the mediated effect increased substantially
(interaction of sample size and effect size, b = 0.24, »* (1, N = 384,000) = 8,738.57, p <
0.05). Power increased as a function of effect size faster for large sample sizes (N = 500)
compared to small sample sizes (N = 50). Power to detect the mediated effect using the
path analysis model increased as sample size (b = 0.35, »* (1, N = 384,000) = 25,179.87,
p < 0.05) and effect size (b = 0.56, y* (1, N = 384,000) = 61,661.44, p <0.05) increased.
Overall, power reached 0.80 or higher for N = 50 when the effect size was 0.25, for N =
100 when the effect size was 0.15 or higher, for N = 200 when the effect size was 0.09 or

higher, and for N = 500 when the effect size was 0.09 or higher.
- Insert Figure 3 about here —

Difference scores. As shown in Figure 4, as sample size, effect size, and stability
increased simultaneously, the power to detect the mediated effect increased substantially
(interaction of sample size, effect size, and stability, b =0.12, XZ (1, N =384,000) =
3,220.13, p < 0.05). Power increased as sample size and effect size increased but power
increased faster when stability was equal to 0.70 compared to when stability was equal to

0.30. Power to detect the mediated effect with the difference score model increased as
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sample size increased (b = 0.31, 4* (1, N = 384,000) = 31,624.90, p < 0.05), effect size
increased (b = 0.41, »* (1, N = 384,000) = 46,292.63, p < 0.05), and stability increased (b
=0.19, ¥* (1, N = 384,000) = 17,024.69, p < 0.05). Overall, power reached 0.80 or higher
for N = 50 and stability = 0.70 when the effect size was 0.25, for N = 100 and stability =
0.70 when the effect size was 0.15 or higher, for N = 200 and stability = 0.70 for effect
sizes 0.09 or higher, and for N = 500 and stability = 0.70 for effect sizes 0.09 or higher.
Power never reached 0.80 when stability was equal to 0.30 for any combination of effect

size and sample size.

- Insert Figure 4 about here —

Residualized change scores.

Direct effect = 0.00. A caveat should be mentioned. Because the residualized
change score model resulted in biased estimates of the mediated effect, power results
should be interpreted with caution. As shown in Figure 5, as sample size and effect size
increased simultaneously the power to detect the mediated effect with the residualized
change score model increased substantially (interaction of sample size and effect size, b =
0.29, 7% (1, N = 384,000) = 17,289.46, p < 0.05). Power increased as effect size increased
but power increased faster for large sample sizes (N = 500) than small sample sizes (N =
50). Power to detect the mediated effect with the residualized change score model

increased as sample size increased (b = 0.36, ¥* (1, N = 384,000) = 38724.90, p < 0.05)
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and effect size increased (b = 0.47, »* (1, N = 384,000) = 58207.76, p < 0.05). Power
decreased when the bm2y1 path increased from 0.00 to 0.50 (b = -0.11, 5* (1, N =

384,000) = 1901.00, p < 0.05).

Overall, power reached 0.80 or higher for N = 50 and bm2y1 path equal to 0.00
for effect size 0.25, for N = 100 and bm2y1 path equal to 0.00 for effect size 0.15 or
higher, for N = 200 and bm2y1 path equal to 0.00 for effect size 0.09 or higher, for N =
500 and bm2y1 path equal to 0.00 for effect size 0.09 or higher. Power also reached 0.80
or higher when the bm2y1 path was equal to 0.50 for N = 200 and N = 500 and for effect

sizes 0.15 or higher.
- Insert Figure 5 about here -

Direct effect = 0.30. As shown in Figure 6 and Figure 7, power decreased when
either the by2m1 or bm2y1 paths increased from 0.00 to 0.50 for small sample sizes more
than large sample sizes (interaction of sample size and by2m1 path, b = -0.10, 5* (1, N =
192,000) = 705.35, p < 0.05, and interaction of sample size and the bm2y1 path, b = -
0.10, »* (1, N = 192,000) = 739.36, p < 0.05). The decrease in power was more
pronounced for N = 50, 100, and 200 but power was still low for N = 500 when either or

both the by2m1 path and bm2y1 path increased from 0.00 to 0.50.

Power increased less as effect size increased when either the by2m1 path or the
bm2y1 path was equal to 0.50 than when either by2m1 path or the bm2y1 path was equal
to 0.00 (interactions of effect size and by2m1 path, b =-0.10, XZ (1, N =192,000) =
1,068.48, p < 0.05) and effect size and bm2y1 path, b =-0.10, ;(2 (1, N =192,000) =

1,047.38, p < 0.05). In general, power decreased when either the by2m1 path was equal
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t0 0.50 (b =-0.13, 4% (1, N = 192,000) = 1,828.92, p < 0.05) or the bm2y1 path was equal

t0 0.50 (b = -0.13, 4* (1, N = 192,000) = 1,976.48, p < 0.05).

Overall, power reached 0.80 or higher for N = 50 when the bm2y1 path and the
by2m1 path were equal to 0.00 for effect size 0.25, for N = 100 when either the bm2y1
path or the by2m1 path were equal to 0.50 for effect size 0.25, for N = 200 when either
the bm2y1 path or the by2m1 path was equal to 0.50 for effect size 0.09 or higher, for N =
500 when either the bm2y1 path or the by2m1 path was equal to 0.50 for effect size 0.09.
The only case when power reached 0.80 or higher and when both the bm2y1 path and the

by2m1 path were equal to 0.50 was for N = 500 and for effect size 0.25.
- Insert Figures 6 - 7 about here -
Cross-sectional.

Direct effect = 0.00. Because the cross-sectional model resulted in biased
estimates of the mediated effect, power results should be interpreted with caution. As
shown in Figure 8, as sample size and effect size increased simultaneously, the power to
detect the mediated increased substantially (interaction of sample size and effect size, b =
0.24, % (1, N = 384,000) = 10,063.63, p < 0.05). Power increased as effect size increased
faster for large sample sizes than small sample sizes. Power to detect the mediated effect
with the cross-sectional model increased as sample size increased (b = 0.32, * (1, N =
384,000) = 28,117.66, p < 0.05) and effect size increased (b = 0.51, ;(2 (1, N =384,000) =
62,557.86, p < 0.05). Overall, power reached 0.80 or higher for N = 50 when the effect
size was 0.25, for N = 100 when the effect size was 0.25, for N = 200 when the effect

size was 0.09 or higher, and for N = 500 when effect size was 0.09 or higher.
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- Insert Figure 8 about here -

Direct effect = 0.30. As shown in Figure 9, power decreased as stability
increased from 0.30 to 0.70 more for small sample sizes than large sample sizes
(interaction of sample size and stability, b = -0.10, * (1, N = 192,000) = 553.42, p <
0.05) and power decreased as stability increased from 0.30 to 0.70 more for small effect
sizes than large effect sizes (interaction of effect size and stability, b = -0.10, * (1, N =
192,000) = 897.22, p < 0.05). Power decreased as stability increased from 0.30 to 0.70 (b
=-0.11, #* (1, N = 192,000) = 1,108.92, p < 0.05). Overall, power reached 0.80 or higher
for N = 50 and stability equal to 0.30 for effect size 0.25, for N = 100 when effect size
was 0.25 regardless of stability (0.30 vs. 0.70), for N = 200 when effect size was 0.09 and
higher regardless of stability (0.30 vs. 0.70), and for N = 500 for effect size 0.09 or higher

regardless of stability (0.30 vs. 0.70).
- Insert Figure 9 about here -
Summary.

In summary, the power results for the ANCOVA, path analysis, and difference
score models were similar for direct effect equal to 0.00 and direct effect equal to 0.30
conditions. It was expected the ANCOVA and path analysis model results would be
similar because they are identical models with the exception that ANCOVA uses ordinary
least squares (OLS) to estimate model parameters whereas path analysis uses maximum

likelihood (ML) to estimate model parameters.
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All models achieved power of 0.80 or higher for some combinations of effect size
of the mediated effect and sample size. The ANCOVA and path analysis models
achieved power of 0.80 or higher with the lowest combination of effect size for the
mediated effect and sample size. The difference score model readily achieved power of
0.80 or higher as long as stability was equal to 0.70. The difference score model did not
achieve power of 0.80 or higher for any combination of effect size and sample size when
stability was equal to 0.30. The residualized change score model achieved power of 0.80
or higher unless both the bm2y1 path and the by2m1 path were equal to 0.50. When the
bm2y1 path and the by2m1 path were equal to 0.50, the residualized change score model
did not achieve power of 0.80 or higher regardless of effect size or sample size. The

cross-sectional model performed similarly to the ANCOVA and path analysis models.

ANCOVA vs. Cross-sectional. Because the cross-sectional model resulted in
biased estimates of the mediated effect, power results should be interpreted with caution.
When comparing the significance across models for some power analyses (e.g.,
ANCOVA vs. cross-sectional), the dependent variable was created by taking the absolute
value of the difference in conclusions each model reached regarding statistical
significance of the mediated effect. For example, for each model, the dependent variable
was ‘0’ for ‘non-significant mediated effect’ and ‘1’ for ‘significant mediated effect.
When comparing the performance of one model to another (e.g., ANCOVA vs. cross-
sectional) the absolute value of the difference of this value (0 or 1) for each model was
taken as the dependent variable to use for model comparisons of statistical significance of
the mediated effect. The coding scheme resulted in a variable that was coded ‘1 if, for

that particular observation, there was a difference in the statistical conclusion regarding
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the significance of the mediated effect across the two models and coded 0’ if, for that
particular observation, there was no difference in the statistical conclusion regarding the
significance of the mediated effect. The same procedure was followed for all
comparisons across models. These new variables were analyzed with logistic regression

analyses previously described in the type 1 error rates section.

As shown in Figure 10, there was an interaction of sample size and effect size on
the differences in power across the ANCOVA and cross-sectional model (b = -0.19, »* (1,
N = 384,000) = 10,497.68, p < 0.05). The cross-sectional model had more power than the
ANCOVA model for effect size of 0.01 for N = 50 to 500 and for effect sizes 0.03 and
0.05 for N =50. The ANCOVA model had more power than the cross-sectional model
across all other combinations of sample size and effect size. There were also main effects
of sample size (b = -0.11, »* (1, N = 384,000) = 4,357.81, p < 0.05) and effect size (b = -
0.14, »* (1, N = 384,000) = 7,308.63, p < 0.05) but these main effects were not interpreted
because there was no simple relation between either sample size or effect size and

differences in power across the two models.
- Insert Figure 10 about here -

Path Analysis vs. Cross-sectional. As shown in Figure 11, the cross-sectional
model had more power than the path analysis model for effect size of 0.01 for N =50 to
500 and for effect sizes 0.03 for N = 50 (interaction of sample size and effect size, b = -
0.19, »* (1, N = 384,000) = 10,481.10, p < 0.05). The path analysis model had more
power than the cross-sectional model across all combinations of sample size and effect

size. There were also main effects of sample size (b = -0.11, 5* (1, N = 384,000) =
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4,461.01, p < 0.05) and effect size (b = -0.14, »* (1, N = 384,000) = 7,442.22, p < 0.05)
but there was no simple relation between either sample size or effect size and the

differences in power across the two models.
- Insert Figure 11 about here -
Difference Scores vs. Cross-sectional.

Direct effect = 0.00. As shown in Figure 12 and Figure 13, there was an
interaction of effect size, stability, and by2m1 path (b = 0.10, »* (1, N = 384,000) =
3,099.08, p < 0.05) such that the cross-sectional model had more power than the
difference score model for all effect sizes and values of the by2m1 path when the stability
was 0.30. When stability increased to 0.70, the power for the cross-sectional model and
difference score model became more similar except for a discrepancy at effect size 0.15
and 0.25 for N =50, when the by2m1 path was equal to 0.00, and for effect size 0.15 for N

= 100.

As sample size (b = -0.10, »* (1, N = 384,000) = 2,709.765, p < 0.05) and stability
(b =-0.13, % (1, N = 384,000) = 6,778.41, p < 0.05) increased, the differences in power
across the difference score model and the cross-sectional model became less pronounced.
Overall, the differences in power between the two models was affected less by the
inclusion of the by2m1 path and became less discrepant as sample size and stability

increased.

- Insert Figures 12 - 13 about here -
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Direct effect = 0.30. As shown in Figure 14, when the direct effect was present
there was no longer an interaction of effect size, stability and the by2m1 path. Power
across the difference score model and the cross-sectional model did become less
discrepant for medium to large effect sizes as sample size increased (interaction of
sample size and effect size, b =-0.23, y* (1, N = 192,000) = 5,551.16, p < 0.05). The

difference in power across these models was almost zero for a small effect size (0.01).

The cross-sectional model had more power than the difference score model for all
effect sizes when stability was 0.30 but as stability increased to 0.70, the power for the
cross-sectional model and difference score model was almost identical (interaction of
effect size and stability, b = -0.13, * (1, N = 192,000) = 2,308.15, p < 0.05). In this case,
the difference score model had more power than the cross-sectional model for effect size
0.25 for N = 50. Overall, the difference in power between the difference score model and
the cross-sectional model became less discrepant for medium to large effect sizes as

sample size and stability increased.
- Insert Figure 14 about here -

Residualized Change scores vs. Cross-sectional. As shown in Figure 15, the
residualized change score model had more power than the cross-sectional model for
effect sizes 0.10 and 0.15 for N = 100, effect sizes 0.03, 0.05, and 0.15 for N = 200, and
for effect sizes 0.03 and 0.05 for N = 500 (interaction of sample size and effect size, b =
0.22, * (1, N = 384,000) = 11,984.99, p < 0.05). The cross-sectional model had more
power than the residualized change score model for all other combinations of sample size

and effect size. There were also main effects of sample size (b = -0.13, * (1, N =
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384,000) = 5,150.72, p < 0.05) and effect size (b = -0.11, y* (1, N = 384,000) = 4,330.22,
p < 0.05) but there was no simple relation between either sample size or effect size and

the differences in power across the two models.
- Insert Figure 15 about here —
Path analysis vs. Difference score.

Because the path analysis model and the ANCOVA model are identical models,
only comparisons between the path analysis model and the difference score model and
the residualized change score model were presented. The path analysis model was
treated as the “ideal” model to use as a benchmark for the other models because it
estimates all the parameters of the covariance structure in the pretest — posttest control

group design with a mediating variable.

Direct effect = 0.00. As shown in Figures 16 — 17, there was more discrepancy in
the power across the path analysis and difference score models when sample sizes were
small and stability was equal to 0.30 (interaction of sample size and stability, b = -0.10,
(1, N = 384,000) = 1,069.97, p < 0.05), more discrepancy in the power results for medium
to large effect sizes for small sample sizes (interaction of sample size and effect size, b =
-0.24, % (1, N = 384,000) = 5,326.53, p < 0.05), and more discrepancy in the power
results for medium to large effect sizes when the stability was equal to 0.30 (interaction

of effect size and stability, b = -0.15, * (1, N = 384,000) = 2,857.50, p < 0.05).

The discrepancy between the models decreased as both sample size (b = -0.14,

(1, N = 384,000) = 1,935.26, p < 0.05) and stability increased (b = -0.22, * (1, N =
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384,000) = 7,394.77, p < 0.05). The discrepancy between the model became more
extreme when the by2m1 path increased from 0.00 to 0.50 (b = 0.10, 5 (1, N = 384,000)
=1,539.44, p < 0.05). Overall, there is a large discrepancy in power across the path
analysis and difference score model for N = 50 — 100, when stability was equal to 0.30
and when the by2m1 path was equal to 0.50 for effect size 0.09 and higher. The
discrepancy between the models became less extreme as stability increased to 0.70 and
there was less discrepancy for N = 200 — 500 regardless of the value of the by2m1 path

and effect size.
- Insert Figures 16 — 17 about here —

Direct effect = 0.30. As shown in Figures 18 — 21, when the direct effect was
present, there was no longer an interaction between sample size and stability. All effects
that were present when the direct effect equaled 0.00 were present with the addition of an
interaction of the bm2y1 path and the by2m1 path (b = -0.10, 5 (1, N = 192,000) =
406.04, p < 0.05) such that the discrepancy between the models was more pronounced
when the bm2y1 path was equal to 0.50 and the by2m1 path was equal to 0.50. There was
an interaction of effect size and the by2m1 path (b = 0.10, % (1, N = 192,000) = 493.51, p
< 0.05) such that the discrepancy was more pronounced for medium to large effect sizes
when the by2m1 path was equal to 0.50. There was a main effect of the by2m1 path (b =
0.13, 2 (1, N = 192,000) = 690.86, p < 0.05) but there was not a simple relation between
the by2m1 path and the differences in power across the two models. Overall, there was a
large discrepancy in power across the path analysis model and the difference score model

when stability was equal to 0.30 and either the bm2y1 path or the by2m1 path were equal
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to 0.50. As stability increased to 0.70, the discrepancy between the models virtually
disappeared for all combinations of effect size, sample size, and values of the bm2y1 path

and the by2m1 path.
- Insert Figures 18 — 21 about here —

Path analysis vs Residualized change score. Because the residualized change
score model resulted in biased estimates of the mediated effect, power results should be
interpreted with caution. As shown in Figures 22 — 23, the discrepancy between the path
analysis model and the residualized change score model was more pronounced for
medium to large effect sizes for small sample sizes than large sample sizes (interaction of
sample size and effect size, b = -0.24, »* (1, N = 384,000) = 3,513.36, p < 0.05). The
discrepancy between the models became less pronounced as sample size increased (b = -
0.19, * (1, N = 384,000) = 2,417.01, p < 0.05), as effect size increased (b = -0.12, * (1,
N = 384,000) = 1,095.76, p < 0.05), when the bm2y1 path decreased from 0.50 to 0.00 (b
=0.20, ¥* (1, N = 384,000) = 3761.27, p < 0.05) and when the by2m1 path decreased
from 0.50 to 0.00 (b = 0.09, »* (1, N = 384,000) = 813.10, p < 0.05). Overall, there was a
large discrepancy in power across the path analysis model and the residualized change
score model when either the bm2y1 path or the by2m1 path were equal to 0.50 for
medium to large effect sizes for N = 50 to 100. When the sample size increased to N =
200 and higher, there was only a discrepancy between the models when both the bm2y1

path and the by2m1 path were equal to 0.50 for medium to large effect sizes.
- Insert Figures 22 — 23 about here —

Summary.
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In summary, the power results across the ANCOVA and path analysis models
compared to the cross-sectional model were generally not discrepant except when the
effect size of the mediated effect was small (0.01). The power results across the
difference score model compared to the cross-sectional model were discrepant when
stability was equal to 0.30 and the by2m1 path was equal to 0.50. Any discrepancies
between these two models went away when stability increased to 0.70 and sample size
increased. The power results across the residualized change score model compared to the
cross-sectional model were discrepant for numerous values of effect size of the mediated
effect and across all sample sizes. Despite the discrepancy for numerous conditions, the
two models had similar power curves across all combinations of sample size and effect

size.

The power results across the path analysis model compared to the difference score
model were discrepant when stability was equal to 0.30 and either the bm2y1 path or the
by2m1 path was equal to 0.50. Any discrepancies between these models generally went
away as stability increased to 0.70 and sample size increased regardless of the value of
the bm2y1 path or the by2m1 path. The power results across the path analysis model
compared to the residualized change score model were discrepant when the bm2y1 path
or the by2m1 path was equal to 0.50. The discrepancies between these models went away

as sample size increased and as either the bm2y1 or the by2m1 path decreased to 0.00.

Ancillary Analyses

A comparison was made between the sample size needed to detect the mediated

effect of a given effect size to achieve power of 0.80 or greater from this simulation study
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and the sample size needed to detect a mediated effect to achieve power of 0.80 from
Fritz and MacKinnon (2007). As shown in Table 25, there was a general consensus with
the sample size and effect size combination that was needed to detect the mediated effect
with power of 0.80 or higher in this simulation study compared to the sample size and
effect size combination that was needed to detect a mediated effect with 0.80 power from
Fritz and MacKinnon (2007). One discrepancy occurs when the effect size of the
mediated effect was small (0.02 — 0.03). In this simulation study, when the effect size
was small (0.03) and sample size was equal to 500, the power to detect a significant
mediated effect with the cross-sectional model was 0.46. Fritz and MacKinnon (2007)
demonstrated that when the effect size of the mediated effect was small (0.02) a sample
size of 533 was required to detect a significant mediated effect. Therefore, the cross-
sectional estimate of the mediated effect is under-powered for small effect sizes when the

underlying model is a longitudinal mediation model.

A summary index was created that represented the percentage of times a mediated
effect was detected for each of the five models as a way to gauge the consensus regarding
the significance of the mediated effect across all five models. This index was created as a
five digit number with each digit representing one of the five models’ decision of
detecting a significant mediated effect (i.e., labeled ‘1”) or not detecting a significant
mediated effect (i.e., labeled ‘0”). The first digit in this index represented the path
analysis model, the second represented the ANCOVA model, the third represented the
residualized change score model, the fourth represented the difference score model, and
the fifth represented the cross-sectional model. For example, the first row of Table 26 is

the five digit number ‘00000’ with percent equal to 36.18% which indicates that all five
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models reached the same conclusion of not detecting the mediated effect 36.18% of time.
The second row is the five digit number ‘00001’ with percent of occurrence of 3.79%
which indicates that less than 4% of the time the only model that indicated a significant

mediated effect was the cross-sectional model.

For all models, the same conclusion of not detecting a mediated effect (36.18%)
and the same conclusion of detecting the mediated effect (29.29%) was observed. The
difference score model was the only model that did not detect the mediated effect 10.84%
of the time. The residualized change score model was the only model that did not detect
the mediated effect 4.14% of the time. The cross-sectional model was the only model
that did not detect the mediated effect 3.81% of the time and it was the only model to
detect the mediated effect 3.79% of the time. Further, 3.47% of the time the residualized
change score and difference score models did not detect the mediated effect while the
other models did. Lastly, 1.09% of the time the cross-sectional and difference score
models did not detect the mediated effect while the other models did and 1.17% of the
time the cross-sectional and residualized change score models did not detect the mediated
effect while the other models did. Overall, there is a high percentage of occurrence of all
models reaching the same conclusion (65.47%) regarding detecting either a significant

mediated effect or a non-significant mediated effect.
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A two-dimensional plot was created using tetrachoric correlations between the
power of each of the five models. The dimension on the y-axis represents whether or not
the models estimated the stability of the mediator and outcome variables across time and
how they estimated the stability and the dimension on the x-axis represents how the
models that did not measure the stability were differentially affected by the stability. The
ANCOVA, path analysis, and residualized change score models all estimated the stability
of the mediator and outcome variables but they did so differently therefore they are
clustered close together and separated from the cross-sectional and difference score
models. The cross-sectional and difference score models were affected differently by
stability because neither the cross-sectional nor difference score model estimated the
stability and they each made different assumptions regarding the stability. For example,
the difference score model assumes that the stability is equal to 1.0 and we can think of
the cross-sectional model as assuming the stability is equal to 0.0 which explains why

each of these models are opposite each other on the dimension ‘Effect of stability’.

- Insert Figure 24 about here —

Summary

Overall, the best performing models were the ANCOVA and the path analysis

model in terms of type 1 error, bias, confidence interval coverage, and power. The
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difference score model performed well in terms of type 1 error, bias, confidence interval
coverage, and power but it never outperformed the ANCOVA or path analysis models.
The performance of the residualized change score and cross-sectional models were
negatively affected when the pretest correlation was non-zero between the mediator and
the outcome and when there were non-zero cross-lagged paths (by2m1 and bm2y1).
When the pretest correlation was zero and the cross-lagged paths were zero, the
performance of the residualized change score and cross-sectional models were
comparable to the ANCOVA and path analysis models in this simulation but these
models (residualized change score and cross-sectional) did not consistently outperform

the ANCOVA and path analysis models.

Discussion

The aim of this project was to compare four common longitudinal models and the
cross-sectional model for assessing the mediated effect in the pretest — posttest control
group design. The main conclusion of this project is that the only models that were not
biased, did not have inflated Type 1 error rates, and had high empirical power were the
ANCOVA and path analysis models. Recall the effect size of the mediated effect in this
project was the product of the effect size of the coefficient relating the treatment to the
mediator at posttest and the coefficient relating the mediator at posttest to the outcome at
posttest adjusting for all other effects in the model. The effect sizes for each of the
coefficients were picked to reflect small, medium, and large effects in the correlation
metric with the effect size of the mediated effect being the product of these effect sizes.
When the sample size was small (N = 50), the ANCOVA and path analysis models

reached 0.80 or higher when the effect size of the mediated effect was 0.25 (which
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corresponds to a large effect for both the am2x and by2m2 paths). When the sample size
was slightly larger (N = 100), the ANCOVA and path analysis models reached 0.80 when
the effect size of the mediated effect was 0.15 (which corresponds to a medium and large
effect size for either the am2x or by2m2 path). Finally, when the sample size was large
(N =200 to N =500), the ANCOVA and path analysis models reached 0.80 power when
the effect size of the mediated effect was 0.09 (which corresponds to medium effects for

both the am2x and by2m2 paths) or higher.

The ANCOVA and path analysis models performed the best because they
estimated every parameter of the covariance structure for mediation in the pretest —
posttest control group design. That is, these models took into account the pretest
correlation between the mediator and the outcome, the stability of the mediator and the
outcome, and any cross-lagged relations between the pretest measures and the posttest
measures. Further, the ANCOVA and path analysis models performed the best because
they most closely matched the data-generating model of this simulation study.
Researchers should use either the ANCOVA or path analysis models when assessing the

mediated effect in the pretest — posttest control group design.

The difference score, residualized change score, and the cross-sectional model all
produced biased estimates of the mediated effect or had low empirical power for some
conditions of this simulation study. The difference score model was generally not biased
even when there was a pretest correlation and cross-lagged relations. Despite not
producing a biased estimate of the mediated effect, the difference score model did not

have as high empirical power as did the ANCOV A/path analysis model and the empirical
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power of the difference score model decreased as stability of the mediator and outcome
decreased. The residualized change score model and the cross-sectional model produced
biased estimates of the mediated effect when either of the cross-lagged paths were
present. The estimate of the mediated effect also became more biased when there was a
pretest correlation compared to when the pretest correlation was not present for the
residualized change and cross-sectional model. However, when the cross-lagged paths
and the pretest correlation was zero in the population model, the residualized change
score and cross-sectional models did not produce biased estimates of the mediated effect.
The residualized change score model had comparable power to the ANCOVA/path
analysis model when the pretest correlation and cross-lagged paths were zero. The cross-
sectional model had lower power than the ANCOVA/path analysis model except in a few
instances when the sample size was small and the effect size of the mediated effect was
small. The empirical power to detect the mediated effect with the cross-sectional model

decreased as stability of the mediator and outcome increased.

Because the difference score model did not produce a biased estimate of the
mediated effect and because type 1 error rates were not above the nominal 0.05 alpha
level, a researcher could estimate the mediated effect with the difference score model and
have empirical power similar to the ANCOVA or path analysis models as long as the
stability of the mediator and outcome is high. The residualized change score model
requires that more conditions are met in order for unbiased estimation of the mediated
effect and empirical power similar to the ANCOVA and path analysis models. If there is
no pretest correlation and no cross-lagged relations, a researcher could estimate the

mediated effect with the residualized change score model and produce an unbiased
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estimate of the mediated effect with comparable albeit lower power than the
ANCOVA/path analysis model. In order for the cross-sectional model to unbiasedly
estimate the mediated effect in the pretest — posttest control group design, similar
conditions are needed. The mediated effect will not be biased using the cross-sectional
model when there are no cross-lagged paths and when there is no pretest correlation
between the mediator and the outcome. Additionally, the power to detect the mediated
effect with the cross-sectional model will be comparable to the power to detect the
mediated effect using the ANCOVA/path analysis model if the pretest correlation and
cross-lags are zero and if stability of the mediator and outcome is low. Given a pretest —
posttest control group design with low stability of the mediator and outcome, no pretest
correlation, and no cross-lagged relations, a researcher could estimate the mediated effect
with the cross-sectional model and have empirical power comparable to the ANCOVA or

path analysis models and have an unbiased estimate of the mediated effect.

Although there exist conditions for which a researcher could estimate the
mediated effect for all the models mentioned, it is not recommended for researchers to
use the difference score, residualized change score, or cross-sectional models when
estimating mediated effects in the pretest — posttest control group design because there
were no conditions for which these models outperform the ANCOVA/path analysis
model. Also, it may be difficult to find evidence of these conditions in sample data
(especially with small samples) so either the ANCOVA or the path analysis model would

be the best model for this research design.
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The results provide practical insight about the conditions needed when using the
cross-sectional, difference score, and residualized change score models. That is, when
researchers use the cross-sectional, difference score, or residualized change score model
to estimate mediated effects in the pretest — posttest control group design, there are
additional conditions that need to be met regarding the relation between the pretest
measures of the mediator and outcome variable and conditions that need to be met
regarding the relations between the pretest measures and the posttest measures of the
mediator and outcome variables. These additional conditions may be untenable but if
they are satisfied, then the estimation of mediated effects can be unbiased and have

empirical power similar to the ANCOVA or path analysis models.

Implications

Researchers can apply several different models when assessing mediated effects
in the pretest — posttest control group design including the cross-sectional model, the
difference score model, the residualized change score model, ANCOVA, and path
analysis. Given the findings of this study, anytime researchers use the cross-sectional
model (Jouriles et al., 2010), the difference score model (Hofmann, 2004; Jansen et al.,
2012; MacKinnon et al., 1991), or the residualized change score model (Cole, et al.,
2003; Miller, et al., 2002; Reid & Aiken, 2013) they are making assumptions about the
conditions that need to be met regarding the relations between the pretest variables and
any cross-lagged relations across time. In general, the assumption is there are no
relations between the pretest variables or cross-lagged relations. When these conditions

are met the cross-sectional model and residualized change score model result in biased
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mediated effect estimates and low empirical power to detect the mediated effect even
when these conditions are met. The difference score model never resulted in biased
estimates of the mediated effect but it did have low empirical power in some case. If
researchers use the cross-sectional, change score, or residualized change score model,
they may be inadvertently missing true mediated effects that are present and they may be

reporting biased estimates of true mediated effects.

Previous research has expounded on the limitations of using cross-sectional data
to estimate mediated effects (Gollob & Reichardt, 1991; Maxwell & Cole, 2007,
Maxwell, Cole, & Mitchell, 2011). Cross-sectional estimates of mediated effects will
often be biased because they do not allow for mediating variables (M) to exert their
influence on outcome variables (), which presumably occurs over a specific period of
time. As time interval varies, so do estimates of mediated effects because estimates of
mediated effects depend on the time interval during which they are assessed. This study
confirms the general findings of previous literature regarding the bias of the cross-
sectional mediated effect as an estimate of a longitudinal mediated effect. The
implications of the findings of this study is that there are some conditions for which the
cross-sectional estimate of the mediated effect is unbiased (i.e., when there is no pretest
correlation or cross-lagged relations) and that there were no cases for which the cross-
sectional model ever resulted in type 1 error rates above the nominal 0.05 alpha level.
These implications build on previous research and provide a more detailed picture of
when the cross-sectional model will result in biased estimates of longitudinal mediated

effects and how this affects empirical power and type 1 error rates.
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Limitations

This project compared longitudinal models and the cross-sectional model in the
pretest — posttest control group design. Recall, the pretest — posttest control group design
involves the random assignment of units to either a treatment or a control group.
Successful randomization of units to groups in this experimental design ensures that any
pre-existing differences between the units in the treatment and control groups are due to
chance and do not reflect systematic differences. Therefore, the results of this project do
not necessarily extend to situations for which there are systematic pre-existing

differences between the units in groups that are to be compared.

Previous research demonstrated the effect of the stability of X and M was an
important predictor of bias of the cross-sectional estimate of the mediated effect when
assessing longitudinal mediation processes such that bias of the mediated effect was
different when X was more stable than M compared to when M was more stable than X
(Maxwell & Cole, 2007; Maxwell, Cole, & Mitchell, 2011). This study only had one
measure of X because it corresponded to an experimental manipulation but the stability
of M and Y was varied in this project. The stability of M and Y was manipulated
simultaneously to the same value, so there were no conditions for which the stability of
M and the stability of Y were different from each other. Because stability of M and Y
was not varied separately, this project was unable to confirm similar findings regarding
the bias of the cross-sectional estimate of the mediated effect when variables in the model

have different stability values from one another.
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This project assumed that the mediator variable and outcome variable were
measured without any measurement error. That is, it assumed the measures of the
mediator and outcome variable were perfectly reliable. This project also assumed that the
units randomized to the treatment and control groups fully adhered to the assigned
treatment condition. That is, this project assumed that there was complete treatment

compliance when assessing the mediated effect.

A critique of Monte Carlo simulation studies is that the results of the simulation
typically favor the model that was used to generate the simulated data. This is not
necessarily a limitation of this study. The data-generating model for this study was the
path analysis model because it was the most general model that could have been used to
generate data for this study. The cross-sectional, difference score, and residualized
change score models are each special cases of the path analysis model (when there is no
pretest correlation or cross-lagged relations present) which can each be estimated with
specific constraints put in place. Further, it would be impossible to generate data from a
purely cross-sectional model (i.e., only one time point of data generated) and be able to
estimate the parameters of the longitudinal models in this study (i.e., ANCOVA/path
analysis, difference score, and residualized change score). For example, it would be
impossible to estimate a pretest correlation between the mediator and outcome variable if

data were not generated for these pretest variables.

Recall, a fully-standardized logistic regression coefficient was used in the type 1
error, confidence interval coverage, and power analyses as a rough proxy for an effect

size measure. Standardized regression coefficients are generally not used as standardized
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measures of effect size but do allow all the predictors in a given analysis to be on the
same metric. Because standardized regression coefficients are not true standardized
effect size measures, it is possible the standardized regression coefficients did not detect
all of the practically significant effects in this study. To further explore this possibility, a
subset of the analyses were conducted using alternate measures of effect size including:
reduction in pseudo R? (Demaris, 2002), odds ratios (Fleiss & Berlin, 2009), and omega-
squared measure of effect size from an Ordinary Least Squares analysis. All these
methods reached the same conclusions regarding the practically significant effects in this
study. Although standardized regression coefficients are not generally used as
standardized measures of effect size, they seemed to perform similarly to more typical
standardized measures of effect size. ldeally, a more traditional measure of effect size
for binary outcomes (e.g., reduction in pseudo R? or odds ratios) would have been used at
the outset of this study instead of fully-standardized regression coefficients to determine
the practically significant effects but it does not seem that the results of this study would

have changed.
Future Directions

Future directions for this research directly extend from the limitations of this
project. The first future direction would be to compare the performance of the models
investigated in this project to the case for which there exist systematic pre-existing
differences between the groups of interest being compared. It is known from previous
research that ANCOVA and difference score models can lead to very different results

regarding change across two-waves of data (Jamieson, 1999; Kisbu-Sakarya,
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MacKinnon, & Aiken, 2013; Lord, 1967; Pearl, 2014; Wright, 2006) but further work is
needed in order to examine which of the four longitudinal models discussed in this
project would perform the best for estimating mediated effects when systematic pre-

existing differences exist.

Another direction of interest is the performance of these models for assessing the
mediated effect in the pretest — posttest control group design when the mediator and
outcome variable are not measured reliably. Unreliable measures of the mediator and
outcome variables can substantially bias estimates of the mediated effect in most cases
but the pattern of results can be complicated and even counter-intuitive in some cases
(Baraldi, Valente, & MacKinnon, 2014; Fritz, MacKinnon, & Kenny, 2014; Hoyle &

Kenny, 1999).

Another potential future direction would be to compare the longitudinal models
discussed in this project when there is treatment noncompliance in the pretest — posttest
control group design. Treatment noncompliance can lead to biased estimates of treatment
effects when using traditional statistical methods in experimental designs (Angrist,
Imbens, & Rubin, 1996; Efron & Feldman, 1991; Sagarin, et al., 2014). It is important to
see how the longitudinal models presented in this project perform with causal estimators
of the mediated effect in the pretest — posttest control group design when there is not

complete treatment compliance.

It is possible to extend the pretest — posttest control group design to more than
two waves of data (e.g., 3 or more waves of data) and have mediation effects across all

waves. The addition of more waves of data may complicate the estimation of mediation
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effects (Cole & Maxwell, 2003; MacKinnon, 1994; 2008). That is, all the assumptions
and effects regarding stability, timing of effects, and cross-lagged relations across two
waves of data will now apply across three or more waves of data. For example, if there
are three waves of data, there will be stability between the mediator and outcome at wave
1 and wave 2 and wave 2 and wave 3. The cross-lagged relations between wave 1 and
wave 2 will be extended to include cross-lagged relations between wave 2 and wave 3
and the estimate of the mediated effect will vary depending on the time at which it is
estimated. For example, when there are three waves of data including a pretest measure
prior to a treatment exposure, a researcher could estimate a cross-sectional mediated
effect at wave 2 and wave 3 separately and a researcher could estimate longitudinal
mediation effects from treatment exposure to mediator at wave 2 and outcome at wave 2,
mediator at wave 2 and outcome at wave 3, and mediator at wave 3 and outcome at wave
3. Also, similar to how the difference score and residualized change score models were
used in the pretest — posttest control group design to reduce the number of waves from
two to one, these models could be used in a design consisting of three waves of data to

reduce the number of waves from 3 to 2.

Generally, there are three autoregressive longitudinal models that a researcher
could consider when estimated longitudinal mediation effects which deserve further
investigation as outlined by MacKinnon (2008) and experimental designs that vary time
lags between units which allow for the estimation of the effects of varying time lags to
address not only how variables are related but when variables are related (Selig, Preacher,

Little, 2012).
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Finally, the longitudinal models discussed in this project all handled the pretest
information on the mediator and outcome variable in different ways (e.g., condition on it
or remove it via difference scores). There are additional ways derived from the potential
outcomes model of causal inference that would handle the pretest information in yet
different ways than the models discussed in this project. It is possible to remove the
effect of the pretest measures on the outcome variable at posttest through a series of
regression equations using Sequential G-estimation (Vansteelandt, 2009) or to inversely
weight observations based on pretest scores on the mediator and outcome using inverse
propensity weighting analyses (IPW; Coffman, 2011; Robins, Hernan, & Brumback,
2000). Both of these estimation techniques could provide new ways to unbiasedly

estimate the mediated effect in the pretest — posttest control group design.
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Table 1
All combinations of effect size adopted from
MacKinnon, Lockwood, and Williams

(2004)

a b c’
0 0 0

0 .10 0

0 .30 0

0 .50 0
.10 .10 0
.30 .30 0
.50 .50 0
.10 .30 0
.10 .50 0
.30 .50 0
.10 .10 .30
.30 .30 .30
.50 .50 .30
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Table 16
PRODCLIN 95% Confidence interval coverage of the
mediated effect for the ANCOVA model
N
50 100 200 500

95% C.I. 95% C.I. 95% C.I. 95% C.I.

Coverage Coverage Coverage Coverage
True Value

0 0.980 0.975 0.973 0.968
0.01 0.994 0.992 0.974 0.948
0.03 0.971 0.948 0.950 0.949
0.05 0.945 0.946 0.948 0.951
0.09 0.943 0.946 0.952 0.950
0.15 0.945 0.948 0.949 0.951
0.25 0.946 0.950 0.949 0.950
Table 17

PRODCLIN 95% confidence interval coverage of the
mediated effect for the Path analysis model
N
50 100 200 500
95% C.I. 95% C.I. 95% C.1. 95% C.I.
Coverage Coverage Coverage Coverage

True Value

0 0.975 0973 0972 0.955
0.01 0.992  0.990 0971 0.947
0.03 0.962 0945 0949 0.948
0.05 0.937 0942 0.947 0.950
0.09 0.933 0942 0936 0.949
0.15 0.937 0945 0.947 0.950
0.25 0.937 0946 0931 0.949
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Table 18

PRODCLIN 95% confidence interval coverage of the

mediated effect for the Difference score model

50
95% C.1.

N

100

95% C.1.
Coverage Coverage Coverage Coverage

200
95% C.I.

500
95% C.I.

True Value
0

0.01

0.03

0.05

0.09

0.15

0.25

0.986
0.991
0.983
0.970
0.955
0.956
0.948

0.980
0.983
0.971
0.962
0.950
0.952
0.948

0.974
0.971
0.963
0.957
0.951
0.950
0.950

0.966
0.954
0.953
0.950
0.948
0.950
0.950
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Table 23
PRODCLIN 95% confidence interval coverage of the mediated effect for the cross-
sectional model when Direct effect = 0.00

N
50 100 200 500
by2m1 by2m1 by2m1 by2m1
0 0.5 0 0.5 0 0.5 0 0.5
95% C.1. 95% C.I. 95% C.I. 95% C.I. 95% C.I. 95% C.I. 95% C.I. 95% C.I.
Coverage Coverage Coverage Coverage Coverage Coverage Coverage Coverage

True

Value

0 0.968 0.952 0.963 0.949 0.958 0.951 0.957 0.949
0.01 0.974 0.936 0.958 0.910 0.937 0.861 0.865 0.719
0.03 0.952 0.931 0.943 0.924 0.935 0.902 0.924 0.829
0.05 0.944 0.938 0.944 0.933 0.942 0.924 0.929 0.882
0.09 0.934 0.851 0.909 0.737 0.843 0.522 0.688 0.142
0.15 0.935 0.889 0.930 0.826 0.902 0.689 0.809 0.357
0.25 0.915 0.774 0.875 0.589 0.799 0.281 0.579 0.020
Table 24

PRODCLIN 95% confidence interval coverage of the mediated effect for the cross-
sectional model when Direct effect = 0.30

N
50 100 200 500
by2m1l by2m1 by2m1 by2m1
0 0.5 0 0.5 0 0.5 0 0.5
95% C.1. 95% C.1. 95% C.I. 95% C.I. 95% C.I. 95% C.I. 95% C.l. 95% C.I.
Coverage Coverage Coverage Coverage Coverage Coverage Coverage Coverage

True
Value
0.01 0.973 0.941 0.959 0.907 0.931 0.864 0.869 0.709
0.09 0.927 0.858 0.903 0.735 0.846 0.518 0.681 0.137
0.25 0.919 0.772 0.878 0.564 0.777 0.276 0.556 0.020
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Table 25

Comparison of sample size requirement for 0.80 power to detect the cross-
sectional mediated effect across current study and Fritz & MacKinnon (2007)

Study

Fritz & MacKinnon (2007) Current Simulation Study
N Effect size N Effect Size Observed
Empirical Power
57.5 0.23 50 0.25 0.84
105.0 0.15 100 0.15 0.72
124.5 0.10 100 - 200 0.09 0.61-0.92
402.5 0.05 200 -500 0.05 0.21-0.44
403.0 0.08 200 -500 0.09 0.92-0.99
533.0 0.02 500 0.03 0.46
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Table 26

Significance test summary indicator of the mediated effect for the five models

Power Percent Cumulative

Percent
00000 36.18 36.18
00001 3.79 39.97
00010 0.94 40.90
00011 0.99 41.89
00100 0.14 42.03
00101 0.14 42.17
00110 0.19 42.36
00111 0.14 42.50
01001 0.00 42.50
01010 0.00 42.50
01011 0.00 42.50
01100 0.00 42.50
01101 0.00 4251
01110 0.00 4251
01111 0.01 42.52
10000 0.29 42.82
10001 0.17 42.98
10010 0.05 43.03
10011 0.05 43.08
10100 0.03 43.11
10101 0.03 43.14
10110 0.03 43.17
10111 0.01 43.18
11000 3.01 46.19
11001 3.47 49.66
11010 1.17 50.83
11011 4.14 54.97
11100 1.09 56.06
11101 10.84 66.90
11110 3.81 70.71
11111 29.29 100.00

Note: Order of indicator is Path analysis, ANCOVA, res. change, diff. score, and cross-sectional
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Figure 1. Path diagram of pretest posttest control group design with mediating variable.
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Figure 2. Power plot of ANCOVA model mediated effect results by sample size and
effect size collapsed across all simulation conditions.
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Figure 3. Power plot of Path analysis model mediated effect results by sample size and
effect size collapsed across all simulation conditions.
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Figure 4. Power plot of difference score model mediated effect results by sample size,
effect size, and stability collapsed across all simulation conditions.
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Figure 5. Power plot of residualized change score model mediated effect results by
sample size, effect size, and bm2y1 path and direct effect = 0.00 collapsed across all
simulation conditions.
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Figure 6. Power plot of residualized change score model mediated effect results by effect
size, bm2y1 path, and by2m1 path for sample size N=50 and N = 100 and direct effect =
0.30 collapsed across all simulation conditions.
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Figure 7. Power plot of residualized change score model mediated effect results by effect
size, bm2y1 path, and by2m1 path for sample size N= 200 and N = 500 and direct effect =
0.30 collapsed across all simulation conditions.
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Figure 8. Power plot of cross-sectional model mediated effect results by sample size and
effect size for direct effect = 0.00 collapsed across all simulation conditions.
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Figure 9. Power plot of cross-sectional model mediated effect results by sample size,
effect size, and stability for direct effect = 0.30 collapsed across all simulation conditions.
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Figure 10. Power plot of ANCOVA vs. cross-sectional model mediated effect results by
sample size and effect size collapsed across all simulation conditions.
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Figure 11. Power plot of path analysis vs. cross-sectional model mediated effect results
by sample size and effect size collapsed across all simulation conditions.
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Figure 12. Power plot of difference score model mediated effect results by effect size,
stability, and by2m1 path for sample size N=50 and N = 100 and direct effect = 0.00
collapsed across all simulation conditions.
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Figure 13. Power plot of difference score model mediated effect results by effect size,
stability, and by2m1 path for sample size N= 200 and N = 500 and direct effect = 0.00
collapsed across all simulation conditions.
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Figure 14. Power plot of difference score vs. cross-sectional model mediated effect
results by effect size, sample size, and stability for direct effect = 0.30 collapsed across
all simulation conditions.
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Figure 15. Power plot of residualized change score vs. cross-sectional model mediated
effect results by sample size and effect size collapsed across all simulation conditions.
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Figure 16. Power plot of path analysis vs. difference score model mediated effect results
by sample size, effect size, stability and by2m1 path for N = 50 — 100 and direct effect =
0.00 collapsed across all simulation conditions.
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Figure 17. Power plot of path analysis vs. difference score model mediated effect results
by sample size, effect size, stability and by2m1 path for N = 200 — 500 and direct effect =
0.00 collapsed across all simulation conditions.
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Figure 18. Power plot of path analysis vs. difference score model mediated effect results
by sample size, effect size, stability, bm2y1 path, and by2m1 path for N = 50 and direct
effect = 0.30 collapsed across all simulation conditions.
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Figure 19. Power plot of path analysis vs. difference score model mediated effect results
by sample size, effect size, stability, bm2y1 path, and by2m1 path for N = 100 and direct
effect = 0.30 collapsed across all simulation conditions.
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Figure 20. Power plot of path analysis vs. difference score model mediated effect results
by sample size, effect size, stability, bm2y1 path, and by2m1 path for N = 200 and direct
effect = 0.30 collapsed across all simulation conditions.
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Figure 21. Power plot of path analysis vs. difference score model mediated effect results
by sample size, effect size, stability, bm2y1 path, and by2m1 path for N = 500 and direct
effect = 0.30 collapsed across all simulation conditions.
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Figure 22. Power plot of path analysis vs. residualized change score model mediated
effect results by sample size, effect size, bm2y1 path, and by2m1 path for N = 50 — 100
collapsed across all simulation conditions.

121



=200 M =200 M =200 M =200

bm2yl1 =0 bm2yl =0 bm2yl =05 bm2y1 =05
by2m1 =0 by2m1 =05 by2m1 =0 by2m1 =05
1.00
073 -
050
025
0.00
T
DE_ M =500 M =500 M =7500 M =300
bm2yl =0 bm2yl =0 bm2yl =05 bm2yl1=0.5
bya2m1 =0 by2m1 =05 by2m1 =0 by2m1 =05
1.00
075
050
025
0.00

001 010019 001 010019 001 010019 001 0100129

Effect size
Path Analysis = = = Res. Change

Figure 23. Power plot of path analysis vs. residualized change score model mediated
effect results by sample size, effect size, bm2y1 path, and by2m1 path for N = 200 — 500
collapsed across all simulation conditions.
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Figure 24. Multidimensional scaling using tetrachoric correlations to categorize the
power to detect the mediated effect for the five models on two dimensions.
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APPENDIX A

LIST OF VARIABLE NAMES AND DESCRIPTIONS
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Variable Description
X Treatment
M, Pretest Mediator
Y1 Pretest Outcome
M, Posttest Mediator
Y, Posttest Outcome
Awm Mediator difference score
Ay Outcome difference score
Rm Mediator residualized change
score
Ry Outcome residualized change
score

125



APPENDIX B

LIST OF MODEL COEFFICIENTS AND DESCRIPTIONS
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Coefficient

Description

Amax Effect of treatment X on posttest
mediator M, adjusting for M; and Y4
Smam1 Pooled within-group stability of
mediator
Sm2mitotal Stability of mediator ignoring group
information
Bmoy1 Effect of pretest outcome Y1 on posttest
mediator M, adjusting for X and M;
¢ yax Effect of treatment X on posttest
outcome Y adjusting for Y3, Y>, and M,
Syay1 Pooled within-group stability of outcome
Syayitotal Stability of outcome ignoring group
information
Byom1 Effect of pretest mediator M; on the
posttest outcome Y adjusting for X, Y7,
and M,
By2m2 Effect of posttest mediator M, on posttest
outcome Y, adjusting for X, Y1,and M;
By1m1 Effect of pretest mediator M, on pretest
outcome Y,
ay Effect of treatment X on the mediator
difference score
b, Effect of the mediator difference score
on the outcome difference score
adjusting for X
¢’y Effect of the treatment X on the outcome
difference score adjusting for mediator
difference score
aR Effect of treatment X on the mediator
residualized change score
br Effect of the mediator residualized
change score on the outcome
residualized change score adjusting for X
cr Effect of the treatment X on the outcome

residualized change score adjusting for
mediator residualized change score

Note. byim1 appears in the data generating model figure but was simulated to be
equivalent to a pretest correlation between the mediator and the outcome.
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APPENDIX C

SAS MACRO FOR DATA-GENERATION
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libname DATAGEN "F:\ASU\Sims\";
TITLE 'DATA GENERATION OF TWO-WAVE MEDIATION';
OPTIONS PS=59 LS=80 REPLACE NONOTES;

*The following two lines of code stop the SAS log
from being saved over iterations of the macro program;

FILENAME NULLOG DUMMY 'C:\NULL';
PROC PRINTTO LOG=NULLOG;

PROC DATASETS LIBRARY=WORK KILL NOLIST; RUN;
$MACRO simulate (nsim, nobs,BMX, BYX, BYM,

aM1X, sm2ml, am2x,bm2y1,
bylml,cylx,cy2x,sy2yl,
by2ml,by2m2,varx,varml,
varm2,varyl,vary2,RELM1,

RELM2, RELY1l, RELY2,file,

TYPE, ERROR) ;

TITLE 'SIMULATION OF TWO-WAVE MEDIATION';
DATA DATAGEN.&FILE;

totaln=&NSIM*&NOBS;

DO I=1 TO totaln;

/*variances and covariances for relability - Reliability will not be
varied in this simulation!*/
Varx=0.25;

VarMl= (&aM1X**2) *VarX+ (&VarMl) **2;

CovXMl=g&aMlX*VarX;

CovXY1l=&cY1X*VarX+&bY1IM1*CovXMl;

CovXM2=&aM2X*VarX+&sM2M1 *CovXM1+&bM2Y1*CovXY1l;
CovXY2=6&cY2X*VarX+&SY2Y1*CovXY1l+&bY2M1*CovXM1+&bY2M2*CovXM?2 ;
CovMlYl=gaMlX*&cY1X*VarX+&aMl1X*&bYIM1l*CovXM1l+&bY1IM1*&VarMl*+*2;
CovM1IM2=&aM1X*&SM2M1 *CovXM1+&aM1X*&bM2Y1*CovXY¥1l+&aMlX*&aM2X*VarX+&SM2M1
*&VarMl+&bM2Y1*&bY1IM1*&VarM1**2;
CovM1Y2=6aM1X*&cY2X*VarX+&aM1lX*&SY2Y1*CovXY1+&aM1lX*&bY2M1 *CovXM1+&aM1X*
&bY2M2*CovXM2+&SY2Y1*&bYIMl*&VarM1l**2+&bY2M1 *&VarM1l**2+&bY2M2* & SM2M1 * &V
arM1**2+&bY2M2* &§bM2Y1*&bY1IM1 *&VarM1**2;
CovM2Y¥1=&aM2X*&bYIM1*CovXM1+&aM2X*&cY1X*VarX+&SM2M1 *&bY1M1 *VarMl+&SM2M1
*&CY1X*CovXM1+&bM2Y1*&bYIMI*CovM1Y1+&bM2Y1*&cY1X*CovXY1+&bOM2Y1* (&VarYl)
**2;

VarYl=(&cY1X**2) *VarX+2*&cY1X*gbY1M1*CovXMl+ (&bY1IM1**2) *VarMl+ (&Varyl) *
*2;

VarM2= (&SM2M1**2) *VarM1l+2*&SM2M1 *&§bM2Y1*CovM1Y1+2* §SM2M1 * §aM2X*CovXM1+ (
&DOM2Y1**2) *VarY1+2*&bM2Y1*&aM2X*CovXY1l+ (&aM2X**2) *VarX+ (&VarM2) **2;
VarY2=(&CcY2X**2) *VarX+2*&cY2X*&SY2Y1*CovXY1+2*&cY2X*&bY2M1*CovXM1+2*&cY
2X*&DPY2M2*CovXM2+ (&SY2Y1**2) *VarY1+2*&SY2Y1*&bY2M1*CovM1Y1+2*&SY2Y1*&bY
2M2*CovM2Y1+

(&bY2M1**2) *VarM1+2*&bY2M1 *&bY2M2*CovM1IM2+ (&bY2M2**2) *VarM2+ (&Var¥Y2) **2

’
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CovM2Y2=&SM2M1*&cY2X*CovXM1+&SM2M1*&SY2Y1*CovM1Y1+&SM2M1 *&b¥Y2M1 *VarMl+&
SM2M1* &bY2M2*CovM1IM2+&bM2Y1*&cY2X*CovXY1+&bM2Y1*&SY2Y1*VarY1l+&bM2Y1*&bY
2M1*CovM1Y1+

&M2Y1*&bY2M2*CovM2Y1+&aM2X* &cY2X*VarX+&aM2X*&SY2Y1*CovXY1+&aM2X*&bY2M1
*CovXM1+&aM2X*&b¥Y2M2*CovXM2+&bY2M2* (&VarM2) **2;
CovY1lY2=&cY1X*&SY2Y1*CovXY1+&cY1X*&bY2M1*CovXMl+&CcY1X*&bY2M2*CovXM2+&CY
1X*&cY2X*VarX+&bY1IM1*&SY2Y1*CovM1lY1+&bYIM1 *&bY2M1 *VarM1l+&bY2M2*&bY1M1 *C
ovM1M2+
SLYIM1*&cY2X*CovXM1+&bY2M2*&bM2Y1* (&VarYl) **24+&SY2Y1* (&VarYl) **2;

/*model variables*/

X=&varx*rannor (0); IF X LT O THEN X=0; IF X GT 0 THEN X=1;
Mlt=&varml*rannor (0) ;

Varmle= (Varml/&RELM1) -Varml;

Mle=sqgrt (varmle) *rannor (0) ;

Ml=mlt+mle;
M2T=&bm2yl*yl+&sm2ml*ml+&am2x*x+&varm2*rannor (0) ;

VarM2e= (VarM2/&RELM2) -VarM2;

M2e=sqgrt (varm2e) *rannor (0) ;

M2=M2T+M2e;

Y1T=6¢bylml*ml+&varyl*rannor (0) ;
Varyle=(varyl/&RELY1l) -varyl;

Yle=sqgrt (varyle) *rannor (0) ;

Y1=Y1T+Y1le;
Y2T=&Ccy2x*x+6&sy2yl*yl+&by2ml*ml+&by2m2*m2+&vary2*rannor (0) ;
Vary2e=(Vary2/&RELY2) -Vary2;

Y2e=sqrt (vary2e) *rannor (0) ;

Y2=Y2T+y2e;

Mdiff=M2-M1;

Ydiff=Y2-Y1;

OUTPUT;

END;

drop yle ylt mle mlt yZ2e y2t m2e m2t varyle varmle vary2e varmZe;
run;

$SEND;

$MEND ;
run;

PROC DATASETS LIB=WORK NOLIST;

$simulate (nsim=10, nobs=200, BMX=0,BYX=0,BYM=0,
aM1X=0, sm2ml=.981, am2x=0,bm2yl=0, bylml=.578,
cylx=0, cy2x=0,sy2yl=.686, by2ml=.876,by2m2=0,
varx=1l,varml=1,varm2=1,varyl=1,vary2=1,
RELM1=1, RELM2=1, RELY1l=1, RELY2=1,
FILE=n200condl, TYPE='CCC',ERROR=1) ;

run; quit;
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APPENDIX D

FIGURE OF DATA-GENERATING MODEL
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APPENDIX E

ESTIMATED QUANTITIES AND MODEL CONDITIONS
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Conditions

Model Quantity Stability M-Y Y-M Pretest
Estimated Cross-lag Cross-lag correlation

ANCOVA amax *byomz  Equal across  None None None
groups

Path analysis  amax *byom2 Equal across None None None
groups

Difference ay *by Equalto 1 None None None

Score

Residualized ag *bg Equal across Equals 0 Equals 0 Equals 0

Change score groups

Cross- amax *Dyomz Equals 0 Equals 0 Equals 0 Equals 0

sectional

Note. The mediated effect estimated with the cross-sectional model consists of the same
path coefficients as the ANCOVA/path analysis model but ignores all pretest information
on M and Y when estimating these quantities.
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APPENDIX F

SAS MACRO FOR ANALYSIS OF ALL MODELS
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libname DATAGEN "E:\ASU\Sims\Two-wave model\Valente Masters
Sim\DATAGEN\";
libname DATAOUT "E:\ASU\Sims\Two-wave model\Valente Masters
Sim\DATAOUT";

FILENAME NULLOG DUMMY 'D:\NULL';

PROC PRINTTO LOG=NULLOG;

PROC DATASETS LIBRARY=WORK KILL NOLIST; RUN;
$MACRO ANALYZE (nsim,nobs,BMX,BYX,BYM,

aM1X, sm2ml, am2x,bm2y1,
bylml,cylx,cy2x,sy2yl,
by2ml,by2m2,varx, varml,
varm2,varyl,vary2,RELMI,

RELM2, RELY1l, RELY2,file,

TYPE, ERROR) ;

DATA SIM; SET DATAGEN.&FILE;

J=&nobs;

DO J=0 to totaln by &nobs;

IF 1+J<=I<=&NOBS+J then rep=1+(J/&nobs) ;
end;

run;

/***************************************************************/

/* */
/* PATH MODEL */
/* */

/***************************************************************/

PROC CALIS DATA=SIM METHOD=ML NORPINT PLC OUTEST=O0UT1 outstat=out2;
by rep;

LINEQS

M2=smZ2ml Ml + am2x X + bm2yl Y1+ EZ2,

y2=cy2x_ X + sy2yl vyl + by2ml M1l + by2m2 M2 + E3;

Cov

X M1,
X Y1,
M1 Y1;

STD
E2
E3

EE2,
EE3;

RUN;

*SAVING THE PARAMETER VALUES OF FROM THE PATH MODEL OUTPUT. PARAMETERS
ARE DENOTED WITH _ AT THE END OF THE NAME;

DATA CALPARMS; SET OUT1;

IF TYPE ="PARMS";

KEEP sM2M1 aM2X cY2X sY2Y1l DbY2M1 Dby2M2 ;

run;

*SAVING THE STANDARD ERRORS OF THE PARAMETERS FROM THE PATH MODEL
OUTPUT;

DATA CALSTDERR1; SET OUT1;
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IF TYPE ="STDERR"; SEsM2Ml = sM2Ml ;
KEEP SEsM2M1 _;

DATA CALSTDERR2; SET OUT1;

IF TYPE ="STDERR"; SEaM2X = aM2X ;
KEEP SEaM2X ;

DATA CALSTDERR3; SET OUT1;

IF _TYPE ="STDERR"; SECY2X = cY2X ;
KEEP SECY2X_ ;

DATA CALSTDERR4; SET OUT1;

IF TYPE ="STDERR"; SEsY2Yl = sY2Yl ;
KEEP SEsY2Yl ;

DATA CALSTDERR5; SET OUT1;

IF TYPE ="STDERR"; SEbY2Ml = bY2Ml ;
KEEP SEbY2M1 ;

DATA CALSTDERR6; SET OUT1;

IF _TYPE ="STDERR"; SEbY2M2 = bY2M2 ;
KEEP SEbY2M2_ ;

*MERGING THE STANDARD ERROR DATA SETS FOR EACH PARAMETER VALUE INTO ONE
DATASET;

DATA CALSTDERR; MERGE CALSTDERR1 CALSTDERR2 CALSTDERR3 CALSTDERR4
CALSTDERRS5 CALSTDERRG6;

RUN;

*SAVING THE COVARIANCES AND VARIANCES OF THE VARIABLES FROM THE PATH
MODEL OUTPUT. COVARIANCES DENOTED CV AND VARIANCES DENOTED VARI;
DATA CALISAA; SET OUTZ;

IF TYPE ="COV";IF NAME = "M1";CVXMl= X;
KEEP CVXM1;

DATA CALISAB; SET OUT2;

IF TYPE ="COV";IF NAME = "M2";CVXM2= X;
KEEP CVXM2;

DATA CALISAC; SET OUT2;

IF TYPE ="COV";IF NAME = "Y1";CVXyl= X;
KEEP CVXyl;

DATA CALISAD; SET OUT2;

IF TYPE ="COV";IF NAME = "Y2";CVXY2= X;

KEEP CVXY2;

DATA CALISAE; SET OUT2;

IF TYPE ="COV"; IF NAME ='Ml'; CVMIM2=M2;
KEEP CVM1M2;

DATA CALISAF; SET OUT2;

IF TYPE ="COV"; IF NAME ='M1'; CVMlYl=yl;
KEEP CVM1Y1;

DATA CALISAG; SET OUT2;

IF TYPE ="COV"; IF NAME ='Ml'; CVM1Y2=Y2;
KEEP CVM1Y2;

DATA CALISAH; SET OUT2;

IF TYPE ="COV"; IF NAME ='M2'; CVM2Yl=yl;
KEEP CVM2Y1;

DATA CALISAI; SET OUT2;

IF TYPE ="COV"; IF NAME ='M2'; CVM2Y2=Y2;
KEEP CVM2Y2;

DATA CALISAJ; SET OUT2;
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IF TYPE ="COV"; IF NAME ='Yl'; CVYlY2=Y2;
KEEP CVY1Y2;

DATA CALISAK; SET OUT2;

IF TYPE ='COV'; IF NAME ="X"; VARIX=X;
KEEP VARIX;

DATA CALISAL; SET OUT2;

IF TYPE ='COV'; IF NAME ="M1"; VARIM1=M1;
KEEP VARIMI;

DATA CALISAM; SET OUT2;

IF TYPE ='COV'; IF NAME ="M2"; VARIM2=M2;
KEEP VARIM2;

DATA CALISAN; SET OUT2;

IF TYPE ='COV'; IF NAME ="Y1"; VARIYl=yl;
KEEP VARIY1;

DATA CALISAO; SET OUT2;

IF TYPE ='COV'; IF NAME ="Y2"; VARIY2=Y2;
KEEP VARIY2;

*MERGING THE COVARIANCES AND VARIANCES OF THE VARIABLES FROM THE PATH
MODEL OUTPUT INTO ONE DATASET;

DATA CALCOV; MERGE CALISAA CALISAB CALISAC CALISAD CALISAE CALISAF
CALISAG CALISAH CALISAI CALISAJ

CALISAK CALISAL CALISAM CALISAN CALISAO;

RUN;

*COMPUTES CORRELATIONS BASED ON PATH MODEL OUTPUT;
DATA CALCORR; SET CALCOV;
CRXM1=CVXML1/ (SQRT (VARIX) *SQRT (VARIM1)) ;
CRXM2=CVXM2/ (SQRT (VARIX) *SQRT (VARIM2) ) ;
CRXY1=CVXY1l/ (SQRT (VARIX) *SQRT (VARIY1))
CRXY2=CVXY2/ (SQRT (VARIX) *SQRT (VARIY2)) ;
CRM1M2=CVM1M2/ (SQRT (VARIM1) *SQRT (VARIM?2) )
CRM1Y1=CVM1Y1l/ (SQRT (VARIM1) *SQRT (VARIY1))
CRM1Y2=CVM1Y2/ (SQRT (VARIM1) *SQRT (VARIY2)) ;
CRM2Y1=CVM2Y1/ (SQRT (VARIM2) *SQRT (VARIY1)) ;
( ( ) ( ))
( ( ) ( ))

’

’

’

CRM2Y2=CVM2Y2/ (SQRT (VARIM2) *SQRT (VARIY2
CRY1Y2=CVY1Y2/ (SQRT (VARIY1) *SQRT (VARIY2
RUN;

’

’

*THIS MERGES ALL THE OUTPUT FROM THE PATH MODEL OUTPUT INTO ONE
DATASET;
DATA CALIS; MERGE CALPARMS CALSTDERR CALCORR;

/*k*k**k*k**k*k**k*k*k*k**k*k**k*k**k*k*k*k*k*k*k**k*k**k*k**k*k*k*k**k*k**********************/

/* */
/* CHANGE SCORES */
/* */

/~k*k~k*k*k~k*k*k~k*k*k~k*k~k~k*k~k*k*k~k*k*k~k*k*k~k*k~k*k*k~k*k*k~k*k*k~k*k~k*k*k**********************/

/*ESTIMATING (DIFFM=X Y1) REGRESSION AND SAVING THE VALUES OF THE
COEFFICIENTS AND THEIR STANDARD ERRORS*/

PROC REG DATA=SIM OQUTEST=DiffFILEl COVOUT noprint; by rep; MODEL Mdiff=
X/;

DATA DiffA; SET DiffFILEl; IF TYPE ='PARMS'; aM2XDiff=X;
MSEAM2XDiff= RMSE * RMSE ;
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DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X;

KEEP aM2XDiff MSEAM2XDiff;

DATA DiffB; SET DiffFILE1;IF NAME ='X'; SEAM2XDiff=SQRT (X);
DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X;

KEEP SEAM2XDiff;

DATA DiffMODELl; MERGE DiffA DIffB;

*Estimating the (DiffY=X DiffM) REGRESSION AND SAVING THE VALUES OF THE
COEFFICIENTS AND THEIR STANDARD ERRORS;

PROC REG DATA=SIM OUTEST=DiffFILE2 COVOUT noprint; by rep; MODEL
Ydiff=X Mdiff/;

DATA DiffE; SET DiffFILE2;IF TYPE ='PARMS'; cY2XDiff=X;
MSECY2XDiff= RMSE * RMSE ;

DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X MDiff;

KEEP cY2Xdiff MSECY2Xdiff;

DATA DiffF; SET DiffFILE2;IF NAME ='X'; SECY2XDiff=SQRT (X) ;

DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X MDiff;

KEEP SECY2XDiff;

DATA DiffG; SET DiffFILE2;IF TYPE ='PARMS'; bY2M2Diff=Mdiff;
MSEBY2M2DIff= RMSE * RMSE ;

DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X MDiff;

KEEP bY2M2Diff MSEBY2M2Diff;

DATA DiffH; SET DiffFILE2;IF NAME ='Mdiff'; SEBY2M2Diff=SQRT (Mdiff);
DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X MDiff;

KEEP SEBY2M2Diff;

DATA DiffMODEL2; MERGE DiffE DiffF DiffG DiffH;

DATA DiffMODELS; MERGE DiffMODEL1 DiffMODELZ2;

/***************************************************************/

/* */
/* RESIDUALIZED CHANGE SCORES */
/* */

/***************************************************************/

/*MODEL COMPUTING AND SAVING RESIDUALIZED DIFFERENCE SCORE OF M1 AND
M2*/

PROC REG DATA=SIM noprint; by rep; MODEL M2=M1/;

output out=residl r=residm;

data rchangel;set residl;

keep residm x;

/*MODEL COMPUTING AND SAVING RESIDUALIZED DIFFERENCE SCORE OF Y1 AND
Y2*/

PROC REG DATA=SIM noprint; by rep; MODEL Y2=yl/;

output out=resid2 r=residy;

data rchange2;set resid2;

keep residy;

proc sort; by I;
data rchange; merge residl resid2; by I;

/*ESTIMATING (RESIDM2=X Y1) REGRESSION AND SAVING THE VALUES OF THE
COEFFICIENTS AND THEIR STANDARD ERRORS*/
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PROC REG DATA=rchange OUTEST=RFILE1l COVOUT noprint; by rep; MODEL
residm= X/;

DATA RA; SET RFILEl; IF TYPE ='PARMS'; aM2XRES=X;
MSEAM2XRES= RMSE * RMSE ;

DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X;

KEEP aM2XRES MSEAM2XRES;

DATA RB; SET RFILE1l;IF NAME ='X'; SEAM2XRES=SQRT (X) ;

DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X;

KEEP SEAM2XRES;

DATA RESMODEL1; MERGE RA RB;

*Estimating the (RESIDY2=X RESIDM2) REGRESSION AND SAVING THE VALUES OF
THE COEFFICIENTS AND THEIR STANDARD ERRORS;

PROC REG DATA=rchange OUTEST=RFILE2 COVOUT noprint; by rep; MODEL
RESIDY=X RESIDM/;

DATA RE; SET RFILEZ;IF TYPE ='PARMS'; cY2XRES=X;
MSECY2XRES= RMSE * RMSE ;

DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X RESIDM;
KEEP CcY2XRES MSECY2XRES;

DATA RF; SET RFILEZ;IF NAME ='X'; SECY2ZXRES=SQRT (X) ;

DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X RESIDM;
KEEP SECY2XRES;

DATA RG; SET RFILE2;IF TYPE ='PARMS';

bY2M2RES=RESIDM; MSEBY2M2RES= RMSE * RMSE ;

DROP MODEL ~NAME TYPE DEPVAR RMSE INTERCEP X RESIDM;
KEEP bY2M2RES MSEBY2MZ2RES;

DATA RH; SET RFILEZ;IF NAME ='residm'; SEBY2M2RES=SQRT (residm) ;
DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X RESIDM;
KEEP SEBY2M2RES;

DATA RESMODEL2; MERGE RE RF RG RH;

DATA RESMODELS; MERGE RESMODEL1 RESMODELZ2;

/*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k**********************/

/* */
/* LINEAR REGRESSION (ANCOVA) */
/* */

/*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k**********************/

*Estimating the (M1=X) regression and saving the value of aMlX and its
standard error;

/*PROC REG DATA=SIM OUTEST=FILEl COVOUT noprint; MODEL M1=X/;

DATA B; SET FILEL;IF TYPE ='PARMS'; aM1X=X; MSEM1X= RMSE * RMSE ;
DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X M1;

KEEP aM1X MSEMI1X;

DATA C; SET FILEl;IF NAME ='X'; SEAMIX=SORT (X) ;

DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X M1;

KEEP SEAMI1X;

DATA MODEL1l; MERGE B C; */

*Estimating the (M2=M1 X) regression and saving the value of sM2MI1,
aM2X, and their standard errors;

PROC REG DATA=SIM OUTEST=FILEZ2 COVOUT noprint; by rep; MODEL M2=M1 Y1
X/;
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DATA D; SET FILE2;IF TYPE ='PARMS'; sM2M1=M1; MSEM2Ml= RMSE * RMSE_;
DROP MODEL _NAME TYPE DEPVAR RMSE INTERCEP X Ml M2;

KEEP sM2M1 MSEM2M1;

DATA E; SET FILE2;IF NAME ='M1'; SESM2M1=SQRT (M1);

DROP MODEL _NAME TYPE DEPVAR RMSE INTERCEP X Ml M2;

KEEP SESM2M1;

DATA F; SET FILE2; IF TYPE ='PARMS'; aM2X=X;MSEAM2X= RMSE * RMSE_;
DROP MODEL _NAME TYPE DEPVAR RMSE INTERCEP X M1 M2;

KEEP aM2X MSEAM2X;

DATA G; SET FILE2;IF NAME ='X'; SEAM2X=SQRT (X);

DROP MODEL _NAME TYPE DEPVAR RMSE INTERCEP X Ml M2;

KEEP SEAM2X;

DATA H; SET FILE2; IF TYPE ='PARMS'; bM2Y1=Y1;MSEBM2Yl= RMSE * RMSE_;
DROP MODEL ~_NAME TYPE DEPVAR RMSE INTERCEP X Y1 M1 M2;

KEEP bM2Y1l MSEBM2Y1;

DATA I; SET FILE2; IF NAME ='yl'; SEBM2Y1=SQRT (yl);

DROP MODEL _NAME TYPE DEPVAR RMSE INTERCEP X Y1 M1 M2;

KEEP SEBM2Y1;

DATA MODEL2; MERGE D E F G H I;

*Estimating the (Y1=Ml) regression and saving the value of bYIMl and
its standard errors;

PROC REG DATA=SIM OUTEST=FILE3 COVOUT noprint; by rep; MODEL Y1=M1/;
DATA J; SET FILE3;IF _TYPE ='PARMS'; bYIM1=M1;MSEBYIMIl= RMSE * RMSE ;
DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP Ml Y1;

KEEP bY1M1 MSEBY1MI1;

DATA K; SET FILE3;IF NAME ='Ml'; SEBY1IMI=SQRT (M1);

DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP Ml Y1;

KEEP SEBY1M1;

/*DATA L; SET FILE3;IF _TYPE ='PARMS'; cY1X=X;MSECY1lX= RMSE * RMSE ;
DROP MODEL ~NAME TYPE DEPVAR RMSE INTERCEP X Ml Y1;

KEEP cY1X MSECY1X;

DATA M; SET FILE3;IF _NAME_:'X'; SECY1X=SQRT (X) ;

DROP MODEL ~NAME TYPE DEPVAR RMSE INTERCEP X Ml Y1;

KEEP SECY1X;*/

DATA MODEL3; MERGE J K;

*Estimating the (Y2=X Y1 M1l M2) regression and saving the value of
sM2M1, aM2X, bM2Y1l, and their standard errors;

PROC REG DATA=SIM OUTEST=FILE4 COVOUT noprint; by rep; MODEL Y2=X Y1 Ml
M2/;

DATA N; SET FILE4;IF TYPE ='PARMS'; cY2X=X;MSECY2X= RMSE * RMSE ;
DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X Y1 Y2 Ml M2;
KEEP cY2X MSECY2X;

DATA O; SET FILE4;IF NAME ='X'; SECY2X=SQRT (X);

DROP MODEL ~NAME TYPE DEPVAR RMSE INTERCEP X Y1 Y2 Ml M2;
KEEP SECY2X;

DATA P; SET FILE4;IF TYPE ='PARMS'; sY2Y1=Y1;MSESY2Yl= RMSE * RMSE ;
DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X Y1 M1 M2;

KEEP sY2Y1 MSESY2Y1;

DATA Q; SET FILE4;IF NAME ='Y1'; SESY2YI1=SQRT (Y1);

DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X Y1 M1 M2;

KEEP SESY2Y1;

DATA R; SET FILE4;IF TYPE ='PARMS'; bY2M1=M1;MSEBY2Ml= RMSE * RMSE ;
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DROP MODEL _NAME TYPE DEPVAR RMSE INTERCEP X Y1 Ml M2;
KEEP bY2M1 MSEBY2MI;

DATA S; SET FILE4;IF NAME ='M1'; SEBY2M1=SQRT (M1);

DROP MODEL _NAME TYPE DEPVAR RMSE INTERCEP X Y1 M1 M2;
KEEP SEBY2M1;

DATA T; SET FILE4;IF TYPE ='PARMS'; bY2M2=M2;MSEBY2M2= RMSE * RMSE _;
DROP MODEL _NAME TYPE DEPVAR RMSE INTERCEP X Y1 Ml M2;
KEEP DY2M2 MSEBY2M2;

DATA U; SET FILE4;IF NAME ='M2'; SEBY2M2=SQRT (M2);

DROP MODEL _NAME TYPE DEPVAR RMSE INTERCEP X Y1 M1 M2;
KEEP SEBY2M2;

DATA MODEL4; MERGE N O P Q R S T U;

/*Estimating various total effect of X on Y2 IN PROGRESS

PROC REG DATA=SIM OUTEST-FILE5 COVOUT noprint; MODEL Y2=X/;

DATA V; SET FILESL IF TYPE ='PARMS'; CX=X; MSECX= RMSE * RMSE ;
DROP MODEL ~NAME TYPE DEPVAR RMSE INTERCEP X Y2;

KEEP CX MSECX;

PROC REG DATA=SIM OUTEST-FILE5 COVOUT noprint; MODEL Y2=X/;

DATA W; SET FILESL IF NAME ='X'; SECX=SQRT (X);

DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X Y2;

KEEP SECX;

MODEL5; MERGE V W; */

/***************************************************************/

/* */
/* CROSS SECTIONAL MEDIATOR MODEL */
/* */

/***************************************************************/

*Estimating the (M2=X) regression and saving the value of a and its
standard error;

PROC REG DATA=SIM OUTEST=FILE5 COVOUT noprint; by rep; MODEL M2= X/;
DATA V; SET FILE5; IF TYPE ='PARMS'; a=X;MSEA= RMSE * RMSE ;

DROP MODEL ~_NAME TYPE DEPVAR RMSE INTERCEP X M2;

KEEP a MSEA;

DATA W; SET FILE5;IF NAME ='X'; SEA=SQRT (X);

DROP MODEL ~NAME TYPE DEPVAR RMSE INTERCEP X M2;

KEEP SEA;

DATA MODELS5; MERGE V W;

*Estimating the (Y2=X M2) regression and saving the value of ¢ b and
their standard errors;

PROC REG DATA=SIM OUTEST=FILE6 COVOUT noprint; by rep; MODEL Y2=X M2/;
DATA X; SET FILEG6;IF TYPE ='PARMS'; c=X; MSEC= RMSE * RMSE ;

DROP MODEL ~NAME TYPE DEPVAR RMSE INTERCEP X Y2 M2;

KEEP ¢ MSEC;

DATA Y; SET FILEG;IF _NAME ='X"; SEC=SQRT (X) ;

DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X Y2 M2;

KEEP SEC;

DATA Z; SET FILE6;IF TYPE ='PARMS'; b=M2;MSEB= RMSE * RMSE ;

DROP MODEL ~NAME TYPE DEPVAR RMSE INTERCEP X Y2 M2;

KEEP b MSEB;

DATA AA; SET FILEG;IF _NAME_:'MZ'; SEB=SQRT (M2) ;
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DROP MODEL _NAME TYPE DEPVAR RMSE INTERCEP X Y2 M2;

KEEP SEB;

DATA MODEL6; MERGE X Y Z AA;

*THIS MERGES ALL THE PREVIOUS REGRESSION,
PATH MODEL OUTPUT;

CHANGE SCORE,

RES CHANGE, AND

DATA ALL; MERGE MODELZ MODEL3 MODEL4 MODELS5 MODEL6 DIFFMODELS RESMODELS

CALIS;
RUN;

*THIS COMPUTES COVARIANCES OF VARIABLES VIA PROC CORR;

PROC CORR DATA=SIM cov nocorr OUTPUT=COV noprint;
var x ml m2 yl y2 YDIFF MDIFF;

DATA SA; SET COV;

IF NAME ='M1'; COVXM1=X;

KEEP COVXM1;

DATA SB; SET COV;

IF NAME ='M2'; COVXM2=X;

KEEP COVXM2;

DATA SC; SET COV;

IF NAME ='Y1l'; COVXY1l=X;

KEEP COVXY1l;

DATA SD; SET COV;

IF NAME ='Y2'; COVXY2=X;

KEEP COVXY2;

DATA SE; SET COV;

IF NAME ='M1'; COVMIM2=M2Z;

KEEP COVM1MZ2;

DATA SF; SET COV;

IF NAME ='M1'; COVMlYl=yl;

KEEP COVM1Y1;

DATA SG; SET COV;

IF NAME ='M1'; COVM1Y2=Y2;

KEEP COVM1Y2;

DATA SH; SET COV;

IF NAME ='M2'; COVM2Yl=yl;

KEEP COVM2Y1;

DATA SI; SET COV;

IF NAME ='M2'; COVM2Y2=Y2;

KEEP COVM2Y2;

DATA SJ; SET COV;

IF NAME ='Y1l'; COVYlY2=Y2;

KEEP COVYlY2;

DATA SK; SET COV;

IF TYPE ='STD'; VAX=X*X;

KEEP VAX;

DATA SL; SET COV;
IF TYPE ='STD';
KEEP VAMI1;

DATA SM; SET COV;
IF TYPE ='STD'; VAM2=M2*M2;

VAM1=M1*M1;
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KEEP VAM2;

DATA SN; SET COV;

IF TYPE ='STD'; VAYl=yl*yl;

KEEP VAY1;

DATA SO; SET COV;

IF TYPE ='STD'; VAY2=Y2*Y2;

KEEP VAY2;

DATA SP; SET COV;

IF TYPE ='STD'; VAYDIFF=YDIFF*YDIFF;
KEEP VAYDIFF;

DATA SQ; SET COV;

IF TYPE ='STD'; VAMDIFF=MDIFF*MDIFF;
KEEP VAMDIFF;

DATA SR; SET COV;

IF NAME ='Mdiff'; COVXMDIFF=X;

KEEP COVXMDIFF;

DATA SS; SET COV;

IF NAME ='vdiff'; COVXYDIFF=X;

KEEP COVXYDIFF;

DATA ST; SET COV;

IF NAME ='Ydiff'; COVMDIFFYDIFF=Mdiff;
KEEP COVMDIFFYDIFF;

RUN;

PROC CORR DATA=rchange cov nocorr OUTPUT=COV2 noprint; by rep;
var X RESIDM RESIDY;

DATA SU; SET COVZ2;

IF NAME ='residm'; COVXRESM=x;

KEEP COVXRESM;

DATA SV; SET COV2;

IF NAME ='residy'; COVXRESY=x;

KEEP COVXRESY;

DATA SW; SET COV2;

IF NAME ='residy'; COVRESMRESY=residm;
KEEP COVRESMRESY;

DATA SX; SET COVZ2;

IF NAME ='residy'; VARESY=residy;

KEEP VARESY;

DATA SY; SET COV2;

IF NAME ='residm'; VARESM=residm;

KEEP VARESM;

RUN;

*THIS MERGES ALL OF THE INDIVIDUAL COVARIANCE DATASETS INTO ONE
DATASET;

DATA SCOVS; MERGE SA SB SC SD SE SF SG SH SI SJ SK SL SM SN SO SP SQ SR
SS ST SU SV SW SX SY;

RUN;

*THIS COMPUTES THE CORRELATIONS FOR ALL THE VARIABLES VIA PROC CORR;
PROC CORR DATA=SIM OUTPUT=CORR noprint; by rep;

var x ml m2 yl y2;

DATA SAR; SET CORR;
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IF NAME ='Ml'; CORRXM1=X;
KEEP CORRXM1;

DATA SBR; SET CORR;

IF NAME ='M2'; CORRXM2=X;
KEEP CORRXM2;

DATA SCR; SET CORR;

IF NAME ='Yl'; CORRXYl=x;
KEEP CORRXY1;

DATA SDR; SET CORR;

IF NAME ='Y2'; CORRXY2=X;
KEEP CORRXY2;

DATA SER; SET CORR;

IF NAME ='M1'; CORRM1M2=M2;
KEEP CORRMIM2;

DATA SFR; SET CORR;

IF NAME ='Ml'; CORRMlYl=yl;
KEEP CORRM1Y1;

DATA SGR; SET CORR;

IF NAME ='M1'; CORRM1Y2=Y2;
KEEP CORRM1Y2;

DATA SHR; SET CORR;

IF NAME ='M2'; CORRM2Yl=yl;
KEEP CORRM2Y1;

DATA SIR; SET CORR;

IF NAME ='M2'; CORRM2Y2=Y2;
KEEP CORRM2Y2;

DATA SJR; SET CORR;

IF NAME ='Y1'; CORRY1Y2=y2;
KEEP CORRY1Y2;

RUN;

*THIS MERGES ALL THE INDIVIDUAL CORRELATION DATASETS INTO ONE DATASET;
DATA SCORRS; MERGE SAR SBR SCR SDR SER SFR SGR SHR SIR SJR;
RUN;

*P DENOTES POPULATION VALUE OF PARAMETER;
DATA TEST;SET ALL;
NSIM=&NSIM;
NOBS=&NOBS;
PaMl1X=&aM1X;
PsM2M1=&sM2M1;
PaM2X=&aM2X;
PbM2Y1=&bM2Y1;
PbY1Ml=&bY1M1;
PcY1X=6&cY1X;
PcY2X=6&cY2X;
PsY2Y1=&sY2Y1;
PbY2M1l=&bY2M1;
PbY2M2=&bY2M2;
VARX=&VARX;
VARM1=&VARMI1 ;
VARM2=&VARM?2 ;
VARY1=&VARY1;
VARY2=&VARY2;
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FILE=&FILE;
TYPE=&TYPE;
ERROR=&ERROR;

*The code below calculates the product of coefficients for all four
methods;

TRUEAB=PaM2X*PbY2M2;

AB=aM2X*b¥Y2M2;

AB =aM2X *bY2M2 ;

ABDIFF=aM2XDiff*bY2M2Diff;

ABRES=aM2XRES*bY2M2RES;

ABX=A*B;

*The code below computes the standard error for the product of the
coefficients for all four methods;

SEAB=SQRT ( (aM2X**2) * (SELY2M2**2) + (bY2M2**2) * (SEaM2X**2) ) ;

SEAB =SQRT ( (aM2X **2) * (SEbY2M2 **2)+ (bY2M2 **2)* (SEaM2X **2));
SEABDIFF=SQRT ( (aM2XDiff**2) * (SEbY2M2Diff**2) + (bY2M2Diff**2) * (SEaM2XDiff
**2));

SEABRES=SQRT ( (aM2XRES**2) * (SEDY2M2RES**2) + (bY2M2RES**2) * (SEaM2XRES**2) )

’

*The code below calculates empirical power of paths a, b, and c;
ZA=AM2X/SEAM2X;

PZA=1-PROBNORM (ABS (ZA) ) ;

SZA=0; IF PZA<=0.025 THEN SZA=1;

ZB=BY2M2/SEBY2M2;
PZB=1-PROBNORM (ABS (ZB) ) ;
SZB=0; IF PZB<=0.025 THEN SZB=1;

ZC=CY2X/SECY2X;
PZC=1-PROBNORM (ABS (ZC) ) ;
SZC=0; IF PZC<=0.025 THEN SzZC=1;

ZADIFF=AM2XDIFF/SEAM2XDIFF;
PZADIFF=1-PROBNORM (ABS (ZADIFF)) ;
SZADIFF=0; IF PZADIFF<=0.025 THEN SZADIFF=1;

ZBDIFF=BY2M2DIFF/SEBY2M2DIFF;
PZBDIFF=1-PROBNORM (ABS (ZBDIFF)) ;
SZBDIFF=0; IF PZBDIFF<=0.025 THEN SZBDIFF=1;

ZCDIFF=CY2XDIFF/SECY2XDIFF;
PZCDIFF=1-PROBNORM (ABS (ZCDIFF)) ;
SZCDIFF=0; IF PZCDIFF<=0.025 THEN SZCDIFF=1;

ZARES=AM2XRES/SEAM2XRES;
PZARES=1-PROBNORM (ABS (ZARES) ) ;
SZARES=0; IF PZARES<=0.025 THEN SZARES=1;

ZBRES=BY2M2RES/SEBY2M2RES;
PZBRES=1-PROBNORM (ABS (ZBRES) ) ;
SZBRES=0; IF PZBRES<=0.025 THEN SZBRES=1;
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ZCRES=CY2XRES/SECY2XRES;
PZCRES=1-PROBNORM (ABS (ZCRES) ) ;
SZCRES=0; IF PZCRES<=0.025 THEN SZCRES=1;

ZA_=AM2X_/SEAM2X_;
PZA =1-PROBNORM (ABS (ZA ) ) ;
SZA =0; IF PZA <=0.025 THEN SzZA =1;

ZB_=BY2M2_ /SEBY2M2_;
PZB_=1-PROBNORM (ABS (ZB ) ) ;
SzB_=0; IF PzB <=0.025 THEN SzB =1;

ZC_=CY2X_/SECY2X_;
PZC_=1-PROBNORM (ABS (2C_)) ;
SzC_=0; IF PzC_<=0.025 THEN SzC_=1;

*The following code computes bias and relative bias for the four
methods (PATH MODEL, RES. CHANGE, CHANGE, ANCOVA (REGRESSION), AND CROSS
SECTIONAL MODEL) ;
BA=AM2X-PAM2X;
BAR=BA/PAM2X;
B2A=BA*BA;
BADIFF=AM2XDIFF-PAM2X;
BADIFFR=BADIFF/PAM2X;
B2ADIFF=BADIFF*BADIFF;
BARES=AM2XRES-PAM2X;
BARESR=BARES/PAM2X;
B2ARES=BARES*BARES;

BA =AM2X -PAM2X;

BA R=BA /PAM2X;

B2A =BA *BA ;
BAX=A-PAM2X;
BAXR=BAX/PAM2X;
B2AX=BAX*BAX;
BB=BY2M2-PBY2MZ2;
BBR=BB/PBY2M2;
B2B=BB*BRB;
BBDIFF=BY2M2DIFF-PBY2M2;
BBDIFFR=BBDIFF/PBY2M2;
B2BDIFF=BBDIFF*BBDIFF;
BBRES=BY2M2RES-PBY2M2;
BBRESR=BBRES/PBY2M2;
B2BRES=BBRES*BBRES;

BB =BY2M2 -PBY2M2;

BB _R=BB_/PBY2M2;

B2B =BB *BB ;
BBX=B-PBY2M2;
BBXR=BBX/PBY2M2;
B2BX=BBX*BBX;
BC=CY2X-PCY2X;
BCR=BC/PCY2X;
B2C=BC*BC;
SDBC=BC/SECY2X;
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BCDIFF=CY2XDIFF-PCY2X;
BCDIFFR=BCDIFF/PCY2X;
B2CDIFF=BCDIFF*BCDIFF;
BCRES=CY2XRES-PCY2X;
BCRESR=BCRES/PCY2X;
B2CRES=BCRES*BCRES;
BC_=CY2X -PCY2X;
BC_R=BC_/PCY2X;
B2C_=BC_ *BC_;
BCX=C-PCY2X;
BCXR=BCX/PCY2X;
B2CX=BCX*BCX;
BAB=AB-TRUEAB;
BABR=BAB/TRUEAB;
B2AB=BAB**2;

BAB =AB -TRUEAB;

BAB R=BAB /TRUEAB;
B2AB =BAB **2;
BABX=ABX-TRUEAB;
BABXR=BABX/TRUEAB;
B2ABX=BABX*BABX;

*The following code computes confidence 95% C.I. coverage;
LaM2X=aM2X-1.96*SEaM2X; UaM2X=aM2X+1.96*SEaM2X;
LaM2Xdiff=aM2XDiff-1.96*SEaM2XDiff; UaM2XDiff=aM2XDiff+1l.96*SEaM2XDiff;
LaM2XRes=aM2XRes-1.96*SEaM2XRes; UaM2XRes=aM2XRes+1.96*SEaM2XRes;

LaM2X =aM2X -1.96*SEaM2X ; UaM2X =aM2X +1.96*SEaM2X ;

LbY2M2=bY2M2-1.96*SEbY2M2; UbY2M2=bY2M2+1.96*SEbY2M2;
LbY2M2diff=bY2M2Diff-1.96*SEbY2M2Diff;
UbY2M2Diff=bY2M2Diff+1.96*SEbY2M2Diff;
LbY2M2Res=bY¥2M2Res-1.96*SEbY2M2Res; UbY2M2Res=bY¥2M2Res+1.96*SEbY2M2Res;
LbY2M2 =bY2M2 -1.96*SEbY2M2 ; UbY2M2 =b¥Y2M2 +1.96*SEbY2M2 ;

LcY2X=cY2X-1.96*SEcY2X; UcY2X=cY2X+1.96*SEcY2X;
LcY2Xdiff=cY2XDiff-1.96*SEcY2XDiff; UcY2XDiff=cY2XDiff+1l.96*SEcY2XDiff;
LcY2XRes=cY2XRes-1.96*SEcY2XRes; UcY2XRes=cY2XRes+1l.96*SEcY2XRes;

LcY2X =cY2X -1.96*SEcY2X ; UcY2X =cY2X +1.96*SEcY2X ;

RGaM2X=0; LFaM2X=0; RGaM2XDiff=0; LFaM2XDiff=0; RGaM2XRes=0;
LFaM2XRes=0; RGaM2X =0; LFaM2X =0;

RGbY2M2=0; LFbY2M2=0; RGbY2M2Diff=0; LFbY2M2Diff=0; RGbY2M2Res=0;
LFbY2M2Res=0; RGbY2M2 =0; LFbY2M2 =0;

RGcY2X=0; LFcY2X=0; RGcY2XDiff=0; LFcY2XDiff=0; RGcY2XRes=0;
LFcY2XRes=0; RGcY2X =0; LFcY2X =0;

If PaM2X GT UaM2X then RGaM2X=1;

If PaM2X LT LaM2X then LFaM2X=1l;

If PaM2X GT UaM2XDiff then RGaM2XDiff=1;
If PaM2X LT LaM2XDiff then LFaM2XDiff=1;
If PaM2X GT UaM2XRes then RGaM2XRes=1;
If PaM2X LT LaM2XRes then LFaM2XRes=1;
If PaM2X GT UaM2X then RGaM2X =1;
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If PaM2X LT LaM2X then LFaM2X =1;

If PbY2M2 GT UbY2M2 then RGbY2M2=1;

If PbY2M2 LT LbY2M2 then LFbY2M2=1;

If PbY2M2 GT UbY2M2Diff then RGbY2M2Diff=1;
If PbY2M2 LT LbY2M2Diff then LFbY2M2Diff=1;
If PbY2M2 GT UbY2M2Res then RGbY2M2Res=1;
If PbY2M2 LT LbY2M2Res then LFbY2M2Res=1;
If PbY2M2 GT UbY2M2_ then RGbY2M2_=1;

If PbY2M2 LT LbY2M2_ then LFbY2M2_=1;

If PcY2X GT UcY2X then RGcY2X=1;

If PcY2X LT LcY¥2X then LFcY2X=1;

If PcY2X GT UcY2XDiff then RGcY2XDiff=1;
If PcY2X LT LcY2XDiff then LFcY2XDiff=1;
If PcY2X GT UcY2XRes then RGcY2XRes=1;
If PcY2X LT LcY2XRes then LFcY2XRes=1;
If PcY2X GT UCYZX_ then RGCYZX_=1;

If PcY2X LT LCYZX_ then LFCYZX_=1;

CVGaM2X=1- (RGaM2X+LFaM2X) ;
CVGaM2XDiff=1- (RGaM2XDiff+LFaM2XDiff) ;
CVGaM2XRes=1- (RGaM2XRes+LFaM2XRes) ;
CVGaM2X =1- (RGaM2X +LFaM2X );

CVGbY2M2=1- (RGbY2M2+LFbY2M2) ;
CVGbY2M2Diff=1- (RGbY2M2Diff+LFbY2M2Diff) ;
CVGbY2M2Res=1- (RGbY2M2Res+LFbY2M2Res) ;
CVGbY2M2 =1-(RGbY2M2 +LFbY2M2 ) ;

CVGcY2X=1- (RGCcY2X+LFcY2X) ;
CVGcY2XDiff=1- (RGcY2XDiff+LFcY2XDiff) ;
CVGcY2XRes=1- (RGcY2XRes+LFcY2XRes) ;
CVGcY2X =1- (RGCY2X +LFcY2X );

RUN;

/* This section computes the true variances and covariances for the
two-wave mediation model. X is group assigment and is

measured once, Ml is the mediator measured at Timel, M2 is the mediator
measured at Time2, Y1 is the outcome

measured at Timel, Y2 is the outcome measured at Time2. */

DATA TESTZ2; SET TEST;

VX=0.25;

VMl=(PaM1X**2) *VX+ (&VarMl) **2;

VMlpred= (PaM2X**2) *VX;

CXM1=PaM1lX*VX;

CXY1=PcY1X*VX+PbYIM1*CXM1;
CXM2=PaM2X*VX+PsM2M1*CXM1+PbM2Y1*CXY1;
CXY2=PcY2X*VX+PSY2Y1*CXY1+Pb¥2M1*CXM1+Pb¥Y2M2*CXM2 ;
CM1Y1=PaM1lX*PcY1X*VX+PaM1X*PbY1M1*CXM1+PbY1M1l*&VarMl**2;
CM1Ylpred=PaM1X*PcY1X*VX+PaM1X*PbYIM1*CXM1+PbY1M1;
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CM1IM2=PaM1X*PSM2M1*CXM1+PaM1X*PbM2Y1*CXY1+PaM1X*PaM2X*VX+PSM2M1*&VarM1l+
PbM2Y1*PbY1M1*&VarM1l**2;
CM1M2pred=PaM1X*PSM2M1*CXM1+PaM1X*PbM2Y1*CXY1+PaM1X*PaM2X*VX+PSM2M1 *&Va
rM1+PbM2Y1*PbY1M1;
CM1Y2=PaM1X*PcY2X*VX+PaM1X*PSY2Y1*CXY1+PaM1X*PbY2M1*CXM1+PaM1X*PbY2M2*C
XM2+PSY2Y1*PbY1IM1*&VarMl **2+PbY2M1* &VarMl **2+PbY2M2*PSM2M1 *&VarM1 **2+PDb
Y2M2*PbM2Y1*PbY1IM1*&VarMl**2;
CM2Y1=PaM2X*PbY1IM1*CXM1+PaM2X*PcY1X*VX+PSM2M1 *PbY1M1 *VM1+PSM2M1 *PcY1X*C
XM1+PbM2Y1*PbY1IM1*CM1Y1+PbM2Y1*PcY1X*CXY1+PbM2Y1* (&VarYl) **2;
CM2Ylpred=PaM2X*PbY1M1*CXM1+PaM2X*PcY1X*VX+PSM2M1*PbY1M1*VM1+PSM2M1 *PcY
1X*CXM1+PbM2Y1*PbYIM1*CM1Y1+PbM2Y1*PcY1X*CXY1+PbM2Y1;

RUN;

DATA TEST3; SET TESTZ2;

VY1=(PcY1X**2) *VX+2*PcY1X*PbY1IM1*CXM1+ (PbY1IM1**2) *VM1+ (&VarYl) **2;

VYlpred=(PcY1X**2) *VX+2*PcY1X*PbY1IM1*CXM1+ (PbY1IM1**2) *VM1;

VM2= (PSM2M1**2) *VM1+2*PSM2M1*PbM2Y1*CM1Y1+2*PSM2M1 *PaM2X*CXM1+ (PbM2Y1**

2) *VY1+2*PbM2Y1*PaM2X*CXY1+ (PaM2X**2) *VX+ (&VarM2) **2;

VY2=(PcY2X**2) *VX+2*PCcY2X*PSY2Y1*CXY1+2*PcY2X*PbY2M1*CXM1+2*PcY2X*PbY2M

2*CXM2+ (PSY2Y1**2) *VY1+2*PSY2Y1*PbY2M1*CM1Y1+2*PSY2Y1*PbY2M2*CM2Y1+
(POY2M1**2) *VM1+2*PbY2M1 *PbY2M2*CM1IM2+ (POY2M2**2) *VM2+ (&Var¥Y2) **2;

CM2Y2=PSM2M1*PcY2X*CXM1+PSM2M1*PSY2Y1*CM1Y1+PSM2M1*PbY2M1 *VM1+PSM2M1 *Pb

Y2M2*CM1IM2+PbM2Y1*PcY2X*CXY1+PbM2Y1*PSY2Y1*VY1+PbM2Y1*PbY2M1*CM1Y1+

PbM2Y1*PbY2M2*CM2Y1+PaM2X*PcY2X*VX+PaM2X*PSY2Y1*CXY1+PaM2X*PbY2M1 * CXM1 +
PaM2X*PbY2M2 *CXM2+PbY2M2* (&§VarM2) **2;
CY1Y2=PcY1X*PSY2Y1*CXY1+PcY1X*PbY2M1*CXM1+PcY1X*PbY2M2*CXM2+PcY1X*PcY2X
*VX+PbY1IM1*PSY2Y1*CM1Y1+PbY1M1*PbY2M1*VM1+PbY2M2*PbY1M1*CM1M2+
PbY1M1*PcY2X*CXM1+PbY2M2*PbM2Y1* (&§VarYl) **2+PSY2Y1* (&VarYl) **2;

VYDIFF=(VY2+VY1l)-2*CY1Y2;
VMDIFF= (VM2+VM1) -2*CM1M2;
CXYDIFF= (PcY2X-PcY1X) *VX+PSY2Y1*CXY1+ (PbY2M1-PbY1M1) *CXM1+PbY2M2*CXM2 ;
CXMDIFF= (PaM2X-PaM1X) *VX+PSM2M1 *CXM1+PbM2Y1*CXY1;
CMDIFFYDIFF= (PaM2X-PaM1X) * (PcY2X-PcY1X) *VX+ (PaM2X~
PaM1X) *PSY2Y1*CXY1+ (PaM2X-PaM1X) * (PbY2M1-PbY1M1) *CXM1+ (PaM2X~
PaM1X) *PbY2M2 * CXM2+

PSM2M1* (PcY2X~—
PcY1X) *CXM1+PSM2M1*PSY2Y1*CM1Y1+PSM2M1* (PbY2M1 -
PbY1M1) *VM1+PSM2M1 * PbY2M2 *CM1M2+PbM2Y1 * (PcY2X~
PcY1X) *CXY1+PbM2Y1*PSY2Y1*VY1+

PbM2Y1* (PbY2M1-PbY1M1) *CM1Y1+PbM2Y1*PbY2M2*CM2Y1 -
PbM2Y1* (§VARY1) **2+4PbY2M2* (§VARM2) **2-PSY2Y1*PbY1M1* (§VARM1) **2—
(PbY2M1-PbY1M1) * (§VARM1) **2—
PbY2M2* (PSM2M1* (§VARM1) **2+PbM2Y1*PbY1M1* (§VARML) **2) ;
CXRESM= (PaM2X*VX) +PbM2Y1*CXY1;
CRESMRESY=PaM2X*PcY2X*VX+PaM2X*PpbY2M1 *CXM1+PaM2X*PpbY2M2 * CXM2+PbM2Y1 *PcY
2X*CXY1+PbM2Y1*PbY2M1*CM1Y1+PbM2Y1*PbY2M2*CM2Y1+PbY2M2* (&VarM2) **2;
CXRESY=PCY2X*VX+PbY2M1 *CXM1+PbY2M2*CXM2 ;
VRESM=PaM2X* *2*VX+2*PaM2X*PbM2Y1*CXY1+PbM2Y1**2*VY1+ (§VARY2**2) ;
VRESY=PCY2X**2*VX+PcY2X*PbY2M1 *CXM1+PcY2X*PbY2M2*CXM2+PbY2M1 *PcY2X*CXM1
+PPY2M1 **2*VM1+PbY2M1 * PbY2M2 *CM1M2+PbY2M2 * PcY2X *CXM2+PbY2M2 * PbY2M1 *CM1M
24+PbY2M2**2*VM2+ (&VarY2) **2;
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/*USED TO CALCULATE MSE FOR M2 EQUATION AND Y2 EQUATION CORRESPONDING
TO TWO-WAVE MODEL*/

VM2PRED= (PaM2X**2) *VX+2*PaM2X*PSM2M1 *CXM1+ (PSM2M1**2) *VM1;
VY2PRED= (PCcY2X**2) *VX+2*PCcY2X*PSY2Y1*CXY1+2*PcY2X*PbY2M1*CXM1+2*PcY2X*P
PY2M2*CXM2+ (PSY2Y1**2) *VY1pred+2*PSY2Y1*PbY2M1*CM1Y1lpred+2*PSY2Y1*PbY2M
2*CM2Y1pred+

(PbY2M1**2) *VM1+2*PbY2M1 *PbY2M2*CM1M2pred+ (PbY2M2**2) *VM2pred;
RUN;

DATA TEST4; SET TEST3;
STDX=SQRT (VX) ;
STDM1=SQRT (VM1) ;
STDY1=SQRT (VY1) ;
STDM2=SQRT (VM2)
STDY2=SQRT (VY2) ;
STDMDIFF=SQRT (VMDIFF) ;
STDYDIFF=SQRT (VYDIFF) ;
STDMres=SQRT (VRESM) ;
STDYres=SQRT (VRESY) ;
RUN;

’

/*Zero-order correlations*/
DATA TESTS5; SET TEST4;
RXM1=CXM1/ (STDX*STDM1)
RXY1=CXY1/ (STDX*STDY1) ;
RXM2=CXM2/ (STDX*STDM2)
RXY2=CXY2/ (STDX*STDY2) ;
RM1Y1=CM1Y1/ (STDM1*STDY1) ;
RMI1M2=CM1M2/ (STDM1*STDM2) ;
RM1Y2=CM1Y2/ (STDM1*STDY2) ;
RM2Y1=CM2Y1/ (STDM2*STDY1)
RM2Y2=CM2Y2/ (STDM2*STDY2)
RY1Y2=CY1Y2/ (STDY1*STDY2) ;

RXMDIFF=cxmdiff/ (STDX*STDMDIFF) ;

RXYDIFF=cxydiff/ (STDX*STDYDIFF) ;

RMYDIFF=cmdiffydiff/ (STDMDIFF*STDYDIFF) ;

RXMres=cxresm/ (STDX*STDMres) ;

RXYres=cxresy/ (STDX*STDYres) ;

RMYres=cresmresy/ (STDMres*STDYres) ;

RUN;

/*First-Order partial correlations. Variable partialed out is at the
beginning of the variable name*/

DATA TEST6; SET TEST5;

’

(
(
(
(

’

m1RXY1=(RXY1- (RM1Y1*RXM1) )/ (SQRT (1-RM1Y1**2) *SQRT (1-RXM1**2)) ;
xRM1Y1=(RM1Y1- (RXM1*RXY1))/ (SQRT (1L-RXM1**2) *SQRT (L-RXY1**2)) ;
M1RXM2= (RXM2- (RXM1*RM1M2) ) / (SQRT (1-RXM1**2) *SQORT (1-RM1M2**2) ) ;
y1RXM2= (RXM2~- (RXY1*RM2Y1) )/ (SQRT (1-RXY1**2) *SQORT (1L-RM2Y1**2)) ;
y1RXY2= (RXY2~- (RXY1*RY1Y2) )/ (SQRT (1-RXY1**2) *SQRT (1L-RY1Y2**2)) ;
M2RXY2= (RXY2- (RXM2*RM2Y2) ) / (SQRT (1-RXM2**2) *SQRT (1-RM2Y2**2) ) ;
m1RY1M2= (RM2Y1- (RM1Y1*RMIM2)) / (SQRT (1-RM1Y1**2) *SQRT (1-RM1M2**2) ) ;
XRY1M2= (RM2Y1- (RXY1*RXM2) )/ (SQRT (L-RXY1**2) *SQRT (L-RXM2**2) ) ;
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xRM1IM2= (RM1M2~- (RXM1*RXM2) ) / (SQRT (1-RXM1**2) *SQRT (1-RXM2**2) ) ;
y1RMIM2= (RM1M2- (RM1Y1*RM2Y1) )/ (SQRT (1-RM1Y1**2) *SQRT (1-RM2Y1**2)) ;
xRM1Y2=(RM1Y2- (RXMI1*RXY2)) / (SQRT (1L-RXM1**2) *SQRT (1-RXY2**2)) ;
y1RM1Y2=(RM1Y2- (RM1Y1*RY1Y2))/ (SQRT (1-RM1Y1**2) *SQRT (1-RY1Y2**2)) ;
m2RM1Y2=(RM1Y2- (RMIM2*RM2Y2) ) / (SQRT (1-RM1IM2**2) *SQRT (1-RM2Y2**2)) ;
xRM2Y2= (RM2Y2~- (RXM2*RXY2) ) / (SQRT (1-RXM2**2) *SQRT (1-RXY2**2)) ;
y1RM2Y2= (RM2Y2- (RM2Y1*RY1Y2) )/ (SQRT (1-RM2Y1**2) *SQRT (1-RY1Y2**2)) ;
mlRM2Y2= (RM2Y2- (RM1IM2*RM1Y2) )/ (SQRT (1-RMIM2**2) *SQRT (1-RM1Y2**2) ) ;
xRY1Y2=(RY1Y2- (RXY1*RXY2)) / (SQRT (1-RXY1**2) *SQRT (1-RXY2**2)) ;
mlRY1Y2=(RY1Y2- (RM1Y1*RM1Y2) )/ (SORT (1-RM1Y1**2) *SQRT (1-RM1Y2**2)) ;
m2RY1Y2=(RY1Y2- (RM2Y1*RM2Y2) ) / (SQRT (1-RM2Y1**2) *SQRT (1-RM2Y2**2)) ;
mIRXY2= (RXY2~- (RXM1*RM1Y2) )/ (SQRT (1-RXM1**2) *SQRT (1-RM1Y2**2)) ;
y1RXM1=(RXM2- (RXY1*RM1Y1) )/ (SQRT (1-RXY1**2) *SQRT (1-RM1Y1**2)) ;
xRMYDiff=(RMYdiff- (RXMdiff*RXYdiff))/ (SQRT (1-RXMdiff**2) *SQRT (1-
RXYdiff**2));

/*Second-order partial correlations. Variables partialed out are at the
beginning of the variable name*/

mlylRXM2= (m1RXM2~- (m1RY1IM2*m1RXY1) )/ (SQRT (1-m1RYIM2**2) *SQRT (1-
m1IRXY1**2)) ;

mlylRXY2=(mlIRXY2- (M1RXY1*ml1RY1Y2))/ (SQRT (1-m1RXY1**2) *SQRT (1-
mlRY1Y2**2)) ;

yIM2RXY2= (y1RXY2- (y1IRXM2*y1RM2Y2) ) / (SQRT (1-y1RXM2**2) *SQRT (1-
y1IRM2Y2**2)) ;
mIm2RXY2=(m1RXY2- (m1RXM2*m1RM2Y2) )/ (SQRT (1L-m1RXM2**2) *SQRT (1-
m1RM2Y2**2)) ;

xy1RM1IM2= (xRMIM2- (xRM1Y1*xRY1M2) )/ (SQRT (1-xRM1Y1**2) *SQRT (1-
XRYIM2**2)) ;

xy1RM1Y2= (xRM1Y2- (xRM1Y1*xRY1Y2) )/ (SQRT (1-xRM1Y1**2) *SQRT (1-
XRY1Y2**2));

y1m2RM1Y2= (y1RM1Y2- (y1RMIM2*y1RM2Y2) ) / (SQRT (1-y1RMIM2**2) *SQRT (1-
y1RM2Y2**2)) ;

XM2RM1Y2= (xRM1Y2- (xRMIM2*xRM2Y2) ) / (SQRT (1-xRM1IM2**2) *SQRT (1-
XRM2Y2*%2)) ;

xm1RY1IM2= (xRY1IM2- (xRM1Y1*xRMIM2) )/ (SQRT (1-xRM1Y1**2) *SQRT (1-
xRM1IM2**2)) ;

xy1RM2Y2= (xRM2Y2- (xRY1IM2*xRY1Y2)) / (SQRT (1-xRY1M2**2) *SQRT (1-
XRY1Y2**2)) ;

xm1RM2Y2= (xRM2Y2- (xRMIM2*xRM1Y2) ) / (SQRT (1-xRM1M2**2) *SQRT (1-
XRM1Y2**2)) ;

y1mlRM2Y2= (y1RM2Y2- (y1RMIM2*y1RM1Y2) ) / (SQRT (1-y1RMIM2**2) *SQRT (1-
yIRM1Y2**2)) ;
xmlRY1Y2=(xRY1Y2- (xRM1Y1*xRM1Y2) )/ (SQRT (1-xRM1Y1**2) *SQRT (1-
XRM1Y2*%2)) ;
XmM2RY1Y2=(xRY1Y2- (xRYIM2*xRM2Y2) )/ (SQRT (1-xRY1IM2**2) *SQRT (1-
XRM2Y2**2)) ;
Mmlm2RY1Y2=(mlRY1Y2—- (m1RYIM2*m1RM2Y2) )/ (SQRT (1-m1RY1M2**2) * SQRT (1-
mMIRM2Y2**2)) ;

y1m2RXM1= (y1RXM1- (y1IRXM2*y1RMIM2) ) / (SQRT (1-y1RXM2**2) *SQRT (1-
y1IRMIM2*%*2)) ;

MIm2RXY1= (mlRXY1- (m1RXM2*m1RY1M2) )/ (SQRT (1-m1RXY1**2) *SQRT (1-
mlRY1IM2**2)) ;
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xM2RM1Y1= (xRM1Y1- (xRMIM2*xRY1IM2) )/ (SQRT (1-xRM1Y1**2) *SQRT (1-
xXRY1IM2**2)) ;

/*Third-order partial correlations. Variables partialed out are at the
beginning of the variable name*/

y1mlm2RXY2= (ml1ylRXY2- (m1ylRXM2*yI1m1RM2Y2) )/ (SORT (1-mly1RXM2**2) *SQRT (1-
yImIRM2Y2**2)) ;

y1xm2RM1Y2= (xy1RM1Y2- (xy1RMIM2*xy1RM2Y2) ) / (SQRT (1-xy1RMIM2**2) *SQRT (1-
xy1RM2Y2**2)) ;

xmIm2RY1Y2=(xmlRY1Y2- (xm1RY1IM2*xml1RM2Y2) )/ (SQRT (1-xml1RYIM2**2) *SQRT (1-
xmIRM2Y2**2)) ;
XmlleM2Y2=(xmlRM2Y2—(XmlRYlMZ*XmlRYlYZ))/(SQRT(I—XmlRYlMZ**Z)*SQRT(l—
xm1RY1Y2**2)) ;

/*True value of bY2M2 coefficient and product of AB under the
difference score model and residualized change score model*/
TrueBYMDiff=( (RMYdiff- (RXMdiff*RXYdiff))/ (1-

RXMdiff**2))* (stdydiff/stdmdiff) ;

TrueBYMRES= ( (RMYRES- (RXMRES*RXYRES) ) / (1-RXMRES**2) ) * (stdyres/stdmres) ;
TrueABDIFF=Pam2X*TrueBYMDiff;

TrueABRes=Pam2X*TrueBYMRES;

/*Bias of AB under the difference score and residualized change score
model*/

BBDiffalt=bY2M2diff-trueBymdiff;
BBDiffaltR=BBDiffalt/trueBymdiff;
B2BDiffalt=BBDiffalt**2;
LbY2M2diffalt=bY2M2Diff-1.96*SEbY2M2Diff;
UbY2M2Diffalt=bY2M2Diff+1.96*SEbY2M2Diff;
RGbY2M2Diffalt=0; LFbY2M2Diffalt=0;

If trueBYMDiff GT UbY2M2Diffalt then RGbY2M2Diffalt=1;
If trueBYMDiff LT LbY2M2Diffalt then LFbY2M2Diffalt=1;
CVGbY2M2Diffalt=1- (RGbY2M2Diffalt+LFbY2M2Diffalt) ;
BABDIFF=ABDIFF-TRUEABDiff;
BABDIFFR=BABRDIFF/TRUEABDiff;

B2ABDIFF=BABDIFF**2;

BABRES=ABRES-TRUEABRES;

BABRESR=BABRES/TRUEABRES;

B2ABRES=BABRES**2;

RUN;

/*Estimated partial correlations to test the analytic formulas*/
/*First-order partial correlations*/

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR X Y1;

PARTIAL MI1;

DATA PCl; SET CORRTEST; IF NAME = 'Y1'; mlCORRXY1=X;

KEEP ml1CORRXY1;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;
VAR M1 Y1;

PARTIAL X;

DATA PC2; SET CORRTEST; IF NAME = 'Y1'; xCORRM1Y1=MI;
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KEEP xCORRM1Y1;

PROC CORR DATA=SIM OUTPUT=CORRTEST
VAR X M2;

PARTIAL M1;

DATA PC3; SET CORRTEST;
KEEP ml1CORRXM2;

IF NAME =

PROC CORR DATA=SIM OUTPUT=CORRTEST
VAR X M2;

PARTIAL yl;

DATA PC4; SET CORRTEST;
KEEP yl1CORRXM?2;

IF NAME =

PROC CORR DATA=SIM OUTPUT=CORRTEST
VAR X Y2;

PARTIAL yl;

DATA PC5; SET CORRTEST;
KEEP y1CORRXY2;

IF NAME =

PROC CORR DATA=SIM OUTPUT=CORRTEST
VAR X Y2;

PARTIAL M2;

DATA PC6; SET CORRTEST;
KEEP m2CORRXY2;

IF NAME =

PROC CORR DATA=SIM OUTPUT=CORRTEST
VAR yl M2;
PARTIAL M1;
DATA PC7; SET CORRTEST; IF NAME =

KEEP ml1CORRY1M2;

PROC CORR DATA=SIM OUTPUT=CORRTEST
VAR yl M2;
PARTIAL X;
DATA PC8; SET CORRTEST; IF NAME =

KEEP xCORRY1M2;

PROC CORR DATA=SIM OUTPUT=CORRTEST
VAR M1 M2;

PARTIAL X;

DATA PC9; SET CORRTEST;
KEEP xCORRMI1M?2;

IF NAME =

PROC CORR DATA=SIM OUTPUT=CORRTEST
VAR M1 M2;

PARTIAL yl;

DATA PC10; SET CORRTEST;
KEEP y1CORRM1M?2;

PROC CORR DATA=SIM OUTPUT=CORRTEST
VAR M1 Y2;
PARTIAL X;

DATA PCl1l; SET CORRTEST;

IF NAME =

IF NAME =

NOPRINT; by rep;

'M2"'; ml1CORRXM2=X;

NOPRINT; by rep;

'M2"'; y1CORRXM2=X;

NOPRINT; by rep;

'Y2'; y1CORRXY2=X;

NOPRINT; by rep;

'Y2'; m2CORRXY2=X;

NOPRINT; by rep;

'M2"'; mlCORRY1M2=yl;

NOPRINT; by rep;

'M2'; xCORRY1M2=yl;

NOPRINT; by rep;

'M2'; xCORRM1M2=M1;

NOPRINT; by rep;

'M2"'; y1CORRMI1M2=M1;

NOPRINT; by rep;

'Y2'; xCORRM1Y2=M1;
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KEEP xCORRM1Y2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR M1 Y2;

PARTIAL yl;

DATA PCl12; SET CORRTEST; IF NAME = 'Y2'; ylCORRM1Y2=Ml;
KEEP y1CORRM1Y2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR M1 Y2;

PARTIAL M2;

DATA PC13; SET CORRTEST; IF NAME = 'Y2'; m2CORRM1Y2=Ml;
KEEP m2CORRM1Y2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;
VAR M2 Y2;

PARTIAL X;

DATA PCl4; SET CORRTEST; IF NAME = 'Y2'; xCORRM2Y2=M2;
KEEP xCORRM2Y2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR M2 Y2;

PARTIAL y1;

DATA PC15; SET CORRTEST; IF NAME = 'Y2'; ylCORRM2Y2=M2;
KEEP y1CORRM2Y2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR M2 Y2;

PARTIAL MI1;

DATA PCl6; SET CORRTEST; IF NAME = 'Y2'; mlCORRM2Y2=M2;
KEEP ml1CORRM2Y2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;
VAR yl Y2;

PARTIAL X;

DATA PCl17; SET CORRTEST; IF NAME = 'Y2'; xCORRY1lY2=yl;
KEEP xCORRY1Y2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR yl Y2;

PARTIAL MI1;

DATA PC18; SET CORRTEST; IF NAME = 'Y2'; mlCORRY1lY2=yl;
KEEP ml1CORRY1YZ2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR yl Y2;

PARTIAL M2;

DATA PC19; SET CORRTEST; IF _NAME = 'Y2'; m2CORRY1Y2=yl;
KEEP m2CORRY1Y2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;
VAR X Y2;

PARTIAL MI1;

DATA PC20; SET CORRTEST; IF NAME = 'Y2'; mlCORRXY2=X;
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KEEP ml1CORRXY2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;
VAR X M1;

PARTIAL M2;

DATA PC21; SET CORRTEST; IF NAME = 'M1'; m2CORRXMI1=X;
KEEP m2CORRXM1;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;
VAR X Y1;

PARTIAL M2;

DATA PC22; SET CORRTEST; IF NAME = 'Y1l'; m2CORRXY1=X;
KEEP m2CORRXY1;

/*Second-Order partial correlations*/

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR X M2;

PARTIAL M1 yl1;

DATA PC23; SET CORRTEST; IF NAME = 'M2'; mlylCORRXM2=X;
KEEP mlylCORRXM2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR X Y2;

PARTIAL M1 yl1;

DATA PC24; SET CORRTEST; IF NAME = 'Y2'; mlylCORRXY2=X;
KEEP mlylCORRXY2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR X Y2;

PARTIAL yl M2;

DATA PC25; SET CORRTEST; IF NAME = 'Y2'; yIm2CORRXY2=X;
KEEP y1lm2CORRXY2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR X Y2;

PARTIAL M1 M2;

DATA PC26; SET CORRTEST; IF NAME = 'Y2'; mlm2CORRXY2=X;
KEEP mlm2CORRXY2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR M1 M2;

PARTIAL X yl;

DATA PC27; SET CORRTEST; IF NAME = 'M2'; xylCORRMIM2=Ml;
KEEP xylCORRMIM?2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR M1 Y2;

PARTIAL X yl;

DATA PC28; SET CORRTEST; IF NAME = 'Y2'; xylCORRM1Y2=MI1;
KEEP xylCORRM1Y2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;
VAR M1 Y2;
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PARTIAL yl M2;
DATA PC29; SET CORRTEST; IF NAME = 'Y2'; ylm2CORRM1Y2=Ml;
KEEP ylm2CORRM1Y2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR M1 Y2;

PARTIAL X M2;

DATA PC30; SET CORRTEST; IF NAME = 'Y2'; xm2CORRM1Y2=Ml;
KEEP xm2CORRM1Y2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR yl M2;
PARTIAL X M1;
DATA PC31; SET CORRTEST; IF NAME = 'M2'; xmlCORRYIM2=yl;

KEEP xmlCORRY1M2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR M2 Y2;

PARTIAL X yl;

DATA PC32; SET CORRTEST; IF NAME = 'Y2'; xylCORRM2Y2=MZ2Z;
KEEP xylCORRM2Y2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR M2 Y2;

PARTIAL X M1;

DATA PC33; SET CORRTEST; IF NAME = 'Y2'; xmlCORRM2Y2=MZ2Z;
KEEP xmlCORRM2Y2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR M2 Y2;

PARTIAL Y1 M1;

DATA PC34; SET CORRTEST; IF NAME = 'Y2'; yImlCORRM2Y2=M2;
KEEP y1lmlCORRM2Y2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR yl Y2;
PARTIAL X Ml;
DATA PC35; SET CORRTEST; IF _NAME = 'Y2'; xmlCORRY1lY2=yl;

KEEP xmlCORRY1Y2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR yl Y2;
PARTIAL X M2;
DATA PC36; SET CORRTEST; IF _NAME = 'Y2'; xm2CORRY1lY2=yl;

KEEP xm2CORRY1Y2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR yl Y2;
PARTIAL M1 M2;
DATA PC37; SET CORRTEST; IF NAME = 'Y2';mlm2CORRY1Y2=yl;

KEEP mlm2CORRY1Y2;

/*Third-Order partial correlations*/
PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;
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VAR X Y2;

PARTIAL yl1 M1 M2;

DATA PC38; SET CORRTEST; IF NAME = 'Y2';yIlmIm2CORRXY2=X;
KEEP ylmlm2CORRXY2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR M1 Y2;
PARTIAL yl X M2;
DATA PC39; SET CORRTEST; IF NAME = 'Y2';ylxm2CORRM1Y2=M1;

KEEP ylxm2CORRM1Y2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR Y1 Y2;
PARTIAL X M1 M2;
DATA PC40; SET CORRTEST; IF NAME = 'Y2';xmlm2CORRY1Y2=Y1;

KEEP xmlm2CORRY1Y2;

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep;

VAR M2 Y2;

PARTIAL X M1 vyl;

DATA PC41; SET CORRTEST; IF NAME = 'Y2';xmlylCORRM2Y2=M2;
KEEP xmlylCORRM2Y2;

RUN;

DATA PARTCORR; MERGE PCl PC2 PC3 PC4 PC5 PC6b PC7 PC8 PCY9 PC1l0 PCl1l PC1l2
PC13 PCl4 PC15 PCl6 PC1l7 PC18 PC19 PC20 PC21 PC22 PC23 PC24

PC25 PC26 PC27 PC28 PC29 PC30 PC31 PC32 PC33 PC34 PC35 PC36 PC37 PC38
PC39 PC40 PC41;

RUN;

DATA ALLCORR; MERGE SCOVS SCORRS PARTCORR;

/*True Standard errors*/

DATA TEST7; SET TESTG6;

TRUEMSEM2=VM2-VM2PRED;

TRUESEA=sqgrt ( (TRUEMSEM2/ (NOBS-1) ) * ( (1/VX) / (1-m1RXM2**2))) ;
TRUEMSEY2=VY2-VY2PRED;

TRUESEB=SQRT ( (TRUEMSEY2) / ( (NOBS=1)) * ( (1/VM2) / (1-xml1y1RM2Y2**2))) ;
TRUESEC=SQRT ( (TRUEMSEY2) / ( (NOBS=1)) * ((1/VX) / (1-y1mIm2RXY2**2))) ;
TRUESEAB=SQRT ( (PaM2X**2) * (TRUESEB**2) + (PbY2M2**2) * (TRUESEA**2) ) ;
*The following computes the Bias, Bias squared, and relative Bias for
the standard errors;

BSEA=SEaM2X-TrueSEA;

BSEAR=BSEA/TrueSEA;

B2SEA=BSEA**2;

BSEB=SEbY2M2-TrueSEB;

BSEBR=BSEBR/TrueSEB;

B2SEB=BSEB**2;

BSEC=SEcY2X-TrueSEC;

BSECR=BSEC/TrueSEC;

B2SEC=BSEC**2;

BSEADIFF=SEaM2Xdiff-TrueSEA;

BSEADIFFR=BSEADIFF/TrueSEA;

B2SEADIFF=BSEADIFF**2;
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BSEBDIFF=SEbY2M2Diff-TrueSEB;
BSEBDIFFR=BSEBDIFF/TrueSEB;
B2SEBDIFF=BSEBDIFF**2;
BSECDIFF=SEcCY2XDIFF-TrueSEC;
BSECDIFFR=BSECDIFF/TrueSEC;
B2SECDIFF=BSECDIFF**2;
BSEARES=SEaM2XRES-TrueSEA;
BSEARESR=BSEARES/TrueSEA;
B2SEARES=BSEARES**2;
BSEBRES=SEbY2M2RES-TrueSEB;
BSEBRESR=BSEBRES/TrueSEB;
B2SEBRES=BSEBRES**2;
BSECRES=SECY2XRES-TrueSEC;
BSECRESR=BSECRES/TrueSEC;
B2SECRES=BSECRES**2;

BSEA =SEaM2X -TrueSEA;

BSEA R=BSEA /TrueSEA;

B2SEA =BSEA **2;
BSEB_=SEbY2M2 -TrueSEB;

BSEB R=BSEB /TrueSEB;

B2SEB =BSEB **2;

BSEC =SEcY2X -TrueSEC;

BSEC R=BSEC /TrueSEC;
B2SEC_=BSEC_**2;
BSEAB=SEAB-TRUESEAB;
BSEABR=BSEAB/TRUESEAB;
B2SEAB=BSEAB**2;
BSEABDIFF=SEABDIFF-TRUESEAB;
BSEABDIFFR=BSEABDIFF/TRUESEAB;
B2SEABDIFF=BSEABDIFF**2;
BSEABRES=SEABRES-TRUESEAB;
BSEABRESR=BSEABRES/TRUESEAB;
B2SEABRES=BSEABRES**2;

BSEAB =SEAB -TRUESEAB;

BSEAB R=BSEAB /TRUESEAB;
B2SEAB =BSEAB **2;

RUN;

DATA ALLDAT; MERGE TEST7 ALLCORR;
run;

DATA DATAOQOUT.&FILE.outalt; SET ALLDAT;
RUN;

$MEND ;

run;

PROC DATASETS LIB=WORK NOLIST;

%ANALYZE (nsim=1000, nobs=50, BMX=0, BYX=0, BYM=0,
aM1X=0, sm2ml=.981, am2x=0,bm2yl=0, bylml=.578,
cylx=0, cy2x=0,sy2yl=.686, by2ml=0,by2m2=0,
varx=1l,varml=1,varm2=1,varyl=1,vary2=1,
RELM1=1, RELM2=1, RELY1l=1, RELY2=1,
FILE=n50condl, TYPE="'CCC',ERROR=1); run; quit;
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APPENDIX G

SAS MACRO CALLING PRODCLIN TO ESTIMATE CONFIDENCE INTERVALS

FOR THE MEDIATED EFFECT FOR THE ANCOVA MODEL
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*Using PRODCLIN to estimate asymmetric confidence intervals for the
mediated effect for ANCOVA;

FILENAME NULLOG DUMMY 'C:\NULL';

PROC PRINTTO LOG=NULLOG;

libname DATAOUT "D:\Valente Masters Sim\DATAOUT\";
libname PRODOUT "D:\Valente Masters Sim\PRODOUT\";

*proc printto log=dum;
*options nosource nonotes;

$MACRO CONFLIM(FILE) ;

PROC DATASETS LIBRARY=WORK KILL NOLIST; RUN;
DATA PRODCLIN; set DATAOUT.&file;
run;

data test; length ii $8; set PRODCLIN;
i+1;

ii=left (put(i, 8.));

call symput ('b'||ii, by2m2);

call symput ('a'llii, am2x);

call symput ('seb'||ii,seby2m?2);

call symput ('sea'||ii,seam2x);
(

call symput
run,

nobs', n );

options noxwait ;
*Designate location of prdclinforSAS.sas and prodclinsas2.exe;

Data summary;
$macro prodclin(a, sea, b, seb, rho, alpha);

data datal;

*Change file address to match the location of the file prodclin.exe;
file "D:\Valente Masters Sim\raw.txt";

a=é&a; sea=&sea; b=&b; seb=&seb; rho=&rho; alpha=é&alpha;

put a @; put sea @; put b @; put seb @; put rho @; put alpha @;

run;

*Change file address to match the location of the file prodclin.exe;
X cd D:\Valente Masters Sim\;

*Change file address to match the location of the file prodclin.exe;
X call "D:\Valente Masters Sim\ProdClin2 Sas.exe";

data data2;
do;
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rc=system("D:\Valente Masters Sim\ProdClin2 Sas.exe");
end;
run;

data data2;
infile "D:\Valente Masters Sim\critval.txt";
input lowz highz;

a=é&a; sea=&sea; b=&b; seb=&seb; rho=&rho; alpha=é&alpha;

r=rho;

da=a/sea;

db=b/seb;

sedadb=sqrt (da*da+db*db+1) ;
dadb=da*db;

ab=a*b;

sobelse=sqrt (a*a*seb*seb+tb*b*sea*sea) ;
se ab=sobelse;

MVDSE = sgrt (a*a*seb*sebtb*b*sea*sea);
prodlow=lowz;

produp=highz;

nl=probit (alpha/2);
normlow=ab+nl*se ab;
normup=ab-nl*se ab;

TesT SE = sqgrt (A*a*seb*sebtb*b*sea*sea+2*a*b*r*sea*seb-

(r*sea*seb) * (r*sea*seb) +tsea*sea*seb*seb) ;
run;

*proc print data=data2 noobs;

*var a sea b seb ab rho alpha prodlow produp Test SE;

*run;

data summary; set summary dataZz;
keep a b seb sea ab prodlow produp normlow normup;
run;

$mend prodclin;

$macro prodclinbootstrap;

%do i=1 %to &nobs;

sprodclin (a=&&a&i, sea=&&sea&i, b=&&b&i, seb=&&sebs&i,
.05);

%end;

$mend prodclinbootstrap;

sprodclinbootstrap;

run;

data prodout.&file.prodANCOVA; set summary;
if n =1 then delete;

run;

$mend CONFLIM;
$Sconflim(FILE=n50condlout) ;
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APPENDIX H

SAS MACRO CREATING PERCENTILE BOOTSTRAPPED CONFIDENCE

INTERVALS FOR ALL MODELS
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*Creating Percentile Bootstrapped CIs for the mediated effect for all
models;

libname DATAGEN "C:\Users\psyripl\Desktop\";

libname DATABOOT "D:\Valente Masters Sim\DATABOOT\";
FILENAME NULLOG DUMMY 'C:\NULL';

PROC PRINTTO LOG=NULLOG; run;

$Macro Bootstrap (nsim,nobs,BMX,BYX,BYM,

aM1X, sm2ml,am2x,bm2yl,bylml,

cylx,cy2x,sy2yl, by2ml,by2m2,
varx,varml,varm2,varyl,vary2,

RELM1, RELM2, RELY1l, RELY2,

FILE, TYPE, ERROR) ;

DATA SIM; SET DATAGEN.&file;

J=&nobs;

DO J=0 to totaln by &nobs;

IF 1+J<=I<=&nobs+J then Key=1l+(J/&nobs) ;
end;

keep I X M1 M2 Y1 Y2 MDIFF YDIFF Key file;
run;

*Resampling;

%let nboot=1000;

proc surveyselect data=SIM noprint out=outtemp method=urs
sampsize=&nobs rep=&nboot outhits;

by Key;

run;

quit;

/***************************************************************/

/* */
/* PATH MODEL */
/* */

/*k*k‘k*k*k‘k*k*k‘k*k*k*k*k‘k*k*k‘k*k*k‘k*k*k*k*k*k*k*k‘k*k*k‘k*k*k‘k*k*k*k*k‘k*k*k***‘k******************/

PROC CALIS DATA=outtemp METHOD=ML NORPINT PLC OUTEST=0UT1l outstat=out2;
by key replicate;

LINEQS

M2=smZ2ml Ml + am2x X + EZ2,

y2=cy2x_ X + sy2yl vyl + by2ml M1l + by2m2 M2 + E3;

Cov

X M1,
X Y1,
M1 Y1;

STD
E2 = EE2,
E3 = EE3;

RUN;

*SAVING THE PARAMETER VALUES OF FROM THE PATH MODEL OUTPUT. PARAMETERS
ARE DENOTED WITH _ AT THE END OF THE NAME;

DATA CALPARMS; SET OUTL;

IF TYPE ="PARMS";
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KEEP aM2X bY2M2 key replicate;
run;

/***************************************************************/

/* */
/* CHANGE SCORES */
/* */

/***************************************************************/

/*ESTIMATING (DIFFM=X Y1) REGRESSION AND SAVING THE VALUES OF THE
COEFFICIENTS AND THEIR STANDARD ERRORS*/

PROC REG DATA=outtemp OUTEST=DiffFILEl COVOUT noprint; by key
replicate; MODEL Mdiff= X/;

DATA DiffA; SET DiffFILEl; IF TYPE ='PARMS'; aM2XDiff=X;

DROP MODEL ~NAME TYPE DEPVAR RMSE INTERCEP X;

KEEP aM2XDiff key replicate;

run;

*Estimating the (DiffY=X DiffM) REGRESSION AND SAVING THE VALUES OF THE
COEFFICIENTS AND THETIR STANDARD ERRORS;

PROC REG DATA=outtemp OUTEST=DiffFILE2 COVOUT noprint; by key
replicate; MODEL Ydiff=X Mdiff/;

DATA DiffG; SET DiffFILE2;IF TYPE ='PARMS'; bY2M2Diff=Mdiff;

DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X MDiff;

KEEP bY2M2Diff key replicate;

run;

DATA DiffMODELS; MERGE Diffa Diffg;

run;

/***~k*************~k**********~k**********************************/
/* */
/* RESIDUALIZED CHANGE SCORES */
/* */

/*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k************************/

/*MODEL COMPUTING AND SAVING RESIDUALIZED DIFFERENCE SCORE OF M1 AND
M2*/

PROC REG DATA=outtemp noprint; by key replicate; MODEL M2=M1/;
output out=residl r=residm;

run;

/*MODEL COMPUTING AND SAVING RESIDUALIZED DIFFERENCE SCORE OF Y1 AND
Y2*/

PROC REG DATA=outtemp noprint; by key replicate; MODEL Y2=yl/;
output out=resid2 r=residy;

run;

data residl; set residl;
J=n ;
run;

data resid2; set resid2;

J=n ;
run;
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data rchange; merge residl resid2; by J;
run;

/*ESTIMATING (RESIDM2=X Y1) REGRESSION AND SAVING THE VALUES OF THE
COEFFICIENTS AND THEIR STANDARD ERRORS*/

PROC REG DATA=rchange OUTEST=RFILEl COVOUT noprint; by key replicate;
MODEL residm= X/;

DATA RA; SET RFILEl; IF TYPE ='PARMS'; aM2XRES=X;

DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X;

KEEP aM2XRES key replicate;

run;

*Estimating the (RESIDY2=X RESIDM2) REGRESSION AND SAVING THE VALUES OF
THE COEFFICIENTS AND THEIR STANDARD ERRORS;

PROC REG DATA=rchange OUTEST=RFILE2 COVOUT noprint; by key replicate;
MODEL RESIDY=X RESIDM/;

DATA RG; SET RFILEZ;IF TYPE ='PARMS'; bY2M2RES=RESIDM;

DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X RESIDM;

KEEP DbY2M2RES key replicate;

run;

DATA RESMODELS; MERGE RA RG;

/***************************************************************/

/* */
/ * LINEAR REGRESSION (ANCOVA) */
/* */

/***************************************************************/

*Estimating the (M2=M1 X) regression and saving the value of sM2M1,
aM2X, and their standard errors;

PROC REG DATA=outtemp OUTEST=FILE2 COVOUT noprint; by key replicate;
MODEL M2=M1 X/;

DATA F; SET FILEZ; IF TYPE ='PARMS'; aM2X=X;

DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X M1 M2;

KEEP aM2X key replicate;

run;

*Estimating the (Y2=X Y1 M1 M2) regression and saving the value of
sM2M1, aM2X, bM2Y1, and their standard errors;

PROC REG DATA=outtemp OUTEST=FILE4 COVOUT noprint; by key replicate;
MODEL Y2=X Y1 M1 M2/;

DATA T; SET FILE4;IF _TYPE_:'PARMS'; bY2M2=M2;

DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X Y1 M1 M2;

KEEP bY2M2 key replicate;

run;

DATA MODEL4; MERGE F T;
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/***************************************************************/

/* */
/* CROSS SECTIONAL MEDIATOR MODEL */
/* */

/***************************************************************/

*Estimating the (M2=X) regression and saving the value of a and its
standard error;

PROC REG DATA=outtemp OUTEST=FILES5 COVOUT noprint; by key replicate;
MODEL M2= X/;

DATA V; SET FILES; IF TYPE ='PARMS'; a=X;

DROP MODEL ~NAME TYPE DEPVAR RMSE INTERCEP X M2;

KEEP a key replicate;

run;

*Estimating the (Y2=X M2) regression and saving the value of ¢ b and
their standard errors;

PROC REG DATA=outtemp OUTEST=FILE6 COVOUT noprint; by key replicate;
MODEL Y2=X M2/;

DATA Z; SET FILE6;IF TYPE ='PARMS'; b=M2;

DROP MODEL NAME TYPE DEPVAR RMSE INTERCEP X Y2 M2;

KEEP b key replicate;

run;

DATA MODEL6; MERGE V Z;

*THIS MERGES ALL THE PREVIOUS REGRESSION, CHANGE SCORE, RES CHANGE, AND
PATH MODEL OUTPUT;

DATA ALL; MERGE MODEL4 MODEL6 DIFFMODELS RESMODELS CALPARMS;
run;

DATA ALL; set ALL;

ABancovaboot=am2x*by2m2;

ABdiffboot=am2xdiff*by2m2diff;

ABresboot=am2xres*byZ2m2res;

ABpathboot=am2x *by2m2 ;

ABboot=a*b;

run;

proc sort data=all; by key ABancovaboot; run;
data ancova; set all;

boot+1;

by key;

if first.key then boot = 1;

run;

data ancovaout; set ancova;

if boot = 25 then ancovalLCL=ABancovaboot;
if boot = 975 then ancovaUCL=ABancovaboot;
keep key ancovaLCL ancovaUCL;
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run;quit;

proc sort data=all; by key ABdiffboot; run;
data diff; set all;

boot+1;

by key;

if first.key then boot = 1;

run;

data diffout; set diff;

if boot = 25 then diffLCL=ABdiffboot;
if boot = 975 then diffUCL=ABdiffboot;
keep key diffLCL diffUCL;

run;quit;

proc sort data=all; by key ABresboot; run;
data res; set all;

boot+1;

by key;

if first.key then boot = 1;

run;

data resout; set res;

if boot = 25 then resLCL=ABresboot;
if boot = 975 then resUCL=ABresboot;
keep key resLCL resUCL;

run;quit;

proc sort data=all; by key ABpathboot; run;
data path; set all;

boot+1;

by key;

if first.key then boot = 1;

run;

data pathout; set path;

if boot = 25 then pathLCL=ABpathboot;
if boot = 975 then pathUCL=ABpathboot;
keep key pathLCL pathUCL;

run;quit;

proc sort data=all; by key ABboot; run;
data cross; set all;

boot+1;

by key;

if first.key then boot = 1;

run;

data crossout; set cross;

if boot = 25 then crossLCL=ABboot;
if boot = 975 then crossUCL=ABboot;
keep key crossLCL crossUCL;
run;quit;
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DATA prodboot; merge ancovaout diffout resout pathout crossout;

run;

data UCL; set prodboot;

keep key ancovaUCL diffUCL resUCL pathUCL crossUCL;
if ancovaUCL=. then delete;

if diffUCL=. then delete;

if resUCL=. then delete;

if pathUCL=. then delete;

if crossUCL=. then delete;

run;

data LCL; set prodboot;

keep key ancovalCL diffILCL resLCL pathLCL crossLCL;
if ancovalCL=. then delete;

if diffLCL=. then delete;

if resLCL=. then delete;

if pathLCL=. then delete;

if crossLCL=. then delete;

run;

DATA DATABOOT.&file.boot; merge UCL LCL; by key;
run;

$mend bootstrap;
run;

quit;

PROC DATASETS LIB=WORK NOLIST;

*Effect size test condition for stability of M and Y at

corr at .5 and M1 on Y2 at 0;

$Bootstrap (nsim=1000, nobs=50, BMX=0, BYX=0, BYM=0,
aM1X=0, sm2ml=.981, am2x=0,bm2yl1=0, bylml=.578,
cylx=0, cy2x=0,sy2yl=.686, by2ml=0,by2m2=0,
varx=1l,varml=1,varm2=1,varyl=1,vary2=1,
RELM1=1, RELM2=1, RELY1l=1, RELY2=1,
FILE=n50condl, TYPE='CCC',ERROR=1) ;
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APPENDIX |

SAS MACRO FOR SUMMARIZING RESULTS ACROSS ALL MODELS FOR USE

IN ANOVA FOR RESULTS SECTION
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*Summarizing Bootstrapped results across all models for use in ANOVA
for results section;

FILENAME NULLOG DUMMY 'C:\NULL';

PROC PRINTTO LOG=NULLOG;

libname DATAOUT "F:\ASU\Sims\Two-wave model\Valente Masters
Sim\DATAOUT\";

libname DATABOOT "F:\ASU\Sims\Two-wave model\Valente Masters
Sim\DATABOOT\";

libname BOOT "F:\ASU\Sims\Two-wave model\Valente Masters Sim\BOOT\";

DATA SUMMARY;
$MACRO CONFLIM(FILEl, FILE2, COND, NOBS);

DATA TRUE; set DATAOUT.&file2;
true=Pam2x*Pby2m2;

cond=&cond;

nobs=&nobs;

keep cond nobs true trueabdiff trueabres;
run;

DATA BOOT; set DATABOOT.&filel;
run;

DATA boot; merge boot true;
run;

data boot; set boot;

if true ge ancovaucl then numancovaup=1l; else numancovaup=0;
if true le ancovalcl then numancovalow=1l; else numancovalow=0;
if 0 ge ancovaucl then powancovaup=1l; else powancovaup=0;

if 0 le ancovalcl then powancovalow=1l; else powancovalow=0;
powbootancova=powancovalow+powancovaup;
SUMbootancova=numancovaup+numancovalow;

cvgbootancova=1- (numancovaup+numancovalow) ;

if true ge pathucl then numpathup=1l; else numpathup=0;
if true le pathlcl then numpathlow=1l; else numpathlow=0;
if 0 ge pathucl then powpathup=1l; else powpathup=0;

if 0 le pathlcl then powpathlow=1l; else powpathlow=0;
powbootpath=powpathlow+powpathup;
SUMbootpath=numpathup+numpathlow;

cvgbootpath=1- (numpathup+numpathlow) ;

if trueabdiff ge diffucl then numdiffup=1l; else numdiffup=0;
if trueabdiff le difflcl then numdifflow=1l; else numdifflow=0;
if 0 ge diffucl then powdiffup=1l; else powdiffup=0;

if 0 le difflcl then powdifflow=1l; else powdifflow=0;
powbootdiff=powdifflow+powdiffup;
SUMbootdiff=numdiffup+numdifflow;

cvgbootdiff=1- (numdiffup+numdifflow) ;

if trueabres ge resucl then numresup=1l; else numresup=0;
if trueabres le reslcl then numreslow=1l; else numreslow=0;
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if 0 ge resucl then powresup=1l; else powresup=0;
if 0 le reslcl then powreslow=1l; else powreslow=0;
powbootres=powreslowt+powresup;
SUMbootres=numresup+numreslow;

cvgbootres=1- (numresup+numreslow) ;

if true ge crossucl then numcrossup=1l; else numcrossup=0;
if true le crosslcl then numcrosslow=1l; else numcrosslow=0;
if 0 ge crossucl then powcrossup=1l; else powcrossup=0;

if 0 le crosslcl then powcrosslow=1l; else powcrosslow=0;
powbootcross=powcrosslow+powCcrossup;
SUMbootcross=numcrossup+numcrosslow;

cvgbootcross=1- (numcrossuptnumcrosslow) ;

run;

DATA SUMMARY; SET SUMMARY boot;
run;

$mend CONFLIM;

run;

PROC DATASETS LIB=WORK NOLIST;

$Macro loop;

%$do i=1 %to 208;

$conflim(FILE1=n50condé&i.boot, FILE2=n50condé&i.out, COND=&i, NOBS=50) ;
%end;

$do i=1 %to 208;
$conflim(FILE1=n100condé&i.boot, FILE2=n100condé&i.out, COND=&1i, NOBS=100) ;
%end;

$do i=1 %to 208;
$conflim(FILE1=n200condé&i.boot, FILE2=n200condé&i.out, COND=&1i, NOBS=200) ;
%end;

$do i=1 %to 208;
$conflim(FILE1=n500condé&i.boot, FILE2=n500condé&i.out, COND=&1i, NOBS=500) ;
%end;

$mend loop;
sloop;
run;

DATA boot.anovasummary; Set SUMMARY;

if n =1 then delete;

if cond=1 then do; true=0; direct=0; Y2lag=0; M2lag=0; PretestCorr=.5;
Stability=.7; end;
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APPENDIX J

SAS MACRO FOR SUMMARIZING PRODCLIN RESULTS FOR USE IN ANOVA

FOR RESULTS SECTION
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*Summarizing PRODCLIN results for use in ANOVA for results
FILENAME NULLOG DUMMY 'C:\NULL';

PROC PRINTTO LOG=NULLOG;

libname DATAOUT "C:\Users\mvalent4\Desktop\DATAOUT\";
libname PRODOUT "C:\Users\mvalent4\Desktop\PRODOUT\";
libname PRODCL "C:\Users\mvalent4\Desktop\PRODCL\";

*proc printto log=dum;

*options nosource nonotes;

PROC DATASETS LIBRARY=WORK KILL NOLIST; RUN;
DATA SUMMARY;

$MACRO CONFLIM(FILEl,FILE2,COND,NOBS,METHOD) ;

DATA TRUE; set DATAOUT.&file2;

if &method=1 then do; true=Pam2x*Pby2m2; end;
if &method=2 then do; true=Pam2x*Pby2m2; end;
if &method=3 then do; true=trueabdiff; end;
if &method=4 then do; true=trueabres; end;

if &method=5 then do;true=Pam2x*Pby2m2; end;
cond=&cond;

i=&i;

nobs=&nobs;

keep true cond nobs;

run;

DATA PRODBOOT; set prodout.&filel;
run;

DATA prodboot; merge prodboot true;
run;

data prodboot; set prodboot;

if true ge normup then numnormup=1l; else numnormup=0;

if true le normlow then numnormlow=1l; else numnormlow=0;
if true ge produp then numprodup=1l; else numprodup=0;

if true le prodlow then numprodlow=1l; else numprodlow=0;
if 0 ge normup then pownormup=1l; else pownormup=0;

if 0 le normlow then pownormlow=1l; else pownormlow=0;
pownorm=pownormlow+pownormup;

if 0 ge produp then powprodup=1l; else powprodup=0;

if 0 le prodlow then powprodlow=1l; else powprodlow=0;
powprod=powprodlow+powprodup;
SUMnorm=numnormup+numnormlow;
SUMprod=numprodup+numprodlow;

cvgnorm=1- (numnormup+numnormlow) ;

cvgprod=1- (numprodup+numprodlow) ;

run;
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/*

proc means data=prodboot N mean median std min max sum noprint;
var normlow normup prodlow produp numnormlow numnormup numprodlow
numprodup

pownormlow pownormup pownorm powprodlow powprodup powprod cvgnorm
cvgprod SUMnorm SUMprod;

output out=CLs

mean=normlow normup prodlow produp numnormlow numnormup numprodlow
numprodup

pownormlow pownormup pownorm powprodlow powprodup powprod cvgnorm
cvgprod SUMnorm SUMprod;

run;

*/

DATA SUMMARY; SET SUMMARY PRODBOOT;
drop a sea b seb ab true;
run;

$mend CONFLIM;

run;

PROC DATASETS LIB=WORK NOLIST;
$Macro loop;

$do i=1 %to 208;

%$conflim(FILE1=n50condé&i.outprodancova, FILE2=n50condé&i.out, COND=&1i, nobs
=50, method=1) ;

%end;

$do i=1 %to 208;

%$conflim(FILE1=n100condé&i.outprodancova, FILE2=n100condé&i.out, COND=&1i, no
bs=100, method=1) ;

%end;

$do i=1 %to 208;

%$conflim(FILE1=n200condé&i.outprodancova, FILE2=n200condé&i.out, COND=&i, no
bs=200, method=1) ;

%end;

$do i=1 %to 208;

%$conflim(FILE1=n500condé&i.outprodancova, FILE2=n500condé&i.out, COND=&1i, no
bs=500, method=1) ;

%end;

DATA SUMMARYANCOVA; SET SUMMARY;
merger=1;

if n =1 then delete;
pownormancova=pownorm;
powprodancova=powprod;
CvVgnormancova=cvgnorm;
cvgprodancova=cvgprod;

run;
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DATA SUMMARY; SET SUMMARY;
merger=1;

if merger=1 then delete;
run;

$do i=1 %to 208;

Sconflim(FILE1=n50condé&i.outprodpath, FILE2=n50condé&i.out, COND=&1, nobs=5
0, method=2) ;

%end;

$do i=1 %to 208;

Sconflim(FILE1=n100condé&i.outprodpath, FILE2=n100condé&i.out, COND=&1i,nobs
=100, method=2) ;

%end;

$do i=1 %to 208;

Sconflim(FILE1=n200condé&i.outprodpath, FILE2=n200cond&i.out, COND=&1, nobs
=200, method=2) ;

%end;

$do i=1 %to 208;

Sconflim(FILE1=n500condé&i.outprodpath, FILE2=n500condé&i.out, COND=&1, nobs
=500, method=2) ;

%end;

DATA SUMMARYPATH; SET SUMMARY;
merger=1;

pownormpath=pownorm;
powprodpath=powprod;
cvgnormpath=cvgnorm;
cvgprodpath=cvgprod;

run;

DATA SUMMARY; SET SUMMARY;
merger=1;

if merger=1 then delete;
run;

$do i=1 %to 208;

$conflim(FILE1=n50condé&i.outproddiff, FILE2=n50condé&i.out, COND=&1, nobs=5
0, method=3) ;

$end;

$do i=1 %to 208;

$conflim(FILE1=n100condé&i.outproddiff, FILE2=n100cond&i.out, COND=&1i,nobs
=100, method=3) ;

%end;

$do i=1 %to 208;
$conflim(FILE1=n200condé&i.outproddiff, FILE2=n200cond&i.out, COND=&1i,nobs
=200, method=3) ;
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%end;

%$do i=1 %to 208;

Sconflim(FILE1=n500cond&i.outproddiff, FILE2=n500cond&i.out, COND=&1i,nobs
=500, method=3) ;

%end;

DATA SUMMARYDIFF; SET SUMMARY;
merger=1;

pownormdiff=pownorm;
powproddiff=powprod;
cvgnormdiff=cvgnorm;
cvgproddiff=cvgprod;

run;

DATA SUMMARY; SET SUMMARY;
merger=1;

if merger=1 then delete;
run;

$do i=1 %to 208;

Sconflim(FILE1=n50condé&i.outprodres, FILE2=n50condé&i.out, COND=&1, nobs=50
,method=4) ;

%end;

$do i=1 %to 208;

Sconflim(FILE1=n100condé&i.outprodres, FILE2=n100cond&i.out, COND=&1, nobs=
100, method=4) ;

%end;

$do i=1 %to 208;

$conflim(FILE1=n200condé&i.outprodres, FILE2=n200cond&i.out, COND=&1, nobs=
200, method=4) ;

$end;

$do i=1 %to 208;

$conflim(FILE1=n500condé&i.outprodres, FILE2=n500cond&i.out, COND=&1, nobs=
500, method=4) ;

$end;

DATA SUMMARYRES; SET SUMMARY;
merger=1;

pPOWNnormres=pownorm;
powprodres=powprod;
cvgnormres=cvgnorm;
cvgprodres=cvgprod;

run;

DATA SUMMARY; SET SUMMARY;
merger=1;

if merger=1 then delete;
run;
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$do i=1 %to 208;

Sconflim(FILE1=n50condé&i.outprodcross, FILE2=n50cond&i.out, COND=&1,nobs=
50, method=5) ;

%end;

$do i=1 %to 208;

Sconflim(FILE1=n100condé&i.outprodcross, FILE2=n100condé&i.out, COND=&1i,nob
s=100, method=5) ;

%end;

$do i=1 %to 208;

Sconflim(FILE1=n200condé&i.outprodcross, FILE2=n200condé&i.out, COND=&1i, nob
s=200, method=5) ;

%end;

$do i=1 %to 208;

Sconflim(FILE1=n500condé&i.outprodcross, FILE2=n500condé&i.out, COND=&1i, nob
s=500, method=5) ;

%end;

DATA SUMMARYCROSS; SET SUMMARY;
merger=1;

POWNOrmCcrossS=pownorm;
powprodcross=powprod;
CVgNoOrmcross=cvgnorm;
cvgprodcross=cvgprod;

run;

DATA SUMMARY; SET SUMMARY;
merger=1;

if merger=1 then delete;
run;

$mend loop;
sloop;

run;

QUIT;

DATA PRODCL.ANOVASUMMARY; merge SUMMARYANCOVA SUMMARYPATH SUMMARYDIFF
SUMMARYRES SUMMARYCROSS; BY MERGER;

if cond=1 then do; true=0; direct=0; Y2lag=0; M2lag=0; PretestCorr=.5;
Stability=.7; end;
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APPENDIX K

SAS MACRO FOR SUMMARIZING RESULTS BY AVERAGING ACROSS

REPLICATIONS FOR USE IN TABLES FOR RESULTS SECTION

179



*Summarizing results by averaging across replications for use in tables
for results section;

libname DATAQUT "C:\Users\mvalent4\Desktop\DATAOUT";

libname DATASUM "C:\Users\mvalent4\Desktop\DATASUMMARY";

FILENAME NULLOG DUMMY 'C:\NULL';
PROC PRINTTO LOG=NULLOG;

DATA SUMMARY;

$MACRO SUMMARIZE (nsim,nobs,BMX,BYX,BYM,
aM1X, sm2ml, am2x,bm2y1,
bylml,cylx,cy2x,sy2yl,
by2ml,by2m2,varx,varml,
varm2,varyl,vary2,RELMI,

RELM2, RELY1l, RELY2,file,

TYPE, ERROR, COND) ;

Data sim; set DATAOUT.&file.out;

merger=1;

cond=&cond;

nobs=&nobs;

keep BAB BAB BABDIFF BABRES BABX BABR BAB R BABDIFFR BABRESR BABXR AB
AB ABDIFF ABRES ABX cond nobs merger;

run;

Proc means data=sim noprint;

var BAB BAB BABDIFF BABRES BABX BABR BAB R BABDIFFR BABRESR BABXR AB
AB ABDIFF ABRES ABX;

output out=bias

mean = BAB BAB BABDIFF BABRES BABX BABR BAB R BABDIFFR BABRESR BABXR
AB AB ABDIFF ABRES ABX

STD = STDBAB STDBAB STDBABDIFF STDBABRES STDBABX STDBABR STDBAB R
STDBABDIFFR STDBABRESR STDBABXR

STDAB STDAB STDABDIFF STDABRES STDABX;

run;

Data bias; set bias;

merger=1;

keep STDAB STDAB STDABdiff STDABRes STDABX merger;
run;

data sim2; merge sim bias; by merger;
SAB=BAB/STDAB;

SAB =BAB /STDAB ;
SABDIFF=BABDIFF/STDARdiff;
SABRES=BABRES/STDABRES;
SABX=BABX/STDABX;

run;

Data SUMMARY; SET SUMMARY sim2;
run;
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$MEND ;
run;

PROC DATASETS LIB=WORK NOLIST;

*Effect size test condition for stability of M and Y at .7 and pretest
corr at .5 and M1 on Y2 at 0O;

$SUMMARIZE (nsim=1000, nobs=50, BMX=0, BYX=0, BYM=0,

aM1X=0, sm2ml=.981, am2x=0,bm2yl=0, bylml=.578,

cylx=0, cy2x=0,sy2yl=.686, by2ml=0,by2m2=0,
varx=1l,varml=1,varm2=1,varyl=1,vary2=1,

RELM1=1, RELM2=1, RELY1l=1, RELY2=1,

FILE=n50condl, TYPE='CCC', ERROR=1,COND=1); run; quit;
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APPENDIX L

FIGURE OF CROSS-SECTIONAL MODEL
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APPENDIX M

FIGURE OF DIFFERENCE SCORE MODEL

184



€1

byama

€g

185




APPENDIX N

FIGURE OF RESIDUALIZED CHANGE SCORE MODEL
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APPENDIX O

COVARIANCE ALGEBRA
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X=01

M1 =aM1X xX + el

Y1=cY1X* X+ bY1IM1 x M1 + e2

M2 = aM2X * X + sM2M1 « M1 + bM2Y1 «Y1 + e3

Y2 =cY2X %X +sY2Y1 %Y1+ bY2M1 +* M1 4+ bY2M2 x M2 + e4

True total effect of X onY2 = (aM2X * X) * (bY2M2 * M2) + (aM1X * X) * (sM2M1 *
M1) = (bY2M2 * M2) + (aM1X * X) + (bY2M1 * M1) + (aM1X * X) * (bY 1M1 = M1) =
(bM2Y1 * Y1) % (bY2M2 * M2) + (cY1X * X) » (bM2Y1 % Y1) * (bY2M2 = M2) +

(cY1X * X) * (sY2Y1 Y1) + (cY2X x X)

Cov(X,M1) = Cov(X,aM1X * X + el)
= Cov(X,aM1X * X) + Cov(X,el)

aM1X * o?

Cov(X, Y1) = Cov(X,cY1X X + bY1IM1 + M1 + e2)
= Cov(X,cY1X xX) + Cov(X,bY1IM1* M1) + Cov(X,e2)

= cY1* o} + bY1M1 = Cov(X,M1)

Cov(X,M2) = Cov(X,aM2X x X + sM2M1* M1 + bM2Y1*Y1 + e3)

= Cov(X,aM2X * X) + Cov(X,sM2M1 + M1) + Cov(X,bM2Y1*Y1) + Cov(X,e3)

aM2X * of + sM2M1 = Cov(X,M1) + bM2Y1 = Cov(X,Y1)

Cov(X,Y2) = Cov(X,cY2X *X + sY2Y1xY1 + bY2M1+ M1 + bY2M2 x M2 + e4)

= Cov(X,cY2X *X) + Cov(X,sY2Y1xY1) + Cov(X,bY2M1 +« M1) + Cov(X,bY2M?2
*M2) + Cov(X,e4)

cY2X * o + sY2Y1* Cov(X,Y1) + bY2M1 x Cov(X,M1) + bY2M2 = Cov(X,M?2)
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Cov(M1,Y1) = Cov(aM1X *X +el,cY1X *X + bY1IM1+ M1 + e2)

Cov(aM1X * X,cY1X * X) + Cov(aM1X = X,bY1IM1 x M1) + Cov(aM1X
* X,e2) Cov(el, cY1X *X) + Cov(el,bY1IM1 * M1) + Cov(el,e2)

aM1X = (cY1X = a2) + aM1X = [bY1M1 * Cov(X,M1)] + bY1M1 * ¢

Cov(M1,M2) = Cov(aM1X * X +el,sM2M1 M1 + bM2Y1+Y1 + aM2X X + e3)

Cov(aM1X * X,sM2M1 « M1) + Cov(aM1X * X,bM2Y1 Y1) + Cov(aM1X * X,aM2X
*X) + Cov(aM1X * X,e3) + + Cov(el,sM2M1 « M1) + Cov(el,bM2Y1
*Y1) + Cov(el,aM2X x X) + Cov(el,e3)

= aM1X * [sM2M1 * Cov(X,M1)] + aM1X % [bM2Y1 x Cov(X,Y1)] + aM1X * (aM2X
* 07) + sM2M1* o2 + bM2Y1 = (bY1M1 = c2)

Cov(M1,Y2) = Cov(aM1X xX + el,cY2X *X + sY2Y1Y1 + bY2M1+ M1 + bY2M2
* M2 + e4)

= Cov(aM1X * X,cY2X *X) + Cov(aM1X * X,sY2Y1* Y1) + Cov(aM1X * X,bY2M1
* M1) + Cov(aM1X * X,bY2M2 x M2) + Cov(aM1X * X, e4)
+ Cov(el,cY2X xX) + Cov(el,sY2Y1*Y1) + Cov(el, bY2M1 * M1)
+ Cov(el,bY2M2 x M2) + Cov(el,e4)

aM1X = (cY2X * gf) + aM1X * [sY2Y1 * Cov(X,Y1)] + aM1X * [bY2M1
* Cov(X,M1)] + aM1X * [bY2M2 * Cov(X,M2)] + sY2Y1 * (bY1M1
* 024) + bY2M1* ¢ + bY2M2 * [(sM2M1 % ¢Z) + (bM2Y1 = bY1M1

* Uezl)]

Cov (M2,Y1) = Cov(aM2X * X + sM2M1* M1 + bM2Y1+Y1 + e3,bY1M1* M1
+ cY1X x X + e2)

= Cov(aM?2X » X,bY1M1 * M1) + Cov(aM2X x X,cY1X x X) + Cov(aM2X * X, e2)
+ Cov(sM2M1 * M1,bY1M1 + M1) + Cov(sM2M1* M1,bY1M1 x M1)
+ Cov(sM2M1 +* M1,cY1X x X) + Cov(sM2M1* M1,e2) + Cov(bM2Y1
*Y1,bY1M1 * M1) + Cov(bM2Y1*Y1,cY1X xX) + Cov(bM2Y1
*Y1,e2) + Cov(e3,bY1M1 * M1) + +Cov(e3,cY1X *X) + Cov(e3,e2)
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= aM2X * [bYIM1 = Cov(X,M1)] + aM2X * (cY1X x aZ) + sM2M1 = (bY1M1 * c,)
+ sM2M1 * [cY1X * Cov(X,M1)] + bM2Y1 * [bY1M1 * Cov(Y1, M1)]
+ bM2Y1 * [cY1X = Cov(X,Y1)] + bM2Y1 = g2,

Cov(Y1,Y2) = Cov(cY1X *x X + bYIM1 +« M1 + e2,sY2Y1*Y1 + bY2M1+ M1
+ bY2M2 * M2 + cY2X *X + ed)

Cov(cY1X * X,sY2Y1 x Y1) + Cov(cY1X » X,bY2M1 x M1) + Cov(cY1X * X,bY2M?2
* M2) + Cov(cY1X * X, cY2X *X) + Cov(cY1X * X,e4) + Cov(bY1M1
*M1,sY2Y1 Y1) + Cov(bY1M1* M1,bY2M1 + M1) + Cov(bY1M1
* M1,bY2M2 * M2) + Cov(bY1M1 * M1,cY2X * X) + Cov(bY1M1
*M1,e4) + Cov(e2,sY2Y1*Y1) + +Cov(e2,bY2M1 x M1)

+ Cov(e2,bY2M2 x M2) + Cov(e2,cY2X x X) + Cov(e2, e4)

= cY1X * [sY2Y1 * Cov(X,Y1)] + cY1X * [bY2M1 * Cov(X,M1)] + cY1X * [bY2M2
* Cov(X,M2)] + cY1X * (cY2X x a%) + bY1M1 = [sY2Y1 x Cov(M1,Y1)]
+ bY1M1 = (bY2M1 = 64,) + bY1M1 % [bY2M2 * Cov(M1,M2)] + bY1M1
* cY2X x Cov(X,M1) + bY2M2 x (bM2Y1 % 6%) + sY2Y1+* 03

Cov(M2,Y2) = Cov(sM2M1* M1 + bM2Y1 Y1 + aM2X *X + e3,cY2X*X + sY2Y1
*Y1 + bY2M1 + M1 + +bY2M2 x M2 + e4)

= Cov(sM2M1 * M1,cY2X * X) + Cov(sM2M1 * M1,sY2Y1* Y1) + Cov(sM2M1
* M1,bY2M1 * M1) + +Cov(sM2M1 * M1,bY2M2 « M2) + Cov(sM2M1
* M1,e4) + Cov(bM2Y1*Y1,cY2X *X) + Cov(bM2Y1 xY1,sY2Y1*Y1)
+ Cov(bM2Y1 +Y1,bY2M1 * M1) + Cov(bM2Y1+Y1,bY2M2 x M2)
+ +Cov(bM2Y1*Y1,e4) + Cov(aM2X * X,cY2X * X) + Cov(aM2X
*X,sY2Y1xY1) + Cov(aM?2X » X,bY2M1 + M1) + +Cov(aM2X
* X,bY2M?2 + M2) + Cov(e3,cY2X *X) + Cov(e3,sY2Y1 Y1)
+ Cov(e3,bY2M1 x M1) + Cov(e3,bY2M2 + M2) + Cov(e3,e4)

SM2M1 % sY2Y1 * [Cov(M1,Y1)] 4+ sM2M1 % (bY2M1 * o) + sM2M1  [bY2M2
* Cov(M1,M2)] + bM2Y1 * (sY2Y1* o%) + bM2Y1 = [bY2M1
* Cov(Y1,M1)] + bM2Y1 * [bY2M2 * Cov(Y1,M2)] + aM2X * (cY2X
*0f) + aM2X x [bY2M2 = Cov(X,M2)] + bY2M2 = ¢

Cov(M1,M1) = Cov(aM1X *X + el,aM1X *X + el)
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= Cov(aM1X x X,aM1X * X) + 2 * Cov(aM1X = X,el) + Cov(el,el)

= aM1X?* of + 05

Cov(M2,M2) = Cov(sM2M1+ M1 + bM2Y1*Y1 + aM2X x X + e3,sM2M1 * M1
+ bM2Y1*Y1 + aM2X * X + e3)

= Cov(sM2M1 * M1,sM2M1 x M1) + Cov(sM2M1+ M1,bM2Y1*Y1) + Cov(sM2M1
*M1,aM2X * X) + +Cov(sM2M1 « M1,e3) + Cov(bM2Y1 xY1,sM2M1
* M1) + Cov(bM2Y1+Y1,bM2Y1+Y1) + Cov(bM2Y1 +xY1,aM2X * X)
+ Cov(bM2Y1 xY1,e3) + Cov(aM2X x X,sM2M1 * M1) + Cov(aM2X
*X,bM2Y1 % Y1) + +Cov(aM2X * X,bM2Y1 xY1) + Cov(aM2X
* X,aM2X * X) + Cov(aM2X * X,e3) + +Cov(e3,sM2M1 « M1)
+ +Cov(e3,bM2Y1xY1) + Cov(e3,aM2X x X) + Cov(e3,e3)

= sM2M1* 051 + 2 * SM2M1 = [bM2Y1 * Cov(M1,Y1)] + 2 * sSM2M1 = [aM2X
* Cov(X,M1)] + bM2Y12 x g%, + 2 * bM2Y1 x [aM2X * Cov(X,Y1)]
+ aM2X? x 0% + o2

Cov(Y1,Y1) = Cov(cY1X *X + bYIM1 «M1 + e2,cY1X X + bYIM1 +« M1 + e2)

= Cov(cY1X * X,cY1X x X) + Cov(cY1X x X,bY1M1* M1) + Cov(cY1X x X, e2)
+ Cov(bY1M1 % M1,cY1X * X) + +Cov(bY1M1 * M1,bY1M1 % M1)
+ Cov(bY1M1 + M1,e2) + Cov(e2,cY1X xX) + Cov(e2,bY1M1 * M1)
+ +Cov(e2,e2)

= cY1X? x 0 + 2 * cY1X = [bY1IM1 * Cov(X,M1)] + bY1M12 x 63, + &

Cov(Y2,Y2) = Cov(cY2X *X + sY2Y1*Y1 + bY2M1 M1 + bY2ZM2 « M2 + e4,cY2X
*X + sY2Y1+xY1 4+ bY2M1 x M1 + bY2M2 x M2 + e4)
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= Cov(cY2X * X,cY2X x X) + Cov(cY2X xX,sY2Y1 xY1) + Cov(cY2X = X,bY2M1
* M1) + Cov(cY2X * X,bY2M2 + M2) + Cov(cY2X x X,e4) + Cov(sY2Y1
*Y1,cY2X xX) + Cov(sY2Y1*Y1,sY2Y1+ Y1) + Cov(sY2Y1
*Y1,bY2ZM1 % M1) + +Cov(sY2Y1*Y1,bY2M2 + M2) + Cov(sY2Y1
*Y1,e4) + Cov(bY2M1 + M1,cY2X x X) + Cov(bY2M1 * M1,sY2Y1*Y1)
+ Cov(bY2M1 + M1,bY2M1 + M1) + Cov(bY2M1 * M1,bY2M2 x M2)
+ +Cov(bY2M1* M1,e4) + Cov(bY2M2 * M2,cY2X * X) + Cov(bY2M2
* M2,sY2Y1 Y1) + Cov(bY2ZM2 * M2,bY2M1 x M1) + Cov(bY2M?2
* M2,bY2M2 * M2) + Cov(bY2M2 x M2,e4) + Cov(e4,cY2X * X)
+ Cov(e4,sY2Y1 xY1) + Cov(e4, bY2M1 « M1) + Cov(e4,bY2M2 x M2)
+ Cov(e4,e4)

= cY2X? x0f + 2 *cY2X = [sY2Y1 * Cov(X,Y1)] + 2 *cY2X * [bY2M1 * Cov(X, M1)]
+ 2% cY2X * [bY2M2 * Cov(X,M2)] + sY2Y1xo¢; + 2 *sY2Y1 « [bY2M1
* Cov(Y1,M1)] + 2 =sY2Y1x[bY2M2 * Cov(Y1,M2)] + bY2M1 * 65, + 2
* bBY2M1 x [bY2M2 * Cov(M1,M2)] + bY2M2 x o, + 0,

Cov[(M2 — M1),(M2 — M1)] = VAR(M2) + VAR(M1) - 2  Cov(M1, M2)

Cov[(Y2 — Y1), (Y2 —Y1)] = VAR(Y2) + VAR(Y1) - 2 * Cov(Y1,Y2)

Cov[X, (Y2 - Y1)]
= Cov[X,(cY2X *X + SY2Y1xY1 + bY2M1 M1 + bY2M2 + M2 + e4)
— (cY1X * X + BY1M1* M1 + e2)]

= Cov[X,(cY2X —cY1X)* X + SY2Y1 Y1 + (bY2M1 —DbY1M1)* M1 + bY2M2 x M2
+e4 — e2]

= Cov[X, (cY2X — cY1X) * X] + Cov[X,SY2Y1+Y1] + Cov[X,(bY2M1 — bY1IM1) x M1]
+ Cov[X,bY2M2 + M2] + Cov[X,e4] + Cov[X,—e2]

= (cY2X —cY1X) * 0 + SY2Y1 = Cov(X,Y1) + (bY2M1 — bY1M1) = Cov(X, M1)
+ bY2M?2 * Cov(X,M2)

Cov[X,(M2 — M1)]
= Cov[X,(aM2X X + SM2M1* M1 + bM2Y1 Y1 + e3) - (aM1X * X
+ el)]
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Cov[X,(aM2X —aM1X) * X + SM2M1* M1 + bM2Y1xY1 + e3 — el]

Cov[X, (aM2X — aM1X) * X] + Cov[X,SM2M1 x M1] + Cov[X,bM2Y1 = Y1]
+ Cov[X,e3] + Cov[X,—el]

= (aM2X — aM1X) * 62 + SM2M1 * Cov(X,M1) + bM2Y1 x Cov(X,Y1)

Cov[(M2 — M1), (Y2 —Y1)]
= Cov[(aM2X — aM1X) * X + SM2M1+M1 + bM2Y1+Y1 + e3
— el,(cY2X — cY1X) X + SY2Y1+Y1 + (bY2M1 — bY1M1) x M1
+ bY2M2 M2 + e4 - e2]

= Cov[(aM2X — aM1X) = X, (cY2X — cY1X) * X] + Cov[(aM2X —aM1X) = X,SY2Y1
*Y1] + Cov[(aM2X —aM1X) x X, (bY2M1 — bY1M1) * M1]
+ Cov[(aM2X — aM1X) * X,bY2M2 + M2] + Cov[(aM2X — aM1X)
* X, e4] + Cov[(aM2X — aM1X) * X,—e2] + Cov[SM2M1 x M1, (cY2X
—cY1X) *X] + Cov[SM2M1 * M1,SY2Y1 *Y1] + Cov[SM2M1
* M1, (bY2M1 — bY1M1) * M1] + Cov[SM2M1 x M1,bY2M?2 + M2]
+ Cov[SM2M1 x M1,e4] + Cov[SM2M1 * M1,—e2] + Cov[bM2Y1
*Y1,(cY2X —cY1X) * X] + Cov[bM2Y1 xY1,SY2Y1 xY1] + Cov[bM2Y1
*Y1,(bY2M1 — bY1M1) * M1] + Cov[bM2Y1 xY1,bY2M2 * M2]
+ Cov[bM2Y1*Y1,e4] + Cov[bM2Y1*Y1,—e2] + Cov[e3, (cY2X
—cY1X) x X] + Cov[e3,(cY2X — cY1X) * X] + Cov[e3,SY2Y1 xY1]
+ Covle3, (bY2M1 — bY1M1) * M1] + Cov[e3,bY2M2 x M2]
+ Covle3,e4] + Cov[e3,—e2] + Cov[—el, (cY2X — cY1X) * X]
+ Cov[—el,SY2Y1*Y1] + Cov[—el,
(bY2M1 — bY1M1) * M1] + Cov[—el,bY2M2 x M2] + Cov[—el, e4]
+ Cov[—el, —e2]

= (aM2X — aM1X) * (cY2X — cY1X) x 6% + (aM2X —aM1X) * Cov(X,Y1) + (aM2X
—aM1X) * (bY2M1 — bY1M1) * Cov(X,M1) + (aM2X — aM1X) * bY2M?2
* Cov(X,M2) + SM2M1 * (cY2X — cY1X) * Cov(X,M1) + SM2M1
* SY2Y1 x Cov(M1,Y1) + SM2M1 * (bY2M1 — bY1M1) * 654, + SM2M1
* bY2M2 « Cov(M1,M2) + bM2Y1 * (cY2X — cY1X) * Cov(X,Y1)
+ bM2Y1%SY2Y1 x g2, + bM2Y1 % (bY2M1 — bY1M1) = Cov(M1,Y1)
+ bM2Y1 * bY2M2 * Cov(Y1,M2) - bM2Y1 * Cov(Y1,e2) + bY2M?2
* Cov(M2,e3) - SY2Y1 * Cov(Y1,el) - (bY2M1 — bY1M1)
* Cov(M1,el) - bY2M2 * Cov(M2,el)
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Cov(Y1l,e2) = Cov(cY1X *X + bY1IM1+ M1 + e2, e2)
= Cov(cY1X * X,e2) + Cov(bY1M1 *ml,e2) + Cov(eZ,e2)

— 2
= Oe¢2

Cov(M2,e3) = Cov(aM2X * X + SM2M1+* M1 + SM2Y1 Y1 + e3,e3)

Cov(aM2X * X,e3) + Cov(SM2M1 « M1,e3) + Cov(bM2Y1+Y1,e3) + Cov(e3,e3)

— 2
= Oe3

Cov(Y1l,el) = Cov(cY1X *X + bY1IM1* M1 + e2,el)

= Cov(cY1X * X,el) + Cov(bY1M1* M1,el) + Cov(eZ,el)

bY1M1 * Cov(M1,el)
Cov(M1,el) = Cov(aM1X xX + el,el)
= Cov(aM1X x X,el) + Cov(el,el)

_ 2
= 01

Cov(M2,el) = Cov(aM2X *X + SM2M1 M1 + bM2Y1 Y1 + e3,el)

Cov(aM2X * X,el) = Cov(SM2M1 +x M1,el) + Cov(bM2Y1%*Y1,el) + Cov(e3,el)

SM2M1 x Cov(M1,el) + bM2Y1 * Cov(Y1,el)

= SM2M1 x ¢4, + bM2Y1 * bY1M1 * ¢4

Y2 = SY2Y1 * Y1

Res AY =Y2 - Y2
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=cY2X *X+SY2Y1 Y1+ bY2M1 +« M1+ bY2M2 * M2 + e4 — SY2Y1xY1

=cY2X * X + bY2M1 * M1 + bY2M2 + M2 + e4

pay

M2 = SM2M1 = M1
Res AM = M2 — M2
=aM2X * X + SM2M1 * M1 + bM2Y1 * Y1 + e3 — SM2M1 * M1

=aM2X * X + bM2Y1 Y1+ e3

Cov(ResAM,ResAM)
= Cov(aM2X * X + bM2Y1 Y1 + e3,aM2X * X + bM2Y1 * Y1 + e3)

= Cov(aM2X * X,aM2X = X) + Cov(aM2X = X,bM2Y1 « Y1) + Cov(aM2X * X, e3)
+ Cov(bM2Y1 * Y1,aM2X = X) + Cov(bM2Y1 * Y1, bM2Y1 % Y1)
+ Cov(bM2Y1 +Y1,e3) + Cov(e3,aM2X = X) + Cov(e3,bM2Y1 x Y1)
+ Cov(e3,e3)

= aM2X? x g} + 2 xaM2X » bM2Y1 x Cov(X,Y1) + bM2Y1? * 6%, + 02

Cov(ResAY,ResAY)
= Cov(cY2X * X + bY2M1 * M1 + bY2M2 x M2 + e4,cY2X » X + bY2M1
* M1+ BY2M2 * M2 + e4)

= Cov(cY2X * X,cY2X * X) + Cov(cY2X = X,bY2M1 * M1) + Cov(cY2X * X,bY2M2 * M2)
+ Cov(cY2X + X, e4) + Cov(bY2M1 + M1,cY2X * X)
+ Cov(bY2M1 * M1,bY2M1 % M1) + Cov(bY2M1 x M1,bY2M2 * M2)
+ Cov(bY2M1 « M1,e4) + Cov(bY2M2 + M2,cY2X * X)
+ Cov(bY2M2 « M2,bY2M1 * M1) + Cov(bY2M2 * M2,bY2M2 + M2)
+ Cov(bY2M2 « M2,e4) + Cov(ed, cY2X x X) + Cov(e4,bY2M1 « M1)
+ Cov(e4,bY2M2 x M2) + Cov(e4,ed)

= cY2X? * 0% + cY2X * bY2M1 x CXM1 + cY2X x bY2M2 « CXM2 + bY2M1 * cY2X * CXM1
+ bY2M1? x 651 + bY2M1 * bY2M2 x CM1M2 + bY2M2 * cY2X x CXM?2
+ bY2M2 % bY2M1 * CM1M2 + bY2M2? * 6%, + 02,

Cov(X,ResAM) = Cov(aM2X * X + bM2Y1 x Y1 + e3)
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= aM2X * 6 + bM2Y1 * Cov(X,Y1)

Cov(ResAM, ResAY)
= Cov(aM2X * X + bM2Y1 * Y1 + e3,cY2X * X + bY2M1 «+ M1 + bY2M?2
* M2 + e4)

= Cov(aM2X = X,cY2X x X) + Cov(aM2X = X,bY2M1 * M1)
+ Cov(aM2X = X,bY2M2 « M2) + Cov(aM2X * X, e4)
+ Cov(bM2Y1 * Y1,cY2X * X) + Cov(bM2Y1 = Y1,bY2M1 + M1)
+ Cov(bM2Y1 * Y1,bY2M2 * M2) + Cov(bM2Y1 % Y1, e4)
+ Cov(e3,cY2X * X) + Cov(e3,bY2M1 x M1) + Cov(e3,bY2M2 x M2)
+ Cov(e3,e4)

= aM2X * cY2X * 0% + aM2X * bY2M1 * Cov(X,M1) + aM2X * bY2M2 = Cov(X,M2)
+ bM2Y1 % cY2X * Cov(X,Y1) + bM2Y1 =« bY2M1 % Cov(M1,Y1) + bM2Y1
* bY2M2 * Cov(Y1, M2) + bY2M?2 x 4

Cov(X, ResAY) = Cov(X,cY2X X + bY2M1 « M1 + bY2M2 » M2 + e4)
= Cov(X,cY2X % X) + Cov(X,bY2M1 * M1) + Cov(X,bY2M2 * M2) + Cov(X, e4)

= cY2X * 62 + bY2M1 x Cov(X, M1) + bY2M2 * Cov(X, M2)
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APPENDIX P

TRUE CORRELATIONS
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X=01

M1 =aM1X xX + el

Y1=cY1X* X+ bY1IM1* M1+ e2

M2 = aM2X * X + sM2M1 x M1 + bM2Y1 xY1 + e3

Y2 =cY2X* X +sY2Y1* Y1+ bY2ZM1 * M1 + bY2M2 x M2 + e4

_cxm1
Pxm1 = grpxsrom

_cxv1
Pxy1 = grpxestpvi

_ CxXM2
Pxm2 = grpyistome

_cxr2
Pxy2 = grpxestpyz

_ cMiv1
Pmiy1l = srpmisstoya

Zero-Order Correlations

CM1M?2

Pmim2 = Srpaiistomz

CM1Y2

Pmiy2 = srpmisstpy2

CM2Y1

Pm2y1 = SrpmzesTDYL

CM2Y2

Pm2y2 = SrpavasTDY2

_cYiv2
Py1y2 = srpyiestpy2

First-order partial correlations

_ Pxy1~(Pm1y1*Pxm1)

Pxy1m1 =
1_pm1y12*\/ 1-pxm1?

Pxm2—(Pxm1*Pmimz)

Pxm2m1 =
xmem \/I_melz*\/l_pmlmzz
_ Pxy2—(Pxy1*Py1y2)
Pxy2y1 =
Jl_nylz*Jl_PylyZZ

_ Py1m2—(Pmiy1*Pmimz2)
Pyim2m1 =
,1_pm1y12*\/ 1-Pmima2?

p — Pmimz—(Pxm1*Pxm2)
mimz.x V1=pxm12#J1=pxm2?

_ pmlyi_(pxml*[)xyl)
Pmiy1ix =
V1=pxm1?* ,1_pxy12

_ Pxm2—(Pxy1*Pm2y1)
Pxm2y1 =
Jl_nylz*Jl_szylz

_ Pxy2— (Pxmz*Pmay2)

nyz.mz -
V1=Pxmz?* /:L_szyz2

Pxy2— (Pxm2 *pm2y2)

Pyim2x =
V1=Pxma?2* /1— may2?
Pxm2 Pmzy2

_ Pmimz2 _(pmlyl*meyl)

Pmim2y1 =
1- 2x |1- 2
J Pmiy1 \[ Pmzy1
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_ Pmiy2—(Pxm1*Pxy2)
pmlyz.x -
V1=pxm1?* 1_/3353122
_ Pmiy2—(Pmim2*Pmzy2)

pm1y2.m2 -
J1- 2% [1— 2
Pmim2 Pm2y2

Pm2y2~(Pm2y1*Py1yz2)

Pm2y2y1 =
Jl_szylz*\/l_Pylyzz
_ Py1y2—(Pxy1*Pxy2)
pylyz.x -
\/1_ny12*\/1_ny22
_ Py1y2—(Pmay1*Pmay2)
py1y2.m2 -
\/1_Pm2y12*\/1_Pm2y22

_ Pmiy2—(Pmiy1*Py1y2)
pmlyz.yl _J

1_pm1y12*J1_py1y22
_ Pmay2—(Pxm2*Pxy2)
pm2y2.x -
V1=pxm1?* ,1_ny22
_ Pm2y2—(Pmim2*Pm1y2)

pm2y2.m1 -
J1- 2x |1-— 2
Pmim2 , Pmiy2

_ Py1y2—(Pmiy1*Pmiy2)
pylyz.ml _J

1_pm1y12*J1_pm1y2 2

_ Pxy2—(Pxm1*Pmiy2)

ny2.m1 -
V1=pxma?* ,1_Pm1y22

Second-order partial correlations

_ Pxm2m1—(Pm2y1.m1*Pxy1m1)
Pxm2miy1 = J

1_pm2yl.m12"‘\/1_1795311.m12

_ Pxy2m1—(Pxy1m1*Pyiy2.m1)
Pxy2zmiy1 = \/

1_pxyl.m12 ”‘\/:L_pylyz.ml2

_ Pxy2.y1—(Pxm2.y1*Py2m2.y1)
Pxy2yim2 = \/

1_pxm2.y12*\/1_Py2m2.y12

_ Pxy2.m1~(Pxm2m1*Pmz2y2m1)
ny2.m1m2 - . >
V1=Pxmzm1“* |1=Pm2yz.m1

_ Pmimz2.x—(Pmiy1.x*Py1m2.x)
Pmim2xylr = \/

1_pm1y1.x2 *Jl_pylmz.xz

_ Pmiy2x—(Pmiy1x*Py1y2.x)
Pmiy2xy1l = \/

1_Pm1y1.x2 *Jl_Pylyz.xz

_ Pmiy2.y1 —(Pmim2.y1*Pmay2.y1)

pm1y2.y1m2 -
Jl_Pmlmz.ylz*Jl_pmzyz.ylz

_ Pmiy2x— (Pmimz.x*Pmay2.x)

Pmiy2xm2 =
V1=Pmimax?* 1_meyZ.xz

_ Py1mzx—(Pmiy1x*Pmimz.x)

Pyim2xm1 =
1_pm1y1.x2*\/ 1-pmim2.x?

_ Pm2y2.x—(Py1m2.x*Pyiy2.x)
Pm2y2.xy1 = \/

1_pylm2.x2 *Jl_pylyz.xz

_ Pm2y2x— (Pmim2.x*Pmiy2.x)

pm2y2.xm1 -
V1=Pmima.x?* ]-_pmlyz.x2

_ Pm2y2.y1~(Pmim2.y1*Pmiy2.y1)
pm2y2.y1m1 - J

1_pmlmz.ylz*\/1_17mlyz.ylz

_ Py1y2x~ (Pmiy1x*Pmiy2.x)
Py1y2.xm1 —\[

1_pm1y1.x2*\[1_pm1y2.x2

_ Py1y2.x~(Py1m2.x*Pmay2.x)
Py1y2.xm2 = \/

1_py1m2.x2*\[1_pm2y2.x2

_ Py1y2m1~(Py1m2m1*Pmay2.m1)
py1y2.m1m2 - J

1_pylm2.m12”‘Jl_pmzyz.ml2
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Third-order partial correlations

_ Pxy2.miy1—(Pxm2miy1*Pmayz.y1m1)
Pxy2yimim2 = \/

1_mez.mlylz *\ll_pmzyz.ylmlz

_ Pmiy2xy1—(Pmim2.xy1*Pmay2.xy1)
pmlyz.xylmz - \/

1_pm1m2.xy12*\/1_Pm2y2.xm12

__ Py1y2axm1—(Py1m2.xm1*Pmayz.xm1)
pylyz.xmlmz - \/

1_Py1m2.xm12 *\/1_Pm2y2.xm12

__ Pmzy2xm1~(Pyim2xm1*Py1y2.xm1)
pm2y2.xm1y1 -

Jl_pylmz.xmlz*Jl_pylyz.xmlz
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