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ABSTRACT 

Methods to test hypotheses of mediated effects in the pretest-posttest control group 

design are understudied in the behavioral sciences (MacKinnon, 2008).  Because many 

studies aim to answer questions about mediating processes in the pretest-posttest control 

group design, there is a need to determine which model is most appropriate to test 

hypotheses about mediating processes and what happens to estimates of the mediated 

effect when model assumptions are violated in this design.  The goal of this project was 

to outline estimator characteristics of four longitudinal mediation models and the cross-

sectional mediation model.  Models were compared on type 1 error rates, statistical 

power, accuracy of confidence interval coverage, and bias of parameter estimates.  Four 

traditional longitudinal models and the cross-sectional model were assessed.  The four 

longitudinal models were analysis of covariance (ANCOVA) using pretest scores as a 

covariate, path analysis, difference scores, and residualized change scores.  A Monte 

Carlo simulation study was conducted to evaluate the different models across a wide 

range of sample sizes and effect sizes.  All models performed well in terms of type 1 

error rates and the ANCOVA and path analysis models performed best in terms of bias 

and empirical power.  The difference score, residualized change score, and cross-

sectional models all performed well given certain conditions held about the pretest 

measures. These conditions and future directions are discussed. 
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Introduction 

Many research designs consist of two-waves of measurement and aim to test 

mediation hypotheses.  A PsycINFO search of the terms “two-wave or pretest posttest or 

two time points” and “mediation or mediating or mediator or process variable” during the 

span 2000 – 2014 resulted in 485 peer-reviewed articles.  There are four commonly used 

models to test mediated effects in the pretest-posttest control group design: Analysis of 

covariance (ANCOVA), Path analysis, difference score, and residualized change score.  

Additionally, it is possible to estimate the mediated effect using a cross-sectional model 

that ignores the pretest information on both the mediator and the outcome variable.  

Given the wide use of these models in mediation analysis, it is surprising that few studies 

have evaluated under what conditions these models have don’t type 1 error rates above 

the nominal 0.05 alpha level, produce unbiased estimates of the mediated effect, have 

confidence interval coverage that is close to 95%, and have high empirical power to 

detect the mediated effect.  This project aims to compare tests of the mediated effect in 

the pretest-posttest control group design using these four common traditional longitudinal 

models and the cross-sectional model. 

Statistical Mediation 

Most research focuses on assessing relations between two variables, with the 

research question of whether or not there is a total effect of an independent variable X on 

a dependent variable Y (Sobel, 1990).  Additional variables can be included to further 

investigate how or why there is a relation between the two variables.  When variables are 

added to bivariate relations, these additional variables can result in a variety of third 
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variable effects including confounding, moderating, or mediating effects.  Of particular 

interest in this project are third variables that are defined as mediating variables.  A 

mediating variable is a variable that is both a dependent variable and an independent 

variable and is intermediate in a causal sequence between two variables (Lazarsfeld, 

1955; MacKinnon, 2008; Sobel 1990).  Inclusion of a mediating variable in a theoretical 

model and statistical analyses allows researchers to test indirect effects of an independent 

variable on a dependent variable through the independent variable’s effect on the 

mediating variable (Lazarsfeld, 1955; MacKinnon, 2008; Sobel 1990).  

Statistical mediation is important because it allows researchers to investigate how 

two variables are related.  Once researchers know two variables are related (e.g., X 

causes Y) it may be of theoretical interest to investigate through what mechanism X and 

Y are related.  Statistical mediation is a tool by which causal mechanisms can be 

investigated given assumptions (MacKinnon, 2008; VanderWeele & Vansteelandt, 2009).  

Statistical mediation is typically conceptualized using a series of three linear regression 

equations (MacKinnon, 2008). Equation 1 represents the total effect of X on Y (c 

coefficient), Equation 2 represents the effect of X on M (a coefficient), and Equation 3 

represents the effect of X on Y adjusted for M (c’ coefficient) and the effect of M on Y 

adjusted for X (b coefficient).  Computing the product of a and b coefficients from 

Equation 2 and Equation 3, respectively, represents the indirect effect of X on Y through 

M (ab). 

𝑌 = 𝑖1 + 𝑐𝑋 + 𝑒1                                                                                                   (1) 

𝑀 = 𝑖2 + 𝑎𝑋 + 𝑒2                                                                                                 (2) 
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𝑌 = 𝑖3 + 𝑐′𝑋 + 𝑏𝑀1 + 𝑒3                                                                                     (3) 

These three linear regression equations are used to assess statistical mediation in cross-

sectional experimental designs.  A cross-sectional experimental design is one which 

researchers measure variables at a single time point.  Longitudinal experimental designs 

are ones in which researchers measure variables over time or treatment effects at a later 

time point (Shadish, Cook, & Campbell, 2002).  One type of longitudinal design that 

incorporates a randomized experiment is the pretest-posttest control group design 

(Bonate, 2002; Shadish, Cook, & Campbell, 2002). 

Pretest-Posttest Control Group Design 

 The pretest-posttest control group design is common in a wide range of research 

areas.  This design consists of randomly assigning units to either a control group or a 

treatment group, measuring theoretically relevant variables before delivery of a treatment, 

and then measuring these same variables again at a later point in time after treatment 

(Bonate, 2002; Shadish, Cook, & Campbell, 2002).   Random assignment of units to 

treatment and initial measurement of variables occur at the pretest stage of an 

experiment. Variables are measured again at the posttest stage of an experiment after 

delivery of a treatment to the treatment group.  This document describes the two groups 

as the treatment and control groups but the control condition may actually be a standard 

treatment or some other comparison for the treatment investigated.   

 Pretest-posttest control group designs can assess how much change, or gain, in 

scores on measured variables has occurred for the treatment and control group between 

pretest and posttest.  Because this design allows researchers to measure variables twice 
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for each unit, and units are randomly assigned to different treatment groups, researchers 

can answer questions about within-group changes between pretest and posttest and 

between-group differences in change between pretest and posttest (Bonate, 2002; 

Shadish, Cook, & Campbell, 2002).  

The timing of posttest measurement is an important aspect of experimental design 

and should be determined a priori and based on previous research.  If timing of posttest 

measurement does not match timing of a true effect, estimates of this true effect across 

pretest and posttest will typically underestimate the actual true effect (Cohen, 1991; 

Collins & Graham, 1991, 2002).  In reality, it may be difficult to know exactly when a 

true effect is going to occur, and it is likely that true effects will diminish with time after 

the true effect occurs (Collins & Graham, 2002).  Because predicting timing effects can 

be difficult, researchers are often advised to take many repeated measures occurring at 

short time intervals (Cohen, 1991; Collins & Graham, 1991, 2002).  This project assumes 

the posttest measurement matches the timing of the true effect.   

Pretest-Posttest Control Group Design with A Mediating Variable 

The pretest-posttest control group design can be extended to research questions 

regarding mediating variables (as shown in Figure 1).  When X is a randomized treatment 

variable coded zero or one, a common way to assess mediated effects is by estimating a 

series of linear regression equations similar to those used to assess mediated effects in 

cross-sectional data.  Equation 4 represents the effect of X on the mediator measured at 

posttest adjusted for pretest mediator (am2x coefficient) and the pretest outcome, the effect 

of the mediator measured at pretest (stability) on the mediator measured at posttest (Sm2m1 
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coefficient) adjusted for X and the pretest outcome, and the effect of the outcome 

measured at pretest on the mediator measured at posttest (bm2y1 coefficient) adjusted for X 

and the pretest mediator.  Equation 5 represents the effect of X on the outcome variable 

measured at posttest (c’y2x  coefficient) adjusted for the other variables in the equation, the 

effect of the outcome variable measured at pretest (stability) on the outcome variable 

measured at posttest (Sy2y1 coefficient) adjusted for the other variables in the equation, the 

effect of the mediator measured at pretest on the outcome variable measured at posttest 

(by2m1 coefficient) adjusted for the other variables in the equation, and the effect of the 

mediator measured at posttest  on the outcome variable measured at posttest (by2m2 

coefficient) adjusted for the other variables in the equation (see Appendices A – B for 

further explanation of variables and notation).  

𝑀2 = 𝑖4 +  𝑎𝑚2𝑥𝑋 + 𝑆𝑚2𝑚1𝑀1 + 𝑏𝑚2𝑦1𝑌1 + 𝑒4                                                  (4) 

𝑌2 = 𝑖5 + 𝑐′
𝑦2𝑥𝑋 + 𝑆𝑦2𝑦1𝑌1 + 𝑏𝑦2𝑚1𝑀1 + 𝑏𝑦2𝑚2𝑀2 + 𝑒5                                  (5) 

Mediated effects of X on Y2 through M2 in a pretest-posttest design can be 

assessed by taking the product of am2x coefficient in Equation 4 and by2m2 coefficient in 

Equation 5 (am2xby2m2).  This computation of mediated effects in a pretest posttest design 

is similar to the computation of mediated effects in cross-sectional designs based on 

Equations 1 – 3 except that it includes coefficients from regression equations with pretest 

measures as predictors of M and Y at posttest.  Equations 4 – 5 correspond to the 

ANCOVA or path analysis model and represent all estimable parameters of the 

covariance structure in the pretest – posttest control group design with a mediating 

variable.   
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The pretest-posttest control group design is the focus of this study because it is 

widely used for assessing mediation and little is known about the accuracy of different 

models.  The pretest – posttest control group design represents the simplest longitudinal 

design making it ideal to compare with the commonly-used cross-sectional mediation 

design.  Several different models have been applied to assess mediation in pretest-posttest 

control group designs such as analysis of covariance (Jang, Kim, & Reeve, 2012; 

Schmiege, Broaddus, Levin, & Bryan, 2009), path analysis (Cribbie & Jamieson, 2004; 

MacKinnon, 2001, 2008), difference scores (Hofmann, 2004; Jansen, et al., 2012; 

MacKinnon et al., 1991), and residualized change scores (Cole, Kemeny, Fahey, Zack, & 

Naliboff, 2003; Miller, Trost, & Brown, 2002; Reid & Aiken, 2013).  The purpose of this 

project is to evaluate models to assess mediation in the pretest-posttest control group 

design which consists of two time points (i.e., pretest and posttest) assuming that timing 

of posttest measurement matches timing of the true effect. 

                                  - Insert Figure 1 about here – 

 

 

Analysis of Change in Mediation Models and Conditions to be Met 

Assuming that there is successful randomization of units to the control group and 

treatment group so that these groups do not differ systematically at pretest, any observed 

change in a unit from the treatment group from pretest to posttest would not have 

occurred had that unit been assigned to the control group (Van Breukelen, 2006, 2013).  
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It is also assumed that all measures of pretest and posttest variables in this study are 

measured without error.  Researchers have expounded on the results of violating these 

assumptions using ANCOVA and difference score models outside the context of 

mediation (Jamieson, 1999; Kisbu-Sakarya, MacKinnon, & Aiken, 2013; Van Breukelen, 

2006, 2013; Wright, 2006). 

Cross-sectional model.  The cross-sectional model is the simplest of the models because 

it does not take into account the pretest measures of the mediator and outcome variable 

and therefore does not address a question of change across time.  The cross-sectional 

model assumes the stabilities of the mediator and the outcome variable are equal to zero, 

there is no pretest correlation between the mediator and the outcome, and there are no 

cross-lagged relations between the mediator and the outcome or the outcome and the 

mediator.  Equation 6 represents the relation between the treatment variable and the 

posttest mediator (am2x) and Equation 7 represents the relation between the treatment 

variable and the posttest outcome (c’y2x) adjusted for the posttest mediator and the 

relation between the posttest mediator and the posttest outcome (by2m2) adjusted for the 

treatment.  

𝑀2 = 𝑖6 +  𝑎𝑚2𝑥𝑋 + 𝑒6                                                                                        (6) 

𝑌2 = 𝑖7 + 𝑐′
𝑦2𝑥𝑋 + 𝑏𝑦2𝑚2𝑀2 + 𝑒7                                                                       (7) 

The cross-sectional mediated effect is estimated by computing the product of am2x 

coefficient from Equation 6 and by2m2 coefficient from Equation 7 (am2xby2m2).  The cross-

sectional model does not explicitly take into account the pretest measures of the mediator 
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and the outcome in any way. This model assumes there are no relations between the 

pretest measures of the mediator and the outcome and no relations between the pretest 

measures of the mediator and the outcome and the posttest measures of the mediator and 

the outcome. 

Difference score model.  Difference scores address the question “On average, how much 

did each group change across time?”  It can be seen that difference scores address a 

question of change across time that is unconditional on pretest scores (Dwyer, 1983).  

The difference score model assumes the same measure is used at pretest and at posttest 

and that the correlation between the prestest and posttest measure (stability) is 1.0 

(Bonate, 2002; Campbell & Kenny, 1999; Cronbach & Furby, 1970).  Equation 8 

represents the difference score that would be calculated for a mediator variable where ΔM 

indicates difference in scores on the mediator variable measured at pretest subtracted 

from scores on the mediator variable measured at posttest.  Equation 9 represents the 

difference scores calculated for the outcome variable where ΔY indicates change in scores 

on the outcome variable measured at pretest subtracted from scores on the outcome 

variable measured at posttest. 

∆𝑀= 𝑀2 − 𝑀1                                                                                                       (8) 

∆𝑌= 𝑌2 − 𝑌1                                                                                                           (9) 

Equations 9 and 10 represent regression equations that are estimated using difference 

scores for the mediator variable and outcome variable, respectively.  

∆𝑀= 𝑖8 + 𝑎∆𝑋 + 𝑒8                                                                                             (10) 
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∆𝑌= 𝑖9 + 𝑐′∆𝑋 + 𝑏∆𝛥𝑀 + 𝑒9                                                                               (11) 

Mediated effects are estimated by computing the product of aΔ coefficient from Equation 

10 and bΔ coefficient from Equation 11 (aΔbΔ).  When estimating the mediated effect this 

way, it becomes clear that the relations between pretest measures of the mediator variable 

and the outcome variable are not explicitly taken into account and the cross-lagged 

relations between pretest measures and posttest measures are not explicitly taken into 

account (pretest mediator to posttest outcome and pretest outcome to posttest mediator).  

Therefore, the difference score model in the context of mediation, implicitly assumes 

these relations are equal to zero.   

Residualized change score model.  Residualized change scores are computed by 

regressing posttest scores on pretest scores and then computing the difference between 

observed posttest scores and predicted posttest scores (residual).  No treatment group 

variable is included in the regression of posttest scores on pretest scores, which means 

posttest scores for units in both treatment groups are adjusted for pretest scores based on 

an aggregate of pretest scores across both treatment groups.  The residualized change 

score model assumes there are no between group differences in the correlation between 

the pretest measure and the posttest measure (Cronbach & Furby, 1970).  That is, the 

correlation between the pretest measure and the posttest measure for the control group is 

equal to the correlation between the pretest measure and the posttest measure for the 

treatment group.   

Residualized change scores answer the question “How different are treatment 

group posttest scores given equal treatment group pretest scores?”  Residualized change 
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scores address a conditional question of change. That is, given the treatment group and 

the control group have equal pretest scores, how different are the treatment group and 

control group posttest scores?  Equation 12 represents residualized change scores 

calculated for the mediator variable, where RM indicates change in predicted scores on the 

mediator variable measured at posttest subtracted from observed scores on the mediator 

variable measured at posttest.  Equation 13 represents residualized change scores 

calculated for the outcome variable, where RY indicates change in predicted scores on the 

outcome variable measured at posttest subtracted from observed scores on the outcome 

variable at posttest. 

𝑅𝑀 = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑀2 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑀2                                                               (12) 

𝑅𝑌 = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑌2 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑌2                                                                  (13) 

Equations 13 and 14 represent regression equations that are estimated using residualized 

change scores for the mediator variable and the outcome variable, respectively.  

𝑅𝑀 = 𝑖10 + 𝑎𝑅𝑋 + 𝑒10                                                                                        (14) 

𝑅𝑌 = 𝑖11 + 𝑐′𝑅𝑋 + 𝑏𝑅𝑅𝑀 + 𝑒11                                                                          (15) 

Mediated effects are estimated by computing the product of aR coefficient from Equation 

14 and bR coefficient from Equation 15 (aRbR).  Like the difference score model, the 

residualized change score model does not explicitly take into account the pretest 

correlation between the mediator and outcome variables and it does not explicitly take 

into account the cross-lagged relations.  Therefore, this model implicitly assumes these 

relations are equal to zero.    
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ANCOVA.  ANCOVA is used to assess change by using pretest scores as a covariate 

when predicting posttest scores (Bonate, 2002; Campbell & Kenny, 2002).  ANCOVA 

removes the influence of pretest scores on posttest scores by computing a within-group 

regression coefficient of posttest scores on pretest scores for each treatment and control 

group, separately.  Next, these within group regression coefficients are pooled to form a 

single regression coefficient by which posttest scores are adjusted for pretest scores.  

ANCOVA specifically addresses the question “On average, how different are the 

treatment and control groups scores at posttest given that treatment and control groups 

had equivalent pretest scores?”  ANCOVA addresses a conditional question of change.  

The ANCOVA model assumes that within group regression coefficients are homogenous, 

there is no interaction of the covariate (e.g., pretest scores) and the treatment group, and 

that the covariate is measured without error (Huitema, 2011; Maxwell & Delaney, 2004). 

Equations 15 and 16 represent regression equations that are estimated using ANCOVA to 

adjust for pretest scores for the mediator and the outcome variable, respectively. 

𝑀2 = 𝑖4 +  𝑎𝑚2𝑥𝑋 + 𝑆𝑚2𝑚1 𝑀1 + 𝑏𝑚2𝑦1𝑌1 + 𝑒4                                               (16) 

𝑌2 = 𝑖5 + 𝑐′
𝑦2𝑥𝑋 + 𝑆𝑦2𝑦1 𝑌1 + 𝑏𝑦2𝑚1𝑀1 + 𝑏𝑦2𝑚2𝑀2 + 𝑒5                               (17) 

Sm2m1  in Equation 16 represents a pooled regression coefficient relating pretest scores 

measured on the mediator to posttest scores measured on the mediator within each 

treatment and control group and then pooled across both groups.  Sy2y1 in Equation 17 

represents a pooled regression coefficient relating pretest scores measured on the 

outcome variable to posttest scores measured on the outcome variable within each 

treatment and control group and then pooled across both groups.  Mediated effects are 



 
 

12 

 

estimated by computing the product of am2x coefficient from Equation 16 and by2m2 

coefficient from Equation 17 (am2xby2m2).  Unlike the difference score model and the 

residualized change score model, the ANCOVA model explicitly takes into account the 

cross-lagged relations (as long as they are included in the model equations) and takes into 

account the pretest correlation between the mediator and outcome variables because the 

predictors in the equations are adjusted for their relations with the other predictors in the 

same equation (Cohen, Cohen, West, & Aiken, 2003).   

Path analysis. An additional approach to analyzing change in the pretest-posttest control 

group design is to analyze the relations specified by equations 16 and 17 using path 

analysis.  Like the ANCOVA model, path analysis explicitly takes into account the 

pretest correlation between the mediator and outcome variables and the cross-lagged 

relations (as long they are specified in the model).  

Summary.  Overall, the cross-sectional, difference score, and residualized change score 

model all have specific conditions that need to be met about various model parameters 

when testing the mediated effect in the pretest-posttest control group design.  None of 

these three models take into account any potential pretest correlation between the 

mediator and outcome variables and none of the three models directly take into account 

any potential cross-lagged relations. The difference score model assumes the stabilities 

for the mediator and outcome variables are 1.0 and the cross-sectional model assumes the 

stabilities for the mediator and outcome variables are 0.0.  The ANCOVA and path 

analysis models explicitly estimate or take into account the correlation between the 

mediator and outcome at baseline, cross-lagged relations, and stabilities.  Therefore, it is 
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expected that the mediated effect estimated with the difference score, residualized change 

score, and the cross-sectional model will be biased across a variety of conditions whereas 

the mediated effect estimated with the ANCOVA and the path analysis model will not.  

 The following hypotheses reflect that the performance of the models will be 

negatively affected when parameters are non-zero in the true model but are not estimated.  

For example, the residualized change score model does not explicitly take into account 

any cross-lagged relations between pretest measures and posttest measures therefore 

when these relations exist and the residualized change score model is used to estimate the 

mediated effect, it is expected that the mediated effect will be biased.   

 

 

Hypotheses 

 The first hypothesis is the difference score, residualized change score, ANCOVA, 

and path analysis models will perform better than the cross-sectional model in general 

because they use the pretest information.  The second hypothesis is the cross-sectional, 

difference score, and residualized change score models will be biased when either or both 

the by2m1 and bm2y1, cross-lagged paths, are non-zero.  The third hypothesis is the 

cross-sectional, difference score, and residualized change score model will have 

confidence interval coverage lower than 95% when either or both the by2m1 or bm2y1 

paths are present.  The by2m1 and bm2y1 paths are expected to bias the results and lead 

to confidence interval coverage lower than 95% for the cross-sectional, difference score, 
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and residualized change score models because these models do not directly take into 

account these paths when estimating the mediated effect.  The fourth hypothesis is the 

cross-sectional, difference score, and residualized change score models will be biased and 

have confidence interval coverage lower than 95% when there is a pretest correlation 

between the mediator and outcome variables.  The presence of the pretest correlation is 

expected to bias the results of these models because these models do not take into 

account this pretest correlation.  The fifth hypothesis is that the difference score model 

will have less power when the stability is low versus high because the difference score 

model assumes the pretest-posttest correlation (stability) is 1.00.  Overall, it is 

hypothesized all models will not have type 1 error rates that are greater than the nominal 

0.05 alpha level and will have increasing power as effect size of the mediated effect 

increases and sample size increases. 

 The study hypotheses are important because if researchers use the cross-sectional, 

difference score, or residualized change score model to estimate mediated effects in the 

pretest – posttest control group design, there are specific conditions to be met regarding 

the relations between the mediating and outcome variable at the pretest and the relations 

of the pretest measures to the posttest measures (i.e., cross-lagged relations).  The 

conditions range from a zero pretest correlation between the mediator and the outcome to 

zero cross-lagged relations between the pretest and posttest measures.  It is unlikely that 

these conditions are tenable in most research designs and specifically the pretest – 

posttest control group design involving mediation effects.  The proposed simulation is 

designed to investigate how violating these conditions affects the accuracy of the five 

models. 
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Method 

Data-Generating Model 

The SAS 9.3 programming language was used to conduct a Monte Carlo simulation of a 

pretest-posttest control group design with a mediating variable.  The following equations 

represent the data-generating model (see Appendix C) and correspond to the 

ANCOVA/path analysis model in the Monte Carlo simulation where 𝑥 is an observed 

value of random variable 𝑋 and �̃� is the sample median. 

 𝑋 ~𝑁(0,1): 𝑥 ≥ �̃� = 1; 𝑥 < �̃� = 0                                                         (34) 

𝑀1~𝑁(0,1)                                                                                              (35) 

𝑌1 = 𝑏𝑦1𝑚1𝑀1 + 𝑒1                                                                                 (36) 

𝑀2 = 𝑎𝑚2𝑥𝑋 + 𝑏𝑚2𝑦1𝑌1 + 𝑆𝑚2𝑚1𝑀1 + 𝑒2                                             (37) 

𝑌2 = 𝑐′𝑦2𝑥𝑋 + 𝑏𝑦2𝑚1𝑀1 + 𝑏𝑦2𝑚2𝑀2 + 𝑆𝑦2𝑦1𝑌1 + 𝑒3                            (38) 

𝜎𝑒1
2 = 1                                                                                                    (39) 

𝜎𝑒2
2 = 1                                                                                                    (40) 

𝜎𝑒3
2 = 1                                                                                                    (41) 

𝜎𝑒1𝑒2 = 0                                                                                                 (42) 

𝜎𝑒1𝑒3 = 0                                                                                                 (43) 

𝜎𝑒2𝑒3 = 0                                                                                                 (44) 
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The Monte Carlo simulation, varied sample size (N = 50, 100, 200, 500), effect 

size of the a (am2x) (0 .10, .30, .50), b(by2m2) (0 .10, .30, .50), and c’(c’y2x) (0 and .30) 

paths, effect size of the path from the pretest mediator to the posttest outcome (by2m1) (0 

and .50), effect size of the path from the pretest outcome to the posttest mediator (bm2y1) 

(0 and .50), stability of the mediator (Sm2m1) and the outcome (Sy2y1) (.3 and .7), and the 

correlation between the mediator and outcome at pretest (0 and .5).  The by1m1 coefficient 

in Equation 36 was simulated to be equivalent to a correlation (ρy1m1) of 0 or .5.  The 

data-generating model diagram (see Appendix D) depicts a causal relation between the 

mediator and outcome at pretest but this is to make the Equations 34 – 44 match exactly 

with the diagram.  That is, although there was a causal arrow relating the mediator at 

pretest to the outcome at pretest we will investigate effects of varying the correlation 

between these variables and do not assume a unidirectional causal effect between them.   

To summarize, 13 combinations of effect sizes for the a, b, and c’ path were 

studied.  The effect sizes of these paths were all in the correlation metric and chosen to 

reflect small, medium, and large effect sizes (Cohen, 1988).  The 13 combinations of 

effect size were adopted from MacKinnon, Lockwood, and Williams (2004) because they 

demonstrated that all other combinations of effect sizes had identical results in their 

study.  A caveat should be made that the present study differs from the single mediator 

model studied in MacKinnon et al. (2004).  The combinations are as follows and 

summarized in Table 1: a = b = c’=0; a = 0, b = .10, c’ = 0; a = 0, b = .30 c’ = 0; a = 0, b 

= .50, c’ = 0; a = .10, b = .10, c’ = 0; a = .30, b = .30, c’ = 0; a = .50, b = .50, c’ = 0; a = 

.10, b = .30, c’ = 0; a = .10, b = .50, c’ = 0; a = .30, b = .50, c’ = 0; a = .10, b = .10, c’ = 

.30; a = .30, b = .30, c’ = .30; and a = .50, b = .50, c’ = .30.  There was 832 conditions 
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defined by 13 effect size combinations, 4 sample sizes, 2 effect sizes of pretest mediator 

on posttest outcome, 2 effect sizes or pretest outcome on posttest mediator, 2 stabilities of 

mediator and outcome, and 2 correlations between mediator and outcome at pretest.  This 

resulted in an incomplete factorial design with all factors being fully crossed with one 

another except for the last three combinations of effect sizes which included a non-zero 

effect size for the c’ path.  When this path is non-zero, it is known as a direct effect in the 

mediation literature (MacKinnon, 2008).  The presence of this direct effect did not occur 

for all combinations of effect sizes for the a and b paths.  Therefore, the direct effect was 

not fully crossed with all the factors in this simulation study.  A total of 1,000 replications 

of each condition was conducted.  The focus of this simulation study was to evaluate 

estimator characteristics of the mediated effect (am2x by2m2) for the cross-sectional single 

mediator model ignoring the pretest mediator and outcome variables and four 

longitudinal models (i.e., difference scores, residualized change scores, ANCOVA, and 

path analysis) for assessing change. 

Bias of Parameter Estimates 

For each replication in each condition, bias of the parameter estimates of the 

mediated effect was  the parameter estimate minus the true value of the parameter as in 

Equation 45.  All estimates of bias were averaged over all replications within each 

condition. 

𝐵𝑖𝑎𝑠(𝜃) = 𝜃 − 𝜃                                                                                                (45) 
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The relative bias of the parameter estimates of the mediated effect was computed by 

dividing the bias of the parameter estimate from Equation 45 by the true value of the 

parameter as in Equation 46.  All estimates of relative bias were averaged over 

replications within each condition.  

𝑅𝐵𝑖𝑎𝑠(𝜃) =
(�̂�−𝜃)

𝜃
                                                                                               (46) 

An estimator was considered acceptable in terms of bias if the absolute value of relative 

bias was less than .10 (Flora & Curran, 2004; Kaplan, 1988).  One drawback of 

calculating relative bias (i.e., Equation 44) is that it cannot be calculated when the true 

value of the parameter is equal to zero.  To remedy this, the standardized bias (SBias) of 

the parameter estimates was computed by dividing the bias of the parameter estimate as 

obtained from Equation 45 by the standard deviation of the parameter estimate across 

replications (i.e., empirical standard error of the parameter estimate).  This measure of 

relative bias can be calculated when the true value of the parameter is equal to zero (see 

Equation 47).  All estimates of standardized bias were averaged over replications within 

each condition. 

𝑆𝐵𝑖𝑎𝑠(𝜃) =
(�̂�−𝜃)

𝑆𝐷�̂�
                                                                                               (47) 

Significance Testing 

Type 1 error rates were the proportion of times across the 1000 replications per 

condition a parameter estimate of the mediated effect was statistically significant at the 

0.05 alpha level when the true value of the parameter estimate was 0.  Bradley’s (1978) 

liberal criterion was used to evaluate the performance of the methods in terms of Type 1 
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error rates.  That is, Type 1 error rates will be deemed acceptable if they fall within the 

range of [0.025, 0.075].  Power was the proportion of times across the 1000 replications 

per condition a parameter estimate of the mediated effect was statistically significant at 

the 0.05 alpha level when the true value of the parameter was not equal to 0.  The best 

performing estimator in terms of statistical power has the highest statistical power given 

the effect size and sample size generated for a given simulation condition.   

 

 

Confidence Interval Estimation 

Normal theory.  Confidence interval coverage will be the proportion of 95% 

confidence intervals that contain the true value of the parameter estimate of the mediated 

effect across replications.  The width of each arm of the normal theory confidence 

interval (margin of error; M.O.E) was computed using the following equation: 

𝑀. 𝑂. 𝐸. (𝜃) = (1.96 ∗ 𝑆𝐸�̂�)                                                                               (48) 

The value of 1.96 refers to the critical value of the standard normal distribution (Z-

scores) that corresponds to an area above the value equal to 0.025 and 𝑆𝐸�̂�𝑟
refers to the 

estimated standard error for a given replication.  In addition to confidence interval 

coverage, the proportion of times the true value of the parameter fell above the upper 

limit of the confidence interval was calculated and the proportion of times the true value 

of the parameter fell below the lower limit of the confidence interval was calculated 

across replications. 
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Percentile bootstrap. Confidence interval coverage was also computed using the 

percentile bootstrap (Efron & Tibshirani, 1993).  For each replication, 1000 bootstrap 

samples were generated and confidence intervals were computed for each parameter 

estimate in each bootstrap sample.  A 95% percentile bootstrap confidence interval for 

each replication was computed by rank ordering each bootstrap sample mediated effect 

and taking the 25
th

 value from the 1000 bootstrapped samples as the lower bound of the 

confidence interval and the 975
th

 value from the 1000 bootstrapped samples as the upper 

bound of the confidence interval.  Coverage was the proportion of times the true value of 

the parameter fell within the percentile bootstrap confidence interval. The proportion of 

times the true value fell below the lower limit of the bootstrapped confidence interval and 

the proportion of times the true value fell above the upper limit of the bootstrapped 

confidence interval was calculated.   

Distribution of a product.  Confidence interval coverage was computed using 

the PRODCLIN program to create asymmetric confidence intervals based on the non-

normal distribution of the product of two regression coefficients (e.g., ab; MacKinnon, 

Fritz, Williams, & Lockwood, 2007).  PRODCLIN was used to compute the 95% 

asymmetric confidence interval for each estimate of the mediated effect for each 

replication.  Coverage was the proportion of times the true value of the mediated effect 

fell within the asymmetric confidence intervals.  The proportion of times the true value 

fell below the lower limit of the asymmetric confidence interval and the proportion of 

times the true value fell above the upper limit of the asymmetric confidence interval was 

calculated.  
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All else being equal, the best estimator of the mediated effect and the best method 

for creating confidence intervals (i.e., normal theory, percentile bootstrap, or 

PRODCLIN) had confidence interval coverage rates that fall within the range of [92.5, 

97.5] and equal proportions of true values that fell above the upper limit of the 

confidence interval within the range of [1.25, 3.75] and true values that fell below the 

lower limit of the confidence interval within the range of [1.25, 3.75] based on Bradley’s 

(1978) liberal robustness criterion.   

The simulation was conducted in two parts.  First, the data for each of the 832 

conditions was generated with a SAS macro (see Appendix C).  Second, the data for each 

of the 832 conditions was analyzed using separate SAS macros (See Appendices F – K).   

Data Analysis Models 

Cross-Sectional Single Mediator Model.  The following equations estimate the 

cross-sectional mediated effect and ignore the pretest mediator and outcome variables 

(see Appendix L).    

𝑀2 = 𝑖6 +  𝑎𝑚2𝑥𝑋 + 𝑒6                                                                                      (49) 

𝑌2 = 𝑖7 + 𝑐′𝑦2𝑥𝑋 + 𝑏𝑦2𝑚2𝑀2 + 𝑒7                                                                     (50) 

The estimate of the effect of treatment on the posttest mediator scores is �̂�𝑚2𝑥, the 

estimate of the effect of treatment on the posttest dependent variable scores adjusted for 

the effect of posttest mediator scores is 𝑐′̂𝑦2𝑥, the estimate of the effect of the posttest 
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mediator scores on the posttest dependent variable scores adjusted for the effect of the 

treatment is �̂�𝑦2𝑚2, and the estimate of the cross-sectional mediated effect is �̂�𝑚2𝑥�̂�𝑦2𝑚2.  

Difference Scores.  Difference scores for the mediator and the dependent variable 

will be computed and submitted to regression analyses using the following Equations (see 

Appendix M for figure). 

∆𝑀= 𝑀2 − 𝑀1                                                                                                     (51) 

∆𝑌= 𝑌2 − 𝑌1                                                                                                         (52) 

∆𝑀= 𝑖8 + 𝑎∆𝑋 + 𝑒8                                                                                             (53) 

∆𝑌= 𝑖9 + 𝑐′∆𝑋 + 𝑏∆𝛥𝑀 + 𝑒9                                                                               (54) 

The estimate of the effect of treatment on the difference score for the mediator is �̂�∆, the 

estimate of the effect of treatment on the difference score for the dependent variable 

adjusted for the effect of the mediator change score on the difference score of the 

dependent variable is 𝑐′̂∆, the estimate of the effect of the mediator difference score on 

the difference score for the dependent variable adjusted for the effect of the treatment on 

the difference score of the dependent variable is �̂�∆, and the estimate of the mediated 

effect is 𝑎∆�̂�∆.  

Residualized Change Scores.  Residualized change scores for the mediator and 

the dependent variable will be computed and used in regression analyses using the 

following Equations (see Appendix N for figure). 

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑀2 = 𝑆𝑚2𝑚1𝑡𝑜𝑡𝑎𝑙𝑀1                                                                         (55) 
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𝑅𝑀 = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑀2 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑀2                                                               (56) 

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑌2 = 𝑆𝑦2𝑦1𝑡𝑜𝑡𝑎𝑙𝑌1                                                                              (57) 

𝑅𝑌 = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑌2 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑌2                                                                  (58) 

𝑅𝑀 = 𝑖10 + 𝑎𝑅𝑋 + 𝑒10                                                                                        (59) 

𝑅𝑌 = 𝑖11 + 𝑐′𝑅𝑋 + 𝑏𝑅𝑅𝑀 + 𝑒11                                                                          (60) 

The estimate of the effect of treatment on the residualized change score for the mediator 

is �̂�𝑅, the estimate of the effect of treatment on the residualized change score for the 

dependent variable adjusted for the effect of the mediator residualized change score on 

the residualized change score of the dependent variable is 𝑐′̂𝑅, the estimate of the effect 

of the mediator residualized change score on the residualized change score for the 

dependent variable adjusted for the effect of the treatment on the residualized change 

score of the dependent variable is �̂�𝑅, and the estimate of the mediated effect is 𝑎𝑅�̂�𝑅.  

Analysis of Covariance.  The following equations represent estimating the 

effects using ANCOVA with pretest scores as the covariate for the mediator and the 

dependent variable (see Appendix D). 

𝑀2 = 𝑖4 +  𝑎𝑚2𝑥𝑋 + 𝑏𝑚2𝑦1𝑌1 + 𝑆𝑚2𝑚1 𝑝𝑜𝑜𝑙𝑒𝑑𝑀1 + 𝑒4                                      (61) 

𝑌2 = 𝑖5 + 𝑐′𝑦2𝑥𝑋 + 𝑆𝑦2𝑦1 𝑝𝑜𝑜𝑙𝑒𝑑𝑌1 + 𝑏𝑦2𝑚1𝑀1 + 𝑏𝑦2𝑚2𝑀2 + 𝑒5                      (62) 

The estimate of the effect of treatment on the posttest mediator scores adjusted for pretest 

mediator scores and pretest dependent variable scores is �̂�𝑚2𝑥, the estimate of the effect 
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of treatment on the posttest dependent variable scores adjusted for the effect of the pretest 

mediator scores, posttest mediator scores, and pretest dependent variable scores is 𝑐′̂𝑦2𝑥, 

the estimate of the effect of the posttest mediator scores on the posttest dependent 

variable scores adjusted for the effect of the treatment, pretest mediator scores, and 

pretest dependent variable scores is �̂�𝑦2𝑚2, and the estimate of the mediated effect is 

�̂�𝑚2𝑥�̂�𝑦2𝑚2.  

Path Analysis.  The following equations represent estimating the effects using 

path analysis (see Appendix D).  The effects estimated with path analysis will be similar 

to the effects estimated using ANCOVA except for the estimated standard errors.  

Standard errors estimated using path analysis model will differ from those from the 

standard errors estimated using ANCOVA because path analysis uses maximum 

likelihood estimation as opposed to ANCOVA which uses ordinary least squares 

estimation.  The formulas for standard errors using maximum likelihood estimation differ 

slightly from those used in ordinary least squares estimation. Thus, the estimated standard 

errors across the path analysis model results and the ANCOVA model results will differ 

slightly.   

𝑀2 = 𝑖4 +  𝑎𝑚2𝑥𝑋 + 𝑏𝑚2𝑦1𝑌1 + 𝑆𝑚2𝑚1 𝑀1 + 𝑒4                                               (63) 

𝑌2 = 𝑖5 + 𝑐′𝑦2𝑥𝑋 + 𝑆𝑦2𝑦1 𝑌1 + 𝑏𝑦2𝑚1𝑀1 + 𝑏𝑦2𝑚2𝑀2 + 𝑒5                                (64)   

𝐶𝑜𝑣(𝑋, 𝑀1) = 0                                                                                                  (65) 

𝐶𝑜𝑣(𝑋, 𝑌1) = 0                                                                                                    (66) 
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 𝐶𝑜𝑣(𝑀1, 𝑌1) = 𝜎𝑚1𝑦1                                                                                         (67) 

The covariance between treatment variable (X) and pretest mediator (M1) and between 

treatment variable (X) and pretest outcome (Y1) will be fixed to zero under the 

assumption of successful randomization of units to conditions.  The covariance between 

the pretest mediator and pretest outcome variable will be estimated.  All covariance terms 

between residuals will be fixed to zero and all residual variances will be estimated. 

The estimate of the effect of treatment on the posttest mediator scores adjusted for 

pretest mediator scores and pretest dependent variable scores is �̂�𝑚2𝑥, the estimate of the 

effect of treatment on the posttest dependent variable scores adjusted for the effect of the 

pretest mediator scores, posttest mediator scores, and pretest dependent variable scores is 

𝑐′̂𝑦2𝑥, the estimate of the effect of the posttest mediator scores on the posttest dependent 

variable scores adjusted for the effect of the treatment, pretest mediator scores, and 

pretest dependent variable scores is �̂�𝑦2𝑚2, and the estimate of the mediated effect is 

�̂�𝑚2𝑥�̂�𝑦2𝑚2(see Appendices O – P for true covariances and correlations).  

Results  

Organization  

The results section was organized in the following way.  Type 1 error rates were 

discussed first followed by bias, confidence interval coverage, and then power results.  

All type 1error, confidence interval coverage, and power results were reported using the 

distribution of a product.  The distribution of a product results were reported because they 

perform better than normal theory results and they performed similarly to the percentile 
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bootstrap results when detecting mediated effects in this study and in prior research 

(MacKinnon, Lockwood, & Williams, 2004).  For each section (except for the type 1 

error rates section) the results for a specific model were presented (e.g., ANCOVA) and 

for each model there was a section of results for when there was no direct effect and a 

section for when there was a direct effect.  The results were analyzed separately for no 

direct effect versus direct effect because the direct effect was not fully-crossed with the 

other predictors in this simulation study.  For example, there were 10 conditions of 

different effect sizes of the mediated effect for which there was no direct effect and there 

were 3 conditions of different effect sizes of the mediated effect for which there was a 

direct effect.  In most situations the patterns of results for different values of the direct 

effect were identical.  When results differed across values of the direct effect, they were 

reported.   

Type 1 Error Rates Regression Analyses 

To assess the significant predictors of empirical type 1 error rates logistic 

regression analyses were conducted with the dependent variable coded as ‘0’ for ‘non-

significant mediated effect’ and ‘1’ for ‘significant mediated effect’ for all simulation 

conditions.  Sample size was treated as a continuous predictor and was standardized to 

have a mean of zero and a standard deviation of one prior to the analyses.  Pretest 

correlation was coded ‘-1’ for a pretest correlation of 0.00 and coded ‘1’ for a pretest 

correlation of 0.50.  Stability of the mediator and outcome variables was coded ‘-1’ for 

stability of 0.30 and coded ‘1’ for stability of 0.70.  The bm2y1 path was coded‘-1’ for the 

bm2y1 path of 0.00 and coded ‘1’ for the bm2y1 path of 0.50.  The by2m1 path was coded 
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‘-1’ for the by2m1 path of 0.00 and coded ‘1’ for the by2m1 path of 0.50.  Because the 

coding scheme for the categorical predictors was chosen to be contrast codes (-1 or 1), 

this resulted in the mean of each categorical variable being equal to zero and the standard 

deviation being equal to one given equal sample size in each simulation condition (i.e., 

1000 replications in each condition).   

All possible higher-order interactions were included in these analyses and main 

and interaction effects that were both statistically significant at α = 0.05 and had a 

standardized beta coefficient (reported as b) of at least 0.10 were considered important 

effects on type 1 error. For interaction terms, predictors were first standardized and then 

products of the standardized predictors were formed to create the interaction terms.  

Standardized beta coefficients were computed following the recommendations of Menard 

(2004) for a fully standardized logistic regression coefficient.  The coefficients were 

standardized in order for all effects to be on a similar metric and 0.10 was chosen as a 

cut-off point because it corresponds to a 0.20 standard deviation change for a 1-unit 

change in the predictors that were coded using contrast codes (i.e., pretest correlation, 

stability, cross-lags).  Because the design of this study was an incomplete factorial design 

with the incomplete factor being the presence of a direct effect, analyses were performed 

separately for each of the two levels of direct effect.     

Type 1 Error Rates 

There were no significant interactions or main effects that were both statistically 

significant and had standardized beta coefficients that were greater than the absolute 
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value of 0.10 for the ANCOVA, path analysis, difference score, residualized change 

score, or the cross-sectional model results.                                                

The Type 1 error rates for all methods to assess the mediated effect (i.e., Cross-

sectional model, ANCOVA, path analysis, difference scores, and residualized change 

scores) are not above the nominal cut-off point of 0.05 across any combination of 

simulation conditions.  Therefore, the statistical method that is the least biased and has 

the most power for detecting the mediated effect given a particular effect size and sample 

size will be considered the best model for detecting mediated effects in pretest-posttest 

control group designs. 

 ------------------------------- 

Insert Tables 2-5 about here 

------------------------------- 

Bias Regression Analyses 

To assess which predictors in this study significantly contributed to variation in 

empirical bias, relative bias, and standardized bias, Ordinary Least Squares (OLS) 

regression analyses were conducted for each model with bias, relative bias, and 

standardized bias as the dependent variables for each model.  The predictors were coded 

the same way as for the type 1 error rates analyses and separate analyses were conducted 

for each level of direct effect.  Omega-squared values of 0.01 in combination with a 

statistically significant main or interaction effect were considered practically significant 

effects.  The analyses were only conducted for standardized bias and relative bias because 
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these measures of bias are generally more easily interpreted than bias because they are 

not artificially inflated as the effect size of the mediated effect increases.  All bias results 

are presented in the tables alongside standardized bias and relative bias results.   

 

Standardized Bias Results 

ANCOVA.   As shown in Table 6, there were no main or interaction effects that 

were both statistically significant and had omega-squared values of 0.01 or higher and 

there were no conditions for which the standardized bias exceeded 0.10.     

------------------------------- 

Insert Table 6 about here 

------------------------------- 

Path Analysis.  As shown in Table 7, there were no main or interaction effects 

that were both statistically significant and had omega-squared values of 0.01 or higher 

and there were no conditions for which the standardized bias exceeded 0.10. 

------------------------------- 

Insert Table 7 about here 

------------------------------- 

Difference Scores.  As shown in Table 8, there were no main or interaction 

effects that were both statistically significant and had omega-squared values of 0.01 or 

higher and there were no conditions for which the standardized bias exceeded 0.10. 
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                                        ------------------------------- 

Insert Table 8 about here 

------------------------------- 

Residualized change scores.  Because of the number of practically significant 

interactions of predictors on standardized bias for the residualized change score model, 

only the results for when the bm2y1 path and the by2m1 path were equal to 0.50 are 

presented.  There were no cases when the absolute value of the standardized bias 

exceeded 0.10 when both of these paths were equal to 0.00.  As shown in Tables 9 – 10, 

there were four-way interactions of effect size, pretest correlation, the bm2y1 path, and 

the by2m1 path (ω
2
 = 0.01, F (1, 639,936) = 11,133, p < 0 .05) and effect size, sample 

size, pretest correlation, and the bm2y1 path (ω
2
 = 0.01, F (1, 639,936) = 9,332.30, p < 0 

.05) such that the absolute value of the standardized bias of the mediated effect for the 

residualized change score model exceeded 0.10 for all sample sizes and effect sizes and 

when the bm2y1 path was equal to 0.50 and whether or not the by2m1 path or pretest 

correlation were equal to 0.00 or 0.50.  There were main effects of pretest correlation (ω
2
 

= 0.05, F (1, 639,936) = 85,026.90, p < 0 .05), the bm2y1 path  (ω
2
 = 0.10, F (1, 639,936) 

= 191,671, p < 0 .05), the by2m1 path (ω
2
 = 0.02, F (1, 639,936) = 31,284.80, p < 0 .05), 

effect size (ω
2
 = 0.08, F (1, 639,936) = 153,693, p < 0 .05), and sample size (ω

2
 = 0.02, F 

(1, 639,936) = 42,107.50, p < 0 .05) but there were no simple relations between either the 

pretest correlation, the bm2y1 path, the by2m1 path, effect size, or sample size and 

standardized bias. 

------------------------------- 
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Insert Tables 9-10 about here 

------------------------------- 

Cross-Sectional. 

Direct effect = 0.00.   As shown in Table 11, the absolute value of the 

standardized bias of the mediated effect with the cross-sectional model exceeded 0.10 for 

all conditions and became larger when by2m1 increased from 0.00 to 0.50 and as sample 

size increased (interaction of effect size, sample size, and the by2m1 path on the 

standardized bias, ω
2
 = 0.01, F (1, 639,936) = 5,471.52, p < 0 .05).  The standardized bias 

was greater for effect sizes 0.01, 0.09, and 0.25 (ω
2
 = 0.16, F (1, 639,936) = 144,896, p < 

0 .05), as sample size increased (ω
2
 = 0.03, F (1, 639,936) = 29,506.80, p < 0 .05), and as 

the by2m1 path increased from 0.00 to 0.50 (ω
2
 = 0.03, F (1, 639,936) = 26,019.70, p < 0 

.05). 

------------------------------ 

Insert Table 11 about here 

------------------------------- 

Direct effect = 0.30.  As shown in Tables 12 – 15 there was no interaction of 

effect size, sample size, and the by2m1 path when the direct effect was present.  There 

were, however, interactions of effect size and sample size (ω
2
 = 0.01, F (1, 191,936) = 

5,036, p < 0 .05), effect size and the by2m1 path (ω
2
 = 0.02, F (1, 191,936) = 7,067.87, p 

< 0 .05), sample size and the by2m1 path (ω
2
 = 0.02, F (1, 191,936) = 7,193.63, p < 0 

.05), pretest correlation and the bm2y1 path  (ω
2
 = 0.01, F (1, 191,936) = 1,987.96, p < 0 
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.05), and the bm2y1 path  and the by2m1 path (ω
2
 = 0.01, F (1, 191,936) = 3,990.23, p < 

0 .05) such that the absolute value of the standardized bias exceeded 0.10 when the 

bm2y1 path increased from 0.00 to 0.50 which increased when the pretest correlation 

increased from 0.00 to 0.50, the by2m1 path increased from 0.00 to 0.50 and as effect size 

and sample size increased.  The standardized bias was the highest for N = 500 and large 

effect sizes when the bm2y1 path was equal to 0.50, the by2m1 path was equal to 0.50, 

and the pretest correlation was equal to 0.50.  The only condition for which the absolute 

value of the standardized bias did not exceed 0.10 was when the pretest correlation was 

equal to 0.00, and both the bm2y1 path and the by2m1 path were equal to 0.00.     

------------------------------- 

Insert Tables 12 – 15 about here 

------------------------------- 

Relative Bias Results 

ANCOVA.   There were no main or interaction effects that were both statistically 

significant and had omega-squared values of 0.01 or higher and there were no conditions 

for which the relative bias exceeded 0.10.     

Path Analysis.  There were no main or interaction effects that were both 

statistically significant and had omega-squared values of 0.01 or higher and there were no 

conditions for which the relative bias exceeded 0.10.      
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Difference Scores.   

Direct effect = 0.00.  There were no main or interaction effects that were both 

statistically significant and had omega-squared values of 0.01 or higher. Subsequently, 

there were no conditions for which the absolute value of relative bias exceeded 0.10.  

Residualized change scores.   As shown in Tables 9 – 10, the absolute value of 

the relative bias of the mediated effect with the residualized change score model 

exceeded 0.10 for all sample sizes and effect sizes, when the bm2y1 path was equal to 

0.50 and became larger when the pretest correlation increased from 0.00 to 0.50 but was 

unaffected by the by2m1 path (interaction of pretest correlation and the bm2y1 path, ω
2
 = 

0.01, F (1, 383,936) = 5,571.36, p < 0 .05).  Additionally, there were a few other 

conditions for which the relative bias was greater than 0.10.  The relative bias increased 

when the bm2y1 path increased from 0.00 to 0.50 (ω
2
 = 0.06, F (1, 383,936) = 25,662.40, 

p < 0 .05).  There was a main effect of pretest correlation (ω
2
 = 0.01, F (1, 383,936) = 

5,587.27, p < 0 .05) but there was no simple interpretation of pretest correlation and 

relative bias.   

Cross-Sectional.   

Direct effect = 0.00.  As shown in Table 11, the absolute value of the relative bias 

of the mediated effect with the cross-sectional model exceeded 0.10 for all sample sizes 

and effect sizes and whether or not the by2m1 path was equal to 0.00 or 0.50 but was 

higher for small effect sizes and when the by2m1 path was equal to 0.50 (interaction of 
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effect size and the by2m1 path, ω
2
 = 0.01, F (1, 383,936) = 2,939.90, p < 0 .05).  The 

relative bias was larger when the pretest correlation increased from 0.00 to 0.50 (ω
2
 = 

0.01, F (1, 383,936) = 2,443.24, p < 0 .05), when the by2m1 path increased from 0.00 to 

0.50 (ω
2
 = 0.04, F (1, 383,936) = 17,133.80, p < 0 .05), and as effect size decreased (ω

2
 = 

0.02, F (1, 383,936) = 9,206.74, p < 0 .05).  

Direct effect = 0.30.   As shown in Tables 12 – 15, the same pattern of results 

held for when there was a direct effect as compared to when there was not a direct effect. 

The absolute value of relative bias of the mediated effect exceeded 0.10 for the cross-

sectional model when the by2m1 path increased from 0.00 to 0.50 and as effect size 

decreased (interaction of effect size and by2m1 path, ω
2
 = 0.01, F (1, 191,936) = 3,265, p 

< 0 .05).  The relative bias increased as effect size decreased (ω
2
 = 0.05, F (1, 191,936) = 

10,570.10, p < 0 .05), when the pretest correlation increased from 0.00 to 0.50 (ω
2
 = 0.01, 

F (1, 191,936) = 1,342.46, p < 0 .05), when stability increased from 0.30 to 0.70 (ω
2
 = 

0.01, F (1, 191,936) = 1,166.56, p < 0 .05), when the bm2y1 path increased from 0.00 to 

0.50 (ω
2
 = 0.01, F (1, 191,936) = 1,138.91, p < 0 .05), and when the by2m1 path 

increased from 0.00 to 0.50 (ω
2
 = 0.04, F (1, 191,936) = 9,089.92, p < 0 .05). 

Summary. 

In summary, the mediated effect was not biased when estimated with the 

ANCOVA, path analysis, or difference score model.  The mediated effect estimated with 

the residualized change score model was biased when the pretest correlation was equal to 

0.00 or 0.50 and the bm2y1 and by2m1 paths were equal to 0.50.  When the bm2y1 and 

by2m1 paths were equal to 0.00, the mediated effect was not biased and therefore 
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comparable to the mediated effect estimated with the ANCOVA and path analysis 

models.  The mediated effect was biased with the cross-sectional model when there was 

no direct effect present (0.00) and became more biased as effect size increased and as the 

by2m1 path increased from 0.00 to 0.50.  When a direct effect was present, the only time 

the mediated effect was not biased was when the pretest correlation was equal to 0.00 and 

the by2m1 path was equal to 0.00.  For this combination of conditions, the mediated 

effect estimated with the cross-sectional model was comparable to the mediated effect 

estimated with the ANCOVA and path analysis models.   

Confidence Interval Coverage and Power Regression Analyses 

Logistic regression analyses were conducted in the same way for confidence 

interval coverage and power as for type 1 error rates with the addition of effect size of the 

mediated effect as a standardized predictor in the analyses of confidence interval 

coverage and power.  For confidence interval coverage and power, separate analyses 

were conducted for the conditions with no direct effect and for the conditions with a 

direct effect because the direct effect manipulation was not completely crossed for all 

levels of the other factors in this simulation study.   

When assessing the performance of confidence interval coverage, coverage values 

below 92.5% were considered low and were highlighted in red in the results tables.  

Coverage values above 97.5% were considered high and were highlighted in green in the 

results tables.  These cutoff points correspond to Bradley’s (1978) robustness criterion.  

The percent of cases falling above the upper limit and the percent of cases falling below 

the lower limit did not differ across the models so those results were not reported here.    
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Confidence Interval Coverage.   

ANCOVA.   As shown in Table 16, the confidence interval coverage for the 

ANCOVA model never fell below 92.5% for any combination of sample size and effect 

size.  There were a few instances when the coverage exceeded 97.5% which generally 

happened when the effect was small (0.01) or zero and sample size was small (50 to 200).  

There were no significant predictors of the confidence interval coverage of the mediated 

effect with the ANCOVA model.  That is, there were no significant main or interaction 

effects that were both statistically significant and had a standardized beta coefficient with 

an absolute value greater than 0.10.   

------------------------------- 

Insert Table 16 about here 

------------------------------- 

Path analysis.  As shown in Table 17, the confidence interval coverage for the 

path analysis model never fell below 92.5% for any combination of sample size and 

effect size.  There were a few instances when the coverage exceeded 97.5% which 

generally happened when the effect size (0.01) and sample size was small (50 to 100).  

There were no significant predictors of the confidence interval coverage of the mediated 

effect with the path analysis model.  That is, there were no significant main or interaction 

effects that were both statistically significant and had a standardized beta coefficient with 

an absolute value greater than 0.10.   

------------------------------- 
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Insert Table 17 about here 

------------------------------- 

Difference scores.  As shown in Table 18, the confidence interval coverage for 

the path analysis model never fell below 92.5% for any combination of sample size and 

effect size.  There were a few instances when the coverage exceeded 97.5% which 

generally happened when the effect size (0.01) and sample size was small (50 to 100).  

There were no significant predictors of the confidence interval coverage of the mediated 

effect with the path analysis model.  That is, there were no significant main or interaction 

effects that were both statistically significant and had a standardized beta coefficient with 

an absolute value greater than 0.10.   

                                            ------------------------------- 

Insert Table 18 about here 

------------------------------- 

Residualized change scores. 

Direct effect = 0.00.    As shown in Tables 19 – 20 confidence interval coverage 

fell below 92.5%  as sample size, pretest correlation, and the bm2y1 path increased 

(interaction of sample size, pretest correlation, and the bm2y1 path, b = -0.11, χ
2
 (1, N = 

384,000) = 1,822.28, p < 0.05).  Coverage was low for large sample sizes when the 

pretest correlation the bm2y1 path both increased from 0.00 to 0.50.  There was also an 

interaction of pretest correlation, the bm2y1 path, and the by2m1 path (b = -0.11, χ
2
 (1, N 

= 384,000) = 2,043.63, p < 0.05) such that as pretest correlation, the bm2y1 path, and the 
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by2m1 path all increased, coverage decreased.  That is, coverage decreased when the 

pretest correlation increased from 0.00 to 0.50 and when both the bm2y1 path and the 

by2m1 path increased from 0.00 to 0.50.  There were also main effects of the bm2y1 path 

(b = -0.31, χ
2
 (1, N = 384,000) = 16,827.79, p < 0.05), sample size (b = -0.17, χ

2
 (1, N = 

384,000) = 4,303.29, p < 0.05), pretest correlation (b = -0.21, χ
2
 (1, N = 384,000) = 

8,020.70, p < 0.05), and effect size (b = -0.13, χ
2
 (1, N = 384,000) = 2,529.66, p < 0.05) 

but there were no simple interpretation of either the bm2y1 path, sample size, or effect 

size and coverage.  

The confidence interval coverage fell below 92.5% for the residualized change 

score model for N = 50, when the effect size was 0.15 and 0.25 and when the bm2y1 path 

was equal to 0.50 but the by2m1 path and the pretest correlation were equal to 0.00.  The 

confidence interval coverage was also low for N = 50, effect sizes 0.05, 0.09, 0.15, and 

0.25 when the bm2y1 path and the pretest correlation were equal to 0.50 but the by2m1 

path was equal to 0.00.  When the by2m1 path increased from 0.00 to 0.50, the coverage 

dropped to 92.5% for an additional effect size of 0.03.  For N = 100, the confidence 

interval coverage dropped below 92.5% for effect sizes 0.09, 0.15, and 0.25 when the 

bm2y1 path, the by2m1 path, and the pretest correlation decreased from 0.50 to 0.00.  

When the by2m1 path increased from 0.00 to 0.50, the coverage decreased for effect sizes 

0.15 and 0.25.  When the pretest correlation increased from 0.00 to 0.50, the coverage 

decreased for effect sizes 0.03, 0.05, 0.09, 0.15, and 0.25 when the bm2y1 path increased 

from 0.00 to 0.50 and whether or not the by2m1 path increased from 0.00 to 0.50.   
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For N = 200, the coverage was low for effect sizes 0.09, 0.15, and 0.25 when the 

bm2y1 path increased from 0.00 to 0.50 but the by2m1 path and the pretest correlation 

decreased from 0.50 to 0.00.  When the by2m1 path increased from 0.00 to 0.50, the 

coverage decreased for effect sizes 0.15 and 0.25.  When the pretest correlation increased 

from 0.00 to 0.50 the coverage decreased for effect sizes 0.03, 0.05, 0.09, 0.15, and 0.25 

when the bm2y1 path increased from 0.00 to 0.50 but the by2m1 path decreased from 

0.50 to 0.00.  When the by2m1 path increased from 0.00 to 0.50, the coverage also 

decreased for effect size 0.01 with the coverage decreasing to 0% in some cases.  For N = 

500, coverage was low for effect sizes, 0.03, 0.05, 0.09, 0.15, and 0.25 when the bm2y1 

path was equal to 0.50, the pretest correlation was equal to 0.00 and whether or not the 

by2m1 path increased was equal to 0.00 or 0.50.  When the pretest correlation increased 

from 0.00 to 0.50, coverage decreased for all effect sizes when the bm2y1 path increased 

from 0.00 to 0.50 and whether or not the by2m1 path increased from 0.00 to 0.50.  In 

some cases, the coverage went to 0%.  The confidence interval coverage exceeded 97.5% 

for N = 50 and N = 100 when there was no effect or the effect size was small (0.01) and 

occurred across both values of pretest correlation, the bm2y1 path, and the by2m1 path. 

 

 

------------------------------- 

Insert Tables 19-20 about here 

------------------------------- 
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Direct effect = 0.30.  As shown in Tables 21 – 22 there was an additional 

interaction of sample size, pretest correlation and the by2m1 path  (b = -0.10, χ
2
 (1, N = 

192,000) = 416.01, p < 0.05) on the confidence interval coverage for the residualized 

change score model when there was a direct effect present.  As sample size, pretest 

correlation, and the by2m1 path increased, the coverage decreased.   

For N = 50 and effect size 0.25 the confidence interval coverage dropped below 

92.5% when the bm2y1 path and the pretest correlation both increased from 0.00 to 0.50, 

and when the by2m1 path decreased from 0.50 to 0.00.  For N =100 and effect size 0.09 

and 0.25, the confidence interval coverage dropped to or below 92.5% when the bm2y1 

path increased from 0.00 to 0.50, and when the pretest correlation and the by2m1 path 

both decreased from 0.50 to 0.00.  It was also low for effect size 0.25 when the bm2y1 

path and the pretest correlation both increased from 0.00 to 0.50 and when the by2m1 

path decreased from 0.50 to 0.00.  The coverage was also low for effect size 0.25 when 

the bm2y1 path and the by2m1 path both increased from 0.00 to 0.50, and when the 

pretest correlation decreased from 0.50 to 0.00.  When the pretest correlation increased 

from 0.00 to 0.50, the coverage decreased for effect sizes 0.01 and 0.25.  A similar 

pattern emerged for N = 200 and N = 500.  The coverage exceeded 97.5% when the 

by2m1 path increased from 0.00 to 0.50 and the bm2y1 path decreased from 0.50 to 0.00 

for a range of effect sizes and exceeded 97.5% when the effect size was small (0.01).   

------------------------------- 

Insert Tables 21-22 about here 

------------------------------- 
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Cross Sectional. 

Direct effect = 0.00.   As shown in Table 23, as sample size and effect size 

increased, the confidence interval coverage of the cross-sectional model decreased 

(interaction of sample size and effect size, b = -0.10, χ
2
 (1, N = 384,000) = 2,976, p < 

0.05).  The coverage decreased as a function of effect size more for large sample sizes 

than small sample sizes.  There was also an interaction of effect size and the by2m1 path 

(b = -0.11, χ
2
 (1, N = 384,000) = 3,418.07, p < 0.05) such that as effect size and the 

by2m1 path increased, coverage decreased.  Coverage decreased as a function of effect 

size more when the by2m1 path was equal to 0.50 than when the by2m1 path was equal 

0.00 with coverage being as low as 0.02 in one case.  The coverage was the lowest for 

large effect sizes, large sample sizes, and when the by2m1 path was equal to 0.50.  There 

were also main effects of sample size (b = -0.23, χ
2
 (1, N = 384,000) = 16,296.86, p < 

0.05), effect size (b = -0.23, χ
2
 (1, N = 384,000) = 16,855.86, p < 0.05), and the by2m1 

path (b = -0.21, χ
2
 (1, N = 384,000) = 12,807.41, p < 0.05).  In this case, there was no 

simple relation between either sample size, effect size, or the by2m1 path and coverage. 

For N = 50, confidence interval coverage fell below 92.5% for effect sizes 0.09, 

0.15, and 0.25 when the by2m1 path increased from 0.00 to 0.50.  For N = 100, coverage 

decreased for effect size 0.25 when the by2m1 path decreased from 0.50 to 0.00 and for 

effect sizes 0.09, 0.15, and 0.25 when the by2m1 path increased from 0.00 to 0.50.  For N 

= 200, coverage decreased for effect sizes 0.09, 0.15, and 0.25 when the by2m1 path 

increased from 0.00 to 0.50 and decreased for effect sizes 0.01, 0.03, 0.09, 0.15, and 0.25 

when the by2m1 path increased from 0.00 to 0.50.  For N = 500, coverage decreased for 
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effect sizes 0.01, 0.09, 0.15, and 0.25 when the by2m1 path decreased from 0.50 to 0.00 

and decreased for effect sizes 0.01 and higher when the by2m1 path increased from 0.00 

to 0.50.  Confidence interval coverage never exceeded 97.5%. 

------------------------------- 

Insert Table 23 about here 

------------------------------- 

Direct effect = 0.30.  As shown in Table 24, there was an additional interaction of 

sample size, effect size, and the by2m1 path (b = -0.12, χ
2
 (1, N = 192,000) = 2,243.01, p 

< 0.05) on the confidence interval coverage of the cross-sectional model when there was 

a direct effect present.  That is, as sample size, effect size, and the by2m1 path increased, 

the coverage decreased.    

For N = 50 and N = 100 and effect sizes 0.09 and 0.25, the confidence interval 

coverage dropped below 92.5% when the by2m1 path increased from 0.00 to 0.50.  For N 

= 200 and N=500 and effect sizes 0.01, 0.09, and 0.25, the coverage was low when the 

by2m1 path increased from 0.00 to 0.50.  There was a significant three-way interaction of 

effect size, sample size, and by2m1 path (b = -0.12, χ
2
 (1, N = 192,000) = 2,243.01, p < 

0.05) on the confidence interval coverage of the mediated effect for the cross-sectional 

model.  The confidence interval coverage never exceeded 97.5%.   

------------------------------- 

Insert Table 24 about here 

------------------------------- 
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Summary.  

In summary, the confidence interval coverage for the ANCOVA, path analysis, 

and difference score model were similar and generally fell within the range of 92.5% - 

97.5% coverage.  The confidence interval coverage for the residualized change score 

model was low when the pretest correlation and both the bm2y1 path and the by2m1 path 

were equal to 0.50 and as sample size and effect size increased.  The confidence interval 

coverage for the residualized change score model was comparable to the confidence 

interval coverage for the path analysis model when the bm2y1 path was equal to 0.00 and 

whether or not the by2m1 or the pretest correlation was equal to 0.00 or 0.50.  The results 

for the confidence interval coverage for the cross-sectional model were low when the 

by2m1 path was equal to 0.50 and as effect size and sample size increased.  The 

confidence interval coverage for the cross-sectional model was comparable to the 

confidence interval coverage for the path analysis model when the by2m1 path was equal 

to 0.00, when the sample size was small (N = 50), and when the effect size was less than 

0.25. 

Power Results 

ANCOVA.    As shown in Figure 2, as sample size and effect size increased 

simultaneously, the power to detect the mediated effect increased substantially 

(interaction of sample size and effect size, b = 0.25, χ
2
 (1, N = 384,000) = 9,748.88, p < 

0.05).  Power increased as a function of effect size faster for large sample sizes (N = 500) 

compared to small sample sizes (N = 50).  Power to detect the mediated effect using the 

ANCOVA model increased as sample size (b = 0.36, χ
2
 (1, N = 384,000) = 27,071.26, p < 
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0.05) and effect size (b = 0.55, χ
2
 (1, N = 384,000) = 61,739.35, p < 0.05) increased.  

Overall, power reached 0.80 or higher for N = 50 when the effect size was 0.25, for N = 

100 when the effect size was 0.15 or higher, for N = 200 when the effect size was 0.09 or 

higher, and for N = 500 when the effect size was 0.09 or higher. 

- Insert Figure 2 about here – 

Path analysis.  As shown in Figure 3, as sample size and effect size increased 

simultaneously, the power to detect the mediated effect increased substantially 

(interaction of sample size and effect size, b = 0.24, χ
2
 (1, N = 384,000) = 8,738.57, p < 

0.05).  Power increased as a function of effect size faster for large sample sizes (N = 500) 

compared to small sample sizes (N = 50).  Power to detect the mediated effect using the 

path analysis model increased as sample size (b = 0.35, χ
2
 (1, N = 384,000) = 25,179.87, 

p < 0.05) and effect size (b = 0.56, χ
2
 (1, N = 384,000) = 61,661.44, p <0.05) increased.  

Overall, power reached 0.80 or higher for N = 50 when the effect size was 0.25, for N = 

100 when the effect size was 0.15 or higher, for N = 200 when the effect size was 0.09 or 

higher, and for N = 500 when the effect size was 0.09 or higher. 

- Insert Figure 3 about here – 

Difference scores.  As shown in Figure 4, as sample size, effect size, and stability 

increased simultaneously, the power to detect the mediated effect increased substantially 

(interaction of sample size, effect size, and stability,  b = 0.12, χ
2
 (1, N = 384,000) = 

3,220.13, p < 0.05).  Power increased as sample size and effect size increased but power 

increased faster when stability was equal to 0.70 compared to when stability was equal to 

0.30.  Power to detect the mediated effect with the difference score model increased as 
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sample size increased (b = 0.31, χ
2
 (1, N = 384,000) = 31,624.90, p < 0.05), effect size 

increased (b = 0.41, χ
2
 (1, N = 384,000) = 46,292.63, p < 0.05), and stability increased (b 

= 0.19, χ
2
 (1, N = 384,000) = 17,024.69, p < 0.05).  Overall, power reached 0.80 or higher 

for N = 50 and stability = 0.70 when the effect size was 0.25, for N = 100 and stability = 

0.70 when the effect size was 0.15 or higher, for N = 200 and stability = 0.70 for effect 

sizes 0.09 or higher, and for N = 500 and stability = 0.70 for effect sizes 0.09 or higher.  

Power never reached 0.80 when stability was equal to 0.30 for any combination of effect 

size and sample size.   

- Insert Figure 4 about here – 

 

 

Residualized change scores. 

Direct effect = 0.00.   A caveat should be mentioned.  Because the residualized 

change score model resulted in biased estimates of the mediated effect, power results 

should be interpreted with caution.  As shown in Figure 5, as sample size and effect size 

increased simultaneously the power to detect the mediated effect with the residualized 

change score model increased substantially (interaction of sample size and effect size, b = 

0.29, χ
2
 (1, N = 384,000) = 17,289.46, p < 0.05).  Power increased as effect size increased 

but power increased faster for large sample sizes (N = 500) than small sample sizes (N = 

50).  Power to detect the mediated effect with the residualized change score model 

increased as sample size increased (b = 0.36, χ
2
 (1, N = 384,000) = 38724.90, p < 0.05) 
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and effect size increased (b = 0.47, χ
2
 (1, N = 384,000) = 58207.76, p < 0.05).   Power 

decreased when the bm2y1 path increased from 0.00 to 0.50 (b = -0.11, χ
2
 (1, N = 

384,000) = 1901.00, p < 0.05). 

Overall, power reached 0.80 or higher for N = 50 and bm2y1 path equal to 0.00 

for effect size 0.25, for N = 100 and bm2y1 path equal to 0.00 for effect size 0.15 or 

higher, for N = 200 and bm2y1 path equal to 0.00 for effect size 0.09 or higher, for N = 

500 and bm2y1 path equal to 0.00 for effect size 0.09 or higher.  Power also reached 0.80 

or higher when the bm2y1 path was equal to 0.50 for N = 200 and N = 500 and for effect 

sizes 0.15 or higher.   

- Insert Figure 5 about here - 

Direct effect = 0.30.  As shown in Figure 6 and Figure 7, power decreased when 

either the by2m1 or bm2y1 paths increased from 0.00 to 0.50 for small sample sizes more 

than large sample sizes (interaction of sample size and by2m1 path, b = -0.10, χ
2
 (1, N = 

192,000) = 705.35, p < 0.05, and interaction of sample size and the bm2y1 path, b = -

0.10, χ
2
 (1, N = 192,000) = 739.36, p < 0.05).  The decrease in power was more 

pronounced for N = 50, 100, and 200 but power was still low for N = 500 when either or 

both the by2m1 path and bm2y1 path increased from 0.00 to 0.50.   

Power increased less as effect size increased when either the by2m1 path or the 

bm2y1 path was equal to 0.50 than when either by2m1 path or the bm2y1 path was equal 

to 0.00 (interactions of effect size and by2m1 path, b = -0.10, χ
2
 (1, N = 192,000) = 

1,068.48, p < 0.05) and effect size and bm2y1 path, b = -0.10, χ
2
 (1, N = 192,000) = 

1,047.38, p < 0.05).  In general, power decreased when either the by2m1 path was equal 



 
 

47 

 

to 0.50 (b = -0.13, χ
2
 (1, N = 192,000) = 1,828.92, p < 0.05) or the bm2y1 path was equal 

to 0.50 (b = -0.13, χ
2
 (1, N = 192,000) = 1,976.48, p < 0.05).  

Overall, power reached 0.80 or higher for N = 50 when the bm2y1 path and the 

by2m1 path were equal to 0.00 for effect size 0.25, for N = 100 when either the bm2y1 

path or the by2m1 path were equal to 0.50 for effect size 0.25, for N = 200 when either 

the bm2y1 path or the by2m1 path was equal to 0.50 for effect size 0.09 or higher, for N = 

500 when either the bm2y1 path or the by2m1 path was equal to 0.50 for effect size 0.09. 

The only case when power reached 0.80 or higher and when both the bm2y1 path and the 

by2m1 path were equal to 0.50 was for N = 500 and for effect size 0.25.    

- Insert Figures 6 - 7 about here - 

Cross-sectional. 

Direct effect = 0.00.  Because the cross-sectional model resulted in biased 

estimates of the mediated effect, power results should be interpreted with caution.  As 

shown in Figure 8, as sample size and effect size increased simultaneously, the power to 

detect the mediated increased substantially (interaction of sample size and effect size, b = 

0.24, χ
2
 (1, N = 384,000) = 10,063.63, p < 0.05).  Power increased as effect size increased 

faster for large sample sizes than small sample sizes.  Power to detect the mediated effect 

with the cross-sectional model increased as sample size increased (b = 0.32, χ
2
 (1, N = 

384,000) = 28,117.66, p < 0.05) and effect size increased (b = 0.51, χ
2
 (1, N = 384,000) = 

62,557.86, p < 0.05).  Overall, power reached 0.80 or higher for N = 50 when the effect 

size was 0.25, for N = 100 when the effect size was 0.25, for N = 200 when the effect 

size was 0.09 or higher, and for N = 500 when effect size was 0.09 or higher. 
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- Insert Figure 8 about here - 

Direct effect = 0.30.  As shown in Figure 9, power decreased as stability 

increased from 0.30 to 0.70 more for small sample sizes than large sample sizes 

(interaction of sample size and stability, b = -0.10, χ
2
 (1, N = 192,000) = 553.42, p < 

0.05) and power decreased as stability increased from 0.30 to 0.70 more for small effect 

sizes than large effect sizes (interaction of effect size and stability, b = -0.10, χ
2
 (1, N = 

192,000) = 897.22, p < 0.05). Power decreased as stability increased from 0.30 to 0.70 (b 

= -0.11, χ
2
 (1, N = 192,000) = 1,108.92, p < 0.05).  Overall, power reached 0.80 or higher 

for N = 50 and stability equal to 0.30 for effect size 0.25, for N = 100 when effect size 

was 0.25 regardless of stability (0.30 vs. 0.70), for N = 200 when effect size was 0.09 and 

higher regardless of stability (0.30 vs. 0.70), and for N = 500 for effect size 0.09 or higher 

regardless of stability (0.30 vs. 0.70).   

- Insert Figure 9 about here -  

Summary. 

In summary, the power results for the ANCOVA, path analysis, and difference 

score models were similar for direct effect equal to 0.00 and direct effect equal to 0.30 

conditions.  It was expected the ANCOVA and path analysis model results would be 

similar because they are identical models with the exception that ANCOVA uses ordinary 

least squares (OLS) to estimate model parameters whereas path analysis uses maximum 

likelihood (ML) to estimate model parameters. 
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All models achieved power of 0.80 or higher for some combinations of effect size 

of the mediated effect and sample size.  The ANCOVA and path analysis models 

achieved power of 0.80 or higher with the lowest combination of effect size for the 

mediated effect and sample size.  The difference score model readily achieved power of 

0.80 or higher as long as stability was equal to 0.70.  The difference score model did not 

achieve power of 0.80 or higher for any combination of effect size and sample size when 

stability was equal to 0.30.  The residualized change score model achieved power of 0.80 

or higher unless both the bm2y1 path and the by2m1 path were equal to 0.50.  When the 

bm2y1 path and the by2m1 path were equal to 0.50, the residualized change score model 

did not achieve power of 0.80 or higher regardless of effect size or sample size.  The 

cross-sectional model performed similarly to the ANCOVA and path analysis models.     

ANCOVA vs. Cross-sectional.  Because the cross-sectional model resulted in 

biased estimates of the mediated effect, power results should be interpreted with caution.  

When comparing the significance across models for some power analyses (e.g., 

ANCOVA vs. cross-sectional), the dependent variable was created by taking the absolute 

value of the difference in conclusions each model reached regarding statistical 

significance of the mediated effect.  For example, for each model, the dependent variable 

was ‘0’ for ‘non-significant mediated effect’ and ‘1’ for ‘significant mediated effect.  

When comparing the performance of one model to another (e.g., ANCOVA vs. cross-

sectional) the absolute value of the difference of this value (0 or 1) for each model was 

taken as the dependent variable to use for model comparisons of statistical significance of 

the mediated effect.  The coding scheme resulted in a variable that was coded ‘1’ if, for 

that particular observation, there was a difference in the statistical conclusion regarding 
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the significance of the mediated effect across the two models and coded ‘0’ if, for that 

particular observation, there was no difference in the statistical conclusion regarding the 

significance of the mediated effect.  The same procedure was followed for all 

comparisons across models.  These new variables were analyzed with logistic regression 

analyses previously described in the type 1 error rates section. 

As shown in Figure 10, there was an interaction of sample size and effect size on 

the differences in power across the ANCOVA and cross-sectional model (b = -0.19, χ
2
 (1, 

N = 384,000) = 10,497.68, p < 0.05).  The cross-sectional model had more power than the 

ANCOVA model for effect size of 0.01 for N = 50 to 500 and for effect sizes 0.03 and 

0.05 for N = 50.  The ANCOVA model had more power than the cross-sectional model 

across all other combinations of sample size and effect size.  There were also main effects 

of sample size (b = -0.11, χ
2
 (1, N = 384,000) = 4,357.81, p < 0.05) and effect size (b = -

0.14, χ
2
 (1, N = 384,000) = 7,308.63, p < 0.05) but these main effects were not interpreted 

because there was no simple relation between either sample size or effect size and 

differences in power across the two models.    

- Insert Figure 10 about here - 

Path Analysis vs. Cross-sectional.  As shown in Figure 11, the cross-sectional 

model had more power than the path analysis model for effect size of 0.01 for N = 50 to 

500 and for effect sizes 0.03 for N = 50 (interaction of sample size and effect size, b = -

0.19, χ
2
 (1, N = 384,000) = 10,481.10, p < 0.05).  The path analysis model had more 

power than the cross-sectional model across all combinations of sample size and effect 

size.  There were also main effects of sample size (b = -0.11, χ
2
 (1, N = 384,000) = 
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4,461.01, p < 0.05) and effect size (b = -0.14, χ
2
 (1, N = 384,000) = 7,442.22, p < 0.05) 

but there was no simple relation between either sample size or effect size and the 

differences in power across the two models.   

- Insert Figure 11 about here - 

Difference Scores vs. Cross-sectional. 

Direct effect = 0.00.   As shown in Figure 12 and Figure 13, there was an 

interaction of effect size, stability, and by2m1 path (b = 0.10, χ
2
 (1, N = 384,000) = 

3,099.08, p < 0.05) such that the cross-sectional model had more power than the 

difference score model for all effect sizes and values of the by2m1 path when the stability 

was 0.30.  When stability increased to 0.70, the power for the cross-sectional model and 

difference score model became more similar except for a discrepancy at effect size 0.15 

and 0.25 for N =50, when the by2m1 path was equal to 0.00, and for effect size 0.15 for N 

= 100. 

As sample size (b = -0.10, χ
2
 (1, N = 384,000) = 2,709.765, p < 0.05) and stability 

(b = -0.13, χ
2
 (1, N = 384,000) = 6,778.41, p < 0.05) increased, the differences in power 

across the difference score model and the cross-sectional model became less pronounced.  

Overall, the differences in power between the two models was affected less by the 

inclusion of the by2m1 path and became less discrepant as sample size and stability 

increased.     

- Insert Figures 12 - 13 about here - 
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Direct effect = 0.30.   As shown in Figure 14, when the direct effect was present 

there was no longer an interaction of effect size, stability and the by2m1 path.  Power 

across the difference score model and the cross-sectional model did become less 

discrepant for medium to large effect sizes as sample size increased (interaction of 

sample size and effect size, b = -0.23, χ
2
 (1, N = 192,000) = 5,551.16, p < 0.05).  The 

difference in power across these models was almost zero for a small effect size (0.01).  

The cross-sectional model had more power than the difference score model for all 

effect sizes when stability was 0.30 but as stability increased to 0.70, the power for the 

cross-sectional model and difference score model was almost identical (interaction of 

effect size and stability, b = -0.13, χ
2
 (1, N = 192,000) = 2,308.15, p < 0.05).  In this case, 

the difference score model had more power than the cross-sectional model for effect size 

0.25 for N = 50.  Overall, the difference in power between the difference score model and 

the cross-sectional model became less discrepant for medium to large effect sizes as 

sample size and stability increased. 

- Insert Figure 14 about here - 

Residualized Change scores vs. Cross-sectional.  As shown in Figure 15, the 

residualized change score model had more power than the cross-sectional model for 

effect sizes 0.10 and 0.15 for N = 100, effect sizes 0.03, 0.05, and 0.15 for N = 200, and 

for effect sizes 0.03 and 0.05 for N = 500 (interaction of sample size and effect size, b = 

0.22, χ
2
 (1, N = 384,000) = 11,984.99, p < 0.05).  The cross-sectional model had more 

power than the residualized change score model for all other combinations of sample size 

and effect size.  There were also main effects of sample size (b = -0.13, χ
2
 (1, N = 
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384,000) = 5,150.72, p < 0.05) and effect size (b = -0.11, χ
2
 (1, N = 384,000) = 4,330.22, 

p < 0.05) but there was no simple relation between either sample size or effect size and 

the differences in power across the two models.   

- Insert Figure 15 about here – 

Path analysis vs. Difference score.   

 Because the path analysis model and the ANCOVA model are identical models, 

only comparisons between the path analysis model and the difference score model and 

the residualized change score model were presented.  The path analysis model was 

treated as the “ideal” model to use as a benchmark for the other models because it 

estimates all the parameters of the covariance structure in the pretest – posttest control 

group design with a mediating variable. 

Direct effect = 0.00.  As shown in Figures 16 – 17, there was more discrepancy in 

the power across the path analysis and difference score models when sample sizes were 

small and stability was equal to 0.30 (interaction of sample size and stability, b = -0.10, χ
2
 

(1, N = 384,000) = 1,069.97, p < 0.05), more discrepancy in the power results for medium 

to large effect sizes for small sample sizes (interaction of sample size and effect size, b = 

-0.24, χ
2
 (1, N = 384,000) = 5,326.53, p < 0.05), and more discrepancy in the power 

results for medium to large effect sizes when the stability was equal to 0.30 (interaction 

of effect size and stability, b = -0.15, χ
2
 (1, N = 384,000) = 2,857.50, p < 0.05).   

The discrepancy between the models decreased as both sample size (b = -0.14, χ
2
 

(1, N = 384,000) = 1,935.26, p < 0.05) and stability increased (b = -0.22, χ
2
 (1, N = 



 
 

54 

 

384,000) = 7,394.77, p < 0.05).  The discrepancy between the model became more 

extreme when the by2m1 path increased from 0.00 to 0.50 (b = 0.10, χ
2
 (1, N = 384,000) 

= 1,539.44, p < 0.05).  Overall, there is a large discrepancy in power across the path 

analysis and difference score model for N = 50 – 100, when stability was equal to 0.30 

and when the by2m1 path was equal to 0.50 for effect size 0.09 and higher.  The 

discrepancy between the models became less extreme as stability increased to 0.70 and 

there was less discrepancy for N = 200 – 500 regardless of the value of the by2m1 path 

and effect size.  

- Insert Figures 16 – 17 about here – 

Direct effect = 0.30.  As shown in Figures 18 – 21, when the direct effect was 

present, there was no longer an interaction between sample size and stability.  All effects 

that were present when the direct effect equaled 0.00 were present with the addition of an 

interaction of the bm2y1 path and the by2m1 path (b = -0.10, χ
2
 (1, N = 192,000) = 

406.04, p < 0.05) such that the discrepancy between the models was more pronounced 

when the bm2y1 path was equal to 0.50 and the by2m1 path was equal to 0.50.  There was 

an interaction of effect size and the by2m1 path (b = 0.10, χ
2
 (1, N = 192,000) = 493.51, p 

< 0.05) such that the discrepancy was more pronounced for medium to large effect sizes 

when the by2m1 path was equal to 0.50.  There was a main effect of the by2m1 path (b = 

0.13, χ
2
 (1, N = 192,000) = 690.86, p < 0.05) but there was not a simple relation between 

the by2m1 path and the differences in power across the two models.  Overall, there was a 

large discrepancy in power across the path analysis model and the difference score model 

when stability was equal to 0.30 and either the bm2y1 path or the by2m1 path were equal 
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to 0.50.  As stability increased to 0.70, the discrepancy between the models virtually 

disappeared for all combinations of effect size, sample size, and values of the bm2y1 path 

and the by2m1 path.    

- Insert Figures 18 – 21 about here – 

Path analysis vs Residualized change score.  Because the residualized change 

score model resulted in biased estimates of the mediated effect, power results should be 

interpreted with caution.  As shown in Figures 22 – 23, the discrepancy between the path 

analysis model and the residualized change score model was more pronounced for 

medium to large effect sizes for small sample sizes than large sample sizes (interaction of 

sample size and effect size, b = -0.24, χ
2
 (1, N = 384,000) = 3,513.36, p < 0.05).  The 

discrepancy between the models became less pronounced as sample size increased (b = -

0.19, χ
2
 (1, N = 384,000) = 2,417.01, p < 0.05),  as effect size increased (b = -0.12, χ

2
 (1, 

N = 384,000) = 1,095.76, p < 0.05),  when the bm2y1 path decreased from 0.50 to 0.00 (b 

= 0.20, χ
2
 (1, N = 384,000) = 3761.27, p < 0.05) and when the by2m1 path decreased 

from 0.50 to 0.00 (b = 0.09, χ
2
 (1, N = 384,000) = 813.10, p < 0.05).  Overall, there was a 

large discrepancy in power across the path analysis model and the residualized change 

score model when either the bm2y1 path or the by2m1 path were equal to 0.50 for 

medium to large effect sizes for N = 50 to 100.  When the sample size increased to N = 

200 and higher, there was only a discrepancy between the models when both the bm2y1 

path and the by2m1 path were equal to 0.50 for medium to large effect sizes.   

- Insert Figures 22 – 23 about here – 

Summary. 
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In summary, the power results across the ANCOVA and path analysis models 

compared to the cross-sectional model were generally not discrepant except when the 

effect size of the mediated effect was small (0.01).  The power results across the 

difference score model compared to the cross-sectional model were discrepant when 

stability was equal to 0.30 and the by2m1 path was equal to 0.50.  Any discrepancies 

between these two models went away when stability increased to 0.70 and sample size 

increased.  The power results across the residualized change score model compared to the 

cross-sectional model were discrepant for numerous values of effect size of the mediated 

effect and across all sample sizes.  Despite the discrepancy for numerous conditions, the 

two models had similar power curves across all combinations of sample size and effect 

size. 

The power results across the path analysis model compared to the difference score 

model were discrepant when stability was equal to 0.30 and either the bm2y1 path or the 

by2m1 path was equal to 0.50.  Any discrepancies between these models generally went 

away as stability increased to 0.70 and sample size increased regardless of the value of 

the bm2y1 path or the by2m1 path.  The power results across the path analysis model 

compared to the residualized change score model were discrepant when the bm2y1 path 

or the by2m1 path was equal to 0.50.  The discrepancies between these models went away 

as sample size increased and as either the bm2y1 or the by2m1 path decreased to 0.00.  

Ancillary Analyses 

A comparison was made between the sample size needed to detect the mediated 

effect of a given effect size to achieve power of 0.80 or greater from this simulation study 
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and the sample size needed to detect a mediated effect to achieve power of 0.80 from 

Fritz and MacKinnon (2007).  As shown in Table 25, there was a general consensus with 

the sample size and effect size combination that was needed to detect the mediated effect 

with power of 0.80 or higher in this simulation study compared to the sample size and 

effect size combination that was needed to detect a mediated effect with 0.80 power from 

Fritz and MacKinnon (2007).  One discrepancy occurs when the effect size of the 

mediated effect was small (0.02 – 0.03).  In this simulation study, when the effect size 

was small (0.03) and sample size was equal to 500, the power to detect a significant 

mediated effect with the cross-sectional model was 0.46.  Fritz and MacKinnon (2007) 

demonstrated that when the effect size of the mediated effect was small (0.02) a sample 

size of 533 was required to detect a significant mediated effect.  Therefore, the cross-

sectional estimate of the mediated effect is under-powered for small effect sizes when the 

underlying model is a longitudinal mediation model.  

A summary index was created that represented the percentage of times a mediated 

effect was detected for each of the five models as a way to gauge the consensus regarding 

the significance of the mediated effect across all five models.  This index was created as a 

five digit number with each digit representing one of the five models’ decision of 

detecting a significant mediated effect (i.e., labeled ‘1’) or not detecting a significant 

mediated effect (i.e., labeled ‘0’).  The first digit in this index represented the path 

analysis model, the second represented the ANCOVA model, the third represented the 

residualized change score model, the fourth represented the difference score model, and 

the fifth represented the cross-sectional model.  For example, the first row of Table 26 is 

the five digit number ‘00000’ with percent equal to 36.18% which indicates that all five 
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models reached the same conclusion of not detecting the mediated effect 36.18% of time.  

The second row is the five digit number ‘00001’ with percent of occurrence of 3.79% 

which indicates that less than 4% of the time the only model that indicated a significant 

mediated effect was the cross-sectional model. 

------------------------------- 

Insert Table 25 about here 

------------------------------- 

For all models, the same conclusion of not detecting a mediated effect (36.18%) 

and the same conclusion of detecting the mediated effect (29.29%) was observed.  The 

difference score model was the only model that did not detect the mediated effect 10.84% 

of the time. The residualized change score model was the only model that did not detect 

the mediated effect 4.14% of the time.  The cross-sectional model was the only model 

that did not detect the mediated effect 3.81% of the time and it was the only model to 

detect the mediated effect 3.79% of the time.  Further, 3.47% of the time the residualized 

change score and difference score models did not detect the mediated effect while the 

other models did.  Lastly, 1.09% of the time the cross-sectional and difference score 

models did not detect the mediated effect while the other models did and 1.17% of the 

time the cross-sectional and residualized change score models did not detect the mediated 

effect while the other models did.  Overall, there is a high percentage of occurrence of all 

models reaching the same conclusion (65.47%) regarding detecting either a significant 

mediated effect or a non-significant mediated effect. 
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------------------------------- 

Insert Table 26 about here 

------------------------------- 

A two-dimensional plot was created using tetrachoric correlations between the 

power of each of the five models.  The dimension on the y-axis represents whether or not 

the models estimated the stability of the mediator and outcome variables across time and 

how they estimated the stability and the dimension on the x-axis represents how the 

models that did not measure the stability were differentially affected by the stability.  The 

ANCOVA, path analysis, and residualized change score models all estimated the stability 

of the mediator and outcome variables but they did so differently therefore they are 

clustered close together and separated from the cross-sectional and difference score 

models.  The cross-sectional and difference score models were affected differently by 

stability because neither the cross-sectional nor difference score model estimated the 

stability and they each made different assumptions regarding the stability.  For example, 

the difference score model assumes that the stability is equal to 1.0 and we can think  of 

the cross-sectional model as assuming the stability is equal to 0.0 which explains why 

each of these models are opposite each other on the dimension ‘Effect of stability’.       

                                   - Insert Figure 24 about here – 

Summary 

Overall, the best performing models were the ANCOVA and the path analysis 

model in terms of type 1 error, bias, confidence interval coverage, and power.  The 
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difference score model performed well in terms of type 1 error, bias, confidence interval 

coverage, and power but it never outperformed the ANCOVA or path analysis models.  

The performance of the residualized change score and cross-sectional models were 

negatively affected when the pretest correlation was non-zero between the mediator and 

the outcome and when there were non-zero cross-lagged paths (by2m1 and bm2y1).  

When the pretest correlation was zero and the cross-lagged paths were zero, the 

performance of the residualized change score and cross-sectional models were 

comparable to the ANCOVA and path analysis models in this simulation but these 

models (residualized change score and cross-sectional) did not consistently outperform 

the ANCOVA and path analysis models. 

Discussion 

The aim of this project was to compare four common longitudinal models and the 

cross-sectional model for assessing the mediated effect in the pretest – posttest control 

group design.  The main conclusion of this project is that the only models that were not 

biased, did not have inflated Type 1 error rates, and had high empirical power were the 

ANCOVA and path analysis models.  Recall the effect size of the mediated effect in this 

project was the product of the effect size of the coefficient relating the treatment to the 

mediator at posttest and the coefficient relating the mediator at posttest to the outcome at 

posttest adjusting for all other effects in the model.    The effect sizes for each of the 

coefficients were picked to reflect small, medium, and large effects in the correlation 

metric with the effect size of the mediated effect being the product of these effect sizes.  

When the sample size was small (N = 50), the ANCOVA and path analysis models 

reached 0.80 or higher when the effect size of the mediated effect was 0.25 (which 
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corresponds to a large effect for both the am2x and by2m2 paths).  When the sample size 

was slightly larger (N = 100), the ANCOVA and path analysis models reached 0.80 when 

the effect size of the mediated effect was 0.15 (which corresponds to a medium and large 

effect size for either the am2x or by2m2 path).  Finally, when the sample size was large 

(N = 200 to N = 500), the ANCOVA and path analysis models reached 0.80 power when 

the effect size of the mediated effect was 0.09 (which corresponds to medium effects for 

both the am2x and by2m2 paths) or higher.  

The ANCOVA and path analysis models performed the best because they 

estimated every parameter of the covariance structure for mediation in the pretest – 

posttest control group design.  That is, these models took into account the pretest 

correlation between the mediator and the outcome, the stability of the mediator and the 

outcome, and any cross-lagged relations between the pretest measures and the posttest 

measures.  Further, the ANCOVA and path analysis models performed the best because 

they most closely matched the data-generating model of this simulation study.  

Researchers should use either the ANCOVA or path analysis models when assessing the 

mediated effect in the pretest – posttest control group design.   

 The difference score, residualized change score, and the cross-sectional model all 

produced biased estimates of the mediated effect or had low empirical power for some 

conditions of this simulation study.  The difference score model was generally not biased 

even when there was a pretest correlation and cross-lagged relations.  Despite not 

producing a biased estimate of the mediated effect, the difference score model did not 

have as high empirical power as did the ANCOVA/path analysis model and the empirical 
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power of the difference score model decreased as stability of the mediator and outcome 

decreased.  The residualized change score model and the cross-sectional model  produced 

biased estimates of the mediated effect when either of the cross-lagged paths were 

present.  The estimate of the mediated effect also became more biased when there was a 

pretest correlation compared to when the pretest correlation was not present for the 

residualized change and cross-sectional model.  However, when the cross-lagged paths 

and the pretest correlation was zero in the population model, the residualized change 

score and cross-sectional models did not produce biased estimates of the mediated effect.  

The residualized change score model had comparable power to the ANCOVA/path 

analysis model when the pretest correlation and cross-lagged paths were zero.  The cross-

sectional model had lower power than the ANCOVA/path analysis model except in a few 

instances when the sample size was small and the effect size of the mediated effect was 

small.  The empirical power to detect the mediated effect with the cross-sectional model 

decreased as stability of the mediator and outcome increased.   

Because the difference score model did not produce a biased estimate of the 

mediated effect and because type 1 error rates were not above the nominal 0.05 alpha 

level, a researcher could estimate the mediated effect with the difference score model and 

have empirical power similar to the ANCOVA or path analysis models as long as the 

stability of the mediator and outcome is high.  The residualized change score model 

requires that more conditions are met in order for unbiased estimation of the mediated 

effect and empirical power similar to the ANCOVA and path analysis models.  If there is 

no pretest correlation and no cross-lagged relations, a researcher could estimate the 

mediated effect with the residualized change score model and produce an unbiased 
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estimate of the mediated effect with comparable albeit lower power than the 

ANCOVA/path analysis model.  In order for the cross-sectional model to unbiasedly 

estimate the mediated effect in the pretest – posttest control group design, similar 

conditions are needed.  The mediated effect will not be biased using the cross-sectional 

model when there are no cross-lagged paths and when there is no pretest correlation 

between the mediator and the outcome.  Additionally, the power to detect the mediated 

effect with the cross-sectional model will be comparable to the power to detect the 

mediated effect using the ANCOVA/path analysis model if the pretest correlation and 

cross-lags are zero and if stability of the mediator and outcome is low.  Given a pretest – 

posttest control group design with low stability of the mediator and outcome, no pretest 

correlation, and no cross-lagged relations, a researcher could estimate the mediated effect 

with the cross-sectional model and have empirical power comparable to the ANCOVA or 

path analysis models and have an unbiased estimate of the mediated effect.      

Although there exist conditions for which a researcher could estimate the 

mediated effect for all the models mentioned, it is not recommended for researchers to 

use the difference score, residualized change score, or cross-sectional models when 

estimating mediated effects in the pretest – posttest control group design because there 

were no conditions for which these models outperform the ANCOVA/path analysis 

model.  Also, it may be difficult to find evidence of these conditions in sample data 

(especially with small samples) so either the ANCOVA or the path analysis model would 

be the best model for this research design. 
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The results provide practical insight about the conditions needed when using the 

cross-sectional, difference score, and residualized change score models.  That is, when 

researchers use the cross-sectional, difference score, or residualized change score model 

to estimate mediated effects in the pretest – posttest control group design, there are 

additional conditions that need to be met regarding the relation between the pretest 

measures of the mediator and outcome variable and conditions that need to be met 

regarding the relations between the pretest measures and the posttest measures of the 

mediator and outcome variables.  These additional conditions may be untenable but if 

they are satisfied, then the estimation of mediated effects can be unbiased and have 

empirical power similar to the ANCOVA or path analysis models.  

Implications 

 Researchers can apply several different models when assessing mediated effects 

in the pretest – posttest control group design including the cross-sectional model, the 

difference score model, the residualized change score model, ANCOVA, and path 

analysis.  Given the findings of this study, anytime researchers use the cross-sectional 

model (Jouriles et al., 2010), the difference score model (Hofmann, 2004; Jansen et al., 

2012; MacKinnon et al., 1991), or the residualized change score model (Cole, et al., 

2003; Miller, et al., 2002; Reid & Aiken, 2013) they are making assumptions about the 

conditions that need to be met regarding the relations between the pretest variables and 

any cross-lagged relations across time.  In general, the assumption is there are no 

relations between the pretest variables or cross-lagged relations.  When these conditions 

are met the cross-sectional model and residualized change score model result in biased 
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mediated effect estimates and low empirical power to detect the mediated effect even 

when these conditions are met.  The difference score model never resulted in biased 

estimates of the mediated effect but it did have low empirical power in some case.  If 

researchers use the cross-sectional, change score, or residualized change score model, 

they may be inadvertently missing true mediated effects that are present and they may be 

reporting biased estimates of true mediated effects. 

Previous research has expounded on the limitations of using cross-sectional data 

to estimate mediated effects (Gollob & Reichardt, 1991; Maxwell & Cole, 2007; 

Maxwell, Cole, & Mitchell, 2011).  Cross-sectional estimates of mediated effects will 

often be biased because they do not allow for mediating variables (M) to exert their 

influence on outcome variables (Y), which presumably occurs over a specific period of 

time.  As time interval varies, so do estimates of mediated effects because estimates of 

mediated effects depend on the time interval during which they are assessed.  This study 

confirms the general findings of previous literature regarding the bias of the cross-

sectional mediated effect as an estimate of a longitudinal mediated effect.  The 

implications of the findings of this study is that there are some conditions for which the 

cross-sectional estimate of the mediated effect is unbiased (i.e., when there is no pretest 

correlation or cross-lagged relations) and that there were no cases for which the cross-

sectional model ever resulted in type 1 error rates above the nominal 0.05 alpha level.  

These implications build on previous research and provide a more detailed picture of 

when the cross-sectional model will result in biased estimates of longitudinal mediated 

effects and how this affects empirical power and type 1 error rates.  
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Limitations   

 This project compared longitudinal models and the cross-sectional model in the 

pretest – posttest control group design.  Recall, the pretest – posttest control group design 

involves the random assignment of units to either a treatment or a control group.  

Successful randomization of units to groups in this experimental design ensures that any 

pre-existing differences between the units in the treatment and control groups are due to 

chance and do not reflect systematic differences.  Therefore, the results of this project do 

not necessarily extend to situations for which there are systematic pre-existing 

differences between the units in groups that are to be compared. 

 Previous research demonstrated the effect of the stability of X and M was an 

important predictor of bias of the cross-sectional estimate of the mediated effect when 

assessing longitudinal mediation processes such that bias of the mediated effect was 

different when X was more stable than M compared to when M was more stable than X 

(Maxwell & Cole, 2007; Maxwell, Cole, & Mitchell, 2011).  This study only had one 

measure of X because it corresponded to an experimental manipulation but the stability 

of M and Y was varied in this project.  The stability of M and Y was manipulated 

simultaneously to the same value, so there were no conditions for which the stability of 

M and the stability of Y were different from each other.  Because stability of M and Y 

was not varied separately, this project was unable to confirm similar findings regarding 

the bias of the cross-sectional estimate of the mediated effect when variables in the model 

have different stability values from one another.    
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 This project assumed that the mediator variable and outcome variable were 

measured without any measurement error.  That is, it assumed the measures of the 

mediator and outcome variable were perfectly reliable.  This project also assumed that the 

units randomized to the treatment and control groups fully adhered to the assigned 

treatment condition.  That is, this project assumed that there was complete treatment 

compliance when assessing the mediated effect.   

A critique of Monte Carlo simulation studies is that the results of the simulation 

typically favor the model that was used to generate the simulated data.  This is not 

necessarily a limitation of this study.  The data-generating model for this study was the 

path analysis model because it was the most general model that could have been used to 

generate data for this study.  The cross-sectional, difference score, and residualized 

change score models are each special cases of the path analysis model (when there is no 

pretest correlation or cross-lagged relations present) which can each be estimated with 

specific constraints put in place.  Further, it would be impossible to generate data from a 

purely cross-sectional model (i.e., only one time point of data generated) and be able to 

estimate the parameters of the longitudinal models in this study (i.e., ANCOVA/path 

analysis, difference score, and residualized change score).  For example, it would be 

impossible to estimate a pretest correlation between the mediator and outcome variable if 

data were not generated for these pretest variables.  

Recall, a fully-standardized logistic regression coefficient was used in the type 1 

error, confidence interval coverage, and power analyses as a rough proxy for an effect 

size measure.  Standardized regression coefficients are generally not used as standardized 
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measures of effect size but do allow all the predictors in a given analysis to be on the 

same metric.  Because standardized regression coefficients are not true standardized 

effect size measures, it is possible the standardized regression coefficients did not detect 

all of the practically significant effects in this study.  To further explore this possibility, a 

subset of the analyses were conducted using alternate measures of effect size including: 

reduction in pseudo R
2 

(Demaris, 2002), odds ratios (Fleiss & Berlin, 2009), and omega-

squared measure of effect size from an Ordinary Least Squares analysis. All these 

methods reached the same conclusions regarding the practically significant effects in this 

study.  Although standardized regression coefficients are not generally used as 

standardized measures of effect size, they seemed to perform similarly to more typical 

standardized measures of effect size.   Ideally, a more traditional measure of effect size 

for binary outcomes (e.g., reduction in pseudo R
2
 or odds ratios) would have been used at 

the outset of this study instead of fully-standardized regression coefficients to determine 

the practically significant effects but it does not seem that the results of this study would 

have changed.   

Future Directions 

 Future directions for this research directly extend from the limitations of this 

project.  The first future direction would be to compare the performance of the models 

investigated in this project to the case for which there exist systematic pre-existing 

differences between the groups of interest being compared.  It is known from previous 

research that ANCOVA and difference score models can lead to very different results 

regarding change across two-waves of data (Jamieson, 1999; Kisbu-Sakarya, 
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MacKinnon, & Aiken, 2013; Lord, 1967; Pearl, 2014; Wright, 2006) but further work is 

needed in order to examine which of the four longitudinal models discussed in this 

project would perform the best for estimating mediated effects when systematic pre-

existing differences exist.    

Another direction of interest is the performance of these models for assessing the 

mediated effect in the pretest – posttest control group design when the mediator and 

outcome variable are not measured reliably.  Unreliable measures of the mediator and 

outcome variables can substantially bias estimates of the mediated effect in most cases 

but the pattern of results can be complicated and even counter-intuitive in some cases 

(Baraldi, Valente, & MacKinnon, 2014; Fritz, MacKinnon, & Kenny, 2014; Hoyle & 

Kenny, 1999). 

Another potential future direction would be to compare the longitudinal models 

discussed in this project when there is treatment noncompliance in the pretest – posttest 

control group design.  Treatment noncompliance can lead to biased estimates of treatment 

effects when using traditional statistical methods in experimental designs (Angrist, 

Imbens, & Rubin, 1996; Efron & Feldman, 1991; Sagarin, et al., 2014).  It is important to 

see how the longitudinal models presented in this project perform with causal estimators 

of the mediated effect in the pretest – posttest control group design when there is not 

complete treatment compliance.   

It is possible to extend the pretest – posttest control group design to more than 

two waves of data (e.g., 3 or more waves of data) and have mediation effects across all 

waves.  The addition of more waves of data may complicate the estimation of mediation 
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effects (Cole & Maxwell, 2003; MacKinnon, 1994; 2008).  That is, all the assumptions 

and effects regarding stability, timing of effects, and cross-lagged relations across two 

waves of data will now apply across three or more waves of data.  For example, if there 

are three waves of data, there will be stability between the mediator and outcome at wave 

1 and wave 2 and wave 2 and wave 3.  The cross-lagged relations between wave 1 and 

wave 2 will be extended to include cross-lagged relations between wave 2 and wave 3 

and the estimate of the mediated effect will vary depending on the time at which it is 

estimated.  For example, when there are three waves of data including a pretest measure 

prior to a treatment exposure, a researcher could estimate a cross-sectional mediated 

effect at wave 2 and wave 3 separately and a researcher could estimate longitudinal 

mediation effects from treatment exposure to mediator at wave 2 and outcome at wave 2, 

mediator at wave 2 and outcome at wave 3, and mediator at wave 3 and outcome at wave 

3.  Also, similar to how the difference score and residualized change score models were 

used in the pretest – posttest control group design to reduce the number of waves from 

two to one, these models could be used in a design consisting of three waves of data to 

reduce the number of waves from 3 to 2.  

Generally, there are three autoregressive longitudinal models that a researcher 

could consider when estimated longitudinal mediation effects which deserve further 

investigation as outlined by MacKinnon (2008) and experimental designs that vary time 

lags between units which allow for the estimation of the effects of varying time lags to 

address not only how variables are related but when variables are related (Selig, Preacher, 

Little, 2012).  
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Finally, the longitudinal models discussed in this project all handled the pretest 

information on the mediator and outcome variable in different ways (e.g., condition on it 

or remove it via difference scores).  There are additional ways derived from the potential 

outcomes model of causal inference that would handle the pretest information in yet 

different ways than the models discussed in this project.  It is possible to remove the 

effect of the pretest measures on the outcome variable at posttest through a series of 

regression equations using Sequential G-estimation (Vansteelandt, 2009) or to inversely 

weight observations based on pretest scores on the mediator and outcome using inverse 

propensity weighting analyses (IPW; Coffman, 2011; Robins, Hernan, & Brumback, 

2000).  Both of these estimation techniques could provide new ways to unbiasedly 

estimate the mediated effect in the pretest – posttest control group design.  
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Table 1 

All combinations of effect size adopted from 

MacKinnon, Lockwood, and Williams 

(2004) 

a b c’ 

0 0 0 

0 .10 0 

0 .30 0 

0 .50 0 

.10 .10 0 

.30 .30 0 

.50 .50 0 

.10 .30 0 

.10 .50 0 

.30 .50 0 

.10 .10 .30 

.30 .30 .30 

.50 .50 .30 
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Table 16 

PRODCLIN 95% Confidence interval coverage of the 

mediated effect for the ANCOVA model 

 

N 

50 100 200 500 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

True Value 

0.980 0.975 0.973 0.968 0 

0.01 0.994 0.992 0.974 0.948 

0.03 0.971 0.948 0.950 0.949 

0.05 0.945 0.946 0.948 0.951 

0.09 0.943 0.946 0.952 0.950 

0.15 0.945 0.948 0.949 0.951 

0.25 0.946 0.950 0.949 0.950 

 

Table 17 

PRODCLIN 95% confidence interval coverage of the 

mediated effect for the Path analysis model 

 

N 

50 100 200 500 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

True Value 

0.975 0.973 0.972 0.955 0 

0.01 0.992 0.990 0.971 0.947 

0.03 0.962 0.945 0.949 0.948 

0.05 0.937 0.942 0.947 0.950 

0.09 0.933 0.942 0.936 0.949 

0.15 0.937 0.945 0.947 0.950 

0.25 0.937 0.946 0.931 0.949 
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Table 18 

PRODCLIN 95% confidence interval coverage of the 

mediated effect for the Difference score model 

 

N 

50 100 200 500 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

True Value 

0.986 0.980 0.974 0.966 0 

0.01 0.991 0.983 0.971 0.954 

0.03 0.983 0.971 0.963 0.953 

0.05 0.970 0.962 0.957 0.950 

0.09 0.955 0.950 0.951 0.948 

0.15 0.956 0.952 0.950 0.950 

0.25 0.948 0.948 0.950 0.950 
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Table 23 

PRODCLIN 95% confidence interval coverage of the mediated effect for the cross-

sectional model when Direct effect = 0.00 

 

N 

50 100 200 500 

by2m1 by2m1 by2m1 by2m1 

0 0.5 0 0.5 0 0.5 0 0.5 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

True 

Value 

0.968 0.952 0.963 0.949 0.958 0.951 0.957 0.949 0 

0.01 0.974 0.936 0.958 0.910 0.937 0.861 0.865 0.719 

0.03 0.952 0.931 0.943 0.924 0.935 0.902 0.924 0.829 

0.05 0.944 0.938 0.944 0.933 0.942 0.924 0.929 0.882 

0.09 0.934 0.851 0.909 0.737 0.843 0.522 0.688 0.142 

0.15 0.935 0.889 0.930 0.826 0.902 0.689 0.809 0.357 

0.25 0.915 0.774 0.875 0.589 0.799 0.281 0.579 0.020 

 

Table 24 

PRODCLIN 95% confidence interval coverage of the mediated effect for the cross-

sectional model when Direct effect = 0.30 

 

N 

50 100 200 500 

by2m1 by2m1 by2m1 by2m1 

0 0.5 0 0.5 0 0.5 0 0.5 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

95% C.I. 

Coverage 

True 

Value 

0.973 0.941 0.959 0.907 0.931 0.864 0.869 0.709 0.01 

0.09 0.927 0.858 0.903 0.735 0.846 0.518 0.681 0.137 

0.25 0.919 0.772 0.878 0.564 0.777 0.276 0.556 0.020 
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Table 25 

Comparison of sample size requirement for 0.80 power to detect the cross-

sectional mediated effect across current study and Fritz & MacKinnon (2007) 

Study 

Fritz & MacKinnon (2007)               Current Simulation Study 

N Effect size N Effect Size Observed 

Empirical Power 

57.5 0.23 50 0.25 0.84 

105.0 0.15 100 0.15 0.72 

124.5 0.10 100 – 200  0.09 0.61 – 0.92 

402.5 0.05 200 – 500  0.05 0.21 – 0.44  

403.0 0.08 200 – 500  0.09 0.92 – 0.99 

533.0 0.02 500 0.03 0.46 
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Table 26 

Significance test summary indicator of the mediated effect  for the five models 

Power Percent Cumulative 

Percent 

00000 36.18 36.18 

00001 3.79 39.97 

00010 0.94 40.90 

00011 0.99 41.89 

00100 0.14 42.03 

00101 0.14 42.17 

00110 0.19 42.36 

00111 0.14 42.50 

01001 0.00 42.50 

01010 0.00 42.50 

01011 0.00 42.50 

01100 0.00 42.50 

01101 0.00 42.51 

01110 0.00 42.51 

01111 0.01 42.52 

10000 0.29 42.82 

10001 0.17 42.98 

10010 0.05 43.03 

10011 0.05 43.08 

10100 0.03 43.11 

10101 0.03 43.14 

10110 0.03 43.17 

10111 0.01 43.18 

11000 3.01 46.19 

11001 3.47 49.66 

11010 1.17 50.83 

11011 4.14 54.97 

11100 1.09 56.06 

11101 10.84 66.90 

11110 3.81 70.71 

11111 29.29 100.00 

Note: Order of indicator is Path analysis, ANCOVA, res. change, diff. score, and cross-sectional 
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Figure 1. Path diagram of pretest posttest control group design with mediating variable. 
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Figure 2. Power plot of ANCOVA model mediated effect results by sample size and 

effect size collapsed across all simulation conditions. 
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Figure 3. Power plot of Path analysis model mediated effect results by sample size and 

effect size collapsed across all simulation conditions. 
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Figure 4. Power plot of difference score model mediated effect results by sample size, 

effect size, and stability collapsed across all simulation conditions. 
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Figure 5. Power plot of residualized change score model mediated effect results by 

sample size, effect size, and bm2y1 path and direct effect = 0.00 collapsed across all 

simulation conditions. 
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Figure 6. Power plot of residualized change score model mediated effect results by effect 

size, bm2y1 path, and by2m1 path for sample size N= 50 and N = 100 and direct effect = 

0.30 collapsed across all simulation conditions. 
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Figure 7. Power plot of residualized change score model mediated effect results by effect 

size, bm2y1 path, and by2m1 path for sample size N= 200 and N = 500 and direct effect = 

0.30 collapsed across all simulation conditions. 
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Figure 8. Power plot of cross-sectional model mediated effect results by sample size and 

effect size for direct effect = 0.00 collapsed across all simulation conditions. 
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Figure 9. Power plot of cross-sectional model mediated effect results by sample size, 

effect size, and stability for direct effect = 0.30 collapsed across all simulation conditions. 
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Figure 10. Power plot of ANCOVA vs. cross-sectional model mediated effect results by 

sample size and effect size collapsed across all simulation conditions. 
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Figure 11. Power plot of path analysis vs. cross-sectional model mediated effect results 

by sample size and effect size collapsed across all simulation conditions. 
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Figure 12. Power plot of difference score model mediated effect results by effect size, 

stability, and by2m1 path for sample size N= 50 and N = 100 and direct effect = 0.00 

collapsed across all simulation conditions. 
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Figure 13. Power plot of difference score model mediated effect results by effect size, 

stability, and by2m1 path for sample size N= 200 and N = 500 and direct effect = 0.00 

collapsed across all simulation conditions. 
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Figure 14. Power plot of difference score vs. cross-sectional model mediated effect 

results by effect size, sample size, and stability for direct effect = 0.30 collapsed across 

all simulation conditions. 
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Figure 15. Power plot of residualized change score vs. cross-sectional model mediated 

effect results by sample size and effect size collapsed across all simulation conditions. 
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Figure 16. Power plot of path analysis vs. difference score model mediated effect results 

by sample size, effect size, stability and by2m1 path for N = 50 – 100 and direct effect = 

0.00 collapsed across all simulation conditions. 
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Figure 17. Power plot of path analysis vs. difference score model mediated effect results 

by sample size, effect size, stability and by2m1 path for N = 200 – 500 and direct effect = 

0.00 collapsed across all simulation conditions. 
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Figure 18. Power plot of path analysis vs. difference score model mediated effect results 

by sample size, effect size, stability, bm2y1 path, and by2m1 path for N = 50 and direct 

effect = 0.30 collapsed across all simulation conditions. 
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Figure 19. Power plot of path analysis vs. difference score model mediated effect results 

by sample size, effect size, stability, bm2y1 path, and by2m1 path for N = 100 and direct 

effect = 0.30 collapsed across all simulation conditions. 
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Figure 20. Power plot of path analysis vs. difference score model mediated effect results 

by sample size, effect size, stability, bm2y1 path, and by2m1 path for N = 200 and direct 

effect = 0.30 collapsed across all simulation conditions. 
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Figure 21. Power plot of path analysis vs. difference score model mediated effect results 

by sample size, effect size, stability, bm2y1 path, and by2m1 path for N = 500 and direct 

effect = 0.30 collapsed across all simulation conditions. 
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Figure 22. Power plot of path analysis vs. residualized change score model mediated 

effect results by sample size, effect size, bm2y1 path, and by2m1 path for N = 50 – 100 

collapsed across all simulation conditions. 
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Figure 23. Power plot of path analysis vs. residualized change score model mediated 

effect results by sample size, effect size, bm2y1 path, and by2m1 path for N = 200 – 500 

collapsed across all simulation conditions. 
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Figure 24. Multidimensional scaling using tetrachoric correlations to categorize the 

power to detect the mediated effect for the five models on two dimensions. 
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APPENDIX A 

LIST OF VARIABLE NAMES AND DESCRIPTIONS 
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Variable Description 

X Treatment  

M1 Pretest Mediator 

Y1 Pretest Outcome 

M2 Posttest Mediator 

Y2 Posttest Outcome 

ΔM Mediator difference score 

ΔY Outcome difference score 

RM Mediator residualized change 

score 

RY Outcome residualized change 

score 
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APPENDIX B 

LIST OF MODEL COEFFICIENTS AND DESCRIPTIONS 
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Coefficient Description 

am2x Effect of treatment X on posttest 

mediator M2 adjusting for M1 and Y1 

Sm2m1 Pooled within-group stability of 

mediator 

Sm2m1total Stability of mediator ignoring group 

information 

bm2y1 Effect of pretest outcome Y1 on posttest 

mediator M2 adjusting for X and M1 

c’y2x Effect of treatment X on posttest 

outcome Y2 adjusting for Y1, Y2, and M2 

Sy2y1 Pooled within-group stability of outcome 

Sy2y1total Stability of outcome ignoring group 

information 

by2m1 Effect of pretest mediator M1 on the 

posttest outcome Y2 adjusting for X, Y1, 

and M2 

by2m2 Effect of posttest mediator M2 on posttest 

outcome Y2 adjusting for X, Y1,and M1 

by1m1 Effect of pretest mediator M1 on pretest 

outcome Y1 

aΔ Effect of treatment X on the mediator 

difference score 

bΔ Effect of the mediator difference score 

on the outcome difference score 

adjusting for X 

c’Δ Effect of the treatment X on the outcome 

difference score adjusting for mediator 

difference score 

aR Effect of treatment X on the mediator 

residualized change score 

bR Effect of the mediator residualized 

change score on the outcome 

residualized change score adjusting for X 

c’R Effect of the treatment X on the outcome 

residualized change score adjusting for 

mediator residualized change score 

Note. by1m1 appears in the data generating model figure but was simulated to be 

equivalent to a pretest correlation between the mediator and the outcome. 
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APPENDIX C 

SAS MACRO FOR DATA-GENERATION 
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libname DATAGEN "F:\ASU\Sims\"; 

 

TITLE 'DATA GENERATION OF TWO-WAVE MEDIATION'; 

 

OPTIONS PS=59 LS=80 REPLACE NONOTES; 

 

*The following two lines of code stop the SAS log  

from being saved over iterations of the macro program; 

 

FILENAME NULLOG DUMMY 'C:\NULL'; 

PROC PRINTTO LOG=NULLOG; 

 

PROC DATASETS LIBRARY=WORK KILL NOLIST; RUN; 

%MACRO simulate(nsim,nobs,BMX,BYX,BYM, 

aM1X,sm2m1,am2x,bm2y1, 

by1m1,cy1x,cy2x,sy2y1, 

by2m1,by2m2,varx,varm1, 

varm2,vary1,vary2,RELM1,  

RELM2, RELY1, RELY2,file, 

TYPE,ERROR); 

 

TITLE 'SIMULATION OF TWO-WAVE MEDIATION'; 

DATA DATAGEN.&FILE; 

totaln=&NSIM*&NOBS; 

DO I=1 TO totaln; 

/*variances and covariances for relability - Reliability will not be 

varied in this simulation!*/ 

VarX=0.25; 

VarM1=(&aM1X**2)*VarX+(&VarM1)**2; 

CovXM1=&aM1X*VarX; 

CovXY1=&cY1X*VarX+&bY1M1*CovXM1; 

CovXM2=&aM2X*VarX+&sM2M1*CovXM1+&bM2Y1*CovXY1; 

CovXY2=&cY2X*VarX+&SY2Y1*CovXY1+&bY2M1*CovXM1+&bY2M2*CovXM2; 

CovM1Y1=&aM1X*&cY1X*VarX+&aM1X*&bY1M1*CovXM1+&bY1M1*&VarM1**2; 

CovM1M2=&aM1X*&SM2M1*CovXM1+&aM1X*&bM2Y1*CovXY1+&aM1X*&aM2X*VarX+&SM2M1

*&VarM1+&bM2Y1*&bY1M1*&VarM1**2; 

CovM1Y2=&aM1X*&cY2X*VarX+&aM1X*&SY2Y1*CovXY1+&aM1X*&bY2M1*CovXM1+&aM1X*

&bY2M2*CovXM2+&SY2Y1*&bY1M1*&VarM1**2+&bY2M1*&VarM1**2+&bY2M2*&SM2M1*&V

arM1**2+&bY2M2*&bM2Y1*&bY1M1*&VarM1**2; 

CovM2Y1=&aM2X*&bY1M1*CovXM1+&aM2X*&cY1X*VarX+&SM2M1*&bY1M1*VarM1+&SM2M1

*&cY1X*CovXM1+&bM2Y1*&bY1M1*CovM1Y1+&bM2Y1*&cY1X*CovXY1+&bM2Y1*(&VarY1)

**2; 

VarY1=(&cY1X**2)*VarX+2*&cY1X*&bY1M1*CovXM1+(&bY1M1**2)*VarM1+(&VarY1)*

*2; 

VarM2=(&SM2M1**2)*VarM1+2*&SM2M1*&bM2Y1*CovM1Y1+2*&SM2M1*&aM2X*CovXM1+(

&bM2Y1**2)*VarY1+2*&bM2Y1*&aM2X*CovXY1+(&aM2X**2)*VarX+(&VarM2)**2; 

VarY2=(&cY2X**2)*VarX+2*&cY2X*&SY2Y1*CovXY1+2*&cY2X*&bY2M1*CovXM1+2*&cY

2X*&bY2M2*CovXM2+(&SY2Y1**2)*VarY1+2*&SY2Y1*&bY2M1*CovM1Y1+2*&SY2Y1*&bY

2M2*CovM2Y1+ 

    

(&bY2M1**2)*VarM1+2*&bY2M1*&bY2M2*CovM1M2+(&bY2M2**2)*VarM2+(&VarY2)**2

; 
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CovM2Y2=&SM2M1*&cY2X*CovXM1+&SM2M1*&SY2Y1*CovM1Y1+&SM2M1*&bY2M1*VarM1+&

SM2M1*&bY2M2*CovM1M2+&bM2Y1*&cY2X*CovXY1+&bM2Y1*&SY2Y1*VarY1+&bM2Y1*&bY

2M1*CovM1Y1+ 

      

&bM2Y1*&bY2M2*CovM2Y1+&aM2X*&cY2X*VarX+&aM2X*&SY2Y1*CovXY1+&aM2X*&bY2M1

*CovXM1+&aM2X*&bY2M2*CovXM2+&bY2M2*(&VarM2)**2; 

CovY1Y2=&cY1X*&SY2Y1*CovXY1+&cY1X*&bY2M1*CovXM1+&cY1X*&bY2M2*CovXM2+&cY

1X*&cY2X*VarX+&bY1M1*&SY2Y1*CovM1Y1+&bY1M1*&bY2M1*VarM1+&bY2M2*&bY1M1*C

ovM1M2+ 

      &bY1M1*&cY2X*CovXM1+&bY2M2*&bM2Y1*(&VarY1)**2+&SY2Y1*(&VarY1)**2; 

 

 

/*model variables*/ 

X=&varx*rannor(0); IF X LT 0 THEN X=0; IF X GT 0 THEN X=1; 

M1t=&varm1*rannor(0); 

Varm1e=(Varm1/&RELM1)-Varm1; 

M1e=sqrt(varm1e)*rannor(0); 

M1=m1t+m1e; 

M2T=&bm2y1*y1+&sm2m1*m1+&am2x*x+&varm2*rannor(0); 

VarM2e=(VarM2/&RELM2)-VarM2; 

M2e=sqrt(varm2e)*rannor(0); 

M2=M2T+M2e; 

Y1T=&by1m1*m1+&vary1*rannor(0); 

Vary1e=(vary1/&RELY1)-vary1; 

Y1e=sqrt(vary1e)*rannor(0); 

Y1=Y1T+Y1e; 

Y2T=&cy2x*x+&sy2y1*y1+&by2m1*m1+&by2m2*m2+&vary2*rannor(0); 

Vary2e=(Vary2/&RELY2)-Vary2; 

Y2e=sqrt(vary2e)*rannor(0); 

Y2=Y2T+y2e;  

Mdiff=M2-M1; 

Ydiff=Y2-Y1; 

OUTPUT; 

END; 

drop y1e y1t m1e m1t y2e y2t m2e m2t vary1e varm1e vary2e varm2e; 

run; 

%END; 

 

 

%MEND; 

run; 

 

PROC DATASETS LIB=WORK NOLIST; 

%simulate(nsim=10,nobs=200,BMX=0,BYX=0,BYM=0, 

aM1X=0, sm2m1=.981,am2x=0,bm2y1=0, by1m1=.578, 

cy1x=0, cy2x=0,sy2y1=.686, by2m1=.876,by2m2=0,  

varx=1,varm1=1,varm2=1,vary1=1,vary2=1, 

RELM1=1, RELM2=1, RELY1=1, RELY2=1, 

FILE=n200cond1,TYPE='CCC',ERROR=1);  

run; quit; 
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APPENDIX D 

FIGURE OF DATA-GENERATING MODEL 
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APPENDIX E 

ESTIMATED QUANTITIES AND MODEL CONDITIONS 
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  Conditions 

Model Quantity 

Estimated 

Stability M – Y 

Cross-lag 

Y – M 

Cross-lag 

Pretest 

correlation 

ANCOVA am2x *by2m2 Equal across 

groups 

None None None 

Path analysis am2x *by2m2 Equal across 

groups 

None None None 

Difference 

Score 

aΔ *bΔ Equal to 1 None None None 

Residualized 

Change score 

aR *bR Equal across 

groups 

Equals 0 Equals 0 Equals 0 

Cross-

sectional 

am2x *by2m2 Equals 0 Equals 0 Equals 0 Equals 0 

Note. The mediated effect estimated with the cross-sectional model consists of the same 

path coefficients as the ANCOVA/path analysis model but ignores all pretest information 

on M and Y when estimating these quantities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

135 

 

APPENDIX F 

SAS MACRO FOR ANALYSIS OF ALL MODELS 
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libname DATAGEN "E:\ASU\Sims\Two-wave model\Valente Masters 

Sim\DATAGEN\"; 

libname DATAOUT "E:\ASU\Sims\Two-wave model\Valente Masters 

Sim\DATAOUT"; 

 

FILENAME NULLOG DUMMY 'D:\NULL'; 

PROC PRINTTO LOG=NULLOG; 

PROC DATASETS LIBRARY=WORK KILL NOLIST; RUN; 

%MACRO ANALYZE (nsim,nobs,BMX,BYX,BYM, 

aM1X,sm2m1,am2x,bm2y1, 

by1m1,cy1x,cy2x,sy2y1, 

by2m1,by2m2,varx,varm1, 

varm2,vary1,vary2,RELM1,  

RELM2, RELY1, RELY2,file, 

TYPE,ERROR); 

 

 

DATA SIM; SET DATAGEN.&FILE; 

J=&nobs; 

DO J=0 to totaln by &nobs; 

IF 1+J<=I<=&NOBS+J then rep=1+(J/&nobs); 

end; 

run; 

 

/***************************************************************/ 

/*                                                             */ 

/*                        PATH MODEL                           */ 

/*                                                             */ 

/***************************************************************/ 

PROC CALIS DATA=SIM METHOD=ML NORPINT PLC OUTEST=OUT1 outstat=out2; 

by rep; 

LINEQS 

M2=sm2m1_ M1 + am2x_ X + bm2y1_ Y1+ E2, 

y2=cy2x_ X +  sy2y1_ y1 + by2m1_ M1 + by2m2_ M2 + E3;  

 

Cov 

X M1, 

X Y1, 

M1 Y1; 

 

STD 

   E2 = EE2, 

   E3 = EE3; 

 

RUN; 

*SAVING THE PARAMETER VALUES OF FROM THE PATH MODEL OUTPUT. PARAMETERS 

ARE DENOTED WITH _ AT THE END OF THE NAME; 

DATA CALPARMS; SET OUT1; 

IF _TYPE_="PARMS";  

KEEP sM2M1_ aM2X_ cY2X_ sY2Y1_ bY2M1_ bY2M2_; 

run; 

*SAVING THE STANDARD ERRORS OF THE PARAMETERS FROM THE PATH MODEL 

OUTPUT; 

DATA CALSTDERR1; SET OUT1; 
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IF _TYPE_="STDERR"; SEsM2M1_= sM2M1_;  

KEEP SEsM2M1_; 

DATA CALSTDERR2; SET OUT1; 

IF _TYPE_="STDERR"; SEaM2X_= aM2X_; 

KEEP  SEaM2X_; 

DATA CALSTDERR3; SET OUT1; 

IF _TYPE_="STDERR"; SEcY2X_= cY2X_; 

KEEP SEcY2X_; 

DATA CALSTDERR4; SET OUT1; 

IF _TYPE_="STDERR"; SEsY2Y1_= sY2Y1_;  

KEEP SEsY2Y1_; 

DATA CALSTDERR5; SET OUT1; 

IF _TYPE_="STDERR"; SEbY2M1_= bY2M1_;   

KEEP SEbY2M1_; 

DATA CALSTDERR6; SET OUT1; 

IF _TYPE_="STDERR"; SEbY2M2_= bY2M2_; 

KEEP SEbY2M2_; 

 

*MERGING THE STANDARD ERROR DATA SETS FOR EACH PARAMETER VALUE INTO ONE 

DATASET; 

DATA CALSTDERR; MERGE CALSTDERR1 CALSTDERR2 CALSTDERR3 CALSTDERR4 

CALSTDERR5 CALSTDERR6; 

RUN; 

 

*SAVING THE COVARIANCES AND VARIANCES OF THE VARIABLES FROM THE PATH 

MODEL OUTPUT. COVARIANCES DENOTED CV AND VARIANCES DENOTED VARI; 

DATA CALISAA; SET OUT2; 

IF _TYPE_="COV";IF _NAME_= "M1";CVXM1= X; 

KEEP CVXM1; 

DATA CALISAB; SET OUT2; 

IF _TYPE_="COV";IF _NAME_= "M2";CVXM2= X; 

KEEP CVXM2; 

DATA CALISAC; SET OUT2; 

IF _TYPE_="COV";IF _NAME_= "Y1";CVXy1= X; 

KEEP CVXy1; 

DATA CALISAD; SET OUT2; 

IF _TYPE_="COV";IF _NAME_= "Y2";CVXY2= X; 

KEEP CVXY2; 

DATA CALISAE; SET OUT2; 

IF _TYPE_="COV"; IF _NAME_='M1'; CVM1M2=M2; 

KEEP CVM1M2; 

DATA CALISAF; SET OUT2; 

IF _TYPE_="COV"; IF _NAME_='M1'; CVM1Y1=y1; 

KEEP CVM1Y1; 

DATA CALISAG; SET OUT2; 

IF _TYPE_="COV"; IF _NAME_='M1'; CVM1Y2=Y2; 

KEEP CVM1Y2; 

DATA CALISAH; SET OUT2; 

IF _TYPE_="COV"; IF _NAME_='M2'; CVM2Y1=y1; 

KEEP CVM2Y1; 

DATA CALISAI; SET OUT2; 

IF _TYPE_="COV"; IF _NAME_='M2'; CVM2Y2=Y2; 

KEEP CVM2Y2; 

DATA CALISAJ; SET OUT2; 
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IF _TYPE_="COV"; IF _NAME_='Y1'; CVY1Y2=Y2; 

KEEP CVY1Y2; 

DATA CALISAK; SET OUT2; 

IF _TYPE_='COV'; IF _NAME_="X"; VARIX=X; 

KEEP VARIX; 

DATA CALISAL; SET OUT2; 

IF _TYPE_='COV'; IF _NAME_="M1"; VARIM1=M1; 

KEEP VARIM1; 

DATA CALISAM; SET OUT2; 

IF _TYPE_='COV'; IF _NAME_="M2"; VARIM2=M2; 

KEEP VARIM2; 

DATA CALISAN; SET OUT2; 

IF _TYPE_='COV'; IF _NAME_="Y1"; VARIY1=y1; 

KEEP VARIY1; 

DATA CALISAO; SET OUT2; 

IF _TYPE_='COV'; IF _NAME_="Y2"; VARIY2=Y2; 

KEEP VARIY2; 

 

*MERGING THE COVARIANCES AND VARIANCES OF THE VARIABLES FROM THE PATH 

MODEL OUTPUT INTO ONE DATASET; 

DATA CALCOV; MERGE CALISAA CALISAB CALISAC CALISAD CALISAE CALISAF 

CALISAG CALISAH CALISAI CALISAJ  

CALISAK CALISAL CALISAM CALISAN CALISAO; 

RUN; 

 

*COMPUTES CORRELATIONS BASED ON PATH MODEL OUTPUT; 

DATA CALCORR; SET CALCOV; 

CRXM1=CVXM1/(SQRT(VARIX)*SQRT(VARIM1)); 

CRXM2=CVXM2/(SQRT(VARIX)*SQRT(VARIM2)); 

CRXY1=CVXY1/(SQRT(VARIX)*SQRT(VARIY1)); 

CRXY2=CVXY2/(SQRT(VARIX)*SQRT(VARIY2)); 

CRM1M2=CVM1M2/(SQRT(VARIM1)*SQRT(VARIM2)); 

CRM1Y1=CVM1Y1/(SQRT(VARIM1)*SQRT(VARIY1)); 

CRM1Y2=CVM1Y2/(SQRT(VARIM1)*SQRT(VARIY2)); 

CRM2Y1=CVM2Y1/(SQRT(VARIM2)*SQRT(VARIY1)); 

CRM2Y2=CVM2Y2/(SQRT(VARIM2)*SQRT(VARIY2)); 

CRY1Y2=CVY1Y2/(SQRT(VARIY1)*SQRT(VARIY2)); 

RUN; 

 

*THIS MERGES ALL THE OUTPUT FROM THE PATH MODEL OUTPUT INTO ONE 

DATASET; 

DATA CALIS; MERGE CALPARMS CALSTDERR CALCORR; 

 

/***************************************************************/ 

/*                                                             */ 

/*                      CHANGE SCORES                          */ 

/*                                                             */ 

/***************************************************************/ 

/*ESTIMATING (DIFFM=X Y1) REGRESSION AND SAVING THE VALUES OF THE 

COEFFICIENTS AND THEIR STANDARD ERRORS*/ 

PROC REG DATA=SIM OUTEST=DiffFILE1 COVOUT noprint; by rep; MODEL Mdiff= 

X/; 

DATA DiffA; SET DiffFILE1; IF _TYPE_='PARMS'; aM2XDiff=X; 

MSEAM2XDiff=_RMSE_*_RMSE_; 
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DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X; 

KEEP aM2XDiff MSEAM2XDiff; 

DATA DiffB; SET DiffFILE1;IF _NAME_='X'; SEAM2XDiff=SQRT(X); 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X; 

KEEP SEAM2XDiff; 

DATA DiffMODEL1; MERGE DiffA DIffB; 

 

 

*Estimating the (DiffY=X DiffM) REGRESSION AND SAVING THE VALUES OF THE 

COEFFICIENTS AND THEIR STANDARD ERRORS;  

PROC REG DATA=SIM OUTEST=DiffFILE2 COVOUT noprint; by rep; MODEL 

Ydiff=X Mdiff/; 

DATA DiffE; SET DiffFILE2;IF _TYPE_='PARMS'; cY2XDiff=X; 

MSECY2XDiff=_RMSE_*_RMSE_; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X MDiff; 

KEEP cY2Xdiff MSECY2Xdiff; 

DATA DiffF; SET DiffFILE2;IF _NAME_='X'; SECY2XDiff=SQRT(X); 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X MDiff; 

KEEP SECY2XDiff; 

DATA DiffG; SET DiffFILE2;IF _TYPE_='PARMS'; bY2M2Diff=Mdiff; 

MSEBY2M2DIff=_RMSE_*_RMSE_; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X MDiff; 

KEEP bY2M2Diff MSEBY2M2Diff; 

DATA DiffH; SET DiffFILE2;IF _NAME_='Mdiff'; SEBY2M2Diff=SQRT(Mdiff); 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X MDiff; 

KEEP SEBY2M2Diff; 

DATA DiffMODEL2; MERGE DiffE DiffF DiffG DiffH; 

 

DATA DiffMODELS; MERGE DiffMODEL1 DiffMODEL2; 

 

/***************************************************************/ 

/*                                                             */ 

/*                RESIDUALIZED CHANGE SCORES                   */ 

/*                                                             */ 

/***************************************************************/ 

/*MODEL COMPUTING AND SAVING RESIDUALIZED DIFFERENCE SCORE OF M1 AND 

M2*/ 

PROC REG DATA=SIM noprint; by rep; MODEL M2=M1/; 

output out=resid1 r=residm; 

data rchange1;set resid1; 

keep residm x; 

/*MODEL COMPUTING AND SAVING RESIDUALIZED DIFFERENCE SCORE OF Y1 AND 

Y2*/ 

PROC REG DATA=SIM noprint; by rep; MODEL Y2=y1/; 

output out=resid2 r=residy; 

data rchange2;set resid2; 

keep residy; 

 

proc sort; by I; 

data rchange; merge resid1 resid2; by I; 

 

/*ESTIMATING (RESIDM2=X Y1) REGRESSION AND SAVING THE VALUES OF THE 

COEFFICIENTS AND THEIR STANDARD ERRORS*/ 
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PROC REG DATA=rchange OUTEST=RFILE1 COVOUT noprint; by rep; MODEL 

residm= X/; 

DATA RA; SET RFILE1; IF _TYPE_='PARMS'; aM2XRES=X; 

MSEAM2XRES=_RMSE_*_RMSE_; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X; 

KEEP aM2XRES MSEAM2XRES; 

DATA RB; SET RFILE1;IF _NAME_='X'; SEAM2XRES=SQRT(X); 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X; 

KEEP SEAM2XRES; 

DATA RESMODEL1; MERGE RA RB; 

 

 

*Estimating the (RESIDY2=X RESIDM2) REGRESSION AND SAVING THE VALUES OF 

THE COEFFICIENTS AND THEIR STANDARD ERRORS;  

PROC REG DATA=rchange OUTEST=RFILE2 COVOUT noprint; by rep; MODEL 

RESIDY=X RESIDM/; 

DATA RE; SET RFILE2;IF _TYPE_='PARMS'; cY2XRES=X; 

MSECY2XRES=_RMSE_*_RMSE_; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X RESIDM; 

KEEP cY2XRES MSECY2XRES; 

DATA RF; SET RFILE2;IF _NAME_='X'; SECY2XRES=SQRT(X); 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X RESIDM; 

KEEP SECY2XRES; 

DATA RG; SET RFILE2;IF _TYPE_='PARMS'; 

bY2M2RES=RESIDM;MSEBY2M2RES=_RMSE_*_RMSE_; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X RESIDM; 

KEEP bY2M2RES MSEBY2M2RES; 

DATA RH; SET RFILE2;IF _NAME_='residm'; SEBY2M2RES=SQRT(residm); 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X RESIDM; 

KEEP SEBY2M2RES; 

DATA RESMODEL2; MERGE RE RF RG RH; 

 

DATA RESMODELS; MERGE RESMODEL1 RESMODEL2; 

/***************************************************************/ 

/*                                                             */ 

/*                LINEAR REGRESSION (ANCOVA)                   */ 

/*                                                             */ 

/***************************************************************/ 

 

*Estimating the (M1=X) regression and saving the value of aM1X and its 

standard error; 

/*PROC REG DATA=SIM OUTEST=FILE1 COVOUT noprint; MODEL M1=X/; 

DATA B; SET FILE1;IF _TYPE_='PARMS'; aM1X=X; MSEM1X=_RMSE_*_RMSE_; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X M1; 

KEEP aM1X MSEM1X; 

DATA C; SET FILE1;IF _NAME_='X'; SEAM1X=SQRT(X); 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X M1; 

KEEP SEAM1X; 

DATA MODEL1; MERGE B C; */ 

 

*Estimating the (M2=M1 X) regression and saving the value of sM2M1, 

aM2X, and their standard errors;  

PROC REG DATA=SIM OUTEST=FILE2 COVOUT noprint; by rep; MODEL M2=M1 Y1 

X/; 
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DATA D; SET FILE2;IF _TYPE_='PARMS'; sM2M1=M1; MSEM2M1=_RMSE_*_RMSE_; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X M1 M2; 

KEEP sM2M1 MSEM2M1; 

DATA E; SET FILE2;IF _NAME_='M1'; SESM2M1=SQRT(M1); 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X M1 M2; 

KEEP SESM2M1; 

DATA F; SET FILE2; IF _TYPE_='PARMS'; aM2X=X;MSEAM2X=_RMSE_*_RMSE_; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X M1 M2; 

KEEP aM2X MSEAM2X; 

DATA G; SET FILE2;IF _NAME_='X'; SEAM2X=SQRT(X); 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X M1 M2; 

KEEP SEAM2X; 

DATA H; SET FILE2; IF _TYPE_='PARMS'; bM2Y1=Y1;MSEBM2Y1=_RMSE_*_RMSE_; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y1 M1 M2; 

KEEP bM2Y1 MSEBM2Y1; 

DATA I; SET FILE2; IF _NAME_='y1'; SEBM2Y1=SQRT(y1); 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y1 M1 M2; 

KEEP SEBM2Y1; 

DATA MODEL2; MERGE D E F G H I; 

 

*Estimating the (Y1=M1) regression and saving the value of bY1M1 and 

its standard errors; 

PROC REG DATA=SIM OUTEST=FILE3 COVOUT noprint; by rep; MODEL Y1=M1/;  

DATA J; SET FILE3;IF _TYPE_='PARMS'; bY1M1=M1;MSEBY1M1=_RMSE_*_RMSE_; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP M1 Y1; 

KEEP bY1M1 MSEBY1M1; 

DATA K; SET FILE3;IF _NAME_='M1'; SEBY1M1=SQRT(M1); 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP M1 Y1; 

KEEP SEBY1M1; 

/*DATA L; SET FILE3;IF _TYPE_='PARMS'; cY1X=X;MSECY1X=_RMSE_*_RMSE_; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X M1 Y1; 

KEEP cY1X MSECY1X; 

DATA M; SET FILE3;IF _NAME_='X'; SECY1X=SQRT(X); 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X M1 Y1; 

KEEP SECY1X;*/ 

DATA MODEL3; MERGE J K; 

 

*Estimating the (Y2=X Y1 M1 M2) regression and saving the value of 

sM2M1, aM2X, bM2Y1, and their standard errors;  

PROC REG DATA=SIM OUTEST=FILE4 COVOUT noprint; by rep; MODEL Y2=X Y1 M1 

M2/; 

DATA N; SET FILE4;IF _TYPE_='PARMS'; cY2X=X;MSECY2X=_RMSE_*_RMSE_; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y1 Y2 M1 M2; 

KEEP cY2X MSECY2X; 

DATA O; SET FILE4;IF _NAME_='X'; SECY2X=SQRT(X); 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y1 Y2 M1 M2; 

KEEP SECY2X; 

DATA P; SET FILE4;IF _TYPE_='PARMS'; sY2Y1=Y1;MSESY2Y1=_RMSE_*_RMSE_; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y1 M1 M2; 

KEEP sY2Y1 MSESY2Y1; 

DATA Q; SET FILE4;IF _NAME_='Y1'; SESY2Y1=SQRT(Y1); 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y1 M1 M2; 

KEEP SESY2Y1; 

DATA R; SET FILE4;IF _TYPE_='PARMS'; bY2M1=M1;MSEBY2M1=_RMSE_*_RMSE_; 
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DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y1 M1 M2; 

KEEP bY2M1 MSEBY2M1; 

DATA S; SET FILE4;IF _NAME_='M1'; SEBY2M1=SQRT(M1); 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y1 M1 M2; 

KEEP SEBY2M1; 

DATA T; SET FILE4;IF _TYPE_='PARMS'; bY2M2=M2;MSEBY2M2=_RMSE_*_RMSE_; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y1 M1 M2; 

KEEP bY2M2 MSEBY2M2; 

DATA U; SET FILE4;IF _NAME_='M2'; SEBY2M2=SQRT(M2); 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y1 M1 M2; 

KEEP SEBY2M2; 

DATA MODEL4; MERGE N O P Q R S T U; 

 

/*Estimating various total effect of X on Y2 IN PROGRESS 

PROC REG DATA=SIM OUTEST-FILE5 COVOUT noprint; MODEL Y2=X/; 

DATA V; SET FILE5L IF _TYPE_='PARMS'; CX=X; MSECX=_RMSE_*_RMSE_; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y2; 

KEEP CX MSECX; 

PROC REG DATA=SIM OUTEST-FILE5 COVOUT noprint; MODEL Y2=X/; 

DATA W; SET FILE5L IF _NAME_='X'; SECX=SQRT(X);  

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y2; 

KEEP SECX; 

MODEL5; MERGE V W;*/ 

 

/***************************************************************/ 

/*                                                             */ 

/*                CROSS SECTIONAL MEDIATOR MODEL               */ 

/*                                                             */ 

/***************************************************************/ 

 

*Estimating the (M2=X) regression and saving the value of a and its 

standard error;  

PROC REG DATA=SIM OUTEST=FILE5 COVOUT noprint; by rep; MODEL M2= X/; 

DATA V; SET FILE5; IF _TYPE_='PARMS'; a=X;MSEA=_RMSE_*_RMSE_; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X M2; 

KEEP a MSEA; 

DATA W; SET FILE5;IF _NAME_='X'; SEA=SQRT(X); 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X M2; 

KEEP SEA; 

DATA MODEL5; MERGE V W; 

 

*Estimating the (Y2=X M2) regression and saving the value of c b and 

their standard errors;  

PROC REG DATA=SIM OUTEST=FILE6 COVOUT noprint; by rep; MODEL Y2=X M2/; 

DATA X; SET FILE6;IF _TYPE_='PARMS'; c=X; MSEC=_RMSE_*_RMSE_; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y2 M2; 

KEEP c MSEC; 

DATA Y; SET FILE6;IF _NAME_='X'; SEC=SQRT(X); 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y2 M2; 

KEEP SEC; 

DATA Z; SET FILE6;IF _TYPE_='PARMS'; b=M2;MSEB=_RMSE_*_RMSE_; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y2 M2; 

KEEP b MSEB; 

DATA AA; SET FILE6;IF _NAME_='M2'; SEB=SQRT(M2); 
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DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y2 M2; 

KEEP SEB; 

DATA MODEL6; MERGE X Y Z AA; 

 

 

 

*THIS MERGES ALL THE PREVIOUS REGRESSION, CHANGE SCORE, RES CHANGE, AND 

PATH MODEL OUTPUT; 

DATA ALL; MERGE MODEL2 MODEL3 MODEL4 MODEL5 MODEL6 DIFFMODELS RESMODELS 

CALIS; 

RUN; 

 

 

*THIS COMPUTES COVARIANCES OF VARIABLES VIA PROC CORR; 

PROC CORR DATA=SIM cov nocorr OUTPUT=COV noprint; by rep; 

var x m1 m2 y1 y2 YDIFF MDIFF; 

DATA SA; SET COV;  

IF _NAME_='M1'; COVXM1=X; 

KEEP COVXM1; 

DATA SB; SET COV; 

IF _NAME_='M2'; COVXM2=X; 

KEEP COVXM2; 

DATA SC; SET COV;  

IF _NAME_='Y1'; COVXY1=X; 

KEEP COVXY1; 

DATA SD; SET COV; 

IF _NAME_='Y2'; COVXY2=X; 

KEEP COVXY2; 

DATA SE; SET COV; 

IF _NAME_='M1'; COVM1M2=M2; 

KEEP COVM1M2; 

DATA SF; SET COV; 

IF _NAME_='M1'; COVM1Y1=y1; 

KEEP COVM1Y1; 

DATA SG; SET COV; 

IF _NAME_='M1'; COVM1Y2=Y2; 

KEEP COVM1Y2; 

DATA SH; SET COV; 

IF _NAME_='M2'; COVM2Y1=y1; 

KEEP COVM2Y1; 

DATA SI; SET COV; 

IF _NAME_='M2'; COVM2Y2=Y2; 

KEEP COVM2Y2; 

DATA SJ; SET COV; 

IF _NAME_='Y1'; COVY1Y2=Y2; 

KEEP COVY1Y2; 

DATA SK; SET COV; 

IF _TYPE_='STD'; VAX=X*X; 

KEEP VAX; 

DATA SL; SET COV; 

IF _TYPE_='STD'; VAM1=M1*M1; 

KEEP VAM1; 

DATA SM; SET COV; 

IF _TYPE_='STD'; VAM2=M2*M2; 
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KEEP VAM2; 

DATA SN; SET COV; 

IF _TYPE_='STD'; VAY1=y1*y1; 

KEEP VAY1; 

DATA SO; SET COV; 

IF _TYPE_='STD'; VAY2=Y2*Y2; 

KEEP VAY2; 

DATA SP; SET COV; 

IF _TYPE_='STD'; VAYDIFF=YDIFF*YDIFF; 

KEEP VAYDIFF; 

DATA SQ; SET COV; 

IF _TYPE_='STD'; VAMDIFF=MDIFF*MDIFF; 

KEEP VAMDIFF; 

DATA SR; SET COV; 

IF _NAME_='Mdiff'; COVXMDIFF=X; 

KEEP COVXMDIFF; 

DATA SS; SET COV; 

IF _NAME_='Ydiff'; COVXYDIFF=X; 

KEEP COVXYDIFF; 

DATA ST; SET COV; 

IF _NAME_='Ydiff'; COVMDIFFYDIFF=Mdiff; 

KEEP COVMDIFFYDIFF; 

RUN; 

 

PROC CORR DATA=rchange cov nocorr OUTPUT=COV2 noprint; by rep; 

var X RESIDM RESIDY; 

DATA SU; SET COV2; 

IF _NAME_='residm'; COVXRESM=x; 

KEEP COVXRESM; 

DATA SV; SET COV2; 

IF _NAME_='residy'; COVXRESY=x; 

KEEP COVXRESY; 

DATA SW; SET COV2; 

IF _NAME_='residy'; COVRESMRESY=residm; 

KEEP COVRESMRESY; 

DATA SX; SET COV2; 

IF _NAME_='residy'; VARESY=residy; 

KEEP VARESY; 

DATA SY; SET COV2; 

IF _NAME_='residm'; VARESM=residm; 

KEEP VARESM; 

RUN; 

 

 

*THIS MERGES ALL OF THE INDIVIDUAL COVARIANCE DATASETS INTO ONE 

DATASET; 

DATA SCOVS; MERGE SA SB SC SD SE SF SG SH SI SJ SK SL SM SN SO SP SQ SR 

SS ST SU SV SW SX SY; 

RUN; 

 

*THIS COMPUTES THE CORRELATIONS FOR ALL THE VARIABLES VIA PROC CORR; 

PROC CORR DATA=SIM OUTPUT=CORR noprint; by rep; 

var x m1 m2 y1 y2; 

DATA SAR; SET CORR;  
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IF _NAME_='M1'; CORRXM1=X; 

KEEP CORRXM1; 

DATA SBR; SET CORR; 

IF _NAME_='M2'; CORRXM2=X; 

KEEP CORRXM2; 

DATA SCR; SET CORR;  

IF _NAME_='Y1'; CORRXY1=x; 

KEEP CORRXY1; 

DATA SDR; SET CORR; 

IF _NAME_='Y2'; CORRXY2=X; 

KEEP CORRXY2; 

DATA SER; SET CORR; 

IF _NAME_='M1'; CORRM1M2=M2; 

KEEP CORRM1M2; 

DATA SFR; SET CORR; 

IF _NAME_='M1'; CORRM1Y1=y1; 

KEEP CORRM1Y1; 

DATA SGR; SET CORR; 

IF _NAME_='M1'; CORRM1Y2=Y2; 

KEEP CORRM1Y2; 

DATA SHR; SET CORR; 

IF _NAME_='M2'; CORRM2Y1=y1; 

KEEP CORRM2Y1; 

DATA SIR; SET CORR; 

IF _NAME_='M2'; CORRM2Y2=Y2; 

KEEP CORRM2Y2; 

DATA SJR; SET CORR; 

IF _NAME_='Y1'; CORRY1Y2=y2; 

KEEP CORRY1Y2; 

RUN; 

 

*THIS MERGES ALL THE INDIVIDUAL CORRELATION DATASETS INTO ONE DATASET;  

DATA SCORRS; MERGE SAR SBR SCR SDR SER SFR SGR SHR SIR SJR; 

RUN; 

 

*P DENOTES POPULATION VALUE OF PARAMETER; 

DATA TEST;SET ALL; 

NSIM=&NSIM; 

NOBS=&NOBS; 

PaM1X=&aM1X; 

PsM2M1=&sM2M1; 

PaM2X=&aM2X; 

PbM2Y1=&bM2Y1; 

PbY1M1=&bY1M1; 

PcY1X=&cY1X; 

PcY2X=&cY2X; 

PsY2Y1=&sY2Y1; 

PbY2M1=&bY2M1; 

PbY2M2=&bY2M2; 

VARX=&VARX; 

VARM1=&VARM1; 

VARM2=&VARM2; 

VARY1=&VARY1; 

VARY2=&VARY2; 
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FILE=&FILE; 

TYPE=&TYPE; 

ERROR=&ERROR; 

 

*The code below calculates the product of coefficients for all four 

methods; 

TRUEAB=PaM2X*PbY2M2; 

AB=aM2X*bY2M2; 

AB_=aM2X_*bY2M2_; 

ABDIFF=aM2XDiff*bY2M2Diff; 

ABRES=aM2XRES*bY2M2RES; 

ABX=A*B; 

 

*The code below computes the standard error for the product of the 

coefficients for all four methods; 

SEAB=SQRT((aM2X**2)*(SEbY2M2**2)+(bY2M2**2)*(SEaM2X**2)); 

SEAB_=SQRT((aM2X_**2)*(SEbY2M2_**2)+(bY2M2_**2)*(SEaM2X_**2)); 

SEABDIFF=SQRT((aM2XDiff**2)*(SEbY2M2Diff**2)+(bY2M2Diff**2)*(SEaM2XDiff

**2)); 

SEABRES=SQRT((aM2XRES**2)*(SEbY2M2RES**2)+(bY2M2RES**2)*(SEaM2XRES**2))

; 

 

*The code below calculates empirical power of paths a, b, and c; 

ZA=AM2X/SEAM2X; 

PZA=1-PROBNORM(ABS(ZA)); 

SZA=0; IF PZA<=0.025 THEN SZA=1; 

 

ZB=BY2M2/SEBY2M2; 

PZB=1-PROBNORM(ABS(ZB)); 

SZB=0; IF PZB<=0.025 THEN SZB=1; 

 

ZC=CY2X/SECY2X; 

PZC=1-PROBNORM(ABS(ZC)); 

SZC=0; IF PZC<=0.025 THEN SZC=1; 

 

ZADIFF=AM2XDIFF/SEAM2XDIFF; 

PZADIFF=1-PROBNORM(ABS(ZADIFF)); 

SZADIFF=0; IF PZADIFF<=0.025 THEN SZADIFF=1; 

 

ZBDIFF=BY2M2DIFF/SEBY2M2DIFF; 

PZBDIFF=1-PROBNORM(ABS(ZBDIFF)); 

SZBDIFF=0; IF PZBDIFF<=0.025 THEN SZBDIFF=1; 

 

ZCDIFF=CY2XDIFF/SECY2XDIFF; 

PZCDIFF=1-PROBNORM(ABS(ZCDIFF)); 

SZCDIFF=0; IF PZCDIFF<=0.025 THEN SZCDIFF=1; 

 

ZARES=AM2XRES/SEAM2XRES; 

PZARES=1-PROBNORM(ABS(ZARES)); 

SZARES=0; IF PZARES<=0.025 THEN SZARES=1; 

 

ZBRES=BY2M2RES/SEBY2M2RES; 

PZBRES=1-PROBNORM(ABS(ZBRES)); 

SZBRES=0; IF PZBRES<=0.025 THEN SZBRES=1; 
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ZCRES=CY2XRES/SECY2XRES; 

PZCRES=1-PROBNORM(ABS(ZCRES)); 

SZCRES=0; IF PZCRES<=0.025 THEN SZCRES=1; 

 

ZA_=AM2X_/SEAM2X_; 

PZA_=1-PROBNORM(ABS(ZA_)); 

SZA_=0; IF PZA_<=0.025 THEN SZA_=1; 

 

ZB_=BY2M2_/SEBY2M2_; 

PZB_=1-PROBNORM(ABS(ZB_)); 

SZB_=0; IF PZB_<=0.025 THEN SZB_=1; 

 

ZC_=CY2X_/SECY2X_; 

PZC_=1-PROBNORM(ABS(ZC_)); 

SZC_=0; IF PZC_<=0.025 THEN SZC_=1; 

 

*The following code computes bias and relative bias for the four 

methods (PATH MODEL, RES. CHANGE, CHANGE, ANCOVA(REGRESSION), AND CROSS 

SECTIONAL MODEL); 

BA=AM2X-PAM2X; 

BAR=BA/PAM2X; 

B2A=BA*BA; 

BADIFF=AM2XDIFF-PAM2X; 

BADIFFR=BADIFF/PAM2X; 

B2ADIFF=BADIFF*BADIFF; 

BARES=AM2XRES-PAM2X; 

BARESR=BARES/PAM2X; 

B2ARES=BARES*BARES; 

BA_=AM2X_-PAM2X; 

BA_R=BA_/PAM2X; 

B2A_=BA_*BA_; 

BAX=A-PAM2X; 

BAXR=BAX/PAM2X; 

B2AX=BAX*BAX; 

BB=BY2M2-PBY2M2; 

BBR=BB/PBY2M2; 

B2B=BB*BB; 

BBDIFF=BY2M2DIFF-PBY2M2; 

BBDIFFR=BBDIFF/PBY2M2; 

B2BDIFF=BBDIFF*BBDIFF; 

BBRES=BY2M2RES-PBY2M2; 

BBRESR=BBRES/PBY2M2; 

B2BRES=BBRES*BBRES; 

BB_=BY2M2_-PBY2M2; 

BB_R=BB_/PBY2M2; 

B2B_=BB_*BB_; 

BBX=B-PBY2M2; 

BBXR=BBX/PBY2M2; 

B2BX=BBX*BBX; 

BC=CY2X-PCY2X; 

BCR=BC/PCY2X; 

B2C=BC*BC; 

SDBC=BC/SECY2X; 
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BCDIFF=CY2XDIFF-PCY2X; 

BCDIFFR=BCDIFF/PCY2X; 

B2CDIFF=BCDIFF*BCDIFF; 

BCRES=CY2XRES-PCY2X; 

BCRESR=BCRES/PCY2X; 

B2CRES=BCRES*BCRES; 

BC_=CY2X_-PCY2X; 

BC_R=BC_/PCY2X; 

B2C_=BC_*BC_; 

BCX=C-PCY2X; 

BCXR=BCX/PCY2X; 

B2CX=BCX*BCX; 

BAB=AB-TRUEAB; 

BABR=BAB/TRUEAB; 

B2AB=BAB**2; 

BAB_=AB_-TRUEAB; 

BAB_R=BAB_/TRUEAB; 

B2AB_=BAB_**2; 

BABX=ABX-TRUEAB; 

BABXR=BABX/TRUEAB; 

B2ABX=BABX*BABX; 

 

 

*The following code computes confidence 95% C.I. coverage; 

LaM2X=aM2X-1.96*SEaM2X; UaM2X=aM2X+1.96*SEaM2X;  

LaM2Xdiff=aM2XDiff-1.96*SEaM2XDiff; UaM2XDiff=aM2XDiff+1.96*SEaM2XDiff; 

LaM2XRes=aM2XRes-1.96*SEaM2XRes; UaM2XRes=aM2XRes+1.96*SEaM2XRes; 

LaM2X_=aM2X_-1.96*SEaM2X_; UaM2X_=aM2X_+1.96*SEaM2X_; 

 

LbY2M2=bY2M2-1.96*SEbY2M2; UbY2M2=bY2M2+1.96*SEbY2M2;  

LbY2M2diff=bY2M2Diff-1.96*SEbY2M2Diff; 

UbY2M2Diff=bY2M2Diff+1.96*SEbY2M2Diff; 

LbY2M2Res=bY2M2Res-1.96*SEbY2M2Res; UbY2M2Res=bY2M2Res+1.96*SEbY2M2Res; 

LbY2M2_=bY2M2_-1.96*SEbY2M2_; UbY2M2_=bY2M2_+1.96*SEbY2M2_; 

 

LcY2X=cY2X-1.96*SEcY2X; UcY2X=cY2X+1.96*SEcY2X;  

LcY2Xdiff=cY2XDiff-1.96*SEcY2XDiff; UcY2XDiff=cY2XDiff+1.96*SEcY2XDiff; 

LcY2XRes=cY2XRes-1.96*SEcY2XRes; UcY2XRes=cY2XRes+1.96*SEcY2XRes; 

LcY2X_=cY2X_-1.96*SEcY2X_; UcY2X_=cY2X_+1.96*SEcY2X_; 

 

RGaM2X=0; LFaM2X=0; RGaM2XDiff=0; LFaM2XDiff=0; RGaM2XRes=0; 

LFaM2XRes=0; RGaM2X_=0; LFaM2X_=0; 

RGbY2M2=0; LFbY2M2=0; RGbY2M2Diff=0; LFbY2M2Diff=0; RGbY2M2Res=0; 

LFbY2M2Res=0; RGbY2M2_=0; LFbY2M2_=0; 

RGcY2X=0; LFcY2X=0; RGcY2XDiff=0; LFcY2XDiff=0; RGcY2XRes=0; 

LFcY2XRes=0; RGcY2X_=0; LFcY2X_=0; 

 

If PaM2X GT UaM2X then RGaM2X=1; 

If PaM2X LT LaM2X then LFaM2X=1; 

If PaM2X GT UaM2XDiff then RGaM2XDiff=1; 

If PaM2X LT LaM2XDiff then LFaM2XDiff=1; 

If PaM2X GT UaM2XRes then RGaM2XRes=1; 

If PaM2X LT LaM2XRes then LFaM2XRes=1; 

If PaM2X GT UaM2X_ then RGaM2X_=1; 
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If PaM2X LT LaM2X_ then LFaM2X_=1; 

 

If PbY2M2 GT UbY2M2 then RGbY2M2=1; 

If PbY2M2 LT LbY2M2 then LFbY2M2=1; 

If PbY2M2 GT UbY2M2Diff then RGbY2M2Diff=1; 

If PbY2M2 LT LbY2M2Diff then LFbY2M2Diff=1; 

If PbY2M2 GT UbY2M2Res then RGbY2M2Res=1; 

If PbY2M2 LT LbY2M2Res then LFbY2M2Res=1; 

If PbY2M2 GT UbY2M2_ then RGbY2M2_=1; 

If PbY2M2 LT LbY2M2_ then LFbY2M2_=1; 

 

If PcY2X GT UcY2X then RGcY2X=1; 

If PcY2X LT LcY2X then LFcY2X=1; 

If PcY2X GT UcY2XDiff then RGcY2XDiff=1; 

If PcY2X LT LcY2XDiff then LFcY2XDiff=1; 

If PcY2X GT UcY2XRes then RGcY2XRes=1; 

If PcY2X LT LcY2XRes then LFcY2XRes=1; 

If PcY2X GT UcY2X_ then RGcY2X_=1; 

If PcY2X LT LcY2X_ then LFcY2X_=1; 

 

CVGaM2X=1-(RGaM2X+LFaM2X); 

CVGaM2XDiff=1-(RGaM2XDiff+LFaM2XDiff); 

CVGaM2XRes=1-(RGaM2XRes+LFaM2XRes); 

CVGaM2X_=1-(RGaM2X_+LFaM2X_); 

 

CVGbY2M2=1-(RGbY2M2+LFbY2M2); 

CVGbY2M2Diff=1-(RGbY2M2Diff+LFbY2M2Diff); 

CVGbY2M2Res=1-(RGbY2M2Res+LFbY2M2Res); 

CVGbY2M2_=1-(RGbY2M2_+LFbY2M2_); 

 

CVGcY2X=1-(RGcY2X+LFcY2X); 

CVGcY2XDiff=1-(RGcY2XDiff+LFcY2XDiff); 

CVGcY2XRes=1-(RGcY2XRes+LFcY2XRes); 

CVGcY2X_=1-(RGcY2X_+LFcY2X_); 

RUN; 

 

 

/* This section computes the true variances and covariances for the 

two-wave mediation model. X is group assigment and is  

measured once, M1 is the mediator measured at Time1, M2 is the mediator 

measured at Time2, Y1 is the outcome 

measured at Time1, Y2 is the outcome measured at Time2. */ 

 

DATA TEST2; SET TEST; 

VX=0.25; 

VM1=(PaM1X**2)*VX+(&VarM1)**2; 

VM1pred=(PaM2X**2)*VX; 

CXM1=PaM1X*VX; 

CXY1=PcY1X*VX+PbY1M1*CXM1; 

CXM2=PaM2X*VX+PsM2M1*CXM1+PbM2Y1*CXY1; 

CXY2=PcY2X*VX+PSY2Y1*CXY1+PbY2M1*CXM1+PbY2M2*CXM2; 

CM1Y1=PaM1X*PcY1X*VX+PaM1X*PbY1M1*CXM1+PbY1M1*&VarM1**2; 

CM1Y1pred=PaM1X*PcY1X*VX+PaM1X*PbY1M1*CXM1+PbY1M1; 
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CM1M2=PaM1X*PSM2M1*CXM1+PaM1X*PbM2Y1*CXY1+PaM1X*PaM2X*VX+PSM2M1*&VarM1+

PbM2Y1*PbY1M1*&VarM1**2; 

CM1M2pred=PaM1X*PSM2M1*CXM1+PaM1X*PbM2Y1*CXY1+PaM1X*PaM2X*VX+PSM2M1*&Va

rM1+PbM2Y1*PbY1M1; 

CM1Y2=PaM1X*PcY2X*VX+PaM1X*PSY2Y1*CXY1+PaM1X*PbY2M1*CXM1+PaM1X*PbY2M2*C

XM2+PSY2Y1*PbY1M1*&VarM1**2+PbY2M1*&VarM1**2+PbY2M2*PSM2M1*&VarM1**2+Pb

Y2M2*PbM2Y1*PbY1M1*&VarM1**2; 

CM2Y1=PaM2X*PbY1M1*CXM1+PaM2X*PcY1X*VX+PSM2M1*PbY1M1*VM1+PSM2M1*PcY1X*C

XM1+PbM2Y1*PbY1M1*CM1Y1+PbM2Y1*PcY1X*CXY1+PbM2Y1*(&VarY1)**2; 

CM2Y1pred=PaM2X*PbY1M1*CXM1+PaM2X*PcY1X*VX+PSM2M1*PbY1M1*VM1+PSM2M1*PcY

1X*CXM1+PbM2Y1*PbY1M1*CM1Y1+PbM2Y1*PcY1X*CXY1+PbM2Y1; 

 

RUN; 

 

DATA TEST3; SET TEST2; 

VY1=(PcY1X**2)*VX+2*PcY1X*PbY1M1*CXM1+(PbY1M1**2)*VM1+(&VarY1)**2; 

VY1pred=(PcY1X**2)*VX+2*PcY1X*PbY1M1*CXM1+(PbY1M1**2)*VM1; 

VM2=(PSM2M1**2)*VM1+2*PSM2M1*PbM2Y1*CM1Y1+2*PSM2M1*PaM2X*CXM1+(PbM2Y1**

2)*VY1+2*PbM2Y1*PaM2X*CXY1+(PaM2X**2)*VX+(&VarM2)**2; 

VY2=(PcY2X**2)*VX+2*PcY2X*PSY2Y1*CXY1+2*PcY2X*PbY2M1*CXM1+2*PcY2X*PbY2M

2*CXM2+(PSY2Y1**2)*VY1+2*PSY2Y1*PbY2M1*CM1Y1+2*PSY2Y1*PbY2M2*CM2Y1+ 

    (PbY2M1**2)*VM1+2*PbY2M1*PbY2M2*CM1M2+(PbY2M2**2)*VM2+(&VarY2)**2; 

CM2Y2=PSM2M1*PcY2X*CXM1+PSM2M1*PSY2Y1*CM1Y1+PSM2M1*PbY2M1*VM1+PSM2M1*Pb

Y2M2*CM1M2+PbM2Y1*PcY2X*CXY1+PbM2Y1*PSY2Y1*VY1+PbM2Y1*PbY2M1*CM1Y1+ 

      

PbM2Y1*PbY2M2*CM2Y1+PaM2X*PcY2X*VX+PaM2X*PSY2Y1*CXY1+PaM2X*PbY2M1*CXM1+

PaM2X*PbY2M2*CXM2+PbY2M2*(&VarM2)**2; 

CY1Y2=PcY1X*PSY2Y1*CXY1+PcY1X*PbY2M1*CXM1+PcY1X*PbY2M2*CXM2+PcY1X*PcY2X

*VX+PbY1M1*PSY2Y1*CM1Y1+PbY1M1*PbY2M1*VM1+PbY2M2*PbY1M1*CM1M2+ 

      PbY1M1*PcY2X*CXM1+PbY2M2*PbM2Y1*(&VarY1)**2+PSY2Y1*(&VarY1)**2; 

VYDIFF=(VY2+VY1)-2*CY1Y2; 

VMDIFF=(VM2+VM1)-2*CM1M2; 

CXYDIFF=(PcY2X-PcY1X)*VX+PSY2Y1*CXY1+(PbY2M1-PbY1M1)*CXM1+PbY2M2*CXM2; 

CXMDIFF=(PaM2X-PaM1X)*VX+PSM2M1*CXM1+PbM2Y1*CXY1; 

CMDIFFYDIFF=(PaM2X-PaM1X)*(PcY2X-PcY1X)*VX+(PaM2X-

PaM1X)*PSY2Y1*CXY1+(PaM2X-PaM1X)*(PbY2M1-PbY1M1)*CXM1+(PaM2X-

PaM1X)*PbY2M2*CXM2+ 

             PSM2M1*(PcY2X-

PcY1X)*CXM1+PSM2M1*PSY2Y1*CM1Y1+PSM2M1*(PbY2M1-

PbY1M1)*VM1+PSM2M1*PbY2M2*CM1M2+PbM2Y1*(PcY2X-

PcY1X)*CXY1+PbM2Y1*PSY2Y1*VY1+ 

             PbM2Y1*(PbY2M1-PbY1M1)*CM1Y1+PbM2Y1*PbY2M2*CM2Y1-

PbM2Y1*(&VARY1)**2+PbY2M2*(&VARM2)**2-PSY2Y1*PbY1M1*(&VARM1)**2-

(PbY2M1-PbY1M1)*(&VARM1)**2-

PbY2M2*(PSM2M1*(&VARM1)**2+PbM2Y1*PbY1M1*(&VARM1)**2); 

CXRESM=(PaM2X*VX)+PbM2Y1*CXY1; 

CRESMRESY=PaM2X*PcY2X*VX+PaM2X*PbY2M1*CXM1+PaM2X*PbY2M2*CXM2+PbM2Y1*PcY

2X*CXY1+PbM2Y1*PbY2M1*CM1Y1+PbM2Y1*PbY2M2*CM2Y1+PbY2M2*(&VarM2)**2; 

CXRESY=PcY2X*VX+PbY2M1*CXM1+PbY2M2*CXM2; 

VRESM=PaM2X**2*VX+2*PaM2X*PbM2Y1*CXY1+PbM2Y1**2*VY1+(&VARY2**2); 

VRESY=PcY2X**2*VX+PcY2X*PbY2M1*CXM1+PcY2X*PbY2M2*CXM2+PbY2M1*PcY2X*CXM1

+PbY2M1**2*VM1+PbY2M1*PbY2M2*CM1M2+PbY2M2*PcY2X*CXM2+PbY2M2*PbY2M1*CM1M

2+PbY2M2**2*VM2+(&VarY2)**2; 
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/*USED TO CALCULATE MSE FOR M2 EQUATION AND Y2 EQUATION CORRESPONDING 

TO TWO-WAVE MODEL*/ 

 

VM2PRED=(PaM2X**2)*VX+2*PaM2X*PSM2M1*CXM1+(PSM2M1**2)*VM1; 

VY2PRED=(PcY2X**2)*VX+2*PcY2X*PSY2Y1*CXY1+2*PcY2X*PbY2M1*CXM1+2*PcY2X*P

bY2M2*CXM2+(PSY2Y1**2)*VY1pred+2*PSY2Y1*PbY2M1*CM1Y1pred+2*PSY2Y1*PbY2M

2*CM2Y1pred+ 

    (PbY2M1**2)*VM1+2*PbY2M1*PbY2M2*CM1M2pred+(PbY2M2**2)*VM2pred; 

RUN; 

 

DATA TEST4; SET TEST3; 

STDX=SQRT(VX); 

STDM1=SQRT(VM1); 

STDY1=SQRT(VY1); 

STDM2=SQRT(VM2); 

STDY2=SQRT(VY2); 

STDMDIFF=SQRT(VMDIFF); 

STDYDIFF=SQRT(VYDIFF); 

STDMres=SQRT(VRESM); 

STDYres=SQRT(VRESY); 

RUN; 

 

/*Zero-order correlations*/ 

DATA TEST5; SET TEST4; 

RXM1=CXM1/(STDX*STDM1); 

RXY1=CXY1/(STDX*STDY1); 

RXM2=CXM2/(STDX*STDM2); 

RXY2=CXY2/(STDX*STDY2); 

RM1Y1=CM1Y1/(STDM1*STDY1); 

RM1M2=CM1M2/(STDM1*STDM2); 

RM1Y2=CM1Y2/(STDM1*STDY2); 

RM2Y1=CM2Y1/(STDM2*STDY1); 

RM2Y2=CM2Y2/(STDM2*STDY2); 

RY1Y2=CY1Y2/(STDY1*STDY2); 

RXMDIFF=cxmdiff/(STDX*STDMDIFF); 

RXYDIFF=cxydiff/(STDX*STDYDIFF); 

RMYDIFF=cmdiffydiff/(STDMDIFF*STDYDIFF); 

RXMres=cxresm/(STDX*STDMres); 

RXYres=cxresy/(STDX*STDYres); 

RMYres=cresmresy/(STDMres*STDYres); 

RUN; 

/*First-Order partial correlations. Variable partialed out is at the 

beginning of the variable name*/ 

DATA TEST6; SET TEST5; 

m1RXY1=(RXY1-(RM1Y1*RXM1))/(SQRT(1-RM1Y1**2)*SQRT(1-RXM1**2)); 

xRM1Y1=(RM1Y1-(RXM1*RXY1))/(SQRT(1-RXM1**2)*SQRT(1-RXY1**2)); 

m1RXM2=(RXM2-(RXM1*RM1M2))/(SQRT(1-RXM1**2)*SQRT(1-RM1M2**2)); 

y1RXM2=(RXM2-(RXY1*RM2Y1))/(SQRT(1-RXY1**2)*SQRT(1-RM2Y1**2)); 

y1RXY2=(RXY2-(RXY1*RY1Y2))/(SQRT(1-RXY1**2)*SQRT(1-RY1Y2**2)); 

m2RXY2=(RXY2-(RXM2*RM2Y2))/(SQRT(1-RXM2**2)*SQRT(1-RM2Y2**2)); 

m1RY1M2=(RM2Y1-(RM1Y1*RM1M2))/(SQRT(1-RM1Y1**2)*SQRT(1-RM1M2**2)); 

xRY1M2=(RM2Y1-(RXY1*RXM2))/(SQRT(1-RXY1**2)*SQRT(1-RXM2**2)); 
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xRM1M2=(RM1M2-(RXM1*RXM2))/(SQRT(1-RXM1**2)*SQRT(1-RXM2**2)); 

y1RM1M2=(RM1M2-(RM1Y1*RM2Y1))/(SQRT(1-RM1Y1**2)*SQRT(1-RM2Y1**2)); 

xRM1Y2=(RM1Y2-(RXM1*RXY2))/(SQRT(1-RXM1**2)*SQRT(1-RXY2**2)); 

y1RM1Y2=(RM1Y2-(RM1Y1*RY1Y2))/(SQRT(1-RM1Y1**2)*SQRT(1-RY1Y2**2)); 

m2RM1Y2=(RM1Y2-(RM1M2*RM2Y2))/(SQRT(1-RM1M2**2)*SQRT(1-RM2Y2**2)); 

xRM2Y2=(RM2Y2-(RXM2*RXY2))/(SQRT(1-RXM2**2)*SQRT(1-RXY2**2)); 

y1RM2Y2=(RM2Y2-(RM2Y1*RY1Y2))/(SQRT(1-RM2Y1**2)*SQRT(1-RY1Y2**2)); 

m1RM2Y2=(RM2Y2-(RM1M2*RM1Y2))/(SQRT(1-RM1M2**2)*SQRT(1-RM1Y2**2)); 

xRY1Y2=(RY1Y2-(RXY1*RXY2))/(SQRT(1-RXY1**2)*SQRT(1-RXY2**2)); 

m1RY1Y2=(RY1Y2-(RM1Y1*RM1Y2))/(SQRT(1-RM1Y1**2)*SQRT(1-RM1Y2**2)); 

m2RY1Y2=(RY1Y2-(RM2Y1*RM2Y2))/(SQRT(1-RM2Y1**2)*SQRT(1-RM2Y2**2)); 

m1RXY2=(RXY2-(RXM1*RM1Y2))/(SQRT(1-RXM1**2)*SQRT(1-RM1Y2**2)); 

y1RXM1=(RXM2-(RXY1*RM1Y1))/(SQRT(1-RXY1**2)*SQRT(1-RM1Y1**2)); 

xRMYDiff=(RMYdiff-(RXMdiff*RXYdiff))/(SQRT(1-RXMdiff**2)*SQRT(1-

RXYdiff**2)); 

 

 

/*Second-order partial correlations. Variables partialed out are at the 

beginning of the variable name*/ 

 

m1y1RXM2=(m1RXM2-(m1RY1M2*m1RXY1))/(SQRT(1-m1RY1M2**2)*SQRT(1-

m1RXY1**2)); 

m1y1RXY2=(m1RXY2-(m1RXY1*m1RY1Y2))/(SQRT(1-m1RXY1**2)*SQRT(1-

m1RY1Y2**2)); 

y1m2RXY2=(y1RXY2-(y1RXM2*y1RM2Y2))/(SQRT(1-y1RXM2**2)*SQRT(1-

y1RM2Y2**2)); 

m1m2RXY2=(m1RXY2-(m1RXM2*m1RM2Y2))/(SQRT(1-m1RXM2**2)*SQRT(1-

m1RM2Y2**2)); 

xy1RM1M2=(xRM1M2-(xRM1Y1*xRY1M2))/(SQRT(1-xRM1Y1**2)*SQRT(1-

xRY1M2**2)); 

xy1RM1Y2=(xRM1Y2-(xRM1Y1*xRY1Y2))/(SQRT(1-xRM1Y1**2)*SQRT(1-

xRY1Y2**2)); 

y1m2RM1Y2=(y1RM1Y2-(y1RM1M2*y1RM2Y2))/(SQRT(1-y1RM1M2**2)*SQRT(1-

y1RM2Y2**2)); 

xm2RM1Y2=(xRM1Y2-(xRM1M2*xRM2Y2))/(SQRT(1-xRM1M2**2)*SQRT(1-

xRM2Y2**2)); 

xm1RY1M2=(xRY1M2-(xRM1Y1*xRM1M2))/(SQRT(1-xRM1Y1**2)*SQRT(1-

xRM1M2**2)); 

xy1RM2Y2=(xRM2Y2-(xRY1M2*xRY1Y2))/(SQRT(1-xRY1M2**2)*SQRT(1-

xRY1Y2**2)); 

xm1RM2Y2=(xRM2Y2-(xRM1M2*xRM1Y2))/(SQRT(1-xRM1M2**2)*SQRT(1-

xRM1Y2**2)); 

y1m1RM2Y2=(y1RM2Y2-(y1RM1M2*y1RM1Y2))/(SQRT(1-y1RM1M2**2)*SQRT(1-

y1RM1Y2**2)); 

xm1RY1Y2=(xRY1Y2-(xRM1Y1*xRM1Y2))/(SQRT(1-xRM1Y1**2)*SQRT(1-

xRM1Y2**2)); 

xm2RY1Y2=(xRY1Y2-(xRY1M2*xRM2Y2))/(SQRT(1-xRY1M2**2)*SQRT(1-

xRM2Y2**2)); 

m1m2RY1Y2=(m1RY1Y2-(m1RY1M2*m1RM2Y2))/(SQRT(1-m1RY1M2**2)*SQRT(1-

m1RM2Y2**2)); 

y1m2RXM1=(y1RXM1-(y1RXM2*y1RM1M2))/(SQRT(1-y1RXM2**2)*SQRT(1-

y1RM1M2**2)); 

m1m2RXY1=(m1RXY1-(m1RXM2*m1RY1M2))/(SQRT(1-m1RXY1**2)*SQRT(1-

m1RY1M2**2)); 
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xm2RM1Y1=(xRM1Y1-(xRM1M2*xRY1M2))/(SQRT(1-xRM1Y1**2)*SQRT(1-

xRY1M2**2)); 

/*Third-order partial correlations. Variables partialed out are at the 

beginning of the variable name*/ 

 

y1m1m2RXY2=(m1y1RXY2-(m1y1RXM2*y1m1RM2Y2))/(SQRT(1-m1y1RXM2**2)*SQRT(1-

y1m1RM2Y2**2)); 

y1xm2RM1Y2=(xy1RM1Y2-(xy1RM1M2*xy1RM2Y2))/(SQRT(1-xy1RM1M2**2)*SQRT(1-

xy1RM2Y2**2)); 

xm1m2RY1Y2=(xm1RY1Y2-(xm1RY1M2*xm1RM2Y2))/(SQRT(1-xm1RY1M2**2)*SQRT(1-

xm1RM2Y2**2)); 

xm1y1RM2Y2=(xm1RM2Y2-(xm1RY1M2*xm1RY1Y2))/(SQRT(1-xm1RY1M2**2)*SQRT(1-

xm1RY1Y2**2)); 

 

 

/*True value of bY2M2 coefficient and product of AB under the 

difference score model and residualized change score model*/ 

TrueBYMDiff=((RMYdiff-(RXMdiff*RXYdiff))/(1-

RXMdiff**2))*(stdydiff/stdmdiff); 

TrueBYMRES=((RMYRES-(RXMRES*RXYRES))/(1-RXMRES**2))*(stdyres/stdmres); 

TrueABDIFF=Pam2X*TrueBYMDiff; 

TrueABRes=Pam2X*TrueBYMRES; 

 

/*Bias of AB under the difference score and residualized change score 

model*/ 

BBDiffalt=bY2M2diff-trueBymdiff; 

BBDiffaltR=BBDiffalt/trueBymdiff; 

B2BDiffalt=BBDiffalt**2; 

LbY2M2diffalt=bY2M2Diff-1.96*SEbY2M2Diff; 

UbY2M2Diffalt=bY2M2Diff+1.96*SEbY2M2Diff; 

RGbY2M2Diffalt=0; LFbY2M2Diffalt=0; 

If trueBYMDiff GT UbY2M2Diffalt then RGbY2M2Diffalt=1; 

If trueBYMDiff LT LbY2M2Diffalt then LFbY2M2Diffalt=1; 

CVGbY2M2Diffalt=1-(RGbY2M2Diffalt+LFbY2M2Diffalt); 

BABDIFF=ABDIFF-TRUEABDiff; 

BABDIFFR=BABDIFF/TRUEABDiff; 

B2ABDIFF=BABDIFF**2; 

BABRES=ABRES-TRUEABRES; 

BABRESR=BABRES/TRUEABRES; 

B2ABRES=BABRES**2; 

RUN; 

 

/*Estimated partial correlations to test the analytic formulas*/ 

/*First-order partial correlations*/ 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR X Y1; 

PARTIAL M1; 

DATA PC1; SET CORRTEST; IF _NAME_= 'Y1'; m1CORRXY1=X; 

KEEP m1CORRXY1; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR M1 Y1; 

PARTIAL X; 

DATA PC2; SET CORRTEST; IF _NAME_= 'Y1'; xCORRM1Y1=M1; 
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KEEP xCORRM1Y1; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR X M2; 

PARTIAL M1; 

DATA PC3; SET CORRTEST; IF _NAME_= 'M2'; m1CORRXM2=X; 

KEEP m1CORRXM2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR X M2; 

PARTIAL y1; 

DATA PC4; SET CORRTEST; IF _NAME_= 'M2'; y1CORRXM2=X; 

KEEP y1CORRXM2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR X Y2; 

PARTIAL y1; 

DATA PC5; SET CORRTEST; IF _NAME_= 'Y2'; y1CORRXY2=X; 

KEEP y1CORRXY2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR X Y2; 

PARTIAL M2; 

DATA PC6; SET CORRTEST; IF _NAME_= 'Y2'; m2CORRXY2=X; 

KEEP m2CORRXY2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR y1 M2; 

PARTIAL M1; 

DATA PC7; SET CORRTEST; IF _NAME_= 'M2'; m1CORRY1M2=y1; 

KEEP m1CORRY1M2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR y1 M2; 

PARTIAL X; 

DATA PC8; SET CORRTEST; IF _NAME_= 'M2'; xCORRY1M2=y1; 

KEEP xCORRY1M2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR M1 M2; 

PARTIAL X; 

DATA PC9; SET CORRTEST; IF _NAME_= 'M2'; xCORRM1M2=M1; 

KEEP xCORRM1M2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR M1 M2; 

PARTIAL y1; 

DATA PC10; SET CORRTEST; IF _NAME_= 'M2'; y1CORRM1M2=M1; 

KEEP y1CORRM1M2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR M1 Y2; 

PARTIAL X; 

DATA PC11; SET CORRTEST; IF _NAME_= 'Y2'; xCORRM1Y2=M1; 
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KEEP xCORRM1Y2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR M1 Y2; 

PARTIAL y1; 

DATA PC12; SET CORRTEST; IF _NAME_= 'Y2'; y1CORRM1Y2=M1; 

KEEP y1CORRM1Y2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR M1 Y2; 

PARTIAL M2; 

DATA PC13; SET CORRTEST; IF _NAME_= 'Y2'; m2CORRM1Y2=M1; 

KEEP m2CORRM1Y2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR M2 Y2; 

PARTIAL X; 

DATA PC14; SET CORRTEST; IF _NAME_= 'Y2'; xCORRM2Y2=M2; 

KEEP xCORRM2Y2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR M2 Y2; 

PARTIAL y1; 

DATA PC15; SET CORRTEST; IF _NAME_= 'Y2'; y1CORRM2Y2=M2; 

KEEP y1CORRM2Y2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR M2 Y2; 

PARTIAL M1; 

DATA PC16; SET CORRTEST; IF _NAME_= 'Y2'; m1CORRM2Y2=M2; 

KEEP m1CORRM2Y2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR y1 Y2; 

PARTIAL X; 

DATA PC17; SET CORRTEST; IF _NAME_= 'Y2'; xCORRY1Y2=y1; 

KEEP xCORRY1Y2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR y1 Y2; 

PARTIAL M1; 

DATA PC18; SET CORRTEST; IF _NAME_= 'Y2'; m1CORRY1Y2=y1; 

KEEP m1CORRY1Y2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR y1 Y2; 

PARTIAL M2; 

DATA PC19; SET CORRTEST; IF _NAME_= 'Y2'; m2CORRY1Y2=y1; 

KEEP m2CORRY1Y2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR X Y2; 

PARTIAL M1; 

DATA PC20; SET CORRTEST; IF _NAME_= 'Y2'; m1CORRXY2=X; 
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KEEP m1CORRXY2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR X M1; 

PARTIAL M2; 

DATA PC21; SET CORRTEST; IF _NAME_= 'M1'; m2CORRXM1=X; 

KEEP m2CORRXM1; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR X Y1; 

PARTIAL M2; 

DATA PC22; SET CORRTEST; IF _NAME_= 'Y1'; m2CORRXY1=X; 

KEEP m2CORRXY1; 

 

 

/*Second-Order partial correlations*/ 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR X M2; 

PARTIAL M1 y1; 

DATA PC23; SET CORRTEST; IF _NAME_= 'M2'; m1y1CORRXM2=X; 

KEEP m1y1CORRXM2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR X Y2; 

PARTIAL M1 y1; 

DATA PC24; SET CORRTEST; IF _NAME_= 'Y2'; m1y1CORRXY2=X; 

KEEP m1y1CORRXY2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR X Y2; 

PARTIAL y1 M2; 

DATA PC25; SET CORRTEST; IF _NAME_= 'Y2'; y1m2CORRXY2=X; 

KEEP y1m2CORRXY2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR X Y2; 

PARTIAL M1 M2; 

DATA PC26; SET CORRTEST; IF _NAME_= 'Y2'; m1m2CORRXY2=X; 

KEEP m1m2CORRXY2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR M1 M2; 

PARTIAL X y1; 

DATA PC27; SET CORRTEST; IF _NAME_= 'M2'; xy1CORRM1M2=M1; 

KEEP xy1CORRM1M2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR M1 Y2; 

PARTIAL X y1; 

DATA PC28; SET CORRTEST; IF _NAME_= 'Y2'; xy1CORRM1Y2=M1; 

KEEP xy1CORRM1Y2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR M1 Y2; 
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PARTIAL y1 M2; 

DATA PC29; SET CORRTEST; IF _NAME_= 'Y2'; y1m2CORRM1Y2=M1; 

KEEP y1m2CORRM1Y2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR M1 Y2; 

PARTIAL X M2; 

DATA PC30; SET CORRTEST; IF _NAME_= 'Y2'; xm2CORRM1Y2=M1; 

KEEP xm2CORRM1Y2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR y1 M2; 

PARTIAL X M1; 

DATA PC31; SET CORRTEST; IF _NAME_= 'M2'; xm1CORRY1M2=y1; 

KEEP xm1CORRY1M2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR M2 Y2; 

PARTIAL X y1; 

DATA PC32; SET CORRTEST; IF _NAME_= 'Y2'; xy1CORRM2Y2=M2; 

KEEP xy1CORRM2Y2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR M2 Y2; 

PARTIAL X M1; 

DATA PC33; SET CORRTEST; IF _NAME_= 'Y2'; xm1CORRM2Y2=M2; 

KEEP xm1CORRM2Y2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR M2 Y2; 

PARTIAL Y1 M1; 

DATA PC34; SET CORRTEST; IF _NAME_= 'Y2'; y1m1CORRM2Y2=M2; 

KEEP y1m1CORRM2Y2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR y1 Y2; 

PARTIAL X M1; 

DATA PC35; SET CORRTEST; IF _NAME_= 'Y2'; xm1CORRY1Y2=y1; 

KEEP xm1CORRY1Y2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR y1 Y2; 

PARTIAL X M2; 

DATA PC36; SET CORRTEST; IF _NAME_= 'Y2'; xm2CORRY1Y2=y1; 

KEEP xm2CORRY1Y2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR y1 Y2; 

PARTIAL M1 M2; 

DATA PC37; SET CORRTEST; IF _NAME_= 'Y2';m1m2CORRY1Y2=y1; 

KEEP m1m2CORRY1Y2; 

 

/*Third-Order partial correlations*/ 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 
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VAR X Y2; 

PARTIAL y1 M1 M2; 

DATA PC38; SET CORRTEST; IF _NAME_= 'Y2';y1m1m2CORRXY2=X; 

KEEP y1m1m2CORRXY2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR M1 Y2; 

PARTIAL y1 X M2; 

DATA PC39; SET CORRTEST; IF _NAME_= 'Y2';y1xm2CORRM1Y2=M1; 

KEEP y1xm2CORRM1Y2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR Y1 Y2; 

PARTIAL X M1 M2; 

DATA PC40; SET CORRTEST; IF _NAME_= 'Y2';xm1m2CORRY1Y2=Y1; 

KEEP xm1m2CORRY1Y2; 

 

PROC CORR DATA=SIM OUTPUT=CORRTEST NOPRINT; by rep; 

VAR M2 Y2; 

PARTIAL X M1 y1; 

DATA PC41; SET CORRTEST; IF _NAME_= 'Y2';xm1y1CORRM2Y2=M2; 

KEEP xm1y1CORRM2Y2; 

RUN; 

 

DATA PARTCORR; MERGE PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 

PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 

PC25 PC26 PC27 PC28 PC29 PC30 PC31 PC32 PC33 PC34 PC35 PC36 PC37 PC38 

PC39 PC40 PC41; 

RUN; 

 

DATA ALLCORR; MERGE SCOVS SCORRS PARTCORR; 

 

/*True Standard errors*/ 

DATA TEST7; SET TEST6; 

TRUEMSEM2=VM2-VM2PRED; 

TRUESEA=sqrt((TRUEMSEM2/(NOBS-1))*((1/VX)/(1-m1RXM2**2))); 

TRUEMSEY2=VY2-VY2PRED; 

TRUESEB=SQRT((TRUEMSEY2)/((NOBS-1))*((1/VM2)/(1-xm1y1RM2Y2**2))); 

TRUESEC=SQRT((TRUEMSEY2)/((NOBS-1))*((1/VX)/(1-y1m1m2RXY2**2))); 

TRUESEAB=SQRT((PaM2X**2)*(TRUESEB**2)+(PbY2M2**2)*(TRUESEA**2)); 

*The following computes the Bias, Bias squared, and relative Bias for 

the standard errors; 

BSEA=SEaM2X-TrueSEA; 

BSEAR=BSEA/TrueSEA; 

B2SEA=BSEA**2; 

BSEB=SEbY2M2-TrueSEB; 

BSEBR=BSEB/TrueSEB; 

B2SEB=BSEB**2; 

BSEC=SEcY2X-TrueSEC; 

BSECR=BSEC/TrueSEC; 

B2SEC=BSEC**2; 

BSEADIFF=SEaM2Xdiff-TrueSEA; 

BSEADIFFR=BSEADIFF/TrueSEA; 

B2SEADIFF=BSEADIFF**2; 
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BSEBDIFF=SEbY2M2Diff-TrueSEB; 

BSEBDIFFR=BSEBDIFF/TrueSEB; 

B2SEBDIFF=BSEBDIFF**2; 

BSECDIFF=SEcY2XDIFF-TrueSEC; 

BSECDIFFR=BSECDIFF/TrueSEC; 

B2SECDIFF=BSECDIFF**2; 

BSEARES=SEaM2XRES-TrueSEA; 

BSEARESR=BSEARES/TrueSEA; 

B2SEARES=BSEARES**2; 

BSEBRES=SEbY2M2RES-TrueSEB; 

BSEBRESR=BSEBRES/TrueSEB; 

B2SEBRES=BSEBRES**2; 

BSECRES=SEcY2XRES-TrueSEC; 

BSECRESR=BSECRES/TrueSEC; 

B2SECRES=BSECRES**2; 

BSEA_=SEaM2X_-TrueSEA; 

BSEA_R=BSEA_/TrueSEA; 

B2SEA_=BSEA_**2; 

BSEB_=SEbY2M2_-TrueSEB; 

BSEB_R=BSEB_/TrueSEB; 

B2SEB_=BSEB_**2; 

BSEC_=SEcY2X_-TrueSEC; 

BSEC_R=BSEC_/TrueSEC; 

B2SEC_=BSEC_**2; 

BSEAB=SEAB-TRUESEAB; 

BSEABR=BSEAB/TRUESEAB; 

B2SEAB=BSEAB**2; 

BSEABDIFF=SEABDIFF-TRUESEAB; 

BSEABDIFFR=BSEABDIFF/TRUESEAB; 

B2SEABDIFF=BSEABDIFF**2; 

BSEABRES=SEABRES-TRUESEAB; 

BSEABRESR=BSEABRES/TRUESEAB; 

B2SEABRES=BSEABRES**2; 

BSEAB_=SEAB_-TRUESEAB; 

BSEAB_R=BSEAB_/TRUESEAB; 

B2SEAB_=BSEAB_**2; 

 

RUN; 

 

DATA ALLDAT; MERGE TEST7 ALLCORR; 

run; 

 

DATA DATAOUT.&FILE.outalt; SET ALLDAT; 

RUN; 

%MEND; 

run; 

 

PROC DATASETS LIB=WORK NOLIST; 

%ANALYZE(nsim=1000,nobs=50,BMX=0,BYX=0,BYM=0, 

aM1X=0, sm2m1=.981,am2x=0,bm2y1=0, by1m1=.578, 

cy1x=0, cy2x=0,sy2y1=.686, by2m1=0,by2m2=0,  

varx=1,varm1=1,varm2=1,vary1=1,vary2=1, 

RELM1=1, RELM2=1, RELY1=1, RELY2=1, 

FILE=n50cond1,TYPE='CCC',ERROR=1); run; quit; 
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APPENDIX G 

SAS MACRO CALLING PRODCLIN TO ESTIMATE CONFIDENCE INTERVALS 

FOR THE MEDIATED EFFECT FOR THE ANCOVA MODEL 
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*Using PRODCLIN to estimate asymmetric confidence intervals for the 

mediated effect for ANCOVA; 

FILENAME NULLOG DUMMY 'C:\NULL'; 

PROC PRINTTO LOG=NULLOG; 

 

libname DATAOUT "D:\Valente Masters Sim\DATAOUT\"; 

libname PRODOUT "D:\Valente Masters Sim\PRODOUT\"; 

 

 

*proc printto log=dum; 

*options nosource nonotes; 

 

%MACRO CONFLIM(FILE); 

 

PROC DATASETS LIBRARY=WORK KILL NOLIST; RUN; 

DATA PRODCLIN; set DATAOUT.&file; 

run; 

 

data test; length ii $8; set PRODCLIN; 

i+1; 

ii=left(put(i, 8.)); 

call symput ('b'||ii, by2m2); 

call symput ('a'||ii, am2x); 

call symput ('seb'||ii,seby2m2); 

call symput ('sea'||ii,seam2x); 

call symput ('nobs', _n_); 

run; 

 

 

 

 

options noxwait ; 

*Designate location of prdclinforSAS.sas and prodclinsas2.exe; 

 

 

Data summary; 

 

%macro prodclin(a, sea, b, seb, rho, alpha);  

 

data data1;  

*Change file address to match the location of the file prodclin.exe; 

file "D:\Valente Masters Sim\raw.txt"; 

a=&a; sea=&sea; b=&b; seb=&seb; rho=&rho; alpha=&alpha; 

put a @; put sea @; put b @; put seb @; put rho @; put alpha @; 

run; 

 

*Change file address to match the location of the file prodclin.exe;  

X cd    D:\Valente Masters Sim\; 

*Change file address to match the location of the file prodclin.exe; 

X call "D:\Valente Masters Sim\ProdClin2_Sas.exe"; 

 

 

data data2; 

do; 
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rc=system("D:\Valente Masters Sim\ProdClin2_Sas.exe"); 

end; 

run; 

 

data data2;  

infile "D:\Valente Masters Sim\critval.txt"; 

input lowz highz; 

a=&a; sea=&sea; b=&b; seb=&seb; rho=&rho; alpha=&alpha; 

r=rho; 

da=a/sea; 

db=b/seb; 

sedadb=sqrt(da*da+db*db+1); 

dadb=da*db; 

ab=a*b; 

sobelse=sqrt(a*a*seb*seb+b*b*sea*sea); 

se_ab=sobelse; 

MVDSE = sqrt(a*a*seb*seb+b*b*sea*sea); 

prodlow=lowz; 

produp=highz; 

nl=probit(alpha/2); 

normlow=ab+nl*se_ab; 

normup=ab-nl*se_ab; 

TesT_SE = sqrt(A*a*seb*seb+b*b*sea*sea+2*a*b*r*sea*seb-

(r*sea*seb)*(r*sea*seb)+sea*sea*seb*seb); 

run; 

 

*proc print data=data2 noobs;  

       *var a sea b seb ab rho alpha prodlow produp Test_SE; 

       *run;  

 

data summary; set summary data2; 

keep a b seb sea ab prodlow produp normlow normup; 

run; 

 

%mend prodclin; 

 

%macro prodclinbootstrap; 

 

%do i=1 %to &nobs; 

%prodclin (a=&&a&i, sea=&&sea&i, b=&&b&i, seb=&&seb&i, rho=0, alpha = 

.05); 

%end; 

 

%mend prodclinbootstrap; 

%prodclinbootstrap; 

run; 

 

data prodout.&file.prodANCOVA; set summary; 

if _n_=1 then delete; 

 

run; 

 

%mend CONFLIM; 

%conflim(FILE=n50cond1out); 



   
 

163 

 

APPENDIX H 

SAS MACRO CREATING PERCENTILE BOOTSTRAPPED CONFIDENCE 

INTERVALS FOR ALL MODELS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

164 

 

*Creating Percentile Bootstrapped CIs for the mediated effect for all 

models; 

libname DATAGEN "C:\Users\psyripl\Desktop\"; 

libname DATABOOT "D:\Valente Masters Sim\DATABOOT\"; 

FILENAME NULLOG DUMMY 'C:\NULL'; 

PROC PRINTTO LOG=NULLOG; run; 

%Macro Bootstrap (nsim,nobs,BMX,BYX,BYM, 

aM1X, sm2m1,am2x,bm2y1,by1m1, 

cy1x,cy2x,sy2y1, by2m1,by2m2,  

varx,varm1,varm2,vary1,vary2, 

RELM1, RELM2, RELY1, RELY2, 

FILE,TYPE,ERROR); 

 

DATA SIM; SET DATAGEN.&file; 

J=&nobs; 

DO J=0 to totaln by &nobs; 

IF 1+J<=I<=&nobs+J then Key=1+(J/&nobs); 

end; 

keep I X M1 M2 Y1 Y2 MDIFF YDIFF Key file; 

run; 

 

*Resampling; 

%let nboot=1000; 

proc surveyselect data=SIM noprint out=outtemp method=urs 

sampsize=&nobs rep=&nboot outhits; 

by Key; 

run; 

quit; 

 

/***************************************************************/ 

/*                                                             */ 

/*                        PATH MODEL                           */ 

/*                                                             */ 

/***************************************************************/ 

PROC CALIS DATA=outtemp METHOD=ML NORPINT PLC OUTEST=OUT1 outstat=out2; 

by key replicate; 

LINEQS 

M2=sm2m1_ M1 + am2x_ X + E2, 

y2=cy2x_ X +  sy2y1_ y1 + by2m1_ M1 + by2m2_ M2 + E3;  

 

Cov 

X M1, 

X Y1, 

M1 Y1; 

 

STD 

   E2 = EE2, 

   E3 = EE3; 

 

RUN; 

*SAVING THE PARAMETER VALUES OF FROM THE PATH MODEL OUTPUT. PARAMETERS 

ARE DENOTED WITH _ AT THE END OF THE NAME; 

DATA CALPARMS; SET OUT1; 

IF _TYPE_="PARMS";  
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KEEP aM2X_ bY2M2_ key replicate; 

run; 

 

/***************************************************************/ 

/*                                                             */ 

/*                      CHANGE SCORES                          */ 

/*                                                             */ 

/***************************************************************/ 

/*ESTIMATING (DIFFM=X Y1) REGRESSION AND SAVING THE VALUES OF THE 

COEFFICIENTS AND THEIR STANDARD ERRORS*/ 

PROC REG DATA=outtemp OUTEST=DiffFILE1 COVOUT noprint; by key 

replicate; MODEL Mdiff= X/; 

DATA DiffA; SET DiffFILE1; IF _TYPE_='PARMS'; aM2XDiff=X; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X; 

KEEP aM2XDiff key replicate; 

run; 

 

 

*Estimating the (DiffY=X DiffM) REGRESSION AND SAVING THE VALUES OF THE 

COEFFICIENTS AND THEIR STANDARD ERRORS;  

PROC REG DATA=outtemp OUTEST=DiffFILE2 COVOUT noprint; by key 

replicate; MODEL Ydiff=X Mdiff/; 

DATA DiffG; SET DiffFILE2;IF _TYPE_='PARMS'; bY2M2Diff=Mdiff; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X MDiff; 

KEEP bY2M2Diff key replicate; 

run; 

 

DATA DiffMODELS; MERGE Diffa Diffg; 

run; 

/***************************************************************/ 

/*                                                             */ 

/*                RESIDUALIZED CHANGE SCORES                   */ 

/*                                                             */ 

/***************************************************************/ 

/*MODEL COMPUTING AND SAVING RESIDUALIZED DIFFERENCE SCORE OF M1 AND 

M2*/ 

PROC REG DATA=outtemp noprint; by key replicate; MODEL M2=M1/; 

output out=resid1 r=residm; 

run; 

 

/*MODEL COMPUTING AND SAVING RESIDUALIZED DIFFERENCE SCORE OF Y1 AND 

Y2*/ 

PROC REG DATA=outtemp noprint; by key replicate; MODEL Y2=y1/; 

output out=resid2 r=residy; 

run; 

 

data resid1; set resid1; 

J=_n_; 

run; 

 

data resid2; set resid2; 

J=_n_; 

run; 
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data rchange; merge resid1 resid2; by J; 

run; 

 

 

/*ESTIMATING (RESIDM2=X Y1) REGRESSION AND SAVING THE VALUES OF THE 

COEFFICIENTS AND THEIR STANDARD ERRORS*/ 

PROC REG DATA=rchange OUTEST=RFILE1 COVOUT noprint; by key replicate; 

MODEL residm= X/; 

DATA RA; SET RFILE1; IF _TYPE_='PARMS'; aM2XRES=X; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X; 

KEEP aM2XRES key replicate; 

run; 

 

 

*Estimating the (RESIDY2=X RESIDM2) REGRESSION AND SAVING THE VALUES OF 

THE COEFFICIENTS AND THEIR STANDARD ERRORS;  

PROC REG DATA=rchange OUTEST=RFILE2 COVOUT noprint; by key replicate; 

MODEL RESIDY=X RESIDM/; 

DATA RG; SET RFILE2;IF _TYPE_='PARMS'; bY2M2RES=RESIDM; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X RESIDM; 

KEEP bY2M2RES key replicate; 

run; 

 

DATA RESMODELS; MERGE RA RG; 

/***************************************************************/ 

/*                                                             */ 

/*                LINEAR REGRESSION (ANCOVA)                   */ 

/*                                                             */ 

/***************************************************************/ 

 

 

*Estimating the (M2=M1 X) regression and saving the value of sM2M1, 

aM2X, and their standard errors;  

PROC REG DATA=outtemp OUTEST=FILE2 COVOUT noprint; by key replicate; 

MODEL M2=M1 X/; 

DATA F; SET FILE2; IF _TYPE_='PARMS'; aM2X=X; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X M1 M2; 

KEEP aM2X key replicate; 

run; 

 

 

 

*Estimating the (Y2=X Y1 M1 M2) regression and saving the value of 

sM2M1, aM2X, bM2Y1, and their standard errors;  

PROC REG DATA=outtemp OUTEST=FILE4 COVOUT noprint; by key replicate; 

MODEL Y2=X Y1 M1 M2/; 

DATA T; SET FILE4;IF _TYPE_='PARMS'; bY2M2=M2; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y1 M1 M2; 

KEEP bY2M2 key replicate; 

run; 

 

DATA MODEL4; MERGE F T; 
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/***************************************************************/ 

/*                                                             */ 

/*                CROSS SECTIONAL MEDIATOR MODEL               */ 

/*                                                             */ 

/***************************************************************/ 

 

*Estimating the (M2=X) regression and saving the value of a and its 

standard error;  

PROC REG DATA=outtemp OUTEST=FILE5 COVOUT noprint; by key replicate; 

MODEL M2= X/; 

DATA V; SET FILE5; IF _TYPE_='PARMS'; a=X; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X M2; 

KEEP a key replicate; 

run; 

 

*Estimating the (Y2=X M2) regression and saving the value of c b and 

their standard errors;  

PROC REG DATA=outtemp OUTEST=FILE6 COVOUT noprint; by key replicate; 

MODEL Y2=X M2/; 

DATA Z; SET FILE6;IF _TYPE_='PARMS'; b=M2; 

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y2 M2; 

KEEP b key replicate; 

run; 

 

DATA MODEL6; MERGE V Z; 

 

 

 

*THIS MERGES ALL THE PREVIOUS REGRESSION, CHANGE SCORE, RES CHANGE, AND 

PATH MODEL OUTPUT; 

DATA ALL; MERGE  MODEL4 MODEL6 DIFFMODELS RESMODELS CALPARMS; 

run; 

DATA ALL; set ALL; 

ABancovaboot=am2x*by2m2; 

ABdiffboot=am2xdiff*by2m2diff; 

ABresboot=am2xres*by2m2res; 

ABpathboot=am2x_*by2m2_; 

ABboot=a*b; 

run; 

  

 

proc sort data=all; by key ABancovaboot; run; 

data ancova; set all; 

boot+1; 

by key; 

if first.key then boot = 1; 

run; 

 

data ancovaout; set ancova; 

if boot = 25 then ancovaLCL=ABancovaboot; 

if boot = 975 then ancovaUCL=ABancovaboot; 

keep key ancovaLCL ancovaUCL; 
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run;quit; 

 

proc sort data=all; by key ABdiffboot; run; 

data diff; set all; 

boot+1; 

by key; 

if first.key then boot = 1; 

run; 

 

data diffout; set diff; 

if boot = 25 then diffLCL=ABdiffboot; 

if boot = 975 then diffUCL=ABdiffboot; 

keep key diffLCL diffUCL; 

run;quit; 

 

proc sort data=all; by key ABresboot; run; 

data res; set all; 

boot+1; 

by key; 

if first.key then boot = 1; 

run; 

 

data resout; set res; 

if boot = 25 then resLCL=ABresboot; 

if boot = 975 then resUCL=ABresboot; 

keep key resLCL resUCL; 

run;quit; 

 

proc sort data=all; by key ABpathboot; run; 

data path; set all; 

boot+1; 

by key; 

if first.key then boot = 1; 

run; 

 

data pathout; set path; 

if boot = 25 then pathLCL=ABpathboot; 

if boot = 975 then pathUCL=ABpathboot; 

keep key pathLCL pathUCL; 

run;quit; 

 

proc sort data=all; by key ABboot; run; 

data cross; set all; 

boot+1; 

by key; 

if first.key then boot = 1; 

run; 

 

data crossout; set cross; 

if boot = 25 then crossLCL=ABboot; 

if boot = 975 then crossUCL=ABboot; 

keep key crossLCL crossUCL; 

run;quit; 
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DATA prodboot; merge ancovaout diffout resout pathout crossout; by key; 

run; 

 

data UCL; set prodboot; 

keep key ancovaUCL diffUCL resUCL pathUCL crossUCL; 

if ancovaUCL=. then delete; 

if diffUCL=. then delete; 

if resUCL=. then delete; 

if pathUCL=. then delete; 

if crossUCL=. then delete; 

run; 

 

data LCL; set prodboot; 

keep key ancovaLCL diffLCL resLCL pathLCL crossLCL; 

if ancovaLCL=. then delete; 

if diffLCL=. then delete; 

if resLCL=. then delete; 

if pathLCL=. then delete; 

if crossLCL=. then delete; 

run; 

 

DATA DATABOOT.&file.boot; merge UCL LCL; by key; 

run; 

 

 

 

%mend bootstrap; 

run; 

quit; 

 

PROC DATASETS LIB=WORK NOLIST; 

*Effect size test condition for stability of M and Y at .7 and pretest 

corr at .5 and M1 on Y2 at 0; 

%Bootstrap(nsim=1000,nobs=50,BMX=0,BYX=0,BYM=0, 

aM1X=0, sm2m1=.981,am2x=0,bm2y1=0, by1m1=.578, 

cy1x=0, cy2x=0,sy2y1=.686, by2m1=0,by2m2=0,  

varx=1,varm1=1,varm2=1,vary1=1,vary2=1, 

RELM1=1, RELM2=1, RELY1=1, RELY2=1, 

FILE=n50cond1,TYPE='CCC',ERROR=1); 
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  APPENDIX I 

SAS MACRO FOR SUMMARIZING RESULTS ACROSS ALL MODELS FOR USE 

IN ANOVA FOR RESULTS SECTION 
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*Summarizing Bootstrapped results across all models for use in ANOVA 

for results section; 

FILENAME NULLOG DUMMY 'C:\NULL'; 

PROC PRINTTO LOG=NULLOG; 

libname DATAOUT "F:\ASU\Sims\Two-wave model\Valente Masters 

Sim\DATAOUT\"; 

libname DATABOOT "F:\ASU\Sims\Two-wave model\Valente Masters 

Sim\DATABOOT\"; 

libname BOOT "F:\ASU\Sims\Two-wave model\Valente Masters Sim\BOOT\"; 

 

DATA SUMMARY; 

%MACRO CONFLIM(FILE1, FILE2, COND, NOBS); 

 

DATA TRUE; set DATAOUT.&file2; 

true=Pam2x*Pby2m2; 

cond=&cond; 

nobs=&nobs; 

keep cond nobs true trueabdiff trueabres; 

run; 

 

 

DATA BOOT; set DATABOOT.&file1; 

run; 

 

DATA boot; merge boot true; 

run; 

 

data boot; set boot; 

if true ge ancovaucl then numancovaup=1; else numancovaup=0; 

if true le ancovalcl then numancovalow=1; else numancovalow=0; 

if 0 ge ancovaucl then powancovaup=1; else powancovaup=0; 

if 0 le ancovalcl then powancovalow=1; else powancovalow=0; 

powbootancova=powancovalow+powancovaup; 

SUMbootancova=numancovaup+numancovalow; 

cvgbootancova=1-(numancovaup+numancovalow); 

 

if true ge pathucl then numpathup=1; else numpathup=0; 

if true le pathlcl then numpathlow=1; else numpathlow=0; 

if 0 ge pathucl then powpathup=1; else powpathup=0; 

if 0 le pathlcl then powpathlow=1; else powpathlow=0; 

powbootpath=powpathlow+powpathup; 

SUMbootpath=numpathup+numpathlow; 

cvgbootpath=1-(numpathup+numpathlow); 

 

if trueabdiff ge diffucl then numdiffup=1; else numdiffup=0; 

if trueabdiff le difflcl then numdifflow=1; else numdifflow=0; 

if 0 ge diffucl then powdiffup=1; else powdiffup=0; 

if 0 le difflcl then powdifflow=1; else powdifflow=0; 

powbootdiff=powdifflow+powdiffup; 

SUMbootdiff=numdiffup+numdifflow; 

cvgbootdiff=1-(numdiffup+numdifflow); 

 

if trueabres ge resucl then numresup=1; else numresup=0; 

if trueabres le reslcl then numreslow=1; else numreslow=0; 
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if 0 ge resucl then powresup=1; else powresup=0; 

if 0 le reslcl then powreslow=1; else powreslow=0; 

powbootres=powreslow+powresup; 

SUMbootres=numresup+numreslow; 

cvgbootres=1-(numresup+numreslow); 

 

if true ge crossucl then numcrossup=1; else numcrossup=0; 

if true le crosslcl then numcrosslow=1; else numcrosslow=0; 

if 0 ge crossucl then powcrossup=1; else powcrossup=0; 

if 0 le crosslcl then powcrosslow=1; else powcrosslow=0; 

powbootcross=powcrosslow+powcrossup; 

SUMbootcross=numcrossup+numcrosslow; 

cvgbootcross=1-(numcrossup+numcrosslow); 

 

run; 

 

DATA SUMMARY; SET SUMMARY boot; 

run; 

 

%mend CONFLIM; 

run; 

PROC DATASETS LIB=WORK NOLIST; 

%Macro loop; 

%do i=1 %to 208; 

%conflim(FILE1=n50cond&i.boot,FILE2=n50cond&i.out,COND=&i,NOBS=50); 

%end; 

 

%do i=1 %to 208; 

%conflim(FILE1=n100cond&i.boot,FILE2=n100cond&i.out,COND=&i,NOBS=100); 

%end; 

 

%do i=1 %to 208; 

%conflim(FILE1=n200cond&i.boot,FILE2=n200cond&i.out,COND=&i,NOBS=200); 

%end; 

 

%do i=1 %to 208; 

%conflim(FILE1=n500cond&i.boot,FILE2=n500cond&i.out,COND=&i,NOBS=500); 

%end; 

 

%mend loop; 

%loop; 

run; 

 

 

DATA boot.anovasummary; Set SUMMARY; 

if _n_=1 then delete; 

if cond=1 then do; true=0; direct=0; Y2lag=0; M2lag=0; PretestCorr=.5; 

Stability=.7; end; 
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APPENDIX J 

SAS MACRO FOR SUMMARIZING PRODCLIN RESULTS FOR USE IN ANOVA 

FOR RESULTS SECTION 
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*Summarizing PRODCLIN results for use in ANOVA for results section; 

FILENAME NULLOG DUMMY 'C:\NULL'; 

PROC PRINTTO LOG=NULLOG; 

libname DATAOUT "C:\Users\mvalent4\Desktop\DATAOUT\"; 

libname PRODOUT "C:\Users\mvalent4\Desktop\PRODOUT\"; 

libname PRODCL "C:\Users\mvalent4\Desktop\PRODCL\"; 

 

 

*proc printto log=dum; 

*options nosource nonotes; 

PROC DATASETS LIBRARY=WORK KILL NOLIST; RUN; 

DATA SUMMARY; 

%MACRO CONFLIM(FILE1,FILE2,COND,NOBS,METHOD); 

 

 

DATA TRUE; set DATAOUT.&file2; 

if &method=1 then do; true=Pam2x*Pby2m2; end; 

if &method=2 then do; true=Pam2x*Pby2m2; end; 

if &method=3 then do; true=trueabdiff; end; 

if &method=4 then do; true=trueabres; end; 

if &method=5 then do;true=Pam2x*Pby2m2; end;  

cond=&cond; 

i=&i; 

nobs=&nobs; 

keep true cond nobs; 

run; 

 

DATA PRODBOOT; set prodout.&file1; 

run; 

 

DATA prodboot; merge prodboot true; 

run; 

 

data prodboot; set prodboot; 

if true ge normup then numnormup=1; else numnormup=0; 

if true le normlow then numnormlow=1; else numnormlow=0; 

if true ge produp then numprodup=1; else numprodup=0; 

if true le prodlow then numprodlow=1; else numprodlow=0; 

if 0 ge normup then pownormup=1; else pownormup=0; 

if 0 le normlow then pownormlow=1; else pownormlow=0; 

pownorm=pownormlow+pownormup; 

if 0 ge produp then powprodup=1; else powprodup=0; 

if 0 le prodlow then powprodlow=1; else powprodlow=0; 

powprod=powprodlow+powprodup; 

SUMnorm=numnormup+numnormlow; 

SUMprod=numprodup+numprodlow; 

cvgnorm=1-(numnormup+numnormlow); 

cvgprod=1-(numprodup+numprodlow); 

run; 
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/* 

proc means data=prodboot N mean median std min max sum noprint; 

var normlow normup prodlow produp numnormlow numnormup numprodlow 

numprodup  

pownormlow pownormup pownorm powprodlow powprodup powprod cvgnorm 

cvgprod SUMnorm SUMprod; 

output out=CLs 

mean=normlow normup prodlow produp numnormlow numnormup numprodlow 

numprodup  

pownormlow pownormup pownorm powprodlow powprodup powprod cvgnorm 

cvgprod SUMnorm SUMprod; 

run; 

*/ 

 

DATA SUMMARY; SET SUMMARY PRODBOOT; 

drop a sea b seb ab true;  

run; 

 

%mend CONFLIM; 

run; 

PROC DATASETS LIB=WORK NOLIST; 

%Macro loop; 

 

 

%do i=1 %to 208; 

%conflim(FILE1=n50cond&i.outprodancova,FILE2=n50cond&i.out,COND=&i,nobs

=50,method=1); 

%end; 

 

%do i=1 %to 208; 

%conflim(FILE1=n100cond&i.outprodancova,FILE2=n100cond&i.out,COND=&i,no

bs=100,method=1); 

%end; 

 

%do i=1 %to 208; 

%conflim(FILE1=n200cond&i.outprodancova,FILE2=n200cond&i.out,COND=&i,no

bs=200,method=1); 

%end; 

 

%do i=1 %to 208; 

%conflim(FILE1=n500cond&i.outprodancova,FILE2=n500cond&i.out,COND=&i,no

bs=500,method=1); 

%end; 

 

DATA SUMMARYANCOVA; SET SUMMARY; 

merger=1; 

if _n_=1 then delete; 

pownormancova=pownorm; 

powprodancova=powprod; 

cvgnormancova=cvgnorm; 

cvgprodancova=cvgprod; 

run; 
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DATA SUMMARY; SET SUMMARY; 

merger=1; 

if merger=1 then delete; 

run; 

 

 

%do i=1 %to 208; 

%conflim(FILE1=n50cond&i.outprodpath,FILE2=n50cond&i.out,COND=&i,nobs=5

0,method=2); 

%end; 

 

%do i=1 %to 208; 

%conflim(FILE1=n100cond&i.outprodpath,FILE2=n100cond&i.out,COND=&i,nobs

=100,method=2); 

%end; 

 

%do i=1 %to 208; 

%conflim(FILE1=n200cond&i.outprodpath,FILE2=n200cond&i.out,COND=&i,nobs

=200,method=2); 

%end; 

 

%do i=1 %to 208; 

%conflim(FILE1=n500cond&i.outprodpath,FILE2=n500cond&i.out,COND=&i,nobs

=500,method=2); 

%end; 

 

 

DATA SUMMARYPATH; SET SUMMARY; 

merger=1; 

pownormpath=pownorm; 

powprodpath=powprod; 

cvgnormpath=cvgnorm; 

cvgprodpath=cvgprod; 

run; 

 

DATA SUMMARY; SET SUMMARY; 

merger=1; 

if merger=1 then delete; 

run; 

 

 

%do i=1 %to 208; 

%conflim(FILE1=n50cond&i.outproddiff,FILE2=n50cond&i.out,COND=&i,nobs=5

0,method=3); 

%end; 

 

%do i=1 %to 208; 

%conflim(FILE1=n100cond&i.outproddiff,FILE2=n100cond&i.out,COND=&i,nobs

=100,method=3); 

%end; 

 

%do i=1 %to 208; 

%conflim(FILE1=n200cond&i.outproddiff,FILE2=n200cond&i.out,COND=&i,nobs

=200,method=3); 
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%end; 

 

%do i=1 %to 208; 

%conflim(FILE1=n500cond&i.outproddiff,FILE2=n500cond&i.out,COND=&i,nobs

=500,method=3); 

%end; 

 

 

DATA SUMMARYDIFF; SET SUMMARY; 

merger=1; 

pownormdiff=pownorm; 

powproddiff=powprod; 

cvgnormdiff=cvgnorm; 

cvgproddiff=cvgprod; 

run; 

 

DATA SUMMARY; SET SUMMARY; 

merger=1; 

if merger=1 then delete; 

run; 

 

%do i=1 %to 208; 

%conflim(FILE1=n50cond&i.outprodres,FILE2=n50cond&i.out,COND=&i,nobs=50

,method=4); 

%end; 

 

%do i=1 %to 208; 

%conflim(FILE1=n100cond&i.outprodres,FILE2=n100cond&i.out,COND=&i,nobs=

100,method=4); 

%end; 

 

%do i=1 %to 208; 

%conflim(FILE1=n200cond&i.outprodres,FILE2=n200cond&i.out,COND=&i,nobs=

200,method=4); 

%end; 

 

%do i=1 %to 208; 

%conflim(FILE1=n500cond&i.outprodres,FILE2=n500cond&i.out,COND=&i,nobs=

500,method=4); 

%end; 

 

 

DATA SUMMARYRES; SET SUMMARY; 

merger=1; 

pownormres=pownorm; 

powprodres=powprod; 

cvgnormres=cvgnorm; 

cvgprodres=cvgprod; 

run; 

 

DATA SUMMARY; SET SUMMARY; 

merger=1; 

if merger=1 then delete; 

run; 
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%do i=1 %to 208; 

%conflim(FILE1=n50cond&i.outprodcross,FILE2=n50cond&i.out,COND=&i,nobs=

50,method=5); 

%end; 

 

%do i=1 %to 208; 

%conflim(FILE1=n100cond&i.outprodcross,FILE2=n100cond&i.out,COND=&i,nob

s=100,method=5); 

%end; 

 

%do i=1 %to 208; 

%conflim(FILE1=n200cond&i.outprodcross,FILE2=n200cond&i.out,COND=&i,nob

s=200,method=5); 

%end; 

 

%do i=1 %to 208; 

%conflim(FILE1=n500cond&i.outprodcross,FILE2=n500cond&i.out,COND=&i,nob

s=500,method=5); 

%end; 

 

 

DATA SUMMARYCROSS; SET SUMMARY; 

merger=1; 

pownormcross=pownorm; 

powprodcross=powprod; 

cvgnormcross=cvgnorm; 

cvgprodcross=cvgprod; 

run; 

 

DATA SUMMARY; SET SUMMARY; 

merger=1; 

if merger=1 then delete; 

run; 

 

%mend loop; 

%loop; 

run; 

QUIT; 

 

DATA PRODCL.ANOVASUMMARY; merge SUMMARYANCOVA SUMMARYPATH SUMMARYDIFF 

SUMMARYRES SUMMARYCROSS; BY MERGER; 

if cond=1 then do; true=0; direct=0; Y2lag=0; M2lag=0; PretestCorr=.5; 

Stability=.7; end; 
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APPENDIX K 

SAS MACRO FOR SUMMARIZING RESULTS BY AVERAGING ACROSS 

REPLICATIONS FOR USE IN TABLES FOR RESULTS SECTION 
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*Summarizing results by averaging across replications for use in tables 

for results section; 

libname DATAOUT "C:\Users\mvalent4\Desktop\DATAOUT"; 

libname DATASUM "C:\Users\mvalent4\Desktop\DATASUMMARY"; 

 

FILENAME NULLOG DUMMY 'C:\NULL'; 

PROC PRINTTO LOG=NULLOG; 

 

DATA SUMMARY;  

%MACRO SUMMARIZE (nsim,nobs,BMX,BYX,BYM, 

aM1X,sm2m1,am2x,bm2y1, 

by1m1,cy1x,cy2x,sy2y1, 

by2m1,by2m2,varx,varm1, 

varm2,vary1,vary2,RELM1,  

RELM2, RELY1, RELY2,file, 

TYPE,ERROR,COND); 

 

Data sim; set DATAOUT.&file.out;  

merger=1; 

cond=&cond; 

nobs=&nobs; 

keep BAB BAB_ BABDIFF BABRES BABX BABR BAB_R BABDIFFR BABRESR BABXR AB 

AB_ ABDIFF ABRES ABX cond nobs merger; 

run; 

 

Proc means data=sim noprint;  

var BAB BAB_ BABDIFF BABRES BABX BABR BAB_R BABDIFFR BABRESR BABXR AB 

AB_ ABDIFF ABRES ABX; 

output out=bias 

mean = BAB BAB_ BABDIFF BABRES BABX BABR BAB_R BABDIFFR BABRESR BABXR 

AB AB_ ABDIFF ABRES ABX 

STD = STDBAB STDBAB_ STDBABDIFF STDBABRES STDBABX STDBABR STDBAB_R 

STDBABDIFFR STDBABRESR STDBABXR 

STDAB STDAB_ STDABDIFF STDABRES STDABX; 

run; 

 

Data bias; set bias; 

merger=1; 

keep STDAB STDAB_ STDABdiff STDABRes STDABX merger; 

run; 

 

data sim2; merge sim bias; by merger; 

SAB=BAB/STDAB; 

SAB_=BAB_/STDAB_; 

SABDIFF=BABDIFF/STDABdiff; 

SABRES=BABRES/STDABRES; 

SABX=BABX/STDABX; 

run; 

 

 

Data SUMMARY; SET SUMMARY sim2; 

run; 
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%MEND; 

run; 

 

PROC DATASETS LIB=WORK NOLIST; 

*Effect size test condition for stability of M and Y at .7 and pretest 

corr at .5 and M1 on Y2 at 0; 

%SUMMARIZE(nsim=1000,nobs=50,BMX=0,BYX=0,BYM=0, 

aM1X=0, sm2m1=.981,am2x=0,bm2y1=0, by1m1=.578, 

cy1x=0, cy2x=0,sy2y1=.686, by2m1=0,by2m2=0,  

varx=1,varm1=1,varm2=1,vary1=1,vary2=1, 

RELM1=1, RELM2=1, RELY1=1, RELY2=1, 

FILE=n50cond1,TYPE='CCC',ERROR=1,COND=1); run; quit;  
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APPENDIX L 

FIGURE OF CROSS-SECTIONAL MODEL 
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APPENDIX M 

FIGURE OF DIFFERENCE SCORE MODEL 
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APPENDIX N 

FIGURE OF RESIDUALIZED CHANGE SCORE MODEL 
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APPENDIX O 

COVARIANCE ALGEBRA  
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𝑋 = 0,1 

𝑀1 = 𝑎𝑀1𝑋 ∗ 𝑋 + 𝑒1 

𝑌1 = 𝑐𝑌1𝑋 ∗ 𝑋 + 𝑏𝑌1𝑀1 ∗ 𝑀1 + 𝑒2 

𝑀2 = 𝑎𝑀2𝑋 ∗ 𝑋 + 𝑠𝑀2𝑀1 ∗ 𝑀1 + 𝑏𝑀2𝑌1 ∗ 𝑌1 + 𝑒3 

𝑌2 = 𝑐𝑌2𝑋 ∗ 𝑋 + 𝑠𝑌2𝑌1 ∗ 𝑌1 + 𝑏𝑌2𝑀1 ∗ 𝑀1 + 𝑏𝑌2𝑀2 ∗ 𝑀2 + 𝑒4 

 𝑇𝑟𝑢𝑒 𝑡𝑜𝑡𝑎𝑙 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑋 𝑜𝑛 𝑌2 = (𝑎𝑀2𝑋 ∗ 𝑋) ∗ (𝑏𝑌2𝑀2 ∗ 𝑀2) + (𝑎𝑀1𝑋 ∗ 𝑋) ∗ (𝑠𝑀2𝑀1 ∗

𝑀1) ∗ (𝑏𝑌2𝑀2 ∗ 𝑀2) + (𝑎𝑀1𝑋 ∗ 𝑋) + (𝑏𝑌2𝑀1 ∗ 𝑀1) + (𝑎𝑀1𝑋 ∗ 𝑋) ∗ (𝑏𝑌1𝑀1 ∗ 𝑀1) ∗

(𝑏𝑀2𝑌1 ∗ 𝑌1) ∗ (𝑏𝑌2𝑀2 ∗ 𝑀2) + (𝑐𝑌1𝑋 ∗ 𝑋) ∗ (𝑏𝑀2𝑌1 ∗ 𝑌1) ∗ (𝑏𝑌2𝑀2 ∗ 𝑀2) +

(𝑐𝑌1𝑋 ∗ 𝑋) ∗ (𝑠𝑌2𝑌1 ∗ 𝑌1) + (𝑐𝑌2𝑋 ∗ 𝑋) 

𝑪𝒐𝒗(𝑿, 𝑴𝟏)  =  𝐶𝑜𝑣(𝑋, 𝑎𝑀1𝑋 ∗ 𝑋 +  𝑒1) 

=  𝐶𝑜𝑣(𝑋, 𝑎𝑀1𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑋, 𝑒1) 

=  𝑎𝑀1𝑋 ∗ 𝜎𝑋
2 

 

𝑪𝒐𝒗(𝑿, 𝒀𝟏)  =  𝐶𝑜𝑣(𝑋, 𝑐𝑌1𝑋 ∗ 𝑋 +  𝑏𝑌1𝑀1 ∗ 𝑀1 +  𝑒2) 

=  𝐶𝑜𝑣(𝑋, 𝑐𝑌1𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑋, 𝑏𝑌1𝑀1 ∗ 𝑀1) +  𝐶𝑜𝑣(𝑋, 𝑒2) 

=  𝑐𝑌1 ∗ 𝜎𝑋
2 +  𝑏𝑌1𝑀1 ∗ 𝐶𝑜𝑣(𝑋, 𝑀1) 

 

 

𝑪𝒐𝒗(𝑿, 𝑴𝟐)  =  𝐶𝑜𝑣(𝑋, 𝑎𝑀2𝑋 ∗ 𝑋 +  𝑠𝑀2𝑀1 ∗ 𝑀1 +  𝑏𝑀2𝑌1 ∗ 𝑌1 +  𝑒3) 

=  𝐶𝑜𝑣(𝑋, 𝑎𝑀2𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑋, 𝑠𝑀2𝑀1 ∗ 𝑀1) + 𝐶𝑜𝑣(𝑋, 𝑏𝑀2𝑌1 ∗ 𝑌1)  +  𝐶𝑜𝑣(𝑋, 𝑒3) 

=  𝑎𝑀2𝑋 ∗ 𝜎𝑋
2 + 𝑠𝑀2𝑀1 ∗ 𝐶𝑜𝑣(𝑋, 𝑀1) +  𝑏𝑀2𝑌1 ∗ 𝐶𝑜𝑣(𝑋, 𝑌1) 

 

𝑪𝒐𝒗(𝑿, 𝒀𝟐)  =  𝐶𝑜𝑣(𝑋, 𝑐𝑌2𝑋 ∗ 𝑋 +  𝑠𝑌2𝑌1 ∗ 𝑌1 +  𝑏𝑌2𝑀1 ∗ 𝑀1 +  𝑏𝑌2𝑀2 ∗ 𝑀2 +  𝑒4) 

=  𝐶𝑜𝑣(𝑋, 𝑐𝑌2𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑋, 𝑠𝑌2𝑌1 ∗ 𝑌1)  +  𝐶𝑜𝑣(𝑋, 𝑏𝑌2𝑀1 ∗ 𝑀1) +  𝐶𝑜𝑣(𝑋, 𝑏𝑌2𝑀2

∗ 𝑀2) +  𝐶𝑜𝑣(𝑋, 𝑒4) 

=  𝑐𝑌2𝑋 ∗ 𝜎𝑋
2 +  𝑠𝑌2𝑌1 ∗ 𝐶𝑜𝑣(𝑋, 𝑌1)  +  𝑏𝑌2𝑀1 ∗ 𝐶𝑜𝑣(𝑋, 𝑀1) +  𝑏𝑌2𝑀2 ∗ 𝐶𝑜𝑣(𝑋, 𝑀2) 
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𝑪𝒐𝒗(𝑴𝟏, 𝒀𝟏)  =  𝐶𝑜𝑣(𝑎𝑀1𝑋 ∗ 𝑋 + 𝑒1, 𝑐𝑌1𝑋 ∗ 𝑋 +  𝑏𝑌1𝑀1 ∗ 𝑀1 +  𝑒2) 

=  𝐶𝑜𝑣(𝑎𝑀1𝑋 ∗ 𝑋, 𝑐𝑌1𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑎𝑀1𝑋 ∗ 𝑋, 𝑏𝑌1𝑀1 ∗ 𝑀1) +  𝐶𝑜𝑣(𝑎𝑀1𝑋

∗ 𝑋, 𝑒2) 𝐶𝑜𝑣(𝑒1, 𝑐𝑌1𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑒1, 𝑏𝑌1𝑀1 ∗ 𝑀1) +  𝐶𝑜𝑣(𝑒1, 𝑒2) 

=  𝑎𝑀1𝑋 ∗ (𝑐𝑌1𝑋 ∗  𝜎𝑋
2)  +  𝑎𝑀1𝑋 ∗ [𝑏𝑌1𝑀1 ∗ 𝐶𝑜𝑣(𝑋, 𝑀1)]  +  𝑏𝑌1𝑀1 ∗  𝜎𝑒1

2
 

 

𝑪𝒐𝒗(𝑴𝟏, 𝑴𝟐)  =  𝐶𝑜𝑣(𝑎𝑀1𝑋 ∗ 𝑋 + 𝑒1, 𝑠𝑀2𝑀1 ∗ 𝑀1 +  𝑏𝑀2𝑌1 ∗ 𝑌1 +  𝑎𝑀2𝑋 ∗ 𝑋 +  𝑒3) 

=  𝐶𝑜𝑣(𝑎𝑀1𝑋 ∗ 𝑋, 𝑠𝑀2𝑀1 ∗ 𝑀1) +  𝐶𝑜𝑣(𝑎𝑀1𝑋 ∗ 𝑋, 𝑏𝑀2𝑌1 ∗ 𝑌1)  +  𝐶𝑜𝑣(𝑎𝑀1𝑋 ∗ 𝑋, 𝑎𝑀2𝑋

∗ 𝑋) +  𝐶𝑜𝑣(𝑎𝑀1𝑋 ∗ 𝑋, 𝑒3)  +  + 𝐶𝑜𝑣(𝑒1, 𝑠𝑀2𝑀1 ∗ 𝑀1) +  𝐶𝑜𝑣(𝑒1, 𝑏𝑀2𝑌1

∗ 𝑌1)  +  𝐶𝑜𝑣(𝑒1, 𝑎𝑀2𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑒1, 𝑒3) 

=  𝑎𝑀1𝑋 ∗ [𝑠𝑀2𝑀1 ∗ 𝐶𝑜𝑣(𝑋, 𝑀1)]  +  𝑎𝑀1𝑋 ∗ [𝑏𝑀2𝑌1 ∗ 𝐶𝑜𝑣(𝑋, 𝑌1)]  +  𝑎𝑀1𝑋 ∗ (𝑎𝑀2𝑋

∗ 𝜎𝑋
2)  +  𝑠𝑀2𝑀1 ∗  𝜎𝑒1

2 + 𝑏𝑀2𝑌1 ∗ (𝑏𝑌1𝑀1 ∗ 𝜎𝑒1
2 ) 

 

𝑪𝒐𝒗(𝑴𝟏, 𝒀𝟐)  =  𝐶𝑜𝑣(𝑎𝑀1𝑋 ∗ 𝑋 +  𝑒1, 𝑐𝑌2𝑋 ∗ 𝑋 +  𝑠𝑌2𝑌1 ∗ 𝑌1 +  𝑏𝑌2𝑀1 ∗ 𝑀1 +  𝑏𝑌2𝑀2

∗ 𝑀2 +  𝑒4) 

=  𝐶𝑜𝑣(𝑎𝑀1𝑋 ∗ 𝑋, 𝑐𝑌2𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑎𝑀1𝑋 ∗ 𝑋, 𝑠𝑌2𝑌1 ∗ 𝑌1)  +  𝐶𝑜𝑣(𝑎𝑀1𝑋 ∗ 𝑋, 𝑏𝑌2𝑀1

∗ 𝑀1) +  𝐶𝑜𝑣(𝑎𝑀1𝑋 ∗ 𝑋, 𝑏𝑌2𝑀2 ∗ 𝑀2) +  𝐶𝑜𝑣(𝑎𝑀1𝑋 ∗ 𝑋, 𝑒4)  

+  𝐶𝑜𝑣(𝑒1, 𝑐𝑌2𝑋 ∗ 𝑋)  +  𝐶𝑜𝑣(𝑒1, 𝑠𝑌2𝑌1 ∗ 𝑌1)  +  𝐶𝑜𝑣(𝑒1, 𝑏𝑌2𝑀1 ∗ 𝑀1) 

+  𝐶𝑜𝑣(𝑒1, 𝑏𝑌2𝑀2 ∗ 𝑀2) +  𝐶𝑜𝑣(𝑒1, 𝑒4) 

=  𝑎𝑀1𝑋 ∗ (𝑐𝑌2𝑋 ∗ 𝜎𝑋
2)  +  𝑎𝑀1𝑋 ∗ [𝑠𝑌2𝑌1 ∗ 𝐶𝑜𝑣(𝑋, 𝑌1)]  +  𝑎𝑀1𝑋 ∗ [𝑏𝑌2𝑀1

∗ 𝐶𝑜𝑣(𝑋, 𝑀1)]  + 𝑎𝑀1𝑋 ∗ [𝑏𝑌2𝑀2 ∗ 𝐶𝑜𝑣(𝑋, 𝑀2)]  +  𝑠𝑌2𝑌1 ∗ (𝑏𝑌1𝑀1

∗ 𝜎𝑒1
2 )  +  𝑏𝑌2𝑀1 ∗ 𝜎𝑒1

2 +  𝑏𝑌2𝑀2 ∗ [(𝑠𝑀2𝑀1 ∗ 𝜎𝑒1
2 )  + (𝑏𝑀2𝑌1 ∗ 𝑏𝑌1𝑀1

∗ 𝜎𝑒1
2 )] 

 

𝑪𝒐𝒗 (𝑴𝟐, 𝒀𝟏)  =  𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋 +  𝑠𝑀2𝑀1 ∗ 𝑀1 +  𝑏𝑀2𝑌1 ∗ 𝑌1 +  𝑒3, 𝑏𝑌1𝑀1 ∗ 𝑀1 

+  𝑐𝑌1𝑋 ∗ 𝑋 +  𝑒2) 

=  𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋, 𝑏𝑌1𝑀1 ∗ 𝑀1) +  𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋, 𝑐𝑌1𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋, 𝑒2) 

+  𝐶𝑜𝑣(𝑠𝑀2𝑀1 ∗ 𝑀1, 𝑏𝑌1𝑀1 ∗ 𝑀1) +  𝐶𝑜𝑣(𝑠𝑀2𝑀1 ∗ 𝑀1, 𝑏𝑌1𝑀1 ∗ 𝑀1) 

+  𝐶𝑜𝑣(𝑠𝑀2𝑀1 ∗ 𝑀1, 𝑐𝑌1𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑠𝑀2𝑀1 ∗ 𝑀1, 𝑒2)  +  𝐶𝑜𝑣(𝑏𝑀2𝑌1

∗ 𝑌1, 𝑏𝑌1𝑀1 ∗ 𝑀1) +  𝐶𝑜𝑣(𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑐𝑌1𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑏𝑀2𝑌1

∗ 𝑌1, 𝑒2) +  𝐶𝑜𝑣(𝑒3, 𝑏𝑌1𝑀1 ∗ 𝑀1) + +𝐶𝑜𝑣(𝑒3, 𝑐𝑌1𝑋 ∗ 𝑋)  +  𝐶𝑜𝑣(𝑒3, 𝑒2) 
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=  𝑎𝑀2𝑋 ∗ [𝑏𝑌1𝑀1 ∗ 𝐶𝑜𝑣(𝑋, 𝑀1)]  +  𝑎𝑀2𝑋 ∗ (𝑐𝑌1𝑋 ∗ 𝜎𝑋
2)  +  𝑠𝑀2𝑀1 ∗ (𝑏𝑌1𝑀1 ∗ 𝜎𝑀1

2 )  

+  𝑠𝑀2𝑀1 ∗ [𝑐𝑌1𝑋 ∗ 𝐶𝑜𝑣(𝑋, 𝑀1)]  +  𝑏𝑀2𝑌1 ∗ [𝑏𝑌1𝑀1 ∗ 𝐶𝑜𝑣(𝑌1, 𝑀1)]  

+  𝑏𝑀2𝑌1 ∗ [𝑐𝑌1𝑋 ∗ 𝐶𝑜𝑣(𝑋, 𝑌1)]  +  𝑏𝑀2𝑌1 ∗ 𝜎𝑒2
2

 

 

𝑪𝒐𝒗(𝒀𝟏, 𝒀𝟐)  =  𝐶𝑜𝑣(𝑐𝑌1𝑋 ∗ 𝑋 +  𝑏𝑌1𝑀1 ∗ 𝑀1 +  𝑒2, 𝑠𝑌2𝑌1 ∗ 𝑌1 +  𝑏𝑌2𝑀1 ∗ 𝑀1 

+  𝑏𝑌2𝑀2 ∗ 𝑀2 +  𝑐𝑌2𝑋 ∗ 𝑋 +  𝑒4) 

=  𝐶𝑜𝑣(𝑐𝑌1𝑋 ∗ 𝑋, 𝑠𝑌2𝑌1 ∗ 𝑌1)  +  𝐶𝑜𝑣(𝑐𝑌1𝑋 ∗ 𝑋, 𝑏𝑌2𝑀1 ∗ 𝑀1) +  𝐶𝑜𝑣(𝑐𝑌1𝑋 ∗ 𝑋, 𝑏𝑌2𝑀2

∗ 𝑀2) +  𝐶𝑜𝑣(𝑐𝑌1𝑋 ∗ 𝑋, 𝑐𝑌2𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑐𝑌1𝑋 ∗ 𝑋, 𝑒4) +  𝐶𝑜𝑣(𝑏𝑌1𝑀1

∗ 𝑀1, 𝑠𝑌2𝑌1 ∗ 𝑌1)  +  𝐶𝑜𝑣(𝑏𝑌1𝑀1 ∗ 𝑀1, 𝑏𝑌2𝑀1 ∗ 𝑀1) +  𝐶𝑜𝑣(𝑏𝑌1𝑀1

∗ 𝑀1, 𝑏𝑌2𝑀2 ∗ 𝑀2) +  𝐶𝑜𝑣(𝑏𝑌1𝑀1 ∗ 𝑀1, 𝑐𝑌2𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑏𝑌1𝑀1

∗ 𝑀1, 𝑒4)  +  𝐶𝑜𝑣(𝑒2, 𝑠𝑌2𝑌1 ∗ 𝑌1)  + +𝐶𝑜𝑣(𝑒2, 𝑏𝑌2𝑀1 ∗ 𝑀1) 

+  𝐶𝑜𝑣(𝑒2, 𝑏𝑌2𝑀2 ∗ 𝑀2) +  𝐶𝑜𝑣(𝑒2, 𝑐𝑌2𝑋 ∗ 𝑋)  +  𝐶𝑜𝑣(𝑒2, 𝑒4) 

=  𝑐𝑌1𝑋 ∗ [𝑠𝑌2𝑌1 ∗ 𝐶𝑜𝑣(𝑋, 𝑌1)]  +  𝑐𝑌1𝑋 ∗ [𝑏𝑌2𝑀1 ∗ 𝐶𝑜𝑣(𝑋, 𝑀1)]  +  𝑐𝑌1𝑋 ∗ [𝑏𝑌2𝑀2

∗ 𝐶𝑜𝑣(𝑋, 𝑀2)]  +  𝑐𝑌1𝑋 ∗ (𝑐𝑌2𝑋 ∗ 𝜎𝑋
2)  +  𝑏𝑌1𝑀1 ∗ [𝑠𝑌2𝑌1 ∗ 𝐶𝑜𝑣(𝑀1, 𝑌1)]  

+  𝑏𝑌1𝑀1 ∗ (𝑏𝑌2𝑀1 ∗ 𝜎𝑀1
2 )  +  𝑏𝑌1𝑀1 ∗ [𝑏𝑌2𝑀2 ∗ 𝐶𝑜𝑣(𝑀1, 𝑀2)]  +  𝑏𝑌1𝑀1

∗ 𝑐𝑌2𝑋 ∗ 𝐶𝑜𝑣(𝑋, 𝑀1) +  𝑏𝑌2𝑀2 ∗ (𝑏𝑀2𝑌1 ∗ 𝜎𝑒2
2 )  +  𝑠𝑌2𝑌1 ∗ 𝜎𝑒2

2  

 

 

𝑪𝒐𝒗(𝑴𝟐, 𝒀𝟐)  =  𝐶𝑜𝑣(𝑠𝑀2𝑀1 ∗ 𝑀1 +  𝑏𝑀2𝑌1 ∗ 𝑌1 +  𝑎𝑀2𝑋 ∗ 𝑋 +  𝑒3, 𝑐𝑌2𝑋 ∗ 𝑋 +  𝑠𝑌2𝑌1

∗ 𝑌1 +  𝑏𝑌2𝑀1 ∗ 𝑀1 + +𝑏𝑌2𝑀2 ∗ 𝑀2 +  𝑒4) 

=  𝐶𝑜𝑣(𝑠𝑀2𝑀1 ∗ 𝑀1, 𝑐𝑌2𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑠𝑀2𝑀1 ∗ 𝑀1, 𝑠𝑌2𝑌1 ∗ 𝑌1)  +  𝐶𝑜𝑣(𝑠𝑀2𝑀1

∗ 𝑀1, 𝑏𝑌2𝑀1 ∗ 𝑀1) +  +𝐶𝑜𝑣(𝑠𝑀2𝑀1 ∗ 𝑀1, 𝑏𝑌2𝑀2 ∗ 𝑀2) +  𝐶𝑜𝑣(𝑠𝑀2𝑀1

∗ 𝑀1, 𝑒4)  +  𝐶𝑜𝑣(𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑐𝑌2𝑋 ∗ 𝑋) + 𝐶𝑜𝑣(𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑠𝑌2𝑌1 ∗ 𝑌1)  

+  𝐶𝑜𝑣(𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑏𝑌2𝑀1 ∗ 𝑀1) +  𝐶𝑜𝑣(𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑏𝑌2𝑀2 ∗ 𝑀2) 

+  +𝐶𝑜𝑣(𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑒4) +  𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋, 𝑐𝑌2𝑋 ∗ 𝑋)  +  𝐶𝑜𝑣(𝑎𝑀2𝑋

∗ 𝑋, 𝑠𝑌2𝑌1 ∗ 𝑌1)  +  𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋, 𝑏𝑌2𝑀1 ∗ 𝑀1) +  +𝐶𝑜𝑣(𝑎𝑀2𝑋

∗ 𝑋, 𝑏𝑌2𝑀2 ∗ 𝑀2) +  𝐶𝑜𝑣(𝑒3, 𝑐𝑌2𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑒3, 𝑠𝑌2𝑌1 ∗ 𝑌1)  

+  𝐶𝑜𝑣(𝑒3, 𝑏𝑌2𝑀1 ∗ 𝑀1) + 𝐶𝑜𝑣(𝑒3, 𝑏𝑌2𝑀2 ∗ 𝑀2) +  𝐶𝑜𝑣(𝑒3, 𝑒4) 

 𝑠𝑀2𝑀1 ∗ 𝑠𝑌2𝑌1 ∗ [𝐶𝑜𝑣(𝑀1, 𝑌1)]  +  𝑠𝑀2𝑀1 ∗ (𝑏𝑌2𝑀1 ∗ 𝜎𝑀1
2 )  + 𝑠𝑀2𝑀1 ∗ [𝑏𝑌2𝑀2

∗ 𝐶𝑜𝑣(𝑀1, 𝑀2)]  +   𝑏𝑀2𝑌1 ∗ (𝑠𝑌2𝑌1 ∗  𝜎𝑌1
2 )  +  𝑏𝑀2𝑌1 ∗ [𝑏𝑌2𝑀1

∗ 𝐶𝑜𝑣(𝑌1, 𝑀1)]  +  𝑏𝑀2𝑌1 ∗ [𝑏𝑌2𝑀2 ∗ 𝐶𝑜𝑣(𝑌1, 𝑀2)]  +  𝑎𝑀2𝑋 ∗ (𝑐𝑌2𝑋

∗ 𝜎𝑋
2)   +  𝑎𝑀2𝑋 ∗ [𝑏𝑌2𝑀2 ∗ 𝐶𝑜𝑣(𝑋, 𝑀2)]  +  𝑏𝑌2𝑀2 ∗ 𝜎𝑒3

2
 

 

𝑪𝒐𝒗(𝑴𝟏, 𝑴𝟏)  =  𝐶𝑜𝑣(𝑎𝑀1𝑋 ∗ 𝑋 +  𝑒1, 𝑎𝑀1𝑋 ∗ 𝑋 +  𝑒1) 
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=  𝐶𝑜𝑣(𝑎𝑀1𝑋 ∗ 𝑋, 𝑎𝑀1𝑋 ∗ 𝑋)  +  2 ∗ 𝐶𝑜𝑣(𝑎𝑀1𝑋 ∗ 𝑋, 𝑒1) +  𝐶𝑜𝑣(𝑒1, 𝑒1) 

=  𝑎𝑀1𝑋2 ∗  𝜎𝑋
2 + 𝜎𝑒1

2
 

 

𝑪𝒐𝒗(𝑴𝟐, 𝑴𝟐)  =  𝐶𝑜𝑣(𝑠𝑀2𝑀1 ∗ 𝑀1 +  𝑏𝑀2𝑌1 ∗ 𝑌1 +  𝑎𝑀2𝑋 ∗ 𝑋 +  𝑒3, 𝑠𝑀2𝑀1 ∗ 𝑀1 

+  𝑏𝑀2𝑌1 ∗ 𝑌1 +  𝑎𝑀2𝑋 ∗ 𝑋 +  𝑒3) 

=   𝐶𝑜𝑣(𝑠𝑀2𝑀1 ∗ 𝑀1, 𝑠𝑀2𝑀1 ∗ 𝑀1) +  𝐶𝑜𝑣(𝑠𝑀2𝑀1 ∗ 𝑀1, 𝑏𝑀2𝑌1 ∗ 𝑌1)  +  𝐶𝑜𝑣(𝑠𝑀2𝑀1

∗ 𝑀1, 𝑎𝑀2𝑋 ∗ 𝑋) + +𝐶𝑜𝑣(𝑠𝑀2𝑀1 ∗ 𝑀1, 𝑒3)  +  𝐶𝑜𝑣(𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑠𝑀2𝑀1

∗ 𝑀1) +  𝐶𝑜𝑣(𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑏𝑀2𝑌1 ∗ 𝑌1)  +  𝐶𝑜𝑣(𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑎𝑀2𝑋 ∗ 𝑋) 

+  𝐶𝑜𝑣(𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑒3)  +  𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋, 𝑠𝑀2𝑀1 ∗ 𝑀1) +  𝐶𝑜𝑣(𝑎𝑀2𝑋

∗ 𝑋, 𝑏𝑀2𝑌1 ∗ 𝑌1)  +  +𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋, 𝑏𝑀2𝑌1 ∗ 𝑌1)  +  𝐶𝑜𝑣(𝑎𝑀2𝑋

∗ 𝑋, 𝑎𝑀2𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋, 𝑒3)  +  +𝐶𝑜𝑣(𝑒3, 𝑠𝑀2𝑀1 ∗ 𝑀1) 

+  +𝐶𝑜𝑣(𝑒3, 𝑏𝑀2𝑌1 ∗ 𝑌1)  +  𝐶𝑜𝑣(𝑒3, 𝑎𝑀2𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑒3, 𝑒3) 

=  𝑠𝑀2𝑀1 ∗  𝜎𝑀1
2 + 2 ∗ 𝑠𝑀2𝑀1 ∗ [𝑏𝑀2𝑌1 ∗ 𝐶𝑜𝑣(𝑀1, 𝑌1)]  +  2 ∗ 𝑠𝑀2𝑀1 ∗ [𝑎𝑀2𝑋

∗ 𝐶𝑜𝑣(𝑋, 𝑀1)]  + 𝑏𝑀2𝑌12 ∗ 𝜎𝑌1
2  +  2 ∗ 𝑏𝑀2𝑌1 ∗ [𝑎𝑀2𝑋 ∗ 𝐶𝑜𝑣(𝑋, 𝑌1)]  

+  𝑎𝑀2𝑋2 ∗ 𝜎𝑋
2 + 𝜎𝑒3

2
 

 

 

𝑪𝒐𝒗(𝒀𝟏, 𝒀𝟏)  =  𝐶𝑜𝑣(𝑐𝑌1𝑋 ∗ 𝑋 +  𝑏𝑌1𝑀1 ∗ 𝑀1 +  𝑒2, 𝑐𝑌1𝑋 ∗ 𝑋 +  𝑏𝑌1𝑀1 ∗ 𝑀1 +  𝑒2) 

=  𝐶𝑜𝑣(𝑐𝑌1𝑋 ∗ 𝑋, 𝑐𝑌1𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑐𝑌1𝑋 ∗ 𝑋, 𝑏𝑌1𝑀1 ∗ 𝑀1) +  𝐶𝑜𝑣(𝑐𝑌1𝑋 ∗ 𝑋, 𝑒2) 

+  𝐶𝑜𝑣(𝑏𝑌1𝑀1 ∗ 𝑀1, 𝑐𝑌1𝑋 ∗ 𝑋) + +𝐶𝑜𝑣(𝑏𝑌1𝑀1 ∗ 𝑀1, 𝑏𝑌1𝑀1 ∗ 𝑀1) 

+  𝐶𝑜𝑣(𝑏𝑌1𝑀1 ∗ 𝑀1, 𝑒2)  +  𝐶𝑜𝑣(𝑒2, 𝑐𝑌1𝑋 ∗ 𝑋)  +  𝐶𝑜𝑣(𝑒2, 𝑏𝑌1𝑀1 ∗ 𝑀1) 

+  +𝐶𝑜𝑣(𝑒2, 𝑒2) 

=  𝑐𝑌1𝑋2 ∗ 𝜎𝑋
2 +  2 ∗ 𝑐𝑌1𝑋 ∗ [𝑏𝑌1𝑀1 ∗ 𝐶𝑜𝑣(𝑋, 𝑀1)]  + 𝑏𝑌1𝑀12 ∗ 𝜎𝑀1

2 +  𝜎𝑒2
2

 

 

𝑪𝒐𝒗(𝒀𝟐, 𝒀𝟐)  =  𝐶𝑜𝑣(𝑐𝑌2𝑋 ∗ 𝑋 +  𝑠𝑌2𝑌1 ∗ 𝑌1 +  𝑏𝑌2𝑀1 ∗ 𝑀1 +  𝑏𝑌2𝑀2 ∗ 𝑀2 +  𝑒4, 𝑐𝑌2𝑋

∗ 𝑋 +  𝑠𝑌2𝑌1 ∗ 𝑌1 +  𝑏𝑌2𝑀1 ∗ 𝑀1 +  𝑏𝑌2𝑀2 ∗ 𝑀2 +  𝑒4) 
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=  𝐶𝑜𝑣(𝑐𝑌2𝑋 ∗ 𝑋, 𝑐𝑌2𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑐𝑌2𝑋 ∗ 𝑋, 𝑠𝑌2𝑌1 ∗ 𝑌1)  +  𝐶𝑜𝑣(𝑐𝑌2𝑋 ∗ 𝑋, 𝑏𝑌2𝑀1

∗ 𝑀1) +  𝐶𝑜𝑣(𝑐𝑌2𝑋 ∗ 𝑋, 𝑏𝑌2𝑀2 ∗ 𝑀2) +  𝐶𝑜𝑣(𝑐𝑌2𝑋 ∗ 𝑋, 𝑒4) +  𝐶𝑜𝑣(𝑠𝑌2𝑌1

∗ 𝑌1, 𝑐𝑌2𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑠𝑌2𝑌1 ∗ 𝑌1, 𝑠𝑌2𝑌1 ∗ 𝑌1)  +  𝐶𝑜𝑣(𝑠𝑌2𝑌1

∗ 𝑌1, 𝑏𝑌2𝑀1 ∗ 𝑀1) +  +𝐶𝑜𝑣(𝑠𝑌2𝑌1 ∗ 𝑌1, 𝑏𝑌2𝑀2 ∗ 𝑀2) +  𝐶𝑜𝑣(𝑠𝑌2𝑌1

∗ 𝑌1, 𝑒4) +  𝐶𝑜𝑣(𝑏𝑌2𝑀1 ∗ 𝑀1, 𝑐𝑌2𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑏𝑌2𝑀1 ∗ 𝑀1, 𝑠𝑌2𝑌1 ∗ 𝑌1)  

+  𝐶𝑜𝑣(𝑏𝑌2𝑀1 ∗ 𝑀1, 𝑏𝑌2𝑀1 ∗ 𝑀1) +  𝐶𝑜𝑣(𝑏𝑌2𝑀1 ∗ 𝑀1, 𝑏𝑌2𝑀2 ∗ 𝑀2) 

+  +𝐶𝑜𝑣(𝑏𝑌2𝑀1 ∗ 𝑀1, 𝑒4) +  𝐶𝑜𝑣(𝑏𝑌2𝑀2 ∗ 𝑀2, 𝑐𝑌2𝑋 ∗ 𝑋) +  𝐶𝑜𝑣(𝑏𝑌2𝑀2

∗ 𝑀2, 𝑠𝑌2𝑌1 ∗ 𝑌1)  +  𝐶𝑜𝑣(𝑏𝑌2𝑀2 ∗ 𝑀2, 𝑏𝑌2𝑀1 ∗ 𝑀1) +  𝐶𝑜𝑣(𝑏𝑌2𝑀2

∗ 𝑀2, 𝑏𝑌2𝑀2 ∗ 𝑀2) +  𝐶𝑜𝑣(𝑏𝑌2𝑀2 ∗ 𝑀2, 𝑒4)  +  𝐶𝑜𝑣(𝑒4, 𝑐𝑌2𝑋 ∗ 𝑋)  

+ 𝐶𝑜𝑣(𝑒4, 𝑠𝑌2𝑌1 ∗ 𝑌1)  +  𝐶𝑜𝑣(𝑒4, 𝑏𝑌2𝑀1 ∗ 𝑀1) +  𝐶𝑜𝑣(𝑒4, 𝑏𝑌2𝑀2 ∗ 𝑀2) 

+  𝐶𝑜𝑣(𝑒4, 𝑒4) 

=  𝑐𝑌2𝑋2 ∗ 𝜎𝑋
2 +  2 ∗ 𝑐𝑌2𝑋 ∗ [𝑠𝑌2𝑌1 ∗ 𝐶𝑜𝑣(𝑋, 𝑌1)]  +  2 ∗ 𝑐𝑌2𝑋 ∗ [𝑏𝑌2𝑀1 ∗ 𝐶𝑜𝑣(𝑋, 𝑀1)]  

+  2 ∗ 𝑐𝑌2𝑋 ∗ [𝑏𝑌2𝑀2 ∗ 𝐶𝑜𝑣(𝑋, 𝑀2)]  +  𝑠𝑌2𝑌1 ∗ 𝜎𝑌1
2 +  2 ∗ 𝑠𝑌2𝑌1 ∗ [𝑏𝑌2𝑀1

∗ 𝐶𝑜𝑣(𝑌1, 𝑀1)]  +  2 ∗ 𝑠𝑌2𝑌1 ∗ [𝑏𝑌2𝑀2 ∗ 𝐶𝑜𝑣(𝑌1, 𝑀2)]  +  𝑏𝑌2𝑀1 ∗ 𝜎𝑀1
2 + 2

∗ 𝑏𝑌2𝑀1 ∗ [𝑏𝑌2𝑀2 ∗ 𝐶𝑜𝑣(𝑀1, 𝑀2)]  +  𝑏𝑌2𝑀2 ∗ 𝜎𝑀2
2 + 𝜎𝑒4

2  

 

𝑪𝒐𝒗[(𝑴𝟐 − 𝑴𝟏), (𝑴𝟐 − 𝑴𝟏)]  =  𝑉𝐴𝑅(𝑀2) +  𝑉𝐴𝑅(𝑀1) –  2 ∗ 𝐶𝑜𝑣(𝑀1, 𝑀2) 

 

𝑪𝒐𝒗[(𝒀𝟐 − 𝒀𝟏), (𝒀𝟐 − 𝒀𝟏)]  =  𝑉𝐴𝑅(𝑌2)  +  𝑉𝐴𝑅(𝑌1) –  2 ∗ 𝐶𝑜𝑣(𝑌1, 𝑌2) 

 

𝑪𝒐𝒗[𝑿, (𝒀𝟐 − 𝒀𝟏)]

=  𝐶𝑜𝑣[𝑋, (𝑐𝑌2𝑋 ∗ 𝑋 +  𝑆𝑌2𝑌1 ∗ 𝑌1 +  𝑏𝑌2𝑀1 ∗ 𝑀1 +  𝑏𝑌2𝑀2 ∗ 𝑀2 +  𝑒4)

− (𝑐𝑌1𝑋 ∗ 𝑋 +  𝑏𝑌1𝑀1 ∗ 𝑀1 +  𝑒2)] 

=  𝐶𝑜𝑣[𝑋, (𝑐𝑌2𝑋 − 𝑐𝑌1𝑋) ∗ 𝑋 +  𝑆𝑌2𝑌1 ∗ 𝑌1 +  (𝑏𝑌2𝑀1 − 𝑏𝑌1𝑀1) ∗ 𝑀1 +  𝑏𝑌2𝑀2 ∗ 𝑀2 

+ 𝑒4 −  𝑒2] 

=  𝐶𝑜𝑣[𝑋, (𝑐𝑌2𝑋 − 𝑐𝑌1𝑋) ∗ 𝑋]  +  𝐶𝑜𝑣[𝑋, 𝑆𝑌2𝑌1 ∗ 𝑌1]  +  𝐶𝑜𝑣[𝑋, (𝑏𝑌2𝑀1 − 𝑏𝑌1𝑀1) ∗ 𝑀1]  

+  𝐶𝑜𝑣[𝑋, 𝑏𝑌2𝑀2 ∗ 𝑀2]  +    𝐶𝑜𝑣[𝑋, 𝑒4]  +  𝐶𝑜𝑣[𝑋, −𝑒2] 

=  (𝑐𝑌2𝑋 − 𝑐𝑌1𝑋) ∗ 𝜎𝑋
2  +  𝑆𝑌2𝑌1 ∗ 𝐶𝑜𝑣(𝑋, 𝑌1)  +  (𝑏𝑌2𝑀1 − 𝑏𝑌1𝑀1) ∗ 𝐶𝑜𝑣(𝑋, 𝑀1) 

+  𝑏𝑌2𝑀2 ∗ 𝐶𝑜𝑣(𝑋, 𝑀2) 

 

𝑪𝒐𝒗[𝑿, (𝑴𝟐 − 𝑴𝟏)]  

=  𝐶𝑜𝑣[𝑋, (𝑎𝑀2𝑋 ∗ 𝑋 +  𝑆𝑀2𝑀1 ∗ 𝑀1 +  𝑏𝑀2𝑌1 ∗ 𝑌1 +  𝑒3) – (𝑎𝑀1𝑋 ∗ 𝑋 

+  𝑒1)] 
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=  𝐶𝑜𝑣[𝑋, (𝑎𝑀2𝑋 − 𝑎𝑀1𝑋) ∗ 𝑋 +  𝑆𝑀2𝑀1 ∗ 𝑀1 +  𝑏𝑀2𝑌1 ∗ 𝑌1 +  𝑒3 −  𝑒1] 

=  𝐶𝑜𝑣[𝑋, (𝑎𝑀2𝑋 − 𝑎𝑀1𝑋) ∗ 𝑋]  +  𝐶𝑜𝑣[𝑋, 𝑆𝑀2𝑀1 ∗ 𝑀1]  +  𝐶𝑜𝑣[𝑋, 𝑏𝑀2𝑌1 ∗ 𝑌1]  

+  𝐶𝑜𝑣[𝑋, 𝑒3] +  𝐶𝑜𝑣[𝑋, −𝑒1] 

=  (𝑎𝑀2𝑋 − 𝑎𝑀1𝑋) ∗  𝜎𝑋
2 +  𝑆𝑀2𝑀1 ∗ 𝐶𝑜𝑣(𝑋, 𝑀1) +  𝑏𝑀2𝑌1 ∗ 𝐶𝑜𝑣(𝑋, 𝑌1) 

 

 

𝑪𝒐𝒗[(𝑴𝟐 − 𝑴𝟏), (𝒀𝟐 − 𝒀𝟏)]  

=  𝐶𝑜𝑣[(𝑎𝑀2𝑋 − 𝑎𝑀1𝑋) ∗ 𝑋 +  𝑆𝑀2𝑀1 ∗ 𝑀1 +  𝑏𝑀2𝑌1 ∗ 𝑌1 +  𝑒3 

−  𝑒1, (𝑐𝑌2𝑋 − 𝑐𝑌1𝑋) ∗ 𝑋 +  𝑆𝑌2𝑌1 ∗ 𝑌1 + (𝑏𝑌2𝑀1 − 𝑏𝑌1𝑀1) ∗ 𝑀1 

+  𝑏𝑌2𝑀2 ∗ 𝑀2 +  𝑒4 –  𝑒2] 

=  𝐶𝑜𝑣[(𝑎𝑀2𝑋 − 𝑎𝑀1𝑋) ∗ 𝑋, (𝑐𝑌2𝑋 − 𝑐𝑌1𝑋) ∗ 𝑋]  +  𝐶𝑜𝑣[(𝑎𝑀2𝑋 − 𝑎𝑀1𝑋) ∗ 𝑋, 𝑆𝑌2𝑌1

∗ 𝑌1]  +  𝐶𝑜𝑣[(𝑎𝑀2𝑋 − 𝑎𝑀1𝑋) ∗ 𝑋, (𝑏𝑌2𝑀1 − 𝑏𝑌1𝑀1) ∗ 𝑀1]  

+  𝐶𝑜𝑣[(𝑎𝑀2𝑋 − 𝑎𝑀1𝑋) ∗ 𝑋, 𝑏𝑌2𝑀2 ∗ 𝑀2]  +  𝐶𝑜𝑣[(𝑎𝑀2𝑋 − 𝑎𝑀1𝑋)

∗ 𝑋, 𝑒4]  +  𝐶𝑜𝑣[(𝑎𝑀2𝑋 − 𝑎𝑀1𝑋) ∗ 𝑋, −𝑒2] +  𝐶𝑜𝑣[𝑆𝑀2𝑀1 ∗ 𝑀1, (𝑐𝑌2𝑋

− 𝑐𝑌1𝑋) ∗ 𝑋]  +  𝐶𝑜𝑣[𝑆𝑀2𝑀1 ∗ 𝑀1, 𝑆𝑌2𝑌1 ∗ 𝑌1]  +  𝐶𝑜𝑣[𝑆𝑀2𝑀1

∗ 𝑀1, (𝑏𝑌2𝑀1 − 𝑏𝑌1𝑀1) ∗ 𝑀1]  +  𝐶𝑜𝑣[𝑆𝑀2𝑀1 ∗ 𝑀1, 𝑏𝑌2𝑀2 ∗ 𝑀2]  

+  𝐶𝑜𝑣[𝑆𝑀2𝑀1 ∗ 𝑀1, 𝑒4]  +  𝐶𝑜𝑣[𝑆𝑀2𝑀1 ∗ 𝑀1, −𝑒2] +  𝐶𝑜𝑣[𝑏𝑀2𝑌1

∗ 𝑌1, (𝑐𝑌2𝑋 − 𝑐𝑌1𝑋) ∗ 𝑋]  +  𝐶𝑜𝑣[𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑆𝑌2𝑌1 ∗ 𝑌1]  +  𝐶𝑜𝑣[𝑏𝑀2𝑌1

∗ 𝑌1, (𝑏𝑌2𝑀1 − 𝑏𝑌1𝑀1) ∗ 𝑀1]  +  𝐶𝑜𝑣[𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑏𝑌2𝑀2 ∗ 𝑀2]  

+  𝐶𝑜𝑣[𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑒4]  +  𝐶𝑜𝑣[𝑏𝑀2𝑌1 ∗ 𝑌1, −𝑒2]  +  𝐶𝑜𝑣[𝑒3, (𝑐𝑌2𝑋

− 𝑐𝑌1𝑋) ∗ 𝑋]  +  𝐶𝑜𝑣[𝑒3, (𝑐𝑌2𝑋 − 𝑐𝑌1𝑋) ∗ 𝑋]  +  𝐶𝑜𝑣[𝑒3, 𝑆𝑌2𝑌1 ∗ 𝑌1]  

+  𝐶𝑜𝑣[𝑒3, (𝑏𝑌2𝑀1 − 𝑏𝑌1𝑀1) ∗ 𝑀1]  +  𝐶𝑜𝑣[𝑒3, 𝑏𝑌2𝑀2 ∗ 𝑀2]  

+  𝐶𝑜𝑣[𝑒3, 𝑒4] +  𝐶𝑜𝑣[𝑒3, −𝑒2] +  𝐶𝑜𝑣[−𝑒1, (𝑐𝑌2𝑋 − 𝑐𝑌1𝑋) ∗ 𝑋]  

+  𝐶𝑜𝑣[−𝑒1, 𝑆𝑌2𝑌1 ∗ 𝑌1]  +  𝐶𝑜𝑣[−𝑒1,

(𝑏𝑌2𝑀1 − 𝑏𝑌1𝑀1) ∗ 𝑀1]  +  𝐶𝑜𝑣[−𝑒1, 𝑏𝑌2𝑀2 ∗ 𝑀2]  +  𝐶𝑜𝑣[−𝑒1, 𝑒4] 

+  𝐶𝑜𝑣[−𝑒1, −𝑒2] 

=  (𝑎𝑀2𝑋 − 𝑎𝑀1𝑋) ∗ (𝑐𝑌2𝑋 − 𝑐𝑌1𝑋) ∗ 𝜎𝑋
2 +  (𝑎𝑀2𝑋 − 𝑎𝑀1𝑋) ∗ 𝐶𝑜𝑣(𝑋, 𝑌1)  +  (𝑎𝑀2𝑋

− 𝑎𝑀1𝑋) ∗ (𝑏𝑌2𝑀1 − 𝑏𝑌1𝑀1) ∗ 𝐶𝑜𝑣(𝑋, 𝑀1) + (𝑎𝑀2𝑋 − 𝑎𝑀1𝑋) ∗ 𝑏𝑌2𝑀2

∗ 𝐶𝑜𝑣(𝑋, 𝑀2) +  𝑆𝑀2𝑀1 ∗ (𝑐𝑌2𝑋 − 𝑐𝑌1𝑋) ∗ 𝐶𝑜𝑣(𝑋, 𝑀1) +  𝑆𝑀2𝑀1

∗ 𝑆𝑌2𝑌1 ∗ 𝐶𝑜𝑣(𝑀1, 𝑌1)  +  𝑆𝑀2𝑀1 ∗ (𝑏𝑌2𝑀1 − 𝑏𝑌1𝑀1) ∗ 𝜎𝑀1
2 +  𝑆𝑀2𝑀1

∗ 𝑏𝑌2𝑀2 ∗ 𝐶𝑜𝑣(𝑀1, 𝑀2) +  𝑏𝑀2𝑌1 ∗ (𝑐𝑌2𝑋 − 𝑐𝑌1𝑋) ∗ 𝐶𝑜𝑣(𝑋, 𝑌1)  

+  𝑏𝑀2𝑌1 ∗ 𝑆𝑌2𝑌1 ∗  𝜎𝑌1
2 +  𝑏𝑀2𝑌1 ∗ (𝑏𝑌2𝑀1 − 𝑏𝑌1𝑀1) ∗ 𝐶𝑜𝑣(𝑀1, 𝑌1)  

+  𝑏𝑀2𝑌1 ∗ 𝑏𝑌2𝑀2 ∗ 𝐶𝑜𝑣(𝑌1, 𝑀2) –  𝑏𝑀2𝑌1 ∗ 𝐶𝑜𝑣(𝑌1, 𝑒2)  +  𝑏𝑌2𝑀2

∗ 𝐶𝑜𝑣(𝑀2, 𝑒3) –  𝑆𝑌2𝑌1 ∗ 𝐶𝑜𝑣(𝑌1, 𝑒1) – (𝑏𝑌2𝑀1 − 𝑏𝑌1𝑀1)

∗ 𝐶𝑜𝑣(𝑀1, 𝑒1) –  𝑏𝑌2𝑀2 ∗ 𝐶𝑜𝑣(𝑀2, 𝑒1)  

 



   
 

195 

 

 

 

𝑪𝒐𝒗(𝒀𝟏, 𝒆𝟐)  =  𝐶𝑜𝑣(𝑐𝑌1𝑋 ∗ 𝑋 +  𝑏𝑌1𝑀1 ∗ 𝑀1 +  𝑒2, 𝑒2) 

=  𝐶𝑜𝑣(𝑐𝑌1𝑋 ∗ 𝑋, 𝑒2)  +  𝐶𝑜𝑣(𝑏𝑌1𝑀1 ∗ 𝑚1, 𝑒2)  +  𝐶𝑜𝑣(𝑒2, 𝑒2) 

=  𝜎𝑒2
2

 

 

𝑪𝒐𝒗(𝑴𝟐, 𝒆𝟑)  =  𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋 +  𝑆𝑀2𝑀1 ∗ 𝑀1 +  𝑆𝑀2𝑌1 ∗ 𝑌1 +  𝑒3, 𝑒3) 

=  𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋, 𝑒3) +  𝐶𝑜𝑣(𝑆𝑀2𝑀1 ∗ 𝑀1, 𝑒3) +  𝐶𝑜𝑣(𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑒3)  +  𝐶𝑜𝑣(𝑒3, 𝑒3) 

=  𝜎𝑒3
2

 

 

𝑪𝒐𝒗(𝒀𝟏, 𝒆𝟏)  =  𝐶𝑜𝑣(𝑐𝑌1𝑋 ∗ 𝑋 +  𝑏𝑌1𝑀1 ∗ 𝑀1 +  𝑒2, 𝑒1) 

=  𝐶𝑜𝑣(𝑐𝑌1𝑋 ∗ 𝑋, 𝑒1)  +  𝐶𝑜𝑣(𝑏𝑌1𝑀1 ∗ 𝑀1, 𝑒1)  +  𝐶𝑜𝑣(𝑒2, 𝑒1) 

=  𝑏𝑌1𝑀1 ∗ 𝐶𝑜𝑣(𝑀1, 𝑒1) 

 

𝑪𝒐𝒗(𝑴𝟏, 𝒆𝟏)  =  𝐶𝑜𝑣(𝑎𝑀1𝑋 ∗ 𝑋 +  𝑒1, 𝑒1) 

=  𝐶𝑜𝑣(𝑎𝑀1𝑋 ∗ 𝑋, 𝑒1) +  𝐶𝑜𝑣(𝑒1, 𝑒1) 

=  𝜎𝑒1
2

 

 

𝑪𝒐𝒗(𝑴𝟐, 𝒆𝟏)  =  𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋 +  𝑆𝑀2𝑀1 ∗ 𝑀1 +  𝑏𝑀2𝑌1 ∗ 𝑌1 +  𝑒3, 𝑒1) 

=  𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋, 𝑒1)  =  𝐶𝑜𝑣(𝑆𝑀2𝑀1 ∗ 𝑀1, 𝑒1) +  𝐶𝑜𝑣(𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑒1)  +  𝐶𝑜𝑣(𝑒3, 𝑒1) 

=  𝑆𝑀2𝑀1 ∗ 𝐶𝑜𝑣(𝑀1, 𝑒1)  +  𝑏𝑀2𝑌1 ∗ 𝐶𝑜𝑣(𝑌1, 𝑒1) 

= 𝑆𝑀2𝑀1 ∗ 𝜎𝑒1
2 +  𝑏𝑀2𝑌1 ∗ 𝑏𝑌1𝑀1 ∗ 𝜎𝑒1

2  

 

𝒀�̂� = SY2Y1 ∗ Y1 

𝑹𝒆𝒔 𝜟𝒀 = 𝑌2 − 𝑌2̂ 



   
 

196 

 

= 𝑐𝑌2𝑋 ∗ 𝑋 + 𝑆𝑌2𝑌1 ∗ 𝑌1 + 𝑏𝑌2𝑀1 ∗ 𝑀1 + 𝑏𝑌2𝑀2 ∗ 𝑀2 + 𝑒4 − 𝑆𝑌2𝑌1 ∗ 𝑌1 

= 𝑐𝑌2𝑋 ∗ 𝑋 + 𝑏𝑌2𝑀1 ∗ 𝑀1 + 𝑏𝑌2𝑀2 ∗ 𝑀2 + 𝑒4 

 

𝑴�̂� = SM2M1 ∗ M1 

𝑹𝒆𝒔 𝜟𝑴 = 𝑀2 − 𝑀2̂ 

= 𝑎𝑀2𝑋 ∗ 𝑋 + 𝑆𝑀2𝑀1 ∗ 𝑀1 + 𝑏𝑀2𝑌1 ∗ 𝑌1 + 𝑒3 − 𝑆𝑀2𝑀1 ∗ 𝑀1 

= 𝑎𝑀2𝑋 ∗ 𝑋 + 𝑏𝑀2𝑌1 ∗ 𝑌1 + 𝑒3 

 

𝑪𝒐𝒗(𝑹𝒆𝒔𝜟𝑴, 𝑹𝒆𝒔𝜟𝑴)

= 𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋 + 𝑏𝑀2𝑌1 ∗ 𝑌1 + 𝑒3, 𝑎𝑀2𝑋 ∗ 𝑋 + 𝑏𝑀2𝑌1 ∗ 𝑌1 + 𝑒3) 

= 𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋, 𝑎𝑀2𝑋 ∗ 𝑋) + 𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋, 𝑏𝑀2𝑌1 ∗ 𝑌1) + 𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋, 𝑒3)

+ 𝐶𝑜𝑣(𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑎𝑀2𝑋 ∗ 𝑋) + 𝐶𝑜𝑣(𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑏𝑀2𝑌1 ∗ 𝑌1)

+ 𝐶𝑜𝑣(𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑒3) + 𝐶𝑜𝑣(𝑒3, 𝑎𝑀2𝑋 ∗ 𝑋) + 𝐶𝑜𝑣(𝑒3, 𝑏𝑀2𝑌1 ∗ 𝑌1)

+ 𝐶𝑜𝑣(𝑒3, 𝑒3) 

= 𝑎𝑀2𝑋2 ∗ 𝜎𝑋
2 + 2 ∗ 𝑎𝑀2𝑋 ∗ 𝑏𝑀2𝑌1 ∗ 𝐶𝑜𝑣(𝑋, 𝑌1) + 𝑏𝑀2𝑌12 ∗ 𝜎𝑌1

2 + 𝜎𝑒3
2  

 

𝑪𝒐𝒗(𝑹𝒆𝒔𝜟𝒀, 𝑹𝒆𝒔𝜟𝒀)

= 𝐶𝑜𝑣(𝑐𝑌2𝑋 ∗ 𝑋 + 𝑏𝑌2𝑀1 ∗ 𝑀1 + 𝑏𝑌2𝑀2 ∗ 𝑀2 + 𝑒4, 𝑐𝑌2𝑋 ∗ 𝑋 + 𝑏𝑌2𝑀1

∗ 𝑀1 + 𝑏𝑌2𝑀2 ∗ 𝑀2 + 𝑒4) 

= 𝐶𝑜𝑣(𝑐𝑌2𝑋 ∗ 𝑋, 𝑐𝑌2𝑋 ∗ 𝑋) + 𝐶𝑜𝑣(𝑐𝑌2𝑋 ∗ 𝑋, 𝑏𝑌2𝑀1 ∗ 𝑀1) + 𝐶𝑜𝑣(𝑐𝑌2𝑋 ∗ 𝑋, 𝑏𝑌2𝑀2 ∗ 𝑀2)

+ 𝐶𝑜𝑣(𝑐𝑌2𝑋 ∗ 𝑋, 𝑒4) + 𝐶𝑜𝑣(𝑏𝑌2𝑀1 ∗ 𝑀1, 𝑐𝑌2𝑋 ∗ 𝑋)

+ 𝐶𝑜𝑣(𝑏𝑌2𝑀1 ∗ 𝑀1, 𝑏𝑌2𝑀1 ∗ 𝑀1) + 𝐶𝑜𝑣(𝑏𝑌2𝑀1 ∗ 𝑀1, 𝑏𝑌2𝑀2 ∗ 𝑀2)

+ 𝐶𝑜𝑣(𝑏𝑌2𝑀1 ∗ 𝑀1, 𝑒4) + 𝐶𝑜𝑣(𝑏𝑌2𝑀2 ∗ 𝑀2, 𝑐𝑌2𝑋 ∗ 𝑋)

+ 𝐶𝑜𝑣(𝑏𝑌2𝑀2 ∗ 𝑀2, 𝑏𝑌2𝑀1 ∗ 𝑀1) + 𝐶𝑜𝑣(𝑏𝑌2𝑀2 ∗ 𝑀2, 𝑏𝑌2𝑀2 ∗ 𝑀2)

+ 𝐶𝑜𝑣(𝑏𝑌2𝑀2 ∗ 𝑀2, 𝑒4) + 𝐶𝑜𝑣(𝑒4, 𝑐𝑌2𝑋 ∗ 𝑋) + 𝐶𝑜𝑣(𝑒4, 𝑏𝑌2𝑀1 ∗ 𝑀1)

+ 𝐶𝑜𝑣(𝑒4, 𝑏𝑌2𝑀2 ∗ 𝑀2) + 𝐶𝑜𝑣(𝑒4, 𝑒4) 

= 𝑐𝑌2𝑋2 ∗ 𝜎𝑋
2 + 𝑐𝑌2𝑋 ∗ 𝑏𝑌2𝑀1 ∗ 𝐶𝑋𝑀1 + 𝑐𝑌2𝑋 ∗ 𝑏𝑌2𝑀2 ∗ 𝐶𝑋𝑀2 + 𝑏𝑌2𝑀1 ∗ 𝑐𝑌2𝑋 ∗ 𝐶𝑋𝑀1

+ 𝑏𝑌2𝑀12 ∗ 𝜎𝑀1
2 + 𝑏𝑌2𝑀1 ∗ 𝑏𝑌2𝑀2 ∗ 𝐶𝑀1𝑀2 + 𝑏𝑌2𝑀2 ∗ 𝑐𝑌2𝑋 ∗ 𝐶𝑋𝑀2

+ 𝑏𝑌2𝑀2 ∗ 𝑏𝑌2𝑀1 ∗ 𝐶𝑀1𝑀2 + 𝑏𝑌2𝑀22 ∗ 𝜎𝑀2
2 + 𝜎𝑒4

2  

𝑪𝒐𝒗(𝑿, 𝑹𝒆𝒔𝜟𝑴) = 𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋 + 𝑏𝑀2𝑌1 ∗ 𝑌1 + 𝑒3) 



   
 

197 

 

= 𝑎𝑀2𝑋 ∗ 𝜎𝑋
2 + 𝑏𝑀2𝑌1 ∗ 𝐶𝑜𝑣(𝑋, 𝑌1) 

𝑪𝒐𝒗(𝑹𝒆𝒔𝜟𝑴, 𝑹𝒆𝒔𝜟𝒀)

= 𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋 + 𝑏𝑀2𝑌1 ∗ 𝑌1 + 𝑒3, 𝑐𝑌2𝑋 ∗ 𝑋 + 𝑏𝑌2𝑀1 ∗ 𝑀1 + 𝑏𝑌2𝑀2

∗ 𝑀2 + 𝑒4) 

= 𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋, 𝑐𝑌2𝑋 ∗ 𝑋) + 𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋, 𝑏𝑌2𝑀1 ∗ 𝑀1)

+ 𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋, 𝑏𝑌2𝑀2 ∗ 𝑀2) + 𝐶𝑜𝑣(𝑎𝑀2𝑋 ∗ 𝑋, 𝑒4)

+ 𝐶𝑜𝑣(𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑐𝑌2𝑋 ∗ 𝑋) + 𝐶𝑜𝑣(𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑏𝑌2𝑀1 ∗ 𝑀1)

+ 𝐶𝑜𝑣(𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑏𝑌2𝑀2 ∗ 𝑀2) + 𝐶𝑜𝑣(𝑏𝑀2𝑌1 ∗ 𝑌1, 𝑒4)

+ 𝐶𝑜𝑣(𝑒3, 𝑐𝑌2𝑋 ∗ 𝑋) + 𝐶𝑜𝑣(𝑒3, 𝑏𝑌2𝑀1 ∗ 𝑀1) + 𝐶𝑜𝑣(𝑒3, 𝑏𝑌2𝑀2 ∗ 𝑀2)

+ 𝐶𝑜𝑣(𝑒3, 𝑒4) 

= 𝑎𝑀2𝑋 ∗ 𝑐𝑌2𝑋 ∗ 𝜎𝑋
2 + 𝑎𝑀2𝑋 ∗ 𝑏𝑌2𝑀1 ∗ 𝐶𝑜𝑣(𝑋, 𝑀1) + 𝑎𝑀2𝑋 ∗ 𝑏𝑌2𝑀2 ∗ 𝐶𝑜𝑣(𝑋, 𝑀2)

+ 𝑏𝑀2𝑌1 ∗ 𝑐𝑌2𝑋 ∗ 𝐶𝑜𝑣(𝑋, 𝑌1) + 𝑏𝑀2𝑌1 ∗ 𝑏𝑌2𝑀1 ∗ 𝐶𝑜𝑣(𝑀1, 𝑌1) + 𝑏𝑀2𝑌1

∗ 𝑏𝑌2𝑀2 ∗ 𝐶𝑜𝑣(𝑌1, 𝑀2) + 𝑏𝑌2𝑀2 ∗ 𝜎𝑒3
2  

𝑪𝒐𝒗(𝑿, 𝑹𝒆𝒔𝜟𝒀) = 𝐶𝑜𝑣(𝑋, 𝑐𝑌2𝑋 ∗ 𝑋 + 𝑏𝑌2𝑀1 ∗ 𝑀1 + 𝑏𝑌2𝑀2 ∗ 𝑀2 + 𝑒4) 

= 𝐶𝑜𝑣(𝑋, 𝑐𝑌2𝑋 ∗ 𝑋) + 𝐶𝑜𝑣(𝑋, 𝑏𝑌2𝑀1 ∗ 𝑀1) + 𝐶𝑜𝑣(𝑋, 𝑏𝑌2𝑀2 ∗ 𝑀2) + 𝐶𝑜𝑣(𝑋, 𝑒4) 

= 𝑐𝑌2𝑋 ∗ 𝜎𝑋
2 + 𝑏𝑌2𝑀1 ∗ 𝐶𝑜𝑣(𝑋, 𝑀1) + 𝑏𝑌2𝑀2 ∗ 𝐶𝑜𝑣(𝑋, 𝑀2) 
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APPENDIX P 

TRUE CORRELATIONS 
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𝑋 = 0,1 

𝑀1 = 𝑎𝑀1𝑋 ∗ 𝑋 + 𝑒1 

𝑌1 = 𝑐𝑌1𝑋 ∗ 𝑋 + 𝑏𝑌1𝑀1 ∗ 𝑀1 + 𝑒2 

𝑀2 = 𝑎𝑀2𝑋 ∗ 𝑋 + 𝑠𝑀2𝑀1 ∗ 𝑀1 + 𝑏𝑀2𝑌1 ∗ 𝑌1 + 𝑒3 

𝑌2 = 𝑐𝑌2𝑋 ∗ 𝑋 + 𝑠𝑌2𝑌1 ∗ 𝑌1 + 𝑏𝑌2𝑀1 ∗ 𝑀1 + 𝑏𝑌2𝑀2 ∗ 𝑀2 + 𝑒4 

 

Zero-Order Correlations 

 

𝜌𝑥𝑚1 =
𝐶𝑋𝑀1

𝑆𝑇𝐷𝑋∗𝑆𝑇𝐷𝑀1
  𝜌𝑚1𝑚2 =

𝐶𝑀1𝑀2

𝑆𝑇𝐷𝑀1∗𝑆𝑇𝐷𝑀2
  

𝜌𝑥𝑦1 =
𝐶𝑋𝑌1

𝑆𝑇𝐷𝑋∗𝑆𝑇𝐷𝑌1
  𝜌𝑚1𝑦2 =

𝐶𝑀1𝑌2

𝑆𝑇𝐷𝑀1∗𝑆𝑇𝐷𝑌2
  

𝜌𝑥𝑚2 =
𝐶𝑋𝑀2

𝑆𝑇𝐷𝑋∗𝑆𝑇𝐷𝑀2
  𝜌𝑚2𝑦1 =

𝐶𝑀2𝑌1

𝑆𝑇𝐷𝑀2∗𝑆𝑇𝐷𝑌1
  

𝜌𝑥𝑦2 =
𝐶𝑋𝑌2

𝑆𝑇𝐷𝑋∗𝑆𝑇𝐷𝑌2
  𝜌𝑚2𝑦2 =

𝐶𝑀2𝑌2

𝑆𝑇𝐷𝑀2∗𝑆𝑇𝐷𝑌2
  

𝜌𝑚1𝑦1 =
𝐶𝑀1𝑌1

𝑆𝑇𝐷𝑀1∗𝑆𝑇𝐷𝑌1
  𝜌𝑦1𝑦2 =

𝐶𝑌1𝑌2

𝑆𝑇𝐷𝑌1∗𝑆𝑇𝐷𝑌2
  

 

First-order partial correlations 

 

𝜌𝑥𝑦1.𝑚1 =
𝜌𝑥𝑦1−(𝜌𝑚1𝑦1∗𝜌𝑥𝑚1)

√1−𝜌𝑚1𝑦1
2∗√1−𝜌𝑥𝑚1

2
   𝜌𝑚1𝑦1.𝑥 =

𝜌𝑚1𝑦1−(𝜌𝑥𝑚1∗𝜌𝑥𝑦1)

√1−𝜌𝑥𝑚1
2∗√1−𝜌𝑥𝑦1

2
  

𝜌𝑥𝑚2.𝑚1 =
𝜌𝑥𝑚2−(𝜌𝑥𝑚1∗𝜌𝑚1𝑚2)

√1−𝜌𝑥𝑚1
2∗√1−𝜌𝑚1𝑚2

2
  𝜌𝑥𝑚2.𝑦1 =

𝜌𝑥𝑚2−(𝜌𝑥𝑦1∗𝜌𝑚2𝑦1)

√1−𝜌𝑥𝑦1
2∗√1−𝜌𝑚2𝑦1

2
  

𝜌𝑥𝑦2.𝑦1 =
𝜌𝑥𝑦2−(𝜌𝑥𝑦1∗𝜌𝑦1𝑦2)

√1−𝜌𝑥𝑦1
2∗√1−𝜌𝑦1𝑦2

2
  𝜌𝑥𝑦2.𝑚2 =

𝜌𝑥𝑦2−(𝜌𝑥𝑚2∗𝜌𝑚2𝑦2)

√1−𝜌𝑥𝑚2
2∗√1−𝜌𝑚2𝑦2

2
  

𝜌𝑦1𝑚2.𝑚1 =
𝜌𝑦1𝑚2−(𝜌𝑚1𝑦1∗𝜌𝑚1𝑚2)

√1−𝜌𝑚1𝑦1
2∗√1−𝜌𝑚1𝑚2

2
  𝜌𝑦1𝑚2.𝑥 =

𝜌𝑥𝑦2−(𝜌𝑥𝑚2∗𝜌𝑚2𝑦2)

√1−𝜌𝑥𝑚2
2∗√1−𝜌𝑚2𝑦2

2
  

𝜌𝑚1𝑚2.𝑥 =
𝜌𝑚1𝑚2−(𝜌𝑥𝑚1∗𝜌𝑥𝑚2)

√1−𝜌𝑥𝑚1
2∗√1−𝜌𝑥𝑚2

2
  𝜌𝑚1𝑚2.𝑦1 =

𝜌𝑚1𝑚2−(𝜌𝑚1𝑦1∗𝜌𝑚2𝑦1)

√1−𝜌𝑚1𝑦1
2∗√1−𝜌𝑚2𝑦1

2
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𝜌𝑚1𝑦2.𝑥 =
𝜌𝑚1𝑦2−(𝜌𝑥𝑚1∗𝜌𝑥𝑦2)

√1−𝜌𝑥𝑚1
2∗√1−𝜌𝑥𝑦2

2
  𝜌𝑚1𝑦2.𝑦1 =

𝜌𝑚1𝑦2−(𝜌𝑚1𝑦1∗𝜌𝑦1𝑦2)

√1−𝜌𝑚1𝑦1
2∗√1−𝜌𝑦1𝑦2

2
  

𝜌𝑚1𝑦2.𝑚2 =
𝜌𝑚1𝑦2−(𝜌𝑚1𝑚2∗𝜌𝑚2𝑦2)

√1−𝜌𝑚1𝑚2
2∗√1−𝜌𝑚2𝑦2

2
  𝜌𝑚2𝑦2.𝑥 =

𝜌𝑚2𝑦2−(𝜌𝑥𝑚2∗𝜌𝑥𝑦2)

√1−𝜌𝑥𝑚1
2∗√1−𝜌𝑥𝑦2

2
  

𝜌𝑚2𝑦2.𝑦1 =
𝜌𝑚2𝑦2−(𝜌𝑚2𝑦1∗𝜌𝑦1𝑦2)

√1−𝜌𝑚2𝑦1
2∗√1−𝜌𝑦1𝑦2

2
  𝜌𝑚2𝑦2.𝑚1 =

𝜌𝑚2𝑦2−(𝜌𝑚1𝑚2∗𝜌𝑚1𝑦2)

√1−𝜌𝑚1𝑚2
2∗√1−𝜌𝑚1𝑦2

2
  

𝜌𝑦1𝑦2.𝑥 =
𝜌𝑦1𝑦2−(𝜌𝑥𝑦1∗𝜌𝑥𝑦2)

√1−𝜌𝑥𝑦1
2∗√1−𝜌𝑥𝑦2

2
  𝜌𝑦1𝑦2.𝑚1 =

𝜌𝑦1𝑦2−(𝜌𝑚1𝑦1∗𝜌𝑚1𝑦2)

√1−𝜌𝑚1𝑦1
2∗√1−𝜌𝑚1𝑦2

2
  

𝜌𝑦1𝑦2.𝑚2 =
𝜌𝑦1𝑦2−(𝜌𝑚2𝑦1∗𝜌𝑚2𝑦2)

√1−𝜌𝑚2𝑦1
2∗√1−𝜌𝑚2𝑦2

2
  𝜌𝑥𝑦2.𝑚1 =

𝜌𝑥𝑦2−(𝜌𝑥𝑚1∗𝜌𝑚1𝑦2)

√1−𝜌𝑥𝑚1
2∗√1−𝜌𝑚1𝑦2

2
  

 

Second-order partial correlations 

 

𝜌𝑥𝑚2.𝑚1𝑦1 =
𝜌𝑥𝑚2.𝑚1−(𝜌𝑚2𝑦1.𝑚1∗𝜌𝑥𝑦1.𝑚1)

√1−𝜌𝑚2𝑦1.𝑚1
2∗√1−𝜌𝑥𝑦1.𝑚1

2
  𝜌𝑦1𝑚2.𝑥𝑚1 =

𝜌𝑦1𝑚2.𝑥−(𝜌𝑚1𝑦1.𝑥∗𝜌𝑚1𝑚2.𝑥)

√1−𝜌𝑚1𝑦1.𝑥
2∗√1−𝜌𝑚1𝑚2.𝑥

2
  

𝜌𝑥𝑦2.𝑚1𝑦1 =
𝜌𝑥𝑦2.𝑚1−(𝜌𝑥𝑦1.𝑚1∗𝜌𝑦1𝑦2.𝑚1)

√1−𝜌𝑥𝑦1.𝑚1
2∗√1−𝜌𝑦1𝑦2.𝑚1

2
  𝜌𝑚2𝑦2.𝑥𝑦1 =

𝜌𝑚2𝑦2.𝑥−(𝜌𝑦1𝑚2.𝑥∗𝜌𝑦1𝑦2.𝑥)

√1−𝜌𝑦1𝑚2.𝑥
2∗√1−𝜌𝑦1𝑦2.𝑥

2
  

𝜌𝑥𝑦2.𝑦1𝑚2 =
𝜌𝑥𝑦2.𝑦1−(𝜌𝑥𝑚2.𝑦1∗𝜌𝑦2𝑚2.𝑦1)

√1−𝜌𝑥𝑚2.𝑦1
2∗√1−𝜌𝑦2𝑚2.𝑦1

2
  𝜌𝑚2𝑦2.𝑥𝑚1 =

𝜌𝑚2𝑦2.𝑥−(𝜌𝑚1𝑚2.𝑥∗𝜌𝑚1𝑦2.𝑥)

√1−𝜌𝑚1𝑚2.𝑥
2∗√1−𝜌𝑚1𝑦2.𝑥

2
  

𝜌𝑥𝑦2.𝑚1𝑚2 =
𝜌𝑥𝑦2.𝑚1−(𝜌𝑥𝑚2.𝑚1∗𝜌𝑚2𝑦2.𝑚1)

√1−𝜌𝑥𝑚2.𝑚1
2∗√1−𝜌𝑚2𝑦2.𝑚1

2
  𝜌𝑚2𝑦2.𝑦1𝑚1 =

𝜌𝑚2𝑦2.𝑦1−(𝜌𝑚1𝑚2.𝑦1∗𝜌𝑚1𝑦2.𝑦1)

√1−𝜌𝑚1𝑚2.𝑦1
2∗√1−𝜌𝑚1𝑦2.𝑦1

2
  

𝜌𝑚1𝑚2.𝑥𝑦1 =
𝜌𝑚1𝑚2.𝑥−(𝜌𝑚1𝑦1.𝑥∗𝜌𝑦1𝑚2.𝑥)

√1−𝜌𝑚1𝑦1.𝑥
2∗√1−𝜌𝑦1𝑚2.𝑥

2
  𝜌𝑦1𝑦2.𝑥𝑚1 =

𝜌𝑦1𝑦2.𝑥−(𝜌𝑚1𝑦1.𝑥∗𝜌𝑚1𝑦2.𝑥)

√1−𝜌𝑚1𝑦1.𝑥
2∗√1−𝜌𝑚1𝑦2.𝑥

2
  

𝜌𝑚1𝑦2.𝑥𝑦1 =
𝜌𝑚1𝑦2.𝑥−(𝜌𝑚1𝑦1.𝑥∗𝜌𝑦1𝑦2.𝑥)

√1−𝜌𝑚1𝑦1.𝑥
2∗√1−𝜌𝑦1𝑦2.𝑥

2
  𝜌𝑦1𝑦2.𝑥𝑚2 =

𝜌𝑦1𝑦2.𝑥−(𝜌𝑦1𝑚2.𝑥∗𝜌𝑚2𝑦2.𝑥)

√1−𝜌𝑦1𝑚2.𝑥
2∗√1−𝜌𝑚2𝑦2.𝑥

2
  

𝜌𝑚1𝑦2.𝑦1𝑚2 =
𝜌𝑚1𝑦2.𝑦1−(𝜌𝑚1𝑚2.𝑦1∗𝜌𝑚2𝑦2.𝑦1)

√1−𝜌𝑚1𝑚2.𝑦1
2∗√1−𝜌𝑚2𝑦2.𝑦1

2
  𝜌𝑦1𝑦2.𝑚1𝑚2 =

𝜌𝑦1𝑦2.𝑚1−(𝜌𝑦1𝑚2.𝑚1∗𝜌𝑚2𝑦2.𝑚1)

√1−𝜌𝑦1𝑚2.𝑚1
2∗√1−𝜌𝑚2𝑦2.𝑚1

2
  

𝜌𝑚1𝑦2.𝑥𝑚2 =
𝜌𝑚1𝑦2.𝑥−(𝜌𝑚1𝑚2.𝑥∗𝜌𝑚2𝑦2.𝑥)

√1−𝜌𝑚1𝑚2.𝑥
2∗√1−𝜌𝑚2𝑦2.𝑥

2
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Third-order partial correlations 

𝜌𝑥𝑦2.𝑦1𝑚1𝑚2 =
𝜌𝑥𝑦2.𝑚1𝑦1−(𝜌𝑥𝑚2.𝑚1𝑦1∗𝜌𝑚2𝑦2.𝑦1𝑚1)

√1−𝜌𝑥𝑚2.𝑚1𝑦1
2∗√1−𝜌𝑚2𝑦2.𝑦1𝑚1

2
  

𝜌𝑚1𝑦2.𝑥𝑦1𝑚2 =
𝜌𝑚1𝑦2.𝑥𝑦1−(𝜌𝑚1𝑚2.𝑥𝑦1∗𝜌𝑚2𝑦2.𝑥𝑦1)

√1−𝜌𝑚1𝑚2.𝑥𝑦1
2∗√1−𝜌𝑚2𝑦2.𝑥𝑚1

2
  

𝜌𝑦1𝑦2.𝑥𝑚1𝑚2 =
𝜌𝑦1𝑦2.𝑥𝑚1−(𝜌𝑦1𝑚2.𝑥𝑚1∗𝜌𝑚2𝑦2.𝑥𝑚1)

√1−𝜌𝑦1𝑚2.𝑥𝑚1
2∗√1−𝜌𝑚2𝑦2.𝑥𝑚1

2
  

𝜌𝑚2𝑦2.𝑥𝑚1𝑦1 =
𝜌𝑚2𝑦2.𝑥𝑚1−(𝜌𝑦1𝑚2.𝑥𝑚1∗𝜌𝑦1𝑦2.𝑥𝑚1)

√1−𝜌𝑦1𝑚2.𝑥𝑚1
2∗√1−𝜌𝑦1𝑦2.𝑥𝑚1

2
  

 

 


