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ABSTRACT 

Merton (1987) predicts that idiosyncratic risk can be priced. I develop a simple 

equilibrium model of capital markets with information costs in which the idiosyncratic 

risk premium depends on the average level of idiosyncratic volatility. This dependence 

suggests that the idiosyncratic risk premium varies over time. I find that in U.S. markets, 

the covariance between stock-level idiosyncratic volatility and the idiosyncratic risk 

premium explains future stock returns. Stocks in the highest quintile of the covariance 

between the volatility and risk premium earn an average 3-factor alpha of 70 bps per 

month higher than those in the lowest quintile.    
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CHAPTER 1 

INTRODUCTION 

Individual investors often hold under-diversified portfolios. This could be related 

to a number of factors, such as transaction costs, information acquisition costs, or 

behavioral biases.1 Various theories, including those set forth in Levy (1978), Merton 

(1987), and Malkiel and Xu (2006), suggest that idiosyncratic risk can be priced when 

investors do not fully diversify their portfolios. Prior empirical studies that examine the 

relation between idiosyncratic risk and expected stock returns find mixed results. Ang, 

Hodrick, Xing, and Zhang (2006, 2009) (AHXZ here after) find a negative cross-

sectional relation between monthly stock returns and one-month lagged idiosyncratic 

volatility, which they attribute to an omitted risk factor. On the other hand, Chua, Goh, 

and Zhang (2008), Spiegel and Wang (2006), and Fu (2009) suggest that the risk-return 

tradeoff is contemporaneous, and they find positive relation between monthly stock 

returns and expected idiosyncratic volatility. All of these papers implicitly assume that 

the idiosyncratic risk premium remains constant over time.  

I develop a simple equilibrium model of capital markets with information costs in 

the spirit of Merton (1987), in which the idiosyncratic risk premium depends on the 

average level of idiosyncratic volatility. The intuition of the model is straight forward. If 

the total compensation for bearing idiosyncratic risk follows the law of diminishing 

marginal returns, the price of idiosyncratic risk should depend negatively on the average 

                                                           
1For theories of under-diversification, see Brennan (1975) on transaction costs, Merton 

(1987) on information acquisition costs, Barberis, Huang and Thaler (2006) and Odean 

(1999) on psychological biases.  For empirical evidence of under-diversification among 

U.S. investors, see Barber and Odean (2000), Polkovnichenko (2005), and Goetzmann 

and Kumar (2008).  
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level of idiosyncratic risk. Therefore, any changes in average idiosyncratic risk induce 

changes in the price of idiosyncratic risk. When the average level of idiosyncratic risk 

goes up, investors endogenously adjust their portfolios to improve their diversification, 

the idiosyncratic risk premium (the price for bearing each unit of idiosyncratic risk) goes 

down. Campbell, Lettau, Malkiel, and Xu (2001) show that average idiosyncratic risk 

varies considerably over time. My model suggests that these changes in average risk 

should generate a time-varying idiosyncratic risk premium.   

The model is empirically tractable. It explicitly predicts that the idiosyncratic risk 

premium is proportional to the inverse of average idiosyncratic risk.2 Time variation in 

the idiosyncratic risk premium therefore is mirrored by the time variation in the average 

idiosyncratic risk, which is observable. Since each stock’s idiosyncratic volatility 

comoves with average idiosyncratic volatility, the idiosyncratic risk premium is 

correlated with stock-level idiosyncratic volatility. The covariance between stock-level 

idiosyncratic volatility and the idiosyncratic risk premium affects cross-sectional stock 

returns like an additional “factor” loading. In other words, the stocks whose idiosyncratic 

risk commoves positively with the risk premium should have higher returns. I refer to this 

covariance between idiosyncratic risk and the price of this risk as idiosyncratic risk 

premium sensitivity (𝐼𝑅𝑃𝑆).3 A positive 𝐼𝑅𝑃𝑆 implies that the stock’s idiosyncratic 

volatility is higher when investors are more averse to idiosyncratic volatility.   

Following AHXZ (2006) and Fu (2009), I measure the idiosyncratic volatility of 

each stock in each month as the mean squared error of the residuals from the time-series 

                                                           
2More precisely, the term “average idiosyncratic risk” refers to standard deviation, i.e. the 

square root of average idiosyncratic volatility. 
3Although 𝐼𝑅𝑃𝑆 affects stock returns like an additional “factor” loading, essentially it is 

not a risk factor. 
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regression of the stock’s daily excess returns onto the three Fama-French factors. I 

compute the average idiosyncratic volatility across all stocks in U.S. markets. Then I 

measure 𝐼𝑅𝑃𝑆 of each stock by estimating the covariance between the stock’s 

idiosyncratic volatility and the inverse of average idiosyncratic risk, based on the prior 60 

months.    

In monthly Fama-MacBeth regressions between July 1968 and December 2012, 

the average slopes on 𝐼𝑅𝑃𝑆 are positive and statistically significant with a t-statistic of 

2.91, after controlling for size, book-to-market ratio, momentum and short-term return 

reversals. Portfolio sorts also show a positive relation between 𝐼𝑅𝑃𝑆 and Fama-French 3-

factor alphas. The highest 𝐼𝑅𝑃𝑆 quintile portfolio has an average 3-factor alpha of 21 

basis points per month with a t-statistic of 2.63. The lowest 𝐼𝑅𝑃𝑆 quintile portfolio has an 

average 3-factor alpha of -49 basis points per month with a t-statistic of -3.93. The 3-

factor alpha of the long-short portfolio is as large as 70 basis points per month (8.73% 

per year), with a robust t-statistic of 4.22. Moreover, a portfolio comprised solely of 

stocks with positive 𝐼𝑅𝑃𝑆 has an average 3-factor alpha of 47 basis points per month with 

a t-statistic of 4.00.    

The 𝐼𝑅𝑃𝑆 effect is also present in large-cap stocks, and in stocks with low one-

month lagged idiosyncratic volatilities. This is important because these securities account 

for majority of the total market capitalization. Furthermore, the 𝐼𝑅𝑃𝑆 effect remains 

significant at least 12 months after the portfolio formation. These features clearly 

distinguish the 𝐼𝑅𝑃𝑆 effect from the idiosyncratic volatility puzzle documented by 

AHXZ (2006).        
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My work is related to the extensive literature on idiosyncratic risk. The model is 

in the spirit of Merton (1987), in which investors’ portfolio diversification is 

endogenously determined. Unlike extant empirical studies, my paper suggests a time-

varying premium for bearing idiosyncratic risk, and provides evidence that the covariance 

between stock-level idiosyncratic risk and the premium of this risk affects cross-sectional 

stock returns. In that sense, the test can be thought of as paralleling the conditional 

CAPM literature in that when risk premium and stock-level risk are both time-varying 

and correlated, unconditional alpha can be non-zero.4     

The rest of the paper is organized as follows: Section 2 contains the theoretical 

framework. Section 3 describes the data, examines the effect of 𝐼𝑅𝑃𝑆 on cross-sectional 

stock returns, and presents the empirical results. I draw my conclusion in Section 4.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
4For conditional CAPM studies, see Ferson and Harvey (1991), Jagannathan and Wang 

(1996), Lettau and Ludvigson (2001), Zhang (2005), etc. 
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CHAPTER 2 

THEORETICAL FRAMEWORK 

In the first subsection, I suggest that the premium for bearing idiosyncratic risk 

varies over time. In the second subsection, I explore the impact on the cross-section of 

expected stock returns caused by this time-varying premium for bearing idiosyncratic risk. 

I show that the idiosyncratic risk premium sensitivity (𝐼𝑅𝑃𝑆) affects cross-sectional stock 

returns like an additional “factor” loading.   

2.1. Capital market equilibrium with endogenous diversification   

I develop a simple equilibrium model of capital markets with information costs in 

the spirit of Merton (1987). My model embodies Merton’s insight that idiosyncratic risk 

can be priced when investors do not fully diversify their portfolios perhaps because of 

various frictional costs. My main contribution is to endogenize portfolio diversification.5 

My model delivers novel implications.  

The key implication of this model is that the premium for bearing idiosyncratic 

risk negatively depends on the average level of idiosyncratic volatility. The intuition is 

straight forward. When the average level of idiosyncratic volatility goes up, investors 

adjust to improve their portfolio diversification, and the idiosyncratic risk premium (the 

price for bearing each unit of idiosyncratic volatility) goes down. More importantly, this 

dependence suggests that any changes in the average level of idiosyncratic volatility 

induce changes in the idiosyncratic risk premium. Prior empirical studies, e.g. Campbell, 

Lettau, Malkiel, and Xu (2001), show that the average level of idiosyncratic volatility 

                                                           
5In Merton (1987), the degree of portfolio diversification is exogenously given. 
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varies considerably over time. These changes in average volatility should generate a 

time-varying premium for bearing idiosyncratic risk.    

Most of this model and notation closely follows Merton (1987). The economy has 

𝑁 firms, 𝑁 ≫ 1. The return from investing in firm 𝑛 is specified as:  

  �̃�𝑛 = �̅�𝑛 + 𝑏�̃� + 𝜎𝑛휀�̃� 

𝑛 = 1, … ,𝑁 

(1)  

In the equation above, �̃� is a common factor with 𝐸(�̃�) = 0, 𝐸(�̃�2) = 1; 휀�̃� is a 

firm-specific random variable with 𝐸(휀�̃�) = 𝐸(휀�̃�|휀1̃, 휀2̃, … , 휀�̃�−1, 휀�̃�+1, … , 휀�̃� , 𝑌) = 0, 

𝑛 = 1,… ,𝑁 and 𝐸(휀�̃�
2) = 1; 𝜎𝑛

2 denotes the idiosyncratic volatility of security 𝑛, and 

𝜎𝑛2̅̅ ̅ =
1

𝑁
∑ 𝜎𝑛

2𝑁
𝑛=1  will denote the average idiosyncratic volatility across the 𝑁 securities. 

To focus on the pricing effect of idiosyncratic volatility, I assume that the 𝑁 firms have 

same initial size and same factor loading 𝑏. Let �̅�𝑀 denotes the market average of 

expected returns of the 𝑁 securities �̅�𝑀 =
1

𝑁
∑ �̅�𝑛
𝑁
𝑛=1  . 

Besides the 𝑁 firm securities, the economy has two “inside” securities: 𝑖) a 

riskless security with return 𝑅𝑓; 𝑖𝑖) a security 𝑁 + 1 with return �̃�𝑁+1 = �̅�𝑁+1 + �̃�.  

Investors’ aggregate demand for each “inside” security is zero in equilibrium.  

The economy has K investors, 𝐾 ≫ 𝑁. Investors are risk averse, have identical 

preferences and same initial wealth 𝑊𝑜. Investors are price takers and construct their 

portfolio by mean-variance optimization. The preference of investor is written as: 

𝑈𝑘 = 𝐸(�̃�𝑘) −
𝛿

2
𝑉𝑎𝑟(�̃�𝑘) 

𝑘 = 1,… , 𝐾 

(2)  
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In the equation above, �̃�𝑘 denotes the portfolio return of investor 𝑘; 𝛿 is the 

coefficient of risk aversion. Any investor’s information set contains two portions: firm-

specific knowledge and common knowledge. An investor is said to be “informed” about a 

firm 𝑛 if he knows (�̅�𝑛, 𝜎𝑛
2). An investor must spend a fixed cost 𝐼 so that he can process 

information to know (�̅�𝑛, 𝜎𝑛
2). Accordingly, investor 𝑘 can randomly select 𝑄𝑘 firms to 

know at information costs 𝑄𝑘𝐼. His selection must be random because all unknown firms 

appear the same to the investor. Because of information costs, the 𝑄𝑘 securities are only a 

subset of the 𝑁 securities. The subsets are different across the 𝐾 investors. Beside firm-

specific knowledge, every investor’s information set contains common knowledge: 

(𝑏, 𝑅𝑓 , �̅�𝑁+1, �̅�𝑀, 𝜎𝑛2̅̅ ̅, 𝐼).      

  The key assumption, as in Merton (1987), is that any investor 𝑘 uses a security 𝑛 

in constructing his portfolio only if the investor is informed about the firm 𝑛. 

Consequently, the stock number 𝑄𝑘 also represents the degree of diversification of 

investor 𝑘. However, different from Merton (1987), I assume that any investor 𝑘 can 

choose 𝑄𝑘, the number of firms he wants to know.  

It is worth noting that my model considers information costs as the only type of 

frictional costs. Nevertheless, the model’s main results could be similarly derived from 

assuming other types of costs or behavior biases. Merton pointed out in his paper: “There 

are, of course, a number of other factors in addition to incomplete information that in 

varying degrees, could contribute to this observed behavior. Because the under-

diversification behavior can be derived from a variety of underlying structural 
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assumptions, the formally derived equilibrium-pricing results are theoretical analog to 

reduced-form equations”. 6   

The capital market equilibrium is formulated as: 𝑖) Given security expected 

returns, each investor chooses the optimal portfolio; 𝑖𝑖) Market clearing; 𝑖𝑖𝑖) Given 

security expected returns, no investor has incentive to increase 𝑄𝑘.7   

After solving for equilibrium security prices (see Appendix), The expected return 

of security 𝑛 is: 

�̅�𝑛 = 𝑅𝑓 + 𝑏
2𝛿 +

𝛿

�̅�∗
𝜎𝑛
2 (3)  

and the average portfolio diversification across the 𝐾 investors is: 

�̅�∗ = √
𝛿𝜎𝑛2̅̅ ̅

2𝐼
 (4)  

In the equation above, 𝜎𝑛2̅̅ ̅ is the average idiosyncratic volatility across the 𝑁 

securities.  

Consistent with the results of Merton (1987), equation (3) implies that stocks with 

higher idiosyncratic volatility 𝜎𝑛
2 have higher returns. The idiosyncratic risk premium 

𝛾𝐼𝑉 =
𝛿

�̅�∗
. This risk premium depends positively on investor risk aversion 𝛿 and 

negatively on the average diversification �̅�∗. If all investors are fully diversified, the 

idiosyncratic risk premium goes to zero.  

Equation (4) denotes that the average diversification �̅�∗ is endogenously 

determined. From equation (4), the average diversification depends positively on the 

                                                           
6Here, “this observed behavior” refers to the fact that the portfolios held by actual 

investors contain only a small fraction of the thousands of traded securities available.  
7An investor can’t decrease 𝑄𝑘. Once an investor is informed about a firm, this cannot be 

undone. 
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average level of idiosyncratic volatility 𝜎𝑛
2̅̅ ̅, which represents the benefit of having more 

securities in constructing a portfolio; and the average diversification depends negatively 

on information cost 𝐼. If the average level of idiosyncratic volatility goes up, investors 

adjust to improve their diversification. If the market becomes frictionless (𝐼 = 0), 

investors are perfectly diversified.    

From equation (3) (4), I can rewrite the idiosyncratic risk premium as: 

𝛾𝐼𝑉 =
𝛿

�̅�∗
 =  

𝑐

√𝜎𝑛2̅̅ ̅
 

(5)  

In the equation above,  𝑐 = √2𝐼𝛿  is a positive constant. Equation (5) implies that 

the idiosyncratic risk premium 𝛾𝐼𝑉 depends negatively on the average level of 

idiosyncratic volatility. A higher level of average idiosyncratic volatility would lead to a 

lower risk premium.   

The total compensation for bearing idiosyncratic risk is:  

𝛸𝐼𝑉 = 𝑁 ∙ 𝜎𝑛2̅̅ ̅ ∙ 𝛾𝐼𝑉  = 𝑁 ∙ 𝑐√𝜎𝑛2̅̅ ̅  
(6)  

From equation (6), a higher level of average idiosyncratic volatility leads to a 

higher total compensation for bearing idiosyncratic risk. Equation (6) also formulates that 

the total compensation for bearing idiosyncratic risk is a concave function of the average 

volatility  𝜎𝑛2̅̅ ̅. In other words, it follows the law of diminishing marginal returns: on the 

one hand, investors would require higher total compensation for bearing higher level of 

idiosyncratic risk; on the other hand, improved diversification would lead to a decline in 

the premium for bearing each unit of idiosyncratic risk, as denoted by equation (5).    
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Although derived from a single-period model, equation (5) provides the rationale 

for a time-varying idiosyncratic risk premium. Equation (5) predicts that the idiosyncratic 

risk premium depend negatively on the average level of idiosyncratic risk. For example, 

when the average level of idiosyncratic volatility 𝜎𝑛2̅̅ ̅ goes up, investors adjust to improve 

their portfolio diversification, and the idiosyncratic risk premium 𝛾𝐼𝑉 goes down. Hence, 

changes in average volatility 𝜎𝑛2̅̅ ̅ should generate a time-varying idiosyncratic risk 

premium. In the next subsection, I will show that when the idiosyncratic risk premium 

varies over time, the timing of idiosyncratic risk affects stock returns.  

2.2. Idiosyncratic risk premium sensitivity (𝐼𝑅𝑃𝑆) and the cross-section of stock returns 

The conditional CAPM literatures, e.g. Jagannathan and Wang (1996), suggest 

that when the risk premium and stock-level risk are both time-varying and correlated, 

unconditional alpha can be non-zero. In this subsection, I borrow this logic from the 

conditional CAPM and apply it to the area of idiosyncratic risk pricing. I assume that the 

tradeoff between idiosyncratic risk and stock returns holds contemporaneously. Then I 

show that the covariance between stock-level idiosyncratic risk and the premium of this 

risk should affect cross-sectional stock returns like an additional “factor” loading.    

I assume that this risk-return tradeoff holds period by period. The conditional 

expected stock return can be specified by:  

 

𝑅𝑖𝑡 = 𝛾0𝑡 + ∑ 𝑋𝑓𝑖𝑡𝛾𝑓𝑡
𝐹
𝑓=1 + 𝜎𝐼𝑉𝑖𝑡

2 𝛾𝐼𝑉𝑡                                                (7) 

                       𝑖 = 1,2, … , 𝑁𝑡,   𝑡 = 1,2, … , 𝑇 
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In the equation above, conditional moments for period 𝑡 given the information set 

at time 𝑡 − 1 are labeled with a 𝑡 subscript: 𝑅𝑖𝑡 is the conditional expected return of stock 

𝑖, 𝜎𝐼𝑉𝑖𝑡
2  is the conditional expected idiosyncratic volatility of stock 𝑖, 𝛾𝐼𝑉𝑡 is conditional 

risk premium for bearing idiosyncratic risk, 𝑋𝑓𝑖𝑡 are conditional values of other 

explanatory variables for cross-sectional stock returns, 𝛾𝑓𝑡 is the conditional risk 

premium associated with the corresponding explanatory variable, 𝑇 is the total number of 

time periods, and 𝑁𝑡 is the total number of stocks at time 𝑡.           

Some empirical studies, e.g. Chua, Goh, and Zhang (2008), Spiegel and Wang 

(2006), and Fu (2009), attempt to examine the contemporaneous idiosyncratic risk-return 

tradeoff. They find a positive relation between stock returns and conditional idiosyncratic 

volatility. However, they implicitly assume that the idiosyncratic risk premium 𝛾𝐼𝑉𝑡 

remains constant over time. Their studies do not fully explore the implications of the 

contemporaneous risk-return tradeoff, because what they really examine is:  

 

 𝑅𝑖𝑡 = 𝛾0𝑡 + ∑ 𝑋𝑓𝑖𝑡𝛾𝑓𝑡
𝐹
𝑓=1 + 𝜎𝐼𝑉𝑖𝑡

2 𝛾𝐼𝑉                                            (8) 

 

In section 2.1, my analysis suggests that the risk premium 𝛾𝐼𝑉𝑡 can vary 

considerably over time, and it is well known that stock-level idiosyncratic volatility 𝜎𝐼𝑉𝑖𝑡
2  

also varies considerably over time. When the risk premium and stock-level risk are both 

time-varying, the covariance between them affects average stock returns. To see this, 

taking the unconditional expectation of both sides of equation (7), I have:       
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𝐸[𝑅𝑖𝑡] = 𝐸[𝛾0𝑡] +∑𝐸 [𝑋𝑓𝑖𝑡
]

𝐹

𝑓=1

𝐸[𝛾𝑓𝑡] + ⋯ 

+ 𝐸[𝜎𝐼𝑉
2
𝑖𝑡
]𝐸[𝛾𝐼𝑉𝑡] + 𝐶𝑜𝑣(𝜎𝐼𝑉𝑖𝑡

2 , 𝛾𝐼𝑉𝑡)                               (9) 

 

The covariance term on the right-hand side of equation (9) is the sensitivity of 

stock-level idiosyncratic risk to the premium of this risk. I refer to this covariance 

𝐶𝑜𝑣(𝜎𝐼𝑉𝑖𝑡
2 , 𝛾𝐼𝑉𝑡) as idiosyncratic risk premium sensitivity (𝐼𝑅𝑃𝑆). 

Equation (9) implies that 𝐼𝑅𝑃𝑆 affects the average stock returns like an additional 

“factor” loading. Specifically, the stocks whose idiosyncratic risk commoves positively 

with the premium of this risk should have higher average returns. In that sense, the 𝐼𝑅𝑃𝑆 

effect can be thought of as paralleling the conditional CAPM literature in that when the 

risk premium and stock-level risk are both time-varying and correlated, unconditional 

alpha can be non-zero. Intuitively, a positive 𝐼𝑅𝑃𝑆 implies that the stock’s idiosyncratic 

volatility is higher when investors become more averse to idiosyncratic volatility. Hence, 

𝐼𝑅𝑃𝑆 represents the timing of idiosyncratic risk.    

According to the equation (5) in section 2.1, the idiosyncratic risk premium is 

inversely proportional to average idiosyncratic risk. I will also assume that this 

dependence relationship holds period by period:   

𝛾𝐼𝑉𝑡 = 
𝑐

√𝜎𝐼𝑉
2̅̅ ̅̅
𝑡
 

 
(11)  

 

𝐼𝑅𝑃𝑆𝑖 = 𝐶𝑜𝑣(𝜎𝐼𝑉𝑖𝑡 
2 , 𝛾𝐼𝑉𝑡) (10)  
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 In the equation above, 𝜎𝐼𝑉
2̅̅ ̅̅
𝑡
  is the average idiosyncratic volatility across all stocks, 

and 𝑐 is a positive constant. From equation (11), time variation in the idiosyncratic risk 

premium therefore is mirrored by the time variation in the average idiosyncratic risk, 

which is observable. Equation (11) delivers an empirically tractable measure of 𝐼𝑅𝑃𝑆. By 

plugging equation (11) into equation (10), I have a stock’s 𝐼𝑅𝑃𝑆 captured by:   

𝐼𝑅𝑃𝑆𝑖 = 𝐶𝑜𝑣

(

 𝜎𝐼𝑉𝑖𝑡 
2 ,

1

√𝜎𝐼𝑉
2̅̅ ̅̅
𝑡)

  (12)  

It is the covariance between the stock-level idiosyncratic volatility and the inverse 

of average idiosyncratic risk.8 In general, stock-level idiosyncratic volatility and the 

average idiosyncratic volatility are correlated, and stocks’ 𝐼𝑅𝑃𝑆 are nonzero. Equation (9) 

predicts a positive relation between 𝐼𝑅𝑃𝑆 and cross-sectional stock returns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
8I omit the constant 𝑐, since it is the same for each stock.  
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CHAPTER 3 

EMPIRICAL FRAMEWORK 

In this section, I investigate the cross-sectional relation between future stock 

returns and 𝐼𝑅𝑃𝑆. I describe how I measure 𝐼𝑅𝑃𝑆 for each stock. Then I test whether 

𝐼𝑅𝑃𝑆 explains future stock returns by estimating Fama-MacBeth regressions, as well as 

using portfolio sorts. In addition, I examine the robustness of the 𝐼𝑅𝑃𝑆 effect among 

subsample groups. I show how the 𝐼𝑅𝑃𝑆 effect is distinct from the idiosyncratic volatility 

puzzle documented by AHXZ (2006).   

3.1. Estimating stock idiosyncratic volatility  

The sample consists of all common stocks on CRSP that are traded on the NYSE, 

Amex and NASDAQ from July 1963 to December 2012. Following prior empirical 

studies, e.g. AHXZ (2006, 2009) and Fu (2009), I measure idiosyncratic volatility as 

relative to the 3-factor model. Specifically, in every month, I run time-series regressions 

of the daily excess returns of each stock onto the three Fama-French factors: 𝑀𝐾𝑇𝜏, 

𝑆𝑀𝐵𝜏, and 𝐻𝑀𝐿𝜏 :      

In the equation above, 𝑡 denotes a given month and τ denotes the days within the 

month. Daily stock returns are obtained from the CRSP data base. Daily factor data are 

obtained from Kenneth R. French’s website. I exclude the stock-months with fewer than 

15 valid daily return observations. The idiosyncratic volatility of each stock in each 

month is computed as the mean squared error of the residuals from the time-series 

regression: 

𝑟𝜏
𝑖 = 𝛼𝑡

𝑖 + 𝛽𝑀𝐾𝑇,𝑡
𝑖 𝑀𝐾𝑇𝜏 + 𝛽𝑆𝑀𝐵,𝑡

𝑖 𝑆𝑀𝐵𝜏 + 𝛽𝐻𝑀𝐿,𝑡
𝑖 𝐻𝑀𝐿𝜏 + 휀𝜏

𝑖  
(13)  
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𝜎𝐼𝑉𝑖𝑡 
2 = 𝐸 (휀𝜏

𝑖2) (14)  

Idiosyncratic volatility is measured for each stock in each month.9    

3.2. Measuring Average Idiosyncratic Volatility  

Common approaches of computing cross-sectional averages have potential pitfalls 

in producing a representative measure. For instance, an equal-weight average can be 

dominated by microcap and small-cap stocks, whose idiosyncratic volatilities are high. 

On the other hand, a value-weight average can be dominated by some large stocks, whose 

idiosyncratic volatilities are low. To mitigate these problems, at the end of every month, I 

sort all stocks by their market caps into two size portfolios of large stocks and small 

stocks. I first compute the value-weight average of idiosyncratic volatility for each size 

portfolio. Then I compute the equal average of idiosyncratic volatility across the two size 

portfolios, which is my measure of average idiosyncratic volatility 𝜎𝐼𝑉
2̅̅ ̅̅
𝑡
 at month 𝑡:  

 

 

 

 

 

 

 

 

                                                           
9Empirical results of this paper still hold, if I use longer periods, e.g. 3 months, to 

compute idiosyncratic volatilities.  

𝜎𝐼𝑉
2̅̅ ̅̅ = 0.5𝜎𝐼𝑉

2̅̅ ̅̅
𝐵
+ 0.5𝜎𝐼𝑉

2̅̅ ̅̅
𝑆
 (15)  
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Figure 1: Average idiosyncratic volatility 

 

This figure depicts average idiosyncratic volatility 𝜎𝐼𝑉𝑡
2̅̅ ̅̅ ̅ (Eq.15) from Jul.1963 to 

Dec.2012.  The stock idiosyncratic volatility is measured as relative to the FF-3 model 

(Eq.14). At the end of every month t, I sort all stocks by their market cap into two size 

portfolios: large and small. I first compute the value-weight average idiosyncratic 

volatility for each size portfolio, then compute the simple average idiosyncratic volatility 

across the two size portfolios.  
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Figure 1 plots the time series of the measured average idiosyncratic volatility 𝜎𝐼𝑉
2̅̅ ̅̅
𝑡
  

from July 1963 to December 2012. The figure shows that average idiosyncratic volatility 

is far from constant over time. The time-series mean is 10.2%2 and has a standard 

deviation of 6.7%2. The mean value implies that, for example, a portfolio that equally 

contains 20 randomly-selected stocks would have mean excess standard deviation of 

11.3% per year. As a comparison, the annualized standard deviation of the S&P 500 

index during the period 1989-2010 is 19.1%.         

3.3. Estimating 𝐼𝑅𝑃𝑆 

According to equation (12), I measure 𝐼𝑅𝑃𝑆 for each stock by estimating the 

covariance:  

𝐼𝑅𝑃𝑆𝑖 = 𝐶𝑜𝑣

(

 𝜎𝐼𝑉𝑖𝑡 
2 ,

1

√𝜎𝐼𝑉
2̅̅ ̅̅
𝑡)

  (16)  

In the equation above, 𝜎𝐼𝑉𝑖𝑡 
2  is the idiosyncratic volatility of stock 𝑖 at month 𝑡, 

and 𝜎𝐼𝑉
2̅̅ ̅̅
𝑡
 is the average idiosyncratic volatility at month 𝑡. I estimate the 𝐼𝑅𝑃𝑆𝑖 as in 

equation (16) using rolling estimates based on 60 previous monthly observations.    

As expected, the majority stocks (86.2% of the pooled sample) have negative 

𝐼𝑅𝑃𝑆. From equation (16), negative 𝐼𝑅𝑃𝑆 means that the stocks’ idiosyncratic volatilities 

comove positively with average idiosyncratic volatility. Correspondingly, a small 

minority of stocks (13.8% of the pooled sample) exhibit positive 𝐼𝑅𝑃𝑆.   

To investigate the cross-section of returns, I apply the following two filters to my 

data sample, which initially consists of all common stocks on CRSP from July 1963 to 

December 2012. First, stocks with a price less than one dollar prior to test month are 
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excluded. Second, each stock is required to have at least 60 month observations prior to 

test month to obtain a valid measure of 𝐼𝑅𝑃𝑆. Hence, my test period is from July 1968 to 

December 2012. On average, the market cap of my test sample accounts for 89% of total 

market cap. Book values are from Compustat and book-to-market ratios are calculated 

following the procedure in Fama and French (1992).   

3.4. Fama-MacBeth Regressions   

I examine the relation between 𝐼𝑅𝑃𝑆 and expected stock returns by running 

Fama-MacBeth regressions. The advantage of running Fama-MacBeth regressions is that 

I can control for multiple stock characteristics. The Fama-MacBeth regressions have two 

stages.     

Specifically, in the first stage, for every month, I run the following cross-sectional 

regression: 

In the equation above, 𝑟𝑡
𝑖 is stock 𝑖’s excess return in month 𝑡, 𝐼𝑅𝑃𝑆𝑡−1

𝑖  is 

estimated over the previous 60 months from 𝑡 − 60 to 𝑡 − 1, 𝑋𝑡−1
𝑖  is a vector of stock 

characteristics observable at the end of month 𝑡 − 1. The stock characteristics include 

ln(𝑆𝑖𝑧𝑒)𝑡−1
𝑖 , the log of stock 𝑖’s market capitalization, ln(𝐵𝐸 𝑀𝐸⁄ )𝑡−1

𝑖 , the log of stock 

𝑖’s book-to-market ratio based on fiscal year’s information, 𝑀𝑂𝑀𝑡−1
𝑖 , the prior return of 

stock 𝑖 from month 𝑡 − 12 to month 𝑡 − 2, as a control variable for momentum effect, 

and 𝑅𝑒𝑡𝑡−1
𝑖 , the prior monthly return of stock 𝑖, as a control variable for short-term return 

reversals.  

𝑟𝑡
𝑖 = 𝑐 + 𝛾𝐼𝑅𝑃𝑆𝑡−1

𝑖 + 𝜆𝑋𝑋𝑡−1
𝑖 + 휀𝑡

𝑖 
(17)  
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In the second stage, I test whether the average regression coefficients are 

significantly different from zero. Panel A of Table 1 reports the average coefficients of 

standard Fama-MacBeth regressions (t-statistics are generated using Newey-West 

procedure with 8 lags). The average slopes on size, book-to-market ratio, momentum, and 

return reversals are fairly close to prior studies on cross-sectional stock returns. Table 1 

shows that the average slope on 𝐼𝑅𝑃𝑆 is positive and statistically significant with a t-

statistic of 2.91, after controlling for size, book-to-market ratio, momentum and short-

term return reversals. The 𝐼𝑅𝑃𝑆 effect is also economically significant. From table 1, the 

average slope on 𝐼𝑅𝑃𝑆 is within 1.4~1.7, the median value of the standard deviations of 

𝐼𝑅𝑃𝑆 is 4.39 (× 10−3). Accordingly, a stock with 𝐼𝑅𝑃𝑆 one standard deviation higher 

would earn an average monthly return of 0.65%~0.75% higher.        

I also run value-weighted Fama-MacBeth regressions as robustness check. The 

value-weighted Fama-MacBeth regressions measure the effect of an average dollar, and 

are more comparable with subsequent value-weighted portfolios (subsection 3.2.3.). For 

value-weighted Fama-MacBeth, I do the GLS regressions with a diagonal weighting 

matrix whose element is the inverse of stock market capitalization. Panel B of Table 1 

reports the results of value-weighted Fama-MacBeth regressions. The average slope on 

𝐼𝑅𝑃𝑆 are positive and statistically significant. Compared with the results in panel A, the 

average slopes on 𝐼𝑅𝑃𝑆 are higher in magnitude, indicating that the effect of 𝐼𝑅𝑃𝑆 on 

stock returns is stronger when this effect is measured for an average dollar.         
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Table 1: Fama-MacBeth regressions 

 

Panel A reports the results from standard Fama-MacBeth regressions. Panel B reports the 

results from value-weighted Fama-MacBeth regressions, where each stock is weighted by 

the stock’s market capitalization at the end of month 𝑡 − 1. Stock monthly excess returns 

are regressed on 𝐼𝑅𝑃𝑆 (× 102) and stock characteristics, which include the log of market 

capitalization  ln(𝑆𝑖𝑧𝑒), the log of book-to-market ratio ln(𝐵𝐸/𝑀𝐸), the prior return 

from month 𝑡 − 12 to month 𝑡 − 2  𝑀𝑂𝑀, the prior return at month 𝑡 − 1  𝑅𝑒𝑡−1, the 

idiosyncratic volatility at month 𝑡 − 1 𝐼𝑉𝑂𝐿−1. 𝐼𝑅𝑃𝑆 is estimated over the previous 60 

months from t-60 to t-1. The time-series averages of the second stage coefficients are 

reported. Robust Newey-West t-statistics are reported using 8 lags. I trim 𝐼𝑅𝑃𝑆 at 2% at 

each tail. The test period is from July 1968 to December 2012.   
 
 

Panel A: Standard Fama-MacBeth regressions 
 

    𝐼𝑅𝑃𝑆        ln(𝑆𝑖𝑧𝑒)             ln(𝐵𝐸/𝑀𝐸)           𝑀𝑂𝑀           𝑅𝑒𝑡−1                 𝐼𝑉𝑂𝐿−1  

      

I      1.74**     -0.077*  0.198**     0.659** 

 (3.15)     (-2.42)   (2.97)     (3.99)  

 

II 1.64**     -0.053   0.225**     0.617**     -4.70** 

 (2.91)     (-1.63)   (3.30)     (3.46)      (-9.37) 

 

III 1.39*     -0.076* 0.204**     0.588**     -4.49**             -1.37** 

 (2.43)     (-2.58)   (3.06)     (3.34)      (-9.03)              (-4.45) 
 

 

Panel B: Value-weighted Fama-MacBeth regressions 
 

    𝐼𝑅𝑃𝑆         ln(𝑆𝑖𝑧𝑒)             ln(𝐵𝐸/𝑀𝐸)        𝑀𝑂𝑀         𝑅𝑒𝑡−1                 𝐼𝑉𝑂𝐿−1  

      

I           3.33**     -0.064*  0.111     0.631** 

  (2.80)     (-2.18)   (1.39)     (2.80)  

 

II   2.99*     -0.057                 0.132     0.592*     -2.99** 

   (2.51)     (-1.92)   (1.58)     (2.44)       (-5.43) 

 

III   2.22*     -0.073*  0.116     0.594*     -2.91**             -2.74** 

   (2.14)     (-2.47)   (1.40)     (2.49)     (-5.10)               (-4.27) 
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3.5. Portfolio Returns     

At the end of every month 𝑡 − 1, I sort all stocks into quintiles based on their 

𝐼𝑅𝑃𝑆, which is estimated over the previous 60 months from 𝑡 − 60 to 𝑡 − 1, and hold the 

resulting value-weighted quintile portfolios for the next month 𝑡. Table 2 Panel B reports 

the CAPM alphas, Fama-French 3-factor alphas and Fama-French 4-factor alphas of the 

quintile portfolios, along with a zero-investment portfolio that shorts quintile 1 and longs 

quintile 5. The table also reports t-statistics generated using Newey-West procedure with 

8 lags.  

From Table 2, I observe a clearly positive relation between 𝐼𝑅𝑃𝑆 and alphas. For 

instance, the monthly 3-factor alpha increases monotonically from -49 basis points for 

quintile 1 with a t-statistic of -3.91, to −19 basis points for quintile 2 with a t-statistic of -

2.16, further to 21 basis points for quintile 5 with a t-statistic of 2.59. The 3-factor alpha 

of the 5-1 portfolio is as large as 70 basis points per month (8.73% per year), with a 

robust t-statistic of 4.22. Figure 2 plots the monthly 3-factor alphas of the quintile 

portfolios. Table 2 Panel A reports the summary statistics of the quintiles. On average the 

stocks in the quintile 1 are relatively small, have higher returns in the month 𝑡 − 1, and 

higher one-month lagged idiosyncratic volatility. Nevertheless, it is important to note that 

the observed positive relation between 𝐼𝑅𝑃𝑆 and alphas is not merely driven by the 

quintile 1.10     

 

 

 

                                                           
10As a reference, the FF-3 alpha of the 5-2 portfolio (a zero-investment portfolio that 

shorts the quintile 2 and longs the quintile 5) is as large as 0.404% per month (4.96% per 

year), with a t-statistic of 2.79. 
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Table 2: Quintile portfolios sorted on 𝐼𝑅𝑃𝑆 

 

I form value-weighted quintile portfolios at the end of every month by sorting stocks 

based on 𝐼𝑅𝑃𝑆 estimated over the previous 60 months. I hold the resulting quintile 

portfolios for the next month. Portfolio 5-1 is a zero-investment portfolio that shorts the 

lowest 𝐼𝑅𝑃𝑆 stocks and goes long the highest 𝐼𝑅𝑃𝑆 stocks. Panel A reports summary 

statistics of the quintile portfolios. The row #Stock reports the average number of stocks 

within each portfolio. The row 𝐼𝑅𝑃𝑆 reports the average of 𝐼𝑅𝑃𝑆 for stocks within the 

portfolio. Size reports the average of market capitalization of stocks measured at the end 

of every month. The row ln(B/M) reports the average of the natural logarithm of firms’ 

book-to market ratios. The row Mom reports the average of previous stock returns from -

2 to -12 month. The row Ret (-1) reports the average of stock returns at -1 month 

(portfolio-forming month). IVOL (-1) reports the average of stock idiosyncratic volatility 

at -1 month. Trans. Prob. Reports the average probabilities of stocks remaining in their 

quintiles from month t-1 to month t. Panel B reports CAPM alphas, Fama-French 3-factor 

alphas and 4-factor alphas of the quintile portfolios. Robust Newey-West t-statistics are 

reported using 8 lags. All portfolios are value weighted. The sample period is from July 

1963 to December 2012.   

 
 

Panel A: Summary statistics 
 

Ranking on 𝐼𝑅𝑃𝑆 

1 Low                 2                     3                   4                  5 High  

𝐼𝑅𝑃𝑆 (x10-4)         -85.1      -19.0       -9.0             -4.2           5.1 

#Stock           686             686       686                686                  686 

Size ($B)         0.217      0.706       1.863             3.050              1.836 

% Mkt Cap         2.5%      8.7%                 22.4%           39.3%     27.1% 

ln (B/M)          -0.28      -0.31        -0.35             -0.36            -0.36 

Mom (%)                      19.6      14.8       14.3               13.8                16.1 

Ret (-1) (%)          2.17      1.30         1.22               1.13                1.33 

IVOL (-1) (%2)          27.7      10.8                   6.04               3.87                9.58 

Trans. Prob.           0.938               0.899                 0.879              0.885               0.932  

  

 

 

 

 

 

 



23 
 

Table 2 (continued) 

Panel B: 1-factor, 3-factor, and 4-factor alphas (% monthly) 

Ranking on 𝐼𝑅𝑃𝑆 

1 Low               2                  3                   4                  5 High                     5-1        
 

1-Factor α           -0.380*     -0.102           0.025            0.088               0.145                    0.525*    

    (-2.18)           (-0.94)            (0.35)            (1.92)                 (1.84)                      (2.51) 
 

3-Factor α           -0.491**    -0.195*         -0.062           0.020               0.209**                0.700**    

     (-3.91)           (-2.16)           (-0.96)           (0.55)                 (2.59)                      (4.22)      
 

4-Factor α                     -0.328**    -0.061            0.014            0.012               0.165                    0.494**    

     (-2.60)           (-0.70)            (0.20)            (0.30)                 (1.79)                      (2.89) 
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Figure 2: Quintile portfolios sorted on 𝐼𝑅𝑃𝑆 

 

This figure depicts Fama-French 3-factor alphas of quintile portfolios sorted on 𝐼𝑅𝑃𝑆. I 

form value-weighted quintile portfolios at the end of every month by sorting stocks based 

on 𝐼𝑅𝑃𝑆. 𝐼𝑅𝑃𝑆 is estimated over the previous 60 months. I hold the resulting quintile 

portfolios for the next month.  Portfolio 1 (5) is the portfolio of stocks with the lowest 

(highest) 𝐼𝑅𝑃𝑆. Darker color bars denote statistically significant alphas.      
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To further show that the relation between 𝐼𝑅𝑃𝑆 and stock returns is not merely 

driven by the stocks with low 𝐼𝑅𝑃𝑆 (stocks in the quintile 1), I construct portfolios 

comprised of stocks with positive 𝐼𝑅𝑃𝑆. The stocks with positive 𝐼𝑅𝑃𝑆 are particularly 

interesting for two reasons. First, positive 𝐼𝑅𝑃𝑆 stocks are the stocks with relatively high 

𝐼𝑅𝑃𝑆 (top 13.8% on average). Positive 𝐼𝑅𝑃𝑆 has a clear economic meaning: a stock’s 

idiosyncratic volatility is higher when investors become more averse to idiosyncratic 

volatility. Theory predicts higher returns for stocks with positive 𝐼𝑅𝑃𝑆. Secondly, 

positive 𝐼𝑅𝑃𝑆 stocks generally are not the stocks with low/high one-month lagged 

idiosyncratic volatility (𝐼𝑉𝑂𝐿), as shown by the summary statistics in Table 3 Panel A. 

Thus, positive 𝐼𝑅𝑃𝑆 stocks serve as a clean sample where the 𝐼𝑅𝑃𝑆 effect is disentangled 

from any potential 𝐼𝑉𝑂𝐿 effect documented by AHXZ (2006).11     

 

 

 

 

 

 

 

 

 

 

 

                                                           
11In subsection 3.7., I will provide more evidences and further discuss the distinction of 

𝐼𝑅𝑃𝑆 effect from 𝐼𝑉𝑂𝐿 effect.   
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Table 3: The portfolios of positive/negative 𝐼𝑅𝑃𝑆 stocks 

 

I form a value-weighted portfolio at the end of every month containing only the stocks 

with positive 𝐼𝑅𝑃𝑆. 𝐼𝑅𝑃𝑆 is estimated over the previous 60 months. I also form a 

complementary portfolio which contains all the rest stocks, i.e. the stocks with negative 

𝐼𝑅𝑃𝑆. I hold the resulting two portfolios for the next month. Panel A reports the summary 

statistics of the two portfolios. The row #Stock reports the average number of stocks 

within each portfolio. %Stock reports the average share of each portfolio in all 

stocks. %Mkt Cap reports the average share of each portfolio in total market cap. Size 

reports the average of market cap of stocks within each portfolio. The row ln(B/M) 

reports the average of the natural logarithm of book-to-market ratios. The row Mom 

reports the average of previous stock returns from -2 to -12 month. The row Ret (-1) 

reports the average of stock returns at -1 month (portfolio-forming month). IVOL (-1) 

reports the average of stock idiosyncratic volatility at -1 month. Panel B reports the raw 

CAPM alphas, Fama-French 3-factor alphas and 4-factor alphas. Robust Newey-West t-

statistics are reported using 8 lags. All portfolios are value weighted. The sample period 

is from July 1963 to December 2012.  

 

Panel A: Summary statistics 

      Positive 𝐼𝑅𝑃𝑆                           Negative 𝐼𝑅𝑃𝑆 

#Stock           473               2960 

% Stock         13.8%              86.2% 

% Mkt Cap            8.39%                  91.6% 

Size ($B)       0.65                            1.61 

ln(B/M)                     -0.35               -0.33 

Mom (%)       18.9                   15.4 

Ret (-1) (%)       1.92               1.54 

IVOL (-1) (%2)                        14.4               11.3 

 

Panel B: 1-factor, 3-factor, and 4-factor alphas (% monthly) 
Positive 𝐼𝑅𝑃𝑆        Negative 𝐼𝑅𝑃𝑆             Difference 

 

1-Factor α            0.482**                     0.029                        0.453** 

  (4.26)                       (1.38)                        (4.00)  

                   

3-Factor α            0.469**                     0.006                        0.463**   

  (4.05)                       (0.38)                        (3.93) 

 

4-Factor α            0.450**                     0.016                        0.434** 

  (3.23)                       (0.96)                        (3.09) 
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At the end of every month 𝑡 − 1, I construct a portfolio comprised solely of stocks 

with positive 𝐼𝑅𝑃𝑆. At the same time, I also construct a complementary portfolio 

containing all stocks with negative 𝐼𝑅𝑃𝑆. Again, I hold the resulting value-weighted 

portfolios for the next month. Table 3 reports the CAPM alphas, Fama-French 3-factor 

alphas and Fama-French 4-factor alphas of the two portfolios, as well as the summary 

statistics. Table 3 shows that stocks with positive 𝐼𝑅𝑃𝑆 have significantly higher returns. 

For instance, the portfolio of positive 𝐼𝑅𝑃𝑆 stocks has a 3-factor alpha of 47 basis points 

per month (5.8% per year) with a t-statistic of 4.05, and a 4-factor alpha of 45 basis 

points per month (5.5% per year) with a t-statistic of 3.23. On average, the positive 𝐼𝑅𝑃𝑆 

stocks accounts for 13.8% of sample stocks, and the rest stocks accounts for 86.2%. It is 

worth noting that the stocks with positive 𝐼𝑅𝑃𝑆 are not different from negative 𝐼𝑅𝑃𝑆 

stocks in their characteristics such as size, book-to-market ratio, momentum, prior 

monthly return, and one-month lagged idiosyncratic volatility. Nevertheless, the portfolio 

of positive 𝐼𝑅𝑃𝑆 stocks has significantly higher returns.         

Since 𝐼𝑅𝑃𝑆 is estimated based on 60 previous monthly observations, the value of 

𝐼𝑅𝑃𝑆 is relatively stable from one month to the next. It is worth examining how long the 

effect of 𝐼𝑅𝑃𝑆 on future stock returns can last. Again, at the end of every month, I 

construct a portfolio comprised stocks with positive 𝐼𝑅𝑃𝑆, but hold the portfolio for the 

next 24 months. Table 4 reports the portfolio’s CAPM alpha, Fama-French 3-factor alpha 

and Fama-French 4-factor alpha for the 𝑛𝑡ℎ month (1 ≤ 𝑛 ≤ 24) following portfolio 

formation. The table clearly shows that, as expected, the 𝐼𝑅𝑃𝑆 effect is not just a next-

month effect. For instance, the portfolio of positive 𝐼𝑅𝑃𝑆 stocks has significant 3-factor 

alphas above 30 basis points for each of the 11 months following the portfolio formation. 
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The 3-factor alpha is still significantly positive in the 14th month after the portfolio 

formation, and slowly decreases into statistical insignificance. Similar pattern is also 

observed for the portfolio’s CAPM alphas and 4-factor alphas. The results demonstrate 

that the 𝐼𝑅𝑃𝑆 effect remains significant at least 12 months after the portfolio formation. 

Figure 3 plots the portfolio’s Fama-French 3-factor alphas for the 𝑛𝑡ℎ month following 

portfolio formation.             
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Table 4: The persistence of the 𝐼𝑅𝑃𝑆 effect 

 

I form a value-weighted portfolio at the end of every month which contains only the 

stocks with positive 𝐼𝑅𝑃𝑆 which is estimated over the previous 60 months. I hold the 

resulting portfolio for the next 24 months. The table reports that portfolio’s CAPM alpha, 

3-factor alpha and 4-factor alpha for the 𝑛𝑡ℎ month (24 ≥ 𝑛 ≥ 1) following the portfolio 

formation. Robust Newey-West t-statistics are reported using 8 lags. All portfolios are 

value weighted. The sample period is from July 1963 to December 2012.  

 
Time after formation 1-Factor Alphas 3-Factor Alphas 4-Factor Alphas  

 

1st Month 

 

0.482** 

(4.26) 

 

0.469** 

(4.05) 

 

0.450** 

(3.23) 

 

 

2nd Month 

 

0.396** 

(4.02) 

 

0.383** 

(3.69) 

 

0.306** 

(2.88) 

 

 

3rd Month 

 

0.408** 

(3.88) 

 

0.401** 

(3.78) 

 

0.310** 

(2.85) 

 

 

4th Month 

 

0.423** 

(3.98) 

 

0.420** 

(3.77) 

 

0.384** 

(2.78) 

 

 

5th Month 

 

0.348** 

(3.70) 

 

0.363** 

(3.59) 

 

0.349** 

(2.74) 

 

 

6th Month 

 

0.331** 

(3.36) 

 

0.347** 

(3.43) 

 

0.325** 

(2.67) 

 

 

7th Month 

 

0.318** 

(3.39) 

 

0.355** 

(3.64) 

 

0.303** 

(2.66) 

 

 

8th Month 

 

0.272* 

(2.53) 

 

0.317** 

(3.08) 

 

0.279* 

(2.46) 

 

 

9th Month 

 

0.283** 

(2.59) 

 

0.349* 

(3.57) 

 

0.305** 

(2.79) 

 

 

10th Month 

 

0.245* 

(2.06) 

 

0.306** 

(3.05) 

 

0.258* 

(2.55) 

 

 

11th Month 

 

0.267* 

(2.00) 

 

0.334** 

(3.07) 

 

0.265** 

(2.64) 

 

 

12th Month 

 

0.197 

(1.46) 

 

0.255* 

(2.26) 

 

0.203 

(1.96) 

 

 

14th Month 

 

0.175 

(1.54) 

 

0.208* 

(1.98) 

 

0.164 

(1.38) 

 

 

16th Month 

 

0.137 

(1.46) 

 

0.158 

(1.57) 

 

0.101 

(1.03) 

 

 

18th Month 

 

0.052 

(0.52) 

 

0.065 

(0.65) 

 

0.041 

(0.41) 
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 Table 4: (continued) 
 

Time after formation 1-Factor Alphas 3-Factor Alphas 4-Factor Alphas 

 

20th Month 

 

0.071 

(0.61) 

 

0.088 

(0.82) 

 

0.096 

(0.91) 

 

22th Month 

 

0.054 

(0.48) 

 

0.070 

(0.69) 

 

0.090 

(0.90) 

 

24th Month 

 

0.091 

(0.77) 

 

0.093 

(0.82) 

 

0.131 

(1.11) 
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Figure 3: The persistence of the 𝐼𝑅𝑃𝑆 effect 

 

I form a value-weighted portfolio at the end of every month which contains only the 

stocks with positive 𝐼𝑅𝑃𝑆.  𝐼𝑅𝑃𝑆 is estimated over the previous 60 months. I hold the 

resulting portfolio for the next 24 months. This figure depicts Fama-French 3-factor 

alphas for the 𝑛𝑡ℎ month (24 ≥ 𝑛 ≥ 1) following the portfolio formation. Darker color 

bars denote statistically significant alphas.  
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3.7. IRPS and Idiosyncratic Volatility         

AHXZ (2006) find that stocks with high one-month lagged idiosyncratic 

volatilities (𝐼𝑉𝑂𝐿) tend to have abnormally low returns in the subsequent month. Their 

finding has been referred as idiosyncratic volatility puzzle. Here I examine the distinction 

between the 𝐼𝑅𝑃𝑆 effect and the 𝐼𝑉𝑂𝐿 puzzle.         

In section 3.2.3., Table 3 shows that positive 𝐼𝑅𝑃𝑆 stocks are not different from 

negative 𝐼𝑅𝑃𝑆 stocks in their idiosyncratic volatilities, but have significantly higher 

returns. This finding already provides the first evidence that the 𝐼𝑅𝑃𝑆 effect is distinct 

from the 𝐼𝑉𝑂𝐿 puzzle. In the following, I perform more detailed comparison of the 𝐼𝑅𝑃𝑆 

effect with the 𝐼𝑉𝑂𝐿 puzzle.          

It is well known that the 𝐼𝑉𝑂𝐿 effect (puzzle) is concentrated exclusively in the 

stocks with high 𝐼𝑉𝑂𝐿, and is absent for low 𝐼𝑉𝑂𝐿 stocks. The stocks with highest 𝐼𝑉𝑂𝐿 

only contribute to a very small fraction of total market capitalization.12 Hence, I examine 

whether the 𝐼𝑅𝑃𝑆 effect significantly shows up both for low 𝐼𝑉𝑂𝐿 stocks and for high 

𝐼𝑉𝑂𝐿 stocks.  

 

 

 

 

 

 

 

                                                           
12Fu (2009) argues that the 40% of stocks with the highest idiosyncratic volatilities only 

contribute to 9% of the total market capitalization. 
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Table 5: Portfolios sorted on 𝐼𝑅𝑃𝑆 / 𝐼𝑉𝑂𝐿 controlling for 𝐼𝑉𝑂𝐿 

 

This table reports Fama-French 3-factor alphas of the portfolios described below. In 

panel A, at the end of every month t-1, I first construct a portfolio with low idiosyncratic 

volatility (IVOL) stocks on the basis of IVOL in the month t-1 (low IVOL stocks are the 

stocks whose IVOL below the median). The column %MKT Cap reports the share of low 

IVOL portfolio in total market capitalization. Then, within the low IVOL portfolio, I 

further sort stocks into decile portfolios based on IVOL or based on 𝐼𝑅𝑃𝑆. 𝐼𝑅𝑃𝑆 is 

estimated over the previous 60 months from t-60 to t-1. I hold the resulting 2x10 

portfolios for the next month t. In panel B, I similarly construct 2x10 portfolios for the 

high IVOL stocks, and hold the portfolios for the next month t. In panel C, I first sort all 

stocks on the basis of IVOL into quintile portfolios. Then within each IVOL portfolio, I 

further sort stocks into quintile portfolios on the basis of 𝐼𝑅𝑃𝑆. I hold the resulting 5 × 5 

portfolios for the next month t. Robust Newey-West t-statistics are reported using 8 lags. 

All portfolios are value weighted. The sample period is from July 1963 to December 

2012.       
        
 

Panel A: The low 𝐼𝑉𝑂𝐿 stocks 

Ranking on 𝐼𝑉𝑂𝐿 

% Mkt Cap        1            2           3            4            5            6            7            8            9           10             10 –1 

85.1%             0.033     0.104    0.094     0.124      0.161    -0.027    -0.007   -0.038    -0.087     0.105            0.073 

  (0.34)    (1.37)   (1.38)    (1.87)      (2.19)    (-0.42)   (-0.12)   (-0.42)   (-0.91)    (1.06)           (0.47) 

 

Ranking on 𝐼𝑅𝑃𝑆 

% Mkt Cap      1            2           3            4            5            6            7            8            9           10             10 –1 

85.1%         -0.112     -0.077   -0.048    -0.057    -0.029    0.116     0.130    0.186      0.250      0.371           0.484** 

                   (-0.86)     (-0.76)   (-0.58)   (-0.75)   (-0.41)   (1.80)    (2.09)    (2.29)     (2.29)     (4.16)           (2.89) 

 

 

Panel B: The high 𝐼𝑉𝑂𝐿 stocks  
  

Ranking on 𝐼𝑉𝑂𝐿 

% Mkt Cap        1            2           3            4            5            6            7            8            9           10             10 –1 

14.9%            -0.028     0.062     0.050   -0.037   -0.302    -0.355    -0.506    -1.110    -1.124    -1.500          -1.470**                       

(-0.24)      (0.54)     (0.43)   (-0.31)   (-2.27)   (-2.45)  (-3.04)   (-6.38)    (-5.95)    (-5.55)         (-5.05) 

 

Ranking on 𝐼𝑅𝑃𝑆 

% Mkt Cap      1            2           3            4            5            6            7            8            9           10             10 –1 

14.9%           -1.148   -0.601   -0.313    -0.529   -0.294    -0.408    -0.002   -0.095    -0.001    -0.288            0.860** 

(-4.58)  (-2.96)   (-1.75)   (-3.20)  (-2.25)    (-2.98)   (-0.01)   (-0.87)   (-0.01)  (-1.56)             (3.01) 
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Table 5 (continued) 

 

Panel C: Portfolios sorted on 𝐼𝑅𝑃𝑆 controlling for 𝐼𝑉𝑂𝐿 
 

Ranking on 𝐼𝑅𝑃𝑆 

 %Mkt_Cap 1 2 3 4 5  5-1 

𝐼𝑉𝑂𝐿_Rank            

1 46.74% -0.047 

(-0.53) 

0.114  

(1.50) 

0.147 

(1.91) 

0.210 

(2.32) 

0.253 

(2.47) 

 0.301*  

(2.12) 

         

2 

 

29.57%   -0.227 

(-1.78) 

0.114 (-

0.15) 

-0.026 

(-0.34) 

0.078 

(1.14) 

0.219 

(2.22) 

 0.446** 

(2.83) 

         

3 14.66% -0.134 

(-0.98) 

0.147 

(1.14) 

-0.026 

(-0.26) 

-0.012 

(-0.13) 

0.231 

(1.66) 

 0.365* 

(2.01) 

         

4 

 

6.67% -0.226 

(-1.38) 

-0.243 

(-1.75) 

-0.217 

(-1.45) 

-0.127 

(-1.03) 

0.225 

(1.24) 

 0.450 

(1.79) 

         

5 

 

2.36% -1.628 

(-6.07) 

-0.134 

(-5.01) 

-0.648 

(-3.65) 

-0.950 

(-4.34) 

-0.902 

(-4.58) 

 0.726** 

(2.59) 
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At the end of every month, I equally split all stocks into two groups based on their 

𝐼𝑉𝑂𝐿. Table 5 shows that the 50% of stocks with low 𝐼𝑉𝑂𝐿 contribute to 85.1% of total 

market capitalization. Then, I further sort the low 𝐼𝑉𝑂𝐿 stocks into decile portfolios 

based on their 𝐼𝑅𝑃𝑆. As comparison, I also sort the same low 𝐼𝑉𝑂𝐿 stocks into deciles 

based on their 𝐼𝑉𝑂𝐿. I hold the value-weighted decile portfolios for the next month. 

Table 5 Panel A reports the Fama-French 3-factor alphas of the decile portfolios, together 

with t-statistics. The results reconfirm that the 𝐼𝑉𝑂𝐿 effect is absent for the low 𝐼𝑉𝑂𝐿 

stocks. Actually, the stocks in the highest 𝐼𝑉𝑂𝐿 decile earn a bit higher 3-factor alpha 

than those in the lowest 𝐼𝑉𝑂𝐿 decile, although with an insignificant t-statistic. In contrast, 

Table 5 Panel A shows a clearly positive relation between 𝐼𝑅𝑃𝑆 and stock returns. The 

stocks in the highest 𝐼𝑅𝑃𝑆 decile earn 3-factor alpha of 48 bps per month higher than 

those in the lowest 𝐼𝑅𝑃𝑆 decile, with a t-statistic of 2.89. The robustness of 𝐼𝑅𝑃𝑆 effect 

for the low 𝐼𝑉𝑂𝐿 stocks provides the most direct evidence of how this effect is sharply 

distinct from the 𝐼𝑉𝑂𝐿 puzzle.              

I repeat the procedure with high 𝐼𝑉𝑂𝐿 stocks. The 50% of stocks with high 𝐼𝑉𝑂𝐿 

contribute to 14.9% of total market capitalization. Table 5 Panel B shows that the 𝐼𝑅𝑃𝑆 

effect is present significantly in the high 𝐼𝑉𝑂𝐿 stocks too. The stocks in the highest 𝐼𝑅𝑃𝑆 

decile earn 3-factor alpha of 86 bps per month higher than those in the lowest 𝐼𝑅𝑃𝑆 

decile, with a t-statistic of 3.01. Table 5 Panel B also reconfirms the 𝐼𝑉𝑂𝐿 puzzle that 

stocks with high 𝐼𝑉𝑂𝐿 have abnormally low returns. But the table shows that the 𝐼𝑉𝑂𝐿 

puzzle exists only for the 30% of stocks with highest 𝐼𝑉𝑂𝐿 (the deciles 5 to 10, in Panel 

B). These 30% of stocks with highest 𝐼𝑉𝑂𝐿 only contribute to 4.8% of the total market 

capitalization.       



36 
 

I also control for 𝐼𝑉𝑂𝐿 by sequential double sorts. At the end of every month, I 

sort stocks into 5 × 5 quintiles ranked first on 𝐼𝑉𝑂𝐿 and then on 𝐼𝑅𝑃𝑆. Again, I hold the 

value-weighted 5 × 5 portfolios for the next month. Table 5 Panel C reports the Fama-

French 3-factor alphas of the quintile portfolios. The results show that the 𝐼𝑅𝑃𝑆 effect is 

present significantly across the 𝐼𝑉𝑂𝐿 quintiles.               

3.8. IRPS and Size   

The empirical results from portfolio sorts so far implicitly show that the 𝐼𝑅𝑃𝑆 

effect is not likely to be merely driven by small-cap and micro-cap stocks. Nevertheless, 

it is worth examining directly the 𝐼𝑅𝑃𝑆 effect among various size groups.     
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Table 6: Portfolios sorted on 𝐼𝑅𝑃𝑆 controlling for size 

 

This table reports Fama-French 3-factor alphas of the portfolios described below. At the 

end of every month, I first sort all stocks on the basis of market capitalization (size) into 

quintiles. The size breakpoints are created by NYSE stocks. The column #Stock reports 

the average number of stocks within each size quintile. The column %MKT Cap reports 

the average value share of each size quintile among total market capitalization. Then, 

within each size quintile, I further sort stocks into five portfolios based on 𝐼𝑅𝑃𝑆. 𝐼𝑅𝑃𝑆 is 

estimated over the previous 60 months. All portfolios are value weighted. Robust Newey-

West t-statistics are reported using 8 lags. The sample period is from July 1963 to 

December 2012.   
 

                  Ranking on 𝐼𝑅𝑃𝑆 

 #Stock %Mkt_Cap  1 2 3 4 5 5-1  

Size_Rank             

1 Small 1683 2.00%   -0.575 

(-3.22) 

-0.153 

(-1.62) 

-0.073 

(-0.77) 

0.076 

(0.83) 

0.014 

(0.13) 

0.590** 

(2.74) 

 

          

2                                              

 

572   2.96% -0.252 

(-2.06) 

-0.038 

(-0.55) 

0.188 

(2.30) 

0.135 

(1.69) 

-0.008 

(-0.09) 

0.244 

(1.42) 

 

          

3 437 5.52% -0.178 

(-1.73) 

0.053 

(0.75) 

0.151 

(1.91) 

0.053 

(0.70) 

0.067 

(0.85) 

0.246 

(1.70) 

 

          

4 

 

382 12.30% -0.101 

(-1.09) 

-0.027 

(-0.34) 

0.037 

(0.45) 

0.048 

(0.57) 

0.069 

(0.79) 

0.170 

(1.25) 

 

          

5 Large 

 

359 77.22% -0.228 

(-2.20) 

0.006 

(0.07) 

-0.037 

(-0.67) 

0.073 

(1.35) 

0.161 

(2.30) 

0.388** 

(2.67) 
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At the end of every month, I first sort stocks into size quintiles by their market 

capitalization, with size breakpoints created by NYSE stocks. Within each size quintile, I 

further form quintile portfolios ranked on 𝐼𝑅𝑃𝑆. I hold the resulting value-weighted 5 ×

5 portfolios for the next month. Table 6 reports Fama-French 3-factor alphas of the 5 × 5 

portfolios. The table shows that the stocks belonging to the largest-size quintile 

contribute to 77.2% of total market capitalization. The table shows a clearly positive 

relation between 𝐼𝑅𝑃𝑆 and returns for these large-cap stocks. The monthly 3-factor 

alphas increase monotonically from −23 basis points for quintile 1 with a t-statistic of -

2.20, to 16 basis points for quintile 5 with a t-statistic of 2.30. The monthly 3-factor alpha 

of the 5-1 portfolio is 39 basis points (4.76% per year) with a t-statistic of 2.67.   

The table shows that the 𝐼𝑅𝑃𝑆 effect is also present significantly in the stocks 

belonging to the smallest-size quintile, which account for nearly half of all stocks. The 

monthly 3-factor alpha of the 5-1 portfolio is 59 basis points (7.31% per year) with a t-

statistic of 2.74.  

I control for 𝐼𝑉𝑂𝐿 and Size jointly by doing triple sorts. I first sort stocks into 5 

quintiles ranked based on 𝐼𝑉𝑂𝐿. Within each 𝐼𝑉𝑂𝐿 quintile, I further form two Size 

portfolios: Small and Large. The median size of NYSE firms is used as the size 

breakpoint. Finally, within each 𝐼𝑉𝑂𝐿-𝑆𝑖𝑧𝑒 portfolio, I further form quintile portfolios 

ranked on 𝐼𝑅𝑃𝑆. I hold the resulting value-weighted 5 × 2 × 5 portfolios for the next 

month. 
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Table 7: Portfolios Triple-Sorted on Idiosyncratic Volatility, Size, and 𝐼𝑅𝑃𝑆  

 

This table reports Fama-French 3-factor alphas of the portfolios described below. At the 

end of every month, I first sort all stocks on the basis of IVOL into quintile portfolios. 

Then within each IVOL portfolio, I further sort stocks into two size portfolios, with the 

median market cap of NYSE stocks as the size breakpoint. The column Stock reports the 

average number of stocks within each IVOL-Size portfolio. The column %MKT Cap 

reports the average value share of each IVOL-Size portfolio among total market 

capitalization. Within each IVOL-Size portfolio, I further sort stocks into five quintile 

portfolios based on 𝐼𝑅𝑃𝑆. 𝐼𝑅𝑃𝑆 is estimated over the previous 60 months. The resulting 

5 × 2 × 5  portfolios are value weighted. I hold the portfolios for the next month. When a 

portfolio contains less than 20 stocks, its observation in that month is dropped. Robust 

Newey-West t-statistics are reported using 8 lags. The sample period is from July 1963 to 

December 2012.  

 
                           Ranking on 𝐼𝑅𝑃𝑆 

 Stock %Mkt_Cap  1 2 3 4 5 5-1 

IVOL_Rank______              

1 Low      Large 311 45.46% -0.021 

(-0.26) 

-0.043 

(0.50) 

0.145 

(1.75) 

0.044 

(0.50) 

0.224 

(2.50) 

0.245* 

(2.00) 

         

Small 

 

371 1.36% 0.173 

(1.50) 

0.218 

(2.67) 

0.127 

(1.49) 

0.207 

(2.03) 

0.184 

(1.68) 

0.011 

(0.09) 

         

         

2          Large                                  

 

297 28.03% -0.200 

(-1.94) 

-0.043 

(-0.47) 

-0.033 

(-0.41) 

-0.001 

(-0.01) 

0.268 

(3.31) 

0.468** 

(3.37) 

         

Small 

 

386 1.59% 0.091 

(0.87) 

0.205 

(2.10) 

0.249 

(2.67) 

0.281 

(3.26) 

0.241 

(2.50) 

0.150 

(1.15) 

         

         

3          Large 196 12.89% 0.085 

(0.61) 

-0.042 

(-0.29) 

-0.116 

(-0.97) 

-0.075 

(-0.69) 

0.111 

(0.87) 

0.027 

(0.16) 

         

Small 

 

487 1.75% -0.026 

(-0.20) 

0.152 

(1.50) 

0.219 

(2.14) 

0.234 

(2.49) 

0.215 

(2.25) 

0.241 

(1.66) 

         

         

4          Large 

 

99 5.02% -0.406 

(-1.29) 

-0.283 

(-1.09) 

-0.052 

(-0.20) 

-0.114 

(-0.48) 

0.449 

(1.57) 

0.855* 

(2.04) 

         

Small 

 

583 1.60% -0.158 

(-1.22) 

-0.096 

(-0.85) 

-0.152 

(-1.66) 

-0.086 

(-1.06) 

0.045 

(0.42) 

0.203 

(1.24) 

         

         

5 High     Large 

 

32 1.28% … … … … … … 

         

Small  

 

650 1.03% -1.437 

(-5.49) 

-0.980 

(-4.80) 

-0.663 

(-3.62) 

-0.817 

(-6.49) 

-.871 

(-6.1) 

0.566* 

(2.38) 
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Despite the smaller explanatory power caused by creating triple-sorted stock 

groups,13 the table clearly shows that the 𝐼𝑅𝑃𝑆 effect is to a large extent driven by the 

large-cap stocks with low idiosyncratic volatilities. This is important because these stocks 

contribute to majority of total market capitalization.      

3.9. IRPS and Momentum, Return Reversals  

Is the 𝐼𝑅𝑃𝑆 effect present both for winner stocks and for loser stocks? I examine 

the 𝐼𝑅𝑃𝑆 effect among various momentum (Jegadeesh and Titman 1993) groups.  

At the end of every month 𝑡 − 1, I first sort stocks into quintiles ranked on their 

past returns from month 𝑡 − 12 to month 𝑡 − 2. Then within each momentum quintile, I 

further form quintile portfolios ranked on 𝐼𝑅𝑃𝑆, and hold the portfolios for the next 

month. Table 8 reports Fama-French 3-factor alphas of the resulting value-weighted 5 ×

5 quintiles, together with t-statistics. The results show that the 𝐼𝑅𝑃𝑆 effect is present 

significantly across the momentum quintiles. The 𝐼𝑅𝑃𝑆 effect is neither concentrated in 

winner stocks, nor in loser stocks. 

Similarly, I investigate whether the 𝐼𝑅𝑃𝑆 effect is present both for monthly 

winner stocks and for monthly loser stocks. Again, at the end of every month 𝑡 − 1, I sort 

stocks into 5 × 5 quintiles first by their returns in month 𝑡 − 1, then by their 𝐼𝑅𝑃𝑆. Table 

9 shows that the 𝐼𝑅𝑃𝑆 effect is present significantly across the RET (-1) quintiles. The 

𝐼𝑅𝑃𝑆 effect is neither concentrated in monthly winner stocks, nor in monthly loser stocks. 

 

 

 

                                                           
13Berk (2000) demonstrates that simply by sorting into enough groups, the true asset 

pricing model can be shown to have no explanatory paper within each group. 



41 
 

Table 8: Portfolios sorted on 𝐼𝑅𝑃𝑆 controlling for momentum 

 

This table reports Fama-French 3-factor alphas of the portfolios described below. At the 

end of every month t, I first sort all stocks on the basis of stock returns from the month t-

12 to the month t-2. Then within each momentum portfolio, I further sort stocks into 

quintile portfolios on the basis of 𝐼𝑅𝑃𝑆. 𝐼𝑅𝑃𝑆 is estimated over the previous 60 months. I 

hold the resulting value-weighted 5 × 5 portfolios for the next month. Robust Newey-

West t-statistics are reported using 8 lags. All portfolios are value weighted.  The sample 

period is from July 1963 to December 2012.    
 

Ranking on 𝐼𝑅𝑃𝑆 

 %Mkt_Cap 1 2 3 4 5  5-1 

MOM_Rank            

1 8.99% -1.877 

(-7.23) 

-1.143 

(-4.90) 

-1.152 

(-6.27) 

-0.593 

(-3.07) 

-0.819 

(-4.16) 

 1.058** 

(3.68) 

         

2 

 
20.44%   -0.890 

(-5.77) 

-0.365 

(-2.79) 

-0.272 

(-1.99) 

-0.204 

(-1.73) 

-0.029 

(-0.23) 

 0.861** 

(4.59) 

         

3 24.65% -0.539 

(-3.28) 

-0.314 

(-2.65) 

-0.336 

(-3.43) 

-0.114 

(-1.28) 

0.160 

(1.33) 

 0.699** 

(3.34) 

         

4 

 
26.29% -0.125 

(-0.87) 

0.078 

(0.76) 

-0.008 

(-0.08) 

0.172 

(1.59) 

0.322 

(2.72) 

 0.448* 

(2.44) 

         

5 

 
19.63% 0.268 

(1.38) 

0.386 

(1.95) 

0.417 

(2.76) 

0.495 

(4.26) 

0.469 

(3.76) 

 0.202 

(0.90) 
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Table 9: Portfolios sorted on 𝐼𝑅𝑃𝑆 controlling for prior month’s return  

 

This table reports Fama-French 3-factor alphas of the portfolios described below. At the 

end of every month t, I first sort all stocks on the basis of prior month’s raw stock returns 

Ret(-1) into quintile portfolios. Then within each Ret (-1) portfolio, I further sort stocks 

into quintile portfolios on the basis of 𝐼𝑅𝑃𝑆. I hold the resulting 5 × 5 portfolios for the 

next month. All portfolios are value weighted. Robust Newey-West t-statistics are 

reported using 8 lags. The sample period is from July 1963 to December 2012.    
 

   Ranking on 𝐼𝑅𝑃𝑆 

 %Mkt_Cap 1 2 3 4 5  5-1 

RET(-1)_Rank            

1 11.65% -0.258 

(-0.97) 

-0.196 

(-0.82) 

0.044 

(0.24) 

0.173 

(1.19) 

0.180 

(1.12) 

 0.438 

(1.56) 

         

2 

 
21.37%   -0.310 

(-1.75) 

-0.086 

(-0.67) 

0.108 

(1.07) 

0.190 

(2.06) 

0.265 

(1.78) 

 0.576* 

(2.43) 

         

3 25.07% -0.205 

(-1.48) 

-0.145 

(-1.32) 

-0.013 

(-0.13) 

0.150 

(2.02) 

0.290 

(3.07) 

 0.495** 

(2.71) 

         

4 

 
26.20% -0.333 

(-2.28) 

0.011 

(0.10) 

-0.123 

(-1.47) 

0.066 

(0.79) 

0.219 

(1.82) 

 0.552** 

(2.97) 

         

5 

 
15.72% -0.802 

(-3.51) 

-0.407 

(-2.23) 

-0.243 

(-2.06) 

-0.184 

(-1.44) 

-0.227 

(-1.54) 

 0.574* 

(2.15) 
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Short-term return reversals (Jegadeesh 1990; Lehmann 1990) can lead to 

downward bias in next month returns for a value-weighted portfolio.14 Could the 𝐼𝑅𝑃𝑆 

effect be related to this downward bias? That is very unlikely, for the following four 

reasons. First, when I run Fama-MacBeth regressions, RET (-1) is a control variable, and 

Table 1 shows that the average slope on 𝐼𝑅𝑃𝑆 is positive and statistically significant. 

Second, high 𝐼𝑅𝑃𝑆 stocks tend to have higher returns, as shown in Table 2 and Table 3. 

In contrast, return reversals can only lead to a downward bias in returns. Third, Table 4 

shows that the 𝐼𝑅𝑃𝑆  effect remains significant at least 12 months after portfolio 

formation. In contrast, return reversals is largely a next-month effect. Finally, Table 9 

shows that the 𝐼𝑅𝑃𝑆 effect is neither concentrated in monthly winner stocks, nor in loser 

stocks.  

3.10. Subsample Periods  

A possible concern is that whether 𝐼𝑅𝑃𝑆 effect becomes weaker in recent two 

decades as frictional costs of diversification declines and diversification improves.  Is the 

𝐼𝑅𝑃𝑆 effect present both in recent two decades, as well as in the 1970s, 1980s? 

I investigate the robustness of the 𝐼𝑅𝑃𝑆 effect over subsample periods.  I divide 

the full test period into two subsample periods, i.e. from July 1968 to December 1989, 

from January 1990 to December 2012. Table 10 reports the CAPM alphas, Fama-French 

3-factor alphas and Fama-French 4-factor alphas of the quintile portfolios ranked on 

𝐼𝑅𝑃𝑆. The results show that the 𝐼𝑅𝑃𝑆 effect is present significantly in each subsample 

period. There is no obvious evidence that the 𝐼𝑅𝑃𝑆 effect becomes weaker after 1990. 

                                                           
14Huang et al. (2010) argues that because monthly winner stocks receive larger weight 

than monthly loser stocks in portfolio formation month, short-term return reversals can 

lead to downward bias in the portfolio’s next month value-weighted return. 
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For instance, over the period from 1990 to 2012, the monthly 3-factor alphas increase 

monotonically from -45 basis points for quintile 1 with a t-statistic of -2.50, to 25 basis 

points for quintile 5 with a t-statistic of 2.20. The 3-factor alpha of the 5-1 portfolio is as 

large as 70 basis points per month (8.81% per year), with a robust t-statistic of 3.06.  
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Table 10: Quintile portfolios sorted on 𝐼𝑅𝑃𝑆 - subsample periods 

 

The table reports CAMP alphas, Fama-French 3-factor alphas and 4-factor alphas. I 

examine the robustness of the 𝐼𝑅𝑃𝑆 effect over two test periods. I form quintile portfolios 

at the end of every month by sorting stocks based on 𝐼𝑅𝑃𝑆. 𝐼𝑅𝑃𝑆 is estimated over the 

previous 60 months. I hold the resulting portfolios for the next month. All portfolios are 

value-weighted. Robust Newey-West t-statistics are reported using 8 lags. The full 

sample period is from July 1963 to December 2012. The first test period is from July 

1968 to December 1989. The second test period is from January 1990 to December 2012.   

 

 

Jul 1968 – Dec 1989: 1-factor, 3-factor, and 4-factor alphas (% monthly) 
 

Ranking on 𝐼𝑅𝑃𝑆 

1 Low        2          3         4        5 High           5-1        
 

1-Factor α         -0.410     -0.134       0.035     0.155      0.073          0.483    

(-1.67)      (-0.84)       (0.41)     (2.79)      (0.70)          (1.62) 
 

3-Factor α         -0.631** -0.243*     -0.001    0.112*    0.131          0.762**    

(-4.33)      (-2.11)      (-0.01)     (2.51)      (1.17)          (3.56)      
 

4-Factor α                    -0.589** -0.188       0.034      0.115**  0.096         0.686**    

(-4.45)      (-1.68)       (0.38)      (2.59)      (0.92)          (3.54) 
      

 

Jan 1990 – Dec 2012: 1-factor, 3-factor, and 4-factor alphas (% monthly) 
 

Ranking on 𝐼𝑅𝑃𝑆 

1 Low        2          3         4        5 High           5-1        
 

1-Factor α         -0.387     -0.082       0.012     0.033      0.216          0.603*    

(-1.61)      (-0.57)       (0.11)     (0.44)      (1.88)          (2.19) 
 

3-Factor α         -0.452*   -0.145       -0.073    -0.027     0.254*        0.706**    

(-2.50)      (-1.08)       (-0.77)    (-0.51)      (2.20)          (3.06)      
 

4-Factor α                    -0.271     -0.000        0.010     -0.035     0.219          0.490*    

(-1.48)      (-0.00)        (0.09)      (-0.61)    (1.69)          (2.00) 
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CHAPTER 4 

CONCLUSION 

This paper suggests that the timing of idiosyncratic volatility help explain the 

cross-section of stock returns. The main point of this paper is that when the idiosyncratic 

risk premium varies over time, the covariance between stock-level idiosyncratic risk and 

the idiosyncratic risk premium shows up in the expected stock returns like an additional 

“factor” loading. The stocks whose idiosyncratic volatility is higher when investors 

become more averse to idiosyncratic volatility should have higher average returns. I refer 

to this covariance between idiosyncratic risk and the premium of this risk as idiosyncratic 

risk premium sensitivity (𝐼𝑅𝑃𝑆).       

The empirical evidences from portfolio sorts and Fama-MacBeth regressions 

show a robust positive relation between 𝐼𝑅𝑃𝑆 and average stock returns. Particularly, the 

𝐼𝑅𝑃𝑆 effect is to a large extent driven by the large-cap stocks with low idiosyncratic 

volatilities. These securities account for majority of the total market capitalization. 

Moreover, the effectiveness of 𝐼𝑅𝑃𝑆 in forecasting stock returns can last for at least 12 

months.  
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APPENDIX A 

A SIMPLE MODEL OF FINANCIAL MARKET EQUILIBRIUM 
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The return from investing in firm 𝑛 is:  

�̃�𝑛 = �̅�𝑛 + 𝑏�̃� + 𝜎𝑛휀�̃� 

𝑛 = 1,… ,𝑁 

(3)  

Besides the 𝑁 firm securities, the economy has two “inside” securities: 𝑖) a 

riskless security with return 𝑅𝑓; 𝑖𝑖) a security 𝑁 + 1 with return �̃�𝑁+1: 

�̃�𝑁+1 = �̅�𝑁+1 + �̃� (4)  

First step, I solve for the optimal portfolio choice for any investor 𝑘. From (3) (4), 

an investor’s portfolio return can be specified as:   

�̃�𝑘 = �̅�𝑘 + 𝑏𝑘�̃� + 𝜎𝑘휀̃𝑘 (5)  

where: 

𝑏𝑘 =∑𝑤𝑛
𝑘𝑏 + 𝑤𝑁+1

𝑘

𝑄𝑘

𝑛=1

 (6)  

(𝜎𝑘)2 = ∑(𝑤𝑛
𝑘)2

𝑄𝑘

𝑛=1

𝜎𝑛
2 (7)  

𝑤𝑛
𝑘, 𝑤𝑁+1

𝑘  denote the fractions of investor 𝑘’s wealth allocated to security 𝑛, security 𝑁 +

1. Accordingly, the expected portfolio return and variance are:  

𝐸(�̃�𝑘) = 𝑅𝑓 + 𝑏
𝑘(�̅�𝑁+1 − 𝑅𝑓) +∑𝑤𝑛

𝑘∆𝑛

𝑄𝑘

𝑛=1

 (8)  

𝑉𝑎𝑟(�̃�𝑘) = (𝑏𝑘)2 +∑(𝑤𝑛
𝑘)2

𝑄𝑘

𝑛=1

𝜎𝑛
2 (9)  
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where:  

∆𝑛= (�̅�𝑛 − 𝑅𝑓) − 𝑏(�̅�𝑁+1 − 𝑅𝑓) 

𝑛 = 1,… ,𝑁 

(10)  

The investor’s optimal portfolio choice is the solution to the following 

maximization problem15:  

max
{𝑏𝑘,𝑤𝑛

𝑘}
[𝐸(�̃�𝑘) −

𝛿

2
𝑉𝑎𝑟(�̃�𝑘)] 

𝑛 = 1,… , 𝑄𝑘 

(11)  

From (8) (9), the first-order conditions for (11) are: 

 

�̅�𝑁+1 − 𝑅𝑓 − 𝑏
𝑘𝛿 = 0 (12)  

 

∆𝑛 − 𝑤𝑛
𝑘𝜎𝑛

2𝛿 = 0   

𝑛 = 1,… , 𝑄𝑘 

(13)  

From (6) (12) (13), the investor’s optimal portfolio solution is:   

𝑏𝑘 =
(�̅�𝑁+1 − 𝑅𝑓)

𝛿
 (14)  

𝑤𝑛
𝑘 =

∆𝑛
𝜎𝑛2𝛿

 ,    𝑛 = 1,… , 𝑄𝑘 (15)  

                                                           
15The information cost 𝑄𝑘𝐼 is a sunk cost in this problem. 
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𝑤𝑁+1
𝑘 = 𝑏𝑘 −∑𝑤𝑛

𝑘

𝑄𝑘

𝑛=1

𝑏 (16)  

𝑤𝑓
𝑘 = 1 − 𝑏𝑘 +∑𝑤𝑛

𝑘

𝑄𝑘

𝑛=1

(𝑏 − 1) (17)  

Second step, I aggregate to determine equilibrium expected returns. From (14), all 

investors would choose same 𝑏𝑘. Let 𝑏𝑘 = 𝐵, 𝑘 = 1,… , 𝐾. Thus, from (14), I have: 

�̅�𝑁+1 = 𝑅𝑓 + 𝐵𝛿 (18)  

From (15), the aggregate demand for security 𝑛 is: 

𝐷𝑛 =∑(𝑊𝑜

𝐾𝑛

𝑘=1

− 𝑄𝑘𝐼)
∆𝑛
𝜎𝑛2𝛿

 
(19)  

In the equation above, 𝐾𝑛 is the number of investors who know about the firm 𝑛. 

From (16) (17), the aggregate demands for “inside” securities are: 

𝐷𝑁+1 =∑(𝑊𝑜

𝐾

𝑘=1

− 𝑄𝑘𝐼)𝐵 − 𝑏∑𝐷𝑛

𝑁

𝑛=1

 
(20)  

𝐷𝑓 =∑(𝑊𝑜

𝐾

𝑘=1

− 𝑄𝑘𝐼) − ∑ 𝐷𝑛

𝑁+1

𝑛=1

 (21)  

Inside securities have zero demands at equilibrium: 𝐷𝑁+1 = 𝐷𝑓 = 0. Thus, from 

(20) (21), I have: 

𝐵 = 𝑏 (22)  

          I can rewrite (18) as:  
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�̅�𝑁+1 = 𝑅𝑓 + 𝑏𝛿 (23)  

 

Let 𝑉𝑛 denotes the equilibrium value of firm 𝑛, then 𝑥𝑛 =
𝑉𝑛

∑ (𝑊𝑜
𝐾
𝑘=1 −𝑄𝑘𝐼)

 denotes 

the fraction of investors’ total wealth invested in firm 𝑛. From (19) and the market 

clearing condition: 𝑉𝑛 = 𝐷𝑛, I have: 

𝑥𝑛 = 𝑞𝑛
∆𝑛
𝜎𝑛
2𝛿

 (24)  

In the equation above, 𝑞𝑛 = ∑ (𝑊𝑜
𝐾𝑛
𝑘=1 − 𝑄𝑘𝐼) ∑ (𝑊𝑜

𝐾
𝑘=1 − 𝑄𝑘𝐼)⁄   is the fraction of 

wealth of the investors who know about firm 𝑛. Because investors randomly select firms 

to know and 𝐾 ≫ 𝑁, I have: 

𝑞𝑛 ≅
�̅�

𝑁
 

𝑛 = 1,… ,𝑁 

(25)  

          where:  

�̅� =
1

𝐾
∑𝑄𝑘

𝐾

𝑘=1

 (26)  

�̅� denotes the average security number investors know. By model assumption, all 

firms have same initial size, so I have: 

𝑥𝑛 =
1

𝑁
 (27)  

From (24) (25) (27), I have: 
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∆𝑛=
𝑥𝑛𝜎𝑛

2𝛿

𝑞𝑛
=
𝜎𝑛
2𝛿

�̅�
 

𝑛 = 1,… ,𝑁 

(28)  

From (15-17) (26), I have: 

𝑤𝑛
𝑘 =

1

�̅�
 

(29)  

𝑤𝑁+1
𝑘 = 𝑏 (1 −

𝑄𝑘

�̅�
) 

(30)  

𝑤𝑓
𝑘 = (1 − 𝑏) (1 −

𝑄𝑘

�̅�
) 

(31)  

As shown in (27), 𝑤𝑛
𝑘 are same for all the investors of firm 𝑛, while 𝑤𝑁+1

𝑘 , 𝑤𝑓
𝑘 can 

be different across investors.  

From (10) (26) (31), I have the expected security return at equilibrium: 

�̅�𝑛 = 𝑅𝑓 + 𝑏
2𝛿 +

𝜎𝑛
2𝛿

�̅�
 

𝑛 = 1,… ,𝑁 

(32)  

As shown in (32), the expected security return at equilibrium is linear in 

idiosyncratic volatility 𝜎𝑛
2.  From (3), the variance of security return is:    

𝑉𝑎𝑟(�̃�𝑛) = 𝑏
2 + 𝜎𝑛

2 (33)  

From (8-9) (27-32), I have the expected portfolio return and portfolio variance:  

𝐸(�̃�𝑘) = 𝑅𝑓 + 𝑏
2𝛿 +

𝛿

�̅�2
∑𝜎𝑛

2

𝑄𝑘

𝑛=1

 (34)  
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𝑉𝑎𝑟(�̃�𝑘) = 𝑏2 +
1

�̅�2
∑𝜎𝑛

2

𝑄𝑘

𝑛=1

 
(35)  

Thus, the utility of investor 𝑘 is:  

𝑈𝑘 = 𝐸(�̃�𝑘) −
𝛿

2
𝑉𝑎𝑟(�̃�𝑘) 

= 𝑅𝑓 +
𝑏2𝛿

2
+

𝛿

2�̅�2
∑𝜎𝑛

2

𝑄𝑘

𝑛=1

 

(36)  

 

Third step, given the security expected returns as in (31) (32), I check whether 

any investor 𝑘 has incentive to increase 𝑄𝑘. I will need to find the investor’s expected 

marginal utility increased from knowing one extra security. Investor 𝑘 can spend 𝐼 to 

randomly select one extra security to know. To the investor, the expected idiosyncratic 

volatility of a randomly selected security 𝑎 is the average idiosyncratic volatility across 

the rest firms:  

𝐸[𝜎𝑎
2] =

1

𝑁 − 𝑄𝑘
∑ 𝜎𝑛

2

𝑁

𝑛=𝑄𝑘+1

 (37)  

I further assume 𝑁 − 𝑄𝑘 ≫ 𝑄𝑘, which means any investor just knows a small 

fraction of all securities. Then, from (37), I have: 

𝐸[𝜎𝑎
2] ≅

1

𝑁
∑𝜎𝑛

2

𝑁

𝑛=1

= 𝜎𝑛2̅̅ ̅ (38)  

Every investor’s information set contains common knowledge about �̅�𝑀, the 

market average of expected returns of the 𝑁 securities. �̅�𝑀 is also the expected return of a 
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randomly-picked security from the 𝑁 securities. Thus, to an investor 𝑘, when 𝑁 − 𝑄𝑘 ≫

𝑄𝑘, the expected return and expected variance of an extra security 𝑎 are:        

𝐸[�̃�𝑎] ≅ �̅�𝑀 = 𝑅𝑓 + 𝑏
2𝛿 +

𝛿𝜎𝑛2̅̅ ̅

�̅�
 (39)  

𝐸[𝑉𝑎𝑟(�̃�𝑎)] = 𝑏
2 + 𝜎𝑛2̅̅ ̅ (40)  

Now with the extra security 𝑎, the investor’s new optimal portfolio choice is 

again the solution to the maximization problem16: 

max
{𝑏𝑘,𝑤𝑛

𝑘}
[𝐸(�̃�𝑘) −

𝛿

2
𝑉𝑎𝑟(�̃�𝑘)] 

𝑛 = 1, … , 𝑄𝑘, 𝑎 

(41)  

The first-order conditions for equation (41) are: 

 

�̅�𝑁+1 − 𝑅𝑓 − 𝑏
𝑘𝛿 = 0 (42)  

 

∆𝑛 − 𝑤𝑛
𝑘𝜎𝑛

2𝛿 = 0   

𝑛 = 1, … , 𝑄𝑘, 𝑎 

(43)  

From (42) (43) (6), the investor optimal portfolio solution is:  

𝑏𝑘 =
(�̅�𝑁+1 − 𝑅𝑓)

𝛿
 (44)  

                                                           
16The extra information cost 𝐼 is not spent yet. 
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𝑤𝑛
𝑘 =

∆𝑛
𝜎𝑛2𝛿

 ,    𝑛 = 1,… , 𝑄𝑘, 𝑎 (45)  

𝑤𝑁+1
𝑘 = 𝑏𝑘 − ∑ 𝑤𝑛

𝑘

𝑄𝑘+1

𝑛=1

𝑏 (46)  

𝑤𝑓
𝑘 = 1 − 𝑏𝑘 + ∑ 𝑤𝑛

𝑘

𝑄𝑘+1

𝑛=1

(𝑏 − 1) (47)  

Because expected returns of all securities are unchanged from (31-32), thus, from 

(30) (44), I have: 

𝑏𝑘 = 𝑏  (48)  

𝑏𝑘 is unchanged too. And from (10) (26), I have:  

∆𝑛=
𝜎𝑛
2𝛿

�̅�
 

𝑛 = 1,… ,𝑁 

(49)  

∆𝑛 is unchanged too.  Then from (45) (46), I have:  

𝑤𝑛
𝑘 =

1

�̅�
  

 𝑛 = 1, … , 𝑄𝑘, 𝑎 

(50)  

𝑤𝑁+1
𝑘 = 𝑏 (1 −

𝑄𝑘 + 1

�̅�
) 

(51)  

𝑤𝑓
𝑘 = (1 − 𝑏) (1 −

𝑄𝑘 + 1

�̅�
) 

(52)  

From (8-9) (31-32) (50-52), I have the expected portfolio return and variance: 
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𝐸(�̃�𝑘) = 𝑅𝑓 + 𝑏
2𝛿 +

𝛿

�̅�2
(∑𝜎𝑛

2

𝑄𝑘

𝑛=1

+ 𝜎𝑎
2) (53)  

𝑉𝑎𝑟(�̃�𝑘) = 𝑏2 +
1

�̅�2
(∑𝜎𝑛

2

𝑄𝑘

𝑛=1

+ 𝜎𝑎
2) (54)  

From (39) (40), I rewrite the above equations as: 

𝐸(�̃�𝑘) = 𝑅𝑓 + 𝑏
2𝛿 +

𝛿

�̅�2
(∑𝜎𝑛

2

𝑄𝑘

𝑛=1

+ 𝜎𝑛2̅̅ ̅) (55)  

𝐸[𝑉𝑎𝑟(�̃�𝑘)] = 𝑏2 +
1

�̅�2
(∑𝜎𝑛

2

𝑄𝑘

𝑛=1

+ 𝜎𝑛2̅̅ ̅) (56)  

The expected utility of investor 𝑘 is:  

𝑈𝑘
′ = 𝐸(�̃�𝑘) −

𝛿

2
𝐸[𝑉𝑎𝑟(�̃�𝑘)] 

= 𝑅𝑓 +
𝑏2𝛿

2
+

𝛿

2�̅�2
(∑𝜎𝑛

2

𝑄𝑘

𝑛=1

+ 𝜎𝑛2̅̅ ̅) 

(57)  

Comparing (36) with (57), I have the expected marginal utility increase as: 

∆𝑈𝑘 = 𝑈𝑘
′ − 𝑈𝑘 =

𝛿

2�̅�2
𝜎𝑛2̅̅ ̅ 

(58)  

As shown in (58), ∆𝑈𝑘 is same for all investors. Any investor 𝑘 would have no 

incentive to increase 𝑄𝑘 as long as ∆𝑈𝑘 no greater than information cost:  

∆𝑈𝑘 ≤ 𝐼 (59)  

Therefore, from (58) (59), at equilibrium, I would have: 
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𝛿

2�̅�∗
2 𝜎𝑛

2̅̅ ̅ = 𝐼 (60)  

In the equation above, �̅�∗ denotes the average stock number investors know at 

equilibrium. �̅�∗ also represents investors’ portfolio diversification on average. From (60), 

I have: 

�̅�∗ = √
𝛿𝜎𝑛2̅̅ ̅

2𝐼
 

(61)  

As shown in (61), at equilibrium, investors’ portfolio diversification on average is 

endogenously determined, although the portfolio diversification of each individual 

investor can be different.  �̅�∗ is proportional to average idiosyncratic risk √𝜎𝑛2̅̅ ̅ .   

From (32) (61), I have the security expected returns at equilibrium: 

�̅�𝑛 = 𝑅𝑓 + 𝑏
2𝛿 +

𝜎𝑛
2𝛿

�̅�∗
 (62)  

 

 

 

 

 


