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ABSTRACT  

   

In this research work, a novel control system strategy for the robust control of an 

unmanned ground vehicle is proposed. This strategy is motivated by efforts to mitigate 

the problem for scenarios in which the human operator is unable to properly 

communicate with the vehicle. This novel control system strategy consisted of three 

major components: I.) Two independent intelligent controllers, II.) An intelligent 

navigation system, and III.) An intelligent controller tuning unit. The inner workings of 

the first two components are based off the Brain Emotional Learning (BEL), which is a 

mathematical model of the Amygdala-Orbitofrontal, a region in mammalians brain 

known to be responsible for emotional learning. Simulation results demonstrated the 

implementation of the BEL model to be very robust, efficient, and adaptable to 

dynamical changes in its application as controller and as a sensor fusion filter for an 

unmanned ground vehicle. These results were obtained with significantly less 

computational cost when compared to traditional methods for control and sensor fusion. 

For the intelligent controller tuning unit, the implementation of a human emotion 

recognition system was investigated. This system was utilized for the classification of 

driving behavior. Results from experiments showed that the affective states of the driver 

are accurately captured. However, the driver’s affective state is not a good indicator of 

the driver’s driving behavior. As a result, an alternative method for classifying driving 

behavior from the driver’s brain activity was explored. This method proved to be 

successful at classifying the driver’s behavior. It obtained results comparable to the 

common approach through vehicle parameters. This alternative approach has the 

advantage of directly classifying driving behavior from the driver, which is of particular 
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use in UGV domain because the operator’s information is readily available. The 

classified driving mode was used tune the controllers’ performance to a desired mode of 

operation. Such qualities are required for a contingency control system that would allow 

the vehicle to operate with no operator inputs. 
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CHAPTER 1 

INTRODUCTION 

1.1 Unmanned Vehicles 

 

An Unmanned Vehicle (UV) is a vehicle that operates without any physical 

onboard human presence. In general, all UVs are equipped with multiple sensors to 

observe the environment. Depending on its level of autonomy, the UV will relay vehicle 

and environment information to human operators who will then provide commands at 

varying levels of supervisory control through teleoperation.  

Understandably, there are numerous applications for which an onboard human 

operator is not feasible. Their applications vary across many domains: air, ground, sea, 

and space. As a result, there are various platforms of UVs, such as Unmanned Aerial 

Vehicles (UAVs), Unmanned Ground Vehicles (UGVs), and autonomous underwater 

vehicles. Currently, the capability to operate unmanned comes at the cost of increase in 

manpower, and high reliance of uninterrupted high-bandwidth communication links. The 

increase of manpower arises from the multiple human operators that are required to both 

operate and process the recorded data.  The reliance of high bandwidth communication is 

due to the rich data required to safely operate the vehicle, and for the transmission of 

collected data. Thus, underlying goal is in making the vehicle autonomous.  

It is important that we first clarify our definition of autonomous system used 

within the context of this work. An Autonomous System (AS) is self-directed in 

formulating its own set of actions to achieve a human-directed goal (Department of 

Defense, 2011). As previously mentioned, UVs can have varying levels of autonomy. 
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Common defined levels of autonomy are shown in Table 1.1 (Department of Defense, 

2011). 

Table 1.1   

 

Autonomy Levels (Department of Defense, 2011) 

 
 

As previously discussed, the ultimate goal in the field of UVs is toward developing fully 

autonomous UVs. So that in the near future, a single human is capable of commanding 

multiple UVs. Advances in computer processing techniques, miniaturization, image 

processing, and communication techniques have resulted in rapid progress towards 

developing fully autonomous UVs. 

1.2 Problem Statement and Objectives 

 

This research aims to address the current problem of robustly controlling a UGV. 

Particularly, for the challenges that arise in scenarios in which the available 

communication link exhibits high latency or a complete loss of communication. In such 

scenarios the vehicle will stop all operation, or worse, continue to operate without 

operator input. Therefore, there is a need for a CS that would provide contingency-based 

assurance of system safety in the absence of timely control of a UGV. Thus, for such an 

event the objective is to develop a CS that would give the UGV the capability to operate 

Level Name Description

Human Supervised

The system can perform a wide variety of activities when given top-level permissions or direction by a 

human. Both the human and the system can initiate behaviors based on sensed data, but the system can 

do so only if within the scope of its currently directed tasks.

4 Fully Autonomous

The system receives goals from humans and translates them into tasks to be performed without human 

interaction. A human could still enter the loop in an emergency or change the goals, although in practice 

there may be significant time delays before human intervention occurs.

2 Human Delegated

The vehicle can perform many functions independently of human control when delegated to do so. This 

level encompasses automatic controls, engine controls, and other low-level automation that must be 

activated or deactivated by human input and must act in mutual exclusion of human operation.

3

1 Human Operated
A human operator makes all decisions. The system has no autonomous control of its environment 

although it may have information-only responses to sensed data.
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at an autonomy level of 3, in which the vehicle is able to perceive and maintain 

appropriate mode of operation, and thus continue to complete tasked objectives. 

The objective of this research effort is to develop an intelligent, robust, and 

efficient CS for a UGV. This CS consist of three major components: I.) Two intelligent 

controllers. II.) An intelligent navigation system. III.) An intelligent controller tuning 

unit. The first component consists of two independent intelligent controllers implemented 

for the heading and path control of a UGV, capable of dealing with environment 

uncertainties and robust to plant parameter variations. The second component is an 

intelligent navigation system capable of integrating information from multiple sensors 

and providing accurate and precise data of the vehicle’s states to the set of intelligent 

controllers. The inner workings of these three components will be based on the Brain 

Emotional Learning (BEL) model.  The last component is a unit consisting of an emotion 

recognition system that utilizes an Electroencephalography (EEG) headset worn by 

operator. The data obtained from the headset will be utilized to capture the operator’s 

affective state; this information will then be used for classifying operator’s mode UGV of 

operation. Based on the classified mode of operation, the tuning unit will tune the 

controllers’ performance to a desired mode of operation. It is anticipated that the 

proposed CS strategy, consisting of these three components, will ensure vehicle safety in 

the absence of timely operator inputs. 

1.3 Relevance and Possible Applications 

 

It is apparent that the direction for the field of CS for a UV is towards increasing 

the level of autonomy.  UV autonomy translates to the intelligence of the vehicle, more 
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precisely, its ability to function safely and robustly under external and internal 

disturbances, to be able to conform to fault conditions without significant degradation of 

its performance, to adapt to unforeseen events, and to be able to coordinate by itself to 

accomplish the mission objectives in the event of communication degradation between 

vehicle and operator. This requires that the components of CS to be intelligent, adaptable, 

robust, and easily implementable. As a result, the proposed research efforts can have 

direct impact on current and future UV designs. 

 Additionally, with the implementation of our proposed CS. The vehicle’s ability 

to perceive operator’s emotional state and utilize such perception classify driving 

behavior is not only useful for an UV, but can be applied to manned automobiles to alert 

the operator/driver of unsafe driving behavior and potentially correct for such behavior. 

Currently, there are a number of technologies that monitor human driver such as, the 

Driver Monitoring System by Toyota (Toyota, 2014), BMW’s Active Driving Assist with 

Attention Assistant (BMW, 2014), and Mercedes-Benz’s Attention Assist (Mercedes-

Benz, 2014). These technologies monitor the driver’s driving behavior and is triggered 

once driving behavior is consistent with signs of drowsiness, fatigue or inattention. Our 

proposed CS can potentially be an improvement for automotive technologies by 

monitoring the driver itself. 

1.4 Research Questions 

 

As mentioned in Section 1.2, the objective of this research effort is to develop an 

intelligent, robust, and efficient CS for a UGV. This CS consists of three major 

components: I.) Two intelligent controllers. II.) An intelligent navigation system. III.) An 
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intelligent controller tuning unit. In which all these components work in conjunction with 

one another towards enabling the UGV to operate and maintain a desired mode of 

operation when no human operator inputs are available. This goal can be broken down 

into several research questions: 

 Which bio-inspired control methods can achieve improved controller 

performance in comparison to traditional control methods, while being 

easily implementable, and can be easily tuned to a desired performance? 

The literature suggests that there are a number of bio-inspired algorithms 

that have been successfully utilized for control methods. However, we are 

primarily interest in an algorithm that best meets the above qualities, as 

this controller will have to be designed to work in conjunction with 

navigation and a tuning unit. In addition, the bio-inspired control method 

should still be able to have superior performance than traditional control 

strategies. 

 Is the utilization of a bio-inspired algorithm, as a filter, a feasible 

alternative for sensor fusion which can attain similar performance 

compare to traditional methods? 

From the literature, a number of bio-inspired algorithms have been used 

for sensor fusion. However, the majority of these algorithms’ 

configurations    caused the navigation system to greatly increase in 

complexity and computational cost. We can design, and simulate a sensor 

fusion filter based on a bio-inspired algorithm which has been utilize in 

other applications, and shown to have desirable qualities applicable for 
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sensor fusion application. Additionally, this algorithm can potentially 

reduce the computational cost due to the simplicity of this algorithm. 

 By incorporating a human emotion recognition system through EEG 

measurement, is the utilization of these captured emotional states a viable 

alternative method for classifying vehicle mode operation in comparison 

to using vehicle parameters? 

Literature shows that EEG measurement is successful at identifying 

distinct human emotional states. Additionally, literature has indicated that 

emotional states are motivational factors that guide driving behavior. 

However, very little work has been conducted in which affective states are 

used to categorize driving behavior. 

If successful, it will be possible to develop a system that can use these affective states to 

classify vehicle mode operation and use this information to appropriately tune vehicle 

controllers to mimic human driving behavior in the absence of direct human input. More 

precisely, for the interaction of a human operator and a UGV, so that in the event of 

communication loss with operator the UGV can use the operator’s affective state, and 

pass that information to tune controller parameters so that it can safely mimic the desired 

mode of operation. 

1.5 Scope and Limitation 

 

The scope of these research efforts are meant to provide the groundwork for 

potential implementation of the proposed CS strategy into a physical system. This 

research is meant to determine whether a CS consisting of these three major components 
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is feasible in detecting and then using affective states to classify vehicle mode operation, 

and then finally used this information to appropriately tune vehicle controllers to mimic 

human driving behavior in absence of direct human input. 

It is important that we note that this CS strategy has a number of limitations. First, 

this CS strategy is conceived under the assumption that the ‘trained’ operator’s affective 

state is a direct consequence of the current mission situation (ex: enemy is spotted, as a 

result mode of operation is aggressive or keen). Any previous affective states that an 

operator experienced before the mission are neglected (i.e. the operator was having a bad 

day). Steps can be taken to reduce the impact of these types of emotions, such as, the 

operator can be asked to relax and meditate prior to operating the UGV. Lastly, cognitive 

states are not considered. This is due to the fact that cognitive states are difficult to 

capture, identify, and respond to on-line. 

1.6 Outline 

 

Chapter 2 will provide a relevant literature review which discusses and analyzes 

the current research in the areas of: Bio-Inspired methods for control and navigation of 

UVs; Theory of emotion, methods of human emotion recognition and their utilization; 

Methods for classifying human driving behavior. Chapter 3 will explain the design and 

implementation of our intelligent UGV controller. In Chapter 4 we will address the 

implementation of the BEL model as filter for sensor integration for UGV navigation. 

Chapter 5 we will address the development of an intelligent controller tuning unit based 

on a human emotion recognition system through EEG measurement. Finally, the 

conclusions about our proposed CS strategy can be found in Chapter 6. 
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CHAPTER 2 

LITERATURE REVIEW 

In the field of CS for UVs, the progress has been towards developing an 

intelligent CS. However, advancement has been limited in large part to the traditional 

methods utilized. Fortunately, researchers in Artificial Intelligence (AI), and cognitive 

science fields have worked towards developing models that simulate the processes 

involved in human intelligence. This has led to the development of bio-inspired 

algorithms that try to produce human like intelligence (Department of Defense, 2011). 

However, there are key differences between the approaches used by researchers in the 

field of AI and cognitive science.  

In the field of AI, research is focused on creating intelligent machines, and now 

intelligent computer programs. It follows a similar approach in using computers to 

understand human intelligence, however, AI is not limited to methods that are 

biologically observable. In this field, intelligence is defined as the computational aspect 

of the ability to achieve goals in the world (McCarthy, 2007). There are varying kinds 

and degrees of intelligence that are present in people, several animals, and now machines. 

In the field of AI, researchers have outlined the key processes involved in intelligence. 

These are: the ability to interact with the real world; reasoning and planning; learning and 

adaptation. These processes are implemented in machines or programs with the ultimate 

goal of making an intelligent system. 

In contrast, in the field of cognitive science research is driven to the study of the 

mind and its processes. Across the many interdisciplinary fields that cognitive science 



  9 

encompasses, the objective is to understand how people behave, perceive, process 

cognitive information, and represent knowledge (Miller, 2003). 

Researchers in the fields of control and navigation of UVs have taken an interest in 

utilizing bio-inspired algorithms to resolve complex control and navigation problems. 

This interest is driven by the advantages these algorithms have over the traditional 

strategies. Consequently, the focus of this literature review will be on the relevant and 

novel research pertaining to biologically inspired algorithms for control, and navigation 

of UVs. In addition, a review of research related to current methods for human affective 

state recognition through a variety of physiological measurements, and methods for 

categorizing human mode of vehicle operation will be discussed. This review is 

organized as follows; Section 2.1 introduces the background of the typical components 

within a CS. Section 2.2 reviews, discusses and analyzes the current research in UV 

control as well as the gaps in this area of research. Section 2.3 is a review of current 

research in navigation and outlines disconnects within this area of research. Section 2.4 

reviews research methods for capturing human affective state, and the methods for 

categorizing human driving modes. Finally, Section 2.5 identifies a potential new 

direction for UV control, and navigation, along with a novel approach for capturing and 

utilizing human’s affective state. 

2.1 Control System 

 

 A CS consists of multiple devices with the objectives to control, regulate, guide, 

and manage the behavior of a system or another device (Guidance, navigation and 
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control, 2012). For a UV, there are typically three major devices that perform these 

objectives i.e. guidance, navigation, and control (Seldon, 2009). 

 The guidance system directs the vehicle to a set trajectory. This trajectory can be 

specified by an operator or a Mission Planning System (MPS) depending on the level of 

autonomy of the vehicle. The objective of the guidance system is to convert the desired 

trajectory into low level orders that a controller can understand and implement (Seldon, 

2009).     

 The navigation system gives the vehicle the ability to determine its current 

location, velocity, and direction; in other words determine the state of the vehicle 

(Seldon, 2009). This information is obtained from multiple sensors on the vehicle. The 

sensors are usually Global Positioning Systems (GPS), and Inertial Measurement Units 

(IMU). The navigation utilizes the signals from these sensors and combines them to 

obtain precise information about the vehicle’s state. The typical method that the 

navigation system integrates the signals from multiple sensors, is by a Kalman filter 

(Grewal, Weill, & Andrews, 2007). This process is commonly referred to as sensor 

fusion, which will be discussed in detail in the following sections. 

  The controller then takes the output signals from both the guidance and navigation 

systems and utilizes them to maintain/change heading and velocity to effectively follow 

the desired trajectory. In addition, the controller uses navigational output signals to 

stabilize the vehicle due to disturbances, and/or maintain stability due to unstable design 

of the vehicle (Seldon, 2009).  

 These components are essential parts of a CS. Additionally, each of these 

components can impact the level of autonomy of the UV. Therefore, the objective is to 
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produce a well-rounded intelligent CS. We will first review relevant research on bio 

motivated algorithms for UV control. 

2.2 UV Control 

 

 Researchers in AI, and cognitive science fields have developed and inspired 

algorithms that simulate the processes involved in human intelligence. Examples of these 

algorithms are fuzzy logic, which mimics human control logic (Bräunl, 2003); neural 

networks, which model the functional aspects of biological neural networks; brain 

emotional learning, which models the amygdala and the orbitofrontal cortex system 

(Balkenius & Moren, 2001). The advantages these algorithms have over traditional 

control strategies are: they are highly adaptable, robust, and require low computational 

costs (Bräunl, 2003; Huang, Zhen, & Wang, 2008; Chao, Cao, & Chen, 2010). 

2.2.1 Fuzzy Logic for Control 

 

 The first to be reviewed of these bio inspired algorithms for control is fuzzy logic. 

This linguistic based algorithm was first introduced by Professor L. A. Zadeh (1975). 

Later on, the first actual Fuzzy Logic Control (FLC) was developed by Professor E. H. 

Mamdani (Ying, 2000). In essence, the fuzzy logic is made up of three important 

elements: a fuzzifier, a fuzzy inference engine, and defuzzifier.  The fuzzy algorithm 

inner workings are described by Kurnaz et al. (2009):   

“The fuzzifier maps a crisp input into some fuzzy sets. The fuzzy inference engine 

uses fuzzy IF-THEN rules from a rule base to reason for the fuzzy output. The 

output in fuzzy terms is converted back to a crisp value by the defuzzifier.” 

 

This logic is different than traditional binary logic in that it allows linguistic variables to 

be mapped to truth values in range between 0 and 1 (Bräunl, 2003). Please refer to the 
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literature for detailed information on components/workings of fuzzy control (Ying, 

2000). Applications of fuzzy logic have been utilized for various control applications; 

however this review will focus on UV control applications. 

 One such case was done by Kurnaz et al. (2009), where they developed a fuzzy 

logic based approach for the control of a UAV. They utilized the software configuration 

of MATLAB and Aerosim Aeronautical Simulation Block Set to obtain tools and UAV 

model to evaluate the fuzzy control performance during various simulated flight patterns 

(e.g. climb, cruise, loiter, and descent). The fuzzy control system consisted of three fuzzy 

controls for heading, altitude, and airspeed respectively. Each of the fuzzy controls was 

designed by first selecting simple Mamdani-type fuzzy rule tables that were selected by a 

specialist based on his/her knowledge and experience. The inputs for the throttle fuzzy 

control were the speed error and its rate of change. Similarly, the inputs for the altitude 

fuzzy control were altitude error and its derivative. Therefore, the selected fuzzy control 

for both throttle and altitude was a Proportional Integral (PI) type fuzzy controller, which 

produces an incremental control output. However, for the heading control the authors 

elected to use a Proportional Integral Derivative (PID) type fuzzy control. For each of the 

control inputs, a triangular membership function was created. For the inference process of 

the fuzzy control, the authors utilized product-sum inference. Lastly, for defuzzication 

process, the authors utilized the common centroid method. The results from this research 

were the following; the fuzzy controller was successful in maintaining the desired altitude 

and heading even while being under wind disturbance. In addition, the UAV was 

successful at reaching every waypoint within 01◦ (00’ 00’’ 010 in GPS definition) error 

range. However, larger throttle errors were seen while trying to maintain a specific speed 
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throughout the flight trajectory. They comment that this was due in large part by the fact 

that speed was controlled only by the throttle controller and not with the angle of attack, 

therefore producing the errors during a climb and descent patterns. Lastly, the authors 

comment that there were some oscillations and errors with the addition of wind 

disturbances. 

 In latter research by the same authors, they were able to implement a similar 

fuzzy control strategy for the landing system of a UAV (Cetin, Kurnaz, & Kaynak, 2011). 

The authors recognized three important attributes for a successful UAV landing, these 

were: lateral position of UAV with respect to runway, altitude of UAV, and speed of the 

aircraft during the final approach. For those reasons the authors developed three fuzzy 

controls: lateral, vertical, and speed. Each of the fuzzy controllers had the goal to resolve 

lateral errors, resolve altitude errors and maintain desired speed under current conditions, 

respectively. Results for this research were that the fuzzy control system illustrated 

adequate overall performance for maintaining the UAV at correct frame during the final 

approach. However, these results were obtained by neglecting any disturbances. 

 In different research conducted by Lai & Hsiao (2010), the authors were able to 

implement a fuzzy logic controller in the autopilot of a UAV. In this work, the authors 

assumed the aircraft’s dynamics to be decoupled into longitudinal and lateral motion, and 

therefore developed two independent control strategies. The longitudinal control strategy 

consisted of two fuzzy controllers for pitch and altitude, respectively. Likewise, the 

lateral control strategy consisted of two fuzzy controllers for roll and heading 

respectively. In similar fashion as in the previous works, the input variables for the pitch 

control, altitude control, and roll control are the error and change in error. However, for 
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the heading control, the inputs were the heading error and the deviation distance from the 

line between the previous and next waypoints. Outputs for the controllers were elevator 

deflection, desired pitch angle, aileron deflection, and desired roll angle. The architecture 

for each of the fuzzy controllers were seven linguistic sets for each variable and seven 

triangular membership functions for each input and output variable. Both membership 

functions and fuzzy rules were obtained from the expert’s knowledge and experience in 

UAV flight. The results during simulated waypoint navigation and trajectory following 

were obtained. The results were that the autopilot was able to control the aircraft close to 

the desired heading and also maintained the altitude of the aircraft within an error of 4.5 

meters or less. Similar results were obtained when simulated under wind disturbances, 

but again some oscillations were noticeable. 

 In an attempt to reduce the unwanted behavior from the fuzzy control, Gomez & 

Jamshidi (2011), proposed the combination of a FLC and Model Reference Adaptive 

Control (MRAC). The design of the fuzzy control consisted of six variables: roll, pitch, 

airspeed, airspeed error, heading error, and altitude error. For each of the variables six 

fuzzy rules were selected. The ranges of the membership functions were selected to be 

small and were scaled in order to minimize the number of rules while still maintaining 

precision. These produce three fuzzy logic controllers for heading, altitude and throttle, 

which were able to smoothly control the UAV. In addition, the authors designed an 

additional fuzzy control utilizing three rules per control, and low precision for the 

combination of the FLC and MRAC. This low number and low precision FLC created a 

fast switching final control output. The FLC utilized for UAV control had a greater 

contribution to final control output when the plant error was large. However, when the 
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error was small the MRAC controller had a greater contribution to the final control 

output. Results from a simulated waypoint following flight pattern were that the 

combination of the fuzzy control with the MRAC did have an effect on the final control 

output. Both controllers were successful in maintaining the aircraft stability and 

converged to the desired specifications. However, oscillations were still noticeable in roll. 

 From the literature, it is apparent that application of fuzzy logic for the control of 

a fixed-wing UAV has been demonstrated to be successful. It has demonstrated the 

qualities of a robust, easily implementable control requiring low computing cost. 

However, similar control qualities have been achieved by another bio-inspired algorithm, 

neural networks, which are discussed in the following section. 

2.2.2 Neural Network for Control 

 

 Neural networks, commonly referred to as Artificial Neural Networks (ANN), are 

a computational representation of the biological neural networks. Neural networks consist 

of neurons working in parallel that are connected to other neurons by weighted 

connections. The connection between neurons primarily defines the network function.  

Neural networks are trained to perform a specific function by fine-tuning the weights of 

the connections between neurons. Normally, neural networks are tuned, or taught, so that 

an input is directed to a specific target output (Toolbox: Neural networks overview, 

2012). For additional information on neural networks please refer to (Priddy & Keller, 

2005).   
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 Depending on the structure, neural nets are versatile and can be designed to 

execute several kinds of control strategies for various control applications. The following 

is a review of the research utilizing neural networks for UV control.  

 Suresh and Kannan (2008), implemented a direct adaptive neural flight control for 

an unstable unmanned aircraft. The goal of the neural network was to estimate the control 

law such that the aircraft response tracks the reference command. The architecture of the 

neural network consisted of current stick deflection as the input, elevator deflection as the 

output, and a hyperbolic tangent function for the activation function. The neural network 

consisted of eleven input neurons, thirty-five hidden neurons, and one output neuron. The 

neural network was trained with the objective to find the optimal weights so that squared 

error between the aircraft response and reference signal in finite time was minimized to 

less than 0.002. The adjustment of the weights was done through back propagations 

through time learning algorithm. However, since the aircraft analyzed in this research 

was unstable, the neural network was trained off-line and on-line. First, it was trained off-

line using the reference signal so that the networks could approximate the control law 

within the finite sequence and stabilize the aircraft for various initial conditions. Then, it 

was trained on-line so that the weights were adapted for aerodynamic uncertainties and 

control fault conditions. Twenty data sets were used for off-line training in which it was 

able to converge to optimal value. The various performance measures of this control 

scheme were then compared with comparable indirect adaptive neural control. The direct 

adaptive control had better performance measures than the indirect adaptive control and 

had the least amount of control effort at different flight conditions. The authors evaluated 

the performance of this neural controller with wind gusts. It demonstrated that it was able 
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to reject gust very well while maintaining control surface deflection within acceptable 

limits and accurately track the pitch rate command. These results illustrated the 

robustness of this control strategy. 

 Puttige et al. (2009), proposed a modified indirect adaptive control by utilizing 

Dual Neural Networks (DNN) for development of a low-cost UAV; in hopes of catering 

to commercial and defense applications. The control system for this research consisted of 

an identifier neural model and DNN controller both with the capability for on-line 

adaptations. The DNN consisted of an internal neural model (NNm) and a neural 

controller (NNc). This complex control system worked in the following method. First, the 

NNm was pre-trained offline with actuator and steady state outputs from the nonlinear 

plant. This NNm provided corrections to the NNc at every training iteration. Then, once 

the NNc had been trained its output was validated against the identifier neural model 

which was trained on-line. The identifier neural model predicts the plant behavior 

corresponding to the inputs from the DNN controller. Lastly, the predicted output was 

compared to the commanded reference input. Utilizing this comparison, suitable weights 

were adjusted to obtain desired plant outputs at every instant of time. In essence, this 

control strategy consists of two feedback loops for NNc, one by the NNm at every 

iteration and another by the trained identifier neural model at every sample time. Figure 

2.1 shows the control system. 
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Figure 2.1. Overall Adaptive Control (Puttige, Anavatti, & Samal, 2009) 

 

 This DNN was implemented into a DNN velocity control, where NNc had four 

hidden neurons and the NNm had six neurons. DNN controller was trained with 25 

iterations while minimizing the performance index below 10-7 threshold.  Results from 

this control strategy were compared to that of a traditional PID controller. Both strategies 

were simulated for a varied flight condition while under the influence of external 

disturbances. The first disturbance test was simulated under sensor noise and the DNN 

control was able to track the commanded input. The next disturbances were wind gust 

and plant variations. The DNN controller was able to cancel out the majority of the wind 

effects, and it was able to adapt to the changes in the flight conditions unlike the PID 

controller. 

 These direct and indirect adaptive neural network controllers were the most 

prevalent in the field of fixed-wing control. This might be due to the fact that these neural 

control types were the best suitable control for fixed-wing aircraft. As mentioned in 

MATLAB Neural Network toolbox (2012), there is no single neural controller that is 

suitable for all applications.  
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 The above neural network controls demonstrate the capability to learn, and if 

trained on-line, can adapt to variations in the plant and external disturbances (Dash, 

Panda, Lee, & Xu, 1997). These characteristics make them an enticing adaptive control 

strategy. However, there is one last of the bio-inspired control strategies with similar 

characteristics, which is discussed in the next section. 

2.2.3 Brain Emotional Learning for Control 

 

BEL model was developed by Balkenius and Moren (2001). It is a computational 

model of the amygdala, Orbitofrontal Cortex (OFC), thalamus, and sensory input cortex, 

which are known to be responsible for emotional learning and processing. This model 

originated under Mowrer’s two-process theory of learning, and acquisition of a learned 

response. In this theory the first step is the association of a stimulus to an emotional 

consequence. The second step is an emotional evaluation that forms an association of the 

stimulus to a response (Mowrer, 1960).  Researchers in control have taken interest in 

utilizing this BEL model as a controller. This is motivated by the fact that research in 

psychology, and cognitive science identify the reciprocal influences of emotion and 

cognition (Balkenius & Moren, 2001). Therefore, Lucas et al. (2004), introduced the 

Brain Emotional Learning Based Intelligent Controller (BELBIC) which consisted of the 

BEL model but utilized as direct adaptive feedback control. The inner working of BEL as 

described by Mehrabian et al. (2006) is an action generation system founded on sensory 

input and emotional signal (reward/punishment signal).  Figure 2.2 illustrates the BEL 

model. 
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Figure 2.2. BEL Model (Mehrabian, Lucas, & Roshanian, 2006) 

 

  The amygdala learns to predict and react to give an emotional signal. While the 

OFC system detects the difference between the expected system’s prediction and the 

actual received emotional signal (Mehrabian, Lucas, & Roshanian, 2008). For further 

details on BELBIC and BEL please refer to (Lucas, Shahmirzadi, & Sheikholeslami, 

2004; Balkenius & Moren, 2001). Various complex control applications have been solved 

by applying BELBIC. However, we will review research pertaining to UV control. 

 Mehrabian et al. (2006), implemented BELBIC as an approach for aerospace 

launch vehicle autopilot design. This vehicle was expected to experience nonlinearities, 

disturbances and uncertainties through its flight. Therefore, the objective of this 

controller was to compensate for these effects. In the research they focused on the 

longitudinal control of the vehicle, as most guidance maneuvers were in the longitudinal 

plane. First, due to the nature of the BEL as an open-loop the designers chose to make the 

sensory input to be fed back from the system response, likewise the emotional signal was 

fed back, in accordance to the control engineer’s requirements of the problem. Figure 2.3 

illustrates the implementation of BEL as a control. 
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Figure 2.3. BELBIC and Plant Configuration (Mehrabian, Lucas, & Roshanian, 2006) 

 

 Next, since the sensory input and emotional signal can be arbitrary functions of 

reference output, controller output, and error signal, it was the designer’s duty to find 

appropriate functions. The authors selected the sensory input and emotional signal 

functions based on experience utilizing BELBIC. The gains of these functions were 

selected through trial and error. The dynamics of the aerospace vehicle were linearized. 

The controller was then simulated to follow a desired pitch angle and pitch rate, where a 

Gain Schedule (GS) controller was also compared. BELBIC was able to follow very 

closely the desired command signals with minimal error. Additionally, BELBIC’s 

response to powerful gust and severe uncertainties were simulated. BELBIC was able to 

show superior robustness to wind disturbances and severe uncertainties in comparison to 

GS control. 

 This exact research was further improved by the same authors by implementing a 

Genetic Algorithm (GA) to find the suitable gains for the functions of both the sensory 

input and emotional signal (Mehrabian, Lucas, & Roshanian, 2008). 

 In a different research by Huang et al. (2008), the authors were able to implement 

BELBIC to the nonlinear UAV dynamics for attitude control. The primary focus was on 

longitudinal attitude control system for the UAV utilizing BELBIC. The two inputs for 
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this control system were   the difference between desired pitch angle and real pitch angle 

output of the nonlinear plant and the difference between the desired pitch angle velocity 

and the real pitch angle velocity output pitch of the nonlinear plant. The output of this 

control scheme was the elevator deflection. In similar fashion as the previous studies, the 

authors had the freedom to select the functions for the sensory input and emotional 

signal, which were selected to be defined by the same equation. In addition, three 

different values of the learning rate coefficients for both amygdala and OFC were 

studied, in order to determine their impact on the control performance. The control 

strategy was simulated for level flight and under the influence of wind disturbance at an 

angle of 45 degrees from the horizontal plane. Three main observations were obtained. 

First, the implementation of BELBIC allowed the system to respond quickly to the 

desired pitch angle and pitch angular velocity, therefore illustrating its effectiveness at 

overcoming the system’s nonlinear characteristics. Second, the greater learning rate 

coefficient of the amygdala extended the dynamic adjusting time of the UAV. Similarly, 

the larger OFC coefficient prolonged the adjusting time, therefore it is important that a 

suitable range for learning rate coefficients are selected for obtaining good stability 

control performance. Third, the decision to utilize the identical function for the sensory 

input and emotional signal had no negative effect on control performance, but it was able 

to reduce the number of unknown parameters.  

 BELBIC demonstrated its ability for on-line adaptability and allowed learning 

with relatively low computational cost. In addition, it is a robust nonlinear adaptive 

controller that is easily implementable. The next step is to analyze the literature in bio-
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inspired controls for UV and determine the most feasible bio-inspired control strategy for 

UV control.  

 In analyzing the literature of bio-inspired controls it is noticeable that all of these 

control strategies were successful at being robust, adaptive, and utilized relative low 

computational cost. However, there are some key differences which can be 

disadvantageous to their effectiveness as controllers. 

 Fuzzy controls have two major disadvantages. First, fuzzy controls are nonlinear 

variable structure type controls. Therefore, the first step would be developing their 

analytical structures for analytical study. However, this step is often not possible due to 

the use of fuzzy sets, fuzzy rules and multiple input variables. The lack of an accurate 

mathematical structure of a fuzzy controller prevents the precise analysis and design of a 

fuzzy control system (Ying, 2000). Second, fuzzy controls have substantial numbers of 

design parameters. As a result, more time in the design process is spent tuning through 

trial and error. Also, lacking the knowledge of how these parameters impact the control 

performance prevents fuzzy controls from fully guarantee stability (Ying, 2000). 

  Neural Networks encounter similar disadvantages as fuzzy controllers, such as, its 

“black box” nature, and the experimental nature of network development (Tu, 1996). 

Additionally, there are two more disadvantages. First, neural networks require training 

for it to function. This can be an additional computational load, and in cases where there 

is limited data that is available for training, validation and testing. Second, the internal 

representation that the network generates is often difficult to interpret. In ensuing 

situations the network might fixate on features that are artifacts of the training data which 

are not relevant to the objective at hand (Davis & Stentz, 1995). 
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 Lastly, BELBIC encounters similar disadvantages in both fuzzy and neural 

controls in its empirical nature of the control design process. The performance of 

BELBIC is dependent on functions for sensory input and for emotional signal, which in 

all applications has been determined through the experience of the control engineer and 

the problem domain requirements (Mehrabian, Lucas, & Roshanian, 2008). Similarly, 

BELBIC is unable to fully guarantee stability (Jafarzadeh, Mirheidari, Motlagh, & 

Barkhordari, 2008). Table 2.1 summarizes the important characteristics of each of the 

controllers. 

Table 2.1 

  

Summary of Controllers 

 
  

In analyzing the literature, we have been able to contrast the disadvantages 

between the bio-inspired controllers. From this study, it seems that the most feasible 

controller for the CS of a UV to be a variant of BELBIC.  It demonstrated all the 

characteristics of intelligent decision making controller that can stabilize nonlinearities, 

adaptable, and be robust against uncertainties or disturbances. The next component of CS 

to be discussed is the navigation aspect for a UV. 

Controller Type Assumption Required User defined parameters Inputs Outputs Limitations

SUMMARY

Designed empirically can not guarantee 

stability; Performance is dependent on 

the quality of fuzzy rules

Hidden Layers; Reference Signal; Plant 

Signal; Weights
2 1

Designed empirically can not guarantee 

stability; Needs data to be trained offline; 

Performance is dependent on the quality 

of the data trained

Sensory Function; Reward Function 2 1

Designed empirically can not guarantee 

stability; Performance is dependent on 

the sensor and reward functions selected

Fuzzy

Neural Network

BELBIC

Fuzzy sets; Fuzzy rules; Membership 

Functions; Inference methods 
1 1

 Uses linguistic descriptions to 

define the relationship 

between the input information 

and the output action

Computational representation 

of the biological neural 

networks. Network is trained 

to perform a specific function 

by fine-tuning the weights of 

the connections between 

neurons 

Is an action generation system 

founded on sensory input and 

emotional signal 

(reward/punishment signal)
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2.3 UV Navigation 

 

 Advancement in intelligent controls, as discussed in the above sections, can 

contribute to the level of autonomy for UVs. Additionally, uncertainty about the UV’s 

location and vehicle’s state relative to the environment, limits the level of autonomy 

(Matía & Jiménez, 1998). A particular navigation issue arises when multiple sensor 

inputs are utilized for vehicle navigation. The navigation system needs to have the 

reasoning ability to allow it to make an appropriate decision to select, fuse, and integrate 

multiple heterogeneous sensor inputs (Matía & Jiménez, 1998). Therefore, it is 

imperative that intelligent methods for navigation be implemented to increase the 

autonomy level of the UV.  Methods for intelligent navigation have been investigated; 

these include the previously mentioned bio-inspired methods of fuzzy logic and neural 

networks. Applications of these methods for sensor fusion and navigation are reviewed in 

the next sections. 

2.3.1 Fuzzy Logic for Navigation 

 

 Kreucher and Beauvais (1999), proposed the implementation of fuzzy logic for 

unmanned navigation. The UV was equipped with three sets of sensors: front main 

camera, lane cameras (left and right), and ultrasonic sensors. For the front main camera 

fuzzy set of prohibited directions were generated based on the growth of obstacles and 

lane pixels in front of the vehicle, weighted by the distance from the vehicle.  

 For the lane cameras two descriptions were obtained, the distance from lane and 

orientations of the lane. For the distance from the lane three membership functions were 

developed. For the orientation of the lane four membership functions were developed. 
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This was done for both left and right side cameras. 22 fuzzy rules (11 for each side) were 

used to perform the control action. The use of these rules for both lanes generated a fuzzy 

set of desired directions from the lane camera sensor data.  

 Eight ultrasonic sensors were first grouped into four groups of two. Then, for each 

group a set of prohibited direction was developed based on the fuzzy variable of object 

range. Sensor fusion was implemented by taking the desired direction (set by lane fuzzy 

output) and combining it with the maximum prohibited directions (set by fused prohibited 

direction from front camera and ultrasonic sensor) to obtain fused desired direction. The 

final step was defuzzification of the fused desired direction into a crisp steering angle 

command by utilizing centroid largest area method.  

 An experiment was conducted where an obstacle was placed near the left lane. 

The UV obtained sensor data from the front camera, which it detected that a large portion 

of left direction was prohibited due to the obstacle. It also detected that smaller portion of 

the right direction was prohibited due to boundaries of the right lane. Additionally, the 

UV obtained sensor data from the ultrasonic sensor, which obtained similar results as the 

front camera. However, with the side camera sensors, the vehicle detected that vehicle 

was closer to the right lane so the side camera data favored steering to the left. Figure 2.4 

illustrates the experiment setup. Data from all sensors were fused.  
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Figure 2.4. Obstacle and Lane Experiment Setup (Kreucher & Beauvais, 1999) 

 

The defuzzification of the fused output resulted into a crisp 84◦ steering angle, which 

indicated a slight right turn. Favoring the data obtained from front camera and ultrasonic 

sensors to avoid obstacle. The result illustrated that fuzzy logic was able to robustly fuse 

heterogeneous sensor data and provide reliable navigation decisions. 

 In a more complex study, Subramanian et al. (2009) utilized a fuzzy logic 

enhanced Kalman filter for sensor fusion in an UV. The application consisted of the 

navigation of an UV through citrus grove alleyways. The sensors utilized in this vehicle 

were a machine vision, laser radar (ladar), an Inertial Measurement Unit (IMU), and an 

ultrasonic speed sensor. Very noisy sensor measurements were present, due to the 

specific application, so a Kalman filter was utilized to filter the noise and to perform 

fusion. However, Kalman filters tend to diverge and have a reliability issue where they 
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have to be constantly updated, so the addition of a fuzzy logic was used to correct these 

issues. The approach taken by the authors was to construct two fuzzy logic systems.  

 The first fuzzy system was a fuzzy logic based supervisor that was used to decide 

which sensor was more reliable at different locations in the application and to update the 

measurement noise covariance matrix in the filter. The inputs were the horizontal 

distance of the vehicle centerline from the trees on either side for both machine vision 

and laser radar. The inputs were divided into linguistic variables: reasonable, 

unreasonable, and zero. A triangle-based fuzzification method was used. The 

defuzzification was done using center of gravity method. The crisp value of the decision 

was taken as the measurement noise covariance value for that sensor.   

 The second fuzzy system was used to correct for divergence by updating the 

process noise covariance matrix in the filter. Inputs for this fuzzy system were the lateral 

position error from vision, lateral position error from ladar, and required heading from 

vision. Various membership functions and fuzzy rules were constructed. Defuzzification 

was done by the center of gravity method. The crisp values obtained were the updated 

process noise covariance values. 

 Simulations were performed which confirmed the correct operation of the Kalman 

filter and of the fuzzy systems. Additionally, real life experiments were conducted. In a 

curvy test track the results obtained were that the fused navigation system produced max 

error of less than 4 cm, which the error was the deviation from the center line of the path. 

This error was only 1% of the path’s width. In a grove alleyway test where trees could be 

missing, the average error was less than 10 cm. The developed fusion navigation system 



  29 

was more accurate, versatile and reliable than individual sensor based navigation on both 

experiments.  

 The above research shows the successful implementation of fuzzy logic as a 

method for sensor fusion, and intelligent navigation system. One of the studies utilized 

only fuzzy logic to fuse and develop an intelligent navigation system. Whereas in the 

other study, it combined a traditional approach for fusion, Kalman Filter, with fuzzy logic 

to produce an intelligent navigation system. The latter approach has been the most 

popular method for fusion and intelligent navigation, due to its ability to solve complex 

problems utilizing inexact inputs from multiple heterogeneous sensors and thus provides 

a fairly accurate solution (Xu, Sutton, & Sharma, 2007). Similar characteristics for 

intelligent navigation can be achieved through the use of neural networks. In the next 

section we will review literature that utilizes neural networks as means for sensor fusion 

and intelligent navigation. 

2.3.2 Neural Networks for Navigation 

 

As discussed previously, it is difficult to create an accurate model for the 

navigation of UV because the plant can be nonlinear, and also, the environment 

information obtained by multi-sensors encompasses uncertainties. Coincidentally, neural 

networks, if properly trained, can ascertain and weigh the most significant features of an 

environment (Davis & Stentz, 1995). In this section, we will review various research in 

which neural networks were utilized for sensor fusion and intelligent navigation. 

 Davis and Stentz (1995), utilized neural networks for sensor fusion and 

successfully performed a simulated and real-world navigation task with multiple sensing 
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modalities. In this research the vehicle consisted of a four-wheel-drive military vehicle 

equipped with a Charge Coupled Device (CCD) camera and laser range finder. Two 

neural networks were examined, a monolithic network and a modular network. The 

authors described a monolithic network as, a network in which all sensor data are given 

to it, and then it is allowed to develop an internal representation, which allows it to 

perform sufficiently within the context of the information that it was exposed to. The 

modular network was described as the integration of prior knowledge to the network. The 

authors utilized their own version of a modular network where it consisted of two levels, 

a feature level network and a task level network. The feature level network was trained to 

recognize specific features through any sensor modality. The task level network utilized 

feature level hidden layers as inputs to train the network to perform the navigation task. 

The two networks, monolithic and modular, are tested in a simulated world and real-

world. The architecture for both monolithic network and their version of modular 

network was the following: three layer feed-forward network, five hidden units, and 

eleven output units with Gaussian form activation.  In the simulated world the task was 

road following with stationary obstacles. First, the networks were trained via mouse 

steering of the vehicle as it followed the road several times in both directions. 

Additionally, several training sets of data were created in off-road driving, so the 

simulated vehicle could recover if it drove off the road. Performance for both networks 

was excellent; vehicle maintained desired speed and avoided obstacles. In real-world 

unmanned navigation the results were that the monolithic neural network was able to 

learn how to fuse the different modalities and navigate accordingly. However for their 

own version of modular neural network it allowed them to control  how to utilize the 
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information obtained from the various modalities, though this also meant more training 

had to be done in comparison to the monolithic.   

 In a different research study, Cordoba (2007) implemented digital neural network 

for the integration of 3 Micro-Electro-Mechanical System (MEMS) accelerometers, 3 

MEMS rate-gyroscopes, and 3 magneto resistive transducers. The objective was to 

develop an intelligent attitude and heading reference system for a UAV. A digital neural 

network made the ideal technique for improving the aerial vehicle attitude calculation and 

estimation process. For that reason, a multilayer digital neural network was used as on-

line learning estimator because of its high performance in multivariable and non-linear 

systems. The neural network for this application was back-propagation multi-input and 

multi-output network architecture. The sensors data were the inputs to the network. The 

digital neural network was simulated and validated. The results were an enhanced method 

for integrating sensor data from the accelerometers, gyros and magnetometers utilizing a 

digital neural network. This method was able to produce accurate attitude angle 

measurements.  

 The results from both studies were inherent capabilities of neural networks to 

intelligently fuse and navigate the UV by selecting and weighing the most significant 

information from the environment. Additionally, the ability of the neural networks to 

accurately approximate the plant’s nonlinearity and sensor data uncertainty make it a 

good candidate for intelligent navigation and sensor fusion. 

 In analyzing the literature, fuzzy logic can be easily integrated with the Kalman 

filter for sensor fusion and work well together to produce an intelligent navigation 

system. However, the integration of Kalman filter with Fuzzy logic increases the 
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complexity of the navigation system. In a stand-alone application of fuzzy logic as a 

navigation system it provided good results for simple cases.  On the other hand, neural 

networks have been successfully applied to UAV sensor fusion and navigation. Yet, 

neural network performance as intelligent navigation system is sensitive to how they are 

trained, this was observed in one of the literatures discussed above. Another interesting 

gap is that BEL models have not been implemented for UV navigation, particularly for 

sensor fusion, even though they share similar characteristics as fuzzy logic and neural 

networks. 

 In analyzing the literature, we have been able to contrast the disadvantages 

between the bio-inspired algorithms for the sensor fusion in a navigation system. 

However, an interesting gap in the literature was found, in that there was no 

implementation of the BEL model for sensor fusion. Thus, it will be interesting to 

develop and implement the BEL model as a filter for sensor integration, because this 

algorithm was demonstrated to be adaptable, and be robust against uncertainties or 

disturbances. The next aspect of the literature review to be discussed is the research 

methods of capturing human’s affective state and the utilization these states. 

2.4  Human Emotion Recognition 

 

 As the autonomy level of an AS increases, the interaction between human-AS can 

be increasingly similar to that of human to human interactions. Human interactions can 

be characterized in to two forms of communication, explicit and implicit. The explicit 

form of communication transmits unconcealed information, while the implicit one 

transmits concealed information about the communicator’s intention, attitude, and 
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likes/dislikes. The ability to sense the implicit form of communication is one of the vital 

obligations associated with this form of interaction (Cowie, et al., 2001).  

2.4.1 Emotions 

 

Through implicit communication, emotions are predominantly exchanged. 

Emotions have been identified to be an important factor in cognition. As stated by Picard 

(Affective Computing, 2000), "emotions play an essential role in rational decision-

making, perception, learning, and a variety of other cognitive functions”. Furthermore, 

emotions can be easily captured and implemented in computational models (Mowrer, 

1960). However, an AS may never need all the emotional skills of humans. But by 

equipping them with the ability to perceive human emotions, can potentially make it 

behave more intelligent when interacting with humans (Picard, Vyzas, & Healey, 2001). 

Thus, by developing the AS’s capability of emotional intelligence should permit for a 

more efficient and natural human-AS interaction. 

Emotions are spontaneous mental states produced by subjective experiences, 

physiological arousal, cognitive processes, and motivational tendencies (Kim & André, 

2008). Being in an emotional state is commonly known as an affective state. Researchers 

most often characterize emotions based on two models, discrete and dimensional. The 

discrete model consists of six primary emotions (happiness, sadness, fear, surprise, 

disgust, anger). Other emotions are derived from combinations of the primary emotions. 

A widely used dimensional model developed by James Russell (1980), plots emotions on 

two continuous axes, valance and arousal. Valance measures the degree of how negative 
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or positive the experience is. While arousal measures the intensity of the emotion. As a 

result, all emotions can be plotted on the valance-arousal model, shown in Figure 2.5. 

 

 
Figure 2.5. Valence-Arousal Model (Stangor, 2012) 

 

2.4.2 Methods for Human Emotion Recognition 

 

There are numerous methods that can be employed to determine a person’s 

affective state, such as, facial expression, gestures, postures, and physiological. However, 

in the instance of facial expression, literature shows that it is difficult to capture the 

affective state real-time, and for the AS to react to it (Bartlett, Littlewort, Fasel, & 

Movellan, 2003). Additionally, for gestures and postures the literature shows that the 

understanding of user emotions from gestures/postures is a much more complex task, and 

such work in the framework of human-AS interaction is not feasible (Firby, Kahn, 

Prokopowicz, & Swain, 1995). Conversely, physiology is a promising way of 

approximating the affective state of a person. It has been known that emotions and 
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physiology (biological signals: heart activity, muscle tension, blood pressure, skin 

conductance etc.) are closely correlated, and that one affects the other. Research initiated 

by Picard exploits this relationship between emotions and physiology to detect human 

affective states (2001). These concepts have been applied to domains such as driving 

(Backs, Lenneman, Wetzel, & Green, 2003), flying (Hudlicka & Mcneese, 2002), and 

machine operation (Hayakawa & Sugano, 1998).  

Several interesting studies were conducted by Rani et al. (2004; 2006), who 

empirically demonstrated the capabilities of a robot to detect and recognize the affective 

state of a human companion, and change  its tasks sequence to accommodate a suitable 

response based on the human’s affective state. In these studies, the authors utilized 

several physiological signals (cardiac response, electrodermal response, and 

electromyographic response) and several biological sensors to recognize the human’s 

affective state. The affective state information along with other environment information 

were then relayed to a controller that instructed the robot to perform a suitable response. 

Figure 2.6 illustrates the physiological sensors utilized in this study. 
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Figure 2.6. Physiological Sensors (Rani, Sarkar, Smith, & Kirby, 2004) 

 

However, in this study only one affective state (anxiety) was captured and utilized. In 

addition, the physiological sensors appear to be fairly intrusive, and thus potentially 

affecting the human performance in completing the task. A potential improvement can be 

made by using a single bio sensor, such as an EEG headset, which can be used to capture 

several affective states.  

Several studies have been conducted in which emotional states were classified by 

analyzing EEG signals.  One such study was performed by Natarajan et al. (2004) in 

which researchers performed nonlinear analysis of EEG signals at different mental states. 

They used nonlinear parameters like Correlation Dimension (CD), Largest Lyapunov 

Exponent (LLE), Hurst Exponent (H) and Approximate Entropy (ApEn) to analyze EEG 

signals. Participant’s EEG signals were recorded at three mental stages: under normal 

resting stage; under music stimuli (classic and rock); under foot reflexologic stimulation. 

The results from this study showed statistical differences in each of the nonlinear 

parameters across the various mental states. Thus, they were able to distinguish 
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differences among EEG signals from the nonlinear parameters at different mental states. 

The results further suggest that when the participants were under sound or reflexologic 

stimuli the brain went to a more relaxed state. 

In a study performed by Chanel et al. (2006), researchers evaluated the arousal 

dimension of human emotion through two physiological methods: EEG signals and 

peripheral signals. Participant’s EEG signals and peripheral signals were recorded while 

50 images of high arousal and 50 images of low arousal were presented. These 100 

images had uniform distribution of valence. In addition, all images were selected from 

the International Affective Picture System (IAPS) in which these images had been 

extensively evaluated in terms of valence/arousal values and with collective means and 

variances. Preprocessing of the EEG signal was done through band pass filter which kept 

frequencies in the 4 – 45 Hz range to remove power line noise. Six EEG frequency bands 

were selected (
1 2 2 1 3
,  ,  ,  ,  ,        ), based on their correlation between arousal elicited 

by IAPS images (Aftanas, Reva, Varlamov, Pavlov, & Makhnev, 2004). The 6 features 

were extracted from EEG signals, which consisted of the average power of electrodes for 

each band. While 18 features were selected for the peripheral signals. Classification of 

both EEG features and peripheral features was accomplished by both naïve Bayes and 

Fisher Discriminant Analysis (FDA). Results showed that arousal recognition can be 

accomplished through the use of EEG signals. In addition, the fusion of peripheral 

features and EEG features improved classifier performance and was better with FDA. 

In another study by Hosseini (2012), EEG signals were utilized to develop an 

emotion recognition system. This system consisted of four major processes: an EEG 

acquisition, preprocessing filter, feature extraction, and classification. This system would 
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be able to recognize two emotional states of participants, calm-neutral and negatively 

excited. These emotions were based on the valence-arousal model. The targeted emotions 

were elicited by the stimuli of pictures. The preprocessing filter selected was a band pass 

filter to remove environmental noises and drift. Filtering was done through a MATLAB 

built in function “filtfilt” which allowed EEG signals of frequencies of 0.5 – 60 Hz. After 

preprocessing EEG signals, a Higher Order Spectra (HOS) was employed to extract the 

features for classifying human emotions. Due to dimensionality of the signals, the authors 

employed a Genetic Algorithm (GA) and Support Vector Machine (SVM) for feature 

selection method. This method would improve the computational speed of the feature 

selection process. Lastly, after extracting the features the authors utilized a Linear 

Discriminant Analysis (LDA) to classify them into the two emotional states. The 

researchers used 65% of EEG data from participants for training, 25% for testing, and 

10% for validation. Results from this study were an average 82.32% accuracy for 

correctly recognizing the two emotional states of the participants.  

In a more elaborate study conducted by Murugappan et al. (2010), researchers 

used EEG signals and wavelet transform for human emotion recognition. Participant’s 

EEG signals were recorded while inducing them into five emotional states (disgust, 

happy, surprise, fear and neutral) through audio-visual stimuli. The raw EEG signals 

were preprocessed through a Surface Laplacian (SL) filter method. The filtered EEG 

signals were then decomposed through Discrete Wavelet Transform (DWT) into three 

frequency bands ( ,  ,     ). From the decomposed EEG signals features were extracted 

through the Logarithmic Recoursing Energy Efficiency (LREE) and Absolute Logarithmic 

REE (ALREE) methods. These methods for feature extraction are modified versions of 
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their previously proposed method of Recoursing Energy Efficiency (REE) in which they 

previously used the Fuzzy C-Means (FCM) and Fuzzy K-Means (FKM) for grouping the 

human emotions (Murugappan, et al., 2008). Lastly, after extracting the features the 

authors utilized both a Linear Discriminant Analysis (LDA) and K Nearest Neighbor 

(KNN) to classify them into the five emotional states. A performance comparison 

between the two classifiers was analyzed. In addition, the researchers took the study 

further in analyzing their classifier accuracy with respect to number of 

channels/electrodes on the EEG headset (64, 24, and 8).  Results from this study 

indicated that, KNN gives higher average classification accuracy than LDA on three 

different channel sets. The maximum classification accuracy of 83.26%, 79.93% and 

72.68% was obtained using ALREE feature on 62 channels, 24 channels and 8 channels 

respectively. Additionally, among the three different feature extraction methods, ALREE 

performed better than the other proposed (REE and LREE). 

2.4.3 Classification of Driving Behavior 

 

In regards to research pertaining to the area of classifying human driving behavior 

it is apparent that there are three methods. One method used questionnaires in which 

drivers assessed their own driving behavior after completing a driving task (Taubman-

Ben-Ari, Mikulincer, & Gillath, 2004; Chung & Wong, 2010). This approach categorized 

drivers into eight types: anxious, risky, angry, high-velocity, careful, dissociative, 

distress-reduction, and patient (Taubman-Ben-Ari, Mikulincer, & Gillath, 2004).  

Another method for categorizing driving styles is analyzing real-time vehicle parameters, 

such as throttle position, brake force, steering angle, and engine information (Bar, 
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Nienhuser, Kohlhaas, & Zollner, 2011; Driving style evaluation, 2014; AMG, 2011; 

Squarell Tech, 2014; Scania Driver Support system, 2014). By using this method, 

researchers were able to successfully categorize distinct driving styles: anxious, 

economical, aggressive, keen, and sedate (Bar, Nienhuser, Kohlhaas, & Zollner, 2011). 

The last method is through driver mood. In this method the driver’s mood is used to 

characterize the driving style. In a number of studies, it has been shown that the emotion 

that a driver is experiencing is associated with their driving behavior. Aggressive driving 

was associated with a driver in an angry, annoyed, or frustrated state (Dula & Geller, 

2003; Ellison-Potter, Bell, & Deffenbacher, 2001; Tasca, 2000; Shinar, 1998). Another 

study, used boredom to classify drivers (Harvey, Heslop, & Thorpe, 2011). Vaa (2007) 

identified emotion as a motivational factor that guides driving behavior (Cacciabue, 

2007). In addition, in the book Modelling Driver Behaviour in Automotive Environments 

a representation of driving moods in terms of the valence/arousal model was presented 

(Cacciabue, 2007). Figure 2.7 illustrates this representation. 
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Figure 2.7. Driving Moods Representation in Terms of Valence-Arousal Model 

(Cacciabue, 2007) 

 

In synthesizing the literature in this section, it is evident that further research can 

be conducted in the area of AS. Primarily, towards making the human-AS interaction 

more seamless and efficient. This was first attempted in Rani et al. (2004; 2006), in 

which a robot was able to implicitly sense a single emotional state through various 

intrusive physiological measurements. Based on these measurements the robot was able 

to detect if a human companion was in an anxious state and respond accordingly. 

However, this research can be further improved by using EEG technology. As discussed 

in the literature, there were numerous studies in which human EEG signals were used to 

accurately classify a number of distinct emotional states experienced by individuals. This 

method of human emotion recognition through EEG signals is a viable alternative to the 

more intrusive biological sensors previously used. Additionally, results from this research 
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method can be extended for the classification of driving modes based on the affective 

states of human operator.   

From the literature it was evident that emotions play an important role in 

decision-making, perception, and other cognitive functions. Thus, by determining a 

person’s affective state, one can characterize their behavior, more precisely, for the 

scenario of operating a vehicle. This can be done by employing a similar approach under 

taken by Cacciabue (2007) in which driving moods were characterized in terms of the 

valence-arousal model. Further research can be conducted to develop a method for the 

classification of driving mode based on the valence-arousal model. This new method can 

then be validated by comparing it to the more widely implemented method of using 

vehicle parameters for driving behavior classification. 

Thus, by utilizing the method for human emotion recognition through EEG 

signals and by developing a method for classifying human driving modes based on 

perceived emotions it is anticipated that we can develop a system that would permit an 

AS to efficiently detect and respond accordingly to an operator’s affective state. 

2.5 Research Direction 

 

 In reviewing the literature, the following things were apparent. First, in regard to 

the bio-inspired controllers discussed in the literature. All of the bio-inspired control 

methods (Fuzzy logic, neural networks, BELBIC) were shown to be robust, adaptable, 

and efficient controllers across many applications with superior performance to 

traditional control methods. Thus, for the controllers for a UV reviewed here, the control 

method that seems to be the most appropriate was BELBIC. It was developed under the 
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principle that emotions and cognition are required for intelligent decision making. When 

utilized as a controller, it demonstrated all the characteristics of an intelligent controller 

in various applications that were complex, nonlinear and highly uncertain. More 

importantly, it was shown to be the method that required the least amount of user-defined 

parameters required during the controller design process. This important quality will 

facilitate the controller tuning process when used in conjunction with the proposed 

intelligent tuning unit. However, there are some further improvements that are required, 

such as, characterizations of the effects of these design parameters, like sensory and 

reward functions, and their impacts to controller performance. Therefore, the direction in 

bio-inspired controls we hope to take is to further improve BELBIC for UGV control. 

Second, in regard to sensor integration for a navigation system in a UV, it is 

evident that utilization of bio-inspired methods for sensor fusion is a feasible alternatives. 

Fuzzy logic was successfully used as stand-alone for simple sensor fusion applications. It 

was also used in conjunction with a Kalman filter. However, this configuration caused 

the navigation system to greatly increase in complexity and with additional 

computational cost. Neural networks also proved to be an alternative, however, 

sensitivity issues to training data were noticeable. Interestingly, there was little progress 

in implementing BEL algorithm for sensor integration even though it has been shown to 

be adaptable, and robust to uncertainty, which are desirable qualities for a sensor 

integration filter. Hence, the direction we anticipate to take for UGV intelligent 

navigation is in developing and implementing a BEL filter for sensor fusion in a 

navigation system. 
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 Lastly, in regards to methods for capturing and using a human affective state to 

determine mode of vehicle operation, it is noticeable that there are disconnects. In the 

study by Rani et al (2004; 2006), they were successful in developing a system for a robot 

that gave it the ability to detect and used a human companion’s anxious state to change 

the robot’s behavior. This was done by using a number of intrusive physiological 

measurements. However, little progress has been made to further improve and extend 

these studies. These studies can be further improved by incorporating the use of EEG 

signals to detect and classify a human’s affective state. As mentioned earlier, there are 

numerous studies that have implemented EEG signals for human emotion recognition. In 

addition, these captured affective states can be utilized for determining human driving 

behavior. Very little work has been conducted in which affective states are used to 

categorize driving behavior. 
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CHAPTER 3 

BELBIC UGV CONTROL 

In this chapter we present a novel implementation of BELBIC for the control of a 

UGV. This is accomplished by developing two low hierarchy intelligent controllers to 

improve the navigation performance of a UGV. This improvement occurs regardless if 

the UGV is fully teleoperated, or it is operating at an autonomy level of 3. The UGV 

navigation aspect we are focusing is on the lateral control, in its ability to follow a set 

trajectory in terms of two different methods, heading and path control. As a result, two 

independent intelligent controllers are developed, one for the case of I.) Heading control 

II.) Path control. 

A common approach for control is the implementation of a PID control, as it is 

the most commonly used feedback controller (Macia & Thale, 2005). PID controllers 

operate on an error, the difference between measured plant output and a desired plant 

output. The controller attempts to minimize the error by adjusting the plants control 

inputs. PID controllers are relatively easy to implement and operate. However, PID 

controllers are limited in being a linear control, and the derivative term amplifies high 

frequency measurement noise that produce large changes in the plant output. 

Researchers in the field of control have taken interest in utilizing bio-inspired algorithms 

to resolve complex control problems. This interest is driven by the advantages these 

algorithms have over traditional control strategies. One such algorithm example is BEL 

model. As discussed in the literature review, the BEL model has been used extensively in 

a variety of control applications (Mohammdi-Milasi, Lucas, & Najar-Arrabi, 2004; 

Mehrabian, Lucas, & Roshanian, 2006; Huang, Zhen, & Wang, 2008) in the form of 
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BELBIC (Lucas, Shahmirzadi, & Sheikholeslami, 2004), which consisted of the BEL 

model but utilized it as a direct adaptive feedback control. In all applications the BEL 

model demonstrated robustness to uncertainties, on-line adaptability, and small 

computational cost. However, there is no research in implementing BELBIC for heading 

and path control for a UGV. Therefore control strategy selected is in implementing 

BELBIC for both heading and path control. 

This chapter is organized as follows. Heading and path models are discussed in 

section 3.1. In section 3.2 and 3.3 heading and path control are presented, respectively. 

The inner workings of BELBIC are discussed in section 3.4. Implementation of the 

BELBIC controllers for the two cases (I and II), and simulation results are discussed in 

section 3.5. 

3.1 Heading and Path Models 

 

 In this section of the work we focus in modeling heading and path tracking 

motion of the UGV, as it navigates freely in uncertain environments. The modeling 

method used here is a two degree-of freedom bicycle model. This is a common 

approximation used for simple vehicle analysis and for deriving intuitive control 

algorithms (Hoblet, O'Brien, & Piepmeier, 2003; Massey, 2006). This is done by the 

assumption of combining the left and right wheels of a vehicle into a single in-line pair of 

wheels. The heading and path-tracking control of an autonomous vehicle is one of the 

most difficult automation tasks because of constraints in mobility, and speed of motion in 

undulating terrain. The vehicle control can be separated into lateral and longitudinal 
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controls. As previously mentioned, we focus on the lateral control of a UGV in terms of 

two separate cases: I.) Heading, and II.) Path. 

 
Figure 3.1. Bicycle Model (Massey, 2006) 

 

Where: 

 m = Mass of the Vehicle 

 a = Distance from Center of Gravity (CG) to front axle 

 b = Distance from CG to rear axle 

 Vx = Longitudinal velocity 

 CF & CR = Front tire cornering stiffness & rear tire cornering stiffness, respectively 

 Iz = Yaw moment of Inertia 

   = Yaw 

    = Steering angle 

 

3.2 Heading Control 

 

 For heading control, the objective is to move along a desired heading. The control 

variable is steering ( ) and output variable is heading ( ), which is controlled to steer 

towards a waypoint. Consider the heading control transfer function as follows (Velaskar, 

Vargas-Clara, Jameel, & Redkar, 2013):  

 
3 2

( ) ( )

Fs FA CD

s s A E s AE BD

  


   
  (1) 

 

Where the constants are defined by: 
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3.3 Path Control 

 

 Path control is another control approach that is useful in minimizing the lateral 

displacement of the vehicle from the straight line path between two waypoints. The 

lateral displacement (Yearth) is the path error, and is the output variable. Again the steering 

( ) is control variable. Thus, the path control transfer function follows (Velaskar, 

Vargas-Clara, Jameel, & Redkar, 2013): 

 
2

4 3 2

( ) ( )

( ) ( )

earth x x
Y s C s V F CE BF V FA CD

s s A E s EA BD

    


   
 (2) 

 

The implementation consist of two independent BELBIC controllers, one for 

Equation (1) and another for Equation (2). Thus, creating a heading BELBIC controller 

and a path BELBIC controller. Their implementation are discussed in greater detail in the 

following section. 

3.4 BELBIC  

 

 The inner working of BELBIC is an action generation system founded on sensory 

input and reward signal (Mehrabian, Lucas, & Roshanian, 2008). The emotional learning 

occurs primarily in the amygdala. The learning of the amygdala is given in the following 

equation: 

 max(0, )
a i

G S Rew A    (3) 
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where Ga is the amygdala gain, is the amygdala learning rate, Si is the sensory input, 

Rew is the reward signal, and A is the amygdala output. The max term is for making the 

learning in the amygdala monotonic, implying that learning in the amygdala should be 

permanent.  

Similarly, the learning rule in OFC is shown in the following equation: 

 ( )
o i

G S MO Rew    (4) 

 

where Go is the OFC gain,  is the OFC learning rate, and MO is the model output, 

calculated as in Equation (5): 

 MO A O   (5) 

 
In which, O is the output of the OFC. The model first receives the sensory input, Si, then 

the model calculates the internal signals of the amygdala and OFC, these signals are 

calculated as in Equations (6) and (7): 

 a i
A G S  (6) 

 o i
O G S  (7) 

 

The amygdala learns to predict and react to give an emotional signal. The OFC 

system detects the difference between the expected system’s prediction and the actual 

received emotional signal (Mehrabian, Lucas, & Roshanian, 2008). However, for the 

implementation of BELBIC as a heading and path control, we use the continuous form of 

BELBIC. In continuous form, BELBIC states (3) and (4) are updated with continuous 

relations as follow: 

 ( )
a i

G S Rew A   (8) 

 ( )
o i i

G S Rew S O A     (9) 
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To utilize this version of the BELBIC as a controller, it is important to understand 

that BEL model in essence converts two sets of inputs (Si and Rew) into a decision signal 

as its output (MO). Therefore, it is important to implement this BELBIC in an appropriate 

manner so that input signals and output signals have the proper interpretations for the 

problem at hand. For the implementation of the BELBIC in this study, we selected the 

sensory input function (Si) to be of the form Equation (10): 

 
1

1

( )              (Heading Control)

( )      (Path Control)

i d

i earth d earth

S K

S K Y Y

  

 
 (10) 

 

where 
d

 and Yearth-d are the desired heading and desired displacement, respectively. 

While,  and Yearth are the measured heading and measured lateral displacement, 

respectively. Lastly K1 is a positive real number gain. Important note, the same K1 

variable name is used for both cases (Heading and Path), but it might have a different 

value for each of the cases. 

 The reward function (Rew) is selected with the objective of minimizing the 

difference between desired and measured. This function plays an important role in 

BELBIC. Rew function attempts to increase the reward while minimizing the sensory 

input. The implemented reward function is given in Equation (11): 

 
2 3

Rew K e K    (11) 

 
where K2 and K3 are positive real numbers gains. The same reward function (11) is used 

for both cases (Heading and Path), however, K2 and K3 might have different values for 

each of the two cases. From equation (11), it can be seen that the BELBIC obtains 

maximum reward when the sensory input is zero. Closely noticing equation (10), the 

sensory input is in essence, an error signal. The BELBIC tries to diminish the error. A 
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schematic of BELBIC implementation for heading and path control are illustrated in 

Figure 3.2 and 3.3, respectively. 

 
Figure 3.2. Heading Control Configuration Using BELBIC 

 

 
Figure 3.3. Path Control Configuration Using BELBIC 

 

3.5 BELBIC Implementation and Simulation Results 

 

 To carry out the simulations a number of BELBIC parameters had to be selected. 

These parameters included the learning rates in Equations (8) and (9); the gains in 

Equation (10) and (11). Table 3.1 shows all BELBIC parameters selected. These 

parameters were selected through trial and error to improve BELBIC performance for the 

cases of heading and path control. 

Table 3.1 

 
BELBIC Controller Parameters 
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To assess the performance of the BELBIC controllers, a comparison with PID 

controllers is conducted. The PID gains (KP, KI, and KD) are selected as in (Velaskar, 

Vargas-Clara, Jameel, & Redkar, 2013). Built in MATLAB Simulink PID block are 

utilized to create the PID heading and path controllers. To evaluate the performance of 

the two mentioned control strategies (BELBICs and PIDs), we have simulated the control 

systems in Simulink. The UGV should follow a desired heading and maintain a desired 

lateral displacement. A sinusoidal and step signal were selected as inputs for both desired 

heading and desired lateral displacement. In addition, plant parameters are varied. These 

variations include changes in the mass of vehicle (m), and longitudinal velocity (Vx). 

First scenario simulated is a comparison of the heading controls with different 

inputs and varied longitudinal velocities. The following results were obtained, shown in 

following table. 

Table 3.2 

 

Heading Control Comparison: Varied Input Signal and Longitudinal Velocity 

Sensory Input 

Function (Si )

α β K 1 K 2 K 3

Heading Control 2 1 2 110 0.5

Path Control 2 1 2 173 0.2

Case
Learning Rates

Reward Function 

(Rew )
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It can be seen from the first scenario simulated that the performance of BELBIC 

controller for a step and sine reference input is better than a PID controller in having 

reduced RMS error from desired heading. In addition, variations in the velocity of the 

UGV have less impact on the performance of a BELBIC controller than in the PID 

controller. Also, the Central Processing Unit (CPU) time is less than in the PID for all 

input signal variations and velocity variations. To further demonstrate the superior 

BELBIC performance, Figure 3.4 demonstrates a comparison of both control strategies 

with a step input response when PID performs at its best, which is at Vx = 10 m/s. Figure 

3.5 illustrates a comparison of both control strategies with a sine input response when 

PID performs at its best, which is at Vx = 7 m/s. 
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Figure 3.4. Heading Control Comparison: Step Input at Vx = 10 m/s 

 

 
Figure 3.5. Heading Control Comparison: Sine Input at Vx = 7 m/s 

 

The second scenario simulated is a comparison of the heading controls with again 

different inputs and varied mass. Note that Vx is kept constant at 1 m/s. The following 

results were obtained, shown in Table 3.3 below. 

Table 3.3 

 

Heading Control Comparison: Varied Input Signal and Vehicle Mass 
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From the second scenario simulated it is again noticeable that the BELBIC controller 

performed better than the PID controller, and that changes in the mass had less effect in 

the BELBIC performance than in the PID controller. 

 The third scenario simulated is carried out in similar fashion as the first scenario, 

except that it is for path controls. The following results were obtained, shown in the 

following Table 3.4. 

Table 3.4 

 

Path Control Comparison: Varied Input Signal and Longitudinal Velocity 
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The results from this scenario again demonstrate that the performance, in terms of 

reducing RMS error and CPU time, of the BELBIC controller for a step and sine 

reference input is superior to the PID controller performance. In addition, variations in 

the velocity of the UGV have again less effect on the performance BELBIC controller 

than in the PID controller. More importantly, is that at the velocity of 1 m/s (sine input) 

and 10 m/s (step and sine input) the UGV plant becomes unstable, and the PID fails to 

stabilize the plant. In contrast, these velocity changes do not have detrimental effects on 

the performance of the BELBIC controller. Again to further illustrate the superior 

BELBIC performance, Figures 3.6 and Figure 3.7 demonstrate the step and sine input 

response of both control strategies when PID performs at its best, which are at Vx = 5 m/s 

for both step and sine inputs. 

 

PID BELBIC PID BELBIC

1 0.602 0.507 0.0825 3.242E-04

3 0.724 0.551 0.0406 3.251E-04

5 0.597 0.489 0.0240 3.273E-04

7 0.609 0.494 0.1101 3.300E-04

10 0.601 0.503 1.204E+07 3.326E-04

PID BELBIC PID BELBIC

1 0.615 0.508 1.9883 6.895E-05

3 0.615 0.512 0.0177 1.207E-04

5 0.622 0.512 0.0035 1.604E-04

7 0.618 0.513 0.0050 1.719E-04

10 0.629 0.543 3.235E+05 1.823E-04

PATH CONTROL

Step Reference Input: Amplitude - 0.785 m

Velocity 

[m/s]

CPU Time [sec.] RMS Error [m]

Sine Reference Input: Amplitude 0.785 m and 

frequency 0.25 Hz

Velocity 

[m/s]

CPU Time [sec.] RMS Error [m]
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Figure 3.6. Path Control Comparison: Step Input at Vx = 5 m/s 

 

 
Figure 3.7. Path Control Comparison: Sine Input at Vx = 5 m/s 

 

 The last scenario simulated was conducted in similar fashion as the second 

scenario with the exception that it is for path control. Note that Vx is kept constant at 1 

m/s. The following results were obtained, shown in Table 3.5. 

 

Table 3.5 
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Path Control Comparison: Varied Input Signal and Vehicle Mass 

 
 

From the above results it is again noticeable that the BELBIC controller 

performed better than the PID controller, and that changes in the mass had less effect in 

the BELBIC performance than in the PID controller. However, an interesting point 

mentioned before is that at velocity of 1 m/s with a sine reference input the UGV plant is 

unstable, but the BELBIC controllers were still able to stabilize it, unlike the PID 

controller. 

PID BELBIC PID BELBIC

+10% 0.613 0.496 0.0811 3.431E-04

0.927 kg 0.602 0.507 0.0825 3.242E-04

-10% 0.611 0.487 0.0839 3.262E-04

PID BELBIC PID BELBIC

+10% 0.618 0.502 1.9524 7.050E-05

0.927 kg 0.615 0.508 1.9883 6.895E-05

-10% 0.616 0.508 2.0253 6.740E-05

PATH CONTROL

Step Reference Input: Amplitude - 0.785 m

Mass
CPU Time [sec.] RMS Error [m]

Mass
CPU Time [sec.] RMS Error [m]

Sine Reference Input: Amplitude  0.785 m and 

frequency 0.25 Hz
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CHAPTER 4 

BEL UGV NAVIGATION 

In this chapter, the analysis of a filter consisting of the BEL algorithm is 

presented. The BEL filter is implemented in simulation for the purpose of sensor fusion 

in a ground vehicle. In simulation, the signals from a GPS and an Inertial Navigation 

System (INS) are integrated, in order to accurately track the trajectory of a ground 

vehicle around a track. 

To reiterate, the purpose of a navigation system in a vehicle is to determine its 

current location, velocity, and direction; in other words determine the state of the vehicle. 

This information is usually  obtained from multiple sensors on the vehicle. The sensors 

commonly used are a GPS, and an INS. 

Typically, GPS is a sensor that provides positioning data relative to an earth-

centered coordinate system. It uses at least 4 or more satellites with an unobstructed line 

of sight to calculate position, time, and velocity. GPS receivers can obtain signals from 

GPS satellites under any weather conditions, and anywhere on Earth. GPS are available 

for civilian and military applications. They are highly accurate in three-dimensional 

positioning. GPS position errors are bounded and are dependent on the availability of 

GPS satellites (Grewal, Weill, & Andrews, 2007). 

An INS sensor uses acceleration, and rotational sensors to continuously calculate 

position, orientation, and velocity, though, its primary output is position relative to an 

earth-centered coordinate system. In contrast to a GPS sensor, the INS position errors are 

not bounded, and grow with time. In addition, the errors are dependent on the quality of 

its inertial sensors (Grewal, Weill, & Andrews, 2007). 
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The integration of GPS and INS are in efforts to combat each of the sensing unit’s 

weaknesses. For example, INS are initially given position and velocity information from 

another source, and subsequently it generates its own updated position and velocity by 

integrating information received from its inertial sensors. However, any small errors 

which arise in the measurement are integrated into gradually larger errors. By integrating 

the INS with a GPS, the GPS capability for online calibration and error estimation will 

help mitigate the INS integration drift. Conversely, in the event that there is an 

obstruction to the line of sight between vehicle and satellites, and the GPS is unable to 

perform. The INS can perform as the short-term backup when GPS signals are 

unavailable. Therefore, as GPS and INS have complementary characteristics, their 

implementation are considered in an integrated approach (Qi & Moore, 2002). 

As a result, the navigation system utilizes the output signals from these sensors 

and integrates them to obtain a more precise information about the vehicle’s state. This 

process of integration is commonly referred to as sensor fusion. There are numerous 

methods to fuse INS and GPS, such as, loosely coupled or tightly coupled integration. In 

the majority of these designs GPS and INS integration filter is usually some form of a 

Kalman filter (Grewal, Weill, & Andrews, 2007; Wei & Schwarz, 1990; Schwarz, Wei, 

& Gelderen, 1994; Guangrong, Hongshen, & Ninghui, 2013; Guo, 2013). In most cases, 

an extended Kalman filter is implemented with inertial errors as its state to obtain 

satisfactory performance. Kalman filter equations are optimal when sensor observations 

are unbiased with white noise. Also, there is a heavy computational cost in Kalman filter 

implementation, due to constant updating of Kalman gains. 
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 In this chapter, we present a BEL filter integration approach to achieve lower 

computational effort but with competitive performance measures compared to the more 

commonly used Kalman filter. 

The chapter is organized as follows. The sensor integration BEL filter is discussed 

in section 4.1. Simulation setup is discussed in section 4.2. Simulations results are 

presented in section 4.3. 

4.1 BEL Filter 

 

 The implementation of this BEL filter follows similarly to the BELBIC 

implementation in section 3.4. However, there are several modifications that need to be 

addressed. First, a discrete version of the BEL model is utilized. In the discrete form, 

BEL states are updated with discrete relations as follow: 

 max(0, )
a i

G S Rew A    (12) 

 ( )
o i

G S MO Rew    (13) 

 

Equations (5 – 7) remain unchanged for the implementation of the BEL filter. However, 

it is important that for the sensor fusion filter application, the sensory input (Si) and the 

reward function (Rew) are appropriately selected in a manner that the input signals and 

output signals have the proper interpretations for this filter application. In addition, the 

implementation of BEL model as a filter is chosen to be in similar manner as the Kalman 

filter implementation. This is done in efforts to draw an accurate performance 

comparison between BEL filter and Kalman filter. However, slight differences arise due 

to the fact that BEL model is originally designed for descriptive purpose with no 

engineering application in mind. Therefore, it is up-to the designer to appropriately select 

the sensory input signal and reward signal in accordance to engineering application. 
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 Thus, we selected the sensory input function (Si) to be of the form: 

 
i

S  
1

z x  (14) 

 

where x1 is the vehicle states obtained from the vehicle trajectory model, and z is 

measurement vector, which is composed of the computed position, velocity and clock 

errors from the GPS. 

 The reward function (Rew) is selected with objective of minimizing the difference 

between GPS and Measured. This function plays an important role in BEL filter. The 

filter attempts to increase the reward while minimizing the sensory input. The 

implemented reward function is given in Equation (15): 

 1 2Re iw K S K    (15) 

 

where K1 and K2 are gains. The reward function gains are positive real numbers. From 

equation (15), it can be seen that BEL filter obtains maximum reward when the sensory 

input is zero. Closely noticing equation (14), the sensory input function is in essence, an 

error signal. The BEL filter tries to diminish this error. 

4.2 Simulation Setup 

 

 In this study, a simulation of a ground vehicle around a track is utilized to draw 

performance comparison between Kalman Filter and the BEL filter. The performance of 

these two filter is based on their ability reduce noise from GPS as the vehicle trajectory is 

tracked. Two tracks are simulated, a circular and figure-8 track. The vehicle is modeled 

as traveling at a velocity of 5 m/s. The trajectory of the vehicle on the track is given by 

the following equation (Grewal, Weill, & Andrews, 2007): 
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 

δ  (16) 

 

where S is the track scaling parameter, h is the crossover height,   is mean angular 

speed, and   is an arbitrary phase angle. Implemented in MATLAB, this model 

calculates vehicle velocity, acceleration attitude, and attitude rates. The trajectories 

simulated can be seen in Figure 4.1. Both simulated tracks have changes in elevation of 

10 meters. 

  
Figure 4.1. Figure-8 Track and Circular Track  

 

The vehicle dynamic model consist of a Type2 Tracking Model. This tracking 

model can estimate position, velocity in three-dimensions, given the appropriate 

measurements. The tracker utilizes a host vehicle dynamic model with zero-mean white 

noise acceleration, unbounded steady-state mean squared velocity and unbounded steady-

state mean squared position variations. The full tracking model is implemented, which 

include three position components and three velocity components. The necessary Kalman 

filter components for a three-dimension Type2 tracking filter are the following: 
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where P0 is the estimation uncertainty covariance matrix, Φ  is the state-transition 

matrix, and Q is the covariance of dynamic disturbance noise. 

The Kalman filter utilized for the performance comparison is of the following 

form: 

 T T
[ ] K PH HPH R  (20) 

 

where K is the Kalman gain, H is measurement sensitivity matrix, and R is the sensor 

noise covariance matrix. 

 
1 1 1

[ ]  x x K z Hx  (21) 
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where z is measurement vector, which is composed of the computed position, velocity 

and clock errors from the GPS. 

  P P KHP  (22) 

 

The implementation follows the above equations in chronological order. First, the 

Kalman gain is computed by equation (20). Followed by the corrected state estimation in 

equation (21). Lastly, the corrected covariance matrix is computed by equation (22). To 

finalize the Kalman filter implementation, the temporal updates are computed by the 

following equations: 

 1 1
x Φx  (23) 

 
T

 P ΦPΦ Q  (24) 

 

To carry out the simulation a number of parameters had to be selected. First, the 

learning rates for the amygdala and OFC were selected to be 1 6e   , and 1 4e   , 

respectively. The OFC learning rate was chosen to be slightly larger to make the OFC 

learn the error in the amygdala quicker than the amygdala itself to eliminate the error. 

The other parameters were the gains in the Rew function, which were selected to be K1 = 

0.001 and K2 = 1.  These parameters, and learning rates were selected through trial and 

error to improve BEL filter performance. 

All simulations are carried out in MATLAB. The simulation time was selected to 

be 0.2 hours. The first 100 seconds of the simulation data was not sampled to allow 

settling time. The simulation was executed 100 iterations. The number of satellites for 

GPS were varied. In addition, GPS noise distributions were varied. Performance 

measures for both Kalman and BEL filter are average RMS error for positions, velocity, 

and average Central Processing Unit (CPU) time. 
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4.3 Simulation Results 

 

 The first scenario simulated is with a circular track. The number of satellites for 

this scenario is 29. The performance of Kalman filter and BEL filter were obtained, 

results are shown in the following table. 

Table 4.1 

 

Performance Comparison for Circular Track Simulation 

 
 

The above table demonstrates that BEL filter was superior in diminishing positional 

errors. This trend was maintained through all GPS noise distributions. In some cases, it 

even performed better than Kalman filter in reducing velocity errors. A significant result 

obtained is that BEL performed better in reducing the computational cost across all noise 

distribution cases. In the worst case, BEL CPU time was half of the Kalman filter best 

CPU time. 

 The second scenario simulated was with a figure-8 track. This simulation was 

conducted in similar fashion as the first scenario. The figure-8 track simulated a more 

demanding tracking trajectory. Table 4.2 illustrates the results obtained from the second 

simulation scenario. 
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Table 4.2 

 

Performance Comparison for Figure-8 Track Simulation 

 
 

Results obtained from the figure-8 track simulation are similar to the ones obtained in the 

previous scenario, but with slightly higher CPU time and positional errors for both 

Kalman filter and BEL filter implementations. The figure-8 track appears to be no more 

rigorous than the circular track. For further performance comparison between the two 

filter implementations, a more interesting scenario is analyzed. 

 To conclude, the effects of the number of satellites available is analyzed. As 

previously discussed, the number of satellites is a detrimental factor for GPS to 

accurately calculate position and velocity of a vehicle. Therefore, for this last scenario the 

number of satellites is varied from 4 to 29. Their effects on the Kalman and BEL filter 

performance are obtained, shown in the table below: 

Table 4.3 

 

Effects of Number of GPS Satellites on Kalman and BEL Filter Performance 
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In the majority of the cases the RMS error for position and velocity increased as the 

number of satellites decreased for both filter implementations. However, the increments 

in the BEL implementation were small in comparison to the Kalman filter. In the Kalman 

filter implementation, the RMS error for position and velocity appear to grow 

exponentially when the satellites decreased from 14 to 4. The results demonstrate that the 

BEL filter is less sensitive to the effects of the number of satellites available. In addition, 

the CPU time increased as the number of satellites increased for both filter 

implementations. Although this effect was more noticeable for the Kalman filter 

implementation. Lastly, a similar trend was obtained in that the BEL filter was superior at 

diminishing positional errors, while the Kalman filter was superior at reducing the 

velocity errors. An important note about this scenario, the effects on the number of 

satellites was carried out with a Gaussian GPS noise distribution. 

 The results from this study demonstrated the BEL qualities as a filter. It 

successfully filtered the noise from GPS and was able to accurately follow the trajectory 
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of a vehicle around a track. It demonstrated robustness to a variety of noise distributions, 

and all this with significantly less computational cost. 
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CHAPTER 5 

INTELLIGENT CONTROLLER TUNING UNIT 

 As discussed in the literature review, Section 2.4.3, there are two widely used 

methods for classifying human driving behavior: questionnaires after a driving task and 

through data logging of vehicle parameters (steering angle, throttle position, brake 

position, etc.). Consequently, the purpose of this study is to develop, test, and compare 

the performance of an alternative method for classifying human driving behavior. The 

proposed alternative method in this study consist of two parts: I.) Capturing a human’s 

affective states. II.) Classifying driving behavior based on captured affective states. 

Figure 5.1 illustrates the driving behavior classification through affective state 

methodology. 

 
Figure 5.1. Proposed Driving Behavior Classification Approach 
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This driving behavior classification method can potentially have the advantages of being 

used in real-time, not dependent of driving terrain, and comparably accurate to current 

methods.  

More importantly, findings from this study can be used in the development of an 

intelligent controller tuning unit. As previously mentioned, this unit is intended to be 

implemented for the purpose of giving the UGV the ability to sense and utilized the 

operator’s affective state, then to tune BELBIC controller performance to mimic desired 

mode/tactic of operation. This unit along with the other proposed components will allow 

the CS to robustly control the UGV in the absence of timely control input from a human 

operator. 

In this chapter an alternative method for driving behavior classification through 

human affective states is developed, and its implementation is proposed. The chapter is 

organized as follows. Section 5.1 outlines the objectives of this study. Section 5.2 

explains the study design. Section 5.3 discusses Experiment I design and results. Section 

5.4 presents Experiment II design and results. In section 5.5 driving behavior 

classification through EEG measurement is explored. Lastly, section 5.6 discusses 

implementation of a novel method for driving behavior classification as the intelligent 

controller tuning unit for the proposed CS. 

5.1 Objectives 

 This study consists of two parts. The objective of Part I, is to capture and classify 

a human’s affective state into one of the four emotional states (a quadrant) in the valence-

arousal model, shown in Figure 5.1. The human’s affective states is captured through an 
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EEG headset worn by the participant. The participant’s emotion is elicited through the 

viewing of images. Affective state classification of raw EEG signals is done through a 

neural network technique.  

Successively, the objective of Part II is to classify the human driving behavior 

based on the classified human affective state. This is accomplished by collecting EEG 

data of a person while driving a simulated automobile. Driving behavior is classified into 

one of four driving modes, shown in Figure 5.1. 

5.2 Study Design 

The proposed study consists of two experiments for each participant. The purpose 

of the first experiment (Experiment I) is to validate and test the effectiveness of the 

affective state classification through EEG measurement. Experiment I only consists of 

PART I, shown in Figure 5.1. Experiment I follows a simplistic manner of data collection 

in which the participant’s EEG data is recorded while they are viewing an image 

(stimulus with varying levels of valence and arousal), and at a relaxed state (blank-white 

screen). In addition, a quick survey in between images is given to assess the participant’s 

emotional state based on arousal/valence levels. This experiment only gathers data about 

the participant’s EEG recordings, and their self-assessment of their emotional state. 

The purpose of the second experiment (Experiment II) is to assess the 

performance of the proposed driving behavior classification method. Experiment II 

consists of all the processes depicted in Figure 5.1 (PART I and PART II). Similarly, this 

second experiment follows a simplistic manner of data collection in which the 

participant’s EEG data is recorded while they are operating a simulated vehicle. 
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Concurrently, vehicle parameters such as vehicle speed, brake pedal position, throttle 

pedal position, and steering angle are recorded. The specific details of each experiment is 

discussed in the following sections. 

5.3 Experiment I 

5.3.1 Methods 

Participants: The group of participants used in this study consisted of four healthy 

volunteers (two females and two males) with no previous history of epilepsy, and or 

seizures. Their age ranged from 18 – 35 years. This age range was selected to be similar 

to current United States Armed Forces enlistment age. Additionally, all participants met 

the following inclusion criteria: 

1. Have a valid driver’s license 

2. Full range limb motion including: arms, hands, legs, knees, and feet 

3. Ability to follow simple instructions 

4. Ability to wear EEG headset 

This criteria was selected because these same participants are used for Experiment II, in 

which they drive an automobile in a driving simulator. Additionally, the effects of driving 

experience was reduced due to age range and driver’s license requirement. All the 

participants were given written consent prior to the recording. Every participant was 

given information about the design and purpose of the experiment. 

Materials and Apparatus:  

A PowerPoint presentation was used to display a blank-white screen for 5 seconds 

before each stimulus was displayed. A slide of the stimulus was then displayed on the 
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monitor for 6 seconds. Lastly, a prompt was then displayed to instruct participants to 

conduct their self-assessment.  

An EPOC EEG headset was used to record the participant’s EEG signals. EPOC 

is a research-grade EEG headset aimed for the general consumer for the purposes of 

education, entertainment, health and research (EMOTIV, 2014). This headset has the 

capability to measure raw EEG signals from four brain waves ( ,  ,   ,      ), distinguish 

and measure four mental states (excitement, engagement/boredom, meditation, and 

frustration), and detect facial expressions. EPOC records from 14 channels with a 10-20 

International electrode placement. It has a built in sinc filter allowing frequencies 0.2 – 

45 Hz.  Figure 5.2 demonstrates the EPOC EEG headset. In addition, Emotiv provides 

various toolkits to allow users to link the headset, record real-time raw EEG data, and 

process the data (Software Development Kit: User Manual , 2014). Before any 

experiment was conducted, the participant was provided with the opportunity to gain 

familiarity with EPOC EEG headset. In addition, correct placement of the EEG headset 

for each participant was ensured to obtain the most accurate EEG signal readings. EEG 

recordings were taken while the participant was viewing the blank-white screen, and 

while he/she was viewing the stimulus. The EEG recordings were sampled at fixed rate 

of 128 Hz for all the channels. 
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Figure 5.2. EPOC EEG Headset by Emotiv (EMOTIV, 2014) 

  

After each stimulus, the participants were asked to take a paper survey of their 

self-assessment of their emotional state based on levels of valence and arousal. This 

survey consisted of a version of the Self-Assessment Manikin (SAM), which is a pictorial 

based assessment technique that directly measures the valence, and arousal associated 

with the participant’s affective reaction to a stimuli (Bradley & Lang, 1994; Chanel, 

Kronegg, Grandjean, & Pun, 2006). Figure 5.3 illustrates the self-assessment survey. 

 
Figure 5.3. Self-Assessment Survey (Bradley & Lang, 1994) 
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Stimulus: The stimulus for this experiment consisted of several images. Emotions were 

elicited by showing images that have been selected from IAPS, in which these images 

have been extensively evaluated in terms of valence/arousal values and with collective 

means and variances. 10 images were selected from each quadrant in the valence-arousal 

model (40 total images). The images were selected by selecting the extremes from each 

quadrant in the valence/arousal model. This approach was taken so that the image would 

correctly elicit the emotion the image was intended for. The IAP images used in this 

experiment are listed in Appendix B. Each IAP image was shown to the participants for 6 

seconds. 

Procedure: The procedure for this experiment was as follows. Participants equipped with 

an EPOC EEG headset sat in front of a computer monitor in a bare room. They were 

instructed to relax and avoid movement. A blank-white screen was first displayed for 5 

seconds to allow the participants to relax and prepare for the ensuing image. 

Successively, an IAP image was shown to the participants for 6 seconds. Participants 

were then instructed to take a self-assessment of their emotions based on level of valence 

and arousal. The self-assessment period was without any time constraint, to also allow 

them to rest and ‘regroup’. Subsequently, the process was repeated for each image. This 

process is shown in Figure 5.4. The actual experiment duration was approximately 25 

minutes per participant. 

 
Figure 5.4. Experiment Procedure 

EEG recording -------------------------------->|

Time ----------------------------------------------------------------------->

5 sec. 6 sec. Approx. 20 sec.

Blank Screen IAP Image Self Assessment
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Data Analysis: 

 Measured EEG signals contain valuable information about brain activity. 

However, majority of these signals consist of a lot of background noise. Therefore, in 

order to use these signals for emotion recognition, they have to be preprocessed in order 

to remove unwanted noise. Additionally, certain features are important for distinguishing 

human emotions. As a result, this EEG data analysis follows a similar approach as 

discussed in literature review, in that there will be preprocessing, feature extraction, and 

finally classification. 

 The raw EEG data was first preprocessed by a band pass filter to only allow 

frequencies of 4 – 45 Hz, in efforts to remove any noise and artifacts. Figure 5.5 

illustrates the band pass filter. Secondly, the baseline from each electrode channel was 

removed. Lastly, only the EEG recordings in which the participant was viewing the 

image was selected, approximately 6 seconds per image.  All the preprocessing steps 

were implemented through EEGLAB MATLAB Toolbox (EEGLAB, 2014).  

 
Figure 5.5. Band Pass Filter 
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 After the preprocessing the EEG data, features were extracted from the EEG data 

to make more noticeable the differences between signals at each emotional state. The 

features that were extracted were the following: 

 Amplitude and location of the highest 6 peaks of Welch’s Power Spectral 

Density function of each electrode channel (168 features) 

 Amplitude of first peak, amplitude and location of the second peak in the 

Auto-correlation for each electrode channel (42 features) 

These features were selected because this feature extraction approach typically produced 

the most distinguishable features of the signals at different emotions, as found in previous 

studies (Chanel, Kronegg, Grandjean, & Pun, 2006; Choppin, 2000; Musha, Terasaki, 

Haque, & Ivanitsky, 1997). The total number of features extracted from the EEG data 

when viewing an image was 210 features. 

 Lastly, for classification of EEG measurements an ANN was implemented using 

MATLAB Neural Network Toolbox. The network was trained, validated and tested to 

classify the participant’s affective state from their EEG data for each image. It is 

important to point out that a neural network was created for each participant. Each 

network was trained, validated and tested with the EEG data from one participant. Table 

5.1 provides details of each neural network classifier. 

Table 5.1 

Affective State Classifiers using EEG Data from each Participant 



  79 

 
 

The structure of the ANN consisted of 20 hidden neurons in the hidden layer. The EEG 

data was classified into one of the four distinct quadrants of the valence-arousal model. 

Each quadrant in the valence-arousal model encompasses a number of emotions, as 

shown in Figure 2.5. Depending on the degree of valence and arousal of the EEG data, 

the affective state was classified as one of the quadrants in the model. Figure 5.6 shows 

this model.    

 
Figure 5.6. Affective State Classification Based on Valence-Arousal Model 

 

5.3.2 Results 
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 As mentioned before, the images used in this experiment sometimes do not evoke 

the emotion they are intended for. This is due to a number of reasons. First, the 

participant might have difficulty in assessing his/her emotions when filling in the self-

assessment survey. Another reason can be that the images evoke other emotions than 

denoted in the IAPS list, due to the participant’s life experience or other factors. To 

investigate this matter, the correspondence between the IAPS picture scores and the self-

assessment survey scores are analyzed.  

 The Pearson correlation coefficient between the IAPS scores and survey scores 

from all participants were 0.93 for the valence dimension, and 0.91 for the arousal 

dimension. These coefficients indicate that there is very good correspondence between 

expected emotions and the experienced emotions in both dimensions. This fact is also 

obtained by the mean difference between the two scores. Figure 5.7 shows the 

distribution of the differences between the IAPS scores and their self-assessment scores 

for both dimensions.  

 
Figure 5.7. Distributions of the Differences between IAPS Scores and Self-Assessments 

Scores for All Participants for each Dimension 

 

The differences in the both dimensions are more or less normally distributed (mean of 

zero), as expected. However, the arousal dimension is slightly less accurate.  
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 In proceeding with the experiment’s objective, the classification of the 

participants’ affective state through EEG measurement, the following results were 

obtained. The neural network was able to correctly classify affective states of all the 

participants using their EEG data at an average accuracy of 88.35%. Table 5.2 shows this 

results. 

Table 5.2 

 

Neural Network Emotion Classification Accuracy for All Participants EEG 

 
 

Several interesting results were obtained. First, the results indicate that the features 

selected in the feature extraction process were successful at differentiating the EEG 

signals of different emotional states. Secondly, of the four quadrants in the valence-

arousal model, quadrant IV had the highest average accuracy with the smallest standard 

deviation for all participants. In contrast, emotions in quadrant III had one of the lowest 

average accuracy with highest standard deviation. Interestingly, male participants (S2 and 

S3) had slightly higher total accuracy than female participants (S1 and S4).  

An important note, is that for some of the participants EEG data was not usable, 

due to too much movement, or recording errors. Thus, some the participant’s neural 

network classifier had less data to classify. Table 5.3 shows the samples that were 

removed. This could have affected their accuracy.  

Table 5.3 

Subject QI QII QIII QIV Total Accuracy

S1 90.0% 88.9% 80.0% 90.0% 87.2%

S2 90.0% 77.8% 100.0% 88.9% 89.2%

S3 88.9% 90.0% 88.9% 90.0% 89.5%

S4 80.0% 100.0% 80.0% 90.0% 87.5%

Average 87.23% 89.18% 87.23% 89.73% 88.35%

STDEV 4.20% 7.86% 8.22% 0.48% 1.17%

Correct Target Classification of Emotions
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Image Samples Removed 

 
 

Nevertheless, results indicate high accuracy at distinguishing and classifying the 

participants’ emotional state through EEG measurement. 

5.4 Experiment II 

 

For the second part in this study, the association of the human’s affective state to 

driving behavior, it is anticipated that the human’s affective state can be mapped into one 

of 4 distinct driving modes: keen, aggressive, inefficient, and sedate. Each of these 

driving behaviors can be characterized by a number of emotions. Therefore, each driving 

mode is mapped to the quadrant where the emotions that characterize them are located. 

This approach closely follows the method used for associating driving moods to affective 

states (Cacciabue, 2007).  Figure 5.8 demonstrates the mapping of emotions to driving 

modes in a modified valence-arousal model. 

QI QII QIII QIV

S1 0 1 0 0 39

S2 0 1 1 1 37

S3 1 0 1 0 38

S4 0 0 0 0 40

Number of Images removed from: Total Images 

used
Subject



  83 

 
Figure 5.8. Mapping of Driving Mode to Affective States  

 

Our definition of the driving behaviors are the following (Bar, Nienhuser, Kohlhaas, & 

Zollner, 2011): 

 Keen:  

A keen operator is a person characterized as being in an eagerness or 

enthusiastic emotional state; that is in a high-arousal and with positive 

valence state (Summala, 2007). In terms of vehicle operation, the operator 

is well aware of the vehicle’s characteristics and will utilized the full 

dynamics of the vehicle. Maneuvering of vehicle is quick and precise. Any 

deviations from the desired response is quickly corrected. Drives at or 

slightly above speed limit 

 Aggressive: 

An aggressive operator is a person characterized in using forceful methods 

to succeed or to accomplish a goal; that is in a high-arousal state, but with 



  84 

a negative valence (Summala, 2007). Generally, taking high risks. In terms 

of vehicle operation, it is similar to keen, in being quick maneuvering, but 

irresponsible. Drives close to other vehicles, and driving at higher speeds 

and accelerations. Due to the reckless maneuvering, the response is less 

precise.  

 Inefficient: 

An inefficient operator is characterized by the emotional state of fatigue, 

boredom; that is in a low-arousal and negative valence state (Summala, 

2007). In terms of vehicle operation, the operator will tend to deviate from 

planned trajectory, speed of vehicle will greatly vary. Maneuvering is slow 

and imprecise.  

 Sedate: 

A sedate operator is characterized as being in a relaxed, calm emotional 

state; that is in low-arousal and positive valence state (Summala, 2007). In 

terms of vehicle operation, it is in a constant, restrained and responsible 

manner. Maneuvering is very slow but precise. 

To assess the accuracy of the association of human’s emotional state to the driving 

behavior, a simulated driving experiment is performed 

5.4.1 Methods 

 

Participants: The same four participants that were used in Experiment I, because results 

of the previous experiment are used in this experiment.  

Materials and Apparatus: 
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 The apparatus required for this experiment were the following. The experiment 

was performed in RS-600 by DriveSafety (DriveSafety, 2015), which is a high 

performance, high fidelity driving simulation system designed for use in ground vehicle 

research, training and assessment applications. Figure 5.9 shows the driving simulator. 

This driving simulator is located in SIM building at ASU Polytechnic campus. The 

simulator has the capability to record various vehicle parameters: vehicle speed, brake 

pedal position, throttle pedal position, steering angle and other user-defined parameters. 

These parameters were recorded as participants operated the simulated vehicle around a 

planned driving route. 

 

  
Figure 5.9. RS-600 Driving Simulator in SIM Building 

 

An EPOC EEG headset was used to record the participant’s EEG signals. 

Recordings were taken while the participants operated the simulated vehicle around a 

planned driving route. 

Stimulus: The stimulus for this experiment was a planned driving route in a simulated 

environment. Figure 5.10 illustrates the layout of the simulated driving route. The 

planned route consisted of several curved roads, left/right turns, and with instances where 

the participants was required stop and go. In addition, the driving route had varying 
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degrees of traffic. Additionally, the route had varying speed limit signs. More 

importantly, the planned route had several preplanned scenarios to evoke a number 

driving responses. 

 
Figure 5.10. Planned Driving Route 

 

The green boxes indicate the location of the different driving scenarios. There were a 

total of 14 driving scenarios. Details of each scenario are described in Table 5.4. 

 

Table 5.4 

 

Driving Scenarios Descriptions 
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These driving scenarios were selected to evaluate the driving behavior of the participants. 

In all the scenarios the following vehicle parameters were measured: vehicle speed, lane 

position, steering angle, brake pedal position, throttle pedal position, lateral acceleration, 

and longitudinal acceleration. These parameters have been successfully used to determine 

driving behaviors/styles (Bar, Nienhuser, Kohlhaas, & Zollner, 2011). In addition, 

headway distance was a user-defined parameter used for driving Scenario 1 and Scenario 

3 – 6, which measures the distance between the participant’s vehicle and the vehicle in-

front. 

Procedure: The procedure for this experiment was as follows. Each experimental session 

began with a 10 minutes practice trial, designed to allow the participants to become 

Scenario

Tight curves in a two lane road, no passing, and speed limit at 45 mph

Encounter police vehicle parked on the side of the road. Once subject passes police, police vehicle turns on 

lights and sirens. Two lane road, passing is permitted, and speed limit 55 mph

Approach residential neighborhood. Two lane road, passing is permitted, and speed limit at 25 mph. There is 

a bicyclist

Residential setting, a dog crosses the roadway. Speed limit at 25 mph

Directly behind slow vehicle in a two lane curved road, no passing, and speed limit at 45 mph 

Directly behind slow vehicle in a two lane road, passing is permitted, and speed limit at 55 mph.

Encounter another slow vehicle, but it quickly speeds up. Two lane road, passing is permitted and speed limit 

at 45 mph

Tight curves in a two lane road, no passing, and speed limit at 45 mph

Encounter police vehicles pull to the side of the road, and lights are on. Two lane road, tight curves, no 

passing, and speed limit at 45 mph

Urban setting, two lane road with parked cars, and speed limit at 40 mph. Parked car has turn signal on 

indicating it plans to merge into roadway. Car merges directly in-front of subject's vehicle

School bus pulls over, no stopping lights, in a residential setting and speed limit at 35 mph

On coming police and emergency vehicles with sirens and lights on. Two lane road with winding hills, and 

speed limit at 50 mph

Encounter traffic behind a very slow vehicle in a two lane road, no passing, and speed limit at 50 mph

Behind very slow driver in a two lane curved road, no passing, and speed limit at 50 mph. Car directly in-front 

of the subject's vehicle illegally passes slow vehicle

10

11

12

13

14

4

5

6

7

8

9

Details

1

2

3
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comfortable with driving in the virtual environment. During this session, participants 

drove on a roadway similar to the planned driving route.  

For the actual experiment, participants were first instructed to drive as they would 

in real life, by following all road rules, and road signs that they encountered. In addition, 

the participants were asked to follow driving directions of the planned driving route. EEG 

recordings were taken throughout the entire driving simulation. Concurrently, vehicle 

parameters such as speed, brake pedal position, throttle pedal position, steering angle, etc. 

were recorded. The driving simulation lasted approximately 14 minutes. 

Data Analysis: 

 

 First, neural network classifiers for each driving scenario were created. These 

classifiers were created by driving in each of the driving behaviors/styles through each 

driving scenario. A total of 14 neural network classifiers were created. Table 5.5 shows 

the classifiers structure and performance. These classifiers would be used to classify the 

participant’s driving behavior using their vehicle data for each driving scenario. 

Table 5.5 

 

Driving Behavior Classifiers using Vehicle Data for each Driving Scenario 
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Secondly, the participant’s EEG data collected while driving would be used as 

inputs for the neural network used to classify their emotions in Experiment I. Their EEG 

data from this experiment would be treated as if it was the EEG data while viewing an 

image. Hence, the participant’s EEG data at each driving scenario would be 

preprocessed, feature extracted and classified in the same manner as in Experiment I. 

5.4.2 Results 

 

 Driving behavior classification through the use of vehicle parameters produced 

the following results, shown in Table 5.6. 

Table 5.6 

 
Driving Behavior Classification through Vehicle Parameters 

Scenario No. of Inputs Inputs No. of Hidden Neurons No. of Outputs Outputs Accuracy [%]

1

13

14

7

8

8

8

8

7

7

7

2

3

4

5

6

7

8

9

10

11

12

7

Vehicle parameters

8

7

8

8

8

8

7

Vehicle parameters

Vehicle parameters

Vehicle parameters

Vehicle parameters

Vehicle parameters

Vehicle parameters

7

7

7

7

Vehicle parameters

Vehicle parameters and 

headway distance

Vehicle parameters and 

headway distance

Vehicle parameters and 

headway distance

Vehicle parameters and 

headway distance

7

4

4

4

4

4

4

4

4

4

7

7

7

7

7

7

4

91.4

92.5

98.7

100

100

Driving 

Behavior

Driving 

Behavior

Driving 

Behavior

Driving 

Behavior

8
Vehicle parameters and 

headway distance

Vehicle parameters

Neural Network Classifiers: Structure and Performance

4

4

4

4

Driving 

Behavior

Driving 

Behavior

Driving 

Behavior

Driving 

Behavior

96.9

100

99.1

98.5

99.2

96.5

86.3

98.3

95.5
Driving 

Behavior

Driving 

Behavior

Driving 

Behavior

Driving 

Behavior

Driving 

Behavior

Driving 

Behavior
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Aggressive driving was the least classified driving mode, this could be due to a number 

of factors. One could be that the driving scenarios did not provoke such driving behavior. 

Another possibility is that since the participants know they are being monitored they 

might change their driving behavior. In contrast, inefficient was the most classified 

driving behavior. Again this could be due to a number of reasons, such as, the 

participants not having enough time get familiar with driving in a simulated environment. 

However, several interesting results were noticeable. First, participant S2 was 

classified most often as inefficient. This participant in fact had the least amount of 

driving experience. Interestingly, for a majority of the instances that this participant was 

classified as inefficient occurred in scenarios that involved curved roads. In contrast, 

participant S4 was the participant most often classified as a keen driver, and this 

participant was the most experienced driver. Additionally, if keen and sedate are 

considered desirable driving behavior, while aggressive and inefficient as undesirable. 

Then the most experienced drivers, S3 and S4, were classified as driving in a desirable 

S1 S2 S3 S4

1 Inefficient Inefficient Inefficient Keen

2 Sedate Sedate Keen Keen

3 Keen Inefficient Keen Keen

4 Inefficient Inefficient Sedate Inefficient

5 Inefficient Inefficient Sedate Inefficient

6 Keen Inefficient Keen Inefficient

7 Aggressive Inefficient Inefficient Keen

8 Sedate Sedate Aggressive Inefficient

9 Sedate Inefficient Keen Keen

10 Inefficient Keen Inefficient Sedate

11 Inefficient Sedate Inefficient Inefficient

12 - Inefficient Aggressive Sedate

13 - Keen Inefficient Keen

14 - Keen Keen Sedate

Driving Behavior Classification using Vehicle Parameters

Driving 

Scenario

Participants:
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driving mode 64.2% and 50% of the time, respectively. In contrast, the less experienced 

drivers, S2 and S1, drove in desirable driving behavior 42.8% and 45.4% of the time, 

respectively. 

Another interesting observation was that the participants that were classified as 

inefficient in driving scenarios 3 – 6, were the ones that were observed driving too close 

and then too far from the slow motorist. Lastly, an interesting event that was captured, 

was that participant S3 attempted to pass the vehicle in scenario 7, but when the vehicle 

sped up, the participant had to get back behind the vehicle, and thus this participant was 

classified as inefficient for this scenario.  

An important note, is participant S1 started to feel motion sickness, so the 

experiment was immediately stopped. As result, the participant was unable to finish the 

entire driving simulation. 

Now, in regards to driving behavior classification through the use of affective 

states, the following results were obtained. 

Table 5.7 

 

Driving Behavior Classification through Captured Affective States 
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In analyzing the results obtained, it is easily noticeable that there is not a direct 

correspondence of driving behavior classification from vehicle parameters to 

classification using the participants’ affective state. This could be due to a number of 

factors. One of them, can be that affective states are not a dominant factor in guiding 

driving behavior as anticipated. However, there was some consistency between both 

classification methods. The most inexperienced driver was again classified most often as 

inefficient, whereas one of the most experienced driver was classified as keen. In 

addition, several interesting things were observed. First, all of the female participants 

most often had a consistent emotional state throughout the entire driving experiment, and 

that emotional state was positive in valence. In contrast, male participants were the only 

ones to be classified in an aggressive emotional state, negative valence and high arousal. 

Furthermore, the scenarios in which participants S2 and S3 where behind the slow driver, 

were the scenarios where they were classified as aggressive. 

S1 S2 S3 S4

1 Sedate Inefficient Keen Keen

2 Sedate Inefficient Keen Keen

3 Sedate Aggressive Aggressive Keen

4 Sedate Inefficient Aggressive Keen

5 Sedate Inefficient Aggressive Keen

6 Sedate Inefficient Keen Keen

7 Sedate Aggressive Inefficient -

8 Sedate Aggressive Aggressive -

9 Sedate Inefficient Keen -

10 Sedate Inefficient Aggressive Keen

11 Sedate Aggressive Keen Keen

12 - Aggressive Keen Keen

13 - Aggressive Aggressive Keen

14 - Sedate Keen Sedate

Driving Behavior Classification using Participants' Affective State

Driving 

Scenario

Participants:
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An important note, is that participant S4’s EEG headset momentarily lost signal 

during scenarios 7-9, as a result, driving behavior classification through affective states 

was not possible. 

 To investigate whether the emotional states felt while driving were consistent to 

the emotional states felt while viewing images, their auto-correlation was compared. For 

a positive valence and high arousal affective state, the researcher selected participant S4 

because this participant had the most instances classified as keen through affective state 

methodology. S4’s EEG data for driving scenario 7 was selected, because in this 

particular scenario the classification of keen was the most accurate. Lastly, S4’s EEG 

data while viewing images in Quadrant I were selected. The auto-correlation was 

computed for both EEG data sets. Figure 5.11 shows this comparison.  

 
Figure 5.11. Quadrant I: Auto-Correlation of EEG while Viewing an Image vs. while 

Driving 

 

The above results shows that there is good correlation between the participant’s affective 

state while viewing an image and driving, even though the affective state occurred while 
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doing very different tasks. Similar procedure was continued for the remaining three 

affective states. 

However, for an affective state that was negative valence and high arousal, 

participant S3 was selected. Since this participant had the most instances classified as 

aggressive through affective state. While for an affective state that was negative valence 

and low arousal, participant S2 was selected. Since this participant had the most instances 

classified as inefficient through affective state. Lastly, for an affective state that was 

positive valence and low arousal, participant S1 was selected. Since this participant had 

the most instances classified as sedate through affective state. 

 
Figure 5.12. Quadrant II: Auto-Correlation of EEG while Viewing an Image vs. while 

Driving 
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Figure 5.13. Quadrant III: Auto-Correlation of EEG while Viewing an Image vs. while 

Driving 

 
Figure 5.14. Quadrant IV: Auto-Correlation of EEG while Viewing an Image vs. while 

Driving 

 

The results shown in Figures 5.11 – 5.14 all indicate that affective state the participants 

felt while driving were similar to the affective states felt while viewing images. 

Additionally, these results further illustrate that even though the participants were under a 



  96 

particular affective state while driving, this did not directly influence their driving 

behavior. 

5.5 Driving Behavior Classification using Participants’ EEG 

 

 Because a one-to-one correspondence was not obtained between participants’ 

driving behavior and their affective state, an alternative method was explored in this 

section. This alternative method was intended for classification of driving behavior from 

the participants’ EEG data as they are driving/operating a vehicle. It is important to point 

out that this is not the same as what was proposed and implemented in the above section. 

To reiterate, in the previous method the affective state classifier, obtained from 

Experiment I, was used to classify the participant’s EEG data to an affective state while 

driving. This affective state was then associated to a driving behavior. Thus, the results 

on Table 5.7 were obtained. 

The method explored here consists of the following. First, assuming that the 

participant’s driving behavior obtained from vehicle parameters was entirely accurate for 

each driving scenario, the researcher created a neural network classifier for the 

participant’s EEG data using their “known” driving behavior as a target. For example, 

participant S1 EEG data collected for driving scenario 1 was assigned the target class 

Inefficient. For driving scenario 2, participant S1 EEG data was assigned the target class 

Sedate. This process was repeated for all scenarios and for each participant. As a result 

four neural networks were constructed, one for each participant. The details of these 

neural networks are shown in Table 5.8. 

Table 5.8 
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Driving Behavior Classifiers using EEG data from each Participant 

 
 

The results obtained for each participant are shown in the following tables. 

 

Table 5.9 

 

Neural Network Confusion Matrix for each Participant 
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Table 5.10 

 

Driving Behavior Classification through Participants EEG Data 

 
 

The results from Table 5.9 demonstrate that on average, for all participants, classification 

through EEG measurement and through vehicle parameters classified the same driving 

behavior 93.7% of the time. Results from Table 5.10 show the scenarios that were 

classified differently (bold text) in comparison to classification through vehicle 

parameters.  Results indicate that driving behavior classification through driver’s EEG 

measurements is feasible. This is of particular interest, since information about the 

driver/operator is readily available in comparison to vehicle parameters, which are less 

accessible in the UV domain. Thus, this driving behavior classification method is better 

suited for the application as an intelligent controller tuning unit in our proposed CS. Its 

implementation is discussed in the following section.   

S1 S2 S3 S4

1 Sedate Inefficient Inefficient Keen

2 Sedate Sedate Keen Keen

3 Keen Inefficient Keen Keen

4 Inefficient Inefficient Sedate Inefficient

5 Inefficient Inefficient Sedate Inefficient

6 Keen Inefficient Keen Inefficient

7 Aggressive Inefficient Inefficient -

8 Sedate Sedate Aggressive -

9 Sedate Inefficient Keen -

10 Inefficient Keen Inefficient Sedate

11 Inefficient Sedate Inefficient Inefficient

12 - Sedate Aggressive Sedate

13 - Keen Inefficient Keen

14 - Keen Keen Keen

Driving Behavior Classification using Participants' EEG

Driving 

Scenario

Participants:
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5.6 Intelligent Controller Tuning Unit 

 

Lastly, in this section the development of an intelligent controller tuning unit is 

presented. As previously mentioned, this unit is implemented for the purpose of giving 

the UGV the ability to sense and utilized the operator’s EEG data. This unit along with 

the other proposed components allows the CS to robustly control the UGV in the absence 

of timely control input from a human operator. This is accomplished by capturing the 

operator’s EEG, and then used this to classify vehicle mode/tactic of operation (e.g. 

aggressive, sedate, keen, etc.), in a similar method as in the previous section. In the event 

of communication degradation, the classified driving mode along with the environmental 

inputs are utilized to decide the appropriate BELBIC controllers’ configuration to mimic 

desired mode/tactic of operation. Figure 5.15 outlines the processes involved the 

intelligent controller tuning unit. 

 
Figure 5.15. Processes in an Intelligent Controller Tuning Unit. 
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Process I: In this process the operator’s EEG signals are continuously measured through 

an EEG headset. 

Process II: In this process the EEG signals are classified to particular UGV driving 

mode. This is accomplished in a similar method as outlined in Section 5.5. 

Process III: In this process, the classified mode of UGV operation is used to tune the 

BELBIC heading and path controls performance. This is done in efforts to maintain or 

adjust the mode of operation to safely control UGV in the event of communication 

degradation.  

This is accomplished by adjusting the user-defined parameters: gains (sensory and 

reward functions), and learning rates (  and   ). These parameters are tuned to attain a 

desired performance from the two BELBIC controllers; with the goal to mimic the 

driver’s path following response. Figure 5.16 illustrates results obtained from tuning 

these parameters for path control to each UGV driving mode. For instance, an aggressive 

mode, which is characterized by risky, quick, and abrupt motions, was tuned so that 

transient response was quick but with large overshoot. This overshoot was assumed to be 

the greater risk, associated with this mode of operation, as the likelihood to deviate from 

path. For a keen mode, which is similar to an aggressive in that it is a quick response, was 

tuned to a quick transient response with little to no overshoot. Thus the vehicle was able 

to reduce the risk of losing control and able to closely follow the path. In the case of an 

inefficient mode, in which response is slower and varies greatly, was tuned to a slow 

transient response time with large overshoot constituting to large path deviations. Lastly, 

for the sedate mode, which is operation in a constant and precise manner, was tuned to a 

transient response that is slow but with no overshoot. 
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Figure 5.16. Tuning of BELBIC Parameters for each Mode of UGV Operation 

 

It is anticipated that future work can be done to find ranges for values of K1, K2, K3, ,  

and   for transition regions between UGV driving modes. 

 In conclusion, the utilization of the operator’s affective states for driving behavior 

classification was investigated and shown not to be an appropriate method for correctly 

identifying driving behavior. However, an alternative method was explored and 

implement. This approach successfully classified driving behavior from the operator’s 

EEG measurements. Lastly, the implementation of this method as the intelligent 

controller tuning unit was shown to be feasible. 
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CHAPTER 6 

CONCLUSION 

6.1 Summary and Conclusions 

 

In the course of this dissertation research we have focused in developing an 

intelligent CS for a UGV for the particular scenario when communication between 

human operator and vehicle is hindered. Our proposed CS consisted of three major 

components, I) Two independent intelligent controllers, II.) An intelligent navigation 

system, III.) An intelligent controller tuning unit. All of these components working 

cohesively towards achieving the desired goal. In doing so, we have analyzed the 

literature in the areas of UV control, UV navigation, and human emotion recognition 

systems and identified key areas that can be further explored and utilized for our 

proposed CS. 

First, in the area of UV control we identified that bio-inspired methods for control 

have been utilized, and shown to be an improvement over traditional methods for control. 

For our particular research objective, we selected BELBIC as the most appropriate 

method for UGV control. In simulation, we implement two independent BELBIC 

controllers, one for each case of I.) Heading, II.) Path control. We compared each of their 

performance against a PID controller, which is a common, practical, and efficient control 

approach. The transient and steady state response of the BELBIC controller was superior 

to the PID controller for both cases, by having significantly smaller RMS errors from 

desired trajectory. Additionally, the BELBIC controllers demonstrated robustness to 

variations in the plant parameters due to its on-line adaptability. They also demonstrated 
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the capability to stabilize the plant when variations in plant parameters unstabilized 

vehicle dynamics. In addition, the BELBIC controllers were able to accomplish all these 

with little computational cost. More importantly, due to BELBIC’s small number of user-

define parameters we were able to easily tune the controller performance to any desired 

performance. Thus, when these BELBIC controllers are used in conjunction with the 

other components in our proposed CS, they can be tuned easily to mimic or change to a 

desired performance when no human input is available. 

Secondly, in analyzing the literature for UV navigation we noticed that some bio-

inspired methods (fuzzy logic and neural nets) have been explored for the purpose of 

sensor fusion, and in some instances they were shown to be feasible methods. 

Interestingly, we found that little work has been done in implementing BEL model for 

sensor fusion even though it shared similar qualities as the other algorithms, and due to 

the simplicity of this algorithm it can potentially reduce the computational cost. 

Therefore, we developed and implemented the BEL model as filter in efforts to reduce 

GPS sensor noise and to accurately acquire the vehicle’s states as it traveled around a 

simulated track. The results from this part of the research demonstrated the BEL qualities 

as a filter. It performed better at reducing positional RMS error while having significantly 

less computational cost than the traditional Kalman filter implementation. In addition, 

results showed that BEL filter is less sensitive to the effects of the number of satellites 

available to obtain GPS data. However, the BEL filter performance is greatly affected by 

the selection of the sensory input and reward signal. Further research in the 

characterization of the sensory input and reward signal can further enhance the BEL filter 

performance. Furthermore, this BEL filter is an essential component in our proposed CS, 
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by providing accurate information of the vehicle’s state to the two independent intelligent 

controllers. 

Lastly, for the area for human emotion recognition systems, and their 

applications, we identified some disconnects. First, emotions have been identified to be 

an important role in rational decision making, and for our particular research problem, a 

motivational factor in driving behavior. Moreover, there are many methods for 

recognizing human emotions, and the particular method that seems to be the most 

practical is through EEG measurements. Yet, there is very little research in which a 

human emotion system is utilized for the classification of human driving behavior. The 

utilization of such a system is appealing for our particular research question. As a result, 

we conducted two experiments to test the effectiveness of a human emotion recognition 

system for classifying modes of vehicle operation. In the first experiment, we were 

successful at eliciting particular emotions from participants for each quadrant of the 

valence-arousal model, and then classifying the participant’s emotions through EEG 

measurements. Results showed an average of 88% correct emotion classification for all 

participants. In the second experiment, we were successful at classifying human driving 

behavior using vehicle parameters. However, when comparing driving behavior 

classification through the driver’s emotional state to the approach of using vehicle 

parameters, the results were not similar. Results showed very little indication that the 

emotional state the driver is experiencing directly determines their driving behavior. 

Interestingly, we found that there is good correlation between the affective states 

captured while viewing an image compared to driving in that particular affective state. 

Even though the affective states were classified while performing two different tasks.  
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This further suggest that the emotional state does not necessarily influence driving 

behavior. 

6.2 Contributions 

 

 In Chapter 1 we formulated a number of research questions to answer during this 

dissertation research. 

1. Which bio-inspired control methods can achieve improved controller 

performance in comparison to traditional control methods, while being 

easily implementable, and can be easily tuned to a desired performance? 

The implementation of BELBIC for the two independent cases of heading 

and path control of a ground vehicle demonstrated the effectiveness at 

attaining superior performance in terms of reducing RMS errors from 

desired trajectory, while doing so with significantly less computational 

cost in comparison to the common PID control approach.  

2. Whether the utilization of a bio-inspired algorithm, as a filter, is a feasible 

alternative for sensor fusion which can attain similar performance 

compare to traditional methods? 

The novel development and implementation of the BEL model as filter for 

fusion of GPS and INS proved to be successful in tracking the trajectory 

of a vehicle around various simulated tracks. It obtained reduced 

positional RMS errors, and it obtained comparable velocity RMS errors to 

the Kalman filter. Additionally, it demonstrated less sensitivity to the 

effects of different GPS noise distributions, and to the effects of the 
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number of GPS satellites available. More importantly, it performed all 

these with significantly less computational cost. This application of the 

BEL model as a filter for sensor fusion was successful for the particular 

sensor modalities fused. However, this might not be the case for other 

sensor fusion applications.  

3. By incorporating a human emotion recognition system through EEG 

measurement, is the utilization of these captured emotional states a viable 

alternative method for classifying vehicle mode operation in comparison 

to using vehicle parameters? 

The results obtained from comparing classification of driving behavior 

using vehicle parameters compared to using the captured emotional states 

of the operator did not match, possibly indicating that emotions are not a 

major factor that contributes to a person’s driving behavior. However, 

there was good correlation of the emotions evoked while driving and 

emotions evoked while viewing an image. Nonetheless, an alternative 

method for using the driver’s/operator’s EEG measurements was explored 

and successfully implemented for classifying driving behavior.  

The implementation of all the above components in a CS for a UGV application was 

proposed. Results from all the studies conducted in this dissertation research indicate that 

the implementation of all these components as contingency control system for UGV is 

feasible. Therefore, a CS consisting of these components should be able to robustly 

control a UGV in the event of communication loss between operator and vehicle.     
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6.3 Future Work 

 

 The results from this research show several possibilities for further work. First, 

implementing various methods for feature extractions on the EEG measurements can 

potentially attain comparable classification of driving behavior through affective states to 

that through vehicle parameters. Another option is to evoke emotion in manner that is 

similar to how emotions are evoked while driving. Here, emotions were initially evoked 

by viewing images and then creating a classifier based on those emotions. But if 

emotions are evoked by viewing a movie in which a vehicle or driving is involved, this 

might result in better emotion classification of driving behavior. Also, further research 

can be conducted to investigate to identify specific factors that directly affect driving 

behavior. More importantly, further work can be conducted for the implementation of the 

proposed CS into a physical system.   
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APPROVAL: EXPEDITED REVIEW 

Sangram Redkar 

Polytechnic School - EGR Programs 

480/727-1129 

Sangram.Redkar@asu.edu 

Dear Sangram Redkar: 

On 1/20/2015 the ASU IRB reviewed the following protocol: 

Type of Review: Initial Study  

Title: Driving Behavior Classification through Affective 

States 

Investigator: Sangram Redkar 

IRB ID: STUDY00002042 

Category of review: (4) Noninvasive procedures, (7)(b) Social science 

methods, (7)(a) Behavioral research 

Funding: None 

Grant Title: None 

Grant ID: None 

Documents Reviewed: • Verbal Script.docx, Category: Recruitment 

Materials; 

• IRB Submission Protocol.docx, Category: IRB 

Protocol; 

• Consent Form V2.docx, Category: Consent Form; 

 

The IRB approved the protocol from 1/20/2015 to 1/19/2016 inclusive. Three weeks 

before 1/19/2016 you are to submit a completed “FORM: Continuing Review (HRP-

212)” and required attachments to request continuing approval or closure.  

If continuing review approval is not granted before the expiration date of 1/19/2016 

approval of this protocol expires on that date. When consent is appropriate, you must use 

final, watermarked versions available under the “Documents” tab in ERA-IRB. 

https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5BD5BEC3F4BD60DE48B3E287168A9E9510%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&Company=com.webridge.account.Party%5BOID%5BA59B2813B74DE945AC77115085D58CB6%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5BD5BEC3F4BD60DE48B3E287168A9E9510%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5BD5BEC3F4BD60DE48B3E287168A9E9510%5D%5D
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In conducting this protocol you are required to follow the requirements listed in the 

INVESTIGATOR MANUAL (HRP-103). 

Sincerely, 

IRB Administrator 

cc:  

Alvaro Vargas-Clara 
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Images IAPS valmn valsd aromn arosd set\

Sailing 8080 7.73 1.34 6.65 2.2 2\

EroticFemale 4220 8.02 1.93 7.17 2.69 2\

Rafting 8370 7.77 1.29 6.73 2.24 5\

Skydivers 8185 7.57 1.52 7.27 2.08 12\

SkyDivers 5621 7.57 1.42 6.99 1.95 7\

Skier 8030 7.33 1.76 7.35 2.02 2\

Rollercoaster 8492 7.21 2.26 7.31 1.64 17\

RollerCoaster 8490 7.2 2.35 6.68 1.97 4\

Skysurfer 8186 7.01 1.57 6.84 2.01 14\

EroticCouple 4670 6.99 1.73 6.74 2.03 9\

Attack 6313 1.98 1.38 6.94 2.23 7\

Attack 6350 1.9 1.29 7.29 1.87 5\

Attack 3530 1.8 1.32 6.82 2.09 6\

Attack 6563 1.77 1.23 6.85 2.18 20\

Hanging 9413 1.76 1.08 6.81 2.09 19\

Explosion 9940 1.62 1.2 7.15 2.24 20\

DeadBody 3120 1.56 1.09 6.84 2.36 1\

Soldier 9410 1.51 1.15 7.07 2.06 4\

Mutilation 3071 1.88 1.39 6.86 2.05 6\

BabyTumor 3170 1.46 1.01 7.21 1.99 3\

Jail 6010 3.73 1.98 3.95 1.87 4\

HomelessMan 9331 2.87 1.28 3.85 2 10\

Cemetery 9001 3.1 2.02 3.67 2.3 5\

Jail 2722 3.47 1.65 3.52 2.05 9\

Woman 2039 3.65 1.44 3.46 1.94 18\

Bucket 7078 3.79 1.45 3.69 1.86 20\

ElderlyWoman 2590 3.26 1.92 3.93 1.94 5\

Man 2490 3.32 1.82 3.95 2 5\

Exhaust 9090 3.56 1.5 3.97 2.12 2\

Woman 2399 3.69 1.4 3.93 2.01 14\

Nature 5760 8.05 1.23 3.22 2.39 1\

Rabbit 1610 7.82 1.34 3.08 2.19 1\

Flowers 5200 7.36 1.52 3.2 2.16 3\

Flower 5010 7.14 1.5 3 2.25 1\

ThreeMen 2370 7.14 1.46 2.9 2.14 4\

Flower 5000 7.08 1.77 2.67 1.99 1\

Couple 2501 6.89 1.78 3.09 2.21 6\

Cow 1670 6.81 1.76 3.05 1.91 1\

Clouds 5870 6.78 1.76 3.1 2.22 3\

Field 5711 6.62 1.65 3.03 1.96 13\


