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ABSTRACT

Cavitation erosion is a significant cause of wear in marine components, such as im-

pellers, propellers or rudders. While the erosion process has been widely studied

on metals, the effect of cavitation on polymers is not well-understood. The stress

response in metals differs greatly from that of polymers, e.g. rate and temperature

effects are far more important, thus damage and wear mechanisms of polymers under

cavitating flows are significantly different. In this work, heat-driven failure caused

by viscous dissipation and void nucleation resulting from tensile stresses arising from

stress wave reflections are investigated as two possible material failure mechanisms.

As a first step in developing a fundamental understanding of the cavitation erosion

process on polymer surfaces, simulations are performed of the collapse of individual

bubbles against a compliant surface e.g. metallic substrates with polyurea coatings.

The surface response of collapse-driven impact loads is represented by a idealized,

time-dependent, Gaussian pressure distribution on the surface. A two-dimensional

distribution of load radii and durations is considered corresponding to characteris-

tic of cavitating flows accelerated erosion experiments. Finite element simulations

are performed to fit a response curve that relates the loading parameters to the en-

ergy dissipated in the coating and integrated with collapse statistics to generate an

expected heat input into the coating.

The impulsive pressure, which is generated due to bubble collapse, impacts the

material and generates intense shock waves. The stress waves within the material

reflects by interaction with the substrate. A transient region of high tensile stress

is produced by the interaction of these waves. Simulations suggests that maximum

hydrostatic tension which cause failure of polyurea layer is observed in thick coating.

Also, the dissipated viscous energy and corresponding temperature rise in a polyurea

is calculated, and it is concluded that temperature has influence on deformation.
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Chapter 1

INTRODUCTION

Cavitation is the process of vapor cavity formation in liquids (Brennen (2013);

Franc and Michel (2006)), that occurs when the liquid is subjected to a rapid decrease

in pressure. Vapor cavities break up in to clouds of bubbles that then collapse when

they are advected into high pressure regions. When bubbles collapse in the vicinity of

a surface (e.g. near an impeller as shown in Figure 1.1), the collapse is asymmetric and

produces a strong jet that impacts the surface with extreme pressure. The combined

effect of many of such impacts causes erosive wear on the surface that eventually leads

to mass loss.

When cavitation bubbles collapse, they generate very high local pressure near

metal surfaces and cause cyclic stress through repeated implosion (Choi et al. (2014);

Zhang et al. (1993); Thiruvengadam (1974)). Cavitation erosion is fairly well un-

derstood for metal surfaces, however, there is recent interest in developing polymer

coatings to protect marine surfaces against cavitation erosion. The effects of cavita-

tion erosion on polymers is far less well understood, and thus this research aims to

develop a basic understanding of the effect of bubble collapse on polymers.

1.1 Modeling of Cavitation Erosion

Since cavitation flows generate a wide distribution of different bubble sizes and

collapse pressures, it is important to determine a measure of the intensity of the

cavitation field. The cavitation intensity depends on the size of the bubble collapse.

The low-pressure bubble in a liquid begins to collapse due to the higher pressure of

the surrounding medium. The bubble eventually collapses to a minute fraction of
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Figure 1.1: Cavitation Erosion in Single Vane Impeller Reproduced from Thamsen

et al. (2008)

its original size, as the bubble collapses, the pressure and temperature of the vapor

within increases. At this point the gas within dissipates into the surrounding liquid

via a rather violent mechanism which releases a significant amount of energy. This

violent behavior of energy makes huge impact on the surface and the intensity of it,

is linked with the size of the bubble collapse.

When the impact load intensity exceeds the threshold cavitation intensity, cavi-

tation leads to erosion in the polyurea. That is, material is removed due to a high

impact load when the bubble collapses and causes formation of pits on the order of

several tens of micrometers that lead to material failure (Pereira et al. (1998); March

(1987); Soyama et al. (1998); Ahmed et al. (1991)).

Pitting tests have been used to estimate the distribution of impulsive loads and

and their characteristic length scales in a cavitating flow. These are short duration

tests that are dependent on the impact load, where metals record pits or permanent

deformations from recurring cavitation events. Metal pits were measured using a

profilometer (Carnelli et al. (2012)). This technique, which is relatively effective for
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Figure 1.2: Represents the Similarities in Deformation Under (a) Liquid impact (b)

Indentation Testing Reproduced from Carnelli et al. (2012)

determining cavitation shape, assumes that the material itself is a sensor capable

of detecting the impact loads through permanent deformations of the surfaces gen-

erated by individual impact events. After taking the mechanical parameters of the

test material by spherical nanoindentation technique, pitting tests are performed at

different pressures, and the geometric characteristics of the pits are then measured.

By analyzing the tests, the final spectra of the impact pressures and loads responsible

for material erosion were obtained, and the aggressiveness of the cavitating flow was

quantified. As such, the spherical shape distortion imposed by nanoindentation and

the hydrodynamics of cavitation erosion is shown in Figure 1.2.

Nanoindentation can not be performed on the polymers. Since, polymers are

much more compliant, so shape is a significant factor. Different methods are therefore

needed for polymers. This is further apparent given that metals show low strain rates

under impacts, whereas polymers display larger strain rate effects. Hence, the test

material must be well enough understood to determine what types of impact cause
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pits. Moreover, it is not yet clear if there is a one-to-one relationship between loading

parameters and pit geometry (Carnelli et al. (2012)).

Franc et al. (2011) measured the impact loads generated by cavitation bubble

collapse by mounting a conventional pressure sensor in a region on a surface where

maximum damage was observed. These pressure transducers are capable of under-

going severe cavitation erosion and can capture short duration loads with very small

time resolution of 2µs. To remove the dependence of signal height on area, these

pressure transducers are much larger than the size of the impacts. Pressure pulse

magnitudes were measured at different velocities, and it was found that they follow

an exponential law that depends on the reference peak rate and reference load as

shown in Eq. 1.1.

Ṅ = Ṅ0e
− F

F0

(1.1)

These measured impact load results are compared with the pitting tests, from

which it is concluded that uncertainty remains on the measured impact load values.

The two dimensional histogram technique was suggested (Franc et al. (2011)) to

generate a more complete description of the cavitation intensity.

The function for one dimensional density distribution where bubble radius and

impact pressure are varying individually is represented in the following equations

(Kim et al. (2014)):

N∗ =

∫ ∞
0

P (r)dr =

∫ ∞
O

P (p)dp (1.2)

where P(r) and P(p) is the probability density of impacts shown below with parame-

ters, bubble radius (r) and maximum pressure magnitude (p) with N∗ (impacts/cm2/sec)

hydrodynamics impacts,
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P (r) =
N∗

R∗
e−r/R

∗
(1.3)

P (p) =
N∗

P ∗
e−p/P

∗
(1.4)

P∗, R∗ are reference bubble radius and impact pressure magnitude to the slope of

exponential law

The function for two dimensional density distribution considering bubble radius

and impact pressure as a independent variables is shown below,

P (r, P ) = P (r)P (p) (1.5)

This, results in the two dimensional number probability distribution,

P (r, P ) =
N∗

P ∗R∗
e−r/R

∗
e−p/P∗ (1.6)

Cavitation erosion has also been modeled by a empirical expression Choi et al.

(2012) in terms of the mean depth of erosion versus time. Normalized cavitation

erosion depth is represented as h̄ = 1−e−t2 +e−1t̄1.2 where t is normalized time and h

is the mean erosion depth. Several erosion progression tests with varying erosion field

intensities were obtained using modified ASTM-G32 (ast (2010)) and DYNAFLOW’s

(Choi et al. (2012)) cavitating jet techniques. Different test parameters were obtained,

which resulted in the above co-relation.

1.2 Characteristics of Cavitation on Metals

So far, several methods have been developed for predicting the response of mate-

rials subjected to cavitation. Choi et al. (2012) explained a mathematical model to

represent cavitation erosion which is a function of cavitation mean depth and time of
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cavitating jets. This experiment was carried out using ultrasonic cavitation erosion

testing (ASTM G32) and cavitating testing jets (ASTM G134). These tests were

performed when bubble collapse occurred on contact with the material, i.e. there was

no use of any wear protecting layer.

Cavitation erosion occurs, for example, on propellers due to large hydrostatic

stresses. It is not necessary that the material respond just after its contact with a

high pressure impact load. Metals, in general, show some resistance and undergo

changes before erosion begins. The stages of cavitation erosion are explained below.

Incubation Stage: The initial phase begins with the contact of cavitating jets with

the material, and the surface becomes more stress resistant. There are variations in

this process depending on the material, but in general, some microscopic change in

the material occurs and the surface gets deformed but without any material loss. The

stage is also accompanied with the hardening of the surface which may also leads to

permanent deformation during this phase.

Acceleration Stage: Following the incubation period, the erosion rate increases

until it attains maximum erosion, resulting in large material loss followed by fractures,

as shown in Figure 1.3. This period includes the interaction of the cavitating jets with

up to several inner layers of the material.

Attenuation Stage: The erosion process decelerates as the roughness of the frag-

mented surface leads to bubble cushioning.

Terminal stage: Local equilibrium is reached between the response of the material

and the erosive power of the cavitation field. That is, erosion process enters the

steady-state period, where the rate of weight loss reaches a constant value.

6



Figure 1.3: Weight Loss Erosion S-curve and Erosion Rate Curve v/s Time Repro-

duced from Choi et al. (2012)

1.3 Characteristics of Cavitation on Polymers

The cavitation erosion in polymers is significantly different than the effect of

cavitation erosion on metals. The stress response in polymers has a much higher

sensitivity to temperature than in metals. As a result, the heat generated from the

dissipation of cavitation impact loads, is expected to play a much more prominent role

in the durability of the material. At low temperatures, polymers have higher strength,

but also may experience brittle fracture, while at high loads, polymers become much

more viscous and rubbery, yet lose strength. Polymers generally show the behavior

both of liquid and solids, in that they exhibit viscous flow, yet due to cross-linking and

entanglement networks, eventually regain their original shape once a load is removed.

The glass transition temperature Tg is an important characteristic of polymers.

When the temperature of the polymer rises above Tg, it becomes more rubber-like and

when temperature drops below Tg, the polymer is increasingly brittle. Thus, values of

Tg well below room temperature define elastomers (such as polyurea) and those above

room temperature define structural, rigid polymers for example, polycarbonate.
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Figure 1.4: Characteristics of Polymers Reproduced from Foreman et al. (1994)

For the characterization of the liquid-glass transition phenomenon Tg, note that

there is no step change in volume when cooling an amorphous material from the liquid

state, although the rate of decrease may vary. There is, however, a step change when

a crystalline material approaches its freezing point, Tf , as shown in Figure 1.4

1.4 Objectives and Scope

Polyurea is a material commonly used for protection from mechanical wear. It

is an elastomer obtained by the reaction of an isocyanate component with synthetic

resin. It is extensively used in the coating industry, for example polyurea coatings

in steel tanks protects from corrosion. Polyurea is also commonly used in truck bed

liners as shown in Figure 1.5 and protects utility trucks from harsh duty environments.

The main objective of this research is to determine the rate of viscous energy
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Figure 1.5: Polyurea Coated Truck Bed Liners

dissipated on a polymer surface when exposed to a cavitating flow. This research also

tries to understand how the geometry of the coating, example thickness is related to

its durability.
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Chapter 2

MATERIAL MODEL OF POLYMERS

The behaviour of polymers is time dependent due to their molecular structure.

Polymers behave differently than other time dependent materials like metals that

experience fatigue and corrosion. This chapter explains the material model for poly-

mers.

2.1 Linear Viscoelasticity

Viscoelasticity is the property of polymers which exhibit viscous and elastic char-

acteristics while undergoing deformation when external force is applied (Brinson and

Brinson (2007)). The linearity of any model can only be accessed if the material is

independent of stress despite of loading type. Let’s first discuss the importance of

relaxation and then creep in viscoelasticity. In relaxation, the material under test

is kept consistently strained over a period of time and stress is measured. After the

application of stress, material relaxes due to the effect of viscousity in material over

time. Thus, if the stress is a function of time and strain is kept constant then modulus

in viscoelastic material will vary with time. Hence, modulus is inherently a function

of time.

Figure 2.1 shows stress in the relaxation test,

G(t) =
σ(t)

ε0
= Relaxation modulus (2.1)

And modulus for t = 0 and at t =∞ is defined as

G(t = 0) =
σ(t = 0)

ε0
= G0 = Initial modulus (2.2)

10



Figure 2.1: Stress Relaxation Test Illustrating Strain Input and Stress Output Re-

produced from Murata (2012)

G(t =∞) =
σ(t =∞)

ε0
= G∞ = Equilibrium modulus (2.3)

The creep test is defined as the case where the strain in material under the influ-

ence of constant stress increases with time. Rate of deformation depends upon some

material properties such as exposure time, applied load etc.

Figure 2.2 below represents the strain response in the creep test

D(t) =
ε(t)

σ0
= Creep compliance (2.4)

Thus polymers have characteristics of both solids and fluids. The linearity of

the model is defined by when the creep compliance is independent of stress. The

relaxation modulus is independent of strain, this will be discussed later. The basic

Maxwell model composite of spring and dashpot as shown in Figure 2.3, and the

relation between stress and strain, can be developed by using constitutive equations

11



Figure 2.2: Creep Test Illustrating Stress Input and Resulting Strain Reproduced

from Murata (2012)

Figure 2.3: Maxwell Model

of the elements. By using kinematic and equilibrium conditions in the system, the

stress of the Maxwell element will be the same in both the spring and dashpot and

the total strain will be equal to the sum of the spring and dashpot strains.

σ = σs = σd (2.5)

ε = εs + εd (2.6)

constitutive equations of spring and dashpot are,

σs = Eεs = σ (2.7)

12



σd = µ
dεd
dt

= µε̇d = σ (2.8)

Differentiating Eq. 2.6 and substituting strain rates into constitutive equations of

spring and dashpot yields,

σ +
µ

E
σ̇ = µε̇ (2.9)

The inverse of the coefficient of stress is the relaxation time, τ = µ/E, following

that, by using the step input function in strain we get,

ε(t) = ε0H(t) (2.10)

where H(·) is Heaviside or a unit step function whose significance is defined as

it is identically zero for all negative values and equals to one when its argument is

positive, we will get the stress output.

Since in stress relaxation, ε̇ = 0, Eq. 2.9 becomes,

dσ

dt
= −1

τ
σ (2.11)

Separating variables and integrating Eq. 2.11,

∫ σ

σ0

dσ

σ
= −1

τ

∫ t

0

dt (2.12)

log σ − log σ0 = − t
τ

(2.13)

σ(t) = σ0e
−t/τ (2.14)
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Figure 2.4: Generalized Maxwell Model

This gives the physical significance of relaxation time, which is stated as the time

needed for the stress to fall to 1/e of its initial value. Hence, the relaxation modulus

G(t) can be obtained directly from this relation as,

G(t) =
σ(t)

ε0
=
σ0
ε0
e−t/τ (2.15)

G(t) = G0e
−t/τ (2.16)

Now, let’s derive the equation for the Generalized Maxwell Model, where Maxwell

elements are connected in parallel as shown in Figure 2.4, by considering the stress

relaxation case where constant strain history is applied. The kinematic constraint

that gives strain will be constant in each element and thus the global stress will be

equal to the sum of individual stresses σ(t) = σ1(t) + σ2(t) + .......+ σn(t).
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σ(t) = ε0(E1e
−t/τ1 + E2e

−t/τ2 + · · ·+ Eie
−t/τi) (2.17)

By solving above equation gives,

σ(t) = ε0

n∑
i=1

Eie
−t/τi (2.18)

From the above equation, the relaxation modulus of the Generalized Maxwell

Model is given by,

G(t) =
n∑
i=1

Gie
−t/τi (2.19)

This series is known as the Prony series.

By including a free spring in the generalized model, we can represent thermoset

polymers, giving us a long term modulus, i.e. G∞, when the material is totally

relaxed. This model is also known as the Wiechert model. The solution of the stress

and relaxation modulus will be,

σ(t) = ε0

(
n∑
i=1

Gie
−t/τi +G∞

)
(2.20)

G(t) =
n∑
i=1

Gie
−t/τi +G∞ (2.21)

where G∞ is a long term shear moduli and Gi/G∞ = pi, then the equation can

be rewritten as,

G(t) = G∞

(
1 +

n∑
i=1

pie
−t/τi

)
(2.22)

Now, considered variable stress input in order to find strain output. If we consider

the variable stress inputs as a series of steps at variable time, this will give us,
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σ(t) = σ0H(t) + (σ1 − σ0)H(t− t1) + · · ·+ (σn − σn−1)H(t− tn) (2.23)

Creep compliance is discussed earlier, thus on the basis of that creep response for

single step input can be written as,

ε(t) = σ1D(t− t1) for σ(t) = σ1H(t− t1) (2.24)

above, the strain output for a varying stress input can be illustrated as the sum

of the output of every individual step, which can be represented as,

ε(t) = σ0D(t)H(t) + (σ1 − σ0)D(t− t1)H(t− t1) + (σ2 − σ1)D(t− t2)H(t− t2)+

. . . + (σn − σn−1)D(t− tn)H(t− tn)

ε(t) = σ0D(t)H(t) +
∑

(σn − σn−1)D(t− tn)H(t− tn) (2.25)

The time increment for each step is, ∆τ , and considering ∆τ approaches zero, we

will end up with,

ε(t) = σ0D(t)H(t) +

∫ t

0+
D(t− τ)

dσ(τ)

dτ
dτ (2.26)

We can rewrite the above equation as,

ε(t) =

∫ t

0

D(t− τ)
dσ(τ)

dτ
dτ (2.27)

Stress is expressed in terms of the Heaviside function as, σ(t) = σ(t)H(t) and the

lower limit t = 0+ indicates the jump discontinuity in the stress. By using this in

Eq.2.26 and differentiating it, we get,
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ε(t) =

∫ t

0+
D(t− τ)

(
d[σ(τ)]

dτ
H(τ) + σ(τ)δ(τ)

)
dτ (2.28)

Due to the shifting property of the Dirac delta function, the equation can be

reduced to,

ε(t) =

∫ t

0+
D(t− τ)

[dσ(τ)]

dτ
dτ (2.29)

Similarly, we can get the stress output for the variable strain input, i.e.,

σ(t) =

∫ t

0

G(t− τ)
dε(τ)

dτ
dτ (2.30)

This is the basic hereditary integral formulation for linear isotropic viscoelasticity.

Furthermore, temperature could come into play that could lead to residual stress and

creating changes to the molecular structure of the polymer.

Figure 2.5 represents the similarity in stress output between theoretical, where

strain history is considered to get the theoretical stress, whereas in numerical simu-

lations, where stress is obtained recursively.

This stress routine gives us proof of our working viscoelastic model. This model

will now be further extended to account for temperature dependence.

2.2 Temperature and Pressure Dependence

The temperature model can be explained by Williams-Landel-Ferry theory (Amirkhizi

et al. (2006)) on time-temperature and pressure sensitivity with the inclusion of a

thermal mechanism of polyurea.

The effects of temperature on material response is stated by the following points:

1. At high temperature, short time relaxation of the material appears which changes

the response of relaxation, and actuated frequently and the material gets relaxed
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Figure 2.5: Stress Routine

more easily

2. Long time change in moduli in terms of absolute temperature

The equation below represents these two effects,

G(t, T ) =
T

T0
G0

(
t

a(T )

)
(2.31)

Here ”a” is a shift function, which expresses in terms of current temperature, T0,

and the glass transition temperature, Tg. The relaxation function derived above using

the Prony series is,

G0(t) = G∞

(
1 +

n∑
i=1

pie
−t/qi

)
(2.32)

where pi is the relative modulus in terms of i and qi is dissipation time. Now, the
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deviatoric stress equation and the relaxation modulus in terms of reduced time can

be expressed as,

σ′(t) =

∫ t

0

2G(t, τ)D′(τ)dτ (2.33)

G(t, T ) =
T (τ)

T0
G0(ξ(t)− ξ(τ)) (2.34)

The deformation of the material is influenced by temperature and can be expressed

as a new reduced time function ξ(t) in terms of temperature and pressure.

ξ(t) =

∫ t

0

dτ

a(T (τ)p(τ))
(2.35)

where the temperate changes during deformation is expressed in terms of reduced

time function with new time scale,

ξ(t) =

∫ t

0

dτ

a(T (τ))
(2.36)

a(τ) is a time-temperature shift function with dependence on current temperature

and the glass transition temperature, Tg, of the material. Knauss (2004) on the other

hand obtained the value of polyurea and arrived upon the time-temperature shift

function for polyurea,

a(T ) = 10A(T−T0)/(B+(T−T0)) (2.37)

Since viscoelastic properties of polymers are pressure dependent, thus to incorpo-

rate the pressure term in the model, it can be set as,

a(T, P ) = a(T − CtpP ) (2.38)

where, Ctp is time pressure coefficient.
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Material internal relaxation terms are calculated by constructing a discrete set of

internal variables. Dissipated energy can be calculated and stored in terms of elastic

energy of their last step after all the iterations. By using n internal variables and

linear force flux equations we get the relaxation modulus of Prony series.

The heat source in material come from dissipated mechanical energy, where the

local change in temperate due to deformation is,

∂T

∂t
=

1

Cv

∂Wd

∂t
(2.39)

where Cv is the heat capacity constant per unit volume and Wd is the dissipated

work per unit original volume. The amount of dissipated energy associated with the

ith internal variable is represented as,

Table 2.1: Material Parameters Used in the Numerical Model

Tref : 273 (K) B: 107.53 (K)

A: -10 n: 4

Cv: 1.977×10−3 (J mm−3K−1) CTE: 2× 10−4 (K−1)

m: -0.015 (GPa K−1) Ctp: 7.2 (K GPa−1)

κref : 4.948 (GPa) G∞: 0.0224 (GPa)

∂W i
d

∂t
=

1

ηi
(F i)2 (2.40)

here, ni is viscosity and F is the force linked with the ith internal variable,

Thus, in deformation, dissipated energy by viscosity and force due to internal

variable is represented by,

∂Wd

∂t
= 2G∞

T (t)

T0

n∑
i=1

pi
qi
εid(t) : εid(t) (2.41)
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Equation 4.2 represents the dissipated energy having ith internal variables and

relates to the relaxation modulus in Eq 2.32.

Material parameters used in the numerical model are listed in Table 2.1.

2.3 Efforts to Characterize Polyurea

Polyurea is a cross-linked amorphous isocyanate monomer or prepolymer and

polyamine curative. To be classified as a polyurea, the compound must contain

at least 80% polyamine (Tekalur et al. (2008)). It is usually applied using a spray

coating system in a 1:1 mix ratio.

Iscocynate in polyurea can be aromatic and aliphatic system (Tekalur et al.

(2008)). Aromatic polyureas are based on an aromatic diisocyanate. Their per-

formance level is excellent, though these are not light-stable but they do not degrade

their physical properties when exposed to light. Whereas aliphatic polyureas based

on an aliphatic diisocyanate are light-stable, which means they do not change colour

when exposed to light (artificial or sun) therefore they are more difficult to process.

Polyurea has excellent bonding with carefully prepared substrates, for example alu-

minium substrates, but acceptable bond strength can be achieved on slightly humid

surfaces. Polyurea is extremely resistant to thermal shock and blast effects and also

has good chemical resistance and is self-extinguishing when the flame is removed from

the surface. The tensile strength of polyurea is 20-30 MPa, 350 % elongation and

87.5kN/m tear strength (Tekalur et al. (2008)).

2.3.1 Split-Hopkinson Bar Experiment

To verify the model that we discussed in previous section, tests on polyurea were

conducted using split-Hopkinson bar experiments (SPHB) by Nemat-Nasser (Nemat-

Nasser et al. (1991); Amirkhizi et al. (2006)). All tests were performed at an effective
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Figure 2.6: Confined Split-Hopkinson Bar Experiment Stress-Strain Results Repro-

duced from Amirkhizi et al. (2006)

engineering strain rate of 3000 ± 400 s−1. There were two types of loading on SPHB

specimen carried out: confined and unconfined loading.

In the unconfined loading, deformation can take place in multi-direction where

as in confined loading the deformation is only possible in axial direction. Under a

unconfined test, the sample diameter was substantially smaller than that of the bars

to accommodate the large radial deformation that occurred during the tests. Strain

in the transmitted bar in an unconfined test was as low as 10−4.

In confined tests, the Cauchy stress and nominal stress were directly equal due

to confinement. But in unconfined tests, the diameter of the sample changes. Thus,

the Cauchy stress must be evaluated. Cauchy stress and diameter were calculated

assuming isochoric deformation since low pressure was observed in the unconfined

tests. Resulting confined and unconfined stress-strain curves are shown in Figures 2.6
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Figure 2.7: Unconfined Split-Hopkinson Bar Experiment Stress-Strain Results Re-

produced from Amirkhizi et al. (2006)

and 2.7.

Unloading in confined tests follows the same stress-strain curve as that of loading.

However, stress was released much faster than the accumulated strain in unconfined

tests. The strain was not permanent in any tests and strain occurred at a low rate

and was limited to 1% - 2%.

2.3.2 Dynamics Mechanical Analysis

The Dynamic mechanical analysis (DMA) were carried to check the dependency

of viscoelastic properties of polyurea on temperature and frequency. DMA of the

samples was conducted by Boyce et al. (Yi et al. (2006); Qiao et al. (2011)). Samples

from both end were constrained from rotation and sliding by clamping plates and ex-

cited to a sinusoidal transverse displacement. The samples were tested under uniaxial
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Figure 2.8: DMA Test Results of Polyurea Showing Storage Modulus, Loss Modulus,

and Loss Tangent at a Frequency of 1 Hz Reproduced from Yi et al. (2006)

tension at a fixed frequency of 1 Hz and a strain amplitude of 0.1% from -156 to 80

°C was applied with a heating rate of 3 °C/min.

Average strain rate in DMA test was computed by the frequency dependence on

the strain rate. The experiments were carried out over 1 Hz at a strain amplitude of

0.1%, corresponding to the strain rate of 2x10−3 respectively.

DMA results at a frequency of 1 Hz over the temperature range of -156 to -80 °C

for storange modulus, loss modulus and loss tangent in its glass transition regime is

plotted in Figure 2.8. Glass transitions were observed at -47° for polyurea, secondary

transitions were observed at -80 °C, and more prominent gamma transition were

observed at -141 °C. The mechanical behavior of the sample is known to be dependent

on strain rate and the glass transition region of the storage is observed to shift with

the strain rate in a linear manner. Thus the material mechanically recognizes the

glass transition temperature at the given strain rate.
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Figure 2.9: Strain Rate History of Polyurea During Deformation Reproduced from

Youssef and Gupta (2012)

2.3.3 Ultrasonic Measurement

Polymer behavior at high strain rates was measured by Youssef and Gupta (2012)

method using an apparatus and a test method which was based on laser-generated

stress waves to obtain the material behavior.

Layers of thin polyurea becomes deformed by laser generated stress waves and

experiences high strain rate of 1.1 x 105 s−1. The total strain in the material remains

less than 3%. Strain rate characteristics of the polyurea is shown in Figure 2.9. The

strain rate experienced by the sample as a function of time is represented by Figure

2.9, which is not constant in the split-Hopkinson bar experiment during material

deformation.

Thus different techniques and loading conditions are varied to obtain the strain

rate and strain in the polyurea. Includes low to high strain rate and their correspond-
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ing logarithmic strain of different methods for characterizing polyurea.

2.4 Failure Criteria

The response of polymers to the mechanical load is highly complex and stress

plays a considerate role in the material failure. Since, evaluation of all the available

stress combination tests cannot be provided, it is necessary to use a failure criterion

generated on the general performance information about the material. Effects of the

strain rate and temperature play an important role too, as they both have significant

influence on the yield and failure of polymers. In this section failure criterion for

polymers are explained in comparison with metals behaviour.

2.4.1 Void Formation and Growth

Shock waves are sharp discontinuities in pressure, density, and internal energy in

a continuous material. They result from a localized, rapid release of energy, as in an

explosion, or from high velocity impacts. The polymers under these shock waves were

observed for the void formation.

A sample of the polyurea is (shown below in Figure 2.10) observed microscopically

and after testing revealed the formation of voids of the order of 4-5 mm from the free-

surface of the sample (Svingala et al. (2012)) and are easily observable. It is more

likely that these voids are created by the interaction of release waves reflected from

free-surfaces of the sample. A transient region of high tensile stress is produced by

the interaction of these waves, leading to localized void nucleation (Chapman et al.

(2005)). The formation and collapse of these voids leads to the more complex motion

of the free-surface as a function of time.
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Figure 2.10: Untested Polyurea on the Left with Few Visible Voids and Voids Formed

by the Shock Waves Reflects from the Surface of the Sample in Right Polyurea Re-

produced from Svingala et al. (2012)

2.4.2 Yielding and Plasticity

According to a von Mises’s theory, when the distortion energy density in a ductile

material reaches a critical value it will yield. Where the critical value of the distor-

tional energy can be estimated from the uniaxial test, as it is true for uniaxial stress

state too.The distortional energy density is defined as,

Ud =
1 + v

3E
σ2

Y (2.42)

This is the critical distortional energy density for the material, where σY is the

yield stress. Thus, according to von Mises’s failure criterion, the material will yield

when the distortional energy is equal or greater than the critical value for the material

under multi-axial loading,

1 + v

3E
σ2

VM ≥
1 + v

3E
σ2

Y (2.43)
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Similarly if we consider where only shear stress exists, such that stresses σx = σy

= 0, and τxy = τ , and prinicpal stresses are σ1 = -σ2 = τ and σ3 = 0. The line that

will intersect the von Mises failure at two points is represented by the straight line at

-45° which is a pure shear state on the σ1 - σ2 plane.

σ2
Y = σ2

1 + σ1σ2 + σ2
1 = 3σ2

1 = 3τ 2max (2.44)

where,

τmax = σ1 =
σY√

3
= 0.577σY (2.45)

Thus, the material under shear stress yields when the shear stress reaches 0.577

of σY .

Now, in case of the polyurea cavitation impact problem, von Mises yield criterion

doesn’t depend on the hydrostatic pressure which is temperature dependent due to

the temperature dependence of elastic properties. However, sometimes cavitation

without yielding is proposed as the cause of the failure (Asp et al. (1996)). It is

instituted that von Mises failure criteria gives a conventional estimation of the yield-

initiated failure whose intensity is evaluated as low in some regions and high in other

regions. Thus it gives the conclusion of failure due to yielding in polyurea.

2.4.3 Maximum Principal Stress (Fracture)

According to the maximum principal stress theory, a brittle material fractures

when the maximum principal stress in a material equals or exceeds the uniaxial tensile

strength of the material. Modification of this theory for the ductile materials gives,
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σ1 ≥ σv

σ2 ≥ σv

(2.46)

where σ1 is the maximum principal stress and σv is the ultimate strength of the

material.

The failure generated in the first and third quadrant coincides with the maximum

shear stress theory which contained within the distortion energy theory. The en-

velopes in the second and fourth quadrants are well outside of the other two theories.

Hence, the maximum principal stress theory is not considered satisfactory for ductile

material.

In the case of polyurea principal stress theory, results are sensitive to tempera-

ture and loading rate. Most of the polyurea coating gives excellent durability and

flexibility in cold temperatures. Nevertheless, there is a phase where in the beginning

polyurea becomes brittle and cracks may occur leading to coating failure. Excessive

movement of the flexible substrate may also result in coating fracture. Its concluded

that the maximum principal stress theory can cause failure depending on the condi-

tions linked with it. Sometimes stress may cause the little elongation up to 10% with

two component epoxies having elongation combined with high tensile strength which

represent excellent resistance however it also leads to fracture.
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Chapter 3

NUMERICAL METHODS

Numerical modeling and finite element simulations were carried out to observe the

material response to cavitation effects under impulsive pressure. Special attention is

paid to observe the negative pressure and tensile stress in the material. In order to

determine the behavior of the material, we will run finite element simulations and

consider the influence of the following physical parameters: thickness of the coating,

impact pressure magnitude, bubble size and load duration (Kim et al. (2014)).

3.1 Geometry

To examine the response of the material under the influence of various load pa-

rameters, multiple designed simulations are carried out.

The upper part of the domain is made up of polyurea, and the lower substrate

part is composed of aluminum.

Domain size is based on the critical time step and is represented as (Lx, Ly). The

impulsive pressure, which is generated due to bubble collapse, impacts the material,

generating intense shock waves that result in cyclic stress loading, material wear,

and deformation. Impulsive pressure is defined by the following equation (Kim et al.

(2014));

P = Pmaxe
−t/τ−(x/R)2 (3.1)

Pmax is the impulsive pressure generated at the wall by bubbles collapsing. In this

investigation we consider Pmax in the range of 0.5 - 3.0 GPa.

The radius of the bubble is determined by carrying out a few drastic simulations
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(Amirkhizi et al. (2006)) and is defined over the range of 0.1 - 1 mm. Similarly,

thickness of the polyurea coating varies thickness on the order of 0.1 - 2 mm.

When the bubble hits the surface, the rise time of the shock is set constant at

10ns. This is generally defined as 10 times the critical time step.

After the bubble collapses, the shock decays, and the time to decay is calculated

by the characteristic time of the bubble dynamics,

τ = R
√
ρ/Pcollapse. (3.2)

As represented by Eq. 3.2, the bubble collapse pressure is due to the driving

pressure, which is a function of the ambient pressure driving the bubble collapse and

is calculated by,

Pmax = 3c
√
ρPcollapse. (3.3)

This gives,

Pcollapse =
P 2
max

9c2ρH2O

(3.4)

where density of the liquid (water) is constant, ρ = 1000kg/m3.

Based on the above study, domain size is defined as,

Lmin =

(
tfall ∗

Cpu
2

)
+R (3.5)

Hmin =

(
tfall −

t

Cpu

)
∗ Cal

2
+ t (3.6)

where Cpu and Cal is the pressure wave speed in polyurea and aluminium, respec-

tively.
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3.2 Cavitation Load Profile

Loading on the material due to cavitation occurs. Collapsing bubble voids create

heavy impulsive pressure (Choi et al. (2014)) and generate shock waves in the ma-

terial. We carried out simulations to investigate the behavior of material. The top

part of the domain is composed of thin polyurea with viscoelastic properties, and the

bottom part is composed of a substrate of aluminium.

Loading on the material due to the cavitation effect was influenced by various load

parameters, such as impact pressure, bubble radius, thickness of the material and the

critical time step. These factors affected the material response and by changing

these various variables, parametric simulations were carried out. In order to observe

the polymer response, the collapse pressure was varied over 0.5 GPa to 3 GPa and

material dynamics behavior was captured by keeping other parameters constant.

As soon as the materials are impacted by load they respond. The compressive

stress waves reflect back due to material changes, though some waves still make it

through the substrate. First, the compressive stress reaches the yield point and then

complex deformations begin until the maximum load is reached.

Deformation due to the impact loads are also affected by the size of the collapsing

bubble. Simulations indicates that the maximum deformation increases as the radial

extent of the loading becomes larger. Characteristic radii are defined over the range

of 10-1000 µm. The trend in deformation due to the radii extent of the load increases

simultaneously as the radii extent increases. As the loading size increases the length

of the domain increases simultaneously. We observed that length of the domain size

should be at least twice the size of the bubble radii or else the stress waves will not

have enough space to propagate and reflect back, leaving unusual residual stress on

the polyurea.
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It can be seen from the calculations that the decay time of shock keeps decreasing

as the impact load pressure increases, which results in maximum deformation of the

material. The trend remains the same for all thicknesses of the polyurea.

3.2.1 Axisymmetric

An axisymmetric condition is utilized to investigate the problem where the analy-

sis of the domain is under axisymmetric loading. Axisymmetric, or radially symmet-

ric, loading is easy to analyze as compared to other geometries or non-axisymmteric

conditions.

Impact load due to cavitation is modeled axisymetrically. Various tests have been

conducted for the evaluation of the stress, stress field, pressure and displacement

of the system and the relationships between these factor under an axisymmetrically

distributed loading on the plane surface of the film.

3.2.2 Integration Method

Explicit and implicit integration are two ways to carry out numerical analysis to

obtain numerical solutions of time-dependent partial and ordinary differential equa-

tions. Explicit integration determines the state of system at a later time from the

current state of the system, whereas implicit integration gives a solution by solving

an equation involving both the current and later state of the system. The implicit

method require an extra computation to solve the stiff equations at each time step,

and thus required smaller steps to evaluate to keep the result error bounded. In

this project, larger time steps are required, thus, the explicit integration method is

implemented in finite element simulations runs.
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3.2.3 Critical Time Step

Explicit integration plays an important role in non-linear dynamics. Under explicit

codes, the central difference method is used when the time step is no larger than the

critical time step. Generally, the critical time step is extremely small and the number

of steps required for the simulation is large. Therefore, an accurate, reliable and

efficient calculation is the most important.

It has been proven previously by some authors that the more the number of

elements (N) in the finite element mesh, the larger the stability of the mesh will be

(Amirkhizi et al. (2006)). Thus the critical time step is defined as the ratio of the

size of the element to the pressure wave (p-wave) speed in the composite.

∆t =
L

CAl
(3.7)

where L is the length of the element size and CAl is the speed in aluminium

substrate.

CAl =

√
E

ρ
(3.8)

The element based method (Flanagan and Belytschko (1984)) is the most efficient

method in calculating the critical time step at every time step. However, this method

produces a conservative estimate for the critical time step, and thus, for an efficient

analysis the result from this critical time step method should be considered the upper

limit.

Thus, the number of steps required for the finite element analysis is determined

as,

NSteps =
T

∆t
(3.9)
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where T is the time required for simulation, and ∆t is the critical time step as

defined above in Eq 3.7.

The stability of the finite element wave propagation is dependent on the critical

time step calculation. The central difference method for limiting the length of the

time step in explicit integration is expressed as,

Crcrit =
2

ω
(3.10)

where ω is a dimensionless frequency given by,

ω =
ωmaxH

c1
(3.11)

where ωmax is the maximum natural frequency of a finite element mesh with H

being element size and c1 being speed of the wave propagation (longitudinal wave) in

the continua.

3.3 Artificial Damping

Damping is the process of reducing, restricting and preventing the effect of oscil-

lations. It describes how oscillations in the system decay. The idea of taking artificial

damping into account is based on the addition of a damping term to the governing

equations. It is useful to include realistic viscous damping as it brings stability to the

numerical system.

3.3.1 Selecting the Damping Coefficients

Viscoelastic materials store some of the energy in a viscoelastic system and are

recovered upon removal of the load, and the remainder is dissipated in the form of

heat. The theoretical studies of the viscoelastic material state that dissipated energy
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stored in the oscillation should be at least 100 times less than the kinetic energy in the

material. The addition of passive damping can decrease peak vibration amplitudes

in structural systems and add robustness to a marginally stable system (Ashley and

Edberg (1986)). Also, the structural damping can be increased by several methods.

The most common method for increasing the structural damping is the addition

of high loss factor viscoelastic materials to the structure or the attachment of a

mechanical vibration absorber (Hagood and von Flotow (1991)).

After careful analysis of viscoelastic measurements for damping in the material,

we have selected a damping coefficient of 1x10−8.

3.3.2 Trade-off Between Conservation and Stress Oscillation

According to the principle of energy conservation, total energy in the system

should remain constant (Kuhl and Crisfield (1999); Yim et al. (2003); Kuhl and Ramm

(1996)). In our case, the total energy of the oscillating material is not constant. Thus,

there must be a damping effect. The amount of energy dissipated is a measure of

the structures damping level, which occurs progressively as energy is taken out of the

system by another force. In physical systems, damping is produced by processes that

dissipate the energy stored in the oscillation. Damping exists in all vibrating systems.

It may be very small or very large depending on the system, and there is always a

trade-off between conservation of energy and stress oscillation.
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Run Pmax (GPa) R (µm) Trise (ns) Tfall (µs)

1 0.5 1000 10 9.0e-6

2 0.5 500 10 4.5e-6

3 0.5 10 10 9.0e-8

4 1.0 1000 10 4.5e-6

5 1.0 500 10 2.25e-6

6 1.0 10 10 4.5e-8

7 1.5 1000 10 3.0e-6

8 1.5 500 10 1.5e-6

9 1.5 10 10 3.0e-8

10 2.0 1000 10 2.25e-6

11 2.0 500 10 1.13e-6

12 2.0 10 10 2.25e-8

13 2.5 1000 10 1.8e-6

14 2.5 500 10 9.0e-7

15 2.5 10 10 1.8e-8

16 3.0 1000 10 1.5e-6

17 3.0 500 10 7.5e-7

18 3.0 10 10 1.5e-8

Table 3.1: Time to Pressure Fall Calculation
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Chapter 4

RESULTS AND DISCUSSION

The finite numerical simulations of high impact pressure point loads on model

polyurea are discussed. This chapter includes both the results as well as the conclusion

derived from these results.

4.1 Effect of Temperature Rise in Polyurea

We conducted a series of simulations to numerically investigate the temperature

rise in polyurea. The viscous energy dissipated from the polyurea is then calculated

for different loading conditions.

The expected value of dissipated viscous energy from the polyurea under the

impact of impulsive load is calculated. It shows, for the finite simulations, how much

energy is dissipated from the polyurea by using the material model, as we discussed

in Chapter 2.

Figure 4.2 shows curve fit when bubble radius and impact pressure magnitude

varies simultaneously. Pressure is varied from 100MPa to 1GPa in an interval of

200MPa along with bubble radii varying from 100µm to 1mm in an interval of 200µm.

The trend of total viscous energy dissipation from the polyurea is then observed.

For the number of repeated times the impacts occurring within the pressure and

radii, gives expected dissipated viscous energy and can be defined as,

n(r, p) =

∫∫ ∞
0

Wd(r, p)P (r, p)drdp (4.1)

Thus, the viscous energy dissipated Wd as function of impact radius (r) and max

pressure magnitude (p) from the FEM model is represented by,
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Figure 4.1: Viscous Dissipation from the Polyurea at Different Impact Magnitude

and Bubble Radii

Wd = pr(c0p
2r + c1pr

2 + c2r
2) (4.2)

where, c0, c1, c2 in Eq. 4.2 are fitted curve constants and their values are shown

in Table 4.1

The above function represents the dissipated energy from the polyurea when it is

subjected to different impact loads at different bubble collapse radii and can be used

to evaluate the expected value of energy dissipation using two variable probability

density functions as shown in Eq. 4.1.

The expected value from the two dimensional number of density distribution is

calculated by the integral of the random variable with respect to probability measures

which yields,

Wed = 6NP ∗(c2 + 2P ∗(c1 + c2P
∗/R∗)R∗2) (4.3)
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Figure 4.2: Fitted Curve Plot of Dissipated Viscous Energy from the Polyurea Sample

where, N is the number of impacts per unit area per unit time on polyurea layer. P∗

is the characteristic amplitude of the impulsive pressure, and R∗ is the characteristic

bubble radii. Their values are calculated from (Kim et al. (2014)) as shown in table

4.1.

After solving for the Eq. 4.3, we arrive at the expected value of the dissipated en-

ergy as: 1.085 J/cm2/sec which gives the temperature rise in material using following

equations,

∆T =
Wd

Mass ∗ Cp
(4.4)

where, Cp is the specific heat capacity at constant volume and Wd is the dissipated

viscous energy.
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Mass = V olume ∗Density (4.5)

therefore,

Mass = (ρL2t) (4.6)

Now, ∆T is evaluated as,

∆T =
WdL

2

(ρL2t)Cp
(4.7)

∆T =
Wd

(ρt)Cp
(4.8)

Table 4.1: Parameters Used in Calculation

c0: 2.195 x 10−28 J/Pa3/m2 N: 2416 impacts/cm2/sec

c1: -5.119 x 10−16 J/Pa2/m3 P∗: 4.01 x 108 Pa

c2: 7.629 x 10−12 J/Pa/m3 R∗: 1.72 x 10−4 m

Density(ρ): 1.2 g/cm3 Cp: 2.0 J/g/◦C

Thickness(t): 1.0 mm

Thus, the temperature rise in the polyurea with respect to time is 4.52 ◦C/sec.

Finally, in all simulations runs, maximum rise in temperature within polyurea is

observed as 4.5 ◦C per unit time. This means that, it raise the significant temperature

to cause failure in polyurea layer.

4.2 Parameter Study

Initially defined parameters are modified by carefully examining the outcomes of

intense shock waves that propagate through the polyurea and substrate causing signif-
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icant damage to the polyurea. The damage to the polyurea is due to the hydrostatic

pressure observed in the polyurea region which is the indicative of failure.

After running a heavy work simulation, an intensive parameter study is carried

out on the results. The combination of parameters that changes the behaviour of

polyurea and damage it are then sorted.

Bubble size: Bubble generates in low pressure region and collapses within a liquid

happens when the pressure in the liquid increases beyond a certain threshold. We ob-

serve this phenomena on the surface of polyurea, and from simulations, it is observed

that primary size of bubbles that have the most impact are of the size 0.1 - 1mm.

Coating thickness: Polyurea coating behaviour under different levels of bubble

size, impact pressure, rise time and domain is observed and is at carried out for

varying thicknesses, from thickness of 0.2 - 1mm. The results at 0.1mm polyurea

layer thickness gave significantly odd results. As the thickness kept on increasing

the results become little significant. It is observed that, when we take sample with

greater than 1mm thickness, the polyurea layer fails. It can’t withstand high impact

pressure.

Impact pressure: Bubble collapse pressure varies from 0.5 - 3.0 GPa but the limit

after 2.0 GPa gives impractical results because the material becomes so deformed,

that it can not be practically considered.

Outcomes Illustration: The flow of shock waves in the material consisting of

polyurea and substrate are illustrated in the following section. Reflections, refrac-

tions of shock waves begin in the material which are discussed below.

4.2.1 Conclusions of Parameter Study

The conclusion of our research indicates that the when the thickness of the

polyurea considered to be very less and the corresponding bubble radius very large,
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then minimum negative pressure occurs after a number of reflections. Hence, the

material observed will be safe from failure. In contrast, when the polyurea thickness

considered is large, the pressure wave reaches interface and gives negative pressure

instantly which cause failure. A pictorial representation follows the given explanation

below.

4.3 Effect of Polyurea Coating Thickness

A parametric investigation is conducted to identify the effect of the polyurea coat-

ing thickness on the high pressure impacts mitigation. Various thicknesses of polyurea

is observed subjected to impact loading. It has been found that the thin coatings of

polyurea reduces the impact load effect, and prevents from failure. Three cases have

been identified, which give substantial proof to the hypothesis that thinner coat-

ings are stronger than thick coatings. Our conclusion is represented in the following

paragraphs:-

Case1: When the thickness of the coating and bubble are considered to be the

same, negative pressure is observed when the refraction wave hits interface which is

just after when the bubble collapses at the surface and the wave propagates through

the polyurea. In this case polyurea fails.

Case2: Simulated results shows that when the thickness of the polyurea is very

large in comparison with the size of the bubble radius, the pressure wave propagates

and minimum pressure occurs when the pressure wave reaches interface instantly,

which leads to the polyurea failure. In this case, the polyurea layers fails to mitigate

the impact load response, and the failure of layer observed.

Case3: When the bubble radius is considered to be larger than the thickness of

the polyurea, the minimum pressure which is the tension in the material is observed

after many reflections and cause failure to the material after so many reflection and
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Figure 4.3: Peak Coating Tensile Pressure v/s Different Coating Thicknesses
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Figure 4.4: Relative Time of Maximum Pressure Rise in the Polyurea at Different

Coating Thicknesses
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Figure 4.5: Peak Coating Tensile Pressure at Different Coating Thickness Relative to

Bubble Radius

takes long period of time which is a good case. Thus, in this case, Polyurea survives

the high pressure impact loading.

In Case 3, its clear that the thin layers of polyurea are stronger than the thick lay-

ers and can sustain high impact loads. Polyurea survives with no significant damage

accumulation on the polyurea layer.
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Chapter 5

CONCLUSIONS AND SUMMARY

This research investigated the response of polyurea coatings under high pressure

impact load due to cavitation field. The complete temperature, pressure and strain-

rate dependent viscoelastic constitutive model is used for the viscoelastic response

of polyurea. Incorporated model accounts for the strain-rate effects as well as dam-

age induced heating in the polyurea due to high pressure impacts. Parameters for

constitutive models are extracted from the experiments. The prediction of the high

pressure magnitude effect on the polyurea coating display reasonable agreement with

the experimental observations.

5.1 Conclusions

The following responses are made regarding the high pressure impacts on the

polyurea layer. The prediction of the final results indicates that the temperature

have influence on the deformation of the polyurea and accumulate damage under

varying loading conditions.

Parametric study also investigated that, thickness of the polyurea has a significant

affect in the mitigation of failure due to high pressure cavitation field, where the

thinner coatings lead to better protection.

5.2 Recommendations for Further Study

On the basis of above investigation on parameters, energy dissipation, and the

temperature rise in the polyurea due to cavitation fields, leads to further analysis of

the work which includes polyurea damage model evaluation.
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Damage model may consist of evaluations of the pit analysis in the material which

are the results caused by cavitation erosion. The large deformation, time dependent

response of material under cyclic loading can be evaluated for a permanent set (Ayoub

et al. (2014)). There have been numerous studies dealing with the cyclic loading

on elastomers. A constitutive damage model can be developed to carry out the

corresponding results at constant and variable amplitude loading conditions and can

also be compared to the experimental data to see the alignment of the results.
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