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ABSTRACT  

   

A new loop configuration capable of reducing power radiation magnitudes lower 

than conventional loops has been developed. This configuration is demonstrated for the 

case of two coaxial loops of 0.1 meter radius coupled via the magnetic reactive field. 

Utilizing electromagnetism theory, techniques from antenna design and a new near field 

design initiative, the ability to design a magnetic field has been investigated by using a 

full wave simulation tool. The method for realization is initiated from first order physics 

model, ADS and onto a full wave situation tool for the case of a non-radiating helical 

loop. The exploration into the design of a magnetic near field while mitigating radiation 

power is demonstrated using an real number of twists to form a helical wire loop while 

biasing the integer twisted loop in a non-conventional moebius termination. The helix 

loop setup as a moebius loop convention can also be expressed as a shorted antenna 

scheme. The 0.1 meter radius helix antenna is biased with a 1MHz frequency that 

categorized the antenna loop as electrically small. It is then demonstrated that helical 

configuration reduces the electric field and mitigates power radiation into the far field. In 

order to compare the radiated power reduction performance of the helical loop a shielded 

loop is used as a baseline for comparison. The shielded loop system of the same 

geometric size and frequency is shown to have power radiation expressed as -46.1 dBm. 

The power radiated mitigation method of the helix loop reduces the power radiated from 

the two loop system down to -98.72 dBm. 
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CHAPTER 1 

INTRODUCTION 

Wireless power transfer has been explored for decades since the beginning of the 

Tesla claim to transmit power wirelessly.  It is well known that small amount of power 

can be transmitted wirelessly with the far field radiation.  For powering devices such as 

rechargeable batteries for electronics, the power transfer must be explored for efficient 

charging.  Conventional loops of one to ��� turns have been explored and optimized for 

modern electronics.   

Advancement in modern tactical electronics for soldiers has become prevalent in 

modern warfare.  Hostile environment have become increasingly dangerous for operators 

to complete missions covertly due to the opposition gaining access to radio frequency 

analysis that can detect radiation from electronic powering stations.  The need to recharge 

a soldier’s electronic equipment without adding wires and procedures for charge has 

become desirable.   

Eliminating power radiation for wireless charging has not become feasible with 

advancement in designing of the reactive magnetic field.  In order to build an optimal 

system, the first step requires a investigation into power radiation mitigation or virtual 

elimination that will protect the where about of the operator have made a technological 

advancement. 

The Helical loop terminated in a moebius connection is proposed for developing a 

wireless power transfer technology that mitigates power radiation through the canceling 

of E-fields.  Therefore, a hypothesis to be tested is proposed as: Can we reduce radiation 
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and preserve coupling by going to a higher order “pole” version of the standard current 

loop?  Currently no other technology is offered as a step toward a solution.     

1.2 Organization 

Chapter 2 provides a detailed analysis for developing a closed loop solution in 

loop antenna wireless power transfer.  From that analysis, Chapter 3 describes the four 

models that are developed for investigating and validating schemes used in tuning the 

antennas with resistive loads.  The first order models results are compared against 

equivalent circuit simulations in ADS.  Chapter 4 introduces the shielded loops as a 

possible solution to wireless power transfer.  Chapter 5 pilots the investigation into a 

helical configuration that is exploited later in chapter 6.  Finally, chapter 6 steps in the 

direction developing a baseline simulation of tuned shielded loop to loop coupling using 

a full wave modeling tool. Power transfer and power radiated performance is compared 

for a shielded loop to shielded loop system, helix loop to helix loop.  The hypothesis is 

addressed with two configurations.  Finally, recommendations for future work are given 

at the end of chapter 6. 
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CHAPTER 2 

BASELINE PROPERTIES OF A POWER TRANSFER SYSTEM: LARGE AND 

SMALL LOOP SYSTEM 

2.1 Description of power transfer system relevant theory 

 It is known that two loops within the Near Field distances of each other have 

power transfer capabilities via magnetic induction [4, 10].  For this investigation it was 

considered that two loops of one turn with the transfer of power originating from a “large 

radius” source loop to a “small radius” receiver loop. Specifically, the source loop shall 

have a radius of 0.1 meters, while the receiver loop will be 1/10th of the source loop; 0.01 

meters.  Both loops are considered to be suspended in free space with no external 

interactions (e.g. no ground plane interaction).  Both loops are assumed shorted loops.  

The power transferred between the respective loops will then be evaluated by considering 

the amount of Power transferred from the source loop Pin.  Assuming 1 ampere generated 

from the source, the Power equations can be used for calculating the power being 

transmitted from the generator and source loop.  Next, radiated power and power to load 

is considered.  The amount of radiated power lost is determined by considering the 

radiation resistance seen by the source combined with the receiver and then calculating 

how much is radiated away.  The power to load calculation will consider the Ohmic 

Resistance of the metal of the loops.  At this time no extra load resistance will be 

assumed and hence the load is considered to be only the Ohmic Resistance of the receiver 

loop.  Once it was calculated all impedances, voltages and currents of the system it was 

determined the power transfer efficiency of the described two-loop system.   

2.2 Transducer Section 
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2.2.1 The Impedance and Admittance Matrix 

 The transducer theory shows that the Voltages of both loops and current of 

receiver can be calculated if a realization is known for the impedances Z11, Z22, Z12, and 

Z21 of our system [9, 10].  For the reciprocal circuit, the non-diagonal impedance matrix 

coefficients are symmetric 

���  = ���       (1) 

Two coupled antennas can be modeled as a transducer as long as the gaps between their 

respective input terminals are small [9, 10].Additionally, a transducer exhibits linear 

behavior if the voltages across each pair of terminals are linear functions of the currents.  

Therefore for our two loop system 

	� = ��� 
� + ���
�                 (2) 

	� = ���
� + ���
�      (3) 

Where 

V1 is the voltage across the terminals of Loop 1, 

V2 is the voltage across the terminals of Loop 2, 

I1 is the current through Loop 1, 

I2 is the current through Loop 2, 

Z11 is the (self) impedance of Loop 1, ��� = �
�
 in the absence of loop 2. 

Z12 is the mutual impedance of Loop 1 to Loop 2. ��� = ���
  The voltage induced in 

loop 2 due to the current in loop 1. 

Z22 is the (self) impedance of Loop 2, ��� = ���� in the absence of loop 1. 
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Z21 is the mutual impedance of Loop 2 to Loop 1.   ��� = �
��  The voltage induced 

in loop 1 due to the current in loop 2. 

 

Shown in matrix form 

�	�	�� = ���� ������ ���� × �
�
��     (4) 

Where, given the currents, the total voltages can be calculated. For a given voltage, the 

inverse of impedance is the admittance and thus if z is a 2x2 matrix it can be defined as 

the corresponding admittance matrix as follows.  Let, 

� = �� �� ��       (5) 

� = � ������� × � � −�−� � �     (6) 

Resulting in: 

 

� = � � 

 ��� 
� �
� × � ��� −���−��� ��� �   (7) 

Now, let D be the following expression: 

! = "������ − ������#     (8) 

Equation (6) above can now be rewritten in terms of the admittance matrix  

�
�
�� = $  ��% � 
�%� �
%  

%
$ × �	�	��     (9) 

or 

�
�
�� = ���� ������ ���� × �	�	��     (10) 
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with �&& =  ''% . 

 

Finally, the currents can be expressed as 


� = ���	� + ���	�      (11) 


� = ���	� + ���	�      (12) 

So that, given the voltages the currents can be calculated. 

2.2.2 Mutual Impedance of the Two Loop System 

By extension from Magneto statics it can be known as defining the relationship between 

Mutual Impedance and Mutual Inductance as 

(�� =  
�)*        (13) 

and 

(�� =  �
)*        (14) 

where 

ω is the angular frequency and  

Lxy is the mutual inductance. 

 

2.3 Mutual Inductance  

As suggested by the last two equations it can be expected that the mutual 

impedance problem to be reduced to the mutual inductance Magneto statics problem at 

low frequencies. Therefore, different classic approximations help identify the important 

parameters and serve as sanity checks. The investigation can begin by solving the mutual 

inductance of the two loop system. The Magneto statics Biot-Savart approach, the 
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Magneto-Statics Elliptical function approach, and the Magneto-Statics Magnetic Dipole 

approach.  These should agree with the antenna Electrodynamics approach as frequency 

goes to zero.  Each solution obtained from the resulting method will then be reviewed and 

compared for their accuracy and specific conditions required for the solution to work.   

2.3.1 Magneto-Statics Approach 

Mutual Inductance (Mutual Impedance) of two loops using the Magneto-Statics approach 

will first be considered.  At 1MHz, a large loop of 0.1 meter radius is considered 

electrically small [10, 11].  This constitutes Magneto-Statics characteristic behavior.   

2.3.1.1 Magneto-Statics Inductance equations 

2.3.1.1.1 Hz/Bz on the axis of loop 

By applying the Biot-Savart law [4] along the axis of a loop of radius r, the z-component 

is obtained 

+,  =  -./0 �01��
",�21�#3�      (15) 

By assuming the smaller loop(1/10th radius of the larger loop)is small enough that 

the flux through it is uniform, one can simply multiply +, by the area of the small loop 

and divide by current to get the inductance of the large loop source projected onto the 

small loop receiver. 

45�678_5::; =  <=>?@ABB_BCCD�BAEFG_BCCD      (16) 

where, 

45�678_5::;is the Mutual Inductance of the two loop system. 

HIJ�55_5::;is the area of the small loop with radius r and  


5�678_5::;is the current of the large loop. 
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2.3.1.1.2 Mutual Inductance using elliptical functions 

Elliptical functions of the first and second kind can be used for calculating the 

Mutual Inductance of two loops without the uniform flux approximation.  As shown in 

Ramo, Whinnery and Van Duzer [11] the final result for mutual inductance of coaxial 

loops 

4 = K√�� M��N − O� P"O# − �N Q"O#R    (17) 

Where, 

 a is the radius of loop 1. 

 b is the radius of loop 2. 

 O� = /����2"�2�#� 

 d is distance between coaxial loops. 

 Q"O# = S T1 − O�VWX�Y �Y0 �⁄[  

 P"O# = S �\T��N�I]^�\0 �⁄[  

  

2.3.1.1.3 Magnetic Dipole approach 

The next Mutual Inductance calculation is realized by considering duality and the 

Magneto-Static solution for a Magnetic Dipole in free space [11].  Consider a loop that is 

relatively small compared to the other loop of the system, 1 10⁄ the size of the large 

loopfor the present two loop system. The small loop can then be modeled as a magnetic 

dipole.   

It follows that the `-component and the r-component of the total B-field are the dipole 

fields of a loop. 
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+a = -b/063 sin `      (18) 

 

+6 = -b�063 cos `      (19) 

 

2.3.1.1.4 Electrodynamics - Flux Section small loop as source 

 Now to compliment the magneto statics approaches the focus is shifted to the 

electrodynamics approach [11]. To begin, consider a Co-Axial system and calculate the 

Mutual Inductance as a function of separation between the loops. 

The Planar case takes the same two loops lying on a plane, and again separated as 

a function of distance.  Both scenarios assume the small loop is a magnetic dipole and use 

the electrodynamics fields of a magnetic dipole in spherical coordinates for calculating 

the B field in space.  Then, by projecting the B field flux through the area of the larger 

receiver loop, the inductance can be calculated.  For calculating the total flux, S + ∙ �V  
crossing the large loop the integral is carried out as a discrete sum.  That is, the flux can 

be calculated by dividing up the large loop cross section into small squares each with the 

same unit area.   By summing all flux contributions captured by each of the unit areas 

within the larger receiver loop area, a final total flux passing through the larger loop can 

be tabulated. 

Then: 

4�� = ∮ <�∙�j
�� = k
���       (20) 

and by reciprocity 

4�� = l�
�
        (21) 



  10 

Ψ�� = ∬"opq# ∙ rs t�t�Y     (22) 

 

The dipole field of the loops is obtained using duality as follows: 

Consider the Electric Field of a dipole in spherical coordinatesQa and Q6[12]. 

Qa = �/0 u�)N[6 v)*-6 + w-x �6� + �)*x63y sin"`#  (23) 

Q6 = ��0 u�)N[6 vw-z �6� + �)*z63y cos"`#   (24) 

Where the distance  { =  T|� + }� + ~� is the distance from the Cartesian 

origin. 

If the Electric Dipole moment is, 

�8  = �ℎ       (25) 

and it is known that 


 = ���       (26) 

then, substituting q into Electric Dipole moment is it realized as 

�8  =  � �)*� ℎ       (27) 

The static Magnetic Dipole is moment is defined as: 

�J  = 
� = 
�{� = 
��IJ�      (28) 

Therefore, the AC Magnetic Dipole of the current moment is simply��K
��� = 
J ∙ � . 
Therefore by duality 

+a = )*-��0�?@�
/0 u�)∙N[∙6 �)∙*∙x6 + ��6� + �)*-63� sin"`#   (29) 

+6 = )*-��0�?@�
�0 u�)N[6 � ��6� + �)*-63� cos"`#    (30) 
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Simplifying, 

+a = )*-���?@�
/ u�)N[6 �)*x6 + ��6� + �)*-63� sin"`#   (31) 

+6 = )*-���?@�
� u�)N[6 � ��6� + �)*-63� cos"`#    (32) 

For ease of programming, the cosine is replaced with the respective x, y,and z 

components as follows. 

cos"`# =  ,6        (33) 

sin"`# = ± w1 −  �,6��
      (34) 

Recalculating, the B-field components become 

+a = )*-���?@�
/ u�)N[6 �)*x6 + ��6� + �)*-63� ± w1 −  �,6��

  (35) 

 

+6 = )*-���?@�
� u�)N[6 � ��6� + �)*-63� ,6     (36) 

 The flux calculation total S + ∙ �V approach is performedas before by equally 

dividing the large loop cross sectional area into multiple small unit areas.  The Mutual 

Inductance of the two loops system is then calculated by dividing the total flux captured 

by the total current of the source loop. 

2.3.1.2 Considerations for Computational Calculations 

The MathCAD sheet is included in the Appendix. 

2.3.2 Flux Results from each Method   

All flux results assume a source loop of radius 0.1m that is positioned coaxially with a 

secondary loop 1/10th the radius of the source loop.  Mutual inductance versus separation 
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distance is shown for all four approaches.  Where, mutual inductance units are in henrys 

and separation in units of meters.  The first graph is the Magneto-Statics approach. 

 

Figure 1. Magneto Static flux along the axis of a loop. 

The Magneto Statics solution is used as high fidelity results for comparing other methods 

as a baseline solution. 

The second method is the graphical results using the Neumann approach and Elliptical 

functions. 
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Figure 2.  Elliptical Function flux along the axis of the loops. 

The elliptical solution is commonly used in literature and can be readily compared to the 

magneto statics solution. 

The third method is the graphical results using the Magneto Static B-fields of a magnetic 

dipole. 
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Figure 3.  Magneto Static B-field of a magnetic dipole. 

From electro static dipole solution and duality, in is shown that magneto static dual 

magnetic dipole exhibits high fidelity. 

The fourth method is the graphical results using the Magneto Dynamic B-fields of a 

magnetic dipole. 
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Figure 4.  Magneto Dynamic B-field of a magnetic dipole 

Finally, comparisons of all approaches are combined on one graph for comparison. 
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Figure 5.  Magneto Statics, Elliptical, Magneto Static dipole and Magneto Dynamic 

dipole. 

2.4 Discussion   

The mathematical investigation of two conventional loop each of one turn is used for 

understanding the transfer of power originating from a “large radius” source loop to a 

“small radius” receiver loop. The source loop shall have a radius of 0.1 meters, while the 

receiver loop will be 1/10th of the source loop; 0.01 meters.  Both loops are considered to 

be suspended in free space with no external interactions (e.g. no ground plane 

interaction).  Both loops are assumed shorted loops and no extra load resistance was 

assumed. Transducer theory is then used to determine the mutual impedance, and 

therefore the mutual inductance.  Mutual inductance is calculated and compared by using 
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duality and approached such as the Magneto statics Biot-Savart law, elliptical functions, 

magneto-static dipole and the electrodynamics approach. The mutual inductance of the 

transducer is used to calculate the coupling coefficient.  In conclusion, the 

electrodynamics method used to calculate the mutual inductance and coupling coefficient 

is validated by comparing three additional different approaches. 
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CHAPTER 3 

POWER TRANSFER PROPERTIES OF THE TWO LOOP SYSTEM 

3.1 Background for application 

This investigation is directed towards medical and military applications.  For the 

power radiated, consider a medical application in which there are sensitive electronic 

sensors and electronics that provide life supporting therapy for the respective patient. 

These medical systems can be negatively impacted by a significantly radiating disruptive 

power source.  This could negatively affect the monitoring or life support equipment for 

patients and may also impact critical data collection and/or transmission needed for life 

supporting treatment, and thus unintended radiation of significant magnitude could lead 

to conditions ranging from, at best, undesirable (e.g. data loss) to catastrophic  

implications (e.g. sensor failure or corruption of medical device). 

Considering a military application, the user may be outfitted with sophisticated 

electronic equipment and/or sensory electronics that require access to a wireless power 

transfer charging system during an important military operation.  Furthermore, the hostile 

environment of the soldier may require wireless recharge usage that demands no 

detectability.  Additionally, the soldier must not generate any significant electromagnetic 

emissions that could give the enemy any information of the presence or knowledge of the 

operation.  Even minor radiation emission could catastrophically lead to losses or 

jeopardize the objective.  Therefore, it is imperative that no detectable emission or 

radiation be generated during use.   
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3.2 Application of transducer theory. 

 For this investigation we consider two loops of identical size, and being 

electrically small, which is defined as [7] 

2�{ ≪ �       (1) 

with r equal to the loop radius and λ equal to the wavelength of the respective 

electromagnetic radiation, and therefore constrained to near field coupling, which is 

defined as a distance <  �.  For simplicity, it will be assumed the loop current is constant 

in amplitude and phase at all points on the loop. As a consequence of the constant loop 

current assumption, any results for the loops greater than several meters in diameter are 

not valid above 5MHz.  Additionally, the radius �[ of the wire conductor is assumed 

small compared to the radius of the loop.  Using Linear Transducer theory [9, 10], from 

chapter 2 the impedance matrix, equations 2 and 3 below are reproduced,  

	� = ��� 
� + ���
�                  (2) 

	� = ���
� + ���
�       (3) 

and shown in matrix form in equation 4 

�	�	�� = ���� ������ ���� × �
�
��      (4) 

and then equation 5 expressed in terms of current and admittance 

�
�
�� = ���� ������ ���� × �	�	��      (5) 

Finally, the matrix is expressible as equations 13 and 14 from chapter 2. 


� = ���	� + ���	�       (6) 


� = ���	� + ���	�       (7) 

The Power seen entering into loop 1 is then: 
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�]^ = 
�	�        (8) 

3.2.1 Ohmic Loss and Impedance assumed at feed 

It is assumed the receiver loop is made of copper, with a conductivity of � =
5.8 × 10� Siemens.  For the wireless power harvesting from the source loop by the 

receiver loop to be investigated, the power captured by the copper loop material is 

determined by binding the energy harvested to the receiver loop of the system.  The loop 

will experience magnetic flux which in turn generates a current and a voltage.  For the 

copper receiver loop it is known the reactive power is not as useful for calculations as 

real power calculated in watts.  Therefore, we shall focus our calculations on real power 

with units of watts which will lead to the calculation of generated power at the receiver 

loop.  This approach will allow the realization of numerical data useful in modeling the 

transferring of power to a load or battery of a system that requires electrical energy.   

The real power dissipated due to Ohmic loss is  

�5:II = 
�t:�J]�      (9) 

Looking at the power equation due to Ohmic resistance loss, it is apparent that the current 

in the second loop is highly dependent on the Ohmic resistance and hence, the resistance 

component that the electromagnetic wave sees while traveling along the wire is called the 

surface resistance.  The alternating current (AC) resistance of the loop’s wire depends on 

the skin depth [12].  Defining the surface resistance as 

tI = ���       (10) 

Where 

�is the conductance and 

�is the skin depth of the copper wire. 
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The skin depth for the wire loop is expressed as such [12]: 

� = w ��0�-.�       (11) 

Therefore, at high frequencies (� < �[# the resistance calculation for a round wire, in Ω 

per unit length (Ω �# ⁄ is 

t�� = 1?�06.       (12) 

Such that 

t�]68 =  t�� ∙ 2�t5:::;     (13) 

The frequencies of interest are selected under the assumptions of literature [6] that 

shows desired characteristics of uniform current distribution.  It is known that the effect 

of non-uniform current distributions, in which as stated 2�{ ≪ � [6], at the approximate 

frequencies above 5MHz become significant.  Additionally, the radiated power becomes 

significant and the electrically small limits of the loops become increasingly critical.   

3.2.2 Radiation resistance and Radiation conductance 

Calculating radiation resistance is dependent on antenna geometry, material 

composition and frequency [1].  Typically, the radiation resistance is required for 

describing the radiated power relative to the antenna and frequency in use.  The well-

known radiation resistance for a loop antenna impedance model is derived by considering 

the Q�field at large distances from the loop [9, 10]: 

Q� = ����j/06 u�)�6 sin `     (14) 

where, 

 � = 377Ω is the impedance of free space 

 � is the wave number O[ = �√ K 
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 I is the current of the loop 

 S is the area of the loop 

 r is the radial distance from source center outwards 

 ` is the angle ranging from zero to �, 

while the radiated power can be solved as  

� = S S {�0[�0[ Q�Q�∗ sin ` �`�¢ = ���0 "���#�

∗  (15) 

The radiation resistance of the loop is then 

t = �£0 "���#� = 320�/ j�
¤¥ ≅ 31,000 j�

¤¥   (16) 

Equation 16 holds valid for radiation resistance of the loop investigation assuming the 

approach is to use an impedance, series-based, circuit model.  However, the approach that 

will be used here will be to consider an admittance circuit model developed by 

Schelkunoff, as shown below [9, 10].   

 

Figure 6. Schelkunoff admittance circuit model of a loop antenna. 

For realizing the radiation conductance, [9, 10] it can be shown that the conductance is 

calculated as follows: 

¨6��]��]:^ = ©0��      (17) 

This is significantly different than radiation resistance, in which the radiation resistance 

depends on S and λ.  Whereas, the radiation conductance is a constant. 
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3.2.3. Impedance/Conductance Models 

For the impedance of the loop itself, we reference Schelkunoff’s admittance model of an 

elementary loop antenna [9, 10] which contains inductive and capacitance loading in 

parallel, and conductance loading in series with the capacitive loading. 

3.2.4.1Self Capacitance (Z11 or Z22) 

The capacitance of the circuit is the distributed capacitive loading seen between opposite 

sides of the loop due to the charge associated with the current in the loop.  Schelkunoff 

gives the shunt capacitance as 

ª5::; = �© ª�«��       (18) 

Where, 

 b is the radius of the loop. 

 ª�«is the average value of the capacitance between the two halves of the loop per 

unit length along the circumference better modeled as a shorted two wire line: 

ª�« = 0x¬­®� �⁄         (19) 

with 

 b equal to the radius of the loop and 

 a equal to the radius of the wire. 

3.2.4.2 Self Inductance/Self Impedance (Z11 or Z22) 

The total distributed inductance of a small single loop can be calculated by adding both 

the internal inductance ((]# and the inductance due to the copper wire loop ((5::;#.  All 

inductive contributions are then combined into one lumped inductance.  The first 

inductive metric is derived from the internal inductance [1]. 
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(] = �*� w*-.��         (20) 

where, 

 b is the radius of the loop 

 a is the radius of the wire and 

 � is the angular frequency of the EM radiation. 

Additionally, the inductance due to the loop is derived as [1]: 

(5::; = -.�0 S ���� sin ¯�05:7 �¯ = K[� log ��    (21) 

where ¯ is the angle of the radius from the center of the loop to the outer perimeter of the 

circular conductor.  We can use the Static Electromagnetic calculations and thus use the 

results to calculate the electrodynamics metrics respective to the system’s application 

frequency.   

3.3.1 Mutual Impedance by Reaction Integral 

The mutual impedances between the loops modeled as antennas can be calculated 

following Schelkunoff using the Reaction Theorem.  Therefore we can express the 

Mutual Impedance as [12] 

��� = �
��� = �C²³�³        (22) 

where, 

Subscript 1 is referenced to loop 1  

Subscript 2 is reference to loop 2 

Subscript a is referencing loop 1, 

and therefore subscript b references loop 2. 

	:��is the open − circuit voltage at terminal a induced by the field of antenna b. 
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Using the reciprocity theorem we can therefore express 	:�� as the following expression: 

	:�� = S Q� ∙ Á��	       (23) 

where, 

Q� is the field produced by the antenna a at the position of antenna b, with antenna b 

removed 

Á� is the source current of antenna b. 

Therefore the expression for Mutual Impedance is: 

±��� = �C²³�³ = ��³ S Q�[ ∙ Á��	     (24) 

Furthermore, if the current is confined to a wire, the volume integral simplifies to an 

integral along the wire and it can be shown that the Mutual Impedance becomes 

−��� = ��
�� S Q� ∙ 
�"Â#�Â      (25) 

Where, 

Â is the distance variable along the wire. 

3.3.2 Input impedance �]^ 

�]^ of a linear transducer can be obtained if the receiver antenna is Short-Circuited. 

That is, we let V2=0 in equation 3  

	� = ��� 
� + ���
�       (26) 

	� = ���
� + ���
�       (27) 

and by solving for the ratio
�
�
  of the transducer system matrix we can define the input 

impedance seen from loop 1 as it interacts with loop 2. Thus 

�]^ = ��� −  
��
 ��       (28) 
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3.3.3.1 Connecting a Load to Loop 2: Derivation for Zin  

The receiver loop must have power storing capability for harvesting the energy/power 

from the source loop.  By assuming a battery attached to the loop, the impedance looking 

in from the (assumed) voltage supply of the source loop will be impacted by the 

impedance loading due to the battery.  Hence, from a source perspective, the input 

impedance will be dependent on the battery load.  Therefore, derivation due to a battery 

load must be derived. 

Transducer theory is valid as long as the gaps between the two respective 

antennas (that form a transducer) input terminals are small [9, 10].  Additionally, a 

transducer is linear if the voltages across each pair of terminals are linear functions of the 

respective currents.  In the given case of two loops in proximity, they may be modeled as 

a Linear Transducer, e.g. using equations 26 and 27 above, and the matrix form given by 

equation 4 above. 

For connecting a load �Ã onto port 2, it is assumed 

	� = −�Ã
�        (29) 

where the negative sign is due to the positive direction for 
� being directed into the two-

port instead of into the load.  Equation 27 now becomes 

−�Ã
� = ��� 
� + ���
�      (30) 

Equation 30 is solved for 
� as a function of 
�and then we can replace 
� by solving 

Equation 26 for I2 and using this expression, leaving	�,	� and 
� as functions of 
�as is 

noted below: 


� = −  �
 Ä2 �� 
�       (31) 
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	� = ���
� −  
� �
 Ä2 �� 
�      (32) 

	� = ���� −  
� �
 Ä2 ��� 
� = �]^
�     (33) 

Input impedance �]^ and the two-port’s effect on the input circuit are expressed as a two 

terminal loop of impedance, given by: 

�]^ = ��� −  
� �
 Ä2 ��       (34) 

It is assumed the transducer model is supplied with a transmission line voltage 

source connected by a transformer which is designed to match the real part of �]^.  The 

transmission line impedance is recognized as �[ while the impedance looking in from the 

perspective of the transmission line is �]^.  It can be shown that by setting �Ã = �]^, the 

reflection coefficient can be calculated for modeling the transmission line source wave 

interaction with the transducer.  The Reflection Coefficient [3] is expressed as 

Γ =  Ä� . Ä2 .      (35) 

With the reflection coefficient, the voltage and then the current at Loop 1 can be 

calculated using the voltage-reflection and current-reflection relationship expressed as 

	"~# = 	[2[u�)�, + Γu)�,]      (36) 


"~# = �.È . [u�)�, − Γu)�,]      (37) 

If the distance z along the transmission line to loop 1 is electrically small (d << λ), the 

voltage-reflection and current-reflection relationships of a transmission line reduce to 

	"~0# = 	[2[1 + Γ]       (38) 

and 


"~0# = �.È . [1 − Γ]       (39) 
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where it is recognized that for very small electrical lengths of z, the exponential reduces 

to 1: u±)�, ≅ 1. 
Realizing the Voltage and Current on loop 1 (source loop) using equations 38 and 

39, we can combine them with the self-impedances and mutual impedances of the 

transducer theory matrix and solve for the voltage and current of loop 2.  Finally, given 

known values for the various transducer matrix variables, we can calculate the real power 

across the system. 

3.3.3.2 Real Power Transfer Parameters for Transducer Efficiency  

To obtain real power transfer metrics we first need to define the real power supplied by 

transmission line source, the real power loss due to reflection and the real power 

transmitted to the transducer model.  The real power transmitted to the transducer model 

is the real power that is initially seen by the source loop and therefore distributed among 

the system of the transducer model.  Real power is known as the power lost due to Ohmic 

resistance. 

 The real power supplied by the transmission line source may be expressed as 

incident power as follows: 

�]^� = |�?E²|�
18" .#       (40) 

where, 

�]^� is the power incident wave from the transmission line source, 

	I6� is the source voltage connected to the transmission line and 

�[ is the characteristic impedance of the transmission line source. 
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The incident power wave will then hit the boundary of the transmission line and 

the two loop system, that is the first loop known as the source loop coupled to the second 

loop.  The wave will then undergo a reflection and transmission split in real power and in 

which the reflected power is expressed as: 

�68�5 = |�?E²|�∙|Ë|�
18" .#        (41) 

Where 

�68�5 is the power reflected from incident wave due to any impedance mismatch. 

The real power that reaches the first loop (source) is expressed as follows: 

��6 = |�?E²|�
18" .# ∙ "1 − |Γ|�#      (42) 

Where, 

��6 is the power transmitted from the incident wave and is dependent upon any 

impedance mismatch.  Knowing the power that is sourced from the transmission line, the 

efficiency in terms of percentage may be defined as the real power that is delivered to the 

battery load, divided by the incident real power, multiplied by 100.  The percent 

efficiency of the transducer configuration is thus expressed as: 

QÌÌ = �Í³AÎÎÍÏÐ² � ∙ 100       (43) 

Where, 

����� is the power dropped across the battery load and  

�]^� is the power incident from the transmission line source.  

Therefore, using efficiency as a figure of merit, we can investigate both series and 

parallel tuning approaches for the primary and secondary loops as to which gives the 

optimal power transfer characteristics of the transducer system. 
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3.3.3.3 Tuning for Power Transfer Efficiency under Resonance Condition 

At 1 MHz, there is significant inductive loading to the self-impedance for each loop.  

Because this inductive loading reduces efficiency it is necessary to minimize the 

reactance seen in the system.  By adding the conjugate capacitance to the inductive 

impedance of a circuit, the reactive component can be reduced to nearly non-significant 

value.  This technique results in a resonance condition where only the real part of the 

impedance is seen by the source.  For each loop we have the option to tune the reactance 

in series or parallel with the inductive reactance of the loop.  Using the inductive 

calculations that were previously derived we can solve for the tuning capacitance that is 

needed to cancel the reactive component of the impedance and achieve a resonance 

condition.   

For series tuning of one loop,  

�)*ÑÎÒÐG = ��(5::;       (44) 

where, 

ª�Ó^8  is the tuning capacitance required to cancel the inductive reactance of the loop and 

(5::; is the inductive reactance due to the current in the loop. 

Solving for the capacitance needed to cancel the inductive reactance, one obtains: 

ªI_�Ó^8 = �*�ÃBCCD       (45) 

Similarly for parallel tuning we can express the capacitance relationship as: 

 
�)*ÑÎÒÐG = t + ��(5::;      (46) 

and thus solving for the capacitance needed to cancel the inductive reactance, we obtain: 
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ª;_�Ó^8 = �1�2Ô*ÃBCCDÕ�      (47) 

Note that the tuning capacitance is dependent on both inductance reactance and 

resistance.  When the resistance is significant when compared to the inductance 

reactance, the tuning capacitance will be impacted by both resistance and reactance.  

Hence, the secondary loop with a load of significant resistance will impact the parallel 

capacitance tuning.  It is well understood that the resonance condition is required for 

maximum power transfer efficiency.  Regarding series and parallel tuning, this thesis will 

investigate the different tuning combinations to realize the best use case.  We can then 

determine the best tuning strategy for maximum power transfer or maximum efficiency at 

a given distance from a source loop to a receiver loop. 

3.3.3.4 Resonance Tuning Conditions 

A total of four separate tuning strategies will be investigated.  The strategy will be to tune 

each loop separate from the other loop in either a series or a parallel configuration.  The 

four configurations are as follows:  Series-Series, Series-Parallel, Parallel-Series and 

Parallel-Parallel, which will be abbreviated as S-S, S-P, P-S and P-P, respectively. 

3.3.4.1 Verification of MathCAD models using Advanced Design System Simulations 

The four MathCAD models labeled as S-S, S-P, P-S and P-P need to be validated.  The 

Mutual Inductance is related to the coupling coefficient k and can be expressed as 

O = ÖTÃ
Ã�        (48) 

Where, 

M is the Static Mutual Inductance between loops 1 and 2. 

(�is the Static Inductance of loop 1. 
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(�is the Static Inductance of loop 2. 

By calculating the coupling coefficient k and applying an equivalent circuit schematic of 

the two loop system in simulation software Advanced Design System (ADS) by Agilent 

Technologies, we can simulate the circuit and then compare the results obtained using the 

MathCAD model results.  The coupling coefficient can be inserted into the Mutual 

Coupling token used in ADS for mutual inductance and using an AC simulation token we 

can initiate a series of simulations in order to obtain currents and voltages to be compared 

to the respective MathCAD model for validity.  In the first set of simulations, a coupling 

coefficient k of 0.199 from the S-S model was used in conjunction with a load of 10-

Ohms to represent a low impedance battery, solely for model development and validation 

purposes.  Figure 7 below shows the initial S-S simulation circuit.  

 

Figure 7. S-S equivalent tuning circuit to simulate the power transfer of the source loop to 

the receiver loop. 

The simulation results for S-S AC simulation are shown in figure 8 below: For the 

resonant current in the source loop it can be shown there is an agreement in magnitude of 

the ADS circuit simulation and the MathCAD model.  It is shown that the narrow band 

resonant response characteristic is depicted as expected. 
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Figure 8. Current on source loop of S-S tuning configuration with a 10 ohm load, plotted 

in ADS versus frequency. 

The MathCAD S-S model of the current on the source loop was calculated as:  


1×[ = 7.101 

while the ADS simulation circuit model gave a magnitude of 7.084 Amperes. 

For the resonant current in the receiver loop we can see an agreement in 

magnitude of the ADS circuit simulation and the MathCAD model, with the ADS results 

noted in figure 9.  It is shown that the narrow band resonant response characteristic is 

depicted as expected. 
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Figure 9. Current on receiver loop of S-S tuning configuration with a 10 ohm load plotted 

in ADS versus frequency. 

 

The MathCAD S-S model of the current on the receiver loop was calculated as: 


2×[ = −2.669 × 10�Ú − 0.619W 
while the ADS simulation circuit model gave a magnitude of 0.620 Amperes. 

For the resonant voltage in the receiver loop we can see an agreement in magnitude of the 

ADS circuit simulation, plotted in figure 10 and the MathCAD model.  It is shown that 

the narrow band resonant response characteristic is depicted as expected. 

 

Figure 10. Voltage on receiver loop of S-S tuning configuration with a 10 ohm load 

plotted versus frequency. 

The MathCAD S-S model of the voltage on the receiver loop battery load was calculated 

as: 

	2×[ = 2.687 × 10�Û + 6.233W 
while the ADS simulation circuit model gave a magnitude of 6.202 Volts. 
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It is shown in Figure 11 below that for the resonant real power simulations it is calculated 

by ADS with a ½ factor whereas the MathCAD models do not use a ½ factor to calculate 

real power.  

 

Figure 11. ADS graphical power calculation 

Hence, in the source loop we can see an agreement of the ADS circuit simulation, shown 

in figure 12 below, and the MathCAD model.  It is shown that the narrow band resonant 

response characteristic is depicted as expected. 

 

Figure 12. Real power on source loop of S-S tuning configuration with a 10 ohm load 

plotted in ADS versus frequency. 
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The ADS simulation circuit model gave a magnitude of 3.542 Watts. When multiplied by 

two to recover the one-half gives 7.804 Watts. 

For the resonant real power in the receiver loop we can see an agreement of the ADS 

circuit simulation, as shown in figure 13 below, and the MathCAD model.  It is shown 

that the narrow band resonant response characteristic is depicted as expected. 

 

Figure 13. Real power on receiver loop of S-S tuning configuration with a 10 ohm load 

plotted against frequency. 

 

The MathCAD S-S model of the real power on the receiver loop battery load was 

calculated  

as:  

���ÜÜ×[ = 3.836 

The ADS simulation circuit model gave a magnitude of 1.923Watts. When multiplied by 

two to recover the one-half gives 3.846 Watts. 
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Next, the receiver loop was changed from a series tuned circuit to a parallel tuned 

circuit. 

The initial S-P simulation circuit is shown in figure 14 below. 

 

Figure 14. S-P equivalent tuning circuit for power transfer of the source loop to the 

receiver loop as designed in ADS. 

The simulation results for S-P AC simulation are as follows. For the resonant current in 

the source loop it can be shown there is an agreement with the ADS circuit simulation, as 

displayed in figure 15 below, and the MathCAD model.  It is shown that the narrow band 

resonant response characteristic is depicted as expected. 

 

Figure 15. Current on source loop of S-P tuning configuration with a 10 ohm load plotted 

against frequency. 
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The MathCAD S-P model of the current on the source loop was calculated as:  


1×[ = 6.952 

The ADS simulation circuit model gave a magnitude of 6.940 Amperes. 

For the resonant current in the receiver loop we can see an agreement of the ADS circuit 

simulation, as shown in figure 16, and the MathCAD model.  It is shown that the narrow 

band resonant response characteristic is depicted as expected. 

 

Figure 16. Current on receiver loop of S-P tuning configuration with a 10 ohm load 

plotted against frequency. 

The MathCAD S-P model of the current on the receiver loop was calculated as:  


2×[ = 2.717 × 10�Ú + 0.63W 
The ADS simulation circuit model gave a magnitude of 0.629 Amperes. 

For the resonant voltage in the receiver loop we can see an agreement of the ADS circuit 

simulation, as noted in figure 17 below, and the MathCAD model.  It is shown that the 

narrow band resonant response characteristic is depicted as expected. 
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Figure 17. Voltage on receiver loop of S-P tuning configuration with a 10 ohm load 

plotted against frequency. 

The MathCAD S-P model of the voltage on the receiver loop battery load was calculated 

as:  

	2×[ = 2.63 × 10�Û + 6.102W 
The ADS simulation circuit model gave a magnitude of 6.1 Volts. 

For the resonant real power the source loop we can see an agreement of the ADS circuit 

simulation, as seen in figure 18 below, and the MathCAD model.  It is shown that the 

narrow band resonant response characteristic is depicted as expected. 
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Figure 18. Real power on source loop of S-P tuning configuration with a 10 ohm load 

plotted against frequency. 

The MathCAD S-P model of the real power on the source loop is calculated as: 

�Ü{×[ = 6.952 

The ADS simulation circuit model gave a magnitude of 3.414Watts. When multiplied by 

two to recover the one-half gives 6.828 Watts. 

For the resonant real power in the receiver loop we can see an agreement of the ADS 

circuit simulation, as seen in figure 19 below, and the MathCAD model.  It is shown that 

the narrow band resonant response characteristic is depicted as expected. 
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Figure 19. Real power on receiver loop of S-P tuning configuration with a 10 ohm load 

plotted against frequency. 

The MathCAD S-P model of the real power on the receiver loop battery load was 

calculated  

as: 

���ÜÜ×[ = 3.973 

The ADS simulation circuit model gave a magnitude of 1.86 Watts. When multiplied by 

two to recover the one-half gives 3.72 Watts. 

Next, the source loop is changed from a series tuned circuit to a parallel tuned 
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simulation circuit is shown in figure 20 below. 
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Figure 20. P-S equivalent tuning circuit for power transfer of the source loop to the 

receiver loop as designed in ADS. 

The simulation results for P-S AC simulation are as follows: For the resonant current in 

the source loop it can be shown there is an agreement with the ADS circuit simulation, as 

shown in figure 21, and the MathCAD model.  It is shown that the narrow band 

theoretical resonant response characteristic does not have the sharp characteristic 

response as expected. 

 

Figure 21. Current on source loop of P-S tuning configuration with a 10 ohm load plotted 

against frequency. 
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The ADS simulation circuit model gave a magnitude of 0.003 Amperes. 

For the resonant current in the receiver loop it shows an agreement of the ADS circuit 

simulation, as shown in figure 22 below, and the MathCAD model.  It is shown that the 

narrow band theoretical resonant response characteristic does not have the sharp 

characteristic response as expected. 

 

Figure 22. Current on receiver loop of P-S tuning configuration with a 10 ohm load 

plotted against frequency. 

Where the MathCAD P-S model of the current on the receiver loop was calculated as:  


2×[ = −1.24 × 10��� − 2.878W × 10�/ 

The ADS simulation circuit model gave a magnitude of 4.505 × 10�× Amperes. 

For the resonant voltage in the receiver loop it shows an agreement of the ADS circuit 

simulation, as shown in figure 23 below, and the MathCAD model.  It is shown that the 

narrow band theoretical resonant response characteristic does not have the sharp 

characteristic response as expected. 
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Figure 23. Voltage on receiver loop of P-S tuning configuration with a 10 ohm load 

plotted against frequency. 

The MathCAD P-S model of the voltage on the receiver loop battery load is calculated 

as:  

	2×[ = 1.248 × 10��� + 2.896W × 10�© 

The ADS simulation circuit model gave a magnitude of 4.505 × 10�/ Volts. 

For the resonant real power in the source loop it shows an agreement of the ADS circuit 

simulation, as shown in figure 24 below, and the MathCAD model.  It is shown that the 

narrow band theoretical resonant response characteristic does not have the sharp 

characteristic response as expected. 
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Figure 24 .Real power on source loop of P-S tuning configuration with a 10 ohm load 

plotted against frequency. 

The MathCAD P-S model of the real power on the source loop is calculated as: 

�Ü{×[ = 3.3 × 10�© 

The ADS simulation circuit model gave a magnitude of 0.002 Watts. When multiplied by 

two to recover the one-half gives 0.004 Watts. 

For the resonant real power in the receiver loop it shows an agreement of the ADS circuit 

simulation, as shown in figure 25 below, and the MathCAD model.  It is shown that the 

narrow band theoretical resonant response characteristic does not have the sharp 

characteristic response as expected. 

 

Figure 25. Real power on receiver loop of P-S tuning configuration with a 10 ohm load 

plotted against frequency. 

The MathCAD P-S model of the real power on the receiver loop battery load was 

calculated as:  
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The ADS simulation circuit model gave a magnitude that was very small in magnitude 

and on the order of micro watts. 
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Finally, the source loop is a parallel tuned circuit and the receiver loop was 

changed to a parallel tuned circuit and the initial P-P simulation circuit is shown in figure 

26 below 

 

Figure 26. P-P equivalent tuning circuit for power transfer of the source loop to the 

receiver loop as viewed in ADS. 

The simulation results for P-P AC simulation are now reviewed. For the resonant current 

in the source loop it can be shown there is an agreement of the ADS circuit simulation, as 

shown in figure 27, and the MathCAD model.  It is shown that the narrow band 

theoretical resonant response characteristic does not have the sharp characteristic 

response as expected. 
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Figure 27. Current on source loop of P-P tuning configuration with a 10 ohm load plotted 

against frequency. 

The MathCAD P-P model of the current on the source loop was calculated as:  


1×[ = 3.299 × 10�© + 3.735W × 10��× 

The ADS simulation circuit model gave a magnitude of 0.007 Amperes.   

For the resonant current in the receiver loop it shows an agreement of the ADS circuit 

simulation, as shown in figure 28 below, and the MathCAD model.  It is shown that the 

narrow band theoretical resonant response characteristic does not have the sharp 

characteristic response as expected.  

 

Figure 28. Current on receiver loop of P-P tuning configuration with a 10 ohm load 

plotted against frequency. 
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narrow band theoretical resonant response characteristic does not have the sharp 

characteristic response as expected.  

 

Figure 29. Voltage on receiver loop of P-P tuning configuration with a 10 ohm load. 

The MathCAD P-P model of the voltage on the receiver loop battery load was calculated 

as:  

	2×[ = 1.248 × 10��� + 2.896W × 10�© 

For the resonant real power in the source loop it shows an agreement of the ADS circuit 

simulation, as shown in 30 below, and the MathCAD model.  It is shown that the narrow 

band theoretical resonant response characteristic does not have the sharp characteristic 

response as expected.  
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Figure 30. Real power on source loop of P-P tuning configuration with a 10 ohm load 

plotted against frequency. 

 

The MathCAD P-P model of the real power on the source loop is calculated as: 

�Ü{×[ = 3.299 × 10�© 

For the resonant real power in the receiver loop it shows an agreement of the ADS circuit 

simulation, as shown in figure 31 below, and the MathCAD model.  It is shown that the 

narrow band theoretical resonant response characteristic does not have the sharp 

characteristic response as expected.  

 

Figure 31. Real power on receiver loop of P-P tuning configuration with a 10 ohm load 

plotted against frequency. 
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parallel-series.  For comparisons of both MathCAD model results and ADS results, the 

magnitude was realized for generating a table that readily compares and contrasts the 

current, voltage and power of the two loop system. 

Table 1. MathCAD simulations compared to respective ADS simulations 

Circuit Model I1 I2 V2 Power 1  Power to Load 

(Tuning) (Tool) (Amp) (Amp) (Volts) (Watts) (Watts) 

Series-Series 

MathCAD 7.101 0.619 6.233 7.101 3.836 

ADS 7.084 0.620 6.202 7.804 3.846 

Series-Parallel 

MathCAD 6.952 0.630 6.102 6.952 3.973 

ADS 6.940 0.629 6.100 6.828 3.72 

Parallel-Series 

MathCAD 3.0 m 290 μ 3.0 m 3.3 m 828 n 

ADS 3.0 m 45μ 450 μ 4.0 m 20 n 

Parallel-Parallel 

MathCAD 3.3 m 3.0 m 3.0 m 3.3 m 895 n 

ADS 7.0 m 20.0 m 200 m 4.0 m 4.0 m 

 

 

Table 2 below lists the relative error/difference between MathCAD and ADS.  Where the 

error can be expressed as %Q{{à{ = |>%j�Ö���Ñ>%||>%j| ∙ 100 and the results tabulated below. 

Table 2. Percent error between MathCAD and ADS results 

Circuit Model I1 I2 V2 Power 1 Power to Load 

(Tuning) (% Error) (% Error) (% Error) (% Error) (% Error) 

Series – Series 0.3 0.2 0.5 9.1 0.3 
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Series – Parallel 0.2 0.2 0.1 1.8 6.4 

It is good to note that the MathCAD model accounts for radiation loss, however I do not 

think ADS will recognize the loss due to radiation nor is it modeled/considered in the 

circuit simulated. 

Finally, Table 3 below lists the power transfer efficiency. 

Table 3. Power transfer efficiency for each tuning circuit 

0.05 meter distance S – S S – P P – S P – P 

% Efficiency 54 57 0.02 0.02 

 

3.3.5.1 Efficiency Comparisons of Loop Tuning Strategies with a 10-Ohm Battery Load 

The four tuning configurations were setup in MathCAD for evaluating the Efficiency 

versus separation distance of the two loops.  The Efficiency is defined as the real power 

delivered to the battery load, divided by the incident real power derived from the 

transmission line source, multiplied by 100 to state it as a percentage.  It is expressed as 

follows: 

QÌÌ ≔ �Í����âÍ]^�â � ∙ 100       (49)   

The initial investigation assumed a 10 ohm load for simplicity.  It was realized that 

efficiency is directly impacted by the Ohmic loading of the added load.  Initial 

assumptions reduced the efficiency to a very low value and results were nearly 

incomparable.  Hence, for finding a reasonable base line that made evaluation of the 

tuning easier, it was decided to begin by assuming a 10 ohm load.  The efficiency is 

plotted for each tuning configuration.  Four efficiency plots are shown in which two show 

significant advance in terms of percentage efficiency and both are of the same order.  
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Additionally, the efficiency in MathCAD vector format is shown for a quantitative 

comparison.  Notably the S-S and S-P configurations of the MathCAD model and the 

ADS model performed very similar, within approximately three percent the 10 ohm load 

investigation.  Both the P-S and the P-P performance are poor when compared to S-S and 

S-P configurations.  Note that for a 10 ohm load the efficiency in only slightly better for 

the S-P than the S-S tuning configuration.  Figures 32 – 35 show the efficiency plotted 

against the spacing for the respective circuit configurations in MathCAD 

 

 

Figure 32. S-S tuning configuration with a 10 ohm load in graphical and vector format. 
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Figure 33. S-P tuning configuration with a 10 ohm load in graphical and vector format. 

 

 

 

Figure 34. P-S tuning configuration with a 10 ohm load in graphical representation. 
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Figure 35. P-P tuning configuration with a 10 ohm load in graphical representation. 

3.3.5.2 Efficiency Comparisons of Loop Tuning Strategies with a 300-Ohm Battery Load 

Four tuning configurations were setup in MathCAD for evaluating the Efficiency versus a 

given half radius separation distance of the two loops.  A surrogate 300 ohm load is used 

in place of the initial 10 ohm load.  The 300 ohm load holds merit as a realistic 

pacemaker battery resistance [8].  The same analysis was repeated for plotting efficiency 

for each tuning configuration.  It is shown that configurations S-S and S-P are similar in 

magnitude.  Additionally, the MathCAD efficiency vector is shown for quantitative 

clarity of the efficiency percentage.  It is shown below that the P-S and P-P 

configurations exhibit less than 1% efficiency.  The P-S and P-P configurations are also 

noted as relatively poor performers when compared to S-S and S-P configuration, which 

are greater than 10% at 0.5 radius distances for a 0.1m radius and a 1MHz source.  

Figures 36 – 39 plot the respective Efficiency versus separation distance using the 300 

ohm load.  
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Figure 36. S-S tuning configuration with a 300 ohm load in graphical and vector format. 
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Figure 37. S-P tuning configuration with a 300 ohm load in graphical and vector format. 

 

Figure 38. P-S tuning configuration with a 300 ohm load in graphical representation. 

 



  57 

 

Figure 39. P-P tuning configuration with a 300 ohm load in graphical representation. 

3.3.5.3 Efficiency Comparisons Discussion 

A total of eight efficiency graphs representing the respective parallel or series tuning 

methods are shown.  The first four graphs assume a 10 ohm load added to the receiver 

loop.  The last four graphs assume a common battery load of 300 ohms representing the 

typical medical pacemakers [citation].   

As noted by the efficiency graphs above, the S-P configuration is the most efficient 

method for tuning a loop in wireless power transfer for transferring power from the 

transmitter to the receiver load.   

There are many papers and investigations that suggest S-P is the best method for tuning a 

two circuit system to maximize efficiency, yet the reasoning behind the attained 

efficiency is not discussed. Investigation into the explanation of the phenomenon has not 

be been identified. 

The reasoning behind the most efficient tuning method S-P can be explained in terms of 

the quality factor Q.  The quality factor Q is a measure of the loss of a resonant circuit 
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[3].  Hence, lower loss implies higher Q.  The efficiency study carried out above shows 

that the loss of the circuit, or efficiency, varies with different tuning configurations.  The 

Q for a series resonant circuit is defined as: 

ãI = "*.Ã#"1#        (50) 

Where 

�[ is the angular frequency defined as 2�Ì 

( is the inductance of the copper wire loop in Henries per meter and 

t is the Ohmic resistance of the copper wire loop. 

For the series resonant loop, Q gets smaller with added resistance.   

For the Q of a parallel resonant circuit, the definition is expressed as: 

ã; = "1#"*.Ã#       (51) 

For the parallel resonant loop, Q becomes larger with added resistance.   

Furthermore, it is known that the Series Resonator stores magnetic and electric energy as 

a function of current, while the Parallel Resonator stores magnetic and electric energy as 

a function of voltage [3].  With regards to wireless power transfer via near field inductive 

coupling of the magnetic energy, the focus will remain on the magnetic energy stored.   

The stored magnetic energy of the series resonator can be expressed as: 

äJ = �/ |
|�(        (52) 

Where 


 is the current supplied to the loop circuit and 

( is the inductance of the copper wire loop in Henries per meter. 

The stored magnetic energy of the parallel resonator can be expressed as: 
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äJ = �/ |	|� �*.�Ã       (53) 

Where 

	is the voltage supplied to the loop circuit and 

( is the inductance of the copper wire loop in Henries per meter and 

�[ is the angular frequency defined as 2�Ì, with f  being the frequency in Hertz of the 

source generator. 

The stored magnetic energy is realized by considering the interaction of the two loops.  

The transmitting loop generates magnetic flux which passed through the inside perimeter 

of the second loop.  As the second loop captures the magnetic flux due to the first loop 

and it drives current.  The resistance then increases and directly impacts Q as shown in 

equations 50 and 51.  For the primary loop, known as the transmitter loop, its series 

capacitor tuning is better for the simple reason that if the primary is connected to a source 

with parallel tuning, significant amounts of current will tend to shunt to ground through 

the parallel capacitor.   

3.4 Discussion 

In this chapter a two loop wireless power transfer physics model was developed in 

MathCAD with the equivalent circuit for the two loop wireless power transfer is built and 

simulated in ADS.  The current, voltage and power values on the transmitter and receiver 

loop from the ADS simulations were then compared to the physics model developed in 

MathCAD.  

Next, the series tuning and parallel tuning combinations of the two loop wireless system 

were investigated to determine the maximum efficiency in wireless power transfer to the 

load on the receiver loop.  It is shown that the series resonant tuning configuration on the 
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transmitter loop and a parallel resonant tuning configuration on the receiver loop is the 

best approach, with respect to an Ohmic load on the receiver loop, to maximize the power 

transfer of the wireless power transfer system. 

Finally, it is expressed that the reasoning for series resonant tuning on the transmitter 

loop and parallel resonant tuning on the receiver loop is explained in terms of the quality 

factor Q.  The quality factor Q confirms the series-parallel configuration is the most 

efficient option based on the mathematical physics model assumption of a closed form 

solution which is developed in MathCAD for investigating wireless power transfer. 
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CHAPTER 4 

SHIELDED LOOP POWER TRANSFER PROPERTIES OF THE TWO LOOP 

SYSTEM 

4.1 Introduction background for Shielded Loops  

Shielded loops and their characteristics, and comparisons with the wireless power 

transfer model will be investigated.  The shielded loop has performance advantages over 

a single turn wire loop [14].  Consider a 50-Ω RG-58 copper shielded loop of 0.1 meter 

radius.  The loop is assumed to be sourced by a neck feed that has a smooth transition 

from the feed to the loop itself, with the neck feed also being composed of copper RG-58 

transmission line conductor.  An RG-58 shielded loop of 0.1 meter radius is shown in 

figure 40 below. 

 

Figure 40. A single 50-Ω copper shielded loop of 0.1m radius. 

 

The construction of the loop itself consists of the first-half of the loop made of RG-58 

coaxial transmission line as shown in Figure 41. 
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Figure 41. A single 50-Ω copper shielded loop of 0.1m radius depicting the first half and 

neck as RG-58 coaxial cable. 

At approximately half of a turn (180 degrees from neck feed) the RG-58 coaxial 

construction of the outer shield is terminated while the inner conductor continues for 

approximately 1/10th a turn (36 degrees).  The center conductor is then physically 

attached, typically using a weld, to a solid copper conductor with a radius equal to the 

outer diameter of the RG-58 coaxial transmission line, as shown in Figure 42. 

 

a.      b. 

Figure 42. A single 50-Ω copper shielded loop of 0.1m radius depicting center conductor 

united with a solid object of RG-58 coaxial cable dimensions, with a the general outside 

figure appearance, while b shows the outside coaxial cable being transparent to highlight 

the inner conductor. 
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The solid copper conductor then continues to construct the loop until it reaches the 

feed/neck, where it makes electrical contact with the outer conductor/shielding of the RF-

58 coaxial loop as shown in Figure 43 

 

 

a.       b.  

Figure 43. a) A single 50-Ω copper shielded loop of 0.1m radius depicting the neck feed 

composed of RG-58 coaxial cable dimensions, with b) an enlargement of the feed/neck 

location 

4.2 Two Loop Coupling System Methodology  

Two shielded loops composed of a transmitter and a receiver are used for validating 

the MathCAD wireless power transfer model.  The initial efforts in simulating wireless 

power transfer for comparing the MathCAD wireless power transfer physics model begin 

with both loops of equal dimensions separated by half of the loop’s radius distance, with 

a radius of 0.1 meters.  By placing HFSS wave ports at the mouths of the neck feed lines 

the two loop simulation is modeled as a two port device.  Thus, the HFSS simulation for 

the co-axial loops will readily give the S-matrix values of the two shielded loop system.  

The HFSS S-matrix results can then be readily compared with the MathCAD model 

results by calculating the S-matrix from the impedance matrix. 
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The first simulation will consist of a single shielded loop without any resonance 

tuning in the simulation setup.  The next simulation will consist of two shielded loops, 

with the neck feeds mirrored to each other and no resonant tuning incorporated into the 

simulation setups.  These simulations shall be labeled as untuned shielded loop 

simulations, in which neither the receiving and transmitting loops, nor source is 

impedance matched or tuned.   

Due to asymmetry of the E-fields that occurs at the open end of the coaxial cable 

located approximately 180 degrees from the neck feed; expected results are impacted due 

to the E-field concentrated from both shielded loops at one end resulting in a dipole 

behavior. A final simulation configuration of the two untuned shielded loop is setup with 

the neck feeds drawn at 180 degrees opposed to each other as shown in figure 44. 

 

Figure 44. Two shielded loops with neck feeds 180 degrees opposite of each other. 

It is proposed that as an additional candidate for investigating the wireless power 

transfer MathCAD models will be to use the HFSS S-matrix results of resonant tuned 

shielded loops.  This will allow for investigating how much of the power delivered from 

the source loop to the receiving loop is transferred and quantify the efficiency, as also 
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performed in chapter 3, for each configuration.  For quantitative analysis of wireless 

power transfer radiation loss, both the HFSS simulation radiation loss and the MathCAD 

model radiation loss will be compared.  Additionally, the Ohmic losses for both models 

will be used to verify power conservation and model validation.  Although relatively 

small, it is noted that the additional transmission line length of the loop due to the neck 

feed will add a subtle difference in geometric length which will impact the final 

impedance result given by HFSS simulation. 

Finally, the investigation into power transfer efficiency vs radiation loss will be 

considered.  Power transfer efficiency is a function of frequency and it is proportional to 

radiation loss into the far field.   

Regarding design analysis considerations, it can be shown that the power transfer 

efficiency and radiation loss trade-off can be optimized and used as a baseline model of a 

baseline system.  This baseline model will be used for considering an optimal power 

transfer system with reduced radiation loss as the first iteration for a final design.  The 

baseline model needed will be derived from the shielded loop analysis given in the 

following pages of this chapter. 

4.2.1 HFSS S-Matrix Untuned Shielded Loop Results 

A single untuned shielded loop constructed of RG58 dimensions and with a loop 

radius of 0.1 meters was simulated at 1MHz using HFSS, with the results of the S-

parameters, Z-parameters and characteristic impedance equaling �[ ≅ 50Ω.  The HFSS 
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drawing and results are shown in figure 45. 

 

a.      b. 

Figure 45. a) Single Shielded loop results and b) its physical configuration. 

Next, two untuned shielded loops constructed of RG58 dimensions and with a loop radius 

of 0.1 meters was simulated at 1MHz using HFSS.  The first configuration involved 

simulating with both neck feeds on the same side, as shown if figure 46 below.  Thus, the 

two shielded loops are configured as mirrors of each other separated by half a loop 

radius.  The shielded loops are simulated in HFSS and the results of the S-parameters, Z-

parameters and characteristic impedance was�[ ≅ 50Ω.  The HFSS drawing and results 

are shown in figure 46.  
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a.       b. 

Figure 46. a) Two shielded loop results and b) the physical configuration showing the 

orientation of the neck feeds. 

The last untuned simulation with a half loop radius separation will be drawn as 

two untuned shielded loops constructed of RG58 dimensions and with a radius of 0.1 

meters.  The HFSS simulation frequency for this analysis is also 1MHz.  The 

configuration shall begin by simulating both neck feeds 180 degrees apart, as shown in 

figure 47.  In other words, it may be considered that the two shielded loop neck feeds are 

configured as reciprocals of each other, separated by half a loop radius.  The shielded 

loops are simulated in HFSS with the results of the S-parameter’s, Z-parameters and 

characteristic impedance being �[ ≅ 50Ω.  The HFSS drawing and results are shown in 

figure 47.  
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a.        b 

Figure 47. a) The simulation results and b) the physical configuration of the two shielded 

loops with neck feeds 180 degrees apart. 

4.2.2 HFSS MathCAD Wireless Power Transfer models using untuned loops 

For additional validation of wireless power transfer model, the HFSS results of 

the simulation of the configured two shielded loop, with neck feeds 180 degrees apart, 

will be used as the reference for wireless power transfer model.  The wireless power 

transfer model is altered so that the wire thickness matches the center conductor of the 

HFSS two shielded loop simulation.  Furthermore, the HFSS S-parameter S12 and S21 

results will need the phase re-calculated due to the phase shift from the length of the 

transmission line starting at the neck feed all the way to the solid conductor, which 

includes half the perimeter of the shielded loop and the neck feed that was added for 

simulation.  The neck feed is needed in the HFSS simulation simply for the case if the 

shielded loop is physically constructed with actual RG58.  Thus, the added length is used 

to form a physical realizable system that may be used in measurements of S-parameters.  

The s-parameters realized via HFSS simulation is expressed previously in Figure 47 and 

is also tabulated below in table 4 for comparison of wireless power transfer model using 
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MathCAD.  The table shows both real and imaginary s-parameters of a two port system at 

1MHz, with a radius of 0.1m and separated by half a radius.   

Table 4. S-parameters of two shielded loops with neck feeds 180 degrees apart 

 

The s-parameter results for an untuned two loop system realized via MathCAD wireless 

power transfer model is tabulated below in table 5. The table shows both real and 

imaginary s-parameters of a two port system at 1MHz, with a radius of 0.1m and 

separated by half a radius.   

Table 5. Wireless Power Transfer Model s-parameters of two loops 

 

The error metric is used to compare the accuracy of the mathematical wireless power 

transfer (i. e. MathCAD) model in comparison with the HFSS two shielded loops system 

for untuned loops.  The percentage error calculation for comparing s-parameter results for 

an untuned two loop system realized via MathCAD wireless power transfer model and 

HFSS two shielded loop system is tabulated below in table 6.  The results show 

reasonable agreement within 5% error and are as low as less than 1% error.  This 

achievement is considered good enough for modeling a wireless power transfer system 

using two untuned shielded loops at 1MHz. 

Table 6. Percent error s-parameter for two methods of two loops 
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4.3 Post processing of shielded loop HFSS simulation 

In the HFSS shielded loop simulations the coaxial line from neck feed to coaxial 

outer shield termination contributes a phase and therefore post processing is used to 

correct for the distance traveled.  HFSS has a post process operation, however because 

the HFSS post processing is only capable of one dimensional processing and coaxial 

cable of the loop run is a two dimensional trace, a mathematical post process in 

MathCAD is required.  Hence, the post processing for the HFSS simulation was required 

due to the additional RG58 coax that is added at the neck feed.  The sources of the two 

loop system in the MathCAD model assumes a lossless source that is matched anywhere 

within the loop.  The HFSS feed source for the shielded two loop system is composed of 

additional RG58 line and has a finite length that contributes additional Ohmic loss and 

reactance.  This difference in Ohmic loss and reactance is negligible, however the phase 

shift added from the neck feed to the end of the coax located at 180 degrees from neck 

feed, is significant.  

4.4 Discussion 

Two shielded loops are built, simulated and the results are compared to the MathCAD 

wireless power transfer model results.  The shielded loop results are slightly different 

than the wireless power transfer model due to physical characteristic variation of the solid 

copper wire to the RG58 coaxial cable physical dimensions.  HFSS simulation results of 
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the shielded loop power transfer configuration show reasonable agreement with wireless 

power transfer model.   
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CHAPTER 5 

HELIX LOOP INVESTIGATION OF THE TWO LOOP SYSTEM 

5.1 Introduction background for Helix Loops  

The design intent of a two loop system of conductors is to control the H-Field while 

reducing or minimizing the near E-Field. Thus, our goal is to minimize all far field 

radiation, and having a good understanding/control of a designed, shaped near H-Field.  

The HFSS software package will be used to test the geometry and initial setup design, 

and conduct the analysis, simulation and plotting for evaluation and iterative design.  The 

initial Helix investigation focuses on double helix loop conductors, that include twisted 

loops of 4-cycles (4-spirals) along a radial path in a 2� sweep in the x-y plane of an x-y-z 

coordinate system.  The radius of the conductor will consist of the same geometry as the 

well-known industry “twin-line” (twin-lead) conductor, composed of copper metal.  The 

initial Helix approach is to design a 10cm radius loop with a conductor radius of 0.406 

mm.  The distance apart from conductor to conductor is 7.5 mm (edge-to-edge).   

5.2 HFSS setup 

Investigating the E & H field characteristics will start by first creating a single loop 

baseline design in order to obtain a benchmark, with the remaining two helix designs 

evaluated against this bench setup. The geometric design goal is for all loops to be 

modeled after the dimensions of a twin-line conductor.  Three loop geometries will be 

studied, with the first geometry being a flat single conductor, the second geometry being 

a single helical shaped 4-cycle conductor, and the last geometry is a double helix loop 4-

cycle conductor.  Single loops will use a single wave port, whereas the double helix loop 
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designs will use two wave ports.  The simulation solution type in HFSS is set to Driven 

Modal.   

5.2.1 HFSS Tetrahedral defaults 

HFSS uses tetrahedral mesh elements to determine the electromagnetic solution and for 

result precision.  HFSS simulation algorithms include running initial simulation(s) and 

developing refined tetrahedral mesh elements by method of tetrahedral refinement.  No 

tetrahedral refinement is executed at this time. 

5.2.2 HFSS poly-line setup for field plotting 

For investigating E & H field characteristics vs distance, poly-lines of 800mm in length 

are drawn on each axis.  These specific poly-lines are used for plotting the magnitude of 

E and H fields along each individual axis in a rectangular plot format.   The plots show 

each individual field component as a function of distance from center of the loop to a 

distance of 800mm. 

Next, using global planes as a reference, Field Overlay plots are used for contour plots of 

fields on all three planes (XY, XZ, and YZ) of an x-y-z space.  These contour plots show 

the complex magnitude for both E & H fields along all three planes, starting at the center 

of the loop and extending to a distance in which the field remains constant or negligible 

change.  

In the E-field planar contours, both spiral designs of the single and the double helix 

conductors show a strong E-field at the source, however the E-field has a significant drop 

by the time it reached the opposite side of the loop, 180 degrees away.  This phenomenon 

is due to the loops being electrically small compared to the EM wavelength.    
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5.2.3 Single flat loop 

A simulation setup was prepared for a single flat loop conductor.  The simulation for this 

geometry is setup to yield a field overlay of the H-field vectors and is plotted on top of 

the single loop geometry.  The single flat loop and H-field overlay can be seen in Figure 

48.  Next, H and E fields are plotted using rectangular plots and planar contour plots.  

The rectangular plots are used for observing characteristics and any field peak shifts 

when comparing all design simulation results.  The rectangular plots represent field 

magnitude versus distance for both E and H fields separately along all three axes.  The 

plot Hz is shown in Figure 49.   

 

 

Figure 48. H-field vectors for single loop conductor. 

Figure 48 shows a single flat loop conductor with dimensions realized in the intro.  The 

vectors are H-Field vectors.  The source is very close to the x-axis and can be seen as a 
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small rectangle.  The current is flowing counter clockwise and by using right hand rule it 

can be seen the vectors are curling inside the loop from bottom up. 

 

 

 

Figure 49. H-field vs distance of single loop along z-axis. 

The Figure 49 plot is the H-field along z-axis results for the single loop geometry design 

in Figure 48.  Plotting the H-field along the z-axis from zero out to approximately 

400mm, the field decays as expected.  As expected the location of the peak magnitude at 

a distance of zero along the z-axis.   

5.2.4 Contour plots overlays of single flat loop by electrically small phenomenon. 

H-field field overlays for complex magnitude are shown for the Hxy, Hxz and Hyz planes 

and are depicted in Figure 50-51-52, respectively.  The E-field field overlays for complex 

magnitude are shown for Exy, Exz and Eyz planes and are depicted in Figure 53-54-55, 

respectively. The effects of electrically small antennas are expressed here visually 

through the mentioned planar overlays that are generated by HFSS. 
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Figure 50. Single flat loop conductor Hxy complex magnitude field overlay for a 1V-

100MHz source. 

The Figure 50 shows the H-field results for the single loop geometry design of Figure 48 

of the xy-plane.  The field overlay plot shown here is also biased by a 1v-100MHz 

source.  The H-field appears to be symmetric around the loop as expected for a single flat 

loop. 
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Figure 51. Single flat loop conductor Hxz complex magnitude field overlay for a 1V-

100MHz source. 

The Figure 51 shows the H-field results for the single flat loop geometry design of Figure 

1 of the xz-plane.  The field overlay plot is shown here for a 1v-100MHz source.  The H-

field appears to be symmetric as expected for a single flat loop. 



  78 

 

Figure 52. Single flat loop conductor Hyz complex magnitude field overlay. 

The Figure 52 shows the H-field results for the single loop geometry design of Figure 1 

of the yz-plane.  The field overlay plot is shown here for a 1v-100MHz source.  The H-

field appears to be symmetric as expected for a single flat loop. 
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Figure 53. Single flat loop conductor Exy complex magnitude field overlay for a 1V-

100MHz source. 

The Figure 53 shows the E-field results for the single flat loop geometry design of Figure 

1 in the xy-plane.  The field overlay plot shown here is for a 1v-100MHz source.  Note 

that the E-field is not symmetric as originally expected.  The E-field gradient depict here 

is due to the loop appearing electrically small relative to the wavelength.  A lower 

frequency would be required to get away from the non-uniform current effect which 

appears to be the dominant factor shown here in the non-uniform E-field. 
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Figure 54. Single flat loop conductor Exz complex magnitude field overlay for a 1V-

100MHz source. 

The Figure 54 shows the E-field results for the single loop geometry design of Figure 1 of 

the xz-plane.  The field overlay plot is shown here is for a 1v-100MHz source.  The E-

field is not symmetric and is expressed by the source illuminating well at one end of the 

loop, whereas the opposite end of the loop is near the low end of the scale.  
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Figure 55. Single flat loop conductor Eyz complex magnitude field overlay. 

The Figure 55 shows the E-field results for the single loop geometry design of Figure 1 of 

the yz-plane.  The field overlay plot is shown here for a 1v-100MHz source.  The E-field 

appears to be symmetric as the two points that cross the plane are equal distance from the 

source of the electrically small loop. 

5.3 Single loop helix of 4-cycles 

Next, a simulation setup was prepared for a single loop 4-cycle helix conductor.  The 

simulation for this geometry is set up to yield a field overlay of H-field vectors and is 

plotted on top of the single helical shaped loop geometry.  The single helical shaped loop 

and H-field overlay can be seen in Figure 56.  Next, all individual x-y-z field components 

for H and E fields are plotted using rectangular plots and planar contours plots.  The 

rectangular plots are used for observing characteristics and any field peak shifts when 

comparing all design simulation results.  The rectangular plots contain field magnitude 
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versus distance for both E and H fields on all three axes.  The plot Hz versus distance is 

shown in Figure 57.   

 

Figure 56. H-field vectors for Single loop 4-cycles conductor. 

The figure 56 shows a single helical shaped loop conductor with dimensions mentioned 

in section 5.2.  The vectors shown are the H-Field vectors.  The source is very close to 

the x-axis and can be seen as a small rectangle.  The current is flowing counter clockwise 

and by using right hand rule it can be seen the vectors are curling inside the loop from 

bottom up. 
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Figure 57. H-field vs distance of single loop helix 4-cycles conductor along the z-axis. 

The Figure 57 plot is the H-field along z-axis results for the single loop geometry design 

in Figure 56.  Plotting the H-field along the z-axis from zero out to approximately 

400mm, the field decays as expected.  Note the location of the peak magnitude has 

shifted a distance of approximately 10cm from the center of the loop along z-axis.   

5.3.1 Contour plot overlays of single helical shaped loop by electrically small 

phenomenon. 

H-field field overlays for complex magnitude are shown for the Hxy, Hxz and Hyz planes 

and are depicted in Figure 58-59-60, respectively.  The E-field field overlays for complex 

magnitude are shown for Exy, Exz and Eyz planes and are depicted in Figure 61-62-63, 

respectively. The effects of electrically small antennas are expressed here visually 

through the mentioned planar overlays that are generated by HFSS. 
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Figure 58. Single loop 4-cycles conductor Hxy complex magnitude field overlay.  

The Figure 58 shows the H-field results for the single helical shaped loop of the xy-plane.  

The field overlay plot shown here is also biased by a 1v-100MHz source.  The H-field 

appears to be symmetric around the loop as expected for a single flat loop.  Note the loop 

is not flat and the plane cut shown here cannot evenly slice through the conductor as in 

the flat loop. 
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Figure 59.  Single loop 4-cycles conductor Hxz complex magnitude field overlay. 

The Figure 59 shows the H-field results for the single helical shaped loop of the xz-plane.  

The field overlay plot is shown here for a 1v-100MHz source.  The H-field appears to be 

symmetric in magnitude as expected for a single flat loop. 
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Figure 60. Single loop 4-cycles conductor Hyz complex magnitude field overlay. 

The Figure 60 shows the H-field results for the single helical shaped loop of the yz-plane.  

The field overlay plot is shown here for a 1v-100MHz source.  The H-field appears to be 

symmetric as expected for a single helical shaped loop.  
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Figure 61. Single loop 4-cycles conductor Exy complex magnitude field overlay. 

The Figure 61 shows the E-field results for the single helical shaped loop of the xy-plane. 

The field overlay plots the non-uniform E-field depicted here is due to the loop appearing 

electrically small relative to the wavelength.  A lower frequency would be required to get 

away from the non-uniform current effect which appears to be the dominant factor shown 

here in the non-uniform E-field. 
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Figure 62. Single loop 4-cycles conductor Exz complex magnitude field overlay. 

The Figure 62 shows the E-field results for the single helical shaped loop of the xz-plane.  

The field overlay plot is shown here for a 1v-100MHz source.  Note that the E-field is not 

symmetric as initially expected.  Note in Figure 62 the source illuminates well, whereas 

the opposite end of the loop is near the low end of the scale.   
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Figure 63. Single loop 4-cycles conductor Eyz complex magnitude field overlay. 

The Figure 63 shows the E-field results for the single helical shaped loop of the yz-plane.  

The field overlay plot is shown here for a 1v-100MHz source.  The E-field appears to be 

symmetric as expected for a single helical shaped loop. 

5.4 Helix loop of 4-cycles 

A simulation setup was prepared for a helix loop of 4-cycles conductor.  The simulation 

for this geometry is setup to yield a field overlay of H-field vectors and is plotted on top 

of the two loop geometry.  The helix loop of 4-cycles and H-field overlay can be seen in 

Figure 64.  Next, all individual x-y-z field components for H and E fields are plotted 

using rectangular plots and planar contours plots.  The rectangular plots are used for 

observing characteristics and any field peak shifts when comparing all design simulation 

results.  Plot Hz is shown in Figure 65.   
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Figure 64. H-field vectors for helix loop of 4-cycles conductor. 

This Figure is a helix loop of 4-cycles with two sources opposite of each other.  The 

vectors here are H-Field vectors.  In figure 5.9, it appears the H-field vectors are much 

smaller than the flat loop and single helical shaped loop, however this is a qualitative 

Figure and no quantitative value is expressed. 

 

Figure 65. H-field vs distance helix loop of 4-cycles conductor along the z-axis. 
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The Figure 65 rectangular plot shows the H-field along the z-axis from zero out to 

approximately 400mm.  The location of the peak magnitude is at distance of 

approximately 18cm from center of loop.  Note that the accuracy of the location is 

dependent on the tetrahedral computed, such that simulation setups and results need 

tetrahedral refinements.  However, a visible shift in the H-field is shown. 

5.4.1 Contour plot overlays of a helix loop by electrically small phenomenon. 

H-field field overlays for complex magnitude are shown for the Hxy, Hxz and Hyz planes 

and are depicted in Figure 66-67-68, respectively.  The E-field field overlays for complex 

magnitude are shown for Exy, Exz and Eyz planes and are depicted in Figure 69-70-71, 

respectively. The effects of electrically small antennas are expressed here visually 

through the mentioned planar overlays that are generated by HFSS. 

 

Figure 66. Helix loop of 4-cycles conductor Hxy complex magnitude field overlay. 
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The Figure 66 shows the H-field results for the single helical shaped loop of the xy-plane.  

The field overlay plot shown here is also biased by a 1v-100MHz source.  The H-field 

appears to be symmetric around the loop as expected for a helix loop.  Note the helix loop 

is not flat and the plane cut shown here cannot evenly slice through the conductor as in 

the flat loop. 

 

Figure 67. Helix loop of 4-cycles conductor Hxz complex magnitude field overlay. 

The Figure 67 shows the H-field results for the single flat loop geometry of the xz-plane.  

The field overlay plot is shown here for a 1v-100MHz source.  The H-field appears to be 

symmetric as expected for helix loop. 
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Figure 68. Helix loop of 4-cycles conductor Hyz complex magnitude field overlay. 

The Figure 68 shows the H-field results for the single helical shaped loop of the yz-plane.  

The field overlay plot is shown here for a 1v-100MHz source.  The H-field appears to be 

symmetric as expected for a helix loop.  
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Figure 69. Helix loop of 4-cycles conductor Exy complex magnitude field overlay. 

The Figure 69 shows the E-field results for the single helical shaped loop of the xy-plane. 

The field overlay plot. The non-uniform E-field depicted here is due to the loop 

appearing electrically small relative to the wavelength.  A lower frequency would be 

required to get away from the non-uniform current effect which appears to be the 

dominant factor shown here in the non-uniform E-field. 
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Figure 70. Helix loop of 4-cycles conductor Exz complex magnitude field overlay. 

The Figure 70 shows the E-field results for the single helical shaped loop of the xz-plane.  

The field overlay plot is shown here for a 1v-100MHz source.  It is noted that the E-field 

is not symmetric as initially expected.  The source illuminates well, whereas the opposite 

end of the loop is near the low end of the scale.   
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Figure 71. Helix loop of 4-cycles conductor Eyz complex magnitude field overlay. 

The Figure 71 shows the E-field results for the single helical shaped loop of the yz-plane.  

The field overlay plot is shown here for a 1v-100MHz source.  The E-field appears to be 

symmetric as expected for a single helical shaped loop. 

5.5 Discussion 

This initial investigation into two spirals began with a basic bench setup of a single flat 

loop.  All three configurations have the same radius of 10cm and the same source of 1v-

100MHz.  Several rectangular plots as a function of z-axis were investigated for behavior 

in both Hz and Ez fields.  Contour plots of an individual field for all three planes are used 

to gain an understanding of the characteristics qualitatively. 

In the E-field planar contours, it is noted that both spiral designs of the single and the 

double conductors show a strong E-field at the source, however the E-field has a 

significant drop by the time it reached the opposite side of the loop, that is 180 degrees or 

π radians away.  This characteristic is due to the loops being electrically small.  The loop 
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must be electrically small to get away from the non-uniform current distributions which 

appear to be the dominant factor shown in the non-uniform E-field characteristics.  

Further investigation leads to changing the frequency from 100MHz down to 1MHz and 

it was observed that the helix solutions yielded a Magneto-Static frequency response that 

will satisfy the Magneto solution of the H-field at the center of the loop.  This was 

achieved by using the wireless power transfer models. 
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CHAPTER 6 

PERFORMANCE CHARACTERISTICS FOR A TWO LOOP SYSTEM 

6.1 Introduction of Loop Comparison 

Two loops within the Near Field distances of each other have power transfer capabilities 

via magnetic induction while also radiating away power into the far field [4, 10].  

Reducing the radiating power into the far field, while studying the shielded loop and the 

helix loop architecture with respect to the power transfer characteristics are the primary 

goals.  All other spacial alignments are held constant so that the two loops are parallel to 

each other.  All loop systems are excited by a 1 watt power source with a frequency of 1 

MHz. 

 The hypothesis stated in the introduction proposes using higher order poles from the 

helical loop to reduce radiation.  The helix cycles contain the higher order poles by 

completing a 360 degree turn.  The two wires of the cyclic path are also terminated in a 

moebius configuration enabling the two parallel wires to carry currents traveling in 

opposite directions.  The moebius configuration of opposing currents is shown to more 

effectively cancel the E field in the far field than conventional loop currents.  Each 

integer cycle twist increases the order of magnetic poles.  The downside of each 

additional cycle is that its near field is also greatly reduced.  Therefore, the investigation 

of the helix design focuses on identifying the optimal cycle for canceling the E-field in 

order to reduce the power radiation loss.  Since the helix loop architecture radiates less 

power than the shielded loop architecture, the helix loop architecture is superior in this 

aspect, to all conventional and shielded loop architectures.   
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The shielded loop power transfer characteristics at a given distance of 5.0 mm 

separation distance between the respective loops will first be analyzed, and then be 

evaluated for its power radiated.   The 4 cycle helical loop configuration is evaluated for 

its power radiated and power transferred.  The 0 cycle helical loop configuration 

architecture will then be evaluated for its power radiated and power transferred.  For 

equivalent comparison between these respective systems, a new Figure of Merit (FOM) is 

defined as the power transferred divided by the power radiated.  

åæ4 = ÍÎEÍEAç       (54) 

Where, 

��6 is power transferred from loop 1 to loop 2 in milli-watts. 

�6�� is total power radiated in milli-watts from both loops. 

 The greater the FOM translates to a better performing wireless power transfer 

system.  All loops shall be coaxially separated by 5.0 millimeters from the edge to edge 

of the conductor, therefore equalizing the space between each system.   

6.2 Shielded Loop Power transfer 

The two shielded loops of the two shielded loop system as defined using HFSS are 

aligned axially and are shown in figures 72 and figure 73 below.     
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Figure 72. HFSS setup for two shielded loops.  Loop 1 is the lower shielded loop and 

loop 2 is the upper shielded loop. 

 

Figure 73. HFSS setup of shielded loops. 

The first loop is excited via wave port and is simulated at a 5.0 millimeter separation 

distance.  The S21 for the two shielded loop power transfer is 8.52 dBm.  

6.3 Shielded loop power radiation 

The system power loss due to radiation can be shown as power radiated and is evaluated 

with a power source at 1MHz and was calculated by the total amount of power crossing 

the radiation boundary in HFSS.  The total power radiated at 5.0 millimeter separation is 

-46.1 dBm.  

6.4 Four cycle helix loop power transfer  

A two, four cycle helical loop system was investigated using HFSS.  The two four cycle 

helical loops are aligned axially and each loop is shorted 180 degrees away from source 

terminations and shown in figure 74, figure 75 and figure 76 below.   
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Figure 74. HFSS setup for two four cycle helical loops.  Loop 1 is the lower four cycle 

helical loop and loop 2 is the upper four cycle helical loop.  

 

Figure 75. Four cycle helical loops connected to twinax sources in a moebius termination. 
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Figure 76. Four cycle helical loop with moebius termination to a twinax source. 

The first four cycle helical loop is excited via wave port at the end of a twinax line and is 

simulated at a 5.0 millimeter separation distance.  The S21 parameter for the two four 

cycle helical loop power transfer is -61.21 dBm.   

6.5 Four cycle helix loop power radiation 

The system power loss due to power radiated is evaluated at 1MHz, with the total power 

radiated for a two of the four cycle helical loops at 5.0 millimeter separation equal to -

109.83 dBm.  

6.6 Zero cycle helix loop power transfer 

A two, zero cycle helical loop system, which is the lowest order version of the helices, is 

simulated in HFSS with the two zero cycle helical loops being aligned axially and each 
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loop being shorted 180 degrees away from source terminations.  The zero cycle helical 

loops are shown in figure 77 and figure 78 below. 

 

Figure 77. Zero cycle helical loops terminated to twinax sources. 

 

 

Figure 78. Zero cycle helical loops terminated to twinax sources. 

The first zero cycle helical loop is excited via wave port at the end of a twinax line and is 

simulated at a 5.0 millimeter separation distance, giving an S21 power transfer of -21.57 

dBm 
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6.7 Zero cycle helix loop power radiation 

The system power loss due to radiation is evaluated at 1MHz, and is calculated to be -

98.72 dBm. 

6.8 Discussion of wireless power transfer systems 

The two shielded loops system are simulated as a wireless power transfer alternative to 

the conventional single one turn wire loop architecture.  The performance of the shielded 

loop system is used as a baseline to evaluate the performance of the respective two loop 

systems reviewed above.  As noted above, the shielded loops’ power transfer 

characteristics are expressed as the S21 parameter with a value of 8.52 dBm, with total 

power radiated of -46.1dBm.  Reducing the radiation power loss requires the 

development of a novel architecture and thus the helix loop system was developed.  The 

four cycle helical loops simulations produced the power transfer characteristic expressed 

as S21, of -61.21dBm with total power radiated equal to -109.83dBm.  The process is 

then repeated for the zero cycle helical loops system, producing an S21 of -21.57dBm 

with total power radiated equal to -98.72dBm.  Finally, a FOM is calculated for each 

system by dividing the power transferred by the power radiated with the highest FOM 

value being designated as the best performing system.  Although the four cycle helix loop 

reduces the radiation power the greatest, it is out performed by the conventional shielded 

loop with respect to the FOM.  An alternative lowest order pole was considered and 

investigated.  Therefore, the recorded results show the zero cycle helical loops as the best 

performing architecture with respect to the defined FOM. 

  The performance comparison for power transfer with a 5.0 millimeter conductor 
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to conductor separation distance and power radiation mitigation is summarized in table 7 

below. 

Table 7. Performance summary of wireless power transfer characteristics. 
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CHAPTER 7 

WIRELESS POWER TRANSFER CONLCUSION 

7.1  INTRODUCTION CHAPTER SUMMARY 

Two loops within the Near Field distances of each other have power transfer capabilities 

via magnetic induction while also radiating away power into the far field [4, 10]. The 

power transfer capabilities for military applications holds value in respect to modern 

technological advanced soldiers.  Soldier wireless charging stealth technology allows the 

operator to recharge necessary modern warfare electronics covertly.  It is proposed to 

investigate a wireless recharging system by using a loop antenna configuration that is 

electrically quiet and using the magnetic field for coupling to a second loop.  A helical 

loop with a moebius termination to the source is proposed as a platform for stealthy 

wireless power transfer that will mitigate power radiation into the far field by the 

canceling of the E-field.   Therefore, this project seeks to answer the question “Can we 

reduce radiation and preserve coupling by going to a higher order “pole” version of the 

standard current loop?” 

7.2 BASELINE PROPERTIES OF POWER TRANSFER SYSTEM SUMMARY 

Mutual impedance and mutual inductance were investigated for a two loop system.  The 

mutual impedance of a two loop system was determined by calculating the flux of the 

magnetic field from one loop, through the area of the second loop and calculating the 

mutual inductance using four different methods:  a magneto-statics approach for 

calculating mutual inductance, an approach using elliptical functions for two identical 

sized loops, the magnetic dipole approach for calculating the mutual inductance and an 
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approach using electrodynamic fields using a rastering method. The electrodynamics 

method results were then compared to the flux results from magneto-statics calculation.  

The results showed the electrodynamics approach to be within 0.5 % error of the 

magneto-statics solution.  The mutual inductance of the transducer was then used to 

calculate the coupling coefficient.  In conclusion, the electrodynamics approach allows 

for a broad range of frequencies that can be used to calculate the mutual inductance and 

coupling coefficient of a system and was validated by comparing three additional 

different approaches. 

7.3 POWER TRANSFER PROPERTIES OF TWO LOOPS SUMMARY 

Transducer theory for modeling a two loop system is used to calculate the system 

properties.  A loop antenna admittance equivalent circuit is used to model radiation 

conductance and loop properties over the conventional loop antenna impedance 

equivalent circuit.  Next, an ohmic load connected to the receiver, loop 2, and real power 

transferred to the load of the system is calculated in MathCAD.  The equivalent circuit of 

a two loop power transfer system is then represented by ADS and the simulations of this 

method are compared to the calculated results. All loop calculations are performed with a 

loop radius of 0.1 meter at a frequency of 1MHz.  The results of the two methods were 

compared and percent error for power to the load was under 0.3% for a series-series 

tuned circuit.  The efficiency for a four combinations of tuning; series-series (s-s), series-

parallel (s-p), parallel-series (p-s), parallel-parallel (p-p) was then evaluated to determine 

the most efficient configuration using a 10 ohm load, and then re-evaluated for a 300 ohm 

load.  The series-parallel tuning circuit shows to be the best configuration using a 300 

ohm load.  The series-parallel configuration performs over 3 times more efficiently than 
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the next best performer, series-series.  The series-parallel tuning circuit outperforms all 

other combinations due to the Q of the parallel resonant circuit of the secondary loop.  

The quality factor Q confirms the series-parallel configuration is the most efficient option 

based on the mathematical physics model assumption of a closed form solution which is 

developed in MathCAD for investigating wireless power transfer.  In conclusion, the four 

physics models developed in MathCAD are shown to be verified by ADS equivalent 

circuit simulations.  We are now ready to simulate in HFSS a shielded loop system. 

7.4 SHIELDED LOOP POWER TRANSFER PROPERTIES SUMMARY 

Shielded loops are antenna composed of coaxial line, where the outer conductor is ended 

half-way around the loop and the center conductor is continued along a loop path until it 

is shorted to the outer conductor.  Thus, shielded loops are constructed and simulated in 

HFSS as a two port device and thus will act as our baseline.  S-parameter matrices 

parameters of the HFSS simulations are then compared to the MathCAD physics models 

for a loop radius of 0.1 meter and a frequency of 1MHz.  These simulation and calculated 

results agree to within 4% error.  The shielded loop results are slightly different than the 

wireless power transfer model due to physical characteristic between the solid copper 

wire and the RG58 coaxial cable physical dimensions.  Two shielded loops are built, 

simulated and the results then are compared to the MathCAD wireless power transfer 

model results.  HFSS simulation results of the shielded loop power transfer configuration 

show less than 4% error agreement with wireless power transfer model.  Now we have 

verified HFSS simulation results of shielded loop with MathCAD physical model results 

of the shielded loop, we are now ready to develop the helical loop pair system. 

7.5 HELIX LOOP INVESTIGATION SUMMARY  



  109 

A helical loop pair configuration was constructed in HFSS for characteristic 

investigation.   The single helical loop of four cycles is investigated, followed by a 

double helical loop of four cycles.  Poly-lines were used for investigating the 

characteristics of the E & H fields along all three axes of all loops.  Frequencies of 

100MHz are used and uneven current distributions were observed due to the loops not 

being electrically small at 100MHz.  Further investigation led to changing the frequency 

from 100MHz to 1MHz and it was observed that the helix solutions yielded a Magneto-

Static frequency response that satisfied the Magneto-static solution of the H-field at the 

center of the loop.  This was achieved by comparing the wireless power transfer models 

of a loop.  Finally, we are set to compare the different two loop system models: the 

Shielded Loop, the 4 Cycle Helix Loop, and optimizing the Helical model – the 0 Cycle 

Helix Loop system. 

7.6 CONCLUSION A TWO LOOP SYSTEM 

Based on what we set out to do, we have successfully designed a two loop system 

architecture which greatly improves the power transfer characteristic in the near field 

while reducing the power radiated in the far field with respect to the shielded loop 

configuration.  A new Figure of Merit has been introduced as a method to equivalently 

evaluate the overall performance of the baseline, shielded, two loop architecture with that 

of the helix based two loop architectures developed.  The best performing configuration 

was the zero cycle helical loop system, with an S21 value of -21.57 dBm and power 

radiated value of -98.72 dBm, resulting in the highest FOM of 5.19 × 10�.  The zero 

cycle helical loop FOM performance was compared to the shielded loop FOM, which 

is 2.9 × 10×. 
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In previous chapters it is shown that the best configuration for maximizing power transfer 

to an ohmic load is to resonate the primary loop with a series capacitor by canceling the 

imaginary inductive reactance with the proper calculated capacitance.  The secondary 

loop, which is known to contain a battery or ohmic load, is tuned by adding it in parallel 

to the load tuning capacitor.  Therefore, using S-P as a performance optimization 

technique is recommended over using the S-S, P-S or the P-S resonance techniques.    

Future studies may benefit from tuning the loops respective to loads and the separation 

distances simultaneously.  Additionally, it is recommended that multi-turn helix loops be 

investigated for system efficiencies.  In conclusion, the zero turn helical loops system is a 

novel design that tremendously improves on reducing the far field radiation while 

providing efficient wireless power transfer. 

 

 

 

 



  111 

REFERENCES 

1. Constantine A. Balanis, Antenna Theory Analysis and Design, 3rd Edition, John 

Wiley & Sons, 2005. Print. 

 

2. C. F. M. Carobbi, L. M. Millanta, L. Chiosi, “The High-Frequency of the Shield 

in the Magnetic-Field Probes”, IEEE (2000): 0-7803-5677-2/00. 

 

3. David M. Pozar, Microwave Engineering, 3rd Edition John Wiley & Sons, Inc. 

2005. Print. 

 

4. David K. Cheng, Field and Wave Electromagnetics, 2nd Edition, Pearson 

Education, Inc, 1989. Print. 

 

5. E. C. Jordan, Electromagnetic Waves and Radiating Systems, Prentice-Hall, Inc. 

Englewood Cliffs, New Jersey, Prentice-Hall Electrical Engineering Series, 1950. 

Print.  

 

6. Frank M. Greene, “The Near-Zone Magnetic Field of a Small Circular-Loop 

Antenna”, Journal of Research of National Bureau of Standards, Vol. 71C, No. 4, 

(1967): 319-326. Print. 

 

7. James T. Aberle and Robert Loespringer-Romak, Antennas with Non-Foster 

Matching Networks, Morgan & Claypool, 2007. Print. 

 

8. Pedro Arzuaga, “Cardiac Pacemakers: Past, Present and Future”, IEEE 

Instrumentation & Measurement Magazine, (2014): 1094-6969/14. Print. 

 

9. Sergei A. Schelkunoff, Advanced Antenna Theory, New York. John Wiley & 

Sons, Inc. London. Chapman & Hall, Limited, 1952. Print. 

 

10. Sergei A. Schelkunoff and Harald T. Friis, Antennas: Theory and Practice – a 

thorough treatment of the principles necessary for understanding antenna behavior 

and design, New York. John Wiley & Sons, Inc. London. Chapman & Hall, 

Limited, 1952. Print.  

 

11. Simon Ramo and John R. Whinnery and Theodore Van Duzer, Fields and Waves 

in Communication Electronics, 2nd Edition, John Wiley & Sons, New York, 

Chichester, Brisbane, Toronto, Singapore, 1965, 1984. Print. 

 

12. W. L. Weeks, Electromagnetic Theory for Engineering Applications, John Wiley 

& Sons, Inc. New York. London. Sydney, 1964. Print.  

 



  112 

APPENDIX A  

WIRELESS POWER TRANSFER MODELS TUNED THROUGH SERIES-SERIES, 

SERIES-PARALLEL, PARALLEL-SERIES AND PARALLEL-PARALLEL 

CONFIGURATIONS. 
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Wireless Power Transfer Model: Series-Series 

 A wireless power transfer model for a two loops system was built.  The 

tuning configuration consists of the first loop tuned in series for canceling 

reactance and the second loop tuned in series for canceling its reactance.  Both 

loop reactance cancelation was performed assuming each loop was alone in free 

space. 
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By Duality and reference of RamoWhinnery, and Van Duzer (p.586) we can write the 

Magnetic field components of a magnetic dipole for Hr and Hθ , and express them here with 

the Magnetic Dipole Moment seen as ρ m. 

  

     

Series - Series Program 

   

Position of source as the center of  

the coordinate system (Cartesian): 

   

Radius of larger loop:  

Radius of equivalent loop:  

Unit Area dimensions: 

drop into equations after everything 

is 

working. 

   

   

 

Position coordinates of  

loop observer (Large Loop). 
 

 

Planar from b+2*a to N*b:    

  

Build a Raster Function : 

 

Row: Column: 

  

f 1 10
6⋅:= εr 1:=

ρm I π⋅ a
2⋅:= I j ω⋅ q⋅:= ω 2 π⋅ f( )⋅:= µ0 4π 10

7−⋅:= ε0 8.85 10
12−⋅:=

η
µ0

ε0 εr⋅
:= k0 ω µ0 ε0⋅ εr⋅⋅:= k0 0.021=

xsrc 0:= ysrc 0:= zsrc 0:=

a 0.1:=

b 0.1:=

dx
a

20
:= dy

a

20
:= dz 0:=

dx 5 10
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xc_obs 0:=
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N 2000:= b 2a+( ) 0.3= N b⋅ 200=
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z

z

1000
:=

p 0 1599..:=

m
p

floor
p

40









:= n
p

p 40 m
p

⋅( )−:=
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Define the X and Y positions as observers for an square 

mesh of loop.  

 

 

R - distance from source to center of Observer loop: 

 

This is an  A-matrix for storing the positions of Unit Areas: 

 

Member of circle Matrix:  Use the Heavyside step function to keep all Unit Area squares that 

compose the area of the Loop observer for a matrix that shapes the loop observer:  

 

 

 

 

Unit Area defined: 

   

 

  

Flux: B-field components dotted with Unit Area components;  All in spherical coordinates. 
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Assume wire is copper Twin-Lead line (20 gauge):  Diameter=0.812mm, Dist_apart=7.5mm 

  

Temperature coefficient per 1deg Celsius (Human temp ~ 37C:): 

  dR / Rs = α  dT, dR = change in resistance (ohm), Rs 

= standard resistance according, reference tables 

(ohm), α  = temperature coefficient of resistance, dT 

= change in temperature (K) 

  

 

Large Loop Length: Second Loop Length: 
  

  

Skin Depth (Weeks p372): Surface Resistance (Weeks p373): Schelkunoff (p339) 

    

   

Ramo uses Low-Frequency for ratios up to 1 (or 

lower), High Frequency calcs are > 1.  

Therefore, High  Frequency resistance 

calculations are needed: 

Radius of 20 awg wire: 

 

 

High Frequency (Ramo p182, Schelkunoff p339): 

  Unis are Ω /m 

 
 

 
 

 
Clearly, the battery load 

(ZL) has significant impact 

on efficiency.  If assumed 1 

ohm, efficiency is very high 

!!! 

 

 

σ 5.8 10
7⋅:= ρcu 1.724 10

8−⋅:=

α 4.29 10
3−⋅:= α37 α 37⋅:=

dR37 α dT⋅ Rs⋅:= dR37 α37 ρcu⋅:=

dR37 2.737 10
9−×=

Llg 2 π⋅ a⋅:= L2nd 2 π⋅ b⋅:=

Llg 0.628= L2nd 0.628=

δ
2

2 π⋅ f⋅( ) µ0⋅ σ⋅
:= Rs

1

σ δ⋅
:= R2s

π f⋅ µ0⋅
σ

:= R3s 2.61 10
7−⋅ f⋅:=

Rs 2.609 10
4−×= R2s 2.609 10

4−×= R3s 2.61 10
4−×=

rcu20awg 0.000406:=

rcu20awg

δ
6.144=

Rhf

Rs

2 π⋅ rcu20awg⋅
:=

Rhf 0.102=

Rhf1st Rhf Llg( )⋅ dR37+:=
Rhf2nd Rhf L2nd( )⋅ dR37+:=

ZL 300:=
Rhf1st 0.064=

Rhf2nd 0.064=

Rtot Rhf2nd:=

Rtot 0.064=



  118 

  

The Total Mhos conductance may be found by taking the inverse of the total series 

resistance. 

    

Use Schelkunoff Radiation 

conductance instead of Rrad   

---------------------------  Magneto-Statics Capacitance of a small loop  --------------------------  

(Schelkunoff p 321-322) 

 Average capacitance between two halves of loop per unit length 

along the circumference (Voltage distribution across loop). 

 Loop capacitance: 

   

  

-------------------------------------   Magneto Static Inductance (loop)  -------------------------- 

Internal inductance contribution (Balanis p245): 

  

  

(Schelkunoff p 321)  Small, single turn loop with substantially uniform current 

(approximate inductance). 

  
 

  

Glp1
1

Rhf1st
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1
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⋅
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1
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b
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
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⋅ Li2+:= Llp2 7.022 10
7−×=



  119 

  

 
Conductance - Using Ohmic resistance and the Radiation Resistance:: 

 
    

    

Admittance looking in on equivalent loop circuit, prematching capacitor: 

 
 

  

If we know:  

Then, the tuning capacitance is: 

 

 
 

Assume a variable capacitive element that can cancel the complex conjugate: 

  

The complex conjugate will add in Series in the Admittance(Impedance)  model circuit. 

  

 
 

η 376.819=

3 π⋅
2η

0.013=
G1

3 π⋅
2η

:= G1 0.013= G2
3 π⋅
2η

:= G2 =G2

G1 320 π 4⋅
π a⋅( )

2
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2
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1
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+





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1
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Assume a variable capacitive element that can cancel the complex conjugate: 

  

The complex conjugate will add in Series in the Admittance model circuit. 

ASSUMPTION: After the Loop has been matched (since battery R changes with charging), 

then we can add the load to Z22. 

  

  

Now we have the following impedances of the system. 

  

 
Mutual Z at 0.5 Radii 

 
Mutual Z at 1.0 Radii 

 
Mutual Z at 2.0 Radii 
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In the case of two loops in proximity, 

such that they can be modeled as a 

Linear Transducer.  Loop1 and Loop2, 

each with two terminals for pos and neg 

bias.(Schelkunoff p291) 

 

 

In matrix form:  

For Admittance: 

- Current at terminals are short circuited 

- Yinternalcalc when all generators are 

open circuited. 

Now, let D be: 

 

 

Next, we can solve the Matrix 

and re-write as such:  
 

Writing current with respect to 

admittance gives us:  

 

 
verification using Schelkunoff p 407: 

 
 

 

V1 Z11 I1⋅ Z12 I2⋅+:=

V2 Z21 I1⋅ Z22 I2⋅+:=

V1

V2
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D
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D
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


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
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
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

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




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D
z

:=

Y12
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D
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:=
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z
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z
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−

D
z
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z

Z11

D
z

:=



  122 

  
 

Now, we have the following: 

 

We will now assume a transmission line source will be connected to loop1, and then we 

can solve for I1 and V1 

Assuming that loop 2 has a battery load we can solve the impedance matrix by "Collapsing 

a two-port to a one port network",  and use this to calculate the reflection coefficient of the 

input terminal that the source will see. Then we will know V1 and I1 for power 

calculations: 
ZinBy Schelkunoff: 

   

  

Impedance of the source matched to input of loop1, with loop2 at given distance: 

  

And the reflection coefficient can now be seen as: 

 

If the total voltage and current waves on the line can be written as : 

  

I1 Y11 V1⋅ Y12 V2⋅+:=

I2 Y21 V1⋅ Y22 V2⋅+:=

ZA Z11

Z12
2

Z22

−:= Zin
z

Z11

Z21
z( )2

Z22
−:= Zin2

z
Z22

Z12
z( )2

Z11
−:=

0 0.1 0.2 0.3
0.064

0.065

0.066

0.067

Re Zinz( )

z

1000

0 0.1 0.2 0.3
0

1 10
11−×

2 10
11−×

3 10
11−×

Im Zinz( )−

z

1000

Z0 Re Zin
50( ) Im Zin

50( )− i( )+ 
:= Z0 0.067 2.213i 10

11−×+=

Γ
z

Zin
z

Z0−

Zin
z

Z0+
:=

V x( ) Vsrc e
j− β⋅ x⋅ Γ e

j β⋅ x⋅⋅+( )⋅:= I x( )
Vsrc

Z0

e
j− β⋅ x⋅ Γ e

j β⋅ x⋅⋅−( )⋅:=
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Since the distance of transmission line is nearly 0 (negligible), we can express the equations: 

 and  

Assume a source voltage: 

 

 and, therefore  

 

 
 

Power Radiated (Schelkunoff Antennas p323):NOTE:  This is the power radiated by the 

primary loop antenna. Use Total Complex dipole moment of both antennas. 

Power Radiated (Schelkunoff Antennas p323): 

Loop 1 with 1amp assumed source: 

 

Loop 2 with calculated current (I2) using Linear Transducer Matrix: 

 

Total Complex Dipole Moment (Assuming they are so close and behave as one antenna): 

 

 

Vx Vsrc 1 Γ+( )⋅:= Ix
Vsrc

Z0

1 Γ−( )⋅:=

Vsrc 1:=

V1
z

Vsrc 1 Γ
z

+( )⋅:= I1
z

Vsrc

Z0( )
1 Γ

z
−( )⋅:=

V2
z

Z21
z

I1
z

⋅:=

I2
z

Y21
z

V1
z

⋅:= Vsrc

Z0( )
14.963 4.956i 10

9−×−=

Prad1
z

320 π 4⋅ π a
2⋅( )2

⋅

λ4

I1
z( )2

2
⋅:=

Prad2
z

320 π 4⋅ π b
2⋅( )2

⋅

λ4

I2
z( )2

2
⋅:=

Itot
z

I1
z

I2
z

+:=

Prad
z

320 π 4⋅ π a
2⋅( )2

⋅

λ4

Itot
z( )2

2
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Series-Series Power due to copper at 1MHz: 

Incident Power from  

Transmission Line Source 
Reflected power to source Power after reflection: 
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



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Power Calculations 

 

 

 

Compare power calculations to verify all Real Power is Accounted for in loop system: 

 Power sourced to loop1 

 

 

 

 

 

 

P1ohm
z

I1
z( )2

Rhf1st⋅:=

P2Rbatt
z

I2
z( )2

ZL⋅:=

P2ohm
z
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Ptr
z
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z
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z( )+ Prad
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P
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Ptrz
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Ptr
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0.145=
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Compare power calculations to verify all Real Power in Loop2 is Accounted for: 

 

 
 

Check3
z
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z
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z
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...
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Compare power calculations of Matrix quantities and Copper Loss mechanisms to verify all 

Real Power is Accounted for: 

 

 

 

 

PsysL
z
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 Let’s see how much power at the source it requires for power to battery. 

 

 

 

 

  

  

Vsrc 1=

Eff
z

P2Rbatt
z
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z






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
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z
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Wireless Power Transfer Model: Series-Parallel 

 A wireless power transfer model for a two loops system was built.  The 

tuning configuration consists of the first loop tuned in series for canceling 

reactance and the second loop tuned in parallel for canceling its reactance.  Both 

loop reactance cancelation was performed assuming each loop was alone in free 

space. 

 

 

 

 

 

 

 

 

Coupling coefficient at half a radius (z=50): 

For calculating equivalent circuit (NOTE must use Static Mutual and Self Inductances): 

If we know that:    

  

M k L1 L2⋅⋅:= M 1.397 10
7−⋅:= Llp1 7.022 10

7−×=

k
M( )

Llp1 Llp2⋅
:= k 0.199=
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By Duality and reference of RamoWhinnery, and Van Duzer (p.586) we can write the 

Magnetic field components of a magnetic dipole for Hr and Hθ , and express them here with 

the Magnetic Dipole Moment seen as ρ m. 

  

     

Series - Parallel Program 

   

Position of source as the center of  

the coordinate system (Cartesian): 

   

Radius of larger loop:  

Radius of equivalent loop:  

Unit Area dimensions: 

drop into equations after everything 

is 

working. 

   

   

 

Position coordinates of  

loop observer (Large Loop). 
 

 

Planar from b+2*a to N*b:    

  

Build a Raster Function : 

 

Row: Column: 

  

f 1 10
6⋅:= εr 1:=

ρm I π⋅ a
2⋅:= I j ω⋅ q⋅:= ω 2 π⋅ f( )⋅:= µ0 4π 10

7−⋅:= ε0 8.85 10
12−⋅:=

η
µ0

ε0 εr⋅
:= k0 ω µ0 ε0⋅ εr⋅⋅:= k0 0.021=

xsrc 0:= ysrc 0:= zsrc 0:=

a 0.1:=

b 0.1:=

dx
a

20
:= dy

a

20
:= dz 0:=

dx 5 10
3−×= dy 5 10

3−×= dz 0=

xc_obs 0:=

yc_obs 0:=

zc_obs 0:=

N 2000:= b 2a+( ) 0.3= N b⋅ 200=

z 50 60, 300..:= h
z

z

1000
:=

p 0 1599..:=

m
p

floor
p

40









:= n
p

p 40 m
p

⋅( )−:=
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Define the X and Y positions as observers for an square 

mesh of loop.  

 

 

R - distance from source to center of Observer loop: 

 

This is an  A-matrix for storing the positions of Unit Areas: 

 

Member of circle Matrix:  Use the Heavyside step function to keep all Unit Area squares that 

compose the area of the Loop observer for a matrix that shapes the loop observer:  

 

 

 

 

Unit Area defined: 

   

 

  

Flux: B-field components dotted with Unit Area components;  All in spherical coordinates. 
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p z, Φ a A

p
−( ):=

ρm I1 π⋅ b
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
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
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
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p z, dSz
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z
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R

p z, 
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zsrc Zobs
z

−( )
R
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
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

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2
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p z, dS_r
p z, ⋅ Bθ

p z, dS_θ
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p z, ( )⋅:=
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Assume wire is copper Twin-Lead line (20 gauge):  Diameter=0.812mm, Dist_apart=7.5mm 

  

Temperature coefficient per 1deg Celsius (Human temp ~ 37C:): 

  dR / Rs = α  dT, dR = change in resistance (ohm), Rs = 

standard resistance according, reference tables (ohm), α  

= temperature coefficient of resistance, dT = change in 

temperature (K) 

  

 

Large Loop Length: Second Loop Length: 

  

  

Skin Depth (Weeks p372): Surface Resistance (Weeks p373): Schelkunoff (p339) 

    

   

Ramo uses Low-Frequency for ratios up to 1 (or 

lower), High Frequency calcs are > 1.  

Therefore, High  Frequency resistance 

calculations are needed: 

Radius of 20 awg wire: 

 

 

High Frequency (Ramo p182, Schelkunoff p339): 

  Unis are Ω /m 

 
 

 
 

 

Clearly, the battery load 

(ZL) has significant impact 

on efficiency.  If assumed 1 

ohm, efficiency is very high 

!!! 

σ 5.8 10
7⋅:= ρcu 1.724 10

8−⋅:=

α 4.29 10
3−⋅:= α37 α 37⋅:=

dR37 α dT⋅ Rs⋅:= dR37 α37 ρcu⋅:=

dR37 2.737 10
9−×=

Llg 2 π⋅ a⋅:= L2nd 2 π⋅ b⋅:=

Llg 0.628= L2nd 0.628=

δ
2

2 π⋅ f⋅( ) µ0⋅ σ⋅
:= Rs

1

σ δ⋅
:= R2s

π f⋅ µ0⋅
σ

:= R3s 2.61 10
7−⋅ f⋅:=

Rs 2.609 10
4−×= R2s 2.609 10

4−×= R3s 2.61 10
4−×=

rcu20awg 0.000406:=

rcu20awg

δ
6.144=

Rhf

Rs

2 π⋅ rcu20awg⋅
:=

Rhf 0.102=

Rhf1st Rhf Llg( )⋅ dR37+:=
Rhf2nd Rhf L2nd( )⋅ dR37+:=

ZL 300:=
Rhf1st 0.064=

Rhf2nd 0.064=
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The Total Mhos conductance may be found by taking the inverse of the total series resistance. 

    

Use Schelkunoff Radiation conductance 

instead of Rrad   

---------------------------  Magneto-Statics Capacitance of a small loop  --------------------------  

(Schelkunoff p 321-322) 

 Average capacitance between two halves of loop per unit length 

along the circumference (Voltage distribution across loop). 

 Loop capacitance: 

   

  

-------------------------------------   Magneto Static Inductance (loop)  -------------------------- 

Internal inductance contribution (Balanis p245): 

  

  

(Schelkunoff p 321)  Small, single turn loop with substantially uniform current 

(approximate inductance). 

  
 

  

Glp1
1

Rhf1st

:= Glp1 15.562= Glp2
1

Rhf2nd

:= Glp2 15.562=

λ
2.99 10

8⋅
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π ε0⋅

log
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
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



:=

Cloop
1

3
Cav⋅ b⋅ π⋅:=
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rcu20awg









⋅
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1
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3.01i− 10

5×=
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π 2 ε0⋅ b⋅

3 ln
b
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







⋅
:= Clp2 5.287 10

13−×=

Li1
a

ω rcu20awg⋅
ω µ0⋅
2 σ⋅

⋅:= Li2
b

ω rcu20awg⋅
ω µ0⋅
2 σ⋅

⋅:=

Li1 1.023 10
8−×= Li2 1.023 10

8−×=

Llp1 µ0 a⋅ ln
a

rcu20awg









⋅ Li1+:= Llp1 7.022 10
7−×=

j ω⋅ Llp1⋅ 4.412i=

Llp2 µ0 b⋅ ln
b

rcu20awg









⋅ Li2+:= Llp2 7.022 10
7−×=
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Conductance - Using Ohmic resistance and the Radiation Resistance:: 

 
    

    

Admittance looking in on equivalent loop circuit, prematching capacitor: 

 
 

  

If we know:  

Then, the tuning capacitance is: 

 

 
 

Assume a variable capacitive element that can cancel the complex conjugate: 

  

The complex conjugate will add in Series in the Admittance(Impedance)  model circuit. 

  

 
 

η 376.819=

3 π⋅
2η

0.013=
G1

3 π⋅
2η

:= G1 0.013= G2
3 π⋅
2η

:= G2 =G2

G1 320 π 4⋅
π a⋅( )

2

λ4
⋅:= G1 0.013= G2 G1:= G2 0.013=

Ypre1

1
j ω⋅ Clp1⋅

2
j ω⋅ Llp1⋅

1

Glp1

+







⋅+

j ω⋅ Llp1⋅
1

Glp1

+

j ω⋅ Clp1⋅

2 j ω⋅ Clp1⋅
1

G1
⋅+

+:=
Ypre1 3.3 10

3−× 0.227i−=

Zpre1
1

Ypre1
:= Zpre1 0.064 4.412i+=

1

ω Leff⋅
ω C⋅:=

C1tune
1

ω2
Llp1( )⋅

:=

1

i ω⋅ C1tune⋅
4.412i−=

C1tune 3.607 10
8−×=

Cmatch Im Zpre1( )− i⋅:= Cmatch 4.412i−=

Z11 Zpre1 Cmatch+:= Z11 0.064=

Yin1
1

Z11
:=

Yin1 15.561=
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Assume a battery Load and re-derive the equation need for modeling the admittance of the 

second loop.  With Battery adding to the loading of the loop2, the Zin equation should 

change.  Power calculation will have to be based on drop across battery loading, not just 

Ohmic resistance due to wire: 

 

 

  

Assume a variable capacitive element that can cancel the complex conjugate: 

   

 
  

The complex conjugate will add in Parallel in the Admittance model circuit. 

  

 

 

Now we have the following impedances of the system. 

  

 
Mutual Z at 0.5 Radii 

 
Mutual Z at 1.0 Radii 

 
Mutual Z at 2.0 Radii 
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1
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9−× 0.11i+=



  138 

  
In the case of two loops in proximity, 

such that they can be modeled as a 

Linear Transducer.  Loop1 and Loop2, 

each with two terminals for pos and neg 

bias. (Schelkunoff p291) 

 

 

In matrix form:  

For Admittance: 

- Current at terminals are short circuited 

- Yinternalcalc when all generators are 

open circuited. 

Now, let D be: 

 

 

Next, we can solve the Matrix 

and re-write as such:  
 

Writing current with respect to 

admittance gives us:  

 

 

verification using Schelkunoff p 407: 

 
 

 

V1 Z11 I1⋅ Z12 I2⋅+:=
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D
z
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D
z
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−

Z11 Z22⋅ Z12
z( )2−

:=

Y22
z

Z11

D
z
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We will now assume a transmission line source will be connected to loop1, and then we 

can solve for I1 and V1 

Assuming that loop 2 has a battery load we can solve the impedance matrix by "Collapsing 

a two-port to a one port network",  and use this to calculate the reflection coefficient of the 

input terminal that the source will see. Then we will know V1 and I1 for power 

calculations: 
ZinBy Schelkunoff: 

   

  

Impedance of the source matched to input of loop1, with loop2 at given distance: 

  

And the reflection coefficient can now be seen as: 

 

If the total voltage and current waves on the line can be written as : 

  

ZA Z11

Z12
2

Z22

−:= Zin
z

Z11

Z21
z( )2

Z22
−:= Zin2

z
Z22

Z12
z( )2

Z11
−:=

0 0.1 0.2 0.3
0.064
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0.07

Re Zinz( )

z
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2 10
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11−×

Im Zinz( )−

z

1000

Z0 Re Zin
50( ) Im Zin

50( ) i( )− 
+:= Z0 0.069 4.406i 10

11−×+=

Γ
z

Zin
z

Z0−

Zin
z

Z0+
:=

V x( ) Vsrc e
j− β⋅ x⋅ Γ e

j β⋅ x⋅⋅+( )⋅:= I x( )
Vsrc

Z0

e
j− β⋅ x⋅ Γ e

j β⋅ x⋅⋅−( )⋅:=
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Since the distance of transmission line is nearly 0 (negligible), we can express the equations: 

 and  

Assume a source voltage: 

 

 and, therefore  

Secondary loops is tuned in parallel, therefore we use expression. 

 

 

Power Radiated (Schelkunoff Antennas p323): 

NOTE:  This is the power radiated by the primary loop antenna. Diaz stated to use Total 

Complex dipole moment of both antennas. 

Power Radiated (Schelkunoff Antennas p323): 

Loop 1 with 1amp assumed source: 

 

Loop 2 with calculated current (I2) using Linear Transducer Matrix: 

 

Total Complex Dipole Moment (Assuming they are so close and behave as one antenna): 

 

 

Vx Vsrc 1 Γ+( )⋅:= Ix
Vsrc

Z0

1 Γ−( )⋅:=

Vsrc 1:=

V1
z

Vsrc 1 Γ
z

+( )⋅:= I1
z

Vsrc
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1 Γ

z
−( )⋅:=
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z
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z
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z

⋅:=

I2
z

Y21
z
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z

⋅:=

Prad1
z

320 π 4⋅ π a
2⋅( )2

⋅

λ4
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z( )2

2
⋅:=
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z

320 π 4⋅ π b
2⋅( )2

⋅

λ4

I2
z( )2

2
⋅:=

Itot
z
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z

I2
z
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Prad
z

320 π 4⋅ π a
2⋅( )2

⋅

λ4

Itot
z( )2

2
⋅:=



  141 

  

 

Series-Series Power due to copper at 1MHz: 

Incident Power from  

Transmission Line Source 
Reflected power to source Power after reflection: 
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Power Calculations  

Second loop is tuned in parallel, therefore power calcs 

are performed using following expressions.  

  

 

Compare power calculations to verify all Real Power is Accounted for in loop system: 

 

 

 

 

 

 

P1ohm
z
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Z11⋅:=

Pbatt
z
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z
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
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


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Compare power calculations to verify all Real Power in Loop2 is Accounted for: 
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z

Pbatt
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Compare power calculations of Matrix quantities and Copper Loss mechanisms to verify all 

Real Power is Accounted for: 
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Let’s see how much power at the source it requires for power to battery. 

 

 

 

 

  

  

Vsrc 1=

Eff
z

Pbatt
z

Pinc
z









100⋅:=

Eff
z

14.662

11.584

8.94

6.785

5.095

3.804

2.835

2.115

1.583

1.191

0.902

0.687

0.527

0.407

0.317

...

=

0.1 0.2
0

5

10

15

Efficiency S-P: 300 ohm load

Seperation (m)

E
ff

ic
ie

n
cy

 (
%

)

Effz

z

1000

Eff
50

14.662= Eff
100

3.804=

Eff
200

0.249= Eff
300

0.031=



  146 

  

 

0.1 0.2 0.3
0

5

10

15

S-P Match Source to Zin at Dist 0.5 Radius (1MHz)

Separation

P
o

w
er

Pincz

Ptrz

Pbattz

P1ohmz

0.061

z

1000

0.1 0.2 0.3
1 10

7−×

1 10
6−×

1 10
5−×

1 10
4−×

1 10
3−×

0.01

0.1

1

10

100

Series-Parallel Power VS Separation (1MHz)

Distance (m)

P
o

w
er

 (
W

)

Pincz

P1ohmz

P2resz

Pbattz

Pradz

z

1000



  147 

 

 

 

 

 

 

 

 

 

Wireless Power Transfer Model: Parallel-Series 

 A wireless power transfer model for a two loops system was built.  The 

tuning configuration consists of the first loop tuned in parallel for canceling 

reactance and the second loop tuned in series for canceling its reactance.  Both 

loop reactance cancelation was performed assuming each loop was alone in free 

space. 

 

 

 

 

 

 

 

Coupling coefficient at half a radius (z=50): 

For calculating equivalent circuit (NOTE must use Static Mutual and Self Inductances): 

If we know that:    

  

M k L1 L2⋅⋅:= M 1.39710
7−⋅:= Llp1 7.022 10

7−×=

k
M( )

Llp1 Llp2⋅
:= k 0.199=
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By Duality and reference of RamoWhinnery, and Van Duzer (p.586) we can write the 

Magnetic field components of a magnetic dipole for Hr and Hθ , and express them here with 

the Magnetic Dipole Moment seen as ρ m. 

  

     

Parallel - Series Program 

   

Position of source as the center of  

the coordinate system (Cartesian): 

   

Radius of larger loop:  

Radius of equivalent loop:  

Unit Area dimensions: 

drop into equations after everything 

is 

working. 

   

   

 

Position coordinates of  

loop observer (Large Loop). 
 

 

Planar from b+2*a to N*b:    

  

Build a Raster Function : 

 

Row: Column: 

  

f 1 10
6⋅:= εr 1:=

ρm I π⋅ a
2⋅:= I j ω⋅ q⋅:= ω 2 π⋅ f( )⋅:= µ0 4π 10

7−⋅:= ε0 8.85 10
12−⋅:=

η
µ0

ε0 εr⋅
:= k0 ω µ0 ε0⋅ εr⋅⋅:= k0 0.021=

xsrc 0:= ysrc 0:= zsrc 0:=

a 0.1:=

b 0.1:=

dx
a

20
:= dy

a

20
:= dz 0:=

dx 5 10
3−×= dy 5 10

3−×= dz 0=

xc_obs 0:=

yc_obs 0:=

zc_obs 0:=

N 2000:= b 2a+( ) 0.3= N b⋅ 200=

z 50 60, 300..:= h
z

z

1000
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p 0 1599..:=

m
p

floor
p

40









:= n
p

p 40 m
p

⋅( )−:=
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Define the X and Y positions as observers for an 10 x 10  

square mesh of loop (Add +/- a/10 for center square). 

 

 

 

R - distance from source to center of Observer loop: 

 

This is an  A-matrix for storing the positions of Unit Areas: 

 

Member of circle Matrix:  Use the Heavyside step function to keep all Unit Area squares that 

compose the area of the Loop observer for a matrix that shapes the loop observer:  

 

 

 

 

Unit Area defined: 

   

 

  

Flux: B-field components dotted with Unit Area components;  All in spherical coordinates. 
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p z, dS_r
p z, ⋅ Bθ

p z, dS_θ
p z, ⋅+( ) Member

p z, ( )⋅:=
I1 =I1



  150 
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Assume wire is copper Twin-Lead line (20 gauge):  Diameter=0.812mm, Dist_apart=7.5mm 

  

Temperature coefficient per 1deg Celsius (Human temp ~ 37C:): 

  dR / Rs = α  dT ,dR = change in resistance (ohm), Rs = 

standard resistance according, reference tables (ohm), α  

= temperature coefficient of resistance, dT = change in 

temperature (K) 

  

 

Large Loop Length: Second Loop Length: 

  

  

Skin Depth (Weeks p372): Surface Resistance (Weeks p373): Schelkunoff (p339) 

    

   

Ramo uses Low-Frequency for ratios up to 1 (or 

lower), High Frequency calcs are > 1.  

Therefore, High  Frequency resistance 

calculations are needed: 

Radius of 20 awg wire: 

 

 

High Frequency (Ramo p182, Schelkunoff p339): 

  Unis are Ω /m 
Clearly, the battery load 

(ZL) has significant impact 

on efficiency.  If assumed 1 

ohm, efficiency is very high 

!!! 

Assume Ohmic resistance for loop1. 

 
 

 
 

 

σ 5.8 10
7⋅:= ρcu 1.724 10

8−⋅:=

α 4.29 10
3−⋅:= α37 α 37⋅:=

dR37 α dT⋅ Rs⋅:= dR37 α37 ρcu⋅:=

dR37 2.737 10
9−×=

Llg 2 π⋅ a⋅:= L2nd 2 π⋅ b⋅:=

Llg 0.628= L2nd 0.628=

δ
2

2 π⋅ f⋅( ) µ0⋅ σ⋅
:= Rs

1

σ δ⋅
:= R2s

π f⋅ µ0⋅
σ

:= R3s 2.61 10
7−⋅ f⋅:=

Rs 2.609 10
4−×= R2s 2.609 10

4−×= R3s 2.61 10
4−×=

rcu20awg 0.000406:=

rcu20awg

δ
6.144=

Rhf

Rs

2 π⋅ rcu20awg⋅
:=

Rhf 0.102=

Rhf1st Rhf Llg( )⋅ dR37+:=
Rhf2nd Rhf L2nd( )⋅ dR37+:=

ZL 300:=
Rhf1st 0.064=

Rhf2nd 0.064=
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The Total Mhos conductance may be found by taking the inverse of the total series resistance. 

    

Use Schelkunoff Radiation conductance 

instead of Rrad   

---------------------------  Magneto-Statics Capacitance of a small loop  --------------------------  

(Schelkunoff p 321-322) 

 Average capacitance between two halves of loop per unit length 

along the circumference (Voltage distribution across loop). 

 Loop capacitance: 

   

  

-------------------------------------   Magneto Static Inductance (loop)  -------------------------- 

Internal inductance contribution (Balanis p245): 

  

  

(Schelkunoff p 321)  Small, single turn loop with substantially uniform current 

(approximate inductance). 

  
 

  

Glp1
1

Rhf1st
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

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


⋅
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
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⋅
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a
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ω µ0⋅
2 σ⋅
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b
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ω µ0⋅
2 σ⋅
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8−×= Li2 1.023 10
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Llp1 µ0 a⋅ ln
a
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

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


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

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

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Conductance - Using Ohmic resistance and the Radiation Resistance:: 

 
    

    

Admittance looking in on equivalent loop circuit, prematching capacitor: 

 
 

  

Assume a variable capacitive element that can cancel the complex conjugate: 

  

The complex conjugate will add in Parallel in the Admittance(Impedance)  model circuit. 

 
 

  

 

 
 

 

η 376.819=

3 π⋅
2η

0.013=
G1

3 π⋅
2η

:= G1 0.013= G2
3 π⋅
2η

:= G2 =G2

G1 320 π 4⋅
π a⋅( )

2

λ4
⋅:= G1 0.013= G2 G1:= G2 0.013=

Ypre1

1
j ω⋅ Clp1⋅

2
j ω⋅ Llp1⋅

1
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






⋅+

j ω⋅ Llp1⋅
1
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+

j ω⋅ Clp1⋅

2 j ω⋅ Clp1⋅
1
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⋅+

+:=
Ypre1 3.3 10

3−× 0.227i−=

Zpre1
1

Ypre1
:= Zpre1 0.064 4.412i+=

Cmatch Im Ypre1( )− i⋅:= Cmatch 0.227i=

Yin1 Ypre1 Cmatch+:=
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1
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2 ω2
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C 1C=
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Rhf1st( )2 ω2
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Assume a variable capacitive element that can cancel the complex conjugate: 

  

The complex conjugate will add in Seriesin the Admittance model circuit. 

ASSUMPTION: After the Loop has been matched (since battery R changes with charging), 

then we can add the load to Z22. 

 
 

  

Now we have the following impedances of the system. 
If we know:  

  

Then, the tuning capacitance is: 

 

 

 
Mutual Z at 0.5 Radii 

 
Mutual Z at 1.0 Radii 

 
Mutual Z at 2.0 Radii 
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In the case of two loops in proximity, 

such that they can be modeled as a 

Linear Transducer.  Loop1 and Loop2, 

each with two terminals for pos and neg 

bias. (Schelkunoff p291) 

 

 

In matrix form:  

For Admittance: 

- Current at terminals are short circuited 

- Yinternalcalc when all generators are 

open circuited. 

Now, let D be: 

 

 

Next, we can solve the Matrix 

and re-write as such:  
 

Writing current with respect to 

admittance gives us:  

 

 

 

 

V1 Z11 I1⋅ Z12 I2⋅+:=
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We will now assume a transmission line source will be connected to loop1, and then we 

can solve for I1 and V1 

Assuming that loop 2 has a battery load we can solve the impedance matrix by "Collapsing 

a two-port to a one port network",  and use this to calculate the reflection coefficient of the 

input terminal that the source will see. Then we will know V1 and I1 for power 

calculations: 
ZinBy Schelkunoff: 

   

  

Impedance of the source matched to input of loop1, with loop2 at given distance: 

  

And the reflection coefficient can now be seen as: 

 

If the total voltage and current waves on the line can be written as : 

  

ZA Z11

Z12
2

Z22

−:= Zin
z

Z11

Z21
z( )2

Z22
−:= Zin2

z
Z22

Z12
z( )2

Z11
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303
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z
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Im Zinz( )−

z
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Z0 Re Zin
50( ) Im Zin

50( )( )−+:= Re Z0( ) 302.999=

Γ
z

Zin
z

Z0−

Zin
z

Z0+
:=

V x( ) Vsrc e
j− β⋅ x⋅ Γ e

j β⋅ x⋅⋅+( )⋅:= I x( )
Vsrc

Z0

e
j− β⋅ x⋅ Γ e

j β⋅ x⋅⋅−( )⋅:=
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Since the distance of transmission line is nearly 0 (negligible), we can express the equations: 

 and  

Assume a source voltage: 

 

 and, therefore  

 

 

Power Radiated (Schelkunoff Antennas p323): 

NOTE:  This is the power radiated by the primary loop antenna. Diaz stated to use Total 

Complex dipole moment of both antennas. 
Power Radiated (Schelkunoff Antennas p323): 

Loop 1 with 1amp assumed source: 

 

Loop 2 with calculated current (I2) using Linear Transducer Matrix: 

 

Total Complex Dipole Moment (Assuming they are so close and behave as one antenna): 

 

 

Vx Vsrc 1 Γ+( )⋅:= Ix
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⋅:=
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Series-Series Power due to copper at 1MHz: 

Incident Power from  

Transmission Line Source 
Reflected power to source Power after reflection: 
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Power Calculations broken up according to Copper loading: 
Second loop is tuned in parallel, therefore power calcs 

are performed using following expressions. 

 
 

 

 

 

  

Compare power calculations to verify all Real Power is Accounted for in loop system: 
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Compare power calculations to verify all Real Power in Loop2 is Accounted for: 
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Compare power calculations of Matrix quantities and Copper Loss mechanisms to verify all 

Real Power is Accounted for: 
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Let’s see how much power at the source it requires for power to battery. 
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Wireless Power Transfer Model: Parallel-Parallel 

 A wireless power transfer model for a two loops system was built.  The 

tuning configuration consists of the first loop tuned in parallel for canceling 

reactance and the second loop tuned in parallel for canceling its reactance.  Both 

loop reactance cancelation was performed assuming each loop was alone in free 

space. 

 

 

 

 

 

 

 

Coupling coefficient at half a radius (z=50): 

For calculating equivalent circuit (NOTE must use Static Mutual and Self Inductances): 

If we know that:    

  

M k L1 L2⋅⋅:= M 1.397 10
7−⋅:= Llp1 7.022 10

7−×=

k
M( )

Llp1 Llp2⋅
:= k 0.199=



  165 

 

 

 

 

 

 

 

 

 

 

 

  

By Duality and reference of RamoWhinnery, and Van Duzer (p.586) we can write the 

Magnetic field components of a magnetic dipole for Hr and Hθ , and express them here with 

the Magnetic Dipole Moment seen as ρ m. 

  

     

Parallel - Parallel Program 

   

Position of source as the center of  

the coordinate system (Cartesian): 

   

Radius of larger loop:  

Radius of equivalent loop:  

Unit Area dimensions: 

drop into equations after everything 

is 

working. 

   

   

 

Position coordinates of  

loop observer (Large Loop). 
 

 

Planar from b+2*a to N*b:    

  

Build a Raster Function : 

 

Row: Column: 

  

f 1 10
6⋅:= εr 1:=

ρm I π⋅ a
2⋅:= I j ω⋅ q⋅:= ω 2 π⋅ f( )⋅:= µ0 4π 10

7−⋅:= ε0 8.85 10
12−⋅:=

η
µ0

ε0 εr⋅
:= k0 ω µ0 ε0⋅ εr⋅⋅:= k0 0.021=

xsrc 0:= ysrc 0:= zsrc 0:=
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b 0.1:=

dx
a
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:= dy
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:= dz 0:=

dx 5 10
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N 2000:= b 2a+( ) 0.3= N b⋅ 200=
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p
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





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p

p 40 m
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Define the X and Y positions as observers for an 10 x 10  

square mesh of loop (Add +/- a/10 for center square). 

 

 

 

R - distance from source to center of Observer loop: 

 

This is an  A-matrix for storing the positions of Unit Areas: 

 

Member of circle Matrix:  Use the Heavyside step function to keep all Unit Area squares that 

compose the area of the Loop observer for a matrix that shapes the loop observer:  

  

 

 

Unit Area defined: 

   

 

  

Flux: B-field components dotted with Unit Area components;  All in spherical coordinates. 
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Assume wire is copper Twin-Lead line (20 gauge):  Diameter=0.812mm, Dist_apart=7.5mm 

  

Temperature coefficient per 1deg Celsius (Human temp ~ 37C:): 

  dR / Rs = α  dT, dR = change in resistance (ohm), Rs = 

standard resistance according, reference tables (ohm), α  

= temperature coefficient of resistance, dT = change in 

temperature (K) 

  

 

Large Loop Length: Second Loop Length: 

  

  

Skin Depth (Weeks p372): Surface Resistance (Weeks p373): Schelkunoff (p339) 

    

   

Ramo uses Low-Frequency for ratios up to 1 (or 

lower), High Frequency calcs are > 1.  

Therefore, High  Frequency resistance 

calculations are needed: 

Radius of 20 awg wire: 

 

 

High Frequency (Ramo p182, Schelkunoff p339): 

  Unis are Ω /m 

Assume Ohmic resistance for loop1. 

 
 

 
 

 

σ 5.8 10
7⋅:= ρcu 1.724 10

8−⋅:=

α 4.29 10
3−⋅:= α37 α 37⋅:=

dR37 α dT⋅ Rs⋅:= dR37 α37 ρcu⋅:=

dR37 2.737 10
9−×=

Llg 2 π⋅ a⋅:= L2nd 2 π⋅ b⋅:=

Llg 0.628= L2nd 0.628=

δ
2

2 π⋅ f⋅( ) µ0⋅ σ⋅
:= Rs

1

σ δ⋅
:= R2s

π f⋅ µ0⋅
σ

:= R3s 2.61 10
7−⋅ f⋅:=

Rs 2.609 10
4−×= R2s 2.609 10

4−×= R3s 2.61 10
4−×=

rcu20awg 0.000406:=

rcu20awg

δ
6.144=

Rhf

Rs

2 π⋅ rcu20awg⋅
:=

Rhf 0.102=

Rhf1st Rhf Llg( )⋅ dR37+:=
Rhf2nd Rhf L2nd( )⋅ dR37+:=

ZL 300:=
Rhf1st 0.064=

Rhf2nd 0.064=
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The Total Mhos conductance may be found by taking the inverse of the total series resistance. 

    

Use Schelkunoff Radiation conductance 

instead of Rrad   

---------------------------  Magneto-Statics Capacitance of a small loop  --------------------------  

(Schelkunoff p 321-322) 

 Average capacitance between two halves of loop per unit length 

along the circumference (Voltage distribution across loop). 

 Loop capacitance: 

   

  

-------------------------------------   Magneto Static Inductance (loop)  -------------------------- 

Internal inductance contribution (Balanis p245): 

  

  

(Schelkunoff p 321)  Small, single turn loop with substantially uniform current 

(approximate inductance). 
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Conductance - Using Ohmic resistance and the Radiation Resistance:: 

 
    

    

Admittance looking in on equivalent loop circuit, prematching capacitor: 

 
 

  

Assume a variable capacitive element that can cancel the complex conjugate: 

  

The complex conjugate will add in Parallel in the Admittance(Impedance)  model circuit. 
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Cmatch Im Ypre1( )− i⋅:= Cmatch 0.227i=

Yin1 Ypre1 Cmatch+:=
Yin1 3.3 10

3−×=

Z11
1

Yin1
:= Z11 302.997=

C
L

R( )
2 ω2

L
2⋅+

:=

Cptune

Llp2

Rhf1st( )2 ω2
Llp2

2⋅+
:=

Cptune 3.606 10
8−×=



  171 

  

Assume a battery Load and re-derive the equation need for modeling the admittance of the 

second loop.  With Battery adding to the loading of the loop2, the Zin equation should 

change.  Power calculation will have to be based on drop across battery loading, not just 

Ohmic resistance due to wire: 

 

 

  

Assume a variable capacitive element that can cancel the complex conjugate: 

   

 

 

The complex conjugate will add in Parallel in the Admittance model circuit. 

 
 

 
 

Now we have the following impedances of the system. 

  

 
Mutual Z at 0.5 Radii 

 
Mutual Z at 1.0 Radii 

 
Mutual Z at 2.0 Radii 
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Yin2 Ypre2 Cmatch2+( ) 1

ZL

+:=
Yin2 6.634 10

3−×=

Z22
1

Yin2
:=

Z22 150.745=

Z12
z

Z21
z

:= Z11 302.997=

Z21
50

3.783 10
9−× 0.878i+=

Z21
100

3.783 10
9−× 0.435i+=

Z21
200

3.783 10
9−× 0.11i+=
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In the case of two loops in proximity, 

such that they can be modeled as a 

Linear Transducer.  Loop1 and Loop2, 

each with two terminals for pos and neg 

bias. (Schelkunoff p291) 

 

 

In matrix form:  

For Admittance: 

- Current at terminals are short circuited 

- Yinternalcalc when all generators are 

open circuited. 

Now, let D be: 

 

 

Next, we can solve the Matrix 

and re-write as such:  
 

Writing current with respect to 

admittance gives us:  

 

 
verification using Schelkunoff p 407: 

  

 

V1 Z11 I1⋅ Z12 I2⋅+:=

V2 Z21 I1⋅ Z22 I2⋅+:=

V1

V2







Z11

Z21

Z12

Z22







I1

I2







⋅:=

D Z11 Z22⋅ Z12 Z21⋅−( ):=

D
z

Z11 Z22⋅ Z12
z

Z21
z

⋅−( ):=

I1

I2







Z22

D

Z21−

D

Z12−

D

Z11

D















V1

V2







⋅:=

I1

I2







Y11

Y21

Y12

Y22







V1

V2







⋅:=

Y11
z

Z22

D
z

:=

Y12
z

Z12
z

−

D
z

:=

Y21
z

Z21
z

−

D
z

:= Y12b
z

Z12
z

−

Z11 Z22⋅ Z12
z( )2−

:=

Y22
z

Z11

D
z

:=
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We will now assume a transmission line source will be connected to loop1, and then we 

can solve for I1 and V1 

Assuming that loop 2 has a battery load we can solve the impedance matrix by "Collapsing 

a two-port to a one port network",  and use this to calculate the reflection coefficient of the 

input terminal that the source will see. Then we will know V1 and I1 for power 

calculations: 
ZinBy Schelkunoff: 

   

  

Impedance of the source matched to input of loop1, with loop2 at given distance: 

  

And the reflection coefficient can now be seen as: 

 

If the total voltage and current waves on the line can be written as : 

  

ZA Z11

Z12
2

Z22

−:= Zin
z

Z11

Z21
z( )2

Z22
−:= Zin2

z
Z22

Z12
z( )2

Z11
−:=

0 0.1 0.2 0.3 0.4
302.996

302.998

303

303.002

Re Zinz( )

z

1000

0 0.1 0.2 0.3 0.4
0

1 10
11−×

2 10
11−×

3 10
11−×

4 10
11−×

5 10
11−×

Im Zinz( )−

z

1000

Z0 Re Zin
50( ) Im Zin

50( )( )−+:= Z0 303.002=

Γ
z

Zin
z

Z0−

Zin
z

Z0+
:=

V x( ) Vsrc e
j− β⋅ x⋅ Γ e

j β⋅ x⋅⋅+( )⋅:= I x( )
Vsrc

Z0

e
j− β⋅ x⋅ Γ e

j β⋅ x⋅⋅−( )⋅:=
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Since the distance of transmission line is nearly 0 (negligible), we can express the equations: 

 and  

Assume a source voltage: 

 

 and, therefore  

Secondary loops is tuned in parallel, therefore we use expression. 

  

Power Radiated (Schelkunoff Antennas p323): NOTE:  This is the power radiated by the 

primary loop antenna. Diaz stated to use Total Complex dipole moment of both antennas. 

Power Radiated (Schelkunoff Antennas p323): 

Loop 1 with 1amp assumed source: 

 

Loop 2 with calculated current (I2) using Linear Transducer Matrix: 

 

Total Complex Dipole Moment (Assuming they are so close and behave as one antenna): 

 

 

Vx Vsrc 1 Γ+( )⋅:= Ix
Vsrc

Z0

1 Γ−( )⋅:=

Vsrc 1:=

V1
z

Vsrc 1 Γ
z

+( )⋅:= I1
z

Vsrc

Z0
1 Γ

z
−( )⋅:=

V2
z

Z21
z

I1
z

⋅:= I2
z

Y21
z

V1
z

⋅:=

Prad1
z

320 π 4⋅ π a
2⋅( )2

⋅

λ4

I1
z( )2

2
⋅:=

Prad2
z

320 π 4⋅ π b
2⋅( )2

⋅

λ4

I2
z( )2

2
⋅:=

Itot
z

I1
z

I2
z

+:=

Prad
z

320 π 4⋅ π a
2⋅( )2

⋅

λ4

Itot
z( )2

2
⋅:=
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Series-Series Power due to copper at 1MHz: 

Incident Power from  

Transmission Line Source 
Reflected power to source Power after reflection: 

   

 

 

0 0.1 0.2 0.3 0.4
2.094 10

14−×

2.095 10
14−×

2.096 10
14−×

2.097 10
14−×

2.098 10
14−×

2.099 10
14−×

Power radiated from both loops vs seperation distance

Re Pradz( )

z

1000

Pinc
z

Vsrc( )2

Re Z0( )
:= Prefl

z

Vsrc( )2 Γ
z( )2⋅

Re Z0( )
:= Ptr

z

Vsrc( )2

Re Z0( )
1 Γ

z( )2−





⋅:=

Check1
z

Pinc
z

Prefl
z

− Ptr
z

−:=

0 0.1 0.2 0.3 0.4
0

0

0

0

0

0

0

Check1z

z

1000
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Power Calculations broken up according to Copper loading: 

Second loop is tuned in parallel, therefore power calcs 

are performed using following expressions. 

 

 
 

  

Compare power calculations to verify all Real Power is Accounted for in loop system: 

 
 

 

 

 

 

P1ohm
z

V1
z

Z11

Re Zin
z( )⋅








2

Z11
:=

P2res
z

V2
z

Z22 ZL−

Z22
⋅









2

Z22 ZL−
:=

Pbatt
z

V2
z

ZL

Z22









⋅








2

ZL

:=

P2
z

I2
z( ) V2

z
⋅:= P2Volt

z
Pbatt

z
P2res

z
+:=

Check2
z

P1ohm
z

Pbatt
z

+ P2res
z

+ Prad
z

+:=

0 0.1 0.2 0.3 0.4
0

1 10
3−×

2 10
3−×

3 10
3−×

Real Power of loops vs separation

Loop Separation

P
o

w
er

 (
W

)

Ptrz

Check2z

2a

z

1000

Ptr
50

3.3 10
3−×=

Pbatt
50

1.108 10
7−×=

Pbatt
100

2.716 10
8−×=

Pbatt
200

1.746 10
9−×=
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Compare power calculations to verify all Real Power in Loop2 is Accounted for: 

 
 

 

Check3
z

Pbatt
z

P2res
z

+:=

0 0.1 0.2 0.3 0.4
0

2 10
8−×

4 10
8−×

6 10
8−×

Loop 2 Conservation vs Dist

Dist (m)

P
o

w
er

(W
)

Check3z

P2z

z

1000

Check3
z

-85.567·10

-84.327·10

-83.293·10

-82.472·10

-81.84·10

-81.365·10

-81.012·10

-97.527·10

-95.62·10

-94.22·10

-93.19·10

-92.428·10

-91.862·10

-91.438·10

-91.119·10

...

=
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Compare power calculations of Matrix quantities and Copper Loss mechanisms to verify all 

Real Power is Accounted for: 

 

 

 

 

PsysL
z

P1ohm
z( ) Pbatt

z( )+ P2res
z( )+ Prad

z( )+:=

0 0.1 0.2 0.3 0.4
0

1 10
3−×

2 10
3−×

3 10
3−×

Conservation of Energy

Distance

P
o

w
er Ptrz

PsysL z

z

1000

ErrorL
z

1

PsysL
z( )

Ptr
z( )−









100⋅:=

0 0.1 0.2 0.3 0.4
6.3524− 10

10−×

6.3522− 10
10−×

6.352− 10
10−×

6.3518− 10
10−×

6.3516− 10
10−×

6.3514− 10
10−×

% Error - Conservation of Energy

ErrorLz

z

1000
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Let’s see how much power at the source it requires for power to battery. 

 

 

 
 

  

  

Vsrc 1=

Eff
z

Pbatt
z

Pinc
z









100⋅:=

0.1 0.2
0

1 10
3−×

2 10
3−×

3 10
3−×

4 10
3−×

Efficiency P-P: 300 ohm load

Seperation (m)

E
ff

ic
ie

n
cy

 (
%

)

Effz

z

1000

Eff
z

-33.357·10

-32.609·10

-31.986·10

-31.49·10

-31.11·10

-48.231·10

-46.105·10

-44.539·10

-43.389·10

-42.545·10

-41.923·10

-41.464·10

-41.123·10

-58.671·10

-56.748·10

...

=

Eff
50

3.357 10
3−×= Eff

100
8.231 10

4−×=

Eff
200

5.29 10
5−×= Eff

300
6.622 10

6−×=



  180 
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z

1000

0 0.1 0.2 0.3 0.4
1 10

14−×

1 10
12−×

1 10
10−×

1 10
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P-P Power VS Separation (1MHz)
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P
o

w
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 (
W

)

Pincz

P1ohmz

P2resz

Pbattz

Pradz

z

1000
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Coupling coefficient at half a radius (z=50): 

For calculating equivalent circuit (NOTE must use Static Mutual and Self Inductances): 

If we know that:    

  

M k L1 L2⋅⋅:= M 1.39710
7−⋅:= Llp1 7.022 10

7−×=

k
M( )

Llp1 Llp2⋅
:= k 0.199=
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