
Algebraic Multigrid Poisson Equation Solver

by

Xinchen Guo

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2015 by the
Graduate Supervisory Committee:

Dragica Vasileska, Chair
Stephen Goodnick

David Ferry

ARIZONA STATE UNIVERSITY

May 2015



ABSTRACT

From 2D planar MOSFET to 3D FinFET, the geometry of semiconductor devices

is getting more and more complex. Correspondingly, the number of mesh grid points

increases largely to maintain the accuracy of carrier transport and heat transfer sim-

ulations. By substituting the conventional uniform mesh with non-uniform mesh, one

can reduce the number of grid points. However, the problem of how to solve governing

equations on non-uniform mesh is then imposed to the numerical solver. Moreover, if

a device simulator is integrated into a multi-scale simulator, the problem size will be

further increased. Consequently, there exist two challenges for the current numerical

solver. One is to increase the functionality to accommodate non-uniform mesh. The

other is to solve governing physical equations fast and accurately on a large number

of mesh grid points.

This research first discusses a 2D planar MOSFET simulator and its numerical

solver, pointing out its performance limit. By analyzing the algorithm complex-

ity, Multigrid method is proposed to replace conventional Successive-Over-Relaxation

method in a numerical solver. A variety of Multigrid methods (standard Multigrid,

Algebraic Multigrid, Full Approximation Scheme, and Full Multigrid) are discussed

and implemented. Their properties are examined through a set of numerical experi-

ments. Finally, Algebraic Multigrid, Full Approximation Scheme and Full Multigrid

are integrated into one advanced numerical solver based on the exact requirements

of a semiconductor device simulator. A 2D MOSFET device is used to benchmark

the performance, showing that the advanced Multigrid method has higher speed,

accuracy and robustness.

i



Dedicated to my family for their unreserved support for the two years’ study and

research, and precious encouragement.

ii



ACKNOWLEDGEMENTS

This work is motivated by a EEE 598 Advanced Device Modeling course project

given by Dr. Dragica Vasileska. I thank her for guiding me into this field of study

and providing abundant support in course study, research, and career development.

Without her support, this research could not have been finished.

I am grateful to my committee members Dr. David K. Ferry and Dr. Stephen M.

Goodnick for their advice on my thesis. Doing projects of Dr. Ferry’s course brought

me some new ideas and a new way of understanding numerical methods.

I would like to extend my appreciation to the School for Engineering of Matter,

Transport, and Energy at Arizona State University for providing me the opportunity

to purse my master’s degree.

Finally, I would also like to thank all my colleagues who provided me precious

help in these two years’ research and study.

iii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Technology Progress of FinFET Devices . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Need for Multi-scale Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Importance of a Fast Poisson’s Equation Solver . . . . . . . . . . . . . . . . . . . 2

2 NUMERICAL APPROACHES FOR THE SOLUTION OF THE POIS-

SON EQUATION FOR SPATIALLY VARYING PERMITTIVITY AND

ON NON-UNIFORM MESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Poisson’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Standard Multigrid Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Algebraic Multigrid Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Full Approximation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Full Multigrid Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.7 Summary of Various Multigrid Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 PHYSICAL MODEL OF COMMON-SOURCE AND COMMON-DRAIN

FINFET DEVICES CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Geometry and Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Mesh Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 CONCLUSIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iv



LIST OF TABLES

Table Page

1.1 The Breakdown of Total Runtime of a 2D MOSEFT Simulator. . . . . . . 3

v



LIST OF FIGURES

Figure Page

2.1 Scheme of 5-point Stencil in 2D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 A 16 Points Mesh Grid to Discuss Boundary Conditions. . . . . . . . . . . . . . 11

2.3 Fine and Coarse Grids for Two-grid Methods. . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Schematic Description of Two-grid Method. . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Schematic Description of Multigrid Method. . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Structure of 2D MESFET Device from the Homework of Prof. Vasileska’s

EEE 598 Course. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Performance of SOR and Multigrid Methods. . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 Affecting Factors for the Components of Error. . . . . . . . . . . . . . . . . . . . . . . 20

2.9 Relation between Error and Residual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.10 Norm of Error and Number of Iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.11 Performance of Weighted Jacobi and Two-grid Methods in 8πx Case. . 23

2.12 Performance of Weighted Jacobi and Two-grid Methods in 2πx Case. . 24

2.13 Plot of Error Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.14 Sum of All Error Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.15 Performance of Weighted Jacobi and Multigrid Methods. . . . . . . . . . . . . 26

2.16 Coefficient Matrix of an Unconstructed Mesh Grid. . . . . . . . . . . . . . . . . . . 27

2.17 Coefficient Matrix of a Constructed Mesh Grid. . . . . . . . . . . . . . . . . . . . . . . 27

2.18 Setup Steps of Algebraic Multigrid Method. . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.19 Aggressive Coarsening in 2D Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.20 Standard Coarsening in 2D Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.21 Flowchart of Standard Coarsening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.22 Coarsening of a 11 by 19 Mesh Grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.23 Scheme of Constant Interpolation Weight. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vi



Figure Page

2.24 Result of AMG Numerical Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.25 Convergence with Different Number Grid Points. . . . . . . . . . . . . . . . . . . . . 38

2.26 Distribution of Mesh Spacing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.27 Convergence of Different Maximum Number of Levels. . . . . . . . . . . . . . . . 39

2.28 Result of Full Approximation Scheme Numerical Experiment. . . . . . . . . 44

2.29 Convergence of Full Approximation Scheme Numerical Experiment.

(50 by 50 Mesh Grid) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.30 Convergence of Full Approximation Scheme Numercial Experiment.

(20 by 20 Mesh Grid) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.31 V Cycle and Full Multigrid Cycle in a 7 Levels Program. . . . . . . . . . . . . . 46

2.32 Scheme of a Fine Mesh and Coarse Mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.33 Flowchart of Multigrid System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Scheme of 3D Common-source or Common-drain FinFET from IMEC. 49

3.2 2D Scheme of a Common-drain FinFET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Geometry of Conventional MOSFET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Fine Mesh of 2D MOSFET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Mesh Grid under the Gate Contact. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Convergence of Algebraic Multigrid Method on 2D MOSFET Device. . 54

3.7 Flowchart of Final Poisson’s Equation Solver. . . . . . . . . . . . . . . . . . . . . . . . 54

3.8 Potential Profile of Final Poisson’s Equation Solver. . . . . . . . . . . . . . . . . . 55

3.9 Cutline of Potential along Dashed Line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.10 Convergence of Final Multigrid Solver and SOR Solver. . . . . . . . . . . . . . . 56

vii



Chapter 1

INTRODUCTION

1.1 Technology Progress of FinFET Devices

Conventional scaling law worked for several decades before the gate length of MOS-

FET scaled down to tens of nanometers. Unlike the gate length, the thickness of gate

oxide is hard to scale. For a 90nm gate length device, the gate oxide was scaled down

to about 1.2nm, which caused exponential increase in oxide leakage current (Bohr,

2011). To suppress the short channel effect of conventional MOSFET, FinFET de-

vice is first introduced as a self-aligned double-gate MOSFET device (Hisamoto et al.,

2000). Because FinFET device is a quasi-planar device, it shares some of the layout

and fabrication techniques of conventional MOSFET device (Huang et al., 1999). In-

tel stopped the scaling down of conventional 2D MOSFET at 32nm and switched to

3D tri-gate device for 22nm gate length and beyond (Cartwright, 2011; Kuhn, 2012).

3D devices became the trend for future applications. Therefore, it is very important

to have efficient 3D simulation tools to facilitate research and development.

1.2 Need for Multi-scale Simulation

Conventional circuit simulation software uses macroscopic continuous equations

as its governing law. A particle-based device simulator only deals with single semi-

conductor device without considering its electrical and thermal properties under a

certain circuit configuration. It typically uses semi-classical transportation theory as

the governing law. Similarly, first principle simulation focuses on the quantum be-

havior of atoms and electrons in bulk materials ignoring various boundary conditions

1



which exist in real applications. From electronic properties to electrical properties,

both length and time span several orders. Thus, it is very important to properly cou-

ple each level of simulation and develop high performance simulation algorithms and

computing hardware to put multi-scale simulation into real applications to discover

macroscopic phenomenon on the basis of accurate nanoscale quantum theories.

1.3 Importance of a Fast Poisson’s Equation Solver

A typical device simulator consists of two self-consistent kernels (Vasileska et al.,

2010). One is transport kernel, which varies largely for different device scale. The

other is the electromagnetic kernel, which remains unchanged.

The breakdown of total runtime of a 2D MOSFET device simulator is shown in

table 1.1. This program is written in FORTRAN. The test run is on ASU Advanced

Computing Center computer node Nehalem. The Poisson equation solver code seg-

ment belongs to the electromagnetic kernel. The free-flight scattering code segment

belongs to the Monte Carlo transport kernel. The rest of the segments are auxiliary

code. In 2D case, current Poisson solver already takes about 45.3% of total run-time,

while the transport kernel takes the second largest portion of 27.4%. Because the

complexity of Successive-Over-Relaxation (SOR) method is higher than the complex-

ity of any other segment, with increasing number of grid points, Poisson’s equation

solver will take longer time. When a simulator is expanded to 3D device, the Pois-

son’s equation solver will take about 90% of total time. Therefore, it becomes very

important to develop a very efficient Poisson’s equation solver to enable 3D devices

based multi-scale simulation.

There are two major steps to numerically solve a partial differential equation repre-

senting the Poisson equation. The first step is to discretize the continuous differential

equation into a matrix system with either finite-element method or finite-difference

2



Table 1.1: The Breakdown of Total Runtime of a 2D MOSEFT Simulator.

Code Segment Complexity (N grid points) Time Cost

Initialization & Post-processor 5 6

Poisson Solver (SOR) 8 9

Free Flight Scattering 8 9

NEC Scheme 8 9

Output 8 9

method. The second step is to solve the matrix system. Direct methods include Gauss

elimination, block method, fast Fourier transform, etc. Iterative methods include Ja-

cobi, Gauss-Seidel, SOR, Conjugate Gradients, Multigrid, etc. These methods have

different time complexity and requirement for computer memory space. Among them,

Multigrid method has the lowest complexity and memory space requirements. There-

fore, this research focuses on developing Multigrid solver to replace commonly used

SOR and Conjugate Gradient solvers.

3



Chapter 2

NUMERICAL APPROACHES FOR THE SOLUTION OF THE POISSON

EQUATION FOR SPATIALLY VARYING PERMITTIVITY AND ON

NON-UNIFORM MESH

2.1 Poisson’s Equation

In the electromagnetic kernel in a device simulator, Maxwell’s equations are the

governing laws (Vasileska et al., 2010). Gauss’s law is

∇ •D = ρ. (2.1)

Gauss’s law for magnetism is

∇ •B = 0. (2.2)

Faraday’s law of induction is

∇× E = −∂B
∂t
. (2.3)

Ampere’s law with Maxwell’s extension is

∇×H = J +
∂D

∂t
. (2.4)

where D is the displacement vector; ρ is the free charge density; B is the magnetic

flux density; E is the electric field strength; H is the magnetizing field; and J is the

current density.

They are a set of four partial differential equations disregarding their physical

meanings. Maxwell’s equations cannot be used without specifying the relationship

between D and E and the relationship between H and B. For homogeneous media,

the relations are

D = εE, (2.5)

4



H =
B

µ
, (2.6)

where ε is the permittivity of the medium and µ is the permeability of the medium.

Including both physical and mathematical degrees of freedom, E and B can be ex-

pressed as

E = −∇ϕ− ∂A

∂t
, (2.7)

B = ∇×A. (2.8)

where A is the vector potential and ϕ is the potential. The Coulomb Gauge imposes

the constraint:

∇ •A = 0. (2.9)

With the Coulomb Gauge, Gauss’s law can be transformed to the Poisson’s equation:

∇(ε∇(ϕ)) = −ρ. (2.10)

In oxide regions of the device, the concentration of electrons and holes are too

small that the free charge density is treated as zero. In semiconductor regions, free

charges density consists of four parts: hole concentration, electron concentration,

ionized donor concentration, and ionized acceptor concentration. Thus the Poisson’s

equation becomes of the following form:

∇(ε∇(ϕ)) =


0 In Oxide

−q(p− n+N+
D −N

−
A ) In Semiconductor,

(2.11)

where q is the elementary charge, p is the hole concentration, n is the electron con-

centration, N+
D is the ionized donor concentration, and N−A is the ionized acceptor

concentration. N+
D − N

−
A equals to the net ionized impurity concentration (Falgout,

2006). p and n can be calculated from either Boltzmann or Fermi-Dirac statistics.

This research focuses on non-degenerate semiconductors and equilibrium condition;

5



therefore Boltzmann statistics can be used to calculate electron and hole concentra-

tion (Aymerich-Humet et al., 1981; Lundstrom and Schuelke, 1982). Then:

p = Ni exp(− ϕ

VT
), (2.12)

n = Ni exp(
ϕ

VT
), (2.13)

where Ni is the intrinsic carrier density and VT is the thermal voltage.

Finite-difference and finite-element are two commonly used methods to discretize

the continuous Poisson’s equation for numerical calculation. Finite-volume method

is chosen for this research. To avoid second order finite difference, the integral form

of Gauss’s law is used instead of its partial differential form (Vasileska et al., 2010):∮
A

ε(∇ϕ)dA = −ρdxdydz. (2.14)

In 2D case, the integral is∮
C

ε(x, y)(
∂ϕ

∂x
x̂+

∂ϕ

∂y
ŷ)dL = −ρ(x, y)dxdy. (2.15)

The scheme of five-point stencil in 2D is shown in figure 2.1. Here x and y represent

the mesh spacing rather than the coordinates. The line integral on the left hand side

of the Poisson’s equation can be calculated by adding the line integral on each edge

of the dashed line rectangular box. Correspondingly, the Poisson’s equation becomes

6



x(i)

y(j)

ϕi,j

εi,j
ρi,j

①

④

③

②

ϕi,j+1

εi,j+1

ϕi,j-1

εi,j-1

ϕi-1,j

εi-1,j

ϕi+1,j

εi+1,j

xi

xi-1

yj-1 yj

Figure 2.1: Scheme of 5-point Stencil in 2D.

1©+ 2©+ 3©+ 4© = ρi,jdxdy (2.16)

1© =
1

2
(εi,j−1 + εi,j)

ϕi,j−1 − ϕi,j
yj−1

dx

2© =
1

2
(εi−1,j + εi,j)

ϕi−1,j − ϕi,j
xi−1

dy

3© =
1

2
(εi,j+1 + εi,j)

ϕi,j+1 − ϕi,j
yj

dx

4© =
1

2
(εi+1,j + εi,j)

ϕi+1,j − ϕi,j
xi

dy

dx =
xi + xi−1

2

dy =
yj + yj−1

2
.

7



With proper substitution and simplification, the final expression of discretized Pois-

son’s equation is

(εi+1,j + εi,j)

xi(xi + xi−1)
ϕi+1,j +

(εi−1,j + εi,j)

xi−1(xi + xi−1)
ϕi−1,j

+
(εi,j+1 + εi,j)

yj(yj + yj−1)
ϕi,j+1 +

(εi,j−1 + εi,j)

yj−1(yj + yj−1)
ϕi,j−1

− [
(εi+1,j + εi,j)

xi(xi + xi−1)
+

(εi−1,j + εi,j)

xi−1(xi + xi−1)

+
(εi,j+1 + εi,j)

yj(yj + yj−1)
+

(εi,j−1 + εi,j)

yj−1(yj + yj−1)
]ϕi,j

= −q(Ni exp(−ϕi,j
VT

)−Ni exp(
ϕij
VT

) + dopi,j). (2.17)

The final expression of discretized Poisson’s equation is nonlinear because of the

electron and hole concentration on the right hand side. Common iterative methods

cannot work with nonlinear system. Therefore, proper linearization is necessary for

Poisson’s equation. Taylor series is employed to linearize the exponential function:

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ · · · . (2.18)

Applying a small update δ to current potential, the new potential is

ϕnew = ϕold + δ. (2.19)

So the electron and hole density becomes

Ni exp(− ϕ

VT
)→ Ni exp(−ϕ

old + δ

VT
) = Ni exp(−ϕold

VT
) exp(− δ

VT
), (2.20)

Ni exp(
ϕ

VT
)→ Ni exp(

ϕold + δ

VT
) = Ni exp(

ϕold
VT

) exp(
δ

VT
). (2.21)

Using the first two terms of Tayler series of exponential function, the δ terms become

exp(− δ

VT
) ≈ (1− δ

VT
), (2.22)

exp(
δ

VT
) ≈ (1 +

δ

VT
). (2.23)

8



Substituting the linearized terms back to the electron and hole concentration, the

new equations are

p = Ni exp(−ϕold
VT

)(1− ϕnew − ϕold

VT
), (2.24)

n = Ni exp(
ϕold
VT

)(1 +
ϕnew − ϕold

VT
). (2.25)

Moving ϕnew to the left hand side of Poisson’s equation, the new Poisson’s equation

is

(εi+1,j + εi,j)

xi(xi + xi−1)
ϕoldi+1,j +

(εi−1,j + εi,j)

xi−1(xi + xi−1)
ϕoldi−1,j

+
(εi,j+1 + εi,j)

yj(yj + yj−1)
ϕoldi,j+1 +

(εi,j−1 + εi,j)

yj−1(yj + yj−1)
ϕoldi,j−1

− [
(εi+1,j + εi,j)

xi(xi + xi−1)
+

(εi−1,j + εi,j)

xi−1(xi + xi−1)

+
(εi,j+1 + εi,j)

yj(yj + yj−1)
+

(εi,j−1 + εi,j)

yj−1(yj + yj−1)
]ϕnewi,j

− q[Ni exp(−
ϕoldi,j
VT

) +Ni exp(
ϕoldi,j
VT

)]
ϕnewi,j

VT

= −q[Ni exp(−
ϕoldi,j
VT

)(1 +
ϕoldi,j
VT

)

−Ni exp(
ϕoldi,j
VT

)(1−
ϕoldi,j
VT

) + dopi,j]. (2.26)

Within one iteration, all the coefficients on the left hand side and the forcing term on

the right hand side are known. Thus, the Poisson’s equation is linear now for iterative

solvers.

This linear system can either be solved as a matrix Ax = b or multiple scalar

equations. Matrix form is ideal to isolate the mathematical problem from changing

geometries and physical problems. However, scalar equations are coupled to a certain

geometry, which makes it more intuitive.

To further simplify the Poisson’s equation and reduce computation load, some of

9



the coefficients and variables can be normalized:

ϕ

VT
→ ϕ, (2.27)

ε→ ε0εr, (2.28)

x→ LDxr, (2.29)

y → LDyr, (2.30)

dop→ dop

Ni

, (2.31)

where LD is the intrinsic Debye length

LD =

√
εVT
qNi

. (2.32)

In a semiconductor device, contacts are treated as Dirichlet boundaries. Neumann

boundary conditions are applied to the rest of device geometry. Boundary conditions

can be implicitly buried in the coefficient matrix A. For scalar equations, treatment

of boundary conditions is similar.

Neumann boundary condition is given by

∂ϕ

∂n
= f, (2.33)

where n is the normal to the boundary and f is a scalar function. In semiconductor

device, scalar function f is set to zero, creating so called ghost point to help solving

matrix problems.

A 16 points mesh grid containing inner points, Dirichlet boundary, and Neumann

boundary is shown in figure 2.2. Therefore, only 8 points (from ϕ1 to ϕ8), including

inner points and Neumann boundary points, need to be calculated.

With typical 5-point 2D stencil, Poisson’s equation at point 2 is

a2ϕ1 + b2ϕ6 + d2ϕ3 + e2ϕb − c2ϕ2 = f2. (2.34)

10



ϕ2 ϕ3

ϕ7ϕ6 ϕ8

ϕ4ϕ1

ϕ5

ϕb ϕc

ϕf ϕg

Inner Point

Dirichlet Boundary

Neumann Boundary

ϕd

ϕhϕe

ϕa

ϕA

ϕC

ϕB

ϕD

Ghost Point

Figure 2.2: A 16 Points Mesh Grid to Discuss Boundary Conditions.

In this equation, e2 and ϕb are known. Thus they can be moved to the right hand

side of Poisson’s equation, leaving the unknown variables on the left hand side:

a2ϕ1 + b2ϕ6 + d2ϕ3 − c2ϕ2 = f2 − e2ϕb. (2.35)

Following this procedure, Dirichlet boundary points are eliminated from the coefficient

matrix A and combined into forcing terms.

At point 1, Poisson’s equation is:

a1ϕa + b1ϕ5 + d1ϕ2 + e1ϕA − c1ϕ1 = f1. (2.36)

A ghost point A is introduced to help solve Neumann boundary problem. Neu-

mann boundary conditions in semiconductor devices give zero value for the first order

derivative of the potential, which ensures that a1 equals to d1 and ϕA equals to ϕ2.

So Poisson’s equation at point 1 can be simplified together with the treatment for

Dirichlet boundary as following:

b1ϕ5 + 2d1ϕ2 − c1ϕ1 = f1 − a1ϕa. (2.37)

Now only 8 unknown points are included in the Poisson’s equation system. The

11



matrix representation is

−c1 2d1 b1

a2 −c2 d2 b2

a3 −c3 d3 b3

2a4 −c4 b4

e5 −c5 2d5

e6 a6 −c6 d6

e7 a7 −c7 d7

e8 2a8 −c8





ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6

ϕ7

ϕ8



=



f1

f2

f3

f4

f5

f6

f7

f8



−



e1ϕa

e2ϕb

e3ϕc

e4ϕd

b5ϕe

b6ϕf

b7ϕg

b8ϕh



. (2.38)

Source and drain contacts are Ohmic contact (charge neutrality):

ρ = (p− n+ dop) =

(
exp(− ϕ

VT
)−Ni exp(

ϕ

VT
) + dop

)
= 0. (2.39)

With n-doping, potential is positive. So Ni exp(− ϕ
VT

) is a small value and can be

ignored. Then potential is

ϕ = VT ln(
dop

Ni

). (2.40)

On the contrary, p-doping makes the potential negative. Ni exp( ϕ
VT

) can be ignored.

The potential is

ϕ = −VT ln(
−dop
Ni

). (2.41)

Since this research only discusses equilibrium condition, no source or drain voltage

is applied. Potential that results from the charge neutrality condition is used as

Dirichlet boundary value at source and drain region.

Gate voltage can be applied in equilibrium condition. A gate voltage is chosen

to neutralize the potential barrier resulting in zero potential for Dirichlet boundary

condition in the gate region. This further simplifies physical model while leaving

mathematical model unchanged. Similarly, substrate contact is simply set to zero.

12



For oxide region, the initial potential is set to zero. For semiconductor region, two

initial guesses are used to test the robustness of the numerical solvers. One method is

to set the potential to zero. The other method is to use charge neutrality to calculate

the initial potential from doping profile.

2.2 Iterative Methods

With proper discretization, linearization, and normalization, Poisson’s equation

is transformed into a linear matrix equation Ax = b. Direct methods and iterative

methods are two major category of matrix solver. Direct methods are based on Gauss

elimination, which is intuitive but costs a large amount of time and computer memory.

Therefore, iterative methods are typically used in computer solvers. Successive-Over-

Relaxation method (SOR), which is based on Gauss-Seidel method, is commonly used

in device simulators.

The coefficient matrix A can be decomposed into three parts:

A =



a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

an,1 an,2 · · · an,n


. (2.42)

Strictly upper triangular matrix is U :

U =



0 a1,2 · · · a1,n

0 0 · · · a2,n
...

...
. . .

...

0 0 · · · 0


. (2.43)

13



Strictly lower triangular matrix is L:

L =



0 0 · · · 0

a2,1 0 · · · 0

...
...

. . .
...

an,1 an,2 · · · 0


. (2.44)

The diagonal matrix is D:

D =



a1,1 0 · · · 0

0 a2,2 · · · 0

...
...

. . .
...

0 0 · · · an,n


. (2.45)

Then Gauss-Seidel iteration is

xp+1 = − (L+D)−1 Uxp + (L+D)−1 b. (2.46)

However, this form is not actually implemented due to its complexity. A simplified

version is commonly used (Vasileska et al., 2010):

xp+1 = D−1
(
b− Lxp+1 − Uxp

)
. (2.47)

Introducing a weighting coefficient α, SOR method can be derived by combining old

result xp and new result xp+1 from Gauss-Seidel method linearly:

xnew = αxp+1 + (1− α)xp. (2.48)

where 0 < α < 2. The value of α can be determined from mathematical equations

and trial-and-error. Typically, α is set to 1.8.

Additionally, Jacobi method is also discussed in this thesis. The iteration equation

is (Saad, 2003):

xp+1 = D−1 (b− (L+ U)xp) . (2.49)

14



Similarly, by introducing a weighting coefficient ω, weighed Jacobi method can be

derived:

xp+1 = ωD−1 (b− (L+ U)xp) + (1− ω)xp. (2.50)

2.3 Standard Multigrid Method

Iterative methods work on the default mesh grid generated at the beginning of

the simulator. Contrary to this, the multigrid method works on not only the default

mesh grid, but also on coarser mesh grids. To better illustrate the essence of Multigrid

method, two-grid method, which works on fine grid and coarse grid, is discussed here.

Multigrid method can be easily achieved by recursively calling the two-grid method.

Figure 2.3 shows a fine grid vh, which is generated at the beginning of a program to

Figure 2.3: Fine and Coarse Grids for Two-grid Methods.

discretize the problem, and a coarse grid v2h, which is generated for two-grid method.

vh0 , vh8 , v2h0 , and v2h4 are Dirichlet boundaries. The linear matrix of this system can be

expressed:

Ahuh = fh. (2.51)

where u is the accurate solution and v means approximate solution.

The first step of two-grid method is, using an iterative method (usually weighted

Jacobi method), to get an approximate solution vh for the linear matrix system. This

step is called relaxation process. Typically, the relaxation is repeated three times

to get a good approximation. Then, the residual on fine mesh grid is calculated as

follows:

rh = fh − Ahvh. (2.52)

15



In order to use coarse grid, a restriction step is necessary to transfer the residual from

fine grid to coarse grid:

r2h = Rrh. (2.53)

In the above expression R is the restriction operator.

Error e is given by the difference between accurate solution and approximate

solution:

e = u− v. (2.54)

If the solution is unique, residual r is zero if and only if error e is zero (Briggs et al.,

2000). Thus, it is easy to derive the equation for error and residual for such a linear

system on coarse grid:

A2he2h = r2h. (2.55)

If the coarse grid has very small number of points, direct methods can be used to

calculate the exact solution of error e2h. Otherwise, iterative methods are used to

calculate an approximate solution for e2h. By mapping the error on coarse grid back

to fine grid, the correction to the approximate solution vh can be calculated:

eh = Ie2h, (2.56)

where I is the interpolation operator. Then,

vhnew = vhold + eh. (2.57)

If the convergence criterion is not met, the two-grid solver iterates the above process

until the solution is accurate enough.

For this two grids system, linear interpolation is used to map the error from coarse

grid back to fine grid. Because the mesh spacing between each point is the same, each

16



grid point has the same weight in the interpolation:

I =
1

2



1 0 0

2 0 0

1 1 0

0 2 0

0 1 1

0 0 2

0 0 1



. (2.58)

Restriction operator R is calculated once interpolation operator I is obtained. In 2D

case R is calculated as follows:

R =
1

2
IT , (2.59)

The last unknown variable is the matrix operator A2h on coarse grid. There are two

approaches to calculate this matrix. One is to discretize the Poisson’s equation on

coarse mesh. The other is to use Galerkin principle (Strang, 2007):

A2h = RAhI, (2.60)

The second method has no requirement for the shape of the coarse grid, making it

suitable for both standard and Algebraic Multigrid which will be discussed later.

Figure 2.4 schematically shows the two-grid method. By adding coarser mesh grids

and recursively calling two-grid method to replace the direct solver, Multigrid solver

can be easily built. Figure 2.5 shows the schematics of a Multigrid solver consisting

of five mesh layers.

One V-cycle is considered as a iteration in both two-grid and Multigrid methods,

though iterative methods are performed multiple times within one V-cycle.

A 2D MESFET device is used to test the performance of SOR method and stan-

dard Multigrid method. Figure 2.6 is a simple 2D MESFET device structure used to

17



S

A C, A A: iteration
R: restriction
S: direct solver
I: interpolation
C: correction

Figure 2.4: Schematic Description of Two-grid Method.

Figure 2.5: Schematic Description of Multigrid Method.

calculate the Poisson’s equation in equilibrium condition. Nehalem computer node in

ASU Advanced Computing Center is used for this benchmark. Figure 2.7 shows the

time cost of Multigrid method is linear to the number to total grid points, while the

time cost of SOR increases fast. These results match well with the theoretical anal-

ysis that the complexity of SOR method is O(n1.5), and the complexity of Multigrid

method is O(n), where n is the total number of grid points (Demmel, 1997).

A few more numerical experiments are conducted to explain why Multigrid, iter-

ating on multiple mesh grids, has better performance than SOR method. The first

18



Figure 2.6: Structure of 2D MESFET Device from the Homework of Prof.
Vasileska’s EEE 598 Course.

numerical system is:

f ′′(x) = −π2k2 sin (kπx),

f(0) = 0, f(1) = 0,

f(x)|t=0 = 0,

0 < x < 1,

k = 1, 2, 4, 8, 16, 24, 64. (2.61)

The mesh grid has 28 + 1 = 257 points, which are uniformly distributed. Norm of

error is plotted against number of iterations for each case. Weighted Jacobi method

is used in this experiment.

Error can be calculated by comparing the approximate solution and the analytical

solution which is hard to obtain for real application. So, in numerical experiments,

19



Figure 2.7: Performance of SOR and Multigrid Methods.

Figure 2.8: Affecting Factors for the Components of Error.

both norm of error and residual are recorded to analyze the performance of differ-

ent numerical methods. In real applications, only residual is recorded to determine

convergence and the performance of numerical solvers.

One affecting factor for residual term in figure 2.8 is computer accuracy, aka eps,

which is the spacing between floating point numbers. This research is conducted with

Matlab. The value of eps is 2.2204E-16. Therefore, it is reasonable to expect the

minimum residual to be on the order of 1E-16. The minimum norm of residual can

20



be larger taking the number of grid points into consideration.

Figure 2.9: Relation between Error and Residual.

Residual in figure 2.9 behaves exactly as what is predicted above. Its norm de-

creases to about 1E-14, which is 2 orders higher than the value of eps because of these

257 mesh grid points. The constant value of error is much larger than the value of

residual. The discretization error contributes the most to the overall error. Because

uniform mesh is employed in this experiment, the mesh spacing is not small enough

near peaks of this sine wave function, thus creating a large amount of discretization

error. The necessity of non-uniform mesh to balance the accuracy and computation

load is justified here. To properly calculate the restriction and interpolation opera-

tors, mesh spacing around each grid point should be taken into the calculation instead

of a constant mesh spacing value. The spike in error curve may come from the coher-

ence of Matlab’s internal numerical solver, the discretization error, and the residual.

21



Figure 2.10: Norm of Error and Number of Iterations.

In figure 2.10, from sin (πx) to sin (16πx), the reduction of error gets faster when

the wave number k gets larger. sin (16πx) case is the best. In sin (64πx) case, although

error reduces even faster, the steady-state values increase as well because of the

discretization error from insufficient number of mesh grid points comparing to its

high frequency mode. This figure leads to the conclusion that an iterative method

has the highest effectiveness to a certain error frequency, while the effectiveness drops

fast with reducing error frequency. So the high performance of Multigrid method

comes from the fact that error is iteratively relaxed on multiple meshes with different

mesh spacing, which ensures that the error of various frequencies is properly reduced.

The two-grid method includes two mesh levels. The fine level has 28 + 1 = 257

points, while the coarse level has 27 + 1 = 129 points. In figure 2.11, because the

coarse level suits well with sin (8πx) function, the residual of two-grid method reduces

22



Figure 2.11: Performance of Weighted Jacobi and Two-grid Methods in 8πx Case.

fast to its minimal. Error in this figure also needs to be discussed. Although error

of two-grid method reduces fast, both methods have the same constant value of error

and the same spike because the residual component is properly reduced leaving the

same discretization component.

Unlike the good performance in figure 2.11, the two-grid method in figure 2.12

does not display a substantial advantage though it is still better than weighted Jacobi

method. This is caused by the fact that sin (2πx) is a small frequency for both 257

and 129 points mesh. To increase the performance, more mesh levels are necessary

to handle such low frequency error.

For the purpose of adding error of all frequencies together to test overall perfor-

23



Figure 2.12: Performance of Weighted Jacobi and Two-grid Methods in 2πx Case.

mance of SOR and Multigrid methods, the second numerical experiment is created:

f ′′(x) = −π2
∑

k2 sin (kπx),

f(0) = 0, f(1) = 0,

f(x)|t=0 = 0,

0 < x < 1,

k = 1, 2, 4, 8. (2.62)

Similarly, the mesh has 28 + 1 = 257 points, which are uniformly distributed.

Figure 2.13 and figure 2.14 schematically show the error components and total

error in this experiment. Compared with the number of mesh points, the highest

error frequency included in this experiment is small for iterative methods. Thus a very

bad performance of weighted Jacobi method should be expected. The performance

of weighted Jacobi method in figure 2.15 is exactly the same as what is predicted

above. Neither the norm of error nor the norm of residual is substantially reduced.

24



Figure 2.13: Plot of Error Components.

Figure 2.14: Sum of All Error Components.

However, Multigrid method shows very good performance. Error reduces to constant

for about only three iterations, while residual reduces to a very small constant for

25



Figure 2.15: Performance of Weighted Jacobi and Multigrid Methods.

about thirteen iterations.

2.4 Algebraic Multigrid Method

Multigrid method shows large advantages over SOR method. Then what is the

reason to develop Algebraic Multigrid? As mentioned in the previous section, Multi-

grid method is based on constructed meshes. Interpolation and restriction operators

are based on rectangular mesh as well. This posts difficulties to the setup step of

Multigrid method when problem geometry is complex. Moreover, standard Multi-

grid requires 2N + 1 grid points in each direction, which commonly results in either

too large mesh spacing or too many mesh grid points. Besides, the interpolation

operator is calculated by linear interpolation for 1D or bilinear interpolation for 2D,

which means only mesh spacing is taken into consideration. Although non-uniform

mesh spacing can be reflected in the interpolation operators, spatially varying dielec-

tric constant is ignored. Therefore, developing Algebraic Multigrid method becomes

26



important for real applications to overcome these problems.

Figure 2.16: Coefficient Matrix of an Unconstructed Mesh Grid.

Figure 2.17: Coefficient Matrix of a Constructed Mesh Grid.

Algebraic Multigrid has no requirement for the geometry. It is able to work

with unconstructed mesh grid as shown in figure 2.16. A mesh grid is a bidirected

graph, making the coefficient matrix A symmetric. Figure 2.17 shows a constructed

rectangular mesh grid, which is typically used in semiconductor device simulators. As

long as the constructed mesh grid is rectangular, 5-point stencil finite-volume method

can still be applied to discretize the Poisson’s equation. Despite the difference between

the unconstructed mesh grid in figure 2.16 and the constructed grid in figure 2.17, two

coefficient matrices show the same shape and symmetry. Thus, Algebraic Multigrid

method works with these two kinds of mesh grids because only a discretized matrix

system Ax = b is required. Figure 2.18 shows the flowchart of the setup procedure

27



Only 1 point in 
Coarse Grid

Coarse and Fine grid 
splitting

Calculate 
Interpolation 

Operator

Calculate Restriction 
Operator

Calculate 
Coefficient Matrix 

of Coarse Grid

No

Yes

Figure 2.18: Setup Steps of Algebraic Multigrid Method.

28



in Algebraic Multigrid solver. Coarser grids are automatically selected based on the

algebraic property of the coefficient matrix A. Then, based on coarse and fine grid

split information, interpolation operator is calculated from the coefficient matrix A.

Restriction operator is the transpose of interpolation operator. The coefficient matrix

for coarser mesh grid can be calculated by using the Galerkin principle. Thus, one

repeats these steps until the coarsest mesh grid has only one point.

Coarse and fine grid splitting is called coarsening as well. Unlike standard Multi-

grid method which requires manual selection, Algebraic Multigrid method uses the

information stored in the coefficient matrix A to determine which points should be

selected as coarse grid. The aggressive coarsening method is shown in figure 2.19.

C F C

F F F

C F C

C

F

C

F

F

F

F F F

C F C

F

C

F

F

C C

C C

C

C

C C C

Coarsening

Figure 2.19: Aggressive Coarsening in 2D Case.

This method highly depends on device geometry and mesh grid and requires 2N + 1

points in each direction. Thus, it is not used in this Algebraic Multigrid because

the aim is to provide accommodation for complex geometry and loose requirement

for mesh grid. The other coarsening scheme is standard coarsening, which is used in

this Algebraic Multigrid method. The coarsening process is slower than aggressive

coarsening because less fine grid points are eliminated in each coarser level, resulting

in more levels. Compared with the effort to generate more levels and consumption

of more computer memory space, it is beneficial to use this standard coarsening in

Algebraic Multigrid method because of no requirement for geometry, automated gen-

29



C F C

F C F

C F C

C

F

C

F

C

F

F C F

C F C

F

C

C

F

Coarsening

C C

C

C C

C

C

C

C

C C C

C

Figure 2.20: Standard Coarsening in 2D Case.

eration of coarse levels, and exact coupling with 5-point stencil. Each fine grid point

has four neighboring coarse grid points (up, down, left, and right), which are used to

interpolate the fine grid point when values are transferred from coarse grid back to

fine grid.

The flowchart of standard coarsening method is shown in figure 2.21 (Trottenberg

et al., 2001). F represents the set of fine points. C represents the set of coarse grid

points. U represents the set of undecided points. Ω is the set of all grid points on

this level. These four sets have the following relation:

Ω = C + F + U. (2.63)

To better explain the meaning of STi , a few more sets need to be discussed. Ni is a

set of neighboring points of grid point i. It is determined by the following equation:

Ni = {j ∈ Ω : j 6= i, aij 6= 0} . (2.64)

The diagonal elements of coefficient matrix A are assumed to be positive, while other

off-diagonal elements can have any sign. Therefore, it is important to define a relation

called strongly negatively coupled:

− aij ≥ εthrmax
aik<0

|aik|. (2.65)

30



In Eq. (2.65) εthr is a constant between 0 and 1 used to determine the strength of

coupling. Then a new set Si can be created to represent neighboring points of i. i is

strongly negatively coupled to:

Si = {j ∈ Ni : i is strongly negatively coupled to j}. (2.66)

By transposing the set Si, a new set STi can be created:

STi = {j ∈ Ω : i ∈ Sj}. (2.67)

It contains all the points that are strongly coupled to point i.

To properly determine the sequence of adding a point to either coarse set or fine

set is based on the value of λi, the importance of a point (Stüben and Ruge, 1987).

A point that has a large number of undecided neighboring and fine points is given

high priority to be processed:

λi = |STi ∩ U |+ 2|STi ∩ F |. (2.68)

|S| means the number of elements in a set S. The coarsening of a mesh grid consisting

of 11 by 19 grid points is shown in Figure 22. Standard coarsening pattern can be

observed at fine mesh levels, while a deviation from the standard pattern appears at

coarse levels due to very few available grid points.

There are quite a few methods to calculate the interpolation operator (Stüben

and Ruge, 1987). The restriction operator is typically calculated by transposing the

interpolation operator. As for the coefficient operator for coarser level, both direct

method and Galerkin method can be used. In this research, direct method, which

uses 2D 5-point stencil, is used to calculate the coefficient operator for the finest level

because a device simulator requires constructed rectangular mesh grids. However, the

finer grid levels are not constructed nor rectangular. Therefore, Galerkin method is

31



Figure 2.21: Flowchart of Standard Coarsening.

used because it calculates the coefficient matrix by multiplying interpolation operator,

restriction operator, and fine grid coefficient matrix algebraically, which requires no

information about mesh geometry. The remaining problem is how to accurately

calculate the interpolation operator. Selecting standard coarsening ensures the core

32



Figure 2.22: Coarsening of a 11 by 19 Mesh Grid.

requirement that each fine grid point must have at least one connection to neighboring

coarse grid points. Then, there is no need to use complicated methods, like standard

interpolation and multi-pass interpolation, because of the satisfaction of the core

requirement.

A coarse grid in a fine level is a coarse grid in the coarse grid with the same

coordinates. Thus, its value can be transferred from coarse grid to fine grid without

interpolation. A find grid in a fine level does not have corresponding point in the

coarse level. Its value can be interpolated from its coarse neighboring points with

strong connections. The interpolation process can be expressed as following (Briggs

et al., 2000):

ei =


ei i ∈ C∑

j∈Pi
ωijej i ∈ F

. (2.69)

Pi is a set of points used for interpolation of point i. It is defined as Cs
i . C

s
i is the set

of coarse points that i is strongly negatively coupled to:

Cs
i = C ∩ Si. (2.70)

33



ωij is the interpolation weight that needs to be carefully treated. Before discussing

the details of interpolation weight, a few new sets need to be introduced:

Ci = C ∩Ni, (2.71)

Fi = F ∩Ni, (2.72)

F s
i = F ∩ Si. (2.73)

The simplest method is ignoring the value of the element in the set of Pi. The

interpolation weight ωij is set to the reciprocal of the number of elements:

ωij ≡
1

|Pi|
. (2.74)

Figure 2.23 shows the constant interpolation weight schematically. Although this

Figure 2.23: Scheme of Constant Interpolation Weight.

method is quite simple and easy to be implemented, the convergence of the method

is not satisfactory due to the inaccurate calculation of interpolation weight.

To improve the accuracy of interpolation, the value of each element in Pi should

be taken into consideration. A point with stronger connection is given larger weight

by the following equation:

ωik = − aik∑
j /∈Pi

aij
. (2.75)

The summation of diagonal element and elements not used for interpolation acts as

the denominator. A variable si needs to be introduced to discuss this interpolation

34



method:

si =
∑
j

aij. (2.76)

In a symmetric matrix, si equals to 0. However, the method to implicitly deal

with Dirichlet boundary conditions makes corresponding rows in coefficient matrix A

strongly diagonally dominant by moving an off-diagonal element to the forcing term.

Therefore, this method is not suitable for Dirichlet boundary conditions, though it

can be used for Neumann boundary conditions and inner points.

A third method can deal with all kinds of points, which calculates positive and

negative points, respectively. In this method, the interpolation set is Pi = Cs
i :

ωik =


αiaik
aii

k ∈ P−i

βiaik
aii

k ∈ P+
i

, (2.77)

αi =

∑
j∈Ni

a−ij∑
k∈Pi

a−ik
, (2.78)

βi =

∑
j∈Ni

a+ij∑
k∈Pi

a+ik
, (2.79)

where

P+
i = {j ∈ Pi : aij > 0}, (2.80)

P−i = {j ∈ Pi : aij < 0}, (2.81)

a+ij =


aij aij > 0

0 kaij ≤ 0

, (2.82)

a−ij =


0 aij > 0

aij kaij ≤ 0

. (2.83)

The coefficient matrix of the finest level contains non-positive off-diagonal elements

and positive diagonal elements, which leads to P+
i = ∅. The denominator of βi

35



becomes zero. In this case, βi is set to zero and its numerator is added to the

diagonal element aii to take the effect of positive elements not belonging to Pi into

consideration.

Algebraic Multigrid method replaces the manual setup process in standard Multi-

grid method with automated coarsening and calculation. V cycles described in stan-

dard Multigrid method can be used to solve the problem.

A simple 2D numerical experiment is conducted to test the performance of Alge-

braic Multigrid method.

∂2u

∂x2
+
∂2u

∂y2
= −4π2(cos (2πx) + sin (2πy)), (2.84)

0 < x < 1,

0 < y < 2,

u(x, 0) = cos (2πx),

u(x, 1) = cos (2πx),

u(0, y) = 1 + sin (2πy),

u(2, y) = 1 + sin(2πy).

The analytical solution is

u(x, y) = cos (2πx) + sin (2πy). (2.85)

Three different mesh grids are tested. They are 11 by 21 mesh grid, 41 by 81 mesh

grid, and 81 by 161 mesh grid. The numerical result of 81 by 161 mesh grid is shown

in figure 2.24.

In figure 2.25, the convergence of the three different mesh grids are plotted against

the number of iterations. These three cases use almost the same number of iterations

to reach a constant residual value, which demonstrates the robustness of Multigrid

36



Figure 2.24: Result of AMG Numerical Experiment.

method because its performance is independent from the number of mesh grid points.

As for the difference among these constant values, this is caused by the way used to

calculate the 2-dimentional Euclidean norm for a vector x = (x1, x2, x3, · · · , xn):

‖x‖ =

√√√√ n∑
i=1

x2i . (2.86)

The norm is related to the number of elements in the vector. More grid points result

in higher constant value.

Uniform mesh is used in each direction in the above tests. An additional test of

81 by 161 mesh grid is performed with random mesh spacing. Assume the uniform

mesh spacing is h in one direction. The random non-uniform mesh spacing is

0.4h < hrand < 1.6h. (2.87)

Figure 2.26 shows the distribution of mesh spacing against its position in y direction.

It can be observed that the mesh spacing is randomly selected and its distribution

is random as well. In this fully random case, Algebraic Multigrid method reduces

error perfectly well with convergence very close to the uniform case, which proves the

effectiveness of Algebraic Multigrid method. In real applications, mesh spacing will

37



Figure 2.25: Convergence with Different Number Grid Points.

Figure 2.26: Distribution of Mesh Spacing.

not be randomly generated. Typically, it will be piece-wise constant or monotonically

increasing or decreasing. Therefore, Algebraic Multigrid can be very effective.

38



The 81 by 161 mesh grid contains 7 mesh levels. A maximum of 2, 4, 6, and 7 levels

are tested to observe the behavior of convergence. It is very clear that the convergence

Figure 2.27: Convergence of Different Maximum Number of Levels.

is faster with more levels involved. This is another proof to the explanation why

Multigrid method converges faster. Compared with the error frequency, this fine mesh

grid represents a high frequency. A large number of maximum level means a coarse

mesh level is used. With 7 levels taken into computation, all small error frequencies

are included. Therefore, the blue line in figure 2.25 shows the best performance.

2.5 Full Approximation Scheme

The first section of this chapter discusses the linearization for the Poisson’s equa-

tion. As iterative methods and standard Multigrid method can not solve nonlinear

equations directly, the exponential term in Poisson’s equation has to be expanded

with Taylor series. This expansion leads to an update δ, which is the difference be-

tween an old and a new value of the potential. This process can be used to iteratively

39



calculate the solution of Poisson’s equation. Within one iteration, the system behaves

like linear system of equation as all exponential terms use old potential value, which

are treated as constants. This kind of linearization procedure works well with itera-

tive method like SOR and standard Multigrid method. However, Algebraic Multigrid

method cannot benefit from this procedure because once the new potential values be-

come available, the property of such linear system, i.e. coefficient matrix A, changes.

Correspondingly, the setup of Algebraic Multigrid method should be run again to

generate coarser mesh levels, interpolation operators, restriction operators, and coef-

ficient matrices.

To avoid this complication, Full Approximation Scheme (FAS) is utilized to solve

nonlinear equation directly. The left hand side of Poisson’s equation remains un-

changed. 5-point stencil still applies to it. The right hand side of Poisson’s equation

will not be expanded using Taylor series. Then one moves the exponential terms to

the left hand side:

(εi+1,j + εi,j)

xi(xi + xi−1)
ϕi+1,j +

(εi−1,j + εi,j)

xi−1(xi + xi−1)
ϕi−1,j

+
(εi,j+1 + εi,j)

yj(yj + yj−1)
ϕi,j+1 +

(εi,j−1 + εi,j)

yj−1(yj + yj−1)
ϕi,j−1

− [
(εi+1,j + εi,j)

xi(xi + xi−1)
+

(εi−1,j + εi,j)

xi−1(xi + xi−1)

+
(εi,j+1 + εi,j)

yj(yj + yj−1)
+

(εi,j−1 + εi,j)

yj−1(yj + yj−1)
]ϕi,j

+ q(Ni exp(−ϕi,j
VT

)−Ni exp(
ϕij
VT

))

= −q(dopi,j). (2.88)

Similar normalization can be used to reduce the calculation load. Methods needed to

process Dirichlet and Neumann boundary conditions remain unchanged. The gener-

40



alization of this new nonlinear matrix system is as follows:

Ax+ g(x) = b. (2.89)

where g(x) represents the nonlinear term. Now the system will not be changed while

the potential values are updated each iteration. Algebraic Multigrid method is still

useful to accommodate arbitrary number of grid points in each direction, generate

coarser mesh levels automatically, and accurately calculate interpolation operators

for non-uniform mesh. However, only linear part, i.e. matrix A, is used by Algebraic

Multigrid.

Unlike the role of Algebraic Multigrid, Full Approximation Scheme replaces the

relaxation V cycles in standard Multigrid, making possible that nonlinear systems

are solved directly. In standard Multigrid method, the matrix system Ax = b is

relaxed only on the finest mesh grid level. Residuals and corrections are calculated

on the rest of the levels. Full Approximation Scheme calculates the nonlinear system

Ax+g(x) = b on all levels together with corresponding residuals and corrections (Van

Henson, 2003).

Relaxation methods like weighted Jacobi method, Gauss-Seidel method, SOR

method, do not work with nonlinear system. Therefore, an iterative method that

can work with nonlinear equations is necessary to relax residual in Full Approxima-

tion Scheme. The scalar format of Gauss-Seidel method is (Vasileska et al., 2010)

xp+1
i =

1

aii

(
bi −

i−1∑
j=1

aijx
p+1
j −

N∑
j=i+1

aijx
p
j

)
. (2.90)

Newton’s method can be added to scalar format Gauss-Seidel method to deal with

the nonlinear term. Define the nonlinear system as

F (x) = Ax+ g(x)− b = 0. (2.91)

41



Applying Newton’s method, the new value of x is

xp+1 = xp − F (xp)

F ′(xp)
. (2.92)

Using Newton’s method for local linearization, Gauss-Seidel-Newton method can be

derived in scalar equation format (Trottenberg et al., 2000):

xp+1
i = xpi −

1

aii + g′(xi)

(
i−1∑
j=1

aijx
p+1
j −

N∑
j=i

aijx
p
j + g(x)− bi

)
. (2.93)

With the nonlinear iterative method for relaxation, the next step is to discuss how

Full Approximation Scheme changes the v-cycle in two-grid method because nesting

two-grid method results in Multigrid method. On the fine grid, the nonlinear system

is

Ah(uh) = Ahuh + g(uh) = fh. (2.94)

where uh is the exact solution. After relaxing for a few times (typically three times),

an approximation solution vh can be achieved. The residual is

rh = fh − Ah(uh). (2.95)

Then, both the approximate solution vh and the residual rh are restricted to the

coarse grid:

v2h = Rdirv
h, (2.96)

r2h = Rrh, (2.97)

where R is the restriction operator from Algebraic Multigrid. Whereas Rdir is in-

jection type restriction, which means no averaging and only the value of coarse grid

point itself is transferred to next level. The new forcing term becomes

f 2h = A2h(v2h) + r2h. (2.98)

42



Then, directly or iteratively solve the equation

A2h(v2happr) = f 2h. (2.99)

The difference between the approximate solution and initial guess, which is restricted

from fine grid, is the correction to fine grid:

e2h = v2happr − v2h. (2.100)

Just like what standard Multigrid does, the correction is then interpolated back to

the fine grid and applied to the approximation value:

eh = Ie2h, (2.101)

vh = vh + eh. (2.102)

A numerical experiment is taken to verify the effectiveness of Full Approximation

Scheme to solve nonlinear system. Pure Gauss-Seidel-Newton method is used as the

iterative method to be compared with Full Approximation Scheme:

−∆u+ γu exp(u) = f,

0 < x < 1,

0 < y < 1,

γ = 1,

f = 2[(x− x2) + (y − y2)]+γ(x− x2)(y − y2) exp((x− x2)(y − y2)). (2.103)

Boundary conditions are

u(0, y) = u(1, y) = u(x, 0) = u(x, 1) = 0. (2.104)

The analytical solution is

u(x, y) = (x− x2)(y − y2). (2.105)

43



Figure 2.28: Result of Full Approximation Scheme Numerical Experiment.

Figure 2.29: Convergence of Full Approximation Scheme Numerical Experiment.
(50 by 50 Mesh Grid)

44



Figure 2.30: Convergence of Full Approximation Scheme Numercial Experiment.
(20 by 20 Mesh Grid)

Two type of mesh grids are tested. They are 50 by 50 mesh grid and 20 by 20

mesh grid. The solution of 50 by 50 mesh grid is shown in figure 2.28. In figure

2.29 and figure 2.30, Full Approximation Scheme demonstrates very fast convergence

speed. Especially in 50 by 50 mesh grid case, Full Approximation Scheme takes

16.42s to reach the maximum update of 5.3E-8, while Gauss-Seidel-Newton method

takes 418.2s to reach the maximum update of 4.6E-7. That is Full Approximation

Scheme is 24 times faster while achieving 10 times higher accuracy. In 20 by 20 mesh

grid case, Full Approximation Scheme takes 1.27s to reach the maximum update of

1.07E-9. Gauss-Seidel-Newton method takes 9.348s to reach the maximum update of

1.08E-9. In this case, Full Approximation Scheme is 6.36 times faster with the same

accuracy. In the comparison between 50 by 50 mesh grid results and 20 by 20 mesh

grid results, it is explained why Multigrid method is faster when compared to pure

iterative method.

45



2.6 Full Multigrid Method

Both standard Multigrid method and Full Approximation Scheme use V-cycle,

which starts with the finest level. However, Full Multigrid method starts with the

coarsest level and ramps up to the finest level with multiple V cycles like the Russian

Dolls. V cycle in a 7 levels program is shown in 2.31, together with corresponding

Full Multigrid cycle. Because Full Multigrid cycle starts with the coarsest level,

Figure 2.31: V Cycle and Full Multigrid Cycle in a 7 Levels Program.

which may contain only one unknown point, in this case, this unknown point can be

rather accurately calculated from surrounding boundary conditions. Each time the

mesh grid is interpolated to a new level, the coarse grid points can be assumed to be

accurate while the inaccurate new fine grid points only take a small portion. This

ensures relatively small accumulated error, which can be fatal for nonlinear system

because exponential terms easily increase fast to NaN (not a number in computers)

with accumulated error. The right panel of figure 2.32 is a coarse mesh. A type 0

point has four known boundary points around it. It contains no accumulative error

and the only error is the discretization error. On the contrary, standard Multigrid

method V cycle starts from the finest level where only very few portions of the total

number of points are known boundary conditions, which makes most inner points to

be calculated from their surrounding unknown points. The left panel of figure 2.32 is

46



a fine mesh. A type 2 point has two unknown neighbor points. A type 4 point has

four unknown neighbors, which has higher accumulative error than type 2 point.

D D D

D 2 3

D 3 4

D

D

D

D

2

3

D 2 3

D D D

D

D

2

D

D D

D 0

D

D

D D D

D Dirichlet Boundary 0
Point with 0 
unknown neighbor

2
Point with 2 
unknown neighbor

3
Point with 3 
unknown neighbor 4

Point with 4 
unknown neighbor

Figure 2.32: Scheme of a Fine Mesh and Coarse Mesh.

Because of its insensitivity to initial guess, Full Multigrid Method is typically used

as a preconditioner to make the solver robust and independent from initial guess.

2.7 Summary of Various Multigrid Methods

In this chapter, various Multigrid methods are discussed. Some of them contain

multiple modules which are actually interchangeable. Figure 2.33 illustrates their

relationship. Three stages are defined. The setup stage is to generate coarser mesh

levels and calculate restriction, interpolation and coefficient matrices. Depending on

the properties and requirements of the problem, either standard Multigrid method

or Algebraic Multigrid method can be selected. The initialization stage is to find a

suitable initial guess as input for the real solver. Full Multigrid method is optional

but strongly recommended for the robustness and accuracy of the whole solver. The

third stage is to solve the matrix system. Depending on the nature of the system,

standard Multigrid works for linear system while Full Approximation Scheme works

47



Full Multigrid

(Preconditioner)

Standard Multigrid

(Manually Aggressive 

Coarsening,

2N+1 points)

Algebraic Multigrid

(Automated Standard 

Coarsening, Arbitrary 

Number of points)  

Standard Multigrid

(Restrict Residual, 

Interpolate Correction,

For Linear System) 

Full Approximation 

Scheme

(Restrict Approximate 

Solution, Interpolate 

Correction, For 

Nonlinear System)

Setup Stage

Initialize Stage

Solve Stage

Figure 2.33: Flowchart of Multigrid System.

for both linear and nonlinear systems.

For example, consider a case when strongly nonlinear partial differential equation

needs to be solved on a square area without explicit requirement for mesh grid spacing.

Then standard Multigrid method will be selected for setup stage. Because of the

strong nonlinearity, Full Multigrid cycle is used to generate a good initial guess input

for the solver. Finally, Full Approximation Scheme is selected to solve the nonlinear

problem directly.

48



Chapter 3

PHYSICAL MODEL OF COMMON-SOURCE AND COMMON-DRAIN FINFET

DEVICES CONFIGURATION

3.1 Geometry and Structures

A common-source FinFET device can be treated as two FinFET MOSFET devices

sharing their source contact. Similarly, a common-drain FinFET device contains two

FinFETs sharing their drain contact. Putting one device in normal on-state, the

other device can be used to accurately measure the heat of its neighbor. To create an

accurate relation between the heat and output current, both experimental research

and theoretical simulation need to be performed to understand its physical behavior.

Figure 3.1: Scheme of 3D Common-source or Common-drain FinFET from IMEC.

49



Figure 3.1 shows the 3D geometry. Compared to conventional 2D planar devices,

this geometry is much more complex, which leads to more mesh regions, more mesh

grid points, different kinds of mesh spacing, and variation of materials properties.

Algebraic Multigrid is an ideal choice because it can deal with complex mesh grids

and material properties automatically. Moreover, from 2D to 3D, the number of mesh

grid points increases tens, even hundreds, of times. Conventional Successive-Over-

Relaxation and Conjugate Gradient methods take the largest part of overall time to

calculate electrical field from charge density via Poisson’s equation. They have the

same complexity of O(N1.5), which means that the number of grid points becomes 100

times of its original number. Time consumption becomes 1000 times of its original

time cost. If multi-scale simulation is taken into consideration for circuit level simu-

lation, the total time cost needs to be multiplied by the number of devices utilized.

This problem largely restricts the scalability of multi-scale simulation. Fortunately,

the complexity of Multigrid method is O(N). It saves more time with increasing

number of grid points.

Figure 3.2: 2D Scheme of a Common-drain FinFET.

The 3D FinFET device is simplified to a 2D common-drain device for facilitate

the application of Multigrid method. Figure 3.2 shows the 2D geometry. For the

numerical solver, there is no difference between a typical MOSFET device and a

common-drain device. Therefore, the 2D common-drain device is further simplified

50



to a conventional 2D MOSFET device shown in figure 3.3.

Figure 3.3: Geometry of Conventional MOSFET.

Source and drain are doped to N+
D = 1020cm−3. Chanel is doped to NA =

1018cm−3. Substrate is doped to N−A = 1016cm−3.

Source and drain contacts are ohmic contacts, which implies charge neutrality.

Numerically, they are Dirichlet boundary conditions. Gate contact is also Dirichlet

boundary. All the rest are Neumann boundary conditions. No voltage is applied to

source, drain, gate or substrate contact as equilibrium solution is being calculated.

3.2 Mesh Spacing

There are a few guidelines for determining mesh spacing. Source, drain, and chan-

nel regions require uniform square mesh (1nm by 1nm). The thickness of oxide under

the gate is only 1.2nm. Thus a mesh spacing of 0.3nm is required to ensure sufficient

51



grid points for such a thin layer (figure 3.5). For oxide box and semiconductor sub-

strate, there is no specific requirements for spacing. Interfaces should have relatively

small mesh spacing because the dielectric constant changes at the contact of two dif-

ferent materials. In this case, the largest mesh spacing is 19nm, which is larger than

the smallest mesh spacing, 0.3nm, by a factor of 63. The complexity of mesh grid

0 20 40 60 80 100 120

0

50

100

150

200

250

x/nm

y
/n

m

Figure 3.4: Fine Mesh of 2D MOSFET.

makes it hard to use a predefined number of 2N + 1 grid points in each direction.

Therefore, Algebraic Multigrid is very suitable for this simulation.

3.3 Simulation Results

Initially, only Algebraic Multigrid method is developed to automatically gener-

ate coarser mesh grid levels and calculate interpolation, restriction, and coefficient

matrices. It is used to replace the standard Multigrid method in setup stage, while

leaving the solve stage unchanged. The convergence is shown in figure 3.6. Algebraic

52



45 50 55 60 65 70 75 80

5

6

7

8

9

10

11

12

13

14

15

x/nm

y
/n

m

Figure 3.5: Mesh Grid under the Gate Contact.

Multigrid method shows no advantages, though it has steeper slope which means

eventually it will become better. This is influenced by the way the Poisson’s equation

is linearized. The Taylor expansion method actually changes the linear system each

time a value is updated. In this program, the Algebraic Multigrid setup is performed

once every grid point is updated. This balances the frequency of setup and accuracy.

However, the final result is not satisfactory, which leads to the development of Full

Approximation Scheme and Full Multigrid method to solve nonlinear system directly.

The flowchart of the final solver is shown in figure 3.7. With the final Poisson’s

equation solver, two initial guesses discussed in the second chapter are tested. The

potential profile calculated by Multigrid method is shown in figure 3.8.

There is a dashed line at the left edge of the potential profile. A cutline of potential

is plotted against the position in figure 3.9. The convergence criterion is 1E-5V in this

simulation. However, SOR method is manually aborted because it could not reach

53



Figure 3.6: Convergence of Algebraic Multigrid Method on 2D MOSFET Device.

Generate mesh 
&

Discretize 
Poisson

Generate initial 
guess

Generate C/F 
split and 

operators with 
AMG

Process initial 
guess with FMG

Calculate 
approximate 
solution with 

FAS

Converge

No

Yes

StopStart

Figure 3.7: Flowchart of Final Poisson’s Equation Solver.

convergence for a very long time. Figure 3.10 shows the details about convergence.

The legend in figure 3.9 shows two lines for Multigrid solver with respect to two

different initial guesses. However, only one red line can be found, while the two

black lines have large difference between them. This demonstrates the accuracy and

robustness of Multigrid method. Because Multigrid method is effective for all error

54



0 20 40 60 80 100 120

0

50

100

150

200

250

 
Potential/V

x/nm

 

y
/n

m

0

0.1

0.2

0.3

0.4

0.5

Figure 3.8: Potential Profile of Final Poisson’s Equation Solver.

0 50 100 150 200 250 300
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Depth/nm

P
o

te
n

ti
a

l/
V

 

 

AMG−0init

AMG−neutral

SOR−0init

SOR−neutral

Figure 3.9: Cutline of Potential along Dashed Line.

55



frequency higher than the corresponding frequency of its finest mesh and Full Multi-

gird cycle has almost no requirement for initial guess to generate high quality input

for Multigrid V cycle, the final results are actually independent from these two initial

guesses. On the contrary, SOR method is only effective to the error frequency that

coheres with the mesh grid. An initial guess commonly introduces low frequency error

because it is only a very rough estimation of the accurate solution. A large amount of

low frequency error introduced by an initial guess remains even the maximum updates

reduces to a small value. Therefore, it is accurate and reliable to use the maximum

update as an indicator of convergence in Multigird method regardless of the quality

of an initial guess.

Figure 3.10: Convergence of Final Multigrid Solver and SOR Solver.

In figure 3.10, two lines of Multigrid solver overlap, which again demonstrates the

robustness of Multigrid method. As for convergence speed, SOR method lines start

to bend at about 2E-3V. Before this point, all four lines overlap showing that SOR

56



method reduces high frequency error effectively. Afterward, red lines representing

Multigrid method decline straightly while black lines representing SOR method tend

to a constant value. In SOR case, the high frequency error has been reduced while

the low frequency is being reduced slowly. In Multigrid case, error of all frequencies

are effectively reduced in Multigrid solver, so the maximum update reduces linearly.

However, SOR method has to inefficiently reduce low frequency error, which makes

the maximum update remain a constant small value.

57



Chapter 4

CONCLUSIONS

Compared with conventional single level iterative methods such as Successive-

Over-Relaxation method, Algebraic Multigrid method together with Full Approxima-

tion Scheme and Full Multigrid demonstrate very high efficiency in solving nonlinear

matrix systems. Moreover, they are robust and independent of initial guess, which

largely lowers the requirement for the quality of initial guess, thus reducing the cost

to find a good guess.

Although the Algebraic Multigrid method requires larger setup time, it is only

necessary for the first time a linear or nonlinear system is created. The high efficiency

of the Multigrid method can easily justify the initial setup time cost. Besides, in most

cases, mesh grids and the corresponding matrix system from the discretized physics

equations do not change frequently. Thus, the Multigrid method is a good substitution

to the single level iterative methods.

On coding level, this research uses MATLAB for fast and easy prototyping, which

trades off the speed of the program. As the algorithm of Multigrid method is devel-

oped and tested in MATLAB, it would be a good idea to implement such code in a

compiled language such as C or FORTRAN. Also, this solver can easily be extended

to 3D case.

58



REFERENCES

Aymerich-Humet, X., F. Serra-Mestres and J. Millán, “An analytical approximation
for the Fermi-Dirac integral”, Solid-State Electronics 24, 10, 981–982, URL http:
//www.sciencedirect.com/science/article/pii/0038110181901210 (1981).

Bohr, M., “The evolution of scaling from the homogeneous era to the heteroge-
neous era”, in “2011 International Electron Devices Meeting”, pp. 1.1.1–1.1.6
(IEEE, 2011), URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=6131469.

Briggs, W., V. Henson and S. McCormick, A Multigrid Tutorial, Second Edition
(Society for Industrial and Applied Mathematics, 2000), URL http://dx.doi.
org/10.1137/1.9780898719505.

Cartwright, J., “Intel enters the third dimension”, Nature URL http://www.nature.
com/news/2011/110506/full/news.2011.274.html (2011).

Demmel, J., Applied Numerical Linear Algebra (Society for Industrial and Ap-
plied Mathematics, 1997), URL http://epubs.siam.org/doi/abs/10.1137/1.
9781611971446.

Falgout, R., “An Introduction to Algebraic Multigrid Computing”, Computing in
Science & Engineering 8, 6, 24–33, URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=1717312 (2006).

Hisamoto, D., W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson,
T.-J. King, J. Bokor and C. Hu, “FinFET-a self-aligned double-gate MOSFET
scalable to 20 nm”, (2000).

Huang, X. H. X., W.-C. L. W.-C. Lee, C. K. C. Kuo, D. Hisamoto, L. C. L. Chang,
J. Kedzierski, E. Anderson, H. Takeuchi, Y.-K. C. Y.-K. Choi, K. Asano, V. Sub-
ramanian, T.-J. K. T.-J. King, J. Bokor and C. H. C. Hu, “Sub 50-nm FinFET:
PMOS”, in “International Electron Devices Meeting 1999. Technical Digest (Cat.
No.99CH36318)”, pp. 67–70 (IEEE, 1999), URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=823848.

Kuhn, K. J., “Considerations for ultimate CMOS scaling”, URL http://apps.
webofknowledge.com.ezproxy1.lib.asu.edu/full_record.do?product=WOS&
search_mode=GeneralSearch&qid=3&SID=2F45Dg9TuwBOQ9P6D6H&page=1&doc=3
(2012).

Lundstrom, M. and R. Schuelke, “Modeling semiconductor heterojunctions in equilib-
rium”, Solid-State Electronics 25, 8, 683–691, URL http://www.sciencedirect.
com/science/article/pii/0038110182901952 (1982).

Saad, Y., Iterative Methods for Sparse Linear Systems (Society for Industrial and
Applied Mathematics, 2003), second edn., URL http://epubs.siam.org/doi/
abs/10.1137/1.9780898718003.

59

http://www.sciencedirect.com/science/article/pii/0038110181901210
http://www.sciencedirect.com/science/article/pii/0038110181901210
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6131469
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6131469
http://dx.doi.org/10.1137/1.9780898719505
http://dx.doi.org/10.1137/1.9780898719505
http://www.nature.com/news/2011/110506/full/news.2011.274.html
http://www.nature.com/news/2011/110506/full/news.2011.274.html
http://epubs.siam.org/doi/abs/10.1137/1.9781611971446
http://epubs.siam.org/doi/abs/10.1137/1.9781611971446
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1717312
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1717312
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=823848
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=823848
http://apps.webofknowledge.com.ezproxy1.lib.asu.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=2F45Dg9TuwBOQ9P6D6H&page=1&doc=3
http://apps.webofknowledge.com.ezproxy1.lib.asu.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=2F45Dg9TuwBOQ9P6D6H&page=1&doc=3
http://apps.webofknowledge.com.ezproxy1.lib.asu.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=2F45Dg9TuwBOQ9P6D6H&page=1&doc=3
http://www.sciencedirect.com/science/article/pii/0038110182901952
http://www.sciencedirect.com/science/article/pii/0038110182901952
http://epubs.siam.org/doi/abs/10.1137/1.9780898718003
http://epubs.siam.org/doi/abs/10.1137/1.9780898718003


Strang, G., Computational Science and Engineering, vol. 1 (Wellesley-Cambridge
Press, 2007), URL http://books.google.com/books?id=GQ9pQgAACAAJ&pgis=1.

Stüben, K. and J. W. Ruge, Algebraic Multigrid, chap. 4, pp. 73–130 (Society for
Industrial and Applied Mathematics, 1987), URL http://epubs.siam.org/doi/
abs/10.1137/1.9781611971057.ch4.

Trottenberg, U., C. W. Oosterlee and A. Schuller, Multigrid, vol. 20 (Academic Press,
2000), URL https://books.google.com/books?id=9ysyNPZoR24C&pgis=1.

Trottenberg, U., C. W. Oosterlee and A. Schüller, Multigrid (Academic Press, 2001),
URL http://books.google.com/books?id=-og1wD-Nx_wC.

Van Henson, E., “Multigrid methods for nonlinear problems: An overview”, SPIE
proceedings series pp. 36–48, URL http://cat.inist.fr/?aModele=afficheN&
amp;cpsidt=15283351 (2003).

Vasileska, D., S. M. Goodnick and G. Klimeck, Computational Electronics: Semi-
classical and Quantum Device Modeling and Simulation (CRC Press, 2010), URL
https://books.google.com/books?id=QV_MBQAAQBAJ.

60

http://books.google.com/books?id=GQ9pQgAACAAJ&pgis=1
http://epubs.siam.org/doi/abs/10.1137/1.9781611971057.ch4
http://epubs.siam.org/doi/abs/10.1137/1.9781611971057.ch4
https://books.google.com/books?id=9ysyNPZoR24C&pgis=1
http://books.google.com/books?id=-og1wD-Nx_wC
http://cat.inist.fr/?aModele=afficheN&amp;cpsidt=15283351
http://cat.inist.fr/?aModele=afficheN&amp;cpsidt=15283351
https://books.google.com/books?id=QV_MBQAAQBAJ

	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Technology Progress of FinFET Devices
	1.2 Need for Multi-scale Simulation
	1.3 Importance of a Fast Poisson's Equation Solver

	2 NUMERICAL APPROACHES FOR THE SOLUTION OF THE POISSON EQUATION FOR SPATIALLY VARYING PERMITTIVITY AND ON NON-UNIFORM MESH
	2.1 Poisson's Equation
	2.2 Iterative Methods
	2.3 Standard Multigrid Method
	2.4 Algebraic Multigrid Method
	2.5 Full Approximation Scheme
	2.6 Full Multigrid Method
	2.7 Summary of Various Multigrid Methods

	3 PHYSICAL MODEL OF COMMON-SOURCE AND COMMON-DRAIN FINFET DEVICES CONFIGURATION
	3.1 Geometry and Structures
	3.2 Mesh Spacing
	3.3 Simulation Results

	4 CONCLUSIONS

	REFERENCES


