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ABSTRACT 
 

A multitude of individuals across the globe suffer from hearing loss and that 

number continues to grow.   Cochlear implants, while having limitations, provide 

electrical input for users enabling them to “hear” and more fully interact socially 

with their environment.  There has been a clinical shift to the bilateral placement of 

implants in both ears and to bimodal placement of a hearing aid in the contralateral 

ear if residual hearing is present. However, there is potentially more to subsequent 

speech perception for bilateral and bimodal cochlear implant users than the electric 

and acoustic input being received via these modalities.  For normal listeners vision 

plays a role and Rosenblum (2005) points out it is a key feature of an integrated 

perceptual process.  Logically, cochlear implant users should also benefit from 

integrated visual input.  The question is how exactly does vision provide benefit to 

bilateral and bimodal users.  Eight (8) bilateral and 5 bimodal participants received 

randomized experimental phrases previously generated by Liss et al. (1998) in 

auditory and audiovisual conditions.  The participants recorded their perception of 

the input.  Data were consequently analyzed for percent words correct, consonant 

errors, and lexical boundary error types.  Overall, vision was found to improve 

speech perception for bilateral and bimodal cochlear implant participants.  Each 

group experienced a significant increase in percent words correct when visual input 

was added. With vision bilateral participants reduced consonant place errors and 

demonstrated increased use of syllabic stress cues used in lexical segmentation.  

Therefore, results suggest vision might provide perceptual benefits for bilateral 

cochlear implant users by granting access to place information and by augmenting 

cues for syllabic stress in the absence of acoustic input.  On the other hand vision did 

not provide the bimodal participants significantly increased access to place and 



	
  

	
   ii 

stress cues.   Therefore the exact mechanism by which bimodal implant users 

improved speech perception with the addition of vision is unknown.  These results 

point to the complexities of audiovisual integration during speech perception and the 

need for continued research regarding the benefit vision provides to bilateral and 

bimodal cochlear implant users.  
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OPERATIONAL DEFINITIONS 
 
 

Lexical Boundary Terms Defined: 

Words Correct   

The total number of words counted as correct.  “A” and “the” are used 

interchangeably. Adding an –s or –ed to the end of the target word is counted as 

correct unless the total number of syllables is altered. 

Percent Words Correct 

The percent of the total number of words presented within experimental phrases 

that were accurately perceived. 

Insert Strong Error Type 

A lexical boundary was inaccurately inserted before a strong syllable. 

Insert Weak Error Type 

A lexical boundary was inaccurately inserted before a weak syllable. 

Delete Strong Error Type  

A lexical boundary was inaccurately deleted before a strong syllable. 

Delete Weak Error Type 

A lexical boundary was inaccurately deleted before a weak syllable. 

Add Syllable Error  

Syllable(s) inaccurately added to the experimental phrase by the listener. 
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Delete Syllable 

Syllable(s) inaccurately deleted from the experimental phrase by the listener. 

Phonemic Resemblance Error Types: 

Error Types: 

-  Vowel 

-  Consonantal place 

-  Consonantal manner error 

-  Consonantal voice error 

-  Phoneme inserted in subject response 

-  Phoneme deletion in subject response 
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I. INTRODUCTION 
  

It may be posited that, to fully interact with our environment, all of our 

senses must be intact.  O’Donoghue (2013) specifically addresses hearing loss.  He 

writes “deafness impairs quality of life by relentlessly dismantling the machinery of 

human communication” (p. 1190).  But the environment is rife with multisensory 

converging and complimentary cues, and the human brain leverages usable senses 

to compensate for those that are lost. The utility of cochlear implants in addressing 

deafness is a testament to these facts. The relatively crude electrical impulses 

delivered by cochlear implants meld with all other sources of information in the 

brain and the environment to allow users to “hear” and communicate. Because of 

this interaction among the sensory input in the environment, the way this input is 

transmitted, and the resulting speech perception, there is much to be learned about 

the way cochlear implants restore communication abilities. 

 A particularly interesting question has to do with the recent clinical shift to 

providing cochlear implants to both ears, or bilaterally, rather than to just one.  This 

shift represents a response to research that has shown bilateral benefits (Dorman & 

Gifford 2010, van Hoesel 2012). van Hoesel (2012) states the benefit of bilateral 

cochlear implants relates to gains made in spatial hearing ability.  Specifically, the 

large effect of the head shadow can be used advantageously at either ear and offer 

improvements in localization.  In day-to-day listening, especially in environments 

with multi-talkers and non-speech noise this can be of significant benefit in 

affording the listener the ability to direct his attention to the auditory signal of 

choice. 
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In persons with one deaf ear and the other with some residual hearing, the 

trend now is to implant the deaf ear and optimally amplify hearing in the better ear.  

These patients are known as “bimodal” as they have electrical stimulation from the 

cochlear implant and acoustic stimulation to the better ear (Dorman & Gifford 2010, 

van Hoesel 2012).  Subjects fitted with a hearing aid in the contralateral ear benefit 

from the addition of low-frequency information that is generally poorly coded by the 

implant.  Such low-frequency information can offer significant advantages in terms 

of pitch discrimination and speech perceptibility (van Hoesel 2012).   Low-frequency 

input contributes power to speech and the pitch information provides a benefit in 

terms of rhythm and prosodic contour.   

 The question becomes what other inputs are available to the listener.  For 

normal listeners vision plays a role in the perception of speech.  Rosenblum (2008) 

points out “virtually any time we are speaking with someone in person, we use 

information from seeing movement of their lips, teeth, tongue, and non-mouth facial 

features, and likely have been doing so all our lives” (p.405).  Rosenblum (2005) also 

notes that visual information is not just an additional piece of information in speech 

perception, but rather a key feature of a multisensory integrated process.  Grant, 

Tufts, & Greenberg (2007) state during face-to-face communicative events, the 

listener extracts and integrates information from both the acoustic and optic speech 

signals.  Integration takes place within the auditory modality, across the acoustic 

frequency spectrum, and across sensory modalities, including the optic and acoustic 

signals.  It would follow that cochlear implant users would benefit from visual input 

as well.   
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This study aimed to determine what kind of benefit to speech perception is 

provided to bilateral and bimodal cochlear implant users with vision.  To make this 

determination, specific measures were examined.  These measures included:  a) 

percent words correct b) consonant errors and c) lexical boundary errors.  These  

were chosen because of their relevance to overall speech perceptibility. Importantly, 

the analysis of errors allows us to identify potential sources underlying the overall 

intelligibility scores. 

Word recognition is paramount in speech recognition.  By recognizing 

individual words, individuals are able to determine the parts that make up the 

whole.  The measure of percent words correct provides a straightforward metric 

indicating how easy or difficult speech is to perceive.  In this study, it was 

hypothesized that bilateral and bimodal participants will benefit from the addition 

of visual information and this will result in an increased percent words correct for 

both groups.  But finding that vision helps does not inform the question of how 

vision helps.  Figuring out clues to the “how” requires a look at both what listeners 

were able to get right and what they got wrong. 

One error analysis measure that was used to address the question of how 

vision helps is the examination of consonant errors.  Specifically, what is the 

phonemic relationship between a misperceived word and the correct target with 

regard to place, manner, and voice?  

This is important when one considers the potential impact of hearing loss on 

the perception of consonants.  In a study conducted by Grant, Tufts, & Greenberg 

(2007) hearing-impaired listeners were unable to extract as much information on a 

consonant recognition task in auditory-only conditions when compared to normal-
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hearing listeners.  This comes as no surprise considering the degradation of the 

auditory signal hearing-impaired listeners experience.   

Given the fact consonants are generally perceived as discrete linguistic 

segments that can be defined as combinations of distinctive binary features it is 

possible to examine consonants and take a closer look for error patterns.  The 

behavior of the articulators in terms of whether airflow is continuous or periodic, the 

manner in which the articulators produce restriction, and the place within the oral 

cavity where the constriction is produced (Svisrky et al. 2011) can all be accessed. 

Of the three features, manner, voice, and place, the most visible by far is 

place of articulation.  Manner and voicing mostly involve unseen structures 

including the velopharyngeal port and the larynx and generally are not transmitted 

well visually or require a trained eye.  However, Grant, Tufts, & Greenberg (2007) 

note that place cues are transmitted well visually for hearing-impaired subjects, and 

these subjects performed at the same level as normal-hearing subjects during visual-

only trials.  They concluded that hearing-impaired listeners were able to overcome 

deficits with regard to auditory place information by using visual cues.   

It stands to reason that bilateral and bimodal cochlear implant users might 

also exhibit improvement in parsing out consonantal place cues during speech 

perception tasks with the addition of vision as well. It is therefore hypothesized that 

if bilateral and bimodal cochlear implant participants are using the visual 

information available, their perceptual errors will share the same place of 

articulation as the target consonants.  And if this is the case, we can conclude that 

part of the increase in percent words correct with the addition of vision can be 
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attributed to the visibility of place of articulation in bilateral and bimodal cochlear 

implant users. 

The second error analysis measure for this study focuses on the fact speech 

perception is not just about getting the phonemes correct.  Rather, it means taking 

the continuous acoustic signal and figuring out where one word ends and another 

begins.  When speech is clear and easy to understand this is a simple task because 

the string of words is actually heard.  But when speech input is degraded, as is the 

case for cochlear implant users, listeners often have to work to find the boundaries 

between words.   

Therefore, lexical segmentation measures were examined based on a model 

for speech perception called Metrical Segmentation Strategy (Cutler and Butterfield 

1992; Cutler and Norris 1988; Liss et al. 1998) that indicates the ability to lexically 

segment connected speech is an important component in the perceptibility of speech.  

According to this model and subsequent support, listeners use syllabic strength to 

parse the acoustic stream they are receiving into recognizable words.  In particular, 

listeners pay attention to the juxtaposition of strong and weak syllables.    

According to Liss et al. (1998) Cutler and Carter (1987) have found support 

for this model in the statistical probabilities of syllabic strength within the English 

language.  They found word-initial syllables and single-syllable words are associated 

with strong syllables.  Furthermore, according to Liss et al. (1998) Cutler and Carter 

(1987) reported that these words are most commonly open-class words such as 

nouns, adjectives, and verbs whereas weak syllables are most commonly associated 

with second syllable placement or closed-class words such as pronouns and articles. 



	
  

	
   6 

Cutler and Carter (1987) approximated 90% of English content words found 

in conversational speech have a strongly stressed syllable at the beginning of the 

word.  Metrical Segmentation Strategy thereby postulates that communicative 

members should treat the strongly stressed syllable as though it was the beginning 

of the word (Cutler & Norris 1988).  Participants paying attention to lexical cues and 

implementing lexical segmentation strategies will primarily have more insert before 

strong than insert before weak errors.  

In testing, it was found that the pattern of errors committed by listeners was 

of a certain character if they recognized strong syllables at word onset.  Specifically, 

listeners were predisposed to insert lexical boundaries before strong syllables.  It is 

also predicted that there would be a greater likelihood of deleting lexical boundaries 

before weak syllables (Cutler and Butterfield 1992; Liss et al 1998).  According to 

Smith et al. (1989) this pattern of results suggests that listeners do attend to strong 

syllables and their robust acoustic cues.  For this study, the impact of vision on 

participant’s ability to attend to lexical cues was examined.  It is hypothesized that 

vision would augment both bilateral and bimodal cochlear implant users’ ability to 

access these lexical cues and promote lexical segmentation.  If this is happening 

there would be an increased likelihood that participants would insert lexical 

boundaries before strong syllables as opposed to inserting lexical boundaries before 

weak syllables and have more deletions before weak syllables than strong.  

In summary it is hypothesized that for both bilateral and bimodal cochlear 

implant users vision will benefit speech perception as evidenced by an increased 

percent words correct.  If this increase is because of better place of articulation 

information consonant errors will include greater consonant place accuracy.  If the 
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increase is because of better cues to syllabic stress lexical boundary errors will be of 

the predicted variety. 

 

II. METHODS 

 

A. Participants 

 

Thirteen (13) participants with cochlear implants participated in the 

experiment.  Participants were recruited from within Arizona and from other states 

including North Carolina, Minnesota, Texas, Florida, and Ohio.  Eight (8) 

participants were bilaterally implanted.  Within this group there were 3 females and 

5 males ranging in age from 21 to 87 years of age.  The 8 bilateral participants had 

an average age of 61.  All participants but 1 have had implants for at least 2 years, 

with implant dates ranging from 2002 to 2011.  One (1) participant had the first 

implant in 2008, but the second cochlear implantation wasn’t implanted until 2013.  

Five (5) participants had bimodal input from both a cochlear implant and hearing 

aid.  All bimodal participants were female, range in age from 57 to 83 years of age, 

and have an average age of 68.  Bimodal participants’ implantation dates ranged 

from 1998 to 2007. 

B. Speech Stimuli 

 

Experimental phrases previously generated by Liss et al. (1998) were 

presented to each subject.  Each experimental phrase contained three to five words 

and consisted of six syllables with alternating stress.  One hundred and sixty (160) 

experimental phrases were used in the study (see Appendix A).  Half the phrases 
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contained a strong-weak syllabic stress pattern (e.g., balance clamp and body) and 

the other half of the phrases contained a weak-strong syllabic stress pattern (e.g., 

create her spot of art).  The phrases were semantically anomalous but syntactically 

plausible.  All experimental phrases were presented to the participants via an adult 

male talker.  For the audiovisual condition, video of the adult male talker along with 

the audio signal was presented to the participants.   Video presentation of stimuli 

occurred via a computer monitor placed immediately in front of participants at a 

standardized viewing distance.   

C. Procedure 

 

Testing was completed in a double-walled sound booth at the Speech and 

Hearing Sciences Department, Arizona State University, between January 2014 and 

September 2014.  All subjects, bilateral and bimodal, completed a short practice 

session.  During the practice session, participants were presented with experimental 

phrases similar in composition to those used during the experiment.  Participants 

were presented with practice stimuli in both audio only and audiovisual 

presentation.  Further, the signal-to-noise ratio for each participant was identical to 

the signal-to-noise ratio used during actual experimentation. Participants sat at a 

distance of 3 feet from the computer monitor used for concurrent visual 

presentation.  Auditory input in both auditory and audiovisual conditions was 

presented at 60 decibels of sound pressure level. 

During the experiment each subject was presented with all 160 experimental 

phrases.  Phrases were divided into 8 blocks of 20 phrases.  Each block consisted of 

10 strong-weak syllabic stress pattern phrases and 10 weak-strong syllabic stress 
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pattern phrases.  Four (4) blocks of 20 phrases were presented with auditory-input 

only and 4 blocks of 20 phrases were presented with auditory and visual input.  The 

order of presentation of auditory-input only phrase blocks and auditory-visual input 

phrase blocks was randomized.   All 160 experimental phrases were presented to 

each subject in one setting. 

In order to identify the sources of intelligibility benefit, it was necessary to 

generate error responses for analysis.  To accomplish this and avoid a potential 

ceiling effect, multi-talker babble noise was used to mask the experimental phrases.  

Speech intelligibility scores were first obtained using AzBio sentences.  According to 

Dorman et al. (2013) these are sentences that were developed as an alternative to 

conventional and well-known sentence test materials.  Sentences are of an 

equivalent difficulty level and for use in the evaluation of performance over time and 

across conditions (Spahr et al., 2012).  Since the experimental phrases used are 

semantically anomalous but syntactically plausible and the AzBio sentences are 

syntactically and semantically plausible the signal-to-noise ratio (SNR) was 

consequently adjusted.  The SNR for experimental phrases targeted approximately 

30% intelligibility as a baseline.  For bimodal subjects, the SNR was between           

+3decibel(dB) and +15dB.  Bilateral listeners had an SNR between +3dB and +10dB.   
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Individual SNR values can be found in following tables: 

                       Table 1:  Bilateral Subject SNR 

BL1 +5dB 
BL2 +7dB 
BL3 +3dB 
BL4 +5dB 
BL5 +6dB 
BL6 +10dB 
BL7 +4dB 
BL8 +4dB 

 

                       Table 2:  Bimodal Subject SNR 

BM1 +7dB 
BM2 +6dB 
BM3 +6dB 
BM4 +15dB 
BM5 +3dB 

	
  

	
  

D. Data Analysis 

 

 The total data set consists of 13 participant files (8 bilateral and 5 bimodal).  

Each participant file has 160 experimental phrases (80 strong-weak stress; 80 weak-

strong stress).   All experimental phrases (2080 total phrases) were analyzed and 

then re-analyzed for multiple measures.  These measures included three subsets of 

analysis, total words correct, lexical segmentation and phonemic resemblance.   

Lexical segmentation measures included:  total words correct, percent words 

correct, insert before strong, insert before weak, delete before strong, delete before 

weak, delete syllable, and add syllable.  Lexical segmentation examples are included 

below. 
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Table 3:  Lexical Segmentation Examples 

LEXICAL BOUNDARY 

TYPE 

TARGET PHRASE PARTICIPANT 

RESPONSE 

Words Correct  balance clamp and bottle balance clamp and body 

(3 words correct) 

Inserting Strong   account for who could 

knock 

a count for who could 

knock 

Inserting Weak   balance clamp and 

bottle 

balance clamp and bought 

her 

Delete Strong   frame her seed to 

answer 

frame herself to answer 

Delete Weak   bush is chosen after gorgeous chosen after 

Add Syllable  pooling pill or cattle worry wool a chemical 

Delete Syllable constant willing walker constant willing walk 

 

Response words that were analyzed for phonemic resemblance and analyzed 

for consonant errors included those without lexical boundary errors, syllable 

deletions, or syllable additions.  Not meeting these indices would have precluded the 

response words from meeting strict predetermined qualifiers necessary for a 

response word to be considered phonemically resemblant to the target word. 

In order for a response word to qualify as being phonemic resemblant to a 

target word specific predetermined criteria had to be met.  For 1-syllable target 

words with more than 3 phonemes, the subject response word was considered 
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phonemically resemblant to the target word if at least 50% of target phonemes were 

correctly identified.  When a 1-syllable word only had 3 phonemes, the subject 

response word needed to only have 1 correct phoneme.  Participant responses to 2-

syllable words had to contain the correct number of syllables and at least 50% of the 

phonemes in the target word had to be matched in order for the word to be 

considered phonemically resemblant.   

 Participant response words that were judged to be phonemically resemblant 

per the above stated criteria were then analyzed with regard to the specific 

phonemes that comprised the target word and consequent response.  Phonemic 

resemblance analysis included various measures including the total number of 

phonemes and the amount of correct phonemes for applicable words within 

experimental phrases.   Next, the type of error was recorded.  Error types included:  

vowel, consonantal place, consonantal manner, consonantal voice, extra phoneme 

insertion, and phoneme deletion.  While data were acquired for all error types, only 

consonant errors were examined in this study. 
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Table 4:  Phonemic Resemblance Error Examples 

PHONEMIC 

RESEMBLANCE 

EXAMPLES 

TARGET WORD PARTICIPANT 

RESPONSE 

Error Vowel (EV) shape sheep 

Error Place (EP) lead league 

Error Manner (EM) log dog 

Error Voice (EV) hat bat 

Phonemic Insertion (PI) age page 

Phonemic Deletion (PD) treats trees 

 

It was possible for a participant response to have more than one word 

phonemically resemblant within a target phrase.  In the following example two of 

the three words in the target phrase are inaccurately perceived by the participant 

but are also phonemically resemblant.    

Target:  darker painted baskets 

Response:  farther pizza caskets 

It was also possible for a single response word to have more than one error 

and still be considered phonemically resemblant.  In the following example the 

subject response word did just that.  In this particular response the subject response 

contained a phonemic insertion error as well as a vowel error. 
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Target:  oyster 

Response:  poster 

Finally, it was also possible for a single incorrect phoneme provided in the 

participant response to fall within multiple phonemic error categories.  In the 

following example, the participant substituted [k] for [n] and consequently had a 

single error that spanned three categories, consonantal place, consonantal manner, 

and consonantal voicing. 

Target:  stain  

Response:   stake 

 After all participant data were analyzed on word correct, lexical error, and 

phonemic error measures, analysis focused on group data for both the bilateral and 

bimodal subject sets separately.  For each group, total words correct, percent words 

correct, lexical-boundary error ratios, and consonantal feature errors were evaluated 

and will be discussed later in the results section. 

E. Reliability 

 

 All subject files were analyzed a second time by the original coder (intra-

judge).  Twenty five percent of subject files were randomly selected and analyzed by 

a second trained judge (inter-judge) to obtain reliability estimates for the coding 

aspect of analysis.  Inter-judge agreement between the first judge using the 

reanalyzed data set and the set analyzed by the second trained judge was high and 

is noted below. 
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Table 5:  Bilateral Data Coding Analysis Reliability – Inter-judge 
Percent Agreement 

Total 
Words 

Correct 
 

Lexical 
Boundary 

Errors 
 

Consonantal 
Phonemic 

Resemblance 
98.13% 

 
99.30% 

 
97.29% 

 

Table 6:  Bimodal Data Coding Analysis Reliability – Inter-judge 
Percent Agreement 

Total 
Words 

Correct 
 

Lexical 
Boundary 

Errors 
 

Consonantal 
Phonemic 

Resemblance 
99.50% 

 
99.38% 

 
97.00% 

 

 

III. RESULTS 

 

Figure 1 reflects the percent of the total number of words in experimental phrases 

each bilateral cochlear implant participant was able to accurately perceive.   This 

value is further delineated for each subject in terms of the percent of the total 

number of words correct for both the audio-only condition and the audiovisual 

condition.  As a group the bilateral users were able to accurately identify 37.3% of 

the words in target phrases without vision and 54.8% of those words with vision.  A 

one-tailed t-test was performed comparing the percent of the total number of words 

in experimental phrases that were correctly perceived in the auditory-only and 

audiovisual conditions for each subject.  For this analysis a one-tailed t-test was 

utilized because it was believed vision would not have the effect of reducing 

performance and all subjects had more words correct when vision was added to the 

audio signal.  There was a significant effect for vision, t(7) = -9.75, p<.001.  Thus, 

bilateral cochlear implant listeners were significantly more apt to correctly perceive 
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words in experimental phrases when a visual signal was provided compared to when 

an auditory signal alone was given.   

Figure 1: Bilateral Subjects – Percent Words Correct 

	
  
	
  	
  

	
  

Figure 2 reflects the percent of the total number of words in experimental phrases 

each bimodal cochlear implant participant was able to correctly perceive.   Further, 

this value is delineated for each subject in terms of the percent of the total number 
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audiovisual conditions for each subject.  Again, all bimodal participants had shown 

in increase in the number of words correct when vision was added so interest was 

only in whether this effect was significant in this direction.  There was a significant 

effect for vision, t(4) = -4.95 , p<.01. Thus, bimodal cochlear implant listeners also 

were significantly more apt to correctly perceive words in experimental phrases 

when a visual input was added to the auditory input.  

 

Figure 2:  Bimodal Subjects – Percent Words Correct 
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(t(7) = 1.005, p>.01 ); and a significantly greater proportion of voicing errors with 

vision (t(7) = -3.2765, p<.01)  Thus, for bilateral participants, the addition of vision 

only benefitted place of articulation for consonants. 

 

Figure 3:  Bilateral Consonantal Feature Analysis 

     
 

Figure 4 reflects the percent of each type of consonant error (place, manner, voice) 

relative to the total number of consonantal errors committed by the bimodal cochlear 

implant participants.  Results for place were not significant, (t(4) = 0.4, p>.05).  

Similarly, manner (t(4) = 0.87, p>.05) and voicing (t(4) = -0.35, p>.05) features did 

not benefit from the addition of vision for these participants. Thus, there is not a 

significant difference in consonant errors for each subtype between bimodal cochlear 

implant users using only an auditory signal versus having audiovisual input.  
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Figure 4 – Bimodal Consonantal Feature Analysis 

         
 

 

Figure 5 reflects ratios indicative of specific types of lexical boundary errors 
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errors is of interest as it is predicted to support the hypothesis.  The strength of 

agreement and support for participants utilizing Metrical Segmentation Strategy 
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cochlear implant users not integrating a visual signal had insertion errors 1.66 

times more often before a strong syllable than a weak one and insertion errors 2.1 

times more often before a strong syllable than a weak one with the addition of visual 

input.  Without vision deletion errors occurred 0.23 times more often before a weak 

syllable than a strong one and with vision they occurred 0.42 times more often 

before a weak than strong syllable.   

A nonparametric goodness-of-fit Chi-square analysis comparing the four error type 

rates (insert before strong, insert before weak, delete before strong, and delete before 

weak) used in error ratios was performed, comparing error type rates for participant 

responses without vision and with vision.  There was a significant effect,                  

Χ2 (3, N=285) = 8.83, p= 0.032 indicating error-rate values were drawn from two 

different populations.   While bilateral cochlear implant users did attend to lexical 

segmentation cues with and without vision, the addition of visual input enhanced 

participant attendance to lexical cues in support of Metrical Segmentation Strategy.  

Table 7:  Bilateral Subjects – Total Lexical Boundary Errors by Type  

 Insert Strong Insert Weak Delete Strong Delete Weak 

Audio Only 118 71 78 18 

With Vision 105 50 50 21 
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Figure 5:  Bilateral Subjects – Lexical Boundary Error Ratios 
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boundaries, the addition of vision did not result in a different pattern of lexical 

boundary errors. 

 

Table 8:  Bimodal Subjects – Total Lexical Boundary Errors by Type  

 Insert Strong Insert Weak Delete Strong Delete Weak 

Audio Only 101 56 30 9 

With Vision 59 34 21 9 
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IV. DISCUSSION AND CONCLUSION 

 

 The present study investigated how the addition of vision augments 

information received via auditory and electrical inputs in bilateral and bimodal 

cochlear implant participants.  Specifically, this impact was measured across three 

markers of perceptibility:  percent words correct, frequency of consonant errors, and 

lexical boundary errors.  

It was hypothesized that both bilateral and bimodal participants would have 

benefit from the addition of vision and the overall percent words correct would 

increase.  Further, it was hypothesized if the reason was because vision added 

consonant place information then errors in this regard would be reduced.  And 

finally, it was hypothesized if vision granted access to prosodic information, lexical 

errors would follow certain patterns.   

In addressing the first hypothesis, we confirmed that vision significantly 

benefits speech perception for both bilateral and bimodal cochlear implant users.  

When vision was added both bilateral and bimodal cochlear implant users were able 

to more accurately transcribe whole words in phrases.  All participants 

demonstrated this gain in percent words correct and it was significant at the group 

level for both.  The magnitude of benefit between bilateral and bimodal cochlear 

implant participants was not significantly different (F(1,11)=000, p=.999) 

  MacLeod and Summerfield (1987) point out that most individuals find it 

easier to hear and understand speech when they can see whomever is talking.   

Rouger, J. et al. (2009) point out that single cochlear implant users maintain a 

robust level of speech, or lip reading.  This finding is true even after multiple years 
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of cochlear implant use and electric signal integration. But the question remains 

was there more going on in terms of vision granting access to place and lexical cues. 

Further, the question remains did percent words correct improve for the 

same reasons regarding each group of cochlear implant users?  Recall that the 

bilateral participants have implants in both ears and are only receiving electrical 

input.  They appear to show benefit from vision.  With visual input the frequency of 

consonant place errors was significantly reduced.  

Bilateral cochlear implant users also demonstrated a reliance on syllabic 

stress cues for lexical segmentation in support of Metrical Segmentation Strategy.  

It postulates that the highest number of errors will be insertions before strong 

syllables and that was the case both with and without vision.  Although deletion 

errors did not follow the predicted pattern both with and without vision there were 

relatively few deletion errors overall and these errors are not the primary marker of 

Metrical Segmentation Strategy.  Most importantly, and robustly, listeners tended 

to treat strong syllables as word onsets when they made errors.  And of significance 

is the fact that when vision was added this tendency increased.  This suggests there 

is something in the visual signal that improves identification of strong syllables and 

these listeners used this information. 

In summary, vision improved speech perception for bilateral cochlear implant 

users.  This gain occurred because of two reasons as evidenced by the error analysis 

data.  For one, visual cues provided increased access to place of articulation.  And 

finally visual cues provided information regarding syllable strength. 
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Recall, bimodal cochlear implant users have a more diverse input than 

bilateral users.  Bimodal users have electric input in one ear and acoustic input via a 

hearing aid in the other.  In this regard they are already potentially integrating an 

electric and auditory signal.  Regarding place cues, bimodal cochlear implant users 

did not show any place of articulation benefit with vision.  Additionally, there was 

not a significant reduction in manner or voice errors as well. 

However, it is worth noting that there was high variability between bimodal 

participants’ performance.  This is not surprising considering a greater skill level 

regarding the integration of auditory and visual cues, or higher integration 

efficiency, will almost lead to improved performance in auditory-visual tasks (Grant, 

Tufts, & Greenberg 2007; Grant, Walden, and Seitz, 1998).  And it is assumed that 

efficient integrators are better at using cues from multiple sources in speech 

recognition tasks (Grant, Walden, and Seitz, 1998).  It might just be in this instance 

that some bimodal cochlear implant users are more efficient at integrating all input 

signals, including vision, electric, and acoustic inputs. 

Bimodal cochlear implant users did use syllabic stress to identify word 

boundaries with and without vision.  But, bimodal cochlear implant users did not 

demonstrate an improved access to these prosodic cues in support of Metrical 

Segmentation Strategy with the addition of visual input.  This is evidenced by the 

fact lexical boundary error distributions did not significantly differ between the 

audio and audiovisual data sets.  In fact, the ratio of insert strong errors to insert 

weak errors was almost identical with and without the addition of visual input for 

bimodal users. 
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In summary and in reference to the original hypotheses outlined in this study 

bimodal cochlear implant users did have improved speech perception as 

demonstrated by increased words correct with the addition of vision.  However this 

improvement is not attributable to place of articulation information.  Nor is it the 

case the improvement in percent words correct is attributable to syllable strength 

information as outlined by Metrical Segmentation Strategy.  This raises questions as 

to what might be the source of improvement. 

It might be the case that their access to acoustic information renders the 

addition of visual information less important for low-level processing such as 

phoneme identification and lexical segmentation.  It is reasonable to hypothesize 

this might in fact be due to the bimodal cochlear implant users already getting 

additional acoustic input from the hearing aid that washes out any effect vision 

might have on perceptibility.  Studies have shown that the additional low-frequency 

speech signals provided by the hearing aid in bimodal cochlear implant users 

provide prosody cues and help with the perceptual organization of the signal 

generated by the cochlear implant (Cullingham & Zeng 2011; Nittrouer & Chapman 

2009).  That is, bimodal cochlear implant users do not need to access the same 

lexical segmentation strategies that bilateral cochlear implant users do because the 

auditory input is more robust. Jang et al. (2014) also point out that pitch and fine 

temporal structure low-frequency information can be ascertained from residual 

hearing via acoustic amplification.   

Perhaps visual information simply reinforces the acoustic input they are 

already receiving via the hearing aid to result in improved performance.  Or it might 

be the case, as eluded to earlier, that there is just too much variability in 
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performance, especially given the small sample size of the bimodal cochlear implant 

users.  This is an important point in this study.  Due to high subject-response 

variability and the overall small bimodal participant sample size relatively low 

power was achieved during statistical analysis of bimodal participant data.  

However, if the differences regarding how bilateral and bimodal cochlear 

implant users are able to improve speech perceptibility as demonstrated through 

measures such as percent words correct are replicated in future studies and deemed 

real, they suggest a more complex relationship among acoustic and visual cues in 

speech perception than previously believed.   

In future studies a larger sample size should be acquired.  Additionally, to 

vest out the potentially complicated interaction of vision and acoustic input other 

possible sources of improved intelligibility granted by vision should be explored.  

Such measures might include lip-reading ability and general problem-solving ability 

with acoustically degraded signals such as those experienced by bilateral and 

bimodal cochlear implant users.  
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APPENDIX A 
 

EXPERIMENTAL PHRASES 
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              Phrases 
 

Strong-Weak Weak-Strong 
absent fields did morning a reason guests contained 

age of centered wagons 
account for who was 
knocked 

ancient leading students address her meeting time 
balance clamp and bottle admit the gear beyond 
birth the notice symbol advance but sat appeal 
bolder ground from justice afraid beneath demand 
both enjoyed was processed allow assured remains 
bush is chosen after alone become restrained 
butcher shook the middle amend estate approach 
cheap control in paper and spoke behind her sin 
closer showing metal appear to wait or turn 
constant willing walker arrived had land can scale 
cool the jar in private assume to catch control 
darker painted baskets attack became concerned 
deep conceived the feature attend the trend success 
defend years to something avoid or beat command 
distant leaking basement award his drain away 
done with finest handle aware reviewed such trees 
drove arrive the other before his wish was strong 
during pattern programs begins excess is near 
each informed from flowers begun his crown belief 
figure proves from normal beside a sunken bat 
force of focus moment career despite research 
form object with knowing commit such used advice 
fort believed such orders compare events of bank 

frame her seed to answer 
complete it thought or 
troops 

friendly moon was sectioned conduct ideal had songs  
functions aim his acid confused but roared again 
headed wheels with stories connect the beer device 
higher patient concept create her spot of art 
hold a page of fortune debate reply was mean 
housing drawn in samples define respect instead 
hundred printed license degree prevents from games 
kick a tad above this depend is longer sound 
lake is pressure sofa derived extent with streets 
listen final station desire can bar accept 
mark a single ladder detail require such risk 
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mate denotes a judgement direct can sweet extreme 
may the same pursued it divide across retreat 
measure fame with legal effect his wage but stood 
mister types is fashion embark or take her sheet 
mode campaign for budget extend but please his stones 
model sad and local for coke a great defeat 
motion double garden forget the joke below 
music useful rising had eaten junk and train 
narrow seated member had value plants to mind 
now return can money her owners arm the phone 
orders fairly level improve in driving cloud 
pain can follow agents increase a grade sedate 
passing plus a factor indeed a tax ascent 
people bought such minor intense perfects such coasts 
pick a chain for action its harmful note abounds 
plan reduced its setting itself a band provides 
plenty please or causes mistake delight for heat 
pooling pill or cattle obtain contracts from tasks 
push her equal culture or spent sincere aside 
question major nature perceive sustained supplies 
rampant boasting captain permits achieved but lied 
resting older earring present relief among 
rhythm under artist recall had future through 
rocking modern poster regards because had class 
rode the lamp for teasing remove and name for stake 
round and bad for carpet required attempt maintain 
rowing farther matters secure but lease apart 
seat for locking runners submit his cash report 
sight about this deeper suggest its price reserve 
signal breakfast pilot support with dock and cheer 
sinking rather tundra technique but sent result 
spackle enter broken this daughter presence rules 
speaking clear is power to sort but fear inside 
stable wrist and load it transcend almost betrayed 
target keeping season unique exchange in holes 
tension known from 
pleasure unless escape can learn 
thinking charged the 
hearing unseen machines agree 
thrown had special office around without such roads 
truth improved in shelters assign exists perhaps 
vital seats with wonder exam of joy began 
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wanted find the finger refer to good from league 
weather pure was surfaced refused percent to goal 
world repeats with feelings surprise was might between 

 


