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ABSTRACT 

 

The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is essential for the innate 

immune response to danger signals. Importantly, the NLRP3 inflammasome responds to 

structurally and functionally dissimilar stimuli. It is currently unknown how the NLRP3 

inflammasome responds to such diverse triggers. This dissertation investigates the role of ion flux 

in regulating the NLRP3 inflammasome. Project 1 explores the relationship between potassium 

efflux and Syk tyrosine kinase. The results reveal that Syk activity is upstream of mitochondrial 

oxidative signaling and is crucial for inflammasome assembly, pro-inflammatory cytokine 

processing, and caspase-1-dependent pyroptotic cell death. Dynamic potassium imaging and 

molecular analysis revealed that Syk is downstream of, and regulated by, potassium efflux. 

Project 1 reveals the first identified intermediate regulator of inflammasome activity regulated by 

potassium efflux. Project 2 focuses on P2X7 purinergic receptor-dependent ion flux in regulating 

the inflammasome. Dynamic potassium imaging revealed an ATP dose-dependent efflux of 

potassium driven by P2X7. Surprisingly, ATP induced mitochondrial potassium mobilization, 

suggesting a mitochondrial detection of purinergic ion flux. ATP-induced potassium and calcium 

flux was found to regulate mitochondrial oxidative signaling upstream of inflammasome assembly. 

First-ever multiplexed imaging of potassium and calcium dynamics revealed that potassium efflux 

is necessary for calcium influx. These results suggest that ATP-induced potassium efflux 

regulates the inflammasome by calcium influx-dependent mitochondrial oxidative signaling. 

Project 2 defines a coordinated cation flux dependent on the efflux of potassium and upstream of 

mitochondrial oxidative signaling in inflammasome regulation. Lastly, this dissertation contributes 

two methods that will be useful for investigating inflammasome biology: an optimized pipeline for 

single cell transcriptional analysis, and a mouse macrophage cell line expressing a genetically 

encoded intracellular ATP sensor. This dissertation contributes to understanding the fundamental 

role of ion flux in regulation of the NLRP3 inflammasome and identifies potassium flux and Syk as 

potential targets to modulate inflammation. 
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CHAPTER 1: INTRODUCTION 

The innate immune system protects the host against acute insult by rapidly responding to 

external and internal danger signals. To do this, professional immune cells detect signatures of 

danger and engage an amplifying inflammatory cascade, resulting in an infiltration of additional 

immune cells to the site of damage or infection. Aulus Cornelius Celsus first defined the clinical 

manifestations of the inflammatory response in his 1st century AD treatise De Medicina as the four 

cardinal signs of inflammation: calor (heat), rubor (redness), tumor (swelling) and dolor (pain) 

(Medzhitov 2010). These signs were modified almost two millennia later by Rudolph Virchow in 

late 1858 to include functio laesa (loss of function) (Medzhitov 2010). It wasn’t until the late 1940s 

when the mechanism of the inflammatory response to infection started to garner attention that 

refinement of the definition of inflammation began (Dinarello 1984). The symptoms of 

inflammation were originally, and controversially, attributed to putative factors produced during 

the acute phase of infection such as endogenous pyrogen and lymphocyte activating factor 

(Dinarello 1984). This was more generally classified as interleukin-1 (IL-1) later, and was thought 

to possibly consist of multiple soluble factors (Dinarello 1984). IL-1 as a specific, master pro-

inflammatory cytokine was not molecularly identified as the cause of these effects until 1984 and 

the subsequently purified interleukin-1β (IL-1β) has since been implicated as the molecular driver 

in an expanding category of infectious and sterile pathologies (Auron et al. 1984; Dinarello 1984; 

March et al. 1985). 

This chapter describes the history, structure and function of inflammasomes, and the 

cellular machinery responsible for translating the detection of sterile and pathogenic stimuli into 

pro-inflammatory IL-1 signaling. Also described is the current understanding of how 

inflammasomes are regulated, as it is still unknown how the same pathway can detect the 

massive and diverse array of stimuli associated with IL-1 signaling. Further, the phenotypic 

outcomes of inflammasome activation is described, including the cell fate decisions of 

orchestrating cells as well as the cells receiving the end-point signals. The discussion of 

phenotypes associated with IL-1 signaling is continued by describing the clinical relevance to the 

host, including both stimulus-associated activation and genetic dysregulation of the 
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inflammasome. The chapter concludes with a description of open questions in inflammasome 

biology investigated during the course of this dissertation work and the specific contributions of 

this work. 

 

1.1. DISCOVERY OF THE INFLAMMASOMES 

Macrophages are central to engaging the pro-inflammatory response of the innate immune 

system. Macrophages are bone marrow-derived professional phagocytes that engulf and digest 

pathogens, particles and debris from the tissues in which they reside. Functionally, macrophages 

contribute to host survival in two ways: (1) enabling pathogen clearance by promoting 

inflammation and (2) mediating tissue repair by suppressing inflammation. Classically activated, 

or M1 macrophages are polarized by exposure to cytokines such as interferon gamma (IFNγ), 

tumor necrosis factor (TNF) or bacterial components such as lipopolysaccharide (LPS) (Mosser 

and Edwards 2008). M1 macrophages promote inflammation by the production and release of 

cytokines such as IL-1β, IL-12 and TNF as well as reactive oxygen (ROS) and nitrogen (RNS) 

species (Mosser and Edwards 2008). Alternatively activated, or M2, macrophages are polarized 

by exposure to IL-4, IL-10, IL-13 and TGFβ (Mosser and Edwards 2008). M2 macrophages are 

anti-inflammatory and promote tissue growth, extracellular matrix repair and angiogenesis by 

production and release of IL-4, IL-10, transforming growth factor beta (TGFβ), vascular 

endothelial growth factor (VEGF) and matrix metallopeptidase 9 (MMP9) (Mosser and Edwards 

2008). 

Essential to mounting an appropriate response to potentially dangerous stimuli is the 

ability for classically activated macrophages to integrate diverse signals into a generalized 

inflammatory response. The method that macrophages canonically engage to unify these diverse 

signals is the assembly and activation of the inflammasome, a multi-protein caspase-1-activating 

platform that results in, among other pro-inflammatory molecules, the maturation and release of 

IL-1β. 

The processing and release of IL-1β under various chronic and acute pathological 

conditions has been a topic of intense investigation since its molecular identification in 1984. 
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Early work identified the lack of a secretion signal sequence in IL-1β, raising questions about the 

peculiarity of its processing pathway (March et al. 1985). Subsequently, it was found that the 

processing of immature IL-1β to bioactive IL-1β was due to the activity of a uniquely specific 

protease, though the identity of the protease remained unknown (Black, Kronheim, and Sleath 

1989; Kostura et al. 1989). In 1992, the purification and cloning of the protease responsible for IL-

1β maturation was achieved and the protease identified was called the interleukin-1β-converting 

enzyme (ICE) (Cerretti et al. 1992; Thornberry et al. 1992). While early work demonstrated the 

need for perturbation of cellular homeostasis by treatment with external stimuli such as ATP or 

the pore-forming toxin nigericin, the mechanism by which ICE was activated remained unknown  

(Hogquist et al. 1991; Perregaux and Gabel 1994). Later, when ICE and related aspartic acid-

targeting cysteine proteases were renamed “caspase” to reflect their homologous structure and 

function, the interleukin-1β-converting enzyme became known as caspase-1 (Alnemri et al. 

1996). 

Apoptosis, a form of benign cell death, has been an intensely researched cellular 

phenomena since its discovery in 1972 and has important roles in development, tissue 

maintenance and cancer (Kerr, Wyllie, and Currie 1972). Interestingly, research on apoptosis was 

influenced by the attention directed towards IL-1 biology in the late 1980s and early 1990s when 

the identity of the cleavage site for the key apoptotic enzyme, caspase-3 (then called apopain or 

CPP32), was discovered while searching for additional intracellular substrates for caspase-1 

cleavage (Nicholson et al. 1995). This seminal finding underscores the close relationship between 

apoptosis and caspase-1/IL-1 research. This exchange of ideas between apoptosis and IL-1 

research occurred again after the discovery of the apoptosis activating factor (APAF)-1 

apoptosome, a caspase-9-activating multi-protein platform critical for intrinsic caspase-3-

dependent apoptosis (P. Li et al. 1997; Zou et al. 1999). 

The molecular characterization of the apoptosome proved crucial for informing the 

discovery of a caspase-1-activating, and consequently IL-1β-processing, platform. The APAF-1 

apoptosome coordinates the concentrated localization of pro-caspase-9 via homotypic 

interactions in the APAF-1 and pro-caspase-9 caspase recruitment domains (CARD) thereby 
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mediating autoproteolytic cleavage of the caspase-9 pro-domain and resulting in activation of 

bioactive caspase-9 (Hofmann, Bucher, and Tschopp 1997; P. Li et al. 1997; Zou et al. 1999). 

Active caspase-9 then mediates the downstream activation of caspase-3 and the ultimate 

completion of apoptosis (Zou et al. 1999). 

Around the same time as the discovery of the APAF-1 apoptosome there was an 

abundance of novel proteins and protein domains identified in mammals and plants with putative 

relationships to both apoptosis and inflammation. Essential among these discoveries are the pyrin 

(PYD) and caspase recruitment (CARD) domains, the adapter protein apoptosis-associated 

speck-like protein containing a CARD domain (ASC, also called PYCARD as it contains both PYD 

and CARD domains), the NACHT nucleotide binding domain (NBD), and a number of members of 

the nucleotide oligomerization domain (NOD)-like family of receptors (Hofmann, Bucher, and 

Tschopp 1997; Masumoto et al. 1999; Bertin and DiStefano 2000; Koonin and Aravind 2000; Z.L. 

Chu et al. 2001; Hlaing et al. 2001). 

In a landmark 2002 paper, the lab of Jurg Tschopp described the assembly of a multi-

protein complex for caspase-1 activation and IL-1β processing that they termed the 

inflammasome, which shares remarkable similarities to the assembly mechanism for the APAF-1 

apoptosome (Martinon, Burns, and Tschopp 2002). In a series of cell-free and cell-based 

experiments, they identified the overall structure of the NLRP1 inflammasome as (1) a central, 

sensor protein (in their case the protein NALP1; now called NLRP1), (2) the adapter protein ASC 

or a CARD domain on the sensor protein itself, and (3) the inflammatory caspases 1 and 5  

(Martinon, Burns, and Tschopp 2002). Critically, they showed that depletion of ASC prohibited 

caspase-1 activation and IL-1β maturation in response to LPS, providing the first demonstration 

that inflammasomes are the machinery necessary for innate immune responses by IL-1 signaling  

(Martinon, Burns, and Tschopp 2002). 

 

 

 

 



5 

1.2. INFLAMMSOME STRUCTURE AND FUNCTION  

1.2.1. NLRs 

Inflammasomes are classified by their sensor protein. With the exception of the absent in 

melanoma (AIM)-2 inflammasome, canonical inflammasomes all contain a protein from the 

nucleotide-binding domain (NBD, or nucleotide-binding and oligomerization domain [NOD]) and 

leucine-rich repeat (LRR) containing (NLR) gene family (Ting et al. 2008). In some cases NLR 

has also been used as an acronym for nucleotide oligomerization domain (NOD)-like receptors 

(G. Chen et al. 2009). Within this family of gene products, further distinction is stratified by the 

identity of the N-terminal domains with the two dominant groups of inflammasomes from the NLR 

family, CARD-containing (NLRC) and NLR family, PYD-containing (NLRP) classifications (Ting et 

al. 2008). NLRs belong to a larger multi-group family of receptors called pattern recognition 

receptors (PRRs) that detect microbial and host-derived molecular patterns (Schroder and 

Tschopp 2010; Takeuchi and Akira 2010). The properties off PRRs and their relationship to 

inflammasome regulation will be discussed further in section 1.3.1. 

Overall, NLRC and NLRP proteins exhibit a high degree of domain similarities. As 

indicated by the gene names, both contain NBDs and LRRs and are primarily distinguished by 

the presence of either a CARD or PYD domain. Additionally, specific changes within an internal 

NBD-associated domain (NAD) have been shown to be essential for ligand detection and, 

consequently, confer specificity among the structurally similar family of inflammasome sensors 

(Tenthorey et al. 2014). A graphical overview of the most commonly studied NLRs is provided in 

Figure 1-1 and a representation of how the NLRP3 inflammasome assembles is given in Figure 

1-2. 
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Figure 1-1. Graphical overview of selected inflammasome components. Monocyte-derived 
cells are capable of assembling a variety of inflammasomes depending on the activating stimulus. 
Shown here are selected examples of NLR family inflammasome sensors as well as the 
components ASC (also called Pycard) and Caspase-1. Domain display and order are the primary 
differences between each NLR sensor protein, while specific sequence variation in the NAD 
domains confer specificity to selected ligands. 

 

1.2.2. Caspase-1 

Caspase-1 is the inflammatory enzyme responsible for canonical processing of the pro-

inflammatory cytokines IL-1β and IL-18. It is synthesized as a 45 kilo-Dalton (kD) inactive pro-

enzyme containing an N-terminal CARD found in the cytosol of cells from the myeloid lineage 

(Thornberry et al. 1992; Poyet et al. 2001) (Figure 1-1). Pro-caspase-1 is recruited to active 

inflammasome complexes by CARD-CARD interactions, where it is autoproteolytically cleaved to 

produce the active enzyme caspase-1 (Martinon, Burns, and Tschopp 2002) (Figure 1-2). 

Cleavage of caspase-1 may be detected by the presence of 10 kD (p10) and 20 kD (p20) 

fragments by immunoblotting (Thornberry et al. 1992). Experimentally, activated caspase-1 is 
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detected localized on the inflammasome or released to the cytosol, both of which can be detected 

by addition of a fluorescent inhibitor prior to stimulation of caspase-1 activation (to detect 

inflammasome-localized enzyme) or post-stimulation (to detect cytosol-localized enzyme) 

(Grabarek, Amstad, and Darzynkiewicz 2002). Upon caspase-1-dependent pyroptotic cell death 

(discussed further in section 1.4.2), activated and pro-form caspase-1 are released and can be 

detected in culture supernatant (Martinon, Burns, and Tschopp 2002). 

 

 
 
Figure 1-2. Homotypic domain interactions direct NLRP3 inflammasome assembly. PYD 
domains on NLRP3 and ASC and CARD domains on ASC and Caspase-1 localize by homotypic 
interactions, resulting in rapid, prion-like assembly of the inflammasome (Cai et al. 2014; Lu et al. 
2014). The various components are visualized as concentric rings of homogenous protein by 
super-resolution microscopy (Man et al. 2014). Close proximity concentration of pro-caspase-1 at 
the core of the inflammasome results in autocatalytic cleavage and activation. 
 

1.2.3. ASC/PYCARD 

Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), also 

called Pycard, is a 22 kD constitutively expressed protein localized to the cytosol and nucleus of 

monocyte-derived cells (Masumoto et al. 1999; Bertin and DiStefano 2000; Martinon, Hofmann, 

and Tschopp 2001). ASC contains N-terminal PYD and C-terminal CARD domains (Martinon, 

Hofmann, and Tschopp 2001) (Figure 1-1). The structure of ASC facilitates the recruitment of 

pro-caspase-1 to inflammasome sensor proteins that do not contain a CARD domain (as in the 

case of NLRP3), and thus ASC is considered an adapter protein (Martinon, Burns, and Tschopp 

2002; Srinivasula et al. 2002). Homotypic interactions between the PYD domains of ASC and the 

NLR protein facilitate recruitment of cytosolically distributed ASC to a visually punctate focus, 

while homotypic interactions between the CARD of ASC and the CARD on pro-caspase-1 result 
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in a similar punctate localization of caspase-1 (Srinivasula et al. 2002; Stehlik et al. 2003) (Figure 

1-2). Through this recruitment and enriched localization of pro-caspase-1 to the site of 

inflammasome assembly, autoproteolytic cleavage of pro-caspase-1 to bioactive caspase-1 is 

possible. The assembly of ASC-dependent inflammasomes has been described to proceed by a 

prion-like mechanism, facilitating the total enrichment of the cellular complement of each 

component to a single focus (Cai et al. 2014; Lu et al. 2014). Additionally, ASC is posited to 

enhance activation of caspase-1 in the NLRP1 inflammasome, which contains it’s own CARD 

domain but also has an N-terminal PYD domain (Martinon, Burns, and Tschopp 2002). 

 

1.2.4. IL-1β and IL-18 

Interleukin (IL)-1β and IL-18 are the primary cytokine substrates of caspase-1 activation. IL-1β is 

an inducible cytokine synthesized as a 34 kD precursor that is subsequently processed to a 

bioactive 17 kD form (Giri, Lomedico, and Mizel 1985; March et al. 1985; Black et al. 1988). The 

caspase-1 cleavage site for conversion of precursor IL-1β to mature IL-1β is between Asp116 

and Ala117 (Kostura et al. 1989). IL-1β expression is tightly regulated by NF-kappaB (NF-κB) 

transcriptional activation and it is found at nearly undetectable levels prior to stimulation with an 

NF-κB inducer such as LPS (Cogswell et al. 1994). 

IL-18 (originally called IGIF, or interferon-gamma inducible factor) is synthesized as a 24 

kD precursor that is processed to an 18 kD active form via cleavage by caspase-1 between 

Asp35 and Asn36 (Gu et al. 1997). In contrast to IL-1β, IL-18 is constitutively expressed in 

monocyte-derived cells and exhibits no requirement for transcriptional upregulation in order to be 

available for processing and release (Puren, Fantuzzi, and Dinarello 1999). 

IL-1β and IL-18 share an uncommon structural feature in that they do not contain 

classical peptide sequences for secretion signaling (March et al. 1985; Okamura et al. 1995). This 

unconventional structure leads to the conclusion that IL-1β and IL-18 are not processed or 

released by the standard ER-Golgi pathway (Nickel and Rabouille 2009). Due to the significant 

role that IL-1β and IL-18 play in mediating innate inflammatory responses, the mechanisms by 

which these cytokines are processed and secreted are of interest. Various mechanisms have 
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been proposed, including lysosomal exocytosis, microvesicle secretion, plasma membrane 

translocation and lytic release (I.I. Singer et al. 1995; MacKenzie et al. 2001; Bergsbaken et al. 

2011; Liu et al. 2014). Despite the well-supported data for each of these pathways, the 

mechanism by which IL-1β and IL-18 are secreted remains controversial (Lopez-Castejon and 

Brough 2011). 

 

1.3. NLRP3 INFLAMMASOME REGULATION 

NLRP3 is the most widely studied of the inflammasomes, largely due to its activation by a diverse 

range of activating stimuli (Schroder and Tschopp 2010). Because of its robust and varied 

responsiveness, the NLRP3 inflammasome has become the preferred system for investigating 

basic regulation and dynamics of inflammasome activation. The remainder of this dissertation 

focuses on discussion and investigation specifically related to the NLRP3 inflammasome except 

where specified. 

 

1.3.1. PAMPs and DAMPs 

The NLRP3 inflammasome is responsive to a broad diversity of structural and mechanistically 

dissimilar stimuli (Schroder and Tschopp 2010). NLRP3 activating stimuli generally fall into the 

categories of pathogen associated molecular patterns (PAMPs) and damage associated 

molecular patterns (DAMPs). PAMPs and DAMPs contain regions of highly conserved molecular 

structure that are, in nearly all cases, detected by pattern recognition receptors (PRRs) that are 

expressed on the plasma membrane of the cell or found intracellularly. The classes of PRRs 

include Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs), 

and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) (Takeuchi and Akira 2010). How 

the NLRP3 inflammasome can respond to such a varied array of mechanistically dissimilar stimuli 

is not well understood, but is at least in part explained by the transduction of PAMP and DAMP 

signals by the diversity of PRRs. An abbreviated survey representing the diversity of activating 

stimuli, their classification as a PAMP or a DAMP, and the proposed mechanism for each 
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stimulus implicated in assembly and activation of the NLRP3 inflammasome at the time of this 

writing are summarized in Table 1-1. 

 

Table 1-1. Abbreviated survey of NLRP3-inducing stimuli 

Stimulus Proposed Mechanism Reference 

   

DAMPs 

ATP K+ efflux (Mariathasan et al. 2006) 

Cholesterol Cathepsin B (Duewell et al. 2010) 

MSU crystals Cathepsin B, K+ efflux (Muñoz-Planillo et al. 2013) 

Amyloid-beta Cathepsin B (Halle et al. 2008; Heneka et 
al. 2013) 

Alum Cathepsin B, K+ efflux (Hornung et al. 2008; Muñoz-
Planillo et al. 2013) 

Silica Cathepsin B, K+ efflux, ROS (Dostert et al. 2008; Hornung 
et al. 2008; Muñoz-Planillo et 
al. 2013) 

Asbestos K+ efflux, ROS (Dostert et al. 2008) 

Carbon nanotubes Cathepsin B, P2X7 (K+ efflux), ROS (Palomäki et al. 2011) 

mtDNA Direct NLRP3 activation (?) (Shimada et al. 2012) 

Palmitate ROS (Wen et al. 2011) 

Histones ROS (Allam et al. 2013) 

   

PAMPs (red = whole pathogen) 

Nigericin K+ efflux (Mariathasan et al. 2006) 

ssRNA Cathepsin B, ROS (Allen et al. 2009) 

Beta-Glucans Cathepsin B, K+ efflux, ROS (Kankkunen et al. 2010) 

Hemozoin Cathepsin B, K+ efflux, ROS (Tiemi Shio et al. 2009) 

Pneumolysin Cathepsin B, K+ efflux (McNeela et al. 2010) 

Biglycan P2X7 (K+ efflux), ROS (Babelova et al. 2009) 

N. gonorrhoeae Cathepsin B (Duncan et al. 2009) 

L. monocytogenes Cathepsin B, K+ efflux (Meixenberger et al. 2010) 

C. albicans K+ efflux, ROS (Gross et al. 2009) 

M. tuberculosis Phagosomal rupture (not Cathepsin B) (Wong and Jacobs 2011) 

 

Canonically, the NLRP3 inflammasome requires two, discrete stages of treatment before 

it can be activated. Signal 1 is generally called “priming” and refers to the processes required for 

establishing an inflammasome-inducible state in the cell. While most PAMPs can act as Signal 1 

treatments, priming is most commonly achieved by treatment with LPS, which activates the PRR 

Toll-like receptor 4 (TLR4) by interactions dependent on LPS-binding protein (LBP) and CD14 
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(Muta and Takeshige 2001). Activation of TLR4 triggers a myeloid differentiation primary-

response protein 88 (MyD88)-dependent intracellular signaling cascade that activates the IκB 

kinase (IKK), which phosphorylates nuclear factor of kappa light polypeptide gene enhancer in B-

cells inhibitor alpha (IκBα), removing inhibition of nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB), which then translocates to the nucleus (Akira and Takeda 2004). Once 

in the nucleus, NF-κB mediates transcriptional upregulation of NLRP3 and proIL-1β (Bauernfeind 

et al. 2009) (Figure 1-3A). The necessity for NF-κB activation and transcriptional upregulation 

prior to inflammasome assembly has been questioned, however, as basal levels of NLRP3 were 

found sufficient for low, but detectable, levels of caspase-1 activation (Guarda et al. 2011). 

Recent reports further emphasize that transcriptional upregulation is dispensable for licensing the 

inflammasome because post-translational priming resulting from as few as 5 minutes of treatment 

with LPS provides sufficient licensing for robust activation of inflammasome as well as processing 

and release of constitutively present proIL-18 (Ghonime et al. 2014). It should also be noted that 

while LPS provides a convenient and controllable stimulus to prime cells and license the 

inflammasome, under conditions of sterile inflammation where LPS would not be present IL-1 

could trigger priming through IL-1 receptor activation and MyD88-dependent signaling, or 

exposure to tumor necrosis factor (TNF)  (Akira and Takeda 2004; C.-J. Chen et al. 2007; 

Dinarello 2013; Katnelson et al. 2015). 

Application of Signal 2 (also called “stimulation” or “activation”) after a period of priming 

by Signal 1 results in the assembly of the inflammasome, activation of caspase-1 and processing 

of IL-1β. The type of Signal 2 treatment is thought to trigger a specific intracellular change, as 

described in Table 1-1, which is detected by NLRP3 to result in inflammasome assembly. For 

example, treatment with the DAMP monosodium urate crystal (MSU) results in lysosomal 

destabilization and potassium efflux, both of which are thought to engage NLRP3, while viral 

single-stranded RNA as well as the M2 ion channel from Influenza virus acts as PAMPs triggering 

ROS and ion flux to activate NLRP3 (Martinon et al. 2006; Allen et al. 2009; Ichinohe, Pang, and 

Iwasaki 2010). Figure 1-3B depicts activation by purinergic signaling, pore-forming toxins and 

biological particulates. A unifying mechanism describing how the NLRP3 inflammasome can 
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detect such diverse stimuli has been elusive, but two popular hypotheses have been proposed: 

ion flux and redox signaling (Lupfer and Kanneganti 2013). These hypotheses are discussed in 

the following sections. 

 

 

 
Figure 1-3. Two signals are required for NLRP3 inflammasome activation. (A) Detection of 
LPS by TLR4, CD14 and LBP result in MyD88-dependent signaling, IKK activation and 
phosphorylation and destruction of IκBα. Once IκBα is removed, NF-κB translocates to the 
nucleus, where it transcribes the mRNA coding for pro-IL-1β, pro-IL-18 and other components of 
the inflammasome. At this time, post-translational priming may also occur. (B) Upon the detection 
of extracellular ATP at purinergic receptor, or through cellular damage by pore-forming toxins and 
biological particulate, the individual components of the NLRP3 inflammasome will activate and 
assemble. The result of NLRP3 inflammasome assembly is processing and secretion of pro-
inflammatory cytokines and pyroptotic cell death.  
 

1.3.2. Ion flux 

The homeostatic maintenance of electrochemical gradients by asymmetric distribution of ions in 

compartments and across membranes is essential for cell viability and function (Dubyak 2004). 

Early work on understanding the regulation of IL-1β indicated that treatment with extracellular 

ATP or the pore-forming toxin nigericin perturbed cellular potassium and resulted in the robust 

release of mature IL-1β into culture supernatants (Perregaux and Gabel 1994). This observation 

was supported by detected efflux of the radioactive potassium analog 86Rb+ and by inhibition with 

exchange of sodium chloride for potassium chloride in the medium (Perregaux and Gabel 1994). 

After characterization of the inflammasome and the identification of a number of NLRP3 

inflammasome-inducing agents, subsequent studies further established a link between NLRP3 
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inflammasome assembly and intracellular potassium depletion by showing inhibition with high 

concentrations of extracellular potassium (Petrilli et al. 2007). In the context of this relationship, 

the first pharmacological inhibitor characterized to inhibit the NLRP3 inflammasome was 

glyburide/glibenclamide, a potassium channel inhibitor commonly used to treat Type-2 diabetes 

(Lamkanfi et al. 2009). Nigericin is a potassium/proton ionophore that acts in a receptor-

independent manner to release potassium-associated concentration gradients across biological 

membranes, while ATP stimulates the dilation of a cation channel in the P2X7 purinergic receptor 

(Perregaux and Gabel 1994). Because nigericin is a sufficient stimulus for inflammasome 

assembly, it may be concluded that potassium efflux, independent of signaling cascades, is a 

necessary regulating event (Perregaux and Gabel 1994; Petrilli et al. 2007). Indeed, due to the 

seemingly ubiquitous ability of potassium chloride in the medium to reduce or inhibit 

inflammasome assembly and function, a recently proposed unifying mechanism placed the role of 

potassium efflux as the common trigger to bacterial toxins and particulate matter (Muñoz-Planillo 

et al. 2013). Despite its broad implications, an explanation as to how potassium efflux regulates 

the assembly of the inflammasome remains unknown. 

Intracellular calcium signaling has also been implicated in regulating processing of IL-1β 

and assembly of the NLRP3 inflammasome (Horng 2014).  Initially, early studies postulated that 

potassium, and not calcium, was the critical regulatory ion for processing and release of IL-1β 

because treatment with the calcium ionophore A23187 and the intracellular calcium store-

releasing agent thapsigargin did not produce mature IL-1β (Walev et al. 1995). However, 

subsequent experiments found that a rise in intracellular calcium, concomitant with potassium 

efflux, corresponded with enhanced release of IL-1β that could be inhibited by the intracellular 

calcium chelator, BAPTA-AM (Brough et al. 2003). Keratinocytes, a non-canonical cell type for 

production of IL-1β, were found to produce IL-1β when treated with ultraviolet radiation in a 

cytosolic calcium increase-dependent manner that could also be inhibited by treatment with 

BAPTA-AM (Feldmeyer et al. 2007). The bacterial PAMP tetanolysin O (TLO), a cholesterol-

dependent cytolysin (CDC), was also found to induce assembly of the NLRP3 inflammasome that 

could be inhibited independently by treatment with BAPTA-AM or extracellular potassium, 
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suggesting at least a partial requirement for calcium increase in TLO-dependent inflammasome 

induction (J. Chu et al. 2009). A proposed mechanism by which calcium regulates inflammasome 

assembly is by induction of calcium overload-induced mitochondrial damage and mitochondrial 

DNA release-dependent NLRP3 activation (Murakami, Ockinger, Yu, Byles, et al. 2012). These 

studies implicate a crucial role for cation flux driven by either calcium or potassium in regulation of 

the NLRP3 inflammasome, though the relationship between these two ions and their independent 

contributions towards pathway regulation are unclear (Jin and Flavell 2010; Sutterwala, Haasken, 

and Cassel 2014). 

 

1.3.3. Redox signaling 

Redox signaling by reactive oxygen species (ROS) generated by various cellular sources has 

been implicated in induction of the NLRP3 inflammasome (Harijith, Ebenezer, and Natarajan 

2014). Initial studies into the role of reactive oxygen in inflammasome assembly implicated 

extracellular ATP-triggered nicotinamide adenine dinucleotide phosphate (NADHP) oxidase 

(NOX) as the cellular source for NLRP3-inducing ROS (Cruz et al. 2007). This evidence was 

supported by the inhibition of caspase-1 activation by treatment with the NOX inhibitor 

diphenyleneiodonium chloride (DPI). However, subsequent studies in monocytes from patients 

with chronic granulomatous disease (CGD), a disease characterized by inactivating mutations in 

NOX proteins, displayed no loss in activity of the inflammasome as indicated by caspase-1 

activation and bioactive IL-1β release after stimulation with prototypical DAMPs, suggesting a 

more complex role for NADPH oxidase activity (Meissner et al. 2010). 

Mitochondrial reactive oxygen species (mROS) constitute the majority of cellular ROS, 

since it is routinely produced as a byproduct of intracellular ATP synthesis by the electron 

transport chain, and its generation is increased during mitochondrial dysfunction (Brookes et al. 

2004). Blockade of mitophagy/autophagy by 3-methyladenine and mitochondrial uncoupling with 

rotenone and antimycin A result in mitochondrial dysfunction and mROS generation (Zhou et al. 

2011). These treatments were found to trigger the NLRP3 inflammasome, possibly through 

activation and redistribution of thioredoxin interacting protein (TXNIP) (Zhou et al. 2010; Zhou et 
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al. 2011). Subsequent studies confirmed that NLRP3 inflammasome induction was depending on 

mitochondrial dysfunction and mROS generation that could be inhibited by the mitochondrial 

localized ROS scavenger, MitoTEMPO (Heid et al. 2013). Interestingly, knockdown of the 

mitochondrial voltage dependent anion channel (VDAC) isotypes 1 and 2, but not 3, suppressed 

NLRP3 activation (Zhou et al. 2011). VDAC channels are located at the outer mitochondrial 

membrane and are crucial for the exchange of mitochondrial metabolites and ions to the cytosol 

and surrounding organelles, as well as generation of ROS (Colombini 2004). These results point 

to a possible role for mitochondrial sensing of ion levels upstream of inflammasome regulation by 

reactive oxygen signaling. 

 

1.4. PHENOTYPIC OUTCOMES 

1.4.1. Inflammatory signaling 

A major consequence of inflammasome assembly is the release of pro-inflammatory cytokines. 

While the most widely investigated cytokines released are IL-1β and IL-18, release of IL-1 and 

the nuclear alarmin high mobility group box 1 (HMGB1) are also regulated by the NLRP3 

inflammasome (Lamkanfi et al. 2010; Rathinam, Vanaja, and Fitzgerald 2012). Detection of 

extracellular HMGB1 induces cytokine induction through TLR4 signaling (Ben Lu et al. 2012; 

Yang et al. 2013). Together, these cytokines orchestrate continued inflammatory response in the 

presence of pathogenic insult as well as sterile inflammation mediated by biological particulates 

or tissue damage (G.Y. Chen and Núñez 2010). 

In addition to cytokine release, other intracellular components have been implicated in 

inflammatory signaling both downstream and upstream of NLRP3 inflammasome assembly. The 

most efficiently released non-cytokine inducer of inflammasome assembly is the intracellular 

DAMP ATP (Perregaux and Gabel 1994; Laliberte, Eggler, and Gabel 1999; Gombault, Baron, 

and Couillin 2012). Intracellular ATP may be released by cells dying via caspase-1-dependent 

cell death (discussed in section 1.4.2) or via pannexin-1 hemichannels (Pelegrin and Surprenant 

2006; Piccini et al. 2008; Schenk et al. 2008). Support for autocrine and paracrine activation of 

the inflammasome by ATP is illustrated by the suppression of IL-1β and IL-18 processing and 
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release by treatment with apyrase, an enzyme that hydrolyzes extracellular ATP (Piccini et al. 

2008). Other examples of non-cytokine signaling in inflammasome regulation include extracellular 

release of mitochondrial DNA, nucleosomes and assembled inflammasome structures (Nakahira 

et al. 2010; Q. Zhang et al. 2010; Huang et al. 2011; Shimada et al. 2012; Baroja-Mazo et al. 

2014; Kang et al. 2014). 

 

1.4.2. Pyroptosis 

Pyroptosis (translated as “to go down in flames” from the Greek roots pyro relating to fire and 

ptosis to denote a falling) is a caspase-1-dependent cell death that was initially characterized as 

distinct from apoptosis in macrophages infected by Salmonella typhimurium (Brennan and 

Cookson 2000; Cookson and Brennan 2001). It was subsequently shown that pyroptosis 

triggered by Salmonella infection is due to flagellin-induced ICE protease-activating factor (IPAF; 

also called NLRC4) inflammasome activity (Mariathasan et al. 2004; Franchi et al. 2006; Miao et 

al. 2006). In the case of infection, pyroptotic cell death is thought to prevent pathogen survival by 

destruction of the host environment and stimulation of neutrophil infiltration (Brodsky and 

Medzhitov 2011).  

Inflammasome assembly and caspase-1 activation do not require stimulation by infection 

in order to trigger cell death. Early work on the roles of ATP and nigericin, both NLRP3 

inflammasome activators, in stimulating IL-1β processing and release also described a 

morphology for cell lysis that is now considered classical for pyroptosis (Perregaux and Gabel 

1994). Specifically, the authors observed a large, round plasma membrane indicative of osmotic 

lysis and an intact nucleus (Perregaux and Gabel 1994). Other examples of non-infectious 

pyroptosis via the NLRP3 inflammasome are induction by monosodium urate and silica (Hornung 

et al. 2008; Hari et al. 2014). The cause for initiation of inflammasome assembly and pyroptosis 

under these sterile conditions is thought to be triggered by cellular damage through lysosomal 

destabilization, ROS generation or membrane rupture (Hornung et al. 2008; Hari et al. 2014). 

While pyroptosis can reduce the virulence of invading pathogens, the exact role of pyroptosis in 

non-pathogenic inflammasome signaling is not well understood, and in fact may be both 
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advantageous or deleterious (Zheng, Gardner, and M.C.H. Clarke 2011). This is discussed 

further in sections 1.4.3 and 1.5. 

 

1.4.3. Microenvironment and systemic response 

The initiation of an IL-1-associated systemic febrile response upon endotoxic stimulation with LPS 

is well established, and mice with IL-1 signaling deficiencies are resistant to potentially lethal 

LPS-induced shock (P. Li et al. 1995). Upstream of IL-1 processing, a whole mouse study has 

revealed that LPS-induced fever proceeds through numerous, differential phases driven by TLR4 

signaling in hematopoietic and non-hematopoietic cell types (Steiner et al. 2006). In mice with 

deficient TLR4 signaling, all phases of fever response to LPS injection are suppressed, while in 

chimeric cells with TLR4-deficient bone marrow but functional TLR4 in somatic cells only the 

initial phase of fever is suppressed (Steiner et al. 2006). These findings highlight the feedback 

and redundancy embedded in the systemic inflammatory response, wherein IL-1 signaling is 

crucial to the efficient initiation of inflammation, but other signaling mechanisms such as 

prostaglandin E2 (PGE2) signaling in the brain can act downstream of IL-1 signaling (Engström et 

al. 2012). 

Local tissue remodeling or damage has also been attributed to activation of the 

inflammasome under sterile inflammatory conditions. For example, amyloid-beta deposition in the 

brain results in activation of the NLRP3 inflammasome through lysosomal destabilization (Halle et 

al. 2008). The IL-1β release associated with amyloid-beta induced NLRP3 activation has been 

implicated in the appearance of various Alzheimer’s disease-associated etiologies, such as 

neurofibrillary tangles (Salminen et al. 2008; Heneka et al. 2013). Another example of tissue 

disruption by NLRP3 activity is obesity-induced inflammation and insulin resistance 

(Vandanmagsar et al. 2011). The release of ceramides, lipoproteins or other nonmicrobial 

DAMPS associated with adipose damage potently induced inflammasome activation and ablation 

of NLRP3 significantly improved insulin signaling and histological scores for inflammation in 

obese mice (Vandanmagsar et al. 2011). Due to the ability to detect damage-associated signals, 
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NLRP3 has a central role in sterile, inflammation-associated microenvironment remodeling and 

pathogenesis. 

Immunity acquired by vaccine-induced antibody production is another instance wherein 

systemic response to inflammation may be crucial. It has been postulated that stimulation of 

cytokine signaling by induction of the NLRP3 inflammasome with the adjuvant alum can enhance 

vaccine efficacy (H. Li et al. 2008). This is supported by an impairment of antigen-specific 

antibody production in post-immunization NLRP3-deficient mice (H. Li et al. 2008). The finding 

that NLRP3 activity mediates alum adjuvancy provides support for earlier work demonstrating the 

potential for IL-1 itself to act as a adjuvant (Staruch and Wood 1983; Nencioni et al. 1987). An 

additional study suggested the ability of alum to promote an adjuvant effect could also be through 

extracellular release of DNA, suggesting a potential feed-forward signaling loop mediated by 

NLRP3 detection of DNA as a DAMP (Marichal et al. 2011). Therefore, rational tuning of systemic 

inflammation driven by the inflammasome may be a route to improve immunogenic responses to 

vaccination. 

 
1.5. CLINICAL RELEVANCE 

1.5.1. Acute and chronic conditions 

Several acute clinical conditions have been attributed to NLRP3 inflammasome activity. For 

example, the destruction of heart tissue during myocardial infarction or ischemia-reperfusion (I/R) 

injury results in the release of intracellular DAMPs. Detection of these DAMPs by NLRP3 has 

been implicated in inflammatory tissue damage post-initial injury (Sandanger et al. 2013; Toldo et 

al. 2014). Deletion of NLRP3 was found to reduce heart tissue damage post I/R injury 

(Sandanger et al. 2013). Drug design informed by the role of NLRP3 in myocardial infarct injury 

resulted in the development of a glyburide intermediate that effectively reduced caspase-1 activity 

and infarct size post I/R injury (Marchetti et al. 2014). Addressing this mechanism has become 

the topic of pilot clinical trials to reduce injury from myocardial infarction, as inflammasome 

interventions are becoming increasingly available (Toldo et al. 2014). 

Acute lung injury (ALI) is a severe complication of serious illness and affects 10-15% of 

patients in intensive care units (Goss et al. 2003). Inflammasome-induced IL-18 release was 



19 

found to be a critical mediator of ALI experimentally induced by ventilator-induced lung injury 

(VILI) (Dolinay et al. 2012). This finding was supported by treatment with a neutralizing antibody 

to IL-18 or genetic deletion of IL-18 or caspase-1, all of which reduced lung injury due to VILI 

(Dolinay et al. 2012). A possible mechanism for the induction of inflammasome-associated 

cytokine release in ALI is the release of nuclear contents from damaged cells, such as HMGB1 or 

histones, both of which are NLRP3 inflammasome-inducing DAMPs and have been associated 

with ALI (Abrams et al. 2013; Luan et al. 2013; R. Chen et al. 2014). 

NLRP3 inflammasome activity has also been implicated in chronic inflammatory 

conditions. A key example of NLRP3 contributing to chronic pathology is gouty arthritis, often 

referred to as gout. Gout is a condition caused by local inflammatory responses to deposited 

monosodium uric acid (MSU) crystals in the synovial fluid of joints (Faires and Mccarty 1962). 

Additionally, it was demonstrated that uric acid was released as a danger signal from dying cells 

capable of stimulating dendritic cell maturation (Shi, Evans, and Rock 2003). The molecular 

mechanism regulating MSU-induced gout was found to be activation and function of the NLRP3 

inflammasome (Martinon et al. 2006). Importantly, colchicine, a microtubule assembly inhibitor 

and clinical treatment for gout, was able to prevent inflammasome assembly and IL-1β 

processing (Martinon et al. 2006). Based on the identification that IL-1β signaling and 

inflammasome assembly directed MSU-induced inflammation and gout, the authors postulated 

that IL-1 receptor blockade would be an effective treatment for gout (Martinon et al. 2006). A 

subsequent pilot clinical trial demonstrated dramatic efficacy and directly contributed to the use of 

Anakinra (Kineret), an IL-1 receptor antagonist, and Rilonacept, an IL-1β-inhibiting soluble 

receptor-Fc fusion protein, in the current treatment regime for gout (So et al. 2007; Terkeltaub et 

al. 2009). 

 

1.5.2. Genetic autoinflammatory disorders 

Mutations in the MEFV gene were originally identified as the cause for the autoinflammatory 

condition Familial Mediterranean Fever (FMF), an chronic condition associated with severe, 

recurrent systemic inflammation (French FMF Consortium 1997). MEFV codes for the protein 
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Pyrin, which has been shown to inhibit assembly of the inflammasome by interactions with 

NLRP3, ASC, pro-caspase-1 and pro-IL-1β (Papin et al. 2007). The inability for Pyrin to interact 

with, and inhibit, components of the inflammasome result in spontaneous activation and resultant 

IL-1β processing and release (Papin et al. 2007). FMF has been effectively treated with IL-1 

receptor antagonists, especially in cases where the application of colchicine, the primary 

treatment for FMF, showed little improvement (Calligaris et al. 2007).  

While mutations in Pyrin result in an indirect dysregulation in inflammasome activation, 

other genetic autoinflammatory disorders are affected by direct mutation in the gene coding for 

NLRP3 (also called cryopyrin), collectively known as Cryopyrin-associated periodic syndromes 

(CAPS) or cryopyrinopathies (Aksentijevich et al. 2007). The CAPS family of autoinflammatory 

conditions includes familial cold autoinflammatory syndrome (FCAS), Muckle-Wells syndrome 

(MWS), and neonatal-onset multisystem inflammatory disease (NOMID) (Aksentijevich et al. 

2007). FCAS presents with the least severe symptoms, while NOMID is the most severe 

(Aksentijevich et al. 2007). All CAPS conditions are characterized by autosomal dominant NLRP3 

mutations that cause spontaneous or hypersensitive assembly of the inflammasome and can be 

either inherited or spontaneous (Aksentijevich et al. 2007). Effective treatment of CAPS 

conditions can be achieved by either neutralizing released IL-1β with Rilonacept or antagonizing 

IL-1 receptors with Anakinra (Hoffman et al. 2008; Lepore et al. 2010). Surprisingly, a 22-year old 

patient with Muckle-Wells syndrome treated with Anakinra was observed to inexplicably recover 

from pathological deafness caused by the patient’s MWS (Mirault et al. 2006). This example 

supports the therapeutic treatment of inflammasome activity in autoinflammatory conditions and 

illustrates to the potential complexity of inflammasome-dependent signaling in the clinical 

symptoms of autoinflammatory conditions. 

 

1.6. OPEN QUESTIONS IN INFLAMMASOME BIOLOGY 

The NLRP3 inflammasome has been the subject of intense investigation since its discovery in 

2002 (Manji et al. 2002; Martinon, Burns, and Tschopp 2002). Despite elucidation of many factors 
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driving NLRP3 inflammasome assembly and function, a number of open and actively debated 

questions remain: 

1. How can the NLRP3 inflammasome respond to such a diverse array of 

structurally and functionally unrelated insults? It is unclear how particulate matter, 

pore-forming toxins, endogenous host danger signals, bacterial structural 

components, viral genetic factors and osmotic changes can all converge on a single 

signaling pathway. 

2. What is the role of ion flux upstream of NLRP3 inflammasome activation? While 

a number of groups have identified the flux of potassium and calcium at low temporal 

and spatial resolution as a driving factor in NLRP3 inflammasome assembly, the 

specific effects of these fluxes are not well understood. 

3. What is the role of mitochondria in NLRP3 inflammasome regulation? It is 

currently unclear how the mitochondria participate in NLRP3 inflammasome signaling, 

and whether it has a soluble transduction role or is merely a stabilizing platform. 

4. What downstream mechanisms in NLRP3 inflammasome signaling are regulated 

by ion flux? Most reports identifying the role of ion flux look at the reduction in 

inflammasome assembly by caspase-1 activation and IL-1β processing and release. 

The effect of ion flux on specific events upstream of inflammasome assembly are not 

well characterized.  

 

1.7. THESIS CONTRIBUTIONS 

This dissertation addresses a number of fundamental gaps in understanding NLRP3 

inflammasome regulation with a focus on the role of cation flux. The primary contributions of this 

dissertation to the field of inflammasome biology are: 

1. The first demonstration of real-time potassium flux measurements downstream of 

P2X7 receptor activation and nigericin treatment with high spatiotemporal 

resolution and analyte specificity. 
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2. The first measurements of correlated, live-cell dynamics of potassium and 

calcium flux. 

3. The identification of Syk tyrosine kinase as a downstream effector of potassium 

efflux during nigericin-induced inflammasome assembly and pyroptotic cell death. 

4. The implication of Syk kinase activity in the generation of mitochondrial reactive 

oxygen upstream of NLRP3 inflammasome assembly. 

5. The identification of a dose-dependent relationship between P2X7 purinergic 

receptor activation, intracellular potassium efflux and plasma membrane 

permeability. 

6. The identification of a mitochondrial potassium pool mobilization downstream of 

P2X7 purinergic receptor activation. 

7. Establishment of potassium efflux as a regulating step for NLRP3 inflammasome-

activating calcium influx during P2X7 purinergic receptor activation. 

 

In addition to clarifying the role for cation flux upstream of NLRP3 activation, this 

dissertation also describes the development of two methods relevant to the study of single cell 

signatures of cellular and macrophage heterogeneity: 

 

1. A method for correlated fluorescence microscopy and molecular analysis of live 

single cells was developed. The method allows for the isolation and observation 

by fluorescence microscopy of live single cells, coupled with downstream 

processing and multi-target gene expression analysis by RT-qPCR. 

2. A mouse macrophage cell line was generated and characterized expressing a 

protein-based biosensor for live, kinetic analysis of intracellular ATP.    
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CHAPTER 2: POTASSIUM EFFLUX DRIVES SYK KINASE-DEPENDENT INFLAMMASOME 

ASSEMBLY AND PYROPTOSIS 

 

2.1. INTRODUCTION AND BACKGROUND 

A prevailing question in NLRP3 inflammasome biology is how a functionally and structurally 

diverse array of stimuli converges on the same signaling pathway (Sutterwala, Haasken, and 

Cassel 2014). Multiple reports demonstrate that intracellular potassium efflux is essential for 

assembly of the inflammasome in response to a diverse array of stimuli (Perregaux and Gabel 

1994; Petrilli et al. 2007; Muñoz-Planillo et al. 2013). Notably, potassium efflux was identified as a 

necessary and sufficient common step in a proposed unifying model for inflammasome assembly 

in response to bacterial toxins and particulate matter (Muñoz-Planillo et al. 2013). The utilization 

of an ion flux for initiation of a cell fate decision provides support for the concept of pyroptosis as 

a “hair-trigger” macrophage suicide with the effect of acting as an early warning system for the 

host. This is substantiated by the fact that other necessarily rapid biological processes operate by 

an ion flux-dependent mechanism (Dubyak 2004; Brodsky and Medzhitov 2011). However, 

despite its established importance, the mechanism whereby maintenance of intracellular 

potassium concentration regulates the assembly and activity of the inflammasome is still not well 

understood.  

Recent evidence highlights the importance of post-translational signaling in licensing the 

inflammasome for assembly and downstream outcomes such as cytokine secretion and 

pyroptosis (Ghonime et al. 2014). This rapid licensing is in contrast to canonical models for 

inflammasome activation that depend on a sustained, TLR4-dependent, priming period followed 

by a rapid stimulation period (Akira and Takeda 2004; Lamkanfi and Dixit 2014). This is 

biologically rational as post-translational signaling occurs more rapidly than de novo transcription 

and translation of effector proteins, thereby enabling a more rapid innate immune response to 

dangerous stimuli. Further establishing a role for post-translational modifications in regulation of 

the inflammasome is the discovery of a tyrosine phosphorylation site on the inflammasome 

adapter protein Apoptosis-associated Speck-like protein containing a Caspase recruitment 
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domain (ASC) that is described as a molecular switch controlling inflammasome assembly (Hara 

et al. 2013; Lin et al. 2015). Additionally, phosphorylation of ASC was mediated in large part by 

spleen tyrosine kinase (Syk), a protein tyrosine kinase that has been shown to be essential for 

inflammasome-mediate defense against fungi, mycobacteria and malarial hemozoin (Gross et al. 

2009; Tiemi Shio et al. 2009; Wong and Jacobs 2011). 

As both ion flux and post-translational modifications are rapid signaling mechanisms that 

have been implicated in regulation of the inflammasome, we sought to determine a potential 

relationship between these two modes of signaling. It was hypothesized that potassium efflux 

directs inflammasome assembly and downstream effects via regulation of Syk activation by 

phosphorylation. This study elucidated a number of characteristics of Syk in the inflammasome 

pathway: (1) Syk regulates nigericin-induced cell death upstream of inflammasome assembly; (2) 

Syk activity is necessary for nigericin-induced mitochondrial reactive oxygen species generation; 

(3) Syk activity is downstream of, and dispensable for, nigericin-induced potassium efflux; (4) 

potassium efflux regulates Syk activation. This study identifies, for the first time, an intermediate 

regulator of inflammasome activity and pyroptosis regulated by potassium ion efflux. 

 

2.2. MATERIALS AND METHODS 

2.2.1. Reagents 

Potassium chloride, LPS (from E. coli O111:B4), paraformaldehyde and BSA for blocking 

solutions were purchased from Sigma Aldrich (St. Louis, MO, USA). Nigericin was purchased 

from Invivogen (San Diego, CA, USA) and Cayman (Ann Arbor, MI, USA). OXSI-2 was 

purchased from Cayman (Ann Arbor, MI, USA). Phosphatase inhibitor cocktail was from Biotool 

(Houston, TX, USA). Protease inhibitors were from Pierce (Grand Island, NY, USA). Primary 

antibodies against p-Tyr (sc-7020), Syk (sc-1077) and Caspase-1 (sc-514) were from Santa Cruz 

Biotechnology (Dallas, TX, USA). Primary antibody against IL-1β (AF-401-NA) was from R&D 

Systems (Minneapolis, MN, USA). Secondary antibodies, protein ladder and nitrocellulose 

membranes were from Li-Cor (Lincoln, NE, USA). Mini-PROTEAIN® TGX™ 15-well 4-12% gels 

were from Bio-Rad (Hercules, CA, USA). Released mouse IL-1β DuoSet (DY401) and ancillary 



25 

reagent (DY008) ELISA kits were from R&D Systems (Minneapolis, MN, USA). FAM-FLICA™ 

Caspase-1 assay kit was from ImmunoChemistry (Bloomington, MN, USA). BCA protein 

determination kit and premade standards were from Pierce (Grand Island, NY, USA). StrataClean 

Resin was from Agilent Technologies (Santa Clara, CA, USA). Dynabeads® Protein A for 

immunoprecipitation and MitoSOX were purchase from Life Technologies (Grand Island, NY, 

USA). 6 denaturing Laemmli buffer was from Alfa Aesar (Ward Hill, MA, USA). CytoTox96® 

Non-Radioactive Cytotoxicity Assay for LDH release determination was from Promega (Madison, 

WI, USA). KS6 intracellular potassium sensor was developed in-house (Center for Biosignatures 

Discovery Automation, The Biodesign Institute, Arizona State University, Tempe, AZ, USA). 

 

2.2.2. Cell culture 

The mouse monocyte/macrophage cell line J774A.1 (ATCC TIB-67™, Manassas, VA, USA) was 

grown in DMEM (Gibco, Grand Island, NY, USA) supplemented with 10% FBS, 100 U/mL 

Penicillin G (Gibco, Grand Island, NY, USA) and 100 µg/mL Streptomycin Sulfate (Gibco, Grand 

Island, NY, USA). Tissue culture flasks were passaged every 3-4 days by scraping and cells were 

counted for density and viability with a Countess® Automated Cell Counter (Life Technologies, 

Grand Island, NY, USA) using the Trypan Blue dye exclusion assay. 

 

2.2.3. Lactate Dehydrogenase Release Assay 

Released lactate dehydrogenase was measured using the CytoTox 96® Non-Radioactive 

Cytotoxicity Assay according to manufacturer’s instructions. Briefly, cells were seeded in a 96-

well tissue culture-treated plate at a concentration of 100,000 cells/well in 200 µL medium and 

incubated overnight. The following day the medium was exchanged for 100 µL of either fresh 

medium or medium containing 1 µg/mL LPS and incubation was continued for 4 hours. During the 

third hour of incubation, inhibitors were added and the plate was returned to the incubator. For 

stimulation, the complete medium of each well was exchanged for 100 µL of either fresh medium, 

medium containing 1% Triton X-100 as a maximum release control, or the indicated drugs and/or 

inhibitors and returned to the incubator for 1 hour. Fifty µL of supernatant was sampled for each 



26 

well. The developed assay was measured for absorbance at 492 nm on a Biotek Synergy H4 

multi-mode plate reader with Gen5 software. 

 

2.2.4. Immunoprecipitation 

Cells were seeded in 6-well tissue culture-treated plates at a concentration of 106 cells/well in 2 

mL of medium and incubated overnight. The following day, cells were primed in 2 mL fresh 

medium or medium containing 1 µg/mL LPS and incubated was continued for 4 hours. During the 

third hour of incubation, inhibitors were added and the plate was returned to the incubator. For 

stimulation, the complete medium of each well was exchanged for 1.1 mL of either fresh medium 

or medium containing the indicated drugs and/or inhibitors and returned to the incubator for 15, 

30 or 60 minutes. After stimulation, supernatants were collected and resuspended in pre-chilled 

1.5 mL microfuge tubes containing complete protease and phosphatase inhibitor cocktails, spun 

for 5 minutes at 5,000 g in 4 °C and 1 mL of cell-free supernatant was transferred to a clean, pre-

chilled 1.5 mL microfuge tube. During centrifugation of the supernatants, the cells still in the plate 

were lysed with RIPA containing complete protease and phosphatase inhibitor cocktails. Cell free 

supernatants and lysates were combined in the same 1.5 mL tube and rotated at 4 °C for 30 

minutes. After rotation, all samples were centrifuged at 14,000 g for 15 minutes at 4 °C. 

Supernatants were transferred to new tubes and protein content was quantified by BCA assay. 

Samples were normalized to maximal protein concentration (approximately 1 mg total protein) 

across all conditions using RIPA. 

 During the 4 hour LPS priming stage, Protein A-conjugated magnetic beads were rotated 

at room temperature for 2 hours with 1:50 total Syk capture antibody (#SC-1077) in 5% BSA in 

TBS containing 0.2% Tween-20. For immunoprecipitation, 1% BSA was added to each protein 

sample and 40 µL of magnetic beads containing Syk capture antibody were added. Samples 

were rotated overnight at 4 °C. The following day, the beads were washed 3 with cold RIPA by 

pull-down using a magnetic bead stand and protein was collected by heating the beads in 50 µL 

1 denaturing Laemmli at 95 °C for 10 minutes. Samples were immunoblotted according to the 



27 

protocol described in section 2.2.5. Samples were performed by, and experiments were 

performed, with Mounica Rao. 

 

2.2.5. Immunoblotting 

For non-immunoprecipitated protein collection, J774A.1 were seeded in a 6-well tissue culture-

treated plate at a concentration of 106 cells/well. Cells were primed for 4 hours with 1 µg/mL E. 

coli O111:B4 LPS in complete DMEM, rinsed with serum-free DMEM, and stimulated with 20 µM 

nigericin for 30 minutes in 1.1 mL serum-free DMEM. After stimulation, supernatants were 

collected and concentrated with 10 µL/mL StrataClean Resin by rotating at 4 °C for 1 hour with 

protease and phosphatase inhibitors. Concentrated supernatant protein was collected from the 

resin by removing the supernatant and heating in 50 µL 1 denaturing Laemmli at 95 °C for 10 

minutes. Cell lysates were collected by directly adding 100 µL 1 hot denaturing Laemmli buffer 

to each well. 

Proteins were heated for 15 minutes at 95 °C before loading 12 µL onto a 15 well 4-12% 

Mini-PROTEAN TGX gel. Gels were run for 1 hour at 100V in Tris/SDS/Glycine buffer and 

transferred to 0.2 µm pore nitrocellulose membranes for 1 hour at 100V in Tris/Glycine buffer. 

Membranes were blocked in 5% BSA in TBS with 0.2% Tween for 1 hour at room temperature. 

Blocked membranes were probed independently in 5% BSA in TBS containing 0.2% Tween-20 

with 1:500 rabbit polyclonal against caspase-1 p10 (#SC-514), 1:1000 goat polyclonal against IL-

1β (#AF-401-NA) or multiplexed with 1:500 mouse polyclonal against p-Tyr (#SC-7020) and 

1:500 rabbit polyclonal against Syk (#SC-1077) while rotating overnight at 4 °C. Secondary 

antibodies were applied at 1:15000 in 5% BSA in TBS containing 0.2% Tween-20 with rocking for 

1 hour at room temperature. TBS with 0.2% Tween was used for all rinses. Membranes were 

imaged using a Li-Cor Odyssey CLx infrared scanner on auto exposure with high quality setting. 

Samples were performed by, and experiments were performed, with Mounica Rao. 
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2.2.6. ELISA 

J774A.1 cells were seeded in 96 well plates at a concentration of 105 cells/well and incubated 

overnight. Cells were primed for 4 hours with 1 µg/mL E. coli O111:B4 LPS and subsequently 

stimulated for 30 minutes with 20 µM nigericin in 100 µL medium. Where indicated, inhibitors 

were added 15-20 minutes prior to nigericin stimulation. Supernatants were collected and 

released IL-1β was evaluated with ELISA using the R&D Systems DuoSet kit according to the 

manufacturer’s protocol. Briefly, high-binding plates were coated overnight with anti-IL-1β capture 

antibody. The following day, coated plates were blocked with 1% BSA in PBST for 1 hour at room 

temperature. Washed plates were loaded with 100 µL supernatant samples and incubated 

overnight at 4 °C. The next day, plates were washed and biotinylated secondary antibody was 

incubated with the plates for 2 hours. Subsequently, streptavidin-HRP was incubated with 

samples for 30 minutes and colorimetric development was performed for 20 minutes before 

addition of a stop solution. Developed plates were read on a Biotek Synergy H4 mutli-mode plate 

reader with Gen5 software. 

 

2.2.7. Live Cell Potassium and mROS Imaging 

For imaging, 105 J774A.1 cells were seeded in an 8-chamber Ibidi µ-Slide (Ibidi, Verona, WI, 

USA) and primed for 4 hours with 1 µg/mL E. coli O111:B4 LPS. Inhibitors were added as 

indicated for the last 15 minutes of priming. Cells were stimulated with 20 µM nigericin after an 

initial baseline was taken. Cells were imaged on a Nikon Ti microscope equipped with a C2si 

confocal scanner (Nikon Instruments, Melville, NY, USA) and a Tokai Hit stage-top incubator 

(Tokai Hit Co., Shizuoka, Japan). Excitations lines were 408, 488 and 561 nm and emission was 

collected using the standard DAPI, FITC and TRITC bandwidths. Objectives used were 20 air 

0.75 NA, 60 oil immersion 1.4 NA or 60 water immersion 1.2 NA, all from Nikon. 

For potassium imaging, KS6 was diluted 1:1 with 10% w/v Pluronic F127 and added to 

priming cells at 1:100 dilution. Final concentration of KS6 applied to cells was 5 µM. KS6 was 

excited at 561 nm and emission was collected in the TRITC channel. 
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For mROS imaging, cells were stimulated with nigericin as described. 15 minutes after 

initial stimulation, MitoSOX was added at a final concentration of 5 µM according to 

manufacturer’s protocol, concurrently with 10 µg/mL Hoechst 33342 (Life Technologies, Grand 

Island, NY, USA) and incubated for an additional 15 minutes prior to imaging. MitoSOX was 

excited at 488 nm and emission was detected in the TRITC channel while Hoechst 33342 was 

excited at 408 nm and emission was detected in the DAPI channel. 

 

2.2.8. Caspase-1 FLICA Assay 

J774A.1 were seeded at a density of 1-2 x 105 per well in 200 µL of complete DMEM and grown 

overnight. The following day cells were primed for 4 hours with 1 µg/mL E. coli O111:B4 LPS. 

During the last hour of priming cells were loaded with 1 FAM-YVAD-FMK (Caspase-1 FLICA) 

and 10 µg/mL Hoechst 33342 in complete medium. Additional inhibitors as described were added 

during the last 15-20 minutes of priming. Cells were stimulated with 20 µM nigericin for 30 

minutes, subsequently washed 2 with warm DMEM and fixed in 2% formaldehyde solution for 10 

minutes at room temperature. Formaldehyde solution was made fresh daily from 

paraformaldehyde powder diluted in PBS. Cells were washed 1 with PBS and submerged in 200 

µL mounting medium (90% glycerol with 10X PBS and 0.1% NaN3). Samples were imaged by 

laser-scanning confocal microscopy as a series of 0.5 µm z-stacks on a Nikon Ti microscope 

equipped with a Nikon C2si confocal scanner controlled by the Nikon Elements AR software. 

Stacks were prepared as maximum intensity projections using ImageJ/FIJI. Caspase-1 FLICA 

was excited at 488 nm and emission was collected in the FITC channel while Hoechst 33342 was 

excited at 408 nm and emission was collected in the DAPI channel. Samples were prepared by 

Mounica Rao. 

 

2.2.9. Statistical Analysis 

Data were analyzed in GraphPad Prism version 6.05 (GraphPad, La Jolla, CA, USA) using one-

way ANOVA with a Tukey’s post-hoc or Fischer’s LSD comparison. Results were considered 

significant if p < 0.05.   
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2.3. RESULTS 

2.3.1. Syk is required for proinflammatory cytokine signaling 

To evaluate the role of Syk in regulating IL-1β processing and release, NLRP3 inflammasome 

activity was stimulated in J774A.1 mouse macrophages by treatment with nigericin. Immunoblot 

analysis revealed a robust production and release into the supernatant of the caspase-1 p10 

fragment and mature 17 kD form of IL-1β upon LPS priming and nigericin treatment (Figure 2-

1A). Both caspase-1 activation and IL-1β processing were dependent on potassium efflux, as 

treatment with nigericin in the presence of 130 mM KCl completely inhibited both events. Syk 

activity was also crucial for caspase-1 activation and IL-1β processing as treatment with the Syk 

inhibitor OXSI-2 resulted in a strong suppression of nigericin-induced processing. In agreement 

with the immunoblot results, detection of processed and released IL-1β by ELISA showed robust 

inhibition upon treatment with OXSI-2 (Figure 2-1B). 

 
 
Figure 2-1. Potassium efflux and Syk activity are required for caspase-1 activation and IL-
1β processing and release. (A) Immunoblot analysis of caspase-1 and IL-1β in the cell lysates 
and supernatants of J774A.1 mouse macrophage cells. LPS priming resulted in production of pro-
IL-1β, indicating cell priming. Treatment with 20 µM nigericin for 30 minutes resulted in a robust 
processing and release of the active caspase-1 p10 fragment and mature 17 kD IL-1β in 
concentrated supernatants. Treatment with 130 mM KCl or 2 µM OXSI-2 resulted in suppression 
of nigericin-induced caspase-1 activation and IL-1β processing. (B) ELISA evaluation of IL-1β in 
the supernatants of cells treated as in (A) further supported a requirement for Syk activity in IL-1β 
release. Nigericin was applied for 60 minutes during ELISA experiments. Bars represent mean 
and standard error. Statistics were calculated by one-way ANOVA with Tukey’s post-hoc 
comparison. Results represent at least 2 independent experiments. 
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2.3.2. Syk kinase is essential for nigericin-induced inflammasome assembly 

It was next determined whether Syk activity inhibited caspase-1 and IL-1β processing by 

inhibiting the assembly of the inflammasome complex. Fluorescently tagging activated caspase-1 

by pre-exposure with a FAM-conjugated irreversible inhibitor for caspase-1 results in tagging of 

caspase-1 at the explicit site of activation (i.e., within the inflammasome itself) (Broz et al. 2010). 

Results show that LPS-primed, nigericin-treated J774A.1 assemble the inflammasome as 

indicated by single, perinuclear specks of caspase-1 (Figure 2-2). As expected, treatment with 

130 mM KCl inhibited the assembly of the inflammasome. Importantly, Syk activity was essential 

for assembly of the NLRP3 inflammasome, as treatment with OXSI-2 resulted in significant 

suppression of caspase-1 specks. Thus, Syk activity is required for assembly of the 

inflammasome complex. 
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Figure 2-2. Syk activity is required for nigericin-induced inflammasome assembly. J774A.1 
mouse macrophage cells were left untreated, primed for 4 hours with 1 µg/mL LPS or primed and 
stimulated with 20 µM nigericin for 30 minutes. Where indicated, cells were treated with 130 mM 
KCl or 2 µM OXSI-2 for 15-20 minutes prior to addition of nigericin. Arrows indicate perinuclear 
caspase-1 specks classical for NLRP3 inflammasome assembly. Bar graph indicates mean and 
standard error of at least 3 fields from 2 independent experiments evaluated by one-way ANOVA 
with Tukey’s post-hoc comparison. Blue fluorescence is Hoechst 33342 and green fluorescence 
is caspase-1 FLICA. Scale bar represents 25 µm. 

 

2.3.3. Nigericin-induced pyroptosis is regulated by Syk activity 

Because OSXI-2 treatment suppressed inflammasome assembly, it was determined if Syk 

regulated nigericin-induced pyroptotic cell death as well. As expected, pyroptosis measured by 

release of lactate dehydrogenase into the medium was found to require both LPS priming and 

nigericin stimulation to proceed and was dependent on the efflux of potassium, since130 mM KCl 

suppressed pyroptotic cell death (Figure 2-3). Further, treatment with OXSI-2 significantly 

inhibited nigericin-induced pyroptosis. Therefore, Syk activity is essential for NLRP3 

inflammasome assembly, caspase-1 activation and IL-1β processing and release, and 

progression to caspase-1-dependent pyroptotic cell death.  
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Figure 2-3. Syk activity is required for nigericin-induced pyroptosis. J774A.1 macrophages 
were left untreated, treated with 20 µM nigericin for 30 minutes, primed for 4 hours with 1 µg/mL 
LPS or primed with LPS and then subsequently nigericin treated. Where indicated, cells were 
treated with 130 mM KCl or 2 µM OXSI-2 for 15-20 minutes prior to nigericin treatment. Bars 
represent mean and standard error of two independent experiments evaluated by one-way 
ANOVA with Tukey’s post-hoc comparison. 

 

2.3.4. Syk activity is necessary for nigericin-induced mitochondrial ROS generation 

Mitochondrial destabilization and oxidative signaling has been implicated in triggering the NLRP3 

inflammasome. It was determined if treatment with OXSI-2 had a protective effect against 

mitochondrial ROS generation during nigericin-induced inflammasome activation. Live cell 

imaging with the reactive oxygen probe MitoSOX revealed that LPS priming with subsequent 

nigericin treatment resulted in robust oxidation as determined by fluorescence increase of 

MitoSOX (Figure 2-4). Suppression of MitoSOX oxidation upon treatment with 130 mM KCl and 

OXSI-2 revealed that this process was dependent on potassium efflux and Syk activity. Strong 

nuclear staining in cells treated with nigericin in the absence of inhibitors was noted. This staining 

pattern indicates dead cells that have had mitochondria disintegrate and release oxidized 

MitoSOX probe, which subsequently binds to the DNA in the nucleus (Mukhopadhyay et al. 

2007). While these cells indicate the robust pyroptotic consequence of nigericin-induced 

inflammasome assembly, apparent and substantial non-nuclear signal that was abrogated upon 

treatment with KCl or OXSI-2. These observations indicate that Syk activity and potassium efflux 
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regulate events upstream of mitochondrial destabilization and oxidative signaling during nigericin-

induced inflammasome activation. 

 

 
Figure 2-4. Potassium efflux and Syk activity regulate nigericin-induced mitochondrial 
reactive oxygen species generation. J774A.1 cells were left untreated, primed with 1 µg/mL 
LPS for 4 hours or primed and then treated with 20 µM nigericin for 30 minutes. Where indicated, 
cells were treated with 130 mM KCl or 2 µM OXSI-2 for 15-20 minutes prior to nigericin treatment. 
During the last 15 minutes of nigericin exposure cells were stained with 5 µM MitoSOX and then 
imaged by confocal microscopy. Results are representative of two independent experiments. 
Scale bar represents 25 µm. 

 

2.3.5. Syk activity is dispensable for nigericin-induced potassium efflux 

A novel intracellular potassium sensor, KS6, for improved real-time imaging of potassium 

dynamics in live cells was developed (Figure 2-5A). KS6 is a visible light intensitometric sensor 

that exhibits excellent response over a wide potassium concentration range (Figure 2-5B). 

Additionally, it is almost completely selective for potassium over other ions, in contrast to the 

commercially available sensor, PBFI, that has high cross-selectivity for sodium (data not shown; 

publication in revision). Further, KS6 is rapidly internalized into live cells and is localized to the 

mitochondria and the cytosol. Further use and characterization of KS6 is found in Chapter 3. 
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Live cell imaging of potassium dynamics with KS6 revealed that nigericin-induced 

potassium efflux was bi-phasic (Figure 2-5C and D). The first phase of efflux was gradual and 

proceeded 5-10 minutes after addition of nigericin to the medium. The second phase was rapid 

and occurred concurrently with morphology indicative of osmotic lysis as visualized by differential 

interference microscopy (data not shown). Interestingly, nigericin-treated cells displayed a 

temporal heterogeneity between the onset of the initial potassium efflux phase and the final loss 

of potassium during cell lysis. This is in agreement with our previous work with an earlier 

generation of potassium sensor indicating that potassium efflux and caspase-1 activation as 

indicated by a fluorogenic probe (which rapidly results in cell death) are temporally distinct (Yaron 

et al.). 
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Figure 2-5. Nigericin-induced pyroptosis proceeds by a bi-phasic potassium efflux. (A) 
Chemical structure of KS6, a live cell intensitometric intracellular potassium sensor. (B) 
Potassium titration showing emission response of KS6 at 572 nm versus potassium concentration 
in solution by spectrofluorophotometry. (C) Representative J774A.1 cell (arrow) stained with KS6, 
then primed for 4 hours with 1 µg/mL LPS and stimulated with 20 µM nigericin followed by 
continuous imaging. Red indicates high signal intensity and blue indicates low signal intensity. 
Scale bar represents 25 µm. (D) Single cell potassium traces of example cells exhibiting 
morphological characteristics of nigericin-induced pyroptosis. Shallow decline in signal indicates 
the first phase of potassium efflux stimulated by nigericin and sharp decline indicates the second, 
rapid phase that occurs in parallel with morphology of osmotic lysis. 

  

As both inhibition of potassium efflux with extracellular KCl and inhibition of Syk activity 

with OXSI-2 resulted in suppression of inflammasome assembly and mROS production, it was 

next determined if Syk activity had a regulatory role in nigericin-induced potassium efflux. Live 

cell imaging with KS6 revealed no difference in the kinetics of potassium efflux induced by 

nigericin treatment in LPS-primed cells with or without Syk inhibition with OXSI-2 (Figure 2-6). 

Taken together, these results indicate that Syk activity occurs upstream of mROS generation, but 

downstream of potassium efflux during nigericin-induced inflammasome assembly. 
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Figure 2-6. Syk activity is dispensable for nigericin-induced potassium efflux. LPS-primed 
J774A.1 macrophages were loaded with KS6 potassium sensor and stimulated with 20 µM 
nigericin before continuous imaging by confocal microscopy. Where indicated, cells were treated 
with 2 µM OXSI-2 for 15-20 minutes prior to nigericin treatment. Red box indicates selected 
region expanded in kymograph panels. Traces indicated mean and standard deviation of KS6 
signal change for 5 cells in a representative field from each condition. Scale bar represents 25 
µm. Results are representative of at least two independent experiments. 

 

2.3.6. Potassium efflux is necessary for Syk activation 

It was hypothesized that potassium efflux regulates Syk activation during nigericin-induced 

inflammasome assembly. Quantitative, multiplexed immunoblots of immunoprecipitated Syk 

probed for total Syk and phospho-tyrosine residues indicated that blockade of potassium efflux 

with extracellular KCl resulted in a strong suppression of phospho-Syk under conditions that 

stimulate inflammasome assembly (i.e., LPS priming and nigericin treatment) (Figure 2-7A). In 

agreement with other reports, a time-dependent loss of phospho-Syk signal after the initial 

stimulus was observed (Hara et al. 2013). Control experiments were performed to determine 

whether addition of KCl itself was sufficient for suppressing Syk phosphorylation (Figure 2-7B). 

Treatment with nigericin and KCl alone, as well as a combination of nigericin and KCl, was 
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insufficient for suppressing Syk phosphorylation. These results implicate a need for TLR4-

dependent priming with LPS in order to produce conditions wherein Syk phosphorylation is 

sensitive to potassium efflux. We note that in the J774A.1 macrophage cell line, basal levels of 

Syk phosphorylation are high (Figure 2-7A and B). As this was consistent across all independent 

experiments, it was concluded that this a characteristic of the J774A.1 cell line and have not been 

able to find an alternative example in the literature. Indeed, for the conditions used in this 

experiment, no reports have been published demonstrating basal levels of Syk phosphorylation in 

un-primed cells (Hara et al. 2013). Two possibilities were postulated regarding the high basal 

phosphorylation of Syk exhibited by this cell line: (1) apparent phosphorylation is present at sites 

irrelevant to or inhibitory of inflammasome induction such that aberrant assembly is not triggered; 

and (2) basal feedback from other kinases in the un-primed cell are toggled concurrently with Syk 

during LPS priming and post-translationally polarize the cell towards an inflammasome-

compatible state. 
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Figure 2-7. Nigericin-induced potassium efflux is required for Syk phosphorylation in LPS-
primed J774A.1 cells. (A) J774A.1 mouse macrophages were left untreated or primed for 4 
hours with 1 µg/mL LPS before treatment with 20 µM nigericin for the indicated time. 130 mM KCl 
was added to the medium where indicated. Immunoprecipitation was performed on combined 
lysates and supernatants with Protein A dynabeads conjugated to total Syk antibody. Multiplexed 
infrared immunoblots were performed with total Syk and phospho-tyrosine (pY) antibodies. The 
ratios of pY signal to total Syk were calculated and normalized to untreated controls. (B) J774A.1 
cells were left untreated or directly treated with 20 µM nigericin, 130 mM KCl or a combination of 
both for 15 minutes and processed as described in (A). Values are mean and standard deviation 
of two independent experiments and p-values were calculated using one-way ANOVA with a 
Fischer’s LSD multiple comparison test. IP control indicates total Syk-conjugated Protein A 
dynabeads left unexposed to collected protein. 

 

2.4. DISCUSSION 

Despite significant progress in elucidating mechanisms regulating the NLRP3 inflammasome, an 

understanding of how functionally and structurally diverse stimuli converge on the same pathway 

has remained elusive (Sutterwala, Haasken, and Cassel 2014). While most proposed 

mechanisms for convergent activity of NLRP3 stimuli suggest intermediate regulation by ion flux 

or oxidative signaling, the mechanism by which these events trigger inflammasome assembly are 

not well understood (Harijith, Ebenezer, and Natarajan 2014; Horng 2014). 

One upstream target for inflammasome regulation is the protein tyrosine kinase Syk. 

Previous reports have implicated Syk in facilitating NLRP3 inflammasome responses to fungi, 

mycobacteria, monosodium urate and malarial hemozoin (Gross et al. 2009; Tiemi Shio et al. 
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2009; Wong and Jacobs 2011). Recent biochemical characterization of Syk activity upstream of 

the inflammasome identified its role in mediating phosphorylation of a molecular switch on the 

adapter protein ASC (Hara et al. 2013; Lin et al. 2015). However, the events leading to Syk 

activation in response to NLRP3 inflammasome stimuli or to what extent it regulates 

inflammasome activity and pyroptotic cell death have not been identified (Neumann and Ruland 

2013; Laudisi, Viganò, and Mortellaro 2014). 

The present study focuses on the relationship between potassium ion flux and Syk kinase 

activity upstream of receptor-independent nigericin induction of the NLRP3 inflammasome. Initial 

experiments suggested that nigericin-induced NLRP3 inflammasome assembly in LPS-primed 

J774A.1 mouse macrophage cells was dependent on both potassium efflux and Syk activity. 

Immunoblot analysis revealed an increase in activated caspase-1 p10 fragment and mature IL-1β 

in the supernatant of LPS-primed, nigericin-treated cells, both of which were suppressed in the 

presence of the Syk inhibitor OXSI-2 or 130 mM extracellular KCl. This data was confirmed by the 

inhibition of IL-1β release as measured by ELISA. 

As potassium blockade and OXSI-2 both prevented classical protein processing by the 

NLRP3 inflammasome, we sought to determine whether this was upstream or downstream of 

inflammasome assembly. Application of a fluorescent inhibitor of caspase-1 activation (FLICA) 

revealed a significant production of perinuclear caspase-1 specks in LPS-primed, nigericin-

treated cells. Both potassium blockade and OXSI-2 prevented the production of caspase-1 

specks as indicated by FLICA labeling, indicating that inhibitory effects were upstream of 

inflammasome assembly. It was hypothesized that because inhibition of Syk suppressed 

inflammasome assembly, Syk inhibition might also protect against nigericin-induced pyroptotic 

cell death. Evaluation of lactate dehydrogenase revealed that Syk played a crucial role in 

mediating nigericin-induced pyroptosis in LPS-primed J774A.1 cells. 

It was next explored whether potassium efflux and Syk regulated mitochondrial ROS 

generation, since oxidative signaling has been implicated in triggering NLRP3 inflammasome 

assembly and pyroptosis (Zhou et al. 2010; Harijith, Ebenezer, and Natarajan 2014).   Using the 

mROS probe MitoSOX, it was found that LPS-primed, nigericin-treated cells displayed substantial 
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MitoSOX oxidation as indicated by an increase in fluorescence.  Addition of extracellular KCl or 

the Syk inhibitor OXSI-2 strongly suppressed MitoSOX fluorescence downstream of nigericin 

stimulation, suggesting both potassium efflux and Syk activation are upstream of mitochondrial 

dysfunction. These results contradict the work of Hara et al, that found that inhibition of Syk 

kinase did not suppress nigericin-induced MitoSOX oxidation (Hara et al. 2013). It is not clear 

why Hara and colleagues were unable to inhibit mROS generation upon Syk inhibition, but one 

possibility is methodological differences. In the Hara et al study, LPS-primed peritoneal 

macrophages were incubated in nigericin and MitoSOX simultaneously for 20 minutes. LPS 

priming induces TLR4-dependent mROS generation and thus MitoSOX fluorescence will increase 

as soon as it is added to the cells (Yuan et al. 2013). In the current study, MitoSOX is added after 

a period of nigericin treatment and an induced increase in mROS may be detectable due to lower 

background signal from LPS-induced mROS generation alone. 

As the effects of potassium blockade and Syk inhibition appeared to closely correlate, it 

was sought to define a relationship between potassium efflux and Syk activation. KS6, a novel 

intracellular potassium probe that allows for highly selective, real-time, intensitometric 

determination of potassium content in live cells, was applied to determine the effects of Syk 

inhibition on nigericin-induced potassium efflux. Results indicate that Syk inhibition has no effect 

on the dynamics of nigericin-induced potassium efflux, suggesting that Syk activity is downstream 

of and dispensable for potassium efflux. Immunoprecipitation of Syk revealed a dynamic 

phosphorylation pattern downstream of nigericin treatment, with blockade of potassium efflux 

consistently suppressing Syk phosphorylation under NLRP3 inflammasome-inducing conditions. 

To confirm that the effects were not due to off-target effects of high extracellular KCl, control 

experiments were performed in the presence of KCl-supplemented medium without LPS priming 

and found no effect on Syk phosphorylation. These results suggest that LPS priming toggles Syk 

to a state that is amenable to inflammasome-promoting activation but requires potassium efflux. 

The current study provides the first example of potassium efflux inducing the activation of 

an intermediate signaling partner in the NLRP3 inflammasome pathway. A model is proposed 

wherein potassium efflux activates Syk tyrosine kinase by an as-yet unknown mechanism, 
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resulting in mitochondrial destabilization and mROS generation to trigger the NLRP3 

inflammasome and pyroptotic cell death (Figure 2-8). Whether Syk directly activates the 

inflammasome by phosphorylation of ASC, or if an oxidative environment produced by 

mitochondrial destabilization is required is not clear and warrants further study. Additionally, 

further application of KS6 to evaluate rapid ion flux dynamics may provide additional information 

regarding intracellular ionic composition and rapidly responding properties of the NLRP3 signaling 

pathway. Compan et al proposed that NLRP3 undergoes potassium-dependent conformational 

changes that are necessary for inflammasome activation during osmotic strength-induced 

regulatory volume decrease (Compan et al. 2012). It would be interesting to visualize the real-

time kinetics of potassium efflux and conformational changes in NLRP3 coupled with 

pharmacological inhibition or genetic deletion of putative intermediate regulatory partners to 

determine whether active regulation or passive, ion concentration-dependent processes are 

involved. 

The finding that Syk regulates inflammasome assembly, pro-inflammatory cytokine 

secretion and pyroptotic cell death is promising for modulating innate immune system-driven 

inflammatory processes. This is supported by the current popularity of developing therapeutic Syk 

inhibitors for addressing inflammatory and autoimmune pathologies, many of which are now 

involved in clinical and pre-clinical trials (Weinblatt et al. 2008; Bajpai 2009; Morales-Torres 2010; 

Genovese et al. 2011). The novel finding that potassium efflux regulates Syk activation may 

provide a new avenue for modulating Syk-dependent inflammatory pathologies by targeting 

channels and processes that regulate ion homeostasis. 
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Figure 2-8. Overview of a proposed model for ion flux-driven, Syk-dependent regulation in 
NLRP3 inflammasome signaling. mROS generation has been implicated in regulating the 
assembly of the inflammasome. Our results show that potassium efflux and Syk activity are 
required for mROS generation induced by nigericin treatment. Accordingly, potassium blockade 
and Syk inhibition prohibit inflammasome assembly, pro-inflammatory cytokine secretion and 
pyroptotic cell death. Live cell imaging revealed that Syk was downstream and dispensable for 
nigericin-induced potassium efflux and subsequent analysis found that Syk activity was regulated 
by depletion of intracellular potassium by nigericin treatment. 
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CHAPTER 3: K+ REGULATES CA2+ TO DRIVE INFLAMMASOME SIGNALING 

 

3.1. INTRODUCTION AND BACKGROUND 

Proposed mechanisms for regulating the activation of the NLRP3 inflammasome pathway are 

varied and controversial (Sutterwala, Haasken, and Cassel 2014). Among the most popular 

proposed mechanisms is the flux of cellular ions. The asymmetric distribution of ions in cellular 

compartments establishes a gradient such that, under conditions of membrane permeability, ions 

rapidly diffuse across the gradient with little energy input (Dubyak 2004). As such, cells benefit 

from asymmetric ion distribution to affect rapid processes such as neuronal action potentials 

(Dubyak 2004). Recent work has implicated potassium flux as the common trigger in regulating 

NLRP3 inflammasome activity (Muñoz-Planillo et al. 2013). Indeed, it has been understood for 

over two decades that potassium flux regulates the processing of IL-1β (Perregaux and Gabel 

1994; Walev et al. 1995). While potassium is the most commonly studied ion posited to regulated 

the NLRP3 pathway, calcium flux has gained popularity in recent years because intervention in 

calcium mobilization has inhibitory effects on inflammasome activity (Lee et al. 2012; Murakami, 

Ockinger, Yu, Byles, et al. 2012; Horng 2014). Both ions are permeant to the non-specific cation 

channel formed by plasma membrane expressed P2X7 purinergic receptors, which are activated 

by external ATP. However, it is currently not known how the two ions relate to each in the context 

of inflammasome regulation (Horng 2014; Sutterwala, Haasken, and Cassel 2014). 

In addition to ion flux, mitochondrial reactive oxygen species (mROS) signaling has been 

proposed as a critical regulator of NLRP3 activation (Zhou et al. 2011). Mitochondrial dysfunction 

and loss of mitochondrial membrane potential leads to a rapid increase in mROS production, 

which has been described to activate the inflammasome through the activity of thioredoxin-

interacting protein (TXNIP) (Zhou et al. 2010). In support of this mechanism, most known NLRP3-

activating stimuli induce ROS generation and specific mitochondria-targeted ROS scavengers 

have been shown to inhibit inflammasome assembly (Heid et al. 2013). The existence of a 

convergent pathway involving ion flux, particularly of potassium, and ROS generation in triggering 
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the assembly of the inflammasome has been suggested, however such a link has remained 

elusive (Petrilli et al. 2007; Tschopp 2011). 

In this study the hypothesis was tested that P2X7 purinergic receptor activation with 

extracellular ATP induces mitochondrial ROS generation and this effect is mediated by 

intracellular and mitochondrial potassium depletion. A novel intracellular potassium sensor was 

applied to characterize the real-time dynamics of potassium mobilization in the mouse 

macrophage cell line J774A.1 after stimulation with ATP. By co-localizing the sensor signal to 

mitochondria using mitochondria-specific dyes, a P2X7-dependent mitochondrial potassium 

depletion that was sensitive to pharmacological and ionic inhibition was observed. Temporally, 

mitochondrial potassium mobilization occurred before potassium efflux-dependent mitochondrial 

ROS generation. Further study identified a critical role for calcium influx upstream of 

mitochondrial ROS generation, inflammasome assembly and pro-inflammatory cytokine release. 

The first-ever multiplexed imaging of intracellular potassium and calcium in live cells was 

performed and found that potassium efflux was required for sustained calcium influx, while 

calcium chelation had no effect on the kinetics of potassium efflux. It is proposed that 

mitochondrial ROS generation is a downstream effect of potassium efflux-dependent calcium 

influx and defines a coordinated, ion flux-driven regulation of the NLRP3 inflammasome via 

oxidative signaling. 

 

3.2. MATERIALS AND METHODS 

3.2.1. Cell culture 

The mouse macrophage cell line J774A.1 (TIB-67™) was obtained from ATCC (Manassas, VA, 

USA) and cultured in DMEM containing 10% FBS, 100 U/mL penicillin and 100 µg/mL 

streptomycin (Gibco, Grand Island, NY) at 37 °C with 5% CO2 in a humidified atmosphere. Cells 

were passaged by scraping and viability and density were assessed by Trypan Blue dye 

exclusion on a Countess® automated cell counter (Life Technologies, Grand Island, NY). 
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3.2.2. KS6 potassium sensor loading 

KS6 (ex/em 561/630 nm) was kept in a 1 mM DMSO stock solution stored at 4 °C. To facilitate 

consistent dye distribution, stock KS6 was combined 1:1 with 10% Pluronic F127 and mixed 

thoroughly by pipetting before loading (Cohen et al. 1974). The mixture was added 1:100 to each 

well of a chamber slide for a final KS6 concentration of 5 µM and incubated for 30-60 minutes at 

37 °C. Where indicated, cells were subsequently stained with 10 nM MitoTracker Green FM (Life 

Technologies, Grand Island, NY, USA). KS6 was developed in-house (Center for Biosignatures 

Discovery Automation, Tempe, AZ, USA). 

 

3.2.3. Live-cell imaging 

Cells seeded in an 8-chamber µ-slide (Ibidi, Verona, WI, USA) were primed with 1 µg/mL E. coli 

O111:B4 LPS (Sigma Aldrich, St. Louis, MO, USA) for 2-4 hours. Samples were imaged on a 

Nikon Ti microscope equipped with a C2si confocal scanner (Nikon Instruments, Melville, NY, 

USA) and Tokai Hit stage-top incubator (Tokai Hit Co., Shizuoka, Japan). Excitation laser lines 

were 408, 488, 561 and 639 nm and emission was collected by photomultipliers filtered for the 

standard DAPI, FITC, TRITC, and Cy5 bandwidths. Objectives used were 20 air 0.75 NA, 60 

oil immersion 1.4 NA or 60 water immersion 1.2 NA, all from Nikon. Where indicated, cells were 

imaged in the presence of 5 µM TO-PRO-3 (Life Technologies, Grand Island, NY, USA). For 

calcium imaging, cells were loaded with 1 Fluo-4 DIRECT solution (Life Technologies, Grand 

Island, NY, USA) and incubated for 30-60 minutes prior to imaging. 

 

3.2.4. Immunofluorescence 

Cells seeded in an 8-chamber µ-slide were primed for 4 hours with 1 µg/mL E. coli O111:B4 LPS. 

Cells were additionally treated with the caspase-1 inhibitor ac-YVAD-CHO (50 µM) for the last 30 

minutes of priming to inhibit cell detachment downstream of inflammasome assembly. For 

inflammasome stimulation, cells were treated with 3 mM ATP for 1 hour. Cells were fixed with 4% 

formaldehyde solution prepared in PBS from powdered paraformaldehyde, permeabilized in 
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0.25% Triton X-100 in PBS and blocked in 0.25% Triton X-100 in PBS containing 5% BSA at 

room temperature. Polyclonal rabbit Caspase-1 p10 antibody (#SC-514, Santa Cruz 

Biotechnology, Dallas, TX) was added 1:100 overnight at 4 °C. Secondary antibody, AlexaFluor 

488-conjugated goat-anti-rabbit secondary antibody (Life Technologies, Grand Island, NY, USA), 

was added 1:1000 at room temperature and for 1 hour. DAPI solution was added using NucBlue 

Fixed (Life Technologies, Grand Island, NY, USA) according to manufacturer’s instructions in 

PBS. Samples were covered with 150 µL mounting medium (90% glycerol, 10% (10X) PBS with 

0.01% NaN3) and kept at 4 °C until imaging. Inflammasome images were obtained as 0.5-1 µm z-

stacks and presented as maximum intensity projections. Samples were prepared with assistance 

from Mounica Rao. 

 

3.2.5. Caspase-1 FLICA Assay 

J774A.1 were seeded at a density of 1-2 x 105 per well in 200 µL of complete DMEM and grown 

overnight. The following day cells were primed for 4 hours with 1 µg/mL E. coli O111:B4 LPS. 

During the last hour of priming cells were loaded with 1 FAM-YVAD-FMK (Caspase-1 FLICA; 

Immunochemistry Technologies, Bloomington, MN, USA) and 10 µg/mL Hoechst 33342 in 

complete medium. Additional inhibitors as indicated were added during the last 15-20 minutes of 

priming. Cells were stimulated with 3 mM ATP for 30 minutes, subsequently washed 2 with 

warm DMEM and fixed in 2% formaldehyde solution for 10 minutes at room temperature. Cells 

were washed 1 with PBS and submerged in 200 µL mounting medium (90% glycerol in PBS and 

0.1% NaN3). Samples were imaged by laser-scanning confocal microscopy as a series of 0.5 µm 

z-stacks on a Nikon Ti microscope equipped with a Nikon C2si confocal scanner controlled by the 

Nikon Elements AR software. Stacks were prepared as maximum intensity projections using 

ImageJ/FIJI. Caspase-1 FLICA was excited at 488 nm and emission was collected in the FITC 

channel while Hoechst 33342 was excited at 408 nm and emission was collected in the DAPI 

channel. Samples were prepared with assistance from Mounica Rao. 
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3.2.6. Lysate and supernatant protein collection 

Cells were seeded in 6-well plates (106 cells/well) and primed for 4 hours with 1 µg/mL E. coli 

O111:B4 LPS in complete DMEM containing 10% FBS. After priming, cells were washed 1× with 

serum-free DMEM and 1.1 mL of warm serum-free DMEM was added to each well. Where noted, 

cells were treated with inhibitors for 15-30 minutes. Inflammasome activation was triggered by 

application of freshly prepared 3 mM ATP solution in serum-free DMEM for 30 minutes. After 

stimulation, supernatants were collected and spun at 14,000 g for 15 minutes at 4 °C to remove 

cellular debris and approximately 1 mL was transferred to fresh 1.5 mL tubes. Ten µL of 

StrataClean resin (Agilent, Santa Clara, CA) was added to each supernatant, mixed well and 

placed on a rotator in a 4 °C refrigerator for 1 hour. Concentrated supernatant protein was 

collected by pelleting the StrataClean resin, removing the supernatant and heating the resin 

resuspended in 50 µL 1 Laemmli buffer at 95 °C for 5 minutes. Cell lysates were prepared by 

addition of 100 µL hot 1 Laemmli buffer to each well for 5-10 minutes, scraping and transferring 

samples to 1.5 mL tubes and heating at 95 °C for 5 minutes. Samples were prepared with 

assistance from Mounica Rao. 

 

3.2.7. Immunoblotting 

Twelve µL of concentrated supernatant or lysate was separated on 4-12% Mini-Protean TGX gels 

(Bio-Rad, Hercules, CA) at 100V for 1 hour. Proteins were transferred to 0.2 µm nitrocellulose 

membranes (LiCor, Lincoln, NE) at 100V for 1 hour, and subsequently blocked in 5% non-fat dry 

milk in PBS containing 0.2% Tween-20 for 1 hour. Blocked membranes were  incubated in 5% 

BSA in PBS containing 0.2% Tween-20 and either 1:500 rabbit polyclonal against Caspase-1 p10 

(#SC-514, Santa Cruz) or 1:1000 goat polyclonal against IL-1β (#AF-401-NA, R&D Systems, 

Minneapolis, MN) and rotated overnight at 4 °C. The following day, donkey anti-goat IRDye® 

800CW and goat anti-rabbit IRDye® 680RD secondary antibodies (Li-Cor, Lincoln, NE) were 

applied at a dilution of 1:15000 with rocking for 1 hour at room temperature. Membranes were 



49 

imaged on a Li-Cor Odyssey CLx on auto exposure with high quality setting. Samples were 

prepared with assistance from Mounica Rao. 

 

3.2.8. Lactate Dehydrogenase release assay 

Cells were seeded in 96-well plates and primed for 4 hours with 1 µg/mL E. coli O111:B4 LPS. 

Cells were treated for the last 15-30 minutes with 500 µM MitoTEMPO and stimulated for 30 

minutes with 3 mM ATP. Fifty µL of supernatant was used for LDH activity assay with the 

CytoTox96 Non-Radioactive Cytotoxicity Kit (Promega, Madison, WI) according to manufacturer’s 

instructions. 

 

3.2.9. ELISA 

J774A.1 cells were seeded in 96 well plates at a concentration of 105 cells/well and incubated 

overnight. Cells were primed for 4 hours with 1 µg/mL E. coli O111:B4 LPS and subsequently 

stimulated for 30 minutes with 3 mM ATP in 100 µL medium. Where indicated, cells were treated 

with 100 µM BAPTA-AM (Tocris, Minneapolis, MN, USA) for 15 minutes prior to ATP treatment. 

Supernatants were collected and released IL-1β was evaluated with ELISA using the R&D 

Systems DuoSet kit according to the manufacturer’s protocol. Developed plates were read on a 

Biotek Synergy H4 mutli-mode plate reader with Gen5 software. 

 

3.2.10. Statistical analysis 

Statistics were performed where indicated with GraphPad Prizm version 6.05 (GraphPad, La 

Jolla, CA, USA) and procedures for each analysis are described in the figure captions. 
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3.3. RESULTS 

3.3.1. P2X7 receptor-dependent potassium efflux induces the inflammasome in J774A.1 

macrophages 

The response of the J774A.1 mouse monocyte/macrophage cell line to extracellular ATP was 

determined first. As expected, immunoblotting indicated that untreated J774A.1 lack proIL-1β 

while maintaining constitutive levels of procaspase-1 (Figure 3-1A). Upon priming with E. coli 

LPS, proIL-1β protein becomes highly expressed. Release of active caspase-1 p10 and mature 

IL-1β p17 was detected in concentrated supernatants of LPS-primed J774A.1 after treatment with 

3 mM extracellular ATP. The release of both active components was abolished in the presence of 

high extracellular potassium (to suppress the intracellular-extracellular concentration gradient) as 

well as the selective, competitive, P2X7 receptor antagonist A438079 (D.W. Nelson et al. 2006). 

The requirement for potassium efflux in inflammasome-mediated pyroptotic cell death was 

confirmed by propidium iodide staining and live cell imaging (Figure 3-1B). Combined LPS and 

ATP treatment resulted in a time-dependent accumulation of cells positive for propidium iodide 

that was inhibited in the presence of 130 mM extracellular potassium. Further, 

immunofluorescence revealed the assembly of the inflammasome as indicated by the presence of 

classical perinuclear caspase-1 specks that were suppressed by high extracellular potassium and 

treatment with A438079 (Figure 3-1C). Thus, J774A.1 exhibit the 1st/2nd signal (LPS priming 

and ATP stimulation, respectively) behavior representative of the potassium efflux-dependent 

inflammasome pathway in macrophages. 
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Figure 3-1. P2X7-induced potassium efflux regulates NLRP3 inflammasome assembly and 
pyroptotic cell death. (A) Immunoblot analysis of procaspase-1 p45 and activated p10 
fragments, and proIL-1β (34 kD) and mature (17 kD) fragments in the lysates and concentrated 
supernatants of J774A.1 primed for 4 hours with 1 µg/mL LPS and stimulated with 3 mM ATP for 
30 minutes with or without addition of 130 mM extracellular KCl or 25 µM of the P2X7 antagonist 
A438079. (B) Time-resolved uptake of propidium iodide in J774A.1 primed with LPS for 4 hours 
and stimulated with ATP in the presence or absence of 130 mM extracellular KCl. (C) 
Immunofluorescence for caspase-1 (green) in J774A.1 untreated or primed for 4 hours with 1 
µg/mL LPS and subsequently stimulated with 3 mM ATP for 30 minutes with or without 130 mM 
extracellular KCl or 25 µM A438079. Arrows: caspase-1 specks indicative of inflammasome 
assembly. Scale bar represents 50 µm. Nuclei are stained with NucBlue Fixed DAPI solution 
(blue). 
 
 
3.3.2. ATP-induced calcium influx regulates the NLRP3 inflammasome 

The role of ATP-induced calcium influx on inflammasome activation was determined next. 

Previous study has shown that intracellular calcium chelation with BAPTA-AM suppresses IL-1β 

processing and release upon ATP-induced inflammasome activation (Lee et al. 2012). In 

agreement with this observation, it was found that BAPTA-AM significantly suppressed ATP-

induced IL-1β processing and release as indicated by ELISA in J774A.1 cell supernatants 

(Figure 3-2A). It has not yet been reported whether calcium chelation suppresses IL-1β 

processing and release upstream or downstream of inflammasome assembly, though some 

reports propose a possible calcium influx-dependent lysosomal exocytosis pathway for IL-1β 
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release (Bergsbaken et al. 2011). The caspase-1-specific fluorescent inhibitor of caspase 

activation (FLICA; FAM-YVAD-fmk) was used to observe ATP-induced inflammasome assembly 

as indicated by perinuclear caspase-1 specks (Figure 3-2B). While stimulation with 3 mM ATP 

resulted in substantial perinuclear caspase-1 speck appearance indicative of inflammasome 

assembly, chelation with BAPTA-AM completely inhibited any indication of inflammasome 

formation. These results suggest that calcium influx regulates ATP-induced NLRP3 activation 

upstream of inflammasome formation. 

 
 

 

Figure 3-2. Calcium influx is an upstream regulator of IL-1β release and NLRP3 
inflammasome assembly. (A) ELISA analysis of released IL-1β from J774A.1 primed with 1 
µg/mL LPS for 4 hours and stimulated with 3 mM ATP for 30 minutes. Where indicated, cells 
were pretreated with 100 µM BAPTA-AM prior to addition of ATP. Statistics were calculated by 
one-way ANOVA with Tukey’s post-hoc and represent the mean and standard error of two 
independent experiments. (B) Cells were prepared as in (A), except for the addition of caspase-1 
FLICA 1 hour prior to the addition of ATP. Arrows point to perinuclear caspase-1 specks. Green 
fluorescence indicates caspase-1 FLICA signal and blue fluorescence indicates Hoechst 33342 
stained DNA. Scale bar represents 25 µm. Results are representative of two independent 
experiments. 
 
 
3.3.3. Direct visualization of potassium mobilization in macrophages with a novel 

intracellular sensor 

In order to better understand the intracellular potassium dynamics triggered by ATP-induced 

NLRP3 inflammasome activation, KS6, a novel intracellular potassium sensor was used (Figure 

3-3A). As briefly described in Chapter 2, KS6 has improved sensitivity and selectivity compared 

to PBFI, the only currently, commercially available potassium sensor (Figure 3-3B). As KS6 is 

functionalized with a triphenylphosphonium group for enrichment in the mitochondria, we first 
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confirmed the sensor localization in J774A.1 cells. Live-cell imaging revealed a strongly enriched 

signal from KS6 in the mitochondrial matrix as verified by co-staining with MitoTracker Green FM 

(Figure 3-3C-F). As observed for other cell lines, a portion of KS6 signal was localized to the 

cytosol (approximately 20% by co-localization analysis). Thus, KS6 enriches in the mitochondria 

as expected and is available for detection of cytosolic and mitochondrial potassium content. 

 

Figure 3-3. KS6 localizes to the mitochondria and the cytosol in live cells. (A) Chemical 
structure of the intracellular potassium sensor KS6. (B) Spectrofluorophotometric characterization 
of KS6 signal response to potassium titration in solution. (C) J774A.1 were stained with KS6 
intracellular potassium sensor and MitoTracker Green FM prior to imaging by confocal 
microscopy. (D) Inset of boxed region from (C) displaying the overlap of MitoTracker Green FM 
and KS6. (E) Signal from MitoTracker Green FM. (F) Signal from KS6. Arrows indicate discrete 
mitochondria clearly stained for both probes. Scale bar represents 25 µm. KS6 structure and 
titration were provided by Xiangxing Kong. 
 
 

It was next confirmed that whole-cell KS6 signal responds to ATP-induced P2X7 

activation. P2X7 engagement results in the opening of a non-specific cation pore and potassium 

efflux across the intracellular-extracellular potassium concentration gradient (Yan et al. 2008). 

This response was probed by demonstrating a live cell titration between physiologically normal 

(130 mM) and intermediate (50 mM) concentrations of additional extracellular potassium (Figure 
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3-4A). Next, whether differing concentrations of extracellular ATP would result in a dose-

dependent opening of the P2X7 pore and concomitant potassium efflux was tested, as recently 

reported for membrane permeability (Ursu et al. 2014). A dose-dependence of both potassium 

efflux and membrane permeability was observed as indicated by the response of KS6 and uptake 

of the membrane impermeable DNA dye TO-PRO-3, respectively (Figure 3-4B and C). Both 

events were dependent on P2X7 activity as inhibition with A438079 suppressed both events 

(Figure 3-5). Importantly, the single cell microscopic data confirm previous reports that the 

approximate threshold for potassium concentration required for ATP-induced inflammasome 

activity is approximately 50-60% of basal levels, corresponding to a total cellular potassium 

concentration of about 60-80 mM. Taken together, these experiments confirm that KS6 is an 

effective sensor for direct visualization of P2X7-dependent intracellular potassium dynamics in live 

macrophages. 
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Figure 3-4. Real-time intracellular potassium dynamics observed with KS6. (A) Kinetic trace 
of potassium efflux from J774A.1 cells stimulated with 5 mM ATP at the indicated time point in the 
presence of 0 mM additional KCl (normal DMEM medium), 50 or 130 mM additional extracellular 
KCl. Traces represent the mean and standard deviation of 10-20 cells in each field. (B) Response 
at 40 minutes of potassium efflux (top panel) or TO-PRO-3 uptake (bottom panel) of J774A.1 
primed for 4 hours with 1 µg/mL LPS and treated with 1, 3 or 5 mM extracellular ATP. Bars 
represent mean and standard deviation of 20 cells in each condition. Statistics were performed by 
one-way ANOVA with Fischer’s LSD comparison test. *p<0.05 and ****p<0.0001 (C) 
Representative fields at the indicated time-points of LPS-primed J774A.1 loaded with KS6 (red) 
and treated with 1, 3 or 5 mM extracellular ATP in the presence of TO-PRO-3 (cyan). Scale bar 
represents 50 µm. 
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Figure 3-5. ATP-induced potassium efflux and membrane permeability are P2X7-
dependent. Potassium efflux visualized using KS6 (A) or membrane permeability as indicated by 
the uptake of membrane-impermeant TO-PRO-3 (B) are inhibited in LPS-primed, ATP-stimulated 
J774A.1 macrophages when treated with the P2X7 inhibitor A438079. Traces represent mean 
and standard error for 5 representative cells. 

 

3.3.4. Extracellular ATP mobilizes mitochondrial potassium downstream of P2X7 

engagement 

Mitochondrial potassium represents a significant portion of total cellular potassium, as its 

concentration is nearly twice (200-300 mM) that of the cytosol (100-150 mM) (Nolin et al. 2013). 

Because extracellular ATP is detected at plasma membrane-localized P2X7 receptors resulting in 

cytosolic potassium efflux, it was next determined if the mitochondrial potassium pool was 

mobilized by macrophage purinergic signaling. KS6 was co-localized with MitoTracker Green FM 

to observe the kinetics of mitochondrial potassium in live J774A.1 cells (Figure 3-6). Real-time 

monitoring of KS6 signal during P2X7 engagement with 3 mM extracellular ATP revealed both 

cytosolic and mitochondrial potassium depletion. The depletion of cytosolic and mitochondrial 

potassium was suppressed by 130 mM extracellular potassium or by inhibition of P2X7 with 

A438079. Notably, the loss of potassium occurred prior to the shrinking and disintegration 

morphology indicative of mitochondrial damage. 
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Figure 3-6. P2X7 activation results in mitochondrial potassium mobilization. J774A.1 cells 
were primed for 4 hours with 1 µg/mL LPS and loaded with 5 µM KS6 (red) and 10 nM 
MitoTracker Green FM (green). Real-time confocal microscopy was performed to track the 
potassium dynamics after stimulation with 3 mM extracellular ATP with or without the P2X7 
inhibitor A438079. Results revealed a rapid, receptor-dependent mobilization of potassium as 
indicated by a reduction in KS6 signal in the co-localized space with MitoTracker Green FM that 
was sensitive to inhibition with A438079. Subsequent to the mobilization, mitochondria appeared 
to fragment. Fields are representative of at least 3-5 experiments. Scale bar represents 20 µm. 
 
 
3.3.5. Mitochondrial reactive oxygen species are essential for pyroptosis in J774A.1 

macrophages 

It was next determined if mitochondrial ROS (mROS) was necessary for the assembly and 

function of the inflammasome. LPS-primed J774A.1 were treated with ATP with and without pre-

treatment with the mitochondria-localized reactive oxygen scavenger MitoTEMPO. Previous 

studies have shown that MitoTEMPO is effective in inhibiting pyroptosis and release of IL-1β 

(Heid et al. 2013). Here, it is shown that the assembly of the inflammasome speck, as indicated 

by immunofluorescence for caspase-1, is strongly inhibited in the presence of MitoTEMPO 

(Figure 3-7A). The role of mROS in inflammasome function was further validated by 

demonstrating an inhibition of caspase-1 p10 and IL-1β p17 processing and release when cells 

are treated with ATP in the presence of MitoTEMPO as detected by immunoblotting (Figure 3-
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7B). Lastly, it was demonstrated that pyroptotic cell death requires mROS by measurement of 

lactate dehydrogenase activity in cell supernatants (Figure 3-7C). These results demonstrate the 

need for mROS in the assembly and activity of the inflammasome. 

 

 

Figure 3-7. Mitochondrial ROS is essential for ATP-evoked inflammasome activity in 
J774A.1 cells. (A) Immunofluorescence for caspase-1 (green) in J774A.1 primed for 4 hours with 
1 µg/mL LPS and subsequently stimulated with 3 mM ATP for 30 minutes with or without 500 µM 
MitoTEMPO treatment. Arrows point to caspase-1 specks indicative of inflammasome assembly. 
Scale bar represents 20 µm. Nuclei are stained with NucBlue Fixed DAPI solution (blue). (B) 
Immunoblot analysis of pro-caspase-1 p45 and activated p10 fragments, and proIL-1β (34 kD) 
and mature (17 kD) fragments in the lysates and concentrated supernatants of J774A.1 primed 
for 4 hours with 1 µg/mL LPS and stimulated with 3 mM ATP for 30 minutes with or without 
pretreatment with 500 µM MitoTEMPO. (C) Assessment of lactate dehydrogenase (LDH) activity 
in the supernatants of J774A.1 primed with 1 µg/mL LPS and stimulated with ATP for 30 minutes 
with or without pretreatment with 500 µM MitoTEMPO. Results are fold-change versus LPS 
primed cells and error bars represent standard error of two independent experiments. **p<0.01 by 
one-way ANOVA with Tukey’s post-hoc comparison. 
 
 
3.3.6. P2X7-dependent potassium and calcium ion flux is essential for mitochondrial 

mROS production 

As direct visualization revealed that the mitochondrial potassium pool responds to receptor-

mediated changes in intracellular potassium, it was next determined if ion flux had an effect on 

pro-inflammatory mitochondrial signaling. Using the mitochondria-targeted reactive oxygen 

species probe MitoSOX whether potassium efflux and calcium influx had an effect on ROS 

production was investigated (Figure 3-8). Results indicated a substantial increase in MitoSOX 

signal when LPS-primed cells were stimulated with ATP. In support of a role for P2X7 signaling in 
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this response, inhibition of the channel with A438079 reduced levels of mROS production to that 

of basal levels seen in LPS-primed J774A.1. Importantly, both potassium efflux and calcium influx 

were necessary for the generation of mROS as treatment with 130 mM extracellular KCl (Figure 

3-8A) or BAPTA-AM (Figure 3-8B) resulted in strong suppression of MitoSOX oxidation. 

 

Figure 3-8. Potassium and calcium flux are necessary for P2X7-dependent mROS 
generation. J774A.1 cells were left untreated, primed with LPS for 4 hours, or primed with LPS 
and treated with 3 mM ATP as indicated. MitoSOX (red) was added to all samples 15 minutes 
after ATP addition and incubated for an additional 15 minutes prior to imaging. (A) Evaluation of 
the role of P2X7 and potassium efflux in mROS generation. 130 mM KCl and 25 µM A438079 
were added 15-20 minutes prior to ATP addition. (B) Evaluation of the role of calcium influx in 
mROS generation. 100 µM BAPTA-AM was added 15-20 minutes prior to ATP addition. Nuclei 
are stained with Hoechst 33342 (blue). Scale bar is 50 µm. Results are representative of at least 
2 independent experiments. 

 

Comparing the kinetics of MitoSOX oxidation and potassium efflux in the mitochondria it 

was find that potassium mobilization is a rapid event and likely occurs upstream of ROS 

generation. While this is difficult to directly correlate due to KS6 exhibiting rapid response 

dynamics while MitoSOX converts by a comparatively slow process, the seconds-scale response 

of potassium efflux is notable quicker than the apparent minutes-scale generation of ROS. These 

results taken together, suggest that calcium and potassium flux triggered by P2X7 activation 

result in mitochondrial ion imbalance and mROS generation upstream of NLRP3 inflammasome 

activation. 
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3.3.7. ATP-induced potassium efflux is required for calcium influx  

While both potassium and calcium are implicated in ATP-induced inflammasome activation, it is 

unclear if there is a relationship between them (Sutterwala, Haasken, and Cassel 2014). To 

investigate the dynamics of ATP-induced ion flux, multiplexed imaging of potassium and calcium 

was performed by combining the KS6 intracellular potassium sensor with Fluo-4, a commercially 

available calcium indicator (Figure 3-9). Results showed that LPS priming alone had no dramatic 

effect on ion content; calcium transients were apparent but overall signal was stable for both 

calcium and potassium. Upon ATP stimulation, a rapid calcium signal spike occurred, followed by 

a second, more sustained increase in calcium signal. This bi-phasic calcium response is 

indicative of the kinetics associated with rapid, endoplasmic reticulum-stored calcium ahead of 

plasma membrane-localized calcium entry from the extra-cellular environment (Murakami, 

Ockinger, Yu, and Byles 2012). Importantly, potassium flux occurred concurrently with the second 

phase of calcium influx, but was stable through the initial calcium spike. Calcium chelation with 

BAPTA-AM resulted in a suppression of calcium dynamics, but had no effect on the ability for 

ATP to induce potassium depletion. This suggests that potassium flux may be upstream of 

calcium flux. Addition of extracellular potassium had no effect on the initial calcium spike after 

ATP addition, but suppressed the second, sustained calcium rise. Together, these results 

suggest that ATP-induced potassium efflux is upstream and necessary for plasma membrane-

associated calcium influx, but not transient store-associated calcium spikes. 
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Figure 3-9. Real-time, multiplexed visualization of ATP-induced potassium and calcium 
dynamics. J774A.1 cells were primed for 4 hours with 1 µg/mL LPS, stained with KS6 and Fluo-4 
DIRECT and both fluorophores were imaged simultaneously by confocal microscopy. (A) 
Representative fields for each condition showing Fluo-4 and KS6 signal responses. 16-color 
pseudocolor look-up tables were used for visualization. Blue indicates low signal intensity and red 
indicates high signal intensity. Scale bar represents 25 µm. (B) Mean and standard error for 30 
representative cells in each condition. Where indicated cells were stimulated with 3 mM ATP. 
Inhibitors were added 15-20 minutes prior to imaging. Results are representative of at least 2 
experiments. 
 
 

3.4. DISCUSSION 

In this study the question of how ion flux and mitochondrial reactive oxygen interact upstream of 

inflammasome assembly was investigated. Both of these phenomena are recognized as key 

mediators of inflammasome regulation and have been separately suggested as the common 

induction mechanism for inflammasome assembly. Despite the proposal that there is a link 

between potassium efflux and mitochondrial signaling resulting in inflammasome assembly, this 

association has yet to be observed (Petrilli et al. 2007; Martinon 2010; Tschopp 2011; Sutterwala, 

Haasken, and Cassel 2014). Further, no direct evidence regarding the relationship between 
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calcium and potassium has been described. Thus, it has been unclear how ion flux and oxidative 

signaling contribute to inflammasome regulation. 

Because of its long-standing and apparently ubiquitous participation in linking stimulus 

detection and inflammasome assembly, potassium is often used as a metric of basic 

characterization for both new activators and inhibitors of the inflammasome. Details of how 

potassium affects the inflammasome have not been adequately described, however, because of 

technical limitations in potassium measurement. The most common methods for determining the 

role of potassium in various aspects of the inflammasome pathway are either blockade with high 

extracellular potassium or quantitation of potassium content by spectroscopy or photometry of 

bulk populations lysed in nitric acid (Franchi et al. 2007; Petrilli et al. 2007; Muñoz-Planillo et al. 

2013). While high extracellular potassium is effective for determining how blockade of potassium 

efflux affects downstream phenotypes, which we have also used in this study, it is obscures 

intermediate responses and is unable to reveal cellular kinetics. Likewise, bulk cell potassium 

determination can provide only low-resolution kinetic details and completely obscures the 

contribution of individual cells or subpopulations in the response to stimuli. The latter point was 

recently identified to be an essential character of inflammasome-associated response by 

macrophages. Specifically, it was observed by single cell analysis that IL-1β was released in a 

bursting fashion only from cells dying by pyroptosis (Liu et al. 2014). This opposes the long-

standing paradigm of secretion by various controversial pathways (Piccioli and Rubartelli 2013). 

This observation highlights the importance of investigating inflammasome-associated cellular 

processes at the single cell level and avoiding reliance on bulk cell determination methods. 

While calcium indicators are well established and extensively used, existing methods for 

probing potassium are lacking. To date, Arlehamn et al. have reported the only live cell imaging 

experiments on potassium in macrophages stimulated to undergo inflammasome assembly by 

infection with Pseudomonas (Arlehamn et al. 2010). A major limitation to this study, however, is 

their application of PBFI for live cell potassium readout. PBFI is a potassium sensor that exhibits 

nearly equivalent sensitivity to sodium ions as it does to potassium ions, which makes its readout 

difficult to interpret (Minta and Tsien 1989). Further, PBFI has a Kd <10 mM and its response 
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saturates at approximately 50 mM, a concentration lower than the threshold for inflammasome 

activation as reported by others and reaffirmed in this study. Accordingly, upstream dynamics are 

obscured by a saturated sensor response and a depletion of cellular potassium can only be 

detected upon cell death with PBFI. Lastly, PBFI is necessarily excited with UV light and therefore 

induces phototoxic damage to cells under observation, potentially obscuring the effects of 

stimulus-induced cell death. For the current studied KS6, an improved intracellular potassium 

sensor, which addresses the drawbacks of PBFI, was applied (publication in revision). KS6 is 

excited by visible light, is strongly selective for potassium against sodium and other monovalent 

and divalent ions, readily taken up by live cells, and is sensitive to potassium across a 

supraphysiological range. An additional feature of KS6 is its enrichment in mitochondria due to 

the presence of a triphenylphosphonium group, thereby localizing it to both the cytosol and 

mitochondria of cells. Here it is shown that KS6 can be effectively used for observing dynamic 

responses of potassium in live cells and, further, that it can be multiplexed with other intracellular 

indicators for analytes such as calcium. 

Detection of extracellular ATP by the P2X7 purinergic receptor is a prototypical stimulus 

for NLRP3 inflammasome activation (Perregaux and Gabel 1994; Franchi et al. 2007). Potassium 

efflux and ROS generation have independently been proposed as downstream effects of P2X7 

activation (Bartlett, Yerbury, and Sluyter 2013). By live cell imaging and direct visualization a 

rapid and robust mitochondrial potassium mobilization associated with P2X7 engagement was 

identified. P2X7 is expressed on the plasma membrane and its sensing activity is therefore 

localized distally to mitochondrial responses (Di Virgilio et al. 1998). It is proposed that 

mitochondria mobilize their potassium pool as a response to changes in cytosolic potassium 

levels, which is directly responsive to P2X7 activity by proximity. This provides additional support 

for the observation that mitochondria respond to cytosolic potassium levels, as it was previously 

shown that mitochondria are capable of sequestering and buffering cytosolic potassium (Kozoriz 

et al. 2010). A mitochondrial potassium buffering mechanism is further supported by the finding 

that efflux is ATP dose-dependent. P2X7 has multiple ATP-sensing sites that have been shown to 

dose-dependently affect the level of pore dilation permission to ion flux (Yan et al. 2010). Our 
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data suggest that the magnitude of P2X7 activation dictates the degree of potassium efflux, and 

therefore inflammasome assembly responses. 

Intracellular ion homeostasis is essential for maintenance of mitochondrial integrity as 

mitochondrial membrane potential is heavily dependent on charge distribution (Garlid and Paucek 

2003; Dubyak 2004). It was hypothesized that the mitochondrial potassium loss we observed 

would be correlated with mitochondrial reactive oxygen production. In support of this, it was found 

that blockade with high extracellular potassium or the P2X7 inhibitor A438079 suppressed the 

elevated levels of mitochondrial ROS observed with ATP treatment. Likewise, it was found that 

potassium blockade and calcium chelation suppressed mROS generation. By performing the first-

ever multiplexed imaging of potassium and calcium in live cells, it was found that potassium efflux 

was necessary for calcium influx downstream of ATP treatment. These results suggest a 

mechanism whereby potassium efflux triggered by P2X7 activation regulates calcium influx, 

ultimately resulting in calcium overload-induced mROS generation leading to NLRP3 

inflammasome activation (Figure 3-10). 

This study establishes a previously unknown relationship between potassium and 

calcium during purinergic receptor-dependent activation of the NLRP3 inflammasome. Namely, 

potassium efflux is the dominant regulatory ion upstream of calcium influx, both of which are 

required for mitochondrial oxidative signaling leading to NLRP3 inflammasome activation. This 

finding reconciles the observation that intervention in calcium signaling can modulate 

inflammasome signaling, but treatment with calcium ionophores are insufficient for stimulating IL-

1β processing and release (Perregaux and Gabel 1994; Murakami, Ockinger, Yu, Byles, et al. 

2012). This study also provides the first highly selective, real-time observation of ATP-induced 

potassium dynamics as well as the first multiplexed imaging of calcium and potassium in live 

cells. Future work towards elucidating the NLRP3 inflammasome pathway may benefit from 

application of real-time visualization of potassium and calcium ion dynamics. 
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Figure 3-10. Proposed mechanism for ion flux-dependent regulation of the NLRP3 
inflammasome. Activation of the P2X7 receptor pathway with extracellular ATP results in the 
exchange of potassium and calcium across the plasma membrane, dominantly regulated by efflux 
of potassium from the cytosol to the extracellular space. Influx of calcium causes a mitochondrial 
calcium overload resulting in mitochondrial destabilization and mROS generation, which activates 
the NLRP3 inflammasome through an unknown mechanism, but possibly by involvement of 
TXNIP (Zhou et al. 2010; Horng 2014). P2X7 receptor activation also results in a mitochondrial 
potassium efflux that may be involved in mitochondrial destabilization and mROS generation. 
Inhibition of potassium efflux prevents calcium influx and downstream mROS generation. 
Likewise, chelation of intracellular calcium prevents mROS generation.  
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CHAPTER 4: ADDITIONAL DEVELOPED METHODS: 

SINGLE CELL RT-qPCR 

 

4.1 INTRODUCTION AND BACKGROUND 

It is known that cellular heterogeneity is present even in seemingly homogenous, isogenic 

populations. This heterogeneity is observed in cell size, function and growth stage, and at both 

protein and gene transcript levels (Klein et al. 2002; Pardal, M.F. Clarke, and Morrison 2003; 

Johnson and Newby 2009). Despite the potential impact of investigating this heterogeneity, most 

of our understanding of disease pathology has been informed by bulk measurements made on 

cellular populations (Levsky and R.H. Singer 2003). This approach is not optimal because 

population-averaged measurements are not always representative of the actual biological state or 

response. For example, multimodal responses become obscured and the contributions of rare, 

but important cells can be diluted beyond detection. Therefore, for many biologically and 

medically relevant questions, single cell resolution techniques are required (Lidstrom and 

Meldrum 2003; de Souza 2012; Ståhlberg et al. 2012).  

Our lab and others have shown that performing gene expression analyses at the single 

cell level reveals useful information about disease states and conditional responses of both 

mammalian and bacterial cells (Ginsberg et al. 2004; Gao, W. Zhang, and Meldrum 2011; 

Narsinh et al. 2011; Zeng et al. 2011). However, these approaches rely on expensive, specialized 

equipment for automated cell sorting, or complicated and methodologically difficult manipulation 

tools. As a result, single cell gene expression experiments are often inaccessible to research labs 

with limited resources or expertise (Ståhlberg and Bengtsson 2010; Zeng et al. 2011). An 

additional limitation of existing methods is that chemical dissociation of samples is usually used to 

harvest cells for end-point analysis. This treatment has the potential to introduce physiological 

perturbations that may be reflected in variations in RNA species of interest. Further, during 

dissociation from an adherent population and processing by methods such as microcapillary 

aspiration or flow sorting, individual cells cannot be easily tracked. As a result, analyses done on 

live, adherent cells cannot be directly correlated with subsequent gene expression data for 
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individual cells. Finally, custom-developed instrumentation, while enabling an individual lab to 

perform single cell experiments, may not be reproducible in other venues due to differences in 

protocols and sample handling. A comparison of the available methods for single cell isolation is 

given in Table 4-1. To address these challenges, an adaptable pipeline for performing correlated 

live cell imaging and single cell reverse transcription quantitative polymerase chain reaction (RT-

qPCR) was optimized which requires only broadly available equipment, minimal investment in 

consumables and minimal cell perturbation. The presented method was characterized for optimal 

single cell isolation and demonstrate its application by identification of GFP-expressing cells from 

among a mixed population with non-expressing cells both microscopically and by molecular 

detection using RT-qPCR on the same single cells. 
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Table 4-1. Comparison of current methods for single cell isolation 

Method Advantages Disadvantages 

Fluorescence-activated Cell 
Sorting 

- High throughput 
- Single cell resolution 
- Fluorescence-compatible 
- Specific cell isolation 
- Live cell compatible 
 

- High cost 
- Specialized technical expertise 
   needed 
- Suspended cells only 
- No cell-cell interaction capability 
- Variable performance 

Laser Capture 
Microdissection  

- Single cell resolution 
- Fluorescence-compatible 
- Specific cell isolation 
- Compatible with tissue samples 
- Capable of cell-cell interaction 
  studies 

- Low throughput 
- High cost 
- Specialized technical expertise 
  needed 
- Infrequently compatible with live 
  cells 
- Potential neighbouring cell 
  contamination 
- Need to identify cell of interest 
- Adhered cells only 
- Variable performance 
 

Microcapillary aspiration - Single cell resolution 
- Fluorescence-compatible 
- Live cell compatible 
- Capable of cell-cell interaction 
  studies 

- Low throughput 
- High cost 
- Necessary technical expertise 
- Suspended cells only 
- Variable performance 
 

Microfluidics - Variable throughput 
- Variable cost 
- Single cell resolution 
- Fluorescence-compatible 
- Live cell compatible 
- Adherent or suspended cells 
- Capable of cell-cell interaction 
  studies 
 

- Specialized technical expertise  
  needed 
- Generally specialized per  
  experiment 
- Random cell isolation 
- Variable performance 

Terasaki plate and dilution - Low cost 
- Low technical complexity 
- Single cell resolution 
- Fluorescence-compatible 
- Live cell compatible 
- Adherent or suspended cells 
- Capable of cell-cell interaction 
  studies 
- Consistent performance 

- Mid to low throughput 
- Random cell selection 
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Terasaki-style microtest assays were developed in the 1960s by Paul Terasaki for tissue-

typing microcytotoxicity tests on human leukocyte antigens with only one microliter of patient 

antiserum (Terasaki and McClelland 1964). Modern Terasaki plates are generally made of 

optically clear polystyrene with flat-bottomed wells accommodating approximately 20 μL volumes 

each. While still used for their original intended microcytotoxicity purposes, Terasaki plates have 

also been used for isolation cloning, because, after plasma treatment to promote cell adhesion, 

they provide a small, fluid-isolated culture environment for growth (Bishop 1981). Because of the 

small volumes, ability to support adherent cell culture and compatibility with microscopic 

observation, Terasaki plates are excellent candidate substrates for designing a single cell RT-

qPCR assay. These commonly available substrates are underutilized in the literature for single 

cell RT-qPCR analysis and have only been demonstrated for single-plex identification of gene 

expression (Smith, Malley, and Schechter 2000). Further, the previously published, and rarely 

reported, application of this substrate for single cell RT-qPCR is non-optimized and only briefly 

described thereby requiring substantial preliminary work for groups wanting to use this technique. 

Here, the optimized application of Terasaki plates for single cell RT-qPCR is described, 

an expansion of the pipeline to include correlated molecular analysis with fluorescence 

microscopy, and a step-wise protocol with troubleshooting guidelines. Major advantages of the 

method described here versus existing methods include low method adoption cost and learning 

curve, broad compatibility with various detection chemistries and microscopic methods, and 

multiplexing analysis of visual observations and molecular detection in the same single cells. The 

presented pipeline was designed by combining and characterizing simple, inexpensive and 

reliable methods to reduce costs and maximize broad applicability (Figure 4-1). Briefly, single 

cells are isolated by the following steps: 1) establish cell density using a cell counter, 2) 

determine the optimal cell density required to achieve one single cell per well in a Terasaki plate, 

3) homogenize the suspension and dispense 10 μL into each well using a standard hand-held 

micropipette, 4) incubate cells for approximately 10–20 minutes in either a tissue culture hood or 

a 37ºC incubator, 5) verify and score positive single cells in each well. As demonstrated, the 
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resulting single cells can be used for a number of downstream applications including 

experimental treatments, fluorescence microscopy and RT-qPCR analysis. 

 

 

Figure 4-1. Schematic overview of the single cell RT-qPCR pipeline.  (A) Succinct overview 
of the pipeline, sectioned into three main processes: preparation, microscopy, and gene 
expression. Approximate time per plate for each step in the procedure is shown. (B) Diagram of 
the cell isolation process. Diluted solutions of cells are dispensed into fluidically isolated wells of a 
Terasaki plate. Inset illustrates the spreading morphology of a single adherent cell on the plate. 

 

4.2 METHODS 

4.2.1. Cell culture 

CP-A (ATCC® CRL-4027™, Manassas, VA, USA) and TurboGFP-expressing CP-D cells 

(ATCC® CRL-4030™, Manassas, VA, USA) transduced with MISSION® pLKO.1-puro-UbC-

TurboGFP™ (Sigma Aldrich, St. Louis MO, USA) were maintained in serum-free Keratinocyte 

medium modified with 20 ng/mL epidermal growth factor, 140 μg/mL bovine pituitary extract, 100 

U/mL penicillin and 100 μg/mL streptomycin (Gibco, Grand Island, NY, USA). Cells were 

maintained at 37°C under 5% CO2 in a humidified atmosphere. Cells were trypsinized with 0.05% 

Trypsin-EDTA for 10 minutes, centrifuged at 900 rpm for 3 minutes and counted using the Trypan 

Blue assay on a Countess® automated cell counter (Life Technologies, Grand Island, NY, USA); 

only passages identified as greater than or equal to 95% viable were utilized in experiments. 

Cells were resuspended at 200–300 cells/mL or in a 1:1 mixture unless otherwise noted. THP-1 
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(ATCC® TIB-202™, Manassas, VA, USA) cells were cultured per ATCC instructions and used for 

determining well occupancy in preliminary concentration curve experiments as well as the three-

color fluorescence data. MDA-MB-231 (ATCC® HTB-26™, Manassas, VA, USA) cells were 

cultured at 37°C under 5% CO2 in a humidified atmosphere in complete DMEM supplemented 

with 10% FBS, 100U/mL penicillin and 100 μg/mL streptomycin (Gibco, Grand Island, NY, USA) 

and subcultured as described for the CP-A and CP-D cells. MDA-MB-231 cells were used for 

determining well occupancy in preliminary concentration curve experiments. 

 

4.2.2. Preparation of Terasaki plates 

Terasaki-style microtest plates (#470378, Thermo Scientific, Pittsburgh, PA, USA) were briefly 

cleaned using pressurized nitrogen gas to remove particulate from the well area. The plates were 

then exposed to air plasma in a plasma cleaner (PDC-001, Harrick Plasma, Ithaca, NY, USA) for 

1 minute under 500 mTorr vacuum with 10.15 W RF-power; a decrease in the time necessary for 

cell spreading after plasma treating was observed, but this step is not required. The outer 

surfaces of the plates were sprayed with 70% ethanol and allowed to dry in a sterile, laminar flow 

hood prior to cell seeding. 

 

4.2.3. Cell isolation 

Cells were counted on the Countess® automated cell counter as described in section 4.2.1.1 and 

resuspended at the desired density in 1 mL of culture medium (200-300 cells/mL for single cell 

isolation experiments, variable for tunable occupancy experiments). Cells were seeded in 10 µL 

volumes in each well of a Terasaki plate and placed in a 37 °C incubator for 2-24 hours. 

Experiments were performed with Colleen Ziegler. 

 

4.2.4. Microscopy 

Plates were briefly observed by phase contrast microscopy on a Nikon TS-100 microscope with 

10 and 20 objectives and scored for viability as “live” or “dead” based on spreading morphology 

and phase contrast characteristics. Wells identified as containing a live single cell were further 
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observed for fluorescence on an EVOS® FLoid® Cell Imaging Station (Life Technologies, Grand 

Island, NY, USA) using the white and green light detection options. For testing three-color 

fluorescence compatibility, live THP-1 cells were loaded with 10 μg/mL Hoechst 33342, 500 nM 

MitoTracker CMXRos and 2 μM Calcein AM (Life Technologies, Grand Island, NY, USA) and 

imaged on a Nikon TE2000 inverted microscope with a C2 confocal scanner (Nikon Instruments, 

Melville, NY, USA). 

 

4.2.5. RNA isolation and purification 

Samples were harvested from individual wells containing single cells using RNA lysis buffer 

(Zymo Research, Irvine, CA, USA) by three repeated applications of 10 µL to an individual well. 

All three volumes of RNA lysis buffer containing lysate from an individual cell were transferred to 

a PCR tube and kept at -80°C until further use (less than one week) and subsequently processed 

for RNA extraction and purification using the Quick-RNA™ MicroPrep kit (Zymo Research, Irvine, 

CA, USA). Briefly, the complete volume of cell lysate was transferred directly to the provided spin 

columns and purified according to manufacturer’s instructions. Total RNA was eluted to a final 

volume of 9 µL in DEPC-treated water. Purified total RNA was used immediately or stored at -

80 °C for less than one week. Experiments were performed with Colleen Ziegler. 

 

4.2.6. Reverse transcription 

First-strand cDNA synthesis was performed in a Veriti thermal cycler (Life Technologies, Grand 

Island, NY, USA) using the qScript™ cDNA SuperMix reagent (Quanta Biosciences, 

Gaithersburg, MD, USA). Briefly, 7 µL of total RNA, 2 µL of qScript™ cDNA SuperMix and 1 µL of 

DEPC-treated water was added to a PCR tube. Samples were kept at 25 °C for 5 minutes, 42 °C 

for 30 minutes, 85 °C for 5 minutes and held at 4 °C until retrieval. Synthesized cDNA was stored 

at -20°C until further use. Experiments were performed with Colleen Ziegler. 
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4.2.7. qPCR and results validation 

qPCR was performed using the SYBR Premix Ex Taq™ II reagent (TaKaRa, Mountain View, CA, 

USA). Briefly, a master mix was prepared for each reaction containing 5 µL SYBR Premix Ex 

Taq™ II (2), 0.4 µL each of 4 µM forward and reverse primers, 0.2 µL ROX reference dye and 

2.0 µL DEPC-treated water. Once master mix was dispensed into PCR tubes or wells of a PCR 

plate, 2 µL of cDNA were added to each reaction (or 2 µL DEPC-treated water for no-template 

controls) and qPCR cycling was performed. Primers used are described in Table 4-2. Three 

technical replicates and a no-template control reaction were performed for each gene in each 

sample. A StepOnePlus™ Real-Time PCR System (Life Technologies, Grand Island, NY, USA) 

was used for thermal cycling according to the following conditions: 1 cycle at 95 °C for 30 

seconds, 40 cycles 95 °C for 5 seconds then 60 °C for 30 seconds with data collection, followed 

by a melt curve analysis. Data was analyzed using StepOne™ Software version 2.1 (Life 

Technologies, Grand Island, NY, USA). Results were confirmed via 1% agarose gel 

electrophoresis using Lonza SeaKEM LE (Lonza, Basel, Switzerland) with 1 TAE buffer and 

SYBR safe dye (Life Technologies, Grand Island, NY, USA). Additional confirmation was 

evaluated by melting curve analysis. Primers were validated by band extraction from the agarose 

gel (QIAquick Gel Extraction kit, Qiagen, Germantown, MD, USA) followed by sequencing. 

Experiments were performed with Colleen Ziegler. 

 

Table 4-2. RT-qPCR primers 

Gene target Accession # Forward Sequence Reverse Sequences Size 
(bp) 

Beta-actin 
(human) 

NM_001101.
3 
 

5′-ctggaacggtgaaggtgaca 

 
 

5′-aagggacttcctgtaacaacgca 

 
 

140  

GFP 
(TurboGFP) 

GU452685.1 
 

5′-aggacagcgtgatcttcacc 
 

5′-cttgaagtgcatgtggctgt 
 

164  
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4.3. RESULTS 

4.3.1. Tunable single cell isolation on small-volume Terasaki plates 

Optimization of cell seeding density is essential for obtaining single cell occupancy in Terasaki 

microtest plates. A dilution series was performed in order to determine the effective cell 

occupancy distribution as a function of stock cell density prior to seeding. The occupancy of wells 

obtained by various densities of initial cells is shown in Figure 4-2. By performing a statistical fit, 

it was found that isolation of cells by this method results in a tight correlation to a Poisson 

distribution. Accordingly, the maximum frequency for a single cell well obtained by random 

seeding in Terasaki plates is approximately 35%, which may be obtained with an initial cell 

density of 250-350 cells/mL. 

 

Figure 4-2. Tunability of single cell isolation. Concentration curve experiments with MDA-MB-
231 cells demonstrating the ability to tune the well occupancy by altering initial seeding 
concentration according to Poisson statistics. Approximately 250–350 cells/mL was identified as 
the optimal concentration for obtaining single cells. Error bars represent standard deviation and 
curves represent Poisson fit. 
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4.3.2. Multi-color fluorescence microscopy of isolated single cells 

The application of fluorescent vital dyes provides functional information on the cells under 

observation. Therefore, the use of fluorescent dyes on isolated single cells upstream of molecular 

analysis can provide a convenient route for multiplexing functional, live-cell information with 

molecular analysis. A point to note, regarding fluorescent staining in an isolated setting, is the 

viability of the cell. Fluorescent dye signals can relocalize or be lost during changes in viability. To 

determine whether isolated single cells on Terasaki plates are compatible with multicolor 

fluorescence microscopy, single THP-1 cells were stained with Hoechst 33342, MitoTracker Red 

CMXRos and Calcein AM (Figure 4-3). Imaging with laser scanning confocal microscopy 

revealed expected localization and signal intensities for all three fluorescent vital stains, indicating 

that cell viability is maintained throughout the isolation procedure, and that the substrate used for 

isolation and culture is compatible with imaging sufficient for functional multiplexing across the 

commonly used DAPI, FITC and TRITC spectral channels. 

 
  



76 

 
 

Figure 4-3. Demonstration of three-color fluorescence on Terasaki plates. An isolated THP-
1 cell is stained with Hoechst 33342 (DNA; blue), Calcein AM (cell membrane integrity; green) 
and MitoTracker CMXRos (mitochondria; red). Main scale bar represents 100 μm and inset scale 
bar represents 5 μm. 

 

4.3.3. Multiplexed single cell gene expression analysis and fluorescence microscopy of 

the same single cells 

To demonstrate the ability of the pipeline to identify specific signatures of single cells, the 

presence of GFP transcripts was measured in isolated cells from a population containing a 

mixture of GFP-positive and GFP-negative cells. It was sought to determine whether the volumes 

attainable in the Terasaki plates would allow detection of GFP transcripts from GFP-positive cells 

that could be correlated with fluorescence observations from the same sample. The GFP-positive 

cells used in these experiments were CP-D cells (ATCC® CRL-4030™), an hTERT-immortalized 

cell line representing high-grade dysplasia in Barrett’s esophagus that was stably transfected with 

a plasmid containing the GFP coding sequence. The GFP-negative cells were CP-A cells 

(ATCC® CRL-4027™) a related hTERT-immortalized cell line representing non-dysplastic 

metaplasia in Barrett’s esophagus. Both of these cell lines were mixed 1:1 prior to being seeded 
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on a Terasaki plate for single cell isolation. Single cells were scored and GFP-positive and –

negative cells were identified by fluorescence microscopy and subsequently isolated for gene 

expression analysis (Figure 4-4). 

 

 

Figure 4-4. Visual identification of fluorescence in isolated single cells. Adherent GFP-
negative (A) and GFP-positive (B) cells obtained by the described method on Terasaki plates and 
observed by fluorescence microscopy. Scale bars represent 50 µm. 

 

Total RNA was purified from each collected single cell and the entire collected eluate was 

used in independent reverse transcription reactions to produce cDNA. Subsequently, the cDNA 

was divided into three replicates for the target gene, GFP, and three replicates for the control 

gene, beta-actin. Simultaneous no template controls were run in parallel. Reproducibility of this 

method was good, as representatively indicated by the tight distribution of the amplification 

curves in Figure 4-5A and the height of the peaks in the melt curves in Figure 4-5B. As is 

commonly observed in RT-qPCR using intercalating chemistries (e.g., SYBR), occasional primer 

dimer amplification occurred, as seen in the late-rising dotted green amplification curve in the 

lower panel of Figure 4-5A. Primer dimer amplification is identified and distinguished from 

sample amplification by the characteristically late Cq value, lack of expected melt curve peak and 

small band size (Figure 4-5A and B and Figure 4-5D). 

A challenge in single cell analysis is the ability to discriminate between variability due to 

error in a method and real differences due to biological heterogeneity and gene expression 

stochasticity. Using the presented pipeline, the data collected by RT-qPCR and melt curve 
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analyses illustrated marked differences in GFP mRNA levels between isolated cells from a mixed 

population that corresponded to positive and negative fluorescence observations (Figure 4-5A 

and B). Normalized Cq analysis (Cq,GFP - Cq,ACTB) demonstrated a significant difference in signal 

between GFP-positive and negative cells as determined by T-test with p < 0.05 (Figure 4-5C) 

(Livak and Schmittgen 2001). A gel electrophoresis analysis was performed to validate the qPCR 

data according to expected amplicon sizes, which are described in the Methods section 

(Figure 4-5D). The results were further confirmed by band extraction and DNA sequencing, 

resulting in nucleotide sequences corresponding to the two expected gene targets. These results 

show that the volumes attainable in the Terasaki plate yield sufficient sample concentration to 

quantify gene expression of single cells for the purpose of population discrimination despite the 

inherent difficult in identifying variability due to error or endogenous heterogeneity and 

stochasticity. 
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Figure 4-5. Molecular analysis of GFP positive and negative single cells. A) qPCR curves 
demonstrating the ability to differentiate between GFP-negative (top) and GFP-positive (bottom) 
cells without pre-amplification. Two gene targets were identified in each single cell: beta-actin 
(magenta) and GFP (green). The delayed amplification shown in the GFP-negative curves are 
caused by primer dimers, as supported by melt curve analysis, agarose gel electrophoresis and 
DNA sequencing. B) Melt curve analysis showing the identification of individual peaks 
corresponding to the presence or absence of GFP (green), while beta-actin is observed at similar 
levels in both samples (magenta). C) Analyzed data for three GFP-positive (left group) and three 
GFP-negative (right group) cells isolated from a mixed population of cells. Results for each single 
cell were normalized to expression of beta-actin (ACTB) and reported as normalized Cq, which is 
defined as Cq, GFP - Cq, ACTB. Error bars represent standard deviation of 3 technical replicates of 
divided samples from individual cells. The difference between normalized Cq from GFP+/- is 
significant as determined by T-test with p < 0.05. D) Validation gel illustrating the presence of 
beta-actin in both cells, but a differential presence of GFP amplification in cells that were 
observed to be GFP-positive versus GFP-negative. Off-target bands in the negative control are 
primer dimers as confirmed by melt-curve analysis. 
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4.4. DISCUSSION 

While single cell studies have the potential to reveal important heterogeneity in a wide variety of 

biological systems, the ability to perform the techniques required for single cell analysis are 

commonly limited by a laboratory’s technical expertise and available instrumentation. It was 

sought to develop a simple protocol for performing single cell gene expression studies that is 

accessible to any lab already performing similar studies on bulk samples. 

A simple and effective method is demonstrated for isolating live single cells for 

microscopic imaging and gene expression analysis by RT-qPCR. The major advantages of our 

method over previous approaches include: 1) the use of commonly available consumables 

circumventing the need for expensive equipment, 2) improved throughput of single cell selection 

compared to other manual methods due to random seeding and direct verification of well 

occupancy and viability, 3) a simplified single cell isolation procedure with minimal physical and 

chemical manipulation of cells, 4) total RNA extraction compatible with detection of multiple gene 

targets, and 5) multiplexed single cell imaging and gene expression analysis. Further, the method 

is compatible with a wide range of chemistries, allowing integration into experimental protocols 

that include various drug treatments or fluorescent indicators. All steps can be carried out under 

standard aseptic cell culture conditions and cell viability is not compromised. Suggested 

improvements to the presented protocol such as electronic repeating pipettes or fluid handling 

robots may require additional purchases, but will improve throughput; the time to seed one plate 

was reduced from approximately 5 minutes to less than 45 seconds with an electronic repeating 

pipette. Also, RNA isolation and purification may be avoided by using one-step RT-qPCR 

reagents, though this comes at the cost of reducing the number of gene targets per single cell 

sample. Additionally, the use of Taqman or other hydrolysis probe chemistries can improve the 

amplification specificity, but may result in considerably more expensive up-front costs per 

reaction. 

The ability to multiplex visual observations of cells with molecular analysis is essential to 

understanding dynamic responses of cells to external perturbation. The method reported here 
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provides a straightforward and effective procedure for achieving multiplexed visual and molecular 

analysis at the single cell level. It is anticipated that this method will be extensible to the analysis 

other biomolecules (e.g., proteins) at the single cell level using assays such as proximity ligation 

assay-qPCR (Ståhlberg et al. 2012). Further, the use of live-cell fluorescent reporters can 

facilitate the tracking of intracellular events for improved temporal correlation with molecular 

analysis. 

With respect to inflammasome biology, this method may be particularly useful for 

studying heterogeneity in IL-1β upregulation. One possible application is tracking the oscillatory 

nuclear translocation of a fluorescently tagged NF-κB then correlating those dynamics to the 

production of IL-1β mRNA transcripts (D.E. Nelson et al. 2004). It would, for example, be 

interesting to determine if transcriptional priming by LPS was correlated with readiness to 

assemble the inflammasome driven by gene expression upregulation of inflammasome-related 

components such as NLRP3 or IL-1β. Recent evidence suggests that single cell responses may 

be critical for systemic responses mediated by inflammasome activity (Liu et al. 2014). The 

method presented in this study may allow an additional level of multiplexing by correlating 

fluorescently tracked events with molecular analysis. 
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CHAPTER 5: ADDITIONAL DEVELOPED METHODS: 

LIVE-CELL INTRACELLULAR ATP VISUALIZATION 

 

5.1.  INTRODUCTION AND BACKGROUND 

Adenosine-5’-triphosphate (ATP) is the predominant energy currency of the cell and is a 

substrate for most energy-required pathways. Aside from its role in enzymatic processes, ATP is 

also involved in purinergic intercellular signaling cascades in a variety of tissues (Fields 2000; 

Bodin and Burnstock 2001; Novak, Amstrup, and Henriksen 2003; Schwiebert and Zsembery 

2003). As described in Chapters 1 and 3, ATP plays a crucial and prototypical role in activating 

the NLRP3 inflammasome by activation of P2X7 purinergic receptors (Perregaux and Gabel 1994; 

Mariathasan et al. 2006). Additionally, the ATP-release channel Pannexin-1 has been implicated 

in regulating the activity of the NLRP3 inflammasome through autocrine and paracrine activation 

pathways (Pelegrin and Surprenant 2006; Latz, Xiao, and Stutz 2013). There is also evidence 

that maintenance of intracellular ATP content may play a role in IL-1β signaling. Metabolic 

blockade with a glucose analog, 2-deoxyglucose, or mitochondrial electron transport disruption 

with sodium azide cause an ATP depletion-dependent activation of the NLRP1b inflammasome 

(Liao and Mogridge 2013). 

Elucidation of ATP signaling dynamics in the inflammasome pathway has been difficult to 

achieve due to limitations in existing methodology. Previous reports have interrogated ATP 

content in the context of the inflammasome by apyrase-mediate inhibition of autocrine and 

paracrine signaling or luciferase assays of intracellular content (Riteau et al. 2012; Liao and 

Mogridge 2013). Both of these approaches are end-point, bulk cell assays that prohibit 

visualization of single cell dynamics. As shown in Chapters 2 and 3, real-time dynamics of 

intracellular processes may be crucial for understanding specific mechanisms upstream of 

inflammasome activation. 

Here, a mouse macrophage cell line stably expressing a genetically encoded intracellular 

ATP sensor was developed. The sensor, ATeam (Adenosine 5’-Triphosphate indicator based on 

Epsilon subunit for Analytical Measurements) is composed of cyan fluorescent protein (CFP) 
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fused with yellow fluorescent protein (YFP) via a linker from the Bacillus subtilis F0F1 ATP 

synthase epsilon subunit that confers highly selective and sensitive binding to free ATP (Figure 

5-1) (Imamura et al. 2009; Kotera et al. 2010). When ATP is detected by the ATeam linker, the 

CFP and YFP proteins come within Fluorescence Resonance Energy Transfer (FRET) distance 

from one another and a ratiometric change in fluorescence emission wavelength is observed. 

This chapter describes the generation and characterization of the ATeam-expressing 

macrophage cell line and proposes possible uses for its future application. 

 

Figure 5-1. Overview of ATeam ATP sensor function. ATeam consists of cyan fluorescent 
protein (CFP) fused to yellow fluorescent protein (YFP) linked by the epsilon subunit of a bacterial 
F0F1 ATP synthase. Upon detection of ATP, CFP and YFP come are brought within FRET-
compatible distance from each other and a shift in emission wavelength is observed. 

 

5.2. METHODS 

5.2.1. Cell culture 

The murine macrophage cell line RAW 264.7 (ATCC® TIB-71™, Manassas, VA, USA) were 

maintained in complete DMEM supplemented with 10% fetal bovine serum, 100 U/mL penicillin 

and 100 µg/mL streptomycin. Cells were maintained at 37 °C under 5% CO2 in a humidified 

atmosphere. Cells were passaged by scraping and viability was assessed using the Trypan Blue 

assay on a Countess® automated cell counter (Life Technologies, Grand Island, NY, USA). 
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5.2.2. ATeam plasmid preparation 

ATeam1.03-nD/nA/pcDNA3 was a gift from Takeharu Nagai (Addgene plasmid # 51958). E. coli 

DH5α stab cultures obtained from Addgene were streaked on 1 ampicillin agar plates. Plasmids 

were prepared from single clones by MiniPrep (Qiagen, Valencia, CA, USA) and were verified by 

sequencing using primers CMV-Forward (5’- CGCAAATGGGCGGTAGGCGTG) and BGH-

Reverse (5’- TAGAAGGCACAGTCGAGG) at the DNASU sequencing core (Tempe, AZ, USA). A 

verified clone was grown overnight in 1 L of Terrific Broth and endotoxin-free plasmid was 

prepared using MaxiPrep (Clontech, Mountain View, CA, USA).  

 

5.2.3. Cell transfections and stabilization 

Three million RAW 264.7 cells were seeded in a 60 mm dish and incubated overnight. The 

following day FuGENE® HD:DNA complexes (Promega, Madison, WI, USA) were formed at a 

ratio of 3.5:1 in OptiMEM medium (Life Technologies, Grand Island, NY, USA) and added to the 

cells in 6 mL of complete DMEM. Transfected cells were grown for 2 days in the transfection 

medium. On the third day, cells were washed 1 in fresh DMEM and 5 mL of DMEM containing 

500 µg/mL G418 selective antibiotic was added to the cells. Cells were transferred to a T25 flask 

and continuously grown in DMEM containing 500 µg/mL G418 for 2 weeks, washing and 

exchanging medium every 2 days. Expression was evaluated on the EVOS FLoid cell imaging 

station using the FITC channel (exciting the YFP portion of ATeam). Cells were frozen down and 

stored under liquid nitrogen. 

 

5.2.4. Spectral confocal microscopy and ratiometric analysis 

Transiently transfected RAW 264.7 cells were seeded in an 8-chamber µSlide (Ibidi) and imaged 

by spectral microscopy on a Nikon Ti microscope equipped with a C2si confocal scanner with 

spectral detector. The excitation wavelength was 408 nm and collected spectrum (453 nm – 608 

nm with 5 nm grating resolution) was selected to overlap both CFP (475 nm) and YFP (527 nm) 

peaks. After a baseline measurement was taken, 50 mM 2-deoxyglucose (2-DG) and 10 mM 

sodium azide (NaN3) were applied to cells. Imaging was continued for 60 minutes. 
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To determine the intracellular ATP content, mean intensities of each cell were collected 

at 527 nm and 475 nm emission wavelengths. The 527/475 nm ratio value is directly proportional 

to the intracellular ATP content where a value of 1 is considered ATP-depleted. 

 

5.2. RESULTS 

5.3.1. Generation of a mouse macrophage cell line stably expressing intracellular ATP 

sensor  

Generation of transfected cell lines without viral delivery is challenging in macrophage-type cells 

as they are highly sensitivity to endotoxic components of plasmid preparation and recognize 

double stranded DNA in the cytosol. Specifically, the HIN200 domain of the AIM2 inflammasome 

binds transfected double stranded DNA, resulting in inflammasome assembly and pyroptosis 

(Hornung et al. 2009). The RAW 264.7 macrophage cell line is suitable for non-viral transfection 

as it does not express the inflammasome adapter protein ASC, making it less sensitive to both 

endotoxic components and cytosolic double stranded DNA. Successful transfection was achieved 

using the non-lipid cationic polymer reagent FuGENE® HD (Promega). Use of the popular 

reagent Lipofectamine LTX (Life Technologies), despite its low toxicity formulation, resulted in a 

large amount of cell death, likely due to the toxic nature of cationic lipids. 

 

5.3.2. Spectral characterization of ATeam and real-time detection of intracellular ATP in 

live cells 

Confocal microscopy with spectral detection was used to characterize the ATeam sensor in situ in 

live, expressing RAW 264.7 cells. Due to the limited availability of optimal, 435 nm laser 

wavelength for excitation of the FRET sensor, 408 nm light was used to excite the CFP donor, 

with emission wavelengths collected across both CFP and YFP peaks. Additionally, blockade of 

both the glycolytic and oxidative phosphorylation pathways was used to assess the 

responsiveness of ATeam to ATP depletion. Spectral kinetic responses are given in Figure 5-2. 

Demonstration of real-time imaging in order to isolate specific single cell responses is provided in 
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Figure 5-3. Emission ratio results to visualize the magnitude of ATP depletion are given in Figure 

5-4.   

 

 

Figure 5-2. FRET-induced spectral shift of ATeam during ATP depletion. RAW 264.7 cells 
expressing ATeam were imaged by spectral confocal microscopy. At approximately 5 minutes 
cells were treated with 50 mM 2DG and 10 mM NaN3 and continuously imaged for 60 minutes. 
Traces are the full emission spectrum mean and standard deviation for 6 cells from a 
representative field overlaid over reference spectra for CFP and YFP. A drop in the YFP peak 
concomitant with a rise in the CFP peak is observed over time. Results are representative of at 
least 2 independent experiments. 
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Figure 5-3. Real-time visualization of ATP depletion in live macrophages. RAW 264.7 cells 
expressing ATeam were imaged by spectral confocal microscopy. Where indicated (yellow line), 
cells were treated with 50 mM 2DG and 10 mM NaN3 and continuously imaged. Signal represents 
the ratio of emission at 527 nm over the emission at 475 nm when ATeam is excited with 408 nm 
light. Scale bar represents 50 µm. Results are representative of at least 2 independent 
experiments. 
 
 

 

Figure 5-4. Ratiometric detection of ATP depletion. Traces represent the YFP/CFP ratio of 
ATeam signal from single cells after treatment with 2DG and NaN3 at the indicated time. Results 
are representative of at least 2 independent experiments. 
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5.4. DISCUSSION 

As described in Chapters 2 and 3 of this dissertation, tracking molecular concentration and 

localization in real-time is crucial for elucidating the dynamics of signaling pathways. This is 

supported by recent reports showing the identification of an all-or-none activation of caspase-1 

downstream of inflammasome-activating stimuli by expression of a genetically encoded biosensor 

for caspase-1 activation (Liu et al. 2014). 

Because ATP is closely related to cellular metabolism and signaling associated with 

many events in the immune system, interrogation of intracellular ATP in live immune cells is 

crucially important. Current efforts to perform such analyses rely in bulk cell determination or 

inhibition of ATP-dependent events. Here, a macrophage cell line was developed that stably 

expresses the genetically encoded intracellular ATP sensor ATeam. This tool will be helpful for 

studying events related to metabolic responses to macrophage perturbation. 

It should be noted that while the RAW 264.7 macrophage cell line exhibits many 

characteristics related to primary macrophages, such as phagocytosis and TLR4/NF-κB signaling, 

they are deficient in the adapter protein ASC (Pelegrin, Barroso-Gutierrez, and Surprenant 2008). 

As such, RAW 264.7 cannot, by default, be used for investigating the NLRP3 inflammasome 

pathway and will require reconstitution of ASC expression in order to perform such studies. This 

is difficult to achieve while maintaining expression of a second transfected protein, as ASC 

overexpression heightens cellular sensitivity to stress and cells non-virally transfected with ASC 

rapidly die (unpublished observations). An alternative approach, unavailable during the course of 

this dissertation work, would be to virally transduce ATeam into either a primary macrophage cell 

line or another cell line that contains the full NLRP3 pathway, such as THP-1 or J774A.1. Viral 

transduction of ASC into the RAW 264.7 cell line may achieve the same goal. In this way, 

expression of the inflammasome pathway is available, and ratiometric ATP determination can be 

used for studying metabolic events related to inflammasome activity.  
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CHAPTER 6: CONCLUSIONS AND FUTURE PERSPECTIVES 

 

6.1. SUMMARY AND INTERPRETATION OF BIOLOGICAL FINDINGS 

The ability for the NLRP3 inflammasome to respond to diverse stimuli is essential for its role in 

mediating innate immune responses to damage and infection (Martinon, Mayor, and Tschopp 

2009). Despite intensive study on the mechanisms of inflammasome regulation, it is still unclear 

how structurally and functionally dissimilar triggers all converge on the same signaling pathway 

(Sutterwala, Haasken, and Cassel 2014). The issue of dissimilar activating stimuli was addressed 

by using extracellular ATP to induce an active, receptor-dependent signaling event and nigericin 

to induce a passive, receptor-independent perturbation to ion flux converging on the NLRP3 

inflammasome pathway. This dissertation work focused on the role of ion flux in regulating events 

leading to NLRP3 inflammasome assembly and pyroptotic cell death. 

The results of Chapter 2 define a connection between potassium efflux and Syk tyrosine 

kinase activation. While recent work has shown that Syk is required for phosphorylation of ASC 

as a molecular switch leading to inflammasome activation, little has been reported on how Syk is 

regulated in the inflammasome pathway (Hara et al. 2013; Neumann and Ruland 2013; Laudisi, 

Viganò, and Mortellaro 2014; Lin et al. 2015). The position of Syk in the inflammasome pathway 

was defined as downstream of nigericin-induced potassium efflux and upstream of mitochondrial 

oxidative signaling. Further, the first evidence that Syk regulates pyroptosis is described (Laudisi, 

Viganò, and Mortellaro 2014). This is the first example of an intermediate regulator of 

inflammasome activation displaying sensitivity to potassium efflux. Potassium-dependent 

regulation of Syk is important because potassium efflux is a difficult mechanism to directly control. 

While potassium channel inhibitors have been postulated to suppress inflammasome activity by 

prohibiting potassium efflux, no data has been reported to demonstrate the inhibition of potassium 

efflux using these drugs. Indeed, the effects of potassium channel inhibitors have been reported 

as independent of their effect on their respective target channels (Petrilli et al. 2007). As such, 

how potassium channel inhibitors such as glyburide suppress inflammasome activity is currently 

unclear. Further, while addition of KCl to the medium is a convenient method for inhibiting 
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potassium efflux in vitro, this is not feasible in vivo as effects on bystander cell populations would 

be detrimental. Thus, an intermediate signal that mediates the effects of potassium flux upstream 

of inflammasome assembly may be a more appropriate pharmaceutical target. Indeed, Syk 

inhibitors are already under investigation as potential treatments for inflammatory pathologies 

(Weinblatt et al. 2008; Bajpai 2009; Podolanczuk et al. 2009; Genovese et al. 2011). 

The results of Chapter 3 address the open question of ion flux dynamics upstream of 

inflammasome assembly. As described, potassium has been a broadly investigated 

inflammasome-regulating ion for decades (Perregaux and Gabel 1994; Muñoz-Planillo et al. 

2013). Recently, additional evidence suggests that calcium may also be a critical regulator of 

inflammasome assembly (Lee et al. 2012; Murakami, Ockinger, Yu, and Byles 2012; Horng 

2014). The role of each of these ions upstream of inflammasome assembly has been unclear. It 

was identified that both potassium efflux and calcium influx are necessary for mitochondrial 

oxidative signaling upstream of NLRP3 inflammasome assembly. Further investigation revealed 

that potassium efflux appears to regulate calcium influx. Abrogation of potassium concentration 

gradients prohibits the secondary, sustained calcium influx that occurs downstream of P2X7 

activation by extracellular ATP. This is significant, as it may explain why inhibiting potassium or 

calcium independently both affect inflammasome activation, since these results indicate that they 

are part of a sequentially coordinated cation flux. A compiled overview of the biological findings 

from this dissertation is given in Figure 6-1. 
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Figure 6-1. Overview of biological findings. This dissertation addressed both active and 
passive mechanisms for inducing potassium efflux upstream of the NLRP3 inflammasome. 
Passive, nigericin-induced potassium efflux results in downstream Syk activation and Syk-
dependent oxidative signaling. Additionally, Syk activation regulates inflammasome assembly, 
cytokine secretion and pyroptotic cell death. Active, P2X7 purinergic receptor activation results in 
potassium efflux-dependent calcium influx and mitochondrial potassium mobilization. Further, 
ATP-induced potassium efflux results in a potassium and calcium-dependent mROS generation 
that was required for inflammasome assembly, cytokine secretion and pyroptotic cell death. 
 
 

6.2. DEVELOPED METHODS 

Three methods were developed during this dissertation: (1) the application of a novel intracellular 

potassium sensor for dynamic visualization of potassium flux in live cells; (2) an optimized 

pipeline for single cell isolation, fluorescence microscopy and correlated molecular analysis by 

RT-qPCR; (3) a macrophage cell line expressing an intracellular ATP sensor. These methods 

provide a new set of tools for investigation of inflammasome biology that will contribute to future 

studies by facilitating analysis of dynamic, difficult-to-measure events with single cell resolution. 

The ability to visualize potassium dynamics in live cells is a powerful advance. Existing 

methods for performing potassium measurements in the inflammasome pathway have 

predominantly involved potassium blockade (which we also use) and ion spectroscopy (Franchi et 

al. 2007; Petrilli et al. 2007; Muñoz-Planillo et al. 2013). These methods lack the ability to 

determine dynamics with high spatial or temporal resolution as they require bulk sample 
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processing. The only reported example of potassium imaging in the inflammasome pathway uses 

the sensor PBFI, which as limitations related to dynamic range and ion selectivity. As such, no 

group has sufficiently reported the character of potassium dynamics in cells stimulated within the 

inflammasome signaling pathway (Minta and Tsien 1989; Arlehamn et al. 2010). The novel 

intracellular potassium sensor described here allowed identification of rapid potassium flux 

dynamics with unmatched selectivity. Further, as the sensor is also enriched in the mitochondria, 

it provided the first descriptions of mitochondrial potassium mobilization in response to purinergic 

receptor activation. This is significant and may help to explain oxidative signaling as an upstream 

trigger of inflammasome activation (Tschopp 2011). 

The optimized single cell pipeline contributes an inexpensive approach for addressing 

transcriptional heterogeneity in cellular populations. Importantly, the described method allows for 

correlation of fluorescence microscopy with molecular analysis at the single cell level. This is 

critical for investigating the inflammasome pathway as heterogeneous response is plainly 

apparent by fluorescence microscopy and recent reports have shown that IL-1β release may be 

performed only by sub-populations of pyroptotic cells downstream of inflammasome activation 

(Liu et al. 2014). The procedure reported by Liu et al interrogates protein release in isolated 

single cells, but is not readily adaptable to investigations of gene expression heterogeneity, and 

thus the priming response in the inflammasome pathway. Therefore, the single cell pipeline 

developed during this dissertation work addresses a technical need for a method capable of 

integrating fluorescence microscopy with same-cell correlations to gene expression analysis. 

While the role of ATP as an external stimulus is universally accepted in the field of 

inflammasome biology, little attention has been paid to intracellular ATP content. One reason for 

this is the end-point nature of available methods for ATP determination. The development of a 

macrophage cell line expressing an intracellular ATP sensor provides a first-ever proof-of-

principle for the real-time interrogation of ATP content in live immune cells (Imamura et al. 2009; 

Kotera et al. 2010). While the RAW 264.7 cell line used for this study is incapable of engaging the 

NLRP3 inflammasome pathway due to a deletion of the adapter protein ASC, the ability for 

ATeam to be expressed in immune cells is promising for future work (Pelegrin, Barroso-Gutierrez, 
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and Surprenant 2008). This method will prove useful for investigating metabolic responses to pro-

inflammatory stimuli. 

6.3. FUTURE PERSPECTIVES 

This work establishes a relationship between cation flux, kinase activation and oxidative signaling 

upstream of the NLRP3 inflammasome. However, there are a number of compelling open 

questions that warrant further study: 

1. How is Syk activated by potassium efflux? While this work establishes a 

novel and relevant relationship between potassium ion efflux and Syk 

activation upstream of oxidative signaling and inflammasome activation, it is 

unclear how nigericin-induced efflux results in Syk phosphorylation. It will be 

important to determine if global phosphatase and kinase activity is affected by 

sudden changes in cellular ion content. Additionally, it is unclear whether Syk 

phosphorylation and activation is sufficient for Syk-mediate ASC 

phosphorylation upstream of inflammasome assembly (Hara et al. 2013; Lin et 

al. 2015). For example, it may be possible that ion content induces 

conformational changes in Syk, ASC, or some other intermediate that 

facilitates phosphorylation-dependent inflammasome assembly. Biochemical 

analysis of ion effects on protein conformation assisted by FRET tagging of 

protein domains will be helpful in testing this possibility. 

2. Is mitochondrial potassium mobilization essential for NLRP3 

inflammasome assembly? Identification of the specific mechanism by which 

mitochondrial potassium mobilization occurs will be helpful in determining 

whether this phenomena is linked to oxidative signaling and inflammasome 

activation. A broad screen of mitochondrial ion channel deletions or mutants 

will rapidly identify whether this phenomenon is a channel-mediated event, or 

whether it is a passive process mediated by changes in membrane integrity. 

3. Is potassium efflux-dependent regulation of calcium influx due to ionic 

pressure or channel activation? Because potassium and calcium are both 
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positively charged, it is possible that the potassium-dependent regulation of 

calcium influx observed in this work is related to passive, charge-passed 

inhibition. However, there is also a possibility that this effect may be due to 

activation of gated ion channels. A broad screen of membrane-expressed ion 

channel deletions or mutants will help to identify whether this process is active 

or passive. 

 

The further elucidation of mechanisms regulating the NLRP3 inflammasome is crucial to 

identifying targets for modulating innate immune system-driven inflammation. The identification of 

ion flux and kinase signaling as upstream regulators further justifies the development of inhibitors 

against relevant ion channels and protein kinases as therapeutic tools to ameliorate inflammatory 

pathologies. 

 

6.4. THESIS CONTRIBUTIONS 

This dissertation addresses a number of fundamental gaps in understanding NLRP3 

inflammasome regulation with a focus on the role of cation flux. The primary contributions of this 

dissertation to the field of inflammasome biology are: 

8. The first demonstration of real-time potassium flux measurements downstream of 

P2X7 receptor activation and nigericin treatment with high spatiotemporal 

resolution and analyte specificity. 

9. The first measurements of correlated, live-cell dynamics of potassium and 

calcium flux. 

10. The identification of Syk tyrosine kinase as a downstream effector of potassium 

efflux during nigericin-induced inflammasome assembly and pyroptotic cell death. 

11. The implication of Syk kinase activity in the generation of mitochondrial reactive 

oxygen species upstream of NLRP3 inflammasome assembly. 
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12. The identification of a dose-dependent relationship between P2X7 purinergic 

receptor activation, intracellular potassium efflux and plasma membrane 

permeability. 

13. The identification of a mitochondrial potassium pool mobilization downstream of 

P2X7 purinergic receptor activation. 

14. Establishment of potassium efflux as a regulating step for NLRP3 inflammasome-

activating calcium influx during P2X7 purinergic receptor activation. 

 

In addition to clarifying the role for cation flux upstream of NLRP3 activation, this 

dissertation also describes the development of two methods relevant to the study of single cell 

signatures of cellular and macrophage heterogeneity: 

 

3. A method for correlated fluorescence microscopy and molecular analysis of live 

single cells was developed. The method allows for the isolation and observation 

by fluorescence microscopy of live single cells, coupled with downstream 

processing and multi-target gene expression analysis by RT-qPCR. 

4. A mouse macrophage cell line was generated and characterized expressing a 

protein-based biosensor for live, kinetic analysis of intracellular ATP.   
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APPENDIX A 

SELECTED STEP-WISE PROTOCOLS 

  



111 

Protocol 1: NLRP3 Inflammasome induction 

Materials (in addition to standard J774A.1 cell culture materials): 

 LPS from E. coli O111:B4 (Sigma Aldrich, St. Louis, MO, USA) 

 NLRP3 inducing agent 

o ATP, 3 mM final (Sigma Aldrich, St. Louis, MO, USA) 

o Nigericin, 20 µM final (Cayman Chemical, Ann Arbor, MI, USA) 

 NLRP3 inhibitors 

o Potassium chloride, 130 mM final (Sigma Aldrich, St. Louis, MO, USA) 

o OXSI-2, 2 µM final (Cayman Chemical, Ann Arbor, MI, USA) 

o A438079, 25 µM final (Santa Cruz Biotechnology, Dallas, TX, USA) 

o MitoTEMPO, 500 µM final (Sigma Aldrich, St. Louis, MO, USA) 

o BAPTA-AM, 100 µM final (Tocris, Minneapolis, MN, USA) 

 Culture vessels (flasks, plates, slides, etc) 

Procedure: 

1. Count and resuspend J774A.1 mouse macrophages to 106 cells/mL. 

2. Seed cells according to vessel: 

a. 8-chamber slide (200 µL per well) 

b. 6-well plate (2 mL per well) 

c. T25 flask (3 mL per flask, bring to 5 mL) 

d. T75 flask (5 mL per flask, bring to 10 mL) 

3. Incubate cells overnight. 

4. The following day, exchange culture medium for fresh medium containing 1 

µg/mL E. coli LPS. Leave appropriate non-treated controls. 

5. Incubate cells for 4 hours to license the inflammasome components. 

6. During the last 30 minutes of LPS priming, add appropriate NLRP3 inhibitors to 

final concentration listed in materials. 
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7. Treat cells with NLRP3-inducing agents by removing 50 µL to 1 mL of medium 

from each well (as appropriate), diluting the agent in the medium, and returning 

the medium to the well. Incubate for 30-60 minutes. 

8. Assess inflammasome induction as appropriate (FLICA, Western blot, etc). 
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Protocol 2: FLICA Caspase-1 Assay for Inflammasome Imaging 

Materials (in addition to standard J774A.1 cell culture materials): 

 NLRP3-inducing chemicals (see Protocol 1) 

 150 FAM-YVAD-FMK (Immunochemistry Technologies, Bloomington, MN, 

USA) 

 Hoechst 33342 (Immunochemistry Technologies, Bloomington, MN, USA) 

 Ibidi 8-chamber µ-slide (Ibidi, Verona, WI, USA) 

 1 Phosphate-buffered saline (PBS) 

 Formaldehyde solution (2% in PBS) 

 Mounting medium 

Equipment: 

 Fluorescence-capable microscope (preferably confocal) 

Procedure: 

1. Count and resuspend J774A.1 mouse macrophages to 106 cells/mL. 

2. Seed 200 µL of cell suspension in each well of an 8-chamber µ-slide and induce 

NLRP3 inflammasome activation according to Protocol 1. During the last 1 hour 

of priming add 1 FLICA reagent and 10 µg/mL Hoechst 33342. 

3. Carefully remove medium from cells, avoiding aspirating potentially non-adhered 

cells. 

4. Carefully wash each well 2 with PBS. 

5. Replace medium with 2% formaldehyde solution and fix at room temperature for 

10 minutes. 

6. Carefully wash each well 1 with PBS. 

7. Submerge each well in 200 µL mounting medium. 

8. Image by fluorescence microscopy using standard DAPI and FITC 

excitation/emission spectra. If using confocal microscopy (preferred), prepare z-

stacks throughout the imaging field and analyze by maximum intensity projection. 
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Protocol 3: Immunoprecipitation and Detection of phospho-Syk 

Materials (in addition to standard J774A.1 cell culture materials): 

 NLRP3-inducing chemicals (see Protocol 1) 

 Protein A Dynabeads® (Life Technologies, Carlsbad, CA, USA) 

 Antibodies (Santa Cruz Biotechnology, Dallas, TX, USA): 

o Syk (#SC-1077) 

o Phospho-Tyrosine (#SC-7020) 

 BSA (Sigma Aldrich, St. Louis, MO, USA) 

 RIPA lysis buffer (Santa Cruz Biotechnology, Dallas, TX, USA) 

 1 Tris-buffered saline (TBS) 

 1 TBS with 0.2% Tween (TBST) 

 Phosphatase inhibitors (Biotools, Jupiter, FL, USA) 

 Protease inhibitors (Pierce, Rockford, IL, USA) 

 BCA assay (Pierce, Rockford, IL, USA) 

 6 denaturing Laemmli buffer (Alfa Aesar, Ward Hill, MA, USA) 

 Standard Western Blotting reagents (membranes, buffers, etc) 

Equipment: 

 Magnetic bead stand 

 Standard Western Blotting components 

Procedure: 

1. Prepare antibody binding solution (5% BSA in TBST) containing 1:50 Syk 

antibody (40 µL per condition)  

2. Resuspend 1:4 volume Protein A Dynabeads® in antibody binding solution. 

3. Rotate for 1-2 hours at room temperature. 

4. Resuspend antibody-conjugated Protein A Dynabeads® in fresh 1 volume 

TBST (40 µL per condition). 
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5. Induce NLRP3 inflammasome activation according to Protocol 1 in 6-well plates 

with 1 mL treatment volumes. 

6. Collect lysates by exposure to 1 RIPA with 1 protease and phosphatase 

inhibitors and pool with collected supernatants treated with 1 protease and 

phosphatase inhibitors. 

7. Centrifuge at 14,000 g, transfer supernatants to new tubes. 

8. Determine protein content by BCA assay. 

9. Adjust protein content to approximately 1 mg in approximately 1.1 mL of medium 

with RIPA buffer. Normalize volumes and proteins across conditions. 

10. Add 40 µL antibody-conjugated beads in protein samples. Supplement with BSA 

(10% final concentration). 

11. Incubate overnight with rotation at 4 °C. 

12. Wash beads 3 with cold RIPA buffer using a magnetic bead stand. 

13. Transfer beads to new tubes. 

14. Boil beads in 50 µL 1 Laemmli buffer at 95 °C for 10-15 minutes. 

15. Separate sample by SDS-PAGE (12 µL per 15-well gel, 20 µL per 10 well gel). 

16. Transfer proteins to membrane and block with 5% milk. Use TBS or TBST for all 

Western Blotting steps, as appropriate. 

17. Develop Western Blot using the following primary antibody concentrations: 

a. Syk, 1:500 

b. Phospho-Tyrosine, 1:500 

18. Divide Phospho-Tyrosine signal by total Syk signal for each condition. 
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Protocol 4: Preparation of proteins from NLRP3 inflammasome-induced cells 

Materials (in addition to standard J774A.1 cell culture materials): 

 NLRP3-inducing chemicals (see Protocol 1) 

 StrataClean Resin (Agilent Technologies, Santa Clara, CA, USA) 

 Protease inhibitors (Pierce, Rockford, IL, USA) 

 RIPA lysis buffer (Pierce, Rockford, IL, USA) 

 6 denaturing Laemmli buffer (Alfa Aesar, Ward Hill, MA, USA) 

Procedure: 

1. Induce NLRP3 inflammasome activation according to Protocol 1. 

2. Collect supernatants and supplement with 1 protease inhibitors. Keep on ice. 

3. Add appropriately small volume of 1 hot Laemmli buffer to each well to collect 

protein lysates. Add only as much Laemmli as is necessary to completely cover 

all growth surface. (e.g., 100 µL in 6-well plates). Let sit for 15 minutes. 

4. Scrape and transfer lysates to a microfuge tube and heat for 10 minutes at 95 °C. 

5. Centrifuge supernatants at 5,000 g for 5 minutes at 4 °C. Transfer supernatants 

to new tube. 

6. Add 1:100 StrataClean Resin to collected supernatants (e.g., 10 µL for 1 mL 

supernatant). 

7. Rotate supernatants at 4 °C for 1 hour. 

8. Centrifuge supernatant samples at 14,000 g for 3 minutes. Aspirate supernatant. 

Resuspend in 1 Laemmli (e.g., 50 µL per 10 µL StrataClean Resin). Vortex 

briefly, then heat at 95 °C for 10 minutes. 

9. Store samples at -80 °C, or use for subsequent analysis (e.g., Western Blotting). 
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