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ABSTRACT  
  

Despite the breadth of studies investigating ecosystem development, an 

underlying theory guiding this process remains elusive. Several principles have been 

proposed to explain ecosystem development, though few have garnered broad support in 

the literature. I used boreal wetland soils as a study system to test a notable goal oriented 

principle: The Maximum Power Principle (MPP). The MPP posits that ecosystems, and 

in fact all energy systems, develop to maximize power production or the rate of energy 

production. I conducted theoretical and empirical investigations to test the MPP in 

northern wetlands.  

 Permafrost degradation is leading to rapid wetland formation in northern peatland 

ecosystems, altering the role of these ecosystems in the global carbon cycle. I reviewed 

the literature on the history of the MPP theory, including tracing its origins to The Second 

Law of Thermodynamics. To empirically test the MPP, I collected soils along a gradient 

of ecosystem development and: 1) quantified the rate of adenosine triphosphate (ATP) 

production—literally cellular energy—to test the MPP; 2) quantified greenhouse gas 

production (CO2, CH4, and N2O) and microbial genes that produce enzymes catalyzing 

greenhouse gas production, and; 3) sequenced the 16s rRNA gene from soil microbes to 

investigate microbial community composition across the chronosequence of wetland 

development. My results suggested that the MPP and other related theoretical constructs 

have strong potential to further inform our understanding of ecosystem development. Soil 

system power (ATP) decreased temporarily as the ecosystem reorganized after 

disturbance to rates of power production that approached pre-disturbance levels. Rates of 

CH4 and N2O production were higher at the newly formed bog and microbial genes 
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involved with greenhouse gas production were strongly related to the amount of 

greenhouse gas produced. DNA sequencing results showed that across the 

chronosequence of development, the two relatively mature ecosystems––the peatland 

forest ecosystem prior to permafrost degradation and the oldest bog––were more similar 

to one another than to the intermediate, less mature bog. Collectively, my results suggest 

that ecosystem age, rather than ecosystem state, was a more important driver for 

ecosystem structure and function. 
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CHAPTER 1 2 

INTRODUCTION 3 

General Context: Ecosystem ecology and ecosystem development 4 
 5 

Ecosystem ecology is the study of the interactions among abiotic and biotic 6 

system components. Although there were early studies in physics, geology, and chemistry 7 

in the 18th and 19th centuries that later influenced the development of ecosystem ecology, 8 

it was not until the early part of the 20th century that a unified conceptual approach to 9 

ecosystem ecology began to emerge. Work by Elton (1927) and Vernadsky (1926) 10 

established the ideas of energy flow through trophic structures in ecosystems and the 11 

importance of biogeochemistry, respectively. But it was not until Tansley (1935) that the 12 

term “ecosystem” even appeared in the literature. Tansley coined the term to highlight the 13 

importance of material and energy exchanges among living and nonliving system 14 

components. Work by Lindeman (1942) and Hutchinson (1961) reinforced an energetic 15 

perspective to studying ecosystems. The attention to, and interest in, energy flows in 16 

ecosystem ecology demonstrated the importance of physical concepts, such as 17 

thermodynamics, into the discipline.  18 

Many early ecosystem studies focused on understanding how ecosystems respond 19 

to disturbance. Clements (1916) argued that following disturbance, ecosystems develop 20 

in a predictable manner and ultimately reach stable climax communities. Gleason (1926) 21 

disagreed, arguing that ecosystem development was not as deterministic as Clements 22 

posited. Though there were other important contributions from ecologists studying 23 

disturbance following Gleason (1926), it was not until 1969 when Odum (1969) outlined 24 
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two-dozen expected trends during ecosystem development with regards to nutrient 25 

cycling, community structure, and ecosystem energetics. For example, Odum stated that 26 

in a young, developing ecosystem more energy is used for ecosystem growth and 27 

production, whereas in older, more mature ecosystems more energy is relegated through 28 

respiration to maintaining ecosystem structure. Odum (1969) inspired a generation of 29 

scientists to test the mechanistic hypotheses he discussed in this seminal work (e.g. 30 

Connell and Slatyer, 1977; Fisher and Likens, 1973; Vitousek and Reiners, 1975). 31 

Despite the breadth of work investigating ecosystem development, an underlying 32 

theory of this process remains elusive. The explicit consideration of energy flows in 33 

ecosystem ecology makes The Laws of Thermodynamics––specifically The Second Law 34 

of Thermodynamics, a construct from physics,––an appropriate place to start. The Second 35 

Law of Thermodynamics states that the entropy of an isolated system does not decrease. 36 

In other words, the spontaneous dispersal of energy, or entropy tends to increase in 37 

isolated systems. Despite the ties to physical concepts such as energy and the inextricable 38 

importance of The Second Law of Thermodynamics to ecosystem ecology, there are 39 

surprisingly few studies that explicitly consider The Second Law of Thermodynamics.  40 

One approach that incorporates a thermodynamic perspective to investigate 41 

energy flow and material cycling within ecosystems involves quantifying the redox 42 

environment. Redox potential (oxidation-redox potential) is a measure of the availability 43 

of electrons in a system and has long been used in ecosystems to quantify the tendency of 44 

an environment to oxidize or reduce substances (Becking et al. 1960). For example, when 45 

oxygen is present and redox potentials are high (> 250 mv) oxygen is used as a terminal 46 
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electron acceptor to oxidize carbon compounds during cellular respiration. In oxygen- 47 

poor systems such as wetland soils, however, terminal electron acceptors other than 48 

oxygen are used for cellular respiration (Mitch and Gosselink 2007). In decreasing order 49 

of redox potential, NO3
- (250 mV), Mn4+ (225 mV), Fe3+ (+100 to -100 mV), SO4

= (-100 50 

to -200 mV), and CO2 (< -200 mV) are used as terminal electron acceptors for cellular 51 

respiration. Using oxygen as a terminal electron acceptor yields the highest energy gain 52 

during cellular respiration. However, when oxygen is absent microbes are able to derive 53 

lower amounts of energy through cellular respiration by using these alternative electron 54 

acceptors. Using a terminal electron acceptor other than oxygen is inherently less 55 

efficient and results in less energy generation during cellular respiration. In fact, along 56 

this gradient of redox potential there is almost a ten-fold reduction in energy gain when 57 

using oxygen versus CO2. Redox potential is a powerful tool to relate energetics to 58 

efficiency in soils and thus is one important approach to linking ecosystem ecology with 59 

thermodynamic principles.   60 

Another approach in the ecosystem ecology literature with explicit links to The 61 

Second Law of Thermodynamics is the Maximum Power Principle (MPP), developed by 62 

Lotka (1922) and later built upon by Odum and Pinkerton (1955) where power, 63 

traditionally measured in J s-1 in physics, is a measurement of energy per unit time 64 

(energy flow). Lotka (1922) argued that in a system with sufficient available energy, 65 

those organisms able to capture this untapped energy source would have a competitive 66 

advantage. Odum and Pinkerton (1955) expanded the MPP concept and argued that entire 67 

ecosystems, not just organisms, organize to maximize power production. They also 68 
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framed power production in terms of system efficiency and suggested that maximum 69 

power occurs at an intermediate system efficiency, where efficiency is a dimensionless 70 

ratio of output over input (Figure 1). Given that more mature ecosystems relegate more 71 

energy to ecosystem maintenance, per Odum (1969), it follows that these systems would 72 

maximize energy flow or power through the ecosystem and operate at an intermediate 73 

efficiency. The MPP is thus one way to unite theories of ecosystem development and 74 

ecosystem ecology with The Second Law of Thermodynamics.  75 

 76 

Research Context 77 

  My research sought to test a generalizable theory for how systems develop, using 78 

boreal peat wetlands as my experimental ecosystem. My research was conducted in 79 

collaboration with scientists at the University of Guelph and the United States Geological 80 

Survey in Alaskan wetlands outside of Fairbanks (Figure 2). These boreal ecosystems are 81 

particularly important because of their importance to the global carbon cycle (Bridgham 82 

et al. 2008; Tarnocai et al. 2009). Because long-term production is generally greater than 83 

decomposition in these northern ecosystems, northern Alaskan wetlands store large 84 

amounts of carbon. For example, northern boreal ecosystems underlain by permafrost 85 

account for less than 1/5 of the global land area, but contain roughly 50% of the global 86 

soil carbon (Tarnocai et al. 2009). Additionally, climate change is leading to extensive 87 

permafrost degradation in these northern ecosystems (Davidson and Janssens 2006; 88 

Schuur et al. 2008, IPCC 2007). Permafrost degradation is leading to the rapid 89 

mineralization of these large carbon pools, and release of that carbon to the atmosphere 90 
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(Grosse et al. 2011; Jorgenson et al. 2010; Schuur et al. 2009).  91 

 Depending on the resulting ecosystem state following permafrost degradation, 92 

mineralized soil carbon is released to the atmosphere as CO2 and/or CH4. For example, 93 

the degradation of permafrost in low-lying areas of central Alaska commonly leads to 94 

peat wetland formation when soils collapse into the relic ice space previously occupied 95 

by permafrost (Jorgenson et al. 2001). In the resulting anaerobic and waterlogged 96 

conditions following permafrost degradation, CH4 emission may be enhanced 97 

(Christensen et al. 2004; Turetsky et al. 2002; Wagner et al. 2007). In fact, Karhu et al. 98 

(2014) recently compared the temperature sensitivity of soil respiration rates from soils 99 

collected across global ecosystems and found that high latitude soil carbon stores could 100 

be more vulnerable to climate change than previously thought. The outcome of 101 

permafrost degradation may thus have large impacts on the type and magnitude of 102 

resulting greenhouse gas emissions from these systems.  103 

 Microbial metabolic pathways in soils largely drive carbon emissions from high 104 

latitude ecosystems. For example, CO2 that is fixed by plants from the atmosphere and 105 

turned into organic compounds during photosynthesis is later degraded by microbes and 106 

released back to the atmosphere soil organic matter (SOM) if it is not stored. Microbes 107 

derive energy from heterotrophic respiration and release CO2, CH4, and N2O as by- 108 

products. Microbial processes operating on micro spatial scales drive a macro 109 

biogeochemical ecosystem process. Soil microbial systems are integral players in soil 110 

biogeochemistry and thus regulate many of the earth’s biogeochemical cycles (Falkowski 111 

et al. 2008). For this reason, I used the microbial soil system as my “model ecosystem.” 112 
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 113 

Goals of Dissertation 114 

The overall goals of my dissertation research were: 1) to provide a historical 115 

review of the role The Second Law of Thermodynamics has played in ecosystem 116 

ecology; 2) to empirically and explicitly test the MPP using Alaskan peat soils as a model 117 

system; 3) to quantify greenhouse gas emissions from these peat soils, and; 4) to assess 118 

functional and structural microbial responses during ecosystem development using 119 

molecular biology tools. The overarching question guiding my dissertation work was: 120 

How can a thermodynamic perspective better inform how ecosystems develop and 121 

organize?  122 

 123 

Dissertation Research Questions, Approach, and Organization 124 

 While much work has been done on understanding changes in nutrient cycling 125 

and energy flow during ecosystem development, from a mechanistic or process 126 

perspective, less work has focused on developing generalizable theories for how 127 

ecosystems develop and organize. Additionally, despite ecosystem ecology’s inextricable 128 

ties to thermodynamics, surprisingly few ecosystem ecologists have attempted to develop 129 

a general theory for ecosystem development that is grounded in thermodynamics. One 130 

notable exception, Brown et al. (2004), proposed using metabolism as a general theory 131 

for ecology across all scales. While the metabolic theory of ecology has received 132 

considerable attention and application in organismal ecology, its potential to be applied to 133 

community and ecosystem ecology has not been realized (Tilman et al. 2004). To assess 134 
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the extent to which a thermodynamic perspective can better inform Alaskan wetland 135 

ecosystem development, using the soil system as a model, I ask the following questions: 136 

 137 

Question 1: How has The Second Law of Thermodynamics informed ecosystem 138 

ecology through its history? 139 

 In CHAPTER 2 I reviewed the literature using Web of Science and examined the 140 

role that The Second Law of Thermodynamics has played in shaping the field of 141 

ecosystem ecology. Throughout the history of ecosystem ecology there have been many 142 

attempts to develop a general theory governing how systems develop and organize. 143 

Within the literature there are a multitude of these “goal-oriented principles,” many of 144 

which are complementary (e.g. Fath et al. 2001). In this chapter I examined the historical 145 

developments that led to formation of several prominent goal-oriented principles that are 146 

grounded in the Second Law of Thermodynamics. To address the research question for 147 

this chapter, I conducted a meta-analysis of papers from the ecosystem science literature 148 

that use and tested either the MPP or the Maximum Entropy Production Principle 149 

(MEPP). This chapter provides a theoretical construct for the empirical work I present in 150 

the remaining dissertation chapters.  151 

 152 

Question 2: Do boreal wetland soil ecosystems develop to maximize power or to 153 

maximize efficiency? 154 

 In CHAPTER 3 I explicitly and empirically tested the MPP along a gradient of 155 

wetland ecosystem development using a space-for-time substitution. I used peat soils as 156 
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my model system, and because soil systems are microbially dominated, I used adenosine 157 

triphosphate (ATP)––literally the chemical energy that does cellular work––as a proxy 158 

for soil system power. I conducted aerobic and anaerobic soil incubation experiments to 159 

quantify prominent microbial metabolic pathways for energy production. The work of 160 

this chapter builds on a small body of literature that has empirically tested the MPP (Cai 161 

et al. 2006; DeLong, 2008).  162 

 163 

Question 3: How does the emission of greenhouse gases (CO2, CH4, and N2O) change 164 

over a multi-decadal time scale along a gradient of wetland development, and how 165 

does this gas production relate to microbial gene abundances? 166 

 In CHAPTER 4 I examined the temporal dynamics of greenhouse gas emissions 167 

across the same chronosequence gradient of ecosystem development using soil incubation 168 

experiments in the laboratory. I related the production of CO2, CH4, and N2O to the 169 

abundance of microbial functional genes responsible for the production of CH4 (mcrA) 170 

using quantitative polymerase chain reaction (qPCR). This approach allows me to link 171 

greenhouse gas emissions with microbial functional genes a predisturbance permafrost 172 

forested bog, in newly developed wetlands, and older more mature wetlands. 173 

 174 

Question 4: How do microbial soil communities change––structurally and 175 

functionally––to ecosystem development during wetland formation? 176 

 In CHAPTER 5 I investigated the structural and functional changes in the 177 

microbial soil system after a state change and during subsequent ecosystem development. 178 
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One approach to studying these microbial responses uses next-generation sequencing 179 

technologies, such as the Illumina MiSeq 2000 platform. In this chapter, I targeted a 180 

specific gene (16s rRNA) to assess microbial structural changes during wetland 181 

ecosystem development using PCR. I also compared sequence results with reference 182 

databases to investigate Phylum-, Class-, and Order-level taxonomic shifts in the 183 

microbial community associated with carbon and nitrogen cycling.  184 

In addition to the research questions and the corresponding dissertation chapters 185 

discussed above, in the current section––CHAPTER 1––I provide theoretical context as 186 

well as context for using northern boreal wetlands for this dissertation work. I highlight 187 

early work in ecosystem ecology and ecosystem development and the importance of 188 

northern ecosystems in the global carbon cycle. This introductory chapter also 189 

emphasizes the role that The Laws of Thermodynamics has implicitly had on the 190 

discipline of ecosystem ecology. In CHAPTER 6, I conclude with a summary of each 191 

dissertation chapter, a short discussion on the application of The Laws of 192 

Thermodynamics within ecosystem ecology studies, and highlight novel contributions of 193 

this work to the field of systems ecology. 194 

 195 

 196 

 197 
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198 
Figure 1. Conceptual diagram of the Maximum Power Principle. Maximum power occurs 199 
at some intermediate efficiency, not maximum efficiency (From Odum and Pinkerton 200 
1955).  201 
 202 

 203 

 204 
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205 
Figure 2. Map of study site in interior Alaska just outside of the Bonanza Creek Long- 206 
Term Ecological Research (BNZ LTER) station.  207 
 208 

 209 

 210 

 211 

 212 
 213 
 214 
 215 
 216 
 217 
 218 
 219 

 220 
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CHAPTER 2 221 

A REVIEW OF HOW THE SECOND LAW OF THERMODYNAMICS HAS 222 

INFORMED ECOSYSTEM ECOLOGY THROUGH ITS HISTORY  223 

Abstract 224 
 225 

Many attempts have been made to develop a general principle governing how 226 

systems develop and organize in ecology. I reviewed the historical developments that led 227 

to conceptualization of several goal-oriented principles in ecosystem ecology. I focused 228 

this review on two prominent principles—the Maximum Power Principle and the 229 

Maximum Entropy Production Principle—and the literature that applies to both. While 230 

these principles have conceptual overlap, I found considerable differences in their 231 

historical development, the disciplines that apply these principles, and their adoption in 232 

the literature. These principles were more similar than dissimilar and maximization of 233 

power in ecosystems occurs with maximum entropy production. These principles have 234 

great potential to explain how systems develop, organize, and function, but there are no 235 

widely agreed upon theoretical derivations for the MEPP and MPP, hindering their 236 

broader use in ecological research. I end with recommendations for how ecosystems-level 237 

studies may better use these principles.  238 

 239 

I. Introduction 240 

Many theoretical frameworks have been proposed to unify fundamental concepts 241 

of systems organization and development. For example, there are hypotheses that systems 242 

organization involves maximizing power (Lotka 1922), maximizing entropy production 243 
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(Paltridge 1975), minimizing entropy production (Prigogine and Nicolis 1971), 244 

enhancing ascendancy (Ulanowicz 1986), and maximizing embodied energy, or emergy 245 

(Odum 1988). There have been many frameworks grounded in non-equilibrium 246 

thermodynamics that seek to explain how systems develop, but a consensus remains 247 

elusive. Martyushev and Seleznev (2006) noted that many of these principles have been 248 

independently proposed. They argue that various researchers, unaware of the other 249 

studies in different subjects, have proposed these principles under different names, 250 

leading to considerable delays in theoretical advancements. Because these principles aim 251 

to provide a mechanism for why systems develop, these principles are sometimes referred 252 

to as “goal” functions. To add more complexity, Fath et al. (2001) argued that there is 253 

considerable overlap and that many of these approaches are complementary. Here, I 254 

focused on two of these goal principles that have received considerable attention in the 255 

ecosystem ecology literature: The Maximum Power Principle (MPP) and the maximum 256 

entropy production principle (MEPP) and explored the links between these principles as 257 

well as possible reasons that they have gained surprisingly little traction with ecosystem 258 

ecologists writ large.  259 

Originally presented by Alfred Lotka in the 1920s, the MPP states that systems 260 

develop to increase the total flow of energy or power through the system. Lotka framed 261 

the MPP in the context of natural selection, arguing that organisms that most efficiently 262 

harness available energy would be preserved (Lotka 1922). Lotka even proposed that the 263 

MPP should be considered the 4th Law of Thermodynamics. Odum and Pinkerton (1955) 264 

reformulated the original principle and argued that systems develop to an efficiency level 265 
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that maximizes power production. The reformulation of the MPP by Odum and Pinkerton 266 

(1955) explicitly addressed ecosystems level thinking while Lotka focused on organisms 267 

as systems. Though the MPP was formulated nearly 100 years ago, there is still 268 

considerable interest in applying the principle to ecological studies (e.g. Cai et al. 2006; 269 

DeLong 2008), yet surprisingly few ecosystem ecologists use the construct in their 270 

research.  271 

The MEPP is an extension of the Second Law of Thermodynamics in non- 272 

equilibrium systems. It is argued that an open system far from equilibrium will maximize 273 

the production of entropy while relaxing to equilibrium over time. Similar to the use of 274 

the MPP in many fields, the MEPP has been applied to a variety of studies including 275 

physics, astronomy, mathematics, and computer science. Several researchers throughout 276 

the 20th century have independently proposed the MEPP. For example, Ziegler (1963) is 277 

credited with a derivation of the MEPP from a statistical mechanics framework, while 278 

Jaynes (1957) derived the MEPP in information theory (Martyushev and Seleznev 2006). 279 

The MPP and the MEPP are relatively young and their importance and applicability in 280 

ecosystems ecology remains contested and unresolved (Sciubba 2011, Mansson and 281 

McGlade 1993). 282 

As with these non-equilibrium thermodynamic principles, the concepts of 283 

ecosystem development and succession have their roots in the early 20th century. 284 

Clements (1916) and Gleason (1926) laid the foundation for ecological succession and 285 

development. Odum (1969) argued that ecosystems in different states of system 286 

development share particular traits. His seminal work inspired many of these so-called 287 
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contemporary “goal function” principles as researchers sought to provide a theoretical 288 

basis for the traits that Odum (1969) described. For example, one of the traits of a 289 

maturing ecosystem was the ecosystem production (P) to respiration (R) ratio. As 290 

systems age, Odum (1969) argued, P:R approaches 1. One of the goal functions that was 291 

developed to address this was the principle of maximum energy dissipation (Fath et al. 292 

2001). The idea behind the principle of maximum dissipation is that through the creation 293 

of complex but ordered structure, at least in biological systems far from equilibrium, the 294 

rate of entropy production or energy dissipation is actually accelerated relative to simpler, 295 

non-ordered systems. The MPP and the MEPP are principles that provide a mechanistic 296 

explanation for how systems develop and organize in the context of energy inputs (e.g. 297 

power) and energy use for system maintenance and growth (e.g. entropy).  298 

While there has been some advance and evolution in the theoretical aspects of 299 

these principles, there have been fewer empirical ecosystem studies that have tested the 300 

MPP and to a lesser extent, the MEPP. The reason for the latter is that the MEPP 301 

appeared in the literature considerably more recently than the MPP. In this review I 302 

asked: Has the MEPP theoretically evolved from the MPP, and if so, how? By examining 303 

the theoretical underpinnings and the applied empirical studies of both of these 304 

principles, I explored the similarities and differences between the MPP and the MEPP.  305 

 306 

My objectives of this review are to (1) characterize the development of these 307 

principles in ecosystem ecology in the historical context of The Second Law of 308 

Thermodynamics, (2) examine the current state of the MEPP and the MPP literature, (3) 309 
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elucidate common themes and challenges of applications of these principles, and (4) 310 

explore possible reasons that neither has received more traction in ecosystem science.  311 

 312 

II. Methods 313 

 To explore the links, similarities, and differences between these principles, I 314 

conducted targeted keyword searches using Web of Science. I started by examining 315 

articles that were important in the theoretical development of the MEPP and the MPP. To 316 

examine the disciplines that have drawn from these principles, I examined a total of 520 317 

papers that cited two papers that first proposed the MPP, albeit at different levels of 318 

ecological organization: 1) Alfed Lotka’s 1922a paper entitled Contribution to the 319 

energetics of evolution paper, and; Odum and Pinkerton's 1955 ecosystems-level paper. 320 

This exploration of the theoretical development of the MEPP involved searches for 321 

papers citing Jaynes (1957) and Ziegler (1983), which produced a total of 5324 records.  322 

For a closer examination of how these principles have been used in the literature, 323 

I performed additional keyword searches using “maximum power principle” and 324 

“maximum entropy production.” From the 520 papers that cited Lotka (1922a) and Odum 325 

and Pinkerton (1955) and the 246 papers that cited “maximum entropy production” I 326 

limited this meta-analysis to 32 papers by focusing on articles with a strong emphasis on 327 

ecological research, although not all were at the ecosystems scale. For the sake of 328 

simplicity, papers that used concepts such as empower and exergy were considered to be 329 

complementary with maximum power and were included in this analysis.  330 

Although Ziegler (1963) is often credited with some of the first theoretical 331 
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research concerning the MEPP, I used Ziegler (1983) as a substitute for Ziegler (1963). 332 

This earlier paper was not in the Web of Science database. By analyzing papers that cited 333 

these pioneers in the theoretical development of the MPP and the MEPP, I was able to 334 

account for studies that did not explicitly state an application of these principles. For 335 

example, Kemp and Boynton (2004) argued that Odum’s early work examining the 336 

trophic structure of Silver Springs (Odum 1957) was one of the first empirical studies of 337 

the MPP, but this was not explicitly stated in his 1957 paper. In Web of Science it is 338 

possible for papers to be listed across multiple research areas. Thus, papers listed in more 339 

than one research area were counted more than one time in my examination of these 340 

principles and the research disciplines that use them.  341 

 342 

III. Results and Discussion 343 

 The following section is organized in the following subsections: history, current 344 

trends, interdisciplinarity and the MEPP, and interdisciplinarity and the MPP. I start my 345 

examination of the MEPP, the MPP, and their role in ecosystems ecology within a 346 

historical context. I review the origin of The Second Law of Thermodynamics and how 347 

The Second Law of Thermodynamics gave rise to the MPP and the MEPP. Next, I focus 348 

on the current use of the MEPP and MPP within the broader literature as well as within 349 

the ecological literature. I conclude this section with an exploration of the disciplines that 350 

use the MEPP and the MPP.  351 

 352 

 353 
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A. History  354 

Non-equilibrium theoretical principles such as the MPP and the MEPP are 355 

grounded in the classical equilibrium Laws of Thermodynamics, specifically the Second 356 

Law of Thermodynamics. Here, I briefly discuss the history of The Second Law of 357 

Thermodynamics to put non-equilibrium thermodynamic principles into a historical 358 

context. I discuss the early importance of the Carnot Engine, The Second Law of 359 

Thermodynamics, work by Boltzmann, and [most importantly] the development of the 360 

concept of entropy for the development of the MPP and the MEPP. For a more 361 

comprehensive review of the history of the Second Law of Thermodynamics see Ozawa 362 

(2003) and Kondepudi and Prigogine (1998).  363 

The Second Law of Thermodynamics has its roots in the early part of the 19th 364 

century (Figure 1). Carnot (1824 ) made large theoretical strides with his only published 365 

work, a book originally published in French titled Reflections on the Motive Power of 366 

Fire and on Machines Fitted to Develop that Power. His work on heat engines would 367 

become the foundation and inspiration for the development of the Second Law of 368 

Thermodynamics.  369 

Although Carnot (1824) laid the theoretical framework for what was to become 370 

the Second Law of Thermodynamics, German mathematician and physicist Rudolf 371 

Clausius first articulated the Second Law of Thermodynamics in the 1850s. In The 372 

Mechanical Theory of Heat, translated into English in 1879, Clausius (1879) refined 373 

Carnot’s work to develop The Second Law of Thermodynamics and introduced the 374 

concept of entropy. Clausius (1879) defined entropy as the energy that is dissipated when 375 
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internal work is done within a system. The Second Law of Thermodynamics states that in 376 

isolated systems, entropy must increase. His famous 1865 proclamation “the entropy of 377 

the universe tends to maximum” is still one of the most common ways to state and teach 378 

The Second Law of Thermodynamics.  379 

Following Clausius, Boltzmann (1886) developed the field of statistical 380 

mechanics and refined the Clausius definition of entropy using a statistical framework 381 

(Figure 1). The Boltzmann Formula fundamentally linked entropy with the spatial 382 

arrangement of atoms and molecules within a thermodynamic system. In addition to the 383 

importance of early theoretical developments in classical thermodynamics, the 384 

formulation of non-equilibrium thermodynamics was equally important to the 385 

development of the MPP and the MEPP. It was not until the 1930s that considerable 386 

theoretical development in non-equilibrium thermodynamics occurred. Onsager (1931) 387 

provided the first deduction of non-equilibrium thermodynamics. Fundamentally, 388 

advancements in non-equilibrium thermodynamics provided a theoretical bridge that 389 

allowed Odum and Pinkerton (1955) to make their ecosystem-scale step from the 390 

evolutionary/organismal scale by Lotka (1922a). I argue that one of the reasons that so 391 

little of ecosystem ecology touches on MPP and the MEPP is because few ecosystem 392 

ecologists know of Onsager’s work or this bridge to non-equilibrium systems.  393 

The early development of thermodynamics was entirely and explicitly using 394 

physical systems. It was not until Lotka (1922a) that biological systems were viewed with 395 

a thermodynamic construct. Lotka (1922a,b) linked the early thermodynamic concepts of 396 

statistical mechanics, pioneered by Boltzmann and Gibbs in physical systems, with 397 
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evolution and natural selection to develop the MPP at the organismal level (Figure 1). In 398 

fact, Lotka's work (1922a) preceded most of the empirical and theoretical work that led to 399 

the modern discipline of ecosystem ecology, including: 1) early seminal work by Elton 400 

(1927) on food chains; 2) interactions among soil, minerals, and plants by Hutchinson 401 

(numerous publications); 3) introduction of the term “ecosystem” by Tansley (1935), and; 402 

4) the concept of energy flow through an ecosystem by Lindeman (1942). It was Lotka’s 403 

merging of evolution and natural selection with Boltzmann’s approach to entropy, 404 

statistical mechanics, and the Second Law of Thermodynamics that first gave rise to the 405 

MPP.  406 

The Second Law of Thermodynamics and the concept of entropy inspired many 407 

new disciplines. In addition to the statistical mechanics framework of Boltzmann and 408 

Gibbs, information theory gave rise to a new approach to studying systems, led by the 409 

work of Shannon (1948; Figure 1). Using information theory, Shannon (1948) defined 410 

information entropy in his paper A Mathematical Theory of Communication. Shannon 411 

argued that information entropy (units of bits in information theory) is a function of 412 

probability. In other words, information entropy is a measure of unpredictability. The 413 

Shannon entropy approach inspired Jaynes (1957) to explore the link between statistical 414 

mechanics and information theory. Jaynes (1957) is often credited as starting the 415 

Maximum Entropy (MaxEnt) approach to thermodynamics—not to be confused with the 416 

MEPP (Figure 1). Martyushev and Seleznev (2006) noted that Dewar (2003) attempted to 417 

theoretically ground the MEPP using the Jaynes (1957) formalism. Although Martyushev 418 

and Seleznev (2006) were critical of Dewar (2003), the usefulness of his approach is still 419 
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debated; in fact, many of the papers I reviewed cite Dewar (2003) as the sole source of 420 

theoretical foundations for the studies.  421 

It is difficult to attribute the theoretical origin of the MEPP to a single researcher. 422 

This is in contrast to the MPP, which has a clear origin in Lotka (1922a) at the 423 

organismal level and Odum and Pinkerton (1955) at the ecosystem level. Martyushev and 424 

Seleznev (2006) credited Ziegler (1963) with the introduction of the MEPP. Martyushev 425 

and Seleznev (2006) also discussed the importance of the work done by Prigogine from 426 

1945-1947 on his Minimum Entropy Production. It is important to note that while the 427 

principle of minimum entropy may seem contradictory to the MEPP, several researchers 428 

have argued that this is not the case (Martyushev and Seleznev 2006). Different 429 

principles have been developed for different scales or domains of application. Although 430 

Martyushev and Seleznev (2006) acknowledged the importance of Prigogine’s 431 

contributions to the development of the MEPP, they credited Ziegler with the derivation 432 

of the MEPP because of its wider applicability. They acknowledged that several 433 

researchers before and after Ziegler developed the idea of the MEPP independently, 434 

including a slightly different minimum entropy production principle by Prigogine, but 435 

they also argued that Ziegler’s formulation was the “most evident and simplest.” 436 

Although the historical origin of the MEPP is convoluted, the derivation of the MEPP by 437 

Ziegler is favored for its grounding in non-equilibrium thermodynamic theory. 438 

 439 

B. Current trends 440 

Despite the origins of the MPP and the MEPP being almost 100 and almost 70 441 
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years ago, respectively, I found fewer examples of these principles being applied in 442 

current ecosystems ecological literature than I expected. That said, both of these 443 

principles are being tested more than they have been before. I argue that the MPP and the 444 

MEPP may be undergoing a renaissance within the general literature as well as within 445 

ecosystems research (Figures 2 and 3). To visualize this current trend within the MEPP 446 

and the MPP literature, I analyzed the cumulative number of published articles from the 447 

general literature that used “maximum entropy production” and “maximum power 448 

principle” as keywords (Figure 2). Not only were studies investigating either the MEPP 449 

or the MPP increasing at an increasing rate, but this acceleration seems to have begun as 450 

recently as the early 2000s (Figure 2). I found this same trend of increasing interest in 451 

ecological publications that cite either the MEPP or the MPP in the last 10-20 years 452 

(Figure 3).  453 

 454 

C. Interdisciplinarity and the MEPP 455 

 In the following two sections I expand the historical foundational work of the 456 

MEPP and the MPP (Figure 1) by explicitly tying them to a range of research disciplines. 457 

Since the introduction of The Second Law of Thermodynamics by Clausius, countless 458 

studies from a range of research disciplines, from psychology to ecosystem ecology, have 459 

drawn on his formulation of the Second Law. I used the keywords “maximum power 460 

principle” or “maximum entropy production” or citations of Lotka (1922a) or Odum and 461 

Pinkerton (1955) to determine the disciplines that are using the MEPP and the MPP 462 

approach. I also searched for papers that cited Ziegler (1983) or Jaynes (1957) as key 463 
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foundational papers. Additionally, I used the keyword “The Second Law of 464 

Thermodynamics” to determine the extent of overlap across disciplines among the other 465 

keyword searches. I assessed to what extent disciplines that used the MPP or the MEPP 466 

overlapped with disciplines that frequently cite The Second Law of Thermodynamics. 467 

A keyword search using “Second Law of Thermodynamics” produced 1768 468 

papers cross-listed among more than 50 Web of Science research areas for a total number 469 

of 2704 records. Sixty-one percent of the papers I found were published in three 470 

disciplines: physics and mechanics (51%), and engineering (10%; Table 1). This finding 471 

was not surprising given that these are disciplines frequently associate with 472 

thermodynamic constructs. Despite its inextricable link to and foundation in The Second 473 

Law of Thermodynamics, ecologically related studies accounted for only 54 of the 2704 474 

records, or 2% of the total studies. It was particularly surprising that ecosystem ecology 475 

was not well represented in this keyword search. I suggest that this may be because 476 

ecosystem-scale research either only implicitly considers The Second Law of 477 

Thermodynamics or that a sizable population of ecosystem ecologists feel no intrinsic 478 

connection to or importance of The Second Law. I suggest that while the former is 479 

understandable, the latter is troubling. 480 

To explore the extent of disciplinary overlap between The Second Law of 481 

Thermodynamics and the MEPP, I focused on research areas that most often cited the 482 

MEPP and I found considerable overlap. Papers that cited pioneers in the MEPP 483 

framework (Ziegler 1983, Jaynes 1957) showed a strong connection with disciplines that 484 

traditionally study The Second Law of Thermodynamics research: physics, mechanics, 485 
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engineering, mathematics, and materials science (Table 1). Papers that cited Ziegler 486 

(1983) were also most likely to identify with disciplines that frequently refer to the 487 

Second Law of Thermodynamics: mechanics and engineering accounted for 11% and 488 

10% of papers referring to “the Second Law of Thermodynamics” and 27% and 18% of 489 

those that cited Ziegler (1983), respectively.  490 

Although Jaynes (1957) and Ziegler (1983) have both been acknowledged as 491 

foundational in the development of the MEPP, papers that cited Jaynes (1957) came from 492 

a wider range of disciplines than those that cited Ziegler (1983; Table 1). This is likely 493 

because Jaynes’ maximum entropy (MaxEnt) derivation was a much broader theory, of 494 

which entropy can be thought of as one case. For example, papers from more than 90 495 

disciplines across more than 5000 citation records cited Jaynes (1957). In other words, 496 

Jaynes (1957) reached a broad range of disciplines, but 52% of all articles citing this 497 

paper were published in physics, engineering, mathematics, and computer science. 498 

Interestingly, environmental sciences ecology was the 6th most common discipline to cite 499 

Jaynes (1957), for 3% of the total articles. Although 3% of the total articles does not 500 

sound like much, Jaynes (1957) is cited by over 5000 articles. This suggested that the 501 

derivation of the MEPP by Jaynes (1957) has reached a broad audience in the ecological 502 

community.  503 

Although Martyushev and Seleznev (2006) credited Ziegler with the first use of 504 

the MEPP concept, based on his comprehensive non-thermodynamic theoretical 505 

approach, Ziegler (1983) did not explicitly state his theoretical influences. For this 506 

reason, Martyushev and Seleznev (2006) could only infer that his derivation of the MEPP 507 
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followed the theoretical developments in statistical physics from Boltzmann (Figure 1). 508 

The Ziegler approach to MEPP was derived independently from other research on the 509 

MEPP, and this may explain why I found considerable overlap among disciplines citing 510 

his work and those that referred to “the Second Law of Thermodynamics” (Table 1). 511 

Relative to Jaynes (1957), Ziegler (1983) was cited by far fewer research disciplines— 512 

mechanics, engineering, materials science, and physics papers accounted for 69% of all 513 

Ziegler (1983) citations (Table 1). Notably, I was unable to find a single ecosystems 514 

ecology study, or even ecological study, that cited Ziegler’s derivation of the MEPP. I 515 

thus concluded that the Ziegler (1983) derivation of the MEPP has not received traction 516 

by ecologists, or even by ecosystems ecologists. 517 

The final keyword search relating to the MEPP was for papers that have referred 518 

to “maximum entropy production” (Table 1). This search generated 307 total records that 519 

spanned 28 different research areas. As with papers that cited Ziegler (1983) and Jaynes 520 

(1957), most of these were physics or atmospheric sciences papers. Studies from the 521 

ecological sciences were less common, but much more prevalent than papers that cited 522 

Ziegler (1983) or Jaynes (1957). While the environmental sciences ecology research area 523 

accounted for 6% of the total studies that referred to “maximum entropy production,” in 524 

papers published since 2010 this proportion increased to 10%. This appears to be driven 525 

by 15 articles in a special issue in Philosophical Transactions of the Royal Society 526 

Biological Sciences, published in 2010, which focused on the MEPP in biological 527 

systems.  528 

 529 
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D. Interdisciplinarity and the MPP 530 

My focus on the MPP in the literature was based on the papers of Lotka (1922a), 531 

Odum and Pinkerton (1955), and use of the term “maximum power principle.” A total of 532 

275 papers have cited Lotka (1922a) representing 55 different research areas for a total 533 

number of 424 records. One-third of papers that cited Lotka (1922a) were from the 534 

environmental sciences ecology research area (Table 1). Additionally, papers on some 535 

form of ecology accounted for 43% of the total records. Given the strong influence that 536 

Darwin had on Lotka, and the interest Lotka had in biological systems, these results are 537 

not surprising from an organismal perspective.  538 

 539 

Papers that cited Odum and Pinkerton (1955) showed a similar research area 540 

breakdown. Of the 364 papers I found, spread across 39 research areas, 211 or 58% had 541 

research that at least overlapped with ecosystems science (Table 1). This is not 542 

particularly surprising given that most of Odum’s work was firmly entrenched in 543 

ecosystem ecology. I also found that the keyword “maximum power production” had 544 

substantial representation in the ecological literature (Table 1)—of the 25 records, 60% 545 

had a focus in ecological sciences. My analyses of the MEPP and the MPP papers 546 

suggested that there were clear disciplinary distinctions in the use of these principles, and 547 

that ecosystem ecologists and ecologists in general have, by and large, focused their work 548 

on the MPP on a percentage basis. That is, 60% of the papers that refer to the MPP are 549 

within ecological sciences, but only 8% of the MEPP papers are. However, in terms of a 550 

total number of records, there are more ecology studies within the MEPP than the MPP. 551 
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Additionally, many disciplines have used the MEPP over time, but the use of the MPP 552 

has mainly been by ecologists.  553 

The pattern of an increasing rate of articles being published that apply the MEPP 554 

(Figure 3) was also observed with the number of articles that cited the foundational MPP 555 

papers (Figure 4). The number of articles published per year that cited either of Lotka’s 556 

1922 publications or Odum and Pinkerton (1955) increased substantially in the 2000s. I 557 

found close parallels in the pattern of citations of these three papers (Figure 4), 558 

suggesting that authors commonly cited them all in the same paper. This common co- 559 

citation of Lotka (1922a) and Odum and Pinkerton (1955) suggests broad recognition of 560 

the theoretical link between them, but does not acknowledge that Lotka focused his MPP 561 

work mainly at the organismal level while Odum’s focus was on ecosystems. Confusion 562 

about this distinction may be one reason that these Second Law principles have not 563 

gained greater traction in ecosystem ecology.  564 

 565 

IV. Maximum Power Principle with a Focus on Ecology and Ecosystems 566 

A. The Early work 567 

 As I noted above, Lotka (1922a) was the first formulation of the MPP. While 568 

referencing Boltzmann’s contribution that energy is the basis of life struggle, Lotka 569 

argued that systems—more specifically organisms—that best capture energy to ensure 570 

future survival would have an evolutionary advantage. He further stated that if there are 571 

untapped energy sources within the system and there are mechanisms to use that energy, 572 

the total energy flux through the system might be increased.  573 
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 Although Lotka pioneered the conceptual context for the MPP, Odum and 574 

Pinkerton (1955) provided a much stronger theoretical framework and applied it directly 575 

to ecosystems. For example, their paper framed system power output as a function of 576 

system efficiency and hypothesized a general power-efficiency relationship (Figure 5). 577 

They also discussed several ecosystems that operate at maximum power. Since Lotka 578 

(1922a) and Odum and Pinkerton (1955), there have been about a dozen studies that have 579 

explicitly tested the MPP. Odum’s early papers, from the 1950s, did not always explicitly 580 

state that testing the MPP was an objective; thus, accounting for all of the early implicitly 581 

tested studies of the MPP by Odum or others was somewhat difficult. That is, studies that 582 

did not explicitly use the term MPP or cite key papers within the framework were 583 

difficult to study. For this reason it is likely that the number of studies that have tested the 584 

MPP are underreported in the literature. One of the earliest applications of the MPP was 585 

Odum (1957; Kemp and Boynton, 2004). In this study of Silver Springs, he used a 586 

modified diel approach to measure ecosystem production (P) and respiration (R) in an 587 

attempt to characterize the trophic structure, productivity, and total energy flow through 588 

this aquatic ecosystem. Even though Odum (1957) did not explicitly state that this study 589 

was a test of the MPP, through studying trophic structure and energy flow through Silver 590 

Springs, it seems reasonable to assume that this was his intent. By examining early MPP 591 

empirical studies and the theoretical underpinnings of the MPP, a clearer picture emerges 592 

of what some of the early pioneers in MPP literature intended from these types of 593 

ecosystem studies.  594 

 595 
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B. Types of Studies and Ecological Scales 596 

 I found 11 studies in the literature that tested the MPP. Within these 11 papers I 597 

reviewed that use the MPP approach to studying ecosystems, there is not one particular 598 

type of study or method that is more prevalent (Table 1). I found a broad range in the 599 

types of studies that have used the MPP, and they were more than a collection of studies 600 

that used P/R ratios to study energy flow in ecosystems, as Odum did early in his career. I 601 

found many studies using models to apply or test the MPP and similar principles (exergy 602 

and MePP) in a variety of contexts. For example, the MPP has been applied to studies 603 

that: 1) used models to optimize exergy relative to the effects on planktonic and 604 

zooplankton body size in aquatic ecosystems (Ray et al. 2001); 2) used the MPP to 605 

constrain hydrological conceptual models (Westhoff and Zehe 2013); modeled the role of 606 

exotic species in ecosystem self-organization (Campbell et al. 2009), and; 4) simulated 607 

the role of the MPP in self-organizing forest plantation ecosystems (Li et al. 2013). The 608 

MPP has also been used to predict outcomes of competitive exclusion experiments 609 

(DeLong 2008), as an indicator for benthic ecosystem recovery following a disturbance 610 

(Libralato et al. 2006), and in examinations of microcosm ecosystem self-regulation 611 

using pH to control photoperiod (Cai et al. 2006). It has also been used to model 612 

ecosystem organization of energy flows and storage (Fath et al. 2004) and in simulations 613 

of ecosystem responses to resource pulses (Lee 2014). It is clear that the MPP has guided 614 

systems-based ecological studies at all levels of organization—not just with 615 

ecosystems—for decades. 616 

 617 
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C. Common Themes 618 

 I found that half of the papers (6) cited both of the well-recognized theoretical 619 

foundational MPP papers. All of them cited (Lotka 1922a), except for one (i.e. Westhoff 620 

and Zehe 2013), and that study discussed the theoretical background of the MEPP, citing 621 

work by Dewar, but designed their model to test the MPP. In the studies that did not cite 622 

Lotka (1922a) and Odum and Pinkerton (1955), I found that the authors typically cited 623 

other Odum papers (e.g. Ray et al. 2001, Lee 2014, and Campbell et al. 2009). One paper 624 

cited foundational papers from both the MPP and the MEPP literature (Fath et al. 2004).  625 

While the MPP has guided organismal and community-scale ecological research, 626 

it has most often been tested at the ecosystem scale. The difficulty of designing 627 

experiments and models to test the MPP translated to a limited literature of empirical 628 

MPP studies. Given this, I found it surprising that a large percentage of the studies 629 

attempted to draw results from large and relatively complex ecosystems. This may be a 630 

direct reflection of the legacy and influence of H.T. Odum and his ecosystem approach. 631 

In addition to testing the MPP at the ecosystem scale, a number of the studies I reviewed 632 

used the principle in the context of ecosystem development and system organization (per 633 

Odum 1969; e.g. Fath et al. 2004, Lee 2014, Campbell et al. 2009, and Li et al. 2013).  634 

 635 

V. Is the Maximum Entropy Production Principle an Evolving Theory? 636 

A. Early Work 637 

Paltridge (1975) is commonly cited as the first known application of the MEPP in 638 

his attempt to model global atmospheric circulation patterns (Vallino, 2010; Virgo, 2010; 639 
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Ozawa, 2003). If the global transport of heat is assumed to operate at maximum entropy, 640 

he argued, then meridional energy flux, cloud cover, and meridional temperature 641 

distributions should all be predictable. Interestingly, while Paltridge is widely credited as 642 

the first empirical application of the MEPP, he did not cite any of theoretical foundational 643 

MEPP papers (Figure 1, Table 3). Paltridge originally framed the global atmospheric 644 

circulation patterns in the context of minimum entropy production; it was only later that 645 

others recognized his approach as the MEPP. This lack of an explicit link between his 646 

approach and the MEPP is surprising, given the large impact that his study has had on the 647 

MEPP field. For example, the Paltridge approach has also been applied to the atmosphere 648 

of Titan and Mars (Lorenz et al. 2001).  649 

 650 

B. Types of Studies and Ecological Scales 651 

 Studies using the MEPP in an ecological context constituted a smaller percentage 652 

of the MEPP literature compared to the ecological fraction of the MPP literature, but 653 

overall I found more ecological MEPP studies. I reviewed 22 MEPP articles for this 654 

study, compared with the 11 I found for the MPP. I found a similar variety in the types of 655 

studies and the scale of application, and again a large fraction of them were modeling 656 

studies. The latter included models of ATP synthase enzyme design (Dewar et al. 2006), 657 

enzyme kinetics (Dobovišek et al. 2011), chemical replicators (Martin and Horvath 658 

2013), systems with multiple equilibria (Herbvert et al. 2011b), detrital-based ecosystems 659 

(Meysman and Bruers 2007), ecosystem biogeochemistry (Vallino 2010), food webs 660 

(Meysman and Bruers 2010), watershed development (Kleidon et al. 2013), ecological 661 
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succession (Skene 2013), and glacial maximum climates (Herbert et al. 2011a). Other 662 

studies include using eddy-flux data to calculate entropy in developing ecosystems 663 

(Holdaway et al. 2010) and several studies describing community organization and 664 

physiology in the context of MEPP (Jia et al. 2012, Lin et al. 2009, Volkov et al. 2009, 665 

Dewar 2010, Schymanski et al. 2010). Among the studies applying the MEPP, I found a 666 

diverse range of scales being tested and a heavy emphasis on using modeling.  667 

 668 

C. Common Themes 669 

To a larger extent than MPP studies, I found a high prevalence of MEPP studies 670 

relied on modeling approaches. This is not surprising giving the difficulty and complexity 671 

of the types of systems ecosystems scientists study. I also found evidence of a highly 672 

fragmented and disjointed historical development of the MEPP, and thus of its impact on 673 

MEPP studies in ecosystem ecology and ecology in general. For example, five of the 21 674 

studies did not cite any of the recognized theoretical foundations within the MEPP 675 

approach. All of these independently proposed variations of the MEPP have contributed 676 

to the strength of this approach, however there seems to be two main disconnects within 677 

the theoretical development: (1) some use entropy in the thermodynamic context, while 678 

others use it in an information theory context, and (2) the appropriate scale to apply the 679 

MEPP. For instance, it is a strength of the principle that it has been developed many 680 

times independently; however, this fragmented history hinders critical feedback and 681 

theoretical development. The theoretical disconnect across these studies suggests that 682 

while the MEPP is a general principle, some confusion remains about how it is currently 683 
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being applied to ecological systems. This is in contrast to the MPP, which is less used, 684 

but more uniformly accepted and cited.  685 

 686 

VI. Complementarity and Challenges 687 

By examining the historical theoretical development of the MPP and MEPP and 688 

the studies that have applied these principles, I concluded that the MPP and the MEPP 689 

actually guide complementary, not discrete or competing, approaches to studying 690 

ecosystems (Fath et al. 2001). Despite their parallel historical developments (Figure 1) 691 

and relatively few crossover citations in the literature between these two approaches 692 

(Table 2, Table 3), MPP and MEPP studies both tested fundamental thermodynamic 693 

concepts that are deeply linked. One way to consider the complementarity of these 694 

approaches is through the concept of thermodynamic maximization in each principle. For 695 

instance, in the MPP, power is thermodynamic work being done over time (power is 696 

measured in J s-1), and it takes energy to do work. In other words, power is the flow of 697 

energy through some system per unit time. The MEPP argues that entropy production is 698 

maximized in energy systems, and entropy is the thermodynamic measure of energy 699 

dissipation. When work is done in a system, free energy is degraded and ultimately lost 700 

as heat, which is the Gibbs definition of entropy. If a system is operating at maximum 701 

power and degrading free energy to do work, this system will also be maximizing entropy 702 

production. And thus the MPP and the MEPP are simultaneously operating in this energy 703 

system provided system boundaries are carefully drawn, but with different units of 704 

measure—energy throughput versus entropy output.  705 
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 My review of the MPP and the MEPP literature also suggested some difficulties 706 

with these approaches. One of the challenges with the MPP, and to a lesser extent the 707 

MEPP, was a lack of empirical studies testing the principle(s). While I found that interest 708 

in both has recently been increasing (Figure 2, Figure 3), there are still relatively few 709 

MPP or MEPP studies in the literature. Another difficulty is designing and implementing 710 

studies that explicitly test concepts in the theoretical foundations of the principles. For 711 

example, many of the MPP papers that I reviewed cited Lotka (1922a) and Odum and 712 

Pinkerton (1955). However, there are also many MPP papers that only cite Lotka (1922a) 713 

(Table 1). While Lotka originally conceptualized the MPP for organismal systems, it was 714 

Odum and Pinkerton (1955) that added theoretical rigor and an ecosystems level focus. 715 

Additionally, within those papers that cite Odum and Pinkerton (1955) I found none that 716 

explicitly used power output as a function of system efficiency. I suggest that future 717 

studies strive to test the original concept demonstrated in Odum and Pinkerton (1955) 718 

Figure 2 (Figure 5). The strength of this revolutionary idea is framing system power 719 

output as a function of system efficiency. 720 

 One of the main challenges to the MEPP approach is the lack of agreement about 721 

the scale over which it applies, and to a lesser extent the confusion regarding entropy 722 

itself. While Prigogine’s minimum entropy production can be shown to be a special case 723 

of MEPP (Kleidon and Lorenz 2005), others have found that subparts of a system operate 724 

at minimum entropy production, but the system as a whole operates under MEPP. For 725 

instance, river networks organize to minimize drag (i.e., minimum entropy), but this 726 

maximizes the dissipation rate of gravitational potential (Kleidon et al. 2013). Likewise, 727 
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do individual organisms follow MEPP, or only ecosystems? As to entropy, there still 728 

seems to be some confusion between thermodynamic entropy, and information, where 729 

order is important for the latter, but not the former (Morrison 1964). These issues of scale 730 

and definition of entropy must be resolved before a mature MEPP can effectively 731 

advance ecosystem science. 732 

 733 

VII. Conclusion 734 

 The MPP and the MEPP have been applied to ecosystem ecology in 735 

complementary ways and have often been focused on ecosystem development and 736 

organization. It is important to note that these are still young and developing principles, 737 

and their application is clearly not completely settled. However, both the MEPP and the 738 

MPP have strong potential to further inform our understanding of ecosystem structure 739 

and function. My historical review of The Second Law of Thermodynamics literature 740 

revealed that although the MEPP is generating more interest among ecologists than the 741 

MPP, the MEPP did not evolve from the MPP. Instead, both of these approaches were 742 

developed independently and are complementary to one another. The MPP is more 743 

widely used by ecosystem ecologists while there are more ecological studies that refer to 744 

the MEPP.  745 

Through this study of the historical development of the MPP and the MEPP from 746 

The Second Law of Thermodynamics I sought to clarify theoretical developments and 747 

misconceptions within the principles. Despite their shortcomings, my examination of 748 

MPP and MEPP studies clearly demonstrates the general applicability of the MEPP and 749 
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the MPP across scales and their promise to better inform how ecosystems structure and 750 

function.  751 

Besides a recent renewed interest in testing the MEPP and the MPP in ecosystems 752 

research, I was encouraged to see a wide variety in the ecological scales at which these 753 

principles are being applied. We need to test the MEPP at the ecosystem scale and across 754 

multiple systems to assess validity not at one particular scale. Because the MPP is clearly 755 

an ecosystem-scale construct, I suggest that the MPP has the most potential at the 756 

ecosystem scale. I end with a couple of suggestions for future studies within the MEPP 757 

and the MPP approaches: (1) I encourage broader collaboration across the multitude of 758 

disciplines that test these principles, (2) focus on theoretical development and an 759 

agreeable theoretical derivation of the MEPP, (3) increase the number of experiments to 760 

test the MPP and the MEPP, and (4) those studies that test the MPP should strive to frame 761 

the experimental design in terms of the approach outlined in Odum and Pinkerton (1955).  762 

 763 

 764 

 765 

 766 

 767 
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 768 

Figure 1. Conceptual map of the evolution and origin of several optimality priniciples in 769 
biology, physics, and chemistry. The MPP and the MEPP both evolved from the Second 770 
Law of Thermodynamics. The dashed line represents theoretical developments prior to 771 
the introduction of non-equilibrium thermodynamics approach by Onsager (1931). The 772 
gray box represents explicit theoretical development in biological sciences. MPP: 773 
Maximum Power Principle; MePP: Maximum emPower Principle; MaxEnt: Maximum 774 
Entropy; MEPP: Maximum Entropy Production Principle. Reviewed studies did not 775 
widely cite derivations of MEPP from Swenson (1989) or Prigogine and Nicolis (1971) 776 
and were omitted from this map.  777 
 778 
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Figure 2. Maximum Entropy Production Principle and Maximum Power Production 783 
cumulative number of published papers. Since the early 2000s there has been an 784 
exponential increase in the number of articles that discuss the MEPP and to a lesser 785 
extent the MPP. 786 
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Figure 3. Maximum Entropy Production Principle and Maximum Power Production 796 
cumulative number of ecological studies published papers by year.  797 
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Figure 4. Cumulative number of publications that cite foundational MPP publications. 813 
From the 1950s to the 1970s these papers were largely ignored, however, since the mid 814 
1980s all three of these papers have become increasingly recognized. These papers all 815 
follow similar temporal patterns, suggesting co-citations.  816 
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Figure 5. Power output as a function of efficiency. Maximum power output is observed at 842 
an intermediate frequency (from Odum and Pinkerton (1955), Figure 2.).  843 
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Percent of each discipline across different keyword searches 860 

 “second law of 
thermodynamics” 

Jaynes 
1957 

Ziegler 
1983 

“maximum 
entropy 

production” 

Lotka 
1922 

Odum and 
Pinkerton 

1955 

“maximum 
power 

principle” 

Physics and 
mechanics 51 40 45 26 4 0 0 

Engineering 10 9 18 3 5 0 8 

Thermodynamics 8 0 3 0 0 0 0 

Mathematics 4 8 6 0 0 0 0 

Materials science 4 0 14 0 0 0 0 

Environmental 
science ecology 0 3 0 6 33 41 48 

Biology 
miscellaneous 0 0 0 20 19 28 36 

Geology 0 0 6 8 0 0 4 

Other 23 40 9 37 39 31 4 

Table 1. Keyword searches by percentage of each discipline. Web of Science keyword searches 861 
are in columns and disciplines are in rows. Numbers represent percentages. 862 
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List of reviewed MPP studies 

Type Scale Principle Theoretical 
Foundations Source 

Exergy as indicator 
of recovery  Ecosystem (MPP) Lotka Libralato et al. 2006 

Planktonic body size 
and exergy Organism (MPP) Lotka, Odum Ray et al. 2001 

Exergy and 
ecosystem 

development model 
Ecosystem (MPP) Lotka, Odum and 

Pinkerton, Prigogine Fath et al. 2004 

Constraining 
hydological models Watersheds MPP Dewar Westhoff and Zehe 

2013 
Competition 

exclusion 
experiments  

Community MPP Lotka, Odum and 
Pinkerton DeLong 2008 

Photoperiod and 
power acquisition 

microcosm 
Ecosystem MPP Lotka, Odum and 

Pinkerton Cai 2006 

Review of Odum 
Silver Springs study 

(1957) 
Ecosystem MPP Lotka, Odum and 

Pinkerton 
Kemp and Boynton 

2004 

Behavioral thermal 
regulation in fish 

model 
Organism MPP Lotka, Odum and 

Pinkerton Bryan et al. 1990 

Ecosystem based 
power model Ecosystem MePP Lotka, Odum Lee 2014 

Invasion/ 
introduction of 

exotic species model 
Ecosystem MePP Lotka, Odum Campbell et al. 2009 

Mechanistic model 
for plantation 

empower 
Ecosystem MePP Lotka, Odum and 

Pinkerton Li et al. 2013 

 

Table 2. Reviewed studies that use the Maximum Power Principle. The types, scales, and 
theoretical foundations of these papers varied greatly. (MPP) refers to studies that use 
exergy as an indicator or principle. MePP refers to Maximum emPower Principle studies. 
Studies that cited Odum, but not Odum and Pinkerton (1955) have “Odum” listed as 
theoretical foundations. 
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List of reviewed MEPP studies 

Type Scale Principle Theoretical Foundations Source 
Plant physiology and maximum 

entropy Organism MaxEP None Jia et al. 2012 

Self organization of plant communities Community Maximum 
dissipation Lotka, Odum, Prigogine Lin et al. 2009 

Energetics of succession model Ecosystem MEPP Boltzmann, Lotka, Odum 
and Pinkerton Skene 2013 

Species interaction models in tropical 
forest Community MEPP Boltzmann, Shannon, 

Jaynes, Dewar Volkov et al. 2009 

Carbon assimilation and ecosystem 
spatial organization Ecosystem MEPP Dewar Jesus et al. 2012 

Semiarid system heterogeneity models Ecosystem MEPP Dewar Schymanski et al. 2010 

Chemical replicator model Organism MEPP Dewar, Prigogine Martin and Howarth 
2013 

Glacial maximum climates Global MEPP Jaynes, Dewar Herbert et al. 2011 
Multiple equilibria models Global MEPP Jaynes, Dewar Herbert et al. 2011 

Bacterial chemotaxis and maximum 
entropy Bacterial MEPP Jaynes, Prigogine, 

Swenson, Dewar Zupanovic et al. 2010 

Amazon ecosystem development  Ecosystem MEPP Lotka, Odum and 
Pinkerton Holdaway et al. 2010 

Ecosystem biogeochemistry model Ecosystem MEPP 
Lotka, Odum and 

Pinkerton, Prigogine, 
Dewar, Swenson 

Vallino 2010 

Organization of watersheds models Watersheds MEPP Lotka, Odum, Dewar Kleidon et al. 2013 

Metabolic networks  Molecular, 
Bacterial MEPP None Unrean and Srienc 2011 

Soil hydrological processes model Ecosystem MEPP None Porada et al. 2011 
Plant optimization theories and  Multiple MEPP Dewar Dewar 2010 

Climate system dynamics Global MEPP None Paltridge 1975 

Detrital based ecosystems model Ecosystem MEPP Odum Meysman and Bruers 
2007 

Food webs models Ecosystem MEPP Prigogine Meysman and Bruers 
2010 

Enzyme kinetics and maximum 
entropy 

ATP synthase enzyme design 

Molecular 
 

Molecular 

MEPP 
 

MEPP 

Swenson, Dewar, 
Prigogine, Ziegler 

Jaynes, Dewar 

Doboviseik et al. 2011 
 

Dewar et al. 2006 

 
Table 3. Reviewed papers that use the Maximum Entropy Production Principle and 
similar principles. The MEPP was used for ecosystem succession models to bacterial 
chemotaxis studies. The scale of the study ranged from bacterial to ecosystem and global 
level. There were two studies within this literature that were considered complementary 
to the MEPP: maximum dissipation and MaxEP (Maximum Entropy Production).  
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CHAPTER 3 

A THERMODYNAMIC ANALYSIS OF ECOSYSTEM DEVELOPMENT IN 

NORTHERN WETLANDS 

Abstract 

Higher temperatures associated with climate change are preferentially impacting 

high latitude ecosystems underlain by permafrost. To a large extent, permafrost governs 

the availability of soil organic carbon to be mineralized ultimately to the release of 

carbon dioxide (CO2) and methane (CH4) from these soils. Higher temperatures are 

leading to extensive areas of permafrost degradation, with the subsequent formation of 

wetlands in some cases. In this study, I tested the Maximum Power Principle (MPP)—a 

theoretical construct with its foundation in the Second Law of Thermodynamics—to 

characterize ecosystem development in wetlands in central Alaska, USA. The MPP 

argues that systems develop to maximize energy throughput, or power. I used adenosine 

triphosphate (ATP) as a proxy for power in high latitude wetland soil ecosystems to test 

the MPP along a gradient of wetlands that have developed following permafrost 

degradation: a bog with permafrost (forested bog, or FB) and a young bog and older bog 

that have formed since their permafrost thawed (young collapse scar, or YCS and old 

collapse scar, or OCS, respectively). To do this, I conducted soil incubation experiments 

and measured production rates of CO2, CH4, nitrous oxide (N2O), and ATP. I also 

measured a suite of organic acid ions associated with fermentation reactions (i.e. citrate, 

formate, lactate, acetate, propanoate) during soil incubation experiments. Rates of 

potential ATP production were significantly lower (p<0.05) at YCS compared to FB; 
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OCS rates were not statistically different from either site. I found significantly higher 

rates of CH4 and N2O flux from YCS compared to the other sites. These results suggested 

that system power decreased temporarily and that the system reorganized to rates of 

power production that approached pre-disturbance levels, but in a markedly different 

state. This approach allowed me to characterize the outcome of permafrost thaw 

disturbance on subsequent changes in boreal wetland soil ecosystem structure and 

function in an explicitly thermodynamic construct using the MPP. 

I. Introduction 
 

The response of northern ecosystems to climate change has been the subject of 

numerous recent studies, although scientists have long studied these ecosystems and 

speculated about their importance to the global climate (Gorham 1991). In more recent 

studies, there has been a concerted effort to understand the effects of a changing climate 

on ecosystem structure and function. For example, studies have examined: 1) the 

vulnerability of soil organic carbon in permafrost to mineralization (Schuur et al. 2008); 

2) the northward expansion of arctic shrubs and its effect on surface albedo (Chapin et al. 

2005; Myers-Smith et al. 2011; Tape et al. 2006); 3) the ecological changes associated 

with permafrost degradation (Jorgenson et al. 2001; Shur and Jorgenson 2007); 4) the 

role of a changing fire regime on ecosystem processes, particularly in Alaska (Johnstone 

et al. 2010; Kasischke et al. 2010; Waldrop and Harden 2008), and; 5) the effects of 

water table position on greenhouse gas emissions (Turetsky et al. 2008). Here, I 

investigated wetland ecosystem development following a permafrost thaw disturbance 

using a thermodynamic construct.  
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Direct and indirect effects of climate change are leading to extensive areas of 

permafrost degradation in interior Alaska, resulting in conditions that can lead to wetland 

formation (Jorgenson et al. 2001). Degradation of permafrost often results in ground 

subsidence that forms collapse pits called thermokarst. The formation of thermokarst 

occurs because ice occupies more volume than liquid water, causing the soil and 

vegetation above to collapse into relic ice space when permafrost thaws. Thermokarst 

formation often leads to poorly drained conditions and thus the formation of wetlands 

(Camill et al. 2001; Jorgenson et al. 2001). 

Peatlands in high latitude ecosystems are of particular importance because of their 

role in the global carbon cycle. Thousands of years of peat accumulation, from carbon 

fixation rates that exceeded rates of carbon mineralization, have led to large stores of soil 

organic carbon. For example, peatlands cover roughly 3% of the terrestrial land surface 

of the globe, but account for up to 30% of the global soil carbon pool (Gorham, 1991). 

Additionally, Alaskan wetlands within northern peatland ecosystems are estimated to 

store ~42 Pg of carbon, or roughly 10% of the 529 Pg stored in wetlands globally 

(Bridgham et al. 2006). However, high latitude ecosystems are important sources of 

methane (CH4). It is estimated that these ecosystems release 36 Tg CH4 y-1, mostly from 

boreal wetlands (Zhuang et al. 2006). Despite peatlands and boreal wetlands storing 

carbon over the long-term, increasing CH4 emissions may negatively impact their carbon 

sequestering qualities (Whiting and Chanton, 2001). 

The Second Law of Thermodynamics has been instrumental to the field of 

ecosystem ecology. Despite this, surprisingly few ecosystem-scale studies have explicitly 
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considered The Second Law of Thermodynamics (CHAPTER 2). One approach, with 

explicit ties to The Second Law of Thermodynamics, is the Maximum Power Principle 

(MPP). The MPP, originally developed in the 1920s by Lotka (1922) and refined by H.T. 

Odum and Richard Pinkerton in the 1950s, argues that ecosystems develop to maximize 

energy throughput (Odum and Pinkerton, 1955). Those processes that enhance the flow 

of energy through a system will be reinforced. Odum and Pinkerton (1955) argued that 

maximum system power output occurs at some intermediate efficiency, not at maximum 

efficiency (Figure. 1). While the MPP is nearly 100 years old, only a few empirical 

studies have directly tested it (e.g. Cai et al. 2006; DeLong, 2008). In his foundational 

paper on ecosystem development, Odum (1969) stressed the importance of energetics and 

links to The Second Law of Thermodynamics. The MPP is a promising and testable 

linkage between ecosystem ecology and The Second Law of Thermodynamics. In this 

paper I use the MPP as a guiding framework to test concepts in ecosystem ecology. 

 

The goal of this study was to apply a thermodynamic approach (specifically the 

MPP) to Alaskan thermokarst wetlands that are at differing stages of ecosystem 

development, using their peat soils as a model ecosystem. I asked: How can a 

thermodynamic perspective better inform our understanding of the ecosystem 

development process? More specifically, do boreal wetland soil systems develop to 

maximize efficiency or to maximize power output? Because soil systems are microbially 

dominated, I used adenosine triphosphate (ATP) — literally the chemical energy used to 

do cellular work — as a surrogate for system power. I defined system efficiency, in terms 
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of power production, as the dimensionless ratio of power output (ATP production) to 

input (total potential power within the system, based on Gibbs energies; Equation 1): 

 

       (1) 

  

The objectives of this study were: 1) to explicitly and empirically test the MPP 

using rates of ATP production from soil incubation experiments to measure power 

output; 2) to quantify the potential energy (input in Equation 1) in the soil system under 

aerobic conditions using standard Gibbs energies (∆G˚); 3) to measure the rates of soil 

respiration and organic acid production to assess the prevalence of metabolic 

fermentation pathways for energy production during anaerobic soil incubations in order 

to assess the prominent anaerobic pathways for energy production, and; 4) to measure the 

potential energy (and input in Equation 1) in the soil system under anaerobic conditions 

using the following equation: 

 ∆G = 2.303*RTlog(Q/K).  

where R= gas constant (8.314 J deg-1 mol-1), T= temperature (˚K), Q= reaction quotient, 

and K= the equilibrium constant. I used Objectives 2 and 3 to compute the potential 

energy in the soil system (input in Equation 1) and Objective 1 to quantify the actual 

energy produced (output in Equation 1). By plotting power output as a function of 

efficiency, I explicitly tested the MPP (Figure 1).  
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II. Methods 

Study Site 

My study used established research sites located within the Tanana River 

floodplain in interior Alaska. The Tanana Flats are located approximately 35 km 

southwest of Fairbanks, AK USA and adjacent to the experimental forest of the Bonanza 

Creek Long Term Ecological Research Program (BNZ LTER; Figure 2). Additionally, 

the Alaska Peatland Experiment (APEX), a long-term peatland manipulation study, is 

also situated adjacent to the Tanana Flats. The Tanana Flats is a low-lying area in the 

discontinuous permafrost region characterized by an assemblage of peatlands that are of 

differing ages because of permafrost degradation. Regions within the Tanana Flats have 

undergone extensive permafrost degradation and permafrost is now 4 to 5 m below the 

surface in many places (Osterkamp et al. 2000).Within the Tanana Flats, the common 

thermokarst wetlands include ombrotrophic bogs, minerotrophic fens, and thermokarst 

pits.  

Using space as a substitution for time, I identified three different bogs within the 

Tanana Flats that represented an age gradient of thermokarst wetlands. All of my sites 

were located within 100 m of one another. One of these sites was a forested bog (FB) 

characterized by intact permafrost, a stand of black spruce (Picea mariana), brown 

mosses, and Sphagnum. In the gradient of wetland development FB was considered pre-

disturbance. Along the gradient of ecosystem development my next site was a young 

collapse scar site (YCS). Following a permafrost thaw disturbance and subsequent 

collapse of the vegetation into relic ice space, YCS was formed roughly 100 years ago. 
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The old collapse scar (OCS) site formed in the same way, but roughly 400-500 years 

passed since the permafrost thaw disturbance. Despite their similar plant community 

compositions, OCS had a larger presence of bog shrubs compared to YCS. Since more 

time had passed since permafrost thaw disturbance, OCS had accumulated more peat than 

YCS. Subsequently, the vegetation was further above the water table at OCS compared to 

YCS.  

Sampling 

In June 2012 I sampled FB, YCS, and OCS by taking five soil cores from each 

site. The cores were haphazardly located to ensure that I obtained representative samples. 

I used a serrated sharpened steel tube (i.d. 5.4 cm) to extract the soil cores by gently 

spinning the steel tube into the peat, minimizing soil compaction. I measured the length 

of the core and the depth of the hole left behind to assess degree of soil compaction, then 

removed the soil from the barrel of the corer with a PVC plunger. Cores were 20-30 cm 

in length. While in the field, I subsectioned the soil cores into surface (top) and deep 

(bottom) sections by dividing the cores at the position of the water table. Because water 

table position governs the availability of oxygen in the field, the deep sections were 

stored and transported submerged in bog water to maintain anaerobicity. On the day of 

sampling, the active layer, a seasonally thawed layer of soil, ranged in depth from 20-30 

cm at FB and > 1 m at YCS and OCS. I measured a suite of variables to assess how 

permafrost degradation and subsequent thermokarst wetland formation impacted 

conditions. For example, I recorded pH, redox potential (Eh), soil depth to the water 

table, depth to ice, and temperature (Table 1). Samples were shipped on ice to Arizona 
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State University for processing and to conduct the soil incubation studies. Soil samples 

were stored at 4˚C until the incubation experiments were conducted.  

 

Incubation Experiment 

I conducted peat incubations by placing fresh peat samples (~3 g) in 100 mL 

Wheaton vials that were fitted with rubber septa and sealed with aluminum crimp rings. 

Upon removing the stored samples at 4˚C, soils were pre-incubated for three days to 

allow microbial activity to stabilize (Dilly and Nannipieri, 2001). I homogenized peat 

soils manually by hand and incubated subsections (surface or deep) of the cores in 

separate vials. To explore the effects of oxygen status on soil system ATP production and 

to model the oxygen status of the soils in the field, I conducted both aerobic and 

anaerobic incubation experiments. The position of the water table in these wetlands is 

dynamic. To experimentally simulate water tables higher and lower than at the time I 

extracted my cores, I incubated surface soils aerobically and anaerobically and deep soils 

aerobically and anaerobically. Aerobic incubations were conducted by placing a piece of 

parafilm to allow for free exchange of O2 over the incubation jar until the headspace gas 

was sampled. I placed rubber septa on the aerobic incubation vials for one hour prior to 

collecting headspace gas. Anaerobic incubations were conducted by flushing the peat 

sample and Wheaton vial with N2 for 3 minutes. These vials were immediately capped 

with rubber butyl stoppers and sealed with aluminum crimp rings. All vials were 

incubated in the dark at 25˚C. Replicate soil samples were sacrificed at 1, 24, 48, 72, and 

192 h over the course of the 8-day (192 h) incubation to quantify concentrations of CO2, 
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CH4, and N2O, as well as ATP content and organic ion content. When soil samples were 

sacrificed, they were split between destructive sampling for ATP extraction and organic 

ion content analyzes.  

 

ATP and Soil Ecosystem Power 

ATP has long been called the energy currency of the cell (Fillingame, 1999; Itoh 

et al. 2004; Stock et al. 1999). As such, soil microbes use energy gained from 

mineralizing soil organic matter to produce ATP. Because microbes play this central role 

in soil ecosystems by metabolizing C and N to produce energy, I used rates of ATP 

production as a microbially specific metric of soil system power production. When ATP 

is hydrolyzed, the high-energy bond between phosphate groups is cleaved. Upon 

cleaving, ATP is converted to adenosine diphosphate (ADP) and subsequently releases 

~32 kJ of energy mol-1 ATP. By measuring the rate of potential ATP production, I was 

able to quantify the flow of energy through the soil system across the permafrost thaw 

disturbance gradient of bogs. 

Soil ATP content and rates of ATP production were determined by extracting 

ATP with a tricholoacetic acid (TCA)-based extractant and a luciferin/ luciferase-based 

assay kit using a 96-well plate luminometer. The ATP extractant solutions were prepared 

following methods discussed in Redmile-Gordon et al. (2011), which used a modified 

and updated approach to Jenkinson and Oades (1979). ATP was extracted with a solution 

of 1.07 M TCA, 0.25 M PO4
3-, and 0.6 M Imidazole. To determine the extraction 

efficiency of the ATP extractant solution, two different ATP extraction solutions were 
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made: one extractant that contained a known amount of ATP, and a second extractant 

without ATP. Thus, for every sample, I used two different extractants on subsamples.  

After a soil sample had been sacrificed, I added 5 mL of each extractant to ~1 g 

peat in separate vials. The peat-extractant mixture was sonicated using a Branson 450 

Sonifier with a microtip adapter. Each sample was sonicated for 1 minute at 30% power 

output. The samples were placed on ice for at least 5 minutes and ATP extracts were 

filtered using Whatman 44 filter paper. Extracts were stored at -20˚C until all samples 

had been collected and extracted. To quantify extracted ATP, I added 50 uL of the ATP 

extracts to 5 mL of an arsenate-based buffer (Jenkinson and Oades 1979; Redmile-

Gordon et al. 2011). I measured ATP using a luciferin-luciferase assay (Molecular 

Probes, Grand Island, NY). Standard curves were generated and ATP was quantified 

using a 96-well microplate GloMax luminometer (Promega, Madison, WI). When 

luciferin and firefly luciferase from the kit were added in the presence of ATP from the 

soil samples, the reaction produced light of intensities that related to the concentration of 

ATP in the sample.  

 

 

Measuring Power Input in Aerobic Incubations: CO2 Production 

 I measured the power input (Equation 1) for my aerobic soil incubations by using 

standard Gibbs energies (∆G˚). To calculate the energy associated with the aerobic 

oxidation of glucose I used Equation 2. In the aerobic oxidation of glucose the RTlnQ 

term is negligible compared to the ∆G˚ term. That is, the change in Gibbs energies 
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associated with the oxidation of glucose to CO2 was so large that the standard Gibbs 

energy captured the majority of the energy associated with this reaction.  

 

   (2) 

 

Under aerobic conditions, glucose is oxidized to CO2 in the following reaction: C6H12O6 

+ 6O2 ! 6CO2 + 6H2O. I measured CO2 production in my aerobic incubations to 

determine the potential energy (power input) of the entire surface soil system 

(denominator of Equation 1). By quantifying the net change in CO2 concentration 

through the incubation experiment, I used a stoichiometric mass balance approach to 

calculate how much glucose would have been used to produce the measured change in 

CO2. For example, the standard Gibbs energy produced when 1 mol of glucose is 

oxidized to CO2 is -2870 kJ. Theoretically if 6 mols of CO2 were produced, 1 mol of 

C6H12O6 was oxidized. This would yield -2870 kJ of energy. I used this stoichiometric 

mass balance approach to calculate the total potential energy within the surface soil 

system during my aerobic incubations. When I divided the amount of energy in the ATP 

generated during the incubation experiment from the soil system by the total potential 

energy within the surface soil system I was able to calculate soil system efficiency 

(Equation 1).  

 

Measuring Power Input in Anaerobic Incubations: Gas and Organic Acid Measurements  

 The approach for quantifying anaerobic power input differed from quantifying 
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aerobic system power input. In the aerobic incubation experiment I relied on standard 

Gibbs energies (∆G˚) to calculate soil system power output. I used a combination of 

approaches to determine the power input for the anaerobic soil incubation experiment 

(Equation 1). In order to assess the prominent metabolic pathways used during the 

anaerobic incubations I measured CO2, CH4, and N2O production. I also measured 

organic acid production throughout the experiment to quantify to what extent 

fermentation pathways contributed to the production of power during the incubations. A 

combination of approaches was necessary to assess the anaerobic soil metabolic 

pathways, given the complexity of energy producing processes in an anaerobic 

environment. Once I determined the prominent metabolic pathways that the microbial 

system used to produce power, I used Equation 3 (below) to calculate the potential 

energy associated with those particular pathways. Dividing the energy contained in the 

ATP that was produced by this maximum amount of potential energy in the system 

yielded the power producing efficiency of the system (Equation 1). More specifically, 

instead of using standard Gibbs energies (∆G˚) alone to calculate the total potential 

energy in the system, I used Equation 3 and collected data on CH4, CO2, and acetate to 

calculate a reaction specific Gibbs energy that I observed. 

 

       (3) 

 

where ΔG is Gibbs Energy, R is the gas constant (8.314 J mol-1 K), T is temperature (˚K), 

Q is the reaction quotient of the measured reaction (measured from the production of 
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CH4, CO2, and acetate during the anaerobic incubations), and K is the equilibrium 

constant (calculated value from SUPCRT92). When I divided the total energy in the ATP 

generated by this number, I calculated system efficiency.  

Gas samples were stored in 20 mL vials that were sealed with rubber butyl 

stoppers and aluminum crimp rings until the incubation study was complete, and that 

were evacuated and flushed with N2 prior to sampling. I analyzed the gas samples on a 

Varian CP-3800 gas chromatograph fitted with an autosampler. Gas fluxes were 

calculated as the change of the gas concentration between subsequent samplings (e.g. 

Hall et al. 2008). 

Different anaerobic metabolic processes produce different amounts of potential 

power. Organic acids were quantified in my anaerobic incubation experiments to assess 

to what extent the soil system utilized fermentation pathways for energy production 

during the anaerobic incubation experiment. From these data, I disentangled the 

metabolic pathways that the soil system used to produce power in my incubation 

experiments. This allowed me to present my results as power output as a function of 

efficiency, per from Odum and Pinkerton (1955; Figure 7). 

Organic acids were extracted at the beginning, middle, and end of the incubations 

(1, 48, 192 h). I extracted organic acids following methods described by Kane et al. 

(2013). Briefly, for each extraction, ~1 g of soil was mixed with 10 mL of deionized 

water and inverted 10 times. After an hour-long equilibration period I filtered the samples 

using ashed Whatman GF/C filters. Samples were frozen immediately at -20˚C. Extracted 

organic acids were quantified on an ICS 1500 ion chromatograph (Dionex, Bannockburn, 
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IL). Standard curves were generated using ion chromatograph-grade standards of citrate, 

formate, lactate, acetate, and propanoate. Deionized water blanks were run approximately 

every 5 samples.  

 

Statistical Analysis 

 I used R to perform an Analysis of Variance (ANOVA) on the production rates of 

ATP across site, soil section, and oxygen status of the incubation (aerobic or anaerobic) 

among the different sites. I also performed ANOVA tests on the rates of gas production 

(CO2, CH4, N2O) across site, soil section, and oxygen status of the incubation. In all of 

my analyses, I conducted multiple post hoc analyses using Tukey’s HSD test to compare 

means that were significantly different. I tested assumptions of equal variance and 

normality assumptions for the ANOVA models in R by using residuals vs. fitted and 

normal Q-Q plots, respectively. Data that did not meet the assumptions of the ANOVA 

were log transformed.  

 

III. Results and Discussion 

 In the following subsections I discuss: 1) ATP results from my incubation study; 

2) aerobic CO2 production from my incubation; 3) anaerobic CO2, CH4, and acetate 

production results from my incubation study. In the final section, I explicitly tie the 

results of my incubation experiment, where I measured system power output and system 

efficiency, to the Odum and Pinkerton (1955) definition of power output as a function of 

efficiency (Figure 1).  
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Soil System Power Output 

ATP Production Rates Independent of Ecosystem Development Gradient 

 The rates of ATP production were higher in the surface soil system sections 

compared to the deep sections regardless of whether or not the incubation experiment 

was aerobic or anaerobic (Figure 3). This suggested that the surface section soil system 

was dominated by metabolic pathways that produce more ATP than the deep soil sections 

(Figure 3). Many studies that measure soil ATP in the literature use ATP as a proxy for 

bacterial biomass. In their analysis of ATP content as a function of soil depth in forest 

and arable ecosystems, Vinther et al. (1999) found decreasing ATP content with 

increasing depth, despite finding higher counts of bacteria at depth. They attributed this 

finding to a larger population of fungi in surface soils. Additionally, I found significantly 

higher rates of ATP production (p < 0.05) in aerobic incubations compared to anaerobic 

incubations (Figure 3). Given that aerobic metabolic pathways yield higher levels of ATP 

production, these results were not surprising. Using oxygen as a terminal electron 

acceptor yields the most cellular energy. In paddy soil incubations, Inubushi et al. (1989) 

found that when aerobic soils were incubated anaerobically, soil ATP content dropped 

more than 90%. Conversely, when anaerobic soils were incubated aerobically they found 

that ATP content rapidly increased within minutes. The combination of these results 

suggests that soil systems are strongly influenced by environmental conditions and can 

quickly shift to the most thermodynamically favorable pathway for the conditions to 

produce energy to do cellular work.  
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ATP Production Rates Across the Ecosystem Development Gradient 

 Across the gradient of ecosystem development, in the aerobic surface soil 

incubations I found the highest rates of ATP production from the FB site with intact 

permafrost (Figure 4). I measured the lowest rates of ATP production in YCS, the 

youngest wetland site that formed following the degradation of permafrost at the FB site. 

In the aerobic surface soil at the OCS site I found an intermediate rate of ATP 

production, although this rate of ATP production was not statistically different from the 

rate of ATP production at the FB site. These results suggest that prior to the permafrost 

thaw disturbance, the soil system was organized to maximize the flow of energy through 

the soil system. Following the permafrost degradation event, I saw a marked decrease in 

power output at YCS compared to FB. Over time, the OCS system appeared to reorganize 

to a level of ATP production that was statistically the same as the FB system, albeit in a 

different ecosystem state without permafrost. Fioretto (2009) found similar results in their 

study of microbial activity along a developmental gradient of Mediterranean ecosystems. 

They measured higher soil ATP content in ecosystems at later developmental stages and 

argued that following disturbance, there was an increase microbial activity and soil 

function. In a study using a seasonal scale to investigate soil microbial response to 

differing pesticide regimes, Ahtiainen (2003) observed successional patterns in soil ATP 

content during a growing season. They used ATP as a measure for microbial biomass. 

They observed low soil ATP content early and late in the growing season and peak ATP 

content in the summer months. These results suggest that following during the growing 

season, soil systems organize to maximize energy throughput as measured by ATP.  
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I observed a similar pattern of ATP production rates across the gradient of 

ecosystem development in each of the different soil incubations. For example, in the deep 

soil sections that were incubated aerobically, I observed the highest rates of ATP 

production at the FB site, lowest rates at YCS, and intermediate rates at OCS. I also 

observed this pattern in the anaerobic deep sections as well as the surface soil sections 

that were incubated anaerobically. However, this pattern of ATP production was not as 

evident in all other incubation conditions compared to the aerobic surface soil 

incubations. Although these differences were not statistically significant in some cases, 

this consistent pattern suggested that [regardless of the conditions at each site] rates of 

power output were highest at the undisturbed site (FB) compared to the system formed 

immediately following permafrost thaw (YCS). The OCS site soils had higher rates of 

ATP production compared to YCS, but lower rates than at the FB site, although FB and 

OCS were statistically similar. This suggested that following the degradation of 

permafrost, the OCS site had recovered in terms of the rate of power production 

compared to FB.  

When I incubated soils under conditions that simulated different water table 

depths (i.e. surface soil sections in anaerobic conditions and deep soil sections in aerobic 

conditions), I observed large changes in ATP production rates. For example, although 

surface aerobic sections produced the highest rates of ATP production during my 

incubations, when I incubated those soils anaerobically, the rates of ATP were more 

comparable to the anaerobic deep soils. The rates of ATP production were statistically 

similar when soils were incubated anaerobically regardless of their position relative to the 
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water table. This suggested that regardless of the age of the ecosystem, anaerobic 

conditions had lower rates of power output and anaerobic conditions negatively impacted 

the rate of power output across the gradient of ecosystems. When I incubated deep soils 

that were below the water table aerobically, I saw higher rates of ATP production 

compared to all anaerobic incubations. This indicated that the soil system was capable of 

quickly switching to aerobic metabolic pathways to produce higher rates of ATP, given 

the presence of oxygen.  

 

Aerobic System Efficiency: Aerobic CO2 Production  

  The cumulative aerobic production of CO2 did not differ across the wetland 

ecosystem development gradient (Figure 5). These results suggest that the corresponding 

amount of glucose oxidized during the incubation was not different across the wetland 

ecosystem development gradient. In terms of aerobic surface soil system efficiency, each 

of the three sites along the chronosequence of wetland development had similar 

denominators in Equation 1. That is, the total potential energy in the aerobic surface soils 

was similar across each site in the chronosequence. Across the chronosequence of 

wetland development, the soil systems appeared to mineralize similar amounts of organic 

matter to produce energy. 

 

Anaerobic System Efficiency: Anaerobic CO2, CH4, and Acetate Production 

 Across the gradient of wetland development I found evidence for distinct 

metabolic pathways during my soil incubation experiments. At the FB and OCS sites, the 
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rates of CO2 and acetate production were not statistically different from one another 

(Figure 6). At sites where I observed any CH4 production (YCS, OCS), the rate of CH4 

production was not statistically different to the rate of CO2 production (Figure 6). I did 

not see any CH4 production from the FB soils. Using these gas and acetate data, I 

developed theoretical stoichiometric models for the major metabolic pathways the soil 

system used to produce energy at each site. At YCS, for example, for every 1 mol of CO2 

produced, there was 1 mol of CH4 produced. The concentration of acetate (CH3COOH ) 

did not change during the incubation at this site. To summarize the metabolic activity at 

YCS I used the following equations: C6H12O6 ! 3CH3COOH and 3CH3COOH ! 3CH4 

+ 3CO2 for an overall equation of C6H12O6 ! 3CH4 + 3CO2. Because I saw a net 

increase in acetate concentration at OCS that I did not see at YCS, the following 

equations summarized the data I observed from the OCS soils: 2C6H12O6 ! 6CH3COOH 

and 3CH3COOH ! 3CH4 + 3CO2 for an overall equation of 2C6H12O6 !3CH3COOH + 

3CH4 + 3CO2. At the FB site, where I saw acetate and CO2 production, but not CH4 

production, I developed the following parsimonious model: 2C6H12O6 ! 6CH3COOH 

and 3C6H12O6 ! 6C2H5OH + 6CO2. To produce CO2 anaerobically without producing 

CH4, different terminal electron acceptors other than CO2 must be used. Other common 

terminal electron acceptors include NO3
-,SO4

2-, Fe3+ and Mn4+. Because my study sites 

were ombrotrophic and rely on precipitation as the only source of inputs of these electron 

acceptors, I assumed that concentrations of these terminal electron acceptors were too 

low to account for more than a small fraction of the observed anaerobic CO2 production 

at the FB site. In their incubation study to explore the source of anaerobic CO2 production 
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in Alaskan peat, Duddleston et al. (2002) found that nitrate, sulfate, and iron reduction 

could not account for more than 15% of the observed anaerobic CO2 production. They 

attributed the bulk of the anaerobic CO2 production to fermentation processes. In another 

anaerobic peat incubation study, Metje and Frenzel (2005) observed very high 

concentrations of ethanol production. They argued that this intermediate pool of ethanol 

was slowly converted to acetate throughout their month-long study. By determining the 

metabolic pathways that these systems were using to produce power, I was able to 

calculate the theoretical maximum amount of energy produced by each pathway (input, 

Equation 1) and compare that to the amount of energy captured in ATP production 

(output, Equation 1) to calculate system efficiency. Depending on the pathway used to 

produce energy, power-producing efficiencies change. For example, the conversion of 

glucose to acetate yields 207 kJ mol-1 glucose, CO2 and CH4 production from acetate 

yields 31 kJ mol-1 acetate, and the production of ethanol and CO2 from glucose yields 235 

kJ mol-l glucose. In other words, different likely metabolic pathways produced different 

energy yields that influenced my calculations of system efficiency.  

 

Soil Systems And the Maximum Power Principle  

 To summarize the relationship between power output and efficiency, I plotted 

power output as a function of system efficiency from my incubation experiments as per 

Odum and Pinkerton (1955; Figure 7, based on Figure 1). I found very low power-

production efficiencies; that is, the amount of energy in the ATP that was generated 

during the incubation experiment was very low relative to the total potential energy of the 
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metabolic pathways that the soil systems used. Efficiencies ranged from 0.069% in the 

anaerobic deep soil incubation at YCS to 2.34% in the aerobic surface soil incubation at 

FB. In other words, the FB soil system converted 2.34% of the whole-system potential 

energy into actual usable cellular energy to do work. While soil systems are complex, 

soils are not complete ecosystems. Soil systems in ombrotrophic bogs rely on C inputs 

from macrophytic photosynthesis and precipitation for various elements. The low 

efficiencies I observed relative to what Odum and Pinkerton (1955) proposed may be 

attributed to the fact that my soil systems did not include the whole-system energy 

transformations at the ecosystem level. It is possible that using the heterotrophic soil 

system as a model system limited the potential power and efficiency of my soil system 

study. However, multiple ecosystem studies have observed varying efficiencies across 

ecosystem type and efficiency metric. Using the ratio of respiration to total input of 

organic carbon (a variation of output/input, Equation 1), Fisher and Likens (1972) 

calculated an ecosystem efficiency of 34% for a stream. In another study of carbon use 

efficiency (respiration/ NPP), Chambers et al. (2004) measured ecosystem efficiency of a 

tropical forest of 30%. While neither of these ecosystem-level studies measured an 

optimum efficiency for maximum power production, they both calculated much higher 

levels of system efficiency than I did in my soil system study, suggesting that when the 

ecosystem scale is used higher system efficiencies are observed. 

 Besides observing very low soil system efficiencies, I saw a distinct separation 

between the surface aerobic soils and the deep anaerobic soils when the power output was 

plotted against efficiency (Figure 7). Aerobic surface soil systems had both a higher 
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efficiency and a higher power output. Given that metabolic processes that use O2 as a 

terminal electron acceptor to produce energy are inherently more efficient than anaerobic 

processes, this was not surprising. Higher power output from aerobic processes was also 

expected. Reactions that use oxygen as a terminal electron acceptor yield the maximum 

possible cellular energy. This is evident in the oxidation of glucose (-2870 kJ mol-1 

glucose) when compared to the conversion of glucose to acetate anaerobically (-207 kJ 

mol-1 glucose). I also found greater variability in power production and system efficiency 

among the aerobic soil incubations when compared with the anaerobic soil incubations. 

Under anaerobic conditions there was much less variability in power output and power-

producing efficiency across the gradient of ecosystem development (Figure 7). 

 Using the MPP and plotting power output as a function of system efficiency I 

quantified the effects of permafrost degradation on the flow of energy through these soil 

systems. Across the gradient of wetland ecosystem development in the surface soil 

sections, the site that had not experienced permafrost degradation disturbance (FB), 

showed the highest power output and efficiency. Following the permafrost degradation 

disturbance, the youngest wetland soil (YCS) showed the lowest efficiency and lowest 

power output. As the wetland ecosystem aged and developed it produced similar levels of 

power production (Figure 4) across the ecosystem gradient. That is, the OCS site 

appeared to have developed and organized to produce rates of power production that 

were similar to the pre-disturbance ecosystem (FB). Although I measured similar rates of 

ATP production at OCS compared to FB, it was in a markedly different ecosystem state.  

 Plotting power output as a function of system efficiency along the gradient of 
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wetland development allowed me to explicitly link the MPP with ecosystem development 

(Odum, 1969; Figure 7). More specifically, this figure shows the trajectory of power 

output and efficiency along a gradient of ecosystem development in aerobic surface soil 

and anaerobic deep soil following permafrost degradation. In his classic ecosystem 

development model, Odum (1969) argued that as systems develop, local system entropy 

decreases while total system entropy must increase. Furthermore, Odum and Pinkerton 

(1955) argued that as systems develop, more power (or work per unit time) must be 

relegated to fight total system entropy to maintain low local system entropy.  

 

IV. Conclusions 

 In this study I used the MPP as a guiding framework to test the extent to which 

developing ecosystems follow the thermodynamic principles outlined by Odum and 

Pinkerton (1955). I found that shortly after the permafrost degradation disturbance, 

wetland soil ecosystems produced significantly less power and became less efficient. 

Along the gradient of ecosystem development I found that over time the soil system 

power output recovers, albeit in a different ecosystem state. That is, following 

disturbance and the subsequent change in ecosystem state, the wetland soil system 

developed to maximize power production. In addition to a marked reduction in system 

power output following disturbance, soil systems experienced a reduction in power 

production efficiency. This suggests that during ecosystem development, systems 

reorganize to enhance power output as well as system efficiency. In this study I found no 

evidence of an intermediate optimum efficiency because I observed power producing 
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efficiencies much lower than the 50% that Odum and Pinkerton (1955) argued would be 

optimal. I posit that the MPP can be a powerful tool to help explain how ecosystems 

develop following a permafrost degradation disturbance in northern wetlands, but the 

entire ecosystem should be studied when doing so. 
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Figure 1. System power output as a function of efficiency. Maximum power production 
occurs at some intermediate efficiency, not maximum efficiency (From Odum and 
Pinkerton, 1955).  
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Figure 2. Map of the study site outside of the Bonanza Creek Long Term Ecological 
Research (BNZ LTER) station. The location of the star indicates Fairbanks, Alaska. The 
inset image shows the boundary of BNZ LTER station 35 km southeast of Fairbanks. I 
sampled just outside of the BNZ LTER in the Tanana River Flats.  
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Figure 3. (a) Rate of ATP production from soils from surface and deep soil sections 
regardless of oxygen status of incubation. Soils that originated from the surface section 
had higher rates of ATP production. (b) Rate of ATP production in aerobic and anaerobic 
incubations regardless of section of soil. Aerobic incubations had significantly higher 
rates of ATP production relative to the anaerobic incubations.  
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Figure 4. Rates of ATP production from the surface peat section (above water table) and 
deep peat section (below water table) during the aerobic and anaerobic incubation 
experiments from each site. FB had the highest rates of ATP production followed by 
OCS, and YCS. Different letters depict statistically different (p < 0.05) results from 
Tukey’s post hoc comparison.  
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Figure 5. CO2 production during the aerobic incubation experiment in the surface soil 
sections. All three sites produced similar amounts of CO2.  
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Figure 6. Concentration of CO2, CH4, and acetate during the anaerobic incubation 
experiment in the FB (left panel), YCS (center panel), and OCS (right panel). I used 
multiple t-tests to test whether or not these slopes were significantly different from one 
another. With the exception of acetate in the YCS panel, all of the other slopes were not 
statistically different from one another.  
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Figure 7. Power output as a function of soil system efficiency. The higher the system 
efficiency, the higher the power output. There is a clear distinction between the aerobic 
surface soils (black), and the anaerobic deep sections (gray). Data from surface soil 
sections incubated anaerobically and deep surface sections incubated aerobically are not 
shown.  
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Environmental characteristics of each site 
 

Site 
Ice 

Depth 
(cm) 

SE 
Water 
Table 

Depth (cm) 
SE Eh 

(mv) SE Temperature 
(˚C) SE pH SE 

FB 27 ±2.42 N/A N/A 312 ±112 8.02 ±1.21 4.81 N/A 
YCS N/A N/A 5.8 ±0.8 -153 ±57 12.58 ±1.38 5.16 ±0.24 
OCS N/A N/A 8 ±0.71 -4 ±44 10.2 ±0.50 5.17 ±0.33 

 
Table 1. Forested bog (FB) was the only site with ice present at the time of sampling. 
Following permafrost degradation and subsequent wetland formation, there were changes 
associated with depth to water table and redox potential (eh). Values reported are means 
± SE. YCS: young collapse scar, OCS: old collapse scar.  
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CHAPTER 4 

SOIL MICROBIAL COMMUNITIES AND GREENHOUSE GAS EMISSIONS IN 

BOREAL WETLANDS OF DIFFERENT AGES 

Abstract 
 
Northern ecosystems, particularly peatlands, play a disproportionately large role in the 

global carbon cycle. Over thousands of years, northern peatlands have sequestered carbon 

(C), as ecosystem production is greater than ecosystem respiration and disturbance loses 

of soil C. However, these ecosystems are undergoing extensive and rapid transformations 

as a result of climate change; their role as C sinks may be reversing as stored C is 

increasingly being lost via accelerating greenhouse gas emissions. In this study, I used 

laboratory soil incubations to investigate the production of CH4, CO2, and N2O, because 

of their global warming potentials, along a chronosequence of wetlands that formed as a 

result of permafrost thaw. Because soil microbes catalyze metabolic reactions that 

produce greenhouse gases, I quantified the abundance of a gene that produces an enzyme 

involved with methanogenesis to link the microbial community to ecosystem level 

processes. I used the 16s rRNA gene to quantify total microbial abundance and the mcrA 

gene to quantify the abundance of Archaeal methanogens along the chronosequence of 

ecosystem development. I found that CO2, and N2O production was generally lower in 

anoxic soils compared to oxic soils— that is, in soils below the water table and CH4, was 

generally higher in anoxic soils. Additionally, observed N2O fluxes were of the same 

magnitude as CH4 fluxes suggesting that N2O fluxes may play a larger role in boreal 

ecosystems greenhouse gas production than previously thought. Along the gradient of 
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wetland development, I found that the young collapse scar site (YCS)––formed ~60-100 

years following thaw––produced the highest levels of CH4 when compared with a 

forested bog site (FB) that was unimpacted by thaw disturbance. At the old collapse scar 

bog site (OCS), that collapsed and formed ~400 years ago, I observed much lower rates 

of CH4 compared to YCS. This suggests that as wetlands form from permafrost 

degradation, there is a large but transient pulse of CH4 emissions. Methanogen 

abundances exhibited a strong positive relationship with CH4 production rates. This study 

provides centuries-scale insights into the production of CH4, CO2, and N2O emissions 

along a gradient of wetlands that developed from degradation of permafrost and suggests 

that large changes in functional group contributions to the soil microbial community 

likely happen after a permafrost thaw disturbance.  
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I. Introduction 
 

High latitude peatlands play a disproportionately large role in the global carbon 

(C) cycle. Owing to thousands of years of net organic matter accumulation, northern 

peatlands store ~500 Gt C, roughly equivalent to 20% of the global soil C on earth, but 

only occupy ~3% of the global land area (Maltby and Immirzi 1993; Yu 2011). Direct 

and indirect effects of climate change appear to be altering the role that northern 

ecosystems play in the global C cycle (Belyea and Malmer 2004; Davidson and Janssens 

2006; Gorham 1991; McGuire et al. 2009; Schuur et al. 2008). For example, recent 

studies have found increases in arctic thaw season length (Markus et al. 2009), which has 

implications for the C cycle as discussed by Chapin et al. (2005), shifts in genes that 

regulate C metabolism in soil microbial systems following permafrost degradation 

(Mackelprang et al. 2011), and an increase in permafrost degradation leading to wetland 

formation in ice rich permafrost (Jorgenson et al. 2001). These large-scale changes in 

boreal peatland ecosystems may be reducing the role of these ecosystems in the global C 

cycle as net C sinks (Zhuang et al. 2007).  

Despite functioning as net C sinks over the long term, peatlands are also 

important sources of greenhouse gas emissions, such as CH4, and to a lesser extent N2O 

(Chivers et al. 2009; Euskirchen et al. 2014; Repo et al. 2009; Turetsky et al. 2008; 

Turetsky, et al. 2002). Because of their role in the global carbon cycle and their impact on 

the global climate, quantification of these greenhouse gas fluxes is essential. Though CH4 

and N2O emissions from peatlands are typically lower than CO2 releases, their global 

warming potential is 25 times and 298 times greater at the century time scale, 
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respectively, than CO2 (Forster et al. 2007). The production of CO2, CH4, and N2O are 

largely driven by enzymatic reactions catalyzed by microbes. Changes in ecosystem-level 

characteristics, including ecosystem change induced by permafrost degradation, are often 

accompanied by changes in microbial community composition and function 

(Mackelprang et al. 2011; Ohtonen et al. 1999; Panikov 1999; Zogg et al. 1997). These 

microbial community changes have large potential impacts on ecosystem function. For 

example, Hawkes et al. (2005) found that plant invasion changed how nitrogen cycled in 

a California grassland by modifying the component of the soil microbial community 

responsible for nitrification. The large role that the microbial community plays in 

ecosystem function––particularly with C and nitrogen (N) metabolism and the production 

of greenhouse gases––has been extensively documented. However, fewer boreal peatland 

studies have examined soil microbial community changes and resulting impact on 

greenhouse gas emissions following a thaw disturbance (Christensen et al. 2004; Hultman 

et al. 2015; Waldrop et al. 2012). This is the primary goal of this paper. 

Climate change has increased the vulnerability of permafrost in high latitude 

ecosystems to thaw because of warmer soil temperatures (Schuur et al. 2008). Permafrost 

governs both the structure and function of these C-rich ecosystems (Grosse et al. 2011; 

Harden et al. 2006; Jorgenson et al. 2010; Yang et al. 2010). For example, the 

degradation of permafrost and subsequent formation of wetlands in these northern 

ecosystems has large implications for how both C and N are cycled (Chivers et al. 2009; 

Jorgenson et al. 2001). In areas of interior Alaska where ice-rich permafrost thaws, 

vegetation above the permafrost often collapses into relic ice space. This typically results 
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in wetland formation as the soil collapse means that more of the soil is below the water 

table. This formation of wetlands is expected to stimulate the production of CH4, while 

diminishing CO2 emissions (Moore and Roulet 1993). The relationship between boreal 

wetland ecosystems and their emissions of CH4 is one of positive feedbacks (Figure 1). 

For example, in general, warmer atmospheric temperatures lead to increased permafrost 

thaw. As previously mentioned, lowland areas that experience permafrost degradation are 

favorable areas for wetland formation and the amount of soil exposed to anoxic 

conditions increases. These wetland soil conditions lead to an increase in the size of the 

methanogen community, resulting in enhanced emissions of CH4. Higher CH4 emissions 

increase the global concentration of atmospheric greenhouse gases, further warming the 

atmosphere (Figure 1). In a ecosystem-scale peatland water table manipulation study, 

Turetsky et al. (2008) found large increases in CH4 fluxes in experimentally flooded 

peatlands that were warmed and the lowest CH4 fluxes in an unwarmed peatland that had 

its water table experimentally lowered. The position of the water table relative to the soil 

surface was found to be the strongest predictor of CH4 emissions. Because water table 

position governs emissions of CH4, and because permafrost degradation and subsequent 

soil collapse increase the relative position of the water table, wetland formation from 

permafrost degradation should increase emissions of CH4 from these ecosystems.  

Owing to their large role in the global C cycle, many studies have quantified rates 

of greenhouse gas releases from northern peatlands. Studies have examined greenhouse 

gas fluxes from peat slurries using laboratory incubations (Moore and Dalva 1997), from 

peat mesocosms exposed to water table manipulations (Blodau et al. 2004; Blodau and 
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Moore 2003), after ecosystem-scale water table manipulations (Turetsky et al. 2008), and 

at the landscape scale using eddy covariance techniques (Euskirchen et al. 2014). In 

addition to these empirical quantifications of greenhouse gas emissions, Blodau (2002) 

reviewed the mechanisms of C cycling in peatlands and discussed fluxes of CO2 and CH4 

and controls on these fluxes.  

Despite the breadth of studies that have quantified greenhouse gas emissions from 

peatlands at many scales, as well as review articles that have examined the factors that 

control C emissions from these ecosystems, few studies have compared greenhouse gas 

emissions across a gradient of wetland development following permafrost thaw 

disturbance. As such, my goal was to quantify greenhouse gas emissions across a 

chronosequence of wetland development and to relate abundances of functional genes, 

and thus key microbial communities, in soils with the production of greenhouse gases. I 

used a space-for-time substitution to assess long-term changes in greenhouse gas fluxes 

following permafrost degradation and concurrent changes in microbial functional gene 

abundances, as a surrogate for the abundance of key functional groups in the soil 

microbial community.  

The objectives of this study were: 1) to measure elemental constituents of peat 

soil as an indicator of substrate lability; 2) to quantify aerobic and anaerobic emissions of 

CH4, N2O, and CO2 using a laboratory incubation study; 3) to quantify the abundances of 

16s and mcrA microbial genes, and; 4) to relate microbial functional gene abundances to 

ecosystem processes by linking Objectives 2 and 3. I addressed all four objectives at 

three sites arrayed along a chronosequence gradient of wetland development.  
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Across the gradient of wetland ecosystem development, I hypothesized that the 

subsequent inundation that created anoxic conditions would lead to enhanced emissions 

of CH4 and N2O. Because microbial metabolic processes are inextricably linked to these 

gas fluxes, I expected to see higher abundances of genes responsible for the production of 

CH4 (mcrA) in soils from the newly inundated site compared to the site with intact 

permafrost. I also expected to see higher CO2 fluxes at my undisturbed forested bog site. 

Finally, I expected to find lower rates of CH4 production and lower abundances of 

methanogens at the oldest wetland site compared to the more recently inundated site 

because the greater distance to the water table in the oldest bog decrease suitable habitat 

for methanogens and methanogenesis. 

 

II. Methods 
 
Site Description 
 
 My study was conducted in the Alaska Peatland Experiment (APEX) sites, 

situated near the Bonanza Creek Experimental Forest in interior Alaska, roughly 35 km 

southeast of Fairbanks. I sampled three sites along a post-thaw gradient: a forested bog 

with intact permafrost (FB), a young collapse scar bog where permafrost degraded and 

the soil collapsed roughly 60-100 years ago (YCS), and an older collapse scar bog where 

permafrost degraded and soils collapsed about 400 years ago (Figure 2; OCS). Both YCS 

and OCS are characterized by a relatively high water table through the season: both have 

extensive black spruce tree (Picea mariana) dieback as well as Sphagnum and Carex 

species indicative of wet, waterlogged soils (Camill et al. 2001; Jones et al. 2012). At 
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each site I measured a suite of environmental variables, including water table depth, pH, 

redox, and temperature (Table 1).  

 

 Soil Sampling 

 I collected five soil cores each from the FB, YCS, and OCS sites using a 

sharpened steel core tube (i.d. 5.4 cm). Soil cores were approximately 30 cm in length. 

The exact core locations were haphazardly chosen, but represented the 

microtopographical features at each site: Hummocks, hollows, and carpets. All cores 

were sectioned in the field at the water table depth. The bottom section of soil core that 

fell below the water table was stored in bog water to maintain anaerobicity. All soil cores 

were stored in sealed bags on ice and were shipped on ice to Arizona State University for 

further analysis. Once there, samples were stored in at 4˚C until the soil incubation study 

was conducted. While still in the field, I also collected a subsample of each soil core from 

the surface and deep sections for molecular analysis; these subsamples were treated the 

same as the cores from which they were taken.  

 

Soil Incubation Study and Greenhouse Gas Quantification  

To measure greenhouse gas emissions across the gradient of wetland ecosystem 

development, I conducted a short-term aerobic and anaerobic soil incubation study with 

homogenized peat soil cores. After removing the soil cores from the freezer and allowing 

a three-day equilibration period, the soils were homogenized by hand using scissors. The 

three-day equilibration period allowed the soils to reach ambient temperature conditions 
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(Dilly and Nannipieri 2001). Roughly 5g of homogenized soil was placed into each 120 

mL glass Wheaton vial for the incubations. The aerobic soils were incubated in vials that 

were covered with parafilm to maintain field moisture conditions and to allow diffusion 

of O2 across the permeable membrane. Prior to each gas-sampling period, I removed the 

parafilm from the vials and placed a rubber butyl stopper on top of the vial for 1 h. The 

head gas in the vials was sampled at 1, 24, 48, 72, and 192 hours using a plastic syringe 

with a 22-gauge needle. Gas samples were stored in pre-evacuated 20 mL Wheaton vials 

until analysis. After sampling, I replaced the parafilm on the Wheaton vials. For the 

anaerobic soil incubations, prior to the beginning of the experiment, I flushed the vials 

fitted with butyl rubber stoppers and aluminum crimp rings with N2 gas for 3 minutes. I 

analyzed the gas samples on a Varian CP-3800 gas chromatograph fitted with an 

autosampler and a flame ionizing detector column. Standard curves were generated using 

purchased standard gases. Gas fluxes were calculated as the slope of the gas 

concentration curve over the 192 h sampling period (per Hall et al. 2008).  

 

Carbon and Nitrogen Content  

To quantify total carbon and nitrogen, I oven-dried soil subsamples for 1 week at 

65˚C, then ground the soils using a Mini-Wiley Mill first (Thomas Scientific, 

Swedesboro, NJ) and then with a 8000D Dual Mixer/ Mill (SPEX CentiPrep, Metuchen, 

NJ). This second grinding step maximized the homogeneity of the samples prior to 

analysis. Carbon and N content were quantified on a Perkin Elmer 2400 CHN Analyzer 

(Waltham, MA).  
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DNA Extractions and Quantitative PCR  

I extracted DNA from each of the 5 cores and 2 soil sections at each site as 

duplicates from soil subsamples using a PowerSoil DNA extraction kit (MoBio). I 

quantified the concentrations of extracted DNA using a QuBit 2.0 Fluorometer 

(Invitrogen), then diluted the duplicate DNA extraction with the highest concentration of 

DNA to ~ 5 ng uL-1 for use in downstream analyses.  

I used quantitative PCR (qPCR) to assess the relative and absolute abundances of 

methane-producing Archaea and the total microbial community size across the 

chronosequence of wetland development. For Objective 3, I targeted mcrA, an Archaeal 

gene that releases methane while catalyzing the reduction of a methyl group attached to 

coenzyme-M (Thauer 1998). To account for the potential effects of different sizes of 

microbial communities along this gradient, I also quantified the absolute and relative 

abundances of the 16s rRNA gene.  

To quantify absolute abundances of 16s rRNA and mcrA genes, I developed 

qPCR standards by PCR-amplifying the 16s rRNA gene and mcrA gene using primers 

specific to those genes. I amplified the 16s rRNA gene from bacteria and Archaea using 

the following universal primers: 5’ GTGCCAGCMGCCGCGGTA 3’ (515f; Reysenbach 

et al. 1992) for the forward primer and 5’ CCCCGYCAATTCMTTTRAGT 3’ (909r; 

Colquhoun et al. 1998) for the reverse primer. I used the following thermocycler 

conditions for 16s rRNA PCR: 98˚ for 30 seconds, then 25 cycles of 98˚ C for 10 

seconds, 63˚C for 15 seconds, and 72˚C for 15 seconds, and finished with a final 72˚C 2 

minute annealing step.  
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To amplify mcrA I used the following primers: 5’ 

GGTGGTGTMGGDTTCACMCARTA 3’ (Steinberg and Regan 2008) for the forward 

primer and 5’ CGTTCATBGCGTAGTTVGGRTAGT 3’ (Steinberg and Regan 2008) for 

the reverse primer. I optimized the PCR for mcrA with the following conditions: 98˚ for 

30 seconds, then 25 cycles at 98˚ C for 10 seconds, 58˚C for 15 seconds, and 72˚C for 15 

seconds and I completed the final annealing reaction at 72˚C for 2 minutes. The 16s 

rRNA gene and mcrA PCR amplicons were inserted into a pCR4-TOPO vector 

containing a gene for ampicillin resistance and transformed into competent E. coli cells. I 

plated the E. coli cells on LB agar with ampicillin and those that were successfully 

transformed with the amplicon inserts conferred resistance to ampicillin and grew on the 

agar plate. I verified that the colonies that grew on the agar plate had the plasmid by 

performing colony PCR. That is, I used transformed E. coli cells that grew on LB 

ampicillin plates as template DNA for my PCR reactions to verify that the plasmids 

contained the correct insert. I visualized these PCR products using 1% agarose gel 

electrophoresis and verified that the gene fragment was the correct size. I inoculated one 

colony for each standard in liquid LB medium and extracted and purified the plasmid 

DNA using a plasmid purification kit (MP Biomedicals). I quantified the concentration of 

the extracted and purified plasmid and linearized each plasmid to create standards using a 

PstI restriction digest. These linearized plasmids were used directly in qPCR as template 

DNA. I calculated the number of gene copies and generated a 6-point standard curve by 

serially diluting the linearized plasmids containing the genes of interest from 46 – 

460,000 gene copies, including a no template control.  
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Using the linearized plasmids containing the genes of interest as standards, I 

conducted qPCR using a 384 well format ABI7900HT thermocycler and Maxima SYBR 

Green qPCR Master Mix (Thermo Scientific) in 20 µL reactions. For mcrA qPCR 

reactions, I used 1 ng of template DNA and 0.3 µM forward and reverse primers. For 16s 

rRNA qPCR reactions I used 50 pg of template DNA and 0.3 µM forward and reverse 

primers. I used a three-step cycling protocol with the following conditions: Initial 

denaturation at 95˚C for 10 minutes, then 40 cycles of denaturing at 95˚C for 15 seconds, 

annealing at 62˚C for the 16s rRNA gene and at 58˚C for the mcrA gene for 30 seconds, 

and extension at 72˚C for 30 seconds. I also performed a melting-curve analysis to verify 

that I did not observe any primer dimers. I ran all of my samples and standards in 

duplicate.  

 

Statistical Analysis 

 I used R to perform an Analysis of Variance (ANOVA) on C:N ratios across site 

and soil section. I also performed ANOVA tests on the rates of gas production (CO2, 

CH4, N2O) across site, soil section, and oxygen status of the incubation as well as gene 

copy numbers. Where I found significant results in the ANOVAs, I conducted multiple 

post hoc analyses using Tukey’s HSD test to identify means that were significantly 

different. I tested assumptions of equal variance and normality assumptions for the 

ANOVA models in R by using residuals vs. fitted and normal Q-Q plots, respectively. 

Data that did not meet the assumptions of the ANOVA were log transformed.  
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III. Results and Discussion 

 In the following subsections I discuss: 1) C:N ratio results as a measure of soil 

organic matter quality across depth and site; 2) CO2 fluxes from surface and deep peat 

soil incubations; 3) CH4 fluxes from surface and deep peat soil incubations; 4) N2O fluxes 

from surface and deep peat soil incubations, and; 5) 16s rRNA and mcrA gene 

abundances across the gradient of wetland development. Finally, I relate the abundance 

of microbial functional genes to ecosystem processes across the gradient of wetland 

development. 

 

Soil Organic Matter Quality By Section and Site 

 Carbon:N ratios are often used as general indicators of soil organic matter and 

litter quality and thus to predict decomposition rates (Taylor et al. 1989). Microbial 

activity is a major factor in soil decomposition and, given physiological nutrient 

limitations, soil organic matter with a low C:N ratio will generally decompose more 

rapidly than a soil with a high C:N ratio (Hu et al. 2001). This is because N availability 

often limits the rate of microbial decomposition. In northern bog ecosystems, as N 

limitation is relaxed, rates of peat decomposition increase (Bragazza et al. 2006). The 

C:N ratios that have been reported for high latitude bog soils range from 20-100, but 

more typically range from 30-50 (Aitkenhead and McDowell 2000; Hodgkins et al. 2014; 

Lin et al. 2012). The peat soil C:N ratios were between 20-35—well within these 

previously reported values. I found that peat C:N ratios varied by depth in the soil profile 

(Figure 3; 1st panel), with lower ratios in deep peat compared to surface soil peat; I found 
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no differences in C:N ratios among the sites (Figure 3; 2nd panel). Additionally, peat C:N 

ratios did not vary significantly by depth within a site except at FB, where the surface 

peat had a significantly higher C:N ratio (Figure 3; 3rd panel). This lower C:N ratio at 

depth may be attributed to the lower position of the water table at the FB site. This may 

be attributed to higher loading of organic matter from plant matter at the soil surface at 

FB or carbon being lost to the atmosphere from the deep peat soil (Kuhry and Vitt 1996; 

Kuhry and Vitt 1992; Malmer and Holm 1984). These results suggested that either the 

higher water table at YCS and OCS compared to FB inhibited rates of decomposition and 

carbon mineralized to the atmosphere thus decreasing C:N ratio or surface soil at each 

site experienced organic matter loading. 

 

CO2 Fluxes 

In general, CO2 production did not significantly vary across the sites. However, I 

found significant differences in CO2 production by peat depth and oxygen status of the 

soil incubation experiment (Figure 4). The mean aerobic CO2 production across the 

surface soils from the three sites was 16.63 mg g-1 soil d-1 and mean aerobic CO2 

production the deep soil sections was 7.44 mg g-1 soil d-1. CO2 production was 

significantly lower in bottom soil sections (p < 0.001) and in anaerobic incubations (p < 

0.001). The rate of anaerobic CO2 production was two orders of magnitude lower than in 

the aerobic incubations. In their study that quantified the effects of permafrost thaw on 

carbon emissions that included thermokarst wetlands and bogs underlain by permafrost, 

Wickland et al. (2006) also found that in situ soil respiration rates did not differ among 
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ecosystem type. Deep anaerobic sections of peat soil cores showed significantly lower 

CO2 production regardless of whether the soil was incubated with or without oxygen. 

Soils were collected at two depths: above and below the water table and incubated 

under aerobic conditions and anaerobic conditions. The mean CO2 production rate across 

all depths and sites was also two orders of magnitude higher in the aerobic incubations 

relative to anaerobic conditions (12.03 mg CO2 gdw-1 d-1 and 0.1449 mg CO2 gdw-1 d-1, 

respectively). Similar results have been observed in other peat soil incubation studies. 

Moore and Dalva (1997) found that anaerobic CO2 production rates were less than two 

orders of magnitude lower aerobic CO2 production rates, though they observed lower 

rates of aerobic CO2 production and higher rates of anaerobic CO2 production during 

their study than I did. Moore and Dalva (1997) found that aerobic CO2 production was 

related to the origin of the plant matter as well as location relative to the water table. For 

example, they found the highest CO2 production rates from soils that were located at the 

water table. They found intermediate CO2 production rates from soils from above the 

water table and the lowest CO2 production rates from soils below. In regards to the origin 

of the plant matter, Moore and Dalva (1997) found highest rates of aerobic CO2 

production using herbaceous peat followed by bryophyte and ligneous peat. In their 

anaerobic incubations they found similar rates of CO2 production from peat of 

herbaceous and bryophyte origin and lower CO2 production from ligneous peat. As 

observed by Moore and Dalva (1997), I found higher rates of anaerobic CO2 production 

from peat soil of bryophyte origin (YCS and OCS) compared to more the more ligneous 

peat at the black spruce tree dominated FB site.  
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Generally, I found lower CO2 production rates from deep soil sections (i.e. those 

below the water table) compared to CO2 production rates from surface soils; however, 

across the gradient of wetland development this pattern was not consistent. In my 

anaerobic soil incubations I observed higher CO2 production rates from surface soil 

despite it being collected from above the water table, though this pattern was not 

significant at the FB or YCS site. Similarly, with the exception of the FB site, I observed 

similar rates of CO2 production from deep and surface sections during aerobic soil 

incubations.  

Across the gradient of wetland ecosystem development, I found a suggestion of 

lower rates of CO2 production from YCS compared to OCS and FB, although these 

differences were not significant. During permafrost thaw and subsequent wetland 

formation, newly formed anaerobic zones depress CO2 production rates while enhancing 

CH4 emissions (Blodau et al. 2004; Turetsky et al. 2008). Conversely, it has been 

documented that lowering the water table of a peatland enhances CO2 emissions (Moore 

and Knowles 1989). In a large-scale peatland water table manipulation study Kane et al. 

(2013) measured higher CO2:CH4 ratios from a drained peatland compared to a control 

peatland. This phenomenon was driven by higher CO2 emissions from the oxic soils, and 

deeper oxic soils in the drained system.  

In addition to the long-term effects of permafrost thaw on greenhouse gas 

production, boreal peatlands are also subject to short-term seasonal changes in water 

table position that influence microbial activity as well as greenhouse gas fluxes (Blodau 

et al. 2004; Christian and Moore 2003). For example, Bubier et al. (1998) found the 
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highest CO2 emissions from northern peatlands as the water table dropped with 

increasing summer evapotranspiration. In their study, the position of the water table was 

a strong predictor of the rate of CO2 emissions. I sampled early in the growing season, 

when the position of the water table was relatively close to the soil surface and I 

maintained water table field conditions during my anaerobic incubations. Notably, the 

water table was much deeper at the FB site compared to YCS and OCS. My observation 

of higher anaerobic CO2 fluxes from YCS and OCS surface soils compared to FB 

suggested that the microbial community at these wetland sites was better acclimated to a 

higher water table and to anaerobic conditions. Boreal peatlands are dynamic ecosystems 

that experience short-term and long-term environmental variation that influences 

microbial activity and thus greenhouse gas fluxes.  

 

CH4 Fluxes  

 Although CH4 production is typically associated with anaerobic conditions, I 

observed CH4 fluxes in both aerobic and anaerobic incubations (Figure 5). My incubation 

studies used soils collected and incubated under water table field conditions; given the 

water-saturated state of these soils it is highly likely that they contained micro-anaerobic 

zones even in my aerobic incubations, and this is thus a plausible explanation for the CH4 

production I saw in the aerobic incubations. In the anaerobic soil incubations I found 

significantly higher rates of CH4 production at YCS relative to OCS and FB (mean CH4 

flux rates, regardless of soil section, were 0.134, 33.7, and 2.53 µg CH4 g-1 d-1 at FB, 

YCS, and OCS, respectively). These production rates were similar compared to other 
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peat soil incubation experiments. For example, in their peat soil laboratory incubation 

study Moore and Dalva (1997) reported a range of 0.1-100 µg CH4 g-1 d-1, with the 

median rate of CH4 production to be around 10 µg CH4 g-1 d-1. Kettunen et al. (1999) 

measured anaerobic CH4 production from 0.1-2.4 µg CH4 g-1 h-1. 

Across sites, rates of CH4 production were significantly higher at YCS compared 

to OCS and FB (p < 0.001). Additionally, CH4 production rates in anaerobic incubations 

were significantly higher from the surface soils of YCS compared to the deep soils (p < 

0.01). In addition to anaerobic conditions being an important control on the production of 

CH4, organic substrate supply plays an important role on CH4 production. (Crill et al. 

1988; Lai 2009; Segers 1998). Updegraff et al. (1995) examined environmental and 

substrate controls on the production of CH4 and found that rates of methanogenesis were 

positively related to substrate lability. I found higher rates of methanogenesis in soils 

from my YCS site from less decomposed substrate. That is, the rate of methane 

production was higher in soil receiving the highest rates of fresh organic matter. Along 

the wetland age gradient, I found that rates of methane production were very low at the 

undisturbed site (FB), and were highest at the newest wetland site (YCS).  

These results suggest that as wetlands continue to develop from permafrost thaw 

in northern latitudes, increases in water table position and shifts in vegetation type from 

forests, with more recalcitrant organic inputs, to wetlands, with more labile inputs of soil 

organic matter will favor conditions that lead to further methane emissions for [at least] 

the first several decades after ecosystem state change. In addition to these long-term 

changes in water table position that affect CH4 emissions from boreal bogs, seasonal 
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changes in the water table also affect their CH4 production. As such, CH4 fluxes are 

subject to the same seasonality in water table location as CO2 emissions. Roulet et al. 

(1993) found that seasonal decreases in water table position negatively impacted CH4 

emissions by increasing the size of the oxidation zone in the peat soils, but Kettunen et al. 

(1999) demonstrated that methanogens and CH4 emissions were resilient to seasonal 

shifts in water table position. This suggests that CH4 emissions may be sensitive to both 

long-term ecosystem development and short-term seasonal water table fluctuations.  

 

N2O Fluxes 

 N2O is produced both from the incomplete microbial conversion of NO3
- to N2 in 

the anaerobic process of denitrification and from NH4
+ to NO3

- in the aerobic process of 

nitrification (Firestone and Davidson 1989). Rates of denitrification in boreal bogs are 

generally regarded as low; ombrotrophic bogs rely solely on atmospheric inputs of 

nitrogen, thus NO3
- concentrations and denitrification rates tend to be low (Martin and 

Holding 1978; Urban and Eisenreich 1988; Wieder and Vitt 2006). Rates of nitrification 

are also generally low in boreal bogs; low pH, high water tables and anaerobic 

conditions, and cool temperatures limit nitrification rates (Wieder and Vitt 2006). 

However, several studies have demonstrated the importance of nitrification as a source of 

NO3
- to boreal wetlands (Wrage et al. 2001; Wray and Bayley 2007).  

In my incubations, I found that anaerobic production rates of N2O were two 

orders of magnitude lower than aerobic N2O production rates, and N2O fluxes were 

significantly higher in surface soil sections (p < 0.05) and in aerobic soil incubations (p < 
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0.001). This suggested that N2O production resulted from incomplete nitrification and not 

denitrification, although it is possible for conditions for denitrification and nitrification to 

exist at the same time (Repo et al. 2009). I found significantly higher (p < 0.05) rates of 

N2O production at the YCS site compared to the FB and OCS sites from my aerobic 

incubations of surface soils (Figure 6). Additionally, observed N2O fluxes were of the 

same magnitude as CH4 fluxes (compare Figures 5 and 6) suggesting that N2O fluxes 

may play a larger role in boreal ecosystems greenhouse gas production than previously 

thought. Elberling et al. (2010) thawed, drained, and rewet wetland permafrost soils using 

meltwater and found large increases in N2O production. This demonstrated that boreal 

wetland soils have the potential to produce large amounts of N2O following permafrost 

thaw. Their chemical analyses also showed NH4
+ concentrations that were 60 times 

greater than those in the active layer in permafrost soils (Elberling et al. 2010). My study 

focused on a centuries-scale time frame of permafrost thaw and subsequent wetland 

development, so it is unlikely that the YCS and OCS soils had such high concentrations 

of NH4
+. The N2O flux results add to the small, but growing body of literature suggesting 

that N2O production by boreal wetlands may be more important than previously thought.  

 

16s rRNA and mcrA gene abundances 

 Quantitative PCR of the 16s rRNA gene and other functional genes is often used 

to assess the overall abundance of the bacterial and Archaeal communities as well as the 

abundance of functional genes of interest (Fierer et al. 2005; Henry et al. 2006; Leininger 

et al. 2006). I found that the size of the microbial community did not vary across site or 
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soil section (Figure 7). In other words, the size of the microbial community as determined 

by the number of copies of the 16s rRNA gene ng-1 of soil DNA was comparable across 

sites and soil sections (mean numbers of 16s rRNA gene copies were ~ 730,000 ng-1 of 

soil DNA in surface sections and ~ 675,000 gene copies ng-1 of soil DNA in deep 

sections, for an overall mean of ~ 705,000 copies ng-1 of soil). For the most part, the 

number of copies of the 16s rRNA gene was statistically similar per gram of soil (Figure 

7). However, the surface soil at the FB site did have significantly lower copies of 16s 

rRNA gene per gram of soil relative to the surface soil at the YCS site (Figure 7). On a 

per gram dry weight basis, my abundances of bacterial and Archaeal gene copies were 

comparable to other studies that used qPCR to quantify abundance of microbial 

communities in bogs (Kim et al. 2008; Waldrop et al. 2012). 

 Waldrop et al. (2012) found that both bacterial and Archaeal abundances varied 

along a gradient of soil moisture, vegetation type, and differing permafrost regimes. 

Generally, they found higher abundances of bacteria and Archaea per gram of soil at 

wetter sites (fens) versus sites underlain by permafrost sites (black spruce forest). My soil 

samples were collected within the same field site as Waldrop et al. (2012). They 

attributed higher bacterial abundances to higher soil pH and soil N whereas higher 

Archaea abundances were positively related to soil moisture. My study did not 

differentiate between Archaeal and bacterial abundances; however, the higher number of 

microbial 16s rRNA gene copies that I found at the YCS site across my chronosequence 

may be associated with higher number of Archaea (Figure 7). My data is consistent with 

the soil moisture pattern that Waldrop et al. (2012) found. 
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 In addition to quantifying total bacterial and Archaeal abundances, I measured 

methanogen abundance by targeting the mcrA gene. Across my gradient of wetland 

development, mcrA gene abundance was significantly higher at the YCS site (Figure 8). 

Within a few decades of permafrost degradation and subsequent inundation, the 

abundance of methanogens significantly increased relative to the site with intact 

permafrost (FB) and the older wetland site (OCS). The abundance of methanogens at this 

site was an order of magnitude larger than that reported by Kim et al. (2008) in bog, fen, 

and riparian ecosystems and several orders of magnitude higher than Steinberg and 

Regan (2008) found in acidic peat ecosystems. Waldrop et al. (2012) found that the 

number of methanogens increased as soil moisture increased. That is, following 

permafrost thaw the entire ecosystem atop permafrost collapsed into relic ice space, 

causing a relative increase in the water table height. The increased water table height led 

to an increase in soil moisture and anaerobic conditions that are required for methanogens 

and methanogenesis.  

I assessed the approximate extent of methanogens relative to whole soil microbial 

community. To normalize for the different sizes of microbial communities across the 

gradient of wetland development, I quantified the percentage of mcrA gene abundance 

relative to the total number of bacterial and Archaeal gene abundances (Figure 9). At the 

FB site that was underlain by intact permafrost I found that mcrA gene abundance 

accounted for only ~ 0.035% of the total gene abundance compared to ~ 2.8% at the YCS 

site and 0.35% at the OCS site, and this difference was significant (Figure 9). 

Furthermore, at the YCS site where I found the highest percentage of methanogens 
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relative to the rest of the microbial community, the number of methanogens was 

positively related to the rate of methane production (Figure 10). Similar positive 

relationships between Archaeal methanogen abundances and the production of methane 

have been observed in several other studies (Turetsky et al. 2008; Waldrop et al. 2012). 

Across the gradient of wetland ecosystem development from permafrost degradation, 

these results suggest that following permafrost thaw there is a several decade-long pulse 

of CH4 production. After more time, though, and the bogs slowly infill and become less 

wet, both abundances of methane-producing Archaea and rates of methane production 

decrease.  

  

Synthesis and Conclusions 

 In this study I used a space-for-time substitution approach to investigate how soil 

processes and characteristics vary along a gradient of wetland ecosystem development. I 

quantified soil organic matter C:N ratios, greenhouse gas fluxes (CO2, CH4, and N2O), 

and bacterial, Archaeal, and methanogen abundances in the soil microbial communities. 

Following the degradation of permafrost and subsequent wetland formation, rates of CO2 

production did not decrease while rates of CH4 production increased in the first few 

decades after ecosystem state change. At the young wetland site I also found higher 

abundances of methanogens and these abundances were positively related to CH4 flux. 

These results validate the positive feedback of warming temperatures and permafrost 

thaw on wetland formation and greenhouse gas production that I conceptualized at the 

beginning of my study (and of this paper). As these bogs age, fill in, and become less 
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wet, methanogen abundances and CH4 fluxes decrease. I also observed higher rates of 

aerobic N2O production across each site––on the same order of magnitude as CH4 

production rates in some cases––compared to anaerobic N2O production, suggesting that 

incomplete nitrification may be substantially contributing to the production of greenhouse 

gases in boreal bog wetlands. Understanding dynamic ecosystem responses to permafrost 

thaw and wetland development, including critical positive feedback loops, may better 

inform how to mitigate or adapt to the impacts of climate change on boreal ecosystems. 

Additionally, studies such as this that focus on process-driven understanding of 

ecosystem function will better inform models of, and policy responses to, climate change 

effects on high latitude ecosystems.  
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Figure 1. Simplified positive feedback loop of warmer air temperatures on the methane 
emissions from wetlands forming from permafrost thaw.  
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Figure 2. Cartoon schematic of study sites. FB is underlain by intact permafrost, YCS 
bog was most immediately formed following permafrost thaw and had the highest water 
table, and OCS formed after undergoing infilling and peat accumulation. Dotted line 
depicts permafrost thaw disturbance.  
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Figure 3. C:N ratio of peat soil from field sites. A) C:N ratio of soil above the water table 
(Surface), and below the water table (Deep); B) C:N ratio of total vertical soil profile by 
site; C) C:N ratio of each soil section of each site. Error bars are ± SEM and different 
letters within the same figure panel above error bars depict statistically significant 
differences (p < 0.05). 
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Figure 4. CO2 production rate during aerobic laboratory soil incubation experiment across 
site and peat soil section (A), and anaerobic incubation (B). Error bars are ± SEM and 
different letters across both figure panels above error bars depict statistically significant 
differences (p < 0.05). 
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Figure 5. CH4 production rate during aerobic laboratory soil incubation experiment across 
site and peat soil section (A), and anaerobic incubation (B). Error bars are ± SEM. FB 
surface anaerobic CH4 production rate: 0.004 ± 0.004, FB deep anaerobic CH4 production 
rate: 0.264 ± 0.199, and OCS surface anaerobic CH4 production rate: 0.016 ± 0.012.  
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Figure 6. N2O production rate during aerobic laboratory soil incubation experiment 
across site and peat soil section (A), and anaerobic incubation (B). 
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Figure 7. Copies of 16s rRNA gene ng-1 DNA across site and section (A), and copies of 
16s rRNA gene g-1 soil across site and section (B).  
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Figure 8. Copies of mcrA gene ng-1 DNA across site and section (A), and copies of mcrA 
gene g-1 soil across site and section (B).  
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Figure 9. Log plot of mcrA gene as a percentage of overall microbial genes when 
compared to the 16s rRNA gene across site and depth in peat soil.  
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Figure 10. Linear regression of CH4 production rate as a function of mcrA gene copies 
ng-1 DNA by depth of peat soil. Surface peat R2 = 0.58, p < 0.001, deep peat R2 = 0.73, p 
< 0.001.  
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Site 
Ice 

Depth 
(cm) 

SE 
Water 
Table 

Depth (cm) 
SE Eh 

(mv) SE Temperature 
(˚C) SE pH SE 

FB 27 ±2.42 N/A N/A 312 ±112 8.02 ±1.21 4.81 N/A 
YCS N/A N/A 5.8 ±0.8 -153 ±57 12.58 ±1.38 5.16 ±0.24 
OCS N/A N/A 8 ±0.71 -4 ±44 10.2 ±0.50 5.17 ±0.33 

 

Table 1. Environmental characteristics of each site. Forested bog (FB) was the only site 
with ice present at the time of sampling. Following permafrost degradation and 
subsequent wetland formation, there were changes associated with depth to water table 
and redox potential (eh). Values reported are means ± SE. YCS: young collapse scar, 
OCS: old collapse scar.  
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CHAPTER 5 

A DNA SEQUENCED-BASED INVESTIGATION OF WETLAND SOIL MICROBIAL 

COMMUNITY RESPONSE TO WETLAND ECOSYSTEM DEVELOPMENT IN A 

BOREAL ECOSYSTEM 

 

Abstract 

Microbial communities play an integral role in biogeochemical cycles and knowledge 

about their composition helps provide a mechanistic, process-based understanding of 

ecosystem-level phenomena. Thus, investigating microbial community composition may 

shed light on ecosystem processes such as carbon and nitrogen cycling. Advances in 

next-generation sequencing technologies have lead to an increasing amount of studies 

investigating microbial community structure, but many focus on community-scale 

patterns without regard for broader implications. Boreal wetlands play a 

disproportionately large role in the global carbon cycle and are often nitrogen limited. I 

used next generation sequencing approaches to investigate changes in ecosystem relevant 

microbial communities during ecosystem development in northern boreal wetlands. 

Extensive permafrost degradation in northern ecosystems is leading to pronounced 

changes in ecosystem structure and function, including wetland formation. In this study, I 

used a gradient of wetland development following permafrost degradation to characterize 

changes in the soil microbial communities that mediate carbon and nitrogen cycling: a 

forested bog underlain by intact permafrost (FB), a young wetland formed following 

permafrost thaw ~ 60-100 years ago (YCS), and an old wetland formed in the same 
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manner ~400 years ago (OCS). I used reference 16s rRNA databases and several 

diversity indices to assess taxonomic differences in these communities along the space-

for-time continuum, to assess relationships between soil microbial community 

composition and various environmental variables. Along the gradient of ecosystem 

development I found shifts in the microbial carbon degraders as well as nitrogen fixers. 

More specifically, I found similar abundances of soil organic carbon degraders and N 

fixers in an undisturbed forested bog underlain by permafrost (FB) compared to the 

oldest wetland site that formed from permafrost degradation (OCS). The intermediate 

young wetland formed most immediately after permafrost thaw (YCS) had strikingly 

different abundances of several soil organic carbon degraders and N fixers. Analyses of 

beta diversity trees and alpha diversity plots highlight similar differences in soil microbial 

communities between FB and YCS and YCS and OCS. That is, I found similar levels of 

alpha diversity at FB and OCS compared to YCS. Interestingly, alpha diversity was 

highest at YCS. Alpha diversity was highly correlated with pH, and to a lesser extent 

redox potential. FB and OCS sites represented relatively mature ecosystem states for 

these ecosystem types and these results suggest that ecosystem structure is dependent 

more on ecosystem maturity than ecosystem type. Soil microbial communities play an 

important role in ecosystem development through influencing ecosystem processes such 

as carbon and nitrogen cycling. 
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I. Introduction 

Climate change is modifying ecosystem structure and function worldwide 

(Chapin et al. 2011; Doney et al. 2012; Walther et al. 2002). Many studies that assess the 

impacts of climate change have focused on ecosystem-level processes (e.g. Davidson and 

Janssens, 2006; Dixon et al. 1994; Melillo et al. 1993). For example, Cramer et al. (2001) 

examined ecosystem response to elevated CO2 levels through simulation modeling of net 

primary production and net ecosystem production. These studies have undoubtedly 

advanced our understanding of the impacts of climate change on the planet, and research 

on the specific processes and mechanisms behind responses to climate change will only 

enhance this knowledge. 

One way to approach a more mechanistic approach to investigating climate 

change response is by focusing on the soil microbial community. Soil microbial 

communities play an integral role in the global carbon cycle and the metabolism of other 

nutrients, such as nitrogen and sulfur (Falkowski et al. 2008). For example, the 

production of methane (CH4), a potent greenhouse gas, is mediated by a cohesive group 

of microbes within the domain Archaea (Liu and Whitman 2008). Similarly, nitrous 

oxide (N2O), another strong greenhouse gas, is an intermediate byproduct of microbial 

metabolism across multiple microbial groups including by denitrifying bacteria or 

nitrifying bacteria or Archaea. A better understanding of the microbial-scale conditions 

and processes that produce these greenhouse gases will better inform models that operate 

at the ecosystem scale. Despite the large role that soil microbial communities play in 

global nutrient cycles, less is known about microbial responses to climate change 
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(Bardgett et al. 2008; Melillo 2002). This is of particular concern because of the potential 

positive feedbacks that may enhance further climate warming (CHAPTER 4). In this 

chapter, I investigated changes in soil microbial C and N and diversity during wetland 

ecosystem development in boreal ecosystems. 

Besides more studies focusing on exploring the poorly understood responses of 

soil microbial communities to climate change, advances in molecular biology 

technologies have made sequencing microbial soil community endeavors a cost-effective 

approach to investigating changes in microbial communities for a host of reasons. 

Researchers can investigate and analyze metrics of soil microbial communities 

independently of culturing microorganisms, circumventing the expense and difficulty of 

culturing soil microbes (Ekblom and Galindo 2011; Shokralla et al. 2012). Advances in 

quantitative tools developed specifically for analyzing soil microbial communities have 

streamlined workflow for analyzing millions of DNA sequences (Caporaso et al. 2010). 

For example, using a next generation sequencing approach Mackelprang et al. (2011) 

showed a rapid change in several microbial genes involved with ecosystem processes, 

such as, carbon and nitrogen cycling following permafrost thaw. Mackelprang et al. 

(2011) highlighted shifts in chitin and cellulose processing microbial genes as well as 

nitrogen fixation, denitrification, and ammonification genes. Advances in next generation 

sequencing technologies have enhanced researchers abilities to link microbial scale 

mechanisms and processes with ecosystem scale processes. In this study I used these 

techniques to investigate soil organic carbon degrading and nitrogen-fixing microbe 

communities across a chronosequence of wetland ecosystem development. 
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This study focused on the soil microbial community in ecosystems of high 

significance in the global carbon cycle: developing Alaskan boreal wetlands. Owing to 

thousands of years of carbon accumulation and slow rates of decomposition, boreal 

peatlands have been historical sinks for atmospheric carbon. Direct and indirect effects of 

climate change are causing extensive degradation of permafrost in interior Alaska 

(Jorgenson et al. 2001). Because ice occupies more volume than water, when ice rich 

permafrost thaws, soil collapses into relic ice space leading to ecosystem state changes. 

These conditions lead to inundation in low-lying areas and subsequently wetland 

formation. Given the anoxic and waterlogged conditions of these ecosystems, boreal 

wetlands are a significant source of atmospheric CH4 and CO2 and to a lesser extent N2O 

(Moore and Roulet 1993; Roulet et al. 1992; Turetsky et al. 2002). Despite peatland’s 

long-term carbon storing past, some models predict that Alaska will be a net source of 

greenhouse gases by the end of the current century (Zhuang et al. 2007). 

 In this study I used next generation sequencing technologies to investigate soil 

microbial community response to indirect and direct effects of climate change. I asked: 

how does the soil microbial community change as a result of permafrost thaw and 

subsequent wetland formation? Although more is known about microbial response to 

climate change than a few years ago, microbial responses to climate change have proven 

to be unpredictable (Graham et al. 2012). This is one of the first studies using a next 

generation sequencing approach to quantify changes in the soil microbial community 

along a century-scale gradient of wetland development to link mechanistic approaches in 

microbial ecology with ecosystem-scale processes. The objectives of this study were: 1) 
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To investigate how soil microbial community structure responded to permafrost thaw and 

wetland development along a space-for-time chronosequence of sites; 2) To indirectly 

assess changes in microbial functional groups, and; 3) To quantify soil microbial 

community diversity to assess how microbial community complexity changed during 

wetland ecosystem development following permafrost degradation. Because wetland 

formation following permafrost thaw leads to ecosystem state change, with the state 

change largely due to increased soil waterlogging and vegetation change a key metric of 

ecosystem state change, I expected to see shifts in microbial community abundance that 

reflected changes in the water table height and vegetation community. In other words, I 

expected to see the abundance of different bacterial and Archaeal phyla be tightly 

coupled to ecosystem type.  

 

II. Methods 

 

Site Description 

I located my study sites along a gradient of wetland ecosystem development in 

peatlands 35 km southeast of Fairbanks, AK. My sites were in the Tanana River 

floodplain and contained a large number of wetlands that have developed in the last 

decades to centuries after permafrost degradation. The space-for-time substitution 

allowed me to test microbial soil system responses to ecosystem disturbance and state 

change (Figure 1). I selected three different peatlands along this gradient: 1) a forested 

bog with intact permafrost (FB); 2) a Sphagnum bog that formed following permafrost 
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degradation within the last 100 years (YCS); 3) and a Sphagnum bog that formed 

following permafrost degradation between 200-400 years ago (OCS).  

 

Soil Sampling and handling 

I sampled soils at each of the sites along the chronosequence gradient by 

collecting five cores using a sharpened steel tube (i.d. 5.4 cm). I extruded the extracted 

soil cores by carefully pushing the core out of the steel tube. The extracted soil cores 

were ~ 30 cm length and I subsectioned each core in the field at the position of the water 

table. Soil samples that were collected above the water table were stored in plastic bags 

and kept in a cooler on ice for transport to the lab. The samples that were collected below 

the water table were stored in plastic bags with bog water, to keep them anaerobic and 

waterlogged; they were also stored in a cooler on ice. In the lab, soil cores were stored a -

20˚C freezer until they were shipped on dry ice to Arizona State University in Tempe, 

AZ. Redox potential, pH, and microtopographical origin of peat soil were also collected 

during soil sampling. 

 

DNA Extractions 

Soil cores were thawed from -20˚C followed by DNA extraction by duplicate 

from each of the 5 cores and 2 soil sections at each site using a PowerSoil DNA 

extraction kit (MoBio). I quantified the concentrations of extracted DNA using a QuBit 

2.0 Fluorometer (Invitrogen), then diluted the duplicate DNA extraction with the highest 

concentration of DNA to ~5 ng uL-1 for use in downstream analyses. All DNA 
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extractions were completed in the Wetland Ecosystem Ecology Laboratory at Arizona 

State University in Tempe, Arizona. 

 

Targeted Gene and PCR Amplifications 

I used the 16s rRNA gene and 16s rRNA reference databases (Greengenes) with 

OTU information to investigate microbial responses and changes in OTUs to permafrost 

thaw and subsequent wetland formation across a chronosequence of wetland 

development.  

To investigate the bacterial and archaeal communities, I used PCR and Illumina 

DNA sequencing technology. Polymerase chain reactions (PCR) were carried out using 

the 515F (5’-GTGYCAGCMGCCGCGGTA; Baker et al. 2003) and 909R (5’-

CCCCGYCAATTCMTTTRAGT; Wang and Qian 2009; Tamaki et al. 2011) primers 

that cover the V4 and V5 regions of the 16S rRNA gene of Bacteria and Archaea; unique 

tags of variable length 6-10 base pairs were attached to the 5’ ends of the primers in order 

to differentiate between samples and any changes to melting temperature due to tags 

presence was assayed and adjusted in the PCR reaction. Each sample was amplified in 

triplicate (and in a few cases quadruplicate) technical replicates, and replicates pooled in 

order to prevent sequence abundance biases resulting from PCR. All amplified PCR 

products were verified by fragment size using 1% agarose gel electrophoresis.  
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PCR Amplicon Normalization and Illumina Amplicon Sequencing and Analysis 

To reduce the variation across the multiple PCR amplified samples I used a 

SequalPrep Normalization Plate Kit (Invitrogen) and followed the manufacturer’s 

protocol before pooling all libraries for single run in one lane of Illumina MiSeq 

sequencing. Libraries were sequenced using a 300 base pair paired-end read MiSeq v2 

chemistry on an Illumina MiSeq 2000 instrument. Sequence data were downloaded from 

Illumina BaseSpace and the raw forward and reverse sequence reads were merged using 

PEAR (Paired End reAd, mergeR). The output from PEAR was a single merged fastq file 

that was directly used with Quantitative Insights Into Microbial Ecology (QIIME; 

Caporaso et al. 2010). I performed a number of data processing steps using the default 

QIIME workflow, including: assigning multiplexed reads to soil samples based on their 

unique barcode sequence in my mapping file, determining operational taxonomic units 

based on 97% sequence similarity, and assigning taxonomy based on reference databases. 

In addition to using the QIIME workflow for 16s rRNA analysis, I also used phyloseq, an 

R package to perform further data analyses, data visualization, and presentation 

(McMurdie and Holmes 2013). 

 

Calculating Alpha and Beta Diversity 

I computed metrics of both alpha and beta diversity to assess shifts in the soil 

microbial community at various stages of ecosystem development. I used diversity 

metrics to evaluate similarity and differences among the wetland development gradient. 

Beta diversity measured dissimilarity among sites (FB, YCS, OCS) whereas alpha 
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diversity compared OTU level diversity within a site. With this approach I was able to 

assess how similar or dissimilar the sites along the chronosequence were (beta diversity) 

and how the diversity within sites compared (alpha diversity). Using the QIIME 

workflow, I assessed phylogenetic beta diversity by using UniFrac distances, a 

commonly used metric that measures the phylogenetic distance between taxa from a 

phylogenetic tree (Lozupone and Knight 2005). I used FigTree to visualize the data from 

distance matrices using a phylogenetic tree software program 

(http://tree.bio.ed.ac.uk/software/figtree/).  

 

III. Results and Discussion 

 In the following section I present and discuss the results for: 1) Archaeal and 

bacterial community structure across the gradient of wetland development and soil depth, 

2) microbial community composition of those bacterial phyla involved soil organic C 

degradation and N cycling, 3) diversity metrics used to measure microbial community 

complexity (number and abundance) as well as the relationships of these indices to 

several abiotic and biotic factors, including pH and redox potential. 

 

Microbial Community Structure Across Wetland Gradient and Soil Depth 

 

For a coarse assessment of the dominant soil microbes across the chronosequence 

of wetland development and soil profile, I plotted the 11 most abundant phyla (Figure 2). 

The 11 most abundant phyla accounted for ~90% of the observed microbial community 
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at the FB site, ~75% of the total observed microbial community at the YCS site, and 

~85% of the total observed microbial community at the OCS site (Figure 2). In general 

the surface soil microbial community (Figure 2) resembled the deep soil microbial 

community at the phylum level. The remaining fraction was either unclassified––~9% at 

FB, ~14% at YCS, and ~9% at OCS––or a low frequency occurring phyla. The most 

common bacterial phyla were the Proteobacteria, Actinobacteria, and Acidobacteria; 

these three phyla accounted for 65% of the total community at both soil depths at FB, 

70% at YCS, and 65% at OCS (Figure 2). Within the Proteobacteria, Alphaproteobacteria 

followed by Gammaproteobacteria and Deltaproteobacteria were the most common 

bacterial classes accounting for ~16%, 5%, and 4% of the total bacterial sequences, 

respectively. Less common, but still relatively abundant phyla include: Bacteroidetes, 

Plantomycetes, Chloroflexi, and Cyanobacteria. Additionally, the prominent microbial 

phyla that I observed in this study has been observed in other studies of boreal peatland 

microbial communities (Dedysh et al. 2006; Serkebaeva et al. 2013; Tveit et al. 2013). 

Tveit et al. (2013) observed that Proteobacteria and Actinobacteria accounted for ~55% 

of the microbial phyla in their assessment of northern peatlands bacterial phyla. Within 

the Proteobacteria, however, Deltaproteobacteria accounted for ~20% of the bacterial 

community and were more abundant than Alphaproteobacteria and Betaproteobacteria. A 

recent 16s rRNA next-generation sequencing study in boreal peatlands showed high 

numbers of Acidobacteria, Proteobacteria, Actinobacteria, Plantomycetes, and 

Verrucomicrobia (Serkebaeva et al. 2013). Several other studies including a clone library 

sequencing study from mineral Northern Norway permafrost soils and pyrosequencing of 
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the 16s rRNA gene from various boreal and arctic locations show a relatively high 

abundance of Actinobacteria, Proteobacteria, and Bacteroidetes bacterial phyla (Chu et 

al. 2010; Hansen et al. 2007).  

 In addition to quantifying the relative proportion of different phyla within the 

bacterial microbial community, I also quantified a relatively small fraction of Archaeal 

phyla. For example, I observed Euryarchaeota, an Archaeal phylum containing 

methanogens, in all of the peat soils. I also observed a lower proportion of other lesser-

studied Archaeal phyla––the Crenarchaeota and Parvarchaeota––in my Alaskan 

peatlands. Despite being a large source of atmospheric CH4, low abundances of 

methanogenic Archaea in boreal wetlands have been previously observed (Tveit et al. 

2013; Waldrop et al. 2010). The relative low abundance of methanogens found in this 

study highlight the importance of a low frequency microbial phylum in the global carbon 

cycle. 

Along the gradient of wetland development following permafrost thaw, I 

observed a marked change in relative proportion of several bacterial phyla. For example, 

I observed an increase in Bacteroidetes at YCS relative to FB, a decrease in 

Actinobacteria, and an increase in Chloroflexi. Several previous studies have documented 

higher abundances of Actinobacteria in permafrost soils compared to active layer soils 

(Wagner et al. 2009; Wilhelm et al. 2011; Yergeau et al. 2010). In addition to finding a 

higher abundance of Choroflexi in active layer soils especially at depth, I observed higher 

proportions of Chloroflexi in the peatland soils compared to other 16s rRNA gene 

sequencing studies. For example, while I found the proportion of Chloroflexi to be in the 
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top 11 most abundant phyla in my northern peatlands, Serkebaeva et al. (2013) 

considered Chloroflexi to be a rare phylum in their study of northern peatland rare OTUs. 

Additionally, the microbial community proportion of Chloroflexi at YCS is considerably 

higher than has been previously documented in other soil and clone sequencing studies, 

though Chloroflexi have been previously observed in active layer soils in another 

peatland soil microbial community study (Dedysh et al. 2006; Mackelprang et al. 2011; 

Serkebaeva et al. 2013). 

 

Microbial Community and Carbon Cycling 

 

Soil Organic Carbon Degrading Microbial Community 

 Because 16s rRNA gene databases are taxonomically robust and contain sequence 

information from studies not only on soil metagenomes but also on bacterial isolates and 

clones, many bacterial groups have been described in terms of their ecosystem function. 

That is, certain bacterial and Archaeal groups are known to have potential ecosystem 

roles within the broader soil microbial community. For example, many studies describe 

the bacterial groups of Bacteroidetes, Actinobacteria, Verrucomicrobia, 

Alphaproteobacteria, and Planctomycetes in terms of their role in the carbon cycle and 

their ability to degrade polysaccharides, including cellulose and hemicellulose (Kotiaho 

et al. 2013; Pankratov et al. 2006;. Pankratov et al. 2011). While recent studies have 

shown a wide range of bacterial groups capable of degrading soil organic carbon, another 

recent study found that the majority of bacterial genes encoding soil organic carbon 
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degradation enzymes are found in Bacteroidetes, Actinobacteria, and Verrucomicrobia 

(Tveit et al. 2013).  

 Across the gradient of wetland development, my sequencing data revealed a high 

proportion of these soil organic carbon degraders; Bacteroidetes, Actinobacteria, and 

Verrucomicrobia were present across all sites and soil depths and represented ~20% of 

the overall proportion of the microbial community (Figure 3). Bacteroidetes and 

Actinobacteria were a larger proportion of the SOC degraders compared to 

Verrucomicrobia and Verrucomicrobia represented ~2% of the overall microbial 

community. These results generally agree with a previously published study on microbial 

communities and SOC degradation in peatlands; however, I observed a smaller 

proportion of Verrucomicrobia that was five times smaller relative to the whole microbial 

community (Tveit et al. 2013).  

Interestingly, the total proportion of SOC degraders across the gradient of wetland 

development and soil depths was not significantly different with the exception of the FB 

deep soil section. However, the relative proportion of each different SOC-degrading 

phylum shifted across the gradient of wetland development. For example, at the FB site, 

there were higher proportions of Actinobacteria compared to YCS and OCS. 

Additionally, Bacteroidetes were in a higher proportion at the YCS site compared to the 

other sites along the wetland development gradient, and at OCS there was a higher 

proportion of Verrucomicrobia. In the deep soil section at the FB site, the higher 

proportion of Actinobacteria––often associated with permafrost soil––slightly elevated 

the total SOC degrading population at the FB deep soil site. Following fungi, 
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Actinobacteria are one of the main decomposers in peatlands (Peltoniemi et al. 2012; 

Thormann  2006). 

The degradation of permafrost and subsequent wetland formation from soil 

surface collapse in boreal peatlands changes plant community composition (Camill et al. 

2001; Jorgenson et al. 2001). For example, along the gradient of wetland development the 

black spruce and woody boreal shrub dominated FB site had remarkably different 

vegetation types compared to the sphagnum dominated YCS site and the sphagnum and 

boreal shrub dominated OCS site. Given these large plant community shifts along the 

gradient of wetland development it is not surprising that there were shifts in the SOC-

degrading bacterial community. Previous peatland succession studies have shown shifts 

in the SOC-degrading microbial community (Artz et al. 2007; Merilä et al. 2006; 

Putkinen et al. 2014). For example, a recent study showed that during the succession of a 

minerotrophic fen to an ombrotrophic peat bog in Finland, the methanotroph community 

was different depending on the sphagnum moss species that were present in each 

ecosystem (Putkinen et al. 2014). In a peatland recovering from extensive peat 

harvesting, Artz et al. (2007) found shifts in the fungal carbon-degrading community 

along the gradient of succession. These results suggest that following permafrost thaw 

and subsequent wetland formation changes in ecosystem and vegetation type alter the 

SOC degrading bacterial community.  

 

Anaerobic Respiration and Fermentative Microbial Community 

 Given the complex relationship between microbial community composition and 
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anaerobic respiration, it is difficult to attribute particular taxa to a certain metabolism. 

However, several recent gene sequencing studies have attributed the majority of 

anaerobic respiration in peatlands to microbes in the Proteobacteria, Actinobacteria, and 

to a lesser extent Acidobacteria phyla (Lin et al. 2014; Lipson et al. 2013; Tveit et al. 

2013). While there are metagenomic studies that suggest a relatively high abundance of 

denitrification genes in peatlands (Mackelprang et al. 2011), other studies have found low 

abundances of denitrification gene transcripts, suggesting that there are relatively small 

pools of mRNA to produce enzymes for dentrification (Tveit et al. 2013).  

In their study of organic carbon transformations in boreal peatlands, Tveit et al. 

(2013) attributed the majority of fermentation and fermentative genes––a gene encoding 

hydrogenase gene (hydA) involved with H2 producing fermentations and a 

formyltetrahydrofolate synthetase gene (fhs) involved with encoding a key enzyme in 

homoacteogenesis––to the Firmicutes and Actinobacteria bacterial phyla. I found low 

abundances of the Firmicutes, but Actinobacteria was one of the most abundant phyla, 

comprised of ~10% of the total microbial population. By creating H2 and acetate from 

fermentative pathways and CO2 from SOC decomposition, northern peatland microbial 

communities provide the raw substrates needed for methanogenesis and subsequent 

aerobic and anaerobic methane oxidation from the methanotrophs.  

Methanogen and Methanotroph Community 

 Methanogens play a large role in anaerobic C cycling in boreal wetlands and 

peatlands (Keller and Bridgham 2007). To assess differences of methanogens along the 

gradient of ecosystem development I plotted several phyla associated with 
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methanogenesis (Figure 4). I observed the presence of three different orders of 

methanogens from the Euryarchaeota phylum: the Methanobacteriales, the 

Methanomicrobiales, and the Methanosarcinales (Figure 4). Methanobacteriales were the 

most abundant of the three orders, followed by Methanosarcinales, and finally 

Methanomicrobiales. Methanobacteriales and Methanomicrobiales produce CH4 from 

CO2 and H2, whereas Methanosarcinales are more metabolically diverse and can produce 

CH4 acetoclastically, hydrogenotrophically, or from methylated compounds. Thus, the 

composition of different Euryarchaeota orders can reveal important environmental 

constraints of the ecosystems. The abundance of methanogens varied by site along the 

gradient of wetland development (Figure 4). Methanogens were almost entirely absent at 

the FB site and the most abundant at the newly formed wetland site, YCS. I observed an 

intermediate abundance of methanogens at the older bog site, OCS, but not above the 

water table. Additionally, all three orders of methanogens that were detected were found 

at YCS, whereas only two orders of methanogens were found at OCS. The metabolically 

versatile Methanosarcinales were only found at YCS, suggesting that YCS contained a 

diverse pool of substrates for methanogens and methanogenesis. Additionally, 

methanogen abundances were higher in deep peat below the water table, a finding that 

agrees with several studies (Kotsyurbenko et al. 2004; Tveit et al. 2013; Tveit et al. 

2014). Additionally, the relative abundance of methanogens correlates with CH4 

production along the same gradient of wetland development (CHAPTER 4), possibly 

because of higher concentrations of methane precursors from fermentation products and a 

lack of oxygen at depth (Beer and Blodau, 2007; Tveit et al. 2013).  
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 In addition to identifying a diverse methanogen peat soil microbial community, I 

also observed differences in the methanotroph microbial community. Methanotrophs can 

oxidize methane to produce energy and obtain carbon. Methane can be consumed to 

obtain carbon and energy by two different types of methanotrophic bacteria that are 

categorized based on the used pathway of methane oxidation. Type I and type x 

methanotrophs convert methane to formaldehyde using the ribulose monophosphate 

pathway, whereas type II methanotrophs use the serine pathway to oxidize methane to 

formaldehyde (Hanson and Hanson 1996). Formaldehyde is converted into several 

intermediates until the carbon molecule is bioavailable. In addition to their ability to 

oxidize methane, type x and type II methanotrophs have the ability to fix nitrogen. The 

ability to fix nitrogen in the type II methanotrophs supports and drives carbon and 

nitrogen accumulation in peatlands (Vile et al. 2014). In this study, I found relatively 

high abundances of Methylocystaceae and lower abundances of Methylococcaceae; both 

families of methanotrophs belong to the Proteobacteria phylum (Figure 5). Generally, 

across the gradient of wetland development I found similar abundances of these type II 

methanotrophs at each site. Deep soil sections at FB and YCS had lower abundances of 

Methylocystaceae, but moderately higher abundances in the deep soil section of OCS. 

Methylococcaceae abundances were much lower than Methylocystaceae across the 

gradient, but the abundances of Methylococcaceae were slightly higher at YCS and OCS 

compared to FB. There are few studies in boreal peatlands that discuss the abundance of 

Methylocystaceae and Methylococcaceae, however, in a metagenomic sequencing study 

on aerobic and anaerobic laboratory incubations on freshwater sediment, Beck et al. 
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(2013) found that the unamended methanotroph community was evenly split between 

Methylococcaceae and Methylocystaceae. When incubated aerobically, the ratio of 

Methylococcaceae to Methylocystaceae increased. Conversely, when incubated 

anaerobically, Beck et al. (2013) found a higher proportion of Methylocystaceae to 

Methylococcaceae. This suggests that the majority of my peatland soils along the 

gradient of wetland development contained anaerobic––or at least microanaerobic zones 

that favor higher abundances of Methylocystaceae.  

Peatland sphagnum-associated methanotrophs undergo changes in activity and 

community structure during ecosystem succession. However, sphagnum type does not 

appear to impact methanotroph community composition (Putkinen et al. 2014). Along my 

gradient of wetland development in peatland ecosystems I did not find any family-level 

shifts in methanotroph community composition, although I did observe changes in 

taxonomically unassigned methanotroph genera within the Methylocystaceae bacterial 

order. Across the chronosequence of wetland development I found highest abundances of 

Methanogenic microbes at the ecosystem with the highest water table. The vast majority 

of methanotrophic microbial communities in this study were type II methanotrophs, 

suggesting that N limitation played a large role in shaping methanotrophic communities.  

 

Microbial Community Composition and Nitrogen Cycling 
 
 In ombrotrophic bogs such as those I sampled in this study, N inputs are driven 

largely by atmospheric inputs and total N concentrations are typically low and often 

limiting (Bubier et al. 2007). Bacterial N fixed from the atmosphere has a positive effect 
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on sphagnum growth rates (Berg et al. 2013). Thus, soil microbes play an important role 

in N cycling and N inputs through N fixation, and also through plant-microbe interaction, 

especially in aerobic surface peat (Chapman and Hemond, 1982; Waughman and 

Bellamy, 1980). I quantified the abundance of different taxonomical levels in the 

microbial N-fixing community using the same comparative approach that was used with 

the soil microbial SOC-degrading phyla (see above). For example, based on gene 

sequencing and analysis, the N-fixing bacterial community has been attributed to the 

following phyla: Actinobacteria, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes and 

Proteobacteria (Dos Santos et al. 2012; Hartmann and Barnum, 2010). Additionally, in 

peatlands, N-fixers associated with peat sphagnum belong mainly to the 

Alphaproteobacteria class within the Proteobacteria phylum (Bragina et al. 2013). 

Although recent studies have highlighted the potential importance of methanotrophic-

induced N fixation, I excluded considering methanotrophs as N-fixers for the purposes of 

this study as methanotrophs were a small fraction of the community relative to other N-

fixers (Larmola et al. 2014). 

To investigate the broadest scope of bacterial N-fixation in my study system, I 

focused my investigation on the five most abundant taxa associated with N fixation. 

When I summed the abundance of all the bacterial phyla associated with N fixation, I 

found similar abundances of the total N fixers across the chronosequence of wetland 

development (Figure 6A). Additionally, the summed abundance of N-fixing phyla did not 

differ by soil depth. However, when I separated the N-fixing phyla, I found significant 

differences across the gradient of wetland development (Figure 6 B-F). Actinobacteria, 
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Rhizobiales, Cyanobacteria, and Bacteroidetes all vary by site along the chronosequence 

of wetland development. That is, FB and OCS generally have the highest proportion of 

Cyanobacteria, and Rhizobiales, whereas YCS has the highest proportion of 

Bacteroidetes. Actinobacteria are in highest proportion in FB. These results suggest that 

N fixation is an important source of nitrogen for each of the sites along the gradient of 

wetland development. The composition of the bacterial community of N-fixers shifts over 

the course of wetland development, though the total proportion of N-fixers is constant at 

each site.  

Since N fixation is an aerobic process, I expected to see lower abundances of 

bacterial phyla known to fix N in soils below the water table. I did observe lower 

abundances of the Proteobacteria phylum, as well as a lower abundance of Rhizobiales, 

an order within the Proteobacteria phylum and Alphaproteobacteria class (Figure 6). The 

abundance of the Alphaproteobacteria Sphagnum-associated N-fixers decreased at depth 

and accounted for over 19% of the total microbial community abundance in surface peat 

across the gradient of wetland development and only 13% of the total microbial 

community abundance in deep peat sections (data not shown).  

Additionally, I observed small decreases in the N-fixing bacterial community that 

form close symbiotic relationships with plant roots. The decrease in Rhizobiales at depth 

coincided with a decrease in plant roots detected in my soil cores. A previous study 

showed lower rates of N fixation at depth (Kravchenko, 1996), and another study of 

ombrotrophic peats bogs in Patagonia showed low rates of N-fixation deep in the peat 

profile though only in micro-oxic conditions of the rhizosphere (Knorr et al. 2014). My 
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results suggest that N-fixing bacteria are most abundant in aerobic peat soils above the 

water table.  

 

Microbial Community Composition and Ecosystem Development 

Despite shifts in key carbon and nitrogen-processing bacteria and Archaea phyla 

from FB to YCS, the bacterial and Archaeal microbial community at the intact permafrost 

site, FB, largely resembled the older bog site, OCS (Figures 2, 3, and 6). Additionally, 

although there were phyla-specific shifts in SOC-degrading bacteria during bog 

development following permafrost degradation, the summed total abundance of bacterial 

phyla associated with SOC degradation did not change. While I observed large shifts 

across the gradient in bacterial phyla associated with SOC degradation and N fixation, 

specifically at YCS compared to the other sites; I did not observe large shifts between FB 

and OCS with the exception of higher abundances of the permafrost associated 

Actinobacteria. These results suggest that soil microbial community structure is 

fundamentally a product of ecosystem maturity, not ecosystem type (Odum 1969). Along 

the chronosequence of wetland development the bog underlain by permafrost (FB) was a 

mature black spruce forested bog ecosystem. Following the degradation of the permafrost 

this forest bog underwent an ecosystem state change to a bog wetland, and the older 

collapse scar bog ecosystem represented another mature ecosystem, particularly relative 

to the younger collapse scar wetland.  
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Alpha and beta diversity across chronosequence  

 My beta diversity analysis reinforced how different YCS was from FB and OCS 

regarding the C and N cycling microbial community that was discussed above. That is, 

FB and OCS were more similar to one another than FB to YCS or YCS to OCS (Figure 

7). Thus, along the chronosequence of ecosystem development the two sites representing 

relatively mature ecosystems, FB and OCS, were more phylogenetically similar to one 

another compared to the transitional intermediate young collapse scar (YCS). My beta 

diversity analyses also revealed that surface peat sections tended to be more similar to 

one another compared to subsurface peat sections, a common observation in other 

peatland microbial diversity studies (Morales et al. 2006).  

I used Faith’s phylogenetic diversity––a measure of alpha diversity computed as 

the sum of branch lengths of a phylogenetic tree––for the measure of alpha diversity. 

Across the chronosequence of wetland development, I found significant differences in 

alpha diversity across sites (Figure 8). FB and OCS both had significantly lower alpha 

diversity compared to YCS, but were not significantly different from one another. 

Considering diversity has long thought to increase with ecosystem maturity (Margalef 

1975; Odum 1969), it was a surprising finding that both ecosystems representing 

relatively mature ecosystems for their ecosystem type (forested bog underlain by intact 

permafrost and an old collapse scar bog) had lower measures of diversity, possibly 

suggesting that soil microbial diversity is not equivalent to whole ecosystem species 

diversity. Because Faith’s phylogenetic diversity metric is calculated based on branch 

lengths of a phylogenetic tree, these results suggest that the intermediate site and recently 
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formed wetland, YCS, has more distantly related OTUs compared to FB and OCS. 

Diversity also was higher in deep peat soil though these results were not significant 

(Figure 9), a finding that contradicts several recent boreal peatland microbial sequencing 

studies (Frank-Fahle et al. 2014; Serkebaeva et al. 2013). However, microbial diversity is 

strongly positively correlated with pH (Allison and Treseder, 2008; Fierer and Jackson, 

2006) and I observed small increases in pH at increasing peat depths, potentially leading 

to higher levels of microbial diversity deeper in the soil profile.  

 

Microbial Diversity and Environmental Constraints  

 Microbial diversity has been shown to be highly positively correlated to 

ecosystem pH. Fierer and Jackson (2006) used T-RFLP to quantify soil microbial 

diversity across a half-dozen biomes across the Americas. They found that microbial 

diversity could be fit with a quadratic regression; diversity was highest at a pH of roughly 

7, and decreased as pH became more acidic or alkaline. The pH at the intact-permafrost 

forested bog varied from less than 4.0 to 5.5, while pH at the two Sphagnum bog sites 

was less variable (Figure 10). The young wetland was the most acidic site and OCS was 

the most alkaline. Across the ~ 4-5.5 pH range I observed, I found a linear, increasing 

relationship between microbial diversity and pH (Figure 10). These findings have been 

demonstrated by numerous studies across ecosystem types ranging from biomes across 

the Americas, in arable lands, and hay fields in the UK (Lauber et al. 2009; Rousk et al. 

2010; Zhalnina et al. 2014).  
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I also found considerable variation in redox potential along the chronosequence of 

wetland development (Figure 11). Given that the position of the water table relative to the 

peat soil surface was different at each site along the gradient this result is not surprising. 

Generally, OCS was the most reducing site, YCS had intermediate redox potentials, and 

FB was the least reducing site. I expected to see the lowest redox potentials (i.e. most 

reducing environments) at YCS, followed by OCS, and FB based on the position of the 

water table relative to the soil surface. For example, the FB site was underlain by an 

intact permafrost plateau and had the lowest water table position relative to the soil 

surface, and thus the redox potential was the greatest. YCS and OCS both had higher 

water tables relative to the soil surface and lower redox potentials, indicative of a 

reducing environment. Because the water table was higher at YCS I expected to see the 

lowest redox potentials at YCS, a result that I did not observe. Much like the results with 

pH, YCS and OCS had much less variable redox potentials compared to FB.  

Redox potential explained less of the variation in diversity than did pH, although 

the relationship with still significant (R2= 0.151; Figure 11). I found higher microbial 

diversity in more reduced environments compared to those environments with higher 

redox potential values. Though there are few studies that investigate the role of redox 

potential on microbial community structure and diversity, Pett-Ridge and Firestone 

(2005) found that when dominant bacterial OTUs were incubated anaerobically for 

extended periods of time, microbial diversity decreased relative to field conditions as 

well as soils that were incubated with fluctuating redox potentials, a finding that differs 

with my results. In a study investigating microbial diversity at various depths in a 
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California lake, Humayoun et al. (2003) found that microbial communities were more 

diverse at depth in more reduced environments: a finding that Humayoun et al. (2003) 

attributed to a greater potential for niche differentiation in the reduced environments. pH 

is widely documented as the strongest predictor of microbial community structure on 

small and large scales across ecosystem types.   

 

 

Conclusion 

 Along the chronosequence of wetland ecosystem development I found: 1) shifts in 

the general microbial community by quantifying changes in dominant boreal peatland 

bacterial and Archaeal taxonomy using rRNA reference databases; 2) shifts in specific, 

individual microbial group abundances associated with soil organic C degradation and N 

cycling, but not on the total summed abundance of soil organic carbon degraders or N 

cyclers; and 3) differences in microbial diversity within and among the wetland age 

gradient; and 4) pH is positively related to microbial diversity and negatively related to 

redox potential. The microbial community at the relatively mature forested bog underlain 

by intact permafrost more closely resembled the microbial community at the older and 

relatively mature collapse scar wetland compared to the younger collapse scar wetland. 

Given that the YCS wetland formed more immediately following the degradation of 

permafrost at FB than the OCS wetland and I would expect to find that ecosystems that 

sequentially follow in development are more similar than those more distantly, these 

results are surprising. These results suggest that ecosystem maturity––whether it is a 
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mature forested bog underlain by permafrost or a relatively mature collapse scar wetland–

–is a more important driver for ecosystem structure than ecosystem type.  

Along the gradient of ecosystem development I found shifts in the soil microbial 

organic carbon degraders as well as nitrogen fixers. More specifically, along my 

chronosequence of wetland development I found similar abundances of soil organic 

carbon degraders and N fixers in a forest bog prior to permafrost degradation (FB) 

compared with my oldest collapse scar bog site (OCS). The intermediate young collapse 

scar bog (YCS) had strikingly different abundances of several soil organic carbon 

degraders and N fixers. Analyses of beta diversity trees and alpha diversity plots 

highlight similar differences in soil microbial communities between FB and YCS and 

YCS and OCS. That is, I found similar levels of alpha diversity at FB and OCS compared 

to YCS. Interestingly, alpha diversity was highest in the intermediate young collapse scar 

bog (YCS). Alpha diversity was highly correlated with pH, and to a lesser extent redox 

potential. FB and OCS sites represented relatively mature ecosystem states for these 

ecosystem types and these results suggest that ecosystem structure is dependent more on 

ecosystem maturity than ecosystem type. 
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Figure 1. Cartoon schematic of study sites. FB is underlain by intact permafrost, YCS 
bog was most immediately formed following permafrost thaw and had the highest water 
table, and OCS formed after undergoing infilling and peat accumulation. Dotted line 
depicts permafrost thaw disturbance.  
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Figure 2. Phyla level microbial community structure at each site along the gradient of 
wetland ecosystem development on the x-axis. Legend colors are listed in order that 
correspond to figure.  
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Figure 3. Soil organic carbon degraders across site and peat soil section. Top left panel 
represents the total summed proportion of the soil organic carbon degraders; top right 
panel is the proportion of Actinobacteria across site and soil depth; bottom left is the 
proportion of Bacteroidetes; and bottom right is the proportion of Verrucomicrobia.  
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Figure 4. Abundance of the Archaeal methanogens in the Euryarchaeota phylum across 
site and soil depth. Colors correspond to different orders within the Euryarchaeota 
phylum.  
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 Figure 5. Methanotroph abundance across site and soil depth. Type II methanotrophs 
(Methylocystaceae) in the left panel and Type I methanotrophs in the right panel 
(Methylococcaceae). Type I and Type II methanotrophs obtain energy and carbon from 
methane, however, Type I methanotrophs use the Ribulose Monophosphate Cycle to 
incorporate formaldehyde, whereas Type II methanotrophs use formaldehyde through the 
serine pathway. 
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Figure 6. Bacterial abundances of microbes affiliated with N fixation. Top left panel 
represents the total summed proportion total N fixers; top center panel is the proportion 
of Proteobacteria across site and soil depth; top right is the proportion of Actinobacteria; 
bottom left is the proportion of Rhizobiales, bottom center panel is the proportion of 
Cyanobacteria; and bottom right is the proportion of Bacteroidetes. 
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Figure 7. Beta diversity across site and soil depth. FB is represented by red branches, 
YCS by orange branches, and OCS by blue branches. Length of bar in bottom center of 
the figure represents 0.05 nucleotide substitutions per site.  
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Figure 8. Alpha diversity across site as measured with Faith’s Phylogenetic diversity. 
Letters above whiskers on box plots represent statistically different relationships. P value 
above whiskers designates the significance of those different relationships.  
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Figure 9. Alpha diversity across soil depth as measured with Faith’s Phylogenetic 
diversity. The alpha diversity at the surface and subsurface sections was not statistically 
different.  
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Figure 10. Alpha diversity across soil pH as measured with Faith’s Phylogenetic 
diversity. Linear regression explained 52% of the variation of the data points and was 
significant (P < 0.0001). Sites were color-coded: FB was black, YCS was red, and OCS 
was green.  
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Figure 11. Alpha diversity across soil redox potential as measured with Faith’s 
Phylogenetic diversity. Linear regression explained 15% of the variation of the data 
points and was significant (P = 0.0194). Sites were color-coded: FB was black, YCS was 
red, and OCS was green.  
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Illumina adapted primer sequences for the 16s rRNA gene. 

Gene Direction Primer Sequence (5’ – 3’) 
16s rRNA F ATCACGGTGYCAGCMGCCGCGGTA 
16s rRNA F CGATGTGTGYCAGCMGCCGCGGTA 
16s rRNA F AGTCAAGGTGYCAGCMGCCGCGGTA 
16s rRNA F AGTTCCAGTGYCAGCMGCCGCGGTA 
16s rRNA F GTTTCGTCGTGYCAGCMGCCGCGGTA 
16s rRNA F CGTACGATGTGYCAGCMGCCGCGGTA 
16s rRNA F CATGGCATAGTGYCAGCMGCCGCGGTA 
16s rRNA R TCGAAGTGTGCCCCGYCAATTCMTTTRAGT 
16s rRNA R CATTTTCCTGCCCCGYCAATTCMTTTRAGT 
16s rRNA R ATGAGCAGCCCCGYCAATTCMTTTRAGT 
16s rRNA R CAACTAGGCCCCGYCAATTCMTTTRAGT 
16s rRNA R ATGTCAGCCCCGYCAATTCMTTTRAGT 

Table 1. To multiplex all samples in a single lane on a Miseq 2000 run, I used 7 forward 
(F) and 5 reverse (R) primers for each gene. In the primer sequences the following letters 
represent a mix of the following nucleotides: Y = C, T, M = A, T, R = A, G, D = A, G, T, 
K = G, T, V = A, C, G, B = C, G, T, S = C, G.  
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CHAPTER 6 

CONCLUSION 

I. Introduction 

 Long before the coining of the term “Ecosystem” by Arthur Tansley in 1935, 

studies in ecosystem ecology have sought to explore the interactions among living and 

non-living ecosystem components. Ecosystem ecology has a rich history of seminal 

observational and empirical studies that provide an understanding of ecosystem structure 

and function. For example, early work by Clements (1916) and Gleason (1926) explored 

changes in ecosystem structure during succession. Though they proposed radically 

different ideas for how ecosystems organize, these early studies influenced a generation 

of ecologists that explored mechanisms for how ecosystems develop. After work on the 

concept of the ecological niche by Elton (1927), Lindeman (1942) highlighted the 

importance of the flow of energy and trophic dynamics for structuring lacustrine 

ecosystems that influenced ecosystem ecology.  

These early observational and empirical studies have been complimented with 

theoretical work by Odum and Pinkerton (1955) and Odum (1969) that sought to provide 

an underlying theory of ecosystem development. Despite their early efforts, this 

underlying theory remains elusive––to a large extent from the lack of empirical work 

testing these theoretical constructs. My dissertation work sought to empirically test the 

Maximum Power Principle (MPP), a principle developed by Odum and Pinkerton (1955) 

that argues that systems develop to maximize power production or the flow of energy 

through a system. This dissertation addresses how the MPP relates to wetland ecosystem 
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development and examines changes in ecosystem structure and function during 

ecosystem development using the following guiding objectives: 1) To examine the 

historical origins of the MPP and relation to other prominent goal-oriented ecological 

principles; 2) To empirically test the MPP using adenosine triphosphate (ATP) and peat 

soil incubations; 3) To quantify the dynamics of greenhouse gas emissions across a 

chronosequence of wetland development, and because of their role with the production of 

greenhouse gases; 4) To investigate shifts in the microbial community during wetland 

ecosystem development. 

 

II. Summary of Each Chapter 

 In CHAPTER 2 I explored the historical origins of the MPP and traced it back to 

The Second Law of Thermodynamics. The explicit consideration of energy flows in 

ecosystem ecology made The Laws of Thermodynamics––specifically The Second Law 

of Thermodynamics, a construct from physics––an appropriate place to start. I showed 

that the Maximum Entropy Production Principle (MEPP), a goal-oriented principle that 

has experienced renewed interest from disciplines ranging from physics, atmospheric 

sciences, and ecosystem ecology, and the MPP are more similar than dissimilar and 

maximization of power in ecosystems occurs with maximum entropy production. I found 

that these principles have great potential to explain how systems develop, organize, and 

function, but there are no widely agreed upon theoretical derivations for the MEPP and 

MPP, hindering their broader use in ecological research. There is scant work empirically 

testing these principles, which also hinders their broader use. 



 
153 

In CHAPTER 3 I used adenosine triphosphate (ATP) as a proxy for power in 

high-latitude wetland soil systems to test the MPP along a gradient of wetlands that have 

developed following permafrost degradation: a forested bog with permafrost (FB) and a 

young bog and older bog that have formed since their permafrost thawed (young collapse 

scar, or YCS and old collapse scar, or OCS, respectively). The results of this chapter 

suggested that system power decreased temporarily in the ~60-100 year old collapse scar 

bog (YCS) and that the system reorganized to rates of power production that approached 

pre-disturbance levels in the ~400 year old collapse scar bog (OCS), but in a markedly 

different state. This approach allowed me to characterize the outcome of permafrost thaw 

disturbance on subsequent changes in boreal wetland soil structure and function using an 

explicitly thermodynamic construct using the MPP. 

In CHAPTER 4 I examined the temporal dynamics of greenhouse gas emissions 

across the same chronosequence gradient of ecosystem development using soil incubation 

experiments in the laboratory. I found that CH4, CO2, and N2O production were generally 

lower in anoxic soils— that is, in soils below the water table. Along the gradient of 

wetland development, I found that the young collapse scar site (YCS)––formed ~60-100 

years ago and most recently after permafrost thaw––produced the highest levels of CH4 

when compared with a forested bog site (FB) that was unimpacted by thaw disturbance. 

At the old collapse scar bog site (OCS), that collapsed and formed ~400 years ago, I 

observed much lower rates of CH4 compared to YCS and FB. This suggested that as 

wetlands form from permafrost degradation, there is a large but transient pulse of CH4 

emissions. I also found that methanogen abundances were significantly higher at YCS 
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compared to the other sites and exhibited a strong positive relationship with CH4 

production rates. 

In CHAPTER 5 I used the same gradient of wetland development following 

permafrost degradation to characterize changes in microbial communities involved with 

carbon and nitrogen cycling. I used reference 16s rRNA databases to assess taxonomic 

changes in the soil microbial community, and several diversity indices as metrics to 

assess soil microbial community changes in response to ecosystem development. Along 

the gradient of ecosystem development I found shifts in important ecosystem-level 

processes driven by the soil microbial community. I found evidence of large shifts along 

the chronosequence in individual phyla associated with soil organic carbon (SOC) 

degradation as well as in nitrogen fixers, although overall the SOC degraders and 

nitrogen fixers remained a constant fraction of the overall community. The FB and OCS 

sites represented relatively mature ecosystem states for these ecosystem types—forested 

bog and wetland bog, respectively—and these results suggested that ecosystem structure 

is dependent more on ecosystem maturity than ecosystem type. 

 

III. Synthesis and Dissertation Contribution  

Synthesis 

 As a whole, the chapters of this dissertation highlight several important changes 

that take place in soils during ecosystem development: 1) based on this work, ecosystem 

age was a more important factor for ecosystem structure and function relative to 

ecosystem type; 2) inundation and wetland formation in northern ecosystems favors 
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methanogens and methanogenesis; an important consideration given the potential positive 

feedbacks to further climatic warming, and; 3) studies that use goal-oriented principles to 

describe ecosystem structure and function have experienced a renaissance in the 

ecosystem ecology literature.  

The importance of ecosystem maturity––not ecosystem type––for ecosystem 

structure and function was observed in CHAPTER 3 with rates of ATP production: The 

mature forested bog underlain by permafrost (FB) was more similar to OCS, the old 

collapse scar bog than to the younger intermediate site: the collapse scar bog (YCS). I 

also observed this pattern in CHAPTER 4 where FB and OCS were more similar than 

YCS with respect to greenhouse gas production. Additionally, I observed this pattern 

with microbial community composition in CHAPTER 5. Although YCS and OCS were 

of similar ecosystem type, FB and OCS were more mature ecosystems and were often 

more similar in terms of energy production (ATP production), greenhouse gas 

production, and microbial community composition.  

 

Dissertation Contribution 

By operationalizing a theoretical concept, such as ecosystem power, this 

dissertation contributes a novel approach and perspective to studying ecosystem 

development. This dissertation reports several important changes during ecosystem 

development, such as changes in greenhouse gas emissions, shifts in soil microbial 

communities, and changes in ecosystem power production. I also contributed to the 

advancement of theoretical ecology by explicitly documenting the development and 
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relation of several prominent goal-oriented principles in ecosystem ecology to the Laws 

of Thermodynamics. Given the profound importance of energy flows and materials 

cycling, explicitly grounding principles in ecosystem ecology to foundational physical 

laws represents an important advancement and strong link between power, physics, and 

ecology.  
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