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ABSTRACT 

Splicing of digital images is a powerful form of tampering which transports regions 

of an image to create a composite image. When used as an artistic tool, this practice is 

harmless but when these composite images can be used to create political associations or 

are submitted as evidence in the judicial system they become more impactful. In these 

cases, distinction between an authentic image and a tampered image can become important.  

Many proposed approaches to image splicing detection follow the model of 

extracting features from an authentic and tampered dataset and then classifying them using 

machine learning with the goal of optimizing classification accuracy. This thesis 

approaches splicing detection from a slightly different perspective by choosing a modern 

splicing detection framework and examining a variety of preprocessing techniques along 

with their effect on classification accuracy. Preprocessing techniques explored include 

Joint Picture Experts Group (JPEG) file type block line blurring, image level blurring, and 

image level sharpening. Attention is also paid to preprocessing images adaptively based on 

the amount of higher frequency content they contain.  

This thesis also recognizes an identified problem with using a popular tampering 

evaluation dataset where a mismatch in the number of JPEG processing iterations between 

the authentic and tampered set creates an unfair statistical bias, leading to higher detection 

rates. Many modern approaches do not acknowledge this issue but this thesis applies a 

quality factor equalization technique to reduce this bias. Additionally, this thesis artificially 

inserts a mismatch in JPEG processing iterations by varying amounts to determine its effect 

on detection rates.  
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1 INTRODUCTION 

This chapter provides the problem statement addressed in this thesis, objectives this 

thesis hopes to achieve, the methodology followed, and contributions made to the field of 

image splicing detection. 

1.1 PROBLEM STATEMENT 

In the last few decades, generation and consumption of digital media has seen a 

dramatic increase around the world. Coupled with the growth of consumer compute power, 

evolving software products, and a global sharing mechanism (i.e. the Internet and content 

hosting sites), it is now easier than ever to create, manipulate and share content. While the 

evolution of techniques and software surrounding digital media have allowed users to 

express themselves in interesting and explorative ways, it has also become increasingly 

difficult to determine the authenticity of content when a user encounters it blindly; 

particularly in the case of digital imaging. While musings on the authenticity of an image 

can be trivial, the distinction between authentic and tampered content can also have more 

serious implications. In the realms of politics and the judicial system, for instance, 

manipulation of images can sway opinion of a public figure or influence a verdict in a court 

of law if they are perceived to be authentic. An image can be tampered in a number of 

different ways, but image splicing is arguably the most powerful tampering operation. 

Image splicing means taking a region from a source image and transporting it to a 

destination image. The source and destination image can either be the same or different but 

regardless it can have a substantial impact on the high level message of an image. There 
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have been a number of splicing detection frameworks proposed over the years and though 

a number of them have produced impressively accurate solutions, a subtle characteristic of 

the datasets used to test them may be unfairly biasing their reported accuracy. Because a 

tampered image may contain a region from a JPEG-processed image and then processed 

and written as a JPEG, tampered images often have two iterations of JPEG processing 

applied to them. Authentic images, on the other hand, will only have one iteration of JPEG 

processing applied to them. This mismatch in the number of iterations of JPEG processing 

reveals itself in a statistical pattern that makes differentiating authentic and tampered 

images more simple than can be expected with real world images. Additionally, with so 

much focus on identifying novel splicing detection frameworks, the value of preprocessing 

images before splicing detection has gone largely unexplored.  

1.2 OBJECTIVES 

This thesis aims to further the research field of image splicing detection through 

the following explorations: 

1. Examine the effect of various preprocessing techniques on the quality of 

feature vectors extracted for the purpose of differentiating authentic images 

from images which contain spliced regions 

2. Vary the JPEG quality factor levels between authentic and tampered sets 

and examine the impact on detection accuracy rates  
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1.3 METHODOLOGY 

Many image splicing detection publications are concerned with uncovering new 

methods of feature extraction that produce vectors which can accurately lead to the 

identification of an authentic or tampered image. This study is unique in that it uses an 

established splicing detection framework and instead focuses on a variety of image 

preprocessing techniques that look to enhance accuracy rates. Preprocessing techniques 

include blurring along JPEG block line boundaries and image level filtering. Content 

adaptive preprocessing techniques are also explored.  

Once feature vectors have been extracted from every image in the authentic and 

tampered set, they are used to train a machine learning classifier. Another set of vectors 

test the machine learning classifier, thus evaluating the effectiveness of the preprocessing 

techniques explored.  

Research in the field of image splicing detection calls attention to the impact of a 

mismatch in JPEG quality factors between authentic and tampered image datasets. This 

mismatch has been shown to influence classification through statistical patterns which 

effectively makes splicing detection easier. This approach effectively equalizes the quality 

factors for each dataset in order to neutralize this statistical bias and test detection 

techniques in a more realistic way.  

The final section of this thesis takes a more in-depth look at the effect of 

mismatches in quality factor between the authentic and tampered sets. Whereas the goal in 

previous sections of this thesis is to evaluate performance while both sets are on equal 
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footing, this section gradually varies an artificially created quality factor mismatch to 

examine its effect on detection rates. 

1.4 CONTRIBUTIONS 

This thesis shifts focus from identifying new feature extraction methods and instead 

proposes that the quality of features extracted from existing techniques can be increased. 

Its focus on preprocessing techniques has not been encountered in any other publications 

that are currently available. Moreover by exploring the impact of varying JPEG quality 

factors more thoroughly, it advances research awareness of how to handle content with 

possibly unknown levels of compression when encountered in the real world.   
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2 BACKGROUND / ANALYSIS OF SPLICING DETECTION 

Anyone who has sat down to use an image editing software will recognize that there 

are many ways to manipulate an image. Of these manipulation possibilities, none have 

quite as much power to change the high level message of an image as splicing. Splicing 

copies a region from a source image and pastes it into a destination image. In some cases, 

the source and destination image are the same one (Figure 2.1) but they can also be 

different (Figure 2.2). 

 

Figure 2.1: Duplicating A Region And Repositioning It Within The Same Image [1] 

 

Figure 2.2: Extracting A Region From A Source Image And Moving It Into A Destination 

Image [1] 

While the above examples are harmless, splicing forgeries can have powerful 

messages such as in the doctored image below (Figure 2.3) which surfaced during the 2004 
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United States Presidential Election and was a forgery that some believe intended to 

“embarrass the Democratic frontrunner, John Kerry” [2].  

 

Figure 2.3: Controversial Image Splicing Forgery Combining Two Different Images For 

Political Means [3] 

Figure 2.3 and its associated controversy [4] illustrates the point that the 

authenticity of an image can be a nontrivial attribute. For this reason, there is an 

understandable need for mechanisms which can accurately identify an image that has been 

spliced.  

2.1 DETECTION TECHNIQUES 

Querying a technical publication database such as IEEE Xplore [5] will show that 

the topic of “image tampering detection” has been researched in a traceable way since 1998 

[6]. Looking at the titles of early papers (submitted between 1998 and 2000), the 

prevalence of the keyword “watermarking” indicates the frame of mind with which image 

tampering detection was first approached. Similar to the concept of watermarking in the 

physical world, watermarking for digital images embeds a verifiable piece of information 

into the image that serves as an indicator of authenticity or origin. This type of tampering 
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prevention is reliant on “active detection techniques” as opposed to “passive detection 

techniques”. The distinction between these two terms will be explained below. 

2.1.1 Active Detection Techniques 

Active detection techniques operate on the principle that there is some sort of data 

structure embedded within an image that vouches for its authenticity or origin. An example 

of this is watermarking, as was mentioned earlier. In the digital realm watermarking is an 

application of digital steganography which is the concept of hiding data within data [7]. 

Digital mediums that are tolerant to noise (e.g. images and audio) are candidates for 

steganographic techniques such as watermarking because additional data can be almost 

imperceptibly added to the carrier – especially when added to frequency representations of 

the signal.   

Much like cryptographically signing a digital package, however, it is important to 

have a trusted entity that is certifying a particular package. In the same way that website 

certificates are only as credible as the certificate authority, the credibility of a watermarked 

image can depend on the entity that applies the watermark. Because of the data flow 

associated with digital image acquisition, the step in the process where watermarking is 

applied can also affect how credible an image’s authenticity is.  [8] provides a high level 

block diagram of a typical pipeline that a digital image capture follows: 
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Figure 2.4: Block Diagram Of A Typical Digital Image Acquisition Pipeline 

As Figure 2.4 illustrates, there are numerous steps in the pipeline where a 

watermark could be embedded in an image. Proposals tend to apply watermarking at the 

end of the pipeline – either between the digital image and storage or after the data has 

reached storage.  

The former option would require watermarking hardware to be included in the 

camera hardware itself such as in [9]. This is advantageous because it enables a camera to 

self-authenticate the images it captures before it makes its way to storage or even leaves 

the device. Researches such as in [10] also acknowledge the need of a real time solution to 

camera-contained hardware watermarking as the image taking process should not be gated 
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by processing time to perform the watermarking operations. As of the time of writing, there 

are no commercially available cameras that watermark automatically within a device. [9] 

identifies models made by manufacturers Kodak and Epson but even at the time of its 

publishing (2004) these models were already discontinued. 

If watermarking is not to be done within the camera device itself, then that means 

it is to be done after the digital image already makes it to the storage phase. Methods 

targeting this step can be inherently less trustworthy because there is an infinite amount of 

time where the watermarking process can be applied after the storage stage has been 

reached. This means that an image could be captured, stored, manipulated, and then passed 

off as authentic. 

Regardless of which stage a watermark is applied, its “fragility” can lend to the 

ability of detecting tampering [11]. In some implementations, fragile watermarking 

techniques can not only tell if an image has been tampered but which regions have been 

attacked. Fragile watermarks do have their challenges, however, as innocent operations 

such as lossy compression can also destroy them. 

2.1.2 Passive Detection Techniques 

In an ideal world, active detection techniques would be an effective and reliable 

indicator of whether an image has been tampered. However, their limitations call for 

techniques that blindly evaluate authenticity. Passive detection techniques make informed 

guesses about whether an image has been tampered based on exploiting patterns across 

both authentic and tampered content. Contrasting the watermark-centric approach that 

dominated tampering research nearly two decades ago, most modern approaches share a 
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common element of extracting feature vectors and classifying them with machine learning. 

These passive detection techniques often bank on using machine learning frameworks 

(such as libSVM [12]) to train a classifier on feature vectors that indicate if an image is 

tampered or authentic and then testing the classifier to see if it properly categorizes an 

arbitrary set. The high level process for these modern approaches is fairly simple: 

1. Reference a dataset of authentic images and a dataset of tampered images 

2. For each image in the authentic dataset, extract a meaningful feature vector and 

create a data structure of these feature vectors for the entire authentic dataset 

3. For each image in the tampered dataset, extract a meaningful feature vector and 

create a data structure of these feature vectors for the entire tampered dataset 

4. Train the classifier with examples of feature vectors from authentic images and 

examples of feature vectors from tampered images 

5. Test the classifier by presenting it with unmarked authentic images and unmarked 

tampered images and record the rate at which authentic images are identified as 

authentic (true positive), tampered images are identified as tampered (true 

negative), authentic images are identified as tampered (false negative) and 

tampered images are identified as authentic (false positive). 

[13] surveys passive image splicing detection techniques that have emerged 

between 2004-2015, organizing the described frameworks into those which examine image 

data as standalone data structure and those which attempt to correlate an image back to its 

capture device or to the environment in which it was captured. The next two sections 

explore these branches of passive detection. 
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2.1.2.1 Passive Techniques Treating Images As A Standalone Entity 

 A number of approaches successfully use image data by itself to draw conclusions 

about image authenticity. One subset of these techniques leverage the mindset that an 

image is a two dimensional signal. With this focus an analysis of resampling/interpolation 

inconsistencies ( [14] , [15]) or noise inconsistencies ( [16]) can be used to indicate splicing 

forgery. [17] uses bicoherence analysis which traditionally has applications in human 

speech splicing detection and aims to catch “abrupt discontinuities in an image” inherent 

to splicing [13]. [18] looks to frequency analysis of multiple block sizes with DCT and 

transitions between these blocks (Markovian rake). [19] uses the “statistical difference 

between images and its filter version, ten metrics including absolute error, mean square 

error, four correlation measures, two spectral measures and two human visual system 

measures” [13]. 

Other techniques look to image structure to identify splicing attempts. This is to say 

that they focus on texture analysis, pixel adjacency or segmentation of distinct regions for 

example.  [20] and [21]  use texture analysis through local binary pattern and multi 

resolution Weber descriptors respectively. [22] leverages probabilities of transitions 

between adjacent pixels using a Markov chain while [23] improves this approach by using 

more complex sets of pixel neighbors. [24] segments images and analyzes region-based 

prediction error in combination with Haralick texture features. [25] examines high level 

image structure in the context of saliency and proposes saliency features augment existing 

tampering detection methods. 
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One final subset of these techniques looks to the problem from the mindset of the 

splicing process and high level patterns that will be left behind; particularly steps taken to 

conceal the tampering effort. [26] aims to distinguish manual blurring from natural blurring 

by modeling the Gaussian blur radius along edges while [27] and [28] examine the problem 

from an edge width perspective. [29] also looks to model manual blurring but expands the 

effort to group regions with similar blur models. [30] estimates the total amount of blurring 

on a block-by-block basis to elicit inconsistent blur amounts. [31] examines image 

gradients to model motion blurring in an image and identify when an individual has 

attempted to conceal a splice with this type of blur. 

2.1.2.2 Passive Techniques Treating Images As A Product Of The Environment 

An alternative to evaluating images as self-contained entities is to consider the 

context in which they were captured. All authentic images were captured by an imaging 

device located in some environment and these techniques aim to model both of these 

components to identify inconsistencies.  

Approaches characterizing the camera with which a picture was taken identify 

inconsistencies in regions that point to different capture devices. [32] examines artifacts 

induced by demosaicing. [33] looks at the sharpness of colors and approximates what a 

demosaiced image should look like to differentiate between authentic and tampered 

images. [34] leverages the combination of a camera’s unique combination of a 

CCD/CMOS sensor, demosaicing filter, and camera response function to generate a 

fingerprint to assign to image regions. [35] attempts to profile 17 different CCDs to map 
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image regions to capture sensors. [36] analyzes geometric features in an image to associate 

with a specific capture device and use inconsistencies to point to tampering attempts. 

Some other approaches look to identify splicing attempts through inconsistencies 

in the ambient environment of the scene. [37] exclusively examines images where people 

are the subjects and models an illuminant color to identify inconsistencies. [38] also looks 

to illuminant inconsistency but does so with all types of subjects. 

2.2 IMAGE TAMPERING DATASETS 

As can be seen in the previous section, there are an abundance of passive detection 

techniques; some with very specific focuses. Without a standard dataset of authentic and 

tampered images, it would be difficult to conduct any sort of meaningful comparison 

between competing implementations of the solution to this problem. This is because digital 

images are extremely diverse; the same can be said of tampering techniques. To support 

research of splicing detection, multiple image datasets comprised of authentic and 

tampered images have been generated. The most well-known datasets originate from 

Columbia University and the Institute of Automation, Chinese Academy of Sciences 

(CASIA). 

2.2.1 Columbia Image Splicing Detection Evaluation Dataset 

Columbia University was the first to introduce a dataset to further research in this 

field with their “Image Splicing Detection Evaluation Dataset” in 2004 [39]. This dataset 

consists of authentic and spliced image blocks, which are further divided into different 

subcategories (smooth vs. textured, arbitrary object boundary vs. straight boundary)” [39]. 
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It has 933 authentic images and 912 tampered images. All of the authentic and tampered 

images are 128x128 resolution, have no color information, and are an uncompressed file 

format (BMP). Images in the “Image Splicing Detection Evaluation Dataset” are not full 

compositions but instead regions from images in the CalPhotos collection [40]. 

 

Figure 2.5: Example Authentic (Left) And Tampered (Right) Images In The Columbia 

"Image Splicing Detection Evaluation Dataset" 

2.2.2 Columbia Uncompressed Image Splicing Detection Evaluation Dataset  

In 2006, Columbia University released another dataset called “Columbia 

Uncompressed Image Splicing Detection Evaluation Dataset” [41]. In many ways this 

dataset is more robust than their initial offering, with images of varying resolutions 

(757x568 to 1152x768) that contain color information, and again are stored in an 

uncompressed file format (TIF). Spliced regions are incorporated without any post 

processing and visually most of the spliced regions can be readily identified with the naked 

eye. Images in this dataset were captured by the researchers themselves and include 183 

authentic images and 180 tampered images. This set is an improvement over the first set 
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because the inclusion of content with color information and full compositions more closely 

mimics images that the average person could encounter. 

 

Figure 2.6: Example Authentic (Left) And Tampered (Right) Images In The Columbia 

"Uncompressed Image Splicing Detection Evaluation Dataset" 

2.2.3 CASIA Tampered Image Detection Evaluation (TIDE) Database V1 

With these two datasets already established, CASIA developed their own dataset of 

authentic and tampered images called the TIDE database v1 [42] in 2010. The CASIA 

TIDE database v1 is composed of 800 authentic and 925 tampered images. All of the 

authentic and tampered images are 384x256 pixel resolution with color information and in 

a compressed file format (JPEG). CASIA TIDE v1 makes a commitment to providing a 

diverse set of authentic and tampered images:  

• 8 different subject categories (Scene, Animal, Architecture, Character, Article, 

Plant, Nature, Texture)  

• Classification for tampered region type (spliced region from within same image 

or from different image)  
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• Splicing operation type (spliced region is resized, deformed, rotated, or left 

alone) 

This set features images from the Corel dataset (which does not appear to be available any 

longer at the link referenced in [43]) in addition to some that have been generated by 

themselves. This set is an improvement over the second Columbia set because of the 

representation of different subject categories and greater number of examples.  

 

Figure 2.7: Example Authentic (Left) And Tampered (Right) Images From The CASIA 

TIDE Database V1  

2.2.4 CASIA Tampered Image Detection Evaluation (TIDE) Database V2 

Later in 2010, CASIA created the TIDE database v2 [1]. The CASIA TIDE 

database v2 is arguably the most extensive and challenging of these datasets, comprised of 

7,200 authentic images and 5,193 tampered images. It is a superset of the CASIA TIDE 

database v1 but also brings new components and was made with the intention to provide 

more comprehensive tampering examples [43]. Like the CASA TIDE database v1, there 

are there are tampered region type classifications, and splicing operation classifications. 

The CASIA TIDE database v2 improves upon the CASIA TIDE database v1, however, by 
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introducing an additional subject category (“indoor”), and also tracks the size of the 

tampered region (small, medium, large) as well as incorporating post processing techniques 

onto the tampered image (blurring of the tampered region’s boundary area or blurring in 

regions other than the boundary of the tampered region). The CASIA TIDE database v2 is 

also a multi-resolution dataset and gets its content again from the Corel database, some 

content from the CASIA TIDE database v2 creators, and also other websites that have 

provided permission. This dataset also features both compressed (JPEG) and 

uncompressed (BMP, TIF) content. As described by the creators of the CASIA TIDE 

datasets, “database v2.0 is more challenging and comprehensive compared with database 

v1.0 because of post-processing used, diversity of image formats and use of images from 

different sources” [43]. 

 

Figure 2.8: Example Authentic (Left) And Tampered (Right) Images From The CASIA 

TIDE Database V2  

2.2.5 The Importance of Equalizing JPEG Compression Applications 

 In the current landscape of digital images, the most likely file format a user will 

encounter in their daily activities is a compressed JPEG. For this reason the CASIA TIDE 
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databases are the most alluring for research purposes in order to emulate the common use 

case. The CASIA TIDE database v2 is itself alluring because its inclusion of post 

processing techniques to create convincing forgeries and thus has the capability to test a 

passive detection framework most thoroughly. However, one publication identifies a need 

to be wary of blindly choosing the CASIA TIDE database v2 as the most rigorous – at least 

when using the database as-is. 

 [18] calls attention to the fact that there is a mismatch in the number of compression 

passes when comparing authentic images and tampered images in the CASIA TIDE 

database v2. Because many images in the authentic set are JPEG compressed in the first 

place, splicing a region from a JPEG-compressed image into another JPEG-compressed 

image and then compressing that new composite image again introduces a statistical bias. 

 The table from [18] below substantiates this claim by showing the mean, variance, 

skewness and kurtosis for the luminance and chrominance channels of the edge images two 

source images ( �� and �� ). ��  is created by taking a random uncompressed image 

(ucid00017.tif from [44]) and subjecting it to JPEG compression with quality factor = 95. 

This means that ��  has chrominance subsampling (4:2:0). ��  takes ��  and compresses it 

with Adobe Photoshop with level 11. �� has the resolution of its chrominance channels 

reduced by a factor of 2 while �� does not.  
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Table 2.1: Comparison Of Edge Image Statistics [18] 

This statistical bias does indeed influence classification accuracy rates as will be 

shown in Section 3.3.1. However, the CASIA TIDE database v2 data can still be used for 

testing with this bias in mind and some preprocessing on the authentic and tampered sets 

which will be described later.   
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3 PROPOSED FRAMEWORK 

With an understanding of techniques that are currently available this thesis 

investigates how to further the field of passive image splicing detection. Commonly a new 

research endeavor will propose a novel approach for extracting features. As can be seen in 

Section 2.1.2 this mindset has done much to uncover various perspectives from which to 

address this problem. However, there is not much attention paid to the concept of 

preprocessing the input images as a way to strengthen existing approaches. This study 

makes preprocessing a focus and works off of the Markovian rake feature extraction 

technique put forth by the authors in [18]. This reference study was chosen on the basis 

that its accuracy rates are competitive with other modern approaches, as will be shown in 

Section 3.3.1. Moreover, the publication describing the reference framework is unique in 

the attention that it pays to the issue of authentic and tampered datasets with unequal 

processing as was described in Section 2.2.5.  

In the following parts of this chapter, the high-level overview of the framework will 

be discussed, and more detailed descriptions of each of the steps will follow. 

3.1 FRAMEWORK OVERVIEW 

As was discussed in Section 2.1.2, many passive image tampering detection 

frameworks follow the same general form. The process utilized in this project observes this 

general framework but also spends a considerable amount of time investigating the 

effectiveness of various preprocessing techniques. The high level framework followed in 

this project can be found below: 
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1. Selection of images for testing 

2. Preprocessing of images 

3. Feature extraction from test images 

4. SVM classification 

The following sections of this chapter will provide a more detailed description of 

each of the four steps listed above. 

3.2 SELECTION OF IMAGES FOR TESTING 

Because the CASIA TIDE database v2 [1] is the most challenging dataset available, 

it was chosen as the dataset to test the proposed solution. In order to provide the same 

number of authentic and tampered images to the classifier in a later step, subsets of 5,000 

authentic images and 5,000 tampered images were randomly chosen to conduct testing. 

These members were chosen by using the randperm [45] function in MATLAB to create 

a seeded random vector of indexes, based on the size of the authentic and tampered 

datasets. The first 5,000 of these indexes were then provided to the lists of authentic and 

tampered images to extract a random sampling from the entirety of their respective full 

sets. These randomly selected sets for authentic and tampered images were saved to 

provide a consistent basis for comparison between exploratory testing implementations. 

3.3 PREPROCESSING OF IMAGES 

Before subjecting each image to feature extraction processes there are a number of 

preprocessing techniques that were explored to examine their effect on accuracy rates. At 
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a high level, these techniques can be grouped into JPEG quality factor equalization, color 

space conversion, JPEG block line blurring, and image level filtering.  

3.3.1 JPEG Quality Factor Equalization 

Section 2.2.5 introduced the importance of equalizing the number of JPEG 

compression passes applied to tampered and authentic content. The claim that this 

mismatch in the number of JPEG compression iterations applied to authentic and tampered 

content is in fact substantiated in trial runs, even more so than in the statistical mismatches 

identified in Table 2.1. Using the feature extraction methodology prescribed in [18], we 

can see in Table 3.1 that accuracy rates are outstanding when the CASIA TIDE database 

v2 data is used as-is. The results below show detection rates when only features from the 

Y channel are used, when features from the Y and Cb channels are used, and when features 

form all three channels are used. 

Channels TPR TNR AR 

Y 86.99 % 91.37 % 89.19 % 

YCb 95.88 % 97.19 % 96.54 % 

YCbCr 95.12 % 97.59 % 96.36 % 

Table 3.1: Performance of Reference Algorithm on Un-Equalized Quality Factors 

[18] proposes a process for preprocessing the CASIA TIDE database v2 authentic 

and tampered datasets which should eliminate the unfair statistical biases noted in the 

previous chapter: 

1. Recompress 7,437 JPEG authentic images by MATLAB with quality factor = 84  

2. Compress 3,059 TIFF tampered images by MATLAB with quality factor = 84  
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3. Leave 2,064 JPEG tampered images untouched. 

Recompressing the JPEG-compressed authentic subset with a quality factor of 84 

(using the ‘quality’ flag in MATLAB’s imwrite [46]) puts this subset of images at the 

same number of compression passes as the JPEG tampered content. This is because JPEG 

tampered content likely comes from two authentic JPEG images which have been JPEG 

compressed again once the splicing operation has occurred.  

Compressing the TIFF tampered images addresses the case where two JPEG 

authentic images were combined into one via image via splicing techniques but the 

composite image is not compressed again. Subjecting these images to another pass of JPEG 

compression puts this content in the same position as the previous set subjected to 

preprocessing. 

The remaining JPEG tampered images do not require any preprocessing at this stage 

because they foreseeably have been subjected to the same number of compression passes 

as the previous two sets. 

We can see that this preprocessing does in fact make a difference and has a 

considerable impact on the detection rates: 

Channels TPR TNR AR 

Y 76.11 % 80.40 % 78.28 % 

YCb 79.42 % 85.17 % 82.31 % 

YCbCr 81.98 % 84.09 % 83.05 % 

Table 3.2: Performance Of Reference Algorithm On Dataset With Equalized Quality 

Factors 
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A difference of roughly 13.5% in accuracy rates between the optimal cases in each 

configuration draws indisputable attention to the necessity of this preprocessing. The 

significant drop-off in accuracy rates can be considered an indication of the “toughness” 

of the problem incurred by this JPEG quality factor equalization preprocessing.  

It is the belief of this author that the a framework’s effectiveness for solving the 

image splicing tampering detection problem should be done with respect to the worst case 

conditions. This means that the authentic and tampered images should be evaluated without 

any known biases influencing results. By eliminating this known quality factor mismatch 

bias, a framework can be judged by the quality of the differentiating features it extracts. 

For this reason, the compression application equalizing technique described previously is 

used to preprocess the CASIA TIDE v2 authentic and tampered images for use in this 

project. 

More recent image splicing approaches such as [20] and [21] use the CASIA TIDE 

v2 dataset but do not account for the quality factor mismatch and have accuracy rates of 

98% and 93% respectively. Because [18] has performance that is in line with these 

approaches on the same dataset when this quality factor equalization preprocessing is not 

done, it is fair to say that the reference approach is competitive with modern approaches. 

Moreover improving on the reference approach means that this research contributes to a 

modern use case and is not just improving a weaker implementation. 

3.3.2 Color Space Conversion 

Due to the data structure of a color image, processing must always be done on three 

separate layers. Image data is often represented in three color planes with each containing 
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intensity values for red, green, and blue. This is commonly referred to as the RGB color 

space. It is the way that digital images are first captured using color filter arrays (CFAs) 

which use different filtered sensors that capture red, green, and blue light separately much 

like different cones in the human eye. Interpolation methods (called demosaicing [47]) then 

construct full planes for red, green, and blue information which are overlaid to produce a 

color image with an additive color model. 

Although the RGB color space is powerful in that it is extremely intuitive, there is 

also value in transforming the RGB information to keep its luminance (light intensity 

information) and chrominance (color information) information separate. A number of color 

space conversions achieve this but the conversion from RGB to YCbCr is one of the most 

popular. To represent image data in the YCbCr color space, the following conversion 

equations can be applied to an image pixel that is in the RGB color space: 

 � = (0.299 × �) + (0.587 ×  ) + (0.114 × !) Equation 1 

 "# = −(0.299 × �) − (0.587 ×  ) + (0.886 × !) Equation 2 

 "& = (0.701 × �) − (0.587 ×  ) − (0.114 × !) Equation 3 

 

Luminance information is contained in the Y component and is a weighted sum of 

the red, green, and blue values for a pixel while the chrominance information is stored with 

respect to blue and red in the Cb and Cr channels. Although MATLAB makes this 

conversion simple to execute at a high level using the function rgb2ycbcr [48], 

documentation acknowledges observation of the International Telecommunication Union 

standard which specifies the coefficients listed above in the transition matrix [49]. 
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Converting to the YCbCr color space is useful because while it is now known that 

the human vision system is much more sensitive to changes in luminance information than 

chrominance information, the properties of chrominance channels can sometimes help 

identify evidence of splicing tampers. The implication of this observation is that tampering 

attempts that may be imperceptible to the naked eye can reveal itself in the chrominance 

channels.  

The framework of [18] proposes the omission of chrominance channels in the 

image splicing tampering detection framework. As can be seen in Table 3.1 and Table 3.2, 

however, there is value in including features extracted from these planes into an image’s 

feature vector. There is an increase in accuracy rates of at least 4% that is seen in all 

implementations. [50] acknowledges that “[s]ince human are more sensitive to luminance 

than to chrominance, even if spliced image looks natural to human, some unnatural clues 

will be left in chrominance channel”. Indeed multiple publications written by Wang, Dong 

and Tan ( [50], [22] ) emphasize the effectiveness of including chrominance channels to 

image splicing tampering detection frameworks with a marked increase in accuracy. 

3.3.3 JPEG Block Line Blurring 

The reference approach uses DCT to represent the frequency domain content of the 

images it processes. This is because splicing, from a human perspective, is often identified 

due to unnatural edges surrounding the spliced region. If a feature vector can facilitate the 

identification of unusual frequencies and edges associated with tampered regions then it is 

successful. For this reason, it is desirable to eliminate any unnatural frequencies or edges 

that exist in images that are regularly occurring.  
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Common to all JPEG processing, all channels (YCbCr) are subjected to 8 × 8 non-

overlapping block DCT as can be seen in Figure 3.1. Due to coarse quantization of low-

frequency DCT coefficients, a mosaic pattern may appear in the decompressed image even 

in smooth regions [51]. This can also lead to a regular pattern observable in JPEG-

compressed images, which is visibly unnatural and potentially can produce frequencies or 

edges that can interfere with the detection of those associated with spliced regions.  

 

Figure 3.1: JPEG Processing Block Diagram [52] 

Figure 3.2 below shows an image with mostly smooth regions while Figure 3.3 

zooms in on a region of Figure 3.2 a region where block-based processing is particularly 

evident in a regular pattern. Because the reference image has been zoomed in so much, it 

is possible to differentiate between each pixel. Counting the number of pixels between 

regularly appearing pattern artifacts, affirms that these patterns coincide with the 8 × 8 

blocks used by the JPEG algorithm. 
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Figure 3.2: JPEG-Compressed Image With Evident Block Lines (Au_Nat_00093.jpg) 

 

Figure 3.3: Zoomed-In Region Of JPEG-Compressed Image With Evident Block Lines 

(Au_Nat_00093.jpg) 
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Figure 3.4 below shows the same image as in Figure 3.2 after the JPEG block lines 

have been blurred. Figure 3.5 zooms in on the same region captured in Figure 3.3 to 

provide to show the visual effect of blurring along JPEG block lines.  

 

Figure 3.4: Au_Nat_00093.Jpg After Block Line Blurring 

 

Figure 3.5: Zoomed-In Region Of Au_Nat_00093.jpg After Block Line Blurring 
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It is apparent in comparing the zoomed in regions of the reference image before 

and after block line blurring that this regular pattern becomes somewhat less pronounced. 

This should reduce any effect this regular pattern has on distracting the classifier and draw 

more attention to the “real” unnatural edges produced by splicing tampers. 

Figure 3.6 shows a sample 8 × 8 block in a given image with the borders to be 

blurred shown in red. The numbers in the border pixels and adjacent pixels demonstrate an 

example weighting scheme for a weighted average of boundary pixels.  

 

Figure 3.6: Illustration Of Block Line Blurring With Sample Coefficients 

Figure 3.7 visualizes an image level DCT of Au_nat_00093.jpg without any JPEG 

block line blurring applied along with three different weighting schemes to show the effect 

of the proposed blurring on the frequency content of the image. 
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Figure 3.7: Impact Of Changing JPEG Block Line Blurring Weightings On Frequency 

Content 

The above figure shows that the proposed block line blurring scheme does affect 

the frequency content of the images but only slightly which is to be expected. The lower 

right hand corner (higher frequencies) is expressing a slightly cooler coloration than in the 

original, suggesting that the block line blurring was effective in removing the higher 

frequencies associated with the regularly occurring block patterns. 

3.3.4 Image Level Filtering 

With similar goals of blurring block line boundaries to reduce the impact of JPEG-

induced unnatural edges, another preprocessing technique explores the effectiveness of 

globally processing an image. Due to the focus on edges in this analysis, the two high level 

processing techniques explored were blurring and sharpening. 
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3.3.4.1 Image Level Blurring 

In the same way that JPEG block boundary blurring aims to remove high 

frequencies induced by block processing, image level blurring also has the intention to 

remove the highest frequency noise in an image. To blur an image, MATLAB provides a 

number of parameters that can be tuned.  

Blurring is a two-step process using MATLAB, beginning with the creation of a 

filter using fpsecial [53] that is then applied to an image using imfilter [54]. 

Customization of the filter is mostly available within fspecial(type, parameters). 

Details for averaging and Gaussian blurring filters are below: 

Type Description Parameters 

average (averaging filter) • hsize: size of the filter (3x3 by default ) 

Gaussian (Gaussian lowpass filter) 
• hsize: size of the filter (3x3 by default) 

• sigma: standard deviation (0.5 by default) 

Table 3.3: MATLAB Blurring Filter Types and Parameters 

The idea behind image level blurring as a preprocessing technique in this study is 

to essentially eliminate higher frequency noise. This is to say that the degree of blurring is 

ideally not high. An example of the slight amount of blurring targeted for this preprocessing 

stage is shown in Figure 3.8. 
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Figure 3.8: Au_ani_10208.jpg Original (left) And Gaussian Blurred With � = 0.5 And 

ℎ�	
� =  3�3 (right) 

As can be seen by Figure 3.8, blurring an image with such low intensity does little 

to visually change the image but it does have a perceptible impact on the frequency content 

of the image. Figure 3.9 visualizes an image level DCT of Au_ani_10208.jpg without any 

blurring applied. The lower right hand corner of this figure is where the high frequencies 

in the image are represented and the “warmth” of its coloration indicates the amount of 

information there. Figure 3.10 provides the same visualization for Au_ani_10208.jpg after 

Gaussian blurring has been applied with filter size 3 × 3 and � = 0.5. Comparatively, the 

lower right hand region is represented by much cooler colors, indicating some smoothing 

and reduction in higher frequencies, as is desired.  
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Figure 3.9: Frequency Content Of Au_Ani_10208.jpg (Original) 

 

Figure 3.10: Frequency Content Of Au_Ani_10208.jpg After Gaussian Blur 



 

35 
 

To understand the effect of modifying the filter size and � parameters for Gaussian 

blur filter generation, the figure below shows how the frequency information responds to 

these changes. Note that the notation “ℎ�	
� = � × �” will be used in the rest of this 

thesis to indicate a filter size that equals the size of the image it will be blurring. 

 

Figure 3.11: Impact of Changing Gaussian Blurring Filter Parameters On Frequency 

Content 
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Figure 3.11 illustrates that for Gaussian blurring, both the filter size and � impact 

what will later be called the “blur amount” which is tied to the degree with which the 

frequency information is modified. 

To understand how the blurring with the averaging filter affects an image’s 

frequency information, the figure below shows the DCT representation for three different 

filter sizes: 

 

Figure 3.12: Impact of Changing Averaging Blurring Filter Parameters On Frequency 

Content 

Figure 3.12 shows that changing the filter size when blurring with the averaging 

filter has a large impact on the frequency information in the image. Selecting  ℎ�	
� =
� × �  changes the frequency content drastically, but also the visual content. A 
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comparison of visual impacts on resulting blurred images will be addressed in Section 

4.1.3.1.1. 

3.3.4.2 Image Level Sharpening 

The motivation for sharpening an image in the preprocessing stage is to accentuate 

edges in the hopes that doing so will also highlight the differentiating features for spliced 

regions in tampered content. MATLAB has a built-in image sharpening feature called 

imsharpen [55]. This function has a number of parameters which can be tuned to achieve 

an optimal configuration. 

Parameters for this function include the following: 

Type Description Parameters 

imsharpen (sharpening filter) 

• ‘Radius’: Standard deviation of the 

Gaussian lowpass filter (1 by default) 

• ‘Amount’: Strength of the sharpening 

effect (0.8 by default) 

• ‘Threshold’: Minimum contrast required 

for a pixel to be considered an edge pixel 

(0 by default) 

Table 3.4: MATLAB Image Sharpening Filter and Parameters 

As was indicated in Section 3.3.4.1 the goal for these preprocessing techniques is 

to modify the input images only slightly. For this reason, only a small amount of sharpening 

will be applied. An example comparison of an original and sharpened image is seen in 

Figure 3.13. 
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Figure 3.13: Au_Ani_10208.jpg Original (Left) And Sharpened With Amount = 0.75 

(Right) 

The figure below examines the effects of small amounts of sharpening on the 

frequency information of Au_ani_10208.jpg: 

 

Figure 3.14: Impact Of Changing Sharpening Filter Parameters On Frequency Content 
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It can be observed in Figure 3.14 the “warmth” of the colors between the upper left 

hand corner of the visualizations (lowest frequencies) and the lower right hand corner 

(highest frequencies) increases as the parameter ‘amount’ increases.  

3.3.5 Content Adaptive Techniques 

While it is intuitive to apply preprocessing techniques uniformly across an entire 

set of authentic and tampered images, digital images are extremely diverse and an optimal 

processing configuration for one image may not be optimal for another. For this reason, it 

is worth investigating configurations that are determined by an image’s content. Choosing 

the blur or sharpening amount, for instance, can be informed by the amount of higher 

frequency content present in an image. One way to quantify this is by using the two-

dimensional DCT to recompose an image plane in the frequency domain. This will create 

a matrix with the same dimensions as the input image plane but represent the various 2D 

frequency components like the figure below illustrates: 

 

Figure 3.15: Illustration Of DCT Frequency Ordering [56] 
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The 2D DCT stores the average energy of the cell (low frequency) in the upper-left-

most cell of the matrix and horizontal and vertical frequency increases moving right and 

down. As such the combined frequency in both the vertical and horizontal directions can 

be thought to increase in a zigzag pattern as shown below: 

 

Figure 3.16: Zigzag Pattern Followed By DCT Coefficients [56] 

With Figure 3.16 serving as a reference point for extracting coefficients 

representing increasing combined frequency, this matrix can be transformed into a vector 

that sorts by combined frequency. Taking off the first 25% and the last 25% of coefficients 

in this vector can then provide coefficients for mid/high range frequencies. The average of 

this reduced vector (referred to as � in this study) can serve as an approximation of the 

amount of mid/high frequency content that can serve as a basis of comparison between two 

images. This knowledge guides the process for classifying images with varying amounts 

of high frequency content. 
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From here, it’s necessary to make meaningful assertions based on information 

gleaned from the above process. The first obvious question is what values of � constitute 

an image with a particularly large amount of high frequency content. Figures below show 

scatterplot representations for � of authentic and tampered content from the CASIA TIDE 

database v2 with quality factor equalization described in Section 3.3.1.  

 

Figure 3.17: Scatterplot Of Quality Factor Equalized CASIA TIDE V2 Authentic Average 

DCT Coefficients (�) 

 

Figure 3.18: Scatterplot Of Quality Factor Equalized CASIA TIDE V2 Tampered 

Average DCT Coefficients (�) 
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Using this factor � as a basis for determining the amount of high frequency content 

can be checked by cross referencing an image with its �. For the CASIA TIDE database 

v2 authentic set, the images with the highest and lowest � are shown below: 

 

Figure 3.19: Image With Lowest � (Left, � = 0.458) And Highest � (Right, � = 33.57) 

From The CASIA TIDE Database V2 Authentic Set 

Visual inspection confirms that this value � can be used as an effective indication 

of the degree of mid/high frequency content in a given image. The image with the lowest 

� is in fact very smooth and does not have much detail. The image with the highest � 

however is very detailed and contains an abundance of high frequency content. With 

validation that � can be used as an indicator of the degree of higher frequency content in 

an image, Section 3.3.5.1 and Section 3.3.5.2 detail two approaches that use this value to 

determine adaptive configurations. 

These adaptive configurations look to modify the “filter amount”. As was detailed 

in Table 3.3 and Table 3.4 there are a number of parameters which can be adjusted to 
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achieve the maximum performance. These adjustments will be made as a result from results 

in Section 4.1.3.1 and Section 4.1.3.2. 

3.3.5.1 Binning based on thresholds 

The first adaptive approach is also the simplest. It uses the threshold � value and 

chooses one filter amount if a given image has a � greater than or equal to the reference 

and another blur amount if it has less than the reference: 

 '	()�*+,-./)(�) = 012(�, � < )ℎ*��ℎ-(5
12(�, � ≥ )ℎ*��ℎ-(5 Equation 4 

 

For the authentic and tampered sets, the � value for each individual image is seen 

in Figure 3.17 and Figure 3.18. These arrays for each set can be called 789:;<  and 78;9=> . 

Let �? be the value for � such that N percent of values in 789:;<  or 78;9=>  are less than 

�?. Changing the value for N can then determine different distributions for which 12(� and 

12(� are assigned and �? can be used as the threshold value. The prctile [57] command 

in MATLAB makes this calculation easy to determine the various values for �? to be used 

as a threshold. 

3.3.5.2 Determining filtering amount based on a linear function 

While processing a given image based on two discrete bins may be sufficient, it is 

also possible that the unevenness of processing applied across the datasets will make 

classification tougher. To mitigate this possibility, a more continuous approach was 

devised for determining the filtering amount. Instead of binning images based on a 

threshold, the blurring/sharpening amount can be decided using a simple linear function:  
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 '	()�*+,-./)(�) = @2�� + ,-5	'	�* ∗ ( �
μCDE

) Equation 5 

 

�FGH is the maximum value across the entire tampered and authentic dataset. After 

this maximum value is determined, each image can be individually evaluated and processed 

with respect to that. This �FGH can be determined for all three channels (YCbCr) and used 

to blur each channel adaptively. Between the authentic and tampered sets, �FGHI  was 

found to be 33.6, �FGHJK  was found to be 5.86 and �FGHJL  was found to be 5.28 when 

examining the datasets after quality factor equalization. 

It is important to realize that this value must be the maximum of both datasets 

combined because taking the respective �  per each dataset and using this value as a 

modifier can unfairly bias feature extraction for the authentic and tampered sets. This is 

because the two datasets are effectively being processed differently and can lead to 

statistical indicators which the classifier can leverage. 

3.4 FEATURE EXTRACTION 

As has been previously addressed, the method for feature extraction is the same as 

was proposed in [18]. The pseudocode for feature extraction is shown below: 

1. Translate the image into the YCbCr color space. Start with the luminance 

channel  

a. Process the image with / × / block DCT (/ = 4 first), producing 

another matrix of size � × �. Call it MN×N 
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i. Calculate difference array in the horizontal direction, round 

results, threshold values above 6 and below -6. Call it OP 

 OP(	, Q) = MN×N(	, Q) − MN×N(	 + 1, Q) Equation 6 

 

ii. Calculate difference array in the vertical direction, round 

results, threshold values above 6 and below -6. Call it OR 

 OR(	, Q) = MN×N(	, Q) − MN×N(	, Q + 1) Equation 7 

 

iii. Create a transition probability matrix for OP . Call it 

STUP | N×N 

 WXOP(. + 1, 1) = 	 | OP(., 1) = Q} 
= Σ[,R\(OP(., 1) = Q, OP(. + 1, 1) = 	)

Σ[,R\(OP(., 1) = Q)  
Equation 8 

 

iv. Create a transition probability matrix for OR . Call it 

STUR | N×N 

 WXOR(. + 1, 1) = 	 | OR(., 1) = Q} 
= Σ[,R\(OR(., 1) = Q, OR(., 1 + 1) = 	)

Σ[,R\(OR(., 1) = Q)  
Equation 9 

 

v. Save STUP | N×N and STUR | N×N 

vi. Repeat a. with / = 8 and then / = 16 

b. Concatenate STUP | ]×] , STUP | ^×^ , STUP | �_×�_ , 

STUR | ]×] ,  STUR | ^×^ , STUR | �_×�_  into one feature vector for that 
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channel. Call this STUG`` | a  where W indicates the plane represented (Y, 

Cb, Cr) 

c. Repeat 1. with the chrominance channel Cb and then the chrominance 

channel Cr 

2. Concatenate STUG`` | b, STUG`` | c#, STUG`` | c&. Call this STUG`` a`GNde 

Although the methodology for feature extraction is taken from [18] it is important 

to note that unlike their approach, feature extraction is expanded to include the 

chrominance channels in addition to the luminance channel. The reasoning for this has 

been explained further in Section 3.3.2. 

3.5 CLASSIFICATION 

In this project, a support vector machine (SVM) is used to perform classification of 

authentic and tampered images. For SVMs, classification starts with training the classifier 

by providing it with a collection of feature vectors along with a label vector indicating 

which data class it belongs to (authentic or tampered in this case). This collection of vectors 

is called the training set. In instances where there are only two data classes (such as in this 

study), classification using the training set can be visualized like in Figure 3.20. It should 

be noted that this figure represents feature vectors with two dimensions but the principle 

behind it can be expanded to the nth dimension. 
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Figure 3.20: 2D Projection Of Features With Two Classes [58] 

Although this is a simple example (the features are only two-dimensional) it 

illustrates the basic principle in two-class classification. The green line represents the 

hyperplane which aims to optimally separate the two sets of training vectors (light blue 

dots and dark red dots). The hyperplane is considered optimal based on two conditions: 

1. The partition established by the hyperplane keeps the two classes completely 

distinct (i.e. no errors) 

2. The hyperplane is separated from the closest vector by the greatest possible 

amount 

Item 2 is important because there can be multiple possible hyperplanes that can be 

chosen to “solve” the classification problem. Maximizing the distance between the 

hyperplane and the nearest vector aims to provide tolerance for future items to test that 

were not indicated in the training set. The light brown lines in Figure 3.20 are possible 

hyperplanes that do not optimize distance from the nearest vector. Of course, satisfying 
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Item 1 (a property referred to as “linear separability”) is not always possible. An example 

of this is shown in Figure 3.21.  

 

Figure 3.21: Classes That Are Not Linearly Separable [58] 

In cases where classes are not linearly separable, a cost function [58] can help to 

keep a hyperplane accountable for classification errors. In this scenario, the goal is now to 

minimize this cost while also minimizing the capacity of a set of functions (also called the 

Vapnik–Chervonenkis dimension). [59] describes the VC dimension as “a way of 

measuring the complexity of a class of functions by assessing how wiggly its members can 

be”. Whereas high-degree polynomials lend to a more “wiggly” shape, minimizing the 

capacity of a set of functions translates to a less complex hyperplane shape. 

In this project libSVM [12] was used within MATLAB to serve as a layer of 

abstraction to facilitate the complex process of training and testing the SVM classifier. 

With libSVM, the training step is handled with the function svmtrain which takes in the 

label vector and the feature vector and outputs a model. The testing step is handled with 
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the function svmpredict which takes in the model from the previous step and as well as 

the label vector and the feature vector and outputs a predicted label vector. This predicted 

label vector can be checked against the input label vector to generate a confusion matrix 

(confusionmat in MATLAB [60]) which give the values below. It should be kept in 

mind, however, that the mapping between positive/negative and authentic/tampered is 

subjective. 

• True Negatives (TN): Number of tampered images properly classified as 

tampered 

• True Positives (TP): Number of authentic images properly classified as 

authentic 

• False Positives (FP): Number of tampered images improperly classified as 

authentic 

• False Negatives (FN): Number of authentic images improperly classified as 

tampered  

These values can then provide the following percentages: 

• S*.� f�g2)	1� �2)� = h?
h?ijk × 100 Equation 10 

• S*.� T-�	)	1� �2)� = hk
hkij? × 100 Equation 11 

• M2(�� T-�	)	1� �2)� = jk
h?ijk × 100 Equation 12 

• M2(�� f�g2)	1� �2)� = j?
hkij? × 100 Equation 13 
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• +ll.*2*m �2)� = h?ihk
h?ihkijkij? × 100 Equation 14 

 

As was indicated in a Section 3.2, a randomly-chosen subset of 5,000 authentic and 

5,000 tampered images were selected from CASIA TIDE v2. By using 10-fold cross 

validation, an average Accuracy Rate (AR) can evaluate the effectiveness of the features 

that have been extracted. 10-fold cross validation works as follows: 

1. Randomly select 1/10 of the authentic image feature vectors and 1/10 of the 

tampered image feature vectors to test the classifier 

2. Use the remaining 9/10 of the authentic image feature vectors and 9/10 of the 

tampered image feature vectors to train the classifier 

3. Repeat this for a total of 10 times, choosing a different testing set and training set 

every time. 

In this methodology the MATLAB function crossvalind facilitates the selection of the 

training and test sets. As specified by the MATLAB documentation, when designating the 

‘Kfold’ flag, crossvalind “returns randomly generated indices for a K-fold cross-

validation of N observations. Indices contains equal (or approximately equal) proportions 

of the integers 1 through K that define a partition of the N observations into K disjoint 

subsets. […] In K-fold cross-validation, K-1 folds are used for training and the last fold is 

used for evaluation. This process is repeated K times, leaving one different fold for 

evaluation each time” [61].  



 

51 
 

4 ALGORITHM IMPROVEMENTS AND QUALITY FACTOR MISMATCH 

EFFECT 

MATLAB 2013b was used to develop and test the methodologies that have been 

outlined in previous sections. Section 3.2 specified that a randomly selected consistent 

subset of the CASIA TIDE database v2 is used as a basis for comparison between different 

potential enhancements. This subset consists of 5,000 authentic images and 5,000 tampered 

images that represent each of the different image categories. As mentioned in Section 3.5, 

libSVM was used within MATLAB to facilitate the classification stage of this project. 10-

fold cross validation is used to provide an average true positive rate (TPR), average true 

negative rate (TNR) and average accuracy rate (AR). Definitions for these terms can also 

be found in Section 3.5. “Positive” and “negative” can be assigned arbitrarily, and in this 

thesis they are used to represent authentic images and tampered images respectively. This 

is to say that the true negative rate is the rate at which the classifier accurately identifies 

tampered images as tampered, et cetera. Statistics for TPR, TNR, and AR are reported for 

feature extraction from all three image channels (YCbCr) due to the observation that, on 

average, using all three provides the highest rates.  

Although this thesis uses the framework proposed by [18] Section 3.3 indicates the 

areas in which improvements were attempted and sometimes achieved. Section 4.1 details 

results of testing methodologies described in Section 3.3 while Section 4.3 examines the 

effect of varying JPEG quality factors between authentic and tampered datasets. 
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4.1 EXPERIMENTAL RESULTS FOR PREPROCESSING TECHNIQUES 

This section explores the preprocessing techniques detailed in Section 3.3. The 

effect of choosing a color space for processing, blurring along JPEG block line boundaries, 

filtering an entire image, and combining these techniques are detailed in the sections to 

follow.  

4.1.1 Experimental Results for Color Space Conversion 

Table 4.1 examines the difference between running the reference algorithm [18] 

in the RGB color space as opposed to the YCbCr color space.  

Channels TPR TNR AR 

RGB 76.43 % 82.34 % 79.40 % 

YCbCr 81.98 % 84.09 % 83.05 % 

Table 4.1: Reference Algorithm Performed In RGB And YCbCr Color Space 

4.1.1.1 Effect of Selecting the Optimal Color Space 

Although Section 3.3.2 provides reasoning for conducting testing in the YCbCr 

color space, Table 4.1 proves through comparison that it outperforms the RGB color space 

when tested on the same splicing detection framework. For this reason, feature extraction 

is taken from the YCbCr representation of images in the rest of the results. 

4.1.2 Experimental Results for JPEG Block Line Blurring 

Three different configurations were tested in examining the effect of blurring along 

block lines induced by JPEG processing. The first two use only one neighbor pixel 

neighboring both sides of the pixel of interest, assigning different weights to the neighbors 
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and pixel of interest. The final configuration uses two neighbor pixels of interest. Table 4.2 

details the results of this testing: 

Blur Weights TPR TNR AR 

0.25, 0.5, 0.25 83.14 % 85.19 % 84.18 % 

0.3, 0.4, 0.3 82.76 % 85.21 % 84.00 % 

0.1, 0.2, 0.4, 0.2, 0.1 83.15 % 85.49 % 84.33 % 

Table 4.2: Results For JPEG Block Blur With Various Weights And Neighborhoods 

4.1.2.1 Effect of JPEG Block Line Blurring With Various Weights and 

Neighborhoods 

From these results it is clear that there is value in blurring around JPEG block 

boundaries, gaining up to 1.28% in accuracy over the reference approach. The greatest 

bump in accuracy was achieved using the 0.1, 0.2, 0.4, 0.2, 0.1 weighting scheme although 

the other two weighting schemes still outperformed the base reference by at least 0.95%. 

4.1.3 Experimental Results for Image Level Filtering 

Image level filtering examines the two possibilities that either the highest 

frequencies in an image should be lowpassed and reduced (slight amounts of blur) or higher 

frequency content should be augmented (slight amounts of image sharpening). The 

following sections provide the results for these two filtering approaches. 

4.1.3.1 Experimental Results for Image Level Blurring 

Image level blurring explores the possibility that feature extraction benefits from 

first lowpassing the image slightly to remove the highest frequencies. The default 
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averaging lowpass filter has a filter size (hsize) 3 × 3, while the default Gaussian lowpass 

filter has a filter size (hsize) 3 × 3 and � = 0.5.  

The table below examines the effect of changing the size of the averaging filter on 

the accuracy rate: 

Parameters TPR TNR AR 

ℎ�	
� = 3 × 3 
(default) 

82.02 % 85.92 % 83.98 % 

ℎ�	
� = 5 × 5 81.18 % 85.47 % 83.34 % 

ℎ�	
� = � × � 62.6 % 61.0 % 61.8 % 

Table 4.3: Results For Modifying Size Of Averaging Filter 

Gaussian lowpass filters have two parameters which can be modified to achieve 

optimal performance. The table below shows the results of first modifying the filter size 

and then �: 

Parameters TPR TNR AR 

ℎ�	
� = 3 × 3 

� = 0.5 
(default) 

81.79 % 85.31 % 83.56 % 

ℎ�	
� = 5 × 5 

� = 0.5 

81.94 % 85.25 % 83.61 % 

ℎ�	
� = � × � 

� = 0.5 

82.71 % 86.10 % 84.43 % 

ℎ�	
� = � × � 

� = 0.25 

81.94 % 86.18 % 84.08 % 

ℎ�	
� = � × � 

� = 0.75 

82.33 % 86.34 % 84.36 % 

ℎ�	
� = � × �  

� = 1.0 

82.46 % 86.02 % 84.25 % 

Table 4.4: Results For Image Level Gaussian Blurring With Various Parameters 
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4.1.3.1.1 Effect Of Image Level Blurring: Modifying the Filter Size (Averaging and 

Gaussian) 

Using the averaging blurring filter, accuracy rates saw a definite decline as the filter 

size increased. This is reasonable behavior since filter size effectively controls the blur 

amount in this type of blurring as explained in Section 3.3.4.1 and seen in Figure 3.12. 

Moreover blurring with filter size ℎ�	
� = � × � leads to a very visual effect when using 

the averaging filter as can be seen in Figure 4.1. As such, it makes sense that since the filter 

size is so strongly tied to the blur amount that accuracy decreases as filter size increases.   

   

Figure 4.1: Averaging Filter On Au_Ani_10208.jpg (Top Left) With ℎ�	
� = 3 × 3 (Top 

Right), ℎ�	
� = 5 × 5 (Lower Left), And ℎ�	
� = � × � (Lower Right) 
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The Gaussian blur approach on the other hand saw an increase in performance while 

increasing the filter size, achieving optimal performance with ℎ�	
� = � × �. Unlike 

when using the averaging filter, changing the filter size for the Gaussian blurring filter does 

not have as much of an impact on the perceived blur amount. Even with the largest filter 

size (� × �) and the largest value for � (1.0), the resulting image (Figure 4.2) is not 

affected nearly as much in comparison.  

 

Figure 4.2: Gaussian Filter On Au_Ani_10208.jpg (Left) With ℎ�	
� = � × �, � = 1.0 

(Right)  

4.1.3.1.2 Effect Of Image Level Blurring: Modifying � (Gaussian) 

The previous section led to the observation that the optimal filter size for Gaussian 

blurring in this application is equal to the dimensions of the image it is filtering. After 

experimenting with multiple values for �, the optimal value was found to be the MATLAB-

default of 0.5. Although the selection of � = 0.5 is the best performer, its neighbors (0.25 

and 0.75) perform similarly. 



 

57 
 

4.1.3.1.3 Effect of Image Level Blurring 

Examining the results for the two types of blurring reveals that the Gaussian 

blurring filter outperforms the averaging blurring filter. The optimal configuration was 

achieved with a Gaussian blur filter with ℎ�	
� = � × � and � = 0.5. With the exception 

of the averaging filter with ℎ�	
� = � × �, all blurring was found to improve accuracy 

rates between 0.29% and 1.38%. 

4.1.3.2 Experimental Results for Image Level Sharpening 

Image level sharpening explores the possibility that edges should be accentuated in 

order to augment accuracy rates. This is achieved by sharpening, although with subtle 

amounts. The amount of sharpening is controlled with the parameter ‘amount’. 

Experimental results for various amounts are found in the table below: 

Sharpening Amount TPR TNR AR 

amount = 0.25 82.68 % 83.97 % 83.34 % 

amount = 0.5 82.29 % 84.33 % 83.33 % 

amount = 0.75 81.77 % 84.41 % 83.11 % 

amount = 1.0 81.08 % 84.94 % 83.03 % 

Table 4.5: Results For Image Level Sharpening With Various Amounts 

4.1.3.2.1 Effect of Image Level Sharpening 

Image level sharpening proves here to be ineffective with accuracy rates decreasing 

as sharpening amount increases. Although the best performer of the bunch slightly 

outperforms the reference approach by 0.29%, it still does not outperform even the worst 

case of the image level Gaussian blurring configurations seen in Table 4.4. 



 

58 
 

4.1.4 Experimental Results for Content Adaptive Techniques  

As was proven in Section 4.1.3, image level Gaussian blurring is an effective 

preprocessing method for improving the accuracy rate; much more so than image level 

sharpening. Although a constant set of blurring parameters still outperforms the reference 

approach by a significant margin, blurring based on the amount of higher frequency content 

is the focus of this section. Section 3.3.5 details a method for using image level DCT to 

approximate the amount of higher frequency content present in a given image which can 

be represented by a single representative value (�).  Section 4.1.4.1 and 4.1.4.2 both use 

this value � as an input to a function that determines how much to blur a given image. 

While the former establishes two bins for processing based on a threshold � value, the latter 

uses a linear function.  

4.1.4.1 Experimental Results for the Binning Approach 

Section 4.1.3.1 empirically determines that Gaussian lowpass filtering contributes 

the most to increased accuracy when ℎ�	
� = � × � and � = 0.5. The second highest 

performer has the same filter size but with � = 0.75 . Since these two are the top 

performers, they were selected as the two blur amounts for either side of the threshold.  

The optimal choice for a threshold is not immediately evident and so some 

experimentation tried different values. Section 3.3.5.1 proposes a binning approach based 

off of percentile values for mu. 65th, 70th, 75th, 80th, and 90th percentile values were chosen 

as possible thresholds. These percentiles map to thresholds as is seen in the table below: 
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Percentile Authentic Tampered Combined 

65th Percentile � = 9.52 � = 8.94 � = 9.25 

70th Percentile � = 10.04 � = 9.36 � = 9.75 

75th Percentile � = 10.65 � = 9.84 � = 10.25 

80th Percentile � = 11.30 � = 10.60 � = 11 

90th Percentile � = 13 � = 12.5 � = 12.75 

Table 4.6: Percentile Mappings To Threshold � Values 

 Of course, there are two options once these blur amounts are chosen. Do smoother 

images (low- �  images) get blurred more or less? The table below examines which 

configuration performs better. Because a Gaussian blur filter with ℎ�	
� = � × � was 

found to be the best performer in Section 4.1.3.1.1, this filter size is held constant in this 

adaptive testing. A threshold �nP&deP = 10.25 is used for initial investigations. 

Parameters TPR TNR AR 

ℎ�	
� = � × � 

� = 0.75 − 0.5 

�nP&deP = 10.25 

82.37 % 85.50 % 83.95 % 

ℎ�	
� = � × � 

� = 0.5 − 0.75 

�nP&deP = 10.75 

82.82 % 85.82 % 84.35 % 

Table 4.7: Results For Blurring Smoother Images More Versus Less 

Table 4.7 shows that blurring images with greater amounts of higher frequency 

content with a larger � to perform better. For this reason, the remainder of adaptive blurring 

configurations both in this section and Section 4.1.4.2 will also select larger � values for 

images with greater amounts of higher frequency content. 
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With the determination that a larger � should be used to blur images with greater 

amounts of higher frequency content, the next exploration seeks the optimal parameters for 

the binning function detailed in Equation 4. To choose the blur amount (�) for the two 

bins, the best and second best performers were chosen from Table 4.4. This means that 

most of the images were blurred with � = 0.5 while those with large amounts of high 

frequency content were blurred with � = 0.75. The table below shows the impact of 

changing the threshold value of �nP&deP on accuracy rates: 

Parameters TPR TNR AR 

ℎ�	
� = � × � 

� = 0.5 − 0.75 

�nP&deP = 9.25 

82.33 % 85.77 % 84.07 % 

ℎ�	
� = � × � 

� = 0.5 − 0.75 

�nP&deP = 9.75 

82.64 % 85.82 % 84.26 % 

ℎ�	
� = � × � 

� = 0.5 − 0.75 

�nP&deP = 10.25 

82.82 % 85.82 % 84.35 % 

ℎ�	
� = � × � 

� = 0.5 − 0.75 

�nP&deP = 11 

82.57 % 85.63 % 84.12 % 

ℎ�	
� = � × � 

� = 0.5 − 0.75 

�nP&deP = 12.75 

82.17 % 86.03 % 84.12 % 

Table 4.8: Results For Choosing Different � Thresholds 
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In Table 4.8 it can be seen that selecting �nP&deP = 10.25  yielded the best 

performance. However, it can also be said that the difference in � values is sufficiently 

large such that a smaller span could be more effective. Table 4.9 examines this possibility 

by using a smaller span: 

Parameters TPR TNR AR 

ℎ�	
� = � × � 

� = 0.5 − 0.625 

�nP&deP = 10.25 

82.43 % 85.71 % 84.09 % 

ℎ�	
� = � × � 

� = 0.625 − 0.75 

�nP&deP = 10.25 

82.12 % 86.35 % 84.25 % 

Table 4.9: Results For Smaller Spans Of � 

4.1.4.1.1 Effect of Binning Approach 

Performance using this configuration is somewhat strong with the optimal accuracy 

rate outperforming the reference approach by 1.3%. It was found that in this content 

adaptive context, images with greater degrees of higher frequency content should be 

blurred more (with larger values for �). The selection of the two �s (� = 0.5 and � =
0.75) for the two bins was informed by the best and runner-up performer in Table 4.4. This 

initial selection was proved to be the best even when testing a reduced span of �. Despite 

strong performance from this adaptive configuration, even the top performer failed to 

outperform blurring with a constant � value across the authentic and tampered sets.  
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4.1.4.2 Experimental Results for the Linear Approach 

While the binning approach detailed previously blurs images with only two 

different amounts based on amount of higher frequency content, the linear approach 

establishes a base blur amount and a modifier that assigns a different blur amount to each 

separate image based on the value for mu corresponding to the image. The calculation is 

described in Equation 5. Like in the binning approach, a range of blur amounts must be 

specified. Because the best and second best constant-� performance was achieved with 

� = 0.5 and � = 0.75 respectively they are used as a starting point for the blurring span. 

Table 4.7 indicates that images with greater degrees of higher frequency content should be 

blurred more and this observation is acknowledged in this approach as well. At first the 

entire span between 0.5 and 0.75 is used and then this is refined to two smaller regions. A 

Gaussian filter with ℎ�	
� = � × � is maintained across all testing. Results are listed 

below: 

Parameters TPR TNR AR 

ℎ�	
� = � × � 

� = 0.5 − 0.75 

82.51 % 85.95 % 84.25 % 

ℎ�	
� = � × � 

� = 0.5 − 0.625 

82.73 % 87.11 % 84.93 % 

ℎ�	
� = � × � 

� = 0.625 − 0.75 

81.83 % 86.03 % 83.95 % 

Table 4.10: Results For Linearly Determined � With Varying � Spans 
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4.1.4.2.1 Effect of Linearly Determined � 

As can be seen in the table above, a linearly determined � is indeed effective. At 

its best, accuracy rates are 1.88% better than the reference approach. Interestingly, a 

smaller span is found to be more effective for accuracy rates whereas this was not the case 

in the binning approach to content adaptive blurring. Another interesting point is that this 

content adaptive blurring configuration in fact outperforms a constant � approach by 0.5%. 

4.1.5 Experimental Results for Combining Preprocessing Techniques 

In the sections previous, there is clear promise in using JPEG block line blurring 

and image level blurring to improve accuracy rates. Section 4.1.2 indicates the optimal 

number of neighbors and weights for JPEG block line blurring. Section 4.1.4.2 indicates 

the number optimal settings for image level blurring with content adaptive blur amounts 

determined by a linear function. The effect of combining these two enhancements will be 

shown in the subsequent tables. Table 4.11 keeps the � span constant at � = 0.5 − 0.625. 

This was the optimal span determined in Section 4.1.4.2. Table 4.12 and Table 4.13 

examine the other two spans also examined in Section 4.1.4.1 and Section 4.1.4.2 in the 

case that a combination of suboptimal parameters may exceed the optimal performers. 
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Parameters TPR TNR AR 

ℎ�	
� = � × � 

� = 0.5 − 0.625 

0.1, 0.2, 0.4, 0.2, 0.1 

82.82 % 86.82 % 84.84 % 

ℎ�	
� = � × � 

� = 0.5 − 0.625 

0.25, 0.5, 0.25 

82.88 % 86.65 % 84.78 % 

ℎ�	
� = � × �  

� = 0.5 − 0.625 

0.3, 0.4, 0.3 

82.56 % 86.66 % 84.61 % 

Table 4.11: Results For � Span 0.5-0.625 With Varying JPEG Block Line Blurring 

Configurations 

Parameters TPR TNR AR 

ℎ�	
� = � × � 

� = 0.625 − 0.75 

0.1, 0.2, 0.4, 0.2, 0.1 

82.65 % 87.32 % 85.01 % 

ℎ�	
� = � × � 

� = 0.625 − 0.75 

0.25, 0.5, 0.25 

82.21 % 86.41 % 84.33 % 

ℎ�	
� = � × � 

� = 0.625 − 0.75 

0.3, 0.4, 0.3 

82.75 % 87.13 % 84.95 % 

Table 4.12: Results For � Span 0.625-0.75 With Varying JPEG Block Line Blurring 

Configurations 
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Parameters TPR TNR AR 

ℎ�	
� = � × � 

� = 0.5 − 0.75 

0.1, 0.2, 0.4, 0.2, 0.1 

82.72 % 86.67 % 84.71 % 

ℎ�	
� = � × � 

� = 0.5 − 0.75 

0.25, 0.5, 0.25 

82.93 % 87.01 % 84.99 % 

ℎ�	
� = � × � 

� = 0.5 − 0.75 

0.3, 0.4, 0.3 

82.71 % 86.61 % 84.67 % 

Table 4.13: Results For � Span 0.5-0.75 With Varying JPEG Block Line Blurring 

Configurations 

Combining JPEG block line blurring with linear adaptive � is the obvious first 

choice but it is also possible that a constant � will perform better when combined with 

JPEG block line blurring. In Table 4.14 the JPEG block line blurring configuration is kept 

constant but the top two performers from Table 4.4 are selected for a constant blur amount 

across all of the images in the authentic and tampered sets. 

Parameters TPR TNR AR 

ℎ�	
� = � × � 

� = 0.5 

0.1, 0.2, 0.4, 0.2, 0.1 

82.55 % 86.70 % 84.65 % 

ℎ�	
� = � × � 

� = 0.75 

0.1, 0.2, 0.4, 0.2, 0.1 

82.78 % 86.96 % 84.89 % 

Table 4.14: Results For Keeping JPEG Block Line Blurring Constant With Varying 

Constant σ Values 
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4.1.5.1 Effect of Combining JPEG Block Line Blurring and Image Level Blurring 

Upon examining Table 4.11, results are initially discouraging with even its best 

performer failing to outperform linear content adaptive blurring by itself. Since Table 4.11 

represents the combination of optimal JPEG block line blurring configuration and the 

optimal linear adaptive blurring configuration, the viability of this approach is questioned. 

However, combining a suboptimal content adaptive � span with the optimal JPEG block 

line (Table 4.12) blurring configuration does lead to another gain of 0.08% over linear 

content adaptive blurring on its own. This puts overall gain at 1.98% over the reference 

approach and the accuracy rate above 85%. 

4.2 CLASSIFIER BIAS TOWARDS IDENTIFYING TAMPERED IMAGES 

Examining the results in Section 4.1 as a whole reveals an interesting pattern in 

detection rates. Despite providing an equal number of tampered and authentic feature 

vectors to the machine learning classifier, the true negative rate (TNR) is consistently 

higher than the true positive rate (TPR) by about 3-5%. Put another way, the extracted 

features in this framework lead to more accurate classification rates for tampered images 

than for authentic images. 

When examining reported results from some detection frameworks noted in Section 

2.1.2, not all studies indicate TPR, TNR, and AR separately; however those that do also 

see this gap. [18], [22], [23], and [33] all report absolute differences between TPR and 

TNR between 2-28%. Interestingly, these studies are not in agreement about whether 

correct identification of tampered images outperforms correct identification of authentic 
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images or vice versa. Various image splicing datasets are utilized among these four 

publications, which suggests that the introduced gap cannot be attributed to this variable. 

This gap has not been addressed in any of these publications which leaves the cause 

of the problem open to discussion. An intuitive guess may point to the likelihood that 

tampered edges are made up of higher frequency content and that the classifier 

consequently struggles to correctly identify authentic images with higher frequency 

content. To see if this is true, results for the reference, JPEG block line blurring combined 

with adaptive blurring, JPEG block line blurring combined with constant blurring, and 

adaptive blurring were all examined. Looking at the top f)ℎ percentile (80, 90, 95, 99) of 

images with higher frequency content shows that as images become “busier” the classifier 

tends to improperly bin authentic images more frequently than tampered images. This can 

be seen in the figures below: 



 

68 
 

 

Figure 4.3: Improper Classification Rates In Top 80th Percentile 

 

Figure 4.4: Improper Classification Rates In Top 90th Percentile 

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

REF JBLB+AB JBLB+CB AB

%
 I

m
p

ro
p

e
r 

C
la

ss
if

ic
a

ti
o

n
 w

rt
. 

S
iz

e
 O

f 
S

e
t

Preprocessing Configuration

Improper Classification Rates In Top 80th 

Percentile

Au Tp

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

REF JBLB+AB JBLB+CB AB

%
 I

m
p

ro
p

e
r 

C
la

ss
if

ic
a

ti
o

n
 w

rt
. 

S
iz

e
 O

f 
S

e
t

Preprocessing Configuration

Improper Classification Rates In Top 90th 

Percentile

Au Tp



 

69 
 

 

Figure 4.5: Improper Classification Rates In Top 90th Percentile 

 

Figure 4.6: Improper Classification Rates In Top 99th Percentile 
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It is interesting to see that in every case but the reference, authentic images are 

improperly classified more often and by a significant margin as different percentile bins 

are examined. This pattern appears to support the hypothesis that the model created from 

authentic and tampered feature vectors causes the classifier to struggle to properly identify 

authentic images with higher frequency content.  

4.3 EXPERIMENTAL RESULTS FOR DIVERGENT QUALITY FACTOR DETECTION 

Subjecting these different datasets to different JPEG quality factors translates to a 

specific set of quantization tables. These quantization tables effectively bin values along 

the 2D DCT traversal pattern in Figure 3.16 with increasing aggressiveness as the lower 

right hand corner is reached. Reduction in fidelity (introduction of lossiness) is tied to the 

quality factor, which chooses which quantization table will be used. Lower quality factors 

mean lossier quantizations. The luminance and chrominance information is subjected to 

different sets of quantization tables, leveraging the fact that chrominance information can 

be compressed more, due to human vision system intricacies (greater sensitivity to changes 

in light intensity than to changes in color). 

In testing prior to this section, the authentic and tampered sets in the CASIA TIDE 

database v2 have already been subjected to JPEG quality factor equalization as described 

in Section 3.3.1.  
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Figure 4.7: Project Structure Thus Far 

As a continuation of that, this examination subjects the tampered set to one more 

pass of JPEG processing with a variety of quality factors. Then, features are extracted from 

these reprocessed version of the tampered set to examine the impact of the degree of quality 

factor difference between the authentic and tampered sets on detection rates. Quality 

factors of 70, 80, 84, 90, and 95 were applied to the tampered set to test this relationship. 

Figure 4.8 shows one instance of the testing to be done in this section (Au 84, Tp 84->70) 

but there are 4 other instances – one for each reprocessed version of the tampered set. 

 

Figure 4.8: Testing Structure For This Section 
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The reference approach, the highest performer, and two of the second highest 

performers were chosen to examine this relationship to determine if one approach 

expressed a particular tolerance for a mismatch in quality factors. In the table below, “Au” 

indicates the authentic set while “Tp” indicates the tampered data set. 

Au/Tp Pairing Reference 0.1, 0.2, 0.4, 

0.625-0.75 

0.1, 0.2, 0.4 

0.75 

0.5-0.625 

Au 84, Tp 84->70 98.45 % 98.46 % 98.5 % 98.5 % 

Au 84, Tp 84->80 96.64 % 94.53 % 95.04 % 98.42 % 

Au 84, Tp 84->84 79.46 % 80.91 % 80.68 % 80.53 % 

Au 84, Tp 84->90 96.05 % 90.5 % 90.27 % 91.92 % 

Au 84, Tp 84->95 95.59 % 89.4 % 89.68 % 91.3 % 

Table 4.15: Results For Different Quality Factor Mismatches 

One obvious trend across results for the different approaches is that subjecting the 

tampered set to another pass of Q=84 compression provides the worst results when 

comparing it with an authentic set also compressed with Q=84. This is likely because this 

quality factor is the same as the quality factor done in the authentic set compression and 

reuse of the same quality factor coefficients makes the features less distinguishable. As the 

quality factor moves away (in both the positive and negative directions) accuracy rate 

increases sharply as the result of different quantization occurring which impacts the 

extracted features.  
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Table 4.16 analyzes these results with respect to both average and variance: 

Measure Reference 0.1, 0.2, 0.4, 

o
= p. qrs − p. ts 

0.1, 0.2, 0.4 

0.75 

0.5-0.625 

Average 93.24 % 91.10 % 90.83 % 91.41 % 

Variance 48.43 42.53 36.24 36.11 

Table 4.16: Statistics For Varying Quality Factors 

This thesis works off of the claim that using the CASIA TIDE database V2 is not 

the most representative of a real world situation. Nonetheless, there is also value in 

understanding the performance of these preprocessing techniques on the authentic and 

tampered datasets as-is. Again, the top performing approaches from Table 4.15 are 

compared in Table 4.17 to examine the impact of these preprocessing techniques on un-

equalized datasets. 

Au/Tp Pairing Reference 0.1, 0.2, 0.4, 

0.625-0.75 

0.1, 0.2, 0.4 

0.75 

0.5-0.625 

Au Orig/Tp Orig 96.54 % 95.28 % 95.18 % 95.42 % 

Table 4.17: Results For Top Performing Approaches Using Un-Equalized CASIA TIDE 

Database V2 

4.3.1 Effect of Divergent Quality Factor Detection 

Table 4.16 compares average and variance statistics for each of the approaches 

listed in Table 4.15. A comparison of these statistics reveals that the reference approach 

has the best average performance across the various datasets. However, in the worst case 
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scenario (Au 84, Tp 84->84) the combination of JPEG block line blurring and linear 

content adaptive image level blurring is the best performer, as was seen in Section 4.1. If 

variance can be used as a measure of consistency, the strictly content adaptive approach 

and the JPEG block line blurring paired with a constant �  both performed similarly. 

Another interesting perspective on the data in Table 4.15 is average and variance statistics 

when the worst case is excluded: 

Measure Reference 0.1, 0.2, 0.4, 

o
= p. qrs − p. ts 

0.1, 0.2, 0.4 

0.75 

0.5-0.625 

Average 96.68 % 93.22 % 93.37 % 94.14 % 

Variance 1.18 12.79 13.08 8.12 

Table 4.18: Statistics For Varying Quality Factors (Worst Case Omitted) 

Table 4.18 examines the effectiveness of the various approaches in situations where 

the authentic and tampered datasets are more separated in terms of processing associated 

with different quality factors. Under these circumstances, not only is the reference 

approach the top performer with respect to the average but also with respect to variance. 

This indicates that the reference method is actually more tolerant in situations where there 

is separation in quality factors between the authentic and tampered sets. 

This point is enforced by the findings in Table 4.17 which shows the average 

accuracy rate of the top performers on the authentic and tampered sets which have not been 

subjected to quality factor equalization.  
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5 CONCLUSION 

This thesis proposes the inclusion of preprocessing techniques into future image 

splicing detection frameworks. Blurring along JPEG block lines (+1.28%) and image level 

blurring (+1.3%) were both found to increase accuracy rates themselves but combining the 

two boosted accuracy even further (+1.84%). Choosing blur amounts based on amounts of 

higher frequency content proved to be effective as well (+1.88%). The optimal 

configuration of preprocessing techniques and its parameters led to a 1.98% gain in 

accuracy over the reference framework when using the authentic and tampered datasets 

from the CASIA TIDE database v2 with quality factor equalization applied to them.  

This thesis also addresses a bias inherent to detection between authentic and 

tampered JPEG content that does not see acknowledgement in modern publications. By 

accounting for this bias and equalizing JPEG quality factor gaps, this thesis ensures that it 

is extracting and classifying features in the toughest use case. By exploring how the 

accuracy rate responds to a varying tampered set quality factor it was shown that the 

reference approach outperforms any tested combination of preprocessing approaches when 

excluding the worst case from consideration. However, in the worst case, the same 

combination of JPEG block line blurring and linear content adaptive blurring proved to be 

the top performer.  

Of course in the real world it would be naïve to expect authentic and test sets to be 

of uniform quality factor. An area for future work could be to devise a heterogeneous 

quality factor assignment across the authentic and tampered sets for a more realistic 

analysis. An even more ambitious solution would be to devise a sufficiently diverse and 
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challenging dataset comprised only of images that have never been compressed. This is 

challenging from many perspectives however (e.g. content acquisition, skilled tampering 

efforts, file size of uncompressed formats impacting distribution) 

Because this thesis proposes a number of preprocessing techniques shown to 

positively impact the reference framework, it is believed that these techniques will 

positively affect other existing splicing detection frameworks. This could be another area 

of future work. 

Finally, although an initial hypothesis has been proposed for the gap in true positive 

rates and true negative rates for this particular framework, it is another subject that can be 

expanded in further research. While for this project it is suggested that the classifier 

struggles to properly label authentic images with greater degrees of higher-frequency 

content due to patterns in higher frequencies of tampered images, a more generalized or 

accurate answer may exist.  
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