Self-Assembly of Complex DNA Nanostructures and

Reconfigurable DNA Devices

by

Fei Zhang

A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

Approved April 2015 by the Graduate Supervisory Committee:

Hao Yan, Co-Chair Yan Liu, Co-Chair Ian Gould Peiming Zhang

ARIZONA STATE UNIVERSITY

May 2015

ABSTRACT

Deoxyribonucleic acid (DNA) has emerged as an excellent molecular building block for nanoconstruction in addition to its biological role of preserving genetic information. Its unique features such as predictable conformation and programmable intra- and inter-molecular Watson-Crick base pairing interactions make it a remarkable engineering material. A variety of convenient design rules and reliable assembly methods have been developed to engineer DNA nanostructures. The ability to create designer DNA architectures with accurate spatial control has allowed researchers to explore novel applications in directed material assembly, structural biology, biocatalysis, DNA computing, nano-robotics, disease diagnosis, and drug delivery.

This dissertation focuses on developing the structural design rules for "static" DNA nano-architectures with increasing complexity. By using a modular self-assembly method, Archimedean tilings were achieved by association of different DNA motifs with designed arm lengths and inter-tile sticky end interactions. By employing DNA origami method, a new set of design rules was created to allow the scaffolds to travel in arbitrary directions in a designed geometry without local symmetry restrictions. Sophisticated wireframe structures of higher-order complexity were designed and constructed successfully. This dissertation also presents the use of "dynamic" DNA nanotechnology to construct DNA origami nanostructures with programmed reconfigurations.

ACKNOWLEDGMENTS

I wish to thank, first and foremost, my research advisors Dr. Hao Yan and Dr. Yan Liu for being such extraordinary mentors. They showed me the path to this wonderful DNA nanotechnology world. Their knowledge, attitude and enthusiasm always inspire me throughout my graduate study. They also provided me numerous professional guidance and personal support. I also wish to thank Dr. Ian Gould and Dr. Peiming Zhang, my supervisory committee members, who offered me invaluable advices.

I am deeply grateful to all the past and present Yan lab members, who have created a supportive and dynamic academic environment that made my study at ASU a very pleasant experience. I would like to thank Dr. Xiaowei Liu who taught me all the basic lab techniques. Dr. Jeanette Nangreave helped my spoken English and proofread my manuscripts. I discussed many ideas and experimental details with Dr. Yang Yang, Dr. Wei Li and Dr. Xiaodong Qi. I also thank Shuoxing Jiang, Chad Simmons, and Guoliang Ke for being great collaborators and team players.

This thesis would not have been possible without the support of my family. My husband Dian Xu always encourages me and my parents have been very supportive since I wanted to pursue academic career. My son Weiteng Xu brings me joy and happiness to my life and makes me strong.

TABLE OF CONTENT	S
------------------	---

Page
LIST OF FIGURESv
CHAPTER
1 INTRODUCTION 1
1.1 Introduction of DNA Nanotechnology1
1.2 Structural DNA Construction2
1.3 Dynamic DNA Nanodevices7
1.4 Applications of DNA Nanotechnology9
1.5 References14
2 COMPLEX ARCHIMEADIAN TILING SELF-ASSEMBLED
FROM DNA NANOSTRUCTURES 21
2.1 Abstract
2.2 Introduction
2.3 Materials and Methods23
2.4 Results and Discussion
2.5 Conclusion
2.6 References
3 COMPLEX WIREFRAME DNA ORIGAMI NANOSTRUCTURES
WITH MULTI-ARM JUNCTION VERTICES
3.1 Abstract
3.2 Introduction
3.3 Materials and Methods40

CHA	PTER	Page
	3.4 Results and Discussion	42
	3.5 Conclusion	55
	3.6 References	55
4	RECONFIGURABLE DNA ORIGAMI TO GENNERATE QUASI-FRA	CTAL
	PATTERNS	57
	4.1 Abstract	57
	4.2 Introduction	57
	4.3 Materials and Methods	59
	4.4 Results and Discussion	59
	4.5 Conclusion	67
	4.6 References	68
	5 PERSPECTIVES OF STRUCTURAL DNA NANOTECHNOLOGY	70
	5.1 Frontiers of Structural DNA Nanotechnology	70
	5.2 Future Applications	82
	5.3 From Nano to Angstrom Technology	88
	5.4 References	89
REF	ERENCES	95
APP	ENDIX	
А	SUPPLEMENTAL INFORMATION FOR CHAPTER 2	111
В	SUPPLEMENTAL INFORMATION FOR CHAPTER 3	136
С	SUPPLEMENTAL INFORMATION FOR CHAPTER 4	312

LIST OF FIGURES

Figure		Page
	1.	Figure 1.1 Structural Foundations of Structural DNA Nanotechnology
	2.	Figure 1.2 Representative Dynamic DNA Nanostructures
	3.	Figure 1.3 Directed Assembly of Inorganic and Protein Molecules
	4.	Figure 1.4 Directed Assembly Protein Molecules for Functional Structures 11
	5.	Figure 1.5 Biological Applications of DNA Directed Assembly 12
	6.	Figure 2.1 Designing the Length of Arms in DNA Junction Tiles 25
	7.	Figure 2.2 Sticky End Matching Rules and Corresponding AFM Images 30
	8.	Figure 2.3 Possible Mechanisms of Formation
	9.	Figure 3.1 Design Principles
	10.	Figure 3.2 Scaffold Folding Path and AFM Image for Simple Patterns 48
	11.	Figure 3.3 Scaffold Folding Path and AFM Image for Intricate patterns 50
	12.	Figure 3.4 3D Wire-Frame Archimedean Solid Structures 52
	13.	Figure 4.1 Design of Reconfigurable DNA Origami 60
	14.	Figure 4.2 Iterations of Structural Reconfiguration
	15.	Figure 4.3 Continuous Forward and Reverse Reconfiguration
	16.	Figure 4.4 Priming the Structures for Reconfiguration
	17.	Figure 4.5 A Single Step Reconfiguration Strategy 65
	18.	Figure 5.1 Schematic Illustrations
	19.	Figure 5.2 Illustration of Potential Applications
	20.	Figure 5.3 From Nano- to Angstrom Level Control

CHAPTER 1

INTRODUCTION

Adapted with permission from Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H. Structural DNA Nanotechnology: State of the Art and Future Perspective, *J. Am. Chem. Soc.*, **2014**, 136, 11198–11211. Copyright 2014 American Chemical Society.

1.1 Introduction of DNA nanotechnology

Self-assembly is a remarkable process by which chemical systems composed of non-living components are organized into living, biological systems. Nature accomplishes this incredible feat by adding information to matter and by guiding the selfassembly process to create functional structures. As the basic units of life, living cells are the epitome of molecular sophistication, with a multitude of components and systems that interact to perform thousands of routine functions like creating and using energy, synthesizing nucleic acids and proteins, and responding to environmental cues. The components of a cell range in size from individual atoms and molecules, to globular nanoscale objects, to even larger highly ordered structures such as microtubules. Nanotechnology is a field in which researchers manipulate matter on the same scale, operating in the window between molecular and macroscopic worlds, a window that is ideally suited for information storage, processing, and transmission.

Humanity has a long history of looking to nature for inspiration, from prehistoric times when early humans mimicked the hunting techniques of other animals, to Leonardo daVinci's 15th century sketches of flying machines based on bird flight, to today's scientists and engineers who are attempting to engineer cell like structures and machines.

With the exponential advances in science and technology that have occurred over the past few decades, scientists are getting closer to engineering bio-inspired components that can communicate, regulate and actuate in artificial molecular networks. Toward this goal, information coding polymers such as DNA, RNA and proteins are ideal building blocks in the assembly of designer nano-architectures. This introduction will concentrate on the most recent and inspiring advances in structural DNA nanotechnology. An outlook of the future of this rapidly expanding field is presented in Chapter 6. More comprehensive reviews that provide very detailed descriptions of the state of the art in this field can be found elsewhere in the literature¹⁻⁵.

1.2 Structural DNA construction

DNA, nature's molecule of choice for storing and transmitting genetic information, is an excellent nanoscale building block because of its specific threedimensional (3D) conformation, chemical addressability, and predictable Watson-Crick base pairing. Structural DNA nanotechnology, derived from Seeman's innovative proposal that DNA could be used as a physical material for the self-assembly of nanoscale structures⁶ (Figure 1.1), has developed with astounding speed over the past 30 years. The most significant underlying concept is the application of immobile, branched DNA junctions, together with sequence specific sticky end associations, to create self-assembling arrays, objects and devices (Figure 1.1A).

Over the past several decades, researchers have established a collection of convenient methods to construct DNA nanostructures that exhibit significant geometric and topological complexity. Designing and predicting the three dimensional (3D)

conformation of these nanostructures is now routine thanks to several user-friendly software interfaces that have been developed⁷⁻¹². A number of two-dimensional and three-dimensional lattices assembled from small, repeating DNA nanostructure motifs were produced¹³⁻²⁰ (Figure 1.1C), and several discrete polyhedral objects were constructed from fixed numbers of DNA junction motifs²¹⁻²⁷ (Figure 1.1D). In 2009, Seeman's group was the first to assemble 3D DNA crystals from deliberately designed sticky-end connections (Figure 1.1C, right), rather than through simple, non-specific base stacking¹⁶. They used self-assembling tensegrity triangle motifs to create 3D crystals with various unit dimensions. This work represents a milestone in fulfilling Seeman's initial vision of using 3D DNA lattices as hosts to organize guest protein molecules and facilitate protein crystallography⁶ (Figure 1.1B). Several researchers encoded algorithms into DNA nanostructure components to direct the assembly of particular 2D lattice arrays and had some initial success $^{28-29}$ (Figure 1.1E); however, scaling up algorithmic assembly to realize more complex patterns remains a challenge, mainly because of the errors that accumulate during assembly. If error correction mechanisms³⁰⁻³¹ could be implemented, it would represent a ground-breaking advance in this field.

In 2006, the emergence of DNA-origami³² transformed the landscape of DNA nanotechnology. The DNA origami method uses a number of short single stranded DNA (ssDNA) oligonucleotides to direct the folding path of a long ssDNA 'scaffold' strand. Rothemund used genomic ssDNA from the M13 phage as the scaffold strand (7249 nucleotides), and designed a set of short "staple" strands to selectively bind to distant regions of the scaffold and fold it into a pre-designed shape. This assembly method results in near-quantitative yield for most 2D designs (Figure 1.1F), even with unpurified

staples. Several groups successfully extended DNA origami fabrication to 3D³³⁻³⁶, and to the assembly of twisted³⁷ and curved³⁸ 3D objects (Figure 1.1F). Other research groups have focused their attention on scaling up DNA origami using the following methods: edge-to-edge base stacking interactions between individual origami units³⁹, sequence specific sticky end cohesion between individual units⁴⁰, "super origami"⁴¹ and use of longer scaffold for origami construction⁴²⁻⁴³.

More recently, Yin and coworkers synthesized a variety of 1D⁵¹, 2D⁴⁵ and 3D⁴⁶ DNA nanostructures from single stranded DNA tiles (SSTs). The platform that they developed is based on a series of interlocking local connections between SSTs. Collections of SSTs form 2D sheet or 3D block canvases that can be selectively engraved to create different shapes and patterns, by simply including or omitting specific SSTs (Figure 1.1G).

Figure 1.1 Structural foundations of structural DNA nanotechnology. (A & B) Seeman's original proposals to use immobile DNA junctions to create self-assembling arrays⁶, and self-assembled 3D DNA lattices as scaffolds to organize macromolecules into crystalline lattices⁶. (C) Representative examples of DNA nanostructure motifs used to create periodic 2D arrays and 3D crystal (top: helical structure of the motif; bottom: AFM images of the assembled 2D arrays and optical image of the 3D crystal). From left to right: double-crossover DNA tile¹³, 4 by 4 DNA tile¹⁴ and 6 by 4 DNA tile¹⁵. And 3D crystal¹⁶. (D) Representative examples of polyhedral DNA nanostructures. From left to right: molecular models of a DNA cube²¹, DNA tetrahedron²², DNA dodecahedron²³ and DNA biprism²⁴. (E) Representative examples of algorithmic self-assembly based on double-crossover tiles: Sierpinski triangles²⁸ (left) and binary counter²⁹ (right). (F) Representative examples of DNA origami nanostructures (top: schematic drawings of the structures; bottom: corresponding AFM or TEM images). From left to right: a 2D DNA origami smiley face³², a 3D DNA origami in the shape of a gear³⁷, a curved single layer 3D origami in the shape of a vase³⁸ and a DNA origami gridiron⁴⁴. (G) Complex nanostructures produced using the single stranded DNA tile strategy^{45,46}. Figures reproduced with permission from: (C) ref. 13, 1998 NPG, ref. 14, 2003 AAAS, ref. 15, 2006 ACS, ref. 16, 2009 NPG; (E) ref. 28, courtesy of P. Rothemund, ref. 29, 2005 ACS; (F) ref. 32, 2006 NPG, ref. 37, 2009 AAAS, ref. 38, 2011 AAAS, ref. 113, 2013 AAAS; (G) ref. 45, 2012 NPG, ref. 46, 2012 AAAS.

Figure 1.2 Representative dynamic DNA nanostructures. (A) A DNA tweezer based on DNA strand displacement technique⁴⁷. (B) A autonomous DNA walker catalyzed by meta-stable DNA hairpin fuel⁴⁸. (C) Movement of DNA spider on a prescribed

landscape⁴⁹. (D) A DNA assembly line: DNA walker will transport gold nanoparticles to different product formation station with instructions from DNA strand displacement⁵⁰.

1.3 Dynamic DNA nanodevices

Natural biological devices are designed to operate in dynamic conditions, responding to subtle biological cues to realize their functions. The structural properties of DNA that allow it to serve as a versatile construction material have been exploited to create dynamic nanodevices (Figure 1.2A) ranging from small switchable structures^{47, 52-56} and reconfigurable systems⁵⁷⁻⁶², to structures that display complex movements such as rolling⁶³, rotating⁶⁴ and walking^{48-49, 65-66}.

Protein molecular motors transform chemical energy into mechanical energy to facilitate a variety of biological functions from cell division, transport, and motility, to enzymatic activity. DNA nanotechnologists have long envisioned programming DNA walker molecules to mimic the ability of natural motor proteins to walk along intracellular tracks and achieve controlled motion. Imparting directionality to DNA walkers could be realized by means of successive addition of DNA fuels, by coordinating conformational changes between different components of the walker, by leading the walker through selective track modifications, or by pairing their motion to unidirectional reaction cycles. Researchers have already demonstrated unidirectional motion by DNA walkers through prescribed tracks^{48, 67} and landscapes⁴⁹ (Figure 1.2B&C). Based on this technology, it is possible to develop walkers that are programmed to travel a certain path by encoding the directions into the nucleotide sequences of the walker itself, and into the corresponding landscape. For example, Seeman's group reported a DNA-based robot that

manufactured structures on a nanoscale assembly line⁵⁰ (Figure 1.2D). Their DNA walker traveled through three fixed modules that were individually programmed to selectively incorporate a gold nanoparticle into the final product, resulting in eight possible outcomes. Recently, researchers reported those DNA walkers were also used to mediate multistep organic synthesis⁶⁸.

Figure 1.3 Representative examples of DNA nanostructure directed assembly of inorganic and protein molecules (top: schematics; bottom: corresponding TEM or AFM images). (A) From left to right: gold nanoparticles organized by a 2D DNA tile array⁶⁹, gold nanorod dimers with controlled angles between the nanorods organized by DNA origami,⁷⁰ DNA origami directed quantum dot architectures⁷¹, and DNA origami directed gold nanoparticles into chiral arrangement and the induced circular dichromic effect⁷². (B) Organization of streptavidin proteins by a 2D DNA nanoarray¹⁴, protein arrays templated by a 2D DNA nanostructure through aptamer-protein interactions⁷³, orthogonal Snap-tag and His-tag mediated decoration of DNA origami⁷⁴. Figures reproduced with permission from: (A) ref. 69, 2006 ACS, ref. 70, 2011 ACS, ref. 71, 2012 ACS, ref. 72, 2012 NPG; (B) ref. 14, 2003 AAAS, ref. 161, 2007 ACS, ref. 162, 2010 Wiley.

1.4 Applications of DNA nanotechnology

As structural DNA nanotechnology transitions from adolescence into adulthood, the need to demonstrate potential applications is of the utmost importance. We must improve our ability to engineer and program complex molecular systems and prove that designer DNA nanostructures can be employed to real world applications. If we continue to exploit the programmability of DNA nanostructures to accurately template functional molecules, materials and probes, we will be able to organize these external elements into practical devices and engineer molecular sensors, circuits, and actuators.

Inorganic nanomaterials such as quantum dots, nanowires and rods, and metal nanoparticles have attracted attention because of their unique optical and electronic properties that can be used in solar cells, phototransistors, laser diodes, light-emitting diodes, and other optoelectronic devices⁷⁵. However, a better understanding of the photophysical behavior of these materials is necessary to use them in such devices. Researchers have successfully used DNA nanoscaffolds to organize metallic nanoparticles, semiconductor nanocrystals^{69-72, 76-77} (Figure 1.3A), organic chromophores⁷⁸, and cholesterol moieties⁷⁹ into well-defined architectures. These inorganic particle-DNA nanostructure complexes have enabled systematic investigation of distance dependent interactions between photonic elements⁸⁰⁻⁸². In one example, Liedl and co-workers constructed a spiral, nanoscale staircase on which gold nanoparticles were arranged at regular intervals and with chiral geometries⁷² (Figure 1.3A). This work demonstrates how DNA scaffolding can be used to control the precise structural arrangement of metal nanoparticles, enabling researchers to tailor surface plasmon resonance and the

interaction with visible light. In another example, DNA nanostructures were used to organize various organic chromophores into artificial light harvesting complexes with control over cascading, unidirectional energy transfer⁷⁸.

As we previously mentioned, one of the initial goals of structural DNA nanotechnology was to use 3D DNA lattices as hosts to organize guest protein molecules and facilitate protein crystallography. Although this vision has yet to be realized, people have already begun to use DNA nanostructures as chaperones to align and organize protein molecules using different strategies, including ligand-protein (such as Biotin-streptavidin) interactions, aptamer-target interactions, and ligand-engineered (tagged) protein interactions (Figure 1.3B). Shih and co-workers recently designed DNA origami nanotube liquid crystals to provide the appropriate "alignment environment" for determining the previously unknown structure of a membrane protein by nuclear magnetic resonance (NMR)⁸³. Turberfield and co-workers used periodic 2D DNA tile arrays as templates to arrange proteins and subsequently used cryo-EM to solve their structures⁸⁴.

Some of nature's most powerful agents, proteins, are large macromolecules that perform a wide assortment of functions required to sustain life, including metabolic catalysis, DNA replication, and molecular transport. In order to better understand the governing dynamics in complex protein systems we need control over the number, orientation, and arrangement of the constituents. Nucleic acid scaffolds afford this level of control and researchers have already used RNA and DNA platforms to engineer a number of enzyme cascades⁸⁵⁻⁸⁸ (Figure 1.4A). For example, Silver and co-workers used a bacterial host to transcribe RNA and assemble intracellular RNA nanoscaffolds for spatial organization of metabolic elements for hydrogen production⁸⁵. Willner and coworkers organized glucose oxidase and horseradish peroxidase enzyme cascade by 2D DNA lattices⁸⁷. More recently, Fu conducted substrate channeling in a multi-enzyme cascade by an artificial DNA swinging arm⁸⁹.

Figure 1.4 Representative examples of DNA nanostructure directed assembly protein molecules for functional structures. (A) From left to right: (upper panel) assembly and disassembly of holoenzymes mediated by DNA strand displacement⁸⁶, glucose oxidase (yellow) and horseradish peroxidase (red) enzyme cascade organized by 2D DNA lattices⁸⁷, (lower panel) substrate channeling in a multi-enzyme cascade by an artificial DNA swinging arm⁸⁹, glucose oxidase (yellow) and horseradish peroxidase (red) enzyme control⁸⁸. (B) Rectangular DNA origami travels on a cellular actin network through the binding and action of myosin lever

arms⁹⁰. (C) Molecular tug of war between two motor proteins displayed from a 12-helix DNA bundle⁹¹.

Figure 1.5 Biological applications of DNA directed assembly. (A) A DNA origami frames to investigate protein-DNA binding events in real time at the single molecule level⁹². (B) A barrel-like DNA nanorobot programmed to be open in the presence of target cells and expose Fab antibody fragment cargo⁹³. (C) Six siRNA duplexes and folic acid tags (grey) chaperoned by a DNA tetrahedron are injected into mice; the tetrahedra

bind to tumor cells by targeting folate receptors expressed on the tumor cell surface⁹⁴. (D) A DNA tetrahedron adjuvant-antigen vaccine complex; CpG ODN adjuvant molecules (curved yellow ribbons) and the model streptavidin antigen (red) bind specifically to B cells and are subsequently presented to T cells to activate B cell response and antibody production⁹⁵. (E) Three different drugs carried by a DNA nanorobot can be released in a programmed fashion by undergoing complex DNA computation in a living cockroach⁹⁶. Figures reproduced with permission from: (E) ref. 98, 2014 NPG.

DNA origami scaffolds have also been used to organize motor proteins and study their spatially dependent motility⁹⁰ (Figure 1.4B). Understanding how motors cooperate productively, and compete antagonistically, is important for understanding how intracellular transport is regulated. Researchers recently demonstrated this "molecular tug-of-war" by displaying different numbers of dynein and kinesin motor proteins from a DNA-origami structure⁹¹. By controlling the number, distance and orientations of the two types of biological motors they were able to systematically study coordinated motor behavior (Figure 1.4C).

Structural DNA nanotechnology has also emerged as a useful tool for biological and medicinal applications (Figure 1.5). The intrinsic biocompatibility, nanoscale dimensions, programmability, and ability for functionalization of DNA nanostructures are virtually unrivaled by existing techniques. In particular, the addressable configuration of DNA origami lends itself to detection of gene expression⁹⁷ and single nucleotide polymorphism⁹⁸. The Sugiyama group developed DNA origami frames and rulers to investigate biomolecular interactions such as protein-DNA binding events and homologous recombination processes in real time at the single molecule level^{92, 99-100} (Figure 1.5A). Further, the spatial addressability and multivalent properties of DNA nanostructures make them promising vehicles for targeted drug delivery. For example,

Douglas and co-workers demonstrated a barrel-shaped nanorobot that releases Fab antibody fragments in the presence of target cells⁹³. In their system two single stranded DNA aptamer locks are opened by specific markers present on the surface of cells (Figure 1.5B). After opening, the payload molecules inside the barrel are exposed, inducing a particular cellular signaling pathway. Anderson and co-workers used a DNA tetrahedron to deliver small interfering RNA in vivo to target and suppress gene expression in a mouse model⁹⁴ (Figure 1.5C). Programmable DNA nanostructures have also been used as synthetic vaccine platforms^{95, 101}. The Yan group used a DNA tetrahedron to co-assemble model antigens and CpG adjuvants into nanoscale complexes with precise control of the valency and spatial arrangement of each component⁹⁵ (Figure 1.5D). Tests on immunized mice demonstrated that antigen-adjuvant-DNA complexes induced stronger and longer-lasting antibody responses against the antigen, without stimulating a reaction to the DNA nanostructure itself, as compared to an unstructured mixture of antigen and CpG molecules. More recently, Amir et al. showed that DNA origami robots can dynamically interact with each other and perform logic computations in a living animal, opening up opportunities to develop smart theranostic nanodevices⁹⁶ (Figure 1.5E).

1.5 References

- (1) Aldaye, F. A.; Palmer, A. L.; Sleiman, H. F., *Science* **2008**, 321, 1795-1799.
- (2) Li, H. Y.; Carter, J. D.; LaBean, T. H., *Mater Today* **2009**, 12, 24-32.
- (3) Seeman, N. C., Annu Rev Biochem **2010**, 79, 65-87.
- (4) Service, R. F., *Science* **2011**, 332, 1140-1142.

(5) Zadegan, R. M.; Norton, M. L., *Int J Mol Sci* **2012**, 13, 7149-7162.

(6) Seeman, N. C., *J Theor Biol* **1982**, 99, 237-247.

(7) Seeman, N. C., *Journal of Biomolecular Structure and Dynamics* **1990**, 8, 573-581.

(8) Andersen, E. S.; Dong, M. D.; Nielsen, M. M.; Jahn, K.; Lind-Thomsen, A.; Mamdouh, W.; Gothelf, K. V.; Besenbacher, F.; Kjems, J., *Acs Nano* **2008**, *2*, 1213-1218.

(9) Douglas, S. M.; Marblestone, A. H.; Teerapittayanon, S.; Vazquez, A.; Church, G. M.; Shih, W. M., *Nucleic Acids Res* **2009**, 37, 5001-5006.

(10) Williams, S.; Lund, K.; Lin, C.; Wonka, P.; Lindsay, S.; Yan, H., **2009**, 5347, 90-101.

(11) Zadeh, J. N.; Steenberg, C. D.; Bois, J. S.; Wolfe, B. R.; Pierce, M. B.; Khan, A. R.; Dirks, R. M.; Pierce, N. A., *J Comput Chem* **2011**, 32, 170-173.

(12) Kim, D. N.; Kilchherr, F.; Dietz, H.; Bathe, M., Nucleic Acids Res 2012, 40, 2862-2868.

(13) Winfree, E.; Liu, F. R.; Wenzler, L. A.; Seeman, N. C., *Nature* **1998**, 394, 539-544.

(14) Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H., *Science* **2003**, 301, 1882-1884.

(15) He, Y.; Tian, Y.; Ribbe, A. E.; Mao, C. D., *J Am Chem Soc* **2006**, 128, 15978-15979.

(16) Zheng, J. P.; Birktoft, J. J.; Chen, Y.; Wang, T.; Sha, R. J.; Constantinou, P. E.; Ginell, S. L.; Mao, C. D.; Seeman, N. C., *Nature* **2009**, 461, 74-77.

(17) LaBean, T. H.; Yan, H.; Kopatsch, J.; Liu, F.; Winfree, E.; Reif, J. H.; Seeman, N. C., *J Am Chem Soc* **2000**, 122, 1848-1860.

(18) He, Y.; Chen, Y.; Liu, H. P.; Ribbe, A. E.; Mao, C. D., *J Am Chem Soc* **2005**, 127, 12202-12203.

(19) Malo, J.; Mitchell, J. C.; Venien-Bryan, C.; Harris, J. R.; Wille, H.; Sherratt, D. J.; Turberfield, A. J., *Angew Chem Int Edit* **2005**, 44, 3057-3061.

(20) Majumder, U.; Rangnekar, A.; Gothelf, K. V.; Reif, J. H.; LaBean, T. H., *J Am Chem Soc* **2011**, 133, 3843-3845.

(21) Chen, J. H.; Seeman, N. C., *Nature* **1991**, 350, 631-633.

(22) Goodman, R. P.; Schaap, I. A. T.; Tardin, C. F.; Erben, C. M.; Berry, R. M.; Schmidt, C. F.; Turberfield, A. J., *Science* **2005**, 310, 1661-1665.

(23) He, Y.; Ye, T.; Su, M.; Zhang, C.; Ribbe, A. E.; Jiang, W.; Mao, C. D., *Nature* **2008**, 452, 198-201.

- (24) Aldaye, F. A.; Sleiman, H. F., *J Am Chem Soc* **2007**, 129, 13376-13377.
- (25) Zhang, Y.; Seeman, N. C., J Am Chem Soc 1994, 116, 1661-1669.
- (26) Shih, W. M.; Quispe, J. D.; Joyce, G. F., Nature 2004, 427, 618-621.

(27) Erben, C. M.; Goodman, R. P.; Turberfield, A. J., *J Am Chem Soc* **2007**, 129, 6992-6993.

- (28) Rothemund, P. W. K.; Papadakis, N.; Winfree, E., *Plos Biol* **2004**, *2*, 2041-2053.
- (29) Barish, R. D.; Rothemund, P. W. K.; Winfree, E., *Nano Lett* **2005**, *5*, 2586-2592.
- (30) Winfree, E.; Bekbolatov, R., Lect Notes Comput Sc 2004, 2943, 126-144.
- (31) Sahu, S.; Reif, J. H., *Algorithmica* **2010**, *56*, 480-504.
- (32) Rothemund, P. W. K., *Nature* **2006**, 440, 297-302.

(33) Ke, Y. G.; Sharma, J.; Liu, M. H.; Jahn, K.; Liu, Y.; Yan, H., *Nano Lett* **2009**, 9, 2445-2447.

(34) Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L. P.; Pedersen, J. S.; Birkedal, V.; Besenbacher, F.; Gothelf, K. V.; Kjems, J., *Nature* **2009**, 459, 73-75.

(35) Douglas, S. M.; Dietz, H.; Liedl, T.; Hogberg, B.; Graf, F.; Shih, W. M., *Nature* **2009**, 459, 414-418.

(36) Endo, M.; Hidaka, K.; Kato, T.; Namba, K.; Sugiyama, H., *J Am Chem Soc* **2009**, 131, 15570-15571.

(37) Dietz, H.; Douglas, S. M.; Shih, W. M., Science 2009, 325, 725-730.

(38) Han, D. R.; Pal, S.; Nangreave, J.; Deng, Z. T.; Liu, Y.; Yan, H., *Science* **2011**, 332, 342-346.

(39) Woo, S.; Rothemund, P. W. K., *Nat Chem* **2011**, *3*, 620-627.

(40) Liu, W. Y.; Zhong, H.; Wang, R. S.; Seeman, N. C., *Angew Chem Int Edit* **2011**, 50, 264-267.

(41) Zhao, Z.; Liu, Y.; Yan, H., *Nano Lett* **2011**, 11, 2997-3002.

(42) Zhang, H. L.; Chao, J.; Pan, D.; Liu, H. J.; Huang, Q.; Fan, C. H., *Chem Commun* **2012**, 48, 6405-6407.

(43) Pound, E.; Ashton, J. R.; Becerril, H. c. A.; Woolley, A. T., *Nano Lett* **2009**, 9, 4302-4305.

(44) Han, D. R.; Pal, S.; Yang, Y.; Jiang, S. X.; Nangreave, J.; Liu, Y.; Yan, H., *Science* **2013**, 339, 1412-1415.

(45) Wei, B.; Dai, M. J.; Yin, P., *Nature* **2012**, 485, 623-626.

(46) Ke, Y. G.; Ong, L. L.; Shih, W. M.; Yin, P., Science 2012, 338, 1177-1183.

(47) Yurke, B.; Turberfield, A. J.; Mills, A. P.; Simmel, F. C.; Neumann, J. L., *Nature* **2000**, 406, 605-608.

(48) Yin, P.; Choi, H. M. T.; Calvert, C. R.; Pierce, N. A., *Nature* **2008**, 451, 318-322.

(49) Lund, K.; Manzo, A. J.; Dabby, N.; Michelotti, N.; Johnson-Buck, A.; Nangreave, J.; Taylor, S.; Pei, R. J.; Stojanovic, M. N.; Walter, N. G.; Winfree, E.; Yan, H., *Nature* **2010**, 465, 206-210.

(50) Gu, H. Z.; Chao, J.; Xiao, S. J.; Seeman, N. C., *Nature* **2010**, 465, 202-205.

(51) Yin, P.; Hariadi, R. F.; Sahu, S.; Choi, H. M. T.; Park, S. H.; LaBean, T. H.; Reif, J. H., *Science* **2008**, 321, 824-826.

(52) Mao, C. D.; Sun, W. Q.; Shen, Z. Y.; Seeman, N. C., *Nature* **1999**, 397, 144-146.

(53) Yan, H.; Zhang, X. P.; Shen, Z. Y.; Seeman, N. C., *Nature* **2002**, 415, 62-65.

(54) Li, J. W. J.; Tan, W. H., *Nano Lett* **2002**, *2*, 315-318.

(55) Liu, D. S.; Balasubramanian, S., Angew Chem Int Edit 2003, 42, 5734-5736.

(56) Li, Y. M.; Zhang, C.; Tian, C.; Mao, C. D., Org Biomol Chem **2014**, 12, 2543-2546.

(57) Feng, L. P.; Park, S. H.; Reif, J. H.; Yan, H., Angew Chem Int Edit 2003, 42, 4342-4346.

(58) Goodman, R. P.; Heilemann, M.; Doose, S.; Erben, C. M.; Kapanidis, A. N.; Turberfield, A. J., *Nat Nanotechnol* **2008**, *3*, 93-96.

(59) Maye, M. M.; Kumara, M. T.; Nykypanchuk, D.; Sherman, W. B.; Gang, O., *Nat Nanotechnol* **2010**, *5*, 116-120.

(60) Han, D. R.; Pal, S.; Liu, Y.; Yan, H., *Nat Nanotechnol* **2010**, *5*, 712-717.

(61) Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H., *Nano Lett* **2012**, 12, 3290-3295.

(62) Yang, Y. Y.; Endo, M.; Hidaka, K.; Sugiyama, H., *J Am Chem Soc* **2012**, 134, 20645-20653.

(63) Tian, Y.; Mao, C. D., *J Am Chem Soc* **2004**, 126, 11410-11411.

(64) Rajendran, A.; Endo, M.; Hidaka, K.; Sugiyama, H., *J Am Chem Soc* **2013**, 135, 1117-1123.

(65) Omabegho, T.; Sha, R.; Seeman, N. C., Science 2009, 324, 67-71.

(66) Wickham, S. F. J.; Endo, M.; Katsuda, Y.; Hidaka, K.; Bath, J.; Sugiyama, H.; Turberfield, A. J., *Nat Nanotechnol* **2011**, 6, 166-169.

(67) Wickham, S. F. J.; Bath, J.; Katsuda, Y.; Endo, M.; Hidaka, K.; Sugiyama, H.; Turberfield, A. J., *Nat Nanotechnol* **2012**, *7*, 169-173.

(68) He, Y.; Liu, D. R., *Nat Nanotechnol* **2010**, *5*, 778-782.

(69) Zheng, J. W.; Constantinou, P. E.; Micheel, C.; Alivisatos, A. P.; Kiehl, R. A.; Seeman, N. C., *Nano Lett* **2006**, 6, 1502-1504.

(70) Pal, S.; Deng, Z. T.; Wang, H. N.; Zou, S. L.; Liu, Y.; Yan, H., *J Am Chem Soc* **2011**, 133, 17606-17609.

(71) Deng, Z. T.; Samanta, A.; Nangreave, J.; Yan, H.; Liu, Y., *J Am Chem Soc* **2012**, 134, 17424-17427.

(72) Kuzyk, A.; Schreiber, R.; Fan, Z. Y.; Pardatscher, G.; Roller, E. M.; Hogele, A.; Simmel, F. C.; Govorov, A. O.; Liedl, T., *Nature* **2012**, 483, 311-314.

(73) Chhabra, R.; Sharma, J.; Ke, Y. G.; Liu, Y.; Rinker, S.; Lindsay, S.; Yan, H., *J Am Chem Soc* **2007**, 129, 10304-10305.

(74) Sacca, B.; Meyer, R.; Erkelenz, M.; Kiko, K.; Arndt, A.; Schroeder, H.; Rabe, K. S.; Niemeyer, C. M., *Angew Chem Int Edit* **2010**, 49, 9378-9383.

(75) Tan, S. J.; Campolongo, M. J.; Luo, D.; Cheng, W. L., *Nat Nanotechnol* **2011**, 6, 268-276.

(76) Ding, B.; Deng, Z.; Yan, H.; Cabrini, S.; Zuckermann, R. N.; Bokor, J., *J Am Chem Soc* **2010**, 132, 3248-3249.

(77) Klein, W. P.; Schmidt, C. N.; Rapp, B.; Takabayashi, S.; Knowlton, W. B.; Lee, J.; Yurke, B.; Hughes, W. L.; Graugnard, E.; Kuang, W., *Nano Lett* **2013**, 13, 3850-3856.

(78) Dutta, P. K.; Varghese, R.; Nangreave, J.; Lin, S.; Yan, H.; Liu, Y., *J Am Chem Soc* **2011**, 133, 11985-11993.

(79) Langecker, M.; Arnaut, V.; Martin, T. G.; List, J.; Renner, S.; Mayer, M.; Dietz, H.; Simmel, F. C., *Science* **2012**, 338, 932-936.

(80) Chhabra, R.; Sharma, J.; Wang, H.; Zou, S.; Lin, S.; Yan, H.; Lindsay, S.; Liu, Y., *Nanotechnology* **2009**, 20, 485201.

(81) Pal, S.; Dutta, P.; Wang, H.; Deng, Z.; Zou, S.; Yan, H.; Liu, Y., *The Journal of Physical Chemistry C* **2013**, 117, 12735-12744.

(82) Acuna, G. P.; Moller, F. M.; Holzmeister, P.; Beater, S.; Lalkens, B.; Tinnefeld, P., *Science* **2012**, 338, 506-510.

(83) Berardi, M. J.; Shih, W. M.; Harrison, S. C.; Chou, J. J., *Nature* **2011**, 476, 109-113.

(84) Selmi, D. N.; Adamson, R. J.; Attrill, H.; Goddard, A. D.; Gilbert, R. J. C.; Watts, A.; Turberfield, A. J., *Nano Lett* **2011**, 11, 657-660.

(85) Delebecque, C. J.; Lindner, A. B.; Silver, P. A.; Aldaye, F. A., *Science* **2011**, 333, 470-474.

(86) Erkelenz, M.; Kuo, C. H.; Niemeyer, C. M., *J Am Chem Soc* **2011**, 133, 16111-16118.

(87) Wilner, O. I.; Weizmann, Y.; Gill, R.; Lioubashevski, O.; Freeman, R.; Willner, I., *Nat Nanotechnol* **2009**, 4, 249-254.

(88) Fu, J. L.; Liu, M. H.; Liu, Y.; Woodbury, N. W.; Yan, H., *J Am Chem Soc* **2012**, 134, 5516-5519.

(89) Fu, J.; Yang, Y.; Buck, A. J.; Liu, M.; Liu, Y.; Walter, N. G.; Woodbury, N. W.; Yan, H., *Nat Nanotechnol* **2014**, 9, 531-536.

(90) Hariadi, R. F.; Cale, M.; Sivaramakrishnan, S., *P Natl Acad Sci USA* **2014**, 111, 4091-4096.

(91) Derr, N. D.; Goodman, B. S.; Jungmann, R.; Leschziner, A. E.; Shih, W. M.; Reck-Peterson, S. L., *Science* **2012**, 338, 662-665.

(92) Endo, M.; Katsuda, Y.; Hidaka, K.; Sugiyama, H., *J Am Chem Soc* **2010**, 132, 1592-1597.

(93) Douglas, S. M.; Bachelet, I.; Church, G. M., Science 2012, 335, 831-834.

(94) Lee, H.; Lytton-Jean, A. K. R.; Chen, Y.; Love, K. T.; Park, A. I.; Karagiannis, E. D.; Sehgal, A.; Querbes, W.; Zurenko, C. S.; Jayaraman, M.; Peng, C. G.; Charisse, K.; Borodovsky, A.; Manoharan, M.; Donahoe, J. S.; Truelove, J.; Nahrendorf, M.; Langer, R.; Anderson, D. G., *Nat Nanotechnol* **2012**, *7*, 389-393.

(95) Liu, X. W.; Xu, Y.; Yu, T.; Clifford, C.; Liu, Y.; Yan, H.; Chang, Y., *Nano Lett* **2012**, 12, 4254-4259.

(96) Amir, Y.; Ben-Ishay, E.; Levner, D.; Ittah, S.; Abu-Horowitz, A.; Bachelet, I., *Nat Nanotechnol* **2014**, 9, 353-357.

(97) Ke, Y.; Lindsay, S.; Chang, Y.; Liu, Y.; Yan, H., Science 2008, 319, 180-183.

(98) Subramanian, H. K. K.; Chakraborty, B.; Sha, R.; Seeman, N. C., *Nano Lett* **2011**, 11, 910-913.

(99) Endo, M.; Tatsumi, K.; Terushima, K.; Katsuda, Y.; Hidaka, K.; Harada, Y.; Sugiyama, H., *Angew Chem Int Edit* **2012**, 51, 8778-8782.

(100) Endo, M.; Yang, Y. Y.; Suzuki, Y.; Hidaka, K.; Sugiyama, H., *Angew Chem Int Edit* **2012**, 51, 10518-10522.

(101) Li, J.; Pei, H.; Zhu, B.; Liang, L.; Wei, M.; He, Y.; Chen, N.; Li, D.; Huang, Q.; Fan, C. H., *Acs Nano* **2011**, *5*, 8783-8789.

CHAPTER 2

COMPLEX ARCHIMEADIAN TILING SELF-ASSEMBLED FROM DNA NANOSTRUCTURES

Adapted with permission from Zhang, F.; Liu, Y.; Yan, H. Complex Archimedean Tiling Self-assembled from DNA Nanostructures, *J. Am. Chem. Soc.* **2013**, 135, 7458–7461. Copyright 2013 American Chemical Society.

2.1 Abstract

Archimedean tilings are periodic polygonal tessellations that are created by placing regular polygons edge-to-edge around a vertex to fill the plane. Archimedean tilings were first classified by Johannes Kepler in 1619¹ and are still of great interest today due to the unique and interesting properties of the resulting patterns. For example, Archimedean tilings can be used to generate photonic crystals, which are periodic optical nanostructures that affect the propagation of electromagnetic waves in much the same way that semiconductors affect electrons². Another report describes a specific Archimedean tiling $(3^3.4^2)$ that forms a "wetting layer" between periodic and quasicrystalline phases in a binary colloidal system³. Here we explored two different design methods to form Archimedean tilings: one method is employing three and four arm DNA junction tiles, with specifically designed arm lengths and inter-tile sticky end interactions, which can be used to form sophisticated two- and three-dimensional (2D and 3D) tessellation patterns; the other method is creating individual asymmetric three or four arms motifs with certain angles to form large 2D and 3D tessellations. We in total demonstrate four different complex Archimedean patterns, (3³.4²), (3².4.3.4), (4.8²), (3.6.3.6), and the formation of 2D lattices, 3D tubes, or sealed polygon shaped pockets from the tessellations. The successful growth of a hybrid DNA tile motif arrays and the formation of Archimedean tiling from asymmetric building blocks suggests that it may be possible to generate 2D quasi-crystals from DNA building blocks.

2.2 Introduction

Synthetic DNA molecules are powerful and effective materials for the construction of addressable 2D and 3D nanostructures⁴⁻⁶, and have demonstrated their potential use in nanoelectronic, biosensing, and computational applications⁷⁻¹⁰. Multi-arm junctions in particular have been widely used for the assembly of various 2D and 3D structures¹¹⁻¹⁵. These structural DNA motifs can be efficiently assembled from a small pool of short single stranded oligonucleotides (20-100 nts) and connected by programming unique inter-tile sticky end interactions to create more complex higher order structures. However, previous reports of their assembly are mostly based on repeating patterns of uniform geometric building blocks (regular tiling), which can be treated as a special case of Archimedean tiling with homogeneous vertices, tiles and edges. In this section we demonstrated two strategies to fabricate Archimedean tilings: first design approach is creating the hybridization between three and four arm DNA junction tiles with specifically designed arm lengths (geometric rules) and inter-tile sticky end interactions (matching rules); second approach is design individual asymmetric three or four arm tiles with controllable angle between adjacent arms by adjusting the poly T loops in the center of each junction.

2.3 Materials and methods

See Appendix A.

2.4 Results and Discussion

Here we utilized combinations of precisely designed three- and four-arm junction DNA tiles to generate rationally designed sophisticated 2D and 3D tessellation nanostructures. In contrast to regular tilings semi-regular Archimedean tilings are composed of more than one type of regular polygon¹⁶ and thus require at least two unique building blocks. As shown in Figure 2.1a, b we demonstrate that two Archimedean tilings, (3².4.3.4) and (3³.4²), can be created through the self-assembly of three- and four-arm junction DNA tiles. Our results show that both tilings assemble into 2D lattice arrays with dimensions in the micrometer scale. By changing the design of the junctions (lengths of the arms and complementarity of the sticky ends) and tuning the annealing conditions it is possible to form tubes and pockets displaying the same Archimedean pattern. The successful formation of these hybrid DNA junction patterns establishes a foundation for the construction of more complex higher order DNA nanostructures or even DNA quasi-crystals.

The first step in the design process is to select desirable lengths for each of the arms of the DNA motifs' so that they are spatially compatible and facilitate connection between building blocks. Here, there are two important factors to consider: the geometry/dimensions of the desired Archimedean tiling and the 3D helical structure of double-stranded (ds) DNA. For semi-regular Archimedean patterns formed from equilateral triangle and square motifs (as shown in Figure 2.1a,b), both polygons have the

same edge lengths. The two motifs can be represented by 3-arm and 4-arm junctions and transformed into Cairo pentagonal and Prismatic pentagonal tilings by connecting the junctions. The geometric constraints of the tiling parameters require a 1.732:1 (3^{1/2}:1) ratio between arm lengths (4-arm:3-arm). This ratio allows the tiles to be assembled such that the arms do not overlap or have gaps between, ensuring that any compression-stretching or bending of the DNA double helices is minimized. It is also important to consider that B-form ds-DNAs are 3D molecules that exhibit 10.5 base pairs per helical turn in solution. For quasi-2D and 2D structures the distance between the crossovers in adjacent tile arms is restricted to even (all tiles face up) or odd (alternating face up and face down) numbers of half turns, respectively. Adhering to these restrictions will avoid deviation of the self-assembled structures from the desired quasi-2D and 2D patterns, and minimize over- or under-twisting of the DNA strands.

With these two considerations in mind, three different combinations of arm lengths (defined in number of helical turns) corresponding to the 4-arm and 3-arm junction tiles were evaluated: 4.5:2.5 (=1.80), 3.5:2.0 (=1.75) and 4.0:2.25 (=1.78). The ratio of arm lengths (4-arm:3-arm) ranges from 1.75 to 1.80. The corresponding tiling patterns are shown in Figure 2.1a-e. These length ratios satisfy the structural requirements of DNA double helices such that the edge-to-edge distances between the junction points in the assemblies are either whole or half helical turns and therefore, adjacent DNA tiles are either facing the same direction or opposite faces of the same 2D plane. In addition, these combinations of arm lengths are relatively close to the ideal geometric ratio of 1.732. Due to the inherent flexibility and soft materials properties of DNA, this small discrepancy can apparently be accommodated. We restricted the arm

lengths (maximum 9 full turns or 31 nm between the vertices) in order to maintain the rigidity of DNA.

Figure 2.1 Designing the length of the arms in DNA junction tiles to create different Archimedean tiling patterns. (a) Upper panels: Archimedean tiling pattern $(3^2.4.3.4)$ and the corresponding transformed Cairo pentagonal tiling that can be represented by 3-arm and 4-arm junction motif DNA tiles with 2.5 and 4.5 turn arm lengths (lower panels), respectively, at a ratio of 1:1.80. (b) Upper panels: Archimedean tiling pattern $(3^3.4^2)$ and the corresponding transformed Prismatic pentagonal tiling that can be represented by 3arm and 4-arm junction motifs with the same arm lengths (lower panels). (c) Upper panels: shortened Archimedean tiling $(3^3, 4^2)$ and transformed shortened Prismatic pentagonal tiling, in which the multi-arm junction motifs have 2 and 3.5 turn arm lengths (lower panels), respectively, at a ratio of 1:1.75. Note that the length of the arms in the 4arm junction tile is shorter (2 turns) in the vertical direction. (d) Upper panels: shortened Archimedean tiling with a corrugated design and shortened Prismatic pentagonal tiling with neighboring layers of unit cells (grey indicates facing down) facing in opposite directions, respectively. Here the multi-arm junction motifs have arm lengths of 2.25 and 4 turns (lower panels), respectively, at a ratio of 1:1.78. (e) Upper panels: the more complex 3-isogonal tiling when extra layer of rectangles tiles are included and the corresponding transformed 2-uniform tiling, respectively. Lower panels: the same multiarm junction motifs as those in d are used to create this pattern.

In the non-isotropic tilling pattern shown in Figure 2.1b-e the four sides of the squares do not have to be equal length; the squares can be replaced by rectangles, or multiple layers of rectangles can be introduced without interrupting the overall periodic lattice growth. Here, the only geometric requirement is that the side of the rectangle that is in contact with the triangle motif must be equal to the length of the equilateral triangle. Meanwhile, the sides that are in contact with other squares or rectangles can be any length that satisfies the requirements imposed by the properties of the DNA double helices and crossover patterns.

The second step in the design process is to identify the matching rules corresponding to the desired patterns and encode the specific inter-unit interactions within the sticky-ends of the tiles. Archimedean tiling has translational periodicity based on "unit cells". We can determine the "unit cell" within each pattern and use the DNA multi-arm junction motifs to physically construct these unit cells. By considering the symmetry of the unit cells we can specify the unique sticky ends and minimize the number of different DNA building blocks required. For example, the unit cell of the pattern shown in Figure 2.2b (also called Prismatic pentagonal tiling with prismatic pentagon shaped cavities) is an elongated hexagon which can be constructed from two 3-arm motifs and one 4-arm motif. Here, we designed a single 3-arm motif (instead of two) that contains one arm (1*) that interacts with arm 1 from the 4-arm motif, and two arms that are self-complementary (2/2*). Meanwhile, the 4-arm motif, and two opposite arms (1) that can be connected with arm 1* of the 3-arm motif, and two opposite arms that are self-complementary (3/3*). We anticipated that mixing these two tiles in a 2:1

molar ratio would result in the self-assembly of the units into the pattern depicted in Figure 2.2b.

However, symmetry within the DNA motifs can increase the possibility of mismatched interactions. It is important to carefully balance the simplicity of the building blocks with the ability to form a unique pattern. For example, when we attempted to construct the tiling pattern shown in Figure 2.2a, also called a Cairo pentagonal tiling, from a single 4-arm motif (instead of two) with the same sticky ends $(1=2 \text{ and } 1^*=2^*)$ we did not obtain the expected pattern and only small mismatched pieces were observed (see images in supplementary Figure S1). It is likely that the symmetry of the 4-arm tile motif reduced the probability of forming a unique structure. Here, the unit cell of the desired pattern includes cyclization of two 4-arm junctions and three 3-arm junctions in a 3-3-4-3-4 pattern to form an asymmetric pentagon. The symmetry of the sticky end sequences in the 4-arm tile may promote the exclusion of one of the 3-arm motifs such that the remaining 4 tiles connect in a 3-4-3-4 pattern to form a square (or rhombus) unit. Deformation of the junction angles is possible as the arms of these 4-arm and 3-arm DNA junction motifs are relatively long and less rigid than shorter ones, and the angles at the branch points of each individual tile may be flexible enough to deviate from the expected 90 and 120 degree angles, respectively. The formation of a 4-member ring is kinetically more favorable than a 5-member ring; however, the 4-member unit cells do not grow into large 2D arrays due to excess structural strain. Even when the correct numbers of junction motifs combine to form the expected unit cells, they will not be able to assemble with perfect edge-to-edge tiling in the presence of incorrectly formed 4-member rings. Thus, designing building blocks with precisely encoded sticky-ends is essential for the

successful formation of a desired pattern. In the case described above we were required to use two unique 4-arm tiles and one unique 3-arm tile to realize the design. By mixing these three unique tiles in a 1:1:4 molar ratio we facilitated the self-assembly of the unit motifs into the expected pattern shown in Figure 2.2a.

The final step in the design process is to assign sequences to the ssDNA that comprise each structural motif and the corresponding sticky ends. We found that asymmetric sequences are required for the arms, even for cases when the sticky-ends are the same. For example, in the Cairo pentagonal tiling (Figure 2.2a) each 4-arm tile has four identical sticky-ends but still requires four different sequences for the branches to avoid aggregation at the individual tile level (see Supplementary Figure S10b). This is likely because the length of the arms used here are much longer than the ones described previously^{12-13, 15, 17} such that the strands with repeating sequences have a greater chance to be linked to other tiles. Obviously the sequences of the sticky ends should be distinct to avoid mismatches between building blocks. It is also important to note that the sequences of the sticky-ends should not be rich in G or C residues, otherwise, undesired oligomerization of the individual tile motifs may occur (Supplementary Figure S10c). For example, we observed that the 4-arm junction tiles with four identical sticky-end sequences (GCAG) self-associate in an end-to-end manner to form linear oligomers ranging from dimers to tetramers, with the final assemblies resembling rhombus-like ribbon structures where each tile exhibits a twisted junction (supplementary Figure S10d). Thus, we avoided GC rich sequences in the sticky end design. In the work reported here we utilized 4-bp sticky ends throughout. 4^4 (= 256) total possibilities provide adequate sequence space for the selection of unique inter-unit complementarity.

Experimentally, each structure shown in Figure 2.2 was assembled by mixing all the strands needed in the correct stoichiometric ratio for a final unit-cell concentration of 0.6 μ M, in tris-acetate–EDTA (TAE) buffer (pH 8.0, containing 12.5 mM Mg²⁺) and annealing the mixture from 90 to 4 °C over 12 hours (see Supplementary Information for detailed experimental methods).

Figure 2.2a demonstrates the formation of the Cairo pentagonal tiling corresponding to the Archimedean pattern (3^2 .4.3.4) in which the 3-arm and 4-arm building blocks are combined in a 4:1:1 ratio. AFM characterization of the products confirms that the tiles self-assembled into micrometer-sized 2D arrays. The AFM images also reveal that the 2D arrays often exhibit curved edges, indicating that they are not perfectly planar in solution before deposition onto mica (see additional images in Figure S2a). This curvature is likely an intrinsic consequence of the design, as the tiles are all facing the same direction and thus any curvature in the individual tiles may be accumulated in the 2D array. However, the relatively large size of the arrays (with dimensions of several micron meters) indicates that the curvature of the unit tiles, if any, is small (< 1 degree per tile).

Figure 2.2 Sticky end matching rules and corresponding AFM images of each Archimedean tiling design. (a-e) The left panel illustrates the unit cell represented by dashed lines. The middle panel depicts the sticky ends matching rules: n sticky end interacts with n*, the underlined numbers represent tiles that are connected to other tiles that face the opposite direction in the array (half turn between vertices in the DNA arms). The right panels contain zoom in and zoom out AFM images, respectively, with the scale bars marked. (a) Cairo pentagonal tiling corresponding to Archimedean tiling (3².4.3.4). (b) Prismatic pentagonal tiling corresponding to Archimedean tiling (3³.4²). (c) Shortened Prismatic pentagonal tiling with extra layer of rectangular tiles and corrugated design.

Figure 2.2b illustrates the formation of the Prismatic pentagonal tiling corresponding to the Archimedean pattern $(3^3, 4^2)$. Its two building blocks have the same
arm lengths as those in the Cairo pentagonal tiling (Figure 2.2a), but with different sticky end sequences as determined by its own matching rules. Similarly, these tiles are all facing in the same directions in the array. When mixed in a molar ratio of 2:1 they selfassemble into large 2D sheets that curl up into tubes with diameters in the range of 80-250 nm (see schematics in supplementary Figure S3c and additional AFM images in Figure S3d).

Tube formation from DNA tile arrays has been discussed previously¹⁸⁻²⁰. This process is thermodynamically allowed as long as the enthalpy gained from DNA hybridization at the edges of the tile arrays is sufficient to compensate for the lost in entropy and the energetic cost of bending the helices within the tile arrays. Based on the designed connection pattern there are four possible ways to fold the 2D array into a tube (schematics shown in Figure S3a). We carefully analyzed AFM images of 88 tubes and found that ~ 57% of the tubes have a long axis that is parallel to the connections between the 4-arm junction tiles (Figure S3e). ~ 43% of the tubes adopted a spiral arrangement, with the long axis of the tube at a < 45 degree angle with the connections between the 4-arm junction tiles. There is no evidence of the formation of structures in which the axis of the tube is perpendicular to the connections between the 4-arm junctions tiles, nor are there any tubes that adopt >45 degree angles with respect to the inter-tile connections.

This observation can be explained in terms of the anisotropic growth dynamic of the tile arrays. The growth rate parallel to the direction of the 4-arm tile-tile association is expected to be much faster than in the perpendicular direction. This is because the rate of growth in the array per building block is faster in parallel than that in the perpendicular direction, as the 4-arm junction tiles are larger in size and require a single pair of sticky end interactions per tile to secure the subsequent layer of tiles. In contrast, the growth rate in the perpendicular direction per unit tile is smaller, not only because each 3-arm tile is shorter, but also because growth in that direction requires at least two successful pairs of sticky end connections per tile to secure the next layer of tiles. This growth dynamics causes the anisotropic elongation of the tile array that we observed. Given enough time during the annealing process, the 2D tile arrays will reach a point at which it is more difficult and energetically unfavorable for the tiles along the edges to encounter complementary tiles in solution than it is to interact with other edges of the array and form tubes. It is also possible for ring structures to form during the nucleation step; these structures can serve as templates that can be elongated from both ends resulting in the formation of tubes. Shorter tubes may also be connected end-to-end during the last stage of the annealing process to form longer tubes.

Figure 2.2c shows a shortened Prismatic pentagonal tiling using the same matching rules as shown in Figure 2.2b, but with shorter arms in both of the component tiles (less an integer numbers of half turns in each arm). Therefore, the tiles are all facing in the same direction but the anisotropy in the dimensions is higher. The building blocks were found to connect and curl into tubes with relatively small diameters, ~ 43 nm (supplementary Figure S4e). The narrow tubes form within 2 hours and grow longer with extended annealing times (see Supplementary Information for detailed experimental methods and supplementary Figure S4b). This observation supports a nucleation and growth mechanism. The tube folding direction is similar to the Prismatic pentagonal design and can be explained by the same reasons as discussed above (supplementary Figure S4).

Figure 2.2d is another shortened Prismatic pentagonal tiling, but with a corrugated design in which the lengths of the arms are adjusted according to Figure 2.1d so that the neighboring layers of unit cells are alternatively facing up and down. This design balances the natural curvature within the building blocks and leads to formation of large 2D arrays. Interestingly, wide tubes (additional AFM images shown in supplementary Figure S5) with diameters (or half perimeters) ranging from 100-400 nm (supplementary Figure S5c) were observed. It appears that the ability to form tubes cannot be prevented with a corrugated design. This result indicates that the 2D arrays are flexible enough that bending them incurs a smaller energetic penalty than the energy released from base-pairing.

As shown in Figure 2.2e we further modified the 4-arm building block so that only one of the sticky ends was self-complementary (4=4*) (compared with the design in Figure 2.2d), and upon mixing the 3- and 4-arm tiles in a 1:1 ratio they self-assemble into a complex 2D tiling. This is also a corrugated design with neighboring layers of unit cells alternatively facing opposite directions. The arrays formed from this design also curled into tubes with similar diameters 100-450 nm (supplementary Figure S6c) as those in Figure 2.2d. The cavities in this pattern exhibit both rectangular and prismatic pentagon shapes.

We further investigated the parameters that influence the formation of large patterns, including the molar ratio of the building blocks, annealing program and concentration. For the shortened Prismatic pentagonal tiling with a corrugated design and the following assembly conditions: short annealing time (2 h instead of 12 h), low concentration of building blocks (0.2 μ M instead of 0.6 μ M), and deviation from the

desired stoichiometric ratio of the building blocks (1:0, 0:1, 1:1 or 1:1.9 instead of 1:2), only small fragments were observed (supplementary Figure S7-8). However, for the Cairo pentagonal tiling when the ratio of building blocks was varied from the designed 4:1:1 (supplementary Figure S9) to 8:1:1 or 2:1:1, we observed the formation of small, 2-layer structures with sharp edges and dimensions in the range of 200-500 nm. These pocket-like structures were also observed in the background of the large 2D array samples when a 4:1:1 ratio was used (supplementary Figure S2b), possibly due to the imperfect stoichiometric ratio. The pockets are likely to adopt the observed shapes with certain preferred angles. Figure 2.3 illustrates the possible mechanism of folding when two complementary edges with 90, 180 or 270 degree angles come together to form the pocket-like structures; after they are deposited on 2D substrates for AFM imaging they form two layer structures with sharp 45, 90 or 135 degree angles.

Figure 2.3 Possible mechanisms of the formation of 2-layer pocket-like structures. (a) In the Cairo pentagonal tiling two edges are arranged at a 90 degree angle and are complementary to each other. (b) Three possible folding interactions with 90, 180 and 270 degree inter-edge angles, respectively, that are transformed into 45, 90 and 135 degree angles. The corresponding structures are shown in the AFM images on the right. (c) Based on a, four sets of matching edge interactions point to a center. (d) Two parallel edges match each other to bring two smaller pieces together to form a larger piece. (e) Parallel edges allow a 2D array to fold into a tube. (f) AFM image of the sample obtained from a 0.5:0.5:4 ratio of building blocks (the ideal ratio for the large 2D array is 1:1:4).

2.5 Conclusion

In 2008²¹ researchers determined that the intermediate between a crystal and a quasi-crystal is a $(3^3.4^2)$ Archimedean-like tiling structure, which was observed in a colloidal monolayer interacting with a quasi-crystalline substrate. Later, a link between Archimedean tilings and quasi-crystals was established when the self-assembly of binary nanoparticles resulted in the formation of quasi-crystalline super-lattices with a $(3^3.4^2)$

Archimedean structure interface between the quasi-crystalline and crystalline phases³. It is foreseeable that the successful hybridization of DNA motifs to form Archimedean tiling structures will further increase the complexity of DNA nanostructures and provide the ability to form quasi-crystals based on DNA tiling. Furthermore, DNA directed assembly of quasi-crystalline arrays may produce unique nanostructures with novel properties by functionalizing the DNA tile motifs with other nano-materials.

2.6 References

(1) Grünbaum, B.; Shephard, G. C., *Tilings and Patterns*. W.H. Freeman: 1987.

(2) David, S.; Chelnokov, A.; Lourtioz, J. M., *Ieee J Quantum Elect* **2001**, 37, 1427-1434.

(3) Talapin, D. V.; Shevchenko, E. V.; Bodnarchuk, M. I.; Ye, X. C.; Chen, J.; Murray, C. B., *Nature* **2009**, 461, 964-967.

(4) Seeman, N. C., *J Theor Biol* **1982**, 99, 237-247.

(5) Rothemund, P. W. K., *Nature* **2006**, 440, 297-302.

(6) Winfree, E.; Liu, F. R.; Wenzler, L. A.; Seeman, N. C., *Nature* **1998**, 394, 539-544.

(7) Seeman, N. C., *Nature* **2003**, 421, 427-431.

(8) Gothelf, K. V.; LaBean, T. H., *Org Biomol Chem* **2005**, *3*, 4023-4037.

(9) Voigt, N. V.; Torring, T.; Rotaru, A.; Jacobsen, M. F.; Ravnsbaek, J. B.; Subramani, R.; Mamdouh, W.; Kjems, J.; Mokhir, A.; Besenbacher, F.; Gothelf, K. V., *Nat Nanotechnol* **2010**, *5*, 200-203.

(10) Deng, Z. T.; Samanta, A.; Nangreave, J.; Yan, H.; Liu, Y., *J Am Chem Soc* **2012**, 134, 17424-17427.

(11) Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H., *Science* **2003**, 301, 1882-1884.

(12) He, Y.; Chen, Y.; Liu, H. P.; Ribbe, A. E.; Mao, C. D., *J Am Chem Soc* **2005**, 127, 12202-12203.

(13) He, Y.; Tian, Y.; Ribbe, A. E.; Mao, C. D., *J Am Chem Soc* **2006**, 128, 15978-15979.

(14) He, Y.; Tian, Y.; Chen, Y.; Ribbe, A. E.; Mao, C. D., *Chem Commun* **2007**, 165-167.

(15) Zhang, C.; Su, M.; He, Y.; Zhao, X.; Fang, P. A.; Ribbe, A. E.; Jiang, W.; Mao, C. D., *P Natl Acad Sci USA* 2008, 105, 10665-10669.

(16) Chavey, D., *Comput Math Appl* **1989**, 17, 147-165.

(17) He, Y.; Ye, T.; Su, M.; Zhang, C.; Ribbe, A. E.; Jiang, W.; Mao, C. D., *Nature* **2008**, 452, 198-201.

(18) Ke, Y. G.; Liu, Y.; Zhang, J. P.; Yan, H., JAm Chem Soc 2006, 128, 4414-4421.

(19) Maune, H. T.; Han, S. P.; Barish, R. D.; Bockrath, M.; Goddard, W. A.; Rothemund, P. W. K.; Winfree, E., *Nat Nanotechnol* **2010**, *5*, 61-66.

(20) Mitchell, J. C.; Harris, J. R.; Malo, J.; Bath, J.; Turberfield, A. J., *J Am Chem Soc* **2004**, 126, 16342-16343.

(21) Mikhael, J.; Roth, J.; Helden, L.; Bechinger, C., *Nature* **2008**, 454, 501-504.

CHAPTER 3

COMPLEX WIREFRAME DNA ORIGAMI NANOSTRUCTURES WITH MULTI-ARM JUNCTION VERTICES

3.1 Abstract

Engineering complex wireframe architectures with arbitrarily designed connections between selected vertices in three-dimensional (3D) space is an important challenge in nanotechnology. Here we present a new design strategy to realize the formation of finite-size wireframe DNA nanostructures with high complexity and programmability. In this design, the vertices are represented by $n \times 4$ multiarm junctions (n = 2-10) with controlled angles, and the lines are represented by antiparallel DNA crossover tiles of variable lengths. Scaffold strand(s) were used to integrate the vertices and lines into fully assembled structures displaying intricate architectures. A series of two-dimensional (2D) patterns ranging from symmetrical lattice arrays, quasicrystalline structures, curvilinear arrays of variable curvatures to a flower-and-bird artistic structure, a complex 3D snub cube, and a 3D Archimedean solid with 2D to 3D transitions were constructed to demonstrate the versatility of the design strategy.

3.2 Introduction

Programmable DNA self-assembly has shown its true merit in constructing designer nanoarchitectures of increasing complexity ¹⁻⁴. Over the years, various design strategies have been devised to create DNA nanostructures with well-defined geometrical features⁵⁻¹¹. In particular, DNA origami⁶ has opened up exciting opportunities to create molecular scaffolds for the templated assembly of functional molecular devices and

sensors⁴. DNA origami is a method that employs hundreds of short, synthetic DNA strands as staples to fold a long single-stranded scaffold into spatially addressable twoand three-dimensional (2D and 3D) DNA architectures (*6*). Most of the current methods in DNA origami rely on restricting the scaffold strand to discrete domains of adjacent helices arranged in a parallel fashion^{6, 8, 11-13}. A recent departure from these methods is the creation of DNA Gridiron nanostructures, in which an unusual set of four-arm Holiday junctions connects double helical domains into grid-like structures that maintain local regularity and translational symmetry¹⁴. Nevertheless, achieving wireframe structures of higher-order arbitrariness and complexity with broken local periodicity and symmetry requires a new set of design rules to allow the scaffolds to travel in arbitrary directions through chosen points in the designed geometry.

Here we present systematic design rules to construct sophisticated wireframe structures without local symmetry restrictions where each vertex and line segment is individually designed and controlled. The length and curvature of the line segments that make the connections between any neighboring vertices can be modified. The number of arms that stretch out from each vertex can be anywhere from 2 to 10, and the angles between any two adjacent arms can be varied. We have designed and constructed a set of complex 2D patterns including symmetrical lattice arrays, quasicrystalline structures, curvilinear arrays, and a simple wire art sketch in the 100-nm scale, as well as 3D objects including a snub cube with 60 edges and 24 vertices and a reconfigurable Archimedean solid that can be controlled to make the unfolding and refolding transitions between 3D and 2D.

3.3 Materials and Methods

3.3.1 Materials

All DNA staple strands were purchased in 96-well plates from Integrated DNA Technologies, Inc. (www.IDTDNA.com) at 25 nmol synthesis scales with concentrations normalized to 200 µM. Staple strands were used directly from plates without further purification. Scaffold single-stranded M13mp18 viral DNA and phiX174 DNA were purchased from New England Biolabs, Inc. (NEB, catalog numbers N4040S and N3023S).

3.3.2 Individual Wireframe DNA Origami Nanostructure Assembly

The structures with a single scaffold were assembled by mixing 5 nM singlestranded M13mp18 DNA (7,249 nucleotides) with a 10-fold molar excess of staple strands in 1× TAE Mg²⁺ buffer (40 mM Tris, 20 mM acetic acid, 2 mM EDTA, and 12.5 mM Magnesium acetate [pH 8.0]). The frame origami structures with two scaffolds were annealed by mixing 5 nM M13mp18 and 5 nM phiX174 with the staple strands in a 1:1:20 molar ratio in 1× TAE Mg²⁺ buffer. The final volume of the mixture was 100 μ L. The design details and sequences of the DNA oligos used to form each structure are listed in Section 5. The resulting solutions were annealed in a PCR thermocycler from 90 °C to 4 °C in about 12 hours: 90 °C to 86 °C at a rate of 4 °C per 5 minutes; 85 °C to 70 °C at a rate of 1 °C per 5 minutes; 70 °C to 40 °C at a rate of 1 °C per 15 minutes; 40 °C to 25 °C at 1 °C per 10 minutes; and hold at 4 °C at the end of the cycle.

3.3.3 Hierarchical Assembly of 3×3 Square Lattice Origami Array

The three-square lattice origami with different extended sticky-end staple strands were individually annealed by following the protocol described above. The excess staple strands were washed away using a 100-kD MWCO Amicon centrifugal filter (Sigma-Aldrich). A 100- μ L annealed sample and 400 μ L 1× TAE-Mg²⁺ buffer was added into the filter. After spinning for 3 minutes at 5500 rpm, another 400 μ L 1× TAE-Mg²⁺ buffer was added for the second wash. After three washes, the three structures with the appropriate stoichiometry (1:4:4) were mixed together and left at room temperature (25 °C) for 12 hours before characterization.

3.3.4 Transformation of the Cuboctahedron between the 2D Open Net and 3D Shape

The starting structure either in 2D or 3D was annealed using the protocol described above. Without further purification, 2-fold molar excesses of fuel strands were added to the sample and incubated at 45 °C for 6 hours. Then, 4 times molar excess of set strands were added to the sample and cooled from 45 °C to 4 °C at a rate of 1 °C per 10 minutes.

3.3.5 AFM Imaging

AFM imaging was conducted in "ScanAsyst mode in fluid" (Dimension FastScan, Bruker Corp.) with Scanasyst-Fluid+ tips (Bruker Corp.). The sample preparation for AFM imaging was as follows: a 2 μ L annealed sample was deposited onto a freshly cleaved mica surface (Ted Pella, Inc.), and 3 μ L NiCl₂ (25 mM) was immediately added to the samples (the effect of adding NiCl₂ is discussed in supplemental section 3). After waiting ~30 seconds for adsorption to the mica surface, 80 μ L 1× TAE-Mg²⁺ buffer was added to the sample, and an extra 40 μ L of the same buffer was deposited onto the AFM tip.

3.3.6 Cryo-EM Imaging

Snub cube concentration was 5nM after annealing. The sample was then concentrated with 100K membrane tubes (Millipore Amicon Ultra, Ultracel 100K Membrane) from 1700 μ L to 45 μ L. The expected final concentration was about 180 nM. 3 μ L of the concentrated sample solution were spread onto negative glow discharged Quantifoil grid, then plunge-frozen with vitrobot. Data were recorded using a Gatan 4,096 × 4,096 pixel charge-coupled device (CCD) camera with 29k Magnification, 8 μ m defocus, 25.2e/A² dose, in a Titan Krios transmission electron microscope with field-emission gun operating at 300 kV accelerating voltage.

3.3.7 Single-particle Reconstruction

3D reconstructions study of the DNA cage was carried out with the single-particle image processing software EMAN. OCT symmetry was applied during the reconstruction. 3D maps were visualized using UCSF Chimera software.

3.3.8 Native Agarose Gel Electrophoresis

Native gel electrophoresis was conducted on 0.5% agarose gel in $1 \times TAE-Mg^{2+}$ buffer at 80 V sitting in an ice-water bath. Next, 5 µL annealed sample was mixed with 1 µL 100× SYBR Gold nucleic acid gel stain solution (Life Technologies), and the mixture was loaded into the casted gel well. After running for 2–3 hours, the gel was visualized under UV light (Gel Doc XR+ system gel imager, Bio-Rad).

3.4 Results and Discussion

To construct an arbitrarily shaped wireframe architecture, the first step is to convert all the connections between vertices into double lines (Figure 3.1A). The second step is to "loop" and "bridge" all the lines into a single continuity along which one single-

stranded scaffold strand can travel through all the vertices. Proper crossovers between the lines are placed to make the scaffold strand go through all the lines unidirectionally, once and only once, so that in any individual line segment the two lines are antiparallel (Figure 3.1A). Next, the complementary staple strands in the line segments are added following the rules for generating double crossover (DX) DNA tiles⁵, where antiparallel DX junctions between the lines are inserted to bridge the two DNA helices separated by a full number of DNA helical turns.

To adjust the angles between arms and assign the sequences, a T_n loop of appropriate length is inserted into the staple strands surrounding the vertex, and a certain number of nucleotides in the scaffold strand are left unpaired opposite to the T_n loop. The added unpaired nucleotides at the vertex provide a degree of structural flexibility and allow bending at the corners to generate the desired angles between the arms at the vertex (Figure 3.1B). Additionally, the design of the staple strands requires consideration of the length and curvature of each of the line segments. The lengths of the line segments between any two neighboring vertices need to be an integer number of DNA helical turns to minimize strain and allow the scaffold DNA to follow the designed folding path. Figure 3.1C shows two possible scenarios when adding staple strands: with or without a scaffold crossover in the line segment, which requires a shift of the crossover positions of the staple strands to avoid juxtaposing two crossovers. This distributes the positions of crossovers evenly along the line segments, which determines the integrity and rigidity of each part of the structure.

To demonstrate the design principles, we first construct three Platonic tessellation patterns with homogenous vertices and edges of regular polygonal patterns in the form of hexagonal, square, or triangle geometries. The honeycomb pattern containing 16 hexagons is used as an example to illustrate the detailed design process. In this pattern, each vertex is joined by three arms with equal 120° angles. First, we layout the target pattern and convert each arm into two parallel lines (figure S1A). Then we connect each pair of the lines that meet at the vertex and loop them all at the edges. This results in a number of individual hexagonal loops in the center part and a continuous loop along the perimeter of the whole pattern (figure S1B). Next, we insert DXs between the neighboring hexagon loops at selected positions so that the individual loops are all connected to form a single loop. A final bridge is added between the internal and the edge loops (figure S2); therefore, one single-stranded circular DNA acting as a scaffold can go through the entire structure and visit each vertex and line three and two times, respectively.

Figure 3.1 Design principles. (A) Left: An arbitrary wire-frame pattern composed of line segments (gray) and vertices (blue). Right: Steps to route a scaffold: first, double all the line segments from the original pattern; second, connect the lines that meet at each vertex; third, "loop" and "bridge" all the lines into one continuous scaffold. (B) A DNA helical model of a 4×4 junction (top) and a line model of the 4×4 junction (bottom). Each vertex is designed as an $n \times 4$ junction. The angle of adjacent arms in one junction can be adjusted by inserting poly T loops (red dots) and leaving unpaired nucleotides in the scaffold strand opposite to the poly T loop (dark blue dots). (C) Adding staple strands on two different types of edges (5-turn long edges are utilized here for illustration): the edge with two antiparallel scaffolds (top) and the edge with a scaffold bridge (Holliday

junction) in the middle. The arrows point to the direction from 5' to 3' end of the DNA. In B and C, The dark blue strands represent the scaffold strand, and the gray and cyan strands are the staple strands.

The next step is to add the complementary staple strands in the line segments according to the design rules of forming double-crossover tiles. Here we used five full turns of B-form DNA as the length of each edge. Unpaired nucleotides around the vertices are manually assigned to satisfy the angle requirement. Because the honeycomb array has a homogenous 120° intersection angle, a T₃ loop in the staple strands at each corner is suitable to maintain this angle ¹⁵, and all the bases in the scaffold strand remain base paired (figure S3B). The edges are treated differently depending on whether or not they contain a scaffold crossover (see figure S4 for design details). Finally, nick points are added at carefully selected positions to obtain appropriate-length staple strands.

To generate the honeycomb structure (Figure 3.2A), 7100 of 7249 nt of the M13mp18 single-stranded DNA (ssDNA) were assigned, and 223 staple strands with lengths ranging from 20 to 52 bases were used. The extra 138 nt of the scaffold is left as an unpaired loop on the outer edge. All the staple strands on the outermost edges were modified with poly T tails (figure S4D) to prevent the potential π - π stacking along blunt-ended helices between individual structures.

Similar design principles were applied to create the other two Platonic patterns. The square tiling has 90° intersection angles, and four T₄ loops were utilized in the center of each vertex to create the 90° angles ¹⁶ (figure S11B). The triangular tiling has 60° intersection angles, and six T₅ loops were used at each vertex ¹⁷ (figure S11C). The dimensions of the final pattern depend on the length of the scaffold strand available and the length of the edges (minimal three helical turns). By design, the dimensions of the 4 ×

4 hexagonal pattern is 150 nm \times 150 nm (considering that the width of a DX tile is ~4.5 nm), the 5 \times 5 square pattern is 108 nm \times 108 nm, and the triangular pattern is 136 nm \times 136 nm in the 2D plane. Atomic force microscope (AFM) images confirmed the successful formation of the designed structures (Figure 3.2A-C) with high yield and structural integrity.

Our strategy can be easily adapted to design larger and more complex structures based on multiple scaffolds. For example, we designed a square tiling pattern using both M13mp18 (7249 nt) and PhiX174 (5386 nt) as the scaffold strands to create a 2D grid containing 8×9 cross-shaped vertices (or 7×8 square cavities). To ensure structural integrity, the contacts between the two scaffolds are maximized via staple strands. The final structure has four helical turns in each edge and provides a fully addressable square lattice of 148 nm × 167 nm (Figure 3.2D). To further scale up the square lattice pattern, we took inspiration from our previously reported symmetric tile hierarchical assembly method ¹⁸ to assemble a square lattice containing 17×17 square cavities of ~300 nm in both dimensions (Figure 3.2E). To our knowledge, this is the largest finite size square DNA lattice reported in the literature.

Figure 3.2 The scaffold folding paths and representative AFM images for the simple Platonic tiling. (A-C) Platonic tiling based on hexagon, square, and triangle geometries. (D) A 7×8 square Platonic tiling composed of two scaffolds (The black-blue loop on the left is a PhiX174 scaffold, and the colorful loop on the right is an M13mp18 scaffold). (E) A lattice with 17×19 square cavities. All scale bars are 100 nm.

Using this design strategy, we were able to create more complex wireframe structures without local translational symmetry (as shown in Figure 3.1A) using quasicrystalline structures as target patterns. We demonstrated three patterns without translational symmetry. These include a star shape, a 5-fold Penrose tiling, and an 8-fold quasicrystalline pattern (Figure 3.3A-C). In contrast to the homogeneous tiling patterns, these three structures contain: 1) a diverse number of arms that meet at each vertex, ranging from three to eight arms; 2) various intersection angles between any neighboring arms, ranging from 30° to 150°; and 3) variable arm lengths, from three to six turns. Successful formation of these structures demonstrates the high programmability of our methods.

Changes about the numbers of arms and intersection angles are achieved by the insertion of T_n loops in the staple strands around each vertex and leaving unpaired bases on the scaffold strand between arms as necessary (see figures S22-S24 for design details). For example, in the Penrose tiling (Figure 3.3B), surrounding the central 5-arm vertex there are five 3-arm vertices that have different angles between the three arms: 108°, 108°, and 144° (figure S23). T₃, T₃, and T₄ are inserted in the staple strand surrounding the vertex, and one unpaired nucleotide was left on the scaffold strand to achieve the 144° angle (figure S23-2). The next group of vertices connected to the central one all contain 5-arms that have angles of two 36°, two 72°, and one 108°. These angles are achieved by inserting T₅ or T₄ loops in the staple strands and a T₅ loop opposite to an unpaired nucleotide on the scaffold (figure S23-4).

Figure 3.3 The scaffold folding path and representative AFM images for intricate 2D patterns. (A) A star-shape pattern without translational symmetry. (B) A Penrose tiling. (C) An 8-fold quasicrystalline pattern. (D-F) Three curved structures. (D) A waving grid. (E) A sphere array. (F) A fishnet. (G) A flower-and-bird pattern. All scale bars are 100 nm. Two scaffolds (one colorful and one black-blue) are used in C and G.

In another example, the quasicrystalline pattern shown in Figure 3.3C contains six different types of vertices: one symmetric 8-arm with all 45° angles; 24 3-arms with 90°, 135°, 135° angles; 16 4-arms with 45°, 90°, 135°, 90° angles; 8 5-arms with 90°, 45°, 90°, 90°, 45° angles; 8 4-arms with all 90° angles; and 8 2-arms with 45° and 315° angles (figure S24). Each of the unique vertice types requires an individualized design. Generally, T₅, T₄, and T₂ loops are used to create 45°, 90°, and 135° angles, respectively. Adding unpaired nucleotide(s) in the scaffold strand opposite to the loop on the staple

strand produces larger angles. The rules for creating different angles are summarized in the supporting information (figure S38).

For the two quasicrystalline patterns, all the edges are of the same length. However, for the star-shape pattern shown in Figure 3.3A, the edges are three different lengths that have a ratio of 6:5:2.9, which can be achieved by using 6, 5, and 3 full helical turns in the arms, respectively. Therefore, various target structures with reduced local symmetry can be successfully synthesized by adjusting the angles and arm lengths. Structural characterization by native gel electrophoresis (figure S46) and AFM imaging confirmed the successful assembly of the structures with high yield and excellent structural integrity (Figure 3.3A-C).

In our design, every line segment of the patterns can be considered an analog of a DX DNA tile (two double-helical DNA linked by two or three DXs). This feature enables us to introduce more intricate curvatures at each line segment to generate waving or circular patterns (Figure 3.3D-F), which can be achieved using a previously reported targeted insertion and deletion method¹². Taking the waving grid structure as an example (Figure 3.3D), we laid down the scaffold strand on each line segment as two concentric arcs instead of two parallel lines. In each unit, a \sim 72° arc is created when a 31-bp and a 21-bp double-helical DNA are laid side-by-side and connected by two crossovers at both ends (see figures S25 and S26 for details). By rotating and attaching such segments together, waving patterns of arbitrary curvatures can be generated (figures S25-S34).

Figure 3.4 3D wire-frame Archimedean solid structures. (A) A 3D model of an Archimedean solid cuboctahedron with 12 vertices and 24 edges. Each vertex is a 4×4 junction, and each edge is a 14-turn long double DNA duplex. (B) Left: Models showing possible conformations of the structure when deposited on mica surface; Right: the corresponding AFM images. (C) The reconfiguration between 3D and 2D can be realized by strand displacement by adding fuel and set strands. Top: reconfiguration schematics, Bottom: AFM images showing the transition. All scale bars in AFM images are 100 nm. (D) A 3D model of another Archimedean solid snub cube with 24 vertices and 60 edges. Each vertex is 5×4 junction, and each edge is a 5-turn double DNA duplex. (E) Three views reflected the 2-, 3-, and 4-fold symmetry of the DNA snub cube from models (top) and reconstructions from cryo-EM images.

To test our design methods for producing patterns of extreme complexity, a more intricate and arbitrary shape in the form of three flowers and a bird was constructed through the angle variation and curvature creation as discussed above (Figure 3.3C). This structure consists of vertices that range from 2- to 10-arms, a wide range of different angles between the arms, and various arm lengths and curvatures. We folded two scaffold strand loops and individually modified each of the vertices and lines to create the desired

angles and local curvatures (see figures S35-S37 for details). AFM imaging clearly shows the correct formation of the structures resembling the designed patterns, demonstrating the versatility of our strategy to create very sophisticated wire-frame DNA nanostructures that have been difficult to achieve using previous methods.

The design principle can be easily adapted to generate 3D architectures that have vertices and edges arranged in 3D space with or without structural symmetry. This can be achieved by following the same design steps from turning single line edges into two lines, "looping" and "bridging," adjusting angles, and filling in staples. One important step for 3D construction is identifying appropriate folding paths and bridge points to fold the scaffold into a single loop that winds through all parts of the structure. A simple solution is to use the topological equivalent 2D polygon net for the 3D structures to allow the use of the "loop" and "bridge" strategy demonstrated in 2D to generate the looping path of the scaffold (figures S42 and S43). Angles in each vertex are adjusted using the same method by inserting T_n loops in the staples around the vertices and leaving unpaired nucleotides in the scaffold at the vertices (figure S41 and S44).

As shown in Figure 3.4, we designed and constructed a simple Archimedean solid cuboctahedron that contains 12 equivalent 4-arm vertices (with 60°, 90°, 60°, and 90° angles) and equal length 2-helix DNA as edges that are each 14 full DNA helical turns long. The structure can be easily observed under AFM (Figure 3.4, B and C) in a flattened form when it is deposited on the mica surface. The majority of the objects observed are centered with one of the square surfaces, indicating that the square surface has a higher tendency (stronger binding affinity) to contact the mica surface than the triangular surfaces or any vertex. Flattening of the 3D shape on the surface in this

preferred way involved only angle changes at the vertices and minimal stretching or compression of any edges, which is understandable as the angle change at the singlestranded loops around the vertices should involve much smaller free energy costs than stretching or compressing the DNA helices.

Reconfigurable transitions between the 2D and 3D conformations were achieved using the strand displacement technique¹⁹. Upon addition of corresponding fuel and set strands, the staples on the outer edges of the 2D net were released and replaced by new staples that joined the specific edges together to form the 3D conformation. The new staples on the 3D polyhedron were also designed with a new set of toehold strands to allow the unfolding transformation from 3D to 2D (see supporting information for details). The unfolding-refolding reconfigurations were clearly verified by AFM imaging (Figure 4.4 and figures S63-S64), providing further proof for correct 3D structure formation.

We further constructed a more complex 3D object a snub cube, which is also an Archimedean solid with 60 edges, 24 vertices and 38 faces including 6 squares and 32 equilateral triangles. Each edge were designed as 5-turn long DNA double helix. The 5-arm vertices were assigned as T_5 , T_5 , T_5 , T_5 and T_4 loops between adjacent arms corresponding to 60°, 60°, 60°, 60°, and 90° angles. Cryogenic transmission electronic microscopy (cryo-EM) provided direct evidence for the formation of snub cube (Figure 4.4E and S65). The cryoEM study confirmed the overall geometry and all key elements shown up in the reconstructed model. The observed edges are about 20 nm long and 6 nm thickness, which matches the designed structures (22 nm long and 5 nm thickness). The 2-, 3-, and 4-fold symmetry in the snub cube were proofed by cryo-EM (Figure 4.4E).

3.5 Conclusion

In summary, we have demonstrated the utility of a set of new design rules for engineering wire-frame DNA nanostructures with unprecedented complexity. In principle, this strategy can be applied to design and construct any imaginable wire-frame nanostructure. In the examples demonstrated here, we utilized antiparallel double-crossover junctions to form "bridges" between two neighboring helices. Other DNA or RNA junction motifs such as paranemic crossovers (PX)²⁰ and RNA kissing loops²¹ can also be exploited to enrich the design and produce interesting topological structures that could potentially be replicated in vivo through biological machineries. The structural platform reported here enables the construction of nanostructures with a new level of structural complexity. The fabrication of quasicrystalline materials with rational design and programmability has been a challenging task. The method described here offers a new way to program the formation of quasicrystalline patterns for templated assembly of functional nanomaterials with emerging properties.

3.6 References

- (1) Aldaye, F. A.; Palmer, A. L.; Sleiman, H. F., *Science* **2008**, 321, 1795-1799.
- (2) Seeman, N. C., Annu Rev Biochem **2010**, 79, 65-87.
- (3) Pinheiro, A. V.; Han, D. R.; Shih, W. M.; Yan, H., *Nat Nanotechnol* **2011**, 6, 763-772.
- (4) Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H., *J Am Chem Soc* **2014**, 136, 11198-11211.
- (5) Winfree, E.; Liu, F. R.; Wenzler, L. A.; Seeman, N. C., *Nature* **1998**, 394, 539-544.

(6) Rothemund, P. W. K., *Nature* **2006**, 440, 297-302.

(7) He, Y.; Ye, T.; Su, M.; Zhang, C.; Ribbe, A. E.; Jiang, W.; Mao, C. D., *Nature* **2008**, 452, 198-U41.

(8) Douglas, S. M.; Dietz, H.; Liedl, T.; Hogberg, B.; Graf, F.; Shih, W. M., *Nature* **2009**, 459, 414-418.

(9) Wei, B.; Dai, M. J.; Yin, P., *Nature* **2012**, 485, 623.

(10) Ke, Y. G.; Ong, L. L.; Shih, W. M.; Yin, P., *Science* **2012**, 338, 1177-1183.

(11) Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L. P.; Pedersen, J. S.; Birkedal, V.; Besenbacher, F.; Gothelf, K. V.; Kjems, J., *Nature* **2009**, 459, 73-U75.

(12) Dietz, H.; Douglas, S. M.; Shih, W. M., Science 2009, 325, 725-730.

(13) Han, D. R.; Pal, S.; Nangreave, J.; Deng, Z. T.; Liu, Y.; Yan, H., *Science* **2011**, 332, 342-346.

(14) Han, D. R.; Pal, S.; Yang, Y.; Jiang, S. X.; Nangreave, J.; Liu, Y.; Yan, H., *Science* **2013**, 339, 1412-1415.

(15) He, Y.; Chen, Y.; Liu, H. P.; Ribbe, A. E.; Mao, C. D., *J Am Chem Soc* **2005**, 127, 12202-12203.

(16) Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H., *Science* **2003**, 301, 1882-1884.

(17) He, Y.; Tian, Y.; Ribbe, A. E.; Mao, C. D., *J Am Chem Soc* **2006**, 128, 15978-15979.

(18) Liu, Y.; Ke, Y. G.; Yan, H., J Am Chem Soc 2005, 127, 17140-17141.

(19) Yurke, B.; Turberfield, A. J.; Mills, A. P.; Simmel, F. C.; Neumann, J. L., *Nature* **2000**, 406, 605-608.

(20) Shen, Z. Y.; Yan, H.; Wang, T.; Seeman, N. C., *J Am Chem Soc* **2004**, 126, 1666-1674.

(21) Geary, C.; Rothemund, P. W. K.; Andersen, E. S., *Science* **2014**, 345, 799-804.

CHAPTER 4

RECONFIGURABLE DNA ORIGAMI TO GENERATE

QUASI-FRACTAL PATTERNS

Adapted with permission from Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H. Reconfigurable DNA Origami to Generate Quasi-Fractal Patterns, *Nano Lett.* **2012**, 12, 3290–3295. Copyright 2012 American Chemical Society.

4.1 Abstract

The specificity of Watson-Crick base pairing, unique mechanical properties of DNA, and intrinsic stability of DNA double helices make DNA an ideal material for the construction of dynamic nanodevices. Rationally designed strand displacement reactions can be used to produce dynamic reconfiguration of DNA nanostructures post-assembly. Here we describe a 'fold-release-fold' strategy of multiple strand displacement and hybridization reactions to reconfigure a simple DNA origami structure into a complex, quasi-fractal pattern, demonstrating a complex transformation of DNA nanoarchitectures.

4.2 Introduction

DNA nanotechnology exploits the predictable structural and molecular recognition properties of DNA to build nanoscale assemblies and devices¹⁻¹². Dynamic DNA nanotechnology seeks to develop reconfigurable and autonomous DNA devices that respond to environmental cues and system inputs¹³⁻²³. These dynamic elements are particularly important for applications in nanomedicine, nanorobotics, and DNA based information processing.

One of the most frequently used operational principles in DNA device construction is based on DNA strand displacement, a simple and robust process by which two DNA strands hybridize to each other, displacing one or more pre-hybridized strands in the process²⁴⁻²⁷. DNA strand displacement can be combined with structural selfassembly to produce dynamic reconfiguration of large DNA nanostructures postassembly, and can be used to induce changes at the macroscopic scale²⁸. There have been reports of the construction of rotary DNA devices that switch between different structural states^{24, 29}, two-dimensional crystals that contain DNA switches for controlled motion relative to the crystal lattice³⁰, two-dimensional frameworks that change aspect ratio with a specific input³¹, and tetrahedra in which one edge adopts different lengths depending on the presence of an effector strand³². More recently, DNA origami technology⁵ was used to construct a reconfigurable DNA box with a lid³³ that can be opened and closed by DNA strand displacement and a Möbius strip³⁴ that can be reconfigured into a longer strip or two interlocked rings by releasing the staple strands at certain positions. In each of these cases, reconfiguration occurs between two closely-related structures through the action of a small number of strand displacement events. We envision that many applications would benefit from the ability to realize more complex changes in state.

Here, we present a 'fold-release-fold' method in which reconfiguration of a DNA origami frame structure into a complex, quasi-fractal pattern is achieved by multiple strand displacement and hybridization steps. Unlike previous reports, our method does not involve the use of algorithmic self-assembly to generate the fractal pattern^{11,35} We demonstrate that reversible reconfiguration between the structurally divergent DNA nanostructures is facilitated by priming the dynamic portions of the nanostructure. We

also show that the use of a large number of simultaneous toehold mediated strand displacement events does not hinder the reconfiguration process. Fractal-like patterns have also been produced.

4.3 Materials and Methods

See Appendix C.

4.4 Results and Discussion

The initial square frame structure (Frame 1) whose design is presented in the left panel of Figure 4.1a is assembled by folding the genome of an M13mp18 bacteriophage (~7000 nucleotides) with 156 short, single stranded staple strands ranging from 20 to 70 nucleotides (nt) long. Each of the four arms of Frame 1 is composed of 8 double helical layers, with the innermost layer denoted as layer n. Each subsequent helical layer, n+1, n+2, etc. has 16 more base pairs than the preceding layer to tolerate 90 degree bends in the helices at each corner. Of the 156 staple strands, 42 actively participate in the transformation from Frame 1 to Frame 2 (Primer Set 1, shown in blue in the left panel of Figure 4.1b). Frame 2 (middle panel of Figure 4.1a) has the same basic outline as Frame 1, but rather than one large eight layer frame, it contains four smaller, four layer frames, with two that exhibit the same symmetry as Frame 1. Because the transformation involves significant rearrangement of the four innermost helices, the corresponding dynamic portions of the nanostructure are primed before the final transformation (upper right and lower left corners of the four innermost helices).

Figure 4.1 Design of reconfigurable DNA origami. (a) Left to right - models of Frame 1, Frame 2, and Frame 3. In each model, the cylinders represent DNA double helices. Several iterations of strand displacement and hybridization reactions transform the simple frame structure into a quasi-fractal pattern with self-similar features. Frame 1 has ~ 100 nm x 100 nm outer dimensions and a 50 nm x 50 nm inner cavity. In Frame 2, the four innermost layers in the upper right and lower left of Frame 1 are folded toward the center and linked together. This creates a Frame structure with 4 smaller square cavities that are ~ 25 nm x 25 nm. The upper right and lower left cavities have the same polarity as Frame 1 and are dynamically reconfigured to create Frame 3. (b) Schematics showing the detailed design features of each of the DNA origami structures. The orange strand represents the long single-stranded M13 DNA scaffold. The green strands correspond to non-transformative staples that fold the scaffold during the assembly of Frame 1, forming a rigid DNA origami structure. The remaining colored strands (blue, pink, yellow) contain toehold extensions and represent dynamic portions of the design. (c) Schematics of the partially relaxed intermediate structures that are formed during each transformation. Note that the forward transformation from Frame 1 to Frame 3 and the reverse transformation from Frame 3 to Frame 1 are both depicted in this Figure.

Figure 4.2 Iterations of structural reconfiguration. Left panels illustrate the designs, middle panels (in blue) contain zoom in and zoom out AFM images corresponding to the forward transformation from Frame 1 to Frame 3, and right panels (in red) show the reverse transformation from Frame 3 to Frame 2 to Frame 1. (a) Frame 1 in blue, assembled by a typical DNA origami annealing program using a long scaffold and a collection of complementary staples. Frame 1 in red, transformed from Frame 2. (b) Frame 2 in blue, formed by reconfiguration of Frame 1. Frame 2 in red, formed by reconfiguration of Frame 3. (c) Frame 3 in blue, transformed from Frame 2. Frame 3 in red, assembled by a typical DNA origami annealing program using a long scaffold and a collection of complementary staples.

Each of the 42 staples in Primer Set 1 contains two domains; one is complementary to the underlying M13 scaffold and facilitates the initial assembly of Frame 1. The second domain contains of a 6 nt toehold sequence that is used for priming the structure for reconfiguration to Frame 2 (Figure S1). Initially, Frame 1 is assembled by thermal annealing (left panel in Figure 4.1b, details in SI); primer staples are incorporated into the frame with the 6 nt toeholds projecting from the same face of the structure. The toeholds serve as the initial points of strand displacement by fully complementary strands (Release Set 1, 42 strands). Removing the primer staples with the addition of Release Set 1 loosens the structure in the upper right and lower left corners and prepares Frame 1 for the final transformation to Frame 2 (left panel in Figure 4.1c, Figure S2). The last step involves bringing the exposed portions of M13 in the upper right and lower left corners of the structure toward the center of the frame and fixing them in place by adding Closure Set 1 staples (shown in red and yellow in the middle panel of Figure 4.1b). Closure Set 1 (38 staples in total) includes two long staple strands, 69 and 71 nts, that hold the center of Frame 2 together (Figure S3). The remainder of the staples in Closure Set 1 hybridizes to the unbound sections of M13, transforming the structure into Frame 2 (middle panel in Figure 4.1b). Selected staples in Closure Set 1 are also used in next iteration of forward transformation (yellow) and others are used for the reverse transformation from Frame 2 to Frame 1 (red).

Figure 4.3 Continuous forward and reverse reconfiguration. (a) Models illustrating the fully reversible reconfiguration process. A number is assigned to each transformation step (shown next to the green arrows). (b) Zoom out and zoom in AFM images, respectively,

of the products that were obtained after transformation #4. Approximately half the observed products are Frame 1, the intended target structure. c, Zoom out and zoom in AFM images, respectively, of the products that were obtained after transformation #3. Note the small percentage of Frame 1 visible in the images, indicating that the appearance of Frame 1 after transformation #4 can mostly be attributed to the intended reconfiguration of Frame 2, and not simply structures leftover from earlier steps.

The reconfiguration of Frame 2 into Frame 3 (right panel of Figure 4.1a) proceeds in the same manner as described above. 26 staples presenting 6 nt toeholds are used to prime Frame 2 for transformation (Primer Set 2). 10 of the primer staples are incorporated into Frame 1 during the initial assembly step (shown in pink in the left panel of Figure 4.1b) and are not affected by the transformation from Frame 1 to Frame 2. The remaining 16 primer staples (shown in yellow in the middle panel of Figure 4.1b) are incorporated into Frame 2 through the addition of Closure Set 1. Removing the primer staples by adding strands from Release Set 2 prepares the dynamic portions of the structure for the final reconfiguration (right panel in Figure 4.1c). The addition of Closure Set 2 (32 staples) brings the corresponding exposed portions of M13 together and fixes them in place, transforming the structure into Frame 3 (right panel in Figure 4.1b). Ideally, if an infinitely long scaffold strand were used, this iterative process could be repeated to form more complex fractal patterns with smaller and smaller cavities. However, limited by the length of M13 and rigidity of double stranded DNA, no additional iterations were conducted. The same reconfiguration strategy can be used to transform a complex structure (Frame 3) into a simple structure (Frame 1). The reverse transformation is also depicted in Figure 4.1 (pink arrows).

Additional details about the reconfiguration process are described in the SI. Figures S4-S7 corresponds to a series of experiments that were used to identify suitable temperatures for each reconfiguration step. In summary, we found that 45°C and 37°C were acceptable temperatures for the transformations from Frame 1 to Frame 2 and Frame 2 to Frame 3, respectively. For the former, temperatures higher than 45°C compromised the stability of the pre-annealed Frame 1 structure, while lower temperatures did not facilitate efficient transformation. Similar results were observed for the latter transformation.

Figure 4.4 Priming the structures for reconfiguration. (a) Schematic and corresponding AFM image (products) illustrating a standard transformation from Frame 1 to Frame 2. As shown in the AFM image, the transformation yield is approximately 90%. (b) Schematic and corresponding AFM image (products) demonstrating the effect of blocking toehold mediated strand displacement. For this experiment, Frame 1 was modified with primer staples that display a non-complementary sequence not recognized by the displacement strands. To realize the transformation, Modified Frame 1 was treated with Release Set 1, followed by Closure Set 1. Notice the absence of Frame 2 in the AFM image, indicating that toehold recognition is essential to facilitate the reconfiguration process. c, Schematic and corresponding AFM image (products) illustrating the result of skipping the release step of the 'fold-release-fold' method. For this experiment, Closure Set 1 was added directly to Frame 1 without first adding Release Set 1. The

absence of Frame 2 in the corresponding AFM image confirms that priming the structures is an essential aspect of our approach to nanostructure reconfiguration.

Atomic Force Microscopy (AFM) was used to characterize each step of the forward and reverse reconfigurations (Figure 4.2). The far left column in Figure 4.2 depicts each DNA origami frame structure. Zoom in AFM images directly adjacent to each model confirm the integrity of the structures at each step of the forward reconfiguration. Zoom out AFM images of the forward (blue series) and reverse (red series) transformations reveals that the yield of each reconfiguration step is approximately 85%. Note that for the reverse transformation, Frame 3 is initially assembled by thermal annealing and transformed into Frame 1 at a constant temperature using the methods described above.

Figure 4.5 A single step reconfiguration strategy. (a) Schematic and AFM image of the products of a one-step transformation from Frame 1 to Frame 2. (b) Schematic and AFM image of the products of a one-step transformation from Frame 1 to Frame 2. As shown by the AFM images, a one-step protocol does not facilitate the reconfiguration process.

With confirmation that our fold-release-fold strategy can not only be used to transform a simple structure into a more complex one, but also a complex structure into a simple one, we sought to demonstrate a truly reversible reconfiguration. Beginning with

the thermal annealing of Frame 1, we used our step-wise method to execute continuous forward and reverse transformations (Frame 1 \rightarrow Frame 2 \rightarrow Frame 3 \rightarrow Frame 2 \rightarrow Frame1). Although we were able to show that a fully reversible reconfiguration is possible using our method, the AFM images shown in Figure 4.3 reveal that the overall yield is significantly lower than for each individual transformation (~50% as evidenced by the appearance of Frame 1 upon completion of step 4 of the transformation).

We designed several control experiments to evaluate the importance of toehold recognition and preparing the structures for reconfiguration. First, Modified Frame 1 was assembled (Figure 4.4b); the primer staples incorporated into the modified structure displayed toeholds that were not complementary to the strands in Release Set 1, and thus, could not be recognized and displaced. As a result, Modified Frame 1 was not transformed into Frame 2 after the sequential addition of Release Set 1 and Closure Set 1 (AFM image in Figure 4.4b). This result indicates that the free energy provided by toehold hybridization is necessary to initiate the primer strand displacement process and subsequent rearrangement of the structure. In a related experiment, we directly examined the need for a 'release' step (fold-release-fold) in which the structures are primed for transformation (Figure 4.4c). After assembling Frame 1, the sample was not prepared for subsequent reconfiguration into Frame 2 (Release Set 1 was not added to displace dynamic portions of the structure) but was directly treated with Closure Set 1. As shown in the AFM image in Figure 4.4c, there is no evidence that Frame 1 was successfully transformed into Frame 2. Taken together, the control experiments indicate that priming structures for reconfiguration is a critical component of our method.
We also performed control experiments to determine the need for separate 'release' and 'fold' steps. First, Frame 1 was assembled by thermal annealing. Next, the sample was simultaneously treated with Release Set 1 and Closure Set 1 in an attempt to transform the structure into Frame 2 in a single step. However, the absence of Frame 2 in the AFM images shown in Figure 4.5a reveals that the one-step displacement strategy is not effective method to transform the simple structure into a more complex pattern. A similar result was obtained for the transformation from Frame 2 to Frame 3 (Figure 4.5b). These results indicate that forming a relaxed, intermediate structure is a prerequisite for structural reconfiguration by the closure staples.

4.5 Conclusion

In summary, we demonstrated that a DNA origami nanostructure can undergo complex structural rearrangement using a 'fold-release-fold' strategy. In this work a simple DNA origami frame structure was transformed into a complex, quasi-fractal pattern and vice-versa. The initial structures were self-assembled by thermal annealing and subsequently transformed through multiple strand displacement and hybridization steps. We showed that unfastening the staples in the dynamic portions of the nanostructure before reorganizing the corresponding sections of M13 facilitated the transformation process. In addition, we demonstrated that transformation between the structurally divergent DNA objects is fully reversible. The success of our method proves that a large number of simultaneous toehold mediated strand displacement events can be used to achieve efficient structural reconfiguration. The reconfigurable quasi-fractal structures may also be used to control metal nanoparticles to form reconfigurable selfsimilar chains for nanophotonic applications.

4.6 References

- (1) Seeman, N. C., *J Theor Biol* **1982**, 99, 237-247.
- (2) Kallenbach, N. R.; Ma, R. I.; Seeman, N. C., *Nature* **1983**, 305, 829-831.
- (3) Seeman, N. C., Annu Rev Biochem 2010, 79, 65-87.
- (4) Mao, C. D., *Nat Nanotechnol* **2008**, *3*, 75-76.
- (5) Rothemund, P. W. K., *Nature* **2006**, 440, 297-302.
- (6) Aldaye, F. A.; Palmer, A. L.; Sleiman, H. F., *Science* **2008**, 321, 1795-1799.
- (7) Kuzuya, A.; Komiyama, M., *Nanoscale* **2010**, *2*, 310-322.
- (8) Shih, W. M.; Lin, C. X., *Curr Opin Struc Biol* **2010**, 20, 276-282.

(9) Torring, T.; Voigt, N. V.; Nangreave, J.; Yan, H.; Gothelf, K. V., *Chemical Society Reviews* **2011**, 40, 5636-5646.

- (10) Chen, J. H.; Seeman, N. C., *Nature* **1991**, 350, 631-633.
- (11) Rothemund, P. W. K.; Papadakis, N.; Winfree, E., *Plos Biol* **2004**, *2*, 2041-2053.
- (12) Douglas, S. M.; Dietz, H.; Liedl, T.; Hogberg, B.; Graf, F.; Shih, W. M., *Nature* **2009**, 459, 1154-1154.
- (13) Gu, H.; Chao, J.; Xiao, S.-J.; Seeman, N. C., Nat Nano 2009, 4, 245-248.
- (14) Gu, H.; Chao, J.; Xiao, S.-J.; Seeman, N. C., *Nature* **2010**, 465, 202-205.
- (15) Mao, C. D.; Sun, W. Q.; Shen, Z. Y.; Seeman, N. C., *Nature* **1999**, 397, 144-146.

(16) Maye, M. M.; Kumara, M. T.; Nykypanchuk, D.; Sherman, W. B.; Gang, O., *Nat Nanotechnol* **2010**, *5*, 116-120.

(17) Gu, H. Z.; Yang, W.; Seeman, N. C., *Journal of the American Chemical Society* **2010**, 132, 4352-4357.

- (18) Li, J. W. J.; Tan, W. H., *Nano Lett* **2002**, *2*, 315-318.
- (19) Shen, W. Q.; Bruist, M. F.; Goodman, S. D.; Seeman, N. C., *Angew Chem Int Edit* **2004**, 43, 4750-4752.
- (20) Sherman, W. B.; Seeman, N. C., *Nano Lett* **2004**, *4*, 1801-1801.
- (21) Yan, H.; Zhang, X. P.; Shen, Z. Y.; Seeman, N. C., *Nature* **2002**, 415, 62-65.
- (22) Seeman, N. C., *Trends Biochem Sci* **2005**, 30, 119-125.
- (23) Lubrich, D.; Lin, J.; Yan, J., *Angew Chem Int Edit* **2008**, 47, 7026-7028.
- (24) Yurke, B.; Turberfield, A. J.; Mills, A. P.; Simmel, F. C.; Neumann, J. L., *Nature* **2000**, 406, 605-608.
- (25) Zhang, D. Y.; Winfree, E., *Journal of the American Chemical Society* **2009**, 131, 17303-17314.
- (26) Li, Q. Q.; Luan, G. Y.; Guo, Q. P.; Liang, J. X., *Nucleic Acids Res* **2002**, 30.
- (27) Simmel, F. C.; Yurke, B., *Phys Rev E* 2001, 63.
- (28) Zhang, D. Y.; Seelig, G., *Nat Chem* **2011**, *3*, 103-113.
- (29) Yan, H.; Chhabra, R.; Sharma, J.; Liu, Y., *Nano Lett* **2006**, 6, 978-983.
- (30) Ding, B.; Seeman, N. C., *Science* **2006**, 314, 1583-1585.
- (31) Feng, L. P.; Park, S. H.; Reif, J. H.; Yan, H., Angew Chem Int Edit 2003, 42, 4342-4346.

(32) Goodman, R. P.; Heilemann, M.; Doose, S.; Erben, C. M.; Kapanidis, A. N.; Turberfield, A. J., *Nat Nanotechnol* **2008**, *3*, 93-96.

(33) Gothelf, K. V.; Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L. P.; Pedersen, J. S.; Birkedal, V.; Besenbacher, F.; Kjems, J., *Nature* **2009**, 459, 73-U75.

- (34) Han, D. R.; Pal, S.; Liu, Y.; Yan, H., *Nat Nanotechnol* **2010**, *5*, 712-717.
- (35) Patitz, M. J.; Summers, S. M., *Nat Comput* **2010**, *9*, 135-172.

CHAPTER 5

PERSPECTIVES OF STRUCTURAL DNA NANOTECHNOLOGY

Adapted with permission from Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H. Structural DNA Nanotechnology: State of the Art and Future Perspective, *J. Am. Chem. Soc.*, **2014**, 136, 11198–11211. Copyright 2014 American Chemical Society.

5.1 Frontiers of Structural DNA Nanotechnology

The interdisciplinary nature of DNA nanotechnology crosses the traditional boundaries of physics, chemistry, biology, and engineering, and allows scientists to connect and integrate their unique perspectives in pursuit of solutions to the most pressing problems in medicine, technology, and more. From the earliest DNA junction motifs, to the most recently developed DNA nanostructures of incredible complexity, the field has started to explore various novel applications including directed material assembly, structural biology, biocatalysis, DNA computing, nano-robotics, disease diagnosis, and drug delivery, as we have mentioned briefly in the previous section. Each of these applications is made possible by the ability of DNA nanostructures to direct molecular species with nanoscale precision while maintaining the utmost structural integrity. DNA nanotechnology is progressing with such incredible speed that it is becoming more and more difficult to predict from which areas the next breakthroughs will occur. Next, we are merely providing our opinion about the critical challenges that the field faces, and which directions we believe researchers should pursue to help DNA nanotechnology reach its full potential.

We have divided the remaining outlook into three main areas: 1) Design and Assembly, which will include discussions of dynamic, developmental, quasi-crystal lattice, 3D periodic crystal lattice, scaffolded-, surface mediated-, algorithmic, and topological assembly; 2) Future Applications, which will include discussions of structural DNA nanotechnology for molecular scaffolds, sensors, robotics, and computing; and 3) Beyond Structural DNA Nanotechnology, in which we conceive of potential directions the field might explore over the longer term.

5.1.1 Dynamic assembly

George Whitesides once wrote, "Although much of current understanding of selfassembly comes from the examination of static systems, the greatest challenges, and opportunities, lie in studying dynamic systems. Perhaps the most important justification for studying self-assembly is its central role in life."¹ Dynamic self-assembly processes underlie many forms of adaptive and intelligent behaviors in natural systems, however, very little are known about the principles that govern them. One of the most intriguing, dynamic self-assembling processes in living cells is the polymerization of cytoskeletal biopolymers such as microtubules. Microtubule polymerization is characterized by two very unique phenomena referred to as tread-milling² and dynamic instability³. Treadmilling is said to occur with the net addition of tubulin monomers at one end of the microtubule, and simultaneous net loss of tubulin at the opposite end. Dynamic instability is characterized by switching between phases of relatively slow and rapid shortening of the microtubules at their ends. Although these phenomena were once thought to be incompatible, it is now known that both behaviors coexist in near steady state conditions in cells $^{2-3}$.

It would be quite interesting if we could use the desirable properties of DNA nanostructures to recapitulate these phenomena and ultimately dissect the governing dynamics of microtubule polymerization (Figure 5.1A). DNA tiles could be designed such that the rate of assembly equaled the rate of disassembly, resulting in steady-state tread-milling and fixed length nanotubes. Further, if tiles with two or three directional growth were utilized, the resulting arrays would have defined shapes. The intrinsic conformational flexibility and rigidity of different DNA building blocks could be exploited to mimic dynamic instability, where polymerization of flexible DNA tiles can be induced through seeded growth on a rigid tile and de-polymerization of the flexible tiles can be initiated by removing the rigid tile protection cap. When the association and dissociation reactions reach equilibrium, the input of additional rigid tiles will catalyze the polymerization of released flexible tiles. Studying the association and dissociation kinetics of model DNA tile species with variable flexibility is absolutely essential to recreating this, or similar dynamic self-assembling systems.

5.1.2 Developmental assembly

The creation of new life depends on a set of extraordinary developmental processes including stem cell growth, differentiation, and morphogenesis. These processes rely on nature's ability to precisely control the spatial and temporal relationship between cellular components and signaling pathways. It would be extremely interesting if we could create synthetic DNA systems that mimic this kind of spatiotemporal development. DNA tiles have the potential to develop into unique patterns through instructions embedded in the building blocks, or by external stimuli such as fuel strands that trigger new growth pathway (Figure 5.1B). Meta-stable DNA nanostructures could

be designed and used to serve as nucleation seeds and/or catalysts to increase the growth and development of particular pathways. Multivalency and/or cooperativity within DNA nanostructures could be exploited for nucleation and initiation of alternative assembly paths.

Researchers have already begun implementing certain aspects of developmental assembly. For example, Pierce and co-workers recently reported the dynamic assembly of DNA nanostructures through a seeded cascade of hybridization chain reactions based on toehold mediated strand displacement⁴. Strand displacement circuits have also been used to trigger DNA tile assembly and control their growth into DNA tubes⁵. There are several key challenges to implementing toehold mediated strand displacement in dynamic DNA systems including leakage, slow reaction rates, and the necessity for high salt conditions. Researchers are currently trying to address each of these problems. Zhang and co-workers reportedly designed toehold exchange probes and optimized the specificity of DNA hybridization, so that their system can detect single-based changes⁶. Designing robust self-assembling DNA platforms to mimic developmental systems will also certainly require a thorough understanding of the thermodynamics and kinetics of DNA self-assembly.

5.1.3 Quasi-crystal lattice assembly

In 2011, the Nobel Prize in Chemistry was awarded to Dan Shechtman for his discovery of quasicrystals, a finding that fundamentally changed how chemists understand solid matter. Prior to his report⁷, scientists believed that the atoms in a crystal were always packed into symmetric patterns that repeated periodically. We have since come to understand that it is possible to form packed crystals from non-repeating patterns, an

arrangement of molecules now referred to as quasicrystalline. The distinctive properties of quasicrystals, as well as their unique structures, have intrigued scientists ever since their discovery⁷⁻⁹, however, very little is currently known about the properties exhibited by synthetic and naturally occurring quasicrystals. Scientists have yet to determine what guides quasiperiodical rather than periodical growth, and what factors result in the unique properties that they display¹⁰⁻¹¹. One of the biggest challenges facing researchers today is the lack of plausible systems from which to assemble quasicrystals and enable further studies. DNA platforms are promising candidates for the controlled, programmable growth of synthetic quasicrystals (Figure 5.1C). Interacting DNA building blocks can potentially be programmed to assemble into 2D and 3D quasi-crystal patterns, allowing us to investigate the still unknown mechanisms of quasi-crystal growth, and providing a means to organize other materials for engineering pursuits.

5.1.4 Periodic 3D crystal lattice assembly

Realizing 3D DNA lattices as hosts to organize guest protein molecules and facilitate protein crystallography necessitates that 3D DNA crystals can themselves be reliably assembled and characterized. Researchers successfully demonstrated the assembly of a 3D DNA crystal in which the triangular unit tiles were connected by sticky ends, and solved its structure to ~ 4 Å resolution using X-ray crystallography¹². However, most DNA crystals only diffract to 7 to 10 Å, leaving scientists trying to determine why rationally designed DNA crystals do not diffract with better resolution. There are several possible explanations, including defects that arise during crystallization, impurities in the synthetic DNA, and the presence of bulky solvent molecules in the large cavities of the DNA lattices.

Figure 5.1 Schematic Illustrations of (A) Dynamic DNA self-assembly with simultaneous joining in one end and dissociation in the other end, (B) Developmental DNA self-assembly that the assembly process may response to different external cues to grow into different final products, (C) Example of possible Quasi-crystal (2D penrose tiling) using DNA tile self-assembly and (D) Self-replication of DNA nanostructures.

Crystal defects may be caused by the limited rigidity of DNA unit motifs, where any over- or under-twisting of the tiles causes inter-tile mismatches that are detrimental to the integrity of the crystal lattice. We surmise that imparting flexibility to certain domains of the DNA building blocks may allow the unit tiles to more reliably accommodate their neighbors and reach a lower energy state for crystal lattice formation, thereby improving the overall quality of the crystal. The Sleiman group pioneered DNA junctions with metal complex modifications that combine rigidity within the core of the junction with intrinsic flexibility in the arms¹³. This type of modified DNA unit motif has the potential to improve the quality of DNA crystals, but has yet to be exploited for crystallization applications.

Reducing the volume of solvent present in the lattice cavities by inserting sequence specific binding proteins may improve the diffraction quality, however, sequence independent methods to orient proteins within the DNA cavities still need to be developed. This strategy is particularly attractive, as some have already demonstrated that RNA-binding proteins are useful chaperones for RNA crystallization. Piccirilli and co-workers derived RNA-specific antibodies using synthetic phage display libraries, and showed that the antibody fragments promoted crystallization of RNA molecules¹⁴. Similarly, DNA tile binding antibodies could be identified through in vitro evolution and used for co-assembly of the DNA units and proteins into designed 3D crystals.

Recent developments in Free Electron Laser X-ray nanocrystallography have the potential to revolutionize the field of structural biology by providing highly focused coherent X-ray beams with a peak brilliance that is 10⁹ higher than the X-ray beams at the most powerful synchrotron facilities¹⁵. Obtaining high quality diffraction patterns using FEL X-ray requires micron sized nanocrystals; it might possible to program the growth of 3D DNA lattices into finite nanocrystals with suitable dimensions by designing a 3D box that acts as a scaffold to nucleate the growth of a periodic lattice of DNA tiles. Growing 3D crystals with designed crystal morphologies and dimensions is undoubtedly an interesting topic in itself.

5.1.5 Scaffolded assembly

The development of scaffolded DNA origami represents a milestone in structural DNA nanotechnology¹⁶. While the complexity and robustness of 2D and 3D DNA

origami objects has increased over the past few years, researchers still lack basic understanding of the thermodynamics and kinetics of scaffolded assembly. Understanding the minutia of DNA origami formation will allow us to guide the design of more complex DNA nanostructures, optimize annealing protocols, and manipulate functionalized DNA nanostructures more effectively. Structurally speaking, we are still a long way from being able to weave a scaffold strand along arbitrary paths within a DNA origami structure, although some progress has been made in this direction. Recently, Yan and co-workers developed a novel strategy to fold Gridiron-like DNA origami structures¹⁷. In this work, interconnected four-arm junctions were used as vertices within a network of DNA fragments and measured distortion of the junctions from relaxed conformation allowed the scaffold strand to traverse through individual vertices in several directions. Despite this initial success, interlacing the scaffold strand through the vertices of multi-arm junctions remains a challenge that if achieved, would dramatically improve our ability to form aperiodic tiling patterns and polyhedral 3D structures using the DNA origami technique. Besides increasing complexity, scaling up the size of DNA origami and reducing the cost of staple strand synthesis are also important issues facing DNA nanotechnologists. Various strategies to address these limitations have been explored, including the use of longer single stranded scaffolds¹⁸, double stranded scaffolds¹⁹, origami of origami (super-origami)²⁰, and enzymatic production of staple strands on micro-array chips²¹, which has the added benefit of greater fidelity than chemical synthesis. Researchers are relentlessly pushing forward to achieve more robust DNA origami technology.

5.1.6 Surface mediated assembly

DNA origami has shown great success in directing the assembly of nanoelectronic and photonic elements and has been used as a lithographic mask to etch nanoscale patterns on silicon and graphene substrates²². For practical device applications, it is highly desirable to achieve robust patterning of self-assembled DNA nanostructures on inorganic surfaces and several groups have developed unique strategies to organize DNA origami nanostructures on solid substrates²³⁻²⁵. The next logical step is to generate chemically functional surface features to facilitate patterning of DNA origami nanostructures into spatially addressable arrays. Surface mediated assembly may be the key to scaling up DNA nanostructure assemblies into wafer size arrays. Researchers have already shown that mica and silicon dioxide surfaces will mediate the assembly of small DNA tiles into millimeter range period 2D lattices²⁶. The buffer conditions, especially the concentration and species of the ions present, may play a critical role in surface mediated diffusion of DNA nanostructures, an important factor that remains to be explored²⁷. It would also be interesting to use fluidic 2D surfaces such as lipid bilayers to improve the surface mediated diffusion of DNA nanostructures²⁸.

5.1.7 Algorithmic assembly

In mathematics and computer science, an algorithm describes a set of simple instructions for solving a problem. However, if you look beyond their traditional context in mathematics, you will see that algorithms can be used to describe the process of selfassembly in the natural world. Consider the self-assembly of lipids into membranes, or viral proteins into capsids, or even just amino acids into intricately folded protein structures. Each process involves the spontaneous, or automatic, assembly of small components into larger, more complex structures. The process by which these structures grow can be described as algorithmic. In each example, a limited number of molecular building blocks grow into higher order structures by following the growth rules encoded into the building blocks themselves. DNA tiles are information rich building blocks ideally suited for implementing algorithmic self-assembly. Originally proposed by Winfree, algorithmically self-assembled DNA nanostructure patterns have been experimentally demonstrated. For example, Winfree and co-workers showed that DNA double crossover tiles could be programmed to compute and grow into Sierpinski triangle²⁹ and binary counter assemblies³⁰. They also showed that prescribed DNA origami displaying sticky-end capture probes function as effective nucleation seeds to grow algorithmic arrays while suppressing spurious nucleation, which is a major source of errors during algorithmic assembly³¹. The design of novel nucleation frames could improve the fidelity and robustness of algorithmic assemblies of DNA tiles. Other errors arise from sticky end mismatches between different tiles that share certain sticky end sequences. The kinetics of tile-tile association between the algorithmic building blocks should be carefully investigated to promote the desired computations and reduce any undesirable mismatches. Also, tile sets could be expanded beyond the typical double crossover DNA tiles to more complex or optimal geometries to facilitate multivalent and cooperative binding between the tiles and allow for improved understanding of the constraints that limit the scope of algorithmic assembly.

Figure 5.2 Illustration of potential applications of DNA nanotechnology: (A) Programming biochemical pathways with controlled input and output. (B) Design and implementation of theranostic nanodevices on targeted cell surfaces, that carry out functions such as compute, sense, release signal, trigger activation and deliver therapeutic molecules across the cell membrane.

5.1.8 Topological DNA nanostructures

In biological systems, there is a clear relationship between the specific structure of a biomolecule and its function. In particular, biopolymers are important molecules

whose structure supports the organization and functionality of cells. The topology of biopolymers can be exploited to facilitate tasks such as packing information bearing DNA molecules into tiny compartments within cells. Molecular topology is a fascinating and technically challenging topic that DNA nanotechnology is ideally suited to examine. Seeman and co-workers were the first to shown that topological structures such as knots and Borromean rings could be self-assembled from DNA by combining right-handed Bform and left-handed Z-form DNA together to create positive and negative nodes³². Yan and co-workers later used the DNA origami method to construct Möbius strip topological structures that could be reconfigured into catenanes and twisted topological ribbons through toehold mediated strand displacement³³. More recently, Willner and co-workers developed strategies to inter-lock DNA rings into multi-ring catenanes³⁴. Weizmann and coworkers just reported the assembly of complex knots and links by specifically configuring four-way DNA junctions³⁵. Despite these interesting examples, the area of DNA based topological nanostructures is under-developed compared to the geometric structures that have been reported over the past decade. New construction strategies and topological targets should be identified to push the frontiers of DNA based molecular topology forward.

5.1.9 Self-replicating DNA nanostructures

Self-replication is an astounding process by which a molecule in a dynamic system makes an identical copy of itself. Biological cells, provided they have a suitable environment, reproduce by cell division. During cell division, linear DNA autonomously undergoes replication by enzyme-mediated processes and is transmitted to offspring. It is a considerable challenge to design and construct autonomous structures that mimic the action of nucleic acid polymerases and are capable of replicating entire synthetic DNA systems non-enzymatically (Figure 5.1D). The first development in this direction was reported by Seeman's group in 2011³⁶. They constructed a seven-tile seed and successfully generated several generations of progeny in a step-by-step manner. Winfree and co-workers recently showed that mechanically induced scission of 2D DNA crystals can accurately replicate self-assembled DNA nanopatterns by creating new fronts of crystal growth³⁷. However, constructing autonomous self-replicating systems that do not require external manipulation remains a significant challenge. Pierce and co-workers demonstrated autocatalytic DNA duplex formation by way of a cross-catalytic circuit³⁸, yet extending this concept to independent formation of sophisticated DNA nanopatterns needs additional development.

5.2 Future Applications

The successful design and assembly of the DNA nano-systems discussed above will undoubtedly lead to many new opportunities and innovative applications. The information rich character of self-assembling DNA nanostructures in particular, will create many new frontiers for the application of designer DNA nanostructures as molecular scaffolds, sensors, computers, and robots. In the following section we will discuss the potential of DNA nanostructures to serve as scaffold for functional nanoelectronic and nanophotonic devices, to regulate protein interactions, and to create sense-compute-actuate elements for molecular medicine. However, these examples are in no way limiting, and the field has already demonstrated a tendency to grow in unexpected directions, surprising even the sagest of researchers.

5.2.1 Molecular scaffolds for nanophotonics or nanoelectronics

One of the most obvious applications of DNA a nanostructure is to direct the assembly of other, less controllable materials, as was discussed in the previous sections. We have seen several examples of spatially addressable DNA origami structures being used to organize nanoelectronic and photonic components. However, we have yet seen concrete examples of DNA nanostructures in functional nanoelectronic and photonic devices, where bottom-up, DNA directed assembly is interfaced with top-down, lithographic methods of micro- and macro-scale patterning. The latest developments in surface mediated self-assembly and site-specific control of chemical properties could enable more precise arrangement of these nanophotonic or nanoelectronic elements into regular, large-scale patterns that can be integrated with macroscopic systems.

5.2.2 Molecular scaffolds for enzyme cascades

DNA directed assembly of complex protein arrays is another area of development to watch for in the future. Enzymes, marvels of natural evolution, are intramolecular organizations of proteins that are capable of recognition, capture and activation of molecules, and regulation of biochemical processes. These protein complexes act as the central functional components of metabolism and reproduction in living systems³⁹. The binding sites for substrates and cofactors are chemically specific, while the active sites are stereospecific and highly sensitive to conformational rearrangement. Inspired by nature, researchers have pursued a variety of strategies to regulate and control the catalytic activities of enzymes, as well as to understand the mechanism of enzyme function and pathways⁴⁰⁻⁴⁴. Compared to most conventional techniques, DNA nanotechnology is a highly efficient and controllable strategy to achieve structural programmability and re-configurability through rational design and construction.

Assembling enzymes and cofactors on DNA nanostructure scaffolds have already allowed researchers to probe the essential parameters for modulating catalysis, such as intermolecular distance and relative spatial position⁴⁵⁻⁵⁰. One example of controlling the activity of an individual enzyme using DNA was reported in 2013, where the authors achieved mechanical regulation of the enzyme luciferase by attaching a DNA spring⁵¹. In the same year, a DNA tweezer-actuated enzyme nanoreactor was successfully constructed⁵².

An even loftier and more valuable goal is to engineer highly programmed cascading enzyme pathways on DNA nanostructure platforms with control of input and output sequences. Achieving this goal would not only allow researchers to mimic the elegant enzyme cascades found in nature and attempt to understand their underlying mechanisms of action, but would facilitate the construction of artificial cascades that do not exist in nature (Figure 5.2A).

One major challenge in integrating multiple proteins into DNA nanostructures is to precisely define their relative orientation and position. A set of reliable and general methods for site-specific conjugation of proteins with oligonucleotides must be established in order to accommodate the diversity of proteins of interest. In an ideal system, a single protein with multiple coupling sites would be conjugated to unique DNA sequences to enable absolute orientational control of the protein relative to the DNA nanostructure. In this way, the active sites of the enzymes, in a multi-enzyme cascade for example, could be precisely oriented to facilitate substrate-intermediate-product transfer and the overall enzymatic activity of the cascade could be optimized.

5.2.3 Molecular sense-compute-actuate devices

A far-reaching goal of structural DNA nanotechnology is to develop smart molecular machines that perform sense-compute-actuate mechanisms based on intrinsically information rich DNA molecules and structures (Figure 5.2B). For example, the development of smart molecular doctors would revolutionize the field of personalized medicine. A smart molecular doctor would have the same responsibilities as a real doctor, including diagnostic and therapeutic roles, but would operate entirely at the cellular level. Directly treating individual, diseased cells to cure them on the single cell level offers improved therapeutic efficiency and fewer side effects since smaller drug doses are required compared to that of conventional therapies.

Other targeted drug delivery systems based on multifunctional liposomes, polymersomes, and nanoparticles have already been developed⁵³. DNA is an attractive material for theranostic applications, not only because of its inherent design modularity, structural programmability and biocompatibility, but also because DNA molecules of a particular sequence or with certain modifications can selectively bind, distinguish and communicate with target cells to trigger drug release. Researchers have made strides toward constructing DNA-based drug containers and DNA nanostructures that can be embedded into lipid bilayers⁵⁴, particularly after the establishment of the DNA origami method. The first DNA-origami box with a responsive lid that recognized a specific oligonucleotide key and subsequently opened was reported in 2009⁵⁵. More recently,

researchers developed a DNA nano-barrel with two single stranded aptamer locks that were opened by the presence of target cells in vitro⁵⁶.

Performing DNA computation directly on the surface of cells, or in cellular environments, will facilitate in vivo targeting and drug release. Recently, Rudchenko, Stojanovic and colleagues engineered DNA strand displacement cascades that detected the presence of certain cell markers on the surface of cells⁵⁷. In another report, Hemphill and Deiters successfully engineered oligonucleotide logic gates to detect specific microRNA inputs in live, mammalian cells⁵⁸. As more complex and robust DNA based computing systems are developed, it may be possible to integrate them into cellular systems to control and trigger cellular functions such as gene expression, or interfere with the metabolic pathways⁵⁹. Recently, researchers reported the construction of a consensus network that distinguishes between two different input signals and reports the majority signal⁶⁰. By combining DNA computation based target cell detection with reconfigurable DNA-based drug containers, it may be possible to create a DNA nanorobot that can interface and communicate with living cells (Figure 5.2B).

Figure 5.3 From nano- to Angstrom level control: engineering molecular tool-boxes composed of DNA, RNA, peptide, and protein molecules and their unnatural derivatives to extract new design rules and create complex, self-assembling structures with Angstrom level spatial control.

There are a number of critical issues that must be addressed before DNA nanorobots can be used for drug delivery in vivo. Researchers must find a way to protect DNA nanostructures from degradation by the intra- and extra-cellular nucleases and liver metabolism over long periods. Compact DNA nanostructures generally display relative stability against DNA nucleases for a short time (a few hours)⁶¹⁻⁶². In the future it will be important to increase resistance to biodegradation by using methods such as chemical cross-linking of selected DNA strands or designated DNA backbone modifications. Identifying the mechanisms by which DNA nanostructures enter cells without being damaged, and escape endosomal processing⁶³, is also a critical point. Other issues such as immunogenicity⁶⁴ and tissue distribution should also be considered.

The biggest obstacles to transforming DNA nanostructures from mere curiosities into real-world solutions are the cost of synthetic DNA, small production scales, typically low yield of complex 3D structures, and sensitivity of DNA to ionic strength, temperature and nucleases. Researchers have already begun to address these issues by optimizing origami design and folding strategies to increase assembly yields⁶⁵ and shorten assembly times⁶⁶, and by developing suitable purification strategies for large scale synthesis⁶⁷. It is also important to develop biocompatible conditions for efficiently folding DNA nanostructures, rather than by thermal annealing under high magnesium concentrations^{68-⁶⁹.}

5.3 From Nano to Angstrom Technology

Living cells are information rich, sophisticated machines that display Angstrom level organizational precision. Although DNA nanostructures are exquisitely programmable, they are only able to regulate biological molecules at a relatively coarse level compared to nature. If we want additional control, we must push the boundaries of nano-scale fabrication to the Ångstrom level. In contrast to DNA, RNA and proteins have more refined architectures with Ångstrom level features. These aspects of their organization have attracted increasing attention in the past decade. For example, several rationally designed RNA nanostructure have been constructed⁷⁰⁻⁷¹. Methods for engineering designed proteins and nanostructured complexes using proteins have also begun to emerge⁷²⁻⁷³. The progress of characterization techniques such as cryo-EM, X-ray diffraction and NMR support the development of Ångstrom technology. In particular, the most recent developments in cryo-EM techniques allow crystallization-free structural

determination of large sized proteins that is comparable to X-ray methods⁷⁴⁻⁷⁵. Using DNA origami frames both as structural hosts and as references, the structure of DNA and RNA binding proteins may now be determined to Ångstrom level resolution by cryo-EM⁷⁶. This advance will provide researchers with atomic level structural information (in conjunction with the structural solutions obtained from X-ray crystallography) that can be fed back into the design pipeline, elevating the field to unimaginable heights (Figure 5.3).

In summary, after more than 30 years of growth, structural DNA nanotechnology is transitioning from adolescence into adulthood. The field is crossing the boundaries of physics, chemistry, biology and engineering, and is poised to generate unique approaches and solutions to real world challenges in science and technology. In the next phase of structural DNA nanotechnology, novel interactions between DNA, RNA and proteins could be used to facilitate Ångstrom technology, and represent the major challenges and opportunities in molecular design, assembly, computing, and programming.

5.4 References

(1) Whitesides, G. M.; Grzybowski, B., Science 2002, 295, 2418-2421.

(2) Hyman, A. A.; Salser, S.; Drechsel, D. N.; Unwin, N.; Mitchison, T. J., Mol Biol Cell 1992, 3, 1155-1167.

(3) Desai, A.; Mitchison, T. J., Annu Rev Cell Dev Bi 1997, 13, 83-117.

(4) Dirks, R. M.; Pierce, N. A., P Natl Acad Sci USA 2004, 101, 15275-15278.

(5) Zhang, D. Y.; Hariadi, R. F.; Choi, H. M. T.; Winfree, E., Nat Commun 2013, 4, 1965.

(6) Zhang, D. Y.; Chen, S. X.; Yin, P., Nat Chem 2012, 4, 208-214.

(7) Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J., Physical Review Letters 1984, 53, 1951-1953.

- (8) Steurer, W., Chemical Society Reviews 2012, 41, 6717.
- (9) Elser, V. V., Phys Rev Lett 1985, 54, 1730.
- (10) Steurer, W., Chemical Society Reviews 2012, 41, 6719.
- (11) de Boissieu, M., Chemical Society Reviews 2012, 41, 6778.

(12) Zheng, J. P.; Birktoft, J. J.; Chen, Y.; Wang, T.; Sha, R. J.; Constantinou, P. E.; Ginell, S. L.; Mao, C. D.; Seeman, N. C., Nature 2009, 461, 74-77.

(13) Yang, H.; Sleiman, H. F., Angew Chem Int Edit 2008, 47, 2443-2446.

(14) Ye, J. D.; Tereshko, V.; Frederiksen, J. K.; Koide, A.; Fellouse, F. A.; Sidhu, S. S.; Koide, S.; Kossiakoff, A. A.; Piccirilli, J. A., P Natl Acad Sci USA 2008, 105, 82-87.

- (15) Chapman, H. N.; etal., Nature 2011, 470, 73-77.
- (16) Rothemund, P. W. K., Nature 2006, 440, 297-302.
- (17) Han, D. R.; Pal, S.; Yang, Y.; Jiang, S. X.; Nangreave, J.; Liu, Y.; Yan, H., Science 2013, 339, 1412-1415.
- (18) Zhang, H. L.; Chao, J.; Pan, D.; Liu, H. J.; Huang, Q.; Fan, C. H., Chem Commun 2012, 48, 6405-6407.
- (19) Hogberg, B.; Liedl, T.; Shih, W. M., J Am Chem Soc 2009, 131, 9154-9155.
- (20) Zhao, Z.; Liu, Y.; Yan, H., Nano Lett 2011, 11, 2997-3002.
- (21) Ducani, C.; Kaul, C.; Moche, M.; Shih, W. M.; Högberg, B., Nat Methods 2013, 10, 647-652.

(22) Jin, Z.; Sun, W.; Ke, Y.; Shih, C. J.; Paulus, G. L. C.; Wang, Q. H.; Mu, B.; Yin, P.; Strano, M. S., Nat Commun 2013, 4, 1663.

(23) Hung, A. M.; Cha, J. N., 2011, 749, 187-197.

(24) Kershner, R. J.; Bozano, L. D.; Micheel, C. M.; Hung, A. M.; Fornof, A. R.; Cha, J. N.; Rettner, C. T.; Bersani, M.; Frommer, J.; Rothemund, P. W. K.; Wallraff, G. M., Nat Nanotechnol 2009, 4, 557-561.

(25) Ding, B.; Wu, H.; Xu, W.; Zhao, Z.; Liu, Y.; Yu, H.; Yan, H., Nano Lett 2010, 10, 5065-5069.

(26) Sun, X. P.; Ko, S. H.; Zhang, C. A.; Ribbe, A. E.; Mao, C. D., J Am Chem Soc 2009, 131, 13248-13249.

(27) Woo, S.; Rothemund, P. W. K. In Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion, Foundations of Nanoscience: Self-Assembled Architectures and Devices., Snowbird, Utah, Snowbird, Utah, 2014; p 93.

(28) Endo, M.; Suzuki, Y.; Yang, Y.; Sugiyama, H. In Photoresponsive DNA nanostructures, single-molecule imaging and controlled assembly, Foundations of Nanoscience: Self-Assembled Architectures and Devices., Snowbird, Utah, Snowbird, Utah, 2014; p 7.

(29) Rothemund, P. W. K.; Papadakis, N.; Winfree, E., Plos Biol 2004, 2, 2041-2053.

(30) Barish, R. D.; Rothemund, P. W. K.; Winfree, E., Nano Lett 2005, 5, 2586-2592.

(31) Barish, R. D.; Schulman, R.; Rothemund, P. W. K.; Winfree, E., P Natl Acad Sci USA 2009, 106, 6054-6059.

(32) Mao, C. D.; Sun, W. Q.; Seeman, N. C., Nature 1997, 386, 137-138.

(33) Han, D. R.; Pal, S.; Liu, Y.; Yan, H., Nat Nanotechnol 2010, 5, 712-717.

(34) Elbaz, J.; Cecconello, A.; Fan, Z. Y.; Govorov, A. O.; Willner, I., Nat Commun 2013, 4.

(35) Liu, D.; Chen, G.; Weizmann, Y. In Creating Complex molecular Topologies by Configuring DNA Four-Way Junctions Foundations of Nanoscience: Self-Assembled Architectures and Devices., Snowbird, Utah, Snowbird, Utah, 2014; p 34.

(36) Wang, T.; Sha, R. J.; Dreyfus, R.; Leunissen, M. E.; Maass, C.; Pine, D. J.; Chaikin, P. M.; Seeman, N. C., Nature 2011, 478, 225-228.

(37) Schulman, R.; Yurke, B.; Winfree, E., P Natl Acad Sci USA 2012, 109, 6405-6410.

(38) Yin, P.; Choi, H. M. T.; Calvert, C. R.; Pierce, N. A., Nature 2008, 451, 318-322.

(39) Bairoch, A., Nucleic Acids Res 2000, 28, 304-305.

(40) Hammes, G. G.; Wu, C. W., Science 1971, 172, 1205-1211.

(41) Drews, J., Science 2000, 287, 1960-1964.

(42) Khosla, C.; Harbury, P. B., Nature 2001, 409, 247-252.

(43) Ostermeier, M., Curr Opin Struc Biol 2009, 19, 442-448.

(44) Fu, Y.; Zeng, D.; Chao, J.; Jin, Y.; Zhang, Z.; Liu, H.; Li, D.; Ma, H.; Huang, Q.; Gothelf, K. V.; Fan, C., J Am Chem Soc 2013, 135, 696-702.

(45) Wilner, O. I.; Weizmann, Y.; Gill, R.; Lioubashevski, O.; Freeman, R.; Willner, I., Nat Nanotechnol 2009, 4, 249-254.

(46) Saghatelian, A.; Guckian, K. M.; Thayer, D. A.; Ghadiri, M. R., J Am Chem Soc 2003, 125, 344-345.

(47) Simon, P.; Dueymes, C.; Fontecave, M.; Decout, J. L., Angew Chem Int Edit 2005, 44, 2764-2767.

(48) Fu, J. L.; Liu, M. H.; Liu, Y.; Woodbury, N. W.; Yan, H., J Am Chem Soc 2012, 134, 5516-5519.

(49) Fu, Y. M.; Zeng, D. D.; Chao, J.; Jin, Y. Q.; Zhang, Z.; Liu, H. J.; Li, D.; Ma, H. W.; Huang, Q.; Gothelf, K. V.; Fan, C. H., J Am Chem Soc 2013, 135, 696-702.

(50) Fu, J.; Yang, Y.; Buck, A. J.; Liu, M.; Liu, Y.; Walter, N. G.; Woodbury, N. W.; Yan, H., Nat Nanotechnol 2014, 9, 531-536.

(51) Tseng, C. Y.; Zocchi, G., J Am Chem Soc 2013, 135, 11879-11886.

(52) Liu, M. H.; Fu, J. L.; Hejesen, C.; Yang, Y. H.; Woodbury, N. W.; Gothelf, K.; Liu, Y.; Yan, H., Nat Commun 2013, 4, 2127.

(53) Lammers, T.; Aime, S.; Hennink, W. E.; Storm, G.; Kiessling, F., Accounts Chem Res 2011, 44, 1029-1038.

(54) Langecker, M.; Arnaut, V.; Martin, T. G.; List, J.; Renner, S.; Mayer, M.; Dietz, H.; Simmel, F. C., Science 2012, 338, 932-936.

(55) Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L. P.; Pedersen, J. S.; Birkedal, V.; Besenbacher, F.; Gothelf, K. V.; Kjems, J., Nature 2009, 459, 73-75.

(56) Douglas, S. M.; Bachelet, I.; Church, G. M., Science 2012, 335, 831-834.

(57) Rudchenko, M.; Taylor, S.; Pallavi, P.; Dechkovskaia, A.; Khan, S.; Butler, V. P.; Rudchenko, S.; Stojanovic, M. N., Nat Nanotechnol 2013, 8, 580-586.

(58) Hemphill, J.; Deiters, A., J Am Chem Soc 2013, 135, 10512-10518.

(59) Yin, P. In Synthetic organization and regulation with DNA/RNA bricks, Foundations of Nanoscience: Self-Assembled Architectures and Devices., Snowbird, Utah, Snowbird, Utah, 2014; p 20.

(60) Chen, Y. J.; Dalchau, N.; Srinivas, N.; Phillips, A.; Cardelli, L.; Soloveichik, D.; Seelig, G., Nat Nanotechnol 2013, 8, 755-762.

(61) Mei, Q. A.; Wei, X. X.; Su, F. Y.; Liu, Y.; Youngbull, C.; Johnson, R.; Lindsay, S.; Yan, H.; Meldrum, D., Nano Lett 2011, 11, 1477-1482.

(62) Castro, C. E.; Kilchherr, F.; Kim, D. N.; Shiao, E. L.; Wauer, T.; Wortmann, P.; Bathe, M.; Dietz, H., Nat Methods 2011, 8, 221-229.

(63) Modi, S.; Nizak, C.; Surana, S.; Halder, S.; Krishnan, Y., Nat Nanotechnol 2013, 8, 459-467.

(64) Perrault, S. D.; Shih, W. M., Acs Nano 2014, 140423081328001.

(65) Ke, Y. G.; Bellot, G.; Voigt, N. V.; Fradkov, E.; Shih, W. M., Chem Sci 2012, 3, 2587-2597.

(66) Sobczak, J. P. J.; Martin, T. G.; Gerling, T.; Dietz, H., Science 2012, 338, 1458-1461.

(67) Lin, C. X.; Perrault, S. D.; Kwak, M.; Graf, F.; Shih, W. M., Nucleic Acids Res 2013, 41, e40.

(68) Martin, T. G.; Dietz, H., Nat Commun 2012, 3, 1103.

(69) Myhrvold, C.; Dai, M. J.; Silver, P. A.; Yin, P., Nano Lett 2013, 13, 4242-4248.

(70) Guo, P. X., Nat Nanotechnol 2010, 5, 833-842.

(71) Shukla, G. C.; Haque, F.; Tor, Y.; Wilhelmsson, L. M.; Toulmé, J.-J.; Isambert, H.; Guo, P.; Rossi, J. J.; Tenenbaum, S. A.; Shapiro, B. A., Acs Nano 2011, 5, 3405-3418.

(72) Lai, Y. T.; Cascio, D.; Yeates, T. O., Science 2012, 336, 1129-1129.

(73) King, N. P.; Sheffler, W.; Sawaya, M. R.; Vollmar, B. S.; Sumida, J. P.; Andre, I.; Gonen, T.; Yeates, T. O.; Baker, D., Science 2012, 336, 1171-1174.

(74) Li, X. M.; Mooney, P.; Zheng, S.; Booth, C. R.; Braunfeld, M. B.; Gubbens, S.; Agard, D. A.; Cheng, Y. F., Nat Methods 2013, 10, 584-590.

(75) Liao, M.; Cao, E.; Julius, D.; Cheng, Y., Nature 2013, 504, 107-112.

(76) Scheres, S. In How self-assembly could exploit high-resolution cryo-TEM and vice versa, Foundations of Nanoscience: Self-Assembled Architectures and Devices., Snowbird, Utah, Snowbird, Utah, 2014; p 55.

REFERENCES

Chapter 1 Reference

- (1) Aldaye, F. A.; Palmer, A. L.; Sleiman, H. F., *Science* **2008**, 321, 1795-1799.
- (2) Li, H. Y.; Carter, J. D.; LaBean, T. H., *Mater Today* **2009**, 12, 24-32.
- (3) Seeman, N. C., Annu Rev Biochem 2010, 79, 65-87.
- (4) Service, R. F., *Science* **2011**, 332, 1140-1142.
- (5) Zadegan, R. M.; Norton, M. L., *Int J Mol Sci* **2012**, 13, 7149-7162.
- (6) Seeman, N. C., *J Theor Biol* **1982**, 99, 237-247.
- (7) Seeman, N. C., Journal of Biomolecular Structure and Dynamics **1990**, 8, 573-581.

(8) Andersen, E. S.; Dong, M. D.; Nielsen, M. M.; Jahn, K.; Lind-Thomsen, A.; Mamdouh, W.; Gothelf, K. V.; Besenbacher, F.; Kjems, J., *Acs Nano* **2008**, *2*, 1213-1218.

(9) Douglas, S. M.; Marblestone, A. H.; Teerapittayanon, S.; Vazquez, A.; Church, G. M.; Shih, W. M., *Nucleic Acids Res* **2009**, 37, 5001-5006.

(10) Williams, S.; Lund, K.; Lin, C.; Wonka, P.; Lindsay, S.; Yan, H., **2009**, 5347, 90-101.

(11) Zadeh, J. N.; Steenberg, C. D.; Bois, J. S.; Wolfe, B. R.; Pierce, M. B.; Khan, A. R.; Dirks, R. M.; Pierce, N. A., *J Comput Chem* **2011**, 32, 170-173.

(12) Kim, D. N.; Kilchherr, F.; Dietz, H.; Bathe, M., Nucleic Acids Res 2012, 40, 2862-2868.

(13) Winfree, E.; Liu, F. R.; Wenzler, L. A.; Seeman, N. C., *Nature* **1998**, 394, 539-544.

(14) Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H., Science 2003, 301, 1882-1884.

(15) He, Y.; Tian, Y.; Ribbe, A. E.; Mao, C. D., *J Am Chem Soc* **2006**, 128, 15978-15979.

(16) Zheng, J. P.; Birktoft, J. J.; Chen, Y.; Wang, T.; Sha, R. J.; Constantinou, P. E.; Ginell, S. L.; Mao, C. D.; Seeman, N. C., *Nature* **2009**, 461, 74-77.

(17) LaBean, T. H.; Yan, H.; Kopatsch, J.; Liu, F.; Winfree, E.; Reif, J. H.; Seeman, N. C., *J Am Chem Soc* **2000**, 122, 1848-1860.

(18) He, Y.; Chen, Y.; Liu, H. P.; Ribbe, A. E.; Mao, C. D., *J Am Chem Soc* **2005**, 127, 12202-12203.

(19) Malo, J.; Mitchell, J. C.; Venien-Bryan, C.; Harris, J. R.; Wille, H.; Sherratt, D. J.; Turberfield, A. J., *Angew Chem Int Edit* **2005**, 44, 3057-3061.

(20) Majumder, U.; Rangnekar, A.; Gothelf, K. V.; Reif, J. H.; LaBean, T. H., *J Am Chem Soc* **2011**, 133, 3843-3845.

(21) Chen, J. H.; Seeman, N. C., *Nature* **1991**, 350, 631-633.

(22) Goodman, R. P.; Schaap, I. A. T.; Tardin, C. F.; Erben, C. M.; Berry, R. M.; Schmidt, C. F.; Turberfield, A. J., *Science* **2005**, 310, 1661-1665.

(23) He, Y.; Ye, T.; Su, M.; Zhang, C.; Ribbe, A. E.; Jiang, W.; Mao, C. D., *Nature* **2008**, 452, 198-201.

- (24) Aldaye, F. A.; Sleiman, H. F., J Am Chem Soc 2007, 129, 13376-13377.
- (25) Zhang, Y.; Seeman, N. C., JAm Chem Soc 1994, 116, 1661-1669.
- (26) Shih, W. M.; Quispe, J. D.; Joyce, G. F., *Nature* **2004**, 427, 618-621.

(27) Erben, C. M.; Goodman, R. P.; Turberfield, A. J., *J Am Chem Soc* **2007**, 129, 6992-6993.

- (28) Rothemund, P. W. K.; Papadakis, N.; Winfree, E., *Plos Biol* **2004**, *2*, 2041-2053.
- (29) Barish, R. D.; Rothemund, P. W. K.; Winfree, E., *Nano Lett* **2005**, *5*, 2586-2592.
- (30) Winfree, E.; Bekbolatov, R., Lect Notes Comput Sc 2004, 2943, 126-144.
- (31) Sahu, S.; Reif, J. H., *Algorithmica* **2010**, *56*, 480-504.
- (32) Rothemund, P. W. K., *Nature* **2006**, 440, 297-302.

(33) Ke, Y. G.; Sharma, J.; Liu, M. H.; Jahn, K.; Liu, Y.; Yan, H., *Nano Lett* **2009**, 9, 2445-2447.

(34) Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L. P.; Pedersen, J. S.; Birkedal, V.; Besenbacher, F.; Gothelf, K. V.; Kjems, J., *Nature* **2009**, 459, 73-75.

(35) Douglas, S. M.; Dietz, H.; Liedl, T.; Hogberg, B.; Graf, F.; Shih, W. M., *Nature* **2009**, 459, 414-418.

(36) Endo, M.; Hidaka, K.; Kato, T.; Namba, K.; Sugiyama, H., *J Am Chem Soc* **2009**, 131, 15570-15571.

(37) Dietz, H.; Douglas, S. M.; Shih, W. M., *Science* 2009, 325, 725-730.
(38) Han, D. R.; Pal, S.; Nangreave, J.; Deng, Z. T.; Liu, Y.; Yan, H., *Science* 2011, 332, 342-346.

(39) Woo, S.; Rothemund, P. W. K., *Nat Chem* **2011**, *3*, 620-627.

(40) Liu, W. Y.; Zhong, H.; Wang, R. S.; Seeman, N. C., *Angew Chem Int Edit* **2011**, 50, 264-267.

(41) Zhao, Z.; Liu, Y.; Yan, H., *Nano Lett* **2011**, 11, 2997-3002.

(42) Zhang, H. L.; Chao, J.; Pan, D.; Liu, H. J.; Huang, Q.; Fan, C. H., *Chem Commun* **2012**, 48, 6405-6407.

(43) Pound, E.; Ashton, J. R.; Becerril, H. c. A.; Woolley, A. T., *Nano Lett* **2009**, 9, 4302-4305.

(44) Han, D. R.; Pal, S.; Yang, Y.; Jiang, S. X.; Nangreave, J.; Liu, Y.; Yan, H., *Science* **2013**, 339, 1412-1415.

(45) Wei, B.; Dai, M. J.; Yin, P., *Nature* **2012**, 485, 623-626.

(46) Ke, Y. G.; Ong, L. L.; Shih, W. M.; Yin, P., *Science* **2012**, 338, 1177-1183.

(47) Yurke, B.; Turberfield, A. J.; Mills, A. P.; Simmel, F. C.; Neumann, J. L., *Nature* **2000**, 406, 605-608.

(48) Yin, P.; Choi, H. M. T.; Calvert, C. R.; Pierce, N. A., *Nature* 2008, 451, 318-322.

(49) Lund, K.; Manzo, A. J.; Dabby, N.; Michelotti, N.; Johnson-Buck, A.; Nangreave, J.; Taylor, S.; Pei, R. J.; Stojanovic, M. N.; Walter, N. G.; Winfree, E.; Yan, H., *Nature* **2010**, 465, 206-210.

(50) Gu, H. Z.; Chao, J.; Xiao, S. J.; Seeman, N. C., *Nature* **2010**, 465, 202-205.

(51) Yin, P.; Hariadi, R. F.; Sahu, S.; Choi, H. M. T.; Park, S. H.; LaBean, T. H.; Reif, J. H., *Science* **2008**, 321, 824-826.

- (52) Mao, C. D.; Sun, W. Q.; Shen, Z. Y.; Seeman, N. C., *Nature* **1999**, 397, 144-146.
- (53) Yan, H.; Zhang, X. P.; Shen, Z. Y.; Seeman, N. C., *Nature* **2002**, 415, 62-65.
- (54) Li, J. W. J.; Tan, W. H., *Nano Lett* **2002**, *2*, 315-318.
- (55) Liu, D. S.; Balasubramanian, S., Angew Chem Int Edit 2003, 42, 5734-5736.

(56) Li, Y. M.; Zhang, C.; Tian, C.; Mao, C. D., Org Biomol Chem **2014**, 12, 2543-2546.

(57) Feng, L. P.; Park, S. H.; Reif, J. H.; Yan, H., Angew Chem Int Edit 2003, 42, 4342-4346.

(58) Goodman, R. P.; Heilemann, M.; Doose, S.; Erben, C. M.; Kapanidis, A. N.; Turberfield, A. J., *Nat Nanotechnol* **2008**, 3, 93-96.

(59) Maye, M. M.; Kumara, M. T.; Nykypanchuk, D.; Sherman, W. B.; Gang, O., *Nat Nanotechnol* **2010**, *5*, 116-120.

- (60) Han, D. R.; Pal, S.; Liu, Y.; Yan, H., *Nat Nanotechnol* **2010**, *5*, 712-717.
- (61) Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H., *Nano Lett* **2012**, 12, 3290-3295.

(62) Yang, Y. Y.; Endo, M.; Hidaka, K.; Sugiyama, H., *J Am Chem Soc* **2012**, 134, 20645-20653.

(63) Tian, Y.; Mao, C. D., *J Am Chem Soc* **2004**, 126, 11410-11411.

(64) Rajendran, A.; Endo, M.; Hidaka, K.; Sugiyama, H., *J Am Chem Soc* **2013**, 135, 1117-1123.

(65) Omabegho, T.; Sha, R.; Seeman, N. C., *Science* **2009**, 324, 67-71.

(66) Wickham, S. F. J.; Endo, M.; Katsuda, Y.; Hidaka, K.; Bath, J.; Sugiyama, H.; Turberfield, A. J., *Nat Nanotechnol* **2011**, 6, 166-169.

(67) Wickham, S. F. J.; Bath, J.; Katsuda, Y.; Endo, M.; Hidaka, K.; Sugiyama, H.; Turberfield, A. J., *Nat Nanotechnol* **2012**, *7*, 169-173.

(68) He, Y.; Liu, D. R., *Nat Nanotechnol* **2010**, *5*, 778-782.

(69) Zheng, J. W.; Constantinou, P. E.; Micheel, C.; Alivisatos, A. P.; Kiehl, R. A.; Seeman, N. C., *Nano Lett* **2006**, 6, 1502-1504.

(70) Pal, S.; Deng, Z. T.; Wang, H. N.; Zou, S. L.; Liu, Y.; Yan, H., *J Am Chem Soc* **2011**, 133, 17606-17609.

(71) Deng, Z. T.; Samanta, A.; Nangreave, J.; Yan, H.; Liu, Y., *J Am Chem Soc* **2012**, 134, 17424-17427.

(72) Kuzyk, A.; Schreiber, R.; Fan, Z. Y.; Pardatscher, G.; Roller, E. M.; Hogele, A.; Simmel, F. C.; Govorov, A. O.; Liedl, T., *Nature* **2012**, 483, 311-314.

(73) Chhabra, R.; Sharma, J.; Ke, Y. G.; Liu, Y.; Rinker, S.; Lindsay, S.; Yan, H., *J Am Chem Soc* **2007**, 129, 10304-10305.

(74) Sacca, B.; Meyer, R.; Erkelenz, M.; Kiko, K.; Arndt, A.; Schroeder, H.; Rabe, K.S.; Niemeyer, C. M., *Angew Chem Int Edit* **2010**, 49, 9378-9383.

(75) Tan, S. J.; Campolongo, M. J.; Luo, D.; Cheng, W. L., *Nat Nanotechnol* **2011**, 6, 268-276.

(76) Ding, B.; Deng, Z.; Yan, H.; Cabrini, S.; Zuckermann, R. N.; Bokor, J., *J Am Chem Soc* **2010**, 132, 3248-3249.

(77) Klein, W. P.; Schmidt, C. N.; Rapp, B.; Takabayashi, S.; Knowlton, W. B.; Lee, J.; Yurke, B.; Hughes, W. L.; Graugnard, E.; Kuang, W., *Nano Lett* **2013**, 13, 3850-3856.

(78) Dutta, P. K.; Varghese, R.; Nangreave, J.; Lin, S.; Yan, H.; Liu, Y., *J Am Chem Soc* **2011**, 133, 11985-11993.

(79) Langecker, M.; Arnaut, V.; Martin, T. G.; List, J.; Renner, S.; Mayer, M.; Dietz, H.; Simmel, F. C., *Science* **2012**, 338, 932-936.

(80) Chhabra, R.; Sharma, J.; Wang, H.; Zou, S.; Lin, S.; Yan, H.; Lindsay, S.; Liu, Y., *Nanotechnology* **2009**, 20, 485201.

(81) Pal, S.; Dutta, P.; Wang, H.; Deng, Z.; Zou, S.; Yan, H.; Liu, Y., *The Journal of Physical Chemistry C* **2013**, 117, 12735-12744.

(82) Acuna, G. P.; Moller, F. M.; Holzmeister, P.; Beater, S.; Lalkens, B.; Tinnefeld, P., *Science* **2012**, 338, 506-510.

(83) Berardi, M. J.; Shih, W. M.; Harrison, S. C.; Chou, J. J., *Nature* **2011**, 476, 109-113.

(84) Selmi, D. N.; Adamson, R. J.; Attrill, H.; Goddard, A. D.; Gilbert, R. J. C.; Watts, A.; Turberfield, A. J., *Nano Lett* **2011**, 11, 657-660.

(85) Delebecque, C. J.; Lindner, A. B.; Silver, P. A.; Aldaye, F. A., *Science* **2011**, 333, 470-474.

(86) Erkelenz, M.; Kuo, C. H.; Niemeyer, C. M., *J Am Chem Soc* **2011**, 133, 16111-16118.

(87) Wilner, O. I.; Weizmann, Y.; Gill, R.; Lioubashevski, O.; Freeman, R.; Willner, I., *Nat Nanotechnol* **2009**, 4, 249-254.

(88) Fu, J. L.; Liu, M. H.; Liu, Y.; Woodbury, N. W.; Yan, H., *J Am Chem Soc* **2012**, 134, 5516-5519.

(89) Fu, J.; Yang, Y.; Buck, A. J.; Liu, M.; Liu, Y.; Walter, N. G.; Woodbury, N. W.; Yan, H., *Nat Nanotechnol* **2014**, 9, 531-536.

(90) Hariadi, R. F.; Cale, M.; Sivaramakrishnan, S., *P Natl Acad Sci USA* **2014**, 111, 4091-4096.

(91) Derr, N. D.; Goodman, B. S.; Jungmann, R.; Leschziner, A. E.; Shih, W. M.; Reck-Peterson, S. L., *Science* **2012**, 338, 662-665.

(92) Endo, M.; Katsuda, Y.; Hidaka, K.; Sugiyama, H., *J Am Chem Soc* **2010**, 132, 1592-1597.

(93) Douglas, S. M.; Bachelet, I.; Church, G. M., Science 2012, 335, 831-834.

(94) Lee, H.; Lytton-Jean, A. K. R.; Chen, Y.; Love, K. T.; Park, A. I.; Karagiannis, E. D.; Sehgal, A.; Querbes, W.; Zurenko, C. S.; Jayaraman, M.; Peng, C. G.; Charisse, K.; Borodovsky, A.; Manoharan, M.; Donahoe, J. S.; Truelove, J.; Nahrendorf, M.; Langer, R.; Anderson, D. G., *Nat Nanotechnol* **2012**, *7*, 389-393.

(95) Liu, X. W.; Xu, Y.; Yu, T.; Clifford, C.; Liu, Y.; Yan, H.; Chang, Y., *Nano Lett* **2012**, 12, 4254-4259.

(96) Amir, Y.; Ben-Ishay, E.; Levner, D.; Ittah, S.; Abu-Horowitz, A.; Bachelet, I., *Nat Nanotechnol* **2014**, 9, 353-357.

(97) Ke, Y.; Lindsay, S.; Chang, Y.; Liu, Y.; Yan, H., Science 2008, 319, 180-183.

(98) Subramanian, H. K. K.; Chakraborty, B.; Sha, R.; Seeman, N. C., *Nano Lett* **2011**, 11, 910-913.

(99) Endo, M.; Tatsumi, K.; Terushima, K.; Katsuda, Y.; Hidaka, K.; Harada, Y.; Sugiyama, H., *Angew Chem Int Edit* **2012**, 51, 8778-8782.

(100) Endo, M.; Yang, Y. Y.; Suzuki, Y.; Hidaka, K.; Sugiyama, H., *Angew Chem Int Edit* **2012**, 51, 10518-10522.

(101) Li, J.; Pei, H.; Zhu, B.; Liang, L.; Wei, M.; He, Y.; Chen, N.; Li, D.; Huang, Q.; Fan, C. H., *Acs Nano* **2011**, *5*, 8783-8789.

Chapter 2 Reference

(1) Grünbaum, B.; Shephard, G. C., *Tilings and Patterns*. W.H. Freeman: 1987.

(2) David, S.; Chelnokov, A.; Lourtioz, J. M., *Ieee J Quantum Elect* **2001**, 37, 1427-1434.

(3) Talapin, D. V.; Shevchenko, E. V.; Bodnarchuk, M. I.; Ye, X. C.; Chen, J.; Murray, C. B., *Nature* **2009**, 461, 964-967.

(4) Seeman, N. C., *J Theor Biol* **1982**, 99, 237-247.

(5) Rothemund, P. W. K., *Nature* **2006**, 440, 297-302.

(6) Winfree, E.; Liu, F. R.; Wenzler, L. A.; Seeman, N. C., *Nature* **1998**, 394, 539-544.

(7) Seeman, N. C., *Nature* **2003**, 421, 427-431.

(8) Gothelf, K. V.; LaBean, T. H., *Org Biomol Chem* **2005**, *3*, 4023-4037.

(9) Voigt, N. V.; Torring, T.; Rotaru, A.; Jacobsen, M. F.; Ravnsbaek, J. B.; Subramani, R.; Mamdouh, W.; Kjems, J.; Mokhir, A.; Besenbacher, F.; Gothelf, K. V., *Nat Nanotechnol* **2010**, *5*, 200-203.

(10) Deng, Z. T.; Samanta, A.; Nangreave, J.; Yan, H.; Liu, Y., *J Am Chem Soc* **2012**, 134, 17424-17427.

(11) Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H., Science 2003, 301, 1882-1884.

(12) He, Y.; Chen, Y.; Liu, H. P.; Ribbe, A. E.; Mao, C. D., *J Am Chem Soc* **2005**, 127, 12202-12203.

(13) He, Y.; Tian, Y.; Ribbe, A. E.; Mao, C. D., *J Am Chem Soc* **2006**, 128, 15978-15979.

(14) He, Y.; Tian, Y.; Chen, Y.; Ribbe, A. E.; Mao, C. D., *Chem Commun* **2007**, 165-167.

(15) Zhang, C.; Su, M.; He, Y.; Zhao, X.; Fang, P. A.; Ribbe, A. E.; Jiang, W.; Mao, C. D., *P Natl Acad Sci USA* 2008, 105, 10665-10669.

(16) Chavey, D., *Comput Math Appl* **1989**, 17, 147-165.

(17) He, Y.; Ye, T.; Su, M.; Zhang, C.; Ribbe, A. E.; Jiang, W.; Mao, C. D., *Nature* **2008**, 452, 198-201.

(18) Ke, Y. G.; Liu, Y.; Zhang, J. P.; Yan, H., *J Am Chem Soc* **2006**, 128, 4414-4421.

(19) Maune, H. T.; Han, S. P.; Barish, R. D.; Bockrath, M.; Goddard, W. A.; Rothemund, P. W. K.; Winfree, E., *Nat Nanotechnol* **2010**, *5*, 61-66.

(20) Mitchell, J. C.; Harris, J. R.; Malo, J.; Bath, J.; Turberfield, A. J., *J Am Chem Soc* **2004**, 126, 16342-16343.

(21) Mikhael, J.; Roth, J.; Helden, L.; Bechinger, C., *Nature* **2008**, 454, 501-504.

Chapter 3 Reference

(1) Aldaye, F. A.; Palmer, A. L.; Sleiman, H. F., *Science* **2008**, 321, 1795-1799.

(2) Seeman, N. C., Annu Rev Biochem **2010**, 79, 65-87.

(3) Pinheiro, A. V.; Han, D. R.; Shih, W. M.; Yan, H., *Nat Nanotechnol* **2011**, 6, 763-772.

(4) Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H., *J Am Chem Soc* **2014**, 136, 11198-11211.

(5) Winfree, E.; Liu, F. R.; Wenzler, L. A.; Seeman, N. C., *Nature* **1998**, 394, 539-544.

(6) Rothemund, P. W. K., *Nature* **2006**, 440, 297-302.

(7) He, Y.; Ye, T.; Su, M.; Zhang, C.; Ribbe, A. E.; Jiang, W.; Mao, C. D., *Nature* **2008**, 452, 198-U41.
(8) Douglas, S. M.; Dietz, H.; Liedl, T.; Hogberg, B.; Graf, F.; Shih, W. M., *Nature* **2009**, 459, 414-418.

(9) Wei, B.; Dai, M. J.; Yin, P., *Nature* **2012**, 485, 623.

(10) Ke, Y. G.; Ong, L. L.; Shih, W. M.; Yin, P., *Science* **2012**, 338, 1177-1183.

(11) Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L. P.; Pedersen, J. S.; Birkedal, V.; Besenbacher, F.; Gothelf, K. V.; Kjems, J., *Nature* **2009**, 459, 73-U75.

(12) Dietz, H.; Douglas, S. M.; Shih, W. M., Science 2009, 325, 725-730.

(13) Han, D. R.; Pal, S.; Nangreave, J.; Deng, Z. T.; Liu, Y.; Yan, H., *Science* **2011**, 332, 342-346.

(14) Han, D. R.; Pal, S.; Yang, Y.; Jiang, S. X.; Nangreave, J.; Liu, Y.; Yan, H., *Science* **2013**, 339, 1412-1415.

(15) He, Y.; Chen, Y.; Liu, H. P.; Ribbe, A. E.; Mao, C. D., *J Am Chem Soc* **2005**, 127, 12202-12203.

(16) Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H., *Science* **2003**, 301, 1882-1884.

(17) He, Y.; Tian, Y.; Ribbe, A. E.; Mao, C. D., *J Am Chem Soc* **2006**, 128, 15978-15979.

(18) Liu, Y.; Ke, Y. G.; Yan, H., *J Am Chem Soc* **2005**, 127, 17140-17141.

(19) Yurke, B.; Turberfield, A. J.; Mills, A. P.; Simmel, F. C.; Neumann, J. L., *Nature* **2000**, 406, 605-608.

(20) Shen, Z. Y.; Yan, H.; Wang, T.; Seeman, N. C., *J Am Chem Soc* **2004**, 126, 1666-1674.

(21) Geary, C.; Rothemund, P. W. K.; Andersen, E. S., *Science* **2014**, 345, 799-804.

Chapter 4 Reference

(1) Seeman, N. C., *J Theor Biol* **1982**, 99, 237-247.

(2) Kallenbach, N. R.; Ma, R. I.; Seeman, N. C., *Nature* **1983**, 305, 829-831.

- (3) Seeman, N. C., Annu Rev Biochem 2010, 79, 65-87.
- (4) Mao, C. D., *Nat Nanotechnol* **2008**, *3*, 75-76.
- (5) Rothemund, P. W. K., *Nature* **2006**, 440, 297-302.
- (6) Aldaye, F. A.; Palmer, A. L.; Sleiman, H. F., *Science* **2008**, 321, 1795-1799.
- (7) Kuzuya, A.; Komiyama, M., *Nanoscale* **2010**, *2*, 310-322.
- (8) Shih, W. M.; Lin, C. X., *Curr Opin Struc Biol* **2010**, 20, 276-282.

(9) Torring, T.; Voigt, N. V.; Nangreave, J.; Yan, H.; Gothelf, K. V., *Chemical Society Reviews* **2011**, 40, 5636-5646.

- (10) Chen, J. H.; Seeman, N. C., *Nature* **1991**, 350, 631-633.
- (11) Rothemund, P. W. K.; Papadakis, N.; Winfree, E., Plos Biol 2004, 2, 2041-2053.

(12) Douglas, S. M.; Dietz, H.; Liedl, T.; Hogberg, B.; Graf, F.; Shih, W. M., *Nature* **2009**, 459, 1154-1154.

- (13) Gu, H.; Chao, J.; Xiao, S.-J.; Seeman, N. C., Nat Nano 2009, 4, 245-248.
- (14) Gu, H.; Chao, J.; Xiao, S.-J.; Seeman, N. C., *Nature* **2010**, 465, 202-205.
- (15) Mao, C. D.; Sun, W. Q.; Shen, Z. Y.; Seeman, N. C., *Nature* **1999**, 397, 144-146.

(16) Maye, M. M.; Kumara, M. T.; Nykypanchuk, D.; Sherman, W. B.; Gang, O., *Nat Nanotechnol* **2010**, *5*, 116-120.

(17) Gu, H. Z.; Yang, W.; Seeman, N. C., *Journal of the American Chemical Society* **2010**, 132, 4352-4357.

(18) Li, J. W. J.; Tan, W. H., *Nano Lett* **2002**, *2*, 315-318.

(19) Shen, W. Q.; Bruist, M. F.; Goodman, S. D.; Seeman, N. C., *Angew Chem Int Edit* **2004**, 43, 4750-4752.

- (20) Sherman, W. B.; Seeman, N. C., *Nano Lett* **2004**, 4, 1801-1801.
- (21) Yan, H.; Zhang, X. P.; Shen, Z. Y.; Seeman, N. C., *Nature* **2002**, 415, 62-65.
- (22) Seeman, N. C., *Trends Biochem Sci* 2005, 30, 119-125.

(23) Lubrich, D.; Lin, J.; Yan, J., Angew Chem Int Edit 2008, 47, 7026-7028.

(24) Yurke, B.; Turberfield, A. J.; Mills, A. P.; Simmel, F. C.; Neumann, J. L., *Nature* **2000**, 406, 605-608.

(25) Zhang, D. Y.; Winfree, E., *Journal of the American Chemical Society* **2009**, 131, 17303-17314.

- (26) Li, Q. Q.; Luan, G. Y.; Guo, Q. P.; Liang, J. X., Nucleic Acids Res 2002, 30.
- (27) Simmel, F. C.; Yurke, B., *Phys Rev E* 2001, 63.
- (28) Zhang, D. Y.; Seelig, G., *Nat Chem* **2011**, *3*, 103-113.
- (29) Yan, H.; Chhabra, R.; Sharma, J.; Liu, Y., Nano Lett 2006, 6, 978-983.
- (30) Ding, B.; Seeman, N. C., Science 2006, 314, 1583-1585.

(31) Feng, L. P.; Park, S. H.; Reif, J. H.; Yan, H., Angew Chem Int Edit 2003, 42, 4342-4346.

(32) Goodman, R. P.; Heilemann, M.; Doose, S.; Erben, C. M.; Kapanidis, A. N.; Turberfield, A. J., *Nat Nanotechnol* **2008**, *3*, 93-96.

(33) Gothelf, K. V.; Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L. P.; Pedersen, J. S.; Birkedal, V.; Besenbacher, F.; Kjems, J., *Nature* **2009**, 459, 73-U75.

(34) Han, D. R.; Pal, S.; Liu, Y.; Yan, H., *Nat Nanotechnol* **2010**, *5*, 712-717.

(35) Patitz, M. J.; Summers, S. M., *Nat Comput* **2010**, *9*, 135-172.

Chapter 5 Reference

(1) Whitesides, G. M.; Grzybowski, B., Science 2002, 295, 2418-2421.

(2) Hyman, A. A.; Salser, S.; Drechsel, D. N.; Unwin, N.; Mitchison, T. J., Mol Biol Cell 1992, 3, 1155-1167.

- (3) Desai, A.; Mitchison, T. J., Annu Rev Cell Dev Bi 1997, 13, 83-117.
- (4) Dirks, R. M.; Pierce, N. A., P Natl Acad Sci USA 2004, 101, 15275-15278.

(5) Zhang, D. Y.; Hariadi, R. F.; Choi, H. M. T.; Winfree, E., Nat Commun 2013, 4, 1965.

(6) Zhang, D. Y.; Chen, S. X.; Yin, P., Nat Chem 2012, 4, 208-214.

(7) Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J., Physical Review Letters 1984, 53, 1951-1953.

- (8) Steurer, W., Chemical Society Reviews 2012, 41, 6717.
- (9) Elser, V. V., Phys Rev Lett 1985, 54, 1730.
- (10) Steurer, W., Chemical Society Reviews 2012, 41, 6719.
- (11) de Boissieu, M., Chemical Society Reviews 2012, 41, 6778.

(12) Zheng, J. P.; Birktoft, J. J.; Chen, Y.; Wang, T.; Sha, R. J.; Constantinou, P. E.; Ginell, S. L.; Mao, C. D.; Seeman, N. C., Nature 2009, 461, 74-77.

(13) Yang, H.; Sleiman, H. F., Angew Chem Int Edit 2008, 47, 2443-2446.

(14) Ye, J. D.; Tereshko, V.; Frederiksen, J. K.; Koide, A.; Fellouse, F. A.; Sidhu, S. S.; Koide, S.; Kossiakoff, A. A.; Piccirilli, J. A., P Natl Acad Sci USA 2008, 105, 82-87.

(15) Chapman, H. N.; etal., Nature 2011, 470, 73-77.

(16) Rothemund, P. W. K., Nature 2006, 440, 297-302.

(17) Han, D. R.; Pal, S.; Yang, Y.; Jiang, S. X.; Nangreave, J.; Liu, Y.; Yan, H., Science 2013, 339, 1412-1415.

(18) Zhang, H. L.; Chao, J.; Pan, D.; Liu, H. J.; Huang, Q.; Fan, C. H., Chem Commun 2012, 48, 6405-6407.

(19) Hogberg, B.; Liedl, T.; Shih, W. M., J Am Chem Soc 2009, 131, 9154-9155.

(20) Zhao, Z.; Liu, Y.; Yan, H., Nano Lett 2011, 11, 2997-3002.

(21) Ducani, C.; Kaul, C.; Moche, M.; Shih, W. M.; Högberg, B., Nat Methods 2013, 10, 647-652.

(22) Jin, Z.; Sun, W.; Ke, Y.; Shih, C. J.; Paulus, G. L. C.; Wang, Q. H.; Mu, B.; Yin, P.; Strano, M. S., Nat Commun 2013, 4, 1663.

(23) Hung, A. M.; Cha, J. N., 2011, 749, 187-197.

(24) Kershner, R. J.; Bozano, L. D.; Micheel, C. M.; Hung, A. M.; Fornof, A. R.; Cha, J. N.; Rettner, C. T.; Bersani, M.; Frommer, J.; Rothemund, P. W. K.; Wallraff, G. M., Nat Nanotechnol 2009, 4, 557-561.

(25) Ding, B.; Wu, H.; Xu, W.; Zhao, Z.; Liu, Y.; Yu, H.; Yan, H., Nano Lett 2010, 10, 5065-5069.

(26) Sun, X. P.; Ko, S. H.; Zhang, C. A.; Ribbe, A. E.; Mao, C. D., J Am Chem Soc 2009, 131, 13248-13249.

(27) Woo, S.; Rothemund, P. W. K. In Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion, Foundations of Nanoscience: Self-Assembled Architectures and Devices., Snowbird, Utah, Snowbird, Utah, 2014; p 93.

(28) Endo, M.; Suzuki, Y.; Yang, Y.; Sugiyama, H. In Photoresponsive DNA nanostructures, single-molecule imaging and controlled assembly, Foundations of Nanoscience: Self-Assembled Architectures and Devices., Snowbird, Utah, Snowbird, Utah, 2014; p 7.

(29) Rothemund, P. W. K.; Papadakis, N.; Winfree, E., Plos Biol 2004, 2, 2041-2053.

(30) Barish, R. D.; Rothemund, P. W. K.; Winfree, E., Nano Lett 2005, 5, 2586-2592.

(31) Barish, R. D.; Schulman, R.; Rothemund, P. W. K.; Winfree, E., P Natl Acad Sci USA 2009, 106, 6054-6059.

(32) Mao, C. D.; Sun, W. Q.; Seeman, N. C., Nature 1997, 386, 137-138.

(33) Han, D. R.; Pal, S.; Liu, Y.; Yan, H., Nat Nanotechnol 2010, 5, 712-717.

(34) Elbaz, J.; Cecconello, A.; Fan, Z. Y.; Govorov, A. O.; Willner, I., Nat Commun 2013, 4.

(35) Liu, D.; Chen, G.; Weizmann, Y. In Creating Complex molecular Topologies by Configuring DNA Four-Way Junctions Foundations of Nanoscience: Self-Assembled Architectures and Devices., Snowbird, Utah, Snowbird, Utah, 2014; p 34.

(36) Wang, T.; Sha, R. J.; Dreyfus, R.; Leunissen, M. E.; Maass, C.; Pine, D. J.; Chaikin, P. M.; Seeman, N. C., Nature 2011, 478, 225-228.

(37) Schulman, R.; Yurke, B.; Winfree, E., P Natl Acad Sci USA 2012, 109, 6405-6410.

- (38) Yin, P.; Choi, H. M. T.; Calvert, C. R.; Pierce, N. A., Nature 2008, 451, 318-322.
- (39) Bairoch, A., Nucleic Acids Res 2000, 28, 304-305.
- (40) Hammes, G. G.; Wu, C. W., Science 1971, 172, 1205-1211.
- (41) Drews, J., Science 2000, 287, 1960-1964.
- (42) Khosla, C.; Harbury, P. B., Nature 2001, 409, 247-252.
- (43) Ostermeier, M., Curr Opin Struc Biol 2009, 19, 442-448.

(44) Fu, Y.; Zeng, D.; Chao, J.; Jin, Y.; Zhang, Z.; Liu, H.; Li, D.; Ma, H.; Huang, Q.; Gothelf, K. V.; Fan, C., J Am Chem Soc 2013, 135, 696-702.

(45) Wilner, O. I.; Weizmann, Y.; Gill, R.; Lioubashevski, O.; Freeman, R.; Willner, I., Nat Nanotechnol 2009, 4, 249-254.

(46) Saghatelian, A.; Guckian, K. M.; Thayer, D. A.; Ghadiri, M. R., J Am Chem Soc 2003, 125, 344-345.

(47) Simon, P.; Dueymes, C.; Fontecave, M.; Decout, J. L., Angew Chem Int Edit 2005, 44, 2764-2767.

(48) Fu, J. L.; Liu, M. H.; Liu, Y.; Woodbury, N. W.; Yan, H., J Am Chem Soc 2012, 134, 5516-5519.

(49) Fu, Y. M.; Zeng, D. D.; Chao, J.; Jin, Y. Q.; Zhang, Z.; Liu, H. J.; Li, D.; Ma, H. W.; Huang, Q.; Gothelf, K. V.; Fan, C. H., J Am Chem Soc 2013, 135, 696-702.

(50) Fu, J.; Yang, Y.; Buck, A. J.; Liu, M.; Liu, Y.; Walter, N. G.; Woodbury, N. W.; Yan, H., Nat Nanotechnol 2014, 9, 531-536.

(51) Tseng, C. Y.; Zocchi, G., J Am Chem Soc 2013, 135, 11879-11886.

(52) Liu, M. H.; Fu, J. L.; Hejesen, C.; Yang, Y. H.; Woodbury, N. W.; Gothelf, K.; Liu, Y.; Yan, H., Nat Commun 2013, 4, 2127.

(53) Lammers, T.; Aime, S.; Hennink, W. E.; Storm, G.; Kiessling, F., Accounts Chem Res 2011, 44, 1029-1038.

(54) Langecker, M.; Arnaut, V.; Martin, T. G.; List, J.; Renner, S.; Mayer, M.; Dietz, H.; Simmel, F. C., Science 2012, 338, 932-936.

(55) Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L. P.; Pedersen, J. S.; Birkedal, V.; Besenbacher, F.; Gothelf, K. V.; Kjems, J., Nature 2009, 459, 73-75.

(56) Douglas, S. M.; Bachelet, I.; Church, G. M., Science 2012, 335, 831-834.

(57) Rudchenko, M.; Taylor, S.; Pallavi, P.; Dechkovskaia, A.; Khan, S.; Butler, V. P.; Rudchenko, S.; Stojanovic, M. N., Nat Nanotechnol 2013, 8, 580-586.

(58) Hemphill, J.; Deiters, A., J Am Chem Soc 2013, 135, 10512-10518.

(59) Yin, P. In Synthetic organization and regulation with DNA/RNA bricks, Foundations of Nanoscience: Self-Assembled Architectures and Devices., Snowbird, Utah, Snowbird, Utah, 2014; p 20.

(60) Chen, Y. J.; Dalchau, N.; Srinivas, N.; Phillips, A.; Cardelli, L.; Soloveichik, D.; Seelig, G., Nat Nanotechnol 2013, 8, 755-762.

(61) Mei, Q. A.; Wei, X. X.; Su, F. Y.; Liu, Y.; Youngbull, C.; Johnson, R.; Lindsay, S.; Yan, H.; Meldrum, D., Nano Lett 2011, 11, 1477-1482.

(62) Castro, C. E.; Kilchherr, F.; Kim, D. N.; Shiao, E. L.; Wauer, T.; Wortmann, P.; Bathe, M.; Dietz, H., Nat Methods 2011, 8, 221-229.

(63) Modi, S.; Nizak, C.; Surana, S.; Halder, S.; Krishnan, Y., Nat Nanotechnol 2013, 8, 459-467.

(64) Perrault, S. D.; Shih, W. M., Acs Nano 2014, 140423081328001.

(65) Ke, Y. G.; Bellot, G.; Voigt, N. V.; Fradkov, E.; Shih, W. M., Chem Sci 2012, 3, 2587-2597.

(66) Sobczak, J. P. J.; Martin, T. G.; Gerling, T.; Dietz, H., Science 2012, 338, 1458-1461.

(67) Lin, C. X.; Perrault, S. D.; Kwak, M.; Graf, F.; Shih, W. M., Nucleic Acids Res 2013, 41, e40.

(68) Martin, T. G.; Dietz, H., Nat Commun 2012, 3, 1103.

(69) Myhrvold, C.; Dai, M. J.; Silver, P. A.; Yin, P., Nano Lett 2013, 13, 4242-4248.

(70) Guo, P. X., Nat Nanotechnol 2010, 5, 833-842.

(71) Shukla, G. C.; Haque, F.; Tor, Y.; Wilhelmsson, L. M.; Toulmé, J.-J.; Isambert, H.; Guo, P.; Rossi, J. J.; Tenenbaum, S. A.; Shapiro, B. A., Acs Nano 2011, 5, 3405-3418.

(72) Lai, Y. T.; Cascio, D.; Yeates, T. O., Science 2012, 336, 1129-1129.

(73) King, N. P.; Sheffler, W.; Sawaya, M. R.; Vollmar, B. S.; Sumida, J. P.; Andre, I.; Gonen, T.; Yeates, T. O.; Baker, D., Science 2012, 336, 1171-1174.

(74) Li, X. M.; Mooney, P.; Zheng, S.; Booth, C. R.; Braunfeld, M. B.; Gubbens, S.; Agard, D. A.; Cheng, Y. F., Nat Methods 2013, 10, 584-590.

(75) Liao, M.; Cao, E.; Julius, D.; Cheng, Y., Nature 2013, 504, 107-112.

(76) Scheres, S. In How self-assembly could exploit high-resolution cryo-TEM and vice versa, Foundations of Nanoscience: Self-Assembled Architectures and Devices., Snowbird, Utah, Snowbird, Utah, 2014; p 55.

APPENDIX A

SUPPLEMENTARY INFORMATION FOR CHAPTER 2 COMPLEX ARCHIMEDEAN TILING SELF-ASSEMLED FROM DNA NANOSTRUCTURES

Experimental Methods

Materials. All the strands were purchased from Integrated DNA Technologies Inc. (<u>www.IDTDNA.com</u>) at a 25 or 100 nmole synthesis scale, and were further purified by denaturing PAGE gel electrophoresis.

Nanostructure assembly. The designs and sequences of the DNA oligos used to form each of the structures are shown in a later section of the supporting information. A onepot annealing reaction was used to form each pattern. The strands for all the building blocks in each design are mixed at the designed ratio with a final concentration of the unit cell of 0.6 \Box M in 1xTAE-Mg²⁺ buffer (20 µM Tris-acetate buffer, pH 7.6, 2 mM EDTA, 12.5 mM MgCl₂). The oligonucleotide mixture was annealed in a thermocycler (Eppendorf) that was programmed to cool from 95°C to 4°C over 12 hours: 94°C to 86°C at 4°C per 5 minutes; 85°C to 70°C at 1 °C per 5 minutes; 70°C to 40°C at 1°C per 15 minutes; 40°C to 25°C at 1°C per 10 minutes; then hold at 4°C. The 2-hour annealing program used in Figures S4 and S8 is from 95°C to 4°C over 2 hours: 94°C to 76°C at 2°C per 5 minutes; 76°C to 24°C at 4°C per 5 minutes; then hold at 4°C. The 48-hour annealing program used in Figure S2.8 is from 95°C to 4°C over 48 hours: 95°C for 5 minutes; 90°C for 10 minutes; 86°C to 76°C at 1 °C per 10 minutes; 76°C to 50°C at 1°C per 30 minutes; 50°C to 15°C at 1°C per 60 minutes; then hold at 4°C.

Ratio of building blocks (corresponding to the designs in Figures 1&2 in the main text).

(a) Cairo pentagonal tiling corresponding to Archimedean tiling $(3^2.4.3.4)$.

Red four-arm: yellow four-arm: three-arm=1:1:4

(b) Prismatic pentagonal tiling corresponding to Archimedean tiling $(3^3.4^2)$, (c) shortened Prismatic pentagonal tiling and (d) shortened Prismatic pentagonal tiling with two faces.

Four-arm: three-arm=1:2

(e) 2-uniform tiling.

Four-arm: three-arm=1:1

AFM imaging. 2 \Box L samples were deposited onto freshly pealed mica (Ted Pella, Inc.) and left for 2 minutes for adsorption to the mica surface. 80 \Box L of 1x TAE-Mg²⁺ buffer was added to the samples and an extra 40 \Box L of the same buffer were deposited on the AFM tip. The samples were scanned in "ScanAssyst mode in fluid" using an AFM (Dimension FastScan, Bruker Corporation) with SCANASSYST-FLUID+ tips (Bruker, Inc.).

Figure S2.1. Possible mismatches in the case when over-simplified building blocks are used for the Cairo pentagonal tiling. Here the unit cell of the desired pattern includes cyclization of two four-arm junctions and three three-arm junctions in a 3-3-4-3-4

pattern to form an asymmetric pentagon. The symmetry of the sticky-end sequences in the four-arm tile may promote the exclusion of one of the three-arm motifs, causing the remaining four tiles to connect in a 3–4–3–4 pattern to form a square (or rhombus) unit. Deformation of the junction angles is possible because the arms of these four-arm and three-arm DNA junction motifs are relatively long and less rigid than shorter ones and the angles at the branch points of each individual tile may be flexible enough to deviate from the expected values of 90° and 120°. It is kinetically more favorable to form a fourmembered ring than a five-membered ring, but the four-membered unit cells do not grow into large 2D arrays because of excess structural strain. Even when the correct numbers of junction motifs combine to form the expected unit cells, they cannot assemble with perfect edge-to-edge tiling in the presence of incorrectly formed four-membered rings. a, The correct assembly intermediate with a 5-member ring assembled from a 3-3-4-3-4 building block pattern is shown in the left. However, when the two 4-arm junction tiles are equivalent they may adopt an alternative linkage in which four building blocks instead of five twist and connect to form a 4-member ring. b, The unit cell can be topologically treated as a square since the angles at the junction points are flexible. c, Possible mismatches between the unit cells by shifting the tiles.

Figure S2.2. Additional AFM images for the Cairo pentagonal tiling. **a**, zoom out images indicate that the large 2D arrays tend to curl up at the edges. **b**, zoom in images show some smaller pockets (2 layers with 100-300 nm dimensions) also form along with the larger 1–layer 2D arrays.

Figure S2.3. Tube folding mechanism for the standard Prismatic pentagonal tiling pattern. **a**, four possible folds I-IV with matching edges indicated by the dashed lines. **b**, 3D view of the tube formed by fold I with a zoom in AFM image of a tube flattened on surface (assuming this folding mechanism). **c**, the measured diameter (or half perimeter) distribution of the tubes from AFM. **d**, the sample AFM images for assigning/counting the type of tube folds. The numbers (1 or 2) marked on the tubes indicate the assigned fold type I or II from the AFM images. **e**. The distribution of different tube folds shows that all of the tubes assume either fold I or II, but none assumes fold III or IV.

Figure S2.4. Tube folding mechanism for the shortened Prismatic pentagonal tiling pattern. **a**, additional zoom in and zoom out AFM images for the standard annealing program (12 h). **b**, AFM images for different annealing times, 2 h and 12 h, respectively. Scale bars are marked in each image. **c**, Schematics for the three possible fold types. **d**, The first row shows the AFM images of tubes assuming fold 1 and the second row shows the AFM images of tubes assuming fold 2. It is noted that none of the tube are observed to assume the fold 3. Scale bars are the same in all images, 100 nm. The tubes can be easily opened either by deposition on the mica surface or broken by the scanning AFM tip. **e**, The diameter (or half perimeter) distribution of the tubes measured from AFM. The tubes are remarkably more narrow in this design compared to the one shown in Figure S2.3.

Figure S2.5. **a,b**, Additional zoom out and zoom in AFM images for the shortened Prismatic pentagonal tiling with a corrugated design. **c**, the diameter (or half perimeter) distribution of the tubes measured from AFM. The tubes are wider and have a broader distribution in this design compared to those shown in Figure S2.3 and S4.

Figure S2.6. **a,b**, Additional zoom out and zoom in AFM images of the 2-uniform tiling with a corrugated design. Both rectangular and pentagonal cavities are observed. Tubes with fold types 1 and 2 are both present. Pieces of 2D array co-exist with tubes. **c**, diameter (or half perimeter) distribution of tubes measured from AFM. The average tube diameters are even larger compared to those shown in Figure S2.5.

Four-arm : Three-arm=

Figure S2.7. For the Prismatic pentagonal tiling pattern with a corrugated design, mixing the two types of building blocks in different ratios (that deviate from the ideal 1:2 ratio) results in the formation of various products. **a.** With 4-arm junction tiles only a linear array is observed. **b.** With a 1:1 ratio, there is a shortage of 3-arm junction tiles and the 2D array does not grow properly. Only very small fragments that displayed the correct pattern were observed. **c.** With a 1:1.9 ratio there is still a shortage of 3-arm junction tiles and the arrays do not grow very large. In addition there are many small fragments in the background. **d.** With 3-arm junction tiles only, 4, 5, 6-member rings and random, higher order cross-linked products were observed. This result indicates that the junction points are flexible and assume a range of different angles from 90-120 degrees.

Figure S2.8. Examining how concentration and annealing time influences the assembly of the shortened Prismatic pentagonal tiling with a corrugated design. Two concentrations (relative to the unit cell) were considered: $0.2 \square M$ and $0.6 \square M$. In both cases a relatively fast annealing program (90°C to 4°C over 2 hours) does not allow the tile array to grow as expected. Relatively long annealing programs (90°C to 4°C over 48 hours) do not necessary cause a change in the dimensions of the tubes. Lower concentrations result in shorter and narrower tubes, possibly due to slow nucleation and growth kinetics.

Four-arm(red) : Four-arm(yellow): Three-arm=

Figure S2.9. Additional AFM images of the formation of small 2-layer pockets for the Cairo pentagonal tiling pattern. **a,b**, two tile ratio conditions that result in formation of 2-layer small pockets with dimensions in the range of 100-300 nm. Both the ratios deviate from the ideal ratio of 1:1:4 for the 2D array. **c**, zoom in AFM images. All images in **c**. have the same scale bar of 100 nm.

Figure S2.10. we observed that the four-arm junction tiles with four identical sticky-end sequences (GCAG) self-associate in an end-to-end manner to form linear oligomers ranging from dimers to tetramers, with the final assemblies resembling rhombuslike ribbon structures in which each tile exhibits a twisted junction. **a**, Native gel characterization of the individual four-arm and three-arm junction motifs with optimized sequences. The tiles display the sticky ends corresponding to the matching rules in the Cairo pentagonal tiling pattern. **b**, Native gel image of a four-arm junction motif with symmetrical sequence in the arms (the red line indicates the position where the four-arm motifs should migrate). The gel reveals random aggregations that do not run out of the gel wells. **c**, Native gel image of a four-arm junction motif with GCAG sticky end. The tile also self-aggregates. **d**, AFM images of the same sample in **c** which shows the non-specific linear oligomerization of the 4-arm junction tiles.

Sequences of the DNA strands in the Junction tiles used in all of the designs

(numbers are marked in the scheme at the 5' ends)

A. The Cairo Pentagonal tiling design

Three-arm Junction tile

1,CTGCGTTCGTGAGCAAACCTAAGAATGAGATAGCCCGACGCCCCAGGAGG GTCCTA

2,GAGGTTGACTACGCACTTCCAAAGAACAGACCGGCCATTGCAGGGGTCCTA C

3,ATGGGTTTTCTTTCTTACTAATGGCCGGTCTTTTGTTCTTTGGGTCGGGCTAT

CTTTTCATTCTTAGCAACC

9,ACCCTCCTGGGGGCAAGTGCGTAGTCAA

10,GCATGTAGGACCCCTGCTAGGCCGACTTATA

11,ATGCTATAAGTCGGCCTAAGTAAGAAAGACCCATGGTTGTTACAACTCTGT ATGAT

12, TACAGAGTTGTAAGTTTGCTCACGAAC

Red four-arm junction tile

8,GGCTTATTTTCTCGTTCCATGATCCGGACTATTTTCGTCCAGACTCGGCAGT CTGATTTTGCAACCCGCCGACGGACCGGCTTTTACACAGACCGTGGTA 4,AACATCTTGCGTCGGGCGATCAGGGGGTGAAGCTGTATAGCTA 28,TACCAGTATGTGGAGAAGACGTAACGCACCATGGGGCTTGCC 31,ACAGGCCCTTTAAGGATTAGCGGCCAACTAGGATTAAGTGAC 33,TTAGCCCTCCGGTCCATGCGTTTTACATTCCGGCGTAGTCAG 6,ACCCGAACGACCAGCGCAAGATGTTTAGCTATACACGGTCTGTGTGCCGGT CCGTCCCTAGTTGGCCGCTAATCCTTGCGAATGGAGGGA 7,GCCATGCTTCCCGTACATACTGGTAGGCAAGCCCCATGGAACGAGTAAGCC TACCAGCTTCACCCCTGATCGCCCGAGTTACTCTGTTGC 26,ACTCAGCGTAGAAACGGAGGGCTAACTGACTACGCAGTCTGGACGTAGTC CGGATCATGGTGCGTTACGTCTTCTCCCGGGCTAATTGTA 29,TAAAGCGACGTCTAAAAGGGCCTGTGTCACTTAATGGCGGGGTTGCTCAGA CTGCCGCGGAATGTAAAACGCATGGACCGCGACCCACGGT 5,CCTCGCAACAGAGTAACCTGGTCGTTCGGGTTAGG 27,CCTCTACAATTAGCCCGACGGGAAGCATGGCTAGG 30,CCTCTCCCTCCATTCGCTAGACGTCGCTTTATAGG 32,CCTCACCGTGGGTCGCGTTTCTACGCTGAGTTAGG

Yellow four-arm junction tile

16,GGCTCGTTTTCGTTGAGGGAGCCACCTGCCCTTTTAAAACCAGCCCCTCCA GGGTATTTTGTCGAGCTCGGGGCGCCAGCCTTTTACCCCTGCCACTCAC 17,GCGGTGCGACGGCCTGGCTGTGAGAGCAGGTGTGCCCGATAC 20,GGCGAGTAATGCAGCTGATCCATCAGGGCGCGTGTCCTTGCC 23,AGAGGTCGAACGCGTTCCGTTTGGCCCGGGGTTGCCGTCCCG 25,AGTAGGTGCCCAAGCGCTAGAAAATCAGGGTAGGTCTCATCA 14,ACGACCTCACCCCACATTACTCGCCGGCAAGGACAGGCTGGTTTTGGGCA GGTGGCCACCTGCTCTCACAGCCAGGCAGGCCCCTGAAAT 15,AAGCGTAGAGAGAGCGTCGCACCGCGTATCGGGCATCCCTCAACGCGAGC CGTGAGACCCCGGGCCAAACGGAACGCGGTCCCAGATGAG 19,TCGCCCGAGTCTACGGGCACCTACTTGATGAGACCCGAGCTCGACTACCCT GGAGGCGCGCCCTGATGGATCAGCTGACAGTGCGCGCAAG 22,TCGGACGCACTGCGGTTCGACCTCTCGGGACGGCATGGCAGGGGGTGGCTG GCGCCCTACCCTGATTTTCTAGCGCTTCGCCACATTTTGT 13,GCAGATTTCAGGGGCCTCTCTCTCTCACGCTTATCA 18,GCAGCTTCGCGCACTGTTGGGGTGAGGTCGTATCA 21,GCAGCTCATCTGGGACCCGCAGTGCGTCCGAATCA 24,GCAGACAAAATGTGGCGGTAGACTCGGGCGAATCA

B. The standard Prismatic pentagonal tiling design

Three-arm junctione tile

1, TCGCGTTCGTGAGCAAACCTAAGAATGAGATAGCCCGACGCCCCAGGAGG

GT

2, ATCTTTGACTACGCACTTCCAAAGAACAGACCGGCCATTGCAGGGGTCCTA

С

11,CAGTTATAAGTCGGCCTAAGTAAGAAAGACCCATGGTTGTTACAACTCTGT A 3,ATGGGTTTTCTTTCTTACTAATGGCCGGTCTTTTGTTCTTTGGGTCGGGCTAT CTTTTCATTCTTAGCAACC 9,CACGACCCTCCTGGGGCAAGTGCGTAGTCAA

10,ACTGGTAGGACCCCTGCTAGGCCGACTTATA

12, GCGATACAGAGTTGTAAGTTTGCTCACGAAC

Four-arm junction tile

8,GGCTTATTTTCTCGTTCCATGATCCGGACTATTTTCGTCCAGACTCGGCAGT CTGATTTTGCAACCCGCCGACGGACCGGCTTTTACACAGACCGTGGTA 4,AACATCTTGCGTCGGGCGATCAGGGGTGAAGCTGTATAGCTA 15,TACCAGTATGTGGAGAAGACGTAACGCACCATGGGGCTTGCC 18,ACAGGCCCTTTAAGGATTAGCGGCCAACTAGGATTAAGTGAC 20,TTAGCCCTCCGGTCCATGCGTTTTACATTCCGGCGTAGTCAG 6,CGTGAGACGCATAGAACGCGCAAGATGTTTAGCTATACACGGTCTGTGTGC CGGTCCGTCCCTAGTTGGCCGCTAATCCTTGCTACCCGCTTGA 7,CTAGGATCAGGTGCCCGTACATACTGGTAGGCAAGCCCCATGGAACGAGTA AGCCTACCAGCTTCACCCCTGATCGCCCGACGGCATTAGTGAT 13,CGTGACACAAACCGGCAACGGAGGGCTAACTGACTACGCAGTCTGGACGT AGTCCGGATCATGGTGCGTTACGTCTTCTCCCGGAGCATGACAG 16,ACTTAATCGCGGAACATAAAAGGGCCTGTGTCACTTAATGGCGGGTTGCT CAGACTGCCGCGGAATGTAAAACGCATGGACCGTCGCCTTGGAT 5,AGATATCACTAATGCCGCGTTCTATGCGTCT 14,AAGTCTGTCATGCTCCGACGGGCACCTGATC 17,CTAGTCAAGCGGGTAGCTATGTTCCGCGATT 19,AGATATCCAAGGCGACGTTGCCGGTTTGTGT C. The shortened Prismatic pentagonal tiling design

Four-arm junction tile

5,TAACCCGGACGGATTGTGTGC

6,TAAGGGTCGAGGTGCAACGCGT

7,CCCTAAGAGGTCTATAGGGTCC

8,TAGGGACGCGTTGCAGTGTAAACAAACTTTGTGTTGCGGGGGACAACCTCGA C

9,CCTTAGGACCCTATGCGTCGCGTTCATAAGAATCGCGTTACCTAAGACCTCT

Three-arm junction tile

10,CCGACCCTACCATGCGATCTA

11,ACTCTTCCCTGGGAAACGAAACCGCGCGCCAGGGTCGGGCAC

12,CGGGTGGTGGGAAGAGTCGCT

13,GTCATCTGTGACGACCGATCGCGCCGTCGCACCACCCGAGCG

14,GTCTAAACACAGATGACTGAC

15,TCGCATGGTCCAGAGACTCGCCCCGGCCCCGTTTAGACGTCA

16, GCGGTTTTTCGTTTCCCAGCGACGGCGCGTTTATCGGTCGTCGGGGCCGG

GGCTTTGAGTCTCTGGGGGCGC

D. The shortened Prismatic pentagonal tiling with corrugated design

Four-arm junction tile

6,AGTAGTATGGAGCTGGTTCGAGCGGGTGACGGATGGGTCCCAATCGATCTT CCGGCCCGGAATC

7,GATACATTTCCAATACAGCGCGACCGACACTTAGTCAGCAAG

10, TTATAGGCTGCAAGATCGATTGGGACCCATCCTTTCCCTACC

5,TCGACACACATACTACTTCTG

8,GGTAGAGATAACACGCCTCTG

9,TGTGATCCGGTCACGTGGATT

11,CCGGGCCGGGCTCCGCCGAG

Three-arm junction tile

13,ACGAGGTTTCTTCCCAGGCAATTTGGGCCCTTTCGGTGCAGGGGTGTACCC

CGGTTTAGTCCCAGGTCCCAT

12,ACGCAGCTCAGACCTGGGACTCCGGGGTACACGCGCTAAACAGA

14,ATACCCATACCCTGCACCGGGGGCCCAAATTACAGGTCCGCG

15,ATACCGAAAAGGCCTGGGAAGCCTCGTATGGGAGCTCCGGCGG

16,CGCGCGCGGACCTGTCTTTCGGTATCATG

17,CGCGCCGGCGGAGCTCTGAGCTGCGTCATG

18,TTTAGCGCTATGGGTATTTGC

E. The 2-uniform tiling with corrugated design

Four-arm junction tile

1,CTTAGATTTTGGGATTAGTGTGTGGCGTATCTTTTCTTCATTGGATCCGAAC GGGCTTTTACGCTATGGCGTCACCCGCTCTTTTGAACCAGCTCGATCG

2,GGCGGAGCGCAGCCTATAAGGTAGGGAAAGCCATAGCGTGCCCGTTCGGA

TCTCTACCGCAA

CGGATCACACTCG

4,CACGTGACGGAAATGTATCCTTGCTGACTCACTAATCCCTCTAAGCGATCTG TGTCGAAGGA 6,AGTAGTATGGAGCTGGTTCGAGCGGGTGACGGATGGGTCCCAATCGATCTT CCGGCCCGGAATC 7,GATACATTTCCAATACAGCGCGACCGACACTTAGTCAGCAAG 10,TTATAGGCTGCAAGATCGATTGGGACCCATCCTTTCCCTACC 5,TCGACACACATACTACTTCCT 8,GGTAGAGATAACACGCCTCTG 9,TGTGATCCGGTCACGTGGATT 11,CCGGGCCGGGCTCCGCCCGAG

Three-arm junction tile

13,ACGAGGTTTCTTCCCAGGCAATTTGGGCCCTTTCGGTGCAGGGGTGTACCC CGGTTTAGTCCCAGGTCCCAT 12,ACGCAGCTCAGACCTGGGAACTCCGGGGGTACACGCGCTAAACAGA 14,ATACCCATACCCTGCACCGGGGCCCAAATTACAGGTCCGCG 15,ATACCGAAAAGGCCTGGGAAGCCTCGTATGGGAGCTCCGGCGG 16,CGCGCGGGACCTGTCTTTTCGGTATCATG 17,CGCGCCGCGGAGCTCTGAGCTGCGTCATG 18,TTTAGCGCTATGGGTATTTGC

APPENDIX B

SUPPORTING INFORMATION FOR CHAPTER 3 OMPLEX WIREFRAME DNA ORIGAMI NANOSTRUCTURES WITH MULTIARM JUNCTION VERTICES

Section 1. Wireframe DNA Origami Design

S1.1 Details of the design strategy

The goal of our design was to construct arbitrarily shaped wireframe architectures composed of line segments and vertices. N \times 4 multiarm junctions are ideal candidates to represent vertices because different types of junctions have been constructed and studied in the tile self-assembly system, such as 4×4 (H. Yan *et al., Science* 301, 1882-1884, 2003), 3×4 (Y. He *et al., J Am Chem Soc* 127, 12202-12203, 2005), and 6×4 (Y. He, Y. Tian, A. E. Ribbe, C. D. Mao, *J Am Chem Soc* 128, 15978-15979, 2006) junctions. These previous studies provided basic guidance for the design of more complex and various vertices in our wire-frame DNA origami nanostructures. One important consideration for our origami design was how to route the scaffold strand through all of the vertices and lines. Between every two adjacent vertices (junctions), two antiparallel cross-linked DNA helixes are employed as the line segments. We designed a "loop" and "bridge" method to realize scaffold routing.

Fig. S1. Illustration of the design. Step 1: Double lines and loop scaffold. The hexagonal Platonic tiling is used here as an example to illustrate the design steps. (**A**) The first design step was to double any lines in the pattern. (**B**) Next, the lines meeting at each vertex were connected as shown, and the double lines in the end were linked to form an end loop.

Fig. S2. Illustration of the design. Step 2: Bridge scaffold. The looping step produces several individual loops. In this hexagonal tiling example, we obtained 16 hexagons inside and one long loop outside. (A) The first bridge is constructed between two neighboring loops (pink and orange). (B) The inner loops are interconnected one by one, and finally the whole structure is composed of a single loop by bridging the inner loop (black) with the outside long loop (blue). The color changes serve as a visual guide for the loop's travel direction.

Fig. S3. Illustration of the design. Steps 3: Angle adjustment at vertex. At each vertex, neighboring arms require certain angles determined by the target pattern. (**A**) Poly T loops (red) and unpaired bases in the scaffold strand (pink) need to be inserted surrounding the vertex position to satisfy the angle requirements. The number of unpaired bases to be inserted need to be determined on an individual basis. (**B**) In our hexagonal tiling example, the pattern has homogenous vertices with three 120° angles. T3 loops in the staple strands and zero unpaired base in the scaffold were selected to generate this angle.

Fig. S4. Illustration of the design. Steps 4: Filling in the staple strands. (A) In any target pattern, three different types of edges can be found: the first type consists of two antiparallel strands without a scaffold bridge (1), the second is the edge containing a double crossover of the scaffold (2), and the third is the end loop in the outer rim of the pattern (3). (B-D) How the staple strands are arranged into the three types of scaffold patterns, respectively. (B and C) Every edge has five turns of DNA helix in length. (D) T4 tails are attached to the ends of the staple DNA and are hanging out to prevent bluntend stacking.

S1.2 Design of simple Platonic tilings based on hexagon, square, and triangle geometries

S1.2.1 Scaffold routing and angle adjustment

Fig. S5. Scaffold-folding path of the honeycomb Platonic tiling. The changing colors provide a visual guide showing how the scaffold travels.

Fig. S6. Number of bases for the honeycomb Platonic tiling scaffold. The numbers refer to the numbers of nucleotides between the junction points.

Fig. S7. Scaffold-folding path of the square Platonic tiling. The changing colors provide a visual guide showing how the scaffold travels.

Fig. S8. Number of bases for the square Platonic tiling scaffold. The numbers refer to the distances (number of nucleotides) between the junction points.

Fig. S9. Scaffold-folding path of the triangular Platonic tiling. The changing colors provide a visual guide showing how the scaffold travels.

Fig. S10. Number of bases for the triangular Platonic tiling scaffold. The numbers refer to the distances (number of nucleotides) between the junction points.

Fig. S11. Angle adjustment in the three Platonic tilings. (A-C) T3, T4, and T5 were selected to form the angle 120°, 90°, and 60°, respectively. There are no unpaired nucleotides in the scaffold strand.

Fig. S12. Bridge method for the square tiling with two scaffolds. (A) The last step of bridging is to connect the inner loop with the outside loop by creating a double crossover (DX) (red arrow). (B) Adding another DX at the point of the red arrow results in two scaffolds of different lengths. (C) The position of the second DX can be changed to create different lengths of the two scaffolds (black and blue loops). In C, the contacts between the two differently scaffolded structures are maximized, which is expected to improve the formation yield of the final structure.

Fig. S13. Scaffold-folding path of the two-scaffold square tiling. The changing colors provide a visual guide showing how the scaffold travels.

Fig. S14. Number of bases for the two-scaffold square tiling scaffold. The black and blue loops indicate the M13mp18 and PhiX174 scaffolds, respectively. The numbers refer to the distances (number of nucleotides) between the junction points.

S1.2.2 Hierarchical assembly method for the 3 × 3 origami array

Fig. S15. Hierarchical assembly of the 3×3 square origami array. (A) The unit square origami. The yellow and orange colors indicate the two faces of the square, and the inside black marks indicate the chirality of the square and help to orientate the four edges. The gray sides represent the possible sticky ends. (B) Three types of origami in the stoichiometry ratio of 1:4:4 form the 3×3 origami array so that one is located in the center, four on the sides, and four on the corners. Although each unit is chiral, the overall assembly has a 4-fold rotational symmetry on the exposed edges. The one origami in the center has the same series of sticky ends in its four edges (colored as dark orange). The origami located on the sides of the array each have one edge (orange) paired with the center origami, and the other two edges (green and blue) are connected with two corner origami. The last edge (gray) is tailed with poly T instead of sticky ends. The origami located on the corners each has two neighboring edges (green and blue) paired with the side origami, and the other two edges are tailed with poly T (gray). The matching sticky ends on their edges help to bring the nine origami units together to form the 3×3 origami array. (C) One example shows how the sticky ends on the edges of the origami units are paired to each other. The sequences of the pairs of five-bp-long sticky ends were designed as extended single-stranded overhangs at each position of the protruding arms. After hybridization, the newly formed edges between two adjacent origami units have 3.5 DNA helical turns in length, which ensures the neighboring origami units in the array are alternately facing in opposite directions. This corrugated design is expected to reduce the overall curvature of the final assembly.

Additional notes: The single scaffold square tiling origami (with 5×5 square cavities) has 6 protruding arms on each side of the square, which are designed as the sticky ends for hierarchical assembly. By simply appending the staple strands on the edges with unique sticky ends (to replace the poly T tails) while maintaining the sequences of all the internal helpers, we can design a set of origami with different sticky ends on their four edges. By symmetrically creating the series of sticky ends between origami, three unique DNA origami units in a 1:4:4 molar ratio, instead of nine different units, can be used to create the 3×3 array. This greatly reduces the range of sequence design for the sticky ends. Every series of sticky ends along the edges of the each origami unit contain six pairs of 5-base pair (bp)-long ssDNAs that were precisely assigned with specific sequences that allow corrugated contacts between designed neighboring origami with the least mismatching. AFM images confirmed the formation of the 3×3 square origami array (equivalent to a 17×17 array of 4×4 tiles) with ~330 nm in both dimensions (Fig. 2E). The seams between the neighboring individual origami are visible under AFM, as the lengths of these edges are slightly shorter than those in the rest of the structure (3.5 turns instead of 5 turns).

S1.3 Quasicrystalline structures and curved origami design **S1.3.1** Scaffold routing and angle adjustment

Fig. S16. Scaffold-folding path of the star shape. The changing colors provide a visual guide showing how the scaffold travels.

Fig. S17. Number of bases for star-shape scaffold. The numbers refer to the distances (number of nucleotides) between the junction points.

Fig. S18. Scaffold-folding path of the 2D Penrose tiling. The changing colors provide a visual guide showing how the scaffold travels.

Fig. S19. Number of bases for the 2D Penrose tiling scaffold. The numbers refer to the distances (number of nucleotides) between the junction points.

Fig. S20. Scaffold-folding path of the 8-fold quasicrystalline 2D pattern. The changing colors provide a visual guide showing how the scaffold travels. There are two independent scaffolds in this design, one in black and blue (PhiX174 scaffold), and one in varying colors (M13mp18 scaffold).

Fig. S21. Number of bases for the 8-fold quasicrystalline 2D pattern scaffold. The black and blue loops represent the M13mp18 and PhiX174 scaffolds, respectively. The numbers refer to the distances (number of nucleotides) between the junction points.

Fig. S22. Angle adjustment in the star shape. Three types of angles are employed to form the star-shaped origami. The angles are labeled in white, and the inserted Tn loops are marked in yellow. The star shape is made up of three different patterns.

Fig. S23. Angle adjustment in the 2D Penrose tiling. The desired angles are labeled in white, and the Tn loops inserted in the staples are marked in yellow. The numbers of unpaired nucleotides in the scaffold are marked in pink. The Penrose tiling comprises five different patterns.

Fig. S24. Angle adjustment in the 8-fold quasicrystalline 2D pattern. The pattern includes eight different scenarios.

S1.3.2 Curvature design

Fig. S25. Design of curvature unit: inserting base pairs. (A) Two antiparallel DNA double helixes of 21 base pairs (bp) are connected by double crossovers on both ends. (B) A curved unit was created by inserting 10 more bps on one of the helices. The angle of the arcs formed from bending the two helixes is labeled as x. (C) Estimates the angle x. The two DNA double helixes are treated as concentric arcs. The lengths of these two arcs are estimated from the lengths of straight 21-bp and 31-bp double helixes of B-form DNA (10.5 bp/3.4 nm), respectively. The distance between the centers of the two arcs is estimated as 2 to 2.5 nm. From this simplified calculation, the angle x is estimated to be in the range of 72° to 93°.

Fig. S26. Three curved structure design details. The curvature unit is located between the pink and red lines. **A.** The waving grid is constructed by connecting two opposite curvature units on each repeating edge (ABAB pattern). **B.** The fishnet pattern consists of two opposite curvature units and the alternate ordering of these two units on adjacent edges (ABBA pattern). **C.** The circle array contains only one type of curvature unit that is repeated in each unit cell (AAAA pattern).

Fig. S27. Scaffold-folding path of the waving grid. The changing colors provide a visual guide showing how the scaffold travels.

Fig. S28. Number of bases for the waving grid scaffold. The numbers refer to the distances (number of nucleotides) between the junction points.

Fig. S29. Scaffold-folding path of the fishnet. The changing colors provide a visual guide showing how the scaffold travels.

Fig. S30. Number of bases for the fishnet scaffold. The numbers refer to the distances (number of nucleotides) between the junction points.

Fig. S31. Scaffold-folding path of the circle array. The changing colors provide a visual guide showing how the scaffold travels.

Fig. S32. Number of bases for the circle array scaffold. The numbers refer to the distances (number of nucleotides) between the junction points.

Fig. S33. Angle adjustment in the waving grid and circle array. Each vertex is equivalent in these two patterns.

Fig. S34. Angle adjustment in the fishnet. The fishnet is made up of three different patterns.

S1.4 The flower-and-bird design S1.4.1 Scaffold routing and angle adjustment

Fig. S35. Scaffold-folding path of the flower and bird. The loop on the left (colored in red, pink, yellow, green, and cyan) is the M13mp18 scaffold. The loop on the right (colored in black and blue) is the PhiX174 scaffold.

Fig. S36. Number of bases for the flower-and-bird scaffold. The loops in blue and black are the M13mp18 and PhiX174 scaffolds, respectively. The numbers refer to the distances (number of nucleotides) between the junction points. Each edge is individually adjusted to match the length required for the designed pattern.

Fig. S37. Angle adjustment in the flower-and-bird. This arrangement involves 41 uniquely designed patterns.

S1.4.2 Summary of the general rules for angle adjustment

Fig. S38. Summary of the general rules for creating angles at any vertex. The number of T that should be inserted in the staple strand is determined by the angle between two adjacent arms and the length of the unpaired DNA scaffold loop opposite to the T loop. (**A**) If there is no unpaired nucleotides on the scaffold, the relationship between the number of T and the angle is shown in the ruler, which shows a rough reverse proportional relationship (i.e., the shorter the Tn loop, the larger the angle it affords). (**B**). Take the 8-fold quasicrystal pattern as an example. The vertex labeled **3** consists of five angles (one 45°, two 90°, and one 135°). For the 45° and two 90° angles, the adjacent arms are close in space, so that the scaffold strand was left with no gap. The number of Ts inserted can be found according to the ruler in **A**: T5 for the 45° and T4 for the 90°. However, the two arms that form the 135° angle are separated by a certain distance, where seven unpaired bases are left on the scaffold strand to create a gap. Because 135° is related to T2 or T3, the number of T that should be inserted in the opposite staple strand is estimated as 7 plus 2 or 3. Nine is used here.

S1.5 3D wireframe DNA origami

Fig. S39. Scaffold-folding path of the 3D cuboctahedron. The changing colors provide a visual guide showing how the scaffold travels.

Fig. S40. Number of bases for the 3D cuboctahedron.

Fig. S41. Angle adjustment in the 3D cuboctahedron. There are four different scenarios.

Fig. S42. Scaffold-folding path of the 3D snub cube. The changing colors provide a visual guide showing how the scaffold travels.

Fig. S43. Number of bases for the 3D snub cube.

Fig. S44. Angle adjustment in the 3D snub cube.

Section 2. Yield analysis

The yields of DNA frame origami were estimated by gel image analyses of native agarose gel electrophoresis. The samples were prestained with SYBR gold nucleic acids gel stain (see details in materials and methods). The yield of one structure was estimated by comparing the fluorescence intensity of the target band and the entire lane. For a better estimation, background intensity was subtracted from both the measured intensity of the target band and the entire lane. The fluorescence intensity of the entire lane consists of the band of the well-formed target structure and any upper bands representing the unwanted aggregates (oligomers). The intensity of the extra staple strands in the bottom of each lane was not counted in the entire lane. ImageJ software (NIH) was used to analyze the gel images. Figure S39 demonstrates one example of this assay. The red rectangle contains the entire lane, and the blue rectangle contains the background. The yield of DNA frame origami was calculated as:

 $Percentage Yield = \frac{Intensity of target band}{Intensity of entire lane} \times 100\%$

The background was subtracted as:

```
Intensity of target band
```

= (Intensity mean value of target band – Intensity mean value of backgroud) × area of target band

Intensity of entire lane

Fig. S45. An example of assembly yield quantification based on fluorescence intensity in the gel image. (A) The red rectangle outlines the target band. (B) The green rectangle encompasses an entire lane, and the blue rectangles indicate the background in both A and B.

Fig. S46. Gel images for the native agarose gel electrophoresis. Samples were annealed individually and subjected to native agarose gel electrophoresis (see experimental details in materials and methods). The target bands are shown as the main bands in the middle of the gels. The big blots at the bottom of each lane contain the extra staple strands. A 1-kb DNA double-stranded ladder was added in the first lane of each gel. (A) The 2D wireframe origami with one scaffold. The corresponding patterns are labeled for each lane. The molar ratios of the scaffold to the staple strands were 1:2 or 1:5. (B) The 2D frame origami consisting of two scaffolds (from left to right): 9×8 square Platonic tiling, 8-fold quasicrystalline pattern and flower-and-bird pattern. (C) The 2D open net and 3D closed structures of the cuboctahedron. (D) The 3D snub cube structure.

Additional notes: We obtained the yields of each frame origami from the gel images shown in figs. S42 and 43 and summarized in Table S1. The 2D structures with only one scaffold generally had a decent assembly yield ranging from 71% to 87%. The upper faint bands and smeared upper bands represent the dimer structures and the other

unwanted aggregates, respectively. The 2D frame origami consisting of two scaffolds had lower yields than those with one scaffold (62-73%). They formed more aggregates than the structure with one scaffold. One possible reason for the lower yield is that the staple strands designed to link two scaffolds could also bring three or more scaffolds together. Additionally, the two-scaffold structures employed a larger number of staple strands (around 300) than the one-scaffold origami (normally ~200 helper strands or less). This could increase the possible mismatch. The higher-order assembly of frame-origami to form the 3 × 3 array gave the lowest assembly yield (23%) estimated from its AFM images (fig. S53). This is anticipated because the hierarchical assembly of origami, which has a large molecular weight and is living in a complex system with thousands of different bases, is more difficult than just folding origami itself and generally presents a low yield.

Table S1. Estimated yield of frame origami from agarose gels (except 3×3 array) and AFM images (only 3×3 array).

	2D Structures										
				One s	caffold						
				盛	餾	W					
Yield	86%	76%	74%	76%	76%	71%	87%	81%			
2D Structures					3D Structures						
Two scaffolds				3x3 array	2D open 3D c		losed	Snub cube			
					- AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		R				
64%	62%	73	3%	23%	85%	7	0%	80%			

Section 3. Curvature and chirality

In the previous tile self-assembly work, the overall curvature accumulated from every n-by-4 junction has been discussed since 2003 (H. Yan *et al., Science* 301, 1882-1884, 2003). It keeps drawing researcher's interests, trying to answer certain questions: For example, how to tune the bending degree of the tile array to form tubes, and how to decrease the curvature to obtain more extended 2D structures (*Y. Ke, Y. Liu, J. Zhang, H. Yan, J. Am. Chem. Soc.* 128, 4414-4421, 2006). One effective strategy used to overcome the inherent bending or twist of each individual tile is the corrugated design. Integer-and-a-half turn B-form DNA was required between two adjacent junctions on the two connecting tiles to ensure the neighboring tiles are facing opposite directions to cancel the intrinsic curvatures.

In our wireframe origami design, we used integer turns as the length of each edge to facilitate routing of the scaffold strand. Local curvatures in the 2D wireframe origami structures were anticipated to exist. However, from our own observations, the bending of the overall structure was more obvious in the simpler cases of the wireframe origami that we first demonstrated rather than the more complicated patterns designed later. As we created more complex structures by our wireframe origami method, bending away from the 2D n \times 4 junction may not accumulate as much as the highly symmetric patterns. With the presence of single-stranded loops, the scaffold strand, and unpaired bases in the staple in an asymmetric pattern, the bending or twisting tension would not build up in any one direction. The curvatures from different junctions can be neutralized by each other in certain structures.

For example, the simple star-shaped 2D wireframe origami could not be imaged clearly under AFM without adding NiCl₂, which may help the structure attach more firmly to the mica (figs. S44D-F). The star-shaped structure has a 5-fold symmetry, and we also designed the junctions in this pattern with the same symmetry. So, a possible curvature in this shape may bend the whole structure into a domed surface. Under AFM, we did observe that this star-shape structure presented blurred edges without NiCl₂ (see fig. S47A-C), indicating that the center part of this shape was attached to the mica surface, but the edges curved away from the substrate.

Another important aspect about curvature in the wireframe origami is that we can tune the rigidity of each junction by adjusting the number of unpaired nucleic acids in the junction. Because we need to consider the angle adjustment in the junction (as discussed in supplemental section 1), the number of unpaired bases left in the scaffold and the length of the poly T loops inserted in the staples should be chosen carefully. We summarized the general rule in fig. S38 that contains some overlapping regions to create the same angle. This means that one may choose to use a different number of poly T to satisfy one specific degree angle. The different choices will affect the rigidity of this junction. The star-shaped structure is an example of wireframe origami with all rigid junctions. The angle with 108°, 108°, and 144° (angle number 2 in fig. S22) was assigned with three T3 without any unpaired scaffold. Three same length poly Ts exist with 3-fold symmetry, which best matches the 3-fold symmetry junction (with three 120° angles). So, the tension in the 144° angle (with a $+24^{\circ}$ deviation from 120°) is the largest when compared with the other two 108° angles (with a -12° deviation from 120°). While the same angle appeared in Penrose tiling (angle number 2 in fig. S23), it was arranged with two T3 for the 108° angles and one T4 with one unpaired nucleotide on the scaffold for the 144° angle. The extra T and base on the scaffold would release the tension in the 144° angle in this junction. A flatter structure was observed under AFM for the Penrose structure as it has the more flexible junctions than the star-shaped structure (fig. S48).

In our wireframe DNA origami, we two designed chiral patterns: the waving grid and the flower-and-bird pattern. When deposited on the mica surface, two conformations with different chiralities were observed under AFM (for waving grid see fig. S54, and for flower-and-bird see fig. S57). We counted the number of each conformation for both structures. They all exist in a preferred conformation when deposited. The waving grid had 59% of one conformation (fig. S54 A) and 41% of the other (fig. S54 B). The flowerand-bird pattern had 64% of one conformation (fig. S57 A) and 36% of the other (fig. S57 B). This phenomenon can be explained by the possible curvature existing in both structures. The face bending upward would be easier to attach to the mica surface compared to the other face.

Fig. S47. The effect of NiCl₂ on AFM imaging for the star shape. The sample was annealed following the standard protocol described in materials and methods. We deposited 2 μ L samples with or without NiCl₂ onto freshly cleaved mica. After waiting for 30 s for adsorption onto the mica surface, 80 μ L 1× TAE-Mg²⁺ buffer was added to the samples, and an additional 40 μ L of the same buffer was deposited on the AFM tips. (A-C) AFM images of the star shape without adding NiCl₂ on mica surface. (D-E) AFM

images of the same sample with addition of 3 μ L of 25 mM NiCl₂. C and F are magnified images (660 nm × 660 nm in dimension).

Fig. S48. The effect of NiCl₂ on AFM imaging for Penrose tiling. The sample was annealed following the standard protocol described in materials and methods. We deposited 2 μ L samples with or without NiCl₂ onto freshly cleaved mica. After waiting for 30 s for adsorption onto the mica surface, 80 μ L 1× TAE-Mg²⁺ buffer was added to

the samples, and an additional 40 μ L of the same buffer was deposited on the AFM tips. (A-C) AFM images of the star shape without adding NiCl₂ on the mica surface. (D-E) AFM images of the same sample with addition of 3 μ L NiCl₂ of 25 mM. C and F are magnified images (660 nm × 660 nm in dimension).

Section 4. Additional AFM images of the wireframe DNA origami

Additional AFM images of the wireframe DNA origami are listed in this section. For each designed structure, the scaffold-folding path is displayed first, followed by the wide AFM images and then the magnified AFM images. The protocols for AFM imaging are described in materials and methods.

Fig. S49. AFM images of the honeycomb Platonic tiling

100 nm

Fig. S50. AFM images of the square Platonic tiling

0.0

3.0 um

Fig. S51. AFM images of the triangular Platonic tiling

Fig. S52. AFM images of the two-scaffold square tiling

Anna Pares Parest and	Same Rendered	Sandan Sand	Sand and and	Canal and
1111		1111		Current and
a Suma and and and	Carrow Construction	(*********	of ourse and and	Sandand,
and and some from the second	and S-law	Sum may may	a man and an	fundant -
1 L				Jul I
a good and work war	Summer Content and	Court, our accord	Sault million	Curdown Ca
South Season David		1111	A HILL CHARGE	TTT
-fundandandana	fame a second as		สารสารสารสา	Cara Caracter
a man and and and	Same a Same	dan dan dan da	Sus man	Samoanna .
TIT				
			San Landan	111
Sent magning mag	Sampo Samplan	Sur Sura Sunda	a see une entre	Cum nous
a time tem time and	and a start and	Surger Surger	and marking a	Course and
af mark mark mark mark	land and a second	for for for the second	Juniperson	Sure une
			. Inde	
1111		1111		III
A REAL PROPERTY AND A REAL				1111
a free free and the	and the second second		Sundan Sundan	(magained)
			A lala	I.I.I.I

Fig. S53. AFM images of the 3×3 square origami array

100 nm

Fig. S54. AFM images of the star shape

Fig. S55. AFM images of the 2D Penrose tiling

Fig. S56. AFM images of the 2D quasicrystalline pattern with 8-fold symmetry

Α

В

100 nm

Fig. S57. AFM images of the waving grid

100 nm

Fig. S58. AFM images of the fishnet

Fig. S59. AFM images of the circle array

1.5 um

100 nm

100 nm

Fig. S60. AFM images of the flower-and-bird pattern. The flower-and-bird pattern presents both mirror images under AFM, which is as expected, as the object may land on the surface in both ways. However, the chirality presented some significant bias, which

reflects different tendencies of the two surfaces of the structure deposited on the mica surface. We counted 54 well-formed flower-and-bird patterns in total, and 34 of them (63%) gave the preferred depositing position with the flowers on the right and the bird on the left. This indicates that there might be a global curvature in the DNA structures that makes the front surface (as shown in Fig. 3G) easier to deposit than the back surface, presumably due to better and larger surface contact. A rational guess is that the middle part of the structure actually bulges away from the 2D plane. Further structural strain analysis is required to predict the global twist or overall bending of the final structure (see supplemental information in section 3 to find a discussion about curvature and chirality). A similar phenomenon was observed for the waving grid structure (as shown in Fig. 3D and fig. S57), which has 59% (28 out of 48) objects adopting the right-handed laying conformation under AFM.

Fig. S61. AFM images of the annealed 2D open net of the cuboctahedron. The 2D open net of this polyhedron was first prepared as shown in Fig. 4C (right). The AFM images reveal variations of the contrast (height), line width, and deformation, indicating that all the edges in the center part are double helixes, while those along the outside are a single helix. All helper strands along the outermost edges of the 2D net were designed with single-stranded toehold extensions (8 nt) that enable the 2D-to-3D transformation by strand displacement.

Fig. S62. AFM images of the annealed 3D closed structure of the cuboctahedron

Fig. S63. AFM images of the 2D open net of the cuboctahedron reconfigured from the 3D structure

Fig. S64. AFM images of the 3D closed structure of the cuboctahedron reconfigured from the 2D open net

Fig. S65. Typical cryo-EM images of the DNA snub cube. Four numbered particles are shown as zoom-in images.

Section 5. Design Details and Sequences

In this section, the design details and staple strands for all the frame origami are shown. For each structure, an image generated from Tiamat software illustrates the details of the DNA design, and the sequences of the staple strands are listed in the tables. In the images for the design details, the black strand is the M13mp18 scaffold strand. For the two-scaffold structures (figs. S65, S69, and S73), the long dark-blue strand is the PhiX174 scaffold strand. The staple strands are depicted in other colors.

Fig. S66. Design pattern for the honeycomb Platonic tiling

Table S2.	Sequences	of the	honeycomb	Platonic	tiling
					<u> </u>

Number	Sequence
Platonic-honeycomb-1	TTCATATTTATCAAAATCACCAGTCAGGACTTTGTTGGGAAGAAAAATTTTT
Platonic-honeycomb-2	GAGCCGTTTCCACCCTCAGAGCCGCCACCATTTGAACC
Platonic-honeycomb-3	GAACCGCCTCCTTATGCGAT
Platonic-honeycomb-4	AGCCACCACCGTTTAAGAACTGGCTCATTATACCGGAACCAG
Platonic-honeycomb-5	GTTTTTCACATTAATTGTTTCGTTGCGCTCGCCAG
Platonic-honeycomb-6	CTGCATTTTTAATGAATCGTTGGGCGCCAGTTTGGTG
Platonic-honeycomb-7	ACCCTCAGAACCGCCACCCTCAGTCGGGAAA
Platonic-honeycomb-8	CCTGTCGTACTGCCCGCTTTCCAGAGCCACC
Platonic-honeycomb-9	TCACCGTTTACTTGAGCCAGCACCATTACCTTTATTAG
Platonic-honeycomb-10	CAAGGCAAGATTAGTTTTTGCTATTTTGCCACCG
Platonic-honeycomb-11	CCAATTGAGGGAGGGATTTAGGTAAATATAACGC
Platonic-honeycomb-12	TAACGATTTGCGTCTTTCCAGCCATATTATTTTTTATC
Platonic-honeycomb-13	AGACGGTTTGAGAATTAACTGAGCGCTAATTTTATCAG
Platonic-honeycomb-14	AGCAAGTTTCAAATCAGATCGAGGCGTTTTTTTAGCGA
Platonic-honeycomb-15	ACCTCCAGCACCGTAATTTTCAGTAGCGACCAAT

Platonic-honeycomb-16	AGCCTTAAATCCGGAAACGT
Platonic-honeycomb-17	GGAGGTTTTGACACCAATGAAACCATCGATAGCCGACTTGCG
Platonic-honeycomb-18	GGTGAATTATACCCAGCTAC
Platonic-honeycomb-19	TATTCATTAAAAATTTTATCCTGAATCTTACCTGACGGAAAT
Platonic-honeycomb-20	CACCAGTATTTGGGAATTAGAGCCGAGGCGG
Platonic-honeycomb-21	TTTGCGTAGCCAACGCGCGGGGAAGCAAAAT
Platonic-honeycomb-22	TGAAAGAGCCGGAAGCTTTATAAAGTGTATGCCC
Platonic-honeycomb-23	TTCACCTTTGCCTGGCCCTATAGCTGTTTCTTTCTGTG
Platonic-honeycomb-24	AAGAAGGTCGACTCTATTTGAGGATCCCCTTGCC
Platonic-honeycomb-25	CCAGCATTTGGCGAAAATCATCCCTTATAATTTATCAA
Platonic-honeycomb-26	CCGTCTTTTATCAGGGCGAAAGTTTTTTGGTTTGGTCG
Platonic-honeycomb-27	AACAGCTGATAAGCCTGGGG
Platonic-honeycomb-28	GTGAGACGGGCTGCCTAATGAGTGAGCTAACTCTTTTCACCA
Platonic-honeycomb-29	AATCATGGTCGAGAGAGTTG
Platonic-honeycomb-30	CTCGAATTCGTCAGCAAGCGGTCCACGCTGGTGGGTACCGAG
Platonic-honeycomb-31	TAATAATTTCGGAATACCCTAAGAGCAAGATTTAACAA
Platonic-honeycomb-32	TGAAATAAGAAAAGTATTTAGCAGATAGCCGCAA
Platonic-honeycomb-33	CTATGGTTTTTGCTTTGACCAGAGCGGGGAGTTTCTAAA
Platonic-honeycomb-34	AGAGAACGCAGTATGTTTTTAGCAAACGTGCATT
Platonic-honeycomb-35	AGCCCAATAAAAAAGAACTG
Platonic-honeycomb-36	GAATTGAGTTAGCATGATTAAGACTCCTTATTTAACCCACAA
Platonic-honeycomb-37	GCCCTTTTTAGCAATAGCTATCTCTTTCCTC
Platonic-honeycomb-38	GTTAGAATGAGCACGTATAACGTGTACCGAA
Platonic-honeycomb-39	CGAGGAAACGAACAAAGTTACCAGACCATCA
Platonic-honeycomb-40	CCCAAATCTGGCCCACTACGTGAAAGGAAAC
Platonic-honeycomb-41	GGCCTACCGCTTCTGGTTTTGCCGGAAACAGCCC
Platonic-honeycomb-42	CCGATTTTTTAGAGCTTGAGGACGACGACATTTGTATC
Platonic-honeycomb-43	CGGATTTTTCTCCGTGGGAGTCACGTTGGTTTTGTAGA
Platonic-honeycomb-44	TGGGCAAGGGAAGAAATTTGCGAAAGGAGCCCGT
Platonic-honeycomb-45	AGGTGGCAACTGTTGGTTTGAAGGGCGATAAAAA
Platonic-honeycomb-46	CCCTAAAGGGCAGGCAAAGC
Platonic-honeycomb-47	CTAAATCGGAAGCCATTCGCCATTCAGGCTGCCCGTAAAGCA
Platonic-honeycomb-48	CAGTTTGAGGCGGGGAAAGC
Platonic-honeycomb-49	CGTGCATCTGCCGGCGAACGTGGCGAGAAAGGGCATCGTAAC
Platonic-honeycomb-50	TGCGCGTTTTAACCACCACCAATAGGAACGTTTCCATCAAAAATAATTTTTT
Platonic-honeycomb-51	TTTTCGCGTCTGGCCTTCCTTTTGTAGCCAGCTCACGC
Platonic-honeycomb-52	CAGGATATTTTGTTAATTTAATTCGCATTGCGTA
Platonic-honeycomb-53	ATTTTTTAACACCCGCCGCG
Platonic-honeycomb-54	TAAATCAGCTCCTTAATGCGCCGCTACAGGGCAAATTTTTGT
Platonic-honeycomb-55	GTGTAGCGGTTTCATCAACA

Platonic-honeycomb-56	GGCGCTGGCAATTAAATGTGAGCGAGTAACAACGGGCGCTAG
Platonic-honeycomb-57	CGTTTTTTCATCGGCATTGTTGAGATTTATTTGGAAT
Platonic-honeycomb-58	ACCACATCGAGAACAATTTGCAAGCCGTTTAGCG
Platonic-honeycomb-59	TTTTCTACGTTAATAAAACGTTTAACTAACGGAATCTT
Platonic-honeycomb-60	CTTTCCTTTTATCATTCCGGAATTACGAGTTTGCATAGTAAGAGCAATTTT
Platonic-honeycomb-61	TACCGCACTCATTCAACTAA
Platonic-honeycomb-62	ATTAAACCAAGTGCAGATACATAACGCCAAAAAAGAACGGGT
Platonic-honeycomb-63	CGTCAGACTGTTTATTTTCA
Platonic-honeycomb-64	TTTGCCTTTAGTCGTAGGAATCATTACCGCGCCAGAATCAAG
Platonic-honeycomb-65	AGATTCATCATTCGGTCATA
Platonic-honeycomb-66	TACAGGTAGAAGCCCCCTTATTAGCGTTTGCCACAACATTAT
Platonic-honeycomb-67	TTTTTCGAGCTTCAAAGCGATTTACCAGACCGGCGCTCA
Platonic-honeycomb-68	ACAGTTTTAGGGCTTAATAAAGACTTCAATTTATATCGCGTTTTAATTTTT
Platonic-honeycomb-69	TTTTAAATATTCATTGAATCTTTCCCCTCAAATGACAAAAGGTATTTAAGTA
Platonic-honeycomb-70	ATTCTAGCGTCCAATATTTCTGCGGAATCGTCATTTTT
Platonic-honeycomb-71	TTTTCACTATCATAACCCTCTTTGTTTACCAGAGCTGT
Platonic-honeycomb-72	TTTTGATTCAAAAGGGTGAGTTTAAAGGCCGGATAATTA
Platonic-honeycomb-73	CATTTTTTAACAATTTCACAATGCCTGAGTTTTAATGTGTAGGTAAATTTT
Platonic-honeycomb-74	TCGCAATTTATGGTCAATAATCGGTTGTACTTTCAAAA
Platonic-honeycomb-75	ACATTGCTGAGAAGAGTTTTCAATAGTGAACATT
Platonic-honeycomb-76	AACTAAGTTAATTTCATTTTCTT
Platonic-honeycomb-77	CTGACCCTTAATTGCTGTTTAATATAATGCTGTAGTTTT
Platonic-honeycomb-78	GGTTTGAAATAATTTTTGCGGATGGCTTAGAGTAAATTTAAT
Platonic-honeycomb-79	CCGACCGTGTATAAGAGGTC
Platonic-honeycomb-80	TATGCTACCTTTAATTTTTGCTCCTTTTGGATAA
Platonic-honeycomb-81	ATAAGGTTTCGTTAAATAAAGCCTGTTTAGTTTTATCA
Platonic-honeycomb-82	CTAGAAAAGAATAAACACCGGAATAGGAAGG
Platonic-honeycomb-83	TTATCTAAAGTTGAAAGGAATTGCATAATTA
Platonic-honeycomb-84	AGTTGTTTGCAAATCAACAATATCTTTAGTTTGAGCA
Platonic-honeycomb-85	CTAACAAATCTAAAGCTTTATCACCTTGCCTGGTC
Platonic-honeycomb-86	TTAGAGCCGTCTGAGAGCCAGCAGCAAATGAAAACTAATAGA
Platonic-honeycomb-87	AATAGATAATAGTGCCACGC
Platonic-honeycomb-88	GCAACACATTTGAGGATTTTTTAGAAGTATTAAA
Platonic-honeycomb-89	AATACCTTTGAACGAACCAAGTATTAACACTTTCGCCT
Platonic-honeycomb-90	AACATCGCCATTAGACTTTA
Platonic-honeycomb-91	GATAGCCCTAACAAACAATTCGACAACTCGTATGCGCGAACT
Platonic-honeycomb-92	GAAACTGAATGGCTATTTTTAGTCTTTAATTAAA
Platonic-honeycomb-93	TCCTTTTTTGCCCGAACGTCATTTTGCGGATTTACAAA
Platonic-honeycomb-94	CTGAATTTTAATGGAAGGGCGTAAAACAGATTTAATAA
Platonic-honeycomb-95	AGAAAAAATACCTACATTTTTTGACGCTTACTT

Platonic-honeycomb-96	TTTCAGGTTTACAACAGGAAAAACGCTCATGGTTGCGTAGAT
Platonic-honeycomb-97	ACGTCAGATGCCAGCCATTG
Platonic-honeycomb-98	TACCGAATATACAGTATTTACAGTACCTTTAATA
Platonic-honeycomb-99	ACATCATTTCTTGCCTGAGATATCCAGAACTTTAATAT
Platonic-honeycomb-100	CTTTGATTAGTTACATCGGG
Platonic-honeycomb-101	TAGCAATACTTAGAAACAATAACGGATTCGCCTTAACCGTTG
Platonic-honeycomb-102	GCAAATGATTGCTTTGTTTAATACCAAGTTCTGG
Platonic-honeycomb-103	AGCAAATTTCAAGAGAATCAGAGTCTGTCCTTTATCAC
Platonic-honeycomb-104	AATCGTAAAACTCAGTGAGGCCACCGAGTAAAGATGAACGGT
Platonic-honeycomb-105	TAGCATGTCAGTTTTTATAA
Platonic-honeycomb-106	CAGAATTTTCCTGAGAAGTATCATATGTACTTTCCCGGTTGATAATCATTTT
Platonic-honeycomb-107	TTTTGAAAAGCCCCAAAAACTTTAGGAAGATTGTACGC
Platonic-honeycomb-108	ATAAAGTACCGCTTTAAACA
Platonic-honeycomb-109	GAGAATGACCTCGAGCCAGTAATAAGAGAATGTTCAGAAAAC
Platonic-honeycomb-110	TTAGGCTTTAGAGGCATTTATAAATCAAAATTTATCAGGTCTTTACCCTTTT
Platonic-honeycomb-111	TTTTTGACTATTATAGTCAGTTTAAGCAAAGCGGTAAT
Platonic-honeycomb-112	TTTTGGAGAGGGTAGCTATTTTTTTGAGAGATTCAAT
Platonic-honeycomb-113	TACCTGTTTAGCAAAAGAAACCGTTCTAGCTTTTGATAAATTAATGCCTTTT
Platonic-honeycomb-114	ATTATTCATTCTACAAAGGC
Platonic-honeycomb-115	CGCAGAGGCGATATCAGGTCATTGCCTGAGAGTACAAAATCG
Platonic-honeycomb-116	ATGATATTCAGATGATGAAA
Platonic-honeycomb-117	TCACCATCAATCAAACATCAAGAAAACAAAATGACAGTCAAA
Platonic-honeycomb-118	CTTTTTAATGAACCCTCATATATTTTAAATGTTTGAATTAC
Platonic-honeycomb-119	GAAACAGTACAAATTTTTAG
Platonic-honeycomb-120	AATCCTTTATTTCAACTTTGCAAGGATAAATAAA
Platonic-honeycomb-121	TCAATATTTTATGTGAGTGATTAATTTTCCTTTCTTAG
Platonic-honeycomb-122	CGCTATTAAATAACCTTGCTTCTGTCAAAAT
Platonic-honeycomb-123	TATTTGCATTAGAACCTACCATATAAATCGT
Platonic-honeycomb-124	GGGAGAAGCCTTGAAAACAT
Platonic-honeycomb-125	AATACTTTTGCAGCGATAGCTTAGATTAAGACATGACCCTGT
Platonic-honeycomb-126	ACGCCAACATGATTGCATCA
Platonic-honeycomb-127	CATATTTAACAAAAAGATTAAGAGGAAGCCCGTGAGAATCGC
Platonic-honeycomb-128	ACAGGAACGGTATAAGCAAA
Platonic-honeycomb-129	AGGGATTTTAGTATTTAAATTGTAAACGTTAAGGCCGATTAA
Platonic-honeycomb-130	TGCTGGTATAGAAGAACTCAAACTAAGTCAG
Platonic-honeycomb-131	AGGGTAATTGAACACCCTGAACAATCGGCCT
Platonic-honeycomb-132	AGGCGGTCCCAGCAGAAGATAAAAGGTATTC
Platonic-honeycomb-133	TAAGAACGATAGAAGGCTTATCCCAGAGGTG
Platonic-honeycomb-134	AATAGATAACCCTCAATCAATATTGAACCTC
Platonic-honeycomb-135	AAATATCAAAGTCCTGAACAAGATTATCAAC

Platonic-honeycomb-136	GCCAGGCTAATGCAGATTTACGCGCCTGTAAAAT
Platonic-honeycomb-137	AATATCTTTCCATCCTAATTTGCAAAAGAATTTGTTTT
Platonic-honeycomb-138	CGAGAGGCTTTTACGAGCAT
Platonic-honeycomb-139	AACCAAAATAGGTAGAAACCAATCAATAATCGCGACGATAAA
Platonic-honeycomb-140	AACATGTTCAAGGGGGTAAT
Platonic-honeycomb-141	CGACAATAAACAGTAAAATGTTTAGACTGGATGTCCAGACGA
Platonic-honeycomb-142	GATTAGAGAGGTTATACAAA
Platonic-honeycomb-143	CAACAGGTCAGTTCTTACCAGTATAAAGCCAAAAGCAAACTC
Platonic-honeycomb-144	TCGGCAAACTGTTTGATGGTGGTTGTCACAA
Platonic-honeycomb-145	AAATAAACAGAGCCTAATTTGCCTTCTGGCC
Platonic-honeycomb-146	ΑΑCATTATTATTAATTTTAAAAGTATGTAAA
Platonic-honeycomb-147	TTTTCTCAACATGTTTTAAATTTTATGC
Platonic-honeycomb-148	TGCTGATGTTGGGTTATATAACTATTTGAGT
Platonic-honeycomb-149	TAACCTTTTCCGGCTTAGGCAAATCCAATCTTTGCAAG
Platonic-honeycomb-150	ACAAAAACAGTTGATTTTTCCCAATTCTGCTTTT
Platonic-honeycomb-151	CATTCCATATGAACGCGAGA
Platonic-honeycomb-152	TCTGGAAGTTTAAACTTTTTCAAATATATTTTTAAGTACGGTG
Platonic-honeycomb-153	GAGAGACTACCGAACGAGTA
Platonic-honeycomb-154	ATCATAGGTCTGATTTAGTTTGACCATTAGATATTTATCAAA
Platonic-honeycomb-155	AACAGAGAAGTAATAAAAGGGACAAGTTACA
Platonic-honeycomb-156	CACCAGTTTTCACACGACCTAGAACCCTTCTTTTGACC
Platonic-honeycomb-157	TGAAACTGATTATCAGTTTATGATGGCAAAGATT
Platonic-honeycomb-158	CATCATATTCGCGTAAGAAT
Platonic-honeycomb-159	AGCGGAATTATACGTGGCACAGACAATATTTTCACCAGAAGG
Platonic-honeycomb-160	TTACATTGGCTTCATCAATA
Platonic-honeycomb-161	AAATGGATTATTAATCCTGATTGTTTGGATTACAATCGTCTG
Platonic-honeycomb-162	TCAATAGACGGAATAAGTTTATTTTCCGAAA
Platonic-honeycomb-163	GCCTTAAAAGAAACGCTTTAAAGACACCAAAATT
Platonic-honeycomb-164	CATATGTTTGTTTACCAGCAAAAATGAAAATTTTAGCA
Platonic-honeycomb-165	GTTTAACGTCGCCAAAGACA
Platonic-honeycomb-166	AACGATTTTTTAAAGGGCGACATTCAACCGATCCAAATAAGA
Platonic-honeycomb-167	ATAACATAAAATACATAAAGGTGGCAACATATTACAGAGAGA
Platonic-honeycomb-168	ACAGGGAAGCAGAAAATACA
Platonic-honeycomb-169	CTCTTCGCTATGGACTCCAACGTCAAAGGGCGCGGGGGGGC
Platonic-honeycomb-170	TACGCCAGCTTAAAGAACGT
Platonic-honeycomb-171	AACAAGTTTAGTCCACTATGGCGAAAGGGGTTTGATGT
Platonic-honeycomb-172	GCTGCCCCAGTCACGATTTCGTTGTAAAATTTGG
Platonic-honeycomb-173	GTTGTTCCAGCGACGGCCAG
Platonic-honeycomb-174	TAGGGTTGAGTTGCCAAGCTTGCATGCCTGCATAGCCCGAGA
Platonic-honeycomb-175	TTTTAAAAAAAGGCTCCAATTTAAGGAGCCTTAACAG

Platonic-honeycomb-176	AACAACTTTCTAATTGTATC
Platonic-honeycomb-177	GGATTTTGCTAGGTTTATCAGCTTGCTTTCGATTTCTGTATG
Platonic-honeycomb-178	ACGTTATTTGTAAATGAATGGTGAATTTCTTTTTAAACAGCTTGATACTTTT
Platonic-honeycomb-179	TTTTCGATAGTTGCGCCGACTTTAATGACAACATCCAG
Platonic-honeycomb-180	ACGCATAACCGGATCTAAAGTTTTGTCGTCTTACCATCGCCC
Platonic-honeycomb-181	ATATATTCGGTTAGCGTAAC
Platonic-honeycomb-182	CAGACATTTGCCCTCATAGTCGCTGAGGCTTTTTGCAGGGAGTTAAAGTTTT
Platonic-honeycomb-183	TTTTGCCGCTTTTGCGGGATTTTCGTCACCCTCTTCCA
Platonic-honeycomb-184	GCCTGTAGCAAGCAGCGAAA
Platonic-honeycomb-185	CAAACTACAACGACAGCATCGGAACGAGGGTAGTCACCAGTA
Platonic-honeycomb-186	GTTTCGCAACGGCTACTTTAGAGGCTTTGCTCAG
Platonic-honeycomb-187	ACTTTTTCATGGCCACCCTCAGAACCGCCACCAGGACTAAAG
Platonic-honeycomb-188	AGGAAGTTTCCCTCAGAACC
Platonic-honeycomb-189	GGTTTATTTGTACCGCCACCATTAAACGGGTTTTAAAATACGTAATGCTTTT
Platonic-honeycomb-190	TTTTCACTACGAAGGCACCATTTACCTAAAACGCAGGA
Platonic-honeycomb-191	TCACCGTACTAAAGAGGCAA
Platonic-honeycomb-192	GAATAGGTGTAAAGAATACACTAAAACACTCAGTATAGCCCG
Platonic-honeycomb-193	TATAATCTTTGACCCCTTTCAGCGATTATAGAGA
Platonic-honeycomb-194	AAACAAAGTACTTAAGAGGCTGAGACTCCTCAACCAAGCGCG
Platonic-honeycomb-195	AACGGAGATTCATGAAAGTA
Platonic-honeycomb-196	ACCTATTTTATTCTGAAATGTATCATCGCTTTCTGATAAATTGTGTCTTTT
Platonic-honeycomb-197	TTTTGAAATCCGCGACCTGCTTTTCCATGTTACTCGGA
Platonic-honeycomb-198	CCTGCCTATTTTAGCCGGAA
Platonic-honeycomb-199	AGTTAATGCCCCGAGGCGCAGACGGTCAATCACCGTATAAAC
Platonic-honeycomb-200	CAGTGCTAAGGGAACCGTTTAACTGACCAAACATG
Platonic-honeycomb-201	GGACAGATGAATACCGTTCCAGTAAGCGTCATCTTTGAAAGA
Platonic-honeycomb-202	CGGTGTACAGTCTCTGAATT
Platonic-honeycomb-203	AGAATGTTTGAAAGCGCAGACCAGGCGCATTTTAGGCTGGCT
Platonic-honeycomb-204	TTTTCATCAAGAGTAATCTTTTTGACAAGAACCAAGCC
Platonic-honeycomb-205	ATCCTCATTAGGATATTCAT
Platonic-honeycomb-206	CAAACAAATAATACCCAAATCAACGTAACAAATTGATATTCA
Platonic-honeycomb-207	GGTCAGTTTACGATTGGCCGCTGCTCATTCTTTAGTGAATAAGGCTTGTTTT
Platonic-honeycomb-208	TTTTCCCTGACGAGAAACACTTTCAGAACGAGTAGGCA
Platonic-honeycomb-209	CAGGAGGTTGAGTAAATTGG
Platonic-honeycomb-210	GCCAGCATTGAGCTTGAGATGGTTTAATTTCACAGAGCCGCC
Platonic-honeycomb-211	GCTTTTTTGATGATACAGCAGTGCCTTGATTTGTAA
Platonic-honeycomb-212	AACGGGGTGAGTGTACTGGTAATATTCCACA
Platonic-honeycomb-213	CAACATACTTGTTATCCGCTCACAAAGTTTT
Platonic-honeycomb-214	AGGATTTTTAGGATTAGCGCCGTCGAGAGGTTTGTTGA
Platonic-honeycomb-215	GATAAGTGGGGTTTTGCTCAGTAGTAACGCC

Platonic-honeycomb-216	AGGGTTTTAAGGCGATTAAGTTGGCCAGGCG
Platonic-honeycomb-217	AGCCACTTTCACCCTCATTTGTACCGTAACTTTACTGA
Platonic-honeycomb-218	GGAACCCATTCAGGGATAGCAAGCAGCCAGC
Platonic-honeycomb-219	TTTCCGGCCAGGAAGATCGCACTCCCCAATA
Platonic-honeycomb-220	TTTCAGTTTCGGAGTGAGAATAATTTTTTCTTTACGTTGAAAATCTCCTTTT
Platonic-honeycomb-221	TGCGAATAATAGAAAGGAACAACTACCGTAA
Platonic-honeycomb-222	TGGGATAGACAAACGGCGGATTGAAAGGAAT
Platonic-honeycomb-223	ACCACACTTTAATCATTTTTGTGAATTACCCTCA

Fig. S67. Design pattern for the square Platonic tiling

Table S3. S	Sequences of	the square	Platonic	tiling
-------------	--------------	------------	----------	--------

Number	Sequence
Platonic-square-1	TACCTTTTTTTTTAATGGATTTACGAGCATTTTTGTAGAAACCACCAAG
Platonic-square-2	CCCATCCTAAAACAGTACAT
Platonic-square-3	AAAAATAATATAAATCAATATATGTGAGTGAACCTGAACAAG
Platonic-square-4	TCAACATTTTATAGATAAGTTAACCTTGCTTTTTTCTGTAAATCGGAAAA
Platonic-square-5	AGATTATTTTGAGCCGTCAAAATAAAAGGGATTTTCATTCTGGCCTAAGA
Platonic-square-6	ATACGTTTTTGGCACAGACATTGAAAGGAATTTTTTGAGGAAGGTCTAAT
Platonic-square-7	TATAACTTTTTATATGTAAATGAGAATCGCCTTTTATATTTAACATTCGA
Platonic-square-8	TCAAGATTTTGTAATCTTGAAAAAAAAGGCTTTTTCCAAAAGGAGTTCGA
Platonic-square-9	GGTGAATTTTTTTTTTAAACTGAAAGAGGACTTTTAGATGAACGGCTTCA
Platonic-square-10	TTAAAGTTTTGCCGCTTTTGTCATCGCCTGATTTTTAAATTGTGTGCCGG
Platonic-square-11	AGCTTGCTCCTTTAATTGTATCGTTCTGACC
Platonic-square-12	TGAAAGCGAACAGAGATAGAACCCGTTTATC
Platonic-square-13	AAGACAAAGAATAAAGCCAACGCTCAACAGTAATCCAATCGC
Platonic-square-14	AGGGCTTAATTGCTGATGCA
Platonic-square-15	GCCAGTTTTTAATAAGAGAATTATCAAAATCTTTTATAGGTCTGAGGTTA
Platonic-square-16	AGAATATTTTACATAAAAACACACCCTGAACTTTTAAAGTCAGAGACATT
Platonic-square-17	ACAAATTTTTTCTTACCAGTACGCGAGAAAATTTTCTTTTTCAAAATTTA
Platonic-square-18	AAATATTTTTCAAACCCTCAGCGAACTGATATTTTGCCCTAAAACCAGAA
Platonic-square-19	GAGGCATTACGCCAACATGTAATCGGGAGAA
Platonic-square-20	TTAACTGAAGGGAAGCGCATTAGATTAGGCA
Platonic-square-21	GAGTAGTTTTTAAATTGGGCTGGGATTTTGCTTTTTAAACAACTTGGAAC
Platonic-square-22	AACTAATTTTAGGAATTGCGGTAACAAAGCTTTTTGCTCATTCAGAGAAC
Platonic-square-23	AGAGTTTTTTGCAGCAAGCGCCTGTTTGATGTTTTGTGGT
Platonic-square-24	GATAAATTTTACAGAGGTGACCACGCTGAGATTTTGCCAGCAGCAACCTC
Platonic-square-25	ATGGTTTTTTTGAAATACCGATAAACACCGGTTTTAATCATAATTGTTAT
Platonic-square-26	CTAAAGTTTTTTTGTCGTCGTGAATTACCTTTTTTATGCGATTTGTTTA
Platonic-square-27	ATTTTCTGTATTGAGATGGT
Platonic-square-28	TTAGTAAATGATTAATTTCAACTTTAATCATTTTTCCAGACG
Platonic-square-29	TAAAAATAGAGTGAGAATAGAAATCAACAGT
Platonic-square-30	TTCAGCGCCGAACGAACCACCAGATCGCCAT
Platonic-square-31	TTTTCACGTTGATATTCATTACCCAAATCAACAATAATAATT
Platonic-square-32	AAAATCTCCACAAGAACCGG
Platonic-square-33	GAAACACCTGAATAAGGCTTGCCCCCAGCAG
Platonic-square-34	GCGAAAATGTCCACGCTGGTTTGCCTGACGA
Platonic-square-35	TATGCAACTATTTTTAAGAA
Platonic-square-36	TAGCCGAACATGTAGCTCAACATGTTTTAAAAAGTAAGCAGA
Platonic-square-37	TTTTTAGAGCTTAATTGCTGTTTTAATATAATGCAAGTTACCAGATTTTAGGAA
Platonic-square-38	TCGCAATTTTATGGTCAATATAAAGATTCAATTTTAAGGGTGAGACAGAG

Platonic-square-39	AGCCCAAGTACGGTGTTTTTCTGGAAGTTTCATTCTTTT
Platonic-square-40	TTTTCATATAACAGTTGATTTTTCCCAATTCTGCCACA
Platonic-square-41	AGAATTTTTTGAGTTAAGCCATAGCTATCTTTTTTACCGA
Platonic-square-42	GAGAGATAACCGAACGAGTAGATTTAGTTTGCGCTAATATCA
Platonic-square-43	ACCATTAGATGGTAATTGAG
Platonic-square-44	AAATAGCACAATAATAAGAGCAAGTTTAGTA
Platonic-square-45	TCATATGCACTAGAAAAAGCCTGAAACAATG
Platonic-square-46	CAGTATGTAGGCGTTAAATAAGAACCGTGTG
Platonic-square-47	ATAAATATAGCAAACGTAGAAAATTATTACG
Platonic-square-48	GCATGATTTTTTAAGACTCCTACATACATAATTTTAGGTGGCAACAGGAA
Platonic-square-49	AGCCCATTTTATAGGAACCCTACAAACTACATTTTACGCCTGTAGTAGAC
Platonic-square-50	GTAAAATGTTCATTCCACAGACAGCCCTCATAGGGGGGTAATA
Platonic-square-51	AGTTAGCGTAGTTTTGCCAG
Platonic-square-52	AAGCAAACTCCTAATAACGGAATACCCAAAAGACCAGACCGG
Platonic-square-53	AACAGGTCAGGGAAACGCAA
Platonic-square-54	AGTGTAGGTCGACTCTTTTTAGAGGATCCCCGGGTTTTT
Platonic-square-55	TTTTACCGAGCTCGAATTCGTTTTTAATCATGGTGGAAA
Platonic-square-56	GCCGGCTTTTGAACGTGGCGCGCTAGGGCGCTTTTTGGCA
Platonic-square-57	CATAACCCTCTAAGAACTGGCTCATTATACCAGCAACACTAT
Platonic-square-58	AGTCAGGACGGCATAGTAAG
Platonic-square-59	AGCTTGACGGCATAGCTGTT
Platonic-square-60	CCCCGATTTAGTCCTGTGTGAAATTGTTATCCTAAAGGGAGC
Platonic-square-61	AATACACAAGCGAAAGGAGCGGGGAGAAAGGA
Platonic-square-62	AGGGAAGATAAAACACTCATCTTGGCAAAAG
Platonic-square-63	CTGCGCGTAACGTGCCAAGCTTGCATGCCTGCAGCGGTCACG
Platonic-square-64	CACCACACCACGACGGCCA
Platonic-square-65	TTTTGGTTTTCCCAGTCACGTTTTACGTTGTAAAGCCGCGCTTAATTTTTGCGC
Platonic-square-66	TAACGTTTTTGCTTTCCTCGCCGATTAAAGGTTTTGATTTTAGACTGCCG
Platonic-square-67	AATATATTTTATCCTGATTGAACCGTTGTAGTTTTCAATACTTCTAAGAA
Platonic-square-68	CTCAAATTTTCTATCGGCCTCCAGAAGGAGCTTTTGGAATTATCATCATC
Platonic-square-69	TCCGAGGCGGTTTGCGTTTTTATTGGGCGCCAGGGTTTT
Platonic-square-70	TTTTTGGTTTTTCACTTTTCAGTGAGACGCTGAG
Platonic-square-71	GCCTGGCCGGCAACAGCTGATTGCCGGAACA
Platonic-square-72	ACATTATTAATAAAACGAACTAACCTTCACC
Platonic-square-73	AAGAAATTTTAATCTACGTTACAGGTAGAAATTTTGATTCATCAGTTGAGTTTT
Platonic-square-74	TTTTCAGTCGGGAAACCTGTTTTTCGTGCCAGCTTAGCC
Platonic-square-75	CGAGATTTTTAGGGTTGAGTAAAGAACGTGGTTTTACTCC
Platonic-square-76	ACTACGTTTTTGAACCATCATAAAGCACTAATTTTATCGG
Platonic-square-77	AACCCGCTCACAATTCTTTTCACACAACATACGAGTTTT
Platonic-square-78	AACGTTTGCGTTGCGCTTTTTCACTGCCCGCTTTCTTTT

Platonic-square-79	ATCAAAAGAAGCATTAATGA
Platonic-square-80	ATCCCTTATAAATCGGCCAACGCGCGGGGGAGAAATCGGCAAA
Platonic-square-81	CCAGGCGACAAGAGTCCACTATTGTTGTTCC
Platonic-square-82	AGTTTGGACATAGGCTGGCTGACTGTACAGA
Platonic-square-83	ACCCTCAGCAGAAAGTACAACGGAGATTTGTACGGGATCGTC
Platonic-square-84	CGAAAGACAGAGCGCGAAAC
Platonic-square-85	CCCAGCTTTTGATTATACCACATCGGAACGATTTTGGGTAGCAACTTTCA
Platonic-square-86	TGAGGATTTTAGTTTCCATTGCACCAACCTATTTTAAACGAAAGATGACC
Platonic-square-87	AAAGACTTGGCTACAGAGGCTTTTCACTTGC
Platonic-square-88	CTGAGTAGTTGATTAGTAATAACAGAGGACT
Platonic-square-89	AGAGCGGTAATGCCACTACGAAGAAACGGG
Platonic-square-90	TAAAATACGGAGCTAAACAGGAGGTTAGAATC
Platonic-square-91	TTTGACGAGCGAAGGGCGATCGGTGCGGGCCACTATGGTTGC
Platonic-square-92	TCTTCGCTATCAGGGCGCGT
Platonic-square-93	GAAGGCTTTTTTATCCGGTAATCAGAAAAGCTTTTCCCAAAAACAGGAAGTTTT
Platonic-square-94	AGCAAATCAGAATTTTTGTT
Platonic-square-95	GCCCAATAGCAAAATCAGCTCATTTTTAACCTCATTACCGC
Platonic-square-96	CCGGTTGATATTCTAAGAAC
Platonic-square-97	TCATATGTACCGCGAGGCGTTTTAGCGAACCTAGCATGTCAA
Platonic-square-98	TTTTATTAATGCCGGAGAGGTTTTGTAGCTATTTAGAGC
Platonic-square-99	CTAATTTTTTGCCAGTTACAAATAAGAAACTTTTGATTT
Platonic-square-100	AACGGGTTTTTATTAAACCAATGATGAAACATTTTAACATCAAGATGAAT
Platonic-square-101	TAATCATTTTGTGAGGCCACTAGAACCTACCTTTTATATCAAAATTGCAT
Platonic-square-102	ATCGCGTTTTCAGAGGCGAATTTTTATTTTCTTTTATCGTAGGAAAATAG
Platonic-square-103	TGAGAAGTGTACTCCAGCCAGCTTTCCGGCACGCCAGAATCC
Platonic-square-104	CCGCTTCTGGAGGAACGGTA
Platonic-square-105	AAGCAAGCCGTTATTCATTT
Platonic-square-106	TCATCGAGAACCAATTACCTGAGCAAAAGAAGAGTACCGCAC
Platonic-square-107	TTATCATTATCAATAATCGGCTGTTAGTTGC
Platonic-square-108	TATTTTGCAAGCCTTAAATCAAGATCTTTCC
Platonic-square-109	CTTGCGTTTTGGAGGTTTTGACCCAGCTACATTTTATTTT
Platonic-square-110	
Platonic-square-111	TTTTAATCGATGAACGGTAATTTTTCGTAAAACTCCCGA
Platonic-square-112	TCAGGTCATTGAATCTTACC
Platonic-square-113	
Platonic-square-114	
Platonic-square-115	
Platonic-square-116	
Platonic-square-117	
Platonic-square-118	AAGTTTTGCTCCATGTTACTTACGAAATCC

Platonic-square-119	TTTTCCGGAAGCATAAAGTGTTTTTAAAGCCTGGGGCCC
Platonic-square-120	GCGACCTTGGGGTCGAGGTGCCGCCCAAATC
Platonic-square-121	TCAGGGCGATGGTGCCTAAT
Platonic-square-122	AAAACCGTCTAGAGTGAGCTAACTCACATTAACAAAGGGCGA
Platonic-square-123	AACGAGTTTTGCGCAGACGGCAACAACCATCTTTTGCCCACGCATGGGAG
Platonic-square-124	GGCTTGCAAACCGATATATTCGGACATTTTG
Platonic-square-125	CCGACAATGATCAATCATAA
Platonic-square-126	CGATAGTTGCGGGGAACCGAACTGACCAACTTAGCTTGATAC
Platonic-square-127	TGAAATTTTTGGATTATTTAAGACTTTACAATTTTACAATTCGACATTAA
Platonic-square-128	CATAGCTTTTGATAGCTTAGTGTCCAGACGATTTTCGACAATAAAGTTTA
Platonic-square-129	ACGCGCCTCAACATGTTCAGCTATTATTAT
Platonic-square-130	AAAGTAATTCATTAAGACGC
Platonic-square-131	CGACAAAAGGTTGAGAAGAGTCAATAGTGAATTATAAAGTAC
Platonic-square-132	ACCATCAATATTAACGTCAA
Platonic-square-133	GCAGCCTTTAAAGGCCGGAGACAGTCAAATCAAATGAAAATA
Platonic-square-134	ACCACGGAATAAGCAAAGCG
Platonic-square-135	AAAGATTAAGATATAAAAGAAACGCAAAGACGATTGCATCAA
Platonic-square-136	TATTTTTTTGTCACAATCACCGCCACCCTCTTTTAGAACCGCCAGAGAA
Platonic-square-137	TAGGTGTTTTTATCACCGTAAGACAAAAGGGTTTTCGACATTCAAGGAAA
Platonic-square-138	CCAGCGCCAACTCAGGAGGT
Platonic-square-139	CATATGGTTTATTAGTACCGCCACCCTCAGAAATAGAAAATT
Platonic-square-140	AGTTAATTAAGGTAAATATTGACCCGATTGA
Platonic-square-141	GGGAGGGTCATCTTCTGACCTAATATATTTT
Platonic-square-142	TTATTCTTTTATTAAAGGTGTGCTCAGTACCTTTTAGGCGGATAACGGAA
Platonic-square-143	TAAGAGTTTTGCTGAGACTCGGAATTAGAGCTTTTCAGCAAAATCGGAAA
Platonic-square-144	GAGCCATTTGCTCAAGAGAA
Platonic-square-145	GTCACCGACTTGGATTAGGATTAGCGGGGTTTAATTATCACC
Platonic-square-146	GCAAGGCCACCAGTAGCACCATTCCTCCGGC
Platonic-square-147	TTAGGTTGGAGACTACCTTTTTAAACCATTA
Platonic-square-148	CGTCACTTTTCAATGAAACCTAAACAGTTAATTTTTGCCCCCTGCAGTAT
Platonic-square-149	GGTAATTTTTAAGTTTTAACGAATCAAGTTTTTTTGCCTTTAGCGTCGGT
Platonic-square-150	AGTAGCGACAGGGGTCAGTG
Platonic-square-151	GCACCGTAATCCCTTGAGTAACAGTGCCCGTAATCGATAGCA
Platonic-square-152	CGGCATTTTCAGACTGTAGCGCGTTCCCTTA
Platonic-square-153	GAATCCTTTCGCTATTAATTAATTTTTCAT
Platonic-square-154	CATAGCTTTTCCCCTTATTACTGAATTTACCTTTTGTTCCAGTAAGTA
Platonic-square-155	CACAAATTTTCAAATAAATCCGGAACCAGAGTTTTCCACCACCGGAACCG
Platonic-square-156	TCAAAATCACCTCATTAAAG
Platonic-square-157	TCTTTTCATAACCAGAATGGAAAGCGCAGTCTGCGTTTGCCA
Platonic-square-158	ACCCTCAGAACCGCCTCCCTCAGATTTAACA

Platonic-square-159	ATTTCATTAAACAAAATTAATTACAGCCGCC
Platonic-square-160	CCACCCTTTTTCAGAGCCACGAGCCGCCGCCTTTTAGCATTGACAATATT
Platonic-square-161	AATATACACCAGAACCACCACCACCCCCC
Platonic-square-162	GATTTTTTTCAGGTTTAACTACATCGGGAGTTTTAAACAATAACCCGTC
Platonic-square-163	AGAGCCGCCAGTAACAGTACCTTTGTCAGATG
Platonic-square-164	GAGTAACAACGGATTCGCCT
Platonic-square-165	ATACCAAGTTTCATCAACATTAAATGTGAGCGATTGCTTTGA
Platonic-square-166	TTTTCAGGGACCCCTCAAAT
Platonic-square-167	TTCAGAAAACCCCTCAGAGCCACCACCCTCAGCTTTAAACAG
Platonic-square-168	CAACAGTGGGCGGTCAGTATTAACGAGTTTC
Platonic-square-169	GTCACCAGATGTACCGTAACACTACCGCCTG
Platonic-square-170	GAGAGGGTGCATCACCTTGCTGAAATGAAAA
Platonic-square-171	ATCTAAATGATATAAGTATAGCCGTGCCGTC
Platonic-square-172	AAATCAACAGATATTTTTGA
Platonic-square-173	GGTCAGTTGGCATGGCTATTAGTCTTTAATGCATCAATATCT
Platonic-square-174	ACTAACAATATCTAAAATATCTTTATTCTGA
Platonic-square-175	AACATGAACTATTTCGGAACCTATTAGGAGC
Platonic-square-176	TAGAAGTATTCATTGGCAGA
Platonic-square-177	ATTTGAGGATTTTCACCAGTCACACGACCAGTTAGATAATAC
Platonic-square-178	CGAACGTTAACTCGTATTAAATCTTGATGAT
Platonic-square-179	ACAGGAGTGCGTCATACATGGCTTCTTTGCC
Platonic-square-180	AAAGAAACCATGCTGGTAAT
Platonic-square-181	TTTTGCGGAACATCCAGAACAATATTACCGCCAACATTATCA
Platonic-square-182	ATGGCAATTCATATTCCTGATTACAGACGAT
Platonic-square-183	TGGCCTTGGGAGGTTGAGGCAGGTTCAGATG
Platonic-square-184	ACTTCTGAATAAGTCTGTCCATCACGCAAATTTTTGGATTAT
Platonic-square-185	ATGGAAGGGTCGAGTAAAAG
Platonic-square-186	ATCGTAACCGTATTTGCACG
Platonic-square-187	TAAAGAAATTCACGTTGGTGTAGATGGGCGCTAAAACAGAAA
Platonic-square-188	TTTTATTGTATAAGCAAATATTTTTTAAATTGTAAACGTTTT
Platonic-square-189	ΤΤΤΤΤΤΑΑΤΑΤΤΤΤGTTAAATTTTATTCGCATTAATATA
Platonic-square-190	GAACGCTTTTCATCAAAAATAATTCTTTT
Platonic-square-191	TTTTGCGTCTGGCCTTCCTGTTTTTAGCCAGCTTACAAA
Platonic-square-192	GGATTCTTTTCCGTGGGAACAAACTTTT
Platonic-square-193	TTTTGGCGGATTGACCGTAATTTTTGGGATAGGTGCGTA
Platonic-square-194	CTGCCATTTTGTTTGAGGGGACGACTTTT
Platonic-square-195	TTTTGACAGTATCGGCCTCATTTTGGAAGATCGCTTTTA
Platonic-square-196	GAAACCTTTTAGGCAAAGCGCCATTTTT
Platonic-square-197	TTTTCGCCATTCAGGCTGCGTTTTCAACTGTTGGACGTA
Platonic-square-198	CGCTATACGCCAGCTGTTTTGCGAAAGGGGGGATGTTTTT

Platonic-square-199	TTTTGCTGCAAGGCGATTAATTTTGTTGGGTAACGCCAGTTTT
Platonic-square-200	TTTTTTTGATAAGAGGTCATTTTTTTTGCGGATGGCTTTTT
Platonic-square-201	ACCGAGATTAGAGAGTTTTTACCTTTAATTGCTCCTTTT
Platonic-square-202	TTTTGCGTTTTAATTCGAGCTTTTTTCAAAGCGAAACTG
Platonic-square-203	GCCCGATTTTAAGACTTCAAATATCTTTT
Platonic-square-204	TTTTGTCTTTACCCTGACTATTTTTTATAGTCAGAAGTT
Platonic-square-205	TGACCATTTTTAAATCAAAAATCAGTTTT
Platonic-square-206	TTTTGAATCGTCATAAATATTTTTCATTGAATCTAGCA
Platonic-square-207	TGGATATTTTGCGTCCAATACTGCGTTTT
Platonic-square-208	TTTTAATAGCGAGAGGCTTTTTTTGCAAAAGAAACGAT
Platonic-square-209	CCAGACTTTTGACGATAAAAACCAATTTT
Platonic-square-210	TTTTTACATAACGCCAAAAGTTTTGAATTACGAGTTGGG
Platonic-square-211	TTTTATTTAGGAATACCACATTTTTTCAACTAATGCAGATTTT

Fig. S68. Design pattern for the triangular Platonic tiling

Number	Sequence
Platonic-triangular-1	CAGATGTTTTTATGGCAATTCTCTGAATAATGTTTTTGAAGGGTTAGACAGA
Platonic-triangular-2	AATAAATTTTTGAAATTGCGTAGTAACAGTACTTTTTCTTTT
Platonic-triangular-3	AAGACACATTATTTGCACGTAAAAACCTACC
Platonic-triangular-4	CGAGCATTTTTTGTAGAAACCCCTTATTACGCTTTTTAGTATGTTAGCAAAG
Platonic-triangular-5	ACAAAATTTTTGGGCGACATTCCTCAAGAGAATTTTTGGATTAGGATAACCG
Platonic-triangular-6	ATATCAAACACGGAATAAGTTTAGAAACGCA
Platonic-triangular-7	AACATATAAAATTTTGTCACAATCAATAGAAATAAAGGTGGC
Platonic-triangular-8	TTACCAGCGCCAAACGTAGAAAATACATACAATTCATATGGT

Table S4. Sequences	of the	triangular	Platonic	tiling.
---------------------	--------	------------	----------	---------

Platonic-triangular-9	TTTTAACAGTTCAGAAAACGTTTTTAGAATGACCATCACG
Platonic-triangular-10	TTGAAATTTTTATCTCCAAAACACGCATAACCTTTTTGATAT
Platonic-triangular-11	GCGTAATTTTTCGATCTAAAGTTTTCTGTATGTTTTTGGATT
Platonic-triangular-12	TTGCTGGAAGCCCGAATTTTTAGACTTCAAATATCG
Platonic-triangular-13	AAGATTAAGAAAACAACTTT
Platonic-triangular-14	GCGGAGTGAGAGCAAAGCGGATTGCATCAAACAACAGTTTCA
Platonic-triangular-15	ACAACTAAAGACCCTGACTATTATAGTCAGAAATAGAAAGGA
Platonic-triangular-16	AATAATTTTTTAAATCAAAAATCAGGTCTTTGAATTGCGAAT
Platonic-triangular-17	GTTGAGTTTTTGTTGTTCCAGGACTCCAACGTTTTTTCAAAGGGCGGTGAA
Platonic-triangular-18	GGGTAAACACTATTAAAGAACGTGTTTGGAA
Platonic-triangular-19	AGGGTATTTTTGCAACGGCTATAAAACACTCATTTTTTCTTT
Platonic-triangular-20	CAAGAGTCATACGTAATGCCACTCATTAAAC
Platonic-triangular-21	GAGGAAGTTTCACGAAGGCACCAACCTAAAACACTTTTTCAT
Platonic-triangular-22	AAGAATACACCAGAGGCTTTGAGGACTAAAGGAAAGAGGCAA
Platonic-triangular-23	CCACCCTTTTTTCAGAACCGCATAGCAAGCCCTTTTTAATAGGAACCATTTA
Platonic-triangular-24	CTTAATGACCCTCATTTTCAGGGCACCCTCA
Platonic-triangular-25	CCATCATTTTTCCCAAATCAACGAAAGGAGCGTTTTTGGCGCTAGGGTCGTT
Platonic-triangular-26	AGAATCTTTTTAGAGCGGGAGATTGCCCTTCATTTTTCCGCCTGGCCATAGG
Platonic-triangular-27	GAGCCACCCGCCGCTACAGGGCGCCGCCGCG
Platonic-triangular-28	AACCACCACCGTACTATGGTTGCTTTGACGCGCTGCGCGT
Platonic-triangular-29	CGTGCTTTCCCGCTGGCAAGTGTAGCGGTCAAGCACGTATAA
Platonic-triangular-30	ACCTGCTTTTTTCCATGTTACAAGGGAACCGATTTTTACTGA
Platonic-triangular-31	AATCCTGGCAGACGGTCAATCATTTAGCCGG
Platonic-triangular-32	AACGAGGCTTTGATGGTGGTTCCCAGGCGAA
Platonic-triangular-33	GTTTGCCCCAGGAAATCGGCAAAATCCCTTATGTCCACGCTG
Platonic-triangular-34	ATAGCCCGAGCTGAGAGAGTTGCAGCAAGCGAAATCAAAAGA
Platonic-triangular-35	CGAGGTGGGCGATGGCCCACTACAAAAACCG
Platonic-triangular-36	TCTATCAGAATTTCTTAAACAGCCTTGCTTT
Platonic-triangular-37	CGGTTTATCAGTTGATACCGATAGTTGCGCCGTTAATTGTAT
Platonic-triangular-38	AACCATCGCCAAAAGGCTCCAAAAGGAGCCTACAATGACAAC
Platonic-triangular-39	GGGAAGAAAGGTTTTTTGGGGTCGAGGTGCCCGAGAAAGGAA
Platonic-triangular-40	AAATCGGAACCGGGGAAAGCCGGCGAACGTGGGTAAAGCACT
Platonic-triangular-41	TCTTTCCAGATTTAGAGCTTGACCTAAAGGG
Platonic-triangular-42	AGCCCCCGACGTTAGTAAATGAATTTTGTCG
Platonic-triangular-43	AATGAATTTTTTCGGCCAACGCAGTGAGGCCATTTTTCCGAGTAAAAGCAAT
Platonic-triangular-44	GCAACAGCTGCTAAACAGGA
Platonic-triangular-45	GGGATTTTAGTTCTTTTCACCAGTGAGACGGGGCCGATTAAA
Platonic-triangular-46	ACGCCAGAATTATTGGGCGCCAGGGTGGTTTACAGGAACGGT
Platonic-triangular-47	TTTTTATAATCGCGGGGAGAGGCGGTTTGCGCCTGAGAAGTG
Platonic-triangular-48	TAAGCATTTTTGATAGCCGAAAAGCAAGCCGTTTTTTTTT

TTAAATTTTTTCAAGATTAGTGAATCTTACCATTTTTACGCTAACGAAAATA
AACACCGGCTACAATTTTATCCTTGCTATTT
CTTCTGTTTTTACCTAAATTTCCAGTATAAAGTTTTTCCAAC
TGCACCCAGAATCATAATTACTATAAGAATA
AAGGCGTTAAAGAAAAAGCCTGTTTAGTATCATGTGATAAAT
CAAATTCTTAAATGGTTTGAAATACCGACCGTATGCGTTATA
AAGAGTCTAATTTGCCAGTTACAGCGTCTTT
CGCTATTTTTTAATTAATTTAGGTTGGGTTATTTTTTATAA
CCAGAGCCAATAGTGAATTTATCACGCTGAG
CTTAGATTAAGAAAATCATAGGTCTGAGAGACATAGCGATAG
CCTCCGGCTTTCCCTTAGAATCCTTGAAAACTACCTTTTTAA
AACAGCTTTTTCATATTATTTAACACCCTGAATTTTTCAAAGTCAGAAAAAG
GAATTAACTGATCCCAATCCAAATAAGAAACATTAGACGGGA
TTAACGTCAAAAACATAAAAACAGGGAAGCGCGATTTTTTGT
TGAAACAACTTTACAGAGAGAATAATGAAAA
AATTACTTTTTCTGAGCAAAAATTAATTACATTTTTTTTAAC
TAGCAGCACATCAAGAAAAAAAAAGAAGATGA
CCTTTTTAAGGGGTAATTGAGCGCTAATATCCTTACCGAAGC
CCCACAAGAATCAATGAAATAGCAATAGCTATAGAGAGATAA
AGGTTTAAAATAAGAGCAAGAAATGAGTTAA
GCCCAATCGTCAGATGAATATACAGATTTTC
CATCGAGAACCAAAGTTACC
GAGGAAACGCTATTAAACCAAGTACCGCACTAGAAGGAAACC
AATACCCAAACCTTATCATTCCAAGAACGGGAATAATAACGG
GATTAAGACTAATCAATAATCGGCTGTCTTTAGAACTGGCAT
GGAGGTTTTGATCGTAGGAATCATTACCGCGCCCGACTTGCG
AGCAAATCAGAGCGAGGCGTTTTAGCGAACCTCCCAATAGCA
AAAGGTAACGGTATTCTAAGAACTATAGAAG
ATAAGATTTTTGAATATAAAGCGACGACAATATTTTTAACAACATGTAGTTA
GCTTATCAGTAATTCTGTCCAGATACCGACA
AGTAACTTTTTAGTGCCCGTATTGAGCCATTTTTTTGGGAATTAGAGTCAG
ACTGTATTTTTGCGCGTTTTCCGTTTGCCATCTTTTTTTT
ACATTTGATAGCCCCCTTATTAGATCGGCAT
GGAAGGTTTTTTATCTAAAACCCGAACGTTATTTTTTAAT
TTTCGGTCAGGATTTAGAAGTATTAGATAAT
AGAGCCGTCAATAGACTTTACAAACAATTCGACTAATAGATT
AAATCCTTTGTATCTTTAGGAGCACTAACAACAACTCGTATT
TAAAACAAGAGCCACCGGGAACAAAATCA
TAATGCTTTTTGCGAACTGATGCAAATGAAAATTTTTATCTA
CCGGAACCGAGGTGAGGCGGTCAGCAGAAGA

Platonic-triangular-89	ACGAACCACCAGTATTAACACCGCCTGCAACAAAAATACCGA
Platonic-triangular-90	AGAGCCAGCAAGCCCTAAAACATCGCCATTAGTGCCACGCTG
Platonic-triangular-91	TCCCTCTTTTTAGAGCCGCCATATTCACAAACTTTTTAAATAAA
Platonic-triangular-92	TTGGCCTTGACCCTCAGAACCGCCACCCTCAAGGTCAGACGA
Platonic-triangular-93	CCTCAGAGCCGGCATTGACAGGAGGTTGAGGCGAGCCACCAC
Platonic-triangular-94	AGATTCACCCAGAGCCGCCGCCACCAGA
Platonic-triangular-95	CTGAAATTTTTTGGATTATTTAATAAAAGGGATTTTTCATTC
Platonic-triangular-96	ACCACCACAGTCACACGACCAGTACATTGGC
Platonic-triangular-97	GGGGTCAGTGTCATTAAAGCCAGAATGGAAATAAGTTTTAAC
Platonic-triangular-98	TGAATTTACCGGATACAGGAGTGTACTGGTAAGCGCAGTCTC
Platonic-triangular-99	ACTTGCCTTACATGGCTTTTGATTTCCAGTA
Platonic-triangular-100	ACTTCTTTTTTGATTAGTAACTATCGGCCTTTTTTTGCTG
Platonic-triangular-101	AGCGTCAGAGTAGAAGAACTCAAATAACATC
Platonic-triangular-102	CGTCACCGACTAAACAGTTA
Platonic-triangular-103	CTATTTCGGATCATTAAAGGTGAATTATCACATGCCCCCTGC
Platonic-triangular-104	TGAAACATGAGTAAATATTGACGGAAATTATACCTATTATTC
Platonic-triangular-105	GGCTGAGACTCAACCGATTGAGGGAGGGAAGAAGTATTAAGA
Platonic-triangular-106	TGCCTTTAGCGCCAGCAAAATCACCAGTAGCAGAATCAAGTT
Platonic-triangular-107	TTAGCAAGGCCAGCACCGTAATCAGTAGCGACACCATTACCA
Platonic-triangular-108	AATCCTGAGAAACCATCGATAGCGGAAACGT
Platonic-triangular-109	CACCAATTTGTTTGGATTATACTATCAATAT
Platonic-triangular-110	CCATCACGTATAGCCCGGAATAGGAGGGTTG
Platonic-triangular-111	ATATAAGCAAATTAACCGTTGTAGAGTCTGT
Platonic-triangular-112	AGTGCCGTCGAGTGTATCACCGTACTCAGGAGCAGGCGGATA
Platonic-triangular-113	CCACCCTCAGTAGCGGGGTTTTGCTCAGTACGTTTAGTACCG
Platonic-triangular-114	CCAACCTGCTCATTCATTTTGTGAATAAGGCTTGCTTTT
Platonic-triangular-115	CGTAACAAAGTTTGAAAGAGGACAGATGAACACCCAAATCAA
Platonic-triangular-116	CCAGGCGCATAGACAAGAACCGGATATTCATTGGTGTACAGA
Platonic-triangular-117	GTCGGGAAATCAAGAGTAATCTTGGCTGGCT
Platonic-triangular-118	CATTAATTGCGTTGCGTTTTTCTCACTGCCCGCATT
Platonic-triangular-119	GACCTTCACCTGTCGTGCCAGCTGCTTTCCA
Platonic-triangular-120	TTTTAGGTCATTGCCTGAGATTTTTGTCTGGAGCAATTTC
Platonic-triangular-121	ACATCAGCCCCAAAAATTTTTCAGGAAGATTGTATA
Platonic-triangular-122	TAATCAGAAAGGGAGAAACA
Platonic-triangular-123	GCCTGATTGCAATCATATGTACCCCGGTTGAATAACGGATTC
Platonic-triangular-124	AGTTACAAAATAATCGTAAAACTAGCATGTCTTTGAATACCA
Platonic-triangular-125	CGAATTATTCAACAAGAGAATCGATGAACGGTCGCGCAGAGG
Platonic-triangular-126	GCTCATTTTGCGGATGTTTTTGCTTAGAGCTTAATTTTTT
Platonic-triangular-127	CGTTTTAATTCGAGCTTTTTTTCAAAGCGAACAGTA
Platonic-triangular-128	ATTTTCGAGCCCAGACCGGA

Platonic-triangular-129	ACAGGTCAGGACATGTAATTTAGGCAGAGGCAGCAAACTCCA
Platonic-triangular-130	CCTTTAATTGTCGCCATATTTAACAACGCCAATTAGAGAGTA
Platonic-triangular-131	AAGAGGTCATACAGTAGGGCTTAATTGAGAACTCCTTTTGAT
Platonic-triangular-132	CAGCCCTCATTCAGCTAATG
Platonic-triangular-133	TGTTTATCAAACGCCTGTAGCATTCCACAGACAGAACGCGCC
Platonic-triangular-134	TCCTGAACAATCGTCACCAGTACAAACTACACAATAGATAAG
Platonic-triangular-135	TCCCATCCTACATGTACCGTAACACTGAGTTGAAAAATAATA
Platonic-triangular-136	AGCAAATATTTAAATTTTTTTGTAAACGTTAATTAT
Platonic-triangular-137	TTTAAATAATTCGCGTTTTTTCTGGCCTTCCTGTAGTTTT
Platonic-triangular-138	GCCATCAAAAAAGTTTGAGTAACATTATCATCCAATAGGAAC
Platonic-triangular-139	CATTTTTTAATTTGCGGAACAAAGAAACCACTTAAATCAGCT
Platonic-triangular-140	TAAATTTTTGCAGAAGGAGCGGAATTATCATAAAATTCGCAT
Platonic-triangular-141	CATATTCCTGATATTTTGTT
Platonic-triangular-142	GTAATGGGTGCCTAATTTTTTGAGTGAGCTAACTCA
Platonic-triangular-143	TTTTGAATTCGTAATCATGGTTTTTTCATAGCTGTATCGT
Platonic-triangular-144	TTGACGCTCATTCCTGTGTGAAATTGTTATCATACCTACATT
Platonic-triangular-145	GCTCATGGAACGCTCACAATTCCACAACAACAACAGGAAAAAC
Platonic-triangular-146	AGCCATTGCATACGAGCCGGAAGCATAAAGTATATTACCGCC
Platonic-triangular-147	GTAAAGCCTGATCCAGAACA
Platonic-triangular-148	TTTTATCATTGTGAATTACCTTTTTTATGCGATTCCGCG
Platonic-triangular-149	GACCCCAACATTATTATTTTCAGGTAGAAAGATTCTTTT
Platonic-triangular-150	ACTAACGGAACCAGCGATTATACCAAGCGCGTAATAAAACGA
Platonic-triangular-151	AAATCTACGTAAACAAAGTACAACGGAGATTGTTGGGAAGAA
Platonic-triangular-152	CAGTCAGGACTGTATCATCGCCTGATAAATTGCTCATTATAC
Platonic-triangular-153	GTGTCGAAATTTAAGAACTG
Platonic-triangular-154	ATTCGGGGGGTAATAGTTTTTAAAATGTTTAGACTTTTT
Platonic-triangular-155	TTTTACGAGGCATAGTAAGATTTTTGCAACACTATGAACG
Platonic-triangular-156	GACAGCATCGCATAACCCTCGTTTACCAGACCAGCAGCGAAA
Platonic-triangular-157	TCGTCACCCTGACGATAAAAACCAAAATAGCCTTTTGCGGGA
Platonic-triangular-158	TTAAAGGCCGGAGAGGCTTTTGCAAAAGAAGCTTGCAGGGAG
Platonic-triangular-159	TTTTGCCAGAGTCGCTGAGG
Platonic-triangular-160	TTTTCCTGACGAGAAACACCTTTTTAGAACGAGTAGTAAATTTT
Platonic-triangular-161	TTTTTTGGGCTTGAGATGGTTTTTTTAATTTCAACTTTATTTT
Platonic-triangular-162	TTTTATCAGTTGAGATTTAGTTTTTGAATACCACATTCAATTTT
Platonic-triangular-163	TTTTCTAATGCAGATACATATTTTTACGCCAAAAGGAATTTTTT
Platonic-triangular-164	TTTTAATATTCATTGAATCCTTTTTCCCTCAAATGCTTTATTTT
Platonic-triangular-165	TTTTGGATAGCGTCCAATACTTTTTGCGGAATCGTCATATTTT
Platonic-triangular-166	CTATAATATTTTCATTTTTTTGGGGCGCGAGCTGATTTT
Platonic-triangular-167	TTTTGCTGAATATAATGCTGTTTTTTAGCTCAACATGTTTTTT
Platonic-triangular-168	TTTTTAAATATGCAACTAAATTTTTGTACGGTGTCTGGAATTTT

Platonic-triangular-169	TTTTGTTTCATTCCATATAATTTTTCAGTTGATTCTTCAT
Platonic-triangular-170	TTTAGTTAATCCAATTCTGC
Platonic-triangular-171	TTTAGTTTGAAGAAAACTTTTTCAAATATATGAACGAGTAGA
Platonic-triangular-172	ATTTCGCAAAAATCGCAAGACAAAGAACGCGCCATTAGATAC
Platonic-triangular-173	CTGTTTAGCTTGTAAATGCTGATGCAAATCCTGGTCAATAAC
Platonic-triangular-174	TTTTAGCTATTTTTGAGAGATTTTTTCTACAAAGGCTATCTTTT
Platonic-triangular-175	TTTTTTCTAGCTGATAAATTTTTTTAATGCCGGAGAGGGTTTTT
Platonic-triangular-176	AATTTATCACCATCAATTTTTATGATATTCAACCGTTTT
Platonic-triangular-177	TTTTAGGATAAAAATTTTTATTTTTGAACCCTCATATCGT
Platonic-triangular-178	GCTTCTGTAAATATTTTAAATGCAATGCCTGTGAATAACCTT
Platonic-triangular-179	TATATGTGAGAGTAATGTGTAGGTAAAGATTACATAAATCAA
Platonic-triangular-180	TGGAAACAGTCAAAAGGGTGAGAAAGGCCGGACCTTTTTTAA
Platonic-triangular-181	AGACAGTCAACATTTGAATT
Platonic-triangular-182	GCGGGAGAAGCTTTTTCTTTATTTCAACGCATTTT
Platonic-triangular-183	TTTTAAAGGTGGCATCAATTTTTTTCTACTAATAGTAGTAGCATTTAATACTTTT
Platonic-triangular-184	AAGCACAGGAAGATCGTTTTTCACTCCAGCCAGCTTTTTT
Platonic-triangular-185	TTTTCCAGCTTTCATCAACATTTTTTTTTTTTTTTTTTT
Platonic-triangular-186	TTTTTAACAACCCGTCGGATTTTTTTCTCCGTGGGAACAATTTT
Platonic-triangular-187	TTTTACGGCGGATTGACCGTTTTTTAATGGGATAGATTGA
Platonic-triangular-188	GTTGAAAGGAGTCACGTTGG
Platonic-triangular-189	GCATCGTAACTGGTCAGTTGGCAAATCAACATGTAGATGGGC
Platonic-triangular-190	CAGTTTGAGGATCAAACCCTCAATCAATATCCGTGCATCTGC
Platonic-triangular-191	GTATCGGCCTTCACCTTGCTGAACCTCAAATGGACGACGACA
Platonic-triangular-192	TTTTCGACTCTAGAGGATCCTTTTTCCGGGTACCGAGCTCTTTT
Platonic-triangular-193	TTTTCGGCCAGTGCCAAGCTTTTTTGCATGCCTGCAGGTTTTT
Platonic-triangular-194	TGGCCTTCCCAGTCACTTTTTGACGTTGTAAAACGATTTT
Platonic-triangular-195	TTTTCTGTTGGGAAGGGCGATTTTTTCGGTGCGGGGTCTT
Platonic-triangular-196	ATGGCTATTACCTCTTCGCTATTACGCCAGCAATATTTTTGA
Platonic-triangular-197	TGGCACAGACTGGCGAAAGGGGGATGTGCTGGTAAGAATACG
Platonic-triangular-198	ACCTGAAAGCCAAGGCGATTAAGTTGGGTAAGAACCCTTCTG
Platonic-triangular-199	CGCCAGGGTTAACAGAGATA
Platonic-triangular-200	TTTTCAAAGCGCCATTCGCCTTTTTATTCAGGCTGCGCAATTTT
Platonic-triangular-201	TTTTTCCGGCACCGCTTCTGTTTTGTGCCGGAAACCAGGTTTT

Fig. S69. Design pattern for the two-scaffold square tiling. The black strand is the M13mp18 scaffold DNA, the dark blue strand is the phiX174 scaffold DNA, and the other colorful strands are the staple strands.

Number	Sequence
2Scafs-8x9square-1	TTTTGCAAGGTCCATATCTGATTTTCTTTTTGTTAAGCTA

Table S5. Sequences of the two-scaffold square tiling

2Scafs-8x9square-2	TTTAACTTTTTGGCGGCGATAAGCAGCATCATTTTGTGACGACATCATTC
2Scafs-8x9square-3	ATGGGCTTTTATACTGTAACCCAACAGCCATTTTTATAACTGGTAGCTTTTTT
2Scafs-8x9square-4	CACATAGAAACATAAGGCCACGTATTTTGCAACGTATTTAGC
2Scafs-8x9square-5	GGGATCTTTTGTCACCCTCAGCAACGGCTACTTTTAGAGGCTTTGCCATA
2Scafs-8x9square-6	GAATATATCGGAACGAGGGTAGCAGCGAAAGACAGCCCTTAA
2Scafs-8x9square-7	TAATTATTTTTACTCATCGCGAGGGCGTTCATTTTGCAGCCAGC
2Scafs-8x9square-8	AGACGCTTTTTGAGAAGAGTTATCAAAATCATTTTTAGGTCTGAGCTTTA
2Scafs-8x9square-9	CAATAGTCAACATCATAGCCAGTTTGGTCAGTTCCATGAATT
2Scafs-8x9square-10	AAACTGTTTTGCCTAACGACGATGCCCAGAGTTTTATTAGAGCGCCACTG
2Scafs-8x9square-11	AGTCATTTTTGATTGAATCGAGATTGCGATATTTTAACGGTCACATCAGC
2Scafs-8x9square-12	GTCATATTTTAGAGGTTTTACGCTGCATGAATTTTGTAATCACGTCACGA
2Scafs-8x9square-13	CAACAATTTTCTGAACGGACTCATAATCATGTTTTGTGGCGAATACCAGA
2Scafs-8x9square-14	AGGACGGTTGTTAAATTTAACCTGACTATTCATGACAAGTAA
2Scafs-8x9square-15	AAAACGTTTTAACAAGCGCAAAGAAACGCGGTTTTCACAGAATGTCCAGA
2Scafs-8x9square-16	TATATGCCATGCTCAGGAACAAGAGTAAACATAGTGTAAATG
2Scafs-8x9square-17	GGTTGGTTTTGTTATAACCTGATGCAAATTTTTCCAATCGCAAAGGAA
2Scafs-8x9square-18	TTGAACACGAAGTACGCGTTCTTGCAAATCATTATAGGTCTG
2Scafs-8x9square-19	AGGCGGTTTTTTCCTGAATGTCAAGAAGGTGTTTTATAAGCAGGAGGCGG
2Scafs-8x9square-20	GTTGCCTTTTATACAAAACAGCACCTTTAGCTTTTGTTAAGGTACCGATA
2Scafs-8x9square-21	TTTTGGGATGTGCTGCAAGGTTTTCGATTAAGTTAAAAA
2Scafs-8x9square-22	GCCTGTTTTTTAGTATCATAATTCTTACCATTTTGTATAAAGCCTCGCT
2Scafs-8x9square-23	CCACTGTTTTACCCTCAGCATTAGACGAATCTTTTACCAGAACGGGGCAA
2Scafs-8x9square-24	ATGCGTGAAATTTCACGCGGCAAAACATCCTTCATATATACA
2Scafs-8x9square-25	AGGGTTTTCCCCACCGGAATCATAATTACTAGGGGTAACGCC
2Scafs-8x9square-26	CGCCTGTTTTCAACAGTGCCAAGGCGTTAAATTTTTAAGAATAAAAGTCA
2Scafs-8x9square-27	CGACGTTTTTGTAAAACGACGGCCTTTT
2Scafs-8x9square-28	ATTTCATCGGTATAAGTCAAAGGGTCGCCAGCAATATCTTCT
2Scafs-8x9square-29	AAATATTTTTATTTTAGTTAGACCTAAATTTTTTTAATGGTTTGATGAAA
2Scafs-8x9square-30	AGTCGCAGTAGAAACATACGAAGGCGCATAATGAATCTCTTT
2Scafs-8x9square-31	TCAACCTTTTCCTCAGCGGCTTTTACCGCTTTTTCCGGCGTTATAGCATA
2Scafs-8x9square-32	AGCAGCTTTTTTGCAGACCCATTTGGCGAGATTTTAAGCTCAGTCCTTGG
2Scats-8x9square-33	
2Scats-8x9square-34	
2Scats-8x9square-35	
2Scats-8x9square-36	
2Scats-8x9square-37	
2Scats-8x9square-38	
2Scats-8x9square-39	
2Scats-8x9square-40	
2Scafs-8x9square-41	ATGCTTTTTTAGGGATTTTAGCGGCATGGTCTTTTAATATAACCACAAGC

2Scafs-8x9square-42	TTGAATTTTTTATGGCGAGAAAACATGATTATTTTAACTCCTAAGCAAAT
2Scafs-8x9square-43	GTTTTTTTTGAGATGGCAGTTAAGCTCATTTTTTAGGGTTAGCCAAAGT
2Scafs-8x9square-44	AGGCATCCACGAGAACCAGCTTATCAGAAAATCGGTACGGTC
2Scafs-8x9square-45	CATTTCCGAGCATCATCTTGACAACGGAAACCATAAAATTAC
2Scafs-8x9square-46	GCAGAGTTTTGCGAATTATTCTGAGCAAAAGTTTTAAGATGATGAAGATG
2Scafs-8x9square-47	CGGAGCAGTCCAGAAAACCTACCGCGCTTCGTCAGGAGGAAG
2Scafs-8x9square-48	CATTTGGTGGTAGAAGTCGTCATAATGTCAATAGATAATTAC
2Scafs-8x9square-49	TTACATTTTTTAACAATTTCTTTTTTAATGTTTTGAAACAGTACCTGAA
2Scafs-8x9square-50	ATTACGTTTTCCAGCTGGCGAAAGGTTTT
2Scafs-8x9square-51	AACGTCTTTTAAAAATGAAAACAGAGAGAATTTTTAACATAAAAACGAGC
2Scafs-8x9square-52	GTCTTTTTTTCCAGAGCCTATATTTATCCCATTTTATCCAAATAATGTTT
2Scafs-8x9square-53	AACGCATTTTAAGACACCACTTTTGTCACAATTTTTCAATAGAAAGCAGA
2Scafs-8x9square-54	TGTAATTTAGATTCATATGGTTTACCAGCGCCAACGCCAACA
2Scafs-8x9square-55	ACCAGGTTTTCAAAGCGCCATTCGCTTTT
2Scafs-8x9square-56	TTTTCATTCAGGCTGCGCAATTTTCTGTTGGGAAATTGA
2Scafs-8x9square-57	GAATCGTTTTCCATATTTAACAAAGACAAAATTTTGGGCGACATTCGGAA
2Scafs-8x9square-58	TGCGGGCCTCTAACGCTCAACAGTAGGGCTTAGGGCGATCGG
2Scafs-8x9square-59	GGCATTTTTTTCGAGCCAGGTAAAGTAATTTTTTCTGTCCAGACAAAGA
2Scafs-8x9square-60	GATTAATTTTGACTCCTTATTAGCAAACGTATTTTGAAAATACATCAGCT
2Scafs-8x9square-61	ACAACATGTTACATAAAGGTGGCAACATATAGACGACAATAA
2Scafs-8x9square-62	ATCTTAAAGTACCGACAAAAGTAATAAGAGAATATAAACTTC
2Scafs-8x9square-63	AATGCATTTTGAACGCGCCTGAAAAATAATATTTTTCCCATCCTAGGCAT
2Scafs-8x9square-64	CAGATATTTTGCCGAACAAAAAACCGAGGAATTTTACGCAATAATAATCA
2Scafs-8x9square-65	TGTAGAAACCAACGGAATACCCAAAAGAACTATTTACGAGCA
2Scafs-8x9square-66	AATGGGATAAGTCCTGAACAAGTTTATCAACAATAGAAGCCT
2Scafs-8x9square-67	ATAATCTTTTGGCTGTCTTTAAGTACCGCACTTTTTCATCGAGAAGTAAG
2Scafs-8x9square-68	AAGCCCTTTTAATAATAAGAGAAATAGCAATTTTTAGCTATCTTACATCG
2Scafs-8x9square-69	TTTTTATTTCCGAAGCCCTTTTTAAGAAAACAAGCAAGCCG
2Scafs-8x9square-70	TGGAAAAACGGGTATTAAACCCCTTATCATTCCAAGCACTGG
2Scafs-8x9square-71	TAGGAATTTTTCATTACCGCGCTTATCCGGTTTTTATTCTAAGAAGAGTT
2Scafs-8x9square-72	TAACTGTTTTAACACCCTGAGGTAATTGAGCTTTTGCTAATATCATCCCG
2Scafs-8x9square-73	TTAGCGAACCGAGAGATAACCCACAAGAATTCGCGAGGCGTT
2Scafs-8x9square-74	CGAGTGAATCAGATATAGAAGGCCCAATAGCAAGCAGTCGGC
2Scafs-8x9square-75	ACTTGCTTTTGGGAGGTTTTTGCACCCAGCTTTTTACAATTTTATAGAAT
2Scafs-8x9square-76	CCAACGCTAACAGGGAAGCGCATTAGACGGGCCTGAATCTTA
2Scafs-8x9square-77	AAAAATGATTAGTTGCTATTTGAAGCCTTAAATCAATAAAAT
2Scafs-8x9square-78	
2Scafs-8x9square-79	
2Scafs-8x9square-80	GAAAACTTTTCACCATTACCCGTTGACGATGTTTTTAGCTTTAGGTCGGC
2Scafs-8x9square-81	ACAGGTGCCGAACAGGTTGCGCCGCCAAAACGTGTCTGTAAA

2Scafs-8x9square-82	GAAACGACTATCAAAATATAAAGCATTAACCGTCAAATTTTT
2Scafs-8x9square-83	AATAAAAATAAACAGCCATATATTTGCCAGTTACAAAGTCTG
2Scafs-8x9square-84	TTGATATAACCGTCTTCTCGTTGCGGCAAAACTGCGCCGATA
2Scafs-8x9square-85	AAATCATTTTCCAGTAGCACCAAAAGGAGCCTTTTTTTAA
2Scafs-8x9square-86	TTGTATTTAAATATGCTTTTAACTAAAGTA
2Scafs-8x9square-87	GATAAGTTTTAGGTCATTTTTGCGGTTTT
2Scafs-8x9square-88	TTTTATGGCTTAGAGCTTAATTTTTTGCTGAATAGAGGT
2Scafs-8x9square-89	GAATTTTTTTTTTAAACAGCGTTGCGCCGACTTTTAATGACAACACTTTT
2Scafs-8x9square-90	GCTCAACATGTTCGGTTTATCAGCTTGCTTTCTAATGCTGTA
2Scafs-8x9square-91	AAAAACTTTTCATTTTCGTTAATATCAAGTTTTTTGGGGGGAGCATGGGG
2Scafs-8x9square-92	AAGCCTTTTTCTACGCGATTCCTCCAGCAATTTTTCTTGAACACTCATCC
2Scafs-8x9square-93	TGTGCCAATTCATCCTTAATACCTTTCTTTTCATTGTAGCAT
2Scafs-8x9square-94	AAGGAAGGTCTATAGTGTTATCCCCTTCGGGGCGGTTTGCGA
2Scafs-8x9square-95	TAGAAATTTTGGAACAACTAATAATAATTTTTTTTTTTCACGTTGAAAACG
2Scafs-8x9square-96	ATTAACTTTTTTCTCAGTAACAGCCTTATGGTTTTCCGTCAACATTAGCA
2Scafs-8x9square-97	GTGAGATTTTGTGTCAAAAACATCAGCATGATTTTGCCTGTCGCACAACG
2Scafs-8x9square-98	TTATCGAACTTTGCATTCATCAAACGCTGAAACATATCACCA
2Scafs-8x9square-99	ATGAATCACGAACGTCAGAAGCAGATACAAACTCATTTTCTG
2Scafs-8x9square-100	TTCCAGTTTTACGTTAGTAATATGGGATTTTTTTGCTAAACAACCGGCA
2Scafs-8x9square-101	CCCTGCTTTTATACGAAAAGTATCCATCTGCTTTTTTATGGAAGCCCAAC
2Scafs-8x9square-102	CGACCATTTTATATCACGAAAAGCATTGGGATTTTTATCATAAAGAGTA
2Scafs-8x9square-103	GATTGAGAAAACGCCTCTAATCGGTCGTCAGCAAGCATTGGG
2Scafs-8x9square-104	CTGTAGAGAGCTTGATGCGGTACAGAATCTCTTCCACATTCC
2Scafs-8x9square-105	GTACAATTTTACTACAACGCACAGACAGCCCTTTTTCATAGTTAGCAGAG
2Scafs-8x9square-106	GAAATGTTTTCCACAAGCCTCAAAGTCAAAATTTTTAATCAGCGTCCATA
2Scafs-8x9square-107	TCAGGCTTTTACACAAAAATCGGCGTGTGAATTTTTCATTAGCCTAACGA
2Scafs-8x9square-108	GGGTAATAAGTGCGACCCTCGGCAGCAAGAAGACATTCAGAA
2Scafs-8x9square-109	TTTCAGGAGCCTCGATACGCTCAATAGCAGGTTTAAGGATAG
2Scafs-8x9square-110	GAGCCATTTTCCACCCTCATCAAGCCCAATATTTTGGAACCCATGGAGGT
2Scafs-8x9square-111	ACCATATTTTAAAAAGCCTCGGGAGGGTGTCTTTTAATCCTGACGCATAC
2Scafs-8x9square-112	TCAACGTTTTCTACCTGTAGTAAAGTGCACCTTTTGCATGGAAATAGCCA
2Scafs-8x9square-113	GACAAATTAGGAAGACGGCCATTAGCTGTACGTTATTTCCTA
2Scafs-8x9square-114	ACTCAGTGAAAACATACAATTCAAGATTTGGAGGCAGAGGTT
2Scafs-8x9square-115	ATAGGTTTTTGTATCACCGTTAGTACCGCCATTTTCCCTCAGAACCGTTC
2Scafs-8x9square-116	ATACCATTTTTCAGCTTTACCAACAGCTTTATTTTTCAATACCATTAGGG
2Scafs-8x9square-117	TTTGCTTGTTCCAAGTATCGGCGTCTTTCCAGAAATCAGTAC
2Scafs-8x9square-118	TTAGGATTTTTTAGCGGGGTCAGGCGGATAATTTTGTGCCGTCGATATAA
2Scafs-8x9square-119	ACCACACCAGTGCGTACCCGACGACCAAAATGAAAAATATCA
2Scafs-8x9square-120	ATATGATTTTGAAGAGCCATAGTCAACCTCATTTTGCACTAACCTCCGAA
2Scafs-8x9square-121	TTTTAACAGCTTCTTGGGAAGTTTTTAGCGACAGCCGCCA

2Scafs-8x9square-122	TTTAGCTTTTTCCTAGACCTTTAGCATTTT
2Scafs-8x9square-123	CTTTGCAGTAGTTGGTTTTTAGTGAGTTGTTCTAGAAATATC
2Scafs-8x9square-124	CGAGCATTTTCGTATAACGTAGAATCAGAGCTTTTGGGAGCTAAATTGGG
2Scafs-8x9square-125	TTTTAATCGGAACCCTAAAGGTTTTGAGCCCCCGATTTGA
2Scafs-8x9square-126	GCTTAATTTTTGCGCCGCTACCGGCGAACGTTTTTGGCGAGAAAGGAAGG
2Scafs-8x9square-127	ACGGGGAAAGCAGGGCGCGTACTATGGTTGCTTTAGAGCTTG
2Scafs-8x9square-128	TTTTGCAAGTGTAGCGGTCACTTTTGCTGCGCGTAGCCGC
2Scafs-8x9square-129	TTTTAAGAAAGCGAAAGGAGCTTTTGGGCGCTAGGGCGCTGTTTT
2Scafs-8x9square-130	GTCGAGTTTTGTGCCGTAAAGCACTATTTT
2Scafs-8x9square-131	TTTTTATCAGGGCGATGGCCCTTTTACTACGTGAATTTAG
2Scafs-8x9square-132	ACAGGATTTTACGGTACGCCAGTGTTTTTATTTTTAATCAGTGAGTCCAA
2Scafs-8x9square-133	ATCAAGTTTTCAGGAGGCCGATTAAAGGGATCCATCACCCAA
2Scafs-8x9square-134	TATCGGTTTTCCTTGCTGGTAATATTACCGCTTTTCAGCCATTGCGTCCA
2Scafs-8x9square-135	TTTTAAAATCCTGTTTGATGGTTTTTGGTTCCGAACAAAC
2Scafs-8x9square-136	CGTCAATTTTAGGGCGAAAAACCGTCTTTT
2Scafs-8x9square-137	CACGCATTTTAATTAACCGTTCTTTGATTAGTTTTTAATA
2Scafs-8x9square-138	TTTTAGTGTTGTTCCAGTTTGTTTTGAACAAGAGTTCCAT
2Scafs-8x9square-139	GAACGTGGACGCCACCGAGTAAAAGAGTCTGCCACTATTAAA
2Scafs-8x9square-140	ACATCTCAAAAGAATATTTTGCCCGAGATAGGGTTGTTTT
2Scafs-8x9square-141	CCCTTATAAAACTTGCCTGAGTAGAAGAACTATCGGCAAAAT
2Scafs-8x9square-142	TTTTGGCCAACGCGCGGGGAGTTTTAGGCGGTTTGAATAA
2Scafs-8x9square-143	CTACATTTTTTTGACGCTCTGGATTATTTATTTTCATTGGCAGATTTTC
2Scafs-8x9square-144	TTGAATTTTTGGCTATTAGTCAACATACGAGTTTTCCGGAAGCATAAAGTTTTT
2Scafs-8x9square-145	TTTTGTAAAGCCTGGGGTGCTTTTCTAATGAGTGAGCTAATTTT
2Scafs-8x9square-146	TTTTCTCACATTAATTGCGTTTTTTGCGCTCACTGTATTT
2Scafs-8x9square-147	AAGGGATTTTCATTCTGGCCACCCTTCTGACTTTTCTGAAAGCGTCTGTC
2Scafs-8x9square-148	GTCGGGAAACAAGAATACGTGGCACAGACAACCCGCTTTCCA
2Scafs-8x9square-149	GTGCCATTTGCTGCATTAATGAATCTTTT
2Scafs-8x9square-150	CCAGGGTGGTTTCACCAGTCACAGCCAGTCGTATTGGGCG
2Scafs-8x9square-151	CGCTGGTTTTTTGCCCCAGCAGGCGTTTT
2Scafs-8x9square-152	TTTTCAGCTGATTGCCCTTCATTTTCCGCCTGGCCAATAC
2Scafs-8x9square-153	GCAGCAAGCGAACAGGAAAAACGCTCATGGACTGAGAGAGTT
2Scafs-8x9square-154	TTTTCATTTTCCAGTGAGACGGGCAATTTT
2Scafs-8x9square-155	TTCGGTTTTTCGCTGAGGCTAGGAAGCCCGATTTTAAGACTTCAAATATCGTTTT
2Scafs-8x9square-156	TTTTAAGCGGCTCACCTTTATTTTGCATCAACAGGCCACATTTT
2Scafs-8x9square-157	TTTTACCAACCAGAACGTGAATTTTAAAGCGTCCTCTGCG
2Scafs-8x9square-158	GAATAATTTTGGCTTGCCCTGGGCTTGAGATTTTTGGTTTAATTTGATTT
2Scafs-8x9square-159	GCGTGTTGAATTACCTTATGCCAACTTTAATCATTGAGCGAA
2Scafs-8x9square-160	TAAGAATTTTCTGGCTCATTATACCATTTT
2Scafs-8x9square-161	TTTTGTCAGGACGTTGGGAAGTTTTAAAAATCTACTCAGT

2Scafs-8x9square-162	GGCGCATTTTTAGGCTGGCTCCGGATATTCATTTTTTACCCAAATAACAA
2Scafs-8x9square-163	GAACTAACGGCAACGTAACAAAGCTGCTCATGTTAATAAAAC
2Scafs-8x9square-164	CATTATTTTTACAGGTAGAAAGATTTTTT
2Scafs-8x9square-165	TTTTCATCAGTTGAGATTTAGTTTTGAATACCACAGACCA
2Scafs-8x9square-166	TGTTACTTTTTAGCCGGAACGAACTGACCATTTTACTTTGAAAGACGCC
2Scafs-8x9square-167	CAGATACATAAGGACAGATGAACGGTGTACATTCAACTAATG
2Scafs-8x9square-168	AAAAGGTTTTAATTACGAGGCATAGTTTTT
2Scafs-8x9square-169	TTTTAAGAGCAACACTATCATTTTTAACCCTCGTTCTCCA
2Scafs-8x9square-170	GACCCCTTTTCAGCGATTATTTGTATCATCGTTTTCCTGATAAATAA
2Scafs-8x9square-171	GATAAAAACCTGTGTCGAAATCCGCGACCTGTACCAGACGAC
2Scafs-8x9square-172	AGCGAGTTTTAGGCTTTTGCAAAAGATTTT
2Scafs-8x9square-173	TTTTAGTTTTGCCAGAGGGGGTTTTTAATAGTAAATCTTT
2Scafs-8x9square-174	GTTTCCTTTTATTAAACGGGAACCTAAAACGTTTTAAAGAGGCAACAATA
2Scafs-8x9square-175	GGATAGCGTCAAGAATACACTAAAACACTCAATGTTTAGACT
2Scafs-8x9square-176	CTGCGGTTTTAATCGTCATAAATATTTTT
2Scafs-8x9square-177	TTTTCATTGAATCCCCCTCAATTTTATGCTTTAAAAGGAA
2Scafs-8x9square-178	ACGAGAATGAAGGACTAAAGACTTTTTCATGCAGTTCAGAAA
2Scafs-8x9square-179	AATCAATTTTAAATCAGGTCTTTACCTTTT
2Scafs-8x9square-180	TTTTCTGACTATTATAGTCAGTTTTAAGCAAAGCGTTTGC
2Scafs-8x9square-181	TAAAGGCCGCTGATTGCATCAAAAAGATTAAGTGCAGGGAGT
2Scafs-8x9square-182	TTTTGGAAGCAAACTCCAACATTTTGGTCAGGATTATATA
2Scafs-8x9square-183	TTTTCGTTTTAATTCGAGCTTTTTCAAAGCGAACCAGACCTTTT
2Scafs-8x9square-184	TCATAGCACTACGAAGGCACCTAAAATACGTAATGCTGGAGG
2Scafs-8x9square-185	AATAGTCAATCATAAGGGAACCGAGGCGCAGACGGTCACGCA
2Scafs-8x9square-186	CGATAAAAGTACAACGGAGATACCAAGCGCGAAACAACCAAC
2Scafs-8x9square-187	GAAGTGAACGAGTAGTAAATTGACGAGAAACACCAGTCCGCA
2Scafs-8x9square-188	ACTGATTAATCTTGACAAGAAGACCTTCATCAAGAGAGCAGT
2Scafs-8x9square-189	CGCATAACCGAGAGAGTACCTTTAATTGCTCACCATCGCCCA
2Scafs-8x9square-190	GCTTTCAAACCAGTCCTTGACATGTGACTCATATCTCTCGTT
2Scafs-8x9square-191	CTCTACTTTTCATGAACAAAGAACGTGCCAATTTTGCATATTAAGTCACC
2Scafs-8x9square-192	CATCCAACGCTTCATGAACTTAATCCACTGTCCACTTCTCCT
2Scafs-8x9square-193	GGCATTTTTTAACACCATCCGTCAGTTTTTGTTTTACAGAATCGTGCTTC
2Scafs-8x9square-194	CGAAAACACCCACCGGTCGCAAAGTAAGATAGTTGATGG
2Scafs-8x9square-195	TCGAGCTTTTTGCGCAAGGATAGGTCTTTT
2Scafs-8x9square-196	TTTTGAATTTTCCATTTTCCTTTTGCCAGCAGTCGGAGT
2Scafs-8x9square-197	CAGTCGGGAGACACTTCGATTTAATTCGTAAAGTAGTGTTAA
2Scafs-8x9square-198	AGTAGTTTTTAATTCCTGCTTTATCATTTT
2Scafs-8x9square-199	CCAAGTATCGTGCCAAGAAAATTGGTATCAGGGTTATACAAA
2Scafs-8x9square-200	TTTTAGTGCCAAGCTTGCATTTTTGCCTGCAGGTAACAC
2Scafs-8x9square-201	GGATCCCCGGGAGAGGTGAGGCGGTCAGTATTCGACTCTAGA

2Scafs-8x9square-202	AAACATTTTTCGCCATTAAAACCACCAGCAGTTTTAAGATAAAACTACCG
2Scafs-8x9square-203	AGCTCGTTTTAATTCGTAATCATGGTTTT
2Scafs-8x9square-204	TTTTTCATAGCTGTTTCCTGTTTTTGTGAAATTGCCCTA
2Scafs-8x9square-205	ACAATTCCACACTTTAATGCGCGAACTGATAGTTATCCGCTC
2Scafs-8x9square-206	AATACCTAAGAACGTCAGTGTTTTCTTCTGCGTCAGGAACGA
2Scafs-8x9square-207	CAGCAGCAAAAATACCGACCGTGTGATAAATACGCTGAGAGC
2Scafs-8x9square-208	AATCTATTTTAAGCATCACCCAATATCTGGTTTTTCAGTTGGCAATTTTC
2Scafs-8x9square-209	AAAGGAATTGGACAAAGAACGCGAGAAAACTATCAACAGTTG
2Scafs-8x9square-210	TCACTCTATCAAACCCTCAATTTGCTGAACCTCAAACTTCCG
2Scafs-8x9square-211	GGTTATTTTTCTAAAATATCGCCGTCAATAGTTTTATAATACATTGCTTA
2Scafs-8x9square-212	AAGTATTAGAAGACTACCTTTTTAACCTCCGTGAGGATTTAG
2Scafs-8x9square-213	TTGCCTAACTAATAGATTAGATTTAGGAGCACTAACTTAGTA
2Scafs-8x9square-214	CAAACATTTTATTCGACAACAATTTTAAAAGTTTTTTTGAGTAACGATTA
2Scafs-8x9square-215	GCGGAACAAATGAAAACATAGCGATAGCTTAATTATCATTTT
2Scafs-8x9square-216	CCTCAATGCCCGAACGTTATTTCGTATTAAATCCTTGTAAGG
2Scafs-8x9square-217	CACCAGTTTTAAGGAGCGGATGGCAATTCATTTTTCAATATAATCAATAA
2Scafs-8x9square-218	GATTATACTTATAAATCAATATATGTGAGTGCTGATTGTTTG
2Scafs-8x9square-219	CCAGCACTGATTATCAGATGAATTATCATCATATTCAGGAAG
2Scafs-8x9square-220	TAATGGTTTTAAGGGTTAGAAACAGAAATAATTTTAGAAATTGCGATTAA
2Scafs-8x9square-221	GTTTAACGTCAACAAACATCAAGAAAACAAATAGATTTTCAG
2Scafs-8x9square-222	CCAACGATTATTTGCACGTAAACCTACCATATCAAAGCGTCC
2Scafs-8x9square-223	AATATATTTTCAGTAACAGTTTCGCCTGATTTTTTGCTTTGAATAATCGC
2Scafs-8x9square-224	GGGACAAGAAACAATAACGGAACCTTTTACATCGGGTAAAAA
2Scafs-8x9square-225	ATAAACTTTTGTGACGATGAGTAAAAATGTCTTTTTACAGTAGAGAGAAAT
2Scafs-8x9square-226	TGTCAACAAGTCAATAGCAAGGCCACGACGCCTCTTTTAAAA
2Scafs-8x9square-227	GTAACTTTTTTGACTCATGAGGACTCAGATATTTTGTAATCCACGAATGG
2Scafs-8x9square-228	AGAAAGTTTTACGGAGAGCGATCTCGAAGGATTTTGTCGCCAGCGGTTCA
2Scafs-8x9square-229	CGTACGGATTATAACCGGAGTAGTTGAAATGCGGTCTGGAAA
2Scafs-8x9square-230	AAATCGTTTTAAATCATCTTTGAGCTTAATATTTTGAGGCCAAAGGTAAT
2Scafs-8x9square-231	AAGACGTTTTACCAATCTGACCAAGATGGGATTTTAAGGTCATGCTCAGA
2Scafs-8x9square-232	TTGTTACTCGGGCATACGCTCGGCGCCAGTTCAATCCAAACT
2Scafs-8x9square-233	CCCACATTTTAAGTCCAGCGGAGCACGAGAGTTTTCGGTCAGTAGTGAAT
2Scafs-8x9square-234	ATTAGATTTTCATAATTTATGGCCGAAGCCCTTTTCTGCAATTAAGGTAT
2Scafs-8x9square-235	GGAAAGCGAGAATTGTTGACCACCTACATACCAACAGGAGCA
2Scafs-8x9square-236	ATGATGTTTTAGACAGGCCGCAATGACGGCATTTTGCAATAAACTCAAAG
2Scafs-8x9square-237	ACGAGCTTTTGCCTTTACGCCCTCGCAACGGTTTTCTGCGGACGACTTCC
2Scafs-8x9square-238	AATTCAGCGCCCAGGGCGAGCGCCAGAACGTTGTTTTCCGTA
2Scafs-8x9square-239	GCGCGTTTTTACACGCAAGGGACGCTCGACGTTTTCCATTAATAATTTTT
2Scafs-8x9square-240	ACCTTTTTTAGACATTACACACGTAATTTTTTTTGACGCACGTTTCCT
2Scafs-8x9square-241	AACAGACAGCGGCTTTAACCGTAAACGCGAACAATTGATAGA

2Scafs-8x9square-242	AATCGTGATGAACATAATAAGTTTGAATGTTGACGGCTGAAA
2Scafs-8x9square-243	AATATCCCTCAACGCAGCGACTACCATAAACGCAAGCAGAAC
2Scafs-8x9square-244	TGTAGCCGGCAGAAGCCTGAACGGTTAAATCCAAAAAATACT
2Scafs-8x9square-245	AGAATCTGGTTGAACAGCATCTTTCTTACCTATTAGCTGAGA
2Scafs-8x9square-246	ATAGCACAAACAGGCAAAAAAAAGACTCAAAGCGAACGCCTTT
2Scafs-8x9square-247	TAGTCGTTTTGAACCGAAGATTTAGGGTCGGTTTTCATCAAAAGCGCATT
2Scafs-8x9square-248	CAACAGAAACCAGCCGTTTGAGCTTGAGTAAAATATCAGCAC
2Scafs-8x9square-249	TTGGTATTTTAAATACTGACAACCTGATTAGTTTTCGGCGTTGACGTCGC
2Scafs-8x9square-250	ATCTGAATGCATTCAATATCTGGTTGAACGGCAGATGTATCC
2Scafs-8x9square-251	GTCGTATTTTACCCAGCTTGGTAAGTTTTT
2Scafs-8x9square-252	TTTTTGGATTAAGCACTCCGTTTTTGGACAGATTTGGTCA
2Scafs-8x9square-253	TTCTTTGATTTGTCATTGTGAGCATTTTCATCTGCGAGTCAT
2Scafs-8x9square-254	GTTGCGTTTTGCTCATTCTGATTCTGTTTT
2Scafs-8x9square-255	ACTCCTTTTGCTGATGAACTAACCGCTGATTCTGCGCAAGAG
2Scafs-8x9square-256	CGTTGGTGTAGTTTTATGGGCGCATCAGCA
2Scafs-8x9square-257	CATCTGCCAGTGAGCCATTTGGGAATTAGAGCCGTAACCGTG
2Scafs-8x9square-258	TATTGATTTTCGGAAATTATAATTATCACCGTTTTTCACCGACTTTTGAG
2Scafs-8x9square-259	GGGACGTTTTACGACAGTATCGGCCTTTT
2Scafs-8x9square-260	TTTTTCAGGAAGATCGCACTTTTTCCAGCCAGCTGTAAA
2Scafs-8x9square-261	GCTTCTGGTGCCAACCGATTGAGGGAGGGAAGTTCCGGCACC
2Scafs-8x9square-262	TCATTACAAGAAGTCCTTTACCCTGCAACGTACCTTAAGGTG
2Scafs-8x9square-263	GCAAGGCCGGAAATCTCCAAAAAAAAGGCTCCATTACCATTA
2Scafs-8x9square-264	TCACCATTTTATGAAACCATAATCAAGTTTGTTTTCCTTTAGCGTGAGAA
2Scafs-8x9square-265	GCGTTTTCATTTTCAACAGTTTCAGCGGAGTCAGACTGTAGC
2Scafs-8x9square-266	CAAGCAAATCAGTAGCGACAGCGATAGCAGCACCGTACTTAT
2Scafs-8x9square-267	TTTTCGTTTTGTCATAGCCCCAAAATCACCGTTTTGAACCAGAGCCGTCT
2Scafs-8x9square-268	CCGCCTCCCTCGTAACGATCTAAAGTTTTGTCACCACCGGAA
2Scafs-8x9square-269	GAAATGCCATCTTTTCATAATCCTTATTAGCGTTTGCAGCAG
2Scafs-8x9square-270	CCGCCATTTTCCCTCAGAACCGCCACCAGAATTTTCCACCACCAGCACCA
2Scafs-8x9square-271	GCATTGACAGTACCGTAACACTGAGTTTCGTAGCCGCCGCCA
2Scafs-8x9square-272	GATTCTCACCACCCTCAGAGCCGCCACCCTCAGAGCCAAATC
2Scafs-8x9square-273	TGAGGCTTTTAGGTCAGACGCCTCATTAAAGTTTTCCAGAATGGACCTCA
2Scafs-8x9square-274	CTGAATTTACCGCCACCCTCAGAACCGCCACAAGCGCAGTCT
2Scafs-8x9square-275	TCTCTTCACAAACAAATAAATATTGGCCTTGATATTTTTGAG
2Scafs-8x9square-276	CAGTAATTTTGCGTCATACAAATAAGTTTTATTTTACGGGGTCAGCCGGA
2Scafs-8x9square-277	ACAGTGCCCGGAGGGTTGATATAAGTATAGCTGCCTTGAGTA
2Scafs-8x9square-278	AAGCAACAGGAGTGTACTGGTTGGCTTTTGATGATAGCATCT
2Scafs-8x9square-279	ACAGTTTTTTAATGCCCCCTTGAAAGTATTATTTTAGAGGCTGAGAAGGA
2Scafs-8x9square-280	AAACCTTATTATTCTGAAACAGCCTATTTCGGAACCGCTGTT
2Scafs-8x9square-281	TGGCGCTTTTATAATCTCGGGCTTGGAAAGATTTTTTGGTGTTTTGAGGG
2Scafs-8x9square-282	AGGCAGTCGGCCATAATAGACGCAACGCGAGATAAACATCAT
----------------------	--
2Scafs-8x9square-283	GAAGGATTTTCGTCAATAGTATCATGGCGACTTTTCATTCA
2Scafs-8x9square-284	GACTCCTTTTTTCTGTTGATCATTTTGTGCATTTTTATACCTGGTACGGG
2Scafs-8x9square-285	TGCCCGGCGTCTTTCGTATTCTGGCGTGAAGATAAACGTTAT
2Scafs-8x9square-286	CCTGATTTTTTCAGCGAAACAGACCAAACCATTTTTGAAACCAACTCGCC
2Scafs-8x9square-287	GACTGATTTTATGCCAGCAATCTCATTTTGCTTTTATCTCGGCAAAATAA
2Scafs-8x9square-288	TAATCTCTTTTCTCTTTCTGATTGTCCAGTTCTGGAGACAAA
2Scafs-8x9square-289	CCACCATTTTGCAAGAGCAGTAAATCACCTCTTTTACTTAAGTGGGCATT
2Scafs-8x9square-290	TTAGTATTTTAGCTCTTTTTCGGCGTCAACCTTTTATACCAGCAGTGGCG
2Scafs-8x9square-291	AATTTAGACAAGGAAGCATCAGCACCAGCACCGCCTCCAAAC
2Scafs-8x9square-292	ATGCCTTTTTACAGTATTGTCACCGGAGGCGTTTTGCTTTTTGACGCTCC
2Scafs-8x9square-293	CAAGCATTTTTTAAGCTCAGCAAGATAATCATTTTCGAGTATCCTCACCC
2Scafs-8x9square-294	ATACCAGCATTTCCTTTATCAGCGGCAGACTTGGCAGATTTA
2Scafs-8x9square-295	TTAGCCTTTTATAGCACCAGTAGGAACATTATTTTGAGCCTTGAATGCCA
2Scafs-8x9square-296	CCAAGTTTTTCCAACCAAATCAGAAACGGCATTTTGAAGTGCCAGCAGCT
2Scafs-8x9square-297	GGAATACGGCCTCATCAGGGTAAACAAAACTAGGGGAGTTTA
2Scafs-8x9square-298	TACGCACATCACCTTGAATGCTATCGGTAGCAAGCAGTATGT
2Scafs-8x9square-299	GTTACCCAATAGCACCAAACAAAGCAATACCGCCAGAGAAGG
2Scafs-8x9square-300	GCAAGAAGTAGCGGTAAAGTTCAATCCGCGGCATTTAACAAT
2Scafs-8x9square-301	ACAAAGGGTATAATAACCACCCACACAGTCCTTGACTCAGAG

Fig. S70. Design pattern for the 3 \times **3 square origami array.** The black strand is the scaffold DNA, and other colorful strands are the staple strands. The white-washed panels indicate backward-facing origami.

Table S6. Sequences of the 3 \times **3 square origami array.** Three types of square origami are modified from the square Platonic tiling (fig. S67 and Table S3). The 43 staple strands that have their 5' or 3' ends exposed on the termini of the outward arms were deleted from the original design, and 43 new helper strands with sticky ends (5 nt) overhangs were added. The 43 strands that are exchanged are numbered 37-40, 54, 55, 65, 69, 70, 73, 74, 77, 78, 93, 98, 110, 111, 114, 119, 188-211 on the original design.

Number	Sequence
CenterSquare-1	CGGGGTAGAGCTTAATTGCTGTTTTAATATAATGCAAGTTACCAGATTTTAGGAA
CenterSquare-2	TCGCAATTTTATGGTCAATATAAAGATTCAATTTTAAGGGTGAGACAGAG
CenterSquare-3	AGCCCAAGTACGGTGTTTTTCTGGAAGTTTCATTCGCATA
CenterSquare-4	ACGTCCATATAACAGTTGATTTTTTCCCAATTCTGCCACA
CenterSquare-5	AGTGTAGGTCGACTCTTTTTAGAGGATCCCCGGGTGCATA
CenterSquare-6	ACGTCACCGAGCTCGAATTCGTTTTTAATCATGGTGGAAA
CenterSquare-7	CGGGGGGTTTTCCCAGTCACGTTTTACGTTGTAAAGCCGCGCTTAATTTTTGCGC
CenterSquare-8	TCCGAGGCGGTTTGCGTTTTTATTGGGCGCCAGGGCAGGT
CenterSquare-9	CTTAATGGTTTTTCTTTTCACTTTTCAGTGAGACGCTGAG
CenterSquare-10	AAGAAATTTTAATCTACGTTACAGGTAGAAATTTTGATTCATCAGTTGAGATAGT
CenterSquare-11	TGGTGCAGTCGGGAAACCTGTTTTCGTGCCAGCTTAGCC
CenterSquare-12	AACCCGCTCACAATTCTTTTCACACAACATACGAGCTTAA
CenterSquare-13	AACGTTTGCGTTGCGCTTTTCACTGCCCGCTTTCAATAA
CenterSquare-14	GAAGGCTTTTTTATCCGGTAATCAGAAAAGCTTTTCCCAAAAACAGGAAGATAGT
CenterSquare-15	TGGTGATTAATGCCGGAGAGGTTTTGTAGCTATTTAGAGC
CenterSquare-16	ATCCTGCCTGAGAGTCTTTTTGGAGCAAACAAGAGCAGGT
CenterSquare-17	CTTAAAATCGATGAACGGTAATTTTTCGTAAAACTCCCGA
CenterSquare-18	TTTGTTGATATTCAACTTTTCGTTCTAGCTGATAAAATAA
CenterSquare-19	TCGGTCCGGAAGCATAAAGTGTTTTTAAAGCCTGGGGCCC
CenterSquare-20	TCCTCATTGTATAAGCAAATATTTTTTAAATTGTAAACGGTACT
CenterSquare-21	CGGGGTTAATATTTTGTTAAATTTTATTCGCATTAATATA
CenterSquare-22	GAACGCTTTTCATCAAAAATAATTCGCATA
CenterSquare-23	ACGTCGCGTCTGGCCTTCCTGTTTTTAGCCAGCTTACAAA
CenterSquare-24	GGATTCTTTTCCGTGGGAACAAACCTTAA
CenterSquare-25	TCGGTGGCGGATTGACCGTAATTTTTGGGATAGGTGCGTA
CenterSquare-26	CTGCCATTTTGTTTGAGGGGACGACAATAA
CenterSquare-27	TGGTGGACAGTATCGGCCTCATTTTGGAAGATCGCTTTTA
CenterSquare-28	GAAACCTTTTAGGCAAAGCGCCATTCAGGT
CenterSquare-29	CTTAACGCCATTCAGGCTGCGTTTTCAACTGTTGGACGTA
CenterSquare-30	CGCTATACGCCAGCTGTTTTGCGAAAGGGGGGATGTATAGT
CenterSquare-31	TCCTCGCTGCAAGGCGATTAATTTTGTTGGGTAACGCCAGGTACT
CenterSquare-32	TCCTCTTTTGATAAGAGGTCATTTTTTTTGCGGATGGCTGTACT

CenterSquare-33	ACCGAGATTAGAGAGTTTTTACCTTTAATTGCTCCATAGT
CenterSquare-34	CTTAAGCGTTTTAATTCGAGCTTTTTTCAAAGCGAAACTG
CenterSquare-35	GCCCGATTTTAAGACTTCAAATATCCAGGT
CenterSquare-36	TGGTGGTCTTTACCCTGACTATTTTTTATAGTCAGAAGTT
CenterSquare-37	TGACCATTTTTAAATCAAAAATCAGAATAA
CenterSquare-38	TCGGTGAATCGTCATAAATATTTTTTCATTGAATCTAGCA
CenterSquare-39	TGGATATTTTGCGTCCAATACTGCGCTTAA
CenterSquare-40	ACGTCAATAGCGAGAGGCTTTTTTTTGCAAAAGAAACGAT
CenterSquare-41	CCAGACTTTTGACGATAAAAACCAAGCATA
CenterSquare-42	CGGGGTACATAACGCCAAAAGTTTTGAATTACGAGTTGGG
CenterSquare-43	TCCTCATTTAGGAATACCACATTTTTTCAACTAATGCAGAGTACT
CornerSquare-1	TTTTTAGAGCTTAATTGCTGTTTTAATATAATGCAAGTTACCAGATTTTAGGAA
CornerSquare-2	TCGCAATTTTATGGTCAATATAAAGATTCAATTTTAAGGGTGAGACAGAG
CornerSquare-3	AGCCCAAGTACGGTGTTTTTCTGGAAGTTTCATTCTTT
CornerSquare-4	TTTTCATATAACAGTTGATTTTTCCCAATTCTGCCACA
CornerSquare-5	AGTGTAGGTCGACTCTTTTTAGAGGATCCCCGGGTTGTTA
CornerSquare-6	CGTGCACCGAGCTCGAATTCGTTTTTAATCATGGTGGAAA
CornerSquare-7	GAAATGGTTTTCCCAGTCACGTTTTACGTTGTAAAGCCGCGCTTAATTTTTGCGC
CornerSquare-8	TCCGAGGCGGTTTGCGTTTTTATTGGGCGCCAGGGTTCAC
CornerSquare-9	TCACATGGTTTTTCTTTTCACTTTTCAGTGAGACGCTGAG
CornerSquare-10	AAGAAATTTTAATCTACGTTACAGGTAGAAATTTTGATTCATCAGTTGAGTATAA
CornerSquare-11	CTGAACAGTCGGGAAACCTGTTTTTCGTGCCAGCTTAGCC
CornerSquare-12	AACCCGCTCACAATTCTTTTCACACAACATACGAGTATAT
CornerSquare-13	AACGTTTGCGTTGCGCTTTTTCACTGCCCGCTTTCTGTTC
CornerSquare-14	GAAGGCTTTTTTATCCGGTAATCAGAAAAGCTTTTCCCAAAAACAGGAAGTTTT
CornerSquare-15	TTTTATTAATGCCGGAGAGGTTTTGTAGCTATTTAGAGC
CornerSquare-16	ATCCTGCCTGAGAGTCTTTTTGGAGCAAACAAGAGTTTT
CornerSquare-17	TTTTAATCGATGAACGGTAATTTTTCGTAAAACTCCCGA
CornerSquare-18	TTTGTTGATATTCAACTTTTCGTTCTAGCTGATAATTTT
CornerSquare-19	TTCTTCCGGAAGCATAAAGTGTTTTTAAAGCCTGGGGCCC
CornerSquare-20	
CornerSquare-21	
CornerSquare-22	
CornerSquare-23	
CornerSquare-24	
CornerSquare-25	
CornerSquare-26	
CornerSquare-27	
CornerSquare-28	
CornerSquare-29	TTTTCGCCATTCAGGCTGCGTTTCAACTGTTGGACGTA

CornerSquare-30	CGCTATACGCCAGCTGTTTTGCGAAAGGGGGGATGTTTTT
CornerSquare-31	TTTTGCTGCAAGGCGATTAATTTTGTTGGGTAACGCCAGGTTGT
CornerSquare-32	TCAACTTTTGATAAGAGGTCATTTTTTTTGCGGATGGCTTTTT
CornerSquare-33	ACCGAGATTAGAGAGTTTTTACCTTTAATTGCTCCAACTT
CornerSquare-34	AAGGAGCGTTTTAATTCGAGCTTTTTTCAAAGCGAAACTG
CornerSquare-35	GCCCGATTTTAAGACTTCAAATATCGTCAT
CornerSquare-36	GATAAGTCTTTACCCTGACTATTTTTTATAGTCAGAAGTT
CornerSquare-37	TGACCATTTTTAAATCAAAAATCAGGGTGA
CornerSquare-38	TTCGTGAATCGTCATAAATATTTTTTCATTGAATCTAGCA
CornerSquare-39	TGGATATTTTGCGTCCAATACTGCGAGACT
CornerSquare-40	ATCGCAATAGCGAGAGGCTTTTTTTTGCAAAAGAAACGAT
CornerSquare-41	CCAGACTTTTGACGATAAAAACCAATACAG
CornerSquare-42	CTGTCTACATAACGCCAAAAGTTTTGAATTACGAGTTGGG
CornerSquare-43	GACAAATTTAGGAATACCACATTTTTTCAACTAATGCAGAATAAT
EdgeSquare-4	TTTTCATATAACAGTTGATTTTTCCCAATTCTGCCACA
EdgeSquare-5	AGTGTAGGTCGACTCTTTTTAGAGGATCCCCGGGTTATGC
EdgeSquare-6	GACGTACCGAGCTCGAATTCGTTTTTAATCATGGTGGAAA
EdgeSquare-7	CCCCGGGTTTTCCCAGTCACGTTTTACGTTGTAAAGCCGCGCTTAATTTTTGCGC
EdgeSquare-8	TCCGAGGCGGTTTGCGTTTTTATTGGGCGCCAGGGACCTG
EdgeSquare-9	TTAAGTGGTTTTTCTTTTCACTTTTCAGTGAGACGCTGAG
EdgeSquare-10	AAGAAATTTTAATCTACGTTACAGGTAGAAATTTTGATTCATCAGTTGAGACTAT
EdgeSquare-11	CACCACAGTCGGGAAACCTGTTTTCGTGCCAGCTTAGCC
EdgeSquare-12	AACCCGCTCACAATTCTTTTCACACAACATACGAGTTAAG
EdgeSquare-13	AACGTTTGCGTTGCGCTTTTTCACTGCCCGCTTTCTTATT
EdgeSquare-14	GAAGGCTTTTTTATCCGGTAATCAGAAAAGCTTTTCCCAAAAACAGGAAGTTTT
EdgeSquare-15	TTTTATTAATGCCGGAGAGGTTTTGTAGCTATTTAGAGC
EdgeSquare-16	ATCCTGCCTGAGAGTCTTTTTGGAGCAAACAAGAGTTTT
EdgeSquare-17	TTTTAATCGATGAACGGTAATTTTTCGTAAAACTCCCGA
EdgeSquare-18	TTTGTTGATATTCAACTTTTCGTTCTAGCTGATAATTTT
EdgeSquare-19	ACCGACCGGAAGCATAAAGTGTTTTTAAAGCCTGGGGCCC
EdgeSquare-20	TTTTATTGTATAAGCAAATATTTTTTAAATTGTAAACGACAAC
EdgeSquare-21	ΑΤΤΤΟΤΤΑΑΤΑΤΤΤΤGTTAAATTTTATTCGCATTAATATA
EdgeSquare-22	GAACGCTTTTCATCAAAAATAATTCTAACA
EdgeSquare-23	GCACGGCGTCTGGCCTTCCTGTTTTTAGCCAGCTTACAAA
EdgeSquare-24	GGATTCTTTTTCCGTGGGAACAAACATATA
EdgeSquare-25	AAGAAGGCGGATTGACCGTAATTTTTGGGATAGGTGCGTA
EdgeSquare-26	CTGCCATTTTGTTTGAGGGGACGACGACA
EdgeSquare-27	TTCAGGACAGTATCGGCCTCATTTTGGAAGATCGCTTTTA
EdgeSquare-28	GAAACCTTTTAGGCAAAGCGCCATTGTGAA
EdgeSquare-29	TGTGACGCCATTCAGGCTGCGTTTTCAACTGTTGGACGTA

EdgeSquare-30	CGCTATACGCCAGCTGTTTTGCGAAAGGGGGGATGTTTATA
EdgeSquare-31	TTGTCGCTGCAAGGCGATTAATTTTGTTGGGTAACGCCAGAGTAC
EdgeSquare-32	GTTGATTTTGATAAGAGGTCATTTTTTTTGCGGATGGCTTTTT
EdgeSquare-33	ACCGAGATTAGAGAGTTTTTACCTTTAATTGCTCCAAGTT
EdgeSquare-34	TCCTTGCGTTTTAATTCGAGCTTTTTTCAAAGCGAAACTG
EdgeSquare-35	GCCCGATTTTAAGACTTCAAATATCATGAC
EdgeSquare-36	TTATCGTCTTTACCCTGACTATTTTTTATAGTCAGAAGTT
EdgeSquare-37	TGACCATTTTTAAATCAAAAATCAGTCACC
EdgeSquare-38	ACGAAGAATCGTCATAAATATTTTTCATTGAATCTAGCA
EdgeSquare-39	TGGATATTTTGCGTCCAATACTGCGAGTCT
EdgeSquare-40	GCGATAATAGCGAGAGGCTTTTTTTTGCAAAAGAAACGAT
EdgeSquare-41	CCAGACTTTTGACGATAAAAACCAACTGTA
EdgeSquare-42	GACAGTACATAACGCCAAAAGTTTTGAATTACGAGTTGGG
EdgeSquare-43	GAGGAATTTAGGAATACCACATTTTTTCAACTAATGCAGAATTAT

Fig. S71. Design pattern for the star shape

•	*
Number	Sequence
1scf-5star	TAAAGGTTTTCCGCTTTTGCAAAAAAGGCTTTTTCCAAAAGGAGCGAGG
2scf-5star	TAGAAATTTTGGAACAACTAGGTAGCAACGGTTTTCTACAGAGGCGTTTC
3scf-5star	AATAATAATTGAAAGACAGCATCGGAACGAGAAGGAATTGCG
4scf-5star	CCCTCAGCAGCTTTTCACGTTGAAAATCTCCAGGGATCGTCA
5scf-5star	ACCGAGTTTTGAAACGCAATACAAAGTCAGATTTTGGGTAATTGATGAGT
6scf-5star	TAAGCCTTTTCAATAATAAGTACCGAAGCCCTTTTTTTTAAGAAAGGAA
7scf-5star	ACAAGAATGCGCTAATATCAGAGAACAACTTT
8scf-5star	CATTAATTTTACGGGTAAAATCTTTCCAGACTTTTGTTAGTAAATGAGAA
9scf-5star	CAACAGTTTATGGGATTTTGCTAAGATAACCC

10scf-5star	TCAGCGGAGTGAATTTTCTG
11scf-5star	GAGAATTTTTAACATAAAAATATTACGCAGTTTTTATGTTAGCAACATAT
12scf-5star	ATTAGACGGGACTGGCATGATTAAGACTCCTCAGGGAAGCGC
13scf-5star	TACCCAAAAGAAGAATTAACTGAACACCCTGAAATAACGGAA
14scf-5star	AAAAGATTTTAACGCAAAGACAATAGAAAATTTTTTCATATGGTTACAGA
15scf-5star	CCAATCTTTTCAAATAAGAAGGAGGGAAGGTTTTTAAATATTGACCGTCA
16scf-5star	TTTAACGTCAGGCGACATTCAACCGATTGAGACGATTTTTTG
17scf-5star	AAAGACAAAAGAAAATGAAAATAGCAGCCTTTTACCAGCGCC
18scf-5star	TGAATTTTTTTTTTAAACAGAACAACCATCGTTTTCCCACGCATAGGAGT
19scf-5star	CTTGCTTTCCTTTAATTGTATCGGAGTTACAA
20scf-5star	CCGACTTTTTTGAGCCATTTTGAATCTTACCTTTTAACGCTAACGTTATC
21scf-5star	AATAAACACAGAGCCTAATTTGCCTTTATCAG
22scf-5star	GCCATATTATAGCGTCTTTC
23scf-5star	TCCACATTTGACAGCCCTCAAACGAAAGAGTTTGCAAA
24scf-5star	CACCAACCTAATAGTTAGCG
25scf-5star	AGTTTTGTCGTACGTAATGCCACTACGAAGGTAACGATCTAA
26scf-5star	AAAAGGTACTTTTTCATGAGGAATTTGAGGA
27scf-5star	AATAAGTTTAGAATATAAAACGACGACAATTTTAAACA
28scf-5star	CTAAAGAAAGTAATTCTGTCCAGGTACCGAC
29scf-5star	TAAGTCCTCGCTGAGGCTTGCAGACCGATAT
30scf-5star	AATTTATTATGGTTTGAAGCAGAACGCGCTTTCTGTT
31scf-5star	TATCAATCCCATCCTATTTATTTACGAGCACCTA
32scf-5star	ATTCGGTGAACAAGAAAAATAATACAATAGA
33scf-5star	GTATTCTATGCGCCGACAATGACCTTGATAC
34scf-5star	AATCAGTTTATATAGAAGGTAGCGAACCTCTTTCCGAC
35scf-5star	CGATAGTAGAACGCGAGGCGTTTCTTATCCG
36scf-5star	GGGTTTTTTTGCTCAGTACTATACCAGTCATTTGGACG
37scf-5star	TTGGGGAAACATGAAATTTGTATTAAGAGTAGCG
38scf-5star	AGATAGCCGAGAAGGATTAGGATGCTGAGAC
39scf-5star	TCCTCAAGAACAAAGTTACCAGAAAGTAAGC
40scf-5star	TCAGGGTTTATAGCAAGCCTTTCGTCACCATTTGTACA
41scf-5star	ACAATGAATACCGTAACACTGAGCAATAGGA
42scf-5star	ACCCATGATAGCAATAGCTATCTAGCAAGAA
43scf-5star	ACAGTGCCACATAAAGGTGGCAAACGTAGAA
44scf-5star	ACTAAAAGTTTTAACGTTTGGGTCAGTGCGCCCC
45scf-5star	CTGCCTTTTATTTCGGAACTACGTTAATAATTTAACGA
46scf-5star	AATACATCGTATAAACAGTTAATCTTGAGTA
47scf-5star	AACCACCATTATTTTGTCACAATCACCACGG
48scf-5star	CACCACTTTCCTCAGAGCCCATTGACAGGATTTGGTTG
49scf-5star	AATAAGTCCAGAGCCGCCAGGCCACCAG

50scf-5star	AGCCACCAAAGGTGAATTATCACGGAAATTA
51scf-5star	TCATACTTTTCATAATTTTCAAAATCACCCAGAG
52scf-5star	CCGCCATTTCCCTCAGAACCAATACTGCGGTTTAATCG
53scf-5star	TTCATTACCGGAACCGCCTCCCTGGAACCAG
54scf-5star	TTAAATTTTCAAGATTAGTACCATTACCATTTTTAGCA
55scf-5star	AATTTTATCCGGGAATTAGA
56scf-5star	CACCAGTAGCTGCTATTTTGCACCCAGCTACGCCAGCAAAAT
57scf-5star	AATCCTTTTCATTAAAGCCACTATCATAACTTTCCTCGTTTACCAGAC
58scf-5star	TTCAACTAATGCAGATTTTACATAACGCCTTCCA
59scf-5star	GTAAGCTTTGTCATACATGATCAGTTGAGATTTTTTAGGAATACCACA
60scf-5star	GAATTTACCGAAAAGGAATT
61scf-5star	TAAGAGCAACAGAATGGAAAGCGCAGTCTCTACGAGGCATAG
62scf-5star	AGGCATAATAGTAAAATTTTGTTTAGACTAGAGC
63scf-5star	GACGATAAAAACCAAATTTATAGCGAGAGAAATA
64scf-5star	ATTCACAAACGCTTTTGCAA
65scf-5star	CCAGAGGGGGGGGCCAGACGATTGGCCTTGATAAGAAGTTTTG
66scf-5star	TACTGGTAATCGGAACAACA
67scf-5star	AGAAAGATTCGCTTTTGATGATACAGGAGTGTTATTACAGGT
68scf-5star	AGGCCCTTCTGTAAATTTTCGTCGCTATTAAGCC
69scf-5star	AAAGATTTTTAAGAGGAAGCTTTTTTAATGTTTGAAAC
70scf-5star	AGTACGCACCGTAATCTTTAGTAGCGACAATCAA
71scf-5star	TAAATCAAAAATCAGGTTTTCTTTACCCTGCGCG
72scf-5star	TTTTCATTTTCGGCATTTTAACAGTTCAGATTTAAACGAGAATGACCA
73scf-5star	CGTTTGCCATAATATTCATT
74scf-5star	AAATGCTTTACGGTCATAGCCCCCTTATTAGGAATCCCCCTC
75scf-5star	TCAGACTGTAGACTATTATA
76scf-5star	AGCGGATTGCGAATCAAGTTTGCCTTTAGCGGTCAGAAGCAA
77scf-5star	ATCGATAGCAATAAATCAAT
78scf-5star	AATAACCTTGGGAAACGTCACCAATGAAACCATATGTGAGTG
79scf-5star	AAGACAAAGAACGCGATTTGAAAACTTTTTCCTT
80scf-5star	ATCATTTTTCCAAGAACGGGTAAATGCTGATTTTGCAAATCCAATCGC
81scf-5star	TAGGTCTGAGAGACTATTTCCTTTTTAACCAAGCAAGCCGTTTTTTT
82scf-5star	ΑΤΤΤΤΑGTCAATAGTGTTTAATTTATCAAAATCA
83scf-5star	TTGCGCCCTTAGAATCTTTCTTGAAAACAAAGCA
84scf-5star	GCCCAATAGCTAGCGATAGC
85scf-5star	CGCTGAGAAGCATCGTAGGAATCATTACCGCTTAGATTAAGA
86scf-5star	TCATCGAGAACTCCGGCTTA
87scf-5star	ATAACTATATGTATTAAACCAAGTACCGCACGGTTGGGTTAT
88scf-5star	CGGCTGTCTTTCAAATATAT
89scf-5star	TCATCTTCTGATGTAGAAACCAATCAATAATTTTAGTTAATT

90scf-5star	AGAATCCAACTTTGAATTTAGAGGACAGAAGCAT
91scf-5star	CCATGTTACTTAGCCGTTTGAACGAGGCGATTAT
92scf-5star	ACCAAGTTTCGCGAAACAAAATTGTGTCGATTTAATCCGCGACCTGCT
93scf-5star	TTATACAAATTCTTACTTTCAGTATAAAGATCGC
94scf-5star	CATATTTTTTAACAACGCCAAAAAGCCTGTTTTTTAGTATCATATGCG
95scf-5star	ACATGTGTGATAAATATTTAGGCGTTAAACCAGT
96scf-5star	CATTTTCGAGTAAGAATAAA
97scf-5star	TAATTACTAGAACATGTAATTTAGGCAGAGGCACCGGAATCA
98scf-5star	AATTGAGACCAACGCTCAACAGTGTATCATC
99scf-5star	GCCTGATAAGTACAACGGAGATTTAGGGCTT
100scf-5star	ACCCCCAGCGCAGACGGTCA
101scf-5star	ACCGAACTGAACACTAAAACACTCATCTTTGATCATAAGGGA
102scf-5star	TTAATTTCAACTTTAATTTTCATTGTGAAATAAG
103scf-5star	TATAGCTTTCCGGAATAGGGAGTAGTAAATTTTTGGGCTTGAGATGGT
104scf-5star	CGTAACAAAGCTGCTCTTTATTCAGTGAACCACC
105scf-5star	CTCAGATTTACCGCCACCCAACCGGATATTTTTCATTACCCAAATCAA
106scf-5star	AACTAACAGACCAGGCTTTGCATAGGCTGCATTT
107scf-5star	CCACCACCTGCTGACCTTC
108scf-5star	TCTTGACAAGTCAGAACCGCCACCCTCAGAGATCAAGAGTAA
109scf-5star	TTTAGTACCGTAAGGCTTGC
110scf-5star	ACACCAGAACTGTATCACCGTACTCAGGAGGCCTGACGAGAA
111scf-5star	GAGGGTTGATTTACCTTATG
112scf-5star	ACTGGCTCATCAGGCGGATAAGTGCCGTCGACGATTTTAAGA
113scf-5star	ATACCGACCGTTCAGCTAAT
114scf-5star	TGAACGGTGTCAACGCCTGT
115scf-5star	AAGAAAAATCCTATTATTCT
116scf-5star	GGATAGCGTCCGCCACCCTC
117scf-5star	AATTAATTTTGGAGGTTTTG

Fig. S72. Design pattern for the 2D Penrose tiling

Table S8. Sequences of the 2D Penrose tiling

Number	Sequence
Penrose-1	GGACGACGACTGGAAATACCTTTTTACATTTTGACACCGTGCATCT
Penrose-2	AAAACGCTCAAGTATCGGCCTCAGGAAGATCTTGCAACAGGA
Penrose-3	GCACTCCAGCCCGCCAGCCA
Penrose-4	TATTACAGCTTTCCGGTTTTACCGCTTCTGTAGTA
Penrose-5	CCAGGCAAAGCTTGTAGCAATACTTCTTTGATGTGCCGGAAA
Penrose-6	GCCATTCGCCAAATTAACCG
Penrose-7	ATAACATTTTCACTTGCCTGTAATATCCAGTTTAACAA
Penrose-8	CCTTGCTGGAGTAGAAGAACTCAATAAGAAC
Penrose-9	GCGAGGCGGCTTATCCGGTATTCACTATCGG
Penrose-10	GCAAGCTTTTCGTTTTTATTCAAGCAAATCATTTTGATATAGAAGTTTTA
Penrose-11	GCGAACTTTTCTCCCGACTTGGATTAGGATTTTTTTTGGTTTTGCTCAACAA
Penrose-12	CTCAAGAGAAGCGGGAGGTT
Penrose-13	AATCAAGATTAGTATTAAGAGGCTGAGACTCTTGAAGCCTTA
Penrose-14	TATTCTTTTTGAAACATGAAAGTTGCTATTTTTTTGCACCCAGCTACGAG
Penrose-15	TTTATAATATCTTACCAACGCTAACAATTTT
Penrose-16	ATCCTGACAGTGAGGCCACCGAGGAAGTGTT
Penrose-17	CGTCTTTTTTCCAGAGCCTATATTTATCCCATTTTTATCCA
Penrose-18	AGCCATATATTTGCCAGTTACAACGGAACGA
Penrose-19	GGCGCAGACTCCATGTTACTTAGCAATAAAC
Penrose-20	AATAATTGAGTAACAGTTTTTGCCCGTATACCTAT
Penrose-21	GGTCAGTGCCGAAACGATTT
Penrose-22	TCAAAAATGAACTGGTAATAAGTTTTAACGGTTTGTTTAACG
Penrose-23	AGTGTAAATAGCAGCCTTTTTTACAGAGAGCGGGA
Penrose-24	AAACACTCGGGAAGCGCATTAGAAATAACAT
Penrose-25	AAAAACAATCTTTGACCCCCAGCATACACTA
Penrose-26	GAATTATTTACTGAACACCCTTTTGATGATTTTACAGG
Penrose-27	TCATACATGGCTGAACAAAGTCAGAGGGTAATCCAGTAAGCG
Penrose-28	TTGAGCGCTAAATTTACCGT
Penrose-29	GAAAGCTTTTGCAGTCTCTGATATCAGAGAGTTTTATAAC
Penrose-30	CCACATGTTAGCAAACTTTTGTAGAAAATACACCG
Penrose-31	TTACGCAGTAAGAATTGAGT
Penrose-32	ATAAGAGCAATGGCATGATTAAGACTCCTTATAAGCCCAATA
Penrose-33	GAATACTTTCCAAAAGAACGAAACAATGAATTTATAGC
Penrose-34	AATAGTAAGCAGATAGTTTTCGAACAAAGTTAACG
Penrose-35	AATGCCACCCTTTTTAAGAAAAGCTATCTTA
Penrose-36	CCGAAGCTACGAAGGCACCAACCAAATACGT
Penrose-37	ATTCGGTCGAGGAAACGCAATAATACCAGAA

Penrose-38	GGAAACCGCTGAGGCTTGCAGGGACCGATAT
Penrose-39	TTATCACCGTCATACATAAA
Penrose-40	ATAAAAGAAAAAATTATTCATTAAAGGTGAAGGTGGCAACAT
Penrose-41	AGGTAATTTATATTGACGGCGCAAAGACACTTTCACGG
Penrose-42	AATAAATATGGTTTACTTTTAGCGCCAAAGAGGGA
Penrose-43	ACCGATAGATCAATAGAAAATTCGTTTATTT
Penrose-44	TGTCACATTGCGCCGACAATGACAGCTTGAT
Penrose-45	TCAACAGTTCAACCGATTGAGGGACAAAAGG
Penrose-46	GCGACATTTCAGCGGAGTGAGAAAACAACTT
Penrose-47	ACTTGATTTTGCCATTTGGGTTTCATAATCATTTTAAATCACCGGGAATG
Penrose-48	TTTGCCATCTAATTAGAGCC
Penrose-49	CAGTAGCACCGTCATAGCCCCCTTATTAGCGAGCAAAATCAC
Penrose-50	TTCATCTTTGGCATTTCGATTACCATTAGTTTCAAGG
Penrose-51	CCGGAACCGTAATCAGTTTTAGCGACAGAAGCGTT
Penrose-52	CTTTCCAGACCATCGATAGCAGCAACGTCAC
Penrose-53	CAATGAAACGTTAGTAAATGAATTTTGTCGT
Penrose-54	AACCGCCAGCGTCAGACTGTAGCTCAAGTTT
Penrose-55	GCCTTTACCCTCAGAGCCACCACACCCTCAG
Penrose-56	ATTAAAGCCAAACCAGAGCC
Penrose-57	CGCCTCCCTCTTCACAAACAAATAAATCCTCACCACCGGAAC
Penrose-58	ACGATTTTTGGCCTTGATAAGAGCCGCCACTTTCCTCA
Penrose-59	GAACCGCCACCAGAACTTTTACCACCAGAGGTCAG
Penrose-60	ATCACCGTACCACCCTCAGAGCCGCCACCCT
Penrose-61	CAGAGCCACTCAGGAGGTTTAGTATAGGTGT
Penrose-62	ATGCCCCCAGGAGGTTGAGGCAGCCGCCGCC
Penrose-63	AGCATTGACTGCCTATTTCGGAAAACAGTTA
Penrose-64	GGATAAGTGCCCCAAGTACCGCACTCATCGAGAGTACCAGGC
Penrose-65	GTCGAGAGGGGGGGTATTAAA
Penrose-66	CCCATCTTTTTAATTTACGACTTTCCTTATCTTTTTTCCAAGAACTTGAT
Penrose-67	ATAAGTTTTTTATAGCCCGGAACCGCCACCCTTTTTCAGAA
Penrose-68	CCGCCCCTCATTTTCATTTTTGGGATAGCAAAATAT
Penrose-69	CAAGAAAAATGCCCAATAGGAACCCATGTACTAAGTCCTGAA
Penrose-70	CGTAACACTGCAACAATAGA
Penrose-71	GAACGCTTTTGCCTGTTTATAGTTTCGTCACTTTTTTCAAACTACAATTTAG
Penrose-72	CAACATGTAACGCCTGTAGC
Penrose-73	AGCCCTCATAAATCGCCATATTTAACAACGCATTCCACAGAC
Penrose-74	TAGTATTTTTTATATGCGTTATCAACAGTAGGTTTTTCTTAATTGAGGTTAG
Penrose-75	CGTAACTTTTTGATCTAAAGTTTTCTGTATGGTTTTGATTT
Penrose-76	TGCTATAGAAAGGAACTTTTTAACTAAAGGACTGTT
Penrose-77	TAGAAAAAGCATTGCGAATAATAATTTTTTCATCATAATTAC

Penrose-78	ACGTTGAAAAAAAACACCGGA
Penrose-79	GGCGTTTTTTAAATAAGAATTCTCCAAAAAATTTTTTTTCCAAAAAGGATCCAA
Penrose-80	CTGATGCAAAGCCTTTAATT
Penrose-81	TCAGCTTGCTTTATATAACTATATGTAAATGGTATCGGTTTA
Penrose-82	AGTCAATTTTTAGTGAATTTATTAACCTCCGGTTTTTTTAGGTTGGGTTCGA
Penrose-83	GGTGAATTTTTTTTTTTAAACAACAACCATCGTTTTCCCAC
Penrose-84	GCATAAGTTAAAGGCCTTTTTGCTTTTGCGGAGAAG
Penrose-85	TAAGACGCTGGATCGTCACCCTCAGCAGCGAATAGCTTAGAT
Penrose-86	AAGACAGCATAAACATAGCG
Penrose-87	CCCTTATTTTGAATCCTTGACGGAACGAGGGTTTTTTTACGGCTACAGTTTAA
Penrose-88	CTTATGCGATAGGCTTTGAG
Penrose-89	TTTTCATGAGACTTTAATCATTGTGAATTACGACTAAAGACT
Penrose-90	GAGATGTTTTTTTAATTTCAGAAGTTTCCATTTTTTTAAACGGGTATAAAA
Penrose-91	CGAAAGTTTTAGGCAAAAGAGATTATACCAATTTTTGCGCG
Penrose-92	AAACATCAGTGAATAATTTTTGCTTGCCCTGGGCTT
Penrose-93	AGCTGCTCATAAGTACAACGGAGATTTGTATCAACGTAACAA
Penrose-94	CATCGCCTGATTACCCAAAT
Penrose-95	AAGAACTTTTCGGATATTCATAAATTGTGTCTTTTTTTCCGCGACCTGCGGTC
Penrose-96	AATCATTTTTAAGGGAACCGACGGTGTACAGTTTTACCAGGCGCATTGAC
Penrose-97	ACAGATGAAACTGACCAACTTTGAACGTGCT
Penrose-98	TTCCTCGTTTTGACGAGCACGTATAAAGAGG
Penrose-99	CGCGTATTTCTATGGTTGCTAGAATCAGAGTTTCGGGA
Penrose-100	GCTAACCCAGTCACGATTTTGTTGTAAAACCAGGG
Penrose-101	CCAGGGTTTTACAGGAGGCC
Penrose-102	GTTGGGTAACGGATTAAAGGGATTTTAGACAGAGGCGATTAA
Penrose-103	CAGCTGGCGAAAGGGGTTTTTTATGTGCTGCAGAACG
Penrose-104	GTACGCTTTTTTAGAATCCTGATAAAAGAGTCTTTTTTTCCAT
Penrose-105	CACGCATTCAGGCTGCTTTTTCAACTGTTGGGAAGG
Penrose-106	GCCAAGCTTGCGCCGCGCTTAATGCGCCGCTAGACGGCCAGT
Penrose-107	ATGCCTGCAGCACCACACCC
Penrose-108	TACCGAGCTCAGCGGTCACGCTTTTTGCGCGTAACGTCGACTCTAG
Penrose-109	TGGCAAGTGTGAATTCGTAA
Penrose-110	GCTGTTTCCTAAGGAGCGGGCGCTAGGGCGCTCATGGTCATA
Penrose-111	GAGTAATCTAGGCTGGCTGACCTCCGGCGAA
Penrose-112	CGTGGCGAAGCTTGACGGGGAAAGTCATCAA
Penrose-113	GGAGCCTTTCCCGATTTAGGAAAGGAAGGGTTTAAGAA
Penrose-114	AGCGAGTGTGAAATTGTTTTATCCGCTCATAAAG
Penrose-115	ATCGGAACCCCAATTCCACA
Penrose-116	TAAAGCACTAACAACATACGAGCCGGAAGCATCGAGGTGCCG
Penrose-117	GGGGTAAAGTGTAAAGTTTTTTCTGGGGTGCCTAATG

Penrose-118	TCACTGCCCGCTTTCCTTTTTGTCGGGAAACGTCAA
Penrose-119	AGGGCGTTTTTTAAAACCGTCTCCCAAATCAAGTTTTTTTT
Penrose-120	GGACTCCAACCTGTCGTGCC
Penrose-121	TTAAAGAACGTAGCTGCATTAATGAATCGGCCGAGTCCACTA
Penrose-122	CACCAGAACTACGTGAACCATCAATCAGGGC
Penrose-123	GATGGCCCACGAGTAGTAAATTGACGAGAAA
Penrose-124	GAACTGTTTTGCTCATTATAGTTAATAAAACTTTTGAACTAACGGATTTT
Penrose-125	AAATCTACCCAGTCAGGACGTTGCCGAGATA
Penrose-126	GGGTTGAGAAATCAAAAGAATAGCGGAAGAA
Penrose-127	CGGCAATTTAATCCCTTATTGTTGTTCCAGTTTTTTGG
Penrose-128	AACAAAACGCGCGGGGTTTTGAAGGCGGTTTGAAAT
Penrose-129	TGGTGGTTCCGCGTATTGGG
Penrose-130	ATCCTGTTTGACGCCAGGGTGGTTTTTCTTTTGCAGGCGAAA
Penrose-131	GATTGCCCTTGGTCCACGCTGTTTTGTTTGCCCCCACACCAGTGAGA
Penrose-132	CAGCAAGCCACCGCCTGGCCCTGAGATACAT
Penrose-133	AACGCCAACATTCAACTAATGCAGAGAGTTG
Penrose-134	СТАТТААТТАААСААСАТТА
Penrose-135	AAGATTCATCCCTTGCTTCTGTAAATCGTCGTTACAGGTAGA
Penrose-136	ATATGTTTTGAGTGAATAAAGTTGAGATTTTTTAGGAA
Penrose-137	TACCAAAGGAATTACGTTTTGGCATAGTAATCAAT
Penrose-138	AGTACATAAAGAGCAACACT
Penrose-139	TTAATGGAAACATCATAACCCTCGTTTACCAGATTACCTTTT
Penrose-140	TTTGAACGACGATAAATTTTTTACCAAAATAGCGAGA
Penrose-141	GTAATAGTAAAATGTTTTTTTAGACTGGATAAATTA
Penrose-142	CCTGAGTTTTTTAAAAGAAGATTACATTTAACATTTTTTTT
Penrose-143	TATTCATTTCGCGTCCAATA
Penrose-144	TCATAAATATCAAAATCGCGCAGAGGCGAATCTGCGGAATCG
Penrose-145	ATAGGTCAGAAAACAAAATTAATGATGAAAC
Penrose-146	AAACATCATGAGAGACTACCTTTTCAAAATC
Penrose-147	TCGCAATTTTGACAAAGAACTAATTTCATCTTTTTTCTGACCTAAAATAA
Penrose-148	ATTTTAGTGCGAGAAAACTTTTTATAACGGA
Penrose-149	TTCGCCTGTACATCGGGAGAAACACAAATAT
Penrose-150	CAGTAATTTCAGTACCTTTATTGCTTTGAATTTTACCA
Penrose-151	AGTTATCATTGAATCCTTTTCCTCAAATGCATATA
Penrose-152	CGTCAGATGATTTAAACAGT
Penrose-153	TTCAGGTTTAATCAGAAAACGAGAATGACCATTGCGTAGATT
Penrose-154	CTGACTATTAGTAAAACAGAATTTTATAAAGAAATAAATCAAAAAT
Penrose-155	CAAAGCGGATTCCATATCAAAATTATTTGCACTAGTCAGAAG
Penrose-156	GCATCAAAAATTAGAACCTA
Penrose-157	GTGTGATAATTTAATGGTTTGAAATGATTGT

Penrose-158	TTGGATTATCATCAATATAATCCTACCGACC
Penrose-159	ATCAGATTTTGATGGCAATTACTTCTGAATTTTAATGG
Penrose-160	AAGGGGATTAAGAGGATTTTGCCCGAAAGATGATT
Penrose-161	АТСАТАТТСССТТСАААТАТ
Penrose-162	GCGGAATTATCCGCGTTTTAATTCGAGCTTCAACCAGAAGGA
Penrose-163	AAACCAAGCGAACCAGTTTTTTCCGGAAGCAAACTCC
Penrose-164	GCTCCTTTTGATAAGATTTTTTGTCATTTTTGGTATT
Penrose-165	AAATCCTTTTTTTGCCCGAACCATTTTGCGGATTTTTTCAAAG
Penrose-166	AGAGCTTAATTTTACAAACAATTCGACAACTCCGGATGGCTT
Penrose-167	GCTGAATATAGTATTAGACT
Penrose-168	CTTACCAGTTTGAGTAACATTATGTTATTAA
Penrose-169	TTTTAAAAGTATAAAGCCAACGCTACAAATT
Penrose-170	GCAGAGTTTTGCATTTTCGAAAGGTAAAGTATTTTATTCTGTCCAATGCA
Penrose-171	ACCGACAAGCCAGTAATAAGAGAAGAGCCGT
Penrose-172	CAATAGATACAACTAATAGATTATATAAAGT
Penrose-173	ATCTTTTTAGGAGCACTAAATACATTTGATTTGGATT
Penrose-174	TAGAAATGCTGTAGCTTTTTAACATGTTTTAAAAT
Penrose-175	AAGGTTATCTAAATATGCAACTAAAGTACGGAGGAATTGAGG
Penrose-176	TGTCTGGAAGAACAGTTGAA
Penrose-177	CAAAAACAGGTATCTGGTCAGTTTTTTGGCAAATCTTTCATTCCAT
Penrose-178	AAGCAAATATTAAATATCAAAACCCTCAATCAAAAGATTGTAT
Penrose-179	TAAATTGTAAGCTGAACCTC
Penrose-180	TTCAGCTAGACGACGACAATAAAGAGCCAGC
Penrose-181	AGCAAATGAACAGTGCCACGCTGACAACATG
Penrose-182	TATTAATTTCACCGCCTGCAAAAATCTAAATTTGCATC
Penrose-183	ACCTTACGTTAATATTTTTTGTTAAAATTGTCAG
Penrose-184	AGGTGAGGCGCGCATTAAAT
Penrose-185	AGATAAAACAGTTTTGTTAAATCAGCTCATTTCACCAGCAGA
Penrose-186	CGAACTTTAACCAATATTTTTTGAACGCCATCAAAAA
Penrose-187	TTCATCAACATTAAATTTTTTTGAGCGAGTAATTTT
Penrose-188	TGAATGTTTTTCTATTAGTCTCCATTAAAAATTTTTTTCCGAA
Penrose-189	CACAGACAATACAACCCGTC
Penrose-190	GGGAACAAACTGAAAGCGTAAGAATACGTGGGGATTCTCCGT
Penrose-191	TGACCGGCGGATTGACTTTTGTAATGGGATGGCAG
Penrose-192	TATTTACATTAGGTCACGTTGGTGTAGATGGCTGAAATGGAT
Penrose-193	GCGCATCGTAGCTCAATCGT
Penrose-194	ATTCACTTTCAGTCACACGAGAGAGATAGAACTTTCCTTC
Penrose-195	TGGCCAACACCAGTAATAAAAGGTTACCGCG
Penrose-196	CCCAATAGTTCATCGTAGGAATCAGACATTC
Penrose-197	AAACCAATAGCCCTAAAACATCGTTAATGCG

Penrose-198	CGAACTGATCAATAATCGGCTGTGCATGTAG
Penrose-199	AACAGGTCAGGATTAGTTTTTAGAGTACCTTTAATT
Penrose-200	TAATTCGCGTCTGGCCTTTTTTTCCTGTAGCCAGCT
Penrose-201	GCGATCGGTGCGGGCCTTTTTTCTTCGCTATTACGC
Penrose-202	AGTGAGCTAACTCACATTTTTTTAATTGCGTTGCGC
Penrose-203	GGCTTTTGCAAAAGAATTTTTGTTTTGCCAGAGGGG

Fig. S73. Design pattern for the 2D quasicrystalline pattern with 8-fold symmetry

Number	Sequence
1QC8fold	AAGAAGTTTTTATGATGAAACACAATTTCATTTTTTTGAATTACCTTGTGA
2QC8fold	AGAGCAAAAATTAATTACATTTAAAACATCA
3QC8fold	AAGAATTTTTGAGTTAAGCCCAATAGCTATCTTTTTACCG
4QC8fold	AGAAAACAGAAACAATGAAATAGCAATAATA
5QC8fold	GTACCTTTTTTACATCGGGCTGACCTAAATTTTTTAATG
6QC8fold	AGAACGTTTTTCGAGAAAACTGAATACCAAGTTTTTTACAAAATCGAGCAA
7QC8fold	TGATTGCTTTTTTCAAATATATTTTAGTTAACGGATTCGCC
8QC8fold	ATTTCATCTTAGAAACAATA
9QC8fold	GTGAATTTTTTAACCTTGCTTTAGAATCCTTGTTTTTAAAACATAGCATAGT
10QC8fold	ΑΑΑΑΑΤGTACATAAATCAATATATTTTAAT
11QC8fold	AAGAAATTTTGATTTTTGTACAGAGAGAATTTTTACATA
12QC8fold	GGAAACAGAAAATAGCAGCCTTTTTAACGTC
13QC8fold	GAATTTTTTTATCAAAATCACTTAGGTTGGGTTTTTTTATATAACTGACAA
14QC8fold	ACTCATCACGCTGAGAAGAGTCAGATAGCTT
15QC8fold	GAACGGTTTTTATTAAACCAGTTTTTATTTTTTTTTTTT
16QC8fold	AGATTAAGGAGAACAAGCAAGCCAGTACCGC
17QC8fold	ATCAAGATTAATTAATTTTCCCTCTGTAAAT
18QC8fold	CTTGCGTTTTGAGGTTTTGACACCCAGCTACTTTTATTTT
19QC8fold	CGTCGCTATTAGTTGCTATTTTGAGCCTTAA
20QC8fold	AAGCCAAGCAAATCCAATCGCAAATATGTAA
21QC8fold	CGTTATTTTCAAATTCTTACTTAATTGAGATTTTTCGCC
22QC8fold	ATGCTGATCGCTCAACAGTAGGGCCAGTATA
23QC8fold	TGTTCAGCCTTTTTAACCTCCGGTAGGTCTG
24QC8fold	GTCCAGTTTTCGACGACAATCCTGTTTATCATTTTCAATA
25QC8fold	AGAGACTACTAATGCAGAACGCGAAACAACA
26QC8fold	CAGTATGTCATTTCAATTACCTGCGCAGAGG
27QC8fold	GGCATGTTTTTAAGACTCCAATACATACATTTTTAAGGT
28QC8fold	CGAATTATTTAGCAAACGTAGAATTATTACG
29QC8fold	CCACTATTTTTTAAAGAACGAAAGTTACCAGTTTTTAAGGAAACCGTTTGC
30QC8fold	CCCAGCTTTTAGGCGAAAATTCCCTTATAAATTTTTTTTT
31QC8fold	GGCAATTGCCCTTCACTTTTCGCCTGGCCCGAACT
32QC8fold	ATACCCAAAATGAGAGAGTTGCAGCAAGCGGATAATAACGGA
33QC8fold	TCCACGCTGGAGGAAACGCA
34QC8fold	AAGCCCTATCAGGGCGTTTTATGGCCCACTCCCAC
35QC8fold	GAAAAACCGTCTTTTTAAGAAAAGTAAGCAGCGTCAAAGGGC
36QC8fold	ATAGCCGAACTGGACTCCAA
37QC8fold	TAAGCAGTCCGAAATCGGCAAAACCTGTTTG
38QC8fold	AAGCAGTTTTTATCAGTGACGCACGTTCTTGGTTTTTTCAGT

Table S9. Sequences of the 8-fold quasicrystal 2D pattern

39QC8fold	ATGCATGTCAATAGATTTTTGTGGTAGAAGGAGGA
40QC8fold	ATGGTGGTCTTGCAGACCCATAAAATTAGCA
41QC8fold	TCAGTTCGTTCCAGTTTGGAACAGATAGGGT
42QC8fold	ACGCGGACCAGAAAACTTTTTGGCCTAACGCAGAT
43QC8fold	GCCCAGTTTTTAGATTAGAGCTGTTGCTTGGATTTTTAGATTGGTGTTCCTT
44QC8fold	TGAGTGTTCATCAACATCATAGCACGTTTGG
45QC8fold	CCGTTTTTTTGAGCTTGAGTATAAGAGGTTTTTTTTTTT
46QC8fold	GAAGAGTTTTCCATACCGCTTCAGCACTAACTTTTTCTTGCGAGTCACCAG
47QC8fold	ATGAAGTAATACATTAGAAATATCCTTTGCAGGTAACGCTGC
48QC8fold	GTAGCGCCAAATAACATCAT
49QC8fold	TGTCAGCGTCAAGCATTTGGCGCATAATCTCTAAAGGACGGT
50QC8fold	GGAAACCTGCGCATGACAAG
51QC8fold	GATTTGGTTTTCATAGTGGAGGCAAAGCCTC
52QC8fold	TCAAACTTTTGCTGAATAGCCTCCAGCAATCTTTTGAA
53QC8fold	TACGCGACATTGGTAAAATACTGATTTCTTT
54QC8fold	GTTTGCTGTTTCGTCCCCTTCGGTCTCTAAA
55QC8fold	GTAACCTTGTCTTCGTGGCGGTGGTCTTTTTATAGT
56QC8fold	AACCATTATGAACTAAGTCAACCGATTCTGC
57QC8fold	GTTATTGCGATGGGCATTTTCTGTAACCATACTGC
58QC8fold	AATTAGGGTCTACTCATCGCGTTTTTAATATCCTTAGCGGCGATTGC
59QC8fold	TTGCGGCAAAAAGGCCACGTATTTTGCAAGCCAGCAGCCAGC
60QC8fold	TATTTAACTGAGAGGGCGTT
61QC8fold	CACTCTGCACCGCATGTTTTAATGAAGACGATTCA
62QC8fold	CCGCATAAAGATCCTTAATACCTTTCTTTTGTAGGAAGTGT
63QC8fold	GGGGTAATTAAACGCTACCT
64QC8fold	TAGCATCAACAGGCCATTTTTAACCAACCAGTTGTG
65QC8fold	CCAATTTTTTATCCATTAACACGTCAGAAGCTTTTTGCCTT
66QC8fold	CATTGTAGCAAACGTGAAAAAGCGTCCTGCGTTGGGGGAGCA
67QC8fold	TGTAGCGAACTAATATCAAG
68QC8fold	AAGCATTTTTTGGGATTATCAGTGAGAGTGTCTTTTTAAAAC
69QC8fold	GATAAAAATACTGATATTTTTCAGTCGGCGTGTGAA
70QC8fold	GTCGCATTGCGCCATTAGCTGTACCATACTCAGCATGAGCCT
71QC8fold	AGGCACACAAACCAACCATC
72QC8fold	CTGTTGTTTTTTAAGCAAGCAGCTCAGGAACATTTTTAAGAA
73QC8fold	CTCTAATAACGCGAGCAGTAGACTTTCCATA
74QC8fold	ATAGACGCCGGTCGTCAGCCAACTAAAACGC
75QC8fold	TCATTAGCCTTGCGACTTTTTCTCGGCAGCAACGCA
76QC8fold	CGGTGTTTTTTCAGACCAGGCATCTTGACAAGTTTTTACCGG
77QC8fold	ATGCAGCACCTTCATCAAGAGTAGCATAGGC
78QC8fold	AATCTAAACATCCTTCTTTTATAGAAATTTGGTCG

79QC8fold	AAAGGAAGTGCCATACAAAACAGCACGCGGC
80QC8fold	AAAACACACCCGCCGCTTTTGCTTAATGCGCAAAT
81QC8fold	GGCAAGTGGAAGAAAGCGAAAGGGTGGCGAG
82QC8fold	GAGGTGTTTTCCGTAAAGCATAGAGCTTGACTTTTTTTTT
83QC8fold	GCGCTATTTTGGGCGCTGGCAACACCCTGAATTTTTCAAAGTCAGAGGGTC
84QC8fold	GAATTAACTGAAGTGTAGCG
85QC8fold	CGTAACCACCAGGGAAGCGCATTAGACGGGAGTCACGCTGCG
86QC8fold	AAGTTTTTTGGGGTAATTGA
87QC8fold	AGAGAGATAAACGTGAACCATCACCCAAATCGCGCTAATATC
88QC8fold	TGTTTATAAGGGAGCCCCCGATTCTAAATCG
89QC8fold	GAACCCTAAGGTCTGTTGAACACGCACAGAA
90QC8fold	CCAGCATTTTTATATCGGTATCAGCACGCTCCTTTTTAAGCATTAAGTATCC
91QC8fold	TGGCTGAGCAAGATAATCACGAGCTCAGGAA
92QC8fold	TTTCCTTTTTTATCAGCGGCACCACTGACCCTTTTTTCAGC
93QC8fold	GCATCAGCACAAGTCAAAGC
94QC8fold	TAAGGTACTGTCAACCATACCAGCAGAGGAAACCTTTAGCGT
95QC8fold	ATTCTCTTTTAAATCCGGCGAATCTCTTTAGTTTTTTTTAGGCGGAAAAATTCT
96QC8fold	GGTCTTTCGTCGAACAAGCG
97QC8fold	ATAGTGCCATTCTCATTTTGTGCATATACCTCAAGAGTAAAC
98QC8fold	GGCGTGTTTTAAGTCGCCGATTTGCATCTCGTTTTTGCAATCTCTTTTTG
99QC8fold	CATTATTTCTTTTGAGTCTCATCTGAATGC
100QC8fold	ΑΤΑΑΑΤΑΤΤΟΟΑΤΤΑΟΟΟΑΑ
101QC8fold	CAGCAATCACAGGTAGAAAGATTCGGAACAA
102QC8fold	TAATAATTAACGAACTAACATCAGTTGAGTTTTATTTA
103QC8fold	GGAATCCAAAAGGAATTTTTCGAGGCATAGTACGT
104QC8fold	ACGACCAATGCAGATACATAACGACCACATT
105QC8fold	CAACTAATATCACGAAAATAGTCAGAACCAT
106QC8fold	AAGAAAAATCTAAGAGCAACACTATCATAACAGGACGTTGGG
107QC8fold	CCTCGTTTACTATACCAGTC
108QC8fold	GAGAGGCTTTCGATTTTAAGATTTTTACTGGCTCATCAGACGACGAT
109QC8fold	TTACCTTATGTGCAAAAGAA
110QC8fold	GGGGGTAATATTCAACTTTAATCATTGTGAAGTTTTGCCAGA
111QC8fold	TTAATGTAAAATGTTTTTTACTGGATAGCATTCA
112QC8fold	AAAGCTGCTCGTCCAATACTGCGGAATCGTCATCAACGTAAC
113QC8fold	AGTTCAGAAAACGAGATTTTTTGACCATAAAATGAA
114QC8fold	ΑΤΑΤΤΑΤΤGAATCCCCTTTTTTCAAATGCTTTAAAC
115QC8fold	GTGAATTTTTAAGGCTTGCCTTGGGCTTGAGTTATGGT
116QC8fold	TCCAGTTGAGAACGAGTAGTAAACTGACGAG
117QC8fold	AAACACCCATTTTAGTAAGCTCTTCTGATTG
118QC8fold	ATTTACTTTTATTGGCAGATATATAGAAGGCTTTTTTTATCCGGTAAACTC

119QC8fold	ATCCTGTTGTAGCAATTTTTACTTCTTTGACCCGA
120QC8fold	AGGAACATTCTGGCCATTTTACAGAGATAGTCCAA
121QC8fold	AAACTATTTTTCGGCCTTGCATTGCAACAGGTTTTTTTTT
122QC8fold	ACGGTCAAATATTACCGCCAGCCTGGTAATA
123QC8fold	TAACATTTGAATTATGTTTTGCGAGAAATAAGAAA
124QC8fold	TTTTGACGATTAAACTCCTAAGCAAAGTCTG
125QC8fold	AAACATGCTCAATCGTCTGAAATTACCTACA
126QC8fold	ACCTACTTTTTCGCGCTTCGCCCGGCGTACGGTTTTTGAAGGACGTCCACCA
127QC8fold	TCCAGAACCATTAAATTTAACCTTGCGATAA
128QC8fold	CAGATGACTATTCCACTTTTTGCAACAACTGGTGG
129QC8fold	GCCAGAATACTGGTCATAATCATGAACGGAC
130QC8fold	TGGAAACCCTGAGAAGTGTTTTTAACGGTAC
131QC8fold	CGAATATTTTTAGTACGCGTTGCCTACAGTATTTTTTGTTATCGGTAGGCTT
132QC8fold	CATCACCCATCTTGCAAATC
133QC8fold	GTTCCTGAATGAATGGCAGATTTAATACCAGACCAGAAGGCG
134QC8fold	GGAACATTTTTTAGAGCCTTGAATGGGAAGCTTTTTTTTT
135QC8fold	CAAATCAAGCGCAGGAGAAA
136QC8fold	GCATAACGATAGACTTGCCACCAAGTCCAACCATACGAAGGC
137QC8fold	AGAATCAGAATCACCAGAACGGATAAACTTC
138QC8fold	TTAGACGAGCGGGAGCTAAACAGTCCTCGTT
139QC8fold	ATCAGATTTTAACGGCAGAATTTACCAGCTTTTTTTAGCCATAGCGGTTA
140QC8fold	TGTTACTTACCTTCAAGAAGTCCGTGCCAGC
141QC8fold	CTGTAGTTTTTATTCCACAGAGTTTTGTCGTCTTTTTTTCCA
142QC8fold	CACAGTCCGCGTAACGATCTAAACAGCCCTC
143QC8fold	ATAGTTATTGACGGTATAATAACAATAGTCA
144QC8fold	GACGTAAAATTTTTAGTTTTTACCCTCATATATTTT
145QC8fold	CTGCAACGTAGCCGGAACGAGGCCTGCTCCA
146QC8fold	TGTCGATTAATCCGCGACGCAGACGGTCATTTTATCAT
147QC8fold	AAGGGAGTCAGAAGCATTTTGCGGATTGCAAATTG
148QC8fold	TGACTATTATAACCGAACTG
149QC8fold	AAGAGGACAGTCAAAAATCAGGTCTTTACCCACCAACTTTGA
150QC8fold	TCGCCTGATATCAAAAAGATTAAGAGGAAGCGATTTGTATCA
151QC8fold	CCGAAAGACTGTACAACGGA
152QC8fold	TCAAAGCGAATTATACCAAGCTTTTTGCGAAACAAATCAAATATCGC
153QC8fold	CCCCCAGCGACCAGACCGGA
154QC8fold	ACAGGTCAGGCACTAAAACACTCATCTTTGAAGCAAACTCCA
155QC8fold	GAATAATTAGAGAGTATTTTTTTAATTGCTTTCCA
156QC8fold	ATGAGGAAGTCCTTTTGATAAGAGGTCATTTAAGACTTTTTC
157QC8fold	TTGCGGATGGTTGAGGACTA
158QC8fold	AGGCTCTTAGAGCTTATTTTTTGCTGAATATAATG

159QC8fold	CTGTAGCTCAACATGTTTTTTTTTTTTTTTTTTTTTTTT
160QC8fold	GAGTTAAAGGAACTAAAGTACGGTGTCTGGAAGGCTTGCAGG
161QC8fold	AGTTTCATTCTCGGTCGCTG
162QC8fold	TATATCATATAACAGTTTTTATTCCCAATTTTCTT
163QC8fold	CGAGGTGAATCTGCGAACGAGTAGATTTAGTCAGCTTGCTT
164QC8fold	TTGACCATTAATCGGTTTAT
165QC8fold	AAAGCCTCAGCCAAAAGGAGCTTTTTCTTTAATTGTGATACATTTCG
166QC8fold	AAAAAGGCTAGCATAAAGC
167QC8fold	TACCAAAAACTTTCACGTTGAAAAATCTCCAATAAATCGGTTG
168QC8fold	AATTTATTATGACCCTTTTTAATACTTTTGTAAAC
169QC8fold	GGGATTTTGCCGGGAGAAGCCTTTATTTCAAATTTTCTGTAT
170QC8fold	CGCAAGGATATAGTAAATGA
171QC8fold	AAATGCAATGCCTGAGTTTTTAATGTGTAGGAACGC
172QC8fold	AACTTTTTTCAACAGTTTCAGGAATTGCGATTATAAT
173QC8fold	TTCAGCGAGAAAGGAACAACTAAAGCGGAGT
174QC8fold	GAGAATAAACCAATCCGCGGCATTAACCTGA
175QC8fold	AAACAGTTCTTGATACCGGCCCACGCATATTTTACCGA
176QC8fold	ATAAATCAATGACAACAACCATCATAGTTGC
177QC8fold	GCCGACACCTCACTTAAGTGGCTCACCAAAC
178QC8fold	TTTGCGTTTTTGATCGTCACCGGTAGCAACGGTTTTTTACAG
179QC8fold	ATCACCTTCAGCATCGGAACGAGCTCAGCAG
180QC8fold	CGAAAGAGAATGCCACCGGAGGCGCAAGCAC
181QC8fold	TTAAACTTTTGGGTAAAATAAACGAAAGAGGTTCAAAA
182QC8fold	CAAAACTAAAGGCACCAACCTAACGTAATGC
183QC8fold	CACTACGGGGGCGGCCTCATCAGACCAGAAA
184QC8fold	TTTGACTTTTTGCCTCCAAACAATCGCGAGTGTTTTTGTCGG
185QC8fold	GTCATGATTGAATTTAGACATGGCGCCACCATTTATCACGAA
186QC8fold	GCAAGAGCAGCACTCAATCT
187QC8fold	AGCGGTTTTTAAAGTTAGACTTTTTACCGCTTTTTTTTTT
188QC8fold	ATACCGTTTTCCAGCAATAGGGAGACAAATATTTTTATCTCTTTAATTAGT
189QC8fold	AAAATTAAAACAAACCATGAAACCAACATAACCTCAGCGGCA
190QC8fold	ACGTTATTGCTTGGTCAACC
191QC8fold	TCATGGTTTTTGACCATTCAAGCCGAAGAAGCTTTTTTGGAG
192QC8fold	AGCAAATCAGTCACCAGTCA
193QC8fold	ATAAAAGGGATCATTACCGCGCCCAATAGCACACGACCAGTA
194QC8fold	TGAGTAGAAGTTCTAAGAAC
195QC8fold	TAGCGAACCTTTAGTAATAACATCACTTGCCGCGAGGCGTTT
196QC8fold	CAAATTAACCGAATCTTACCAACGCTAACGATGTCCATCACG
197QC8fold	GCGTCTTTCCTAAAAGAGTC
198QC8fold	CAGTGATTTTGGCCACCGAGAGAGCCTAATTTTTTTTGCCAGTTACACGAG

199QC8fold	GGTTGCTTTGAAAATAAACA
200QC8fold	TATCCCAATCCCGCTACAGGGCGCGTACTATGCCATATTATT
201QC8fold	CACGTATTTTTAACGTGCTTGAGGCCGATTATTTTTTTTT
202QC8fold	GTTTGAAATAAAGAAATTTTTTGCGTAGATTAACA
203QC8fold	ATATTATTAAATCCTTTTTTTGCCCGAACGATATG
204QC8fold	CAACAGCTGACATATAAAAGAAACGCAAAGAAGTGAGACGGG
205QC8fold	CACCACGGAATCTTTTCACC
206QC8fold	GCGCCATTTTGGGTGGTTTTTTAAGTTTATTTTTTTTTT
207QC8fold	AAAGGGTTTTCGACATTCAAAACCTGTCGTGTTTTTTTTCATTAATGAAATTGG
208QC8fold	TGGCGAGGAGAGGCGGTTTGCGTTCGGCCAA
209QC8fold	CGCGCGGGAAAGCTCAGTCTCAGTCGTCATT
210QC8fold	TAGTCTTTTTATCAGAAAAAAAGGAAGTGAG
211QC8fold	GATAAAGCAAATGAAATTTTAATCTAAAGCATTCT
212QC8fold	AACCAGCAATGCGCGAACTGATAATGGCTAT
213QC8fold	CAGACATTTTATATTTTTGAGCCCTAAAACATTTTTTTTT
214QC8fold	AAGCGCAGAAGATAAAACAGAGGGAACGAAC
215QC8fold	CACCAGCAGTCTCTGAATTTACCAGAATGGA
216QC8fold	CGGTCATTTTGTATTAACACAATTTACGAGCTTTTTATGTAGAAACTGGCA
217QC8fold	ATCCCATCCTCGCCTGCAAC
218QC8fold	GAGAGCCAGCGTCCTGAACAAGAAAAATAATAGTGCCACGCT
219QC8fold	AGGTAAAGTAATCACCTTGCTGAACCTCAAAGTACCGACAAA
220QC8fold	ТАТСАААСССАБААТАТААА
221QC8fold	TTGAGGTTTTATTTAGAAGTCATTTTCGAGCTTTTTCAGTAATAAGTCAAT
222QC8fold	CAATATTTTTCTGGTCAGTTGTTATCTAAAATTTTTTTTAGGAGCACTATACAT
223QC8fold	ATTGGCCAAAGGAATTGAGGAAGGGCAAATC
224QC8fold	AACAGTTGTTGATATTCACAAACGTCAGACG
225QC8fold	CATAATCAGCCGTCAATAGATAAACAACTAA
226QC8fold	TAGATTAGAAAATCACCGGAACCCATCTTT
227QC8fold	TAGGCAGAGGATTAGACTTT
228QC8fold	GACAACTCGTTAACAACGCCAACATGTAATTACAAACAATTC
229QC8fold	TAAGAATACGCAATCAATAA
230QC8fold	TCCTTATCATAACCCTTCTGACCTGAAAGCGTCGGCTGTCTT
231QC8fold	AGCGGATTTTTGCAGTCCAAAATTGTTCCAAGTTTTTATCGGCAACAACCAG
232QC8fold	AACAGATGAAAAATATCAACCACGCTTTATC
233QC8fold	AATACCATACAAACTCATCACGATTCTCAGT
234QC8fold	ATGGCAACTGGTAGCTTTTTTTAAGCGGCTCACCTT
235QC8fold	ACAGCCATATCGTCAACATA
236QC8fold	TATCGAACTCTATTTAGCCACATAGAAACCACATATCACCAT
237QC8fold	AAGCCCCATATCTGACTTTTTTGTTAACGAACGC
238QC8fold	GCAGCAAGGTAAGCATTGGGGATTGAGAAAGCTAGACCTTTA

239QC8fold	AGTAGAAATGTCTTTAGCTC
240QC8fold	GTTGTTCCATCCACAAGCCTCTTTTTAATAGCAGGTCGATAAAACTC
241QC8fold	GTCATGGAAGTTAAGAGCCT
242QC8fold	TTAACTTCTGCCGATACGCTCAAAGTCAAAATTCCGAAAGTG
243QC8fold	CAGGGAATTTTTCGACTTTTATCAGAAATAAATCA
244QC8fold	TTATCAAGATTTAATCGTGC
245QC8fold	GCATGGTCAACAAGCAGTAGTAATTCCTGCTCAAGAAAAGCG
246QC8fold	GCAGTCCACTTCGATTTTTTAATTCGTAAATATAA
247QC8fold	GTTCATAGGTCGAATTTTTTTTCTCATTTTCCGCCA
248QC8fold	TGCGCAAGGACCATAAACGT
249QC8fold	ACATAAAAAGCAAAGTAAGAGCTTCTCGAGCGACGATGAGGG
250QC8fold	GGCGTCGTTAGTTGATTTTTCGAAAGGTCGTAAAA
251QC8fold	TTGACAGAATCCATCTCGAAGGAGTCGCCAGCGCGTCAGTTT
252QC8fold	CGATAACCGGCCTCATCCAA
253QC8fold	AGCCACTTCTAGTAGTTGAAATTTTTTGGTAATAAGCCTTGACGAAC
254QC8fold	CTAAACCAGTACGACCAATC
255QC8fold	GAAGCCAAGATGAACAAAATGTGACTCATATTGACCAGCAAG
256QC8fold	GGGGCTGTCAACAAGATTTTATCTCTACCATGGGA
257QC8fold	TCTTTTAAAACGAAGCCCCT
258QC8fold	TGTTGACCACGACTCAGATAGTAATCCACGCGCAATTAAAAT
259QC8fold	TTACCTATTAGTGGTTTTTTTAACAGCATCGCTACA
260QC8fold	GAGCGTTGTTCAGTAATTTTTTGACTCATGATTTC
261QC8fold	AACGTACGGACCAGAACGTT
262QC8fold	GACATTACATTAGAGGCCAAAGCGGTCTGGATTTTACCTTTA
263QC8fold	GCGCGGGCAGAAGCCTTTTATGAGCTTAACACTC
264QC8fold	AATCCAAAACTACACGCAAGGTAAACGCGAAATCTTCGGTTA
265QC8fold	CAATTCAGCGAATCGAAATC
266QC8fold	CTCGTCAGAAGCTTTAACCGGTTTTTACGCTCGACGGGTCAGTAGCA
267QC8fold	GCACGAGAGCCCATTAATAA
268QC8fold	AATTCAGCGCCAAGCCTCAACGCAGCGACGATGTTTTCCGTA
269QC8fold	AAACTCAAAGTCCAGCTTTTACCATAAACGCTTCC
270QC8fold	GTAAACGTAGCGAGGGTATCCCACAACAGGA
271QC8fold	GCAGGAATAATATTTGTTAAAATTTAAATT
272QC8fold	AAAACAGGAAGATTGTTTTTTAAGCAAATATTCGC
273QC8fold	GAACCCCCGGTTGATTTTTTATCAGAAAAGCCCCA
274QC8fold	ATCATATGTATATTATTCTG
275QC8fold	TATTAAGAGGAATCGTAAAACTAGCATGTCAAAACATGAAAG
276QC8fold	TCGAGAAACAAGAGAATTTTGATGAACGGTCTGAG
277QC8fold	AGTCTGGAGCAGGGTTGATATAAGTATAGCCCATTGCCTGAG
278QC8fold	CGGAATAGGTGCTATCAGGT

279QC8fold	ATCTACAAAGGTATCACCGTATTTTTCTCAGGAGGGTCCGGAGAGGGT
280QC8fold	TAAATTAATGTTAGTACCGC
281QC8fold	CCGCCACCCTATATTCAACCGTTCTAGCTGACACCCTCAGAA
282QC8fold	ACCGTACAGTCAAATCTTTTCATCAATATGCAGAA
283QC8fold	AAGGCCGGAGAACACTGAGT
284QC8fold	TACAAACTACTAAAAGATTCAAAAAGGGTGAGATTCGTCACCAG
285QC8fold	CCGCCATTCCCTCAGAGCCAATAGGAACCTTTTCATGT
286QC8fold	CAAACAGGCAGGGATAGCAAGCCCACCACCC
287QC8fold	TCATTTTCAAAAAATTTAGGGTCAAGCGAAC
288QC8fold	ACTCCTTTTTCAAGAGAAGGAGGCGGATAAGTTTGCCG
289QC8fold	AAACAACCGTTTTGCTCAGTACCATTAGGAT
290QC8fold	TAGCGGGTGATTAGCGGCGTTGAACCAACAG
291QC8fold	ATTAAATTTTTTTGTTAAAGCCCCCTGCCTTTTTTTTCG
292QC8fold	TTTTAACCAATGTGCCCGTATAAACAGTTAATTCAGCTCATT
293QC8fold	AGGAACGCCATTGAGTAACA
294QC8fold	ATGATGTTAGACAGGCCGCAATGACGGCATTTTGCAAT
295QC8fold	CCGTGGGAGATGAACATAATAAGTTTGAATG
296QC8fold	TTGACGGACAAACGGCGGATTGACGGATTCT
297QC8fold	CTTCCGTTTTCACGTAATTTAACGTCAGTGTTTTTCCT
298QC8fold	ATGGGCGCTTCTGCGTCAGTAAGTTGACGCA
299QC8fold	CGTTTTCATCGTAACCGTGCATCTGGTGTAG
300QC8fold	TACCAATTTTTGACGAGCGCCCTGCGGACGACTTTTTAGGGC
301QC8fold	GAAACCAGAGTACCTCGCAACGGTTTACGCT
302QC8fold	TGCCTTTGCAAAGCGCCATTCGCTGGTGCCG
303QC8fold	AAGGTCTTATGCGGCATAATTTATCCTCATTTTAGTAA
304QC8fold	TGCAAGGCTGAATATTAGACATACGCTCGGC
305QC8fold	GCCAGTTGATTAAGTTGGGTAACGGATGTGC
306QC8fold	ATGTCTTTTTACAGTAGAGTGACGGAGAGCGTTCCAAC
307QC8fold	AAACGACGGACGCAATGGAGAAACAATAGCA
308QC8fold	AGGCCACGCCAGTGCCAAGCTTGACGTTGTA
309QC8fold	CCAGTATTTTTGTTAACAGTCATGAACTTAATTTTTCCACT
310QC8fold	ATTGTTATATTAACACCATCCTTCGGGAGAG
311QC8fold	GAGTGGCCCGCTCACAATTCCACTGTGTGAA
312QC8fold	GCGTGATTCATCAGAAGGGGATTTTATTTTTGGTAT
313QC8fold	CAAATGCTTAGGTAATAAGA
314QC8fold	TAACCCTGAAAACGAACCATAAAAAAGCCTCCGATATTCAAA
315QC8fold	CCTGCATTTTTACGAAAAGAATCCATCTGCTTTTATGG
316QC8fold	GGGAGGGTGAGCTTGATGCGGTTCAGAATCT
317QC8fold	CTTCCAAGTCAATCCTGACGGTTATACAATT
318QC8fold	CTTTCCAGAATGTTTTTGAG

319QC8fold	GGAAACCATACAATACCATCAGCTTTACCGTATGGCAGCAAC
320QC8fold	CTAGACTTTTAAATTAGAGCACGAGCATCATTTTTTTTTAAGCTCATTACGCTT
321QC8fold	TAAAATTTTTAGTTGTTATAAAGATTTGGAGTTTTTGCATGAAAACATTTC
322QC8fold	ATCCACGGGGGTTAGCCTCGGTACGGGTGCC
323QC8fold	TAATGAGTAAAGTGTAAAGCCTGGGTCAGGC
324QC8fold	ATACGATTTTTCCGGAAGCATGAGCTAACTCATTTTTCATTA
325QC8fold	TAGAGCTTTTTCAGCAAAATCAATCATGGTCATTTTTAGCTGTTTCCACAAC
326QC8fold	TCGAATTCGTACCAGTAGCA
327QC8fold	AGCAAGGCCGGAGGATCCCCGGGTACCGAGCCCATTACCATT
328QC8fold	CTGCAGTTTTGTCGACTCTAGAAACGTCACCTTTTTTTTCCATCGATAGTTACG
329QC8fold	CCAGCTTTTTGGCGAAAGGGGCCAGGGTTTTTTTTTCCCAGTCACGCATGC
330QC8fold	CTCTTCGCTACAGCACCGTA
331QC8fold	CAGAATCAAGGGAAGGGCGATCGGTGCGGGCATCAGTAGCGA
332QC8fold	AGGCTGTTTTTGCAACTGTTGTTTGCCTTTAGTTTTTCGTCA
333QC8fold	CACCACTTTTTCGGAACCGCCGCCAGCTTTCCTTTTTGCACCGCTTCCATTC
334QC8fold	TCGCACTCCATCCCTCAGAG
335QC8fold	AGAACCGCCAACAGTATCGGCCTCAGGAAGACCGCCACCCTC
336QC8fold	GTTTGATTTTGGGGACGACGCCCTCAGAGCCTTTTTTTTT
337QC8fold	GCGAGTTTTTAACAACCCGTCCGTAATGGGATTTTTTAGGTCACGTTGCCA
338QC8fold	CAACATTAAACACCAGAACC
339QC8fold	CGCCGCCAGCCTTCCTGTAGCCAGCTTTCATACCACCAGAGC
340QC8fold	AATAATTTTTTCGCGTCTGGCATTGACAGGAGTTTTTGTTGA
341QC8fold	AGTAAGTTTTTCGTCATACATAAGTTTTAACGTTTTTGGTCAGTGCCTCAAA
342QC8fold	CTGGTAATGGCTTTTGATGATACACATTACC
343QC8fold	AGCATTAAAATGAAGAAAACCACGGAGTGTA
344QC8fold	GTATCCTTTTATCTGAATGCCCGTCAAACTATTTTTTTTATAACGTTGAGTCGG
345QC8fold	AACCGATTTTAGAAGACTCAGGCATCAAAAGTTTTTCAATATCAGCCAGAT
346QC8fold	CGGGAGGGTACGATGTAGCT
347QC8fold	TAAAACAGGTAGGATAAACATCATAGGCAGTTTAGGTGTCTG
348QC8fold	GGCAGAAATAAATCCTTTTTCATTAAAGCCGTTCC
349QC8fold	GACTGAGCCCCCTTATTTTTAGCGTTTGCAGAGC
350QC8fold	GGAGCGGAGGCATTTTCGGTCATTAGCGCGT
351QC8fold	TTTCATCATTATCATCATATTCCCACCAGAA
352QC8fold	ATTGCGAAATTATTCATTTTTTAAAGGTGAGGAAT
353QC8fold	TGATTGTTGACTTGAGCCATTTGATTATCAC
354QC8fold	CGTCACCTGGATTATACTTCTGATATAATCC
355QC8fold	AATATTGACGGTTGCGCTCA
356QC8fold	GAGGGAAGGTACTGCCCGCTTTCCAGTCGGGACCGATTGAGG
357QC8fold	TTAACGTGGTTTACCAGCGCCAAAATAGAAA
358QC8fold	ATTCATATCAGATGAATATACAGTTTCAGGT

359QC8fold	CGTAAAACAGAAATACCGACCGTGTGATAAAAATTATTTGCA
360QC8fold	TAAGGCGTTAACCATATCAA
361QC8fold	GGAAGGTTTTGTTAGAACCTAATAAGAATAATTTTTACACCGGAATCATTT
362QC8fold	TGCGGATTTTACAAAGAAACTGATTATCAGATTTTTTTTAATTCATCAAATAAT
363QC8fold	GTAACATTATCATAATTACT
364QC8fold	GTTTAGTATCTTATTAAATTTTAAAAGTTTGAAGAAAAAGCCT

Fig. S74. Design pattern for the waving grid

Table S10.	Sequences	of the	waving grid	l
------------	-----------	--------	-------------	---

Number	Sequence
wavinggrid-1	CTGAACTTTTACCCTGAACAGGAGGTTTAGTTTTTACCGCCACCCTCAGA
wavinggrid-2	TGTATCACCGTACTCAAAGTCAGAGGGTAATTGAGCGATAGCCCGGAATAGG
wavinggrid-3	TAACCCACAAGAATTGGTCGAGAGGGTTGATATAAGTCTAATATCAGAGAGA
wavinggrid-4	TGCTCAGTACCAGGCGTTTTGATAAGTGCCAGTTAAGCCCATTTTATAATAAGAGCCCTG
wavinggrid-5	CTTAGGTTTTTGGGTTATATCATATTCCTGTTTTATTATCAGATTAGAA
wavinggrid-6	CCTACCTTTTATATCAAAATACGCTGAGAAGTTTTAGTCAATAGTTCCGG
wavinggrid-7	TGAATAATGGAAGGGTGATGGCAATTCATCAATATAATCCTGATAAGTTTATTT

wavinggrid-8	GCCGCCTTTTGCCAGCATTGGGTGGCAACATTTTTATAAAAGAAAG
wavinggrid-9	TTCATATTTTTGGTTTACCAGGAACCGCCTCTTTTCCTCAGAGCCCCAGA
wavinggrid-10	TGTCACAATCAATACGCAAAGACACCACGGAATTGTTTGGATTATACTTC
wavinggrid-11	ATCGGTTTATCAGCTTTTTGCTTTCGAGGGCTGTCTTTCCTTTTTATCATTCCATCGT
wavinggrid-12	AGGAATTTTTCATTACCGCGAGGCTCCAAAATTTTGGAGCCTTTAATTGT
wavinggrid-13	AGCCGTTTTTATTTTCAAGAACGGGTATTAAACCAAGTACCGAGGTCTGAGAGA
wavinggrid-14	CTACCTTTTTAACCGAATTTATCAAAATCATCACTCATCGAGAACAAGCA
wavinggrid-15	TTTTAATTTTAAGTTTGAGTAAAACTTTTTCTTTTAAATATATTTCCGAC
wavinggrid-16	AGACAAAGAACGCGAGAACATTATCATTTTGCGGAACGCAAATCCAATCGCA
wavinggrid-17	AGGAGCGGAATTATCATAACTATATGTAAATGCTGATAAAGAAACCACCAGA
wavinggrid-18	TGTAAATTTTTCGTCGCTATGTCAGATGAATTTTTATACAGTAACACAAA
wavinggrid-19	GATTTTCAGGTTTAACTAATTAATTTTCCCTTAGAATTAAAGAAATTGCGTA
wavinggrid-20	GATAGCTTAGATTAAGTATTTGCACGTAAAACAGAAACCTTGAAAACATAGC
wavinggrid-21	AGAAAAAGCCTGTTTATTATCTAAAATATCTTTAGGAGGAATCATAATTACT
wavinggrid-22	TATACCAAGCGCGAAATTTTCAAAGTACAAGTTGAAAGGAATTTTTTGAGGAAGGGTATC
wavinggrid-23	ATATGCTTTTGTTATACAAAAACACTCATCTTTTTTTGACCCCCAGCGAT
wavinggrid-24	AGATTAGAGCCGTCAACGTTAAATAAGAATAAACACCGCACTAACAACTAAT
wavinggrid-25	CGTGTGTTTTATAAATAAGGTAGATAATACATTTTTTTGAGGATTATTAA
wavinggrid-26	CCTTTGCCCGAACGTTTAGAAGTATTAGACTTTACAAACAA
wavinggrid-27	CGGAAATTTTTATTCATTAAGAGCCAGCAATTTTAATCACCAGTCCATC
wavinggrid-28	GCCATTTGGGAATTAAGGTGAATTATCACCGTCGACAACTCGTATTAAAT
wavinggrid-29	AATGGTTTGAAATATAGTTAATTTCATCTTCGTTCAGCTAATGCAGAACG
wavinggrid-30	CGGTCGCTGAGGCTTGTTTTCAGGGAGTTAGACAAAAGGTATTTTAAGTAATTCTATAGA
wavinggrid-31	TAAGTCTTTTCTGAACAAGACATCGCCCACGTTTTCATAACCGATATATT
wavinggrid-32	CGCCTGTTTATCAACAGTCCAGACGACGACGACAATAAACAACATTGACCTAAATTT
wavinggrid-33	TAGTAATTTTTAACATCACTTCCAGAACAATTTTTATTACCGCCAATAAA
wavinggrid-34	CCTTGCTGGTAATATGCCTGAGTAGAAGAACAGCCACCACCCTCAGAGCC
wavinggrid-35	GATAGCTTTTAGCACCGTAATTTCGGTCATATTTTGCCCCCCTTATATTGA
wavinggrid-36	CCTATTTTTTCGGAACCTAGAGAAGGATTATTTTGGATTAGCGGGGTTT
wavinggrid-37	GCCACCAGAACCACCAGCCACCCTCAGAACCGCCACCCTCAGTCAAACTATCGG
wavinggrid-38	AAAATACATACATAAAACAGGAGGTTGAGGCAGGTCATGTTAGCAAACGTAG
wavinggrid-39	TATTCACAAACAAATAAAGACTCCTTATTACGCAGTAGACGATTGGCCTTGA
wavinggrid-40	AAGAACTTTTTGGCATGATTAATCCTCATTATTTTAAGCCAGAATAGGAG
wavinggrid-41	TGGCTTTTGATGATACGGAAAGCGCAGTCTCTGAATTTACCGCGGTACGCCAGA
wavinggrid-42	CTACGTGAACCATCACTTTTCCAAATCAAGCTAAACAGGAGTTTTGCCGATTAAATTTTA
wavinggrid-43	TAATCATTTTGTGAGGCCACAAACCGTCTATTTTTCAGGGCGATGGCCCA
wavinggrid-44	ATCCTGAGAAGTGTGGGATTTTAGACAGGAATTCCAGTAAGCGTCATACA
wavinggrid-45	TGTACTTTTTGGTAATAAGTAGTAAGCAGATTTTTAGCCGAACAACCCAA
wavinggrid-46	AGCCCTTTTTAAGAAATTTAACGGGGTCAGTGCCTTGTAGCTATCTTACCGA

wavinggrid-47	ATAAACAGTTAATGCCCAAGAAACAATGAAATAGCAAAGTAACAGTGCCCGT
wavinggrid-48	ATAATAACGGAATAAGTTACCAGAAGGAAACTAACGGATTCGCCTGATTG
wavinggrid-49	ATCGCGTTTTCAGAGGCGAATAATTACATTTTTTAACAATTTCAGCTTC
wavinggrid-50	CTTTGAATACCAAGTTAGTACCTTTTACATCGGGAGAAACAACGAGGAAACGCA
wavinggrid-51	AACCAGAGCCACCGCGCCCAAAGACAAAAGGGCGAAATCAAAATCACCGG
wavinggrid-52	GGGAGGGAAGGTAAATTAGCGTTTGCCATCTTTTCATCATTCAACCGATTGA
wavinggrid-53	GCGTTTTCATCGGCATTCAGTAGCGACAGAATCAAGTTTGCCGTCACACGACCA
wavinggrid-54	CATTGTGAATTACCTTTTTATGCGATTTTTCGTCTGAAATTTTTGGATTATTTAATTCT
wavinggrid-55	GGCCAATTTTCAGAGATAGATGAGATGGTTTTTTTAATTTCAACTTTAAT
wavinggrid-56	GTAATAAAAGGGACCATTGGCAGATTCACCATTTAGCGTCAGACTGTAGC
wavinggrid-57	AAGCATTTTTCACCTTGCTGCATGTTACTTATTTTGCCGGAACGAGGCGC
wavinggrid-58	AGACGGTCAATCATAATTTTGGGAACCGAACAGAAGATAAATTTTACAGAGGTGAATCTA
wavinggrid-59	CAGCAGCAAATGAAAAGGCGGTCAGTATTAACACCGCCTGCACAAGGCCGGAAA
wavinggrid-60	CGTCACCAATGAAAAGCACCATTACCATTAGACAGTGCCACGCTGAGAGC
wavinggrid-61	ATCAAGAAAACAAAATTTATTCATTTCAATTACCTGAGCAAAAACAGGGAAGCG
wavinggrid-62	ACCGCCACCCTCAGAATTTTCCGCCACCCTAATGAAAATAGTTTTCAGCCTTTACATTAA
wavinggrid-63	CATTAGACGGGAGAAGAGAGAATAACATAAAAGAAGATGATGAAAACAAAC
wavinggrid-64	GTGAGTGAATAACCTTTTTGAATTACCTTTTTTAATGGAAACTTGAAGCCTTAA
wavinggrid-65	CAGCGGAGTGAGAATATTTTGAAAGGAACACGAGGCGTTTTTTTT
wavinggrid-66	TTGCACTTTTCCAGCTACAATTTTGCTAAACTTTTAACTTTCAACAGTTT
wavinggrid-67	ATCAAGATTAGTTGCCGACTTGCGGGAGGTTAGTACATAAATCAATATAT
wavinggrid-68	GGGCGCTTTTGTACTATGGTCCCCGATTTAGTTTTAGCTTGACGGGGAAA
wavinggrid-69	AAAGCGAAAGGAGCGGTTTTGCGCTAGGGCCTACA
wavinggrid-70	CGCGCTTAATGCGCCGGCTGGCAAGTGTAGCGGTCACGCTGCAGTATTAAGAGG
wavinggrid-71	CTGAGACTCCTCAATTATTCTGAAACATGAAGCGTAACCACCACACCCGC
wavinggrid-72	GAACCCTAAAGGGAGCTGCTTTGACGAGCACGTATAATAAAGCACTAAATCG
wavinggrid-73	AGAATCAGAGCGGGAGTTTTTTGGGGTCGAGGTGCCGCGTGCTTTCCTCGTT
wavinggrid-74	ACGAACTTTTTAACGGAACAGGGTTGAGTGTTTTTTGTTCCAGTTTTGAT
wavinggrid-75	AACGTCAAAGGGCGAACGAGTAAAAGAGTCTGTCCATAAGAACGTGGACTCC
wavinggrid-76	TTGTAGCAATACTTCTTGGAACAAGAGTCCACTATTACACGCAAATTAACCG
wavinggrid-77	TCAACGTAACAAAGCTTTTTGCTCATTCAGTGGCT
wavinggrid-78	ATTAGTTTTCTTTAATGCGGCTGGCTGACCTTTTTTCATCAAGAGTAAT
wavinggrid-79	AGTAGTAAATTGGGCTACCCTTCTGACCTGAAAGCGTAGAAACACCAGAACG
wavinggrid-80	AGACAATATTTTTGAATGAATAAGGCTTGCCCTGACGAAGAATACGTGGCAC
wavinggrid-81	ACATTTTGACGCTCAAAAGAACTGGCTCATTATACCACTCATGGAAATACCT
wavinggrid-82	AGAAAAATCTACGTTAGCCATTGCAACAGGAAAAACGGTCAGGACGTTGGGA
wavinggrid-83	CCGAACGAACCACCAGCTGACCAACTTTGAAAGAGGATCGCCATTAAAAATA
wavinggrid-84	CAGACCAGGCGCATAGCGAACTGATAGCCCTAAAACACAGATGAACGGTGTA
wavinggrid-85	AATCCGCGACCTGCTCAAACCCTCAAATATCAAACCCTCGATAAATTGTGTCGA

wavinggrid-86	AGTTGGCAAATCAACACGGAGATTTGTATCATCGCCTAATCAATATCTGGTC
wavinggrid-87	TTACAATTTTAATAAACAGCACCGTAACACTTTTTGAGTTTCGTCACCAG
wavinggrid-88	TTTGTTTAACGTCAAACAGAGCCACCACCCTCATTTTAATAAGAAACGATTT
wavinggrid-89	CAATAGGAACCCATGTCATATTATTTATCCCAATCCACAGGGATAGCAAGCC
wavinggrid-90	TTCCATTAAACGGGTATTTTAAATACGTAACATAT
wavinggrid-91	TTAACATTTTACGCCAACATCGAGGGTAGCATTTTACGGCTACAGAGGCT
wavinggrid-92	CAAAAGAATACACTAATTCTTACCAGTATAAAGCCAACTAAAACGAAAGAGG
wavinggrid-93	CTTAATTGAGAATCGCTGCCACTACGAAGGCACCAACCGCTCAACAGTAGGG
wavinggrid-94	CTTGACAAGAACCGGATTTTTATTCATTACCCAAA
wavinggrid-95	GCCGGCGAACGTGGCGTTTTAGAAAGGAAGGGAAG
wavinggrid-96	TACAAACTACAACGCCTTTTTGTAGCATTCCACAG
wavinggrid-97	TTGAGGACTAAAGACTTTTTTTTCATGAGGAAGT
wavinggrid-98	CGGTATTCTAAGAACGACTAAAGGAATTGCGAATAATTATAGAAGGCTTATC
wavinggrid-99	ACAGCCCTCATAGTTATTTTGCGTAACGATGCCAG
wavinggrid-	AATTTTCTGTATGGGATTTTATCCTGAATCTTACCAAAGACGTTAGTAAATG
100	
wavinggrid-	TTCCAGAGCCTAATTTCTAAAGTTTTGTCGTCTTTCCCGCTAACGAGCGTCT
101	
wavinggrid-	AAAATCTCCAAAAAAACCCCAATAGCAAGCAAATCAGAAATTTTTTCACGTTG
102	
wavinggrid-	GAGAATATAAAGTACCAAGGCCGCTTTTGCGGGATCGTCGAGCCAGTAATAA
103	
wavinggrid-	AAAGACAGCATCGGAAGTAATTTAGGCAGAGGCATTTTCACCCTCAGCAGCG
104	
wavinggrid-	AACCAATCAATAATCGTGAATTTCTTAAACAGCTTGATTACGAGCATGTAGA
105	
wavinggrid-	CGACAATGACAACAAAAATAATATCCCATCCTAATTACCGATAGTTGCGC
106	

Fig. S75. Design pattern for the fishnet

Number	Sequence
fishnet-1	CAGAGCTTTGGGAGCTAAAAGAATCCTGAGTTTTTAAGTGTTTTTGGATG
fishnet-2	GTGGCACAGTTTTACAATATTTTGCTCAATCGTCTTTTTAAATGGATTAGATAG
fishnet-3	AACCCTTTTTTCTGACCTGAAAGCGTTACATCG
fishnet-4	CATTCTGGCCAACAGATTTACATTGGCAGATTCACCAGTCACAGGATTTTAGACA
fishnet-5	GGAACGGTACGCCCAGGAGGCCGATTAAAGCGACCAGTAATAAAAGGGA
fishnet-6	GCTTAGTTTAGCTTAATTGCCCAAATCAAGTTTTTTTTTT
fishnet-7	AGCAATTTTTTTTTTTGATTGTTTTAATTCGTTTTAGCTTCAAAGCGAAC
fishnet-8	CAGACCGGAAGCAAACTTTTTCCAACAGGTGTTGT
fishnet-9	CTTTAATTGCTCCTTTGTCCATCACGCAAATTAACCCAGGATTAGAGAGTAC
fishnet-10	GAACGTTTTTTACTCCAACGTTGTCTGGAAGTTTTTTTCATTCCAT
fishnet-11	ACTACGTGAACCATCACTGAATATAATGCTGTAGCTCTCAGGGCGATGGCCC
fishnet-12	TGCAACTAAAGTACGGCAAAAGGGCGAAAAACCGTCTAAACATGTTTTAAATA
fishnet-13	CGCTTAATGTTTTCGCCGCTACAGAGCTTGACGGTTTTTAAAGCCGGCGAGCGG
fishnet-14	CACTAAATCGGAACCGTATAACGTGCTTTCCTCGTTTCGAGGTGCCGTAAAG

 Table S11. Sequences of the fishnet

fishnet-15	TGCTTTGACGAGCACCTAAAGGGAGCCCCCGATTTAGGGCGCGTACTATGGT
fishnet-16	GGAGAAACAGTAACAGTACCTTTAAGAATAC
fishnet-17	CGTCAGTTTTATGAATATACAATAACGGATTTTTTCGCCT
fishnet-18	TTAAACCAAGGCGTTTTAGCGAACCTCCCGAAAGAACGGGTA
fishnet-19	CTTTCCTTTTTATCATTCCCTTGCGGGAGGTTTTTTTTG
fishnet-20	ATTCTATTTTAGAACGCGAGTACCGCACTCATTTTTCGAGAACAAGCAAG
fishnet-21	CATTGAATCCCCCTCATTTTAATGCTTTAAATATC
fishnet-22	AAACCCTTTTTAATCAATATCAATACTGCGGATTTTATCGTCATAAATATT
fishnet-23	AATACCTTTGAACGAACCACCGCCTGCAACTTTTTAGTGCCACGCACTAT
fishnet-24	TATAGTTTTCAGAAGCAAAGTAATATCCAGTTTTTAACAATATTATTAAA
fishnet-25	GTCAGTATTAACACCAGCAGAAGATAAAACTATTAATTTTAAAAAGTTTG
fishnet-26	AGGAAAGACTTTACAATTTTAATTCGACAATGCGG
fishnet-27	AACAAATTTTGAAACCACCAGATACATAACGTTTTCCAAA
fishnet-28	ATTATCATCAATACCACATTCAACTAATGCAGAAGGAGCGGA
fishnet-29	AGTAACATTATCATTTCTCGTATTAAATCCTTTGCCCGAACGTAGAGGTGAGGCG
fishnet-30	CAGTTGTTTTAGATTTAGGATATTCCTGATTTTTTATCAG
fishnet-31	ATGAAAAATCTAAAGAAAAATCAGGTCTTTACCCTGTGAGAGCCAGCAGCAA
fishnet-32	GAATGACCATAAATCCATCACCTTGCTGAACCTCAAACAGTTCAGAAAACGA
fishnet-33	ACTATCGGCCTTGCTGGCGGATTGCATCAAAAAGATTAGTAGAAGAACTCAA
fishnet-34	AGACTTCAAATATCGCAGTAATAACATCACTTGCCTGAAGAGGAAGCCCGAA
fishnet-35	CAGGAAAAACGCTCAGATAGCCCTAAAACATCGCCACCGCCAGCCA
fishnet-36	TTTAATGCGCGAACTTGGAAATACCTACATTTTGACTGAATGGCTATTAGTC
fishnet-37	CCCGGGTTTTTCCGAGCTCGAAGGAAGATCGCTTTTACTCCAGCCAG
fishnet-38	TTAAATGTGAGTTTTCGAGTAACAATTAAA
fishnet-39	TCTTTTCACTTTTCAGTGAGACGTTAATTGCGTTTTTTGCTCACTGCCGAGGC
fishnet-40	CCTTCACCGCCTGGCTAATGAGTGAGCTAACTCACAGGCAACAGCTGATTGC
fishnet-41	AAAGCCTGGGGTGCCCCTGAGAGAGTTGCAGCAAGCCGGAAGCATAAAGTGT
fishnet-42	TTGGTGTTTTAGATGGGCGAATTCCACACATTTTTACATACGAGCGGTCC
fishnet-43	ACGCTGTTTGTTTGCCCCAAATCCCTTATATTTTAATCAAAAGATCACG
fishnet-44	CCGAAATCGGCAAGCAGGCGAAAATCCTGTGCGAAAGGAGCGGGCGCTA
fishnet-45	TCACGCTTTTTGCGCGTAACCACCACTATGTGA
fishnet-46	GTGAATAAGTACATAAATCAATAACCCGCCG
fishnet-47	GGGCGCTGGCAAGTGTAACGTGGCGAGAAAGGAAGGGAAGAAATTGATGGTGGTT
fishnet-48	TTTTTTTTAATGGAAACACCTTGCTTCTGTTTTTAAAT
fishnet-49	TTGAGTGTTGTTCCAGATTGACCGTAATGGGATAGGATA
fishnet-50	TGGGAACAAACGGCGGTTTGGAACAAGAGTCCACTACCCGTCGGATTCTCCG
fishnet-51	ATTGTTATCCGCTCACCATCGTAACCGTGCATCTGCCTGTTTCCTGTGTGAA
fishnet-52	CGACAGTATCGGCCTCATTCGTAATCATGGTCATAGCAGTTTGAGGGGACGA
fishnet-53	GAGTTAAGCCCAATAATAAAGGTGGCAACATATAAAATAACCCACAAGAATT
fishnet-54	AAGCCTGTTTATCAACTTTTTAGATAAGTCGCTGT

fishnet-55	GAAAAATCGCCATATTTTTTACAACGCCAACTTAG
fishnet-56	GTTGGGTTTTTTATATAACTAAGACAAAGAATTTTCGCGA
fishnet-57	CGTCGGAGAATAACATTTTTTAAACAGGGAATTACC
fishnet-58	GATTGTCATTAAAGGTTTTTATTATCACCGTTTAA
fishnet-59	ATGATGTAAGCGTCATTTTTTATGGCTTTTGTTCAT
fishnet-60	GTAGAAAATACATACATAAGAGCAAGAAACAATGAACAGTATGTTAGCAAAC
fishnet-61	ATTAAGACTTTTTCCTTATTACGATAGCAATAGCTTTTTTCTTACCGAAGCAAT
fishnet-62	AATAACTTTTGGAATACCCAAAAGAATTGCTTT
fishnet-63	CGAGGTGATATCGGTTTATCAGCCTGGCATG
fishnet-64	AAGGAGTTTTCCTTTAAATTGATTTCTTAAACTTTTAGCTT
fishnet-65	AGGAAACCGAGGAAACGCCCTTTTTAAGAAAAGTAAGCAGATATGCCAGTTACAA
fishnet-66	AATAAACAGCCATCTTTCCAGAGCCTAATTGCCGAACAAAGTTACCAGA
fishnet-67	AGCAAATTTAGAAGATGATTTGAGCGCTAATTTTTTATCAGAGAGAG
fishnet-68	CGCAAATTTGACACCACGGTTACCAGCGCCTTTTTAAAGACAAAAACCTG
fishnet-69	AAATTCATATGGTAATAAGTTTATTTTGTCCGGTCATAGCCCCCTTATT
fishnet-70	AGCGTTTGCCATCTTTACTGTAGCGCGTTTTCATCGGCATTTTACAATCAAT
fishnet-71	ATTGAGGGAGGGAAGGGCGAATTATTCATTTCAATTGGGCGACATTCAACCG
fishnet-72	ACAAAATCGCGCAGAGTAAATATTGACGGAAATTATCTTTGAATACCAAGTT
fishnet-73	TGCGTAGATTTTCAGGTCACCGACTTGAGCCATTTGGCAGAAATAAAGAAAT
fishnet-74	AAATCACCAGTAGCACCAAAATTATTTGCACGTAAAAGAATTAGAGCCAGCA
fishnet-75	TTAGAATTTCCTACCATATCATTACCATTATTTTTGCAAGGCCGGCAGAA
fishnet-76	CCACCATTTCCAGAGCCGCCTTGATATTCATTTTTCAAACAAA
fishnet-77	ACCATCGATAGCAGCCACCACCACCAGAGCCGCCACAAACGTCACCAATGAA
fishnet-78	CGCCACCCTCAGAGCACCGTAATCAGTAGCGACAGACCGCCACCCTCAGAAC
fishnet-79	GGAACCGCCTTTTTCCCTCAGAGATCAAGTTTGCTTTTTTAGCGTCAGTCA
fishnet-80	ATCAAATTTTATCACCGGAACCAGAGTCTAAAG
fishnet-81	TTTTGTCGTAGTTAGCGTAACGACCACCACC
fishnet-82	CCACAGTTTTACAGCCCTCATCTTTCCAGACTTTTGTTAG
fishnet-83	TCAGACGATTGGCCGCCAGCATTGACAGGAAGTACCAGGCGGATAAGTG
fishnet-84	GATGGAGAGGCTGAGATTTTTCCTCAAGAGATATAA
fishnet-85	GTATAGTTTTCCCGGAATAGAGTAAATTGGGTTTTCTTGA
fishnet-86	TCATTCAGTGAATAAGTTTTGCTTGCCCTGGTTTA
fishnet-87	GTACCGTTTTCCACCCTCAGATTACCCAAATTTTTTACGTAACAAAGCTGC
fishnet-88	CCGTCGAGAGGGTTGAAGGATTAGGATTAGCGGGGTTTTGCTCGGTTGAGGCAGG
fishnet-89	TACTCAGGAGACGAGAAACACCAGAACGAGTGTGTATCACCG
fishnet-90	AGAATGGAAAGCGCAGATTATACTTCTGAATAATGGAATCCTCATTAAAGCC
fishnet-91	AATCCTGATTGTTTGGTCTCTGAATTTACCGTTCCAGGCAATTCATCAATAT
fishnet-92	CAAAGTCAGAGGGTAAGAAACAAACATCAAGAAAACAACTGAACACCCTGAA
fishnet-93	AACAATTTCATTTGAAGCGCATTAGACGGGAGAATTAAAATTAATT
fishnet-94	CCTTAGAATCCTTGAGAAAATAGCAGCCTTTACAGACTATTAATTA

fishnet-95	TTTAACGTCAAAAATAAACATAGCGATAGCTTAGATAAGAAACGATTTTTTG
fishnet-96	CAACGCTTTTAACGAGCGTATTATTTATCCTTTTTCAATCCAAATTAAGA
fishnet-97	CGCTGATTTGAAGAGTCAAAACCGACAAAAGTTTTTGTAAAGTAATCTTAC
fishnet-98	TAAGAGAATATAAAGTTAGTGAATTTATCAAAATCATTTTTCGAGCCAGTAA
fishnet-99	CCTTTTTAACCTCCGGCATGTAATTTAGGCAGAGGCAAGGTCTGAGAGACTA
fishnet-100	CAATAAACAACATGTAGCTACAATTTTATCCTGAATTCTGTCCAGACGACGA
fishnet-101	TGCTATTTTGCACCCTCAGCTAATGCAGAACGCGCCTTAAATCAAGATTAGT
fishnet-102	GGTTTGTTTTCGTATTGGGCGCCAGGTGCAAAT
fishnet-103	CCAATCGCATATGTAAATGCTGAGTGGTTTT
fishnet-104	TAGAAATTTGGAACAACTACGATTATACCATTTTAAACAAAGTAGAGAA
fishnet-105	GATACATGCCACTACGTTTTTGGCACCAACCTCCAA
fishnet-106	TCTCCAAAAAAAGGCTAAAACGAAAGAGGCAAAAGATTTTCACGTTGAAAA
fishnet-107	CATCTTTGACCCCCAGAAGGAATTGCGAATAATAATTATACACTAAAACACT
fishnet-108	TAAATCTCCATGTTACTTTTTAGCCGGAACGGCATT
fishnet-109	ATTTTGCTAAACAACTGTGTCGAAATCCGCGACCTGGAATTTTCTGTATGGG
fishnet-110	CATCGCCTGATAAATTTTCAACAGTTTCAGCGGAGTCAACGGAGATTTGTAT
fishnet-111	ACCGCCACCCTCAGACTTGACAAGAACCGGATATTCAACCGCCACCCTCAGA
fishnet-112	TTCATCAAGAGTAATGCCACCACCCTCATTTTCAGGCATAGGCTGGCT
fishnet-113	CAAGCCTTTCAATAGGAACACAGATGAACGTTTTAGACCAGGCGGATAG
fishnet-114	CCAACTTTGAAAGAGGCCATGTACCGTAACACTGAGTAGGGAACCGAACTGA
fishnet-115	AACTACAACGCCTGTAAGGCGCAGACGGTCAATCATATTCGTCACCAGTACA
fishnet-116	CCGTTTTTATTTCATTTTTTAGGAATCATCCGGT
fishnet-117	AATGACAACAACCATATTAAACGGGTAAAATACGTACGATAGTTGCGCCGAC
fishnet-118	CATGAGGAAGTTTCCCGCCCACGCATAACCGATATAGGACTAAAGACTTTTT
fishnet-119	TCGCTGTTTAGGCTTGCAGGGGTAGCAACGTTTTGAGGCTTTGATTCGG
fishnet-120	GACAGCATCGGAACGAGGAGTTAAAGGCCGCTTTTGCGGGATCAGCAAATCAGA
fishnet-121	TATAGAAGGCTTATTACCGCGCCCAATAGCAGTCACCCTCAGCAGCGAAA
fishnet-122	GGAAGGTTATCTAAAAAGAAGTTTTGCCAGAGGGGGGTGTTGAAAGGAATTGA
fishnet-123	CTTTTGCAAATATCTTTAGGATTTTTGCACTAACAAGATAAAAACCA
fishnet-124	GTCAATAGATAATACAACCCTCGTTTACCAGACGACCTAATAGATTAGAGCC
fishnet-125	GAGCAACACTATCATATTTGAGGATTTAGAAGTATTTTACGAGGCATAGTAA
fishnet-126	AGACTGGATAGCGTCCTGGTCAGTTGGCAAATCAACAAATAGTAAAATGTTT
fishnet-127	GGGAAGAAAAAACAGTGCCCGTTTTTTATAAACAGTGCTCATTATAC
fishnet-128	ATCATTGTGAATTACTTCTGAAACATGAAAGTATTATTTAATTTCAACTTTA
fishnet-129	TTTCGGAACCTATTACTTATGCGATTTTAAGAACTGTAATGCCCCCTGCCTA
fishnet-130	GGTCAGTGCCTTGAGTATCTACGTTAATAAAACGAACAATAAGTTTTAACGG
fishnet-131	ATTACAGGTAGAAAGAATGATACAGGAGTGTACTGGTTAACGGAACAACATT
fishnet-132	TAAGGCGTTAGTTTAGTATCATTTTTATGCGTTATTTGAAATACCG
fishnet-133	TTAGTTAATTTCATCAACAGTAGGGCTTAATTGAGACTTTTTCAAATATATT
fishnet-134	ATAAAGCCAACGCTCTTCTGACCTAAATTTAATGGTACAAATTCTTACCAGT

fishnet-135	ACTAGAAAAAGCCTAATAAGAATAAACACCGTAATTTACGAGCATGTAGA
fishnet-136	AACCAATCAATAATCGCTGAACAAGAAAAATAATATCCCATCCGAATCATAATT
fishnet-137	GCCAGCTGGCAGGGTTTTCCCTTTTTAGTCACGACGCGGTGCGGGCC
fishnet-138	CCGGCACCGCTTCTGGTTTTTGCCGGAAACGGATC
fishnet-139	CGCCATTCAGGCTGCTGCCTGCAGGTCGACTCTAGACAGGCAAAGCGCCATT
fishnet-140	AGTGCCAAGCTTGCAGCAACTGTTGGGAAGGGCGATTTGTAAAACGACGGCC
fishnet-141	AGTTGGGTAACGCCGAAAGGGGGGATGTGCTGCCAGCTGCATTAATGAATC
fishnet-142	GGCCAACGCGCGGGGACGCTTTCCAGTCGGGAAACCTGTCGTGCAAGGCGATTA
fishnet-143	CCGAGTAAAAGAGTCTTGATAAGAGGTCATTTTTGCATAATCAGTGAGGCCA

Fig. S76. Design pattern for the circle array

Number	Sequence
spherearray-1	CCTTATTTTTGCGATTTTAAGAACTTTTT
spherearray-2	TTTTGGCTCATTATACCAGTTTTTCAGGA
spherearray-3	ATACCAAGCGCTGAGTAGAA
spherearray-4	TAATAATTTTCATCACTTGCCGAAACAAAGTTTTTACAAC

Table S12. Sequences of the circle array

spherearray-5	GGAGATGCTCCATGTTTTTTTAGCCGGAACGATTAG
spherearray-6	TAGCAATACTTCTTTGAGGCGCAGACGGTCAATCATAGCAAATTAACCGTTG
spherearray-7	ATCACAGGGAACCGAATTTTTTCCAACTTTGAAACGG
spherearray-8	AACAACTTTTATTATTACAGGTAAAAGAGTCTTTTTGTCC
spherearray-9	GTTAATAAAACGAACTAAGAGGACAGATGAACGGTGTGGAAGAAAAATCTAC
spherearray-10	CGTTGACAGACCAGGCTTTTTTAGGCTGGCTGAATTA
spherearray-11	AACTTTAATCATTGTGACCTTCATCAAGAGTAATCTTAGATGGTTTAATTTC
spherearray-12	GCTTGGACAAGAACCGTTTTTTTCATTACCCACAAA
spherearray-13	GCTGCTTTTTCATTCAGTGAACGAGTAGTAATTTTATTGG
spherearray-14	CCTGATAAATTGTAACGTAAAATCGTCGAAATCCGCGACCTTTGTATCATCG
spherearray-15	GCGCCAAAACGAGAAACACCAGAATAAGGCT
spherearray-16	TGCCCTGGACAAAAGGGCGACATGTTTACCA
spherearray-17	TCATCAGTTGATATAATCAGTGAGGCCACCGAGTAGAAAGAT
spherearray-18	CGTTGAAAATCTGAAAGCGT
spherearray-19	ATCGGCCTTGCATCTTTGACCCCCAGCGATTGAACTCAAACT
spherearray-20	AATACATTTTCTAAAACACTCTGGTAATATCTTTTCAGAA
spherearray-21	CAATATTGCAGGGAGTTTTTTTGGCCGCTTTTAAAAG
spherearray-22	GCAACAGGAAAAACGCGATATATTCGGTCGCTGAGGCTTACCGCCAGCCA
spherearray-23	TCACAACAACCATCTTTTTACGCATAACCTCATG
spherearray-24	GAAATATTTTCCTACATTTTTTGGCAGATTCTTTTACCAG
spherearray-25	GCGAAAAAATGGATTATTTACAGACGCTCA
spherearray-26	ATCGTCTGACCGTCTATCAGGGCGTCAAAGG
spherearray-27	GGGACATTCTGGCCAACGATAGTTGCGCCGACAATGACGACCAGTAATAAAA
spherearray-28	CCAAAGTGAATTTCTTTTTTAGCTTGATACCAGAG
spherearray-29	ATAGAATTTTCCCTTCTGACCTCCAAAAAAATTTTAGGCT
spherearray-30	TTGTATCGGTTTAACGGCTTAGCATCAGCTTGCTTTCGAGAGGAGCCTTTAA
spherearray-31	CTAAAACGAAAGAGGCGCGGGGATCGTCACCCTCAGCATACGAAGGCACCAAC
spherearray-32	GCCACGCGAAAGACAGTTTTTTGGAACGAGGGACAGA
spherearray-33	GGCTTTTTTTGAGGACTAAAGGGTAAAATACTTTTGTAAT
spherearray-34	GACAGAATAAGTTTCCATTAAACGACTTTTT
spherearray-35	CATGAGGCAAGTTTGCCTTTAGCTCAGTAGC
spherearray-36	CCAGGCGGATCCTTGCTGAA
spherearray-37	TTTTTATTAATTTTAAAAGTTTTTTTGAG
spherearray-38	TTAAATTTTTCCTTTGCCCGAACGTTTTT
spherearray-39	GCACAGACAATTGCGAATAATAATTTTTTCAAAGAATACGTG
spherearray-40	AAAATCTTTTTAAAGCATCAAAGTGCCGTCGTTTTAGAGG
spherearray-41	GTTGAGGTTTAGTACCTTTTTCCCTCAGAACAATGA
spherearray-42	CCGGAATAGGTGTTAGTTACCTCAATCACCGTACTCAGGATATAAGTATAGC
spherearray-43	CTGAGAGCCAGCACGCCACCCTCAGAACCGCCACTGCAACAGTGCCACG
spherearray-44	CCGCCCCTCAGAGCCATTTTTTCCTCATTTTCTCGCC
spherearray-45	TGATAGCCCTAAAACAAGGGATAGCAAGCCCAATAGGCTTTAATGCGCGAAC
----------------	--
spherearray-46	TTAGTAACCCATGTACTTTTTACACTGAGTTAGAAA
spherearray-47	TCAGCGGAGTGAGAATTCGTCACCAGTACAAACTACAAACTTTCAACAGTT
spherearray-48	CTAAAACGCCTGTAGCTTTTTTCACAGACAGCGCGTA
spherearray-49	ACGATCTTTTTAAAGTTTTGTCTGTATGGGATTTTTTTTG
spherearray-50	CAGAGCCGTTAGTAAATGAATTTTCGTCTTT
spherearray-51	CCAGACGCCGCCAGCATTGACAGACCACCAC
spherearray-52	GGAACATTTTACTAAAGGAATATTTTTGAATTTTTGGCTA
spherearray-53	ATTAAATTTTAATACCGAACGCGGTCAGTATTTTTTAACA
spherearray-54	AAGCCTGATAAAACAGAGGTGAGGAACCACC
spherearray-55	AGCAGAAGGGGTGCCTAATGAGTAAAGTGTA
spherearray-56	AAACCCTCAATTAGCGGGGTTTTGCTCAGTACCTCAAATATC
spherearray-57	AAGAGATTTTAGGATTAGGATCAATATCTGGTTTTTCAGT
spherearray-58	TGGCAAACCTACCATATTTTTAATTATTTGCTCCTC
spherearray-59	GGAATTGAGGAAGGTTTCTGAATAATGGAAGGGTTAGAATCAACAGTTGAAA
spherearray-60	TTTAGTAATCCTGATTTTTTTGGATTATACTATCTA
spherearray-61	AAATATTTTTCTTTAGGAGCATAATACATTTTTTTGAGGA
spherearray-62	AGGGGACTTAGAGCCGTCAATAGACTAACAA
spherearray-63	CTAATAGAGACGACAGTATCGGCCCAGTTTG
spherearray-64	CAAACAATTCGACAACGATGATGGCAATTCATCAATAAAGTATTAGACTTTA
spherearray-65	TAACAATTATCATCATTTTTTTCTGATTATCATCGTA
spherearray-66	GGAACAAAGAAACTGAATATCAGACACCAGAAGGAGCGGATTATCATTTTGC
spherearray-67	ATTAAGAGGCTGAGACACGTAAAACAGAAATAAAGAACTGAAACATGAAAGT
spherearray-68	TTATTATTGCGTAGATTTTTTAGGTTTAACGTACAG
spherearray-69	TAACAGTTTTTACCTTTTACCCTATTTCGGATTTTACCTA
spherearray-70	ACAATAACGGAATAAACAGTTAATGCCCCCTGATCGGGAGAA
spherearray-71	ΤΤΤΤΑΤΤGTATAAGCAAATATTTTTTAA
spherearray-72	AAAAGCTTTTCCCAAAAACAGGAAGTTTT
spherearray-73	GAGCAATTTTCACTATCATAACCCTTTTT
spherearray-74	TTTTCGTTTACCAGACGACGTTTTATAAA
spherearray-75	CCAGGGCCCTTCACCGTTTTTTGCCCTGAGAGGGTCA
spherearray-76	GAAGCAAACTCCAACAAGTTGCAGCAAGCGGTCCACGAAGCGAACCAGACCG
spherearray-77	CTTCACTGGTTTGCCCTTTTTTAGGCGAAAATATTAA
spherearray-78	GGATTGCATCAAAAAGCCTGTTTGATGGTGGTTCCGAAGTCAGAAGCAAAGC
spherearray-79	ATTATAATCGGCAAAATTTTTTTATAAATCAGCCGT
spherearray-80	TTTTTGGGGTCGAGGTAAAGAATAGCCCGAGATAGGGTCACCCAAATCAAGT
spherearray-81	AACCATTGAGTGTTGTTTTGTTTGGAACATTAAA
spherearray-82	TTCACCAGTGAGACCACTAAGAGTCGGGCAACAGCTGATTGTGGTTTTTCTT
spherearray-83	GAACGTTTTTGGACTCCAACGATGGCCCACTTTTTACGTG
spherearray-84	AAAGCATTTTCTAAATCGGAGGTCTTTACCCTTTTTGACT

spherearray-85	TCAAAAATCAACCCTAAAGGGAGCCCCCGATATGACCATAAA
spherearray-86	TTAGAGCTTGGAAAACGAGA
spherearray-87	TGCTTTTTTTAAACAGTTCAACGGGGAAAGCTTTTCGGCG
spherearray-88	AACGTGGGCGCTGGCATTTTTTAGCGGTCACTCAAA
spherearray-89	AGGGAAGAAAGCGGACAGGTTTTAAAAGGAGCGGGCGCTAGGCGAGAAAGGA
spherearray-90	ATTCATTGAATCCCCCGCTGCGCGTAACCACCACCACCGGAATCGTCATAAAT
spherearray-91	ACTGCCGCCGCGCTTATTTTTTGCCGCTACAGTGCCA
spherearray-92	TTTGCAAAAGAAGTTTGGCGCGTACTATGGTTGCTTTAAATAGCGAGAGGCT
spherearray-93	AACCAGACGAGCACGTTTTTTCGTGCTTTCCAGTAA
spherearray-94	AGGAATTACGAGGCATTCGTTAGAATCAGAGCGGGAGATACATAACGCCAAA
spherearray-95	TGCAGCTAAACAGGAGTTTTTTATTAAAGGGAAACGG
spherearray-96	TACGCCTTTTAGAATCCTGATACCACATTCATTTTACTAA
spherearray-97	GATTTAGGAAGAAGTGTTTT
spherearray-98	GAGGGGTTTTGTAATAGTAAAATGTTTTT
spherearray-99	TTTTTTAGACTGGATAGCGTTTTTCCAAT
spherearray-100	GAGGAATTTTGCCCGAAAGACTTCATTTT
spherearray-101	TTTTAATATCGCGTTTTAATTTTTCGAG
spherearray-102	GGATTATTTTGAGAGTACCTGTTTGCGTATTTTTTGGGCG
spherearray-103	GGGAGAGGCGTTAATTGCTC
spherearray-104	AGGTCATTTTTAATGAATCGGCCAACGCGCGCTTTTGATAAG
spherearray-105	GTCGTGTTTTCCAGCTGCATTGCGGATGGCTTTTTTAGAG
spherearray-106	CTTAAATCCCCGGGTATTTTTGCTCGAATTCAACCT
spherearray-107	CTGTAGCTCAACATGTCCTGCAGGTCGACTCTAGAGGTTGCTGAATATAATG
spherearray-108	GTAGGCGACGGCCAGTTTTTTAGCTTGCATGTTTAA
spherearray-109	ATATGCTTTTAACTAAAGTA
spherearray-110	AATGCCTGAGTTTTTAATGT
spherearray-111	GTGAGAAAGGCCGGAGCCCAGTCACGACGTTGTAAAATAAAGATTCAAAAGG
spherearray-112	TTCGCTTAAGTTGGGTTTTTTCCAGGGTTTTACAGT
spherearray-113	CAAATCTTTTACCATCAATAGATCGGTGCGGTTTTGCCTC
spherearray-114	TGGGAAGGGCTGATATTCAA
spherearray-115	GATAAATTAACCATTCAGGCTGCGCAACTGTCCGTTCTAGCT
spherearray-116	GGCAAATTTTGCGCCATTCGTGCCGGAGAGGTTTTGTAGC
spherearray-117	TATTTGCGAGTAACAATTTTTTCGGATTCTCAACCA
spherearray-118	AGGCTATCAGGTCATTTTCATCAACATTAAATGTGATTGAGAGATCTACAA
spherearray-119	AAACTCGCGTCTGGCCTTTTTTTGTAGCCAGCGCCTG
spherearray-120	AGAGTCTTTTTGGAGCAAACAAGAGTTTT
spherearray-121	TTTTAATCGATGAACGGTAATTTTTCGTA
spherearray-122	TGTACCCCGGTTGATAGGAACGCCATCAAAAATAATTAGCATGTCAATCATA
spherearray-123	ATTGTAAATCAGCTCATTTTTTTAACCAATAATCAG
spherearray-124	TTTGTTAAAATTCGATGGGGTGTAGCATTAAATTTTTGTTAAACGTTAATAT

spherearray-125	CGCTTCTGGTGCCGGACGTGGGAACAAACGGCGGATTCCAGCTTTCCGGCAC
spherearray-126	TCCAGGACCGTAATGGTTTTTTGGTCACGTTGCGCAT
spherearray-127	CGTAACTTTTCGTGCATCTGCTCAGGAAGATTTTTCGCAC
spherearray-128	TGGCGAAAGGGGGTCCACAACAATATGTGCTGCAAGGCGATATTACGCCAGC
spherearray-129	CGCTTTCCAGTCGGGAGTAATCATGGTCATAGCTGTTGTTGCGCTCACTGCC
spherearray-130	ATTGCTCCTGTGTGAATTTTTTTTATCCGCTCCAACA
spherearray-131	TACGAGTTTTCCGGAAGCATGAGCTAACTCATTTTCATTA
spherearray-132	TTTTACAAACATCAAGAAAATTTTCAAAA
spherearray-133	TGAGCATTTTAAAGAAGATGATGAATTTT
spherearray-134	ACGTAGTTTTAAAATACATACATAATTTT
spherearray-135	TTTTAGGTGGCAACATATAATTTTAAGAA
spherearray-136	TTATCGAACAAGCAAGTTTTTTTTTTTTTTTTCGCGTT
spherearray-137	CATAGCCCCCTTATTAATCGTAGGAATCATTACCGCGATCGGCATTTTCGGT
spherearray-138	TTTTCCCCAATAGCAATTTTTTATCAGATATACCATC
spherearray-139	AACGTCACCAATGAAAGAAGGCTTATCCGGTATTCTAATTAGCAAGGCCGGA
spherearray-140	TTACCAGAACGCGAGGTTTTTTTAGCGAACCATATT
spherearray-141	TACAAAATAAACAGCCTCCCGACTTGCGGGAGGTTTTGCCTAATTTGCCAGT
spherearray-142	CCAGAGAAGCCTTAAATTTTTTGATTAGTTGCCAGCT
spherearray-143	GGTATTAAACCAATGCACCTATTTGTACCGCACTCATCGAATTCCAAGAACG
spherearray-144	ACAATTTTTTTATCCTGAATCTTATTTT
spherearray-145	TTTTCCAACGCTAACGAGCGTTTTTCTTT
spherearray-146	ATTTATTTTCCCAATCCAAATCACCAGTAGTTTTCACCA
spherearray-147	AGCCAGCAAAATAAGAAACGATTTTTTGTTTTTGGGAATTAG
cohoroarray 149	AACGTCAAAACTTGAGCCAT
spherealiay-140	
spherearray-148	TTATCATTTTCCGTCACCGAATGAAAATAGCTTTTAGCCT
spherearray-149 spherearray-150	TTATCATTTTCCGTCACCGAATGAAAATAGCTTTTAGCCT TTACAAATTAACTGAATTTTTCTGAACAAAGGTGAA
spherearray-148 spherearray-149 spherearray-150 spherearray-151	TTATCATTTTCCGTCACCGAATGAAAATAGCTTTTAGCCT TTACAAATTAACTGAATTTTTCTGAACAAAGGTGAA TAAAAACAGGGAAAGTTACAACAAGCGCATTAGACGGGAGGAGAGAATAACA
spherearray-148 spherearray-149 spherearray-150 spherearray-151 spherearray-152	TTATCATTTTCCGTCACCGAATGAAAATAGCTTTTAGCCT TTACAAATTAACTGAATTTTTCTGAACAAAGGTGAA TAAAAACAGGGAAAGTTACAACAAGCGCATTAGACGGGAGGAGAGAATAACA AAATTATTCATTAAAGTCAGAGGGTAATTGAGCGCTAGGTAAATATTGACGG
spherearray-148 spherearray-149 spherearray-150 spherearray-151 spherearray-152 spherearray-153	TTATCATTTTCCGTCACCGAATGAAAATAGCTTTTAGCCT TTACAAATTAACTGAATTTTTCTGAACAAAGGTGAA TAAAAACAGGGAAAGTTACAACAAGCGCATTAGACGGGAGGAGAGAATAACA AAATTATTCATTAAAGTCAGAGGGTAATTGAGCGCTAGGTAAATATTGACGG GGGAAATATCAGAGAGTTTTTTCCCACAAGAAAATCA
spherearray-148 spherearray-149 spherearray-150 spherearray-151 spherearray-152 spherearray-153 spherearray-154	TTATCATTTTCCGTCACCGAATGAAAATAGCTTTTAGCCT TTACAAATTAACTGAATTTTTTCTGAACAAAGGTGAA TAAAAACAGGGAAAGTTACAACAAGCGCATTAGACGGGAGGAGAGAATAACA AAATTATTCATTAAAGTCAGAGGGTAATTGAGCGCTAGGTAAATATTGACGG GGGAAATATCAGAGAGTTTTTTCCCACAAGAAAATCA AAGTTTATTTGTCACTTGAGTTAAGCCCCAATAATAAAAGACACCACGGAAT
spherearray-148 spherearray-149 spherearray-150 spherearray-151 spherearray-152 spherearray-153 spherearray-154 spherearray-155	TTATCATTTTCCGTCACCGAATGAAAATAGCTTTTAGCCT TTACAAATTAACTGAATTTTTTCTGAACAAAGGTGAA TAAAAACAGGGAAAGTTACAACAAGCGCATTAGACGGGAGGAGAGAAAAAAAA
spherearray-148 spherearray-149 spherearray-150 spherearray-151 spherearray-152 spherearray-153 spherearray-154 spherearray-155 spherearray-156	TTATCATTTTCCGTCACCGAATGAAAATAGCTTTTAGCCT TTACAAATTAACTGAATTTTTTCTGAACAAAGGTGAA TAAAAACAGGGAAAGTTACAACAAGCGCATTAGACGGGAGGAGAGAATAACA AAATTATTCATTAAAGTCAGAGGGTAATTGAGCGCTAGGTAAATATTGACGG GGGAAATATCAGAGAGATTTTTTCCCACAAGAAAATCA AAGTTTATTTTGTCACTTGAGTTAAGCCCCAATAATAAAAGACACCACGGAAT ACGCAGAGCAAGAAACTTTTTTAAATAGCAATAGCAA TATTACGCAGTATGTTAGCTATCTTACCGAAGCCCTTATGATTAAGACTCCT
spherearray-148 spherearray-149 spherearray-150 spherearray-151 spherearray-152 spherearray-153 spherearray-154 spherearray-155 spherearray-156 spherearray-157	TTATCATTTTCCGTCACCGAATGAAAATAGCTTTTAGCCT TTACAAATTAACTGAATTTTTTCTGAACAAAGGTGAA TAAAAACAGGGAAAGTTACAACAAGCGCATTAGACGGGAGGAGAGAATAACA AAATTATTCATTAAAGTCAGAGGGTAATTGAGCGCTAGGTAAATATTGACGG GGGAAATATCAGAGAGGTTTTTTCCCACAAGAAAATCA AAGTTTATTTTGTCACTTGAGTTAAGCCCAATAATAAAAGACACCACGGAAT ACGCAGAGCAAGAAACTTTTTTAAATAGCAATAGCAA TATTACGCAGTATGTTAGCTATCTTACCGAAGCCCTTATGATTAAGACTCCT CTGGCTTTAAGAAAAGTTTTTTCAGATAGCCGCAGAA
spherearray-148 spherearray-149 spherearray-150 spherearray-151 spherearray-152 spherearray-153 spherearray-154 spherearray-155 spherearray-156 spherearray-157 spherearray-158	TTATCATTTTCCGTCACCGAATGAAAATAGCTTTTAGCCT TTACAAATTAACTGAATTTTTTCTGAACAAAGGTGAA TAAAAACAGGGAAAGTTACAACAAGCGCATTAGACGGGAGGAGAGAATAACA AAATTATTCATTAAAGTCAGAGGGTAATTGAGCGCTAGGTAAATATTGACGG GGGAAATATCAGAGAGTTTTTTCCCACAAGAAAATCA AAGTTTATTTTGTCACTTGAGTTAAGCCCAATAATAAAAGACACCACGGAAT ACGCAGAGCAAGAAACTTTTTTAAATAGCAATAGCAA TATTACGCAGTATGTTAGCTATCTTACCGAAGCCCTTATGATTAAGACTCCT CTGGCTTTAAGAAAAGTTTTTTCAGATAGCCGCAGAA GGAAACTTTTCGAGGAAACGCAATATTTT
spherearray-148 spherearray-149 spherearray-150 spherearray-151 spherearray-152 spherearray-153 spherearray-154 spherearray-155 spherearray-156 spherearray-157 spherearray-158	TTATCATTTTCCGTCACCGAATGAAAATAGCTTTTAGCCT TTACAAATTAACTGAATTTTTTCTGAACAAAGGTGAA TAAAAACAGGGAAAGTTACAACAAGCGCATTAGACGGGAGGAGGAGAAAAAAAA
spherearray-148 spherearray-149 spherearray-150 spherearray-151 spherearray-152 spherearray-153 spherearray-154 spherearray-155 spherearray-156 spherearray-157 spherearray-158 spherearray-159 spherearray-160	TTATCATTTTCCGTCACCGAATGAAAATAGCTTTTAGCCT TTACAAATTAACTGAATTTTTTCTGAACAAAGGTGAA TAAAAACAGGGAAAGTTACAACAAGCGCATTAGACGGGAGGAGAGAATAACA AAATTATTCATTAAAGTCAGAGGGTAATTGAGCGCTAGGTAAATATTGACGG GGGAAATATCAGAGAGTTTTTTCCCACAAGAAAATCA AAGTTTATTTGTCACTTGAGTTAAGCCCAATAATAAAAGACACCACGGAAT ACGCAGAGCAAGAAACTTTTTTAAATAGCAATAGCAA ACGCAGAGCAAGAAACTTTTTTAAATAGCAATAGCAA TATTACGCAGTATGTTAGCTATCTTACCGAAGCCCTTATGATTAAGACTCCT CTGGCTTTAAGAAAAGTTTTTTCAGATAGCCGCAGAA GGAAACTTTTCGAGGAAACGCAATATTTT TTTTATAACGGAATACCCAATTTTA
spherearray-148 spherearray-149 spherearray-150 spherearray-151 spherearray-152 spherearray-153 spherearray-154 spherearray-155 spherearray-156 spherearray-157 spherearray-158 spherearray-159 spherearray-160	TTATCATTTTCCGTCACCGAATGAAAATAGCTTTTAGCCT TTACAAATTAACTGAATTTTTTCTGAACAAAGGTGAA TAAAAACAGGGAAAGTTACAACAAGCGCATTAGACGGGAGGAGGAGAAAAACA AAATTATTCATTAAAGTCAGAGGGTAATTGAGCGCTAGGTAAATATTGACGG GGGAAATATCAGAGAGTTTTTTCCCACAAGAAAATCA AAGTTTATTTTGTCACTTGAGTTAAGCCCAATAATAAAAGACACCACGGAAT ACGCAGAGCAAGAAACTTTTTTAAATAGCAATAGCAA ACGCAGAGCAAGAAACTTTTTTAAATAGCAATAGCAA TATTACGCAGTATGTTAGCTATCTTACCGAAGCCCTTATGATTAAGACTCCT CTGGCTTTAAGAAAAGTTTTTTCAGATAGCCGCAGAA GGAAACTTTTCGAGGAAACGCAATATTTT TTTTATAACGGAATACCCAATTTTAAGAA ATAGAATTTTAATTCATATGTCAACCGATTGTTTAGGGA GATAGCTTTTAGCACCGTAAGTCAGACTGTATTTTGCGCG
spherearray-148 spherearray-149 spherearray-150 spherearray-151 spherearray-152 spherearray-153 spherearray-154 spherearray-155 spherearray-156 spherearray-157 spherearray-159 spherearray-160 spherearray-161 spherearray-162	TTATCATTTTCCGTCACCGAATGAAAATAGCTTTTAGCCT TTACAAATTAACTGAATTTTTTCTGAACAAAGGTGAA TAAAAACAGGGAAAGTTACAACAAGCGCATTAGACGGGAGGAGAGAATAACA AAATTATTCATTAAAGTCAGAGGGTAATTGAGCGCTAGGTAAATATTGACGG GGGAAATATCAGAGAGTTTTTTCCCACAAGAAAATCA AAGTTTATTTTGTCACTTGAGTTAAGCCCAATAATAAAAGACACCACGGAAT ACGCAGAGCAAGAAACTTTTTTAAATAGCAATAGCAA ACGCAGAGCAAGAAACTTTTTTAAATAGCAATAGCAA TATTACGCAGTATGTTAGCTATCTTACCGAAGCCCTTATGATTAAGACTCCT CTGGCTTTAAGAAAAGTTTTTTCAGATAGCCGCAGAA GGAAACTTTTCGAGGAAACGCAATATTTT TTTTATAACGGAATACCCAATTTTAAGAA ATAGAATTTTAATTCATATGTCAACCGATTGTTTTAGGGA GATAGCTTTTAGCACCGTAAGTCAGACTGTATTTTGCGCG TGCCATTTTCATAAAATCGGCTGTCTTTTTTCC
spherearray-148 spherearray-149 spherearray-150 spherearray-151 spherearray-152 spherearray-153 spherearray-154 spherearray-155 spherearray-156 spherearray-157 spherearray-158 spherearray-160 spherearray-161 spherearray-162 spherearray-163	TTATCATTTTCCGTCACCGAATGAAAATAGCTTTTAGCCT TTACAAATTAACTGAATTTTTTCTGAACAAAGGTGAA TAAAAACAGGGAAAGTTACAACAAGCGCATTAGACGGGAGGAGAGAATAACA AAATTATTCATTAAAGTCAGAGGGTAATTGAGCGCTAGGTAAATATTGACGG GGGAAATATCAGAGAGTTTTTTCCCACAAGAAAATCA AAGTTTATTTTGTCACTTGAGTTAAGCCCCAATAATAAAAAGACACCACGGAAT ACGCAGAGCAAGAAACTTTTTTAAATAGCAATAGCAA TATTACGCAGTATGTTAGCTATCTTACCGAAGCCCTTATGATTAAGACTCCT CTGGCTTTAAGAAAAGTTTTTTCAGATAGCCGCAGAA GGAAACTTTTCGAGGAAACGCAATATTTT TTTTATAACGGAATACCCAATTTTAAGAA ATAGAATTTTAATTCATATGTCAACCGATTGTTTTAGGGA GATAGCTTTTAGCACCGTAAGTCAGACTGTATTTTGCGCG TGCCATTTTCTTTCATAAAATCGGCTGTCTTTTTCC ACCAATCAATTCAAAATCAC

spherearray-165	AAAATATTTTATATCCCATCAACCGCCTCCCTTTTTCAGA
spherearray-166	GCCGCTAACAACGCCATTTTTTGTAATTTAGGCAAGA
spherearray-167	CACCCTCAGAGCCACCTTAATTGAGAATCGCCATATTCACCCTCAGAACCGC
spherearray-168	AGACGTAAAGCCAACGTTTTTTACAGTAGGGCACCCT
spherearray-169	CAGAGCTTTTCGCCACCAGAGAGGGTTGAGGCTTTTAGGTC
spherearray-170	CACAAACAAATAAATCTTATACAAATTCTTACCAGTAATTGGCCTTGATATT
spherearray-171	AATAAAAAAGCCTGTTTTTTTTATCATATGCGCTCAT
spherearray-172	TAAAGCTTTTCAGAATGGAATACCGACCGTGTTTTTGATA
spherearray-173	TGGTTTGAAAAGCGCAGTCT
spherearray-174	GTTCCAGTAACATCTTCTGACCTAAATTTAACTGAATTTACC
spherearray-175	ATATTTTTTAGTTAATTTGCGTCATACATTTTTGGCTT
spherearray-176	TTGATGCGATAGCTTATTTTTAAGACGCTGACAAAT
spherearray-177	TGGTAATAAGTTTTAACTTAGAATCCTTGAAAAACATAGATACAGGAGTGTAC
spherearray-178	TTACAAATCGTCGCTATTTTTTTTTTTTTTTTTTTTTTT
spherearray-179	TCAGTGTTTTCCTTGAGTAATGCTTTGAATATTTTCCAAG
spherearray-180	TTCGCCTGATCAGTGCCCGT
spherearray-181	GAATTATTCATTTCAAGTGAATAACCTTGCTTCTGTAAAATCGCGCAGAGGC
spherearray-182	TTAATACAGTACATAATTTTTATATATGTGATTACC
spherearray-183	TTTCATTTGAATTTTAACCCCTTTACCTTTTTTAATGGAATACATTTAACAA
spherearray-184	CGCGAGAAAACTTTTTGAAGAGTCAATAGTGAATTTATCGCAAGACAAAGAA
spherearray-185	TCCAATCAAAATCATATTTTTTGAGAGACTATCCGG
spherearray-186	CTTAGGTTTTTTGGGTTATATAACTTTTT
spherearray-187	TTTTATATGTAAATGCTGATTTTTGCAAA
spherearray-188	GAATAAACACCGGTAAAGTAAAGGAATCATAATTACTAGAGGCGTTAAATAA
spherearray-189	ATAGATAAGTCCTGAACAGAGGCATTTTCGAGCCAGTGCCTGTTTATCAACA
spherearray-190	AACGCAATAAGAGAATTTTTTTAGTACCGACAAATTC
spherearray-191	TGTCCATTTTGACGACGACAATAAATTTT
spherearray-192	TTTTCAACATGTTCAGCTAATTTTTGCAG

Fig. S77. Design pattern for the flower and bird. The black and dark blue strands are the two scaffold DNAs, and the other colorful strands are the staple strands.

Number	Sequence
1FlowBir	GTGCCTAATGAGCGTTTTAGCGTTTTAACCTCCCGAAGCTA
2FlowBir	CAATTTTTTTTTTTTTTTCCTGAATAACACCAGAACTTTTGAGTAGTAAACGAGCCGGAAG
3FlowBir	TTTTGCACCCCTTGCGGGAG
4FlowBir	AGTTGCTAGTTTTGAAGCCTTAAACCGAAGCC
5FlowBir	TGAGCGCTAATATCAGGTTTAACGTCAAAAAT
6FlowBir	CGGTGTTTTTACAGACCAGGGAAAATAGCAGTTCCTTTA
7FlowBir	CTTTTTAAAGCAATAGCTATCTTATCAAGATT
8FlowBir	GAAAAGTAAGACAATGAAAT
9FlowBir	ACAAAGTTACGCCCAATAATAAGAGCAAGAACAGATAGCCGA
10FlowBir	CCCACAAGATTTTATTGAGTTAACAGAAGGAAACTTTTCGAGGAAACGCAATA
11FlowBir	ATAACGGAATACCCAA
12FlowBir	GTCAGAGGGTAATAAGAACTGGCATTTTTGATTAAGACCAACA

Table S13.	Sequences	of the flower	-and-bird.

13FlowBir	ATAAAGGTGGTCCTTATTAC
14FlowBir	ATACATACGCAGTATGTTAGCAAAGTACTCAG
15FlowBir	GAGGTTTAGAATAGGTGTATCACCCGTAGAAA
16FlowBir	TATAAATTTTTTAGAAACGCAATCAATAGAAAATTTTTTTT
17FlowBir	TGTCACAAAGACACCACGGAATAAGCCTATTT
18FlowBir	CGGAACCTACAGTTAATGCCCCCTGTTTATTT
19FlowBir	CGACATTCTTACCAGCGCCAAAGACCGTTCCA
20FlowBir	GTAAGCGTGCAGTCTCTGAATTTACAAAAGGG
21FlowBir	ATTGAGTTTTCGGGAGAATTAACTGCACCCTGAACAAA
22FlowBir	ATTGACGGAAATTATTAAAACAGGGAAGCGCATTAGAGGAGGGAAGGTAAAT
23FlowBir	CAGAGATTGAATAACATACATTAAAGGTGTTTTAATTATCACCCAGC
24FlowBir	ATTAGAGCGTCACCGACTTGAGCCGGAACCAG
25FlowBir	AGCCACCACATAATCAAAATCACCATTTGGGA
26FlowBir	AAAATCATTTTTTCCAGTAGCACATGAA
27FlowBir	AAGAGGACAGCATTACCATTAGCAAGGCCGGACCAACTTTGA
28FlowBir	AATGAAACCATAATCATAAGGGAACCGAACTGAAACGTCACC
29FlowBir	ACCGTAATCAGCGGAACGAGGCGCAGACGGTCCGATAGCAGC
30FlowBir	CGCGACCTGCTTATGTTACTTAGTAGCGACAGAATTTCAAGTTTGCCTGTGTCGAAATC
31FlowBir	ATCGCCTGATAAATTTTAGCGTCAGACTGTAGCGCGAACGGAGATTTGTATC
32FlowBir	TTTTCATCGGCAAACAAAGTAC
33FlowBir	TACCAAGCGCGATTTTCGGTCATAGCCCCCTTCCAGCGATTA
34FlowBir	ACACTCTTTATCTTTGACCCATTAGCGTTTTTTGCCAT
35FlowBir	CTTTTCCGGAACCGCCTTTTCCCTCAGAGCTAAA
36FlowBir	AGGCAAAAGAATACACCGCCACCTCAGAACCGCCACAACCTAAAACGAAAG
37FlowBir	ACCACCCTCAGTAATGCCACTACGAAGGCACCCCTCAGAGCC
38FlowBir	GAGCCGCCACCGGGTAAAATAC
39FlowBir	AGAACCACCACTAGCCGCCGCCAGCATGAGGAAGTTTTTCCATTAAAC
40FlowBir	ACTAAAGACTTTTTCATTGACAGGAGGTTGAGGCAGTACAGAGGCTTTGAGG
41FlowBir	GGCCTTGATACGGAACGAGGGTAGCAACGGCGTCAGACGATT
42FlowBir	AAAGACAGCATTTCACAAACAA
43FlowBir	GTCACCTTTTCTCAGCAGCGATAAATCCTCATTTTTTAAAGCCAGTTTTG
44FlowBir	CATACATGGCAATGGAAAGC
45FlowBir	ATGATATTTTCAGGAGTGTAGCGTAACGATCTTTTTAAAGTTTTGGGATC
46FlowBir	ACAGCCCTCATAGTTACTGGTAATAAGTTTTAACGGGTGTAGCATTCCACAG
47FlowBir	GAGGCACCAGTACAAATTTCTACAACGCCGTCAG
48FlowBir	TGCCTTTTTTGAGTAACAGTAACATGAAAGTTTTATTAA
49FlowBir	ATTATTCTGAGCCCGTATAA
50FlowBir	CAAGAGAAGGAACCGTAACACTGAGTTTCGTCTGAGACTCCT
51FlowBir	AATAGGAACCCATGTTTAGGATTAGCGGGGGTTTTGCCAGGGATAGCAAGCCC
52FlowBir	CCACCACCCTCATTTTTCAGTACCAGGCGGATAAGTGCCGCCACCCTCAGAG

53FlowBir	GGTTGATATAACCTCAGAACCGCCACCCTCAGCCGTCGAGAG
54FlowBir	GTACCGCCACGTATAGCCCG
55FlowBir	CGCTTTTGCGTCGTCTTTCC
56FlowBir	GAGTTAAAGGCAGACGTTAGTAAATGAATTTTGGCTTGCAGG
57FlowBir	CGGTCGCTGACTGTATGGGATTTTTTTGCTAAACAGTATCGGTTTA
58FlowBir	GCGGAGTGAGAATAGCTCCAAAAGGAGCCTTTAATTACTTTCAACAGTTTCA
59FlowBir	AAAAAAAAGGAAAGGAACAACTAAAGGAATTGCGAATAATAATTTTTTCCGATAGTTGCG
60FlowBir	CCGACAATGACACTTAAACAGCTTGATACACGTTGAAAATCTCC
61FlowBir	CATAACCGATATATTGCTTGCTTTCGAGGTGAATTTACAACCATCGCCCACG
62FlowBir	CCTGACGAGACTTACCAACG
63FlowBir	CTTTCCAGAGCATTCAGTGAATAAGGCTTGCCTAACGAGCGT
64FlowBir	AGTTACAAAAAATCAACGTAACAAAGCTGCTCCTAATTTGCC
65FlowBir	ATTATTTATCGAACCGGATATTCATTACCCATAAACAGCCAT
66FlowBir	ACCTTCATCAAGAGTATTTTATCTTGACAACCAAT
67FlowBir	CGCATAGGCTGGCTG
68FlowBir	CCAAATTTTTAAGAAACGATTTTTTAGAGATAA
69FlowBir	CATAAAGTGTAAAGCCTGGG
70FlowBir	ATGGTTTAATCTCACAATTCCACACAACATATTGGGCTTGAG
71FlowBir	TGTAATGTTTCCTGTGTGAAATTTTTGTTATCCGTTCAA
72FlowBir	CTTTAATTTTTCATTGTGAACTCGAATTCGTTTTAATCATGGTCATAGCACGTT
73FlowBir	GGGTACCGAGTTACCTTATGCGATTTTAAGAAGAGGATCCCC
74FlowBir	CTGCATGGTCGACTCTACTGGCTCATTTTCCAGTCAGGAGCATGC
75FlowBir	TGCCAAGCTTCGTTGGGAAGAAAAATCTACGACGACGGCCAG
76FlowBir	TTAATAAAACGTTCAACATTATT
77FlowBir	GATTCATCAGTCCCAGTCACGACGTTGTAAAACAGGTAGAAA
78FlowBir	AGTTGGGTAACTGCCAGGGTTTTTGAGATT
79FlowBir	TAGGAATACTCAACTAATGCAGATGTCATTTTTGCGGATG
80FlowBir	ACATAACGCCATTTGATAAGAG
81FlowBir	AATTGCTCCTAAAGGAATTACGAGGCATAGTAGAGTACCTTT
82FlowBir	CTATCATAACCACTCCAACAGGTCAGGATTAGAAGAGCAACA
83FlowBir	CCGGAAGCAACTCGTTTACCAGACGACGATAAGCGAACCAGA
84FlowBir	TAATTTCGAGCTTCAAAAAAACCAAAATTTGAGAGGCTTTGCGTTT
85FlowBir	TTCAAATATCTGCAAAAGAAGTTTTGCCAGAGCCCGAAAGAC
86FlowBir	GGGGGTAATAGTAAAATTTTTTTTTTTTTTTAGACTGGATAGC
87FlowBir	ATTAAGAGGAAGTCCAATACTGCGGAATCGTCCATCAAAAAG
88FlowBir	TTGAATCCCCAGTCAGAAGCAAAGCGGATTGATAAATATTCA
89FlowBir	CTGACTATTATCTCAAATGCTTTAAACAGTTCGGTCTTTACC
90FlowBir	AAAAATCAAGAAAACGAGAATGACAATTCTGC
91FlowBir	GAACGAGTATAACAGTTGATTCCCCATAAATC
92FlowBir	AATTGCTGAAGGATGTGCTGCAAGGCGATTAGCTTAGAGCTT

93FlowBir	CTGTACGCTATTACGCCAGCTTTTGGCGAAAGGGTATAA
94FlowBir	TGCTGTTTTTAGCTCAACATGGAAGGGCGATTTTCGGTGCGGGCCTCTTGCCAG
95FlowBir	TGCAACTAAAGATTCAGGCTGCGCAACTGTTGGTTTTAAATA
96FlowBir	TACGGTGTCTGTTGACCATTAGACCAGGCAAAGCTGCCATTCGCC
97FlowBir	GAAGTTTCATTCCATAGATTTAGTTT
98FlowBir	GTGCCGGAAATACATTTCGCAAATGGTCAATCACCGCTTCTG
99FlowBir	AACCTGTTTAGTTAAAGAATTAG
100FlowBir	AATAAAGCCTGCACTCCAGCCAGCTTTCCGGCAAAATTAAGC
101FlowBir	ATAAATTAAATCGGTTGAGTATCGGCCTTCAGGAAGATCCAGAGC
102FlowBir	TTATGACCCTCCAGTTTGAGGGGACGACGACGACTACCAAAAACA
103FlowBir	CGTAACTTTCGTGCATCTGGTAATACTTTTTTTGCGGGAG
104FlowBir	AAGCCTTTCATCACCCAAATCAAGGGCCCACT
105FlowBir	ACGTGAACATTTCAACGCAAGGATTTTAAAAAATTTTTCGCAT
106FlowBir	AGAACCCTCATGTAGATGGG
107FlowBir	GGATAGTTTTTGTCACGTTGGTATATTTTAAATTTTTTGCAATGCCTAATCA
108FlowBir	GAGACAGTCAGAGTAATGTG
109FlowBir	AGGGTGAGAAAGGCCGTAGGTAAAGATTCAAA
110FlowBir	CCATCATTTTTTATATGATATTAGCTGATAAATTTTTTTT
111FlowBir	CAACCGCAAAATCCCTTATAATTTATCAAAAGAAATGGC
112FlowBir	TATTAGTTTTCTTTAATGCCCTGTTTGATGTTTGTGGTTCCGAAATCGGTTCT
113FlowBir	AGGCGAAAATGCGAACTGATAGCCCTAAAACTTTGCCCCAGC
114FlowBir	ATTAATTTACCGAACGAGCAGCAAGCGGTTCCACGCTGGATCGCC
115FlowBir	TGAGAGAGTTACCACCAGCAGAAGATAAAACCCGCCTGGCCC
116FlowBir	AGAGGTGAGGCTTTTTTGGTCAGTATTAACACAAGTTTGAGTAACATTACGTTATT
117FlowBir	AATTTTAACGCCTGCAACAGTGCCTTTACGCTGAGAGCGCCATATTTATT
118FlowBir	CCAGCAGCAAAATTGAGAAT
119FlowBir	CTCAACTTTTTTAGTAGGGCTTATGAAAAATCTTTTTTTAAAGCATCACATCAA
120FlowBir	CAGTTGGCAACTTGCTGAAC
121FlowBir	TCAATCAATATCTGGTCTCAAATATCAAACCC
122FlowBir	CAGTTGTTTTTTTTTTGGAAATTGCTTCTGTAAATTTTTTCGTCGCTATTCGCTG
123FlowBir	AATAACCTTGAGGAAGGTTA
124FlowBir	CAGAGATTAGTACATAAATCAATATTTTATGTGAGTGTCTAA
125FlowBir	AATATCTTTTTTAGGAGCATTTGAATTACCTTTTTTTTTA
126FlowBir	ATGGAAACAGAGCGCATGACAAGTCAGATGCC
127FlowBir	TAGATTAAGAAATTAATTTT
128FlowBir	AAACATAGCGATAGCTCCCTTAGAATCCTTGA
129FlowBir	AGAAGATTTTTGTCAATAGTGAATTTTCATCAGG
130FlowBir	GAAACATTTAAACTAGGGGCGGCCATCAAAAT
131FlowBir	CATAGGTCTTTTTTGAGAGACTATGCAAATCCAATTTTTTTCGCAAG
132FlowBir	GTTAGGAATTTCATTAGAGCCCCGCCTCCAAATTTTCAATTTAGACCACCA

133FlowBir	TAAATGCTGACCTTTTTAAC
134FlowBir	GTTATATAACTATATGCTCCGGCTTAGGTTGG
135FlowBir	ACAAAGAAAAATGCAGCAAGATTTTAATCACGAGTTGCT
136FlowBir	AGCTCAGGCGCGAGAAAACTTTTTTTTTCAAATATATTGTGAT
137FlowBir	GATGAATTTTCTAAGTCAACGCACGCTCCCATTTAGCATTA
138FlowBir	TACCGACCGTTTAGTTAATT
139FlowBir	ATTTAATGGTTTGAAATCATCTTCTGACCTAA
140FlowBir	AAATAATTTTTTGGCGTTAAATACCGGAATCATTTTTTAATTACTAGACAACG
141FlowBir	AAGAAGTGAAGTCGCCGACTGTTTAATGCCAGCATCTGT
142FlowBir	TGATAATTTTGCAAGCATCTATATACCTGGTTTTCTTTCGTATTCTGGCTAAAC
143FlowBir	AGTATAAAGCAAAAGCCTGT
144FlowBir	TATACAAATTCTTACCTTAGTATCATATGCGT
145FlowBir	ACATGTAATTTAGGCAGAGGCATGATTGCCCTTCA
146FlowBir	AGTGATTGGGCAACAGCTTTTCGAGCCATGTAATAAGAGTTCACC
147FlowBir	GGTTTTTCTTAATATAAAGTACCGACAAAAGGGCGCCAGGGT
148FlowBir	ATGTAGACAGACGACGACAATAAGTAAAGTAATTCTGTCAACCAAT
149FlowBir	ACAACATGTTCTTTTTAGCTAATGCATGCCA
150FlowBir	GCTGCATTTTTAATGAATCGGCCAGAACG
151FlowBir	AAACCTGTCGGAACGCGCCTGTTTATCAACATTCCAGTCGGG
152FlowBir	ATAGATAAGTCTTTACCGCGCCCGCGTTGCGCTCTACTGCCCGCT
153FlowBir	CTGAACAAGATTCATCGTAGGAATCA
154FlowBir	ССБТТТТАТТААААТААТАТС
155FlowBir	TCGAGAACAAGCAAGCCATCCTAAT
156FlowBir	CAATAATCGTGCTGTCTTTCTACCGCACTCATTTTACGAGC
157FlowBir	CATTTCGGGTATTAAACCAAGCTTATCATTCCAAGAATGTGC
158FlowBir	GTAGACTCCTATCTCTTTTGAGTCTCATTTCAACGCGAGCA
159FlowBir	TGTTTTTATAATAGACGTGCATCTCGGCTAATCTCTTTCGATTGG
160FlowBir	TGCTTGGAAATGATTGTCCAGTTGCATTTTAAAACCTGCTGT
161FlowBir	TTGATTCTCAAAAATACTGACCAGCCGTTTGGTAAGCTCTTT
162FlowBir	TTTGATTGGTCATTGGTAATCCGGCGTCTAACCATACCACATTTC
163FlowBir	ATCAGCACCACTCAGCACTAACCTTGCGAGTGCAGAGGAAGC
164FlowBir	GATTCTGCGTTATCCTTTCCTTTATCAGCGGGCCATACCGCT
165FlowBir	GCGCTTTATGAGAAGACAGACTTGCCATCCAAGTCCAATGCAGTA
166FlowBir	AAATATCCTTCCAAATCAAGCAACTTATCAGGACGACATTAG
167FlowBir	GTGCCAGCCTCCAAACATAAATCACCTCACTAAACGGCAGAA
168FlowBir	ATACCTTAGCAATAGCAGCAACGTACCTTTCAAGAAGTCGAAGCA
169FlowBir	TTAGCCATAGATGGCGCCACCAGCAAGAGCACTTTACCAGCT
170FlowBir	GGCTTTTTGATTGAATGGCAGATTTAATACCCCACCGGAGGC
171FlowBir	GCACTTACCTTGAATGAGCATCACCCATTGCCTACAGTGTAGCAA
172FlowBir	TCTGTTATCGATTGTTGAACACGACCAGAAAATGTTTATAGG

173FlowBir	GACGTTTGGTATCACGTTCTTGGTCAGTATGACTGGCCTAAC
174FlowBir	AAAGGACGGTTTTGCATGAAGTACAGTTCCATCATACATCATAGC
175FlowBir	AACAATTTCACTAACAACTAATAGATTAGAGTAATTACATTT
176FlowBir	CATCTTAAAACAAAATCCGTCAATAGATTAATACATTTAAACAAA
177FlowBir	GAAGATGATGGAGGATTTAGAAGTATTAGACCCTGAGCAAAA
178FlowBir	TTCGACAACTACCAGAAGGAGCGGAATTATCTTTACAAACAA
179FlowBir	TTGCGTTCAAAGAAACCCGTATTAAATCTCTTTGCCCGAATCATT
180FlowBir	ATCATATTCCTTTTTGATTATCAGATATCAAAATTATTTTTTTGCA
181FlowBir	ATCAATATAAGGAAGGGTTAGAACCTACCATGATGGCAATTC
182FlowBir	TGAATAATTCCTGATTGTTTGGATATTATTTA
183FlowBir	CATTGGCACAATCGTCTGAAATGGTATACTTC
184FlowBir	GATTCACCAGTTTTGACGCT
185FlowBir	AAATACCTACATCACGACCAGTAATAAAAGACGCTCATGG
186FlowBir	AGGGAGCCCCCTTGGACATTCTG
187FlowBir	TAGAACCCTTAGTCCACTATTAAAGAACGTGGCCAACAGAGA
188FlowBir	GAAATTTAAGAATACGGTTGTTCCAGTTTTGGAACAAGCTGACCT
189FlowBir	ATATTTTTGATAGCCCGAGATAGGGTTGAGTTGGCACAGACA
190FlowBir	ATTGCCTGAGGAGGGTAGCT
191FlowBir	CAAAGGCTATCAGGTCATTTTTGAGAGATCTA
192FlowBir	GGAGCATTTTTTAACAAGAGAAGTAATCGTAAATTTTTTACTAGCATGTTGTAT
193FlowBir	TCGATACGCGCGGGGAGAGGCTTTTTTTGCGTATTG
194FlowBir	ACAGGAAGATCAATCATATG
195FlowBir	CAGAAAAGCCCCAAAATACCCCGGTTGATAAT
196FlowBir	AAGCAATTTTTATATTTAAATAATATTTTGTTTTTTTAAAATTCGCAAATAA
197FlowBir	CGCCATCAAATTAAATTTT
198FlowBir	TTTTAACCAATAGGAAGTTAAATCAGCTCATT
199FlowBir	TTCGCGTTTTTTTCTGGCCTTCCTTTCATCAACTTTTTTATTAAATGTGTAATG
200FlowBir	GGATTGACCGAGCGAGTAAC
201FlowBir	CGTGGGAACAAACGGCAACCCGTCGGATTCTC
202FlowBir	CACATTAATTAATAGCAAGCAAATCAGATATGTGAGCTAACT
203FlowBir	CAAAGGGCGAAGCACTAAATCGGAACCCTAAGACTCCAACGT
204FlowBir	GGGGTTTGGTGCCGTAAAAAACCGTCTATTCAGGGCGATTTTTT
205FlowBir	GATTTAGAGCTGCCAGCCATTGCAACAGGAAAA
206FlowBir	CAATATTACCTGACGGGGAA
207FlowBir	AATATCCAGAAAGCCGGCGAACGTGGCGAGAACCTTGCTGGT
208FlowBir	GAAAGCGAAAGTAGAAGAACTCAAACTATCGGAGGAAGGGAA
209FlowBir	GAGCGGGCGCTAGGGCGCTGGCAAGT
210FlowBir	TAGCGGTCACGCTGCGCGTAACCACC
211FlowBir	ACTTGCCTGAGACACCCGCCGCGCTTAATGCGTAATAACATC
212FlowBir	GCGCGTACTATTAGCAATACTTCTTTGATTAGCCGCTACAGG

213FlowBir	TTAACCGTTGGGTTGCTTTGACGAGCACGTACATCACGCAAA
214FlowBir	CCTCGTTAGAACACCGAGTAAAAGAGTCTGTCAACGTGCTTT
215FlowBir	TCAGTGAGGCTCAGAGCGGGAGCTAAACAGGTGTTTTTATAA
216FlowBir	TCCTGAGAAGAGGCCGATTA
217FlowBir	CGCCAGAAAAGGGATTTTAGACAGGGCATACG
218FlowBir	CTCGGCGCATGGGAAAGGTCATGCGAACGGTA
219FlowBir	CGTAAGTTTAACGTCATTTTTGATGAATATACATTTCAATTA
220FlowBir	ATTTTCAGAACAGAAATAAAGAAATAATAAGA
221FlowBir	CGACCAATGGAGTAGTTGAAATGGTTGCGTAG
222FlowBir	ACCTTTTACATATCGCGCAGAGGCGAATTATTCAGTAACAGT
223FlowBir	AAGTTACAAACGGGAGAAAC
224FlowBir	TGAATACCAATAACGGATTCGCCTTAACCAGT
225FlowBir	AGTGTTAAAGCGGCATGGTCAATAGATTGCTT
226FlowBir	TGTCAGCGTCATAAGTGGTAACGCT
227FlowBir	TAACATCAAGGTTTTACCTCCAAATAACCCTG
228FlowBir	AAACAAATGTTATAGATATTCAAATGAAGAAA
229FlowBir	CAAATTAGCATTTGCGGCACAGA
230FlowBir	AAGCAGCTTGAACAAAGAAAC
231FlowBir	ATGTCAATAGAAAACATAGTGCCATGCTCAGGCAGACCCATA
232FlowBir	GCGCAAGAGTTGTGGTAGAA
233FlowBir	GGCGGATTTTAAACGAACAAGTCGTCATTTGTTTTGCGAG
234FlowBir	GAGGAAGCGGAACGCAAGGTAAACGCGAACAATCAGTCTCAG
235FlowBir	CTGCGCGTACGCAGTCCAAATGTTTTTGAGAGTCAGTGTTTC
236FlowBir	CAGTAAGAACTGGCAGCAAC
237FlowBir	TTCTTCTGCGTGGAAACCATAA
238FlowBir	TCCGCACGTAATTTTTGACGCACGTTCATATCCATTACATTACATCACTCCT
239FlowBir	TAATGGATAT
240FlowBir	GAGCATCATCTTTTTACCTTTAGA
241FlowBir	CATTAGGGTTTAAACGTGACGTATGAATGCGTTGATTAAGCT
242FlowBir	CGCATTCATA
243FlowBir	GGTCAGGCATAACTTAATCCACTGTTCACCAAGCCTCGGTAC
244FlowBir	TAAAATAGTTGCTTAGGGATTTTCGCGCGTACCACGGCGCTT
245FlowBir	TACGCGCGAA
246FlowBir	TTATTGGTATCTAACACCATCCTTCATG
247FlowBir	TGCCAAGAAACAGTCGGGAGAGGAGGAGTGGCATAGGGTTAATCG
248FlowBir	ATGAGGGACATAGGGCGAGCGCCAGAACG
249FlowBir	GCGGACGACCAAAAAGTAAA
250FlowBir	TAGAGTCAATCTTTAGTACCTCGCAACGGCTAATGTCTACAG
251FlowBir	TTTACGCTTGCAAGGCCACGACGCAATGGAGAGACGAGCGCC
252FlowBir	CGCCAACGGCGTTGACCACCTACATACCAAAAAGACGGAGAG

253FlowBir	CAATTAAAATTGTCCATCTCGAAGGAGTCGCCGAAGCCCCTG
254FlowBir	AGTAAGGGGCCAGCGATAACCTCGATAACAGTTTTATCCTCA
255FlowBir	ACTGTTATCGA
256FlowBir	ATTAGACATAACTGACCAGCAAGGAAGCCAAGCAGTTTGAAT
257FlowBir	TAAGTGGCTGGTTCAGCATCAGT
258FlowBir	AGCTTGAGTAATTATAATCTCGG
259FlowBir	AGAAGGCTTATTTAGAACGCGAG
260FlowBir	CGCCATTAATAATGTTTTTTCCGTAAATCAGTA
261FlowBir	CAGTCGGGAGGGTAGTTTTTTCGGAACCGAAGAAGACTCAA
262FlowBir	TAGGGTCGAGCGAACCAAACAGGCCTGAACGG
263FlowBir	ACTGGAAATATTCCACTGCAACAAAAAAAATT
264FlowBir	CATCAAAAGCTTTAAGAGCCT
265FlowBir	AATATCAGCACAATAGCAGG
266FlowBir	CCAACAGAAACTTTAACCTGATTAGAGAAAGAGTATTTTCCACAAGCCT
267FlowBir	ATTGGGGATTGCGGCGTTGACAGATGTATCCGGAAGCCAAGC
268FlowBir	GTTATTATCTGCTTATATCTGAATGCATATGAAGAAAATGATGCG
269FlowBir	TCCAAGAGCTCCACCATTACCAGCATTAACCACAGAATCTCT
270FlowBir	AAAATATAACGCCGTCAACATACATATCACCGTCAAACTATC
271FlowBir	AGTGATTCAGCCTTATGGTTGACGATGTTAGCTTTAGGTAACAGA
272FlowBir	GAGTGGTCCCGAAGAAGCTGGAGTGTCTGTAA
273FlowBir	AACAGGTGGGCAGATTGCGATAAATGAATCGC
274FlowBir	GAACCAGCTTATCAGAAACGTCAGAAG
275FlowBir	GATATTACTCATCACGAAAAAAGTTTGTAATTATGGCGAGTAACA
276FlowBir	TTAACTTCTCAGAAATAAAAGTCTGAAACATCAATTCATCCA
277FlowBir	TAAGCAGAAATGGTCTATAGTGTTATTAATAGATTAAACTCC
278FlowBir	CGTCCTTTCGGGGCGGACCTACCGCGCTTCGCTTGGTATTTTT
279FlowBir	CGGCAAAAATTCTTCTCGTTCTCTAAAAACCCAACCCCTCAG
280FlowBir	GAATGTGCGGCAAAACTTTTGCGTAACCGTAAAA
281FlowBir	TTTTTATTTCCGCTTCGGCAAGGCGGTTCCTTTTGAAT
282FlowBir	GTTATAACCTAAATCACCAG
283FlowBir	TTTTATCACGCGAATAAGTACGCGTTCTTGCCACACTCAATC
284FlowBir	AAGTCATGATCGGTCACATTAAAT
285FlowBir	AATCATGGTGGGAGGGCAGATATTAACCTGACCACTGGTCAT
286FlowBir	TATCTGCCCTC
287FlowBir	CGTTCATTTGCAGCCAGCTGGAAGCCTTCATTTTTTAGAAGGTGATAAGCA
288FlowBir	GGAGAAACATACGAAGTTTTTTGCGCATAACGAAACT
289FlowBir	ATACCACTGACACGGCAGCAAT
290FlowBir	ATAAGCAATGCCTCAGCAATCTTAAACTTCTGGATGAACATA
291FlowBir	TGACGTAGACGAATCATTTTCAGAACGGAATCAAA
292FlowBir	GCACCTTTTTTAGCGTTAACAGGCCGTTTGTTTAATGT

293FlowBir	TAGAAATTTCCGCCAGCAATATCGGTATAAGAACATCCTTCA
294FlowBir	AACAGGGTACGCGGCGGCAAGTTGTCAATAGT
295FlowBir	CACACAGTTTCCTTGACGGTAACGTTATTGCTTTGTACGGGGAAGGACGCCATACAA
296FlowBir	TCTTTAGTCGTCAGCGCCTTCCATGATGAGAGGTACTGAATC
297FlowBir	CAACAGTTTGAGCAGGAAACGTCAGAAAATTTTTTTCGAAATCATCGAGGG
298FlowBir	CCACAAAGTCAGCAATCCAAACTTTGTTACTGCGAGGGTATC
299FlowBir	GAGCGGTCAGTCAGCGTACCAT
300FlowBir	GCAGCGACGAGCACGAAAACGCAAGCCTCAAC
301FlowBir	CCAAAACGGCACTCATCGCGAATATCCTTAATTCGGTTAAAT
302FlowBir	GGGGTAATTATAGAAGCCTGAA
303FlowBir	TAATACCTTTCTTTTTGAGCTTAATAGAGGC
304FlowBir	TCAAGTTGGGGTTAGCATTGTGC
305FlowBir	ATTATCGAACTTTATACGAAAAG
306FlowBir	GGAGTACCAGCGATACGCTCATTTTAAGTCAAGAGCCAAT
307FlowBir	CTGGTACTCC
308FlowBir	ACCATCAGCTTTACCGTTTCCTAGACAAATTAAATAATCAGCGTGACATTCA
309FlowBir	GAAGGGTAATAAGAACGAACCATAAAAAAGCCTCCAAAGCGAAACCAATCCGCGG
310FlowBir	AAATAATCTCTTTAATTTTAACCTGATTCGATTT
311FlowBir	GGAGGCTTTATGAAAACATATACCATGAAATTTAATATCAACCACACC
312FlowBir	GGCAACAGCTTTATCAACAATTGGGAGGGTGTCAATCATTGTTCCAAGTATC
313FlowBir	CTGACGGTTATCTTTCCAGAA
314FlowBir	CATTTAGTAGCGGTTTTTAAAGTTAGAACCATTCAAAGTTTTTGATAAACATCATAGG
315FlowBir	AACCAACATAATAATAACCACCATCATGGCGCCAAACCATGA
316FlowBir	AAAGCTTCAGCGGCTTTTTTTAACCGGACGCTCGA

Fig. S78. Design pattern for the 2D open net of the cuboctahedron

Table S14. Sequences of the cuboctahedron fran
--

Number	Sequence
Frame-1	CGGTATTCTAGAGAACAAGCAAGCCGTTTTTGAAGGCTTATC
Frame-2	ATCATTCCAAGTTTTAACGGGTATTAACCTCCCGACTTTTTTGCGGGAGGAACAG
Frame-3	CCGCACTCATCAGAACGCGAGGCGTTTTAGCGAAACCAAGTA
Frame-4	AAAACAGAGCCCAATAGCAAGCAAATCAGATATAATTTTCATCGTAG
Frame-5	AACAATTCGACTTTTAACTCGTATTCCTGATTGTTTTTTTGGATTATACTCCTTT
Frame-6	TACATCTTTTGGGAGAAACAATTAATTACATTTTTTAACAATTT
Frame-7	GAATCATTACCGCAATAAAGAAATTGCGTTTGCACGT
Frame-8	GTTTAACGTCAAACCTACCATATCAAAATTATAGATTTTCAG
Frame-9	GAAGGGTTAGGATGAATATACAGTAACAGTATCTGAATAATG
Frame-10	TTATCAGATGTTAATTTTAAAAGTTTGAGTACATATTCCTGA
Frame-11	CCCGAACGTTAATGGCAATTCATCAATATAATAAATCCTTTG
Frame-12	AGTGCCCGACCACCAGAAGGAGCGGAATTATCATACATTATCATTTT
Frame-13	CTCAGAGCCGCTTTTCACCAGAACCTCATACATGGCTTTTTTTGATGATATTAA
Frame-14	GAGGCTTTTTGAGACTCCTCTACCGCCACCCTTTTTCAGAACCGC
Frame-15	GCGGAACAAAGAATATAAACAGTTAATGCTGAGTAAC
Frame-16	TTTCGGAACCTGTTTTAACGGGGTCAGTGCCTCCCCTGCCTA
Frame-17	CTGGTAATAAATTATTCTGAAACATGAAAGTACAGGAGTGTA
Frame-18	GCAGTCTCTGATTGACAGGAGGTTGAGGCAGGAATGGAAAGC
Frame-19	CCGCCGCCAGCAATTTACCGTTCCAGTAAGCGACCACCAGAG

Frame-20	TTTATCCTAAACAAATAAATCCTCATTAAAGCCAGTCAGACGATTGG
Frame-21	CCATATTTTTATTTATCCCTGAACAAAGTCTTTTAGAGGGTAAT
Frame-22	CCTTGATATTCACGAATCTTACCAACGCTGCTACAAT
Frame-23	TTTCCAGAGCCTTAGTTGCTATTTTGCACCCAAACGAGCGTC
Frame-24	TAAATCAAGATAATTTGCCAGTTACAAAATATTTTGAAGCCT
Frame-25	ATCACCTTGCTAAAACAGAGGTGAGGCGGTCAAATCTAAAGC
Frame-26	AACATCGCCATTTTTTAAAAATACCTCAATCAATATTTTTCTGGTCAGTT
Frame-27	CCAGCAGAAGATGAACCTCAAATATCAAACCCGAACGAAC
Frame-28	GCGAAAGACACGCTGAGAGCCAGCAGCAAATGAAAGTATTAACACCG
Frame-29	CGAATAATAATTTTTTTTTCACGTAACCGATATATTTTTTCGGTCGCTGATGAG
Frame-30	GAAGTTTTTTCCATTAAACGCCTGATAAATTTTTTGTGTCGAAA
Frame-31	CCTGCAACAGTGCCAGCATCGGAACGAGGCCTCAGCA
Frame-32	CTACAGAGGCTCCGCTTTTGCGGGGATCGTCACGTAGCAACGG
Frame-33	GAGTTAAAGGTTGAGGACTAAAGACTTTTTCAGGCTTGCAGG
Frame-34	CCGACAATGACTCCAAAAGGAGCCTTTAATTCGATAGTTGCG
Frame-35	CAAAAAAAGGCAACAACCATCGCCCACGCATTGAAAATCTC
Frame-36	TGCCGTCGGGTGAATTTCTTAAACAGCTTGATACGTATCGGTTTATC
Frame-37	AGCTTGCTTTCGAAGAGGGTTGATATAAGCGGATAAG
Frame-38	AATAGGTGTATGGGGTTTTGCTCAGTACCAGGTATAGCCCGG
Frame-39	TAGGATTAGCCACCGTACTCAGGAGGTTTAGAAGAGAAG
Frame-40	TCATTAAAGGATTCATATGGTTTACCAGCGCACGGAAATTAT
Frame-41	AGACACCACGGTTTTAATAAGTTTATTGAGCCATTTTTTTGGGAATTAGA
Frame-42	ATCAATAGAAATGAATTATCACCGTCACCGACTTTTGTCACA
Frame-43	GCCTTTACGATTGAGGGAGGGAAGGTAAATATTGCAAAGACAAAAGG
Frame-44	GCGACATTCAACCAGAGAGAATAACATAAAAATAGCA
Frame-45	GCGCATTAGACTTTGTTTAACGTCAAAAATGAAAACAGGGAA
Frame-46	GAAACGATTTGGGAGAATTAACTGAACACCCAATCCAAATAA
Frame-47	AAGCCTGTTTCTAAATTTAATGGTTTGAAATATTACTAGAAA
Frame-48	AAAACTTTTTCTTTTAAATATATTTTATTCTTACCAGTTTTTATAAAGCCA
Frame-49	CATCTTCTGACAGTATCATATGCGTTATACAATAGTTAATTT
Frame-50	AGGCGAATAAATAAGAATAAACACCGGAATCATAACCGACCG
Frame-51	TAAATAAGGCGTTTATTCATTTCAATTACTCGCGCAG
Frame-52	GAAGATGATGATTTGAATACCAAGTTACAAAACTGAGCAAAA
Frame-53	GCCTGATTGCAACAAAACAAGAAAAAAAAAAAAAAAAAA
Frame-54	TTTAATCATTGTTTTTGAATTACCTCAACTAATGCATTTTGATACATAACGTAAT
Frame-55	AGTAAATTTTATGTTTAGACACTATTATAGTTTTTCAGAAGCAAA
Frame-56	TTAAATGTGAGCGACGACGATAAAAACCAAACCCTCG
Frame-57	GCTCATTTTTTTTTAACCAATAGGGTGTAGATGGGTTTTCGCATCGTAAATTCA
Frame-58	GGCTGCTTTTGCAACTGTTGCGACGGCCAGTTTTTGCCAAGCTTG
Frame-59	TTTACCAGAGTAACAACCCGTCGGATTCTCCGTGGCTTTCATCAACA

Frame-60	CGGATTGACCCGTCTGGCCTTCCTGTAGCCAGGAACAAACGG
Frame-61	AAAATAATTCGGTAATGGGATAGGTCACGTTGAACGCCATCA
Frame-62	CCAGTTTGAGCCAGGCAAAGCGCCATTCGCCCCGTGCATCTG
Frame-63	GGTGCCGGAAAGGGACGACGACAGTATCGGCCCACCGCTTCT
Frame-64	TTGCTTTGACGAGCCAGCCAGCTTTCCGGTCAGGAAG
Frame-65	CAAGTGTAGCGTTTTGTCACGCTGCTAGACAGGAACTTTTGGTACGCCAGGTAGA
Frame-66	AGAACTTTTTCAAACTATCGAGATTCACCAGTTTTTCACACGACC
Frame-67	ATCGCACTCACGTATAACGTGCTTTCCTCGTTAGGCGCGTACTATGG
Frame-68	GAGCTAAACACGCTTAATGCGCCGCTACAGGAATCAGAGCGG
Frame-69	CACACCCGGCGGGAGGCCGATTAAAGGGATTTGCGTAACCAC
Frame-70	GTGTTTTTATGTAATAACATCACTTGCCTGAAATCCTGAGAA
Frame-71	TTCTTTGATTAAATCAGTGAGGCCACCGAGTAGTAGCAATAC
Frame-72	CTACGTTAATAAAACGCAAATTAACCGTTAAAGAGTC
Frame-73	TGTCCATCACGAACTAACGGAACAACATTATTACTGGGAAGAAAAAT
Frame-74	AATATCCAGAAAATGGATTATTTACATTGGCGCCTTGCTGGT
Frame-75	TCAATCGTCTGACAATATTACCGCCAGCCATTATTTTGACGC
Frame-76	AGAATACACTAAATCATGGAAATACCTACGCAACAGG
Frame-77	AAAAACGCACACTCATCTTTGACCCCCAGCGATTCGAAAGAGGCAAA
Frame-78	GAAACAAAGTTACGAAGGCACCAACCTAAAAATACCAAGCGC
Frame-79	CGTAATGCCACAACGGAGATTTGTATCATCGGGTAAAATA
Frame-80	CGGTGCGGGCCCCAGTCACGACGTTGTAAAAGGAAGGGCGAT
Frame-81	GCCAGGGTTTTCTCTTCGCTATTACGCCAGCTGTTGGGTAAC
Frame-82	AGTTGCAGCAAGCGCTGCAAGGCGATTAAGGCGAAAG
Frame-83	GGGCGCCAGGGTTTTTGGTTTTTCTCTTATAAATCATTTTAAAGAATAGC
Frame-84	GGGGATGTGGTCCACGCTGGTTTGCCCCAGCAGGCTGGCCCTGAGAG
Frame-85	TTTGATGGTGCAGCTGATTGCCCTTCACCGCCGAAAATCCTG
Frame-86	GAGACGGGCAAGTTCCGAAATCGGCAAAATCCTTTCACCAGT
Frame-87	AGGCTTTTGCATAGTAAGAGCAACACTATCATAAATAGCGAG
Frame-88	TTACGAGGCAAAAGAAGTTTTGCCAGAGGGGGGCCAAAAGGAA
Frame-89	CAATACTGCGAAAAATCAGGTCTTTACCCTGTGGATAGCGTC
Frame-90	GACCATAAATCGAATCGTCATAAATATTCATTAAACGAGAAT
Frame-91	GATAAAAATTTTTCTTTAAACAGTTCAGAGAATCCCC
Frame-92	CGAACGAGTAGTTTTATTTAGTTTGGGCCGGAGACATTTTGTCAAATCAC
Frame-93	CTCAAATGAGAACCCTCATATATTTTAAATGCAAATTTCAACGCAAG
Frame-94	TGTGTAGGTAATGGTCAATAGAGAAGCCTTTTGCCTGAGTAA
Frame-95	ACATTTCGCAAAAGATTCAAAAGGGTGAGAAAACCATTAGAT
Frame-96	TAAGAACTGGCGAGATTTAGGAATACCACATTTATGCGATTT
Frame-97	TTCATCAGTTTCATTATACCAGTCAGGACGTAGGTAGAAAGA
Frame-98	GTCCAGACGACTTTTGACAATAAAC
Frame-99	AACAAAGTTACTTTTCAGAAGGAAA

Frame-100	ATAAAGTGTAATTTTAGCCTGGGGT
Frame-101	ACGGTAATCGTTTTTAAAACTAGCA
Frame-102	ACCTTCATCAATTTTGAGTAATCTT
Frame-103	ACAGACAGCCCTTTTTCATAGTTAG
Frame-104	CGCGTTTTCATTTTTCGGCATTTTC
Frame-105	TTAGATTAAGATTTTCGCTGAGAAG
Frame-106	AATCAAGTTTTTTTTGGGGTCGA
Frame-107	TTGCTCCTTTTTTTGATAAGAGGT

Table S15. Sequences of the set strands for the 2D open net of the cuboctahedron

Number	Sequence
Form-2D-Set-1	TCTGACATAATAAGAGAATATAAAGTACCGACAAAAGGTAAAGTAATTCT
Form-2D-Set-2	GCTAGTCGAACGCCAACATGTAATTTAGGCAGAGGCATTTTCGAGCCAGT
Form-2D-Set-3	AATTCTAGACGCTCAACAGTAGGGCTTAATTGAGAATCGCCATATTTAAC
Form-2D-Set-4	GAGTCGTTTAAATGCTGATGCAAATCCAATCGCAAGACAAAGAACGCGAG
Form-2D-Set-5	TCATGACTCCTTTTTAACCTCCGGCTTAGGTTGGGTTATATAACTATATG
Form-2D-Set-6	CTATCAACAGTCAATAGTGAATTTATCAAAATCATAGGTCTGAGAGACTA
Form-2D-Set-7	CTCATTTTGGCAAATCAACAGTTGAAAGGAATTGAGGAAGGTTATCTAAA
Form-2D-Set-8	AAGAGTATTAATTAATTTTCCCTTAGAATCCTTGAAAACATAGCGATAGC
Form-2D-Set-9	GCTTTGCCATATCTTTAGGAGCACTAACAACTAATAGATTAGAGCCGTCA
Form-2D-Set-10	GCCCTATATATATGTGAGTGAATAACCTTGCTTCTGTAAATCGTCGCTAT
Form-2D-Set-11	CATGTTTAATAGATAATACATTTGAGGATTTAGAAGTATTAGACTTTACA
Form-2D-Set-12	ATCATACGCATTTGAATTACCTTTTTTAATGGAAACAGTACATAAATCAA
Form-2D-Set-13	CCCACCGTGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCC
Form-2D-Set-14	CTATTTTATGAATGGCTATTAGTCTTTAATGCGCGAACTGATAGCCCTAA
Form-2D-Set-15	GTCAGTGAGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAA
Form-2D-Set-16	TACAGCACCTGACCTGAAAGCGTAAGAATACGTGGCACAGACAATATTTT
Form-2D-Set-17	GTTCTGGGAGGAAGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGG
Form-2D-Set-18	CCTATCACAGTAATAAAAGGGACATTCTGGCCAACAGAGATAGAACCCTT
Form-2D-Set-19	ACTTGTGGCCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTC
Form-2D-Set-20	AAGTGCTACACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAA
Form-2D-Set-21	TCCCTAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCA
Form-2D-Set-22	GCGACCCCTAATGAATCGGCCAACGCGCGGGGGGGGGGG
Form-2D-Set-23	AACTACATCTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCAT
Form-2D-Set-24	TCGCCGAAGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCA
Form-2D-Set-25	TGTAGTACTGTCAATCATATGTACCCCGGTTGATAATCAGAAAAGCCCCA
Form-2D-Set-26	TTATTCAGTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGC
Form-2D-Set-27	GGTTTACTAAAACAGGAAGATTGTATAAGCAAATATTTAAATTGTAAACG
Form-2D-Set-28	CACACGTTTCGAATTCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAAT
Form-2D-Set-29	CAAAATACTTAATATTTTGTTAAAATTCGCATTAAATTTTTGTTAAATCA

Form-2D-Set-30	CCCCAATCCATGCCTGCAGGTCGACTCTAGAGGATCCCCGGGTACCGAGC
Form-2D-Set-31	CCTTACCAGGTCATTGCCTGAGAGTCTGGAGCAAACAAGAGAATCGATGA
Form-2D-Set-32	AAGTGCTTCGGAGAGGGTAGCTATTTTTGAGAGATCTACAAAGGCTATCA
Form-2D-Set-33	CAAGGTTCCATCAATATGATATTCAACCGTTCTAGCTGATAAATTAATGC
Form-2D-Set-34	ACTTCTGGTCTGGAAGTTTCATTCCATATAACAGTTGATTCCCAATTCTG
Form-2D-Set-35	ACTTGGTTCTGTAGCTCAACATGTTTTAAATATGCAACTAAAGTACGGTG
Form-2D-Set-36	CGGGAATCCATTTTTGCGGATGGCTTAGAGCTTAATTGCTGAATATAATG
Form-2D-Set-37	AACGAAGAGCGGATTGCATCAAAAAGATTAAGAGGAAGCCCGAAAGACTT
Form-2D-Set-38	ATCTTTGTAGAACGAGTAGTAAATTGGGCTTGAGATGGTTTAATTTCAAC
Form-2D-Set-39	CATATACGCAAATATCGCGTTTTAATTCGAGCTTCAAAGCGAACCAGACC
Form-2D-Set-40	TCAGGTTACTGCTCATTCAGTGAATAAGGCTTGCCCTGACGAGAAACACC
Form-2D-Set-41	TCTTTGTTGGAAGCAAACTCCAACAGGTCAGGATTAGAGAGTACCTTTAA
Form-2D-Set-42	CATTTATCGACAAGAACCGGATATTCATTACCCAAATCAACGTAACAAAG
Form-2D-Set-43	TAACGAACTCCGCGACCTGCTCCATGTTACTTAGCCGGAACGAGGCGCAG
Form-2D-Set-44	CTCGTCGCTTTCAGCGGAGTGAGAATAGAAAGGAACAACTAAAGGAATTG
Form-2D-Set-45	CATAAAAGACGGTCAATCATAAGGGAACCGAACTGACCAACTTTGAAAGA
Form-2D-Set-46	CGGAACTGATGAATTTTCTGTATGGGATTTTGCTAAACAACTTTCAACAG
Form-2D-Set-47	TACTTAATGGACAGATGAACGGTGTACAGACCAGGCGCATAGGCTGGCT
Form-2D-Set-48	TTCTACTCCGTAACGATCTAAAGTTTTGTCGTCTTTCCAGACGTTAGTAA
Form-2D-Set-49	GTGAGTTCCACCCTCAGAACCGCCACCCTCAGAGCCACCACCTCATTTT
Form-2D-Set-50	ACCAAGCAAGAGCCGCCACCCTCAGAACCGCCACCCTCAGAGCCACCACC
Form-2D-Set-51	GTGACCGGCAGGGATAGCAAGCCCAATAGGAACCCATGTACCGTAACACT
Form-2D-Set-52	ATCATACTAAAATCACCGGAACCAGAGCCACCACCGGAACCGCCTCCCTC
Form-2D-Set-53	TACAAATTGAGTTTCGTCACCAGTACAAACTACAACGCCTGTAGCATTCC
Form-2D-Set-54	GAGTGTATGGTCATAGCCCCCTTATTAGCGTTTGCCATCTTTTCATAATC
Form-2D-Set-55	CGTAAAGTGCCAGCAAAATCACCAGTAGCACCATTACCATTAGCAAGGCC
Form-2D-Set-56	AACACCTGGGAAACGTCACCAATGAAACCATCGATAGCAGCACCGTAATC
Form-2D-Set-57	CTATGTTCAGTAGCGACAGAATCAAGTTTGCCTTTAGCGTCAGACTGTAG
Form-2D-Set-58	TCACGCGTCCGAGGAAACGCAATAATAACGGAATACCCAAAAGAACTGGC
Form-2D-Set-59	TTTAGGGGATGATTAAGACTCCTTATTACGCAGTATGTTAGCAAACGTAG
Form-2D-Set-60	ATAGTAGCAAAATACATACATAAAGGTGGCAACATATAAAAGAAACGCAA
Form-2D-Set-61	GTCACTAAAACATGTTCAGCTAATGCAGAACGCGCCTGTTTATCAACAAT
Form-2D-Set-62	CATTCTGTATCTTACCGAAGCCCTTTTTAAGAAAAGTAAGCAGATAGCCG
Form-2D-Set-63	CTCTTGTTAGATAAGTCCTGAACAAGAAAAATAATATCCCATCCTAATTT
Form-2D-Set-64	AGTGTCTGTGAGCGCTAATATCAGAGAGATAACCCACAAGAATTGAGTTA
Form-2D-Set-65	TGTGGTTAACGAGCATGTAGAAACCAATCAATAATCGGCTGTCTTTCCTT
Form-2D-Set-66	GCTGACAGAGCCCAATAATAAGAGCAAGAAACAATGAAATAGCAATAGCT

Fig. S79. Design pattern for the 3D closed structure of the cuboctahedron

 Table S16. Sequences of the set strands for the 3D closed structure of the cuboctahedron

Number	Sequence
Form-3D-Set-1	GAACGTGGACTGTTGGGTTATATAACTATATGCACTATTAAAGCTAAACT
Form-3D-Set-2	GTTGAGTGTTGTCGCAAGACAAAGAACGCGAGCCGAGATAGGTCTGAATC
Form-3D-Set-3	AGCACTAAATCTGCGCGAACTGATAGCCCTAAGGTGCCGTAATGTAGAGG
Form-3D-Set-4	TAGTCTTTAAGGAACCCTAAAGGGAGCCCCCTGAATGGCTATTTCAGGGC
Form-3D-Set-5	TTGACGGGGAAACGTGGCACAGACAATATTTTGATTTAGAGCGTCCGCAC
Form-3D-Set-6	GAAAGCGAAAGGCCAACAGAGATAGAACCCTTAGGAAGGGAACAAAGAAA
Form-3D-Set-7	GCGTAAGAATAGCCGGCGAACGTGGCGAGAACTGACCTGAAAACAGCCTC
Form-3D-Set-8	GGACATTCTGGAGCGGGGCGCTAGGGCGCTGGAGTAATAAAAGTCGTCAGT
Form-3D-Set-9	TGAGCTAACTCGACAAAAGGTAAAGTAATTCTGCCTAATGAGTGACATTA
Form-3D-Set-10	TCCAGTCGGGACAGAGGCATTTTCGAGCCAGTCTGCCCGCTTCCAAAGGT
Form-3D-Set-11	GCCAACGCGCGTTGAGAATCGCCATATTTAACTAATGAATCGCCCGCAGA
Form-3D-Set-12	ATGTACCCCGGCACAACATACGAGCCGGAAGCTGTCAATCATCCTGCATG
Form-3D-Set-13	CACAATTCCATTGATAATCAGAAAAGCCCCATGTTATCCGCTGACATTTA
Form-3D-Set-14	GATTGTATAAGTAGCTGTTTCCTGTGTGAAATAAAACAGGAACACGAAGT
Form-3D-Set-15	ATCATGGTCACAAATATTTAAATTGTAAACGTCGAATTCGTAAATATGCA
Form-3D-Set-16	GTTAAAATTCGGAGGATCCCCGGGTACCGAGCTTAATATTTTTGCTGTT
Form-3D-Set-17	GTCGACTCTACATTAAATTTTTGTTAAATCACATGCCTGCAGCCTAAAAT

Form-3D-Set-18	TATTCAACCGCAACATATAAAAGAAACGCAACATCAATATGATCTGTACA
Form-3D-Set-19	GAGAGTCTGGGGAATACCCAAAAGAACTGGCGGTCATTGCCTTCGTTTGT
Form-3D-Set-20	GCTATTTTTGGCAGTATGTTAGCAAACGTAGCGGAGAGGGTACAGATGAG
Form-3D-Set-21	ATGGCTTAGAGCCTTTAGCGTCAGACTGTAGCATTTTTGCGGTTTCGGAC
Form-3D-Set-22	CATTCCATATACCATTACCATTAGCAAGGCCTCTGGAAGTTTCATCCACA
Form-3D-Set-23	CATGTTTTAAATCGATAGCAGCACCGTAATCCTGTAGCTCAATTAGTACA
Form-3D-Set-24	CAAAAAGATTTTGAGATGGTTTAATTTCAACGCGGATTGCATTGCGCTTA
Form-3D-Set-25	GTAAATTGGGCAAGAGGAAGCCCGAAAGACTTAGAACGAGTATTACCCCA
Form-3D-Set-26	TTTTAATTCGCTTGCCCTGACGAGAAACACCCCAAATATCGCGCAAAGGCG
Form-3D-Set-27	AGTGAATAAGGAGCTTCAAAGCGAACCAGACCCTGCTCATTCTGCTCAGT
Form-3D-Set-28	CCAACAGGTCACCCAAATCAACGTAACAAAGGGAAGCAAACTTTGTACTT
Form-3D-Set-29	GGATATTCATTAGGATTAGAGAGTACCTTTAAGACAAGAACCACGAATAC
Form-3D-Set-30	TAAGGGAACCTTGCTAAACAACTTTCAACAGACGGTCAATCACCAGGGGC
Form-3D-Set-31	TGTATGGGATTGAACTGACCAACTTTGAAAGAATGAATTTTCCCGTAGAG
Form-3D-Set-32	CGGTGTACAGCGTCTTTCCAGACGTTAGTAAGGACAGATGAAGCTCCTGT
Form-3D-Set-33	TAAAGTTTTGTACCAGGCGCATAGGCTGGCTGCGTAACGATCACGACGAG
Form-3D-Set-34	CTCCATGTTAAAGGAACAACTAAAGGAATTGTCCGCGACCTGGGTGAGCA
Form-3D-Set-35	GTGAGAATAGACTTAGCCGGAACGAGGCGCAGTTTCAGCGGAGGTACTCA
Form-3D-Set-36	CCGCCACCCTGCCACCCTCAGAGCCACCACCCACCCTCAGAATCTACCGC
Form-3D-Set-37	CCCTCAGAACCCAGAGCCACCACCCTCATTTTAGAGCCGCCAAGATCCCC
Form-3D-Set-38	AGCCCAATAGACCACCGGAACCGCCTCCCTCCAGGGATAGCAAGAATCCC
Form-3D-Set-39	GAACCAGAGCCGAACCCATGTACCGTAACACTAAAATCACCGCGAAAAAC
Form-3D-Set-40	CCAGTACAAAGTTTGCCATCTTTTCATAATCGAGTTTCGTCATCGCAAAA
Form-3D-Set-41	CCCTTATTAGCCTACAACGCCTGTAGCATTCCGGTCATAGCCCGAAAGAA
Form-3D-Set-42	TCACCAGTAGCAACAGTTGATTCCCAATTCTGGCCAGCAAAAGGCAAAAT
Form-3D-Set-43	CCAATGAAACCATATGCAACTAAAGTACGGTGGGAAACGTCACGCCACGT
Form-3D-Set-44	GAATCAAGTTTGCTTAATTGCTGAATATAATGAGTAGCGACAATTAGCAC
Form-3D-Set-45	GCAATAATAACAGCAAACAAGAGAATCGATGACCGAGGAAACCCCTCTAT
Form-3D-Set-46	CTCCTTATTACAGAGATCTACAAAGGCTATCAATGATTAAGAGCCCCTTG
Form-3D-Set-47	CATAAAGGTGGTTCTAGCTGATAAATTAATGCAAAATACATAC
Form-3D-Set-48	ATCAGAGAGAAATAATCGGCTGTCTTTCCTTTGAGCGCTAATTTGTATTC
Form-3D-Set-49	AGAAACCAATCTAACCCACAAGAATTGAGTTAACGAGCATGTAGCTCTTG
Form-3D-Set-50	AAGAGCAAGAAATAATATCCCATCCTAATTTAGCCCAATAATTGACTCGA
Form-3D-Set-51	TGAACAAGAAAAACAATGAAATAGCAATAGCTAGATAAGTCCAATAGAGA
Form-3D-Set-52	GCCCTTTTTAACGCGCCTGTTTATCAACAATATCTTACCGAACCAAGTAC
Form-3D-Set-53	GCTAATGCAGAAGAAAAGTAAGCAGATAGCCGAACATGTTCACCGTGACT
Form-3D-Set-54	TAGGGCTTAAGGGAGAGGCGGTTTGCGTATTACGCTCAACAGACGTGTTT
Form-3D-Set-55	GTAATTTAGGAACCTGTCGTGCCAGCTGCATAACGCCAACATACGCAACT
Form-3D-Set-56	ATAAAGTACCACATTAATTGCGTTGCGCTCAAATAAGAGAATGTGATTGC
Form-3D-Set-57	AATTTATCAACACTACGTGAACCATCACCCAAGTCAATAGTGTAGGCGGC

Form-3D-Set-58	TCCGGCTTAGCCAACGTCAAAGGGCGAAAAACCTTTTTAACCTAAGTCGT
Form-3D-Set-59	GCAAATCCAATTCCAGTTTGGAACAAGAGTCTAAATGCTGATTTCAAGCC
Form-3D-Set-60	CAGTTGAAAGGCCTTGAAAACATAGCGATAGCGGCAAATCAAGGCAAAGC
Form-3D-Set-61	CCCTTAGAATAATTGAGGAAGGTTATCTAAATAATTAATT
Form-3D-Set-62	GAGCACTAACAGCTTCTGTAAATCGTCGCTATATATCTTTAGGAGCAGGG
Form-3D-Set-63	GAATAACCTTACTAATAGATTAGAGCCGTCATATATGTGAGTTACATACG
Form-3D-Set-64	CATTTGAGGATTGGAAACAGTACATAAATCAAATAGATAATATAATATCT
Form-3D-Set-65	CCTTTTTTAATTAGAAGTATTAGACTTTACACATTTGAATTAGTTCGAGG
Form-3D-Set-66	GGGCGATGGCCAATCATAGGTCTGAGAGACTACCGTCTATCAGGCAGG

Table S17. Sequences of the fuel strands for reconfiguration from 2D to 3D

Number	Sequence
2D-to-3D-Fuel-1	AGAATTACTTTACCTTTTGTCGGTACTTTATATTCTCTTATTATGTCAGA
2D-to-3D-Fuel-2	ACTGGCTCGAAAATGCCTCTGCCTAAATTACATGTTGGCGTTCGACTAGC
2D-to-3D-Fuel-3	GTTAAATATGGCGATTCTCAATTAAGCCCTACTGTTGAGCGTCTAGAATT
2D-to-3D-Fuel-4	CTCGCGTTCTTTGTCTTGCGATTGGATTTGCATCAGCATTTAAACGACTC
2D-to-3D-Fuel-5	CATATAGTTATATAACCCAACCTAAGCCGGAGGTTAAAAAGGAGTCATGA
2D-to-3D-Fuel-6	TAGTCTCTCAGACCTATGATTTTGATAAATTCACTATTGACTGTTGATAG
2D-to-3D-Fuel-7	TTTAGATAACCTTCCTCAATTCCTTTCAACTGTTGATTTGCCAAAATGAG
2D-to-3D-Fuel-8	GCTATCGCTATGTTTTCAAGGATTCTAAGGGAAAATTAATT
2D-to-3D-Fuel-9	TGACGGCTCTAATCTATTAGTTGTTAGTGCTCCTAAAGATATGGCAAAGC
2D-to-3D-Fuel-10	ATAGCGACGATTTACAGAAGCAAGGTTATTCACTCACATATATAT
2D-to-3D-Fuel-11	TGTAAAGTCTAATACTTCTAAATCCTCAAATGTATTATCTATTAAACATG
2D-to-3D-Fuel-12	TTGATTTATGTACTGTTTCCATTAAAAAAGGTAATTCAAATGCGTATGAT
2D-to-3D-Fuel-13	GGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCACGGTGGG
2D-to-3D-Fuel-14	TTAGGGCTATCAGTTCGCGCATTAAAGACTAATAGCCATTCATAAAATAG
2D-to-3D-Fuel-15	TTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCTCACTGAC
2D-to-3D-Fuel-16	AAAATATTGTCTGTGCCACGTATTCTTACGCTTTCAGGTCAGGTGCTGTA
2D-to-3D-Fuel-17	CCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTCCCAGAAC
2D-to-3D-Fuel-18	AAGGGTTCTATCTCTGTTGGCCAGAATGTCCCTTTTATTACTGTGATAGG
2D-to-3D-Fuel-19	GACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGCCACAAGT
2D-to-3D-Fuel-20	TTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGTAGCACTT
2D-to-3D-Fuel-21	TGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTAGGGA
2D-to-3D-Fuel-22	AATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAGGGGTCGC
2D-to-3D-Fuel-23	ATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGATGTAGTT
2D-to-3D-Fuel-24	TGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCTTCGGCGA
2D-to-3D-Fuel-25	TGGGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACAGTACTACA
2D-to-3D-Fuel-26	GCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACACTGAATAA
2D-to-3D-Fuel-27	CGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTTTTAGTAAACC
2D-to-3D-Fuel-28	ATTTCACACAGGAAACAGCTATGACCATGATTACGAATTCGAAACGTGTG

2D-to-3D-Fuel-29	TGATTTAACAAAAATTTAATGCGAATTTTAACAAAATATTAAGTATTTTG
2D-to-3D-Fuel-30	GCTCGGTACCCGGGGATCCTCTAGAGTCGACCTGCAGGCATGGATTGGGG
2D-to-3D-Fuel-31	TCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGGTAAGG
2D-to-3D-Fuel-32	TGATAGCCTTTGTAGATCTCTCAAAAATAGCTACCCTCTCCGAAGCACTT
2D-to-3D-Fuel-33	GCATTAATTTATCAGCTAGAACGGTTGAATATCATATTGATGGAACCTTG
2D-to-3D-Fuel-34	CAGAATTGGGAATCAACTGTTATATGGAATGAAACTTCCAGACCAGAAGT
2D-to-3D-Fuel-35	CACCGTACTTTAGTTGCATATTTAAAACATGTTGAGCTACAGAACCAAGT
2D-to-3D-Fuel-36	CATTATATTCAGCAATTAAGCTCTAAGCCATCCGCAAAAATGGATTCCCG
2D-to-3D-Fuel-37	AAGTCTTTCGGGCTTCCTCTTAATCTTTTTGATGCAATCCGCTCTTCGTT
2D-to-3D-Fuel-38	GTTGAAATTAAACCATCTCAAGCCCAATTTACTACTCGTTCTACAAAGAT
2D-to-3D-Fuel-39	GGTCTGGTTCGCTTTGAAGCTCGAATTAAAACGCGATATTTGCGTATATG
2D-to-3D-Fuel-40	GGTGTTTCTCGTCAGGGCAAGCCTTATTCACTGAATGAGCAGTAACCTGA
2D-to-3D-Fuel-41	TTAAAGGTACTCTCTAATCCTGACCTGTTGGAGTTTGCTTCCAACAAAGA
2D-to-3D-Fuel-42	CTTTGTTACGTTGATTTGGGTAATGAATATCCGGTTCTTGTCGATAAATG
2D-to-3D-Fuel-43	CTGCGCCTCGTTCCGGCTAAGTAACATGGAGCAGGTCGCGGAGTTCGTTA
2D-to-3D-Fuel-44	CAATTCCTTTAGTTGTTCCTTTCTATTCTCACTCCGCTGAAAGCGACGAG
2D-to-3D-Fuel-45	TCTTTCAAAGTTGGTCAGTTCGGTTCCCTTATGATTGACCGTCTTTTATG
2D-to-3D-Fuel-46	CTGTTGAAAGTTGTTTAGCAAAATCCCATACAGAAAATTCATCAGTTCCG
2D-to-3D-Fuel-47	CAGCCAGCCTATGCGCCTGGTCTGTACACCGTTCATCTGTCCATTAAGTA
2D-to-3D-Fuel-48	TTACTAACGTCTGGAAAGACGACAAAACTTTAGATCGTTACGGAGTAGAA
2D-to-3D-Fuel-49	AAAATGAGGGTGGTGGCTCTGAGGGTGGCGGTTCTGAGGGTGGAACTCAC
2D-to-3D-Fuel-50	GGTGGTGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGCTCTTGCTTG
2D-to-3D-Fuel-51	AGTGTTACGGTACATGGGTTCCTATTGGGCTTGCTATCCCTGCCGGTCAC
2D-to-3D-Fuel-52	GAGGGAGGCGGTTCCGGTGGTGGCTCTGGTTCCGGTGATTTTAGTATGAT
2D-to-3D-Fuel-53	GGAATGCTACAGGCGTTGTAGTTTGTACTGGTGACGAAACTCAATTTGTA
2D-to-3D-Fuel-54	GATTATGAAAAGATGGCAAACGCTAATAAGGGGGGCTATGACCATACACTC
2D-to-3D-Fuel-55	GGCCTTGCTAATGGTAATGGTGCTACTGGTGATTTTGCTGGCACTTTACG
2D-to-3D-Fuel-56	GATTACGGTGCTGCTATCGATGGTTTCATTGGTGACGTTTCCCAGGTGTT
2D-to-3D-Fuel-57	CTACAGTCTGACGCTAAAGGCAAACTTGATTCTGTCGCTACTGAACATAG
2D-to-3D-Fuel-58	GCCAGTTCTTTTGGGTATTCCGTTATTATTGCGTTTCCTCGGACGCGTGA
2D-to-3D-Fuel-59	CTACGTTTGCTAACATACTGCGTAATAAGGAGTCTTAATCATCCCCTAAA
2D-to-3D-Fuel-60	TTGCGTTTCTTTTATATGTTGCCACCTTTATGTATGTATTTTGCTACTAT
2D-to-3D-Fuel-61	ATTGTTGATAAACAGGCGCGTTCTGCATTAGCTGAACATGTTTTAGTGAC
2D-to-3D-Fuel-62	CGGCTATCTGCTTACTTTTCTTAAAAAGGGCTTCGGTAAGATACAGAATG
2D-to-3D-Fuel-63	AAATTAGGATGGGATATTATTTTTCTTGTTCAGGACTTATCTAACAAGAG
2D-to-3D-Fuel-64	TAACTCAATTCTTGTGGGTTATCTCTCTGATATTAGCGCTCACAGACACT
2D-to-3D-Fuel-65	AAGGAAAGACAGCCGATTATTGATTGGTTTCTACATGCTCGTTAACCACA
2D-to-3D-Fuel-66	AGCTATTGCTATTTCATTGTTTCTTGCTCTTATTATTGGGCTCTGTCAGC

Table S18. Sequences of the fuel strands for reconfiguration from 3D to 2D

Number	Sequence
3D-to-2D-Fuel-1	AGTTTAGCTTTAATAGTGCATATAGTTATATAACCCAACAGTCCACGTTC
3D-to-2D-Fuel-2	GATTCAGACCTATCTCGGCTCGCGTTCTTTGTCTTGCGACAACACTCAAC
3D-to-2D-Fuel-3	CCTCTACATTACGGCACCTTAGGGCTATCAGTTCGCGCAGATTTAGTGCT
3D-to-2D-Fuel-4	GCCCTGAAATAGCCATTCAGGGGGCTCCCTTTAGGGTTCCTTAAAGACTA
3D-to-2D-Fuel-5	GTGCGGACGCTCTAAATCAAAATATTGTCTGTGCCACGTTTCCCCGTCAA
3D-to-2D-Fuel-6	TTTCTTTGTTCCCTTCCTAAGGGTTCTATCTCTGTTGGCCTTTCGCTTTC
3D-to-2D-Fuel-7	GAGGCTGTTTTCAGGTCAGTTCTCGCCACGTTCGCCGGCTATTCTTACGC
3D-to-2D-Fuel-8	ACTGACGACTTTTATTACTCCAGCGCCCTAGCGCCCGCTCCAGAATGTCC
3D-to-2D-Fuel-9	TAATGTCACTCATTAGGCAGAATTACTTTACCTTTTGTCGAGTTAGCTCA
3D-to-2D-Fuel-10	ACCTTTGGAAGCGGGCAGACTGGCTCGAAAATGCCTCTGTCCCGACTGGA
3D-to-2D-Fuel-11	TCTGCGGGCGATTCATTAGTTAAATATGGCGATTCTCAACGCGCGTTGGC
3D-to-2D-Fuel-12	CATGCAGGATGATTGACAGCTTCCGGCTCGTATGTTGTGCCGGGGTACAT
3D-to-2D-Fuel-13	TAAATGTCAGCGGATAACATGGGGCTTTTCTGATTATCAATGGAATTGTG
3D-to-2D-Fuel-14	ACTTCGTGTTCCTGTTTTATTTCACACAGGAAACAGCTACTTATACAATC
3D-to-2D-Fuel-15	TGCATATTTACGAATTCGACGTTTACAATTTAAATATTTGTGACCATGAT
3D-to-2D-Fuel-16	AACAGCAAAAAATATTAAGCTCGGTACCCGGGGATCCTCCGAATTTTAAC
3D-to-2D-Fuel-17	ATTTTAGGCTGCAGGCATGTGATTTAACAAAAATTTAATGTAGAGTCGAC
3D-to-2D-Fuel-18	TGTACAGATCATATTGATGTTGCGTTTCTTTTATATGTTGCGGTTGAATA
3D-to-2D-Fuel-19	ACAAACGAAGGCAATGACCGCCAGTTCTTTTGGGTATTCCCCAGACTCTC
3D-to-2D-Fuel-20	CTCATCTGTACCCTCTCCGCTACGTTTGCTAACATACTGCCAAAAATAGC
3D-to-2D-Fuel-21	GTCCGAAACCGCAAAAATGCTACAGTCTGACGCTAAAGGCTCTAAGCCAT
3D-to-2D-Fuel-22	TGTGGATGAAACTTCCAGAGGCCTTGCTAATGGTAATGGTATATGGAATG
3D-to-2D-Fuel-23	TGTACTAATTGAGCTACAGGATTACGGTGCTGCTATCGATTTAAAACATG
3D-to-2D-Fuel-24	TAAGCGCAATGCAATCCGCGTTGAAATTAAACCATCTCAAAATCTTTTTG
3D-to-2D-Fuel-25	TGGGGTAATACTCGTTCTAAGTCTTTCGGGCTTCCTCTTGCCCAATTTAC
3D-to-2D-Fuel-26	CGCCTTTGCGCGATATTTGGGTGTTTCTCGTCAGGGCAAGCGAATTAAAA
3D-to-2D-Fuel-27	ACTGAGCAGAATGAGCAGGGTCTGGTTCGCTTTGAAGCTCCTTATTCACT
3D-to-2D-Fuel-28	AAGTACAAAGTTTGCTTCCCTTTGTTACGTTGATTTGGGTGACCTGTTGG
3D-to-2D-Fuel-29	GTATTCGTGGTTCTTGTCTTAAAGGTACTCTCTAATCCTAATGAATATCC
3D-to-2D-Fuel-30	GCCCCTGGTGATTGACCGTCTGTTGAAAGTTGTTTAGCAAGGTTCCCTTA
3D-to-2D-Fuel-31	CTCTACGGGAAAATTCATTCTTTCAAAGTTGGTCAGTTCAATCCCATACA
3D-to-2D-Fuel-32	ACAGGAGCTTCATCTGTCCTTACTAACGTCTGGAAAGACGCTGTACACCG
3D-to-2D-Fuel-33	CTCGTCGTGATCGTTACGCAGCCAGCCTATGCGCCTGGTACAAAACTTTA
3D-to-2D-Fuel-34	TGCTCACCCAGGTCGCGGACAATTCCTTTAGTTGTTCCTTTAACATGGAG
3D-to-2D-Fuel-35	TGAGTACCTCCGCTGAAACTGCGCCTCGTTCCGGCTAAGTCTATTCTCAC
3D-to-2D-Fuel-36	GCGGTAGATTCTGAGGGTGGGTGGGTGGCTCTGAGGGTGGCAGGGTGGCGG
3D-to-2D-Fuel-37	GGGGATCTTGGCGGCTCTAAAATGAGGGTGGTGGCTCTGGGTTCTGAGGG
3D-to-2D-Fuel-38	GGGATTCTTGCTATCCCTGGAGGGAGGCGGTTCCGGTGGTCTATTGGGCT
3D-to-2D-Fuel-39	GTTTTTCGCGGTGATTTTAGTGTTACGGTACATGGGTTCGGCTCTGGTTC

3D-to-2D-Fuel-40	TTTTGCGATGACGAAACTCGATTATGAAAAGATGGCAAACTTTGTACTGG
3D-to-2D-Fuel-41	TTCTTTCGGGCTATGACCGGAATGCTACAGGCGTTGTAGGCTAATAAGGG
3D-to-2D-Fuel-42	ATTTTGCCTTTTGCTGGCCAGAATTGGGAATCAACTGTTGCTACTGGTGA
3D-to-2D-Fuel-43	ACGTGGCGTGACGTTTCCCACCGTACTTTAGTTGCATATGGTTTCATTGG
3D-to-2D-Fuel-44	GTGCTAATTGTCGCTACTCATTATATTCAGCAATTAAGCAAACTTGATTC
3D-to-2D-Fuel-45	ATAGAGGGGTTTCCTCGGTCATCGATTCTCTTGTTTGCTGTTATTATTGC
3D-to-2D-Fuel-46	CAAGGGGCTCTTAATCATTGATAGCCTTTGTAGATCTCTGTAATAAGGAG
3D-to-2D-Fuel-47	TACATTCGTATGTATTTTGCATTAATTTATCAGCTAGAACCACCTTTATG
3D-to-2D-Fuel-48	GAATACAAATTAGCGCTCAAAGGAAAGACAGCCGATTATTTCTCTCTGAT
3D-to-2D-Fuel-49	CAAGAGCTACATGCTCGTTAACTCAATTCTTGTGGGTTAGATTGGTTTCT
3D-to-2D-Fuel-50	TCGAGTCAATTATTGGGCTAAATTAGGATGGGATATTATTTCTTGCTCTT
3D-to-2D-Fuel-51	TCTCTATTGGACTTATCTAGCTATTGCTATTTCATTGTTTTCTTGTTCA
3D-to-2D-Fuel-52	GTACTTGGTTCGGTAAGATATTGTTGATAAACAGGCGCGTTAAAAAGGGC
3D-to-2D-Fuel-53	AGTCACGGTGAACATGTTCGGCTATCTGCTTACTTTTCTTCTGCATTAGC
3D-to-2D-Fuel-54	AAACACGTCTGTTGAGCGTAATACGCAAACCGCCTCTCCCTTAAGCCCTA
3D-to-2D-Fuel-55	AGTTGCGTATGTTGGCGTTATGCAGCTGGCACGACAGGTTCCTAAATTAC
3D-to-2D-Fuel-56	GCAATCACATTCTCTTATTTGAGCGCAACGCAATTAATGTGGTACTTTAT
3D-to-2D-Fuel-57	GCCGCCTACACTATTGACTTGGGTGATGGTTCACGTAGTGTTGATAAATT
3D-to-2D-Fuel-58	ACGACTTAGGTTAAAAAGGTTTTTCGCCCTTTGACGTTGGCTAAGCCGGA
3D-to-2D-Fuel-59	GGCTTGAAATCAGCATTTAGACTCTTGTTCCAAACTGGAATTGGATTTGC
3D-to-2D-Fuel-60	GCTTTGCCTTGATTTGCCGCTATCGCTATGTTTTCAAGGCCTTTCAACTG
3D-to-2D-Fuel-61	TCCACTCGAAAATTAATTATTTAGATAACCTTCCTCAATTATTCTAAGGG
3D-to-2D-Fuel-62	CCCTGCTCCTAAAGATATATAGCGACGATTTACAGAAGCTGTTAGTGCTC
3D-to-2D-Fuel-63	CGTATGTAACTCACATATATGACGGCTCTAATCTATTAGTAAGGTTATTC
3D-to-2D-Fuel-64	AGATATTATATTATCTATTTGATTTATGTACTGTTTCCAATCCTCAAATG
3D-to-2D-Fuel-65	CCTCGAACTAATTCAAATGTGTAAAGTCTAATACTTCTAATTAAAAAAGG
3D-to-2D-Fuel-66	CACCTGCCTGATAGACGGTAGTCTCTCAGACCTATGATTGGCCATCGCCC

Table S19. Sequences of the snub cube.

Number	Sequence
1snub	AGACTTTTTTCAAATATCGCGGAAGCAAACTTTTTTCCAAC
2snub	AGGTCGAACCATCACCTTTTCAAATCAAGTTCGGA
3snub	ACGTCATTTTAAGGGCGAAATGATAAGAGGTTTTTTCATTTTTGCGCTGTA
4snub	CCCACTACGTAGGATTAGAGAGTACCTTTAACAGGGCGATGG
5snub	TTGCTCCTTTAACCGTCTAT
6snub	TGATTCCATTAGATACTTTTTATTTCGCAAACTCCA
7snub	AGTGTTTTTGTTCCAGTTTAGTGCCAAGCTTTTTTTGCAT
8snub	AGAACGTGGATGGTCAATAACGACGTTGTAATCCACTATTAA
9snub	AACGACGGCCGGAACAAGAG
10snub	AATTCCTTTTTACACAACATATGCCTAATGAGTTTTTTGAGCTAACTGGTTG

11snub	CGAAATTTTTCGGCAAAATCTTCCAGTCGGGTTTTTAAACC
12snub	CCCGAGATAGCACATTAATTGCGTTGCGCTCCAAAAGAATAG
13snub	ACTGCCCGCTCCTTATAAAT
14snub	ACCCTATTTTTAAGGGAGCCCGACTATTATAGTTTTTTCAGAAGCAACCGAA
15snub	GGCGAAAGCCGTAAAGCACTAAATTTTTGGG
16snub	GGGCAATTTTTCAGCTGATTGCAAGCGGTCCATTTTTCGCTGGTTTGGGTTC
17snub	GTCGAGGTATCCTGTTTGATGGTCCCCAGCA
18snub	TGGATTTTTTATTTACATTGAAAGGGACATTTTTTTCTGGCCAACAAGAAT
19snub	ACGTGGTTTTTCACAGACAATTTACCTTTTTTTTTTTTT
20snub	TGCGAACGTGACCTGAAAGCGTAGAGATAGA
21snub	GCTCAATTTTTCATGTTTTAACATTCCATATATTTTTACAGT
22snub	ACCCTTCAGTAGATTTAGTTTGACCCAATTC
23snub	AAAATACCGGTGTCTGGAAGTTTATATGCAA
24snub	AAACATTTTTTCAAGAAAACAGAACTGATAGCTTTTTCCTAAAACATCAGAA
25snub	GATAAATTTTTACAGAGGTGAATCGGGAGAAATTTTTCAATA
26snub	CTAAAGTACGAACGAACCACCAGCGCCATTA
27snub	AATCTAAATTGCTGAATATAATGGATGGCTT
28snub	AGAGCTTAAGCATCACCTTGCTGAAATGAAA
29snub	GCTGAGTTTTTAGCCAGCAGCAACCTCAAATATTTTTTCAAA
30snub	GCCTGGCTCGAATTCGTTTTTTAATCATGGTCTCAC
31snub	ACCAGTCGATCCCCGGGTACCGACAGGTCGA
32snub	CTCTAGAGACACGACCAGTAATAGCAGATTC
33snub	GAACAATGTGAAATTGTTATCCGCATAGCTG
34snub	CTATATTTTTTGTAAATGCTGCAAACTATCGGTTTTTCCTTGCTGGTTGCAA
35snub	CAGGAATTTTTAAACGCTCATACATAGCGATATTTTTGCTTA
36snub	TTTCCTGTATTACCGCCAGCCATAATATCCA
37snub	CCATCACAGTGTAAAGCCTGGGGCGAGCCGG
38snub	AGGCCATTTTTCCGAGTAAAATAGCAATACTTTTTTTTTT
39snub	AAGCATAAGCAAATTAACCGTTGGAGTCTGT
40snub	GTCTTTACCCTCCGATTTAGAG
41snub	AAAGCCGGCGGACCATAAATCAAAAATCAGCTTGACGGGG
42snub	TTCAGATTTTTAAACGAGAATAACGTGGCGAGTTTTTAAAGG
43snub	TACATTTAAGATTAAGAGGAAGCAGCGGATT
44snub	ATATAATTTTTTCCTGATTGTACTAATAGATTTTTTTAGAGCCGTCATTAGA
45snub	CTTTACTTTTTAAACAATTCGTTATTAATTTTTTTTTTT
46snub	GCATCAAAGAGGATTTAGAAGTAATAGATAA
47snub	TCTGGTCCAAAGCGAACCAGACCGTTTTAAT
48snub	CCCTCAGTTGAAAGGATTTTTATTGAGGAAGAGAAC
49snub	TCGAGCTTAGTTGGCAAATCAACAATCAATA
50snub	TGTCGGGGGAGAGGCGTTTTTGTTTGCGTATGAGAC

51snub	TCCTGAGGAATCGGCCAACGCGCTGCCAGCT
52snub	TTGAAATTTTTTACCGACCGTGGATTTTAGACTTTTTAGGAACGGTACAGTG
53snub	GCATTAATAAGTGTTTTTATAATCGCCAGAA
54snub	TGCTTTGTTTTCTTTTCACCAGTTGGGCGCC
55snub	TTTAACTTTTTAACGCCAACAATGCGCCGCTATTTTTCAGGGCGCGTGTGCT
56snub	TTCCTCTTTTTGTTAGAATCAACCGGAATCATTTTTAATTA
57snub	AGGGTGGTACGAGCACGTATAACACTATGGT
58snub	GAAAGGACCTGAGAGAGTTGCAGCCCTTCAC
59snub	AAGGGCTGGCAAGTGTTTTTTAGCGGTCACGTAATA
60snub	CGCCTGGCGCGGGCGCTAGGGCGAAGAAAGC
61snub	TTCATTTGAAATTTTTGAAT
62snub	TTTAATGCGCAAATTAATTACATTTAACAATGGCTATTAGTC
63snub	AAACATTGCTTCTGTATTTTTAATCGTCGCTTGAAA
64snub	ATCCTTGAAAGGAAATACCT
65snub	CTCAATCGTCATTAATTAATTTTCCCTTAGAACATTTTGACG
66snub	AAAGAACGCGTAATAACATC
67snub	ATTAGAGAAAACTTTTTTTTCAAATATATATGGT
68snub	TAGAAGAACTATGCAAATCCAATCGCAAGACACTTGCCTGAG
69snub	CCGATTAAAGGTGATAAATAAGGCGTTAAATTAAACAGGAGG
70snub	AAGAATAAACGAGCGGGAGC
71snub	TTCGAGCCAGCTGCGCGTAA
72snub	AGAGAATTTTTTATAAAGTACCCAATACTGCGTTTTTGAATCGTCATAACAG
73snub	GCCGCGCTTATGTAATTTAGGCAGAGGCATTCCACCACACCC
74snub	ATGCTTTAAAATATTCATTGAATCTCCTTTGC
75snub	CCGAACGACAACTCGTATTAAACCCCTCAA
76snub	TGGAAGGGTTGTTATCTAAA
77snub	CTACCATTTTTATCAAAATTGTAGATTTTCATTTTTGGTTTAACGTGCCAC
78snub	AGCACTAACATTGGATTATACTTCTGAATAAATATCTTTAGG
79snub	CTGCAACAGTCAGATGAATATACAGTAACAGATTAACACCGC
80snub	TACCTTTTACGGCGGTCAGT
81snub	AATTGATTTTGTTAAGCCCAATAGCTATCTTTTTTACCGAAGCCCAGTTA
82snub	CCAGAATTTTTGGAAACCGAGAATAGGAACCCTTTTTATGTA
83snub	CCGTAAACGCCTGTAGTTTTTCATTCCACAGACAAG
84snub	TAACATTTTTTAAAAACAGGGACCCTGAACAATTTTTAGTCA
85snub	GAGGGGTTTTGTCGTCTTTTTTTCCAGACGGCTAA
86snub	ACAACTTTTTTTCAACAGTTAGAAACGATTTTTTTTTTT
87snub	TTTTATTTTTCCTGAATCTTTAATTTGCCAGTTTTTTTACAAAATAAAGGA
88snub	ATTGCGTTTTTAATAATAATTCTCCAAAAGGATTTTTGCCTT
89snub	TAATTAATTTCTTAAATTTTTCAGCTTGATATACAA
90snub	AGGTTTTTTTTGAAGCCTTATCGCCCACGCATTTTTTAACCGATATAGGCC

91snub	GCTTTTTTTTGCGGGATCGTCATCGTAGGAATTTTTTCATT
92snub	AAACCATTTTTATCAATAATCGTATTAAACCATTTTTAGTACCGCACGAGGG
93snub	TAGCAATTTTTCGGCTACAGAGAAGTTTCCATTTTTTAAAC
94snub	GGGTACCTAAAACGAATTTTTAGAGGCAAAATGTAG
95snub	AATAAATTTTTCAACATGTTCAATAGATAAGTTTTTTCCTGA
96snub	ACAAGAGCGATTATACTTTTTCAAGCGCGAACTGAT
97snub	AAATTGTTTTTGTCGAAATCAAAGAAGTTTTTTTTGCCAGAGGGGACGAC
98snub	CGTTTATTTTTCCAGACGACGGAGGCGCAGACTTTTTGGTCA
99snub	ATCATGGACAGATGAATTTTTCGGTGTACAGAAGAG
100snub	TAATCTTTTTTGACAAGAACTACATAACGCCTTTTTAAAAGGAATTACCCT
101snub	AATAATAGAAAGATTCTTTTTATCAGTTGAGAGCTG
102snub	CTCATTTTTTCAGTGAATAAGTAGTAAATTGTTTTTGGCTTGAGATTACCT
103snub	TATGCGTTTTTATTTTAAGAAAAGAAAAATCTTTTTTACGTT
104snub	TGCTCAGTACGCAGCACCGTAATCAGTAGCGTAGCGGGGGTTT
105snub	AATGAATTTTTACCATCGATACAGGCGGATAATTTTGTGCC
106snub	GTCGAACAAAAGGGCGTTTTTACATTCAACCATTAT
107snub	TCATTATTTTTAAGGTGAATTTAGAGCCAGCATTTTTAAATCACCAGTCACC
108snub	AGCGCCAAAGGAGGGTTGAT
109snub	CCGGAATAGGAGAAAATTCATATGGTTTACCATAAGTATAGC
110snub	CATAAATTTTTGGTGGCAACAGTTTATTTTGTTTTTCACAATCAAT
111snub	CACCGTTTTTACTCAGGAGGCAGAACCGCCATTTTTCCCTC
112snub	AGAGCACTGGCATGATTTTTTAAGACTCCTACATA
113snub	CAGTGCCTCAGAACCGCCACCCTTTTAGTAC
114snub	CGCCACCCGTATAAACAGTTAATTGAGTAA
115snub	TACCCAAAAGACACCACCCTCA
116snub	TAGCAAGCCCGAAACGCAATAATAACGGAATTTTCAGGGA
117snub	TGATACAGACCAGTACAAACTACACACTGAG
118snub	TTTCGTCGAGTGTACTGGTAATAGCTTTTGA
119snub	GAGATAACCCACAGCCCTCA
120snub	ACGATCTAAATAATTGAGCGCTAATATCAGATAGTTAGCGTA
121snub	AAAGCGCATCTGTATGGGATTTTTTAGTAAA
122snub	TGAATTTGTCTCTGAATTTACCGCAGAATGG
123snub	AATCCAAATATCAGCGGAGT
124snub	GGAACAACTAAACAGCCATATTATTTATCCCGAGAATAGAAA
125snub	ACGATTGGTCTCCAAAAAAAGGTTTTCACG
126snub	TTGAAAACCTTGATATTCACAAACAGGTCAG
127snub	CGCCACCCTTGCTTTCGAGGTGGTATCGGT
128snub	TTATCAGTCAGAACCGCCACCCTCTCAGAGC
129snub	TGCACCCAGCCCGATAGTTG
130snub	ACAACAACCAAATCAAGATTAGTTGCTATTTCGCCGACAATG

131snub	ATAATCAACTTGCAGGGAGTTAAATTCGGTC
132snub	GCTGAGGAATCACCGGAACCAGAATCTTTTC
133snub	TTTTTATTTTCACCCTCAGC
134snub	GCATCGGAACTCATCGAGAACAAGCAAGCCGAGCGAAAGACA
135snub	TTTTCATCAGACTTTTTCATGAGGGCTTTGA
136snub	GGACTAAGGCATTTTCGGTCATAGTAGCGCG
137snub	TTACCATTCTACGAAGGCACCAAAAATACGT
138snub	AATGCCAAGCAAGGCCGGAAACGTAGCACCA
139snub	TTTACGAGCAGAATACACTA
140snub	TTTGACCCCCAAAAATAATATCCCATCCTAAAAACACTCATC
141snub	CACCGACTGATTTGTATCATCGCACAAAGTA
142snub	CAACGGATGAGCCATTTGGGAATATCACCGT
143snub	GGCTTTTGCACGCGACCTGC
144snub	TAGCCGGAACATAAAAACCAAAATAGCGAGATCCATGTTACT
145snub	GAGGGAAGACCAACTTTGAAAGAAAGGGAAC
146snub	CGAACTGGTAAATATTGACGGAAGATTGAGG
147snub	AAACGCAATGGCTGACCTTCATCACCAGGCG
148snub	CATAGGCAGACACCACGGAATAATATAAAAG
149snub	CTAATGCAGACGGATATTCA
150snub	AACGTAACAAATTTAGGAATACCACATTCAATTACCCAAATC
151snub	AGTATGTTGAAACACCAGAACGAGGCTTGCC
152snub	CTGACGAAGCAAACGTAGAAAATTATTACGC
153snub	TGTGAATGGTTTAATTTCAACTGCAGATAG
154snub	CCGAACAATTTTTAAGAAAAGTAATTAATCAT
155snub	ACAGAATCAAGGATTAGGAT
156snub	GAGAAGTTTGCCTTTATTTTTGCGTCAGACTGCCCC
157snub	CTTATTTTTTAGCGTTTGCCGCCACCACCGGTTTTTAACCGCCTCCCAGAG
158snub	CCACCATTTTTCCCTCAGAGCGGCTGAGACTCTTTTCTCAA
159snub	AGTATTAAGACGCCACCAGAACCACCAGTGAAACATGAA
160snub	AGCCGCCGCCCTATTATTC
161snub	GTGCCTGCCCCTGCCTTTTTATTTCGGAAAGCAT
162snub	TGACAGTTTTTGAGGTTGAGGCAAATAAATCCTTTTTCATTAAAGCTTCCA
163snub	GTAAGCTTTTTGTCATACATGAGTTTTAACGGTTTTTGGTCA
164snub	TTATACCGAAATAAAGAAATTGCATTTGCAC
165snub	GTAAAACAAGTCAGGACGTTGGGCTGGCTCA
166snub	GATTAAAAATCATAGGTTTTTTCTGAGAGACTATAA
167snub	GTTTTAGGGCTTAGGTTGGGTTATACCTTTT
168snub	ACCGCGCTTATCCGGTTTTTTATTCTAAGAAGCGGG
169snub	TAACCTCCCGAACCTCCCGACTTCGCGAGGC
170snub	CTAGAAATTCTTACCATTTTTGTATAAAGCCCCATA

171snub	CAGAACGGCTTAATTGAGAATCGAACGCTCA
172snub	ACAGTAGGCGCCTGTTTATCAACAGCTAATG
173snub	TTTGAACCAGAAGGAGTTTTTCGGAATTATCCATCA
174snub	AACGGAATCAGATGATGGCAATTATCATATT
175snub	CCTGATTACAACATTATTACAGGAACGAACT
176snub	ACGGAAATCGCGCAGATTTTTGGCGAATTATGAAAC
177snub	TAGACGGAGCAAAAGAAGATGATTCATTTCA
178snub	ATTACCTGGAGAATTAACTGAACAAGCGCAT
179snub	ATCAATATAGCAGCCTTTACAGAGTCAAAAA
180snub	TGAAAATATGTGAGTGAATAACCGTACATAA
181snub	GCAAGCATTCTGACCTAAATTTATTTAGTTA
182snub	ATTTCATCAATCAGATATAGAAGGCCCAATA
183snub	TGGATAGCGTCGACAAAAGG
184snub	CTGTCCAGACGGTAATAGTAAAATGTTTAGACTAAAGTAATT
185snub	ATCATTTTAGCAACACTATCATAACGAGGCA
186snub	TAGTAAGGCGGAACAAAGAAACCGTAACATT
187snub	ATTGCTTTAACAATGAAATAGCAATAATAAG
188snub	AGCAAGAGAATACCAAGTTACAATTCGCCTG
189snub	TAACGAGCAATAGTGAATTTATCAGACGCTG
190snub	AGAAGAGTCGTCTTTCCAGAGCCACCAACGC
191snub	TTCCTTATCATATGCGTTATACAAAAAGCCT
192snub	GTTTAGTATCATTCCAAGAACGGGGCTGTCT

APPENDIX C

SUPPORTING INFORMATION FOR CHAPTER 4

RECONFIGURABLE DNA ORIGAMI TO GENERATE QUASI-FRACTAL

PATTERNS

Experimental Methods

Materials: M13mp18 ssDNA was purchased from New England Biolabs, Inc. (NEB, Catalog number: #N4040S). All other strands were purchased from Integrated DNA Technologies Inc. (<u>www.IDTDNA.com</u>) in 96-well plates at a 25 nmole synthesis scale, and were normalized to 200 \square M x 100 \square L and used without further purification.

Folding Frame 1: A one-step annealing reaction was used to form Frame 1; 10 nM M13mp18 ssDNA was mixed with 10x excess of all of the staples corresponding to the design for Frame 1 (100 nM each) in 1xTAE-Mg²⁺ buffer (20 mM Tris, pH 7.6, 2 mM EDTA, 12.5 mM MgCl₂). The oligonucleotide mixture was annealed in a thermocycler that was programmed to cool from 95°C to 4°C: 94°C to 86°C at 4°C per 5 minutes; 85°C to 70°C at 1 °C per 5 minutes; 70°C to 40°C at 1°C per 15 minutes; 40°C to 25°C at 1°C per 10 minutes; then hold at 4°C.

Standard Transformation: For the transformation from Frame 1 to Frame 2, first, 10 equivalents of Release Set 1 (42 strands, 100 nM each), fully complementary to Primer Set 1 (staples with an exposed toehold domain), are introduced to pre-formed Frame 1. This mixture is held at 45°C for 6 hours, generating a partially relaxed structure (particularly in the dynamic portions of the structure). Next, Closure Set 1 (38 strands, 100 nM each) is introduced to reorganize and fold the relaxed structure into Frame 2. The mixture is subsequently cooled from 45°C to 4°C (1°C per 10 minutes; then hold at 4°C). The transformation from Frame 2 to Frame 3 proceeds in a similar way as described above, except for the temperature used to prime the structures - the mixture was held at 37°C instead of 45°C for 6 hours.

All the samples are then subjected to AFM imaging without further purification.

AFM imaging: 1 \Box L sample was deposited onto a slide of freshly cleaved mica (Ted Pella, Inc.) and left to absorb for 1 min. 100 \Box L 1xTAE-Mg²⁺ Buffer was added to the liquid cell and the sample was scanned in a tapping mode on a Pico-Plus AFM (Molecular Imaging, Agilent Technologies) with SNL tips (Veeco, Inc.).

Transformation yield: The % yields reported in the main text were determined by tallying the number of target structures (structures expected after a given transformation) present in an AFM image and dividing by the total number of DNA origami structures (transformed and not-transformed) in the same AFM image. For all cases, no less than 100 total structures were analyzed.

Figure S1. Detailed design: toehold mediated strand displacement to transform preformed DNA origami Frame 1 into Frame 2. The upper panels are zoom out schematics and the lower panels are zoom in schematics of selected areas. (a) In Frame 1, staple strands (blue) in dynamic portions of the structure that crossover between helices 4 and 5 have toehold extension incorporated. Additional staple strands (rose) also contain toehold extensions (strategically located between helices 2 and 3) and will facilitate the transformation from Frame 2 to Frame 3. (b) In Frame 2, the 4th and 5th helices in the dynamic portions of the structure are separated and the inner helices in the corresponding corners are refolded towards the center of the frame. Removing the blue staples by toehold mediated strand displacement will allow the 4th and 5th helices to separate at the designed locations. The addition of new staple strands (red and yellow) refolds the structure into Frame 2. The yellow staples between helices 2 and 3 contain toehold extensions to facilitate the transformation from Frame 2. The yellow staples between helices 2 and 3 contain toehold extensions to facilitate the transformation from Frame 2. The yellow staples between helices 2 and 3 contain toehold extensions to facilitate the transformation from Frame 2. The yellow staples between helices 2 and 3 contain toehold extensions to facilitate the transformation from Frame 2 to Frame 3.

Figure S2. Intermediate structures. Left panels show the schematics, middle panels show zoom in AFM images, and right panels show zoom out AFM images. (a) Partially relaxed Frame 1 structure. (b) Partially relaxed Frame 2 structure. They are the product of priming the reconfigurable portions of the structures through the release of primer staples. The relaxed structures permit a certain degree of twist tolerance, facilitating the next step (refolding) of the transformation.

Figure S3. Detailed design: securing the connection between helices from opposite corners of the initial structures. (a) Schematic design of the connection point in Frame 2. The left panel is a zoom out schematic and the right panel is a zoom in schematic of the selected area. (b) Cylindrical model of the DNA origami frame structure. The panel on the left illustrates the inner four helical layers in Frame 1 and the panel on the right illustrates how these inner helices are refolded to form Frame 2. (c) Design of the two clamp strands (red) used to secure the two opposite corners. Each clamp staple binds to four exposed sections of the M13 scaffold: two from the lower left corner and two from the upper right corner. The center of the clamp staples contains five nucleotides (A₅) that are intentionally left unpaired to relax the tension that may exist in the center.

Temperature of transformation: The effect of temperature on structural reconfiguration was evaluated to identify suitable experimental conditions. In all cases, higher transformation temperatures destabilized the pre-formed Frame structures and led to reannealing of DNA origami structures. Lower transformation temperatures resulted in low (or no) transformation yields. Figures S4-S7 describes the pertinent experiments and results.
Figure S4. Higher temperature for the transformation from Frame 1 to Frame 2. (a) The AFM image shows the product of adding Closure Set 1 directly to pre-formed Frame 1 at 65°C without adding Displacement Set 1 first. Unlike the same experiment carried out at 45°C (Figure 4c in the main text) in which no transformation was observed, a mixture of Frames 1 and 2 are evident here. This indicates that the higher temperature destabilizes the structure and facilitates incorporation of the closure staples by thermal annealing. (b) The AFM image shows the result of directly annealing a mixture of M13, all the staples required to fold the scaffold into Frame 1, and Closure Set 1 from 65°C. As in Figure S4a, a mixture of Frames 1 and 2 is evident. This further indicates that the higher temperature destroys the frame structure and initiates a new thermal annealing process.

Figure S5. Direct thermal annealing of Frame 2. (a) The AFM image shows the result of directly annealing a mixture of M13 and the staples required to fold the scaffold into Frame 2 using a standard protocol (95-4°C). As expected, the yield of assembly is very high. (b) The AFM image shows the result of annealing the same mixture using a modified protocol (65-4°C). Similar to the standard protocol, the yield of assembly is high. These results support the conclusion that 65°C is higher than the melting temperature of the structure and will facilitate full thermal annealing.

319

Figure S6. The effect of an elevated temperature on partially relaxed intermediate structures. (a) The AFM image shows the result of priming Frame 2 for the transformation to Frame 3 (by displacing the primer strands) at 65° C, rather than 37° C. As shown in the AFM image, the fractal-like features in the center of the structure are destroyed by the higher temperature, preventing transformation into Frame 3. (b) The AFM image shows the result of adding Closure Set 2 to the sample in (a). As evidenced by the presence of Frame 3 in the AFM image, the high temperature initiated a new thermal annealing process.

Figure S7. Lower temperature for the transformation from Frame 1 to Frame 2. (a) The AFM image shows the result of conducting both steps of the transformation from Frame 1 to Frame 2 at 37° C. There is little evidence of Frame 2 in the AFM image. Considering the same experiment carried out at 45° C (Figure 2b in the main text), the result indicates that the lower temperature does provide enough energy to facilitate the transformation. (b) The AFM image shows the result of conducting both steps of the transformation from Frame 2 to Frame 3 at 30° C. Again, there is little evidence of Frame 3 in the AFM image. The same experiment conducted at 37° C is shown in Figure 2c in the main text. This result further indicates that the lower temperature does not make the transformation possible.

320

The following table lists the sequences of the staples strands for Frame 1. All the

sequences are from 5' to 3'.

Num	Sequence
ber 2	
	Т
3	ACTTAGCAAAACAACTTTCAACAGCACCGGAA
4	TCATAATTACTGGCATGATTAAGAAGAAAAGTAAGCAGAT
5	AGCCGAACAAAGTTAGGAATACCCAAAAGAACTAGAA
6	AAAGCCTGGTATGGGATTTTGCTGAGGTGAGGCGGTCACAGCAGA
7	AGATAAAATAGAAGAACTCAAACATTGTTATCCGCTCA
8	GGTCATAGCTGTTTCCTGTGTGAATATCGGCCTTGCTGGTATACCGAA
9	CGAACCACGTATTAACACCGCCTGAGTAAATGAATTTTCTTTTAGTATCATATGC
10	GAAACGCAATAATAACCCAGAAGGAAACCGAGAGAAAAATAATATCCCAGATA AGT
11	CCTGAACATTATACAAATTCTTACCGTCTTTCCAGACGTTCAACAGTG
12	CCACGCTGAACATCGCCATTAAAAAATATCCAGAACAATAGTAATCAT
13	GCTTTGAGGTTTAATTTCAACTTTCACCCGCCGCGCTTAAAGCAAGC
14	CTGGTTTGCCCCAGCATGCGCGTAACCACCAAATCATTGTGAATTACGAGGGTA
15	GCAACGGTCGGTCGCTGAGGCTTATCAAAA
16	TCATAGGTATTGACGGAAATTATTTACAGAGAGAATA
17	ACATAAAAACAGGGAAAGGGAAGGGAAGGTAAATCTGAGAG
18	ACTACCTTCGCATAACCGATATATCTACAGAG
19	AGTGAATTTGCAGGGAGTTAAAGGAAAGACAG
20	CATCGGAACCTTATGCGATTTTAAAGTGTAGCGGTCACGCGGCGAAAATCCTGTT T
21	GATGGTGGTTCCGAAACGCTAGGGCGCTGGCAGAACTGGCTCATTATAGTCACCC
2.2.	I CAGCAGCGCCGCTTTTGCGGGATCATTAAGAC
23	GCTGAGAATATCACCGTCACCGACTTTGTTTAACGTCAAA
24	AATGAAAATAGCAGCCTTCATTAAAGGTGAATGAGTCAAT
25	AGCCCTAAAGAGCCAGCAGCAAATCGATCTAAAGTTTTGTCAGTATA
26	AAGCCAACGCCTGTTTATCAACAATATCCTAATTTACGAGCATGTAGAA
27	ATCAATAATCGGCTGTCTTTCCTTTCCAGACGACGACAATCAACATGT
28	AATTTAGGCACTGAGTTTCGTCACCAAATCAACAGTTGAACATTCTG
29	GCCAACAGACCAGTAATAAAAGGGAGGGATGTGCTGCAAG
30	GCGATTAAGTTGGGTATCACCAGTCACACGAGATAGAACCCTTCTGTATCTGGTC
	AGTTGGCAGTACAAAC
31	TACAACGCCTGTAGCAACAGACAGCCCTCATA
32	TACCGAGCTCGAATTCTTACCGCCAGCCATTGGAACTGAT

33	GTTAGCGTAAGAAAAATCTAAAGCATAGTCTTTAATGCGCCAACAGGAAAAACG
24	
34	AATGCAGAACGCGCTCAACAGTAGGGCTTAATTATCGCCATATTTAACAACGCA
35	ATTTACATTGGCAGATACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACG
36	CGTCTGAAATGGATTATACGTGG
37	ATTTTTGAATGGCTATTCACCTTGCTGAACCTTTCAAACCCTCAATCAA
20	AGCGTAAGA
38	GULAGIGULAAGUIIGUAIGUIGAGILGACIUICAIGGAAAIAULIAU
39	
40	
41	
42	
43	
44	
45	
46	
47	AATAAGGCATGTTAGCAAACGTAGTAGCAATAGCTATCTTCTCTCC
48	CICICCACCGAAGCCCITITTACICCITATTACGCAGIGITAAATA
49	AGAATAAATTTCAGCGGAGTGAGAGAAATCCGCGACCTGCACGGTCAA
50	CTCTCCCAAGAATTGAGTTAAAGAAACGCAAAGACACCA
51	AGAGTAATCTTGACTTTGAACCGGATATTCTGTGTG
52	ATTACCCAAATCAACGGCTAAACATGTGTG
53	GAGCGGGATAACAAAGCTGCTCATAGGCACCATGTGTG
54	ACTACGATCAGTGAATAAGGCTACGTGCTTTCCTCGTCTTTTCACCAGTGAG
55	ACGGGCAACAGCTGATTTGACGAGCACGTATATGCCCTGACGAGAAACTAAACG GG
56	GTTTCCATACCAGAACGAGTAGTAGCGTACTATGGTTGCTTGC
57	GCCCTGAGAGAGTTGCTGCGCCGCTACAGGGCAATTGGGCTTGAGATGGACTAA
	AG
58	TCATAAGGTCTTTGATTAGTAATAACGAGCCGGAAGCATA
59	AAGTGTAAAGCCTGGGCCGTTGTAGCAATACTGAACCGAACTGACCAACCTGAT AA
60	TATCATCGCTTTGAAAGAGGACACATCACGCAAATTAAGTGCCTAATGAGTGA
61	GCTAACTCACATTAATAGTAAAAGAGTCTGTCGATGAACGGTGTACAGAAACAA A
62	CAAGCGCGACCAGGCGCATAGGCTATCAGTGATGTGTG
63	TTTTTATAGGCTGACCTTCATCATGTGTG
64	ACTTTTTCCAACAACCATCGCCCATTTAACCT
65	CTCTCCTATATAACGTTGCGCCGACAATGAATGAGGAA
66	TAAAATACCAGCTTGATACCGATATATATGTACTCTCC
67	CTCTCCCAATCGCGGTGAATTTCTTAAAGTAATGCC
68	CTCTCCACCTAAAAATCAGCTTGCTTTCGAAAGACAAAGAACG
69	CTCTCCTTAATTGTATCGGTTTCGAAAGAGGCAAAAGAATACAC

70	CTCTCCACACTCATCTTTGACCCCCAGCAAAGGCTCCAAAAGGA
71	CCGGCTTAGACATTCAACCGATTGGCGCATTAGACGGGAGCTCTCC
72	CTCTCCAATTAACTGAACACCCCCAAAGACAAAAGGGCGGTTGGGT
73	AATGCTGAATATGGTTTACCAGCGTGAACAAAGTCAGAGCTCTCC
74	CTCTCCGGTAATTGAGCGCTAAATCAATAGAAAATTCTGCAAATC
75	ATAAGTTTATTTTGTCACATATCAGAGAGATAACTCTCC
76	GGCCACCGTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAGAAGTG
77	GAACGGTACGCCAGAATCCTGAAACCTGTCGTGCCAGCTGCATTA
78	GGAGGCCGCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTTAGAATCA
79	GAATCGGCCAACGCGCGGGGGGGGGGGGGGGGGGTTTAAAGGGGATTTTAGACAG
80	CATAACCCATTGTTTGGATTATACCTATTTCGGAACCTATAGTTAATG
81	CCCCCTGCGCGACAGAATCAAGTTCTACAATTTTATCCTG
82	AATCTTACCAACGCTGCACCGTAATCAGTAATTACCT
83	TTTTTAATAACAATTTCATTTGATTCTGAATAATGGAAAGGCATA
84	GTAAGAGCAAAGGTGGCATCAATAAAAATAATTCGCGT
85	CTGGCCTTCCTGTAGCTTGGGGGCGCGAGCTGAAACACTAT
86	GTGAACCAGCATTGGAACGCCATCTCTACTAATAGTAGTAGCCAAAAG
87	GAATTACGGGGTTAGAACCTACCAAAAATTAATTACATTTGGAAACAGTACATA
00	AA CAAAACCATCCATACCAAAACCACCCTCTTTCCACACCCCTAATTTCCCCACCCCAAA
00	CG
89	TCACCAATTCAATATATGTGAGTGCAAACATCAAGAAAACTATCAAAA
90	TTATTTGCAATGCAGATACATAACTCACCCAAATCAAGTTCCCACTAC
91	TAGAGCCGAGAAGCAAAGCGGATTGGTCAGGATTAGAGAGGCGCAACTGTTGGG
	A
92	AGGGCGATCGGTGCGGAAGCAAACTCCAACAGCATCAAAAAGATTAAGGAGCA C
93	TAACAACCCTCATTTTCAGGGAGCCGCCGC
94	CAGCATTAGAACCACCACCAGACGCACTCATCGAGAA
95	CAAGCAAGCCGTTTTTCCTCAGAGCCGCCACCGACAGGAG
96	GTTGAGGCCCCTCAGAGCCACCACTAATAGAT
97	AAGAGAATTAGCAAGCCCAATAGGTATCTAAA
98	ATATCTTTAGAGGAAGCCCGAAAGAAGCGAACCAGACCGGGCCTCTTCGCTATT
00	
99	GCCAGCIGGCGAAAGGIIIAAIICGAGCIICAACIICAAAIAICGCGIAGGAAII G
100	AGGAAGGTAACCCATGTACCGTAACAGAGGCA
101	TTTTCGAGAGGTAAAGTAATTCTGATCATTCCAAGAACGG
102	GTATTAAACCAAGTACATAAAGTACCGACAAACCAGTAAT
103	ATTCAACTACGTAAAACAGAAATAAAAGAAGATGATGAAAAAATAACC
104	TTGCTTCTGTTACCATTAGCAAGGCTTACAAAATAAACAGCCATATTAT
105	CCCAATCCAAATAAGAAACGATTTTTGAGCCATTTGGGAACATAGCGA
106	TAGCTTAGTCGCCTGATTGCTTTGAGAAACAATAACGGATCCAGTCA
107	GGACGTTGGAAGCGAAAGGAGCGGGTCGGCAAAATCCCTT
108	ATAAATCAAAAGAATAGAAAGGAAGGGAAGAGAAGAAAAAATCTACGACCTTTT

	ACATCGGGAATACCAAGT
109	TACAAAATCGCGCAGAAATTATTCATTTCAAT
110	TCTATCAGGGCGATGGTTTTGGGGGTCGAGGTGAATACCAC
111	TACCTGAGCAAAGAAATTGCGTAGACAGTTGAGATTTAGGCCGTAAAGCACTAA
110	
112	
113	CCGGCGAACGTGGCGAGCCCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAA
114	GCTTGACGGGGAAAGACGGAACA
115	AGGTAGAAAGATTCATTTTTCAGGTTTAACGTTAATATACAGTAACAGTTTAATA
	AAACGAACTA
116	AGAGTCCACTATTAAAGAACGTGGACTCCAACGTCATCGGAACCCTAAAGGG
117	ATTATTACAGCCCCCGATTTAGA
118	ATTTACCGTTCCAGCGTCATACATGCTCTCC
119	CTCTCCGCTTTTGATGATACGGTTTTGCTCAGTACCCAAAGAAA
120	GAATTATCAGGATTAGGATTAGCGGAGGAGTGTCTCTCC
121	ACTGGTAAATAGCCCCCTTATTAGACCTCCCGACTTGCGCTCTCC
122	CTCTCCGGAGGTTTTGAAGCCTTCGGCATTTTCGGTCTAAGTTT
123	CTCTCCTAACGGGGGACTCCTCAAGAGAATCATATT
124	AGTATTAAGAGGCTGATCAGTGCCCTCTCC
125	TTGAGTAACTGTAGCGCGTTTTCATAAATCAAGATTAGTTCTCTCC
126	CTCTCCGCTATTTTGCACCCAGTGCCTTTAGCGTCAGACAGTGCCC
127	GTATAAACTATTCTGAAACATGAACATCAATATAATCCTGTCGTTTAC
128	CTCTCCAGGCGTTTTAGCGACGTTTGCCATCTTTTCATA
129	TAGCGTCCAATACTTTTGGAATCGTCATAATGTGTG
130	ATATTCATTGAATCCCTCAACATGTGTGTG
131	GCTGTAGCCCTCAAATGCTTTAAAATTAAATCTGTGTG
132	AACTCGTCAGTTCAGAAAACGAAGAGCTTAATTGCTGCCAGCTTTCCGGCAC
133	CGCTTCTGGTGCCGGATTTTTGCGGATGGCTTGAATGACCATAAATCAATTAGAC T
134	TTGAGGATTTAGAAGTAAAATCAGGTCTTTACTTTTGATAAGAGGTCAAACCAGG
105	
135	ATTCGCCATTCAGGCTTACCTTTAATTGCTCCCCTGACTATTATAGTCTCAATAGA
136	
137	TAAATGTGAGCGAGTAATGGTCAATAACCTGTGATAAAAACCAAAATATCAGAT GATGGCAATT
138	CCTGATTAGCGAGAGGCTTTTGCAGATACATTTCGCAAACAACCCGTCGGATT
139	CTCCGTGGGAACAAACATTTAGTTTGACCATTAAAAGAAGTTTTGCCAAGGAGCG
140	CCACCAGAGAGGGGGTAATAGTAATTCTGCGATGTGTG
141	ATTCCCAAAATGTTTAGACTGGATGTGTG
142	TAATACATACCCTCAGAACCGCCAAGGTCAGA
143	TTACAAACGGAGGTTTAGTACCGCAAATAAATCTCTCC
144	CTCTCCATGGAAAGTATCACCGTACTCAAATTCGAC
145	CTTTGCCCATAGCCCGGAATAGGTGCGCAGTCTCTGACTCTCC
146	CTCTCCGAGGGTTGATATAAGTGAACGTTATTAATTTTAAAAGT

147	CTCTCCGTAACATTATCATTTTGCGGAAAGGCGGATAAGTGCCG
148	CTCTCCTCACAAACCACCCTCAGAACCGCC
149	CGATTGGCCCCTCAGAGCCACCACATTTTCATCGTAGGAACTCTCC
150	CTCTCCTCATTACCGCGCCCAAACCCTCAGAACCGCCACTTGATAT
151	CCTCATTACTCCCTCAGAGCCGCCTAGCAAGCAAATCAGCTCTCC
152	CTCTCCATATAGAAGGCTTATCCACCACCGGAACCGCAAGCCAGA
153	CTCTCCAAATCACCGGAACCAGAGCCGGTATTCTAAGAA
154	ACGAGTAGGGCGGATTGACCGTAATGGGATAGGTCACGTTAACAGTTG
155	CTGGAAGTTTCATTCCATATGGTGTAGATGGGCGCATCGTAACC
156	TTTTAAATACAGTATCGGCCTCAGGAAGATCGCACTCCAGAATATAAT
157	ATCTGCCAGTTTGAGGGGACGACGATGCAACTAAAGTACGGTGT

The following table lists the sequences of Release Set 1 and Closure Set 1 for the transformation from Frame 1 to Frame 2.

Releas	Sequence
s40	ACTAAAATATATAAAAGTTTTCTCGATCTAC
s41	GTATAATCTTTTTGGAGATTTTCAAGAAGATGAAATTAACCTTG
s42	TCTATCTTTAGGTCACGTGAAAAAATTATTCCGTTGTAC
s43	GATTGTTCTTATTATGGGGCTTTATATGTTGCCACCTCCATTAAA
s44	TTTCAAATTATGTATGTATTTTTTCATTGTTTCTTGCTACCAC
s45	CAAATCTATTCGCAATTCCTTTGGTCGGTAGGGGTC
s46	CTTACATATCACAGTTGTTCCTTTCTATGACACAAT
s47	AAACCTAAGATAGCTATTGCTACGTTTGCTAACATGCCTTATT
s48	TATTTAACACTGCGTAATAAGGAGTAAAAAGGGCTTCGGTTAGCAG
s50	TGGTGTCTTTGCGTTTCTTTAACTCAATTCTTGTCTTCC
s65	TTCCTCATTGTCGGCGCAACGTTATATAGTGGTC
s66	GAACCCTACATATATATCGGTATCAAGCTGGTATTTTA
s67	GGCATTACTTTAAGAAATTCACCGCGATTGGTGAAA
s68	CGTTCTTTGTCTTTCGAAAGCAAGCTGATTTTTAGGTACATTC
s69	GTGTATTCTTTTGCCTCTTTCGAAAGGCATACAATTAAGGGTAC
s70	TCCTTTTGGAGCCTTTGCTGGGGGGTCAAAGATGAGTGTTGGCTA
s71	CCTAAACTCCCGTCTAATGCGCCAATCGGTTGAATGTCTAAGCCGG
s72	ACCCAACCGCCCTTTTGTCTTTGGGGGGTGTTCAGTTAATTGATGAC
s73	TAACGGCTCTGACTTTGTTCACGCTGGTAAACCATATTCAGCATT
s74	GATTTGCAGAATTTTCTATTGATTTAGCGCTCAATTACCTCTGCC
s75	CCTCGGTTATCTCTCTGATATGTGACAAAATAAACTTAT
s118	TCCAAACATGTATGACGCTGGAACGGTAAAT
s119	TTTCTTTGGGTACTGAGCAAAACCGTATCATCAAAAGCAGTTTA
s120	GTACAAACACTCCTCCGCTAATCCTAATCCTGATAATTC
s121	CAGCGCCGCAAGTCGGGAGGTCTAATAAGGGGGGCTATTTACCAGT
s122	AAACTTAGACCGAAAATGCCGAAGGCTTCAAAAACCTCCACTCTT
s123	AATATGATTCTCTTGAGGAGTCCCCCGTTATTTTCG
s124	
s125	TTCCCCAACTAATCTTGATTTATGAAAACGCGCTACAGTTACTCAA

s126	GGGCACTGTCTGACGCTAAAGGCACTGGGTGCAAAATAGCGGGAGG
s128	TATGAAAAGATGGCAAACGTCGCTAAAACGCCTCTTGCA
s143	TATTGAATTTATTTGCGGTACTAAACCTCCGTTTGTAA
s144	GTCGAATTTGAGTACGGTGATACTTTCCATAAATCG
s145	AACCTTTCAGAGACTGCGCACCTATTCCGGGCTATGGGCAAAG
s146	ACTTTTAAAATTAATAACGTTCACTTATATCAACCCTCCACTAT
s147	CGGCACTTATCCGCCTTTCCGCAAAATGATAATGTTACCAAGGA
s148	GGCGGTTCTGAGGGTGGTTTGTGACCATTC
s149	TCACGTTTCCTACGATGAAAATGTGGTGGCTCTGAGGGGCCAATCG
s150	ATATCAAGTGGCGGTTCTGAGGGTTTGGGCGCGGGTAATGAATTCCT
s151	GGGGACCTGATTTGCTTGCTAGGCGGCTCTGAGGGAGTAATGAGG
s152	TCTGGCTTGCGGTTCCGGTGGTGGATAAGCCTTCTATATCTGTGC
s153	TTCTTAGAATACCGGCTCTGGTTCCGGTGATTTCAACAT
Closur	Sequence
e Set 1 78	TTAGGGTTCCAGAAAGCCTC
70	TCGGGGAGGCGGATAGTGCCGATACATGGCTTTTGACCCTTATT
80	CATAGCCTGATACAGGAGTGTACGGTTTTGCTCAGTACCGTTGCT
81	TAAACGGGATTAGGATTAGCGGTGGTAATAAGTTTTAAGCGCGTTT
82	
83	TATTAAGAGGCTGAGTAACAGTG
85	ATAAGTTTATTTTGCTAATATCAGAGAGAGATAAAAAAAGGCGTTTTAGCGAACCTCGCCATCTTTT
	САТА
86	AGCGTTTCCGACTTGCGGGAGGTTTTGAAGCCTTAAATATTTTCGGT
87	TCATCGGCCAAGATTAGTTGCTATTTTGCACCCA
102	TTACAAACAATTCGAC
103	CTTTGCCCGAACGTTATTAATTTTAAAAGATAACATTATCATTTTGCGGAACAAAGAAAATGGC C
104	GAATTATCATCATATT
105	CCACCGGATCTCTGAATTTACCGGAGGGTTGATATAAGTGGGCCA
106	TGGGGCATAGCCCGGAATAGGTCAGAATGGAAAGCGCAGACCGCCTC
107	CTCAGAACAATCCTCATTAAAGCGTATCACCGTACTCAGTAGCCT
108	GAGGTTTAGTACCGCTATTCACAAACAAATACGCCACCCTCAGAGC
109	TTGGCCTTGACACCCTCAGAACCGCC
110	TTTTCATCGTAGGAATCATTACCGCCCGCCACC
111	CCTCAGAGGCCCAATAGCAAGCAAATCAGATATAGAAGGAGAGCCA
112	AAATCACCGGAACCCTTATCCGGTATTCTAAGAAAAAACAAGAATTGAGTTAAGCCCACGCAA
118	AGACACCA
119	CAGTACAAAGGCTCCAAAAGGAATTTTAGTTAATTTCACAACATAT
120	AAAGGTGGTCTTCTGACCTAAATTTGAAAATCTCCAAAAATGGGCG
120	TTCGACAATAATTTTTTCACGTTAATGGTTTGAAATACAGCAAACG
122	ATTACGCAGTATGTTCGACCGTGTGATAAATTAAAGGAATTGCGAAT
123	AGAAAGGAACAACAAGGCGTTAA
139	TAAAATACGTAATGCC
140	ACCTAAAACGAAAGAGGCAAAAGAATACAACACTCATCTTTGACCCCCAGCGATTATACGTCTC
	A
141	GTACAACGGAGATTTG

142	CAATAGAAAAGAACGCGAGAAAATTAATTGTATCGGTTTCTACAC
143	TAAACAATCAGCTTGCTTTCGAAATCCAATCGCAAGACAAATTCATA
144	AAGACAAAGTAAATGCTGATGCAGGTGAATTTCTTAAAATGGGG
145	CAGCTTGATACCGATAGGTTATATAACTATATAGGGCGACATTCAAC
146	GCTTAGGTTGGTTGCGCCGACAATGA
147	TGGTTTACACACCCTGAACAAAGTCAGAGGGTAATTGAGCGTCACAAT
148	CGCATTAGACGGGAGAATTAACTGACAGCGCCA
151	TAGAAAATATAGCTATCTTACCGAAGCCCTTTTT
152	AAAAGAAAATAATAAGAGCAAGAAACAATGAAATAGCAACATACAT

The following table lists the sequences of Release Set 2 and Closure Set 2 for the transformation from Frame 1 to Frame 2.

Release Set 2	Sequence
78	GAGGCTTTCTGGAACCCTAA
79	AATAAGGGTCAAAAGCCATGTATCGGCACTTATCCGCCTCCCCGA
80	AGCAACGGTACTGAGCAAAACCGTACACTCCTGTATCAGGCTATG
81	AAACGCGCTTAAAACTTATTACCACCGCTAATCCTAATCCCGTTTA
103	GGCCATTTTCTTTGTTCCGCAAAATGATAATGTTAACTTTTAAAATTAATAACGTTCGGG CAAAG
105	TGGCCCACTTATATCAACCCTCCGGTAAATTCAGAGATCCGGTGG
106	GAGGCGGTCTGCGCTTTCCATTCTGACCTATTCCGGGCTATGCCCCA
107	AGGCTACTGAGTACGGTGATACGCTTTAATGAGGATTGTTCTGAG
118	ATATTTTAAAAAGTAAAAG
119	ATATGTTGTGAAATTAACTAAAATTCCTTTTGGAGCCTTTGTACTG
120	CGCCCATTTTTGGAGATTTTCAAATTTAGGTCAGAAGACCACCTTT
121	CGTTTGCTGTATTTCAAACCATTAACGTGAAAAAATTATTGTCGAA
140	TGAGACGTATAATCGCTGGGGGGTCAAAGATGAGTGATGTATTCTTTTGCCTCTTTCGTTT TAGGT
142	GTGTAGAAACCGATACAATTAATTTTCTCGCGTTCTTTTCTATTG
143	TATGAATTTGTCTTGCGATTGGATTTCGAAAGCAAGCTGATTGTTTA
144	CCCCATTTTAAGAAATTCACCTGCATCAGCATTTACTTTGTCTT
88	TTATGACGATTCCAAAAGTATTGGACGCTAAGGAGA
89	GAAAGCCATGTTGAGGGATTCAATGAATAT
90	GATTTAATTTTAAAGCATTTGAGGGCTACAGCTCTTTC
99	GTATTTTCGCAGAATTACTATTACCCCCCTCTCTGGTGG
100	TCCAGTCTAAACATTTTGGGAATGGAAAC
125	GAATATCCGGTTCAAAGTCAAGATTACTcTAGATCA
126	AAACACTGTTTAGCCGTTGATTTGGGTAAT
127	TCAAGTTGGTGCCTATGAGCAGCTTTGTTATCCCGCTC
136	CTAGTTTCACTGATAGCCTATGCGCCTGGTCGCGCTTG
137	TGATGAAGGTCAGCCTATAAAAACAATAC
Closure Set 2	Sequence
78	GCGTCGATAAGTGCCAAAATAACATTATCACCAATAC
79	TTTGATGATACGGTTTTGCTCAGTACCAGGCGATACATGGCT
80	ATTAGCGGAGGAGTGTACTG
81	GTAATAAGTTTTAAGCGCGTTT

88	GAATCGTAATTTTAAAAGTAAAAAGGGTTGATATTCCA
89	GAACGTTATTCATAAATATTCATTGAATCCCATCCTTTGCCC
90	ATTAACCTCAAATGC
101	GTAATAGTAACCAGA
102	CTGGATAGCGTTTTTGCGGAACAAAGAAACCAAATGTTTAGA
106	CCGGAATAGGTGCGCAGTCTCTGAATTTACCGTAAGTATAGC
107	AGAATGGAAAGTATCACC
112	CTCAGAACAATCCTCATTAAAGC
116	CCACCGGAACCGCCTC
118	TCATAGCCCCCTTATT
121	ATTCCCAATTCTGCGA
123	GCTGTAGCTCAACATG
126	ATATACTCCAAAAGGAAAACACTCATCTTTATCTTGA
127	CAAAAAAAGGTTTTAGTTAATTTCATCTTCTTGAAAATCTC
128	CACGTGACCTAAATT
129	TAATGGTTTGAAATACAGCAAACG
133	AACCGGAAAAAGAATACACAAAAATTAATTGTATCCTTTT
134	CAAATCAACGCCAACCTAAAACGAAAGAGGCTATTCATTACC
135	AGGCATAACAAAGCT
146	CGCATAGGCTGCGCG
147	CATCAAGAGTAGACCCCCAGCGATTATACCAAGGCTGACCTT
151	CGCGAGAAAAGGTTTATCAGCTTGCTTTCGAAAGACAAAGAA
152	TCCAATCGCGGTGAA
157	AAGACAAAGTAAATGCTGATGCA
159	CAATAGAAAATTCATA
165	AAAGGTGGCAACATAT
168	TTTTTATAATCAGTGA
170	GAGCGGGAGCTAAACA

The following table lists the sequences of Release Set 3 and Closure Set 3 for the transformation from Frame 3 to Frame 2.

Release Set 3	Sequence
78	CTGGGAGTATTGGTGATAATGTTATTTTGGCACTTATCGACGC
79	ACACGTAGCCATGTATCGCCTGGTACTGAGCAAAACCGTATCATCAAA
80	CCAAATCAGTACACTCCTCCGCTAAT
81	ACGGAGAAACGCGCTTAAAACTTATTAC
88	TCCATGTGGAATATCAACCCTTTTTACTTTTAAAAATTACGATTC
89	GGGCAAAGGATGGGATTCAATGAATATTTATGAATAACGTTCTACGTC
90	CTCCTTGCATTTGAGGTTAAT
101	TCTGGTTACTATTACTACGAA
102	TATATGTCTAAACATTTGGTTTCTTTGTTCCGCAAAAACGCTATCCAG
106	GCTATACTTACGGTAAATTCAGAGACTGCGCACCTATTCCGGAGTTAT
107	TCGGTCGGTGATACTTTCCATTCT
112	GGAATCGCTTTAATGAGGATTGTTCTGAG

116	GAGGCGGTTCCGGTGGTCTAGG
118	AATAAGGGGGCTATGACGGAGG
121	TCGCAGAATTGGGAATATACTT
123	TAACGACATGTTGAGCTACAGC
126	TCAAGATAAAGATGAGTGTTTTCCTTTTGGAGTATATCCTAAT
127	GAGATTTTCAAGAAGATGAAATTAACTAAAACCTTTTTTTT
128	ACCTAGAATTTAGGTCACGTG
129	TCTACACGTTTGCTGTATTTCAAACCATTA
133	AAAAGGATACAATTAATTTTTGTGTATTCTTTTTCCGGTTGCGACC
134	GGTAATGAATAGCCTCTTTCGTTTTAGGTTGGCGTTGATTTGTCCATT
135	GGCGAAAGCTTTGTTATGCCT
146	CGCGCAGCCTATGCGATTGCG
147	AAGGTCAGCCTTGGTATAATCGCTGGGGGGTCTACTCTTGATGCCCGGA
151	ATAATCTTCTTTGTCTTTCGAAAGCAAGCTGATAAACCTTTTCTCGCG
152	CTTTGGTTCACCGCGATTGGA
157	CAACTCTGCATCAGCATTTACTTTGTCTT
159	TATGAATTTTCTATTGTCGTAG
165	TGATCTATATGTTGCCACCTTT
168	TCACTGATTATAAAAATCGTCG
170	GCTCGTTGTTTAGCTCCCGCTC
Closure Set 3	Securence
Closure Set 5	bequence
78	GCGTCGATAAGTGCCAAAATAACATTATCACCAATACTCCCAG
78 79	GCGTCGATAAGTGCCAAAATAACATTATCACCAATACTCCCAG TTTGATGATACGGTTTTGCTCAGTACCAGGCGATACATGGCTACGTGT
78 79 80	GCGTCGATAAGTGCCAAAATAACATTATCACCAATACTCCCAG TTTGATGATACGGTTTTGCTCAGTACCAGGCGATACATGGCTACGTGT ATTAGCGGAGGAGTGTACTGATTTGG
78 79 80 81	GCGTCGATAAGTGCCAAAATAACATTATCACCAATACTCCCAG TTTGATGATACGGTTTTGCTCAGTACCAGGCGATACATGGCTACGTGT ATTAGCGGAGGAGTGTACTGATTTGG GTAATAAGTTTTAAGCGCGTTTCTCCGT
78 79 80 81 88	GCGTCGATAAGTGCCAAAATAACATTATCACCAATACTCCCAG TTTGATGATACGGTTTTGCTCAGTACCAGGCGATACATGGCTACGTGT ATTAGCGGAGGAGTGTACTGATTTGG GTAATAAGTTTTAAGCGCGTTTCTCCGT GAATCGTAATTTTAAAAGTAAAAAGGGTTGATATTCCACATGGA
78 79 80 81 88 88 89	GCGTCGATAAGTGCCAAAATAACATTATCACCAATACTCCCAG TTTGATGATACGGTTTTGCTCAGTACCAGGCGATACATGGCTACGTGT ATTAGCGGAGGAGTGTACTGATTTGG GTAATAAGTTTTAAGCGCGTTTCTCCGT GAATCGTAATTTTAAAAGTAAAAAGGGTTGATATTCCACATGGA GACGTAGAACGTTATTCATAAATATTCATTGAATCCCATCCTTTGCCC
78 79 80 81 88 90	GCGTCGATAAGTGCCAAAATAACATTATCACCAATACTCCCAG TTTGATGATACGGTTTTGCTCAGTACCAGGCGATACATGGCTACGTGT ATTAGCGGAGGAGTGTACTGATTTGG GTAATAAGTTTTAAGCGCGTTTCTCCGT GAATCGTAATTTTAAAGTAAAAAGGGTTGATATTCCACATGGA GACGTAGAACGTTATTCATAAATATTCATTGAATCCCATCCTTTGCCC ATTAACCTCAAATGCAAAGGAG
78 79 80 81 88 90 101	GCGTCGATAAGTGCCAAAATAACATTATCACCAATACTCCCAGTTTGATGATACGGTTTTGCTCAGTACCAGGCGATACATGGCTACGTGTATTAGCGGAGGAGTGTACTGATTTGGGTAATAAGTTTTAAGCGCGTTTCTCCGTGAATCGTAATTTTAAAAGTAAAAAGGGTTGATATTCCACATGGAGACGTAGAACGTTATTCATAAATATTCATTGAATCCCATCCTTTGCCCATTAACCTCAAATGCAAGGAGTTCGTAGTAATAGTAACCAGA
78 79 80 81 88 88 89 90 101 102	GCGTCGATAAGTGCCAAAATAACATTATCACCAATACTCCCAGTTTGATGATACGGTTTTGCTCAGTACCAGGCGATACATGGCTACGTGTATTAGCGGAGGAGTGTACTGATTTGGGTAATAAGTTTTAAGCGCGTTTCTCCGTGAATCGTAATTTTAAAAGTAAAAAGGGTTGATATTCCACATGGAGACGTAGAACGTTATTCATAAATATTCATTGAATCCCATCCTTTGCCCATTAACCTCAAATGCAAGGAGTTCGTAGTAATAGTAAACCAGACTGGATAGCGTTTTTGCGGAACAAAGAAACCAAATGTTTAGACATATA
78 79 80 81 88 88 89 90 101 102 106	GCGTCGATAAGTGCCAAAATAACATTATCACCAATACTCCCAG TTTGATGATACGGTTTTGCTCAGTACCAGGCGATACATGGCTACGTGT ATTAGCGGAGGAGTGTACTGATTTGG GTAATAAGTTTTAAGCGCGTTTCTCCGT GAATCGTAATTTTAAAGTAAAAAGGGTTGATATTCCACATGGA GACGTAGAACGTTATTCATAAATATTCATTGAATCCCATCCTTTGCCC ATTAACCTCAAATGCAAGGAG TTCGTAGTAATAGTAACCAGA CTGGATAGCGTTTTTGCGGCAACAAAGAAACCAAATGTTTAGACATATA ATAACTCCGGAATAGGTGCGCAGTCTCTGAATTTACCGTAAGTATAGC
78 79 80 81 88 90 101 102 106	GCGTCGATAAGTGCCAAAATAACATTATCACCAATACTCCCAGTTTGATGATACGGTTTTGCTCAGTACCAGGCGATACATGGCTACGTGTATTAGCGGAGGAGTGTACTGATTTGGGTAATAAGTTTTAAGCGCGTTTCTCCGTGAATCGTAATTTTAAAGTAAAAAGGGTTGATATTCCACATGGAGACGTAGAACGTTATTCATAAATATTCATTGAATCCCATCCTTTGCCCATTAACCTCAAATGCAAGGAGTTCGTAGTAATAGTAACCAGACTGGATAGCGTTTTTGCGCCAGTCTCTGAATTTAGACATATAATAACTCCGGAATAGGTGCGCAGTCTCTGAATTTACCGTAAGTATAGCAGAATGGAAAGTATCACCGACCGA
78 79 80 81 88 99 101 102 106 107 112	GCGTCGATAAGTGCCAAAATAACATTATCACCAATACTCCCAGTTTGATGATACGGTTTTGCTCAGTACCAGGCGATACATGGCTACGTGTATTAGCGGAGGAGTGTACTGATTTGGGTAATAAGTTTTAAGCGCGTTTCTCCGTGAATCGTAATTTTAAAAGTAAAAAGGGTTGATATTCCACATGGAGACGTAGAACGTTATTCATAAATATTCATTGAATCCCATCCTTTGCCCATTAACCTCAAATGCAAGGAGTTCGTAGTAATAGTAACCAGACTGGATAGCGTTTTTGCGGAACAAAGAAACCAAATGTTTAGACATATAATAACTCCGGAATAGGTGCGCAGTCTCTGAATTTACCGTAAGTATAGCAGAATGGAAAGTATCACCGACCTCAGAACAATCCTCATTAAAGCGATTCC
78 79 80 81 88 90 101 102 106 107 112 116	GCGTCGATAAGTGCCAAAATAACATTATCACCAATACTCCCAGTTTGATGATACGGTTTTGCTCAGTACCAGGCGATACATGGCTACGTGTATTAGCGGAGGAGTGTACTGATTTGGGTAATAAGTTTTAAGCGCGTTTCTCCGTGAATCGTAATTTTAAAGTAAAAAGGGTTGATATTCCACATGGAGACGTAGAACGTTATTCATAAATATTCATTGAATCCCATCCTTTGCCCATTAACCTCAAATGCAAGGAGTTCGTAGTAATAGTAACCAGACTGGATAGCGTTTTTGCGCCAGTCTCTGAATTTACCGTAAGTATAGCAATAACTCCGGAATAGGTGCGCAGTCTCTGAATTTACCGTAAGTATAGCAGAATGGAAAGTATCACCGACTCAGAACAATCCTCATTAAAGCGATTCCCCTAGACCACCGGAACCGCCTC
78 78 79 80 81 88 89 90 101 102 106 107 112 116 118	GCGTCGATAAGTGCCAAAATAACATTATCACCAATACTCCCAG TTTGATGATACGGTTTTGCTCAGTACCAGGCGATACATGGCTACGTGT ATTAGCGGAGGAGTGTACTGATTTGG GTAATAAGTTTTAAGCGCGTTTCTCCGT GAATCGTAATTTTAAAGCGAGTAAAAAGGGTTGATATTCCACATGGA GACGTAGAACGTTATTCATAAAATATTCATTGAATCCCATCCTTTGCCC ATTAACCTCAAATGCAAGGAG TTCGTAGTAATAGTAACCAGA CTGGATAGCGTTTTTGCGGAACAAAGAAACCAAATGTTTAGACATATA ATAACTCCGGAATAGGTGCGCAGTCTCTGAATTTACCGTAAGTATAGC AGAATGGAAAGTATCACCGACCGA CTCAGAACAATCCTCATTAAAGCGATTCC CCTAGACCACCGGAACCGCCTC CCTAGACCACCGGAACCGCCTC CCTCCGTCATAGCCCCTTATT
78 79 80 81 88 89 90 101 102 106 107 112 116 118 121	GCGTCGATAAGTGCCAAAATAACATTATCACCAATACTCCCAG GTATGATACGGTTTTGCTCAGTACCAGGCGATACATGGCTACGTGT ATTAGCGGAGGAGTGTACTGATTTGG GTAATAAGTTTTAAGCGCGTTTCTCCGT GAATCGTAATTTTAAAGGAGTAAAAAAGGGTTGATATTCCACATGGA GACGTAGAACGTTATTCATAAAATATTCATTGAATCCCATCCTTTGCCC ATTAACCTCAAATGCAAGGAG TTCGTAGTAATAGTAACCAGA CTGGATAGCGTTTTTGCGGAACAAAGAAACCAAATGTTTAGACATATA ATAACTCCGGAATAGGTGCGCAGTCTCTGAATTTACCGTAAGTATAGC AGAATGGAAAGTATCACCGACCGA CTCAGAACAATCCTCATTAAAGCGATTCC CCTAGACCACCGGAACCGCCTC CCTCCGTCATAGCCCCCTTATT AAGTATTCCCAATTCTGCGA
78 79 80 81 88 89 90 101 102 106 107 112 116 118 121 123	GCGTCGATAAGTGCCAAAATAACATTATCACCAATACTCCCAG GTTTGATGATACGGTTTTGCTCAGTACCAGGCGATACATGGCTACGTGT ATTAGCGGAGGAGTGTACTGATTTGG GTAATAAGTTTTAAGCGCGTTTCTCCGT GAATCGTAATTTTAAAGCGCGTTTCTCCGT GAATCGTAATTTTAAAAGTAAAAAGGGTTGATATTCCACATGGA GACGTAGAACGTTATTCATAAATATTCATTGAATCCCATCCTTTGCCC ATTAACCTCAAATGCAAGGAG TTCGTAGTAATAGTAACCAGA CTGGATAGCGTTTTTGCGGAACAAAGAAACCAAATGTTTAGACATATA ATAACTCCGGAATAGGTGCGCAGTCTCTGAATTTACCGTAAGTATAGC AGAATGGAAAAGTATCACCGACGA CTCAGAACAATCCTCATTAAAGCGATTCC CCTAGACCACCGGAACCGCCTC CCTCCGTCATAGCCCCCTTATT AAGTATATTCCCAATTCTGCGA GCTGTAGCTCAACATGTCGTAA
78 79 80 81 88 89 90 101 102 106 107 112 116 118 123 126	SequenceGCGTCGATAAGTGCCAAAATAACATTATCACCAATACTCCCAGTTTGATGATACGGTTTTGCTCAGTACCAGGCGATACATGGCTACGTGTATTAGCGGAGGAGTGTACTGATTTGGGTAATAAGTTTTAAGCGCGTTTCTCCGTGAATCGTAATTTTAAAGCAAAAAGGGTTGATATTCCACATGGAGACGTAGAACGTTATTCATAAAATATTCATTGAATCCCATCCTTTGCCCATTAACCTCAAATGCAAGGAGTTCGTAGTAATAGTAACCAGACTGGATAGCGTTTTTGCGGAACAAAGAAACCAAATGTTTAGACATATAAAAACTCCGGAATAGGTGCGCAGTCTCTGAATTTACCGTAAGTATAGCAGAATGGAAAGTATCACCGACCGACTCAGAACAATCCTCATTAAAAGCGATTCCCCTAGACCACCGGAACCGCCTCCCTCCGTCATAGCCCCCTTATTAAGTATATTCCCAATGTCGTTAAAGTATATTCCCAACTGTCGTAAATTAAGCTCAACATGTCGGAACCTCAGAACAATCCTCATTATTACCGTAAGTATAGCAAGTATATTCCCAATTCTGCGAGCTGTAGCTCAACATGTCGTTAAAGTATATACTCCAACATGTCGTTAAAGTATATACTCCAAAAGGAAAACACTCATCTTGA
78 78 79 80 81 88 89 90 101 102 106 107 112 116 118 121 123 126	GCGTCGATAAGTGCCAAAATAACATTATCACCAATACTCCCAG TTTGATGATACGGTTTTGCTCAGTACCAGGCGATACATGGCTACGTGT ATTAGCGGAGGAGTGTACTGATTTGG GTAATAAGTTTTAAGCGCGTTTCTCCGT GAATCGTAATTTTAAAGGCAGGTTGATATTCCACATGGA GACGTAGAACGTTATTCATAAATATTCATTGAATCCCATCCTTTGCCC ATTAACCTCAAATGCAAGGAG TTCGTAGTAATAGTAACCAGA CTGGATAGCGTTTTTGCGGAACAAAGAAACCAAATGTTTAGACATATA ATAACTCCGGAATAGGTGCGCAGTCTCTGAATTTACCGTAAGTATAGC AGAATGGAAAGTATCACCGAC CTCAGAACAATCCTCATTAAAGCGATTCC CCTAGAACCACGGAACCGC CCTCCGTCATAGCCCCTTATT AAGTATATTCCCAATTCTGCGA GCTGTAGCTCAACATGTCGTTA ATTAGGATATACTCCAAAAGGAAACACTCATCTTTATCTTGA
78 78 79 80 81 88 89 90 101 102 106 107 112 116 118 121 123 126 127 128	SterentGCGTCGATAAGTGCCAAAATAACATTATCACCAATACTCCCAGTTTGATGATACGGTTTTGCTCAGTACCAGGCGATACATGGCTACGTGTATTAGCGGAGGAGTGTACTGATTTGGGTAATAAGTTTTAAGCGCGTTTCTCCGTGAATCGTAATTTTAAAGTAAAAAGGGTTGATATTCCACATGGAGACGTAGAACGTTATTCATAAATATTCATTGAATCCCATCCTTTGCCCATTAACCTCAAATGCAAGGAGTTCGTAGTAATAGTAACCAGACTGGATAGCGTTTTTGCGGAACAAAGAAACCAAATGTTTAGACATATAATAACTCCGGAATAGGTGCGCAGTCTCTGAATTTACCGTAAGTATAGCAGAATGGAAAGTATCACCGACCGACTCAGAACAATCCTCATTAAAGCGATTCCCCTAGACCACCGGAACCGCCTCCCTCCGTCATAGCCCCCTTATTAAGTATATTCCCAATTCTGCGAGCTGTAGCTCAACATGTCGTTAAGTATATTCCCAATTCTGCGAGCTGTAGCTCAACATGTCGTTAAAGTATATACCCAACTGTCGTTAAAGTATATTCCCAATTCTGCGAGCTGTAGCTCAACATGTCGTTAAAGTATATACCCCAAAGGAAAACACTCATCTTTATCTTGACAAGGCCAAAAAAAAAGGTTTTAGTTAATTTCATCTTGAAAATCTCCACGTGACCTAAATTCTAGGT
78 78 79 80 81 88 89 90 101 102 106 107 112 116 118 121 123 126 127 128 129	GCGTCGATAAGTGCCAAAATAACATTATCACCAATACTCCCAG TTTGATGATACGGTTTTGCTCAGTACCAGGCGATACATGGCTACGTGT ATTAGCGGAGGAGTGTACTGATTTGG GTAATAAGTTTTAAGCGCGTTTCTCCGT GAATCGTAATTTTAAAGTAAAAAGGGTTGATATTCCACATGGA GACGTAGAACGTTATTCATAAATATTCATTGAATCCCATCCTTTGCCC ATTAACCTCAAATGCAAGGAG TTCGTAGTAATAGTAACCAGA CTGGATAGCGTTTTTGCGGAACAAAGAAACCAAATGTTTAGACATATA ATAACTCCGGAATAGGTGCGCAGTCTCTGAATTTACCGTAAGTATAGC AGAATGGAAAGTATCACCGACCGA CTCAGAACAATCCTCATTAAAGCGATTCC CCTAGAACAATCCTCATTAAAGCGATTCC CCTCCGTCATAGCCCCCTTATT AAGTATATTCCCAATTCTGCGA GCTGTAGCTCACAGTGTCGTA ATTAGGATATACTCCAAATGTCACGAC CCCCGTCATAGCCCCCTTATT AAGTATATTCCCAATTCTGCGA CACGTGAACAATCTCAAAAGGAAAACACTCATCTTTATCTTGA CAAGGCCAAAAAAAAGGTTTTAGTTAATTTCATCTTCTTGAAAATCTC CACGTGACCTAAATTCTAGGT

134	AATGGACAAATCAACGCCAACCTAAAACGAAAGAGGCTATTCATTACC
135	AGGCATAACAAAGCTTTCGCC
146	CGCAATCGCATAGGCTGCGCG
147	TCCGGGCATCAAGAGTAGACCCCCAGCGATTATACCAAGGCTGACCTT
151	CGCGAGAAAAGGTTTATCAGCTTGCTTTCGAAAGACAAAGAAGATTAT
152	TCCAATCGCGGTGAACCAAAG
157	AAGACAAAGTAAATGCTGATGCAGAGTTG
159	CTACGACAATAGAAAATTCATA
165	AAAGGTGGCAACATATAGATCA
168	CGACGATTTTTATAATCAGTGA
170	GAGCGGGAGCTAAACAACGAGC

The following table lists the sequences of Release Set 4 and Closure Set 4 for the transformation from Frame 2 to Frame 1.

Release Set 4	Sequence
R82	CCCCTATTCTCTTGAGGAGTCTCAAGGCACTGACCCCGTACAGTCTGACGCTA
R83	CACTGTTACTCAGCCTCTTAATATCATAA
R86	ATGACTACCGAAAATATTTAAGGCTTCAAAAACCTCCCGCAAGTCGGAAACGCT
R87	TGGGTGCAAAATAGCAACTAATCTTGGCCGATGATCGCTT
R102	GTTATTGTCGAATTGTTTGATT
R104	AATATGATGATAATTCAGACAG
R108	GCTCTGAGGGTGGCGTATTTGTTTGTGAATAGCGGTACTAAACCTCCCGCCT
R109	GTCATCGGCGGTTCTGAGGGTGTCAAGGCCAA
R110	ACACGGGGTGGCGGGCGGTAATGATTCCTACGATGAAAA
R111	CTAGCATGGCTCTCCTTCTATATCTGATTTGCTTGCTATTGGGCCTCTGAGG
R122	TCCCGTATTCGCAATTCCTTTAATTTATCACACGGTCGAACATACTGCGTAAT
R123	TTAACGCCTTGTTGTTCCTTTCTCGACTG
R139	GGGGGGGGGCATTACGTATTTTA
R141	CAAATCTCCGTTGTACTCGAGC
R145	CTGCCGGTTGAATGTCGCCCTATATAGTTATATAACCTATCGGTATCAAGCTG
R146	GAAGCATCATTGTCGGCGCAACCAACCTAAGC
R147	TAAGTGACGCTCAATTACCCTCTGACTTTGTTCAGGGTGTGTAAACCACGTTGG
R148	ACGTGCTGGCGCTGTCAGTTAATTCTCCCGTCTAATGCG
R151	AAAAAGGGCTTCGGTAAGATAGCTATATTTTCTAGTGCGA
R152	ATGTATGTTGCTATTTCATTGTTTCTTGCTCTTATTATTTTCTTTC
R85	TATGAAAAGATGGCGAGGTTCGCTAAAACGCCTTTTTTTATCTCTCTGATATTAGCAAAA
	AAACTTATTCATCT
R112	TGGTGTCTTTGCGTGGGCTTAACTCAATTCTTGTTTTTTCTTAGAATACCGGATAAGGGTT
78	CCGGTGATTTCAGTCG
70	
80	AGCAACGGTACTGAGCAAAACCGTACACTCCTGTATCAGGCTATG
00	noom eou ner en

81	AAACGCGCTTAAAACTTATTACCACCGCTAATCCTAATCCCGTTTA
103	GGCCATTTTCTTTGTTCCGCAAAATGATAATGTTAACTTTTAAAATTAATAACGTTCGGGC
105	AAAG TGGCCCACTTATATCAACCCTCCGGTAAATTCAGAGATCCGGTGG
105	
100	AGGCTACTGAGTACGGTGATACGCTTTAATGAGGATTGTTCTGAG
118	
110	ATATGTTGTGAAATTAACTAAAATTCCTTTTGGAGCCTTTGTACTG
120	CGCCCATTTTTGGAGATTTTCAAATTTAGGTCAGAAGACCACCTTT
120	CGTTTGCTGTATTTCAAACCATTAACGTGAAAAAATTATTGTCGAA
140	TGAGACGTATAATCGCTGGGGGTCAAAGATGAGTGATGTATTCTTTTGCCTCTTTCGTTTT
	AGGT
142	GTGTAGAAACCGATACAATTAATTTTCTCGCGTTCTTTTCTATTG
143	TATGAATTTGTCTTGCGATTGGATTTCGAAAGCAAGCTGATTGTTTA
144	CCCCATTTTAAGAAATTCACCTGCATCAGCATTTACTTTGTCTT
Closure Set 4	Sequence
8	TTAGGGTTCCAGAAAGCCTC
79	TCGGGGAGGCGGATAAGTGCCGATACATGGCTTTTGACCCTTATT
80	CATAGCCTGATACAGGAGTGTACGGTTTTGCTCAGTACCGTTGCT
81	TAAACGGGATTAGGATTAGCGGTGGTAATAAGTTTTAAGCGCGTTT
103	CTTTGCCCGAACGTTATTAATTTTAAAAGATAACATTATCATTTTGCGGAACAAAGAAAA TGGCC
105	CCACCGGATCTCTGAATTTACCGGAGGGTTGATATAAGTGGGCCA
106	TGGGGCATAGCCCGGAATAGGTCAGAATGGAAAGCGCAGACCGCCTC
107	CTCAGAACAATCCTCATTAAAGCGTATCACCGTACTCAGTAGCCT
118	CTTTTACTTTTAAAATAT
119	CAGTACAAAGGCTCCAAAAGGAATTTTAGTTAATTTCACAACATAT
120	AAAGGTGGTCTTCTGACCTAAATTTGAAAATCTCCAAAAATGGGCG
121	TTCGACAATAATTTTTTTCACGTTAATGGTTTGAAATACAGCAAACG
140	ACCTAAAACGAAAGAGGCAAAAGAATACAACACTCATCTTTGACCCCCAGCGATTATAC GTCTCA
142	CAATAGAAAAGAACGCGAGAAAATTAATTGTATCGGTTTCTACAC
143	TAAACAATCAGCTTGCTTTCGAAATCCAATCGCAAGACAAATTCATA
144	AAGACAAAGTAAATGCTGATGCAGGTGAATTTCTTAAAATGGGG
82	TAGCGTCAGACTGTACGGGGTCAGTGCCTTGAGACTCCTCAAGAGAATAGGGG
83	
80	
07	
102	
104	AGGCGGGAGGTTTAGTACCGCTATTCACAAACAAATACGCCACCCTCAGAGC
100	TTGGCCTTGACACCCTCAGAACCGCCGATGAC
110	TTTTCATCGTAGGAATCATTACCGCCCGCCACCCCGTGT
111	CCTCAGAGGCCCAATAGCAAGCAAATCAGATATAGAAGGAGAGCCATGCTAG
122	ATTACGCAGTATGTTCGACCGTGTGATAAATTAAAGGAATTGCGAATACGGGA
123	CAGTCGAGAAAGGAACAACAAGGCGTTAA
139	TAAAATACGTAATGCCCCCCC

141	GCTCGAGTACAACGGAGATTTG
145	CAGCTTGATACCGATAGGTTATATAACTATATAGGGCGACATTCAACCGGCAG
146	GCTTAGGTTGGGTGCGCCGACAATGATGCTTC
147	CCAACGTGGTTTACACACCCTGAACAAAGTCAGAGGGTAATTGAGCGTCACAAT
148	CGCATTAGACGGGAGAATTAACTGACAGCGCCAGCACGT
151	TCGCACTAGAAAATATAGCTATCTTACCGAAGCCCTTTTT
152	GTCTTGAAAAGAAAATAATAAGAGCAAGAAACAATGAAATAGCAACATACAT
85	AGATGAATAAGTTTATTTGCTAATATCAGAGAGATAAAAAAAGGCGTTTTAGCGAACC
	TCGCCATCTTTTCATA
112	CGACTGAAATCACCGGAACCCTTATCCGGTATTCTAAGAAAAAACAAGAATTGAGTTAA
	GCCCACGCAAAGACACCA