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ABSTRACT  
   

Off-axis electron holography (EH) has been used to characterize electrostatic 

potential, active dopant concentrations and charge distribution in semiconductor 

nanostructures, including ZnO nanowires (NWs) and thin films, ZnTe thin films, Si NWs 

with axial p-n junctions, Si-Ge axial heterojunction NWs, and Ge/LixGe core/shell NW. 

The mean inner potential (MIP) and inelastic mean free path (IMFP) of ZnO NWs 

have been measured to be 15.3V±0.2V and 55±3nm, respectively, for 200keV electrons. 

These values were then used to characterize the thickness of a ZnO nano-sheet and gave 

consistent values. The MIP and IMFP for ZnTe thin films were measured to be 13.7±0.6V 

and 46±2nm, respectively, for 200keV electrons. A thin film expected to have a p-n 

junction was studied, but no signal due to the junction was observed. The importance of 

dynamical effects was systematically studied using Bloch wave simulations. 

The built-in potentials in Si NWs across the doped p-n junction and the Schottky 

junction due to Au catalyst were measured to be 1.0±0.3V and 0.5±0.3V, respectively. 

Simulations indicated that the dopant concentrations were ~1019cm-3 for donors and ~1017 

cm-3 for acceptors. The effects of positively charged Au catalyst, a possible n+-n--p junction 

transition region and possible surface charge, were also systematically studied using 

simulations. 

Si-Ge heterojunction NWs were studied. Dopant concentrations were extracted by 

atom probe tomography. The built-in potential offset was measured to be 0.4±0.2V, with 

the Ge side lower. Comparisons with simulations indicated that Ga present in the Si region 

was only partially activated. In situ EH biasing experiments combined with simulations 
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indicated the B dopant in Ge was mostly activated but not the P dopant in Si. I-V 

characteristic curves were measured and explained using simulations. 

The Ge/LixGe core/shell structure was studied during lithiation. The MIP for LixGe 

decreased with time due to increased Li content. A model was proposed to explain the 

lower measured Ge potential, and the trapped electron density in Ge core was calculated to 

be 3×1018 electrons/cm3. The Li amount during lithiation was also calculated using MIP 

and volume ratio, indicating that it was lower than the fully lithiated phase. 
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CHAPTER 1 

INTRODUCTION 

 

1.1    Background 

Materials in the solid state can be classified into three types, namely insulator, 

semiconductor and conductor, based on their electrical conductivity. Materials with 

conductivity in the range of 10-8 siemens per centimeter to 103 siemens per centimeter are 

usually defined as semiconductors, and their conductivity is sensitive to temperature, 

photon luminance, magnetic field and dopant atoms. Semiconductor materials are often 

crystalline and due to their periodic potential field, the electron energy band structure 

becomes discontinuous and forms forbidden bands. A schematic for the energy band 

structure of a semiconductor is shown in Figure 1.1, where the valence band is filled with 

electrons, the conduction band is empty and the electron Fermi level is at the middle of the 

forbidden band. The band-gap gap (Eg) is defined as the energy difference between the 

highest point of the valence band and the lowest point of the conduction band, which is 

usually less than ~2eV [1].  

 

Figure 1.1 Schematic of electron energy band structure for intrinsic semiconductor. 
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When the temperature is higher than 0K or there is photon luminance, some of the 

electrons are excited from the valence band to the conduction band. Thus, electrons in the 

conduction band or empty states in the valence band (holes) can move under the influence 

of an external electric field and the material becomes conductive. However, the number of 

excited electrons is usually relatively small at room temperature and the conductivity is 

still low compared to conductors such as metals. 

The conductivity of a semiconductor can be changed by doping with different types 

and concentrations of impurities, which are called dopants. For n-type doping, electrons 

are not fully bonded and the ionized atom is positively charged. For p-type doping, 

electrons are missing and the ionized atom is negatively charged. Figure 1.2 shows the 

schematic bonding diagram for intrinsic silicon, n-type doped silicon and p-type doped 

silicon. These dopants shift the position of the Fermi level in the band structure and thus 

the conductivity. Doping can also result in an electric field where the charge carriers are 

depleted and only ionized impurity atoms are left behind and act as charge barriers. These 

properties are discussed in more detail in later sections [2]. 

 

Figure 1.2 Schematic diagram of Si bonding: (a) Intrinsic Si with no dopant. (b) n-type 

doped Si (with phosphorus). (c) p-type doped Si (with boron) [2]. 
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Si and Ge are two of the most important semiconductor materials and they have been 

widely investigated because of their abundance. The most important properties for Si and 

Ge are summarized in the following table: 

Table 1.1 Properties of Si and Ge [2]. 

Properties Ge Si 

Crystal Structure Diamond Cubic Diamond Cubic 

Lattice constant (Å) 5.6575 5.4310 

Indirect energy gap (eV) 
at 300K 

0.66 1.12 

Direct Energy Gap (eV) 0.7 3.4 

Electron affinity (eV) 4.0 4.05 

Dielectric constant 16 11.9 

Intrinsic carrier 
concentration (cm-3) 

2.4×1013 1.45×1010 

Effective density of 
states in conduction band 

Nc (cm-3) 

1.04×1019 2.8×1019 

Effective density of 
states in valence band Nv 

(cm-3) 

6.0×1018 1.04×1019 

 

Since the first recorded semiconductor effect in 1833, different types of 

semiconductor devices have been developed, based on p-n junctions, Schottky junctions, 

heterojunctions and other device structures [3]. The reduction in transistor dimensions 

continues to increase the speed and density of transistors in an integrated circuit, as 

  3 



predicted by Moore’s law [4]. The traditional Si-based top-down approach has scaled down 

to 18nm (Logic Half-Pitch) in 2013 [5]. However, this approach becomes more and more 

challenging as photolithography reaches the diffraction limit and alternative device 

geometries are needed [6]. Nanowires (NWs) are one of the most promising nanoscale 

device structures for future applications. Instead of top-down fabrication, NW growth 

utilizes a bottom-up self-assembly approach and thus provides better size control, for 

example, by controlling the size of the metal catalyst particles used for NW growth in the 

vapor-liquid-solid growth method [7]. Reproducible electronic properties with high yield 

can be easily achieved using this type of synthesis for large-scale integrated systems [8]. 

Moreover, by changing the components during growth, different compositions, dopant 

types and concentrations, as well as radial and axial heterostructures can be produced, 

making it possible to achieve different band alignments and device geometries for different 

applications as well as 3D device integration [9,10]. The NW geometry can also reduce the 

density of dislocations caused by lattice mismatch between materials, thus forming 

crystalline structures that reduce interface scattering and result in higher mobility [11-13]. 

Due to the one-dimensional geometry, the NW structure is also an ideal platform for 

quantum physics experiments [14]. The large surface-to-volume ratio significantly changes 

the transistor properties due to surface effects so that they can also be used as novel 

chemical environment sensors [15]. 

Control of dopant profiles in Si NWs has enabled promising applications for 

nanoscale electronic devices, such as sensors [16] and field-effect transistors [12]. The 

growth of radial heterostructures has been achieved in Ge/Si, Si/Ge [9,13,17] and p-Si/n-

CdS [18] core/shell NWs, Si/Ge/Si [17] and n-GaN/InGaN/p-GaN [19] core/multishell 
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NWs. Axial Si/Ge heterojunctions NW have also been realized using vapor-liquid-solid 

(VLS) [20] and vapor-solid-solid (VSS) methods [10]. The Ge/Si core/shell NW structure 

has been reported to form a high-mobility hole gas due to its type-II band alignment [21] 

and can be integrated to operate as a field-effect transistor (FET) [13]. Different electronic 

transport properties have been achieved by growing Ge NWs on Si pillars using substrate 

etching and by changing dopant profiles [22]. 

In order to understand the electronic transport properties and to improve the 

performance of semiconductor devices, it is important to determine the electrostatic 

potential distribution and the concentration of electrically active dopant across the device 

structure. These properties become even more important as device dimensions approach 

the nanometer scale since quantum effects and surface area play more important roles. 

Although theoretical calculation and simulations enable prediction of these device 

properties, experimental measurements play a determining role, which imposes a challenge 

on the measurement method. The research of this dissertation involves the use of off-axis 

electron holography to characterize the electrostatic field profile across NW devices with 

nanoscale spatial resolution, as well as comparisons with simulations to determine the 

active dopants and trapped charges in the nanostructures. 

 

1.2    Charge Distribution and Band Alignment in Semiconductors 

1.2.1    p-n Junction 

A p-n junction is formed by making contact between a p-type semiconductor and an 

n-type semiconductor. If the p-type and n-type regions are made of the same material, the 

junction is called homojunction. When the semiconductor materials are different, the 
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junction is called heterojunction. The heterojunction is discussed later. The p-n junction 

has unique electrical characteristics which can be used for rectifiers, light emitter diodes, 

solar cells and tunnel effect transistors [23-25]. Most semiconductor devices include at 

least one p-n junction and thus their characteristics are directly linked to the p-n junction 

properties. 

A schematic diagram of a p-n junction is shown in Figure 1.3. The p-type region and 

n-type region are each uniformly doped with constant concentrations. As shown in figure 

1.3(a), the Fermi level for a p-type semiconductor is close to the valence band, while the 

Fermi level is close to the conduction band for an n-type semiconductor. In thermal 

equilibrium, the intrinsic carrier concentration ni, the electron concentrations in the 

conduction band n0 and the hole concentrations in the valence band p0 can be described by:  

𝑛𝑛𝑖𝑖2 = 𝑁𝑁𝑐𝑐𝑁𝑁𝑣𝑣𝑒𝑒
−
𝐸𝐸𝑔𝑔
𝑘𝑘𝑘𝑘;  𝑛𝑛0 = 𝑁𝑁𝑐𝑐𝑒𝑒

−
𝐸𝐸𝑐𝑐−𝐸𝐸𝑓𝑓
𝑘𝑘𝑘𝑘 ;  𝑝𝑝0 = 𝑁𝑁𝑣𝑣𝑒𝑒

𝐸𝐸𝑣𝑣−𝐸𝐸𝑓𝑓
𝑘𝑘𝑘𝑘                           (1.1) 

where Nc and Nv are the effective density of states in the conduction band and the valence 

band, respectively, at temperature T [25]. 

When p-type and n-type semiconductors make physical contact, the Fermi levels line 

up. The hole charge carriers in the p-type region diffuse into the n-type region, while the 

electron charge carriers in the n-type region diffuse into the p-type region. These diffused 

holes and electrons recombine and form a charge depletion region with only positive donor 

ions in the n-type region and negative ions in the p-type region. As the carriers diffuse 

across the p-n junction interface, an internal electric field is built up due to the ions, which 

balances the diffusion. Thus, there will be a built-in potential difference and energy band-

bending across the p-n junction in thermal equilibrium. Assuming all the dopants are 
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ionized and that there are no free carriers in the depletion region, then the built-in potential 

Vbi and the depletion region length W can be calculated using the following equations: 

𝑉𝑉𝑏𝑏𝑏𝑏 = 𝑘𝑘𝑘𝑘
𝑒𝑒

ln �𝑁𝑁𝑎𝑎𝑁𝑁𝑑𝑑
𝑛𝑛𝑖𝑖
2 � ;𝑊𝑊 = (2𝜀𝜀𝑠𝑠𝑉𝑉𝑏𝑏𝑏𝑏

𝑒𝑒
�𝑁𝑁𝑎𝑎+𝑁𝑁𝑑𝑑
𝑁𝑁𝑎𝑎𝑁𝑁𝑑𝑑

�)1/2                             (1.2) 

 

Figure 1.3 Schematic diagram of a p-n junction: (a) Energy band diagrams of p-type and 

n-type semiconductors. (b) Energy band diagram of a p-n junction in thermal equilibrium. 

(c) Depletion region of a p-n junction [26]. 

  

Figure 1.4 Schematic diagram of a p-n junction under different bias conditions: (a) Energy 

band diagram of the p-n junction with no bias. (b) Energy band diagram of the p-n junction 

with forward bias. (c) Energy band diagram of the p-n junction with reverse bias [26]. 
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where εs is the dielectric permittivity, and Nd and Na are the dopant concentration for donor 

and acceptor, respectively [25]. 

The band diagram of a p-n junction under different bias conditions is shown in Figure 

1.4. At zero bias, if there is thermal emission or photon luminance with energy higher than 

Eg, electrons transfer from the valence band to the conduction band in the depletion region 

and form electron-hole pairs. Before recombination, these electron-hole pairs can be 

accelerated by the internal electric field, become separated and form current across the 

junction, which is the basic operating principle of the solar cell.  At forward bias, the built-

in potential or barrier across the p-n junction is lowered. The applied electric field is 

opposite to the internal electric field due to diffusion, and thus electrons (holes) in the n-

type (p-type) region diffuse across the depletion region into the p-type (n-type) region and 

increase the minority carrier density, again forming current across the p-n junction. If the 

injected minority carriers recombine with majority carriers in the depletion region or in the 

neutral region, a photon with energy of Eg might be emitted because the electron in the 

conduction band transfers to the valence band and releases energy. This effect is used as 

the basis for light-emitting diodes. At reverse bias, the built-in potential or barrier across 

the p-n junction is higher. The applied electric field is in the same direction as the internal 

electric field due to diffusion. The depletion region becomes larger because of the stronger 

electric field and the higher barrier stops carriers from moving. Therefore, there will be no 

current through the p-n junction until the junction breaks down due to the Zener effect or 

an avalanche effect. The combined I-V curve characteristics for forward or reverse bias 

conditions are useful for rectifiers or current multipliers. The Zener effect happens when 

the p-n junction is heavily doped. Under reverse-bias conditions, the valence band in the 
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p-type region is close to the conduction band in the n-type region. The p-n junction 

depletion region is short and thus electrons can tunnel through the p-n junction from the p-

type valence band to the n-type conduction band and induce current. This effect is also 

used as the basis for the tunneling effect transistor. The avalanche effect occurs when the 

electron-hole pairs generated from thermal emission in the depletion region are accelerated 

across the electric field in the depletion region, they hit other electrons and form more 

electron-hole pairs, and thus induce current [2,23-25].  

1.2.2    Metal Semiconductor Contact 

There are two type of contacts formed between a metal and a semiconductor: ohmic 

contacts and Schottky contacts. The ohmic contact shows a characteristic linear I-V curve, 

while the Schottky contact shows a characteristic rectifying-effect I-V curve. Both contact 

types have important applications in semiconductor devices and it is useful to summarize 

here their transport properties because of their presence in the NWs that have been studied 

in this dissertation research. 

1.2.2.1    Schottky Contact 

Figure 1.5 shows the schematic diagram of a metal and n-type semiconductor contact, 

which forms a Schottky junction. The metal and p-type semiconductor contact is similar 

and will not be described here. Before contacting the metal to the semiconductor, the Fermi 

level on the semiconductor side is higher compared to the metal. When they make contact, 

electrons flow from the semiconductor to the metal and leave positive ionized dopant atoms 

in the semiconductor, forming a depletion region. The built-in potential or barrier Vbi and 

the depletion region width W can then be calculated using the equations : 

𝑉𝑉𝑏𝑏𝑏𝑏 = 𝜙𝜙𝑚𝑚 − 𝜙𝜙𝑠𝑠;  𝑊𝑊 = (2𝜀𝜀𝑠𝑠(𝑉𝑉𝑏𝑏𝑏𝑏+𝑉𝑉𝑅𝑅)
𝑒𝑒𝑁𝑁𝑑𝑑

)1/2                               (1.3) 
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where VR is the reverse bias, Nd is the semiconductor dopant concentration, and εs is 

dielectric permittivity [27]. Some typical metal work functions are shown in table 1.2. 

 

Figure 1.5 Schematic diagram of a Schottky contact: (a) Energy band diagram of metal and 

p-type semiconductor before contact. (b) Energy band diagram of Schottky contact. ϕm is 

work function for metal, ϕs and χ are work function and electron affinity, respectively, for 

semiconductor [26]. 

Table 1.2 Work functions of common metal contacts. 

Metal Work function(V) 

Au 5.1 

W 4.55 

Pt 5.65 

 

When forward bias is applied, the Fermi level on the metal side will be lower and the 

barrier height is reduced. Electrons can flow easily from semiconductor to metal and form 

current through thermal emission. When reverse bias is applied, the Fermi level on the 
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metal side will be higher and the barrier height as well as the depletion region width are 

increased. There is no current through the Schottky contact under this condition. Therefore, 

the Schottky contact shows similar rectifying effect as the p-n junction, although the 

current across the Schottky contact is mainly due to majority carriers [25]. 

1.2.2.2    Ohmic Contact 

Figure 1.6 shows the schematic diagram of an ohmic contact between a metal and an 

n-type semiconductor. The metal and p-type ohmic contact is similar and is not described 

here. In this case, the Fermi level on the metal side is higher than for the semiconductor 

and electrons flow from metal to semiconductor. Because of these extra electrons, the 

semiconductor becomes more n-type and there are extra surface electrons at the metal-

semiconductor interface. As positive bias is applied to the metal, electrons flow easily to 

the metal from the semiconductor. When negative bias is applied, electrons can also go 

easily through the barrier and flow to the semiconductor. Therefore, the current through 

the contact is proportional to the voltage [25].  
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Figure 1.6 Schematic diagram of a metal-semiconductor ohmic contact: (a) Band structure 

of metal and semiconductor before contact. (b) Band structure of metal-semiconductor 

ohmic contact at thermal equilibrium. (c) Band structure of metal-semiconductor ohmic 

contact with positive bias on metal. (d) Band structure of metal-semiconductor ohmic 

contact with negative bias on metal [25]. 

 

Another type of metal-semiconductor contact is based on a tunneling effect. As 

shown in Figure 1.7, due to heavy dopant concentrations in the n-type semiconductor, the 

depletion region near the semiconductor surface is very narrow and electrons can easily 

tunnel through the barrier, forming an ohmic contact [25].  
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Figure 1.7 Schematic energy band structure diagram of metal and heavily doped n-type 

semiconductor [25]. 

 

1.2.3    Heterojunction 

The heterojunction is formed by connecting two semiconductors of different energy 

band gaps. The energy band alignment (both of conduction and valence band) is usually 

not continuous across the heterojunction interface, due to the differences in energy band 

gap, electron affinity and Fermi level. Moreover, the lattice mismatch between the two 

materials must be small to avoid interface strain, defects and trap states. The heterojunction 

can also be realized by using pseudomorphic (strain layer) structures. The lattice constants 

and energy band gaps for common semiconductors are shown in figure 1.8. The main 

advantages of heterojunctions are controlling the energy barriers and potential variations 

at the interface in order to control the charge carrier transport, and to confine the optical 

radiation, which is important for optoelectronic devices [25,26].  
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Figure 1.8 Energy band gaps and lattice constants for Si, Ge and several III-V compound 

semiconductors [2]. 

There are three different types of energy band alignment at heterojunctions, as shown 

in Figure 1.9. Figure 1.9a is usually referred to as type I or straddling band alignment, 

where one of the materials has lower Ec and higher Ev, compared to the other material, so 

that electrons and holes are confined in the same material. Figure 1.9b is usually referred 

to as type II or staggered band alignment, where the locations of lower Ec and higher Ev 

are displaced so that the electrons and holes are confined in different materials. Figure 1.9c 

is usually referred to as type III or broken-gap band alignment. Its conduction band 

overlaps with the valence band at the interface. Si-Ge has type II band alignment [25]. 

 

Figure 1.9 Schematic energy band diagrams for different types of heterojunctions [25]. 
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Figure 1.10 shows a schematic energy band diagram for alignment at the 

heterojunction. There are several theories of band alignment for heterojunctions and the 

major issue is whether the band-gap discontinuities are determined by the bulk properties 

or by the interface properties. The electron-affinity model suggests that by using the 

vacuum level as the reference, the conduction-band discontinuity ∆𝐸𝐸𝑐𝑐 at the interface can 

be calculated from the difference in electron affinities of the two materials. 

∆𝐸𝐸𝑐𝑐 = 𝑒𝑒(𝜒𝜒1 − 𝜒𝜒2)                                                     (1.4) 

The discontinuity at the valence band ∆𝐸𝐸𝑣𝑣 can be calculated by [2,25]: 

∆𝐸𝐸𝑣𝑣 = �𝑒𝑒𝜒𝜒2 + 𝐸𝐸𝑔𝑔2� − (𝑒𝑒𝜒𝜒1 + 𝐸𝐸𝑔𝑔1)                                   (1.5) 

Moreover, when the two different materials are in contact, the Fermi levels line up to 

restore thermal equilibrium. In this case, the electrons (holes) in n-type (p-type) material 

diffuse into the other side, forming a depletion region at the interface. The resultant electric 

field will bend the band structure in n-type (p-type) material upward (downward), forming 

the discontinuity at the interface. The built-in potential 𝑉𝑉𝑏𝑏𝑏𝑏 can then be described by [26]: 

𝑒𝑒𝑉𝑉𝑏𝑏𝑏𝑏 = 𝐸𝐸𝑔𝑔1 + ∆𝐸𝐸𝑐𝑐 − ∆𝐸𝐸𝐹𝐹1 − ∆𝐸𝐸𝐹𝐹2                                 (1.6) 
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Figure 1.10 Schematic energy band diagram for heterojunctions before and after contact 

[26]. 

 

1.3    Growth of Semiconductor Nanostructures 

1.3.1    Epitaxial Growth Techniques 

Semiconductor nanowires can be grown by a wide variety of epitaxial growth 

techniques, which include chemical-vapor deposition (CVD) and molecular-beam expitaxy 

(MBE). 

CVD is a technique that enables thin film growth on a suitable substrate material 

using chemical reaction of vapor-phase precursors to form the desired deposit. The 

substrate is usually used as the seed crystal, and because it uses a chemical reaction as the 

deposit-forming mechanism, the growth temperature can be much lower relative to the thin 

film melting point. The conventional CVD process can be described as follows: (a) the 
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precursors are evaporated and transported from the bulk gas region into the reactor chamber, 

using carrier gas; (b) reactive intermediates and gaseous by-products are produced from 

gas-phase precursor reactions; (c) reactants are transported and adsorbed by the substrate 

surface; (d) reactants diffuse to the growth site, and the thin film is grown by surface 

nucleation and chemical reactions; (e) the remaining decomposition materials are desorbed 

and transported out of the chamber [1,28]. The Si, Ge, Si/Ge heterojunction NWs 

characterized in Chapters 4, 5 and 6 were gown using a cold-wall CVD reactor using the 

VLS growth mechanism described below. 

MBE is an epitaxial growth technique that uses the interaction of molecular or atomic 

beams on a heated crystal substrate surface under ultrahigh-vacuum condition. The growth 

rate in MBE is usually low (~1 monolayer per second) and this technique thus enables 

precise control of film thicknesses, compositions, dopants, and morphology. The absence 

of carrier gas and ultrahigh-vacuum can help to reduce the level of impurities during 

growth. Moreover, reflection-high-energy electron diffraction can be used for monitoring 

the crystal layer growth for better structure and thickness control. The MBE growth process 

can be described as follows: (a) solid-source atoms or homo-atomic molecules of the 

growth material in separate quasi-Knudsen diffusion cells are evaporated, transported and 

condensed on the heated crystal substrate surface. (b) atoms diffuse on the surface and react 

with other atoms to form the epitaxial layer [29,30]. The ZnTe thin film characterized in 

Chapter 3 was grown using the MBE method.  

1.3.2    Nanowire Growth 

Three different methods are most commonly used for growing freestanding NWs 

originating from the substrate surface: these are vapor-liquid-solid (VLS) [20,31-33], 
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vapor-solid-solid (VSS) [10,34] and solution-liquid-solid (SLS) [35-37] growth. The VLS 

growth has been extensively studied and it is widely used due to its simplicity and 

versatility. The method was firstly suggested by Wagner and Ellis to deposit micrometer-

sized Si whiskers with gold impurities [31]. Figure 1.11 shows the schematic diagram of 

the VLS growth procedure. For the growth of Si NWs on Si substrates, gold particles are 

deposited on the Si substrate surface as catalysts. The substrate is heated up and precursor 

vapor of the growth species (SiH4) is transported to the CVD chamber by H2 carrier gas. 

SiH4 vapor decomposes at the Au particle surface and eutectic liquid-alloy droplets of AuSi 

are formed after adsorbing Si atoms. The eutectic temperature of the AuSi alloy is usually 

much lower than the melting point of Au. The residual hydrogen by-product is taken away 

with the carrier gas, while Si atoms in the catalyst diffuse from the catalyst surface to the 

Au/Si substrate liquid/solid interface driven by the concentration gradient. When more and 

more Si is adsorbed into the catalyst, the eutectic alloy eventually becomes supersaturated. 

In order to restore equilibrium concentration, the Si component in AuSi alloy starts to 

precipitate at the liquid-solid interface, crystallize and form the NW structure. The AuSi 

alloy is pushed upwards as extra NW structure grows between the catalyst and the substrate. 

As the growth process continues, more Si atoms diffuse from the AuSi catalyst surface to 

the catalyst-NW liquid-solid interface and crystallize, making the NW longer. Therefore, 

the size of the Au seed controls the NW diameter, while growth time controls the NW 

length [35]. VSS growth can also occur along the NW surface, depending on the growth 

temperature, and changes the NW into a tapered shape [32,33]. During VLS growth, the 

Au particles act as catalyst as well as reservoir. In order to grow axial heterojunction NW, 

the precursor vapor has to be changed from one growth species to another. Because of the 
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residue of previous species in the catalyst, there is a transition region at the heterojunction 

interface until the residue has all precipitated. The transition length is typically about the 

same size as the NW diameter, as the volume of catalyst is proportional to R3 and the 

diffusion interface area between liquid catalyst and solid NW is proportional to R2, where 

R is the NW radius. Different metal catalysts together with the VSS method can thus be 

used to lower solubility in the catalyst to reduce the width of transition region [10,20,38]. 

 

Figure 1.11 Schematic diagram of VLS NW growth [39].  

 

1.4    Outline of Dissertation 

In this dissertation research, the technique of off-axis electron holography has been 

used to study a range of common semiconductors, including NW homojunctions and 

heterojunctions. The technique was first used to measure the mean inner potentials (MIPs) 

and inelastic mean free paths (IMFPs) for ZnO NW and ZnTe thin films. Characterization 

of the electrostatic potential across Si NW with p-n junction, Au-Si Schottky junction in Si 
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NW, Si-Ge axial heterojunction NW, as well as Ge/LixGe core/shell NW structure were 

also performed using this technique and compared with SilvacoTM device simulation and/or 

Poisson equation calculation to determine the active dopant concentrations and trapped 

charges in the nanostructures. Transmission electron microscopy (TEM), scanning 

transmission electron microscopy (STEM) and electron-energy-loss spectrum (EELS) 

technique were also used to characterize the morphology and structure of the 

nanostructures, while atom probe tomography (APT) was used to determine the total 

dopant concentrations and distributions in Si-Ge axial heterojunction NWs. 

In Chapter 2, the background, theory and experiment setup for off-axis electron 

holography are briefly described. An outline procedure for electron hologram 

reconstruction is discussed, followed by reconstructed phase and thickness images 

interpretation, definition and calculation of MIPs. The basis of EELS and high-angle 

annular-dark-field imaging (HAADF) are also briefly discussed. Finally, the sample 

preparation methods used in this thesis are described. 

In Chapter 3, the morphology of ZnO NWs characterized using TEM is described. 

The MIP and IMFP are measured using off-axis electron holography and applied to ZnO 

thin films for the measurement of thickness. MIP and IMFP of ZnTe thin films are also 

measured by combining off-axis electron holography and CBED thickness measurements. 

The dynamic effects due to tilting and thickness are systematically studied for ZnTe thin 

film by using simulations. Electrostatic potential across p-n junction in ZnTe thin film is 

then measured using electron holography. 

In Chapter 4, measurement of electrostatic potential across p-n junction and Schottky 

junction in Si NW is performed using off axis electron holography. The built-in potential 
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is then extracted and compared with SilvacoTM simulations to determine the active dopant 

concentrations. The influence of surface charge, transition region length and charging in 

the Au catalyst particle are systematically studied by comparing experiment with 

simulation results. 

In Chapter 5, TEM and STEM HAADF are used to characterize the Si-Ge axial 

heterojunction NW interface, and geometry phase analysis is performed based on HAADF 

images. Characterization of electrostatic potential across Si-Ge axial heterojunction NWs 

with/without in situ biasing using off-axis electron holography is presented. APT is also 

performed to measure the total dopant concentrations and distributions. The SilvacoTM 

simulations with/without biasing are compared with holography and APT results to 

determine the active dopant amounts in Si-Ge NW. 

In Chapter 6, the lithiation of Ge NWs to form Ge/LixGe core/shell structure is 

outlined. The core/shell structure was characterized using TEM, STEM and EELS. 

Electron holography experiments were then performed on the core/shell structure during 

the lithiation process to measure the electrostatic potential. The measured potential was 

compared with Poisson equation calculation to determine the amount of trapped charge in 

the core/shell structure. 

In Chapter 7, the important results and conclusions in the thesis are summarized, and 

possible topics for further investigation are briefly described.  
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CHAPTER 2 

EXPERIMENTAL DETAILS 

 

This chapter begins by providing some background and basic theory of off-axis 

electron holography.  The procedures used for hologram reconstruction are then described, 

followed by details of reconstructed phase and thickness image interpretation, definition 

and calculation of mean inner potential (MIP), and the experimental setup used for 

recording electron holograms. The basis of electron-energy-loss spectroscopy (EELS) and 

high-angle annular-dark-field (HAADF) imaging are also briefly discussed. Finally, the 

sample preparation methods used for the research of this dissertation are illustrated. 

 

2.1    Off-Axis Electron Holography 

2.1.1    Introduction 

Transmission electron microscopy (TEM) has been widely used to characterize 

nanostructured materials. However, conventional TEM only provides spatial intensity 

information about the sample, while the phase and amplitude of the specimen exit-surface 

electron wavefunction are unavailable. The phase and amplitude information are directly 

related to the electrostatic and magnetic fields of the sample, which are very important for 

characterization of semiconducting and magnetic materials.    

Electron holography is an electron-interference technique that can provide amplitude 

and phase information about the sample with nanoscale spatial resolution [1]. By 

overlapping the exit-surface electron wave with a reference wave, an interference pattern 

(hologram) is formed, which allows retrieval of phase and amplitude information.  The 
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technique of in-line holography was first proposed by Gabor as a method for correcting the 

spherical aberration of the objective lens, thus overcoming the interpretable resolution limit 

[2]. Leith and Upatnieks proposed the off-axis electron holography geometry as a way to 

solve the twin-image problem of in-line holography, by overlapping the sample wave with 

the vacuum (reference) wave using an electrostatic biprism [3]. However, the approach 

was not effectively realized experimentally until the development of the field emission gun 

(FEG). The FEG provides a high brightness and highly coherent electron beam, which is 

critical for hologram interference [4,5]. The holograms were originally recorded on 

photographic plates with non-linear response and the hologram reconstruction was done 

using a light optical system [6]. The emergence of digital recording devices, such as the 

slow-scan charge-coupled-device (CCD), which provides linear response over a wide 

dynamical range of electron counts, has enabled quantitative reconstruction of electron 

hologram using computer processing [7].  

Since the initial realization of electron holography, the technique has been 

extensively developed and over twenty different approaches for the realization of electron 

holography have been identified [8]. Among these approaches, off-axis electron 

holography with operation in the TEM imaging mode is the most widely used and most 

successful technique for obtaining sample phase and amplitude information [9]. This setup 

has been exclusively used for the holography experiments described in this dissertation 

research. 

2.1.2    Theory and Hologram Reconstruction 

A schematic diagram for off-axis electron holography with operation in the TEM 

imaging mode is shown in Figure 2.1. Parallel (coherent) electron illumination from the 
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field emission gun (FEG) electron source is provided using the condenser lens system. 

When the electron wave passes the specimen plane, it can be considered as being split into 

two different parts. Part of the electron wave passes through the specimen, and will contain 

phase and amplitude information that can be related to the sample. This object wave can 

be described by the following equation:  

𝛹𝛹(𝑟𝑟) = 𝐴𝐴(𝑟𝑟)exp (𝑖𝑖𝑖𝑖(𝑟𝑟))                                             (2.1) 

where 𝐴𝐴(𝑟𝑟) and 𝜑𝜑(𝑟𝑟) are the amplitude and phase, respectively, at the two-dimensional 

exit-surface of the sample. Part of the electron wave passes only through vacuum and 

serves as the reference wave 𝛹𝛹𝑟𝑟(𝑟𝑟). 

 

Figure 2.1 Schematic diagram showing the TEM components essential for the technique 

of off-axis electron holography [9]. 
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When the electrostatic biprism below the specimen is positively charged, the object 

and reference waves are deflected towards each other and overlap, eventually forming an 

interference hologram in the final image plane where the CCD is located.  

The hologram intensity 𝐼𝐼ℎ𝑜𝑜𝑜𝑜(𝑟𝑟)  recorded by the CCD can be described by the 

following equation [9]: 

𝐼𝐼ℎ𝑜𝑜𝑜𝑜(𝑟𝑟) = |𝛹𝛹(𝑟𝑟) + 𝛹𝛹𝑟𝑟(𝑟𝑟)|2 = 1 + 𝐴𝐴2(𝑟𝑟) + 2𝜇𝜇𝜇𝜇(𝑟𝑟)cos (2𝜋𝜋𝑞⃗𝑞𝑐𝑐 ∙ 𝑟𝑟 + 𝜑𝜑(𝑟𝑟))       (2.2) 

where |𝑞⃗𝑞𝑐𝑐| = 𝛼𝛼𝑐𝑐/𝜆𝜆 is the carrier frequency of the interference fringes. 𝛼𝛼𝑐𝑐 is the deflection 

angle between the reference wave and the object wave, which depends on the biprism 

voltage, and 𝜆𝜆 is the electron wavelength [10]. The first two terms represent the central 

auto-correlation function, and the desired phase information is encoded in the third term. 

𝜇𝜇 is defined as the contrast, which is given by the equation [9]: 

𝜇𝜇 = |𝜇𝜇𝑠𝑠𝑠𝑠𝜇𝜇𝑡𝑡𝑡𝑡||𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖||𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|𝑀𝑀𝑀𝑀𝑀𝑀                                            (2.3) 

where 𝜇𝜇𝑠𝑠𝑠𝑠 is due to limited spatial coherence from the finite FEG source size, 𝜇𝜇𝑡𝑡𝑡𝑡 is due to 

the finite temporal coherence caused by beam energy spread, 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is due to any inelastic 

interactions in the specimen, 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is due to any instabilities of the imaging system, and 

MTF is the modulation transfer function of the final detector. The combination of these 

effects reduces the effective beam coherence and hence the contrast of the interference 

fringes. The amplitude 𝐴𝐴(𝑟𝑟) and phase 𝜑𝜑(𝑟𝑟) information about the sample are included in 

the recorded hologram according to equation (2.2). 

In order to extract the amplitude and phase information from the recorded hologram, 

procedures for electron hologram reconstruction are needed, as illustrated in Figure 2.2. 

Fourier transformation of the hologram 𝐼𝐼ℎ𝑜𝑜𝑜𝑜(𝑟𝑟) gives the following result [10]: 
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𝐹𝐹𝐹𝐹{𝐼𝐼ℎ𝑜𝑜𝑜𝑜(𝑟𝑟)} = 𝛿𝛿(𝑞⃗𝑞) + 𝐹𝐹𝐹𝐹{𝐴𝐴2(𝑟𝑟)}                                        center band 

+𝜇𝜇𝜇𝜇𝜇𝜇�𝐴𝐴(𝑟𝑟) exp�i𝜑𝜑(𝑟𝑟)�� ⊗  𝛿𝛿(𝑞⃗𝑞 − 𝑞⃗𝑞𝑐𝑐)         +(sideband)  

+𝜇𝜇𝜇𝜇𝜇𝜇�𝐴𝐴(𝑟𝑟) exp�−i𝜑𝜑(𝑟𝑟)�� ⊗  𝛿𝛿(𝑞⃗𝑞 + 𝑞⃗𝑞𝑐𝑐)       –(sideband)    (2.4) 

The center band corresponds to the Fourier transform of the conventional image 

intensity, while amplitude and phase information are contained in the two sidebands. The 

two sidebands are at a distance |𝑞⃗𝑞𝑐𝑐 | away from the image center and they are conjugate to 

each other.  

 

Figure 2.2 Schematic diagram illustrating the procedure for hologram reconstruction: (a) 

Original hologram; (b) A Hanning window is applied to the hologram to smoothen the 

edges; (c) Fourier transform of the hologram; (d) Extract one of the side bands; (e) Inverse 

Fourier transform of side band allows extraction of amplitude and phase images. 
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One of the sidebands is extracted, while the other parts are masked. The center of the 

sideband is shifted to 𝑞⃗𝑞 = 𝑞⃗𝑞𝑐𝑐, to cancel the effect of the 𝛿𝛿(𝑞⃗𝑞 − 𝑞⃗𝑞𝑐𝑐) term. An inverse Fourier 

transform is then performed, which gives the complex exit-surface wavefunction: 

𝛹𝛹𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟) = 𝜇𝜇𝜇𝜇(𝑟𝑟)exp (𝑖𝑖𝑖𝑖(𝑟𝑟))                                           (2.5) 

The phase and amplitude of the image can then be calculated by extracting the real 

part 𝛹𝛹𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟)𝑟𝑟𝑟𝑟 and the imaginary part 𝛹𝛹𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟)𝑖𝑖𝑖𝑖 of equation 2.5, as given by the following 

equations: 

𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜑𝜑(𝑟𝑟) = arctan (𝛹𝛹𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟)𝑖𝑖𝑖𝑖
𝛹𝛹𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟)𝑟𝑟𝑟𝑟
� )                                   (2.6) 

 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜇𝜇𝜇𝜇(𝑟𝑟) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛹𝛹𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟)𝑟𝑟𝑟𝑟
2 + 𝛹𝛹𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟)𝑖𝑖𝑖𝑖

2)                         (2.7) 

The procedure described above can provide phase and amplitude information using 

the object hologram only, but several practical details need attention during hologram 

reconstruction before quantitative information can be obtained. A reference hologram as 

well as the object hologram needs to be recorded. The hologram containing the sample 

region of interest is termed the object hologram, while the hologram taken with vacuum 

only but without the sample present is termed the reference hologram. The reference 

hologram serves three purposes: (a) Define the center of side band 𝑞⃗𝑞𝑐𝑐; (b) Cancel out any 

distortions of the projector lenses and the CCD; and (c) Reduce the effect of Fresnel fringes 

recorded in the hologram, which can cause continuous frequencies between the image 

center and the sidebands in the Fourier transform.   

After reconstruction of the reference hologram, the end result is: 

𝛹𝛹𝑟𝑟𝑟𝑟𝑟𝑟(𝑟𝑟) = 𝜇𝜇𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟(𝑟𝑟)exp (𝑖𝑖𝜑𝜑𝑟𝑟𝑟𝑟𝑟𝑟(𝑟𝑟))                                            (2.8) 
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The exit-surface wavefunction 𝛹𝛹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑟𝑟) can then be calculated using:  

𝛹𝛹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑟𝑟) = 𝛹𝛹𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟)

𝛹𝛹𝑟𝑟𝑟𝑟𝑟𝑟(𝑟𝑟)
= 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟)

𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟(𝑟𝑟)
exp (𝑖𝑖((𝜑𝜑𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟) − 𝜑𝜑𝑟𝑟𝑟𝑟𝑟𝑟(𝑟𝑟)))                  (2.9) 

Thus, the phase and amplitude of the sample are relative to the nearby vacuum. The 

amplitude should be 1 in vacuum and the phase shift should be 0, assuming that there are 

no external electric or magnetic fields. 

A mask must be applied to the hologram before carrying out the Fourier transform, 

in order to smooth out the sharp hologram edges which cause a continuous strip that crosses 

the Fourier transform. Moreover, because the arctan function is used to recover the phase 

information, there will be a phase-wrapping problem when the phase change exceeds the 

range of (0,2π). A phase-unwrapping algorithm is thus needed in order to obtain a 

continuous phase change in the reconstructed phase image. Those developed by Goldstein 

and Flynn are suitable for this purpose [11]. It is sometimes also necessary to avoid areas 

where phase unwrapping is not successful during the hologram processing. 

When the electron beam passes through regions with electric and/or magnetic fields, 

the phase of the electron beam will be changed. The phase shift of the electron wave that 

passes through the sample, relative to the reference electron wave that passes only through 

vacuum, is given by the following equation [7]: 

𝜑𝜑(𝑥𝑥, 𝑦𝑦) = 𝐶𝐶𝐸𝐸 ∫𝑉𝑉(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑧𝑧 − 𝑒𝑒
ћ ∫𝐵𝐵

�⃗ (𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝐴𝐴                         (2.10) 

where z is along the incident electron beam direction, x and y are the sample in-plane 

directions, V(x, y, z) is the electrostatic potential, 𝐵𝐵�⃗ (𝑥𝑥,𝑦𝑦, 𝑧𝑧) is the magnetic field and 𝐴𝐴 is 

the area parallel to the beam direction. The electron-beam energy-dependent interaction 

constant CE is given by [7,12]: 
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𝐶𝐶𝐸𝐸 = 2𝜋𝜋𝜋𝜋
𝜆𝜆𝜆𝜆

𝐸𝐸+𝐸𝐸0
𝐸𝐸+2𝐸𝐸0

                                                      (2.11) 

where E and E0 are the kinetic and rest-mass electron energies, respectively, and λ is the 

incident beam wavelength. For 200keV and 300keV electrons, CE is equal to 0.00728 

rad/(V·nm) and 0.00653 rad/(V·nm), respectively. 

For semiconductors, there are usually no magnetic fields present and the phase shift 

due to any electrostatic fields in the semiconductor can be calculated using [7,13]: 

𝜑𝜑(𝑥𝑥, 𝑦𝑦) = 𝐶𝐶𝐸𝐸 ∫𝑉𝑉(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑑𝑑 = 𝐶𝐶𝐸𝐸 ∫(𝑉𝑉0(𝑥𝑥,𝑦𝑦, 𝑧𝑧) + 𝑉𝑉𝑏𝑏𝑏𝑏(𝑥𝑥,𝑦𝑦, 𝑧𝑧))𝑑𝑑𝑑𝑑         (2.12) 

where 𝑉𝑉𝑏𝑏𝑏𝑏 is the built-in potential in the semiconductor due to charge distribution and 𝑉𝑉0 is 

the mean inner potential (MIP), which is discussed in more detail later. The integration is 

taken through the thickness of the sample along the electron-beam direction. 

The sample thickness can be calculated using the amplitude image [14].  In electron-

energy-loss spectroscopy, the sample thickness t can be determined by relating the zero-

loss intensity I0 to the total electron intensity Itotal, as given by [15]: 

𝐼𝐼0 = 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡exp (− 𝑡𝑡
𝜆𝜆𝑖𝑖

)                                                       (2.13) 

where 𝜆𝜆𝑖𝑖 is the electron inelastic mean free path (IMFP). 

In electron holography, only the coherent elastically scattered electrons contribute to 

the sidebands, since the sideband is formed by electron interference. Thus, the amplitude 

of the sample 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  and the vacuum 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 can be directly related to the zero-loss 

electron intensity I0 and the total electron intensity Itotal, and used for calculation of the 

sample thickness, as given by the following equation [14]: 

𝑡𝑡 = −𝜆𝜆𝑖𝑖 ln � 𝐼𝐼0
𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

� = −𝜆𝜆𝑖𝑖 ln �𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
�
2

= −2𝜆𝜆𝑖𝑖 ln(𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
)                   (2.14) 

 

  32 



2.1.3    Mean Inner Potential 

The Mean Inner Potential (MIP) is an important parameter in electron holography 

experiments. It is usually defined as the volume average of the scalar potential in the solid 

due to incomplete electron-shell screening of atomic cores [16]. Its value is negative and 

usually in the range of -5V to -30V, depending on the sample composition and structure. 

Because of this non-zero crystal potential, electrons in the crystal are accelerated relative 

to the beam that goes through the vacuum. Thus, their phases are ahead of the electron 

beam in vacuum. The MIP can be calculated by the zero-order Fourier coefficient of the 

crystal potential and taken as an ad hoc zero in infinitely large perfect crystals [16,17]. The 

crystal MIP depends on the sum of dipole and quadrupole moments in the unit cell and thus 

it is sensitive to the redistribution of outer valence electrons caused by bonding [18]. It is 

also proportional to the second moment of the charge density for an atom, and depends on 

the effective atomic sizes in the crystal [19,20].  

Based on the definition, the MIP can be calculated using the following equation [12]: 

𝑉𝑉0 = 1
𝛺𝛺 ∫ 𝑉𝑉(𝑟𝑟)𝑑𝑑𝑟𝑟𝛺𝛺                                                 (2.15) 

where Ω is the volume of a unit cell in the crystal or the volume of the material in a 

disordered solid. This calculation requires knowledge of the potential distribution in the 

crystal unit cell, which is usually non-trivial. 

The non-binding approximation can be used as a simple approach to calculate the 

MIP value, by assuming that the solid is composed of an array of free neutral atoms. This 

is described by the following equation [12,17,21]: 

𝑉𝑉0 = ℎ2

2𝜋𝜋𝑚𝑚0𝑒𝑒𝑒𝑒
∑ 𝑓𝑓𝑗𝑗(0)𝑗𝑗                                           (2.16) 
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where 𝑓𝑓𝑗𝑗(0) are the atomic scattering amplitudes for the forward scattered electrons and 

the equation averages the 𝑓𝑓𝑗𝑗(0) of all atoms in the unit cell over the unit-cell volume. This 

model depends on the incident electron-beam energy because of the atomic scattering 

amplitudes used [22], and usually overestimates the MIP value because it does not include 

the effect of valence electron redistribution due to bonding. Thus, it can serve an upper 

limit for the value of the MIP [12].  

The lower limit of the MIP value can be calculated using a binding model where 

atoms at the lattice sites are ionized and the valence electrons are distributed uniformly 

[23]. Thus, the MIP would be equal to the contributions from all of the ionized free atoms 

plus contributions from free valence electrons in the unit cell. The latter result is given by 

the following equation [24]: 

𝑉𝑉0 = − 3
10

𝑒𝑒𝑒𝑒
4𝜋𝜋𝜖𝜖0𝑟𝑟0

                                                (2.17) 

where p is the number of free valence electrons of the atom and r0 is the radius of a sphere 

that has the same volume as the atom.  

Ross and Stobbs proposed an empirical rule to compromise between the non-binding 

and binding models, which is given as follows [25]: 

𝑉𝑉0(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)
𝑉𝑉0(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)

= 0.0325𝑍𝑍
𝛺𝛺

+ 0.6775                             (2.18) 

where 𝑉𝑉0(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)  is the MIP obtained by averaging the upper and lower limit values 

calculated by Radi with atomic scattering amplitudes from Herman and Skillman, and 

𝑉𝑉0(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) is the MIP calculated using the non-binding model (upper limit) 

with Doyle and Turner scattering amplitudes for neutral atoms. Thus, the MIP can be 

calculated first using the non-binding model, and the bonding effects can then be included 
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by using equation (2.18). However, this equation can only serve as a guide and the exact 

value should preferably be determined by experiment [12]. 

Density functional theory (DFT) can be used to calculate the MIP value. A crystal 

slab of finite thickness, but infinite and periodic in lateral dimensions, is assumed for DFT 

calculations, and Full Potential Linearized Augmented Plane-Wave (FLAPW) Local 

Density Approximation (LDA) method is used to calculate the crystal ground-state charge 

density [26]. The MIP can then be calculated either by using Poisson’s equation, averaged 

over the unit cell, or by using the following equation: 

𝑉𝑉0 = − 1
𝛺𝛺∬

𝜌𝜌(𝑟𝑟)

�𝑟𝑟−𝑟𝑟′����⃗ �
𝑑𝑑𝑟𝑟𝑑𝑑𝑟𝑟′���⃗ = 2𝜋𝜋

3𝛺𝛺 ∫ 𝑟𝑟
′2𝜌𝜌(𝑟𝑟′��⃗ )𝑑𝑑𝑟𝑟′��⃗                            (2.19) 

where 𝜌𝜌(𝑟𝑟′��⃗ ) is the charge density distribution in the unit cell and the integration is taken 

over the whole unit cell.  

2.1.4    Experimental Setup 

The off-axis electron holography experiments described in this dissertation have been 

performed using a Philips-FEI CM200 and an FEI Titan 80-300. The geometry is illustrated 

in Figure 2.3. The Schottky FEG provides the high-brightness coherent electron beam that 

is essential for interference experiments. The electron beam is stigmated into a long 

elliptical strip using the condenser lens stigmators such that only the central, most coherent, 

part of the focused beam is used to illuminate the sample, as shown in Figure 2.4 [7]. The 

electron beam along the longer axis is almost parallel, while there may be several 

milliradian beam convergence across the shorter illumination axis [27].  
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Figure 2.3 Schematic illustration of the off-axis electron holography setup using the 

Philips-FEI CM200 [7]. 

 

 

Figure 2.4 Schematic diagram showing the round beam (left) and stigmated beam (right). 

The orange part is the most coherent region of the beam.  

 

There are three distinct operating modes for forming off-axis holograms, using three 

different imaging lenses. The first one uses the objective lens, and is the same TEM 

geometry as the normal high-resolution imaging mode. This mode can give high spatial 
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resolution (up to atomic resolution), but the field of view is limited (<100nm). The second 

geometry uses the diffraction mode, obtained by turning off the diffraction lens. This mode 

gives medium spatial resolution (1~5nm) and moderate field of view (~150nm). The last 

geometry uses a weak mini-lens, often referred to as a Lorentz lens, which is located below 

the objective lens, often within the bore of the lower pole-piece. In this operating mode, 

the objective lens is turned off. Because of the weak excitation of the mini-lens and its 

lower position, there should be no residual magnetic field at the position of the sample, 

which is ideal for imaging magnetic materials. This operating mode also gives lower spatial 

resolution (nanometer scale), but provides larger fields of view (~1micron). In this 

dissertation research, a Lorentz lens has been used for studying most samples in order to 

take advantage of the larger field of view.  

The (rotatable) biprism is located at the plane of the selected-area electron diffraction 

(SAED) aperture. It is usually made of quartz and coated with platinum, and the diameter 

is usually ~400-750 nm. A positive voltage is applied to the biprism such that the object 

wave and the reference wave are attracted toward each other to form an interference pattern. 

In our experimental setup, the interference holograms are formed just below the SAED 

aperture and a positive voltage in the range of ~100V-150V must be applied. As the biprim 

voltage is increased, the fringe spacing and the fringe contrast decrease, while the field of 

view and spatial resolution after reconstruction increase. Thus, the voltage chosen is a 

compromise. The most stable position for the biprism in the CM200 is parallel to the 

viewing window in front of the user. The stigmated electron beam is then rotated 

perpendicular to the orientation of the biprism such that the most coherent electrons are 

distributed on both sides of the biprism, as shown in Figure 2.4.  
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The interference fringe contrast is commonly used to evaluate the quality of the 

holography setup. Higher contrast provides better signal-to-noise ratio and thus greater 

phase accuracy can be obtained. The fringe contrast 𝜇𝜇 is usually defined by the following 

equation: 

𝜇𝜇 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚−𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚+𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

                                                       (2.20) 

where 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 are the highest and lowest intensities, respectively, in the hologram. 

 

Figure 2.5 Contrast measurements in HRTEM mode (left), and Lorentz mode (right), with 

different magnifications and biprism voltages. The electron-beam energy was 200keV and 

the hologram exposure time was 1 second.  

 

Measurements of fringe contrast for the CM200 are shown in Figure 2.5. As the 

biprism voltage was increased, the contrast of the fringes decreased and the fringe contrast 

increased when the magnification was increased. Thus, it should be apparent that the 

biprism voltage and the magnification need to be carefully considered, in order to reach the 

highest possible fringe contrast for the desired field of view as well as spatial resolution. 
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The fringe contrast for experimental holography should usually be at least 20% to ensure 

sufficient accuracy in the phase measurements. 

 

2.2    Scanning Transmission Electron Microscopy 

 

Figure 2.6 Schematic diagram showing the microscope geometry, signals and detectors for 

scanning transmission electron microscopy [28].  

 

 A schematic diagram of the experimental setup for scanning transmission electron 

microscopy (STEM) is shown in Figure 2.6. The FEG provides a coherent electron source, 

and the condenser lens system and the objective lens focus the electron beam into a sub-

nanometer-size probe (0.1~1nm) incident on the sample. Deflector coils below the 

condenser lens system scan the electron probe across the sample. An objective aperture 

before the sample is used to exclude higher-angle contributions to the focused probe, which 
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will otherwise lead to probe-blurring because of aberrations of the objective lens [28]. The 

electron probe passes through the sample and electrons are scattered at different angles. 

The STEM image is formed by successfully collecting electrons scattered at different probe 

positions, and the magnification is determined by the area scanned on the sample relative 

to the final monitor.  

Four different types of signals can be collected after the electron-sample interactions 

have taken place [28]: (a) Transmitted electrons that are scattered at low angles (smaller 

than the incident-beam convergence angle). This signal represents the bright-field image. 

(b) Electrons scattered at high angles (usually several times the incident beam convergence 

angle). Annular-dark-field images are formed by collecting this signal. High-angle annular-

dark field (HAADF) imaging usually refers to collection angles of greater than ~50mrad, 

and the signal intensity then depends on the sample atomic number Zα (α~1.5-2.0, 

depending on the inner collection angle) [29]. (c) Transmitted electrons which have lost 

energy due to electron-sample interactions, can be collected by an electron spectrometer. 

This operation mode is referred to as electron-energy-loss spectroscopy (EELS). By 

measuring the electron distribution as a function of energy loss, the elements in the sample, 

bonding conditions and electron-sample interactions can be determined [15]. (d) X-rays 

generated by electron excitations in the sample when atoms return to their ground state 

after energy is absorbed from incident electrons. This mode is referred to as Energy-

dispersive X-ray spectroscopy (EDX) [30]. The EDX technique can be used to determine 

elemental composition and distribution in the sample but no local bonding information is 

available. In the research of this dissertation, HAADF, EDX and EELS have been used to 

determine the structure and local composition in semiconductor nanowires (NWs). 
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2.3    Electron-Energy-Loss Spectroscopy 

 When the incident electron beam passes through the sample, coulombic interactions 

between the electron beam and atoms in the sample cause inelastic scattering so that some 

of the incident beam energy is lost to the sample. By analyzing the electron distribution in 

the EELS spectrum as a function of energy, the excitation spectrum of the sample can be 

extracted.  

The EELS spectrum can be divided into three regions: zero-loss peak, low-loss region 

and core-loss region. The zero-loss peak is caused primarily by the transmitted electrons 

without any energy loss. For thin specimens, this peak is the most intense signal in the 

EELS spectrum. The spatial resolution and contrast of images can be enhanced by using 

this peak to filter out the inelastically scattered electrons [30]. The low-loss region is 

usually in the range of ~5eV-50eV. This region is related to plasmon excitations, dielectric 

properties, band gap, interband transitions and surface boundary effects, and is caused by 

interactions of the fast electron beam with outer shell electrons near the Fermi level of the 

material [28,30]. The combination of the zero-loss peak and the low-loss region can be also 

used to estimate the local thickness of the sample t, as given by the following equation [31]: 

𝐼𝐼0
𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

= 𝑒𝑒
− 𝑡𝑡
𝜆𝜆𝑖𝑖                                                     (2. 21) 

where 𝐼𝐼0 is the intensity of the zero loss peak, 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the total intensity including zero-

loss peak and low-loss region, and 𝜆𝜆𝑖𝑖 is the inelastic mean free path. The core-loss region 

is usually in the energy range above 100eV, and is caused by inelastic interactions between 

the electron beam and inner/core shell electrons of the material. When the inner-shell 

electrons get enough energy from the electron beam, electrons transfer from the inner shells 
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to empty states and the atom is ionized. Therefore, the core-loss region is related to the 

inner-shell electron orbits and can be used for elemental identification and quantification. 

Moreover, the energy-loss near-edge structure (ELNES) within ~50eV of the ionization 

energy is sensitive to local bonding and can often be used for identifying atom bonding 

conditions in the material [28,30,31]. 

 In general, EELS has higher energy resolution and better spatial resolution, 

compared to EDX, which is a secondary effect of electron excitation caused by x ray 

emission when electrons return to the ground state. The EELS technique is preferred for 

light elements, while EDX is restricted by the fluorescence yield and absorption. However, 

EELS cross-sections decrease rapidly for heavier elements, and the signal-to-noise ratio is 

low, whereas EDX has strong signal-to-noise ratio. Therefore, EDX and EELS can be 

considered as complementary [30]. The core-loss part of the EELS spectrum has been used 

in this research to determine NW elemental distributions.  

 

2.4    Sample Preparation 

Proper sample preparation is essential for electron holography experiments because 

of its impact on the phase measurements. In addition to electron transparency, large areas 

of nearby vacuum are needed for the reference wave.  

The NW samples have been prepared for observation using the following procedure: 

(a) A small piece of substrate with upright NWs is cut off and put into isopropyl alcohol 

(IPA). (b) The IPA with substrate is sonicated for 30s. The NWs are removed from the 

substrate and float in the IPA solution. (c) The IPA solution with NWs is transferred to a 

TEM grid with lacey carbon film or solid carbon thin film (thickness of several nanometers) 
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using a pipette. (d) The TEM grids with NWs are air-dried or else heated at slightly elevated 

temperature by using a heating lamp. The lacey carbon films have non-uniform holes, and 

it is sometimes difficult to find features of interest in the vacuum with another large area 

nearby for interference purposes. Solid carbon thin films are thus often preferred and they 

still provide uniform background, which can serve as the reference wave. 

 

Figure 2.7 Schematic diagrams showing: the orientation of the sample relative to the 

polishing glass stub (left), and the desired geometry of the sample (right). 

 

For thin-film samples grown epitaxially on substrates, it is usually necessary to 

prepare the samples with specific shapes (usually wedge shape). The MultiprepTM wedge-

polishing apparatus manufactured by Allied High Tech Products was utilized for sample 

preparation. Diamond lapping films with grain sizes of 30 µm, 9 µm, 3 µm, 1 µm, 0.5 µm 

and 0.1 µm, followed by cloth polishing, were sequentially used to polish the sample and 

to reduce any artifacts due to polishing. The first side of the sample was usually polished 

to obtain a smooth surface. A small angle (1˚-2˚) was introduced when polishing the second 

side in order to achieve a wedge-shaped sample [32]. The sample geometry and the 

orientation of the sample relative to the glass stub are shown in Figure 2.7. After wedge 
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polishing, the sample was typically ion-milled at 2keV for ~10 minutes to clean up any 

debris remaining on the sample surface.  
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CHAPTER 3 

MEAN INNER POTENTIAL AND INELASTIC MEAN FREE PATH OF  

ZnO AND ZnTe 

 

This chapter describes measurements of mean inner potential (MIP) and inelastic 

mean free path (IMFP) of ZnO nanowires (NWs) and ZnTe thin films. The ZnO NWs were 

grown using chemical vapor deposition (CVD) and were provided by Professor Hongbin 

Yu and his students at Arizona State University. The ZnTe thin films were grown by 

molecular beam epitaxy (MBE) and were provided by Professor Yong-Hang Zhang and 

his students at Arizona State University. My role in this work has included preparation of 

TEM samples, characterization of the material microstructure and measurement of the 

MIPs and IMFPs using off-axis electron holography.  

 

3.1    MIP and IMFP of ZnO NWs. 

3.1.1    Introduction 

 

Figure 3.1 Schematic diagram of ZnO wurtzite structure, where the arrow indicates the 

[0001] direction [1]. 
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ZnO is a II-VI semiconductor material, which has a direct band-gap energy of 3.37 

eV and exciton binding energy of 60meV [1]. It has many possible applications due to its 

wide band gap, such as short wavelength (blue and ultraviolet) optoelectronic devices, 

while the high exciton binding energy ensures high efficiency in excitonic emission at room 

temperature [2]. Because it is transparent to visible light, ZnO can also be used as a 

transparent conductive oxide when it is heavily doped [1]. Moreover, ZnO has other 

potentially important applications such as solar cells, photocatalysts, piezoelectric devices, 

decontamination agents, surface acoustic wave devices and gas sensors [3-8].  

 

Figure 3.2 Schematic diagram of typical ZnO nanostructures [1]. 

 

ZnO usually has the wurtzite structure. It is hexagonal with a space group of C6mc 

and its lattice parameters are a=0.3296 nm and c=0.5207 nm [9]. A schematic diagram of 

the wurtzite ZnO structure is shown in Figure 3.1. Polarized surfaces will occur due to 

oppositely charged ions of Zn2+ and O2- in the termination planes. Moreover, the tetrahedral 

structure will result in spontaneous polarization along the [0001]/c-axis as well as 
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piezoelectricity and pyroelectricity because of non-centrosymmetry [1]. The common 

directions for fast growth of ZnO include [2͞1͞10], [01͞10] and ±[0001].  

Typical ZnO nanostructures are illustrated in Figure 3.2 [1]. Different ZnO 

nanostructures have been achieved, such as nanowires (NWs), nanorods, nanotubes, 

nanobelts, nano-sheets, and nanostars [2,10-19]. Among these, the ZnO NWs and nano-

sheets have received much interest because they have one/two dimensional structures, large 

surface-to-volume ratio and quantum confinement effects, which enable novel physical 

properties and applications [1,20]. Understanding the MIP and IMFP of ZnO is very 

important for further thickness and built-in potential measurements of ZnO nanostructures 

and semiconductors using off-axis electron holography [21]. In this research, conventional 

TEM was used to study the morphology of the ZnO NWs. Off-axis electron holography 

was then used to determine the MIP and IMFP of ZnO using ZnO NWs. Thickness 

measurements of ZnO thin sheets were performed using the measured MIP and IMFP 

values. 

3.1.2    Experimental Details and Results 

Samples for TEM characterization were prepared by sonicating the substrate with 

vertical ZnO NWs in isopropyl alcohol solution to dislodge NWs, followed by transferring 

the solution to TEM grids with lacey carbon supports using pipettes and then air-dried. Off-

axis electron holography observations were done using the Philips-FEI CM200 operated at 

200kV. In order to obtain larger fields of view, the normal objective lens was turned off, 

and the Lorentz mini-lens was used for imaging. The typical biprism voltage was 120V 

giving interference-fringe spacings of ~5 nm and the exposure time for hologram recording 

was normally 1 second. 

  49 



 

Figuare 3.3 TEM images of ZnO NWs: (a) Low-magnification TEM image of ZnO NW, 

where a transition in NW diameter is arrowed; (b) Enlargement showing the transition 

region; (c) TEM image showing the end of a ZnO NW; (d) TEM image of ZnO NW 

showing the effects of radiation damage due to the incident electron beam. 

 

TEM images of a typical ZnO NW are shown in Figure 3.3. This NW is ~16.3 µm 

long and it has a tapered shape with a larger end of ~300 nm in diameter and a small end 

of ~53 nm in diameter. At ~5.5 µm from the end of the NW, the diameter changes quickly 
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from 207 nm to 144 nm, as shown in Figures 3.3a and 3.3b. The diffractogram in the insert 

of Figure 3.3b, taken from a high-resolution image (not shown) at the [01͞10] zone axis, 

confirms that the ZnO NW has the wurtzite structure and that the growth direction is [0001]. 

Radiation damage during TEM observation due to the high-energy electron beam is 

observed at the thin region of the NW, as visible in Figure 3.3d.  

 

Figure 3.4 Holography study of ZnO NW: (a) Hologram of ZnO NW; (b) Reconstructed 

phase image of ZnO NW; (c) Reconstructed thickness image of ZnO NW, using IMFP of 

85nm (for Si); (d) Line profile of phase along the blue arrow in (b) (black dots) and fitting 

result using cylindrical model (red line); (e) Thickness profile along the blue arrow in (c).  
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In order to extract information about the MIP and IMFP of ZnO, and to use these 

values to characterize the thicknesses of ZnO thin films, the ZnO NWs were used for 

measurement of the MIPs and IMFPs. A typical hologram of a ZnO NW is shown in Figure 

3.4a. This NW has a diameter of ~157 nm and the tapered shape is not apparent here. The 

corresponding reconstructed phase and thickness images (initially using the IMFP of 85nm 

for Si) are shown in Figures 3.4b and 3.4c. Figure 3.4b indicates that there is a phase-

unwrapping problem near the end of the NW, as shown by the grey contrast, compared to 

white contrast in the middle of NW, which is due to the abrupt change of thickness at the 

NW edge. Thus, the middle part of the phase image is used for MIP and IMFP measurement, 

since the phase from vacuum to the center of the NW is continuous and without any abrupt 

changes.  

Phase and thickness profiles were extracted along the blue arrows indicated in Figures 

3.4b and 3.4c, and these are shown in Figures 3.4d and 3.4e, respectively. From the phase 

profile, it appears that the NW has a projected cylindrical shape so that the NW width can 

be used as the projected thickness in Figure 3.4d, by comparing the experimental result 

with the fitting result using a cylindrical model. The peak values of phase (𝜑𝜑) and thickness 

(t) were measured from the line profiles in Figures 3.4d and 3.4e. The MIP 𝑉𝑉0 and IMFP 

𝜆𝜆𝑖𝑖 can then be calculated using the following equations: 

𝑉𝑉0 = 𝜑𝜑
𝐶𝐶𝐸𝐸∗𝑑𝑑

                                                          (3.1) 

𝜆𝜆𝑖𝑖 = 𝑑𝑑∗85
𝑡𝑡

                                                           (3.2) 

where CE=0.00728 rad/(V·nm) for 200 keV electrons and d is the diameter of the ZnO NW 

which is used as the projected thickness assuming a cylindrical shape.  
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The results from measurements of several ZnO NWs of different thicknesses are 

summarized in Table 3.1. The MIP and IMFP values for different thicknesses are also 

plotted in Figure 3.5, which indicates that the MIP and IMFP measurements are consistent 

as the thickness changes. Thus, the MIP for ZnO is determined to be 15.3±0.2 V and the 

IMFP is measured to be 55±3 nm, using the standard deviation as the error. Kruse et al 

have reported the MIP of 15.9±1.5V for ZnO measured using off-axis electron holography, 

which agrees with the results measured here [22]. 

 

Table 3.1 Measurement of Mean Inner Potential and Inelastic Mean Free Path of ZnO 

NWs. 

 1 2 3 4 Average Std. Dev. 

V0 (V) 15.5 15.2 15.1 15.2 15.3 0.2 

λi (nm) 54 60 53 54 55 3 

 

 

Figure 3.5 (a) MIP vs. thickness, and (b) IMFP vs. thickness, for ZnO NWs. 
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Figure 3.6 Holography of ZnO nano-sheet: (a) TEM image; (b) Hologram of ZnO nano-

sheet; (c) Reconstructed phase image of ZnO nano-sheet; (d) Thickness profile with error 

bars measured using MIP (blue), and IMFP (red), respectively, along the blue arrow in (c). 

 

TEM images of thin ZnO nano-sheets are shown in Figure 3.6a. These sheets are 

small and overlapping with each other, and bend contours are often visible (example 

arrowed). The transparency of the sheets indicates that these ZnO sheets are likely to be 

very thin. Because of the sheet overlap and bending, it was difficult to tilt the sample to a 

specific desired orientation for high-resolution imaging and CBED thickness measurement. 
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The sample was tilted to avoid diffraction contrast, and off-axis electron holography was 

instead used to measure the sheet thickness. The blue arrow in Figure 3.6a indicates the 

thin sheet used for the holography experiment.  

The hologram of the ZnO nano-sheet and its reconstructed phase image are shown in 

Figures 3.6b and 3.6c, respectively. The thickness image (not shown) was calculated from 

the reconstructed amplitude image (not shown), using the IMFP of 55 nm obtained from 

the ZnO NW measurements. The bend contours near the blue arrow in Figure 3.6a are 

visible in the hologram (black contrast) as well as the phase image (white contrast), and 

could introduce some diffraction contribution to the reconstructed phase and thickness 

images. Thus, the phase and thickness profiles were extracted from the phase image and 

thickness images, respectively, along the blue arrow in Figure 3.6c, where the bend contrast 

is minimal. The thickness profiles of the ZnO nano-sheet along the blue arrow in Figure 

3.6c, as calculated from the phase profile (blue line), and from the thickness profile (red 

line), respectively, are shown in Figure 3.6d. The thickness profile calculated using the 

IMFP tends to be noisier, compared to the one calculated using the MIP, because the 

thickness image is measured from the image intensity, whereas the phase image is 

measured from the shift of interference fringes and the intensity might be influenced by 

other effects, such as Fresnel fringes as well as uniformity and stability of beam intensity. 

The thickness profile extracted from the thickness image gives a thickness of 

~18±3nm, as measured from the region of 125nm-175nm in Figure 3.6d, and using the 

combination of the standard deviation (2nm) in this region and the 6% error in λi 

measurement (1nm) as the thickness measurement error. 
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An alternative approach for thickness measurement is to use the phase profile 

extracted from the reconstructed phase image and the MIP value of 15.3 V obtained from 

the ZnO NW measurement, using the equation:  

𝑡𝑡 = 𝜑𝜑
𝐶𝐶𝐸𝐸∗𝑉𝑉0

                                                             (3.3) 

where CE=0.00728 rad/(V∙nm) for 200keV electrons, φ is the phase and V0 is the MIP.  

Using the MIP approach gives the ZnO sheet thickness of ~14±1nm, as measured 

over the range of 125nm-175nm in Figure 3.6d and using the combination of the standard 

deviation (0.3nm) in this region and 2% error in V0 measurement (0.3nm) as the thickness 

measurement error. In contrast, the IMFP method gave a value of ~18±3nm. Thus, the two 

methods give consistent results. The 4nm difference between the MIP and IMFP 

measurements reflect some of the inherent inaccuracies in the MIP and IMFP 

measurements using ZnO NWs, which includes an assumption of cylindrical shape NWs, 

limited MIP and IMFP measurement points, possible diffraction contrast and limited 

spatial resolution in the reconstructed image (~4nm). More MIP and IMFP measurements 

could reduce this inaccuracy. It is also possible that diffraction contrast is affecting the 

thickness measurement because the nano-sheet orientation was changing during 

observation.  

3.1.3    Conclusions 

Using off-axis electron holography and ZnO NWs, the MIP of ZnO was measured to 

be 15.3±0.2 V, and the IMFP at 200keV was measured to be 55±3 nm. The MIP and IMFP 

values were then used to characterize the thickness of a ZnO nano-sheet and gave consistent 

results for thickness measurement in the range of 14nm-18nm. With knowledge of the MIP 

and IMFP, it should become possible to extract the built-in potential in doped ZnO 
  56 



semiconductor devices. However, this task is beyond the immediate scope of this 

dissertation research. 

 

3.2    MIP and IMFP Measurement of ZnTe 

3.2.1    Introduction 

ZnTe is a II-VI semiconductor, which has the zincblende structure, as shown in 

Figure 3.7, with a lattice parameter of 6.103 Å. ZnTe has important applications for 

optoelectronic devices such as light-emitting devices, detectors and solar cells [23]. It has 

a direct band gap of 2.26eV at room temperature, which is in the energy range of visible 

light [24]. However, it is difficult to achieve n-type ZnTe because of compensation effects 

in thermal equilibrium, and native defects of opposite type will tend to form to compensate 

the dopant impurity [25-27]. Various techniques have been tried to achieve n-type ZnTe, 

such as molecular beam epitaxy and metal-organic chemical vapor deposition under non-

equilibrium conditions, with thermal diffusion and annealing treatment [24,28-30].  

 

Figure 3.7 Schematic diagram of zincblende structure ZnTe. 
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In order to improve device performance, it is desirable to understand the electrostatic 

properties, such as the built-in potential and active dopant concentrations. However, it is 

first necessary to determine the MIP and IMFP of ZnTe in order to extract the built-in 

potential information using electron holography. In this research, off-axis electron 

holography was used to determine the MIP and IMFP of ZnTe thin films.  

3.2.2    Experiment Details and Results 

Samples for TEM characterization were prepared using the Multi PrepTM wedge 

polisher. A wedge-shaped sample was achieved by mechanical polishing, followed by a 

brief period of argon-ion-milling to clean residue from the sample surface. Off-axis 

electron holography observations were done using the Philips-FEI CM200 operated at 

200kV. In order to obtain a larger field of view, the normal objective lens was turned off, 

and the Lorentz mini-lens was used for imaging. The typical biprism voltage was 120V 

and the exposure time for hologram recording was 1 second. The technique of convergent 

beam electron diffraction (CBED) was used to determine the local sample thickness using 

comparison with image simulations. The Bloch wave method was used to simulate 

dynamic effects that could impact the phase measurements [31]. 

The intrinsic ZnTe sample was tilted to the [100] zone axis and CBED patterns were 

recorded at different positions in the normal imaging mode. Beam damage as well as beam-

induced carbon contamination were caused by the high-energy electrons. These beam-

damaged regions with carbon contamination were later used was position markers for the 

holography experiments. After the CBED observations, the sample was tilted slightly off 

the zone axis to minimize diffraction contrast. The objective lens was then switched off 

and the Lorentz mini-lens was used to obtain larger fields of view. Holograms were taken 
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close to the different position markers to extract phase and amplitude information at these 

locations for the MIP and IMFP measurements. 

 

Figure 3.8 Holography of intrinsic ZnTe thin film: (a) Hologram of ZnTe thin film; (b) 

Reconstructed phase image of ZnTe thin film, with blue arrow showing the position used 

for recording CBED pattern; (c) Phase profile extracted along the white arrow in (b); (d) 

Thickness profile extracted from processed thickness image at the same positions as the 

white arrow in (b), calculated here using the IMFP of 85nm for Si. 

 

Figures 3.8a and 3.8b show the original hologram and the reconstructed phase image, 

respectively, at a typical marker position (indicated by blue arrow), where the CBED 

pattern was previously taken. Phase and thickness profiles (using IMFP of 85nm for Si) 
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were extracted along the white arrow in Figure 3.8b, and are shown in Figures 3.8c and 

3.8d, respectively. In Figure 3.8c, the position of the CBED probe can be identified by the 

small dip at the position of the blue arrow. Linear fit from the surrounding area was used 

to compensate for the effect of beam damage, and the phase φ was extracted from the fitting 

result at the position of the center of the dip, as shown by the orange line in Figure 3.8c. 

The marker position of the CBED can also be identified in the thickness profile in Figure 

3.8d, where the thickness suddenly reduced at 550nm, and then increased at the blue arrow 

position, which is most likely due to carbon contamination.  

 

Figure 3.9 CBED patterns for ZnTe: (a) Experimental CBED pattern; (b) Simulated CBED 

pattern for thickness of 110nm; (c) Simulated CBED pattern for thickness of 120nm; (d) 

Simulated CBED pattern for thickness of 100nm.  
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The CBED pattern taken at this position is shown in Figure 3.9a. CBED patterns for 

different crystal thicknesses were simulated using the Bloch wave method and the JEMS 

simulation program, as shown in Figures 3.9b to 3.9d. Careful comparison between the 

experimental CBED pattern and the simulated CBED patterns shows that the sample 

thickness 𝑡𝑡𝐶𝐶 at the dip position is ~110nm. The thickness 𝑡𝑡ℎ in the holography experiment 

can then be calculated to compensate for sample tilting. 

 

Figure 3.10 Phase at CBED positions as a function of the ZnTe thickness as estimated from 

the CBED pattern.  

 

Table 3.2 Linear fitting results from Figure 3.10. 

 Value Std. Dev. 

Slope (rad/nm) 0.09981 0.00403 

Intercept (rad) 0.01945 0.45093 
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This procedure was repeated for different CBED marker positions. The overall 

measured phase φ at the dips as a function of thickness 𝑡𝑡ℎ is shown in Figure 3.10. A linear 

fit is applied to the data and the fitting results are shown in table 3.2. The values of V0 and 

ΔV0 can be calculated from the slope and the standard deviation. Thus, the MIP for ZnTe 

is measured to be 13.7±0.6V.  

To check this experimental result, MIP calculations were performed using Equations 

2.16 and 2.18. The atomic scattering amplitudes for forward scattering, according to Doyle 

and Turner, are given by 𝑓𝑓𝑍𝑍𝑍𝑍(0) = 6.605Å,𝑓𝑓𝑆𝑆𝑆𝑆(0) = 10.974Å,𝑓𝑓𝐼𝐼(0) = 10.905Å  [32]. 

The scattering amplitude for Te is calculated as the average of Sb and I: 𝑓𝑓𝑇𝑇𝑇𝑇(0) =

𝑓𝑓𝑆𝑆𝑆𝑆(0)+𝑓𝑓𝐼𝐼(0)
2

= 10.939 Å. The lattice parameter for ZnTe is 6.104Å. Therefore, the MIP 

calculated using Equation 2.17 and the non-binding model is VDT=14.3V. The binding 

effect can be included using Equation 2.18 and the MIP is calculated to be VRadi=10.4V. 

The non-binding model serves as the upper limit, while the Radi model serves as the lower 

limit. The experimental measurement of 13.7V is within the upper and lower limits. 

Moreover, Schowalter et al have previously calculated the MIP of ZnTe by first-principles’ 

methods with local density approximation (LDA) and generalized gradient approximation 

(GGA) for exchange and correlation part of potential. They obtained V0 values for ZnTe 

of 13.77V using LDA and 13.82V using GGA [33]. Thus, the MIP measured using CBED 

and off-axis electron holography matches well with these calculations. 

Once the V0 of ZnTe was determined to be 13.7±0.6V, this value was used to estimate 

the IMFP of ZnTe. In the previous V0 measurements, both phase and thickness profiles 

(using IMFP of 85nm for Si) were extracted at the same positions. The actual thickness 

profile tMIP can be calculated using V0 and Equation 3.3. To determine the IMFP 𝜆𝜆𝑖𝑖 for 
  62 



ZnTe, the thickness profile tIMFP measured by using 𝜆𝜆𝑖𝑖 was compared with the actual one 

calculated using MIP and Equation 3.3. The 𝜆𝜆𝑖𝑖 was changed systematically until (𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀-

𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)2 reached the minimum for the part of the profile away from the CBED position. 

This 𝜆𝜆𝑖𝑖 is then the actual IMFP for ZnTe. All of the measured 𝜆𝜆𝑖𝑖 are summarized in Figure 

3.11. The average for 𝜆𝜆𝑖𝑖 is 46nm and the standard deviation is 2nm. Therefore, the IMFP 

for ZnTe is determined to be 𝜆𝜆𝑖𝑖=46±2nm for 200keV electrons.  

 

Figure 3.11 IMFP of ZnTe: (a) IMFP shown as a function of CBED thickness; (b) 

Frequency count of measured IMFPs. 

 

Figure 3.12a shows a TEM cross section image of an Al-doped ZnTe thin film grown 

on GaSb substrate, which is prepared by using the Multi PrepTM wedge polisher. The 1.5-

µm ZnTe thin film was p-type doped (using nitrogen) with the nominal concentration of 

~1018 cm-3. An Al layer was deposited on the surface of ZnTe, and Al was then diffused 

into ZnTe as n-type dopant by heating up to 420˚C in order to form a pn junction in the 

ZnTe layer. Many dislocations were present in the ZnTe thin film, as visible in Figure 3.12a. 

  63 



The sample was tilted parallel to the ZnTe/GaSb interface to minimize diffraction contrast 

caused by the dislocations and to keep the interfaces sharp in the electron-beam projection. 

 

Figure 3.12 Holography of Al-doped ZnTe thin film with supposed pn junction: (a) TEM 

image of ZnTe thin film on GaSb substrate; (b) Hologram of ZnTe thin film; (c) 

Reconstructed phase image of ZnTe; (d) and (e) Phase and thickness profiles, respectively, 

along blue arrow in (c). 
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Figures 3.12b and 3.12c show the hologram and the corresponding reconstructed 

phase image, respectively. Phase and thickness profiles were extracted along the blue arrow 

in Figure 3.12c. The phase and thickness profiles show similar linear changes from the 

ZnTe surface towards the ZnTe/GaSb interface. However, no abrupt change of phase 

possibly caused by built-in potential across any pn junction can be observed in the phase 

profile. The reasons for the absence of a built-in potential are not clear, but might be due 

to several possible causes, including: (a) Al dopants are not activated during the diffusion 

process; or (b) the pn junction is much deeper within the ZnTe layer than anticipated, and 

cannot be imaged by holography because of the restricted field of view. 

3.2.3    Simulation of Dynamical Effects 

In the MIP measurement, only the zero term of Fourier transform of crystal potential 

is considered, which corresponds to the forward transmitted [000] beam [32]. However, it 

is difficult to maintain kinematical conditions due to dynamical scattering from the 

diffracted beams, and non-zero terms of the Fourier transform of the crystal potential 

contribute to the forward transmitted beam [34,35]. Therefore, the sample is usually tilted 

away from the zone axis to minimize diffraction conditions when performing holography 

experiments [21]. It is helpful to study the dynamical effects as a function of sample 

thickness and tilting to provide guidance for these experiments. 

Calculations of the dynamical effects for ZnTe were done using the many-beam 

Bloch wave simulation program Mbfit developed by Tsuda [31]. During the simulations, 

the real φre and imaginary part φim of the [000] forward transmitted beam were recorded as 

a function of different incident beam orientations. The phase of the [000] beam was 

calculated using the equation below: 
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 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = arctan (𝜑𝜑𝑖𝑖𝑖𝑖
𝜑𝜑𝑟𝑟𝑟𝑟 

)                                               (3.4) 

The simulation does not include the zero term of the Fourier transform of crystal potential 

(MIP) so that only the dynamical effects from the diffracted beams are included.  

 

Figure 3.13 Simulation of dynamical effects at different ZnTe thicknesses. The electron 

beam energy is 200keV, the zone axis is [001], the tilting direction is shown by the red 

arrow, and the phase scale bar in the unit of radian is shown on the right. (a) 50nm; (b) 

100nm; (c) 150nm.  

 

Table 3.3 Dynamical effects for ZnTe near [001] zone axis with different thicknesses. 

(Positions shown in Figure 3.13) 

Positions 50nm 100nm 150nm 

MIP 5.0 radian 10.0 radian 15.0 radian 

1: (0.0˚, 7.9˚) 1.43 radian -1.102 radian 0.51 radian 

2: (1.3˚, 7.9˚) -0.08 radian -0.123 radian -0.19 radian 

3: (2.5˚,7.7˚) -0.16 radian -0.5678 radian -1.21 radian 

 

  66 



It is obvious and expected that the phase of the [000] beam changes as the direction 

of the incident beam changes, as shown in Figure 3.13. To illustrate how the sample tilting 

and thickness contribute to dynamical effects, three positions were chosen for each of the 

thicknesses: (1) (0˚, 7.9˚) is in a major Kikuchi band, (2) (1.3˚, 7.9˚) is off the zone and 

Kikuchi band and (3) (2.5˚, 7.7˚) is in a minor Kikuchi band. The results are shown in Table 

3.3 and the phase shift solely due to MIP for 200keV electrons are also shown in the row 

labeled MIP. When the beam is close to the zone axis or to Kikuchi bands, the dynamical 

effects become more important, as shown at position (1), where the phase due to dynamical 

effect fluctuates from 1.4 to 0.5 radian, as the thickness changes from 50 nm to 150 nm 

and this effect is ~30% of the phase due to MIP at the thickness of 50nm. However, at 

position (2), the phase only changes from -0.1 to -0.2 radian and its effect only takes ~2%. 

Thus, it is usually necessary in holography experiments to tilt the sample away from the 

zone axis and also to avoid major Kikuchi bands. The sample thickness increases from 

Figure 3.13a to 3.13b and the dynamical effects become more obvious, by comparing the 

results at position (3) for different thicknesses. Thus, the sample must be tilted to a low 

diffraction contrast condition, when the sample is thick.  

In Figure 3.14, the dynamical effects were simulated and compared for different zone 

axes, while the other parameters were kept constant. These results indicate that the [111] 

and [011] zone axes have more dynamical effects, compared to [001] axis. The area with 

small phase change, such as in the range of -0.5 to 0.5 radian, is larger for the [001] zone 

axis, compared to the other two cases. Choosing a low symmetry zone axis will obviously 

reduce the diffraction scattering.  
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Figure 3.14 Simulation of dynamical effects for ZnTe at different zone axes. The electron 

beam energy is 200keV, the thickness is 100nm, the tilting directions are shown by red 

arrows and the color scale bar in the unit of radian is shown on the right. (a) [001]; (b) 

[011]; (c) [111]. 

 

 

Figure 3.15 Simulation of dynamical effects in different materials. The electron beam 

energy is 200keV, the thickness is 100nm, the zone axis is [011], the tilting direction is 

shown by the red arrow and the color scale bar in the unit of radian is shown on the right. 

(a) Si; (b) GaAs; (c) ZnTe. 
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Table 3.4 Measurement of dynamical effects for different materials at [011] zone axis. 

(Positions shown in Figure 3.15) 

Positions Si GaAs ZnTe 

MIP 8.8 radian 10.2 radian 10.0 radian 

1: (1.6˚, 11.0˚) -0.16 radian 0.19 radian -0.43 radian 

2: (2.7˚, 11.0˚) -0.02 radian 0.08 radian -0.04 radian 

 

The dynamical effects were simulated and compared for several different crystalline 

materials in the [011] projection, while the other parameters were kept constant. Values 

taken off the zone and the Kikuchi band (Position 1), and at a minor Kikuchi band (Position 

2), are shown in Table 3.4. The dynamical effects at these positions are still low and ~4% 

of the phase due to MIP only. However, the phase change across the Kikuchi bands become 

more visible when changing from Si to ZnTe, which indicates that the dynamical effects 

become more important for heavier material. These results confirm that the dynamical 

effects increase as the average atomic number increases. Therefore, for higher Z materials, 

such as ZnTe, it is necessary to examine thinner areas to reduce diffraction effects.  

3.2.4    Conclusions 

The MIP of ZnTe was measured to be V0=13.7±0.6 V and the IMFP for 200keV 

electron beam was measured to be λi=46±2 nm, using CBED and off-axis electron 

holography. The measured MIP and IMFP were then used to investigate a ZnTe thin film 

expected to have a pn junction. However, no change in signal due to built-in potential 

across a junction was observed. The reasons might be: (a) Al dopants were not activated; 

(b) the junction was beyond the field of view of the holography experiment. Dynamical 
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effects were systematically studied by using Bloch wave simulations. Choosing thinner 

samples, avoiding low-index zone axes and careful tilting will all help to minimize 

dynamical effects. 
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CHAPTER 4 

MAPPING ELECTROSTATIC PROFILES ACROSS AXIAL p-n JUNCTIONS IN Si 

NANOWIRES USING OFF-AXIS ELECTRON HOLOGRAPHY 

 

This chapter describes the measurement of electrostatic and built-in potential profiles 

across axial p-n and Schottky junctions in Si nanowires (NWs). The Si NWs were grown 

using the vapor-liquid-solid method, and were provided by Daniel Perea from Pacific 

Northwest National Laboratory and Tom Picraux from Los Alamos National Laboratory. 

My role in this work included preparation of samples for TEM characterization of the NW 

structures, measurements of electrostatic and built-in potential profiles across the axial p-

n and Schottky junctions in the NWs using off-axis electron holography, and device 

simulations for determination of active dopants. The major results in this study have been 

published [1]. 

 

4.1    Introduction 

Silicon nanowires (NWs) have electrical transport properties that are considerably 

different from those of bulk material due to their one-dimensional structure [2]. Control of 

the dopant profiles in the Si NWs enable promising applications for nanoscale electronic 

devices, such as sensors [3] and field-effect transistors [4]. To improve the performance of 

these devices, where theories for bulk materials are likely to fail, it is necessary to 

understand their unique charge transport mechanisms. In particular, the active dopant 

location, concentration and spatial distribution in the NWs play a critical role [2]. 
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Different experimental techniques have been used to characterize NW composition, 

such as transmission electron microscopy (TEM), scanning TEM (STEM) [5], secondary 

ion mass spectroscopy [6], and atom probe tomography [7]. However, it is difficult to make 

direct measurements of the active dopant distribution and resultant electronic properties 

within NWs because of their nanoscale dimensions. In addition, multiple junctions in real 

devices can further complicate measurements. The technique of off-axis electron 

holography provides an effective approach to quantitatively map electrostatic fields with 

nanoscale spatial resolution, without the need for micro-fabricated electrical contacts [8,9]. 

In addition, the technique has recently been used to characterize the electrical properties of 

different NWs [10-12].  

Off-axis electron holography is a TEM-based interferometric technique [8,9]. In 

cases where magnetic field is absent, and cylindrical NW shape as well as uniform 

distribution in the NW cross section are assumed, the phase shift due to the sample can be 

described by: 

∆𝜑𝜑(𝑥𝑥,𝑦𝑦) = 𝐶𝐶𝐸𝐸 × (𝑉𝑉0(𝑥𝑥,𝑦𝑦, 𝑧𝑧) + 𝑉𝑉𝑏𝑏𝑏𝑏(𝑥𝑥,𝑦𝑦, 𝑧𝑧)) × t                       (4.1) 

where CE is an electron-energy-dependent interaction constant with the value of 0.00728 

rad V-1 nm-1 for 200-keV electrons, V0 is the mean inner potential (MIP) of the sample, Vbi 

is the built-in potential and t is the diameter of NW served as the projected thickness. 

In the case of a single p-n junction without bias, the built-in junction potential can be 

calculated using the expression: 

𝑉𝑉𝑏𝑏𝑏𝑏 = 𝑘𝑘×𝑇𝑇
𝑒𝑒

× ln (𝑁𝑁𝐴𝐴×𝑁𝑁𝐷𝐷
𝑛𝑛𝑖𝑖
2 )                                               (4.2) 

where k is Boltzmann’s constant, T is the absolute temperature, e is the electron charge, ni 

is the intrinsic carrier concentration, and NA and ND are the acceptor and donor 
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concentrations [13]. Multiple junctions that are not far apart may cause the carriers to be 

redistributed, such as for the case where a Schottky contact is located close to the p-n 

junction. Furthermore, trap states at the native surface oxide/NW interface or within the 

oxide itself will form a surface depletion region which further complicates transport 

analysis [14,15]. Thus, more comprehensive simulations are necessary when charge 

distributions and any changes in the sample geometry (eg. local NW thickness) are taken 

into consideration. Careful comparison between simulation and experiment could then give 

information about the distribution and concentration of the active dopants. In this study, 

electron holography has been used to map the electrostatic field across the axial p-n 

junction and the Au catalyst Schottky contact of a Si NW and estimates of the active dopant 

concentrations have been extracted based on comparisons with simulations. 

 

4.2    Experimental Details 

 

Figure 4.1 Schematic diagram of the Si NW growth procedure: (a) Au particles were 

deposited on Si substrate as catalysts; (b) n-type Si segment was grown using P as dopant; 

(c) P source was switched off and a p-type Si segment was grown due to unintentional 

dopant.  
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Figure 4.1 shows a schematic diagram of the Si NW growth procedure. The Si NWs 

with axial p-n junctions were grown in a cold-wall chemical vapor deposition reactor via 

the vapor-liquid-solid (VLS) method using 30-60 nm diameter Au colloid nanoparticle 

catalysts on silicon (111) substrates. The growth sequence is as follows. A ~10-μm-long 

phosphorus-doped (n-type) Si segment was initially grown using the gas mixture of SiH4 

and PH3 at a growth temperature of 550°C and total pressure of 3 Torr. A partial pressure 

ratio of PH3/SiH4 = 5.3 × 10−3  was used which would result in an estimated doping 

concentration of ~1019 cm-3. The PH3 gas was then turned off, and a ~300-nm segment of 

pure unintentionally-doped Si was grown before termination of growth. For unintentional 

doping, the pure Si segment tends to be p-type as a result of electrical trap defects near the 

interface due to the presence of a thin oxide layer on the NW surface; the corresponding 

dopant concentration was estimated to be roughly 1017 to 1018cm-3 [Ref. 15]. A p-n junction 

should thus be formed in the Si NW at a distance of about 300 nm away from the Au 

catalyst at the tip of the NW. For TEM analysis, the NWs were ultrasonicated in isopropyl 

alcohol and transferred via pipette to TEM copper mesh grids with holey carbon support 

films, and air-dried before observation.  

Electron microscopy and off-axis electron holography characterization were carried 

out using FEI CM200 and Tecnai F20 TEMs equipped with electrostatic biprisms and 

operated at 200 kV. Holograms were taken using the Lorentz mini-lens with the objective 

lens switched off to obtain a larger field of view. The typical biprism voltage was 120 V 

giving a fringe spacing of about 5nm at the usual magnification of 20kX. The exposure 

time for hologram recording was 2s. 
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4.3    Results and Discussions 

Electron micrographs taken from near the catalyst tip show the as-grown NW to have 

excellent crystallinity with a diameter of 80 nm (Figure 4.2). A slightly tapered morphology 

is observed and attributed to unintentional vapor-solid-solid growth during synthesis [16]. 

The change of doping during NW growth did not appear to introduce any kinking or defects. 

A close look at faint dark spots near the NW tip indicated that some small Au particles 

were present on the NW surface, due to Au surface diffusion from the catalyst particle 

during growth [17,18]. However, these particles were limited to a region of ~80 nm from 

the NW tip, and their amount was small with a concentration of ~1011cm-2 as estimated 

from the images, so that they were not expected to have a significant effect on the 

measurements of electrostatic potential profile. 

 

Figure 4.2 Electron micrographs showing the morphology of a typical Si NW, with p-n 

junction location estimated to be ~300nm from top end of the NW. 
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Figure 4.3 (a) Hologram of doped Si NW supported on holey carbon film; (b) 

Reconstructed phase image visualized with pseudo-color; (c) Phase profile along blue 

arrow in (b); (d) Phase profile across width of NW along the red arrow in (b) and fitting 

result (red line) using cylindrical NW model. 

 

Electron holography from across the diameter and upper end of a different NW 

(Figure 4.3) reveals the effect of the Au catalyst tip and surface charge on the resultant 

phase profile. In this case, the NW is about 62nm in diameter and it is grounded with the 

n-type segment base via contact with the carbon grid, while the upper p-type segment with 

Au catalyst protrudes out into vacuum. Figures 4.3a and 4.3b show the original hologram 
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and the reconstructed phase image respectively, using pseudo-colorization to emphasize 

the phase change. The phase profile in Figure 4.3c, taken along the NW (blue arrow in 

Figure 4.3b), shows a monotonic decrease in phase to zero moving away from the tip. This 

higher phase in the vacuum outside the Au particle suggests that the catalyst is positively 

charged, most likely due to secondary electron emission under the high-energy electron 

beam used during imaging. The phase profile across the NW shown in Figure 4.3d (red 

arrow in Figure 4.3b), indicates that the NW cross-section is approximately round, by 

comparing the experimental result (black dots) with the fitting result using a cylindrical 

NW shape (red line). The flat phase in the surrounding vacuum region suggests that any 

NW surface charge is small [10]. The thickness profile extracted from the reconstructed 

thickness image along the white arrow in Figure 4.3b suggests that the projected thickness 

of NW is constant with a value of ~60nm, which is consistent with the width measurement 

of the NW and confirms the assumption of cylindrical NW shape. 

 

Figure 4.4 Thickness profile along white arrow in Figure 4.3b showing the NW has a 

constant projected thickness of ~60nm. 
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Figure 4.5 (a) Vacuum-subtracted phase line profile along white arrow in Figure 4.3b; (b) 

Built-in potential before and after application of Gaussian filter. 

 

The phase profile along the length of the NW, as shown in Figure 4.5a, reveals the 

electrostatic potential profile of the p-n junction (white arrow in Figure 4.3b). The 

approximate position of the p-n junction is indicated by the arrow. In order to remove the 

phase shift due to the projection of the electric field in vacuum caused by charging at the 

Au catalyst tip, a similar line profile is also extracted from the vacuum region along the 

edge of the NW and then subtracted from the NW profile. The difference is the phase 

profile due only to the NW, as shown in the subtracted phase of Figure 4.5a. By comparing 

the original phase and the subtracted phase, it appears that charging at the Au particle most 

strongly influences the phase near the tip, whereas the phase around the region of the p-n 

junction remains unchanged because the fringing electrostatic field from the Au particle 

has been attenuated.  

Based on the subtracted phase, an average built-in potential profile was calculated 

using equation (4.2) and shown in Figure 4.5b, taking the NW thickness of 62 nm, as 

measured from its diameter, and a mean inner potential for intrinsic Si of 12.1 V [19]. A 
  81 



Gaussian filter is then applied to the profile to remove high frequency noise. The small 

peaks in the profile shown in Figure 4.5b may still be due to noise rather than electrostatic 

field because of the low signal-to-noise ratio. The potential step located at ~300 nm is 

consistent with the position of the p-n junction, while the potential drop located near ~100 

nm possibly represents a Schottky contact formed between the Au catalyst and the Si NW 

[12]. The built-in potential at the p-n junction drops from 1.82±0.15 V at the n-type 

segment to 0.82±0.14V at the p-type segment so that the p-n junction height is estimated 

to be 1.0±0.3 V. The error estimates are based on the standard deviations of each separate 

potential measurement. In contrast, the built-in potential at the Schottky contact goes from 

0.82±0.14 V at the p-type segment to 1.32±0.14V at the Au particle, giving a barrier height 

of 0.5±0.3V. We note that the apparent drop in potential visible at ~25 nm from the Au 

catalyst is likely to be due to a Fresnel fringe originating from the edge of the Au particle. 

We attribute the steep increase in potential within the NW at distances of less than 25 nm 

as being due to the much higher MIP of Au compared with that of Si. 
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Figure 4.6 (a) Schematic showing cross section of model used for simulations consisting 

of Si NW with p-n junction, grounded on the n-side and biased on the Au particle at the 

end of the p-doped region; (b) Experimental built-in potential profile and simulated profiles 

for different dopant concentrations at p-n junction, work function 𝜙𝜙 =4.6 V; (c) Simulated 

built-in potential profiles with different gradient widths, dopant concentrations NA=1017 

cm-3, ND=1019 cm-3, and work function 𝜙𝜙 =4.6 V. Two layers in the dopant concentrations 

of ND=1018 cm-3 and ND=1017 cm-3, respectively, are added after n-type region with layer 

widths as shown in the legend. 

 

In order to better interpret the electrostatic potential profiles, simulations of the NW 

potential distribution were performed using the SilvacoTM software package. The 

parameters for the simulation are schematically illustrated in Figure 4.6a. The Si NW was 

simulated as a cylinder with a diameter of 62 nm and an SiO2 shell of 5 nm. The SiO2 was 

used to define surface charge so that its thickness should not influence the results. Since 
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the effect of the surface charge was not apparent in the experimental results, the surface 

charge in the simulation was defined to be zero at the interface between Si and SiO2. The 

validity of this assumption was tested by additional simulations with varying surface 

charges, as discussed below. The n-type segment of the Si NW was connected to ground, 

while the p-type segment was connected to Au via a Schottky contact with bias applied to 

the Au contact. An abrupt junction model was initially used in the simulations, but a non-

abrupt junction was later tested and did not affect the overall trend of the results. The donor 

concentration, acceptor concentration, Au work function and bias were then systematically 

adjusted in order to find a match with the experimental electrostatic profile.  

As shown by the magenta hexagrams in Figure 4.6b, a donor concentration of ~1019 

cm-3, an acceptor concentration of ~1017 cm-3, a work function of 4.6 V and 0 V bias gave 

the best fit to the experimental profile. The corresponding simulated built-in potential 

height and depletion length for the p-n junction were 0.93 V and 120 nm, respectively, and 

0.51 V and 100 nm for the Schottky contact, respectively. These values are consistent with 

the experimental values. Most of the depletion region was located on the lower 

concentration, p side. Since the distance between the p-n junction and the Schottky contact 

is ~250 nm, they should not have any significant effect on each other. By using Equation 

4.3, the built-in potential due to single p-n junction can also be calculated to be ~1V with 

a depletion region width of ~112nm, which confirms the simulation results above. When 

the simulated acceptor concentration is lower than 1017 cm-3 (refer to colored points) or the 

donor concentration is lower than 1019 cm-3 (refer to colored points), then the depletion 

regions across the p-n junction and the Schottky contact are larger and the built-in potential 

changes less rapidly, resulting in a higher potential in the p-type region than measured 
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experimentally. Conversely, when the simulated acceptor concentration is greater than 1017 

cm-3 (refer to colored points) or donor concentration is greater than 1019 cm-3 (refer to 

colored points), the depletion region of the p-n junction and the Schottky contact are 

smaller and the built-in potential changes more rapidly, giving deeper potential in the p-

type region than measured.  

Any change in dopant concentration during VLS growth usually results in an 

exponentially-decreasing gradient at the interface [20-22], with a length that is comparable 

to the NW diameter, which is ~60 nm in this case, forming an n+-n--p junction. To assess 

the effect of such gradients, two n-type segments with concentrations of 1018 cm-3 and 1017 

cm-3, respectively, were added in the simulations between the n-type and p-type segments, 

as shown in Figure 4.6c. The simulations suggest that the short n- portion is fully depleted 

and has only a small effect on the p-n junction, making the junction slightly flatter in the 

middle. As the gradients become longer, the flatter part is extended further into the p-type 

segment. Because the total depletion length is very long compared to the gradient due to 

low concentration on the p side, the gradients do not have a significant effect on the 

junction height nor the total depletion width. 
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Figure 4.7 (a) Simulated built-in potential profiles with different surface charges and 

experimental potential profile, dopant concentrations NA=1017 cm-3, ND=1019 cm-3, work 

function 𝜙𝜙 =4.6V; (b) Simulated built-in potential profiles with different bias on a single 

Schottky diode, dopant concentrations NA=1017 cm-3, work function 𝜙𝜙 =5V. 

 

A conformal native oxide is usually observed on Si NW surfaces resulting in interface 

charge or surface states around the NWs [14,15]. However, the flat phase observed in 

vacuum near the NW indicated that the interface charge was too small to be directly 

detected by phase change in the present measurements. To investigate possible effects of 

the interface charge on the inferred dopant profiles, various surface charges were added to 

the simulations. A charge density of 1011 electron/cm2 did not have a significant effect on 

the results, as shown in Figure 4.7a. As the surface charge was increased, the built-in 

potential went either slightly higher or lower in the p-type Si, depending on the sign of the 

charge. A closer look at the phase image at the edge of the NW shows that the edge is 

equal-phase or equipotential across the p-n junction, suggesting that the potential is pinned 

at mid-gap at the NW surface, which could indicate a small depletion region at the NW 
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surface due to surface states [23]. This depletion region may also cause somewhat lower 

measured dopant concentrations since averaged values are being measured through the 

thickness. 

Si NWs with Au contacts have been reported to form Schottky barriers due to their 

differences in Fermi level [12,24], which is consistent with our observations. The built-in 

potential height and depletion region width of the Schottky barrier depend on the active 

dopant concentration, the bias applied to the barrier, interface oxide charge and surface 

states. If only active dopant and bias are considered, the built-in potential can be expressed 

as: 

𝑉𝑉𝑏𝑏𝑏𝑏 = 𝜒𝜒 + 𝐸𝐸𝑐𝑐−𝐸𝐸𝑓𝑓
𝑞𝑞

− 𝜙𝜙 + 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏                                       (4.3) 

where χ is the electron affinity for silicon, Ec is the conduction band energy, Ef is the Fermi 

level, q is the electron charge, 𝜙𝜙 is the Au work function and Vbias is the bias applied to Au 

[13]. The Au work function and bias both contribute to the height of the built-in potential 

of the barrier according to this equation.  

Simulation results for a biased Schottky diode with 0.4 V bias without p-n junction 

are given in Figure 4.7b, and these show a very good fit with the experimental profile. 

Since the Au is positively charged, the Schottky contact is in reverse bias. The Fermi level 

on the Au side will be lower, increasing the height of the built-in Schottky potential. If the 

Si p side remains grounded and its Fermi level stays flat, the bias will only change the 

Fermi level across the Schottky contact, rather than the whole Si NW, which is equivalent 

to applying bias to a single Schottky diode without p-n junction. Simulations with a lower 

work function of 4.6 V, compared to values reported in the literature of around 5V [25], 

give the best fit here with experiment. Therefore, in Figures 4.6b, 4.6c and 4.7a, such bias 
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can be considered as a change of work function in the simulation that keeps the Fermi level 

flat across the p-n junction. 

 

4.4    Conclusions 

Si NWs have been grown with axial p-n junctions using the VLS method. A Schottky 

junction is formed at the end of the NW due to the presence of the Au catalyst particle. The 

electrostatic potential profile measured by electron holography shows that the built-in 

potentials across the p-n junction and the Schottky junction, have values of 1.0±0.3 V and 

0.5±0.3 V, respectively. Simulations indicate that the dopant concentrations are ~1019cm-3 

for donor and ~1017 cm-3 for acceptor. The positively charged Au particle at the end of the 

grounded NW is considered to account for the lower work function in the simulation. The 

effects of a possible transition region forming n+-n--p junction and possible surface charge 

were also systematically studied by simulations. Overall, these results demonstrated that 

the off-axis electron holography technique can provide valuable information on the 

electrically active dopant distributions in NW device structures. 
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CHAPTER 5 

MEASUREMENT OF ACTIVE DOPANTS IN AXIAL Si-Ge NANOWIRE 

HETEROJUNCTIONS USING OFF-AXIS ELECTRON HOLOGRAPHY AND  

ATOM-PROBE TOMOGRAPHY 

 

This chapter describes the measurement of active dopants in axial Si-Ge nanowire 

(NW) heterojunctions using off-axis electron holography and atom-probe tomography. The 

axial Si-Ge NWs were grown using the vapor-liquid-solid method, and were provided by 

Daniel Perea from Pacific Northwest National Laboratory, Jinkyoung Yoo and Tom 

Picraux from Los Alamos National Laboratory. The atom-probe tomography experiment 

was performed by Daniel Perea. My role in this work included preparation of TEM samples, 

characterization of the NW structures, measurements of electrostatic and built-in potential 

profiles across the hererojunction and Schottky junctions in axial Si-Ge NWs using off-

axis electron holography, and device simulations for active dopant determination. The main 

results of this work have been submitted for publication [1].  

 

5.1    Introduction 

Semiconductor heterostructures have many novel and attractive applications 

compared with individual semiconductors such as Si due to their ability to tune electronic 

transport properties by varying composition in addition to dopant type and concentration 

[2]. Si-Ge axial heterojunction nanowires (NWs) are considered as potential high-

performance transistor devices because Ge has low effective mass, high mobility and small 

band gap compared with Si [3]. Moreover, the NW geometry can reduce the density of 
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dislocations caused by lattice mismatch [2], and also provide new options for 3D device 

integration [4,5]. Axial Si/Ge NW heterojunctions with abrupt interfaces have been grown 

using the vapor-liquid-solid (VLS) [6] and vapor-solid-solid (VSS) methods [7]. Changes 

in electronic transport properties have been achieved with different dopant profiles by 

growing Ge NWs on Si pillars formed by etching [8]. To improve the engineering and 

performance of Si-Ge NW integrated devices, it is necessary to understand their charge 

transport mechanisms. In particular, knowledge of active dopant profiles and the resultant 

built-in potential can play a critical role.  

The present study has used off-axis electron holography (EH) to measure the built-in 

electrostatic potential across doped Si-Ge NW heterojunctions with/without in situ bias, in 

combination with atom-probe tomography (APT) to measure the total dopant distributions. 

The active dopant profiles were then extracted by comparing the experimental results with 

TCAD simulations.  

 

5.2    Experimental Details 

Figure 5.1 shows a schematic diagram of the NW growth procedure. The axial Si-Ge 

heterojunction NWs were grown using the VLS method in a cold-wall CVD reactor [6]. 

The growth process was as follows. First, Si (111) substrates were solvent-cleaned and 

native-oxide-etched. Then Au colloid nanoparticles were dispersed as catalysts on the 

substrate surface. Germane (GeH4) diluted in hydrogen (H2) with a concentration of 30% 

was introduced into the chamber, while the total pressure was maintained at 3 Torr. The Ge 

<111> NW growth was initiated at 340℃ for 3min followed by further growth at 280℃ for 

20−30mins. 100 ppm diborane (B2H6) diluted in H2 was also introduced to provide a p-
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type dopant during growth. To form the AuGa alloy catalyst and to reduce Ge solubility in 

the catalyst prior to formation of the heterojunction, trimethylgallium (TMGa) at ~90 

μmol/min was introduced into the chamber for 15s using H2 as carrier gas while the GeH4 

was still on and B2H6 gas shut off. Both TMGa and GeH4 were then turned off, while silane 

(SiH4) diluted in H2 with a concentration of 50%, and 5000 ppm phosphine (PH3) diluted 

in H2, were introduced to start the Si <111> segment growth with n-type doping, thereby 

forming the axial Si-Ge NW heterostructure. The growth temperature was increased to 

495℃, while the total pressure was reduced to 0.5Torr. Some NWs were specifically grown 

on microfabricated Si micropost substrates for APT analysis [9]. For transmission electron 

microscopy (TEM), scanning TEM (STEM) and EH analysis, the NWs were ultrasonicated 

in isopropanol and transferred via pipette to TEM copper mesh grids with thin carbon films, 

and then air-dried before observation.  

 

Figure 5.1 Schematic diagram of the axial Si-Ge NW growth procedure: (a) Au particles 

were deposited on Si substrate as catalysts; (b) p-type Ge segment was grown using B as 

dopant; (c) Ga was added to catalyst, forming AuGa alloy, and i-type Ge segment was 

grown; (d) n-type Si segment was grown using P as dopant.  
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Atom probe tomography (APT) is currently the only technique that can directly 

quantify the relative composition and distribution of dopants within nanowires [10]. Here 

we have used APT to measure the total dopant profile along the nanowire growth axis 

across the Si-Ge heterojunction.  Due to a combined limitation in detection efficiency and 

spatial resolution, APT analysis cannot provide information about the bonding 

environment of the dopants, and thus cannot provide information about whether dopants 

are interstitially (electrically inactive) or substitutionally (electrically active) incorporated. 

Thus, APT only provides the total dopant composition. However, when combined with EH 

which can be used to estimate the composition of electrically active dopants, any 

differences between the two techniques can lead to an estimate of doping efficiency. 

Determination of the electrically active dopants in the Si-Ge NWs is an important 

step towards useful device applications. Off-axis electron holography is an interferometric 

TEM technique that can provide amplitude and phase information about the sample under 

observation [11,12]. By using the reconstructed phase image, the electrostatic potential 

profile and thus the built-in potential of the sample, can be measured and compared with 

simulations to estimate the active dopant concentrations. For a non-magnetic sample and 

assuming that the potentials are distributed uniformly across the projected thickness, the 

phase shift in a reconstructed phase image can be simplified to: 

∆𝜑𝜑(𝑥𝑥,𝑦𝑦) = 𝐶𝐶𝐸𝐸 × (𝑉𝑉0(𝑥𝑥,𝑦𝑦, 𝑧𝑧) + 𝑉𝑉𝑏𝑏𝑏𝑏(𝑥𝑥,𝑦𝑦, 𝑧𝑧)) × 𝑡𝑡                            (5.1) 

where CE is an electron-energy-dependent interaction constant having the value of 0.00653 

rad. V-1. nm-1 for 300-keV electrons, V0 is the mean inner potential (MIP) of the sample 

caused by incomplete screening of atomic cores, Vbi is the built-in electrostatic potential 

resulting from any electric field and/or charge accumulation in the sample and t is the 
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projected sample thickness [12]. The EH technique has been widely used for characterizing 

electrostatic potential profiles in nanoscale semiconductors [13-15]. 

TEM, STEM and EH studies were done using an FEI Titan 80-300 equipped with a 

Schottky field-emission electron gun, probe corrector, Lorentz mini-lens and electrostatic 

biprism. The EH experiments were performed using the Lorentz mini-lens with the normal 

objective lens switched off in order to obtain a larger field of view. The biprism voltage 

was typically 120 V, giving 2.5-nm interference-fringe spacing, and the hologram exposure 

time was 2 s. APT analysis was performed using a LEAP 4000X-HR.  A 355-nm UV laser 

pulsed at 200 kHz was used to initiate thermally-assisted field evaporation at a detection 

rate of 0.005 ions/pulse. A more detailed description of the APT analysis of NWs is given 

in reference [10].  

 

5.3    Results and Discussions 

Figures 5.2a and 5.2c show STEM HAADF images of a typical straight axial Si-Ge 

NW, which was grown using the same procedure but at different temperature. The tapered 

Ge segment is not obvious in this case. The grey region at the Si-Ge heterojunction 

indicates that the Ge-Si transition region is short and faceted. Catalyst materials are 

observable as small bright dots on the Ge surface, which is likely due to diffusion from the 

catalyst particle during the growth. EDX profiles were extracted across the Si-Ge 

heterojunction (Figure 5.2b) and the Si-catalyst interface (Figure 5.2d), along the blue 

arrows in Figures 5.2a and 5.2c, respectively. The EDX profile across the heterojunction 

suggests that the Si-Ge transition region is ~50nm long, which is short compared to growth 

using Au catalysts, which are usually on the size of the NW diameter (~110nm) [16]. The 
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short transition region confirms that the AuGa alloy reduced the amount of Ge in the 

catalyst because of the lower solubility, forming a much sharper Ge-Si interface [6]. The 

Ga content in the Si segment is not detectable. The EDX profile across the Si-catalyst 

interface indicates that the catalyst consists Au, Ga, Si and residual Ge, confirming that an 

AuGa alloy had been formed to grow the Si segment.  

 

Figure 5.2 STEM HAADF images of axial Si-Ge NW (a) and (c), and EDX profiles across 

Si-Ge heterojunction (b) and Si-catalyst interface (d).   

 

Figure 5.3 shows TEM and STEM images of a typical tapered axial Si-Ge NW 

heterostructure as used for holography and APT experiments. The NW structure includes a 

long tapered Ge base (~10 µm long), an untapered ~70-nm-diameter segment of Si (~300 

nm long) and the AuGa catalyst particle located at the NW tip. From the growth conditions, 
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the Ge is doped with boron (B) at a nominal concentration of 4×1018 cm-3, while the Si is 

doped with phosphorus (P) at a nominal concentration of 2×1019 cm-3. The tapered Ge base 

resulted from VSS growth on the Ge surface at the growth temperature of 280℃ [17]. Small 

particles are also present on the NW surface and likely result from catalyst material at the 

NW tip being left behind during growth of the Ge segment and the transition from Ge to 

Si [18,19]. These small particles can serve as catalysts for dendritic NW growth 

perpendicular to the Ge surface, as visible in the images. A short Ge-Si transition region 

(~20nm in length) is also observable in this example, as shown by the blue arrow in Figure 

5.3b. The EELS mapping shown in Figure 5.4 indicates a complicated Si-Ge facetted 

interface, similar to Figure 5.2. 

 

Figure 5.3 (a) TEM image showing the morphology of a typical Si-Ge heterojunction NW; 

(b) STEM HAADF image showing the morphology of a different Si-Ge heterojunction 

NW from the same growth substrate. 
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Figure 5.4 EELS mapping of axial Si-Ge NW: (a) and (b) STEM HAADF images; (c) 

EELS mapping of Si (red) and Ge (green) at Si-Ge interface. 

 

Interfacial strain may affect the device electrical performance. In order to understand 

the strain distribution and relaxation at the Si-Ge heterojunction, Geometric Phase Analysis 

(GPA) was performed on a STEM HAADF image of Si-Ge NW, as shown in Figure 5.5 

[20]. The diffraction spots chosen for analysis are indicated by the blue arrows in the 

inserted image of Figure 5.5a and the out-of-plane Exx strain is shown in Figure 5.5b, which 

is along the [111] growth direction. The left Ge end was assumed to be unstrained and used 

as reference. The Exx can also be calculated by using the equation below: 

𝐸𝐸𝑥𝑥𝑥𝑥 = 𝑐𝑐𝑆𝑆𝑆𝑆−𝑐𝑐𝐺𝐺𝐺𝐺
𝑐𝑐𝐺𝐺𝐺𝐺

                                                     (5.2) 

where cSi and cGe are the lattice spacing along the [111] growth direction for Si and Ge, 

respectively. For relaxed Si and Ge, the lattice constants are 0.5431 nm and 0.5658 nm, 

respectively. Thus, the Exx is calculated to be 4% for unstrained Si-Ge interface. The strain 

profile shown in Figure 5.5c was extracted along the white arrow in Figure 5.5b, where the 

blue line roughly indicates the Si-Ge interface. From ~30nm to ~55nm, the Exx value drops 

from 0 to ~4%, which indicates that this is the strained or unstrained but chemically mixed 

Si-Ge transition region. Away from this region, the Exx values for Si and Ge go to 4% and 
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0%, respectively, indicating that they are completed relaxed. The length of the strained 

region is consistent with the Si-Ge transition region measured from the HAADF image in 

Figure 5.3b. This strained region causes diffraction contrast, as shown by the darker 

contrast at the Si-Ge interface in Figure 5.3a.  

 

Figure 5.5 Geometric Phase Analysis of axial Si-Ge NW: (a) STEM HAADF image, with 

the diffraction spots chosen for analysis arrowed in the inserted diffractogram; (b) 

Calculated out-of-plane strain Exx mapping; (c) Exx Strain profile extracted along white 

arrow in (b). 
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Figure 5.6 (a) and (b) Typical holograms of Si-Ge NW heterojunction; (c) and (d) 

Reconstructed phase images from holograms in (a) and (b), respectively. 

 

Figures 5.6a and 5.6b show two holograms of a typical Si-Ge NW heterojunction, 

where the fringes that are visible result from interference of the object wave and the 

vacuum (reference) wave. Figures 5.6c and 5.6d show the corresponding phase images 

after hologram reconstruction, using pseudo-color to indicate the magnitude of the phase 
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change. The observed change in phase not only results from accumulated charge and/or 

internal electric field, but also from changes in specimen thickness and chemistry. In Figure 

5.6c, the phase within the Ge segment increases towards the left, because of the increasing 

NW diameter. Some small dendritic growth is also visible on the Ge surface, which adds 

significant noise to the analysis carried out below. No dendrite growth is observed on the 

Si side in Figure 5.6d. Instead, the diameter of the Si NW increases slightly towards the 

catalyst. The phase at the NW center also increases slightly, as shown by the red color.  

The change in width as a function of distance for the Ge and Si segments, as well as 

the corresponding phase profile, were extracted from left to right at the center of the NW, 

along the white arrows in Figures 5.6c and 5.6d, respectively. These results were then 

combined together, as shown in Figure 5.7a, where the phase is shown in black and the 

width is shown in red. In order to reduce the effect of noise caused by the surface dendrite 

growth, linear fitting is applied to the measured Ge width profile while constant width is 

used for the Si part (shown by the blue line). By assuming that the NW has a cylindrical 

shape, then its width can be used as the NW thickness projected along the electron-beam 

direction. The change of phase is proportional to the change in width, where a monotonic 

decrease in the phase profile with decreasing width is observed in the Ge segment, 

consistent with the tapered NW geometry. A deviation in the phase profile is observed at 

the heterointerface position of ~400nm, which is attributed to the difference in MIP 

between Ge (14.3V) [21] and Si (12.1V) [22], in addition to the built-in potential. The Si 

portion has almost constant diameter and phase except for the NW part located near the 

catalyst, where these increase slightly.  
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Figure 5.7 (a) Phase and width line profiles extracted from along white arrows in Figure 

5.6c and 5.6d and combining results; (b) Potential profile calculated using phase line profile 

and width line profile after fitting (blue) in (a). 

 

The total potential profile, which includes contributions from the MIP and the built-

in potential, can be calculated using equation (1). The result is shown in Figure 5.7b, after 

dividing the phase line profile in Figure 5.7a by CE and the width profile. Direct correlation 

of the total potential profile due to changes in the dopant type and the MIP difference 

between Si and Ge can be complicated by strain and electron diffraction affects near the 

heterointerface, thus making it difficult to determine the built-in potential profile. Instead, 

focus is directed towards regions away from the interface. Figure 5.7b shows that despite 

the potential on the Ge side being noisy, likely as a result of small dendrite growth on the 

surface which perturbs the phase, the potential is relatively constant and measured to be 

13.5±0.2V. The potential on the Si side is initially 11.7±0.1V for roughly the first ~100nm, 

and then increases up to 12.4 V moving towards the position of catalyst. This increase in 

potential near the catalyst is discussed below. The total potential offset across the Ge-Si 

heterojunction is calculated to be 1.8V±0.2 V, with the Si side lower, using the larger 
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measurement error of 0.2V as the potential offset error. The total potential profile and the 

total potential offset in Figure 5.7b are due to a combination of built-in potential and the 

difference in MIP. The built-in potential offset across the Ge-Si interface is calculated by 

subtracting the MIP difference of 2.2 V between Ge and Si from the measured 1.8 V total 

potential offset between Ge and Si. Thus, the actual built-in potential offset of 0.4V±0.2V, 

with the Ge side lower, is opposite that of the total potential offset obtained from Figure 

5.7b, which is primarily due to the higher mean inner potential of Ge. This built-in potential 

offset will be compared later with simulations to determine the active dopant (Ga, P and B) 

concentrations.  

In order to characterize the electrical properties of Si-Ge NWs under working 

conditions, an in situ biasing experiment was carried out using a NanofactoryTM biasing 

holder and the same EH configuration. To more easily make electrical contacts to the Si-

Ge heterojunction NWs for biasing purposes, NWs were grown with n-Si segments that 

were approximately three times greater in length. Considering that the NWs used for the 

biasing experiments were grown using the same growth procedure described above, the 

compositions of these NWs are expected to be consistent with those discussed above. As 

shown in Figure 5.8a, the upper end of the Si segment is kinked, which could be due to 

twin formation arising from defect formation as well as change in growth direction from 

[111] to [112], possibly caused by strain relaxation in the Si region [17]. The Ge and Si 

ends of the NW were connected separately in situ to tungsten needle wires. The specific 

NW visible in Figure 5.8a, has a diameter of 61nm on the Si side. The Ge end was kept 

connected to ground, while bias was applied to the Si end, and holograms were recorded 

while the bias was kept at fixed values. A hologram taken at +4V bias is shown in Figure 
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5.8b, and the corresponding reconstructed phase image is shown in Figure 5.8c, again using 

pseudo-color to represent the magnitude of the phase change.  

 

Figure 5.8 (a) TEM image showing the Si-Ge heterojunction NW after in situ mounting to 

biasing holder. (b) Typical hologram of the Si-Ge heterojunction NW with +4V bias on Si 

side. (c) Reconstructed phase image from (b). 

 

To compare the electrostatic potentials across the Si-Ge heterointerface under 

different bias conditions, phase line profiles were extracted along the line of the white 

arrow from Ge to Si, as shown on the left vertical axis in Figure 5.9a. Since only the 

potential changes in the Si segment and across the Si-Ge heterointerface matter, but not for 

the grounded Ge taper base because of the high doping concentrations and short depletion 
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region, these phase profiles were divided by the width of the Si segment (61nm) and CE, 

and then converted to potential, as also shown in Figure 5.9a, using the right vertical axis 

for reference. The bias conditions are shown in the legend. In Figure 5.9a, the potentials 

on the Ge side under different bias conditions are very similar because the Ge end is 

connected to ground. The linear change of phase and potential on the Ge side is caused by 

the tapered Ge NW shape which is not considered here. On the Si side, the potential is 

observed to increase in proportion to an increase in bias for applied positive voltage. For 

example, the potential on Si side increases by 5V, when +5 V bias is applied to the NW. 

The slope of potential change near the SiGe heterointerface also increases as the positive 

bias is increased. However, when negative bias is applied, the potential on the Si side 

decreases only slightly as the bias becomes more negative, although the slope change is 

not obvious. The dip in potential at ~250 nm is caused by the difference in MIP between 

Ge, Si and mixed region, offset by the built-in potential. When positive bias is applied, the 

bottom of the dip and the nearby mixed interface region and Ge segment also increase by 

small amounts as the bias increases, whereas this area remains almost constant when 

negative bias is applied. The slight bending in the potential and phase profiles is similar 

under different bias conditions and could be caused by small bending of the NW in the Si 

segment and/or diffraction effects, which can be seen in the darker contrast of Si in Figure 

5.8b.  

The corresponding current−voltage (I-V) characteristic curve measurement is shown 

in Figure 5.9b. When positive bias is applied to Si, the I-V curve shows a rectifying effect 

and the current starts to increase rapidly when the bias exceeds ~2 V. When negative bias 

is applied, the current starts to increase when the bias is greater than ~-2V and the I-V curve 
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in Figure 5.9b again shows a rectifying effect. The current changes faster under negative 

bias, relative to positive bias, while the on-voltages are very similar in value. These trends 

in measured potential profiles as a function of distance and bias together with the no-bias 

case are compared below with simulations in order to estimate the active dopant 

concentrations. 

 

Figure 5.9 (a) Phase line profiles extracted from along white arrow in Figure 5.8c under 

different biasing conditions and potential profiles calculated from phase line profiles using 

a constant width of 61nm. (b) IV characteristic curve from measurement. 

 

The results of APT measurement for a Ge-Si NW are shown in Figure 5.10. Within 

the Ge segment, the B distribution decreases from a doping density of ~1019cm-3 at ~50 nm, 

to background levels at ~200 nm, followed by i-Ge growth for ~50 nm which results from 

the continued Ge NW growth in the absence of the B source during the lag time preceding 

the catalyst alloying step. The heterointerface between Ge and Si occurs at a position of 

~250nm, with a width of ~10 nm consistent with the same heterointerface width measured 

previously by x-ray dispersive spectroscopy for very similar NWs [6]. Within the Si 
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segment, the P concentration increases monotonically from a dopant density of ~4×1018 

cm-3 at the heterointerface, to 2×1020 cm-3 at the catalyst location. In addition to P, 

unintentional incorporation of Ga is also observed in the Si segment. A spike in Ga 

composition to ~6×1019 cm-3 is found at the heterointerface, followed by a relatively 

constant profile of ~2×1019 cm-3 throughout the Si segment.  A detailed discussion of the 

reasons for the measured dopant profiles is outside the scope of this work, and will be the 

subject of a separate paper.  

 

Figure 5.10 B, P and Ga dopant profiles, and Si, Ge compositions of a typical Si-Ge 

heterojunction NW measured using APT. 

 

The controlled incorporation of dopants within the NW was intended to modulate the 

carrier type and concentration to achieve desired transport characteristics. However, the 

incorporation of unintentional impurities will complicate transport, especially when it has 

the potential to compensate intentional carriers, such as in the current case for p-type Ga 
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and n-type P within the Si segment. From the profiles measured by APT, a constant Ga 

doping density of 1-2×1019 cm-3 is observed in Si. If all dopants (B, P and Ga) are 

considered to be electrically active, then all of the Ga in Si would act as a p-type dopant 

and compensate the n-type P dopant, and the higher concentration dopant would determine 

the effective type of dopant.  

 

Figure 5.11 (a) Simulated built-in potential line profiles using different fractions of active 

Ga, fully activated B and P from Figure 5.10, where legend shows the amount of active Ga; 

(b) Simulated built-in potential line profiles using different fractions of active B and P, but 

without Ga from Figure 5.10, where legend shows the amount of active B and P. 

 

In order to estimate the active dopant distributions, SilvacoTM TCAD simulations 

were performed for comparison with the APT and EH experiments. An abrupt Si-Ge 

interface was assumed, and the dopant profiles (B, P and Ga) from APT shown in Figure 

5.10 were used for the device simulation. This result suggests that this structure should 

consist of n-type Si, to p-type Si, and then to i-Ge and finally p-type Ge. The simulated 

potential profile assuming 100% dopant activation is shown by the blue line of Figure 5.11a. 

  108 



The built-in potential of the n-type Si would be ~0.5V (at ~600nm), while the potential of 

the p-type Si would be ~-0.4V (at ~400nm), relative to Ge (at ~0nm). Thus, this dopant 

profile would result in a potential drop of ~0.9V in Si from the n-type segment to the p-

type segment and another 0.4V potential step across the SiGe interface with the Ge side 

being higher. The slow potential decrease in Si from 600nm to ~800nm is caused by the P 

dopant concentration decrease. 

The unintentional Ga dopant in the Si part of the NW might incorporate interstitially, 

or it could form Ga-vacancy defects or other small defect clusters and not be fully activated. 

Thus, simulations with partially activated Ga are also shown in Figure 5.11a, where the 

legend shows the fraction of activated Ga. With lower active Ga concentrations, the p-type 

segment length in Si is reduced, while the potential offset between n-type Si and p-type Si 

decreases slightly (less than 0.1V from 100% to 30%). When the active Ga is reduced to 

concentrations lower than that of P (~20% of Ga dopant), the p-type Si segment disappears 

and only one potential drop of ~0.5V is visible within Ge at ~250nm, effectively forming 

an nip-like Si-Ge heterojunction. The experimental EH result from Figure 5.7b indicated 

that the built-in potential had 0.4V offset across the Si-Ge interface and the potential for 

the Ge side was always lower than for Si. Moreover, if there is a p-type Si segment, either 

the Si-Ge heterointerface or the np junction in the Si segment would always be in reverse 

bias and the current should be small until the junction breaks down. This situation is not 

consistent with the I-V curve measurements, as shown in Figure 5.9b. These comparisons 

suggest that the Ga is less than 20% activated. According to the literature [23], the solubility 

of Ga in Si is lower than 1×1019 cm-3. Also, Ga dopants in Si have only been reported to be 

active up to ~1018 cm-3 with only partial activation at higher concentrations due to the 
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relatively high activation energy [24-26]. Therefore, we conclude that only a small fraction 

of the Ga atoms present are  activated at most, and since the active Ga concentration must 

be lower than that of the active P, its influence can be  included in the simulations below 

by the active P level.  

In order to determine the activation of the P and B dopants, the built-in potentials 

across the Si-Ge heterojunction were simulated using varying amounts of active P and B, 

as shown in Figure 5.11b. These simulations show that the built-in potential offset between 

Si and Ge is ~0.48V (at ~400nm relative to Ge at 0nm), with the Ge side lower, if both P 

and B are fully activated (100% P and 100% B). If the active B is 100% and P is only 10%, 

then the potential offset is reduced to 0.44V and if the active B is only 10% and P is 100%, 

then the potential offset is 0.39V. Further reductions of the active P and B concentrations 

by an order of magnitude did not affect the built-in potential offset by very much. Moreover, 

most of the depletion and built-in potential change across the Si-Ge heterojunction 

remained in the region from 200 nm to 250 nm so that the length of the depletion region 

stayed at about the same size as the i-Ge segment (~50 nm). Since most of the built-in 

potential increase from Ge to Si is in the i-Ge region, from 200 nm to 250 nm, a phase 

increase in the Ge segment right before the Si-Ge interface would be expected at ~400nm 

in Figure 5.7b. However, this signal was not observed in the experiment, possibly because 

of the complexity of the SiGe interface and differences in MIP discussed above. The built-

in potential offset measured from the holography experiment was ~0.4±0.2 V, which 

closely fitted the cases simulated for 10% B in Ge and 100% P in Si, and for 100% B in Ge 

and 10% P in Si. However, the potential profile from the holography experiments was noisy 

because of the NW surface irregularities and cannot readily distinguish the ~0.2 V 
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difference. Therefore, the amount of active P and B dopants cannot be accurately 

determined under these experimental conditions, and it can only be concluded that either 

100% active P and 10% B, or 10% P and 100% B give the closest fit between experiment 

and simulations. A further comparison with simulation under biasing conditions is most 

likely needed to determine the active dopant concentrations.  

In Figure 5.7b, the total change of potential in the Si segment from 500nm to 650nm 

is ~0.7 V, whereas the change of Si NW width, measured from the width profile in Figure 

5.7a and 5.6d, is only 3%, which would only cause about 0.3 V difference. Moreover, the 

potential in the Si segment extending from 450nm to 800nm in Figure 5.11b increases by 

0.1 V because the dopant level increases close to the catalyst. Au has been reported to form 

a Schottky contact with Si [13]. However, because the P dopant concentration near the 

catalyst is so high, the built-in potential change due to the Schottky contact is limited to a 

very small area adjacent to the catalyst and should not influence measurements across the 

Si-Ge heterojunction, as shown at ~800nm in Figure 5.11b. Thus, the increase of potential 

from 550nm to 650nm in Figure 5.7b can be partially explained by the combined effect of 

diameter increase and P dopant concentration increase. The extra potential offset could be 

due to diffraction near the catalyst.  

  111 



 

Figure 5.12 Simulated band structure using 100% activated B and 10% P, but without Ga 

from Figure 5.10.  

 

To better understand the carrier transport properties of the NW, Figure 5.12 shows 

the simulated band structure alignment using dopant profiles of 100% B and 10% P, as 

measured from APT. The Fermi level is in the valence band on the Ge side due to the high 

level of p-type dopant, while it is under but close to the conduction band on the Si side. 

When the dopant level towards the catalyst increases to 1019 cm-3, the Fermi level on the 

Si side gets closer to the conduction band. For a typical tunneling transistor, the Fermi level 

on Si side should be in the conduction band and it should be in the valence band on the Ge 

side across the Si-Ge interface. However, because the dopant level in Si near the SiGe 

interface is not high enough, the Fermi level near the SiGe interface is still in the forbidden 

band and electrons cannot easily tunnel through the interface. When the positive bias on Si 

is increased, the band structure on the Si side is lower and electrons can then tunnel from 

the Ge valence band to the Si conduction band. When negative bias is applied to Si, the 
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band structure on the Si side is higher so that electrons can move easily from the Si 

conduction band to the Ge conduction band. 

In order to interpret the in situ EH biasing experiments, further simulations were done 

for a similar device structure, connecting the Si end to tungsten, forming a Schottky contact, 

and connecting Ge to an ohmic contact. Bias from -5V to +5V was then applied on the Si 

side, with the Ge side kept grounded. The simulated built-in potential profiles under bias 

are shown in Figures 5.13a and 5.13b, where Figure 5.13a uses active dopants of 100% P 

and 10% B, as measured from the APT results, and Figure 5.13b uses active dopants of 10% 

P and 100% B. In both cases, the simulated built-in potential offset increases as the applied 

positive bias increases, whereas it only decreases slightly under different negative bias. The 

built-in potential of the Ge intrinsic region increases to a smaller amount as positive bias 

is applied, whereas it only decreases slightly as negative bias is applied, which would cause 

the change of dip observed in Figure 5.9a. The slope in potential, moving from Ge (200 

nm) to Si (250 nm), also increases under positive bias, whereas the slope of the potential 

decreases slightly under negative bias. Moreover, the depletion region and built-in potential 

change under negative bias is mostly distributed in the i-Ge region, from 200nm to 250nm. 

However, the distribution of depletion region and built-in potential change between the two 

cases is different under positive bias. In Figure 5.13a, because of the high dopant 

concentration of P in Si and relatively low concentration of B in Ge, most of the depletion 

region and built-in potential change is in part of the p-type Ge region and the i-Ge region, 

from 120 nm to 250 nm. There is only a very small built-in potential change region located 

at the n-type Si segment, from 250 to 270nm.  On the other hand, in Figure 5.13b, there is 

a relative low concentration of P in Si and high concentration of B in Ge. The depletion 
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region and built-in potential change is mostly distributed at the i-Ge region and the n-type 

Si, from 200 nm to 320 nm. The experimental results in Figure 5.9a show that the potential 

goes up slightly on the Ge side from 200 to 250nm and the slope of the potential changing 

from 250 to 300nm also increases on the Si side under positive bias. Under negative bias, 

the potential on Ge side does not change, whereas the potential decreases slightly on the Si 

side. The depletion region change under negative bias is not obvious due to the complexity 

of the Si-Ge interface region discussed above. Considering the distribution of built-in 

potential change, Figure 5.13b gives a better fit to the experiment results, where the built 

in potential change is mostly located in the i-Ge and the Si segments (200nm-300nm), 

suggesting that there may be partial compensation of the P by Ga in the Si segment of the 

nanowire.  

 

Figure 5.13 (a) Simulated built-in potential line profiles under different bias conditions, 

using 10% activated B and 100% P, but without Ga from Figure 5.10; (b) Simulated built-

in potential line profiles under different bias conditions, using 100% activated B and 10% 

P, but without Ga from Figure 5.10. 
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With positive bias applied, the Schottky contact is in forward bias and has low 

resistance, while the Si-Ge heterojunction is in reverse bias and has high resistance. Thus, 

most of the positive voltage would be distributed across the Si-Ge heterojunction. The 

built-in potential offset across the heterojunction will increase as the bias increases. When 

the bias exceeds a certain value, the Si conduction band will become low enough. Thus, 

electrons from the Ge valence band can tunnel through the Si-Ge interface into the Si 

conduction band, giving a rectifying effect in the IV curve, as shown in Figure 5.9b. With 

negative bias, the Schottky contact is in reverse bias and has high resistance, while the Si-

Ge heterojunction is in forward bias. The resistance of the heterojunction is low compared 

to the Schottky and ohmic contacts, and most of the negative voltage is distributed on the 

contacts. Therefore, the built-in potential offset across the heterojunction will be close to 

the one without bias and will not change much under different negative bias. Due to the 

high dopant level in Si near the catalyst, electrons can tunnel through the Schottky contact 

and thus there is still a rectifying effect due to the Si-Ge heterojunction, which is visible in 

the IV curve in Figure 5.9b. Therefore, the change of dip and nearby Ge segment, as well 

as the Si segment in Figure 5.9a, can be explained and the simulation results match well 

with the in situ holography biasing experiment.   

 

5.4    Conclusions 

Doped Si-Ge heterojunction NWs have been grown using the VLS method, and APT 

measurements were made to extract the B, P and Ga dopant concentrations as well as the 

Si, Ge composition profiles. The electrostatic potential profile measured by electron 

holography showed that the total potential offset across the Si-Ge heterojunction had the 
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value of 1.8±0.2V, with the Si side lower, whereas the built-in potential offset had the value 

of 0.4±0.2V, with the Ge side lower because of the difference in MIP between Ge and Si. 

Comparisons with simulations indicated that the Ga present in the Si region was, at most, 

only partially activated and that its effect could be ignored. The P and B active dopants 

could not be determined accurately due to noise from the irregular NW surface and 

insensitivity in the depletion region length because of the i-Ge region. In situ biasing 

experiments combined with electron holography were also performed. With positive bias 

on Si, most of the voltage was distributed across the Si-Ge heterojunction and its built-in 

potential increased to the same amount as the applied bias, whereas most of the voltage 

was distributed on the contacts with negative bias on Si and the built-in potential across 

the heterojunction was not changed much. Comparisons between biasing EH results and 

simulations indicated that the B dopant in Ge is mostly activated but not the P dopant in Si, 

possibly due to partial compensation by Ga in the Si region. The I−V characteristic curve 

was measured and could also be explained using simulations. Overall, these results 

demonstrated that off-axis electron holography, APT and TCAD simulations provide a 

powerful combination for understanding the electrically active dopant distributions in 

doped NW device heterostructures. 
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CHAPTER 6 

CHARACTERIZATION OF TRAPPED CHARGES IN Ge/LixGe CORE/SHELL 

STRUCTURE DURING LITHIATION USING OFF-AXIS ELECTRON 

HOLOGRAPHY 

 

This chapter describes the lithiation of Ge nanowires (NWs) and the measurement of 

trapped charges in Ge/LixGe core/shell NWs using off-axis electron holography. The Ge 

NWs were grown using the vapor-liquid-solid (VLS) method, and were provided by 

Chongmin Wang and Meng Gu from Pacific Northwest National Laboratory. My 

contribution to this work has included characterization of the NW lithiation process, 

measurement of electrostatic profiles across the core/shell structures, and simulations for 

estimation of the trapped charge. 

 

6.1    Introduction 

Lithium ion batteries (LIBs) have important applications as energy-storage systems 

for portable electronics, electric vehicles, and sources of renewable energy such as wind 

and solar [1,2]. Graphite is currently used as the anode material in commercial LIBs. 

However, graphite has a limited theoretical capacity of 372 mAhg-1 and it cannot meet the 

growing demands for high energy density and long life-time [3,4]. Novel materials such as 

other group IV materials (Si, Ge and Sn), with higher theoretical capacities, are being 

considered as possible alternatives [3]. Si has received most attention because of its greatest 

theoretical capacity of 3579 mAhg-1 and 8334AhL-1 for Li15Si4 at room temperature, as 

well as its abundance [5,6]. Relative to Si, Ge has lower theoretical capacities of 1384 
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mAhg-1 and 7366 AhL-1 for Li15Ge4 at room temperature, and it is more expensive [3,7]. 

However, Ge has higher intrinsic electronic conductivity because of its smaller band gap 

(0.6eV) compared to Si (1.1eV) [8]. Moreover, the Li ion diffusivity in Ge is about two 

times larger, compared to Si [9,10]. Thus, Ge has high charging/discharging rates in LIBs, 

compared to Si, which is also an important consideration for LIB applications. Despite 

these advantages, a major drawback of using Si or Ge is the huge volume change upon full 

lithiation/delithiation (281% for Si and 246% for Ge), which may lead to degradation of 

electrodes and the solid electrolyte interface (SEI), causing irreversible loss of LIB capacity 

[11-15]. Nanostructures have been developed to accommodate the strain during lithiation 

and to increase rate capability by shortening the Li ion diffusion length [16-18]. 

In situ transmission electron microscopy (TEM) has been used to characterize the 

microstructure and phase transition behavior during lithiation/delithiation for several 

materials, including Si, Ge and Sn, by using open cell structures with liquid or solid 

electrolytes [11,14,19-23]. Two-step phase transformation: c-Ge(Si)→a-LixGe(LixSi)→c-

Li15Ge4(Li15Si4) has been observed during Ge (Si) lithiation [11,20,22]. Anisotropic 

lithiation was observed for different growth directions in Si, whereas isotropic lithiation 

was observed in Ge [11,14]. Amorphous LixGe(Si) and crystal Ge(Si) interfaces have been 

studied during lithiation to understand the lithiation mechanism with atomic-scale 

resolution [19,21,24]. Simulations have also been performed to prove that extra electrons 

in Si near the LixSi-Si interface drive the solid-state amorphization of Li-Si alloy [25]. 

Knowledge of the charge distribution during lithiation is important for developing a better 

understanding of the lithiation mechanism and the associated electrochemistry. Off-axis 
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electron holography has been used to characterize the charge distribution across the Ge/ 

LixGe core/shell nanowire during the lithiation process. 

 

6.2    Experimental Details 

The Ge NWs were grown along [111] directions on Ge substrates. After growth, one 

Ge NW was attached to a Pt tip using silver glue and Li metal was attached to a second Pt 

tip. Both were then installed in a NanofactoryTM STM holder for the in situ lithiation 

experiments. Before insertion into the TEM column, the STM holder was exposed to air 

for a few seconds, and a Li2O layer was formed on the Li metal surface, which would act 

as a solid electrolyte during lithiation. The Ge NW was moved to make physical contact 

with the Li source, forming an open cell battery structure, as illustrated in Figure 6.1. A 

bias of ~-2V was applied to the Ge NW, while the Li metal was kept grounded during the 

lithiation process. The electron holography experiments were performed using an FEI Titan 

80-300, which was operated at 300keV and equipped with field emission gun, probe 

corrector, biprism, Lorentz lens and Quantum EELS spectrometer. For the holography 

experiments, the objective lens was switched off, and the Lorentz mini lens was used to 

obtain a larger field of view. The typical biprism voltage was 120V and the hologram 

exposure time was 2s. 

 

Figure 6.1 Schematic diagram of setup used for in situ observations of the Ge NW lithiation 

process. 
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6.3    Results and Discussions 

 

Figure 6.2 TEM images of Ge NW during lithiation process: (a) Before lithiation; (b) 

Formation of Ge/LixGe core/shell structure; (c) The shell part grew while the core part 

shrank; (d) At the end of lithiation, when polycrystalline LixGe has been formed. 

 

Figure 6.2 shows TEM images of the Ge NW during lithiation. Figure 6.2a shows the 

Ge NW in contact with the Li metal. Application of -2V bias causes Li2O to diffuse onto 

the Ge NW surface as the solid electrolyte. Figure 6.2b shows that Li ions diffused into the 

Ge NW surface, forming a crystalline Ge/amorphous LixGe core/shell structure. As 
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lithiation continued, the shell became thicker, while the core region shrank. The total 

volume of the NW increased, as clearly visible in Figure 6.2c, and the core decreased to a 

small size. At the end of the lithiation, the Ge core disappeared completely and the NW 

became polycrystalline, as shown in Figure 6.2d.  

Figure 6.3 shows STEM HAADF and EELS mapping of Ge/LixGe core/shell 

structure, which were recorded immediately after Figure 6.1b. These results indicate the 

distribution of Li at the shell and confirm the expected core/shell structure.  

 

Figure 6.3 EELS mapping of Ge/LixGe core/shell structure: (a) STEM HAADF image; (b) 

EELS spectrum showing the presence of Li; (c) Li mapping of core/shell structure. 
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Figure 6.4 Electron holography observations of Ge/LixGe core/shell NW during lithiation: 

(a), (d) and (g) Holograms of NW; (b), (e) and (h) Corresponding reconstructed phase 

images, shown in pseudo-color (scale bar shown at top right in units of radian); (c), (f) and 

(i) Phase profiles along the white arrows in (b), (e) and (h), respectively. 

 

Electron holography observations were made during the lithiation process. Figures 

6.4a, 6.4d and 6.4g show holograms taken at about the same time as Figures 6.2b, 6.2c and 

6.2d, respectively. Figures 6.4b, 6.4e and 6.4h are the corresponding reconstructed phase 

images, using pseudo-color to show the change of phase. The color scale bars are shown 
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at top right. The center part of the NW has higher phase compared to the outer parts, which 

is due to the combination of greater thickness and higher mean inner potential of crystalline 

Ge, compared to LixGe. Phase profiles were extracted along the white arrows in the 

reconstructed phase images and shown at the right. The Ge core in Figure 6.4c is about half 

the diameter of the NW, and both the core and shell parts mimic a cylindrical NW shape. 

In Figure 6.4f, the Ge core has shrunk to a smaller size and it is apparently faceted, as 

shown by the triangular shape at the center. The LixGe shell part has a round cross section.  

In Figure 6.4h, the entire Ge NW has been lithiated, the Ge core has disappeared, and the 

lithiated LixGe (x~3.75) NW again mimics a cylindrical NW shape. During this process, 

the NW diameter has increased from 180nm in Figure 6.4c, to 250nm in Figure 6.4i.  

The phase profiles across the NW will be caused by the mean inner potential of the 

materials as well as any built-in potential. To interpret the phase profiles, it is first assumed 

that there are initially no trapped charges in the NW and that the phase shift is due only to 

mean inner potential Vshell and change of thickness. A model including trapped charges is 

discussed further below. Assuming that the NW has a cylindrical shape, then the phase 

shift due to the shell part can be calculated and compared with the experimental results, as 

shown by the red curves in Figure 6.4c, 6.4f and 6.4i. From the fitting for the best fitted 

Vshell, it seems that a cylindrical NW shape fits reasonably well with the experimental 

results. The best fitted values of Vshell for these three stages of lithiation are shown in table 

6.1. As the lithiation continued, the mean inner potential of Vshell decreased from 7.6V to 

5.1V. This drop would indicate that the Li component in the shell has increased during 

lithiation, because Li is a lighter element and has smaller mean inner potential, compared 

to Ge. The bias applied to the NW should not affect this conclusion since the bias was kept 
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fixed at -2V. Similar fitting was applied for the core part in Figure 6.4c, as shown by the 

blue curve. This model also closely fits with the experimental data. However, the best fitted 

Vcore is only 10.6±0.1V, compared to the value of 14.3V for crystalline Ge in the literature 

[26]. This difference suggests the possibility that charges are trapped in the NW during the 

lithiation.  

Table 6.1 Measured potential of the LixGe shell. 

Number Vshell (V) 
1 7.6±0.1 
2 6.4±0.1 
3 5.1±0.1 

 

In order to determine the amount of trapped charge in the NW, a variety of models 

were proposed, including (a) sheet electrons at the Ge core surface and sheet positive 

charges at the inner shell surface; (b) bulk electrons at the Ge core and sheet positive 

charges at the inner shell surface; (c) sheet electrons at the Ge core surface and sheet 

positive charges at the outer shell surface; (d) bulk electrons at the Ge core and sheet 

positive charges at the outer shell surface; (e) sheet electrons at the Ge core surface and 

bulk positive charges at the shell; (f) bulk electrons at the Ge core and bulk positive charges 

at the shell. The best fitting model is shown in Figure 6.5a. This model assumed that Li+ 

ions had accumulated in the Li2O layer on the NW surface, while electrons were uniformly 

trapped in the Ge core. Using this model, the built-in potential in the NW could then be 

calculated using the Poisson’s equation. Because there is no information in the literature 

about the permittivity of LixGe, the value for Ge (16) was used in the calculation. The 

calculated phase shift 𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐 is due to the combination of built-in potential and mean inner 

potential, and can be calculated using Equation 6.1. The values of the electron density 𝜌𝜌 in 
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the Ge core and Vshell were systematically varied until the average error (𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐 − 𝜑𝜑𝑒𝑒𝑒𝑒𝑒𝑒)2 

reached a minimum, where 𝜑𝜑𝑒𝑒𝑒𝑒𝑒𝑒  represents the experimental data. The mean inner 

potential for Ge was set to be constant at 14.3V during the fitting process. The final result 

of the fitting is shown by the red curve in Figure 6.5b. The best results are:  

𝜌𝜌 = 3 × 1018 electrons cm3⁄ ;  𝑉𝑉𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 8.4𝑉𝑉                               (6.2)  

The RMS error for the fitting is 0.4 radian.  

 

Figure 6.5 Model for trapped charges in Ge/LixGe core/shell structure: (a) Schematic 

diagram of the model; (b) Experimental data (black) and best fitted results (red). 

 

Using the fitted charge density, the built-in potential distribution across the core/shell 

structure can be plotted, as shown in Figure 6.6a, using pseudo-color to show the change 

of potential. A potential profile is also extracted along the y=0 axis and shown in Figure 

6.6b. This profile indicates that there is ~-2V potential difference between the shell and the 

surface of the core, which fits with the bias experiment conditions. Extra electrons are 
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accumulated at the Ge core and thus reduced the measured total potential. The apparent 

lower value of the mean inner potential described earlier can therefore be explained.  

 

Figure 6.6 Simulation of potential distribution in Ge/LixGe core/shell NW: (a) Potential 

distribution in NW cross section, shown in pseudo-color with scale bar on the right in units 

of V; (b) Potential profile along Y=0 in (a). 

 

The amount of Li (x) in the LixGe shell can also be estimated by using the volume 

ratio and measured mean inner potential. The proposed equation is described below: 

𝑥𝑥∙𝑉𝑉𝐿𝐿𝐿𝐿+𝑉𝑉𝐺𝐺𝐺𝐺
𝑉𝑉𝐺𝐺𝐺𝐺

∙ � 𝑉𝑉𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺
𝑉𝑉𝑉𝑉𝑉𝑉𝐿𝐿𝐿𝐿𝑥𝑥𝐺𝐺𝐺𝐺

� = 𝑉𝑉𝐿𝐿𝐿𝐿𝑥𝑥𝐺𝐺𝐺𝐺
𝑉𝑉𝐺𝐺𝐺𝐺

                                             (6.1) 

where VGe and VLixGe are the mean inner potentials for crystal Ge and LixGe, respectively, 

VolGe and VolLixGe are the volumes for Ge and LixGe, respectively, and VLi is the mean 

inner potential changed when one Li atom is added to Ge and the total volume is unchanged. 

This equation also assumes that the MIP for Ge does not change during phase change. 

The measured radius for core and the whole NW are shown in table 6.2, where case 

A is before lithiation, case B, C and D are at the time corresponding to Figure 6.4a, 6.4d 

and 6.4g, respectively. The case D at Figure 6.4g is used for calibration, where x is 
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approximated to be 3.75 for the fully lithiated phase and the volume ratio 𝑉𝑉𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺
𝑉𝑉𝑉𝑉𝑉𝑉𝐿𝐿𝐿𝐿𝑥𝑥𝐺𝐺𝐺𝐺

 was 

calculated to be 0.13. The value for VLi is then calculated to be 6.27V, using 14.3V MIP 

for crystal Ge [26] and Equation 6.1. Since the core disappeared, there should be no trapped 

charge in the NW structure, which might influence the result. 

Table 6.2 Measured radius for NW core and whole NW. 

Case Core (nm) Whole NW (nm) 
A - 66 
B 45 88 
C - 110 
D - 129 

 

After the calibration, the amount of Li x in LixGe can be calculated, again using 

Equation 6.1. For case B at Figure 6.4a, the x in the NW shell is calculated to be 2.4 for 

the measured MIP of 7.6V, where the effect of trapped charge was ignored, while x is 

calculated to be 2.9 for the measured MIP of 8.4V, where effect of trapped charge was 

included by using the best fitted model discussed above. These results indicate that the 

intermediate lithiated state for NW shell is LixGe, where x is significantly lower than 3.75. 

As the lithiation process continued, more Li might be diffused into the LixGe shell structure 

and thus x was increased until it reached 3.75 and the NW was fully lithiated. The case C 

cannot be calculated to confirm this result because the core is faceted and its cross section 

area cannot be calculated. Further experiments and other methods might be necessary for 

further investigation.  
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6.4    Conclusions 

A Ge NW was lithiated in situ by applying 2V bias between its two ends, and TEM, 

STEM and EELS were used to characterize the changes in the Ge/LixGe core/shell structure. 

Electron holograms were taken during the lithiation process to determine the charge 

distribution inside the NW. The mean inner potential for LixGe decreased during the 

process, due to an increase of the Li content in the shell. Lower potential at the Ge core 

was also discovered, and attributed to accumulation of trapped charge. A model was 

proposed to explain the lower measured Ge potential, and the amount of trapped charge in 

the Ge core was calculated to be 3×1018 electrons/cm3. The amount of Li during lithiation 

was calculated using MIP and volume ratio. It suggests that the Li amount in LixGe during 

lithiation might be lower than the fully lithiated phase and increased during the lithiation 

process. 
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CHAPTER 7 

SUMMARY AND FUTURE WORK 

 

7.1    Summary 

The research of this dissertation has involved quantitative analysis of electrostatic 

potential profiles and charge distributions in semiconductor nanostructures using off-axis 

electron holography.   

ZnO nanowires (NWs) and thin films have been investigated. The mean inner 

potential (MIP) and inelastic mean free path (IMFP) of ZnO has been measured using ZnO 

NWs. The MIP at 200keV was measured to be 15.3V±0.2V and the IMFP was measured 

to be 55±3nm. The measured MIP agreed closely with the value reported in the literature. 

The MIP and IMFP values were then used to measure the thickness of a ZnO nano-sheet 

and gave consistent results for thicknesses in the range of 14nm-18nm. 

ZnTe thin films have also been studied. The MIP was measured using intrinsic ZnTe 

thin films and convergent beam electron diffraction (CBED). The MIP at 200keV was 

measured to be 13.7±0.6V and the IMFP was measured to be 46±2nm. The MIP 

measurement matched the value obtained by calculations. The measured MIP and IMFP 

were then used to study a ZnTe thin film expected to have a p-n junction. However, no 

change in signal due to built-in potential was observed across a junction. Possible reasons 

might be: (a) the Al dopants were not activated; or (b) the junction was outside the field of 

view of the holography experiment. Dynamical effects were systematically studied using 

Bloch wave simulations. Thinner samples, avoiding low-index zone axes and careful 

sample tilting will all help to minimize these effects. 
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Si NWs with axial p-n junctions and Schottky junction were investigated [1]. The 

Schottky junctions were formed at the end of the NW due to the presence of Au catalyst 

particles. The electrostatic potential profile measured by electron holography showed that 

the built-in potentials across the p-n junction and the Schottky junction, had values of 

1.0±0.3V and 0.5±0.3V, respectively. Simulations indicated that the dopant concentrations 

were ~1019cm-3 for donors and ~1017 cm-3 for acceptors. The positively charged Au particle 

at the end of the grounded NW had to be considered in order to account for the lower work 

function in the simulation. The effects of a possible transition region forming an n+-n--p 

junction, and possible surface charge, were also systematically studied using simulations. 

Doped Si-Ge heterojunction NWs were investigated using off-axis electron 

holography, while atom probe tomography (APT) measurements were made to extract the 

B, P and Ga dopant concentrations as well as the Si, Ge composition profiles [2]. The 

electrostatic potential profile measured by holography showed that the total potential offset 

across the Si-Ge heterojunction had the value of 1.8±0.2V, with the Si side lower, whereas 

the built-in potential offset had the value of 0.4±0.2V, with the Ge side lower because of 

the difference in MIP between Ge and Si. Comparisons with simulations indicated that the 

Ga dopant present in the Si was, at most, only partially activated and that its effect could 

be ignored. The P and B active dopants could not be determined accurately due to noise 

from the irregular NW surface and insensitivity in the depletion region length because of 

the i-Ge region. In situ biasing experiments combined with electron holography were also 

performed. With positive bias on Si, most voltage was distributed across the Si-Ge 

heterojunction and its built-in potential increased to the same amount as the applied bias, 

whereas most of the voltage was distributed on the contacts with negative bias on Si and 
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the built-in potential across the heterojunction was not much changed. Comparisons 

between EH biasing results and simulations indicated that the B dopant in Ge was mostly 

activated but not the P dopant in Si, possibly due to partial compensation by Ga in the Si 

region. The I−V characteristic curve was measured and could also be explained using 

simulations.  

Ge/LixGe core/shell structures were studied during lithiation using S/TEM, EELS and 

holography. The Ge NW was lithiated in situ by applying 2V bias between the two ends. 

Electron holograms were taken during the lithiation process to determine the charge 

distribution inside the NW. The MIP for LixGe decreased during the process, due to an 

increase of the Li content in the shell. Lower potential at the Ge core was also discovered, 

and attributed to accumulation of trapped charge. A model was proposed to explain the 

lower measured Ge potential, and the amount of trapped electrons in the Ge core was 

calculated to be 3×1018 electrons/cm3. The amount of Li during lithiation was calculated 

using MIP values and the volume ratio. The results suggest that the amount of Li in LixGe 

during lithiation might be lower than the fully lithiated phase but increased during the 

lithiation process. 

Overall, this dissertation research has reiterated that off-axis electron holography is 

an effective technique for quantitative characterization of nanostructure thickness and 

electrostatic potential profiles with nanoscale resolution. Combining electron holography 

and simulations provides information about electrically active dopant and trapped charge 

distributions in semiconductor nanostructures, which are important for understanding 

electrical mechanisms and for developing future semiconductor devices. Moreover, 

electron holography coupled with in situ biasing can be used to characterize devices under 
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working conditions and to extract information which is not shown under unbiased 

conditions. 

  

7.2    Remarks on Possible Future Work 

This dissertation research has clearly demonstrated that electron holography is an 

effective technique for quantitative characterization of built-in potential, and active dopants, 

as well as trapped charges, with nanoscale resolution. However, electron holography only 

gives two-dimensional projected-phase information about the sample. Uniform 

composition and built-in potential distributions in the sample along the electron beam 

direction were assumed in this dissertation research for calculations of active dopant 

concentration. For semiconductor devices, the built-in potential may vary along the beam 

direction due to surface effects or inhomogeneous dopant distributions. Therefore, it is 

important to obtain three-dimensional phase information and hence the built-in potential 

distribution in order to make accurate measurements of dopant amounts.  

This problem can be solved by taking holograms at different tilt angles and using 

tomographic reconstruction [3]. 3-D holography characterization of Si thin films with p-n 

junctions has been reported [4], and it was found that the surface active dopant 

concentrations were lower, whereas the central ones were very close, compared to bulk 

material. NWs have a large surface-to-volume ratio and the surface may play an important 

role in overall dopant distributions. A preliminary tomography experiment has been 

performed on Si-Ge axial heterojunction NWs using HAADF STEM tilt image series, as 

shown in Figure 7.1. The tilt series were taken using FEI Titan G2 80-300 operated at 

300kV. The sample was tilted from -70˚ to 70˚ and the HAADF images were taken every 
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2˚. Figure 7.1a shows a typical image that was taken at 0˚ tilt angle. The intensity from 

HAADF image is directly related to the atomic number and thickness of the sample, and 

therefore it satisfies the tomography reconstruction requirements. The data was 

reconstructed by INSPECT3DTM using the simultaneous iterative reconstruction technique 

(SIRT) algorithm with 20 iterations. The result is shown in Figure 7.1b, using pseudo-color 

to show the change of intensity, and the cross section of the NW is shown in Figure 7.1c. 

From the HAADF image tomography reconstruction, the composition distribution is 

almost uniform in cross section and the NW grown along <111> direction has a hexagonal 

cross section. However, the HAADF image is not sensitive to the dopant concentrations 

nor the built-in potential. Further tomographic holography experiments are necessary so 

that the three-dimensional phase as well as the built-in potential distribution can be 

extracted. The active dopants in all three dimensions could thus be determined by 

comparison with simulations.   
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Figure 7.1 Tomography of Si-Ge NWs: (a) HAADF image at 0˚ tilt; (b) Tomography 

reconstruction result shown in pseudo color; (c) Cross section of NW. 
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