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ABSTRACT

This research develops heuristics for scheduling electric power production amid uncertainty.

Reliability is becoming more difficult to manage due to growing uncertainty from renewable

resources. This challenge is compounded by the risk of resource outages, which can occur

any time and without warning. Stochastic optimization is a promising tool but remains

computationally intractable for large systems. The models used in industry instead schedule

for the forecast and withhold generation reserve for scenario response, but they are blind to

how this reserve may be constrained by network congestion. This dissertation investigates

more effective heuristics to improve economics and reliability in power systems where

congestion is a concern.

Two general approaches are developed. Both approximate the effects of recourse

decisions without actually solving a stochastic model. The first approach procures more

reserve whenever approximate recourse policies stress the transmission network. The second

approach procures reserve at prime locations by generalizing the existing practice of reserve

disqualification. The latter approach is applied for feasibility and is later extended to limit

scenario costs. Testing demonstrates expected cost improvements around 0.5%–1.0% for

the IEEE 73-bus test case, which can translate to millions of dollars per year even for

modest systems. The heuristics developed in this dissertation perform somewhere between

established deterministic and stochastic models: providing an economic benefit over current

practices without substantially increasing computational times.
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Chapter 1

INTRODUCTION

1.1 Overview

Power system production scheduling shares many similarities with standard supply

chain problems. There are suppliers who base their activities on consumer forecasts and

the product is delivered across a relatively inflexible network. However, power production

scheduling has some important distinctions from other supply chain problems. The most

notable distinction is that Kirchhoff’s laws dictate the path power takes once it has been

injected into the system. The resulting power flow equations are non-convex and, therefore,

difficult to model accurately for efficient optimization algorithms. Reliability standards

further increase the complexity by requiring feasibility across a large number of plausible

scenarios. It is well recognized in the research community that modeling many scenarios to

high precision is not yet computationally tractable for large power systems (Q. P. Zheng,

Wang, & Liu, 2014; FERC, 2014a). Approximate models are, therefore, used in practice but

may be unnecessarily expensive or technically infeasible if they fail to anticipate network

constraints.

Commercial scheduling models have steadily improved over the years. Linear power

flow approximations facilitate linear programming and mixed integer linear programming

algorithms. Many scheduling decisions are made day-ahead to provide adequate lead time
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for generators to prepare for operation. Day-ahead scheduling models, ideally, would

recognize and account for critical constraints because many decisions are fixed at this

stage. Day-ahead scheduling is also coupled with electricity markets in many parts of the

United States (US), and inaccurate model approximations can have the additional downside

of biasing market outcomes (Pritchard, Zakeri, & Philpott, 2010). Accurate models are

important to ensure that power systems run economically and reliably, and promoting such

efficiency through improved computational methods is a core strategical goal of the Federal

Energy Regulatory Commission (FERC, 2014b). This research supports that initiative by

developing effective approaches that can be implemented in the near future.

Reliability standards regulate operations to protect against uncertainty. For example,

the N-1 standard requires operators to continue serving demand following the failure of any

single generator or transmission line. These resource outages are called contingencies in

this industry. There is a 15-minute re-dispatching period allowed following a contingency

for operators to rebalance supply and demand and to alleviate stress on the transmission

network (NERC, 2014b). Likewise, operating conditions must be managed for other forms

of uncertainty, such as intermittent generation from wind and solar plants. Dispatchable

backup capacity called reserve is used to respond to disturbances when they occur. Reserve

is considered deliverable if it can be utilized without violating transmission constraints. The

focus of this dissertation is on ensuring reserve deliverability in congested networks.

Congestion is a major concern for some operators. Some areas are operating closer to

their limits as transmission expansion has lagged behind new investments in wind generation
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(ERCOT, 2007; Gu, McCalley, & Ni, 2012). Meanwhile, intermittent generation from

renewable resources (mostly wind) is becoming more pervasive as governments enact stricter

renewable portfolio standards to reduce emission of greenhouse gases. Fluctuations in

available renewable energy are offset in real time by changing the production of conventional

generators. This dynamic complicates operations because network flows change with the

wind, which in turn makes N-1 more difficult to ensure as conditions become less predictable.

There is value in operational tools that can better manage congestion because such tools will

support better use of available resources.

1.2 Research Focus

Unit commitment is an optimization problem that schedules generators (i.e., units)

to be available (i.e., committed) to provide power to consumers. The traditional approach

is to minimize cost subject to a variety of physical and operational constraints. This

dissertation focuses on managing constraints on recourse decisions (i.e., corrective actions,

e.g., generator re-dispatch) made after uncertainty has been revealed. The primary goal is

to ensure that operating constraints can be satisfied across a variety of plausible scenarios.

This target emphasizes economics for forecasted conditions and feasibility across a range of

scenarios.

The initial focus of this work is on ensuring reliability for N-1 contingencies. The

costs of recourse actions are de-emphasized here because individual contingencies are

unlikely to occur and, therefore, have small effects on total expected cost. However, large
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wind fluctuations are common in some parts of the world – common enough to significantly

influence cost on a regular basis. The cost of recourse decisions is considered in the later

part of this dissertation to support economical decisions in systems dealing significant wind

fluctuations.

Operators prepare for uncertainty by acquiring generation and transmission flexi-

bility ahead of time. The generation flexibility is called reserve. There are two popular

approaches for ensuring reserves are deliverable. The more precise strategy is to directly

model transmission constraints on recourse decisions using tools like stochastic program-

ming or robust optimization. However, these methods have limited practical use due to their

computational limitations. The approach favored by operators today is to instead model

flexibility constraints that address reliability in a more approximate manner. These flexibility

constraints are labeled in this dissertation as deterministic policies due to their indirect

treatment of uncertainty. Generation flexibility is obtained in part by reserve requirements

that specify how much generators and other resources must collectively be able to change

production within a specified period of time. Transmission flexibility is encouraged by

preemptively limiting flows below physical limits (this tends to provide more leeway for

corrective actions) and by controlling the location of reserve using zones. Zonal models

distribute reserve across the grid but do not distinguish between locations at a detailed level.

The effect of this limitation is that solutions to the unit commitment problem may fail to

satisfy reliability targets due to imprecise modeling of transmission constraints. More details

on existing approaches are covered by the literature review in Chapter 3.
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(a) reliable space (b) model feasible space (c) improved feasible space 

Figure 1.1: Model feasible regions compared to the N-1 reliable space.

The primary research objective is to mitigate transmission constraints on recourse

decisions. Consider the simplistic representation of all N-1-reliable solutions in Figure

1.1 (a). Modeling limitations force operators to use an approximate feasible set like in

Figure 1.1 (b) in their model if they want to guarantee reliability. The approximations

result in missed opportunities because good solutions may fall outside the approximate

feasible region. The approaches developed in this dissertation are meant to improve the

accuracy of deterministic models to define a feasible set roughly akin to Figure 1.1 (c). The

gains in accuracy are achieved by introducing a minimal number of additional variables and

constraints, and the solution methodologies are designed to be computationally tractable.

The tension between finding a good answer and finding a timely answer is managed by

leveraging partial information on what are likely to be critical constraints.

Two types of techniques are proposed in this dissertation. The first approach is

covered in Chapter 4. It anticipates recourse actions in a simplified way (as an affine policy of

uncertainty), evaluates their influence on transmission stress, and acquires additional reserves
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when transmission stress is high. The additional reserve increases the range of potential

corrective actions and improves the likelihood of there being a feasible re-dispatch solution.

The approach is labeled congestion-based reserve requirements because the minimum

reserve quantity is dependent on the predicted transmission stress. Congestion-based reserve

requirements work best when additional reserves facilitate alternate recourse actions that

can circumvent congestion. This technique is similar to other flexibility requirements but

can anticipate when and where transmission bottlenecks will arise without the use of reserve

zones.

The second approach is introduced in Chapter 5. It disqualifies reserves that are

undeliverable so that reserve requirements must be satisfied by resources at more favorable

locations. Today, reserve disqualification is already used as a corrective tool when the

scheduling model returns an unreliable solution. Successful application depends heavily on

operator insight and experience. This dissertation introduces a mathematical program to

disqualify reserves and generalizes the structure to be scenario-specific. The generalized

constraints account for different congestion patterns that may arise across periods and scenar-

ios. Reserve disqualification is integrated into a decomposition algorithm that can be viewed

as a heuristic for two-stage stochastic programming. In effect, reserve disqualifications

become cuts that remove unreliable solutions from the feasible space (but may also remove

optimal solutions in the process). The algorithm sacrifices the precision of stochastic models

in order to improve computational tractability and it does so using a form of constraint that

is already familiar to power system operators.
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All methods developed in this dissertation can be used in conjunction with existing

models (including many reserve requirements from the literature) to improve reserve deliv-

erability. They are also compatible with established market settlement strategies. In Chapter

5, a new pricing scheme is developed that further rewards resources at prime locations. This

represents a step forward over traditional markets that derive a single price for each zone.

Locational reserve pricing is a potential benefit of stochastic programming (Francisco D.

Galiana, Bouffard, Arroyo, & Restrepo, 2005), but similar developments have been elusive

for deterministic models up until now.

Deterministic models largely aim to ensure sufficient reserve availability. The final

part of this dissertation in Chapter 6 extends reserve disqualification to consider the cost of

dispatching reserves. A new methodology is proposed that disqualifies backup capacity on

the basis of it being too expensive to utilize during a coordinated scenario response. This

effectively removes both unreliable and expensive solutions from the feasible space, as in

Figure 1.2 (c). The approach can be particularly effective in inflexible systems when large

forecast deviations are likely, such as in systems that regularly experience large deviations

in available wind power. The consideration of recourse costs appears to be unexplored by

deterministic reserve requirements in the literature. The new modeling approach fills this

gap while also retaining some similarity to capacity requirements that are already used in

practice.
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(a) reliable space 
and expected costs

(b) feasible space for 
reliability

(c) feasible space for 
reliability & cost

Figure 1.2: Model feasible regions that result from constraints defined for reliability (b)
and for cost (c). The darker shading represents solutions with lower expected costs. The
model in (c) removes solutions from the feasible set that may be expensive when evaluated
over random scenarios.

1.3 Summary of Chapters

Chapter 2 overviews aspects of the electric power industry that are relevant to

this dissertation. The topics include physics of power systems, defining reliability, and

summarizing how reliability is typically addressed. Formulations are provided for power

system scheduling models. This chapter introduces important concepts that influence the

optimization models used for power production scheduling.

Chapter 3 reviews the literature on day-ahead scheduling for power systems under

uncertainty. Most existing research investigates reserve quantities under the assumption that

all reserves are deliverable. There is relatively little work on ensuring reserve deliverability,

and this dissertation works to fill that gap. Deterministic approaches are reviewed and

compared with stochastic models from the literature.
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Chapter 4 investigates congestion-based reserve requirements, which help ensure

reserves are deliverable within zones. The method balances generation and transmission

flexibility in a rough but tractable way. Testing on the IEEE-73 bus test case demonstrates

an improvement to N-1 reliability without increasing operating costs. The results indicate

effectiveness for both transmission and generator contingencies. This chapter may be read

out of order because the methodology is largely independent from those in later chapters.

Chapter 5 generalizes existing reserve disqualification approaches and develops a

framework for their implementation. The proposed approach is scenario-specific, enabling

operators to address distinct congestion patterns that can arise for different contingencies

during different times of day. This contrasts the static policies that are commonly applied

today to handle a wide range of conditions. The approach also allows for locational reserve

pricing that is absent from traditional market structures. Testing on the IEEE-73 bus test

case demonstrates its effectiveness when it is beneficial to control reserve locations within

the reserve zones.

Chapter 6 extends reserve disqualification to mitigate wind uncertainty. This work

modifies existing capacity requirements to anticipate the cost of dispatching backup capacity

if and when it is needed (this cost may include penalties for violating reliability targets). The

model distinguishes suitable capacity for individual scenarios by extending the concept of

response sets from Chapter 5. The approach is shown to identify more economical solutions

for the IEEE 73-bus test case than alternative deterministic policies in the literature.
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Chapter 7 concludes and outlines opportunities for future work. There are several

avenues that may be followed to improve the accuracy and scope of the proposed method-

ologies. Future research should investigate protecting against different forms of uncertainty

and at different time scales, such as during short-term scheduling moving closer to real time.

There may also be opportunities to combine the methodologies with stochastic programming

in order to help those more complex procedures converge in shorter time frames.

The appendices define acronyms, nomenclature, and formulations used in this

dissertation. They include details on the working example explored in Chapters 4 and

5. In addition to the appendices, all terms are identified upon first use in the dissertation

body.

The work in this dissertation has lead to three journal publications thus far. The

model from Chapter 4 is covered by Lyon, Hedman, and Zhang (2014). The modeling

and pricing aspects from Chapter 5 are covered by Lyon, Zhang, and Hedman (2014) and

Lyon, F. Wang, Hedman, and Zhang (2014). The work in Chapter 6 is under review by an

academic journal.
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Chapter 2

BACKGROUND

2.1 Structure of Electric Power Industry

In 2011, the United States (US) generated four billion megawatt hours (MWhs)

of energy across a network comprising 200,000 miles of high-voltage transmission lines

and many more low-voltage distribution lines (Energy Information Administration, 2013b,

2013a). The contiguous US and most of Canada are served by the Western, Eastern, and

Texas Interconnections, each representing a large alternating current (AC) circuit with tight

operating limits. These interconnections are mostly independent and are only loosely tied

together by direct current (DC) transmission lines so that trading can occur between regions.

Such large electrical networks are popularly referred to as the most complex machines ever

constructed by mankind.

Figure 2.1 describes the electricity supply chain. The electrical network facilitates

power delivery from suppliers (generators) to consumers (loads). High-voltage transmission

carries power long distances and low-voltage distribution services the local residential,

commercial, and industrial customers. Transmission and distribution are both understood

to be natural monopolies that are highly regulated (Kirschen & Strbac, 2004; Rothwell

& Gómez, 2003). Their operations are often treated independently: transmission models
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Figure 2.1: The electric supply chain (Hedman, 2009).

typically include an abstraction of the distribution grid and vice versa. The decisions

considered in this dissertation are made at the level of high-voltage transmission.

Entities may be classified as suppliers, transmission, and consumers. Suppliers are

controlled by central operators who coordinate production. The majority of day-to-day

decisions are directly related to generator control. The remaining parts of the system are

relatively inflexible. Power systems are designed in the US to make power available to

consumers whenever they want it at the moment they call upon it. While consumers are

mostly inflexible, some smart grid efforts aim to leverage flexible consumers to alleviate

undesirable conditions. Efforts are underway to increase the flexibility of consumers and

transmission, but most dispatching flexibility today originates from control of generating

units.

Central operators called balancing authorities (BAs) or system operators (SOs) are

responsible for maintaining operating conditions for individual control areas that typically

encompass hundreds of generators and thousands of transmission lines. Some control areas

are operated by vertically integrated utilities and others employ markets where participants

compete with each other. In both vertically integrated and competitive markets, a centralized

operator controls generator dispatch and is responsible for maintaining reliability.
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Vertically integrated utilities serve about two-thirds of load in the contiguous US and

are prevalent in the Northwest and Southeast regions. These utilities are granted a monopoly

over generation, transmission, and distribution, and may coordinate these resources to

minimize cost. However, cost minimization can be disincentivized by cost-of-service

regulations whereby utility profits are regulated to stay near a target rate-of-return (Rothwell

& Gómez, 2003). The efficiency of vertically integrated utilities is uncertain and hard to

validate because operating procedures and analyses are rarely, if ever, published. Electricity

markets emerged in the US over the past 20 years in hopes of improving efficiency through

competition and improved operational practices.

Electricity markets are operated by non-profit independent system operators (ISOs)

that are responsible for managing electricity auctions and ensuring reliability. Electricity

markets are more complex than ordinary markets because they are subject to complex

physical and operational constraints. ISOs operate around the same physical constraints as

vertically integrated utilities but base dispatching decisions on bids from market participants:

generators provide supply bids and load serving entities (LSEs) purchase energy on behalf

of end-use customers 1 . Table 2.1 and Figure 2.2 summarize the span and footprint of ISOs

in the US as of 2012.

All ISOs in the US are regulated by the Federal Energy Regulatory Commission

(FERC). Any changes to market design require FERC approval. FERC proposed a standard

market design in 2002 to encourage more uniform operations and to correct for market

inefficiencies. While the push for standardization was subsequently abandoned (FERC,

1The LSE is often a utility that operates the distribution network in the local area.
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Table 2.1: Independent system operators in the US and their approximate peak loads.

Abbreviation Name Peak load

CAISO California Independent System Operator 50,000 MW
ERCOT Electric Reliability Council of Texas 65,000 MW
MISO Midcontinent Independent System Operator 100,000 MW*

PJM Pennsylvania - New Jersey - Maryland 145,000 MW
NYISO New York Independent System Operator 33,000 MW
ISO-NE Independent System Operator - New England 28,000 MW

*The peak load for MISO will increase because it recently expanded its footprint.

Figure 2.2: Map of independent system operators2(U.S. Government Accountability Office,
2011).

2005), ISOs have voluntarily converged on many issues by adopting the same market design

elements suggested by FERC. Nevertheless, operations still differ across ISOs in several

important ways as operators experiment with different practices and market designs.

ISOs and vertically integrated utilities are subject to reliability standards that are set

and enforced by the North American Electric Reliability Corporation (NERC). Therefore,

operating procedures used in one setting are often applicable in another. It is common

2Southwest Power Pool (SPP) has markets for trading energy but is not an ISO as of 2013.
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for researchers to work in the context of electricity markets because the industry practices

are relatively transparent and applications developed for markets are often transferable to

vertically integrated utilities.

2.2 Scheduling and Control

Power scheduling shares several commonalities with traditional supply chain prob-

lems. Operators forecast the electrical load (demand) at each location and then schedule

generators (suppliers) subject to resource costs and capacities; flexibility is withheld to

mitigate forecast errors; and the network models are subject to node balance and arc capacity

constraints. However, there are important distinctions to be made for power systems as

summarized in Table 2.2.

The first distinction for power systems is that injections and withdrawals travel

quickly (at the speed of light) and are literally continuous. Adjustments are constantly

needed to handle deviations in supply and demand. Conventional generators produce power

Table 2.2: Power system comparison to general supply chains.

Supply Chain Property Power System Analogy

X Limited supply Generator constraints
X Demand forecast Load forecast, etc.
X Backup capacity Reserves, committed generation
~ Conflicting objectives Competing market participants
~ Backlogging Load shifting to different periods
5 Shipment control Flows are subject to Kirchhoff’s laws
5 Non-zero shipment times Power is delivered at the speed of light
5 Safety stock Power is consumed immediately (no inventory)
5 Multiple products Only electrons are transmitted
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via large magnetic turbines that are designed to spin at a nearly constant frequency. The

rotational frequency only changes when mechanical torque from the fuel source does not

match the magnetic torque from the load (Wood & Wollenberg, 1996). Operators always try

to balance supply and demand because frequency must be kept within tight specification

limits (NERC, 2014b) 3 . They maintain this balance by mobilizing backup capacity called

reserve. At present, reserves are mainly provided by generators because consumers are

inflexible and energy storage is expensive.

The second distinction from traditional supply chains is that power flows are subject

to Kirchhoff’s laws that describe a unique mapping from injections to power flows. These

phenomena are non-convex and make power flow models significantly harder to solve.

Section 2.2.1 describes a detailed power flow model and linear approximations that are

commonly used in practice.

There are other power topics related to the supply chain literature not covered in

this dissertation. Mitigating market power is a major concern in market design and loosely

relates to non-cooperation in supply chains, e.g., game theoretic models are common in the

literature. Furthermore, some demand response models defer load to later periods and are,

in that way, similar to backlogging.

This dissertation improves upon scheduling algorithms applied to day-to-day opera-

tions. It is assumed that sufficient capacity is available to satisfy reliability standards. The

3Frequency control is a system-wide effort that benefits from coordination between BAs. The standard
practice is for each area to keep net imports close to a scheduled amount, with deviations measured by the area
interchange error (ACE) (NERC, 2014b).
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Figure 2.3: Instantaneous power as the product of voltage and current.

lack of any reliable operating solution is a medium-to-long-term planning issue that falls

outside the scope of this dissertation.

2.2.1 Power Flow. Power flows through AC circuits according to complex physical laws.

The flow down individual transmission lines is driven by voltage (V ) and current (I), which

oscillate about 60 times per second along sinusoidal curves. These curves are rarely aligned

perfectly 4 . Voltage and current become out of phase due to the electrical properties of the

system, i.e., capacitors cause a lag in voltage and inductors cause a lag in current due to

the delayed formation of electric and magnetic fields. The offsets between curves is crucial

because it is closely related to how power travels through the system.

Total power (S) changes by time according to S(t) =V (t)× I(t). This relationship

is shown in Figure 2.3, where it can be seen that the offset between voltage and current

causes brief periods where the total power is negative. It is useful to decompose power into

two parts: one part that is always nonnegative (real power P) and another that oscillates

4The offset between curves is measured by phase angles. The angle difference is zero when the curves are
aligned and negative when voltage lags current.
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around zero (reactive power Q) (Das, 2006). Although they are both parts of the same whole,

real and reactive power are given different treatments due to their unique influences on the

system. Real power performs the electrical work in consumer devices and reactive power

is closely tied to voltage magnitude. Power flow models often consider only the average

magnitude of real and reactive power in steady state. The power sent from node m to n

across line l = (m,n) is influenced by the electric properties of the line as described by Das

(2006):

Pmn =
[
V 2

m−VmVn cos(θm−θn)
]

Gl−VmVn sin(θm−θn)Bl (2.1)

Qmn =−VmVn sin(θm−θn)Gl−
[
V 2

m−VmVn cos(θm−θn)
]

Bl, (2.2)

where Vn is voltage magnitude and θn is the voltage angle at node n 5 . The power flows

are influenced by transmission properties like conductance Gl and susceptance Bl . These

electrical properties determine how easily line l admits power to flow across it – modest

values impede current and encourage power to take alternative paths. The conductance

Gl influences how much real power is dissipated as heat. The susceptance Bl influences

how much alternating current is resisted by magnetic fields surrounding the line. These

phenomena result from the resistive and inductive properties of the transmission line. Long

lines also have a significant capacitive effect that is not explicitly modeled in the above

formulation (Das, 2006).
5The voltage magnitude and phase angle define the sinusoidal curve in Figure 2.3 for a single location.

Convention defines V , P, and Q as the root mean square (RMS) of the oscillating value (Glover & Sarma,
1994). Also note that voltage angles can be measured relative to an arbitrary reference point because all that
matters in (2.1) and (2.2) is the angle difference between adjacent nodes.
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AC power flow models couple equations (2.1)–(2.2) with flow balance constraints.

Such models include decision variables for the voltage magnitudes and phase angles.

Scheduling problems are complicated by the non-convexity of the AC power flow equations,

and so the following simplifications are common to linearize the problem (Das, 2006):

• Assume that angle differences are small to substitute cos(θm−θn)≈ 1 and

sin(θm−θn)≈ θm−θn. This assumption is reasonable for high-voltage transmission

lines.

• Assume voltages are roughly uniform to substitute Vm =Vn ≈ 1 per-unit. Voltage is

usually controlled using ancillary services to stay between 0.95 and 1.05 per-unit.

• Assume G� B. Taken with the above assumptions, this implies that reactive power

is negligible and that there are no power losses (H. Liu, Tesfatsion, & Chowdhury,

2009).

The resulting power flow equations reduce to Pl = Bl (θn−θm) and Ql = 0, which

define the so-called DC power flow model. The DC power flow is a linear approximation

of AC systems. Significant missing components include losses and reactive power, and so

adjustments are often made to help correct for these inaccuracies (Wood & Wollenberg,

1996). This dissertation forgoes such adjustments and retains the standard DC power flow

problem:

in + ∑
l∈LO(n)

fl− ∑
l∈LI(n)

fl = 0, ∀n ∈ N (2.3)

fl = Bl (θn−θm) , ∀l = (m,n) ∈ L, (2.4)
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where in denotes the net injection (supply minus demand) at node n and fl denotes the

flow on line l relative to an arbitrary reference direction. Equation (2.3) is a standard flow

balance constraint found in many network problems. This equation says that the injection

plus the flow into a node must equal the flow out of the node. Equation (2.4) is different

because it is unique to power systems. This equation says that flow depends on the voltage

angle difference across the line and on how susceptible the line is to conducting alternating

current, as defined by the electrical susceptance Bl . Power travels across the line toward

the smaller angle because susceptance is always negative. Therefore, power can be thought

of as flowing from regions with high voltage angles to regions with low voltage angles,

distributed across lines according to their susceptance.

Operators generally cannot control the path power takes once it has been injected into

the system. The above model solves for voltage angles because they complete the mapping

from injections to flows. The existence of a unique mapping can be shown by demonstrating

that there are |N|+ |L| decision variables (θn and fl) and the same number of linearly

independent equality constraints. The power flow equations (2.3)–(2.4) collectively have

the correct number of constraints. However, they are not linearly independent because (2.3)

implies ∑n∈N
(
in +∑l∈LO(n) fl−∑l∈LI(n) fl

)
= 0, which can be used to determine the flow

for one of the lines without the need for (2.4). The required number of linearly independent

constraints comes about by setting an arbitrary voltage angle equal to zero:

θREF = 0. (2.5)
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The voltage angles are then measured with respect to the angle at the reference location

n = REF. Equation (2.5) establishes that a unique set of voltage angles will arise from any

given set of injections. However, this constraint is omitted from many studies because it

does not affect the estimated power flows (which are driven by the differences between

angles and not the angles themselves).

There is a simpler way to model power flows without solving for voltage angles θ . It

is possible to determine parameters that directly map locational injections to power flows. In

particular, power transfer distribution factors (PTDFs) describe how much power exchanged

between two nodes will travel along a particular transmission line (M. Liu & Gross, 2004).

PTDFs are called shift factors when defined with respect to a constant reference node: then

PT DFnl is the flow on line l for every unit of power sent from node n to the reference. Shift

factors are additive, such that sending power to node n is equivalent to first sending it to the

reference node and then to n. Equation (2.6) below uses this property to characterize flow

by sending all surplus generation (in > 0) to the reference node and then dispersing power

to the locations with surplus demand (in < 0) 6 :

fl = ∑
n∈N

PT DFnlin, ∀l ∈ L. (2.6)

For fixed injections, this relationship provides the same solution as (2.3)–(2.4) but

with fewer variables. This is a popular modeling approach because it makes it easy to

ignore uncritical lines by removing the correspondence constraint from the model – which is

computationally useful in large systems where many lines are rarely congested. The primary

6Power sent from the reference to n can be modeled as a negative transfer in the opposite direction.
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limitation of using shift factors is that they must be calculated off-line and updated whenever

the network topology changes. However, the benefits generally out-weigh the limitations

and so shift factors are commonly used in power system scheduling (Stott, Jardim, & Alsaç,

2009).

The accuracy of DC models is reasonable when warm-start techniques are used to

tune the formulation around the expected system state. Line flow errors when using such

techniques are evaluated by Stott et al. (2009) for six large test cases. The errors are less

than 2% on average but can be as high as 20% in the extreme 7 . The accuracy generally

improves as the system state becomes more predictable moving closer to real time. However,

it is a good idea to check contingencies for AC feasibility because they can cause an abrupt

change to the system state. The analyses in this dissertation do not check for AC feasibility,

but it is understood that infeasible solutions will be found and addressed by system operators

before the system reaches real time.

2.2.2 DC Optimal Power Flow. The direct current optimal power flow (DCOPF) is a

network optimization problem that uses linear approximations like those from Section 2.2.1.

One potential formulation is described in this section. The objective is to dispatch generators

in a way that minimizes cost 8 subject to network and generator constraints. Appendix B

describes the nomenclature for the DCOPF and all other models used in this dissertation.
7Stott et al. (2009) only report errors for lines loaded above 50 MW and 70% of their rated capacity.
8The formulation presented in this chapter relates to generator decisions. Other elements can be modeled

with little change to the problem structure, e.g., flexible demand are sometimes modeled as “negative”
generators.

22



Generators typically have convex total cost curves because fuel efficiency tends to

decrease with production (Wood & Wollenberg, 1996). Piecewise linear cost curves are

common in practice so that the problem can be solved using linear programming (Carrión &

Arroyo, 2006; Pandžić, Qiu, & Kirschen, 2013). The following objective and constraints

model piecewise linear costs:

Minimize: ∑
g∈G

∑
t∈T

∑
i∈I(g)

ci
g p̃ i

gt , (2.7)

∑
i∈I(g)

p̃ i
gt = pgt , ∀g ∈ G, t ∈ T (2.8)

0≤ p̃ i
gt ≤ P̃i

g, ∀i ∈ I,g ∈ G, t ∈ T, (2.9)

where ci
g is the production cost and p̃ i

gt is the production quantity for generator g in interval i

during period t. Each generator has a set of production intervals I(g) with differing marginal

costs. Generator g can produce up to P̃i
g in interval i and this is tied back to the total

output pgt by constraints (2.8)–(2.9). The cheapest intervals are filled first in all optimal

solutions, which corresponds to the actual production cost when the marginal cost curve is

non-decreasing, i.e., the total cost is convex.
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Power flows can be modeled by solving for voltage angles (2.3)–(2.4) or using shift

factors (2.6). The shift factor formulation is used here with network constraints

int = ∑
g∈G(n)

pgt−Dnt , ∀n ∈ N, t ∈ T (2.10)

flt = ∑
n∈N

PT DFnlint , ∀l ∈ L, t ∈ T (2.11)

∑
n∈N

int = 0, ∀t ∈ T (2.12)

−Fl ≤ flt ≤ Fl, ∀l ∈ L, t ∈ T, (2.13)

where int is the net injection (generation minus load Dnt) at node n. Constraint (2.12)

specifies that total supply must equal demand and (2.13) constrains the flow on each line to

not exceed its capacity Fl .

Generators are constrained with respect to capacity and ramping capability. Prede-

termined parameters indicate periods when the generator is on (u = 1), turned on (v = 1),

and turned off (w = 1). A generator that is on must operate within its upper and lower limits

according to

pgt ≤ Pmax
g ugt , ∀g ∈ G, t ∈ T (2.14)

pgt ≥ Pmin
g ugt , ∀g ∈ G, t ∈ T (2.15)

pgt− pg,t−1 ≤ Rgug,t−1 +RSU
g vgt , ∀g ∈ G, t ∈ T (2.16)

pgt− pg,t−1 ≥−Rgugt−RSD
g wgt , ∀g ∈ G, t ∈ T, (2.17)

where Pmax
g and Pmin

g are the maximum and minimum capacities and Rg defines how much

generator g can change production (ramp) between normal periods. Three types of ramping
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are considered: 1) during generator start up, 2) shut down, and 3) between periods when a

generator remains on. At most one term on the right hand sides of (2.16)–(2.17) is positive

and the resulting ramp restrictions reflect the respective generator status. For example, a

generator g cannot ramp more than RSU
g when starting up or RSD

g when shutting down.

2.2.3 Unit Commitment. Unit commitment (UC) is an optimization problem that sched-

ules generators (i.e., units) to be available (i.e., committed) to provide power in an eco-

nomical manner. Commercial models include physical generator constraints and a linear

approximation of power flow (Pandžić et al., 2013). In this dissertation, UC is modeled as

a mixed integer linear program (MILP) that contains the DCOPF with additional binary

variables describing generator commitments. Fixed costs may be incurred whenever a

generator is committed as well as during start up and shut down periods. These costs are

termed no load (cNL), start up (cSU), and shut down (cSD) costs, respectively. The fixed

costs are combined with the marginal production costs from the DCOPF (2.7) to get the UC

objective:

Minimize: ∑
g∈G

∑
t∈T

(
∑

i∈I(g)
ci

g p̃ i
gt + cNL

g ugt + cSU
g vgt + cSD

g wgt

)
. (2.18)

The binary commitment (u), start up (v), and shut down (w) decisions are modeled

by

vgt−wgt = ugt−ug,t−1, ∀g ∈ G, t ∈ T (2.19)

0≤ vgt ,wgt ≤ 1, ∀g ∈ G, t ∈ T (2.20)

ugt ∈ {0,1}, ∀g ∈ G, t ∈ T. (2.21)
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Equations (2.19)–(2.20) ensure vgt = 1 (wgt = 1) whenever a generator starts (shuts down).

Unit commitment also includes minimum up and down time constraints that protect the

physical integrity of the generators. Minimum up and down times are constrained by

t

∑
q=t−UTg+1

vgq ≤ ugt , ∀g ∈ G, t ∈ T (2.22)

t

∑
q=t−DTg+1

wgq ≤ 1−ugt , ∀g ∈ G, t ∈ T . (2.23)

Equation (2.22) specifies that generator g must remain on if started in the last UTg time

periods and, likewise, (2.23) specifies g must remain off if shut down in the previous DTg

periods. Integrality constraints are optional for the start up and shut down variables because

the above constraints define facets for the (v,w) projection (Rajan & Takriti, 2005). To

demonstrate that this is the case, consider how the changing commitment status allows

only three possible values for the right-hand side (RHS) of (2.19). When the RHS = 1, the

generator is turned on and (2.19)–(2.20) force vgt = 1 and wgt = 0. When the RHS =−1,

the generator is turned off and the same constraints force vgt = 0 and wgt = 1. When the

RHS = 0, both vgt and wgt must be zero because they are nonnegative and (2.22)–(2.23)

allow at most one to be positive.

The base unit commitment formulation consists of (2.8)–(2.23). Unit commitment

and OPF problems often include additional variables or constraints aimed at improving

reliability. Some of these modeling considerations are covered in Section 2.3, which

introduces important concepts related to power system reliability.
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2.2.4 Scheduling Epochs. Temporal constraints limit how fast generators can change

production (ramp), how long generators must remain off before being restarted, and vice

versa. These phenomena encourage scheduling far in advance so that production can be

coordinated between periods. In practice, ISOs make most commitment decisions one day-

ahead because, by this time, forecasts are relatively accurate. From there, rescheduling is a

continual process that responds to updated forecasts for load, interchange with neighboring

areas, and intermittent generation such as wind and solar.

Power system scheduling is an ongoing iterative process. ISOs solve unit commit-

ment as part of a day-ahead market (DAM) based on bids from market participants. Figure

2.4 describes the day-ahead scheduling process at a high level. After the market has cleared

(ex-post), operators analyze the solution and adjust the schedule to be more reliable for

the forecasted conditions (Al-Abdullah, Khorsand, & Hedman, 2013). Market rules limit

the changes made during this process, e.g., CAISO avoids overturning commitments made

in the DAM (CAISO, 2013). Therefore, decisions made late in the sequential process are

limited to locally optimal adjustments to the market solution. The adjustments are sometimes

called out-of-market corrections (OMCs) because the market model failed to anticipate a

reliability issue that needed to be corrected 9 . OMCs describe corrections made because of

inaccuracies in the market model and improved policies may reduce the number of OMCs

necessary to repair unreliable solutions.

9The term out-of-market correction refers to changes made outside of the market model. Terminology
varies between operators. For example, these interventions are classified as exceptional dispatches in CAISO
and out-of-merit energy/capacity in ERCOT CAISO, 2013; ERCOT, 2007.
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Figure 2.4: Day-ahead scheduling process in a market setting.

Table 2.3: Scheduling time horizons in CAISO.

Problem type Horizon Resolution Frequency

Unit commitment 24 hours 1 hour Daily at 10 a.m.
Unit commitment 5 hours 15 minutes Every 15 minutes
Optimal power flow 65 minutes 5 minutes Every 5 minutes

Generator lead times force commitment decisions to be made in advance. Fewer

rescheduling options exist as operations move closer to real time. It is common for ISOs

to update unit commitment over a rolling horizon as forecasts improve. For example,

some important scheduling horizons in CAISO are summarized in Table 2.3 (Makarov

et al., 2010). Unit commitment decisions are updated every 15 minutes and optimal power

flow decisions are updated every five minutes. Moving closer to real-time (seconds to

minutes), slight variations between supply and demand are corrected through separate

control schemes like automatic generation control (AGC) (Wood & Wollenberg, 1996).

Such frequent adjustments are necessary to respond to small forecast deviations that are

constantly occurring. Generally speaking, the largest scheduling decisions are made via unit

commitment and the solution is fine tuned as the system moves closer to real time.
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2.3 Reliability

NERC defines operational reliability as “the ability of the electric system to with-

stand sudden disturbances such as electric short circuits or unanticipated loss of system

components.” They outline six criteria for reliability (NERC, 2007):

1. The system is controlled to stay within acceptable limits during normal conditions.

2. The system performs acceptably after credible contingencies (sudden resource out-

ages).

3. The system limits the impact and scope of instability and cascading outages when

they occur.

4. The system’s facilities are protected from unacceptable damage by operating them

with facility ratings.

5. The system’s integrity can be restored promptly if lost.

6. The system has the ability to supply the aggregate electric power and energy require-

ments of the electricity customers at all times, taking into account scheduled and

reasonably expected unscheduled outages of system components.

This research aligns with the second, fourth, and sixth criteria. The second criterion

relates to sudden failures of physical resources such as a generators or transmission lines

(contingencies). The fourth and sixth criteria outline conditions for contingency response:

NERC requires the ability to respond to the unexpected failure of a generator or transmission
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line without curtailing customer loads. This requirement is colloquially referred to as “N-1”

to denote the loss of any single resource. The balance of supply and demand must be restored

within 15 minutes of a contingency while also satisfying the emergency transmission limits

(NERC, 2014b).

NERC’s definition of reliability is closely tied to system frequency. This is because

many devices are designed to operate within a narrow frequency band. Frequency increases

whenever supply exceeds demand and vice versa: see Figure 2.5 to visualize the impact of

a generator outage. The loss of power at time τ overloads the active generators, causing

them to slow down. This is indicated by the sudden drop in frequency. Generators across

the network react through automatic controls to rebalance supply and demand within a few

seconds. This stabilizes the frequency at its lowest point. The balancing authority overseeing

the area where the contingency occurred is then responsible for dispatching enough reserve

to restore frequency for the entire interconnection within 15 minutes (NERC, 2014b).

Essentially, the local operator must replace the power supplied by the failed generator in

order to properly contribute to frequency restoration.

Just as the frequency limits are temporarily relaxed following a contingency, thermal

transmission constraints are also relaxed because lines do not overheat immediately. Figure

2.5 shows an example of how transmission limits may evolve following a contingency

(Maslennikov & Litvinov, 2009). Reliability is related to how quickly operators can rebal-

ance supply and demand while satisfying transmission constraints. A system is unreliable if

it cannot progress back to normal conditions within the specified time frames. Researchers
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Figure 2.5: Frequency change and transmission ratings after a contingency. The frequency
terms are upper and lower specification limits (USL, LSL). The transmission ratings are the
drastic action limit (DAL) and short-term and long-term emergency limits (STE, LTE). The
transmission sub-figure is adapted from Maslennikov and Litvinov (2009).

and practitioners tend to focus on evaluating reliability at a few fixed time points (usually

0 and 10 minutes after the contingency) 10 because simulating every moment in time is

very involved and computationally intensive. This dissertation considers only the 10-minute

snapshot. A mathematical formulation for contingency response is provided in Appendix

C: this formulation restores the balance between supply and demand while minimizing the

amount of transmission violations.

A similar process occurs on multiple time scales for other types of uncertainties.

Other sources of uncertainty include load, interchange with neighboring control areas, and

intermittent renewable resources like wind and solar. NERC requires frequency to remain

between the upper and lower specification limits a certain percentage of the time (NERC,

2014a) and transmission constraints should also be respected in order for the system to

remain reliable.
10Although NERC requires contingency response to restore frequency within 15 minutes, operators often

target 10 minutes in their mathematical models. The five minutes of slack allows an operational buffer to solve
the contingency response problem (MISO, 2012a).
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The term re-dispatch encompasses all corrective recourse actions that fall under

operator control. Recourse decisions primarily involve dispatching backup capacity in the

form of generation reserve. Other forms of flexibility come from demand and transmission.

Demand flexibility may involve contracting with loads to reduce consumption during

emergency situations. Transmission flexibility may involve changing the network topology

to relieve bottlenecks resulting from Kirchoff’s laws (Hedman, 2009). This dissertation

develops methods that can generally consider all of these corrective actions; however,

emphasis is placed on reserves as the primary tool for corrective actions.

2.3.1 Reserves. Reserve is backup capability that allows operators to mitigate uncertainty.

Generally speaking, solutions with a lot of reserve provide more recourse flexibility. There

are many categories of reserve but a lack of standard terminology. Common types include

regulation, contingency, operational, following, and replacement reserves, but some of these

terms have slightly different meanings for different operators (Ela, Milligan, & Kirby, 2011).

Reserve is more succinctly categorized by how quickly it can be made available:

5-minute reserve can respond to frequent, small changes in load; 10-minute reserve can

respond to contingencies; 30-minute reserve responds to broader uncertainties and replaces

reserve expended for other purposes. Some sources of uncertainty, such as wind, can

draw significantly from each of the aforementioned categories (Ela & M. O’Malley, 2012).

Various types of reserve are summarized in Table 2.4 and described in more detail below.

Reserve requirements are enforced for these products to ensure sufficient reserve availability.
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Table 2.4: List of common reserve products. The products are ordered by the quality of
service they provide (with the highest quality at the top).

Reserve product Common name(s)

5-minute spinning Regulation reserve
10-minute spinning Contingency reserve, operating reserve
10-minute non-spinning Contingency reserve, operating reserve
30-minute spinning Supplemental reserve, operating reserve
30-minute non-spinning Supplemental reserve, operating reserve
Total spinning Capacity headroom

Reserve that is available in less than 5 minutes is managed by automatic generation

control (AGC). A generator participating in AGC will respond to changing frequency by

adjusting its output according to predetermined settings, normally according to an affine

policy. AGC allows the system to respond to small uncertainties without active operator

intervention. Frequency regulation provided by AGC typically corrects for small fluctuations

and falls outside the scope of this dissertation.

Ten-minute reserves and above are usually procured in the up direction, e.g., the

reserve requirement specifies how much generators must collectively be able to ramp up

within 10 minutes. To satisfy N-1, 10-minute reserve must exceed the largest injection

from a generator or importing transmission line. NERC also requires operators to maintain

enough slow reserves to restore N-1 protection within 105 minutes of a contingency (NERC,

2014b). Reliability regions and system operators decide how much reserve will be required

to meet NERC and their individual reliability standards.

Committed generators are said to provide spinning reserve because the turbine is

already spinning and synchronized with the grid. Spinning reserve is considered high quality
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because it can start responding almost immediately when called upon. Other types of

reserves are more likely to respond slowly or to not perform when called upon. Fast-start

generators can provide non-spinning when they have not been committed. At present, the

least dependable form of reserve is demand response from consumers who reduce their

consumption at the operator’s request (Aminifar, Fotuhi-Firuzabad, & Shahidehpour, 2009).

The reliability council for each region defines how much reserve must be held of each type

(NERC, 2014b). For example, the Northeast Power Coordinating Council (NPCC) obliges

operators to increase 10-minute spinning reserve requirements whenever performance is poor

(NPCC, 2012): the requirement might increase from 50% to 70% of the largest contingency

following an event where the operator failed to recover frequency within the required time

frames 11 .

The available reserves are defined in the model by

ṙπ
gt ≤ Pmax

g − pgt , ∀g ∈ G,π ∈P(sp), t ∈ T (2.24)

ṙπ
gt ≤ Ṙπ

g ugt , ∀g ∈ G,π ∈P(sp), t ∈ T (2.25)

ṙπ
gt ≤ Ṙπ

g (1−ugt) , ∀g ∈ G,π ∈P(nsp), t ∈ T, (2.26)

where ṙπ
gt is the amount of reserve product π provided from generator g in period t. Each

reserve product has a time component and a reserve type component (e.g., 10-minute

spinning reserves). Spinning reserve products fall in the set P(sp) and non-spinning reserve

products fall in the set P(nsp). Spinning reserves are limited by generator capacity (2.24)

and ramping capability (2.25). Non-spinning reserves are subject to how quickly the off-line
11ISO-NE also adjusts the total 10-minute requirement for spinning and non-spinning reserves based on

historical performance every three months using a contingency reserve adjustment factor (ISO-NE, 2011)
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generators can start and ramp up their production (2.26). Other types of reserves (e.g,

interruptible loads) can be also modeled using similar constructs. Reserve providers are

assumed in this dissertation to follow all dispatching instructions. However, some resources

may fail to perform when called upon and this can be mitigated by discounting the reserve

availability from undependable resources (Weaver, 2012).

This dissertation tends to consider one reserve product (or combination of products)

at a time. In most cases, the decision variable for available reserve is notated as rgt . This

is done to simplify the notation and to avoid restricting the formulation to too specific of

applications. The context of the proposed reserve requirements will determine what type of

reserve products are involved.

The availability of reserve is subject to network constraints. Reserve is said to

be deliverable if it may be utilized without violating transmission constraints. Reserve

deliverability is conditioned on the state of the system and the simultaneous re-dispatch of

other units, i.e., transmission relief may require coordinated movement between multiple

generators. Reserve requirements are enforced on a zonal basis to help ensure enough

reserve is held within import-constrained regions (F. Wang & Hedman, 2012). Zones provide

locational diversity to reduce the chance that congestion will impede deliverability. It is

generally assumed that reserve is highly deliverable within a zone but may be undeliverable

between zones. Figure 2.6 shows an example of reserve zones used by MISO and ISO-

NE. This figure demonstrates the two types of reserve zones used in practice: mutually

exclusive and nested. Nested zones usually encapsulate pockets of load in metropolitan
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Figure 2.6: Reserve zones in MISO and ISO-NE (MISO, 2008; Cheung, Ma, & Sun, 2006).
These are examples of mutually exclusive and nested zones. Note: areas “1” are controlled
by PJM.

areas. These areas are typically import-constrained but can export reserve as needed. The

reserve requirements for different regions are built upon these types of assumptions. The

assumptions and limitations of reserve zones will be an ongoing theme of this dissertation.

2.3.2 Transmission Margins. Insufficient network transfer capabilities can hinder re-

serve deliverability. Verifying reserve deliverability is not trivial when there are many

potential scenarios. Transfer limits are used to support deterministic scheduling models and

to simplify coordination between control areas. They allow operators to schedule for the

forecast and remain confident that there will be sufficient flexibility to respond to uncer-

tainty. Transmission capability estimates formally include a transmission reliability margin

(TRM) and a capacity benefit margin (CBM) (NERC, 1996). TRM helps ensure reserve

deliverability within the control area and CBM improves deliverability between areas (Ou &

Singh, 2002). Transmission margins are generally calculated prior to scheduling and may

be overly conservative for some solutions and insufficient for others.
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2.3.3 Scheduling for Reliability. Sections 2.3.1 and 2.3.2 describe two types of flexibil-

ity, reserves and transmission margins, that help ensure reliability. Acquiring this flexibility

generally comes at an opportunity cost. Operators can procure excessive reserves or trans-

mission margins, but doing so may forgo economical solutions. Cost and reliability are often

competing objectives and a solution may be overly-reliable if economics are sacrificed for

the sake of meeting conservative flexibility targets. This tension emphasizes the importance

of designing effective scheduling models.

Operators are responsible for ensuring N-1 reliability regardless of cost. This moti-

vates the so-called security-constrained optimal power flow (SCOPF) and unit commitment

(SCUC) problems. The simplest SCOPF and SCUC models include reserve requirements

that explicitly require 10-minute reserve to exceed the largest contingency or some other,

more conservative, amount. For example, PJM requires reserve to exceed about 1.5 times

the largest contingency in each zone and WECC requires reserve to cover 6% of load plus

3% of exports (PJM, 2013; WECC, 2008). Reserve requirements are determined according

to the balancing authority’s preferences and needs.

Deterministic reserve requirements generally do not guarantee reliability because

some reserve may be undeliverable. More precise models can consider how power flows

change under uncertainty using stochastic programming or robust optimization. Such

models can guarantee reliability (subject to the other model assumptions) and can do so

economically. However, there is a computational gap between the deterministic algorithms

of today and the stochastic algorithms of tomorrow. Stochastic approaches are not fully
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tractable because power scheduling applications are too large. Even today’s deterministic

models sometimes struggle to achieve small optimality gaps within the required time frame

(Chen, X. Wang, & Wang, 2014). There is a practical need to develop more computationally

tractable approaches that consider system conditions under uncertainty in a precise manner.

The literature review in Chapter 3 provides more details on alternative deterministic

and stochastic unit commitment models. The review covers reserve requirements, reserve

zones, transmission margins, stochastic programming, and robust optimization. The stochas-

tic models frequently adopt two-stage formulations. An example of the first and second

stages of a stochastic model that protects against contingencies is formulated in Appendix

C.

2.3.4 Intermittent Renewable Resources. Less than 5% of nationwide production in

2011 came from renewables with intermittent properties, such as wind and solar (Energy

Information Administration, 2013b). Various regions have established ambitious renewable

energy portfolio standards that are spurring significant new investments. For example,

the California standard requires renewables to serve 33% of load by the year 2020 (the

nationwide average among all renewables was about 15% in 2011) (California Public

Utilities Commission, 2013). A result of these standards is that uncertainty will increase

because much of the gap will be filled by intermittent generation.

For contingencies, the cost of operating following re-dispatch is often ignored

because it has negligible impacts on the total expected cost due to the low probability of an

outage. More precisely, the cost of holding reserve at the ready has historically outweighed
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the expected difference in cost after the reserve has been dispatched. The upcoming advent

of intermittent generation implies that more aggressive re-balancing will be necessary

to correct random fluctuations in supply. As forecast errors increase, the deterministic

scheduling algorithms used today may become less justifiable because the projected cost

under forecasted conditions may poorly reflect the statistical expectation.

Furthermore, additional uncertainty from renewables will make N-1 reliability more

difficult to ensure. Wind farms may be placed in isolated locations (ERCOT, 2007); therefore,

fluctuations in wind power will be substituted by reserves that are injected from different

locations in the network, causing congestion to deviate from the anticipated patterns. This

has the potential to undermine zonal reserve models as it will be harder to predict the

underlying congestion pattern.

2.3.5 Measures of Reliability. Operators have several risk measures at their disposal.

Two common measures are the loss of load probability (LOLP) and expected energy not

served (EENS) (Q. P. Zheng et al., 2014). LOLP represents the probability that any scenario

will become so severe that load must be involuntarily curtailed in order to restore frequency

and satisfy transmission constraints. EENS is the statistical expectation of load curtailment

(quantity times probability summed over discrete scenarios or integrated over continuous

scenarios). It is sometimes multiplied by the presumed value of lost load (VOLL) to estimate

the expected cost of energy not served. Whenever an operator identifies a potentially

unreliable scenario, it is implied that the schedule will be repaired whenever the cost of said

repairs does not exceed the expected cost of energy not served.
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2.4 Markets

This section provides a brief overview of important energy market considerations.

This is not a comprehensive summary but an overview of concepts that are relevant to this

dissertation. Market environments are more difficult to manage because most of the entities

are competing with one another. ISOs are primarily responsible for maximizing social

welfare while meeting established reliability standards (Kirschen & Strbac, 2004). They

accept bids from producers and consumers and schedule to maximize the market surplus.

These bids contain information about the cost to produce energy and the utility to consume

energy.

ISOs attempt to simulate the ideal of perfect competition. With perfect competition,

an “invisible hand” can be thought of influencing price, which, in turn, induces market

participants to behave in a way that is globally optimal (Smith, 1869). Under the standard

market design, ISOs attempt to directly maximize the market surplus using optimization and

then determine market prices after the fact. Efficient prices ensure a local equilibrium where

no participant wants to consume or produce differently from what was cleared (Fisher, 2006).

An ideal settlement scheme will make good use of resources and provide an equilibrium

where no participant has incentive to deviate from dispatch instructions.
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Prices are often derived from the dual of the DCOPF 12 . For example, the dual

variable of (2.10) determines the price of energy, which is called the locational marginal

price (LMP). LMPs describe the sensitivity of the objective function (market surplus) to

changes in supply or demand. Similarly, reserve prices are derived from the dual variables

of the reserve requirements. Model imprecisions should be avoided because they can

pervert market prices, e.g., by inflating prices for reserves that are incorrectly assumed to be

deliverable (Lyon, F. Wang, et al., 2014). Model improvements not only stand to improve

the market surplus but may also improve price signals.

The scope of market design extends far beyond what is discussed in this dissertation

13 . Changes to operating policies may result in unintended consequences, and operators

often seek buy-in from market participants before implementing changes that may have

noticeable impacts on market outcomes. Procedures that are expected to improve economics

and reliability may be defeated if they are incongruous with the market design or unpalat-

able to market participants. This is one of the challenges currently faced by stochastic

programming according to representatives from ISO-NE (J. Zhao, Zheng, Litvinov, & Zhao,

2013). The work in this dissertation, on the other hand, is compatible with traditional market

12In the case of unit commitment, prices may be derived by fixing the binary variables and solving the
underlying DCOPF (O’Neill, Sotkiewicz, Hobbs, Rothkopf, & Stewart Jr., 2005). Other revisions may be
made during the pricing run to manipulate market outcomes. For example, MISO recently obtained FERC
approval to adopt a different pricing mechanism based on estimates of the convex hull of the feasible space
(FERC, 2012b).

13A sample of important topics falling outside the scope of this dissertation includes: forward markets,
bilateral trading, market power mitigation, non-confiscatory market policies, risk-hedging mechanisms, virtual
bids, and constraint relaxation.
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settlement strategies. This research develops methodologies that pose fewer challenges for

practical implementation.
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Chapter 3

LITERATURE REVIEW

Several approaches have been proposed to mitigate uncertainty in power systems.

The earliest and most persistent concerns have been related to reliability. The consequences

of curtailing customer loads are extreme, so operators take care to ensure continuous service

remains available. Generally speaking, operators should be able to restore frequency (the

balance between supply and demand) and satisfy transmission constraints for a prescribed

set of scenarios. For example, all US control areas are required by NERC to survive the

sudden outage a generator or transmission line (the N-1 requirement). The literature also

proposes probabilistic criteria that emphasize protection against the most likely scenarios.

Section 3.1 provides a review of traditional reserve requirements, which are primarily meant

to manage reliability. Sections 3.1.3–3.2 review how reserve deliverability is encouraged

in congested systems. These approaches are classified as deterministic in this dissertation

because they do not model recourse decisions at a detailed level.

More recently, stochastic models have become popular in the research community.

These models avoid the need to impose reserve requirements because they directly consider

corrective actions. Stochastic models are more computationally expensive but can provide

solutions that are more reliable and economical. Table 3.3 characterizes some of their

benefits relative to deterministic models. Stochastic models can improve economics and
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Table 3.1: Classification of the literature concerning reserve quantity and reserve deliver-
ability. This dissertation* develops reserve disqualification and introduces congestion-based
reserve requirements (RRs) to improve deliverability.

Reserve quantity

Probabilistic requirements
Relax expensive requirements
Iterative schemes

D
el

iv
er

ab
ili

ty

Reserve zones Stochastic programming
Transmission constraints Robust optimization
Reserve disqualification* Congestion-based RRs*

reliability because they manage congestion within the scheduling algorithm itself (as opposed

to deterministic models, where policies to mitigate congestion are usually established a

priori). Stochastic models can also consider the cost of recourse decisions, which makes

them more appealing when large disturbances are likely to occur. Section 3.3 reviews

stochastic models with transmission-constrained recourse actions.

3.1 Reserve Requirements

Most of the reserve literature investigates reserve quantities while assuming trans-

mission bottlenecks will not restrict corrective actions. NERC specifies that there must be

enough 10-minute reserve to recover from the loss of any single generator or transmission

line. Other requirements have been developed for alternative reliability targets. Probabilistic

policies constrain risk measures based on loss of load probability (LOLP) or expected energy

not served (EENS); a regular theme in the literature is the search for a risk threshold that
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balances cost and reliability. This review defines probabilistic models as those that constrain

risk. Other models change reliability thresholds dynamically based on the cost of obtaining

reserves, e.g., by minimizing a weighted sum of cost and reliability 1 .

Sections 3.1.1 and 3.1.2 describe probabilistic and cost-based reserve requirements

while ignoring network constraints. Sections 3.1.3 and 3.1.4 locate reserves to help justify

the assumption that reserve is deliverable.

3.1.1 Probabilistic Reserve Levels. Probabilistic reserve requirements treat deviations

in load and resource availability as random variables and procure reserve to satisfy a

prescribed risk threshold. The general idea is to protect against only the most likely or

severe scenarios. This approach adopts constraints that limit the cumulative probability of

a supply shortage. However, one difficulty of this approach is that shortages are harder to

anticipate when there are ramp constraints, e.g., when a generator operating 100 MW below

its capacity can increase production by only 50 MW over a short time frame. Consider the

example in Figure 3.1 describing how frequency changes for two contingencies 15 minutes

apart. Holding enough 10-minute reserve to recover from both contingencies is unnecessary

because the second contingency may use some 30-minute reserve. Designating a single

reserve product to cover multiple uncertainties is not straightforward because disturbances

may occur at different times. Nevertheless, approximate probabilistic reserve requirements

abound in the literature, usually under the conservative assumption that disturbances occur

simultaneously.

1Some authors describe models as probabilistic if they include probability terms in the objective. In this
review, probabilistic only refers to models that constrain LOLP or EENS.
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Figure 3.1: Frequency following contingencies that occur 15 minutes apart. USL and LSL
are upper and lower specification limits that must be satisfied within 15 minutes of the event.

Early work by Anstine et al. (1963) requires committed capacity to exceed the

forecast plus likely load deviations and generator failures. The model constrains the risk that

load will exceed the committed capacity. The authors do not consider ramping restrictions;

therefore, the LOLP may still be high if standby capacity cannot ramp fast enough to balance

the system.

Dillon, Edwin, Kochs, and Taud (1978) suggest an iterative approach that solves unit

commitment, evaluates LOLP, and then updates the unit commitment formulation based

on the reliability analysis. Stopping to evaluate reliability allows the authors to calculate

outage probabilities based on the most recent commitment solution. The authors perform

contingency analysis using a stochastic process that models outages, the activation of “fast

reserves”, and replacement of fast reserves by “slow reserves”. This type of contingency

analysis has its limitations (e.g, it ignores network constraints), but the work does consider

ramping between outages that are separated in time (attempting to address the phenomenon
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illustrated in Figure 3.1), an issue that is largely ignored in the probabilistic scheduling

literature.

Several other iterative methods have been since proposed. Ozturk, Mazumdar, and

Norman (2004) propose a way to update reserve requirements within iterative approaches

when uncertainty is correlated between periods. The authors assume that load uncertainty

follows a multivariate Gaussian distribution between periods, which cannot be inverted

to determine standalone reserve requirements for each period. They address this issue by

defining a lower bound for the minimum reserve quantity and updating the requirement

between iterations to more closely align with the desired LOLP. The results demonstrate

that considering the correlation of forecast deviations between periods may lead to better

solutions (it usually the case that forecast deviations are autocorrelated).

Xia, Gooi, and Bai (2005) propose an iterative technique to drive EENS towards

a target value. The authors suggest increasing reserve when EENS is high and reducing

reserve when EENS is low. Apart from this paper, the convention is to bound the unreliability

metric only from above 2 .

Gooi, Mendes, Bell, and Kirschen (1999) propose evaluating risk (LOLP or EENS)

at each iteration of Lagrangian Relaxation and increasing the reserve requirement when

risk exceeds the desired threshold. The algorithm can converge faster than other iterative

techniques because it makes use of partial information before the solution converges. A

2In an ideal model, it is not necessary to bound risk from below because the objective function will push
risk to its upper bound whenever reducing risk is costly. Targeting a certain risk could be perverse if low cost
solutions are forgone in favor of solutions that are more costly and more risky.

47



backward pass is applied at the end to correct for excess reserves. H. Wu and Gooi (1999)

extend the work to consider reserve ramping and hourly ramping.

It can be challenging to predict the outage probability distribution prior to knowing

which generators will be committed. Bouffard and Franscisco D. Galiana (2004) handle

this problem by introducing binary variables to identify combinations of failures that

exceed available reserves. Doherty and M. O’Malley (2005) simplify things by estimating

outage probabilities from historical commitments 3 . Chattopadhyay and Baldick (2002)

dynamically estimate outage probabilities within unit commitment. The authors perform

an off-line regression analysis that relates the cumulative outage distribution to a linear

function of the committed generators. They then constrain the predicted LOLP against the

approximate distribution. All of these approaches avoid iterative techniques by estimating

LOLP within the mathematical scheduling model.

Some loads will contract with the system operator to provide contingency reserve.

Aminifar et al. (2009) extend probabilistic requirements to consider the potential for non-

compliance from such interruptible loads. The authors use binary variables to measure

LOLP within the scheduling model, from which they derive EENS. Although the LOLP

is inherently a function of binaries 4 , neither binary variables nor iterative techniques are

actually necessary for estimating EENS. For example, Radi and Fox (1991) and Bai, Gooi,

Xia, Strbac, and Venkatesh (2006) avoid binaries in their EENS estimations by adding

3Doherty and M. O’Malley (2005) lose precision by assuming outage probabilities are constant across the
year. However, they wrote one of the few papers that considers generator contingencies and wind fluctuations
in a unified model.

4For a single period, LOLP is the sum (or integral) of probabilities for scenarios with nonzero loss of load.
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continuous variables anticipating the shortage for each scenario (these papers are reviewed

in the Section 3.1.2).

All of the above approaches determine how much reserve to acquire. They do not

consider the potential for transmission constraints to hinder reserve deliverability. Any can

be combined with the congestion-based reserve requirements in Chapter 4 of this dissertation

to support reserve deliverability.

3.1.2 Cost-Based Reserve Levels. It is common to factor cost into reserve provisions.

The previous section outlined methods aimed at satisfying reliability thresholds such as

a maximum LOLP or EENS. Another common approach is to allow the model to relax

reserve requirements that have high shadow prices. These models dynamically change

reliability targets based on the cost of reserve to avoid spending exorbitant amounts for

small improvements to reliability. Generally, higher levels of reliability may be appropriate

when reserve is inexpensive and vice versa.

Various ways to relax reserve requirements have been considered. The simplest

approach is also the most commonly used in practice. Flynn, Sheridan, Dillan, and O’Malley

(2001) propose relaxing requirements whose dual variables are large in magnitude (in

a linearized version of unit commitment). This is accomplished by penalizing reserve

shortages in the objective function, something that is now done by every ISO in the US

under the term constraint relaxation (CAISO, 2009; ERCOT, 2010b; FERC, 2012a; MISO,

2012b; NYISO, 2013; SPP, 2013; T. Zheng & Litvinov, 2008). Constraint relaxation is

compatible with all of the methods investigated in this dissertation. The idea is taken a
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step further by MISO and NYISO, who use a stepwise reserve demand curve where the

presumed marginal value of reserve is inversely related to quantity (MISO, 2012b; NYISO,

2013). The theoretical justification for reserve demand curves is provided by Hogan (2009):

the marginal value of reserve decreases with quantity because each additional MW protects

against rarer and rarer scenarios. For example, it would be counter-productive to spend

a premium protecting against N-3 when it is unlikely that three or more generators will

simultaneously fail. The marginal value of reserve in each of these cases is estimated based

on off-line studies.

A similar paradigm is followed by Tseng, Oren, Svoboda, and Johnson (1999), who

analyze a two-player game theory model where high costs and market power are mitigated

by relaxing reserve requirements. Other algorithms have been developed for solving unit

commitment with fuzzy reserve requirements (Guan, Luh, & Prasannan, 1996; Chakraborty

& Funabashi, 2010). The general theme in these papers is that it is difficult to pre-determine

optimal reserve requirements and requirements ought to be relaxed when they become too

restrictive.

Other researchers adopt a more classical multi-objective approach by minimizing a

weighted sum of cost and unreliability. Radi and Fox (1991) add an estimate of EENS to the

objective function. The authors model recourse decisions (without transmission constraints)

in what can be considered an early application of two-stage stochastic programming for

unit commitment. Bai et al. (2006) develop this approach by treating interruptible load as

reserve that may fail to perform when called upon. The model considers the probability
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of non-performance from dispatchable loads and also proposes a settlement scheme that

penalizes non-performance.

Finally, iterative schemes have also been suggested for balancing cost and reliability.

O’Sullivan and M. J. O’Malley (1999) start with zero reserves and iteratively add reserves

until there is no load shedding. The authors then perform a retrospective analysis on which

reserve policy was the best. Ortega-Vazquez and Kirschen (2007) propose an approach that

determines the reserve quantity for one period at a time. The algorithm solves much faster

because it is not complicated by inter-temporal constraints. A line search technique is used

when varying the reserve quantity to accelerate convergence and to avoid getting stuck at

local optima. The selected hourly reserve requirements are then applied to a final run to

determine the remaining unit commitment decisions.

Iterative techniques like the above have two desirable properties. First, they may

be implemented concurrent to established scheduling practices that are already iterative.

For example, Gooi et al. (1999) and H. Wu and Gooi (1999) update reserve requirements

between iterations of Lagrangian Relaxation. Second, iterative approaches enable more

in-depth reliability analyses that are able to account for more nuanced issues. For example,

Ela and M. O’Malley (2012) suggest a frequency performance reliability metric and Abiri-

Jahromi, Fotuhi-Firuzabad, and Abbasi (2007) propose an alternative “well-being” model –

both of these metrics would be evaluated outside of the scheduling algorithm. Furthermore, a

more precise contingency analysis can consider transmission constraints in order to validate

the assumption that all reserves are deliverable. The work in Chapters 5 and 6 of this
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dissertation utilize an iterative approach to identify important transmission constraints for

different scenarios.

3.1.3 Reserve Zones. Zones find various applications in power systems. They are a prac-

tical tool used to simplify decision problems. For example, energy zones have historically

been used for power system scheduling. The simplified scheduling models only consider the

flows on zonal interfaces. They assume that all locations within a zone have the same effects

(PTDFs) on these interfaces (Alaywan, Wu, & Papalexopoulos, 2004; Daneshi & Srivastava,

2011). Zonal energy markets have now been abandoned by all ISOs in the US in favor of

more precise nodal models (like the DCOPF), but zones are still ubiquitous for ancillary

services such as reserves. This section reviews both energy and reserve zones because they

are closely related (as reserve is nothing but power waiting to be dispatched).

Hong, Chang-Chien, Wu, and Yang (2002) and Imran and Bialek (2008) suggest that

operators can determine energy zones by solving a full network model and then clustering

nodes together that have similar energy prices (LMPs). The intuition is that locations with

different prices tend to be separated by congestion. Furthermore, the market interpretation is

reasonable because a single reserve price is typically derived for each zone. However, such

approximations may be inefficient compared to a full network model. The results of Imran

and Bialek (2008) suggest that zones are impractical for meshed congested systems, such as

the European Interconnection. Similar concerns motivated the recent transition from zonal

to nodal energy markets in CAISO and ERCOT (Alaywan et al., 2004; Daneshi & Srivastava,

2011). Figure 3.2a shows an example of energy zones in ERCOT. These operators would
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Figure 3.2: Energy and reserve zones in ERCOT, 2007 (ERCOT, 2007). The arrows indicate
commercially significant constraints (CDCs), i.e., important transmission bottlenecks.

regularly observe power flow violations within zones and then repair the market solution

using out-of-market corrections. CAISO and ERCOT collectively spent over $300 million

on such corrections in 2007 (CAISO, 2007; ERCOT, 2007) 5 . The transition to nodal

markets allowed for more precise identification of scarce resources and reduced the need for

out-of-market corrections to repair infeasible or unreliable solutions.

Zones are not only used for short-term production scheduling. Blumsack, Hines,

Patel, Barrows, and Sanchez (2009) propose the use of zones to simplify calculations for

long-term planning studies. The authors define zones by clustering nodes based on electrical

distance, which measures relative voltage and current sensitivities. The approach was

developed for PJM to efficiently evaluate the congestion that could result from alternative

transmission expansion plans. Cotilla-Sanchez, Hines, Barrows, Blumsack, and Patel (2013)

5The respective ISOs have a suite of tools available to manage congestion. These tools usually involve
committing additional units or adjusting desired dispatch of different generators based on their location.
A variety of techniques have been developed to make efficient interventions (Kirby & Dyke, 2002). Such
interventions are classified as exceptional dispatches in CAISO and out-of-merit energy/capacity in ERCOT.

53



propose a slightly different electrical distance metric and partition the network based on

multiple criteria using an evolutionary algorithm.

While energy zones address network constraints for the forecasted system state,

reserve zones address network constraints under uncertainty. Unlike energy zones, reserve

zones are ubiquitous in the US and in Europe. Zonal reserve requirements spread reserves

across the system. ERCOT and MISO determine reserve zones by clustering nodes together

that have similar shift factors for a prescribed set of critical paths (MISO, 2012a; ERCOT,

2010a). The main idea is to cluster nodes who may substitute for one another while

preserving the flow on critical lines. This approach is formalized by F. Wang and Hedman

(2012), who define a node-difference metric based on the relative shift factors (PTDFs)

between nodes m and n as

dmn = ∑
l∈L

wl |PT DFml−PT DFnl|, (3.1)

where wl is a weight indicating the importance of transmission line l. A small dmn indicates

that nodes m and n have similar effects on highly weighted lines. Statistical clustering can

be employed to group similar nodes together into zones. If large weights are assigned to

heavily loaded lines, then the resulting zones tend to coincide with relatively congestion-free

areas.

Reserve zones are typically updated on a seasonal basis, e.g., ERCOT updates zones

every twelve months and MISO every three months (MISO, 2012a; ERCOT, 2010a). MISO

has considered updating zones on a more frequent basis to adapt to changing transmission

bottlenecks (Shields, Boughner, Jones, & Tackett, 2007); however, at present they will
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only update zones for severe conditions that cannot be resolved through other operating

procedures (MISO, 2012a). F. Wang and Hedman (2014) propose a framework for updating

zones on a daily or hourly basis to account for changing bottlenecks. Their approach is

shown by Lyon, F. Wang, et al. (2014) to reduce costs and avoid clearing reserves that

become undeliverable in real time.

Zonal reserve requirements can be expensive because they restrict the feasible

dispatch solutions. Many operators recognize the economic benefit of merging reserve zones

and have developed ways to account for reserve sharing when congestion allows. Reserve

sharing models anticipate how much reserve can be delivered across zonal boundaries. For

example, MISO determines 10-minute requirements two days ahead based on simulation of

reserve deliverability between zones for different contingencies (MISO, 2012a). PJM and

ISO-NE allow a portion of reserve to count towards the requirement of another zone. Their

models adjust the reserve sharing estimates based on how the interface flows deviate from

their anticipated values, e.g., the zonal reserve requirement may be relaxed if the import

capability is estimated to be higher than expected (PJM, 2012; T. Zheng & Litvinov, 2008).

Such dynamic models balance transmission and generation flexibility at the zonal level, but

they may be sensitive to zone definition and they do not address intra-zonal congestion.

Reserve zones are currently an integral part of ensuring reliability in congested

systems. They anticipate how congestion will limit reserve deliverability based on insights

from simulation and historical experience. However, the unit commitment solution may

still be unreliable if the model mischaracterizes reserve as deliverable. In such instances,
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operators will employ out-of-market corrections (OMCs) to repair unreliable solutions. One

such OMC tool is reserve disqualification.

3.1.4 Reserve Disqualification. Reserve disqualification is a tool used in industry to

discount resources that cannot provide reserve. If some reserve is found to be undeliverable,

MISO and ISO-NE will manually disqualify it so that requirements must be met by reserve

at favorable locations moving forward (FERC, 2011; ISO-NE, 2012, 2013b) 6 . The benefit

of these adjustments is they can be applied in a targeted manner when the reserve model

assumptions are violated. The downside is they are often not co-optimized with other

scheduling decisions and they are not reflected in day-ahead market prices (due to being

applied after the market has cleared) (Chen, Gribik, & Gardner, 2014).

Reserve disqualification provides another means for operators to control reserve

locations. The work in Chapter 5 of this dissertation introduces a mathematical framework

for reserve disqualification. The new formalized procedure reduces reliance on manual

interventions and supports the possible extension of reserve disqualification into day-ahead

markets. When combined with reserve zones, these developments can help ensure reliability

targets are met economically.

3.2 Transmission Constraints

Certain transmission constraints are regularly updated based on off-line analyses. For

example, the flow across a path may be constrained below a prescribed transfer capability

6The exact term reserve disqualification is not used in industry. MISO designates undeliverable resources
as not qualified and ISO-NE applies reserve down flags to these resources.

56



limit (NERC, 1996). These constraints protect against line violations during and after

contingencies. The advantage is that off-line analyses can consider uncertainty, reactive

power, stability, or other properties that are hard to include in the optimization model. The

disadvantage is that transfer capability estimates may be sensitive to the system state, which

is unknown at the time the estimates are calculated.

Transfer capability estimates often include margins that help ensure reserve is

deliverable. For example, transmission reliability margins (TRM) and capacity benefit

margins (CBM) allocate capacity for sharing reserve within and between areas (Ou & Singh,

2002). These margins are often determined empirically by simulating a large number of

system states. Ou and Singh (2002) calculate TRM as a percentile of the difference between

transfer capabilities with and without uncertainty. Audomvongseree and Yokoyama (2004)

do similar but introduce a Markove model to simulate changing resource availabilities.

bin Othman, Mohamed, and Hussain (2008) and Ramezani, Singh, and Haghifam (2009)

use bootstrapping and scenario aggregation to reduce the sample size and, thereby, improve

computational times for this off-line procedure. The transfer capabilities estimated using

these schemes describe how flows may be restricted across a single path or interface to

protect against uncertainty.

Papic, Vaiman, Vaiman, and Povolotskiy (2007) perform a more complex analysis

that limits the relative flow on multiple lines. The operator defines a finite set of stressing

patterns and evaluates how far each pattern can be extrapolated before violating transmission

constraints. The feasible space for these scenarios is projected onto the flow across critical
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transmission paths. The multi-dimensional constraints derived from this analysis are called

nomograms. A two-dimensional nomogram describes how much flow may be allowed on

two transmission paths, where the maximum flow on one path depends on the flow on the

other. Nomograms can be used to develop more general constraints than simple interface

limits 7 . Since they are defined using simulation, nomograms may improve the model

accuracy even when they have no obvious physical interpretation.

A fundamental challenge with estimating transfer capabilities is anticipating the

locations of injections and withdrawals. Locations are important because more power

can be transfered between points that have similar effects (shift factors) on critical lines.

Purchala, Haesen, Meeus, and Belmans (2005) deal with the unknown-location issue by

using a reduced network model. They collapse individual areas (or zones) into nodes

before evaluating transfer capabilities. As shown in Figure 3.3, the reduced model includes

one node for each area and a single line for each interface regardless of how areas are

connected in the full network model. This reduced model is then used to identify a single

set of shift factors shared by all locations in an area. The limitations are that these shift

factors approximate inter-area flows and ignore intra-area congestion. These limitations are

unavoidable when ignoring the injection locations within zones. The results of Purchala

et al. (2005) demonstrate that it can be difficult to anticipate transfer capabilities without

modeling the precise locations from where power will be injected. These issues speak to

the difficulty of congestion management and the inherent limitations of zonal energy and

reserve models.
7For example, nomograms can identify constraints of the form a1 f1 +a2 f2 ≤ b, where a1 6= a2.
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Figure 3.3: A reduced network model for the European interconnection (Purchala et al.,
2005).

Transmission margins are rarely determined in conjunction with reserve require-

ments (e.g., they are not in the above references). However, one can envision how larger

transmission margins would de-emphasize reserve location by leaving a bigger buffer on

the residual network. The most economical solutions balance the cost of restricting reserve

locations with the cost of leaving a transmission margin 8 . Stochastic models have shown

promise, in part, because they can consider the cost of these trade-offs. The congestion-

based reserve requirements in Chapter 4 of this dissertation also encourage the model to

leave larger transmission margins when it is inexpensive to do so. They may, therefore, be

classified as determining dynamic transmission margins as opposed to the static margins

from the literature.

3.3 Stochastic Models with Transmission-Constrained Recourse

Stochastic models have been applied extensively to unit commitment. This section

reviews those that include transmission constraints on recourse decisions. The key benefit

8The reserve sharing models of PJM (2012) and T. Zheng and Litvinov (2008) accomplish something
similar on a zonal level by coupling reserve requirements with the flow across zonal interfaces.
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is a locational awareness regarding the value of reserve. Historically, scheduling models

became more precise when OPF replaced energy zones. In the future, a similar transition

may see stochastic models replace reserve zones in order to address uncertainty more

directly.

This review covers two types of models: stochastic programming and robust opti-

mization. The stochastic programs minimize expected cost over a set of scenarios. The

robust models minimize the worst cost over a convex uncertainty set. This type of robust

optimization can be less computationally intensive than stochastic programming (Bertsimas,

Brown, & Caramanis, 2011). It is being considered by a major industry software provider

(Alstom Grid) as a tool to commit additional generators for reliability after the market has

cleared (Q. Wang, X. Wang, Cheung, Guan, & Bresler, 2013), but there is no sign of it yet

being proposed for day-ahead markets.

3.3.1 Stochastic Programming. Stochastic unit commitment has become more popular

in the literature over the past 10 years. Francisco D. Galiana et al. (2005) propose integrating

contingency recourse decisions into unit commitment. They model an explicit OPF for each

scenario, causing the number of variables and constraints to increase dramatically. The

authors derive some market impacts by unbundling nodal energy prices into pre- and post-

contingency components. Bouffard, Galiana, and Conejo (2005) demonstrate the model’s

potential to identify better unit commitment solutions for various test cases.

Some related formulations ignore recourse costs and instead focused on feasibility

across contingency scenarios. Hedman, Ferris, O’Neill, Fisher, and Oren (2010) show that
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economics for this problem can be improved by allowing changes to the network topology.

All of the above authors note that computational times can be considerable for stochastic

programming. J. Wang, Shahidehpour, and Li (2009) propose to make the problem more

scalable via Benders’ Decomposition, but the solve time for the IEEE 118-bus test case

still exceeds one hour despite them considering only three contingencies (one generator

and two transmission outages). Ferris, Liu, and Zhao (2014) develop ways to improve

convergence that may make Benders’ Decomposition practical in the near future; however,

they approach a simpler version of the problem with only one period and no binary variables.

Hejazi, Mohabati, Hosseinian, and Abedi (2011) improve computational times by using

an evolutionary algorithm. Their biggest computational bottleneck is evaluating reliability

at each iteration, but this problem is naturally parallelizable. Nevertheless, the practical

scalability of exact solution approaches remains unproven for unit commitment problems

with transmission-constrained recourse.

Stochastic programming has also been applied for continuous forms of uncertainty,

such as load and wind. J. Wang, Shahidehpour, and Li (2008) apply Benders’ Decomposition

to a two-stage model with wind uncertainty. Morales, Conejo, and Pérez-Ruiz (2009)

evaluate the sensitivity of expected operating cost to wind variability and uncertainty. One of

their main conclusions is that transmission constraints can induce wind curtailments to help

manage congestion. Their results support the claim that congestion will be more difficult to

efficiently manage in the future as wind farms become more prevalent.

61



L. Wu, Shahidehpour, and Li (2007) propose minimizing expected cost across

a scenario tree spanning multiple time steps. The authors use Monte Carlo simulation

to generate random scenarios that diverge from a common starting point. They enforce

consistent decisions in the parent nodes via coupling constraints. The authors solve the

problem using dual decomposition where the coupling constraints are dualized. The different

scenario paths are solved in parallel and the Lagrangian multipliers updated at each iteration.

The same authors tweak the scenario tree in a later paper and generalize the model to allow

for load shedding (L. Wu, Shahidehpour, & Li, 2008). A similar solution approach is used

by Papavasiliou and Oren (2013) on a two-stage stochastic program. The authors emphasize

the potential for parallelization and test a large number of scenarios in parallel using high

performance computing (Papavasiliou & Oren, 2013; Papavasiliou, Oren, & Rountree, 2014).

Even with parallelization, the simplified test case (a 225-node representation of CAISO)

still takes hours to solve due to the number of iterations necessary to reach convergence.

However, all of the above dual decomposition techniques reviewed in this paragraph are

highly scalable with respect to the number of scenarios due to the potential for parallel

computing.

3.3.2 Robust Optimization. Robust optimization has recently gained interest as an alter-

native to stochastic programming that can be less computationally intensive (Bertsimas et al.,

2011). Robust optimization is applied extensively to the terrorist interdiction problem. In

this problem, a malicious entity causes up to k resources to simultaneously fail and operators

respond to minimize the effect of the attack. Robust optimization follows a max-min struc-
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ture that identifies which interdiction causes the worst best-case response, i.e., the attack

that operators struggle the most to deal with. If the inner problem is convex, the dual can

be taken so that the overall problem becomes a single-level maximization problem. The

resulting problem is bilinear and non-convex but can be linearized via disjunctive constraints

using binary variables. This insight guides a portion of the literature interested in how well

a system is prepared for malicious interdiction (Salmeron, Wood, & Baldick, 2004; Motto,

Arroyo, & Galiana, 2005; Salmeron, Wood, & Baldick, 2009; L. Zhao & Zeng, 2012a).

Robust optimization has also been developed as an alternative to stochastic program-

ming for scheduling problems with recourse. These models view nature as an adversary that

tries to maximize operating costs. The models have a tri-level structure, where the inner two

levels are analogous to the interdiction problem described above. The outer level determines

preventative actions made prior to nature selecting a scenario from the uncertainty set.

Decomposition algorithms have been developed to determine the unit commitments that

optimizes the worst best-case response. For example, Q. Wang, Jean-Paul, and Guan (2013)

apply Benders’ Decomposition to unit commitment in order to achieve N-k reliability, i.e., to

protect against any combination of k simultaneous contingencies. At each iteration, robust

optimization is used to identify the worst set of contingencies and then a Benders’ cut is

applied to the master unit commitment problem. Due to the difficulty of the problem, the

approach struggles computationally when modeling more than one contingency (k > 1)

because the subproblem takes a long time to solve.
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Bertsimas, Litvinov, Sun, Zhao, and Zheng (2013) and Jiang, Zhang, Li, and Guan

(2014) use Benders’ Decomposition to minimize the worst cost over a continuous uncertainty

set. The authors note that the inner problem is NP-hard and develop heuristics to quickly

identify reasonable solutions. Jiang, Wang, Li, and Guan (2012) extend the model to allow

surplus wind to be curtailed (this can be beneficial if excess wind is causing congestion

or exacerbating other constraints). The above authors raise concerns about the tendency

of robust optimization to identify solutions that have high expected cost (this is called

the cost of robustness (Bertsimas & Sim, 2004)). To alleviate this concern, they advocate

reducing the size of the uncertainty set to obtain solutions that are less conservative. This

strategy allows operators who are more risk neutral to still utilize robust optimization, which

frequently solves faster than stochastic programs.

Conventional robust optimization requires the recourse problem to be convex (in

order to take the dual of the inner problem). This limits the modeling precision for systems

with generators that may be turned on or off during scenario response. Such fast generators

can greatly improve expected costs in systems with a lot of wind (J. Xiao, Hodge, Pekny, &

Reklaitis, 2011). Their influence can be approximated by relaxing integrality constraints

(as is done by J. Xiao et al. (2011)), but this may lead to optimistic solutions that are not

technically feasible. An exact algorithm is proposed by L. Zhao and Zeng (2012b) to solve

robust optimization problems using column generation. The method can model integer

recourse decisions because it uses no dual information, but the authors warn that advances

are needed before solving large problem instances in “reasonable” time (L. Zhao & Zeng,
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2012b). The efficient consideration of binary recourse variables is one benefit provided by

the deterministic policies developed in this dissertation.

3.3.3 Hybrid Deterministic Methods. Pure stochastic programming and robust opti-

mization models do not address all uncertainties in a computationally tractable way. The

already difficult problems in Sections 3.3.1 and 3.3.2 tend to focus on either discrete contin-

gencies or continuous uncertainties, implying that the remaining uncertainties are negligible

or addressed by other policies. This is important because deterministic policies may be

applied in tandem with the state-of-the-art stochastic models from the literature.

There is also potential for hybrid methods. Ruiz, Philbrick, Zak, Cheung, and

Sauer (2009) demonstrate that some benefits of stochastic programming can be retained

while limiting the size of the uncertainty set by using deterministic reserve requirements

to cover scenarios that are not given stochastic treatment. Figure 3.4 summarizes how

improving reserve requirements can make stochastic models more scalable. There may

come a time when computational advancements allow stochastic models to adequately

address all uncertainty and render deterministic requirements obsolete. However, for the

immediate future, reserve requirements will continue to fill the gap that cannot yet be fully

addressed by stochastic programming or robust optimization.
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Figure 3.4: A qualitative description of how reserve requirements (RRs) support partial
application of stochastic models.

3.4 Conclusion

Reliability in power systems is a matter of operating so that the system can survive

disturbances. Survival requires the ability to i) balance supply and demand and ii) satisfy

transmission constraints. Both tasks are critical for recourse when responding to disturbances.

However, scheduling policies are often designed by considering only one task at a time:

many determine the desired reserve quantity while assuming all reserves are deliverable

and others address transmission constraints without considering the ability to relocate

reserves. Reserve zones help control the location of reserve but are based on pre-determined

(and infrequently updated) guesses as to how transmission constraints will limit recourse

decisions. Less approximate models are provided by stochastic programming and robust

optimization 9 but are not yet scalable enough for practical systems. There is a wide

9There are other types of stochastic models not covered in this review, such as chance-constrained,
conditional value at risk, and minimax regret formulations (Q. P. Zheng et al., 2014). These models currently
experience similar computational barriers to implementation (Q. P. Zheng et al., 2014).
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computational gap between the deterministic policies being used today and the stochastic

policies that are proposed for tomorrow. The research in this dissertation begins to fill that

gap by developing policies that anticipate recourse decisions without solving a full stochastic

model. The new policies are developed especially with transmission constraints in mind,

although the work in Chapter 6 works to avoid expensive recourse decisions in general.
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Chapter 4

CONGESTION-BASED RESERVE REQUIREMENTS

4.1 Introduction

Traditional reserve requirements are designed to ensure reserves are deliverable

between zones. They are not designed to mitigate local congestion within zones. This type

of congestion can be a major concern for some operators because SCUC may return an

unreliable solution. The process of repairing unreliable solutions can be expensive and

nontransparent to market participants (Lyon, F. Wang, et al., 2014). Effective alternatives

(e.g., stochastic programming) have been delayed by computational limitations, so it can

be beneficial to develop practical methodologies that improve reserve deliverability. This

chapter describes a dynamic approach for addressing intra-zonal reserve deliverability for

contingency response.

Current practices employ static reserve requirements to ensure N-1 reliability. These

requirements are largely determined on an ad hoc basis. For example, PJM requires reserve

to exceed about 1.5 times the largest contingency and WECC requires reserve to cover 6%

of load plus 3% of energy exports (PJM, 2013; WECC, 2008). It is typical for reserve

requirements to exceed the largest contingency by some margin: these margins tend to

provide greater protection (beyond N-1) and increase the likelihood that enough reserve will
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be deliverable. This research addresses the issue of reserve deliverability by predicting how

much reserve should be procured in order to mitigate intra-zonal congestion.

The proposed model works by linking reserve requirements to a measure of transmis-

sion stress. Figure 4.1 summarizes its relationship with other approaches from the literature.

Deterministic models typically use flexibility requirements that withhold generation reserve

and transmission capacity for scenario response. The proposed model integrates these types

of flexibility such that less reserve is required when the network is unstressed. Conversely,

the model requires more reserve as transmission stress increases so that there will be more

dispatching freedom to alleviate congestion. The model performs well computationally

compared to stochastic programming because it anticipates recourse decisions using a simple

affine function. Although this approach sacrifices precision (compared to stochastic pro-

grams), it allows the unit commitment problem to remain scalable for large power systems

because the number of additional variables and constraints are minimal.

The proposed model mitigates congestion by procuring a reserve margin. This

margin can be integrated with any model from the literature 1 to help justify the assumption

that all reserves are deliverable. The model is assessed in this chapter relative to cost and

reliability, which are competing objectives because inexpensive solutions are often less

reliable. Testing demonstrates that the proposed model provides solutions that are generally

Pareto efficient and sometimes Pareto dominant over established reserve policies. Of

1Congestion-based reserve requirements can be used with the literature reviewed in Sections 3.1.1 and
3.1.2.
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· Reserve reqs. 
· Transmission 

margins

· Apply a recourse heuristic
· Increase flexibility when 

the heuristic stresses 
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· Co-optimize 
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with recourse

Flexibility approach CBRR Stochastic approach

Better solution quality

Better solution time

Figure 4.1: A comparison of congestion-based reserve requirements (CBRR) to traditional
deterministic and stochastic models.

particular note is the model’s ability to find economical solutions by increasing transmission

flexibility when reserve is expensive.

The remainder of this chapter is organized as follows. Section 4.2 provides back-

ground on intra-zonal congestion. This motivates the problem by giving some indication as

to the scale of intra-zonal congestion. Section 4.3 discusses the problem formulation. Sec-

tion 4.4 describes how to strengthen the formulation by anticipating recourse decisions using

an affine function of uncertainty. Section 4.5 suggests an interpretation and construction for

the user-defined parameters. Section 4.6 illustrates the approach with a small example and

Section 4.7 presents numerical results on the IEEE 73-bus test case. Finally, Section 4.8

concludes the chapter.

4.2 Extent of Intra-Zonal Congestion

To understand the prevalence of intra-zonal congestion, it helps to look at lessons

learned from zonal energy markets. Until recently, both CAISO and ERCOT used zonal
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models to clear not only reserves but energy as well. Their scheduling models would treat

resources in the same zone equivalent from a transmission perspective. Model solutions

would be checked for feasibility and repaired as needed through a process they called

congestion management (Kirby & Dyke, 2002; CAISO, 2007; ERCOT, 2010a). The

most common congestion management tools involve turning on additional generators and

changing the output of committed generators to bring power flows to within feasible limits.

Another term for these adjustments is out-of-market corrections (OMCs).

CAISO and ERCOT both struggled to manage congestion in their zonal markets.

Figure 4.2 shows the increase to intra-zonal congestion in CAISO from year 2005 and 2007

and Figure 4.3 shows congestion management expenses in ERCOT from 2001 to 2007.

Both systems experienced growing congestion leading to more extensive out-of-market

corrections to ensure feasibility and reliability. Eventually CAISO and ERCOT abandoned

zonal energy markets in favor of nodal markets that use full network representations like

the DCOPF discussed in Section 2.2.1 (Alaywan et al., 2004; Daneshi & Srivastava, 2011).

Nodal models are more precise because they discriminate between locations in a zone.

No such transition has occurred away from zonal reserve requirements. Scheduling

models still assume reserve is deliverable despite the existence of intra-zonal congestion

and its potential to grow in the future as intermittent resource, such as wind, become more

prevalent. Reserve deliverability is often improved in MISO by repairing the SCUC solution

using out-of-market corrections 2 . MISO dislikes the need for these corrections because

2Reserve disqualification is the primary type of out-of-market correction MISO uses to improve reserve
deliverability (FERC, 2011). This type of strategy is covered in detail in Chapter 5.
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Figure 4.2: Major points of intra-zonal congestion in CAISO in 2005 and 2007 (CAISO,
2006, 2007). The black lines are zone boundaries and the blue ellipses are points of
intra-zonal congestion.

Figure 4.3: Congestion management expenses in ERCOT (ERCOT, 2007). This is the
money spent repairing infeasible and unreliable market solutions. A map of the major
intra-zonal congestion areas in 2007 is in Figure 3.2.
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they can be expensive and they are applied after the day-ahead market has cleared (Chen,

Gribik, & Gardner, 2014). The proposed model provides a dynamic approach to help ensure

reserve deliverability so that SCUC can identify inexpensive solutions that require fewer

out-of-market corrections.

4.3 Problem Formulation

The proposed reserve requirements build upon the DC unit commitment formulation

outlined in Appendix C.1. This work develops a reserve margin ηt that can be added to

any baseline requirement. For simplicity, a single-zone model is used where reserve must

exceed the largest contingency plus the reserve margin ηt :

∑
i∈G\g

rit ≥ pgt +ηt , ∀g ∈ G, t ∈ T. (4.1)

Prices are often derived by fixing all binary variables and solving the dual of the resulting

linear program. Treating ηt as a variable imposes no change for this type of pricing structure.

4.3.1 Basic Transmission Stress Model. This section starts by measuring transmission

stress as a linear function of line utilizations. The minimum reserve margin is defined by

ηt = α ∑
l∈L

µlt , ∀t ∈ T (4.2)

µlt ≥
flt

Fl
, ∀l ∈ L, t ∈ T (4.3)

µlt ≥−
flt

Fl
, ∀l ∈ L, t ∈ T, (4.4)

where flt and µlt represent the real power flow and utilization of line l during period t.

The parameter α controls how much additional reserve is required as µlt changes. Larger
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values for α are always more conservative, i.e., put higher weight on reliability. Inequalities

(4.3) and (4.4) actively measure the utilization of lines that have positive or negative flow

(with respect to an arbitrary reference direction). The reserve margin ηt is unnecessarily

high whenever µlt exceeds its lower bounds. Therefore, at optimality, µlt equals utilization

whenever the dual variable of (4.1) in the linear relaxation is positive (otherwise the value is

arbitrary, which can happen when reserve exceeds the minimum requirement).

This formulation provides an incentive to reduce power flows in order to relax re-

serve requirements. In particular, this occurs when the cost of increasing reserve exceeds

that of adjusting the solution to reduce the required reserve margin ηt . Security-constrained

unit commitment (SCUC) may have several low cost solutions with very different commit-

ments (Sioshansi, O’Neill, & Oren, 2008) and, therefore, potentially different flow patterns.

Equations (4.2)–(4.4) afford the opportunity to change the committed set of generators to

significantly reduce transmission stress at relatively little cost.

The model allows substitutions between reserve and transmission stress in order to

reduce cost. To work effectively, it is necessary for increments in reserve and decrements in

transmission stress to have similar effects on reliability. Section 4.3.2 addresses how this

relationship can be regulated more precisely.

4.3.2 General Transmission Stress Model. The proposed approach motivates a careful

look at how transmission stress affects reserve deliverability and how much of a reserve
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margin should be acquired in response. Consider generalizing (4.2)–(4.4) by

ηt = α ∑
l∈L

∑
s∈H

ϕ
s
µ̃

s
lt , ∀t ∈ T (4.5)

∑
s∈H

µ̃
s
lt ≥

flt +δ
+
lt

F̃10
l

, ∀l ∈ L, t ∈ T (4.6)

∑
s∈H

µ̃
s
lt ≥−

flt +δ
−
lt

F̃10
l

, ∀l ∈ L, t ∈ T (4.7)

0≤ µ̃
s
lt ≤ ω

s, ∀s ∈ H, l ∈ L, t ∈ T. (4.8)

Two new features are included in (4.5)–(4.8). First, the model anticipates how flows

will change following a contingency. The term δ
+
lt (δ−lt ) anticipates the greatest increase

(decrease) of flow on line l in period t, and it is not necessary that
∣∣δ+

lt

∣∣ = ∣∣δ−lt ∣∣. The

anticipated flows are compared to emergency ratings F̃10, which are enforced after a

contingency occurs. The second formulation change is the adoption of a convex piecewise

linear transmission stress function that has slope ϕs for each segment s of width ωs. These

changes are discussed below in more detail.

The generalized model moves from measuring transmission stress in the base-case

to anticipating transmission stress after a contingency. This change matters because critical

lines may be relatively unutilized prior to a contingency. For example, changing flows pose

enough concern for operators to simulate contingencies when estimating transfer capabilities

(NERC, 1996). Likewise, δ represents the largest anticipated change in flow following

contingency re-dispatch. An intelligent way to estimate δ is the subject of Section 4.4.

The convex stress function discounts lines that are unlikely to impede reserve

deliverability. The term ∑s∈H µ̃s
lt represents the maximum predicted utilization of line l after
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re-dispatch for any contingency in period t. The model allows a different slope ϕs for each

segment s and, at optimality, segments are used in the desired order because the reserve

margin is unnecessarily high whenever segments are not filled in ascending order of slopes.

Similar transmission stress functions are used in the literature to measure how

different contingencies are likely to stress the network. F. Xiao and J. D. McCalley (2009)

propose a risk-based optimal power flow that replaces hard transmission limits with a

convex risk function. Also related to risk, Wood and Wollenberg (1996) discuss an overload

performance index (PI) as a relative measure of how severe a contingency c is likely to be:

PIc
t = ∑

l∈L

(
f c
lt

F̃10
l

)2n

, (4.9)

where f c
lt is the post-contingency line flow and n is a parameter that controls the relationship

between line utilizations and PI. A graphical comparison between stress functions is shown

in Figure 4.4; although they take similar forms, a distinguishing assumption in this work is

that post-contingency transmission stress can be relieved by acquiring additional reserve.

Section 4.5 provides a detailed interpretation of transmission stress in this context.
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Figure 4.4: Transmission stress functions for a single line.

4.4 Anticipating Re-dispatch

The term δ (including δ
+
lt and δ

−
lt ) in (4.6) and (4.7) represents the largest anticipated

change in flow following contingency re-dispatch. Prudence dictates that δ should not only

be practical but justifiable in order to appease market participants. This section describes an

efficient approach that can base δ on operator insight or past contingency analyses, which

are often readily available from past days and as the schedule is continually revised. The

approach uses an affine policy based on operational shift factors.

Generation shift factors (GSFs) and line outage distribution factors (LODFs) are

often used to calculate changes in flow following a contingency (Wood & Wollenberg, 1996).

They describe how power flows change relative to the pre-contingency usage of the failed

resource. This section borrows the same concept but estimates GSFs and LODFs with

respect to anticipated contingency recourse actions. Estimating operational shift factors

requires the specification of a response function that anticipates how generators will be
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re-dispatched. An affine function is used here. The response of generator i to a particular

contingency in period t can be summarized by

ρ
g
it =

∆pg
it

pgt
(4.10)

ρ
k
it =

∆pk
it

fkt
, (4.11)

where ∆px
it is the change in output of generator i following the failure of resource x and ρx

it

is a normalized participation factor. Note that ∑i∈G ρx
it = 0 whenever frequency (the balance

between supply and demand) is restored. A precise evaluation of ρ can be calculated

by stochastic programming at significant computational cost. A more computationally

efficient approach is to estimate participation factors ahead of time and use them to generate

operational GSFs and LODFs as follows:

ag
lt = ∑

i∈G
ρ

g
itPT DFil (4.12)

dk
lt = LODFk

l + ∑
i∈G

ρ
k
itPT DFk

il , (4.13)

where PT DFgl (the power transfer distribution factor) is the sensitivity of flow on line l

to injection by generator g, LODFk
l describes how flow changes on l immediately after

line k fails, and PT DFk
gl is the power transfer distribution factor when k is not in service.

These distribution factors are easy to calculate and remain the same as the operating state

changes (M. Liu & Gross, 2004). They are combined above with the participation factors ρ

to produce operational shift factors. The operational GSF ag
lt is the anticipated change of

flow on l per unit power produced by failed generator g, and the operational LODF dk
lt is

the anticipated change of flow on l per unit flow on failed line k. Once calculated, the shift
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factors can be embedded into SCUC as bounds on δ :

δ
+
lt ≥ pgta

g
lt , ∀g ∈ G, l ∈ L, t ∈ T (4.14)

δ
−
lt ≤ pgta

g
lt , ∀g ∈ G, l ∈ L, t ∈ T (4.15)

δ
+
lt ≥ fktdk

lt , ∀k ∈ L, l ∈ L\ k, t ∈ T (4.16)

δ
−
lt ≤ fktdk

lt , ∀k ∈ L, l ∈ L\ k, t ∈ T. (4.17)

Equations (4.14)–(4.17) contribute two constraints for each line and contingency

(the number of constraints may be reduced by omitting contingency scenarios that are

unlikely to threaten reliability). The use of shift factors facilitates a dynamic update of δ that

incentives less utilization of a resource if its failure is likely to cause an unreliable condition.

If utilization is not reduced, then more reserve will be required.

The above formulation avoids the computational intractability of more precise

stochastic models by assuming that generators will be re-dispatched in proportion to the

assumed participation factors, i.e., reserve will come from the same places. These factors

are likely to be imprecise for at least one contingency, probably several, because reserve

locations and transmission bottlenecks may change. The proposed approach accounts for

this imprecision by procuring additional reserve as the predicted flows approach or exceed

emergency limits in anticipation that the additional reserve will allow operators to find a

re-dispatch solution that avoids transmission violations. The desired level of conservatism is

achieved by tuning the user-defined parameters.
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4.4.1 Alternatives for Anticipating Recourse. Severe contingencies can necessitate

quick response from operators to protect the system. In such situations, it can be beneficial

to initiate contingency response immediately according to pre-defined rules. Such a scheme

is used by MISO to immediately start deploying reserve according to participation factors

while operators await an optimal dispatching solution (Chen, Gribik, & Gardner, 2014). The

existence of these rules may make it easier to predict transmission stress because recourse

decisions follow pre-defined policies 3 .

A more general approach to anticipate recourse decisions is explored by Warrington,

Goulart, Mariéthoz, and Morari (2013). The authors develop affine policies for scenario

response similar to the participation factors used above. They caution against using this

approach for day-ahead scheduling because the system state is more uncertain. However,

imperfect predictions may still be beneficial when used in conjunction with congestion-

based reserve requirements. The anticipated recourse actions may be less accurate than

stochastic programs and still do a reasonable job a) predicting where congestion is a concern

and b) acquiring more reserves for additional protection in these instances. The model

approaches stochastic programming when the anticipated actions align with the optimal

scenario response. Until that level of accuracy is reached, the model must tuned by user-

defined parameters.

3Independent from this dissertation, MISO published research that uses their knowledge of the participation
factors to constrain post-contingency flows (Chen, Gribik, & Gardner, 2014). Their work shares the idea of
using participation factors to influence security constraints, but there are also significant differences. One
difference is that Chen, Gribik, and Gardner (2014) do not tie the transmission constraints to a reserve margin.
Another difference is that they aggregate nodes within zones and, in doing so, lose the ability to address
intra-zonal congestion. Nonetheless, they observe favorable market results when testing their approach, which
underscores the potential benefit of using participation factors to anticipate recourse actions.
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4.5 Interpretation of Parameters

The proposed method relies on user-defined parameters that, like other ad hoc

policies used in practice, should be tuned to the particular system. Understanding the role of

these parameters is relevant to build an effective model.

Let µlt be the predicted post-contingency utilization based on the assumed partic-

ipation factors. An increase above µlt = 1 warrants a larger reserve requirement to help

operators reduce flow on the overloaded line. Properly specified models anticipate how

much reserve is needed to counter transmission stress. Consider the following stress function

with two parameters, β and n:

ηt =
β

2n ∑
l∈L

f (µlt) (4.18)

f (µlt) =


µ2n

lt if µlt ≤ 1

2n(µlt−1)+1 if µlt ≥ 1.

(4.19)

The contribution of an individual line has a constant slope when µlt ≥ 1 and is convex for

n≥ 1/2. The slope of (4.18) controls the sensitivity of the reserve requirement to changes

in line utilization:

∂ηt

∂ µlt
=


β µ

2n−1
lt if µlt ≤ 1

β if µlt ≥ 1.

(4.20)

Equation (4.20) defines how much additional reserve the model requires to counter

marginal increases in the anticipated line utilization. The parameter β controls the sensitivity
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Figure 4.5: Piecewise linear approximations of the transmission stress function (4.18) with
n = 2, 6, and ∞ and unit α = β/2n.

to changes in utilization when µlt ≥ 1. Large values of β are appropriate when large

quantities of reserves are necessary to alleviate congestion. The parameter n discounts the

sensitivity when µlt < 1 because less additional reserve is necessary when no violations are

predicted. These parameters should be tuned to the respective system in order for the model

to be effective.

The general transmission stress model (4.5)–(4.8) can be made to approximate (4.18)

by specifying α = β/2n and piecewise linear segments that approximate f (µlt). Figure

4.5 shows the contribution of an individual line to the reserve requirement for unit α and

multiple values of n. Setting n = ∞ is a special case that effectively fixes the reserve

requirement and constrains all µlt < 1. Large values of n are appropriate when the operator

is confident that the participation factors accurately anticipate post-contingency decisions.

Specification of congestion-based reserve requirements should be based on off-line

analysis. Such analysis could make use of simulation and statistics to compare how well
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different stress functions predict post-contingency flows. Furthermore, it should investigate

the expected cost and reliability for different policies. Operators with intimate knowledge of

the system may improve the formulation by developing distinct stress functions for different

lines or by modeling dependencies between lines, such as is done today using nomograms.

The value of reserve is difficult to specify a priori, but operators have expressed interest in

similar solutions. For example, MISO (2012b) uses a reserve demand curve based on off-line

valuation of different reserve margins. The proposed model is analogous to dynamically

updating a reserve demand curve based on how transmission stress affects the anticipated

value of a reserve margin.

4.6 Illustrative Example

This section demonstrates congestion-based reserve requirements with n = ∞ on a

small test case comprising three transmission lines, three nodes, and three generators. The

system attributes are shown in Figure 4.6. There is a single load of 60 MW that can be

served by a generator at the same location. However, it is more economical to import power

from other parts of the network. This type of arrangement is typical in power systems: the

cheapest generators are usually located outside of the biggest load centers and have their

power imported over high-voltage transmission lines. Consider a single-period DCOPF that

includes a requirement for reserve to exceed the largest contingency. Problem details and

the exact formulation are provided in Appendix D.
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G1: $100 / MWh

Pmax:  60 MW

R10:  60 MW

60 MW

G2: $50 / MWh

Pmax:  45 MW

R10:  15 MW

G3: $75 / MWh

Pmax:  45 MW

R10:  15 MW

L2L1

L3

Line
Ratings (MW) PTDFs

F F̃10 G1 G2 G3

L1 30 33 0 2/3 1/3
L2 30 33 0 1/3 2/3
L3 999 999 0 1/3 −1/3

Figure 4.6: The three-node test case (the arrows indicate reference directions).

Figure 4.7 shows the extreme points of the feasible space and the corresponding

flows on lines L1 and L2. All optimal solutions coincide with the rightmost edge of the

polyhedron. The total cost tends to be lower when the flow on L1 is large because the

cheapest generator has a large effect on this line. Suppose that E0
2 is selected as an initial

solution and consider the response to the outage of generator G1. Figure 4.8 describes the

only recourse action that balances supply and demand following this contingency. The initial

solution is not N-1 reliable because this recourse action violates the emergency capacity of

L1.

Figure 4.9 summarizes the decision space that protects against all generator contin-

gencies 4 . This space is difficult to identify for large problem instances due to the number

of extreme points. However, for small instances, such as this, it is easier to compare how

4Failures of G2 and G3 are ignored because they are trivially reliable in the initial solution. A description
for why this is the case is provided in Appendix D
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Extreme
Point

p1 p2 p3 f1 f2 Objective

E0
1 0 30 30 30 30 $3,750

E0
2 15 45 0 30 15 $3,750

E0
3 30 30 0 20 10 $4,500

E0
4 30 0 30 10 20 $5,250

E0
5 15 0 45 15 30 $4,875
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Figure 4.7: Extreme points and the feasible space projected onto f1 and f2.

p1 = 15

60

p2 = 45 p3 = 0

f2 = 15f1 = 30

f3 = 15

60

p2 = 45 p3 = 15

f2 = 25f1 = 35

f3 = 10

Failure of G1

Figure 4.8: Initial solution E0
2 and the response to the failure of G1. This is the only

response that balances supply and demand, but the transmission limit on line L1 is violated.

well congestion-based reserve requirements approximate the N-1 reliable space. Ideally, the

proposed approach will preserve optimal solutions and remove unreliable ones.
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Extreme
Point

p1 p2 p3 f1 f2 Objective

E1
1 0 30 30 30 30 $3,750

E1
2 12 42 6 30 18 $3,750

E1
3 30 24 6 18 12 $4,650

E1
4 30 6 24 12 18 $5,100

E1
5 12 6 42 18 30 $4,650

f
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Figure 4.9: The N-1 reliable space (dashed border).

The participation factors from the response in Figure 4.8 can be used to derive

operational shift factors using equation (4.12). The shift factors for lines L1 and L2 are 5

a1 = ρ1×PT DF11 +ρ2×PT DF12 +ρ3×PT DF13

= (−1×0)+
(

0× 2
3

)
+

(
1× 1

3

)
=

1
3
, (4.21)

a2 = ρ1×PT DF21 +ρ2×PT DF22 +ρ3×PT DF23

= (−1×0)+
(

0× 1
3

)
+

(
1× 2

3

)
=

2
3
. (4.22)

The flows on L1 and L2 are anticipated to change by (δ1 = a1× p1) and (δ2 =

a2 × p1) following the loss of generator G1. Now consider congestion-based reserve

requirements with n = ∞. Recall that this policy effectively bounds the anticipated flows

5Recall from (4.10) that ρ
g
it is the participation factor for generator i in response to the outage of generator

g. The indices g and t are suppressed here from ag
lt and ρ

g
it because this example considers only one outage

(the loss of G1) during a single period.
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Extreme
Point

p1 p2 p3 f1 f2 Objective

E2
1 0 30 30 30 30 $3,750

E2
2 9 39 12 30 21 $3,750

E2
3 21 39 0 26 13 $4,050

E2
4 30 30 0 20 10 $4,500

E2
5 30 21 9 17 13 $4,725

E2
6

9
2 21 69

2
51
2 30 $4,088
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Figure 4.10: Feasible space using congestion-based reserve requirements with n=∞ (dotted
border).

below emergency limits. This is equivalent to adding constraints

−F̃10
1 < f1 +δ1 < F̃10

1 −→ −33 <
1
3

p1 +
2
3

p2 +
1
3

p3 < 33 (4.23)

−F̃10
2 < f2 +δ2 < F̃10

2 −→ −33 <
1
3

p1 +
1
3

p2 +
2
3

p3 < 33. (4.24)

Figure 4.10 shows the new feasible space considering constraints (4.23) and (4.24) as non-

strict inequalities. The optimal solutions include all points on the rightmost edge of the

reduced polyhedron. Unlike before, every one of these solutions is reliable to the loss of

any generator. For example, Figure 4.11 demonstrates how operators may recover from

the loss of G1. Reliability is established in this example by increasing the flow on L2,

which is intrinsically linked with reducing the output of G1 so the contingency becomes

less severe. In this small example, the congestion-based reserve requirements remove all

optimal solutions that are also unreliable.

Recall that large values of n are preferred when the participation factors are pre-

dictable. This condition can be hard to achieve. The participation factors are not consistent
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p1 = 9

60

p2 = 39 p3 = 12

f2 = 21f1 = 30

f3 = 9

60

p2 = 33 p3 = 27

f2 = 29f1 = 31

f3 = 3

Failure of G1

Figure 4.11: Solution E2
2 and a feasible response to the failure of G1.

even in this example for different baseline solutions: ρ varies between (−1,0,1) and

(−1,−2/3,5/3) in the responses shown in Figure 4.8 and Figure 4.11. It is visually ap-

parent in Figure 4.10 that congestion-based reserve requirements provide an imperfect

approximation of the N-1 reliable region. For example, the model both under and over

approximates the reliable space in the neighborhood of ( f1, f2) = (28,17). However, in this

instance, the feasible region is reasonable for many low cost solutions. Testing on larger

networks shows that smaller values of n often provide better approximations. Parameter

tuning is an important step to complete because it can significantly influence the performance

of the proposed algorithm.

4.7 Analysis and Results: IEEE 73-Bus (RTS 96) Test Case

Different reserve margin policies are compared using a 24-hour unit commitment

model on the peak day of the RTS 96 test case. The test case is described by Grigg et al.

(1999) and is publicly available from the Univ. of Washington (1999) website. The system

has 73 nodes, 99 generators, and 117 transmission lines.
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               Transmission line                       Removed line

Figure 4.12: Modified IEEE 73-bus test case with up to 200 MW of reserve imports.

It is common to modify IEEE test cases. This analysis follows Hedman et al. (2010)

by removing line (11–13), shifting 480 MW of load from buses 14, 15, 19, and 20 to bus

13, and decreasing the capacity of line (14–16) to 350 MW. These modifications are made

to each of the three identical areas that comprise the system. The removal of lines and

shifting of load was originally done by J. McCalley et al. (2004) and the changing of line

capacities was originally done by Motto, Galiana, Conejo, and Arroyo (2002). A small

amount of congestion is induced by tripling the capacity of inexpensive hydro power in the

area consisting of buses 1–24 and removing hydro from all other areas.

The system is treated as a single zone within a larger system that can import up to

200 MW of reserve evenly across buses 3, 15, and 17; these locations mirror the connection

between the left and central areas of the network as shown in Figure 4.12. All importable

reserves are counted towards the respective reserve requirements. Non-spinning reserves are

not modeled.

The basic and general models are tested using several values of α and transmission

stress functions that approximate (4.18) with n = 2, 6 and ∞, as shown in Figure 4.5. The
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general model is first solved using the naı̈ve assumption δ
+
lt = −δ

−
lt = F̃10

l −Fl to test

performance without using shift factors to predict changing flows. Unit commitment is then

solved again using shift factors derived from critical contingencies of the initial solution.

Reliability is evaluated against restoring frequency within 10 minutes while sat-

isfying emergency transmission limits. Slack variables are added to allow transmission

violations when these conditions cannot be met. Contingency analysis is performed for each

hour using a DC optimal power flow that minimizes the sum of transmission violations. The

contingency analysis formulation is provided in Appendix C.2. For the purpose of reporting

statistical expectations, failure rates are assumed to be stationary and are inferred from the

mean time to failure. Over the course of a single day, there is an 87% chance of at least one

generator failure and a 10% chance of at least one transmission failure.

Testing is performed using CPLEX v12.4 on an 8-core 3.6GHz computer with 48GB

of memory. SCUC is terminated after five minutes or upon reaching an optimality gap of

0.1%. All 147 runs achieve an optimality gap of 0.15% and only five do not reach 0.1%

within the time limit.

4.7.1 Interpretation. Congestion-based reserve requirements are compared to two sets

of baseline reserve policies: the first (B1) specifies that reserve must exceed the largest

contingency as well as a percentage of load and the second (B2) specifies that reserve must

exceed the largest contingency times a factor that is greater than one. These roughly reflect

the reserve policies of WECC and PJM (WECC, 2008; PJM, 2013). The reserve parameters

are varied to gauge performance for different levels of conservatism.
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Policies are compared with respect to cost and the expected transmission violations

(E[trans violation]). Transmission violations are a good indicator of reliability but do not

imply that load curtailment must occur. Any violations reported by contingency analysis will

be corrected by the system operator by either re-running SCUC (with additional restrictions

to ensure a reliable solution) or by performing out-of-market corrections.

This analysis makes no statement as to the optimal balance between cost and reli-

ability in the initial SCUC solution. Strong policies are distinguished as those that tend

to provide more reliability at no additional cost, i.e., policies that provide Pareto efficient

solutions. A solution is Pareto dominated if another solution is better with respect to both

objectives.

4.7.2 Results for Normal Conditions. Figure 4.13 (a) and (b) show results from the

baseline reserve and basic transmission stress policies. The reserve margins begin near zero

and are progressively made more conservative. The complete range of policies and average

solution times (T ) are shown in Table 4.1. The expected sum of violations is 0.37 MW when

there is no reserve margin; this and other conservative policies are omitted from Figure 4.13

because results are similar when reserve margins are near zero. As requirements become

stricter, unit commitment costs increase and reliability tends to improve. The trade-off

between cost and reliability is almost indistinguishable between the baseline and basic

transmission stress policies for this test case.

Figure 4.13 (c) and (d) show that the general models are more efficient for highly

reliable solutions. Updating shift factors improves reliability in all cases but is accompanied
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Figure 4.13: Performance of the baseline and congestion-based reserve requirements for
various levels of conservatism.

by an increase in cost. Reliability improves at relatively little cost for n = 2 and 6 when

expected violations are less than 0.05 MW, resulting in Pareto dominant solutions in this

region. The general models take the longest to solve on average. However, solution times

are highly variable and the fastest 66% of the general models solved quicker than the slowest

25% of either baseline policy.

Recall that n = ∞ is equivalent to assuming that each set of pre-defined participation

factors correspond to a feasible re-dispatch with no violations. In this example, n = ∞

reduces the expected violations by over 90% compared to the initial run (from 0.37 MW to
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Table 4.1: Test descriptions and statistics.

Approach Policy
range (α)

T
(mins)

Coeff #
viol

Coeff
max viol

N
or

m
al

B1 (×load) [0.03,0.08] 0.59 0.48 0.62
B2 (×lrgst contg) [1.0,2.1] 0.87 0.44 0.63
basic [0,45] 0.95 0.46 0.66
n = 2 [0,30] 1.32 0.47 0.68
n = 6 [0,70] 0.93 0.48 0.68
n = 2, updated SF* [0,25] 1.17 0.47 0.72
n = 6, updated SF [0,50] 0.98 0.53 0.76
n = ∞, updated SF 1 2.40 – –

St
re

ss
ed

B1 (×load) [0.03,0.09] 0.62 0.63 0.81
B2 (×lrgst contg) [1.0,2.0] 0.80 0.53 0.61
basic [0,50] 0.99 0.51 0.61
n = 2 [0,22.5] 2.62 0.58 0.67
n = 6 [0,80] 0.62 0.60 0.74
n = 2, updated SF [0,20] 1.45 0.62 0.71
n = 6, updated SF [0,60] 0.94 0.56 0.78
n = ∞, updated SF 1 5.20 – –

*SF = shift factors

0.03 MW) without requiring any reserve margin; the gain in reliability is entirely attributed

to reducing transmission stress. This approach proves costly, however, suggesting that it is

more efficient to instead encourage alternative recourse decisions by procuring additional

reserve. Larger values of n would become desirable if the shift factors better anticipated

post-contingency decisions.

Other relevant reliability metrics include the maximum sum of violations (max viol)

following a single contingency and the number of contingencies with non-zero violation

(# viol). The performance of these metrics relative to expected violation is assessed using

log-linear regression. The fitted regression coefficients, shown in Table 4.1, approximate
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the percent change in the respective metric per percent change in the expected violation

(Törnqvist, Vartia, & Vartia, 1985). The coefficients measure relative sensitivities – larger

values indicate that the respective metric improves quickly relative to the curve in Figure

4.13 6 . The number of violations follows a similar relative trend for all policies, but the

maximum violations improve faster using the congestion-based reserve requirements. In

particular, updating shift factors appears to be especially efficient at minimizing the “worst”

contingencies (max viol). This is particularly useful if the operator is interested in avoiding

large amounts of load shedding during a single event.

4.7.3 Results for Stressed Conditions. It is common for resources to be unavailable due

to scheduled maintenance or a forced outage. In this section, the absence of a large baseload

generator (unit 90) leads to importation of cheap energy from neighboring parts of the

system and the additional congestion significantly reduces reliability compared to normal

operation. It may be advantageous to change the reserve zones to reflect the new congestion

pattern; however, such changes are rarely implemented in practice. For example, MISO will

only consider reconfiguring reserve zones when the adverse condition is projected to last

multiple days and cannot be resolved through other operating procedures (MISO, 2012a).

Figure 4.14 (a) and (b) shows that the basic transmission stress model dominates

only B1 when costs exceed $3.66 million. However, Figure 4.14 (c) and (d) shows that the

general models outperform both baseline approaches. Updating the shift factors usually

provides efficient solutions, but the jagged results in Figure 4.14 (d) demonstrate that the

6Regression is used here to simplify the results and avoid replicating Figure 4.13 for every reliability metric.
The fitted models all have reasonable fits, with r2 ranging from 0.72 to 0.99.
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Figure 4.14: Performance of the baseline and congestion-based reserve requirements on
the stressed system.

benefit can be inconsistent because generator participation in re-dispatch may differ from

the assumed values.

The model with n = ∞ again improves reliability without increasing the minimum

reserve level, but is not cost-efficient. Otherwise, all of the general policies are competitive

when compared to the baseline approaches. As before, the general models are particularly

efficient at improving the worst contingencies (max viol). Figure 4.15 compares the average

maximum violations across hours between the baseline and general models with no shift

factors. The worst contingency is often the failure of line (56–57); the congestion-based
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Figure 4.15: Maximum sum of violations for any contingency averaged across hours.

reserve requirements are efficient because they encourage a preemptive reduction of flow on

this line to improve reliability without procuring a large expensive reserve margin.

4.7.4 Reliability by Reducing Transmission Stress. Congestion-based reserve require-

ments can achieve reliability more economically by reducing transmission stress when it

is inexpensive to do so. This effect is demonstrated by fixing the minimum reserve quan-

tities identified by the general model with n = 2 and solving SCUC with these as explicit

requirements. Results for the stressed system, shown in Figure 4.16, show that much of

the performance is due to reducing transmission stress as opposed to identifying effective

reserve quantities.

It can be difficult to predict how much reducing transmission stress will improve

reliability because reliability is contingent on an optimal power flow to re-dispatch generators.

The third most conservative n = 2 policy in Figure 4.16 is dominated by the fixed reserve

requirement, i.e., it is possible that reducing transmission stress will lead to a solution that is

less economical and less reliable. Extensive off-line analysis is justified in order to ensure
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Figure 4.16: Results after fixing the reserve levels identified using n = 2.

consistent performance and avoid undue reductions in transmission stress when the more

appropriate response is to increase reserve.
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4.8 Conclusion

Most scheduling models assume reserve is highly deliverable within zones. Intra-

zonal reserve deliverability remains an unresolved practical issue that operators address, in

part, by procuring reserve margins that add flexibility to post-contingency dispatch decisions.

These margins are often based on simple rules, such as a percentage of load or factor

above the largest contingency, and may lead to overly-expensive solutions or expensive

out-of-market corrections when applied to cover a broad range of uncertainty.

This chapter proposes a method for coupling reserve requirements with transmis-

sion stress. Just as important as determining a proper reserve quantity, the method may

preemptively reduce flows on critical lines. The model satisfies security constraints by

reducing transmission stress or acquiring a larger reserve margin, whichever is more eco-

nomical. Transmission stress is based on an approximation of how power flows will change

following a contingency based on pre-defined recourse participation factors. If the assumed

participations would cause a violation, the model procures additional reserve to improve the

likelihood that operators can find another solution that avoids all violations. Future research

may improve performance by more accurately anticipating how individual reserve providers

will participate in contingency response. The participation factors may also be extended to

consider likely deviations in intermittent generation. The efficiency of the proposed method

approaches stochastic programming when the participation factors better anticipate recourse

decisions.
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Results compare the congestion-based reserve requirements to common baseline

policies. The benefit of the proposed approach is demonstrated under normal conditions

and is pronounced when the system becomes more stressed such as during an the long-term

outage of a large baseload generator. Therefore, testing suggests that the approach may help

operators efficiently handle a wider range of situations without needing to update zones or

perform out-of-market corrections.
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Chapter 5

RESERVE DISQUALIFICATION FOR DISTINCT SCENARIOS

5.1 Introduction

Most large balancing authorities use reserve zones to ensure that enough reserve

is held in import-constrained regions. However, these zones are structurally limited and

are expected to address a wide range of uncertainty: requirements are inevitably overly

conservative for some scenarios and insufficient for others. The limitations of zonal reserve

requirements are discussed in Section 5.3. If some reserves are found to be undeliverable,

operators in MISO and ISO-NE manually disqualify them so that the reserve requirements

must be met by reserves at other locations (FERC, 2011; ISO-NE, 2013b, 2012). The

strategy of disqualifying reserves at sub-prime locations is formalized and generalized in

this chapter using the idea of response sets.

A response set defines a group of entities that are eligible to provide reserve for

a particular scenario in a particular period. Scenario-specific response sets help security-

constrained unit commitment (SCUC) anticipate what corrective actions will be feasible for

different contingencies. This work focuses on generator contingencies, but the structure is

theoretically compatible with any other type of uncertainty. Figure 5.1 shows an example of

contingency response sets for a hypothetical system with three generators – only resources

in the shaded regions are categorized as deliverable for the underlying contingency. The
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G1

G3

G2

Congestion pattern: Response sets for three generators:

Figure 5.1: Overhead view of a hypothetical system showing the response sets for three
generator contingencies. The arrows indicate the flow on congested interfaces. Each set
must have enough reserve to cover the loss of the respective generator.

response sets for generators G1 and G2 are relatively small because congestion only allows

reserve to be delivered from nearby areas. The benefit of response sets are that 1) different

treatment can be given to entities that would traditionally fall in the same zone and 2)

the response sets may change across scenario-periods to reflect the distinct congestion

patterns that may arise. The proposed model integrates response sets with traditional reserve

requirements in order to leverage the strengths of both approaches.

A decomposition algorithm is proposed that updates response sets while solving

SCUC. The algorithm is a heuristic that mimics Benders’ Decomposition for stochastic

programs. The algorithm is passive in the sense that it only overrides traditional reserve

requirements when reserve deliverability assumptions are violated. The approach also relates

to existing reserve disqualification practices. It can be characterized as a generalized reserve

disqualification procedure because removing a resource from a response set is equivalent to

disqualifying its reserve for a single contingency.
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Figure 5.2: Day-ahead scheduling process.

The day-ahead scheduling process is assumed to follow the flowchart in Figure 5.2.

The day-ahead market (DAM) is first cleared using SCUC to establish an initial schedule that

facilitates market settlements. Operators then evaluate reliability and apply out-of-market

corrections (OMCs) whenever the market solution is unreliable. More details on day-ahead

scheduling is provided in Section 2.2.4 and by Al-Abdullah et al. (2013). The proposed

algorithm may be integrated within the DAM or used as OMC strategy to repair unreliable

market solutions in an economical manner.

The approach is assessed relative to its ability to reduce operating costs subject to

satisfying N-1 reliability. The model only overrides the baseline formulation when the

SCUC solution is found to be unreliable. In such cases, the algorithm is shown to improve

reliability at relatively little cost. The algorithm is sufficiently fast to apply as an OMC

procedure and it may also be applied within the DAM in a limited way if time allows.

The contribution goes a step further for market environments. Traditional mar-

kets compensate all members in the same zone at the same rate. This can create market

inefficiencies whereby resources behind transmission bottlenecks are paid too much for
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reserve relative to resources at prime locations. Not all locations in a zone are necessarily

able to provide equal service. This chapter proposes a reserve market settlement scheme

that compensates resources based on their service to individual contingencies. Using the

illustration in Figure 5.1 as an example, resources belonging to the response set for G1 may

be compensated less than resources that service both G1 and G2. The proposed methodology

provides a more precise payment scheme that can create different reserve prices for resources

in the same zone based on congestion.

This chapter is organized as follows: Section 5.2 describes a baseline zonal approach

that serves as a foundation for the proposal. Section 5.3 describes the limitations of zonal

reserve requirements. Section 5.4 describes the form and implementation of the proposed

approach. Section 5.5 proposes a market settlement scheme for locational reserve prices.

Section 5.6 demonstrates the methodology on a small test case. Section 5.7 presents

numerical results on the IEEE 73-bus test case and discusses practical considerations.

Finally, Section 5.8 concludes the chapter and notes some potential future work.

5.2 Baseline Reserve Requirements

The proposed reserve requirements build upon the DC unit commitment formulation

outlined in Appendix C.1. Incorporating a full network model for all contingencies (á la

stochastic programming) quickly becomes intractable for large systems due to how the

problem size increases. Reserve zones are used in practice to approximate transmission

constraints and enable deterministic formulations. It is well-known that zonal models
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imperfectly characterize power flows because they estimate cross-border flows and ignore

intra-zonal congestion (Purchala et al., 2005). Nonetheless, zones are ubiquitous for reserve

requirements because they allow operators to model transmission constraints on recourse

decisions in an intuitive and computationally efficient way.

The baseline reserve model used in this work is inspired by the market model of

ISO-NE (T. Zheng & Litvinov, 2008). Two small adjustments are made to the formulation.

The first (and most trivial) difference is that the model only considers 10-minute reserves

procured for N-1 contingency response. The second change is a departure from nested zones,

which suit the ISO-NE system but may be inappropriate for general networks. An example

of the difference between nested and mutually exclusive zones is shown in Figure 5.3. The

defining characteristic of nested zones is that there is assumed to be no congestion limiting

reserve deliverability from child to parent zones. This assumption is based on knowledge of

the underlying system and may be unreasonable for general cases. For example, CAISO,

ERCOT, MISO, and PJM have found mutually exclusive zones to be preferable for their

respective systems (CAISO, 2007; ERCOT, 2007; MISO, 2008; PJM, 2012) 1 . The reserve

requirements in this chapter are formulated for mutually exclusive zones.

The reserve model proposed by T. Zheng and Litvinov (2008) introduces variables

that describe how much reserve can be shared between zones. A minimalistic representation

1The reserve zones for CAISO, ERCOT and MISO are illustrated in Figures 4.2, 3.2, and 2.6. PJM has a
hybrid model where just one of the zones contains a nested sub-zone (PJM, 2012).
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Figure 5.3: Examples of different types of reserve zones. The arrows indicate typical power
flow directions across the zonal interfaces.

is

∑
k∈Z

r̃ j
kt ≥ pct + rct , ∀ j ∈ Z,c ∈ G ( j), t ∈ T (5.1)

r̃ j
kt ≤ ∑

g∈G (k)
rgt , ∀ j ∈ Z,k ∈ Z, t ∈ T (5.2)

r̃ j
kt ≤ S j

kt , ∀ j ∈ Z,k ∈ Z, t ∈ T, (5.3)

where pct is the pre-contingency production from generator c, rgt represents reserve provided

by resource g, and r̃ j
kt represents how much reserve in zone k is classified as deliverable

to zone j in period t. Equation (5.1) requires there to be enough portable reserve to cover

the loss of any generator, (5.2) models reserve held within the zones, and (5.3) limits how

much reserve may be shared between zones. The reserve sharing bounds S may be based on

off-line analyses. For example, T. Zheng and Litvinov (2008) dynamically update S j
kt to be

the (predefined) transfer capability estimate from zone k to j less the interface flows in the

modeled system state.

The above formulation is appropriate for modeling reserve sharing between adjacent

zones. The model of T. Zheng and Litvinov (2008) differs slightly from the above because
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it models sharing across layers of nested zones. The appropriate structure depends on the

system in question. The above may be adapted to accommodate nested zones if desired 2 .

5.3 Limitations of Traditional Reserve Requirements

Traditional reserve requirements suffer from two inherent limitations. First, reserve

sharing estimates may be imprecise because they are based on off-line studies performed

before the system state is known. These studies must anticipate the injection and withdrawal

locations. Reserve locations are important because more power can be transferred between

points that have similar shift factors on critical lines.

Consider the example in Figure 5.4. Although the system states are indistinguishable

at the zonal level, more reserve can be transferred to zone two in the second case because

reserve is held at locations that prefer the path that has more residual capacity. Zonal models

are inherently imprecise because they assume that all members of the same zone have

equivalent shift factors on congested interfaces.

The reserve sharing capability is hard to determine without knowing the locations

of reserves. It also depends on the location of the contingency. Ideally, reserve sharing

would reflect contingency-specific transfer capabilities. MISO acknowledges this concern

and uses simulations to estimate reserve sharing capabilities on a per-contingency basis

(MISO, 2012a). MISO fixes the minimum reserve quantity for each zone according to the

contingency with the largest loss minus import capability. The largest contingency is not

2Nested zones can be accommodated by summing the right-hand side of (5.2) over all children of zone
k. This makes the same assumption as T. Zheng and Litvinov (2008) that congestion only limits reserve
deliverability from parent to child zones.
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Figure 5.4: Transfer capability depends on reserve locations relative to highly utilized (µ)
lines (this figure assumes that the interface lines have the same capacity).

necessarily the most severe because other contingencies may hinder reserve imports by

reducing counter-flows on critical lines. Although MISO’s requirements are contingency-

specific, they are derived prior to SCUC and may be suboptimal whenever the schedule

conflicts with the projected system state.

The second limitation is that traditional reserve requirements assume that no reserve

deliverability issues will be caused by local congestion within a zone. One way to mitigate

intra-zonal congestion is to procure a reserve margin for more dispatching freedom to allevi-

ate congestion (Lyon, Hedman, & Zhang, 2014). These margins can protect against general

uncertainties beyond N-1, but they are not an ideal way to improve reserve deliverability

because operators lack means to control reserve locations within the zones.
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5.4 Locational Disqualification

The limitations of traditional reserve requirements stem from the fact that they do

not control the location of reserves within zones. To address this issue, the proposed model

introduces contingency-specific response sets that suspend reserves held at unfavorable

locations. The new reserve model is described by

∑
k∈Z

r̃ c
kt ≥ pct + rct , ∀c ∈ G, t ∈ T (5.4)

r̃ c
kt ≤ ∑

g∈G (k)
Γ

c
gtrgt , ∀c ∈ G,k ∈ Z, t ∈ T (5.5)

r̃ c
kt ≤ Sz(c)

kt , ∀c ∈ G,k ∈ Z, t ∈ T. (5.6)

The zonal reserve variable r̃ c
kt is now indexed by contingency c (instead of zone j) and

represents reserve in zone k that is classified as deliverable for contingency c. The parameter

Γc
gt ∈ [0,1] limits the proportion of reserve that is classified as deliverable. Γ has no authority

over the actual contingency response that happens in real time, but it can anticipate what

reserves will be deliverable so that SCUC provides a more reliable solution.

Each response set must hold enough reserve to replace the underlying generator c,

subject to the same reserve sharing constraints as the baseline model: Sz(c)
kt limits sharing

from zone k to the contingency zone z(c). The new reserve requirements (5.4)–(5.6) are

equivalent to (5.1)–(5.3) when all Γ = 1. Setting Γc
gt = 0 disqualifies the reserve provided

by resource g. The proposed formulation is more general than MISO and ISO-NE practices

because reserve disqualification is indexed by contingency and Γ may take any value between

108



Solve SCUC
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contingency 

analysis

Reliable?

Prune response sets 

(disqualify reserves) 

for contingencies 

with violations

No

Yes

End

(reserve requirements with updated Γ)

Figure 5.5: Decomposition algorithm for SCUC with reserve disqualification.

zero and one. Equations (5.4)–(5.6) enable contingency-specific management of reserve

sharing and intra-zonal congestion, provided that proper values for Γ can be determined.

Figure 5.5 outlines a two-stage decomposition algorithm that iteratively updates Γ

while solving SCUC. First, SCUC is solved using relaxed response sets (hereon assume

that all Γc
gt = 1 to begin) to obtain a solution that is economical but not necessarily reliable.

Contingency analysis then identifies contingencies that have insufficient deliverable reserves.

The response sets are then pruned (i.e., made more restrictive by reducing Γ) for these

contingencies and the restricted reserve requirements are passed back to SCUC. Each update

can be viewed as a reliability cut because it restricts the amount of reserve designated

as deliverable. These updates are analogous to the feasibility cuts generated by Benders’

Decomposition for two-stage stochastic models. However, pruning Γ may remove larger

portions of the feasible space than Benders’ cuts: the proposed algorithm does not guarantee

optimality but fewer iterations may be needed to converge to a reliable solution.

The proposed procedure in Figure 5.5 may be applied within the DAM or as a

mechanism to determine OMCs. It is preferable to determine a reliable solution within the
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DAM, but this frequently does not occur due to time limitations. When the proposed DAM

solution is not reliable, market operators repair the solution using OMCs. These OMCs do

not affect DAM settlements and they are often not allowed to de-commit units that were

committed in the DAM framework (CAISO, 2013).

5.4.1 Pruning the Response Set for Contingency-Period (c, t). This section proposes

a mathematical program to prune the response set for a single contingency c in a particular

period t. The model identifies reserve disqualifications to pass back to SCUC in the process

described by Figure 5.5. A practical pruning algorithm should have the following properties

of speed, fairness, and effectiveness:

• To be sufficiently fast, the pruning algorithm should solve much quicker than SCUC.

• To be fair, it should not disqualify resources unduly and thereby exclude them from

compensation in market environments.

• To be effective, the pruning algorithm should return a Γ that improves the SCUC

solution to support reliability in an economical manner.

The empirical analysis in Section 5.7 will evaluate the speed, market outcomes, and

economical effectiveness of the proposed approach. The formulation is a linear program that

identifies reserve in the response set that is not deliverable. The model considers spinning re-

serves but can be generalized to include non-spinning reserves. For a particular contingency,

let Î represent the net injections (generation minus load) from the incumbent SCUC solution

prior to re-dispatch, R̂ be the available reserves, and Γ̂ be the ruling disqualification factors
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from the previous iteration. The following equations assess the aptitude of the existing

response set:

∑
n∈N

in = 0 (5.7)

−F10
l ≤ ∑

n∈N
PT DFnlin ≤ F10

l , ∀l ∈ L (5.8)

in = În +∑
g∈G(n)

eg, ∀n ∈ N (5.9)

0≤ eg ≤ R̂gΓ̂g, ∀g ∈ G, (5.10)

where eg is the amount of reserve dispatched from generator g. The response set is sufficient

if there is a solution to these linear power flow equations. Equations (5.7) and (5.8) are

flow balance and transmission constraints, (5.9) models locational injections, and (5.10)

constrains reserve availability. The constraints may not be satisfied if congestion prevents

reserve from being delivered. The pruning model (Pc
t ) defined below relaxes the power

flow and is guaranteed to be feasible whenever the reserve quantity exceeds the size of the
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contingency:

(Pc
t ) : Minimize: ∑

g∈G
Rgγg (5.11)

Subject to:

∑
n∈N

in = 0 (5.12)

−F10
l ≤ ∑

n∈N
PT DFnlin ≤ F10

l , ∀l ∈ L (5.13)

in = În +∑
g∈G(n)

eg, ∀n ∈ N \n(c) (5.14)

in = În +∑
g∈G(n)

eg +∑
g∈G

mg, n = n(c) (5.15)

0≤ eg ≤ R̂gΓ̂g (1− γg) , ∀g ∈ G (5.16)

0≤ mg ≤ R̂gΓ̂gγg, ∀g ∈ G (5.17)

0≤ γg ≤ 1, ∀g ∈ G. (5.18)

Constraints (5.14)–(5.18) separate corrective actions into two components: reserve

dispatched through e is injected as normal and reserve dispatched through m is moved

directly to the location of the contingency n(c) without using any transmission capacity. A

trivially feasible solution is to dispatch all reserve using m so that the nodal injections are the

same as in the pre-contingency state. The variable γ identifies resources with non-deliverable

reserve and the objective (5.11) minimizes the amount of reserve marked as non-deliverable.

The solution to this problem is used to update the response sets using the relation

Γ
c
gt = Γ̂g(1− γ

∗
g ), (5.19)
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where γ∗g is from the optimal solution to problem (Pc
t ). All resources with γ∗g = 1 are

completely removed from the response set because their reserve was not deliverable during

simulation of a coordinated re-dispatch. The disqualified reserves may not count towards the

reserve requirement (5.5) in SCUC during the next iteration. The critical assumption is that

the percentage of reserve that is undeliverable will remain the same moving forward. This

assumption is obviously uncertain because several aspects of the SCUC solution may change,

e.g., reserve quantities can change, congestion can change, and near optimal solutions can

generally have vastly different sets of committed generators (Sioshansi et al., 2008). The

objective of (Pc
t ) minimizes the reserve disqualified at each iteration in order to avoid hasty

decisions. Hasty reserve disqualifications could impair performance and be unfair to market

participants whose reserve is actually deliverable in the final solution (because participants

are not paid for disqualified reserves). The overall performance depends on how well the

updated Γ helps SCUC anticipate reserve deliverability based on previous solutions.

There is an optional step to force Γc
gt to be the same for all generators at the same

node. This step would avoid market solutions where, by chance, generators at the same

location have different percentages of qualified reserve. Market operators may take this

precaution in order to give uniform treatment to resources at the same location. This optional

step is not used or elaborated on here because it is not difficult nor perceived as likely to

affect the algorithm’s performance.

Computationally, the pruning algorithm is comparable to contingency analysis that

operators already solve frequently to verify that the schedule or the current operating state is
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reliable. The problem should remain tractable for large-scale instances because pruning can

be performed in parallel for different contingencies. The main concern is not the time to

solve problem (Pc
t ) but the number of iterations because re-solving SCUC at each iteration

can be time consuming.

The pruning algorithm need not be convex. For example, problem (Pc
t ) can be

updated to include non-spinning reserves or AC power flow equations. Substituting an AC

power flow would provide greater accuracy and allow for reserve to be disqualified based on

voltage limitations. There has also been recent interest in using topology control to alleviate

congestion (Korad & Hedman, 2013), and problem (Pc
t ) may be amended to consider such

corrective actions. The proposed algorithm can be extended to generally consider a wider

scope of decisions than Benders’ Decomposition because the recourse problem does not

need to be convex (Geoffrion, 1972).

Response sets may be used for other types of scenarios besides the generator con-

tingencies considered in this chapter. If a different reserve model is used, then the bounds

on e (5.16) and m (5.17) should be adjusted to reflect the reserve up and reserve down

requirements that are enforced in SCUC. The relaxation of (5.7)–(5.10) should also be

amended so that m corresponds to the location of the disturbance being modeled.

5.5 Market Settlement

In US electricity markets, SCUC is used to clear energy and reserve bids. The market

prices are based on dual variables from the solution to a linearized version of the problem
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(e.g., one linearizing technique fixes all binary variables after acceptable values have been

determined (O’Neill et al., 2005)). Service providers are compensated based on these dual

variables. Locational marginal prices (LMPs) are used to settle energy and reserve marginal

prices (RMPs) are used to settle reserves. RMPs increase as reserve bids increase and when

locational reserves are scarce.

Reserve sharing complicates the valuation of reserves at different locations. ISO-NE

uses a settlement policy that rewards resources at key locations. Their nested zone model

assumes that transmission only limits reserve sharing into child zones, such as load pockets

(T. Zheng & Litvinov, 2008). Resources are not compensated for ancillary service to child

zones because additional reserve is assumed to be undeliverable. This type of policy is

appropriate when operators can predict which transmission limits will be binding and which

ones will not. Otherwise, a more general mechanism is necessary that acknowledges service

provided to neighboring zones only when marginal reserves are deliverable. Such a payment

scheme is provided below:

φgt = ∑
c∈C

Γ
c
gtrgt

∣∣∣λ c
z(g),t

∣∣∣, (5.20)

where Γc
gtrgt is the amount of qualified cleared reserve and λ c

kt is the dual variable for 5.5

(note that z(g) = k is the reserve zone containing generator g). Economic theory specifies

that λ c
kt is a shadow price that reflects the marginal value of reserve in zone k providing

ancillary service for contingency c (O’Neill et al., 2005)). The payments defined by 5.20

compensate reserve providers based on service for individual contingencies. Service may
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be valuable to even a small contingency if other resources have been disqualified for that

particular contingency.

The reserve price for resource g in period t is effectively ∑c∈C Γc
gt

∣∣∣λ c
z(g),t

∣∣∣. Reserve

disqualification changes Γ and can thereby lead to different prices for resources in the same

zone. Resources receive higher prices if their reserve is qualified for contingencies with

substantial shadow prices. This is in contrast to traditional policies that derive a single

reserve price for each zone.

Recall that the proposed model is equivalent to the baseline when all Γ = 1. The

settlement scheme reverts back to zonal pricing in this condition. By initializing the

algorithm with all Γ = 1, the proposed method only overrides the baseline requirements

when the initial solution is not reliable. Proper compensation can be given to resources with

deliverable reserve and payment is withheld from resources with undeliverable reserve. The

quality of the prices (and the solution in general) depends on how Γ is determined. As a

heuristic, the proposed algorithm may disqualify reserves that end up being deliverable in

the final solution. However, the process is less heavy handed than existing forms of reserve

disqualification because it still partially compensates resources for reserves that are only

partially deliverable or only deliverable for a subset of contingencies.

5.6 Illustrative Example

This section evaluates three approaches that can be used to ensure reserve deliver-

ability:
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1. Reserve zones with reserve sharing (this is the traditional approach).

2. Reserve disqualification using response sets.

3. Benders’ Decomposition.

The alternatives are compared on a small test case. An optimal solution can be found

for this case using any of the above methods. However, the first approach requires users

to define limits on the amount of reserve that can be shared between zones. The latter two

approaches can obtain optimal solutions without any parameter tuning. Each alternative

is compared in this section via visual analyses that show how well the feasible regions

approximate the set of reliable solutions.

The test case has three nodes, three lines, and three generators. It was first introduced

in Section 4.6 to analyze congestion-based reserve requirements. For convenience, the

system attributes are again shown in Figure 5.6. There is a single load of 60 MW that can be

served by a generator at the same location. However, it is more economical to import power

from other parts of the network. This type of arrangement is typical in power systems: the

cheapest generators are usually located outside of the biggest load centers and have their

power imported over high-voltage transmission lines. Consider a single-period DCOPF that

includes a requirement for reserve to exceed the largest contingency. Problem details and

the exact formulation are provided in Appendix D.

Figure 5.7 describes the feasible space when using a single reserve zone. Also

included is a graphical projection showing the subset of solutions that are reliable to all

generator contingencies. The optimal solutions correspond to the rightmost edge of the
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G1: $100 / MWh

Pmax:  60 MW

R10:  60 MW

60 MW

G2: $50 / MWh

Pmax:  45 MW

R10:  15 MW

G3: $75 / MWh

Pmax:  45 MW

R10:  15 MW

L2L1

L3

Line
Ratings (MW) PTDFs

F F̃10 G1 G2 G3

L1 30 33 0 2/3 1/3
L2 30 33 0 1/3 2/3
L3 999 999 0 1/3 −1/3

Figure 5.6: Three-node test case (the arrows indicate reference directions).

Extreme
Point

p1 p2 p3 f1 f2 Objective

E0
1 0 30 30 30 30 $3,750

E0
2 15 45 0 30 15 $3,750

E0
3 30 30 0 20 10 $4,500

E0
4 30 0 30 10 20 $5,250

E0
5 15 0 45 15 30 $4,875
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Figure 5.7: Extreme points of the feasible space when using a single reserve zone. The
graph projects the feasible space (solid border) and reliable region (dashed border) onto the
flow across lines L1 and L2.

feasible polyhedron. Some of these solutions are outside of the reliable region, indicating

that not enough reserve is deliverable. The methods listed above are analyzed for their

ability to improve reserve deliverability.

5.6.1 Two-Zone Model. The traditional approach is to improve reserve deliverability

by introducing zones. Appendix D shows that the only generator contingency threatening
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reliability is the failure of G1. Therefore, let zone A correspond to the node containing G1

and let zone B correspond to the rest of the network. This zone definition is justified because

zone A corresponds to the only location where reserve may be undeliverable. The baseline

reserve sharing model defined by (5.1)–(5.3) is applied below to cover the loss of G1:

r̃A
A + r̃A

B ≥ p1 + r1, (reserve must cover the loss of G1) (5.21)

r̃A
A ≤ r1, (reserve in zone A) (5.22)

r̃A
B ≤ r2 + r3, (reserve in zone B) (5.23)

r̃A
B ≤ SA

B, (reserve sharing limit from zone B to A). (5.24)

The sharing parameter SA
B limits the amount of reserve designated as deliverable from

zone B to zone A. Large values of SA
B make (5.21)–(5.24) equivalent to the single-zone model,

and smaller values of SA
B restrict production from G1 because less reserve can contribute

to the left-hand-side of (5.21). Figure 5.8 describes the feasible space for several reserve

sharing limits. These limits need to remove large portions of the feasible space before they

ensure a reliable solution.

The model guarantees reliability only after removing much of the feasible space.

This is undesirable because a change to the objective function (perhaps due to a different set

of committed generators) could render the best solution infeasible. It would be preferable

for the formulation to guarantee reliability and retain portions of the reliable region that are

optimal or nearly optimal.
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Extreme
Point

p1 p2 p3 f1 f2 Objective

E3
1 0 30 30 30 30 $3,750

E3
2 8 38 14 30 22 $3,750

E3
3 8 14 38 22 30 $4,350

(a) Restrictive reserve sharing (SA
B = 8).

Extreme
Point

p1 p2 p3 f1 f2 Objective

E4
1 0 30 30 30 30 $3,750

E4
2 12 42 6 30 18 $3,750

E4
3 12 6 42 18 30 $4,650

f
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(less costly)→

(b) Least-restrictive sharing that ensures all optimal solutions are also reliable (SA
B = 12).

Extreme
Point

p1 p2 p3 f1 f2 Objective

E5
1 0 30 30 30 30 $3,750

E5
2 15 45 0 30 15 $3,750

E5
3 16 44 0 88

3
44
3 $3,800

E5
4 16 0 44 44

3
88
3 $4,900

E5
5 15 0 45 15 30 $4,875

(c) Lax reserve sharing (SA
B = 16).

Figure 5.8: Feasible space using different zonal reserve sharing limits (dotted border). The
graphs also show the reliable region (dashed border) and the feasible space of the single-zone
model (solid border).
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5.6.2 Reserve Disqualification. This section demonstrates reserve disqualification when

using a single zone. Suppose that the initial solution is selected to be E0
2 from Figure 5.7

(which falls outside of the reliable region). The only response that balances supply and

demand after G1 fails is shown in Figure 5.9: G3 is the only generator holding reserve, and

its reserve cannot be dispatched without violating the emergency limit of line L1. Therefore,

it is reasonable to disqualify some of the reserve from G3 in hopes that it will be replaced in

subsequent solutions by reserve that is deliverable. The pruning problem (P1) defined by

(5.11–(5.18) is applied below for this scenario:

Minimize: 0γ1 +0γ2 +15γ3 (5.25)

Subject to:

i1 + i2 + i3 = 0 (5.26)

−33≤ 2
3

i2 +
1
3

i3 ≤ 33 (5.27)

−33≤ 1
3

i2 +
2
3

i3 ≤ 33 (5.28)

−100≤ 1
3

i2−
1
3

i3 ≤ 100 (5.29)

i1 =−60+ e1 +m2 +m3 (5.30)

i2 = 45+ e2 (5.31)

i3 = e3 (5.32)

0≤ e1 ≤ 0γ1 (5.33)

0≤ e2 ≤ 0γ2 (5.34)

0≤ e3 ≤ 15γ3 (5.35)
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p1 = 15

60

p2 = 45 p3 = 0

f2 = 15f1 = 30

f3 = 15

60

p2 = 45 p3 = 15

f2 = 25f1 = 35

f3 = 10

Failure of G1

Figure 5.9: Initial solution E0
2 and the response to the failure of G1. This is the only

response that balances supply and demand, but the transmission limit on line L1 is violated.

0≤ m1 ≤ 0(1− γ1) (5.36)

0≤ m2 ≤ 0(1− γ2) (5.37)

0≤ m3 ≤ 15(1− γ3). (5.38)

The optimal solution to the pruning problem is γ∗3 = 2/5 (γ∗1 and γ∗2 are ignored

because neither G1 nor G2 hold any reserve). In other words, there would be no transmission

violation if 2/5× 15 = 6 MW of reserve could be moved from G3 to the location of G1

without using any transmission capacity. The response set is updated by Γ1
3 = (1−2/5) =

3/5 according to equation (5.19) and the new single-zone reserve requirement is

r1 + r2 +
3
5

r3 ≥ p1 + r1. (5.39)

Figure 5.10 describes the feasible space after applying constraint (5.39). All optimal

solutions are reliable and the feasible space aligns with the reliable region for all low-cost

solutions. Only a small portion of the feasible space is unreliable in a region that happens

to comprise expensive solutions. This example shows that reserve disqualification can be

122



Extreme
Point

p1 p2 p3 f1 f2 Objective

E6
1 0 30 30 30 30 $3,750

E6
2 12 42 6 30 18 $3,750

E6
3 24 30 6 22 14 $4,350

E6
4 24 6 30 14 22 $4,950

E6
5 15 0 45 15 30 $4,875
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Figure 5.10: Extreme points and feasible space after one iteration of reserve disqualification
(dotted border). The graph also shows the initial feasible space and the reliable region
(dashed border).

a more precise than traditional reserve requirements. Reserve disqualification is effective

in this example because generator injections have a very different effects (PTDFs) on the

critical line L1 and the pruning algorithm can differentiate between these resources, even

those that fall in the same zone.

The market settlement scheme in (5.20) states that the reserve price for generator G3

will be 3/5 the price of G2 due to the disqualification. This is an example of the settlement

scheme not working as intended. If anything, generator G3 should be paid more because it

is at a better location. It is at a better location than G2 because it has a smaller PTDF on the

critical line L1 (this line is always heavily utilized in optimal solutions). However, no reserve

could be disqualified from G2 under the proposed algorithm because the generator provided

no reserve in the initial solution. This points to one of the limitations of the proposed

algorithm: as a heuristic, it may mischaracterize the deliverability of some reserves. The

hope is that the settlements turn out better on the whole.
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p1 = 12

60

p2 = 42 p3 = 6

f2 = 18f1 = 30

f3 = 12

60

p2 = 39 p3 = 21

f2 = 27f1 = 33

f3 = 6

Failure of G1

Figure 5.11: Solution E2
6 and the only feasible response to the failure of G1.

Suppose that the solution is selected to be E6
2 from Figure 5.10. The only feasible

response after G1 fails is shown in Figure 5.11: G3 is the only generator with deliverable

reserve. Generator G2 actually has to be ramped down to alleviate congestion on line L1.

In practical settings, operators would recognize that reserve from G2 is undeliverable and

manually disqualify it. The fact that the disqualification algorithm did not automatically

identify this issue suggests that the role of operators is still important to ensure favorable

market outcomes, just as it is today.

None of the considered approaches must be applied in isolation. For example, the

proposed model combines reserve disqualification with zonal reserve sharing in (5.4)–(5.6)

in order to leverage the strengths of both approaches. Both methods may also be combined

with Benders’ Decomposition when the recourse decisions are convex. The next section

looks at Benders’ Decomposition applied by itself to a single-zone model.

5.6.3 Benders’ Decomposition. Benders’ Decomposition may be applied to improve

reliability in an iterative manner. This technique allows part of the problem to be modeled
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indirectly. It is sometimes advantageous for two-stage and multi-stage problems because the

formulation can focus on the first stage decisions without directly modeling recourse for

different scenarios.

In the case of N-1 reliability, Benders’ Decomposition just needs to ensure a feasible

response exists for every contingency scenario. A master problem is first solved considering

only the first-stage decisions. The incumbent solution from the master is unreliable if the

dual of the recourse problem is unbounded. Benders’ Decomposition looks for extreme

rays that point in unbounded directions and then constrains the master problem so that the

identified extreme rays remain bounded. The process continues until the dual recourse

problem is bounded, which certifies that the primal problem is feasible due to the strong

duality of linear programs (Nemhauser & Wolsey, 1999).

The recourse problem for responding to the outage of G1 is defined in Appendix D.

The dual of the recourse problem is

Maximize: 60π1 +45(π2 +π3)+(p2 +15)π4 +(p3 +15)π5 +33(π6 +π7) (5.40)

Subject to:

π1 +π2 +π4 +
2
3

π6 +
1
3

π7 ≤ 0 (5.41)

π1 +π3 +π5 +
1
3

π6 +
2
3

π7 ≤ 0 (5.42)

π2,π3,π4,π5,π6,π7 ≤ 0. (5.43)

The first-stage solution from Figure 5.9 (with p2 = 45 and p3 = 0) is not reliable,

so it follows that the dual recourse problem must be unbounded. The problem is indeed

unbounded along the extreme ray π∗ =
{

1,0,0,0,−1
2 ,−

3
2 ,0
}

. Benders’ Decomposition
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ensures that the dual of the recourse problem remains bounded along this direction in future

iterations by adding the following constraint the master dispatching problem:

60π
∗
1 +45(π∗2 +π

∗
3 )+(p2 +15)π∗4 +(p3 +15)π∗5 +33(π∗6 +π

∗
7 )≤ 0, (5.44)

which simplifies to p3 ≥ 6. The new feasible space with this constraint is shown in Figure

5.12. It is visually apparent that the cut removes all optimal solutions that are also unreliable.

Benders’ Decomposition performs as well as reserve disqualification for this test case

because it ensures reliability after just one iteration. Benders’ Decomposition is actually

more precise because it always applies valid inequalities, which never remove any portion

of the reliable region (Nemhauser & Wolsey, 1999). However, this apparent strength can

become a weakness for larger problems if it takes many iterations to ensure a reliable solution.

Benders’ Decomposition is a precise approach that may be encumbered by computational

challenges for larger problem instances. The literature shows that solution times can be

excessive for unit commitment with transmission-constrained corrective actions 3 . Ferris

et al. (2014) show the state of the art may allow application in the near future for simpler

problems (ones involving a single period and no binary variables) but only after making

significant enhancements over vanilla Benders’ Decomposition.

The proposed algorithm may find a reliable solution in fewer iterations because it

is not limited to valid inequalities. It can instead make more liberal cuts like those shown

in Figure 5.13, thereby removing larger portions of the feasible space at each iteration

and potentially reducing the number of iterations needed to find a reliable solution. The

3See the literature review in Section 3.3.
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Extreme
Point

p1 p2 p3 f1 f2 Objective

E7
1 0 30 30 30 30 $3,750

E7
2 12 42 6 30 18 $3,750

E7
3 30 24 6 18 12 $4,650

E7
4 30 0 30 10 20 $5,250

E7
5 15 0 45 15 30 $4,875

Figure 5.12: Extreme points and feasible space after one Benders’ feasibility cut (dotted
border). The graph also shows the initial feasible space and the reliable region (dashed
border).

reduction in iterations is essential because re-solving unit commitment at each iteration is a

time consuming process. The compromise is that response sets do not guarantee optimality.
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Figure 5.13: Comparison of liberal cuts and valid inequalities. In this example, further
iterations are necessary when applying an algorithm that only identifies valid inequalities
because all optimal solutions are outside of the reliable space.

5.7 Analysis and Results: IEEE 73-Bus (RTS 96) Test Case

The proposed reserve disqualification procedure is evaluated on seven days across

the peak week of the IEEE 73-bus (RTS 96) test case (Grigg et al., 1999). Weekend testing

captures the impact of the proposed method on off-peak days. Modifications are made to

the test case as described in Section 4.7. This analysis uses 10-minute spinning reserves to

respond generator contingencies.

Reserve zones are identified using the partitioning method of F. Wang and Hedman

(2012), which uses statistical clustering so that reserve can compensate for disturbances

in the same zone with little change to flow on critical lines. Critical lines are identified

by solving SCUC for the peak day using a single zone and then performing contingency

analysis (the contingency analysis formulation is provided in Appendix C.2). Slack variables
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Figure 5.14: Reserve zones for the modified IEEE 73-bus test case with up to 200 MW of
reserve imports.

allow transmission violations for when insufficient reserves are deliverable. Line (73–21)

is classified as the only critical line because no other line limit is ever relaxed to improve

access to reserves. Figure 5.14 shows the resulting zone partition. Zone one comprises

nodes (1)–(48) and zone two comprises nodes (49)–(73). Intra-zonal congestion is rarely

seen in either zone but interface line (73–21) often limits reserve imports into zone two.

This analysis will demonstrate that reserve disqualification can still be effective when only

one line is congested.

Testing is performed using CPLEX v12.5 on an 8-core 3.6GHz computer with 48

GB of memory. Unless otherwise stated, SCUC is terminated after five minutes or upon

reaching an optimality gap of 0.1%. The model includes 99 generators and 24 hours, which

translates to 2376 response sets. The reserve bids are assumed to all be zero because bid

data is not published for the RTS 96 test case. This assumption is aligned with some markets

129



(e.g., the real-time market in ISO-NE (Entriken & DePillis, 2009)) but different from others

that allow positive reserve bids 4 .

5.7.1 Baseline Reserve Requirements. The baseline reserve requirements (5.1)–(5.3)

oblige the user to specify reserve sharing limits. This analysis tests several different policies

and compares them post hoc. Although operators do not have time to compare many

alternatives in the midst of making day-to-day decisions, this strategy allows the proposed

approach to be evaluated alongside both conservative and liberal reserve sharing policies.

Constraints (5.45)–(5.47) are introduced to limit reserve sharing between zones. The

sharing limit between each zone and itself is an arbitrarily large value M, which should

exceed reserves to avoid imposing an artificial limit on reserve availability within zones. The

emergency capacities for the zonal interface, which comprises lines (73–21) and (66–47),

sum to 1250 MW. The sharing limit between the adjacent zones is defined in relation to the

import headroom on these lines. The parameter α ∈ [0,1] de-rates the sharing capability.

This is appropriate because it may be impossible to utilize every component of the interface

to its full extent.

S1
1t = S2

2t = M, ∀t ∈ T (5.45)

S2
1t = α1250− f(73–21),t− f(66–47),t , ∀t ∈ T (5.46)

S1
2t = α1250+ f(73–21),t + f(66–47),t , ∀t ∈ T (5.47)

4Many ISOs allow reserve bids in the DAM. While there is no appreciable physical cost for holding
reserves, positive bids are allowed to help generators regain their lost opportunity costs from not selling their
capacity as energy. The motivation is to seek an equilibrium where the market prices naturally incentivize
participants to follow dispatch instructions from the ISO.
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Table 5.1: Baseline results averaged over the 7 test days.

Policy
(α) Cost

Time
(mins)

Optimality
gap

E[viol]
(MW) # viol

max viol
(MW)

45% $ 2,393,971 4.8 0.17% 0.004 0.9 1.9
50% $ 2,382,857 4.8 0.16% 0.032 2.9 5.8
55% $ 2,374,080 3.8 0.13% 0.046 5.1 10.2
60% $ 2,370,421 3.9 0.12% 0.208 12.9 28.2
65% $ 2,369,969 3.1 0.11% 0.385 17.3 42.8

stochastic $ 2,374,328 60.2 0.17% 0 0 0

Five reserve sharing policies are tested corresponding to α =

{0.45,0.50,0.55,0.60,0.65}. Table 5.1 summarizes the average results over the

seven test days. Conservative reserve sharing policies (small α) result in higher operating

costs but tend to be more reliable. Three statistics measure reliability: “E[viol]” is the

expected sum of transmission violations from contingency analysis, where contingency

probabilities are inferred from the mean times to failure; “# viol” is the number of

contingencies with some violation; and “max viol” is the maximum sum of transmission

violations for any contingency. Sections 5.7.2 and 5.7.3 evaluate the use of reserve

disqualification to eliminate these violations when the initial solution is not reliable.

Table 5.1 also summarizes results from the deterministic equivalent to a stochastic

model that ensures feasibility across contingency scenarios. This problem was solved to

obtain proper optimality gaps for the proposed algorithms. This extensive form SCUC

explicitly models corrective actions for a subset of contingencies 5 . A single reserve zone

requires reserve to exceed the largest contingency and corrective actions are modeled to

5The formulation is a combination of the unit commitment and contingency analysis models in Appendix
C with a very high penalty placed on contingency violations.
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ensure reserve deliverability. The stochastic model identifies a solution that is about 0.8%

cheaper than the most reliable baseline policy.

Note that solution times for stochastic SCUC are prohibitively long and the extensive

form model does not scale well for large systems. The reported solution time of 60 minutes

in Table 5.1 was only obtained by limiting contingencies to those that failed contingency

analysis at some point during the proposed decomposition algorithm. Without such prior

information, the solution times are generally much longer.

5.7.2 Disqualification as an Out-of-Market Correction. Reserve disqualification is

evaluated as an ex-post mechanism to improve the reliability of the DAM solution. Such

procedures have been classified in this chapter as out-of-market corrections (OMCs). To be

consistent with market rules, all generators that are committed by the DAM model must stay

committed. Therefore, this particular application of the algorithm from Figure 5.5 will not

de-commit any units that were committed by the market model.

Two different reserve disqualification strategies are considered. The first approach

applies the proposed algorithm and is referred to as generalized reserve disqualification

(GRD). The second approach disqualifies reserves uniformly across contingencies and is

referred to as traditional reserve disqualification (TRD). The pruning algorithm from Section

5.4.1 is adjusted to accommodate TRD. The first adjustment discharges the idea of partial

disqualification by adding an integrality constraint on γ . The response sets are then pruned

one contingency at a time and global disqualification is enforced by specifying that resources

disqualified from one contingency may not offer reserves for any other contingency during

132



the same period. These amendments provide an automated approach that mimics the manual

reserve disqualifications used by operators today.

Figure 5.15 illustrates the progress of the reserve disqualification procedures on the

highest and lowest load days (Tuesday and Sunday) of the peak week. SCUC determines the

operating costs (x-axis) and contingency analysis measures the reliability (y-axis). The red

diamonds represent DAM solutions with varying reserve sharing policies (α): small values

of α tend to be more reliable but are also more expensive because they require additional

reserve within local areas. The GRD and TRD algorithms start with these initial solutions,

disqualify reserves, and solve SCUC again with reserves procured from different locations.

The dotted lines represent the progress at each iteration. Both procedures converge to

N-1 reliable solutions that are economical compared to the most reliable DAM solution.

This suggests that reserve disqualification adds robustness to the baseline policy because

operators can recover from unreliable solutions and still maintain reasonable operating costs.

Figure 5.15 also demonstrates that GRD consistently outperforms TRD, suggesting that it is

beneficial to define different response sets for distinct contingencies.

At first glance, it may seem counterintuitive that an off-peak day would require a

more conservative reserve sharing policy to achieve the same level of reliability. The reason

for this phenomenon is that generation serving the base load creates relatively little flow on

interface line (66–47). The import capability estimate into zone two is deceptively large

because reserve imports are limited by the bottleneck on line (73–21) while line (66–47)

remains relatively underutilized. The underlying issue is the same as in Figure 5.4. The
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Figure 5.15: Progress of iterative reserve disqualification when applied to unreliable DAM
solutions.

accuracy of reserve sharing is not driven by the amount of congestion but how well the

reserve sharing model anticipates the influence of congestion on corrective actions. In this

case, reserve disqualification is effective on low load days because it encourages reserve to

be held at locations that favor underutilized paths. Figure 5.16 shows that reserve proximal to

the heavily utilized line (73–21) is disqualified from the response set for a large contingency

in zone two.

Figure 5.17a and Figure 5.17b describe the final costs (after OMCs have been

applied) relative to the stochastic solution. The solutions derived using GRD are more
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Figure 5.16: Locations with reserves disqualified from the response set for generator 90 on
hour four of Sunday, day 357. Line (73–21) is the most heavily utilized.

consistently close to the lower bound obtained from the stochastic model. Conservative

reserve sharing policies (α = 0.45 and 0.50) often underperform because SCUC obtains an

overly conservative solution at the expense of economics. These results suggest that it may

be more economical to acquire a risky initial solution (large α) and then improve reliability

through OMCs instead of starting off with an overly conservative reserve sharing policy.

5.7.3 Disqualification for the Day-Ahead Market. In Section 5.7.2, reserve disqual-

ification was applied after the market model terminated. In this section, the proposed

algorithm is tested as a means to clear the DAM itself. Figure 5.17c shows that the final

costs are mostly lower when reserve disqualification is applied within the DAM, which can

be attributed to there being no restrictions on generator commitments across iterations. It is

generally preferable to apply this algorithm within the DAM when time allows.

Table 5.2 summarizes the total time and the number of iterations to converge to a

reliable solution. The majority of time is spent solving SCUC and relatively little effort

is spent on contingency analysis and pruning response sets. The proposed algorithm can
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Figure 5.17: Final costs for N-1 reliable solutions relative to the stochastic model. (a)
OMCs using traditional reserve disqualification. (b) OMCs using generalized reserve
disqualification. (c) DAM using generalized reserve disqualification.
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Table 5.2: Computing statistics for the 7 test days.

Policy
# iterations Time (min)

(α) Min Median Max Min Median Max

45% 1 1 8 2.6 5.2 33.9
50% 1 1 10 5.1 5.2 37.0
55% 1 7 20 1.1 32.5 104.7
60% 6 11 18 21.0 41.5 71.2
65% 5 11 18 15.1 33.7 97.2
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Figure 5.18: Reliability vs. reliability improvement at each iteration.

take 20 iterations to eradicate all violations. Such worst-case convergence times may

be unacceptable for some operators. Fortunately, the first iterations tend to be the most

influential because pruning is more aggressive when violations are abundant. Figure 5.18

plots E[viol] against the improvement to reliability at each iteration. The biggest reliability

gains are obtained in early iterations, followed by a long tail of small changes as E[viol]

approaches zero. Figure 5.18 shows that the majority of iterations occur after the incumbent

solution is already nearly reliable.
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Table 5.3: Would-be average DAM payments to reserve providers before and after reserve
disqualification.

Policy (α) Initial solution Final solution

45% $ 17,591 $ 16,958
50% $ 14,898 $ 14,611
55% $ 15,481 $ 14,241
60% $ 20,716 $ 16,036
65% $ 17,164 $ 21,808

Overall $ 17,170 $ 16,731

The aggregate markets settlements are summarized in Table 5.3 relative to the first

and last iterations of the decomposition algorithm. The market initiates with zonal prices

and evolves as reserves are disqualified. The average sum of payments, ∑g∈G ∑t∈T φgt , does

not change greatly as reserves are disqualified. This is important because some market

participants may question how aggregate payments will change. Will payments go up since

resources are compensated for many individual contingencies? The empirical evidence

suggests that the answer is “not significantly.” Although the reserve prices are derived from

multiple contingencies, most response sets have a surplus of reserve: no more than 27 of the

2376 reserve requirements in (5.4) have positive dual variables during any single day. There

are relatively few contingencies that dominate the settlements and the overall payments do

not necessarily increase relative to zonal markets.

The primary motivation is not to influence the aggregate payments, but to develop

prices that are better at reflecting the quality of service provided by individual suppliers.

An example of the locational prices is as follows for hour four of day 357. The considered

reserve sharing level is α = 0.65, which requires many reserve disqualifications to ensure
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reliability (see Figure 5.16 for the locations of disqualified reserve for one particular con-

tingency during this period). The market results are elaborated below because this period

has more reserve disqualifications than any other. Figure 5.19(a) shows the shadow prices

for transmission capacity in the final market solution. Three lines are congested before any

contingency occurs: lines (16–17), (21–22), and (73–21). Reserve deliverability is generally

harder to ensure in the proximity of these lines.

Figure 5.19(b) shows the reserve locations and prices in the market solution. Reserve

in the rightmost zone is valued high because it can serve more contingencies without

overloading transmission (reserve that flows from right to left across line (73–21) counters

congestion). Reserve in the leftmost zone has three unique prices. The prices are generally

lower near congested lines. The settlement scheme still provides some payment to resources

near these lines because the model recognizes the reserve is deliverable for a subset of

contingencies. This example demonstrates what would be expected of locational pricing:

the procedure rewards market participants that are at key locations relative to congested

lines. Traditional reserve zones do not provide this level of precision. Another example of

locational prices for a different test case is shown by Lyon, F. Wang, et al. (2014).

5.7.4 Practical considerations. Many ISOs already use iterative approaches to clear the

DAM, and it may be practical to incorporate response sets with minimal changes to existing

procedures. The number of iterations is a key factor because time is typically limited when

clearing the DAM. The results in Table 5.2 show that a large number of iterations may be

necessary before a reliable solution is reached.
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Figure 5.19: Locational market results during hour four of Sunday, day 357. (a) Transmis-
sion capacity shadow prices. (b) Reserve locations and prices (excluding reserve imports).

Several options are available when time is scarce. First, operators may adopt

conservative baseline reserve requirements to encourage the initial solution to be more

reliable. Second, operators may use off-line analysis to identify initial response sets that

require fewer updates. Finally, OMCs may still be applied when a reliable solution is not

found within the DAM time limit. The proper balance between these strategies depends

on the time restrictions, the average performance of the baseline model, and the operator’s

tolerance for relying on OMCs.

The full market implications of the proposed algorithm are not yet clear. Any market

change of this magnitude should be thoroughly vetted to determine the impact on bidding

behavior and market outcomes. The good news is that the approach only overrides the
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baseline zonal model when the solution is unreliable. The approach can, therefore, be given

a gradually more prominent role by slowly relaxing the conservative reserve requirements

used today. This would allow for a trial period to evaluate the effects of the proposed

approach before making large changes to market operations.

5.8 Conclusion

Transmission constraints can make reserves unavailable in ways that are hard to

anticipate before the SCUC solution is available. As a result, operators disqualify reserves

that end up falling behind unanticipated transmission bottlenecks. Such out-of-market

changes can be expensive because they are manually implemented and not co-optimized

with the DAM decisions.

The proposed reserve disqualification procedure can be used as a heuristic for

clearing the DAM or as an improved OMC mechanism. Reserves are disqualified on a

per-contingency basis to address the distinct congestion patterns that may arise following

different contingencies in different periods. The decomposition algorithm solves SCUC

and bases reserve disqualification on system conditions from the incumbent solution. The

model is able to better characterize scarce resources and thereby improve economics and

promote better prices. This algorithmic approach also improves upon traditional OMCs

where operators manually disqualify reserves. Testing on the RTS 96 test case demonstrates

reduced costs to protect against generator contingencies, particularly when the reserve

locations within the same zone have dissimilar effects on critical lines.
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With the upcoming advent of intermittent renewable resources, transmission bottle-

necks will become harder to predict and traditional models will be less justifiable because

the projected costs under forecasted conditions may poorly reflect the realized costs. New

optimization tools and algorithms are appropriate to determine solutions that are not only

reliable but cost effective. The work in the next chapter extends the concept of response sets

to help mitigate uncertainty from intermittent resources.
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Chapter 6

CAPACITY DISQUALIFICATION FOR WIND UNCERTAINTY

6.1 Introduction

The focus of this dissertation, thus far, has been on ensuring reliability across

contingency scenarios. The cost of contingency response has been ignored because severe

contingencies happen infrequently (the hourly probabilities for generator and transmission

contingencies are around 10−3 and 10−4 (Grigg et al., 1999)). Ignoring scenario costs has

been a reasonable limitation for deterministic models because critical contingencies are

rare enough to hardly impact expected costs. However, scenario costs will become more

important in the future as growing wind energy increases the likelihood of large forecast

deviations.

Renewable portfolio standards in parts of the US are requiring up to 33% of energy to

come from renewable resources, such as wind, by the year 2020 (California Public Utilities

Commission, 2013). Large forecast deviations are inevitable because wind availability

remains within 20% of the day-ahead forecast only 80% of the time (Hodge, Florita, Orwig,

Lew, & Milligan, 2012). Deeper wind penetrations will require more aggressive rebalancing

and, consequently, operating costs are likely to become more volatile. This increases

the motivation for capturing scenario costs within SCUC to identify solutions that are

economical across a range of scenarios. This chapter extends the idea of response sets
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from Chapter 5 in order to limit operating costs across scenarios instead of solely targeting

feasibility.

Stochastic models have been proposed for unit commitment to minimize cost across

scenarios. Two-stage stochastic programming is one such tool for dealing with wind

uncertainty (L. Wu et al., 2007, 2008; Ruiz et al., 2009; Papavasiliou, Oren, & O’Neill,

2011; Morales et al., 2009; Papavasiliou & Oren, 2013). These models target economical

commitment decisions. They make commitment decisions in the first stage and assume all

other decisions can be deferred until after the wind scenario is revealed. Two-stage robust

optimization has also been applied in a similar way (Jiang et al., 2012, 2014; Bertsimas

et al., 2013). It is currently being investigated for practical application by a major software

(Alstom Grid) vendor to change commitments during the operating day (Q. Wang, X. Wang,

et al., 2013), but there is no evidence of day-ahead market applications at this time. Two-

stage stochastic programming and robust optimization require computational advancements

before becoming tractable for day-ahead markets, where there are many binary commitment

decisions making the problem harder to solve.

Energy markets today use deterministic models and protect against uncertainty using

reserve and capacity requirements. Sioshansi and Short (2009) and Papavasiliou and Oren

(2013) require reserve to exceed a prescribed percentage of the wind forecast. Doherty

and M. O’Malley (2005) and Vos and Driesen (2014) require reserve to cover likely wind

fluctuations 1 . Practitioners like CAISO and ISO-NE also commit additional capacity

1Incidentally, the reserve requirements derived by Vos and Driesen (2014) are nearly equivalent to the
alternative approach of simply requiring reserve to cover a percentage of the wind forecast (see Figures 6 and
9 in the reference).
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within the market model for reliability (CAISO, 2010; Parent, 2013a). These procedures do

not guarantee enough reserve will be deliverable, so more capacity may be later procured

manually to repair unreliable market solutions. Formalizing this repair process is one of

the potential applications being considered for robust optimization. However, the most

popular robust optimization models do not consider the capability to change generator

commitments moving closer to real time 2 . Having the option to change the commitment

status of certain fast generators can improve expected costs by 0.1%–2% according to some

stochastic wind-integration studies (Tuohy, Meibom, Denny, & O’Malley, 2009; J. Xiao

et al., 2011). The approach proposed in this chapter considers the ability to commit fast

generators when determining capacity requirements.

The proposed method augments capacity constraints for day-ahead SCUC. The

problem is challenging because capacity may be:

• expensive to dispatch,

• unable to ramp fast enough,

• or undeliverable due to transmission constraints.

A preferred approach would acquire capacity that is sufficiently inexpensive, fast,

and deliverable. The proposed approach follows these principles while avoiding the com-

putational limitations of stochastic programming and robust optimization. The approach

2Most solution methods being investigated for robust optimization require the recourse problem to be
convex because they use dual information (See Section 3.3.2). There is an exception in recent work by L.
Zhao and Zeng (2012b), who use a primal decomposition approach. The method can model integer recourse
decisions exactly but still needs further development to improve scalability (L. Zhao & Zeng, 2012b).
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anticipates what capacity can contribute to inexpensive scenario response. The scenario

response may be expensive if it relies on inefficient generators or if it cannot satisfy de-

mand without violating some other constraint (demand imbalances are penalized in the

objective function at a high cost because they can lead to curtailing customer loads). This

is an extension over existing deterministic reserve requirements that only target satisfying

demand across scenarios. The ability to consider production cost for different scenarios is a

contribution that takes a step closer to stochastic models.

The proposed algorithm solves SCUC using a decomposition structure similar to

the one used in Chapter 5 3 . The first stage solves a nominal SCUC model with capacity

requirements for individual wind scenarios – each requirement must be satisfied by capacity

from the response set for the respective scenario. The second stage identifies capacity that

should not have been treated as available because it is too expensive, slow, or undeliverable.

The algorithm disqualifies this capacity so that more favorable resources will be committed

in subsequent iterations.

The results show that capacity response sets can improve expected costs relative to

existing reserve policies from the literature. The cost improvement is about 0.5% for the

IEEE 73-bus test case. The computational performance is also promising relative to results

reported for state-of-the-art stochastic models. Therefore, the proposed approach appears

to provide a trade-off between the precision of stochastic models and the computational

tractability of existing deterministic models. Most of the performance comes from reducing

3The approaches from Chapters 5 and 6 may even be applied simultaneously if desired, one addressing
contingencies and the other addressing wind uncertainty.
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load imbalances through anticipating recourse constraints (like transmission and ramp

limits). This underscores the relevance of alternative approaches that seek only reliability.

The premium for reliability notwithstanding, the more general framework of incorporating

production costs makes the work consistent with stochastic models and allows the potential

to exploit production cost improvements when such opportunities exist.

Another observation is that upfront commitment decisions are less important when

fast generators can change their commitment status. Fast generators can significantly

reduce the value of perfect information, to the point that advanced models may offer little

improvement to expected operating costs. This observation corroborates the findings of

Tuohy et al. (2009) and J. Xiao et al. (2011). The proposed approach can consider fast

generators for the sake of generality and to provide operational continuity in changing

systems (e.g., those moving towards a greater number of fast generators).

The chapter outline is as follows. Section 6.2 formulates the stochastic SCUC

problem. Section 6.3 describes the form of the proposed capacity requirements, which

replace the direct modeling of scenarios in the stochastic formulation. Section 6.4 presents

the decomposition algorithm. Section 6.5 describes the methodology used to generate wind

scenarios for testing. Section 6.6 reports numerical results for the IEEE 73-bus test case and

describes strategies to improve performance. Finally, Section 6.7 concludes and summarizes

the potential for future work.

147



6.2 Stochastic Unit Commitment

The stochastic SCUC problem (SUC) commits generators while considering several

different scenarios that may occur. As such, many variables and parameters are now indexed

by scenario s. This is a two-stage problem that makes base commitment decisions upfront

(designated here by s = 0) and evaluates the potential response for different scenarios. The

objective is to minimize a function of cost f (x) across scenarios. The problem definition is

(SUC) : Minimize f (x) (6.1)

Subject to:

Wind availability:

ks
nt ≤ Ks

nt ∀n ∈ N, t ∈ T,s ∈ S (6.2)

Network constraints:

∑
n∈N

isnt = 0, ∀t ∈ T,s ∈ S (6.3)

isnt = ∑
g∈G(n)

ps
gt + ks

nt +bs
nt−Ds

nt , ∀n ∈ N, t ∈ T,s ∈ S (6.4)

−Fl ≤ ∑
n∈N

PT DFnlisnt ≤ Fl, ∀l ∈ L, t ∈ T,s ∈ S (6.5)

Generator capacity and ramping constraints:

Pmin
g us

gt ≤ ps
gt ≤ Pmax

g us
gt , ∀g ∈ G, t ∈ T,s ∈ S (6.6)

−Rg ≤ ps
gt− ps

g,t−1 ≤ Rg, ∀g ∈ G, t ∈ T,s ∈ S (6.7)
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Minimum up and down times:

vs
gt−ws

gt = us
gt−us

g,t−1, ∀g ∈ G, t ∈ T,s ∈ S (6.8)

t

∑
q=t−UTg+1

vs
gq ≤ us

gt , ∀g ∈ G, t ∈ T,s ∈ S (6.9)

t

∑
q=t−DTg+1

ws
gq ≤ 1−us

gt , ∀g ∈ G, t ∈ T,s ∈ S (6.10)

Nonanticipivity constraints:

us
gt = u0

gt , ∀g /∈ Gfast, t ∈ T,s ∈ S (6.11)

Reserve requirements (not shown), e.g., contingency reserves

Variable domains:

us
gt ∈ {0,1},0≤ vs

gt ,w
s
gt ≤ 1, ∀g ∈ G, t ∈ T,s ∈ S (6.12)

ks
nt ,b

s
nt ≥ 0, ∀n ∈ N, t ∈ T,s ∈ S. (6.13)

Commitment decisions are coupled with an optimal power flow that anticipates how

generators will be dispatched for each scenario. The objective (6.1) minimizes a given cost

function f (x), where x is the vector of decision variables. Alternative objective functions are

described in Section 6.2.1. The only difference between scenarios is a limit on the available

wind production in (6.2), where ks
nt is wind production and Ks

nt is the available wind power

at node n during period t.

Network constraints model power balance (6.3), locational injections (6.4), and

transmission capacity limits (6.5). The power flows are modeled using power transfer

distribution factors, where PT DFnl is the sensitivity of flow across line l to injections at
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node n. This type of linear approximation is common in power system scheduling (Stott

et al., 2009). If network constraints are proving difficult to satisfy, then the flow at node n

can be balanced via the dummy variable bs
nt at a penalty to the objective function. Different

penalty costs for load imbalance are discussed in Section 6.2.1.

Conventional generator constraints model capacity (6.6), ramping capability (6.7),

and minimum up and down times (6.8)–(6.10). A description of these constraints can be

found in Section 2.2.3.

This model is formulated as a two-stage decision problem. The first stage positions

generators for base conditions (designated as s = 0) before the scenario becomes known.

These decisions influence the second stage through the nonanticipivity constraints (6.11),

which specify that only fast generators (in Gfast) may change commitment status for scenario

response. Two-stage models, such as this, assume uncertainty is revealed at a single point in

time. More precise models in the literature can include three or more stages (L. Wu et al.,

2007, 2008); however, multi-stage models are harder to solve and detailed predictions can be

difficult to make outside of simulating operations on a fine time scale over a rolling horizon

(Ela & M. O’Malley, 2012). The intent of stochastic models is to anticipate operating cost

well enough to make informed first-stage decisions.

The first stage determines what capacity to commit from slow generators. All other

decisions can be deferred until after the scenario is revealed. The same two-stage structure

is used by Ruiz et al. (2009), Papavasiliou et al. (2011), Morales et al. (2009), Papavasiliou

and Oren (2013), Bertsimas et al. (2013), and Jiang et al. (2014), although some of these
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references do not model fast generators (effectively assuming Gfast = ∅). The potential

benefit of stochastic programming depends on how restrictive the first-stage decisions are,

e.g., the upfront commitment decisions are more important when fewer fast generators are

available to change their commitment status in response to uncertainty.

Problem (SUC) is deterministic when S = {0}, which effectively removes all second-

stage scenarios and makes the problem much smaller and easier to solve. The downside

is that optimal solutions to this simplified problem may perform poorly for one or more

scenarios. As described in the introduction, deterministic formulations will often procure

reserves or backup capacity to compensate for this loss of precision. One such policy is the

basis of this research.

SCUC may have more features than detailed by (6.1)–(6.13), e.g., storage, flexible

demand, and interface limits. Reserve requirements may still be used to cover forms of

uncertainty not included in the scenarios. Different objective functions are discussed in

Section 6.2.1.

6.2.1 Objective Function. Production costs for committed generators are frequently

modeled using convex functions because fuel efficiency tends to decrease with production

(Wood & Wollenberg, 1996). For simplicity, linear marginal costs are used here. Parameter

cg is the marginal cost per unit of energy produced by generator g. Fixed costs cNL
g and cSU

g

(no-load and start-up) are incurred whenever the generator is committed or started. Load

imbalance is also allowed at a high penalty ν . Taking everything together, the total cost for
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a single scenario s is

cs(x) = ∑
g∈G

∑
t∈T

(
cg ps

gt + cNL
g us

gt + cSU
g vs

gt

)
+ν ∑

n∈N
∑
t∈T

bs
nt . (6.14)

The parameter ν is a linearized penalty for violating node balance constraints. This

would translate into physical load shedding if the imbalance were to propagate into real-time.

For this reason, proper values for ν are bounded by the value of lost load (ν ≤ VOLL). The

true cost of curtailing load depends on the type of customer, time of day, and the duration

of the outage. Reasonable estimates can put VOLL anywhere between $2000/MWh and

$25,000/MWh for most customers during outages that last one hour (Sullivan, Mercurio,

Schellenberg, & Freeman, Sullivan & Co., 2009). Traditional load shedding is not the only

interpretation. With the evolution of the smart grid, more customers may voluntarily curtail

themselves in order to avoid high prices or to receive compensation from the system operator.

Such demand response actions can be modeled mathematically as load imbalances relative

to the forecast.

Load imbalances do not have to represent physical load reductions. Operators may

be able to reduce the expected load shedding by adjusting the unit commitment solution after

the day-ahead market has cleared. The adjustment period has the advantage of modeling

intermediate commitments of semi-fast generators, i.e., generators that are not classified

as fast but may still be “fast enough” to commit after the day-ahead market has closed.

Such commitments occur through the look-ahead unit commitment in MISO and the reserve

adequacy assessment in ISO-NE (MISO, 2012a; ISO-NE, 2014c). These commitment

decisions are difficult to model in two-stage formulations that categorize everything as
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either day-ahead or real-time. Bertsimas et al. (2013) allow ν to be the anticipated cost of

repairing unreliable solutions after the fact (they choose a value of $5000/MWh). Given the

many interpretations of ν , its use in this chapter is only intended as a rough penalty for not

satisfying all constraints in the modeled scenarios.

Costs can be combined in various ways to create different (SUC) objectives, such as

f (x)stoch = ∑
s∈S

π
scs(x) (6.15)

f (x)robust = max
s∈S
{cs(x)} (6.16)

f (x)base = c0(x). (6.17)

Equation (6.15) is a stochastic programming objective that weighs the cost of individual

scenarios by probability πs. Equation (6.16) is a robust objective that measures the most

expensive scenario in the uncertainty set. Equation (6.17) is a deterministic objective that

only measures cost of first-stage decisions (the base case). Deterministic models neglect

second-stage costs and may perform poorly across scenarios. However, their performance

may be improved by committing backup capacity for scenario response. The proposed

model uses objective (6.17) because only the base scenario s = 0 is modeled directly in

SCUC. The costs across other scenarios are addressed by proxy through capacity constraints

that are derived on an iterative basis.
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6.3 Capacity Constraints

Operators do not apply (SUC) to day-ahead markets today because it is too hard

to solve in the alloted time. Instead, they protect against uncertainty using deterministic

policies like reserve and capacity constraints. Similar constraints have been used since

the 1960s, when PJM adopted probabilistic capacity requirements for unit commitment

(Anstine et al., 1963). CAISO and ISO-NE now include capacity constraints in their day-

ahead markets (CAISO, 2010; Parent, 2013b). Without such policies, the system may be

exposed to shortages that drive up costs and threaten reliability. Their inclusion in day-ahead

markets can lead to more efficient decisions. There is also a market design benefit because

capacity requirements can improve convergence between day-ahead and real-time prices by

addressing reliability needs in the market model and limiting the number of out-of-market

adjustments necessary to repair unreliable solutions (CAISO, 2010; Parent, 2013a).

The capacity requirement used by CAISO (2010) is equivalent to

∑
g∈G̃( j)

Cgtu0
gt ≥ Qt j, ∀t ∈ T, j ∈ J, (6.18)

where Cgt is qualified capacity from generator g and Qt j is the minimum required capacity

in area j during period t. These parameters are tuned by the system operator to provide

the desired amount of protection. Capacity requirements may be applied system wide or to

local areas j ∈ J, where G̃( j) comprises generators in the respective area (CAISO, 2010).

The proposed approach adopts a similar requirement to procure capacity that is useful for

scenario response.

154



The augmented requirement used in this chapter is

∑
g∈G

C s
gtu

0
gt ≥ Qs

t , ∀s ∈ S, t ∈ T, (6.19)

where

Qs
t = ∑

n∈N
(Ds

nt−Ks
nt), ∀s ∈ S, t ∈ T. (6.20)

The primary difference from (6.18) is the new constraint is indexed by scenario s. Constraint

(6.19) says committed capacity must cover demand minus wind production. This is a

minimal requirement. Acquiring an additional margin by making C s
gt smaller is usually

prudent to provide more protection and because some capacity may be constrained down due

to transmission or ramping limits. Some generators should have their capacity discounted(
C s

gt < Pmax
g
)

if they are expensive or otherwise made unavailable by dispatching constraints.

This formulation introduces wind response sets that are similar in principle to those in

Chapter 5 and Lyon, Zhang, and Hedman (2014): C s
gt is the amount of qualified capacity

from committed generator g belonging to the response set for scenario s in period t.

Figure 6.1 illustrates what one response set might look like in a hypothetical system.

The map’s lightly shaded regions contain capacity that is unavailable due to congestion.

The bar chart identifies some specific reasons capacity has been disqualified. The ramping

and transmission criteria come from physical dispatching constraints for the given scenario-

period. The expense criterion reflects the cost of utilizing the capacity during a coordinated

dispatch: even generators with low productions costs may be classified as expensive if
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Figure 6.1: Stylized response set for a particular scenario-period (s, t).

they restrict production from other units 4 . A mathematical model for identifying and

disqualifying unavailable or expensive capacity is proposed in Section 6.4.3.

Constraint (6.21) below describes a more general form of capacity requirement that

accounts for uncommitted fast generators which may be turned on during scenario response:

∑
g∈G

C s
gtu

0
gt +∑

g∈Gfast

U s
gt
(
1−u0

gt
)
≥ Qs

t , ∀s ∈ S, t ∈ T, (6.21)

where the parameter U s
gt is the capacity from uncommitted generator g that is qualified for

scenario s. The proposed algorithm determines both C and U to help ensure that efficient

4For example, injections are generally less valuable at nodes that have small locational marginal prices
(LMPs) due to congestion. Generation is less valuable where LMPs are small because the LMP reflects the
marginal value of supply at the given location. Generators with high productions costs may still be valuable if
the LMP exceeds their marginal cost. The proposed algorithm in Section 6.4 classifies expensive capacity
based on the overall cost of dispatching the entire system and not just the marginal cost of the respective
generator.
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capacity is committed for scenario response. The resulting formulation assumes (6.21)

will ensure the existence of a satisfactory response for each scenario, i.e., a response that

satisfies all second-stage constraints in an economical manner. The proposed algorithm

works by projecting information from the second stage back onto SCUC via revised response

set definitions (C and U ). The heuristical nature of this approach arises from the entire

recourse problem being reduced to a single constraint for each scenario-period.

6.4 Decomposition Algorithm

The proposed algorithm uses a two-stage structure to determine response sets. The

first stage solves the deterministic SCUC with capacity requirements and the second stage

identifies capacity that should not have been treated as available because it is too expensive

or held back by dispatching constraints. This approach aims to reduce scenario costs without

solving the more difficult (SUC) problem.

Figure 6.2 provides a flowchart representation of the proposed algorithm. The

deterministic SCUC is initially solved with large response sets and the resulting solution

is evaluated. If the scenario costs are too high, the response sets are pruned (C and U are

made smaller) using the pruning algorithm in Section 6.4.3. The new response sets are then

used to update the capacity requirement (6.21) to encourage SCUC to commit preferable

sets of slow generators in future iterations.

Individual steps from the process in Figure 6.2 are now described in detail.
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Figure 6.2: Decomposition algorithm for unit commitment.

6.4.1 Evaluating Scenarios. The evaluation subroutine assesses performance of the first-

stage solution for different scenarios. This evaluation fixes the base commitments u0 and

solves the second stage of problem (SUC) (solving the second stage alone is considerably

faster than the entire problem because scenarios are independent). The scenarios may be

evaluated in parallel to reduce computational times because u0 is fixed in the nonanticipivity

constraints.

6.4.2 Stopping Criterion. The decomposition algorithm terminates when costs from

the evaluation subroutine are deemed acceptable. The stopping criterion may be based

on the stochastic or robust objectives (6.15) and (6.16) or other criteria based on operator

preference. This research adopts a cost threshold for each scenario. Scenarios that do

not satisfy the cost threshold are placed in set S̃ to be pruned (the set S̃ ⊆ S contains only

scenarios with unsatisfactory costs in the current iteration).
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The cost threshold is defined here relative to regret, i.e., the scenario cost above

what could be obtained if a perfect forecast were available. The tolerable percent regret R̄ is

relative to a lower bound C on the perfect-forecast solution:

cs(x)≤ (1+ R̄)Cs, ∀s ∈ S. (6.22)

Constraining regret is a heuristic for reducing expected regret, which is equivalent

to reducing expected cost. This approach is generally more risk averse than stochastic

programming and more risk neutral than robust optimization (Jiang, Wang, Zhang, & Guan,

2013). Regret is estimated here relative to a lower bound on the perfect dispatch solution as

this bound can be calculated efficiently.

Applying such cost constraints is not guaranteed to minimize expected costs. How-

ever, there is also a desire to protect against extreme scenarios. Operators already apply

reserve requirements for wind uncertainty that have been described as conservative (Holt-

tinen et al., 2012). Risk discussion in power systems frequently centers on reliability, but

there is also risk of expensive solutions. Methods from the literature that are risk-averse

include robust optimization, conditional value at risk (Huang, Zheng, & Wang, 2014), and

minimax regret (Jiang et al., 2013). The ISOs are chartered to maximize social welfare but

they are not required to be risk neutral (as long as reliability standards are met). Risk-averse

approaches like minimizing regret have long been recognized as a rational (Savage, 1951),

and the allowance for risk aversion within the mathematical model may help to further

clarify organizational goals and improve transparency for market participants.
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6.4.3 Pruning Response Sets. At this point, the decomposition algorithm has identified

expensive scenarios and placed them in set S̃ to be pruned. The qualified capacity from

committed generators and uncommitted fast generators is represented as

P̂s
gt =



C s
gt , if u0

gt = 1

U s
gt , if u0

gt = 0 and g ∈ Gfast

0, if u0
gt = 0 and g /∈ Gfast.

(6.23)

The pruning subroutine now identifies the portion of this capacity P̂s
gt that cannot be dis-

patched at low cost given fixed base commitments u0. The mathematical model for identifi-
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cation of costly capacity (ICC) is defined below:

(ICC) : minimize ∑
g∈G

∑
t∈T

∑
s∈S̃

P̂s
gtγ

s
gt (6.24)

subject to:

cs(x)≤ (1+ R̄)Cs, ∀s ∈ S̃. (6.25)

isnt = ∑
g∈G(n)

ps
gt + ∑

g∈G
ms

gnt + ks
nt +bs

nt−Ds
nt,

∀n ∈ N, t ∈ T,s ∈ S̃ (6.26)

∑
n∈N

ms
gnt ≤ P̂s

gt− ps
gt , ∀g ∈ G, t ∈ T,s ∈ S̃ (6.27)

∑
n∈N

ms
gnt ≤ P̂s

gtγ
s
gt , ∀g ∈ G, t ∈ T,s ∈ S̃ (6.28)

∑
g∈G

ms
gnt ≤∑

g∈G(n)
C s

gt
(
1−u0

gt
)
, ∀n ∈ N, t ∈ T,s ∈ S̃ (6.29)

ms
gnt ≥ 0, ∀g ∈ G,n ∈ N, t ∈ T,s ∈ S̃ (6.30)

Wind availability (6.2)

Network constraints (6.3), (6.5)

Generator capacity and ramping constraints (6.6), (6.7)

Minimum up and down times (6.8)–(6.10)

Nonanticipivity constraints (6.11)

Reserve requirements (e.g., contingency requirements)

Variable domains (6.12).
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Problem (ICC) coordinates dispatch across the entire horizon (e.g., 24 hours). It

resembles the second stage of problem (SUC) with three differences. First, the scenario

costs are constrained to be below the maximum regret (6.25). Second, generator capacity

is limited to what currently belongs in the response set (6.27). Third, costly capacity may

be replaced by dummy injections if the dispatching constraints cannot be satisfied. The

dummy injection ms
gnt is made at node n to replace capacity from generator g. The idea

is that this injection represents capacity from slow generators that could be committed in

future iterations when a stricter capacity requirement will be used. As such, (6.29) limits

dummy injections to locations that have uncommitted capacity from slow generators.

The proportion of capacity replaced by dummy injections is tracked by γ through

(6.28). The objective function minimizes this value so that dummy injections are only used

to replace capacity that cannot be dispatched without violating a constraint, including the

constraint on production costs (6.25). Let γ∗ be the optimal solution of problem (ICC). The

response sets are pruned based on γ∗ according to

C
s(new)
gt =


C s

gt
(
1− γs∗

gt
)
, if u0

gt = 1

C s
gt , if u0

gt = 0,

(6.31)

U
s(new)

gt =


U s

gt
(
1− γs∗

gt
)
, if u0

gt = 0

min
{

U s
gt ,C

s(new)
gt

}
, if u0

gt = 1.

(6.32)

The capacity of each response set member is discounted in (6.31) and (6.32) by the

proportion replaced by dummy injections in problem (ICC). A slightly modified rule is
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used in (6.32) for uncommitted fast generators to enforce U ≤ C . This relation may help to

speed up convergence and is justified because fast generators that are too expensive when

committed are unlikely to be used when they have not been committed due to the fixed

start-up costs.

Problem (ICC) can be easily parallelized because nothing links scenarios. The

model for each scenario is comparable to the evaluation sub-routine from Section 6.4.1

except for the inclusion of dummy injections m. Most of these additional variables must

equal zero because (6.29) forbids dummy injections where qualified capacity does not exist

(the number of nodes greatly exceed the number of generators in power systems). Therefore,

problem (ICC) has similar computational requirements as the evaluation sub-routine. Both

problems are relatively easy to solve quickly due to restrictions on binary commitments in

the second-stage.

6.5 Wind Scenario Generation

To evaluate the proposed response sets, it is necessary to generate wind scenarios that

reflect the day-ahead uncertainty faced by SCUC. Wind forecasting and simulation methods

typically begin by forecasting wind speed and then estimating the corresponding electric

power generated from that wind. This approach is common because advanced physical

weather models are available, making wind speeds relatively easy to forecast. The speed

is converted to power via a transformation like that in Figure 6.3, which is based on the

physical characteristics of the generators. The relationship between wind speed and power is
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Figure 6.3: Power curve for a wind farm (Papavasiliou et al., 2011).

nearly linear but tapers off near maximum capacity. Some precision is lost because a single

wind speed is used to cover multiple nearby turbines (Wan, Ela, & Orwig, 2010). Locational

approximations notwithstanding, most studies concerned with wind power generation start

by characterizing a single wind speed for the localized area.

The most common wind speed distributions in the literature are Weibull and Releigh

(which is a special case of the Weibull distribution). A review of the literature by Dorvlo

(2002) highlights that both distributions have been used extensively and the best choice

depends on the dataset. However, operations are also influenced by temporal and spatial cor-

relations. The correlation between periods is generally strong, so strong that the persistence

model (i.e., a moving average with unit window length) can be reasonable for forecasting

a few hours ahead (Landberg, 2001). A visual indication persistence model accuracy is

compared to a state-of-the-art forecasting method is shown in Figure 6.4. The second type

of correlation is spatial. Adding wind across the system tends to reduce the overall volatility

(due to the law of large numbers), but this effect is subdued in regions where wind speeds are
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Figure 6.4: Typical forecast errors using climatology (moving average with a very wide
window), persistence, and an advanced forecasting model (Lerner, Grundmeyer, & Garvert,
2009).

correlated. The spatial wind variation is also relevant because different locations uniquely

influence power flows and congestion. Models that ignore spatial temporal correlations may

overlook important phenomena with large impacts on system operations.

The wind forecasting literature is reviewed by Lei, Shiyan, Chuanwen, Hongling,

and Yan (2009). Forecasting models can be categorized into three categories: physical,

statistical, and artificial intelligence. Physical models simulate the Earth’s atmosphere while

taking into account factors like terrain, temperature, pressure, and humidity. They are

generally appropriate for long-term wind forecasting but are also used to generate inputs for

short-term models. Artificial intelligence is extensively used for short-term forecasting (Lei

et al., 2009). Popular methods include artificial neural networks, fuzzy logic, and support

vector machines. Statistical models frequently involve autoregressive moving average

(ARMA) techniques, which are well suited for characterizing temporal correlation (Lei
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et al., 2009). Statistical models are also convenient for generating random scenarios because

they often include a random component that lends itself well to Monte Carlo simulation.

Statistical models are widely used for simulating wind speed. ARMA models

incorporate autocorrelation by relating each data point to information from previous periods

(Montgomery, Jennings, & Kulahci, 2008). The structure of an ARMA model is

yt =
p

∑
j=1

φ jyt− j +
q

∑
j=1

θ jεt− j + εt , (6.33)

where yt is the value of the time series in period t, φ j and θ j are autoregressive (AR) and

moving average (MA) parameters for time lag j, and ε is a random error term normally

distributed with E[ε] = 0. The error terms can be interpreted as random shocks that determine

how the time series progresses between periods (Montgomery et al., 2008). In ARMA

models, the data at every time point is a function of the previous data and the random shocks

to the system. The model includes parameters looking back p periods for the AR terms and

q periods for the MA terms.

ARMA models can be modified to account for spatial correlation (cross-correlation).

For example, multivariate ARMA (VARMA) models incorporate additional variables that

link information from between locations. These additional variables tend to make VARMA

models difficult to fit for large problem instances (Montgomery et al., 2008). However,

such models have been used for applications with fewer than five cross-correlated wind

series (S’́ooder, 2004; Lojowska, 2009; Ewing, Kruse, Schroeder, & Smith, 2007). More

tractable approaches for larger problems are proposed by Xie and Billinton (2009), Morales,

Mı́nguez, and Conejo (2010). These authors reduce the number of parameters by capturing
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the cross-correlation through the error terms ε . Their strategy is to generate random errors

(shocks) that are normally distributed but also correlated across locations. Both references

fit independent models for each wind location, characterize the error correlations between

locations, and then use this information to generate random shocks that are cross-correlated.

The benefit of these approaches is that they are practical for large-scale problem instances.

This research employs an ARMA model to capture temporal correlations and the

method of Morales et al. (2010) to capture cross correlation between locations. The model

for each location includes one AR term and one MA term, which simplifies to

yt = φyt−1 +θεt−1 + εt . (6.34)

There is also strong seasonality for wind that should be accounted for. For example,

many areas experience high wind in the mornings and low wind in the evenings. These daily

patterns are captured here by introducing seasonal terms to the model. The updated model

includes a 24-hour seasonal differencing term and a new moving average term to get

yt = φyt−1 +θεt−1 + εt +(yt−24−φyt−25)+(Θεt−24 +θΘεt−25) , (6.35)

where Θ is a new parameter that captures the seasonal moving average. The reader may

refer to Montgomery et al. (2008) for more details on these types of models. Using the

nomenclature from that reference, equation (6.35) is classified as an (1,0,1)x(0,1,1)24 model.

This particular formulation is chosen based on the goodness of fit and the distribution of

residuals when applied to the data used in this study.

Torres, Garcı́a, Blas, and Francisco (2005) show that hourly forecasts can be im-

proved by transforming the wind speed data from Weibull to standard normal. This type
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Figure 6.5: Flowchart for statistically generating wind scenarios. Steps 3 and 6 use the
ARMA model in (6.35). Steps 4 and 5 capture spatial correlation using the algorithm of
Morales et al. (2010).

of transformation is also used by Morales et al. (2010) and Papavasiliou et al. (2011). One

benefit of working with normally distributed data is that wind predictions are never negative

after performing the reverse transformation back to Weibull (Weibull random variables are

nonnegative with probability one). The same strategy is employed here by transforming

the historical wind speed data to approximate the normal distribution. The time series are

fit to the transformed data before generating scenarios. The overall process is described in

Figure 6.5. In the end, the data is transformed back to Weibull (to get wind speed) and then

to power using a power curve like that in Figure 6.3.

168



Figure 6.6: Wind locations (nodes 23 and 47) and contingency reserve zones.

6.6 Analysis and Results: IEEE 73-Bus (RTS 96) Test Case

The proposed algorithm is evaluated on the IEEE 73-bus (RTS 96) test case (Grigg

et al., 1999). Modifications are made to the test case as described in Section 4.7. Wind farms

are also added to the system as described in Section 6.6.1. The wind availability amounts to

33% of the total load on average.

This analysis uses 10-minute spinning reserves to cover generator contingencies.

Contingency reserves are enforced using the two-reserve-zone requirement from Chapter 5

with a conservative reserve sharing parameter α = 0.5. The contingency reserve zones are

shown in Figure 6.6 along with the wind locations. Reliability against contingencies or any

other non-wind uncertainties is not evaluated explicitly, but 10-minute reserve are forced to

exceed the largest contingency by the respective reserve requirements. Load imbalances are

allowed at a cost of ν =$10,000/MWh.
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Testing is performed using CPLEX v12.5 on an 8-core 3.6GHz computer with 48GB

of memory. SCUC is terminated after five minutes or upon reaching an optimality gap of

0.1% unless otherwise stated.

6.6.1 Design of the Analysis. Various policies are tested here to assess the proposed

decomposition algorithm. Stochastic programming is used first to demonstrate the difficulty

of solving problem (SUC) directly. This is contrasted by deterministic policies from the

literature that allow for quick solution times and reasonable results when tuned properly.

Finally, the capacity response sets are shown to improve expected costs in less than 20

iterations on average. The tested approaches are described in more detail below:

• Stochastic programming: This approach directly solves problem (SUC) using

CPLEX. Scenario selection is applied to limit the problem size so it is computa-

tionally tractable. The scenario selection method of Gröwe-Kuska, Heitsch, and

Römisch (2003) combines similar scenarios and recalculates the probabilities π ac-

cordingly. Using this method, a smaller set of 10 scenarios are identified out of 1000

candidates.

• Baseline: The baseline policy uses deterministic reserve requirements from the litera-

ture. The approach involves no scenario information but requires reserve to exceed a

prescribed percentage of the wind forecast. Several variations are studied to gauge

how well the baseline requirements can perform when properly tuned. Details on the

baseline are provided in Section 6.6.1.
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• Default response sets: The default response sets apply the capacity constraint (6.21)

for 50 random scenarios. The response sets are initialized with all capacity qualified,

i.e., all C s
gt = U s

gt = Pmax
g , and pruned using the decomposition algorithm. The

tolerable regret is set to R̄ = 10% above a lower bound on the perfect forecast solution.

• Buffered response sets: This is an altered formulation using the same 50 training

scenarios as the default response sets. Although the default approach works well for

the training scenarios, it may allow additional load imbalance when evaluated out-

of-sample. More conservative requirements may be warranted when the penalty ν is

large to avoid load imbalances. The buffered response sets provide that conservatism

by requiring an additional 5% capacity margin for each response set (by adjusting the

right-hand side of (6.21)).

• Buffered response sets with scenario selection (SS): This policy uses scenario selec-

tion strategies from Papavasiliou et al. (2011) to identify training scenarios that have

extreme wind shortages or deviations between hours. Modeling these scenarios helps

to commit additional capacity that can protect against out-of-sample load imbalances.

The IEEE 73-bus test case does not identify fast generators, so some assumptions

are needed for the analysis. This chapter first evaluates the system with no fast generators

(Gfast =∅) and then proceeds with 13% of capacity classified as fast. The results show that

the baseline policies can perform much better when commitments are allowed to change in

the evaluation stage. This result corroborates observations from the literature, e.g., Tuohy

et al. (2009) find that fast generators can reduce the cost savings of stochastic programming
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from 0.6% to 0.25%. As it happens, response sets are found in this chapter to reduce

expected costs by around 0.5% only when there are no fast generators. Response sets and

the baseline policy provide similar results when there are fast generators.

Baseline Policies. Several heuristics have been proposed in the literature to deal with wind

uncertainty (Holttinen et al., 2012). Many focus on mitigating short-term fluctuations on the

order of 5 to 20 minutes. Some require reserve to exceed a certain percentage of the load or

wind forecast at the hourly level (Sioshansi & Short, 2009; Papavasiliou & Oren, 2013). A

similar baseline policy is used here:

∑
g∈G

rslow
gt ≥W ∑

n∈N
K0

nt , ∀t ∈ T (6.36)

p0
gt− p0

g,t−1 + rslow
g,t−1 ≤ Rg, ∀g ∈ G, t ∈ T (6.37)

p0
gt + r0

gt + rslow
gt ≤ Pmax

g , ∀g ∈ G, t ∈ T. (6.38)

The variable rslow
gt represents slow reserve from generator g that is available within one

scheduling period (60 minutes) and r0
gt represents contingency reserves. Constraint (6.36)

requires slow reserve to exceed a prescribed percentage of the wind forecast. Several values

of W are tested in this section and then analyzed post-hoc.

For reserve products available in 60 minutes, it is important to consider hourly

ramping limitations. Constraint (6.37) accounts for each generator’s scheduled ramping

(Sioshansi & Short, 2009). For example, this constraint forces slow reserve to zero when a

generator is already scheduled to increase production at its maximum ramp rate. Constraint
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(6.38) separates r and rslow so that the slow reserve requirement is met without sacrificing

contingency reserves.

Similar reserve requirements are used by Sioshansi and Short (2009) and Papavasil-

iou and Oren (2013). The major difference is that those authors also incorporate a percentage

of the load forecast in the reserve requirement (6.36). The load component is omitted here

because policies based only on wind are found to be dominant for this particular test case

(which is unsurprising because this analysis assumes there is no load uncertainty). The base-

line requirements are not enforced on a zonal level because the wind farms in this test case

are centrality located in parts of the system that are generally export-constrained, making it

easier to import reserves during wind shortages. The prime wind locations notwithstanding,

local transmission constraints can still hinder reserve deliverability. A strong point of the

proposed methodology is that it adapts to different congestion patterns across scenarios

without relying on a single zone definition to work well under diverse conditions.

Wind Modeling. Wind modeling follows that of Lyon, F. Wang, et al. (2014). Wind farms

are placed at nodes 23 and 47, which are central locations containing 660 MW of coal

generation each. The wind locations are plotted in Figure 6.6. The wind is placed at central

parts of the system because isolated areas are more likely to require additional transmission

investments that are beyond the scope of this dissertation. The developed wind scenarios

generate power up to 3340 MW and energy equal to 33% of the average load. Wind energy

is assumed to have a production bid of zero and can be accepted up to the available amount.
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Figure 6.7: (a) Wind data locations. (b) Sample of 15 wind scenarios.

Scenarios are generated based on data from NREL’s Western Wind dataset for the

first three weeks of August 2005 (National Renewable Energy Laboratory, n.d.). Figure

6.7 (a) maps 510 turbines distributed across two clusters; these clusters are aggregated to

create the two separate wind locations described above. Hourly ARMA models are fit for

each location based on wind speed and the time series are later converted to power using an

estimate of the aggregate power curves.

The adopted model (6.35) includes one AR and MA term for the most recent hour

and a 24-hour MA term with seasonal differencing for daily seasonality per equation (6.35).

The seasonality captures how wind varies by time of day: ramping up in the early morning

and dropping off in the afternoon. The model’s ability to capture temporal correlation is

validated using the Ljung-Box test with significance level 0.10, which fails to reject the null

hypothesis of independent errors for the first twenty time lags. The model does a reasonable

job capturing the autocorrelation across most hours of the day.
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Since scenarios are generated only from historical data (and not sophisticated fore-

casting models that consider weather modeling), the variance between samples tends to

exceed the forecast errors seen in practice (Hodge et al., 2012). This bias is corrected by

normalizing the sampled wind speeds with the average so that the power stays within 20%

of the mean approximately 80% of the time. The adjustment is applied between steps seven

and eight in Figure 6.5. Without this adjustment, the variability between scenarios is much

greater than would be seen in practice. Figure 6.7 shows the available wind power for the

first 15 scenarios generated using this approach. The forecast adopted in SCUC follows the

mean value from 1000 simulated time series.

Test Days. Wind has the potential to influence the system in different ways across seasons.

This analysis examines a portfolio of days across the year including a weekday (WD) and

weekend (WE) from each season. The load profile for each day is shown in Figure 6.8. The

same wind scenarios are used for each case, ranging in forecast from 28% of energy in peak

days to 43% on off-peak days. The overall wind penetration is 33% of energy across the

year. This exceeds the current renewable portfolio standards in the U.S. 5 but is below levels

targeted by some European countries, e.g., Germany targets 45% renewable by 2025 and

55% renewables by 2035 (Lang & Mutschler, n.d.). Wind may exceed or fall short of 33%

on individual days, which is reflected in the range of days tested.

5California is targeting 33% by the year 2020, but some of that will be met by other fuel types besides
wind.
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Figure 6.8: Load profile for the eight test days.

Evaluating Results. Given the first-stage commitments, solutions are evaluated by simulat-

ing dispatch across 100 random scenarios that are independent of the training scenarios. This

analysis assumes the scenario is revealed upfront and solves a single 24-hour model. The

corresponding results will be optimistic because, in reality, forecast errors still occur during

the operating day. This assumption affects all of the evaluated models (they are compared in

a consistent way) and, despite being an approximation, is common in the literature (Ruiz

et al., 2009; Papavasiliou et al., 2011; Morales et al., 2009; Papavasiliou & Oren, 2013;

Bertsimas et al., 2013; Jiang et al., 2014).

6.6.2 Analysis for No Fast Generators. The set of recourse actions are hereby restricted

such that generator commitments cannot change in the second stage. The day-ahead problem

attempts to find commitments that work well across a range of scenarios: allowing for low-

cost generation while avoiding load imbalance.
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Table 6.1: Stochastic programming results. The evaluation results are averaged across
scenarios.

(SUC) Solution Out-of-Sample Evaluation

Day
Time
(min)

Optimality
Gap (%)

Objective
(millions $)

Cost
(millions $)

Load Imbalance
(MWh)

Regret
(%)

Winter WD 120 0.45 1.14 1.15 1.89 3.61
Winter WE 120 0.25 0.54 0.54 0.38 2.44
Summer WD 120 0.19 0.93 0.96 2.16 4.20
Summer WE 120 0.16 0.48 0.47 0.00 2.77
Spring WD 120 0.20 0.63 0.69 6.04 12.11
Spring WE 49 0.10 0.33 0.33 0.04 4.79
Fall WD 103 0.10 0.64 0.67 3.37 7.22
Fall WE 120 0.14 0.34 0.34 0.40 5.54

Average 109 0.23 0.63 0.64 1.78 5.25

The stochastic programming results are summarized in Table 6.1. The solver termi-

nates after two hours or upon reaching an optimality gap of 0.10%, which is met on 2/8 days.

The solver averages an optimality gap of 0.23% despite only modeling 10 scenarios. The

small sample size leads to many out-of-sample load imbalances because the full range of

uncertainty is not captured. More scenarios would be preferable because the average regret

exceeds 5%, but they would only exasperate the already long solution times. This points to

the importance of scenario selection and decomposition algorithms because problem (SUC)

is hard to solve directly.

The results of the baseline model are shown in Table 6.2 and Figure 6.9 for several

values of W . A clear trade-off is shown where more reserve protects against load imbalance

but comes at a cost. The baseline policy that is observed to minimize the expected cost is

W = 35% of the wind forecast. This policy is the cheapest overall but can be far from the
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Table 6.2: Results averaged across scenarios for baseline policies with W =
{20,25,30,35,40}% of the wind forecast. The regret assumes ν = $10,000/MWh. The
best results are highlighted for each day.

Load Imbalance (MWh) Regret (%)

Day 20% 25% 30% 35% 40% 20% 25% 30% 35% 40%

Winter WD 4.6 0.2 0.0 0.0 0.0 5.3 1.8 1.8 2.2 2.6
Winter WE 16.3 7.5 0.0 0.0 0.0 32.4 15.9 2.0 2.2 2.4
Summer WD 2.2 0.8 0.0 0.0 0.0 4.1 3.0 2.2 3.0 3.3
Summer WE 40.0 0.1 0.1 0.1 0.0 89.4 2.7 2.7 2.9 3.2
Spring WD 0.8 0.1 0.0 0.0 0.0 3.2 2.4 2.4 2.8 3.5
Spring WE 35.9 14.7 6.6 0.0 0.0 116.4 49.7 25.0 4.4 4.9
Fall WD 2.2 0.0 0.0 0.0 0.0 5.1 1.9 2.4 2.8 3.3
Fall WE 39.3 20.2 7.4 0.0 0.0 125.4 65.5 26.8 4.4 4.5

Average 17.7 5.4 1.8 0.0 0.0 30.6 11.0 5.2 2.9 3.2

cheapest on individual days, suggesting that there is room for improvement by adapting a

dynamic policy.

The same policy of W = 35% minimizes the expected cost for several load imbalance

penalties ν as shown in Figure 6.10. The more optimistic baseline policies only begin to

perform as well when ν < $2500/MWh. Such small values may be characteristic of systems

with many flexible loads that are willing to reduce their consumption at relatively low price.

Response Sets. The proposed decomposition algorithm is evaluated across the same set of

days and scenarios as the baseline. A set of 50 scenarios are included in the model. These

in-sample scenarios are generated randomly and are independent from the scenarios used

for evaluation.

The response set constraints are applied on top of slow reserve constraint (6.36)

with W = 20%. Table 6.3 and Figure 6.11 summarize the results. Every day experiences
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Figure 6.9: Generating production costs vs. load imbalance costs for different baseline
policies. The respective policies require slow reserve to exceed the specified percentage of
the wind forecast.

Figure 6.10: Total costs for the baseline policies assuming different violation penalties ν .
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load imbalance in the first iteration before the response sets are pruned. All imbalances

in the training scenarios are eliminated through course of the decomposition algorithm.

However, the performance is more modest when evaluated out-of-sample. The out-of-

sample performance is heavily influenced by load imbalances in scenarios that are absent

from the scheduling model. Much of these violations can be avoided by modifying the

formulation as follows.

The response set requirements are made more strict by adding a 5% margin to the

right-hand side of the capacity requirement (6.21) (this is the buffered policy in Table 6.3).

This adjustment rarely hurts performance but can protect against shortages in scenarios that

are absent from the model. The expected costs for this strategy are extrapolated for different

imbalance penalties ν in Figure 6.11. The proposed model outperforms all baseline policies

for $2000/MWh ≤ ν ≤ $6000/MWh. The performance is inferior for larger penalties ν

because some out-of-sample load imbalances still exist as shown in Table 6.3.

Response Set Scenario Selection. One of the challenges of the proposed algorithm is

selecting a proper set of scenarios to include in the model. The results in Table 6.3 show

there are load imbalances during evaluation. The imbalances occur despite no imbalances in

the training scenarios. Scenario selection techniques may help avoid such out-of-sample

drops in performance.

Various scenario selection techniques are proposed in the literature. Some identify

scenarios that are representative of a larger set, e.g., Gröwe-Kuska et al. (2003), and others
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Table 6.3: Results averaged across scenarios for response set policies. The regret assumes
ν = $10,000/MWh. The best results are highlighted for each day. SS = scenario selection.

Load Imbalance (MWh) Regret (%)

Day Default Buffered
Buffered
with SS Default Buffered

Buffered
with SS

Winter WD 0.08 0.08 0.09 1.40 1.47 1.87
Winter WE 0.00 0.00 0.00 1.51 1.51 1.96
Summer WD 1.32 1.32 0.00 3.20 3.20 2.18
Summer WE 0.11 0.11 0.00 2.41 2.41 2.51
Spring WD 5.11 1.37 0.00 10.10 4.11 2.32
Spring WE 1.19 1.19 0.25 6.32 6.33 4.59
Fall WD 1.76 1.76 0.00 4.37 4.37 2.21
Fall WE 0.00 0.71 0.55 2.94 5.09 5.46

Average 1.20 0.82 0.11 3.73 3.14 2.51

Figure 6.11: Total costs for response set policies with different violation penalties ν . SS =
scenario selection.
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focus on capturing extreme scenarios, e.g., Papavasiliou et al. (2011). The latter approach is

used here to hedge costly load imbalances. A small sample of scenarios is chosen to include:

1. the scenario with the smallest available wind energy overall,

2. the scenario with the smallest available wind energy in any one period,

3. the scenario with the biggest variance between periods,

4. the scenario with the biggest morning ramp,

5. the scenario with the biggest evening ramp,

6. the scenario with the biggest sum of absolute differences between periods,

7. the scenario with the biggest change in one period,

8. the scenario with the biggest difference between the maximum and minimum wind

availability.

From 1000 randomly generated scenarios, seven extreme scenarios are found to sat-

isfy one or more of the above criteria. These seven scenarios are fed into the decomposition

algorithm to generate the scenario selection (SS) results in Table 6.3. The results show that

load balance tends to improve due to the conservatism introduced by these extreme scenarios.

The regret also improves because production costs increase relatively little compared to

the smaller load imbalances. These results show that the way scenarios are selected can be
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more important than the total number of training scenarios included in the model 6 . It is

advisable for more extreme scenarios to be included when the load imbalance penalty ν is

high to further hedge against load imbalances.

The performance is extrapolated for different load imbalance penalties ν in Figure

6.11. The proposed model has the potential to improve efficiency if coupled with effective

scenario selection. The cost improvement over the baseline policies ranges from 0.5% to

0.2% for $5000/MWh ≤ ν ≤ $15,000/MWh. The crossover point where the best baseline

policy has a lower cost is ν = $35,000/MWh, which is higher than most value of lost load es-

timates (Sullivan et al., 2009). Systems with higher load imbalance penalties should specify

an uncertainty set with more extreme scenarios to further hedge against load imbalances.

A statistical analysis is applied to compare response sets with scenario selection to

the baseline policy with W = 35%. The average cost difference is approximately normally

distributed and is analyzed here using the t-distribution (Montgomery & Runger, 2010)

due to the statistically small sample size of eight days. The 95% confidence interval for

the daily cost improvement is $(640, 4671) for ν = $5000/MWh. The results indicate that

the proposed policy will provide some cost benefit over the long run compared to the best

baseline policy.

Computation. The computational bottleneck in the proposed algorithm is the need to solve

SCUC once every iteration. The evaluation and pruning stages solve relatively fast and

6The stochastic programming model can also be replicated using these scenarios. Doing so yields an
average regret of 3.04%, which is lower than the scenario selection technique of Gröwe-Kuska et al. (2003) in
Table 6.1 but higher than the best baseline and response set policies.
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may analyze scenarios in parallel. The wall clock computation times are summarized in

Table 6.4. A theoretical time for parallel computing is also computed by replacing the total

evaluation and pruning times with the slowest scenario from each stage. The potential time

reduction from parallel computing is modest (around 10%) because most of the time is spent

solving SCUC. However, parallel computing would allow the model to consider many more

scenarios without greatly increasing computation times.

The number of iterations are also shown in Table 6.4. One iteration is roughly

comparable to the total solution time when using a baseline policy. The proposed algorithm

converges in as little as two iterations and as many as twenty-eight. This is slower than the

baseline models but much faster than solving problem (SUC) directly. It is also faster than

results reported for the fast stochastic programming method of Papavasiliou and Oren (2013).

Their method also solves SCUC at each iteration (it actually solves SCUC several times in

parallel), so a reasonable comparison can be made by looking at the iteration counts. They

stop their algorithm after 120 iterations, which is four times longer than the response set

decomposition algorithm. Some of the additional iterations can be attributed to Papavasiliou

and Oren (2013) using a larger test case 7 , but the difference in iteration count is still

arguably large.

Twenty-eight iterations is too many for application in most day-ahead markets.

However, there may be sufficient time to apply the algorithm as an out-of-market correction

(OMC) tool to repair unreliable solutions. This would be a natural first application while

7Papavasiliou and Oren (2013) test on the WECC 225-bus test case, which has roughly 30% more generators
and three times more nodes and lines than this study.
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Table 6.4: Iterations and computing time of the decomposition algorithm (theoretical times
for parallel computing are provided in parenthesis).

Iteration Count Time (min)

Day Default Buffered
Buffered
with SS Default Buffered

Buffered
with SS

Winter WD 25 10 10 94 (81) 50 (46) 47 (45)
Winter WE 5 3 6 18 (14) 7 (5) 17(16)
Summer WD 8 11 13 20 (16) 12 (10) 21 (20)
Summer WE 2 2 21 17 (16) 14 (13) 35 (32)
Spring WD 11 11 31 88 (80) 91 (84) 37 (34)
Spring WE 10 10 6 63 (57) 39 (36) 37 (36)
Fall WD 11 5 28 80 (73) 40 (36) 122 (117)
Fall WE 11 20 27 69 (63) 115 (105) 140 (135)

Average 10.4 9.0 17.8 56 (50) 46 (42) 57 (54)

the computational performance is being improved. The above analysis does not explicitly

evaluate OMCs but may be interpreted as a proof of concept for the proposed algorithm.

The algorithm may be particularly well-suited to replace or inform the manual commitments

made by operators on a regular basis in ISO-NE (Patton, LeeVanSchaick, & Chen, 2012).

An automated approach such as this may locate capacity better and avoid the potential

perception of biased decisions from market operators.

Future research may investigate techniques to improve convergence times. An

obvious approach would be to pre-disqualify capacity ahead of time so that fewer iterations

are needed. CAISO already allows for capacity disqualification in (6.18) (CAISO, 2010),

and it presumably has experience with setting that value. Computational performance may

also be improved by tweaking the pruning algorithm so that larger, more restrictive, cuts

are generated in each iteration (or just during earlier iterations perhaps). Larger cuts can be
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superficially achieved by restricting constraints in problem (ICC), and future research can

develop strategies that have stronger justification or empirical performance.

6.6.3 Analysis for Fast Generators. Fast generators are defined as those that can change

their commitment during scenario response. The number of fast generators varies between

systems. The IEEE 73-bus test case does not specify which generators are qualified as

fast. However, generators with small minimum down times can generally be started on

short notice and may be reasonably placed in Gfast 8 . Thirty-nine small generators (13% of

conventional generator capacity) are selected here because they have a minimum down time

of four hours or less as shown in Table 6.5. These generators provide additional flexibility

because their commitment status may change during scenario response.

The benefit provided by these fast generators is significant. The results in Table 6.6

show that good solutions can now be found using modest baseline reserve requirements.

The average regret is 1.22%, halving the best results from the previous section where there

were no fast generators. There is little room for improvement here because the system is

very flexible at the hourly level 9 . Response sets are also applied to achieve a similar, but

slightly worse, regret of 1.28%. They perform no better than the already strong baseline

policies in this case.

8The actual classifications depend on other information not provided for the IEEE 73-bus system. For
example, ISO-NE classifies fast generators as those with minimum up and down times of one hour or less and
starting lead times of 30 minutes or less (ISO-NE, 2014b). These generators are automatically considered by
the software. However, other generators may also be manually turned on or off when “conditions warrant”
through the reserve adequacy assessment process (ISO-NE, 2014c)

9In addition to the subset of fast generators, every generator in the IEEE 73-bus test case can ramp from
its minimum to its maximum output within one hour. Both of these things contribute to there being much
dispatching flexibility at the hourly level.
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Table 6.5: Conventional generator mix for the IEEE 73-bus test case. Generator type u50
(hydro) is not designated as fast because it is always committed due to it being inexpensive
and having a minimum output of zero MW.

Type Classification
Capacity

(MW)
Ramp Rate
(MW/hr)

Marginal Cost
($/MW)

Min Down
Time (hr) Count

u20 Fast 20 20 163.0 1 12
u12 Fast 12 12 94.74 2 15
u76 Fast 76 76 19.64 4 12

Fast Total: 1,332 1,332 55.62a 3.2a 39

u50 Not fast 150 150 0 0 6
u100 Not fast 100 100 75.64 8 9
u155 Not fast 155 155 15.46 8 12
u197 Not fast 197 180 74.75 10 9
u350 Not fast 350 240 15.89 48 3
u400 Not fast 400 400 5.46 48 6

Total: 10,215 9,732 32.62a 20.5a 84
aCapacity-weighted average

Recall that response sets were previously applied with a maximum regret of 10%.

This cost bound is no longer suitable because it is easy to satisfy due to the additional

flexibility from fast generators. Table 6.6 shows results from response sets with a maximum

regret of R̄ = 5% applied alone with no other slow reserve requirements. The proposed

algorithm leads to nearly the same expected costs as the baseline policies. The computational

performance is volatile however: ranging from one iteration to being stopped after a two

hour time limit due to the maximum regret remaining unsatisfied for some scenario. This

shows that the computational performance is also sensitive to the prescribed constraint on

regret (6.25). The solution time can be significantly improved by relaxing the constraint on

regret at the risk of obtaining more expensive solutions.
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Table 6.6: Regret for baseline and response set policies when fast generators are available
assuming ν = $10,000/MWh. There is no load imbalances for these policies. The best
results are highlighted for each day.

Day Baseline 10% Baseline 15% Baseline 20%
Buffered response

sets with SS

Winter WD 1.36 1.00 1.13 1.30
Winter WE 1.13 1.13 1.13 1.17
Summer WD 1.41 1.36 1.25 1.37
Summer WE 1.85 1.86 1.85 1.78
Spring WD 1.11 1.10 1.19 1.08
Spring WE 2.13 1.67 1.26 1.57
Fall WD 0.88 0.88 0.96 0.93
Fall WE 1.74 1.23 2.18 1.24

Average 1.37 1.22 1.28 1.28

The policy implication is that recourse flexibility trumps the use of more advanced

scheduling software. Therefore, systems with few fast generators but growing wind should

investigate ways to increase dispatch flexibility during the operating day. Efforts could

encourage flexible technologies or amend practices to make better use of existing resources.

For example, ISO-NE only looks one hour ahead during intra-day scheduling by default

(ISO-NE, 2013a), and it may be beneficial to expand their model horizons to facilitate

intra-day commitments from slower generators. The proposed capacity response sets may

continue to be applied after more fast generators are available, but the results in this study

suggest that well-tuned baseline policies can perform just as well when that flexibility exists.

6.7 Conclusion

Power systems face greater uncertainty from growing penetrations of wind genera-

tion. The intermittency of wind implies that more aggressive rebalancing will be necessary

188



to maintain system frequency. Capacity requirements are used by industry today to mitigate

uncertainty, but the literature lacks ways to determine capacity requirements. This work

employs response sets and provides an automated way to determine capacity requirements

based on location, ramping capability, and cost.

Testing on the IEEE 73-bus system shows the algorithm’s ability to reduce sce-

nario costs compared to other deterministic policies from the literature. The approach is

particularly beneficial when day-ahead commitments are fixed, providing expected cost

improvements around 0.5%. Response sets provide an efficient way to anticipate what

capacity will be available without solving a stochastic model. Future work may investigate

disqualifying capacity based on scenario emissions to help ensure operators meet their

emissions targets. Future work may also focus on other uncertainties, e.g., to support new

reserve products being developed for short-term wind fluctuations (in the range of 5–20

minutes) (Holttinen et al., 2012).
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Chapter 7

CONCLUSIONS AND FUTURE RESEARCH TOPICS

7.1 Conclusions

Power system operators adopt approximate models to find solutions in an acceptable

amount of time. They mitigate uncertainty by embedding flexibility requirements into

their scheduling models. These requirements approximate how much spare generation or

transmission is needed to allow for disturbances. Such policies provide protection but do

not guarantee reliability unless they are applied in a conservative way. Over time, this

conservatism can cost millions of dollars and distort market outcomes by procuring reserves

that are unavailable due to congestion. Practical benefits can come from scheduling models

that better account for uncertainty.

Uncertainty and congestion in power systems are growing due to the adoption of

more intermittent renewable resources. Wind supplied only 3% of the total energy in 2011

but is the fastest growing renewable resource in the US (Energy Information Administration,

2013b). The wind penetration in some areas is growing faster than investments in the

transmission infrastructure (ERCOT, 2007; Gu et al., 2012), and managing congestion

well through operations can postpone the need for expensive new transmission capacity.

Advanced scheduling models are envisioned as a way to handle growing congestion and

uncertainty in an efficient manner.
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Much of the literature investigates reserve requirements while assuming all reserves

are deliverable. This assumption can be improved using reserve zones, but is generally not

guaranteed because recourse decisions are subject to a complex set of power flows. Several

papers on stochastic and robust optimization attempt to address this issue by modeling

transmission constraints on recourse decisions. However, stochastic models can only be

implemented in a limited way due to the computational challenges they currently face.

This dissertation contributes practical amendments to security-constrained unit commitment

(SCUC) to improve economics without solving a complex stochastic model.

The first contribution, in Chapter 4, is congestion-based reserve requirements that

mitigate congestion within reserve zones. The model predicts what recourse actions will

be performed for different scenarios and procures more reserve if these actions stress the

transmission network when applied over the baseline solution. The additional reserve allows

for alternative recourse actions to circumvent congestion. More than just determining proper

reserve quantities, the results show that this approach can provide efficient solutions by

preemptively reducing the flow on critical lines when it is inexpensive to do so.

Congestion-based reserve requirements can be combined with many approaches

from the literature to help justify the assumption that reserves are deliverable within zones.

The approach is computationally tractable but does not guarantee reliability. A limitation

is that the formulation must be tuned to the particular system where it is being applied.

This dissertation provides an interpretation for each user-defined parameter to help guide

and justify these tuning decisions. The number of parameters (two in the formulation
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presented) does not greatly exceed that of other reserve requirements already used in

practice. Nevertheless, the approach should be evaluated on a case-by-case basis to verify if

the operational benefits are worthwhile.

The second contribution builds upon reserve disqualification practices found in

industry. The existing practice allows operators to tell the model what reserves should

be treated as unavailable due to anticipated congestion. The work in Chapter 5 develops

a mathematical structure for making such decisions. The approach generalizes existing

methods by disqualifying reserves on a per-scenario basis. This creates a response set of

prime reserves for each scenario. The response sets are determined by iterating between

SCUC and reserve disqualification. The algorithm can find practical application by inform-

ing or replacing the manual reserve disqualifications that are performed today when the

market solution is unreliable. However, the algorithm would be more impactful when used

within the day-ahead market itself. Application in day-ahead markets would allow reserve

disqualification to influence more commitment decisions and help the market model identify

and properly compensate scarce resources.

The response set policies allow for a new market settlement scheme that rewards

generators at prime locations. Locational pricing contrasts the conventional approach of one

price per zone. The new settlement scheme decomposes prices by scenario to distinguish

reserves that are deliverable for some scenarios but not for others. Testing shows that

this scheme directs payments toward resources that can circumvent congestion during

critical scenarios. The proposed model only differs from zonal pricing when reserves are
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disqualified, and it preserves normal settlements when the baseline SCUC solution is reliable.

This is important because the locational pricing addresses undeliverable reserves without

overhauling the entire settlement structure. Therefore, the barriers for implementation

should be low compared to other new pricing schemes being investigated for stochastic

programming (Pritchard et al., 2010; J. Zhao et al., 2013).

Lastly, response sets are applied in Chapter 6 to generalize the capacity requirements

used to mitigate day-ahead wind forecast errors. The capacity requirements are especially

useful when the operator has little flexibility to turn on additional units moving closer

to real time. The proposed response sets are based on scenario cost, i.e., capacity is

disqualified when it is expensive to produce or it exasperates constraints with high shadow

prices. For example, capacity may be disqualified if it has a high operating cost or its

dispatch encourages congestion or load curtailment. This approach is shown to reduce load

imbalances and improve expected costs relative to other deterministic policies from the

literature. The approach is particularly viable when real-time costs vary a lot due to high

amounts of uncertainty, such as from deep penetrations of wind power generation.

A limitation of the response set algorithms is that they work in an iterative manner.

This implies solving unit commitment multiple times over the decomposition algorithm.

Some day-ahead markets may not provide enough time for convergence. In such cases,

out-of-market corrections may be used (as they are today) to repair unreliable solutions.

Response sets will most likely be introduced initially as a means to determine these out-of-

market corrections. As the computational performance improves, the response set updates

193



may be gradually moved into the day-ahead market as time permits. The benefits will be

more efficient commitment decisions and prices coming from the day-ahead market.

Both response sets and congestion-based reserves are heuristics for addressing

congestion. Both account for how congestion patterns may change between scenarios and

across periods. Both improve upon existing policies in some situations. Testing demonstrates

that the proposed approaches sometimes perform much better and rarely perform worse

than traditional approaches. Based on empirical evidence, the benefit may fall somewhere

around 0.5%–1.0% of total expected operating costs. The proposed approaches generally

solve slower than traditional models but faster than existing stochastic models. Therefore,

operators who are interested in stochastic models may use the proposed methods as an

alternative that is more computationally tractable.

In summary, the models used to schedule power systems are limited in their ability to

anticipate and mitigate congestion under uncertainty. Furthermore, uncertainty is expected to

grow as systems embrace deeper penetrations of intermittent renewable resources. Stochastic

models are proposed in the literature to help fix this problem but currently lack the scalability

needed for practical application. This dissertation stakes a middle ground that develops

deterministic models to provide better approximations in a tractable manner. The proposed

approaches collect low-hanging fruit in a manner that is computationally feasible. This

spares precious computing time that can be used to facilitate other modeling improvements

not covered in this dissertation.
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7.2 Future Work

There is an ongoing challenge to make accurate models more tractable 1 . Given

the large size of practical problem instances, practical advancements in the near future are

likely to come from heuristics and modifications to existing deterministic polices. This

section outlines how model accuracy and solution times may be improved using variants of

the proposed reserve requirements. Future work is outlined for congestion-based reserve

requirements in Section 7.2.1 and for response sets in Section 7.2.2. Potential extensions for

use with stochastic models are covered in Section 7.2.4.

Model development should address operational needs. Some important uncertainties

have fallen outside the scope of this dissertation. While Chapter 6 focuses on day-ahead wind

uncertainty, practitioners have emphasized existing needs to address short-term uncertainties

(forecast errors from minutes to hours ahead of time). Many operators are considering

changing 5-minute reserve requirements to mitigate wind uncertainty (Holttinen et al., 2012).

CAISO and MISO are also investigating new reserve products available for dispatch with 15

to 20 minutes (Xu & Tretheway, 2012; Navid & Rosenwald, 2013). Future work may extend

the research in this dissertation to better address various other forms of uncertainty, from

short-term wind fluctuations to transmission contingencies to uncertain fuel availability.

1Even the existing deterministic models take long to solve on occasion (Chen, X. Wang, & Wang, 2014).
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7.2.1 Congestion-Based Reserve Requirements.

Anticipating Recourse Decisions. Congestion-based reserve requirements make use of

simplified recourse policies that anticipate when reserves are not deliverable. The adopted

affine policy is based on pre-defined participation factors for how generators will respond

to contingencies. More complex affine policies have been used in the literature to simplify

stochastic problems (Bertsimas et al., 2011), and a similar path may be taken for congestion-

based reserve requirements.

Future work may develop new methods to better predict the location of dispatched

reserves. One potential affine policy is developed by Warrington et al. (2013) for real-time

power operations. The authors caution their model is imprecise when applied more than a

few hours ahead. However, some imprecision may be permissible because the user-defined

parameters are tunable to make congestion-based reserve requirements more conservative. If

the anticipated actions are infeasible, then more reserve can be procured to enable alternative

actions. The recognition that imperfect recourse predictions can still be valuable under this

scheme motivates new developments that may have previously been overlooked.

The Transmission Stress Function. Congestion-based reserve requirements are tied to

a function of transmission stress. The implicit assumption is that marginal increments

in transmission stress are counteracted by the additional reserve allowing for alternative

recourse actions. This assumption can be poor in the worst case because increments and

decrements in reserve may come from different locations. It is recognizable that acquiring
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more reserve tends to help operators circumvent congestion 2 , but it is difficult to derive

a relationship describing just how much additional reserve is necessary. Future research

that makes progress in this area would allow for improvements to congestion-based reserve

requirements.

7.2.2 Response Sets (Reserve and Capacity Disqualification).

Pruning Response Sets Based on AC Analysis. One advantage of reserve disqualification

is that the pruning model for revising response sets need not be convex. Therefore, it is

possible to adapt the model to consider AC power flows. This would facilitate greater model

accuracy. It would also provide a mechanism to disqualify reserves that are not available due

to voltage limitations. The pruning algorithm would likely remain computationally tractable

as an AC model because each contingency can be evaluated independently and in parallel.

This is an example of how taking one step back may allow two steps forward. The

adoption of reserve disqualification as a heuristic means optimality is not guaranteed. How-

ever, it also affords the opportunity to achieve better computational times while reducing the

reliance on imperfect linear power flow approximations. Such linear approximations can

have errors upward of 20% for individual transmission lines (Stott et al., 2009). Eliminating

these errors means that fewer manual adjustments are needed to improve reliability. When-

2The baseline results in Figure 4.13 (a) show that additional reserve tends to improve reliability, but the
relationship is not monotonic. Stricter reserve requirements can make reliability worse due to the combinatorial
nature of unit commitment. Research has shown that near optimal solutions can have drastically different
combinations of committed generators (Sioshansi et al., 2008).
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ever possible, it is preferable for the scheduling model to be more accurate so resources are

coordinated in an effective way.

Multiple Contingencies and Probabilistic Pricing. Some ISOs may wish to protect against

extreme events beyond N-1. Much of the literature considers probability when protecting

against rarer scenarios such as multiple contingencies 3 . Such models are useful to avoid

spending inordinate amounts protecting against unlikely scenarios. A common realization of

this approach is to constrain or penalize the expected value of lost load caused by insufficient

reserves.

Future work can apply response sets for scenarios with multiple contingencies. A

probabilistic interpretation may be gained by adding a shortage variable to each requirement.

Each shortage may be penalized in the objective according to the scenario probability times

the value of lost load (VOLL): reserve requirements would then be relaxed when reserve

is more expensive than the expected cost of curtailing load. These relaxations would filter

down to the reserve prices and carry a probabilistic interpretation with them.

A similar probabilistic approach is used by Bai et al. (2006) 4 . The benefit that

would be provided by response sets is improved reserve locations and pricing for multiple-

contingency events. This would be accomplished through a probabilistic framework. A

limitation is that the number of scenarios would grow rapidly if enumerated for all combina-

3See the literature review in Sections 3.1.1 and 3.1.2
4Bai et al. (2006) also develop a market settlement scheme for their probabilistic requirements. The scheme

penalizes generators that are likely to have an outage and also penalizes reserves providers that are unlikely to
perform when called upon (such as demand response resources). These strategies may be preserved by future
work, if desired, because they take the reserve clearing price as an input.
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tions of contingencies. Therefore, scenario selection would be a necessary and an important

aspect of this work to keep the problem to a reasonable and manageable size.

Transmission Contingencies. Generator outages are a natural application for response sets

because the minimum reserve quantities are well defined (reserve must exceed what that

failed generator produced before the outage). Unfortunately, it is not obvious how much

reserve is necessary to alleviate congestion following a transmission outage. The main

barrier for applying response sets to transmission outages is the need to identify positive

and negative reserve quantities.

The changes in power flows that occur immediately after a transmission outage

are straightforward to calculate using line outage distribution factors (LODFs) (Wood &

Wollenberg, 1996). Reserve may then be dispatched to relieve overloaded lines. The

appropriate reserve quantities are sensitive to the reserve locations. For example, relatively

little reserve may be needed if it can be dispatched from locations that have large effects

(shift factors) on the overloaded lines. Recourse must also be careful to not overload any new

lines. There are no obvious ways to accurately predict how much reserve may be exercised

without employing a stochastic model or contingency analysis. Therefore, approximations

seem necessary when specifying minimum reserve quantities for transmission outages.

Response sets can be applied to any scenarios that have their own reserve require-

ments. Once minimum reserve quantities are specified, response sets will help ensure the

reserve is held at effective locations. In the case of transmission contingencies, the pruning

algorithm should be updated to account for multiple reserve products (up and down) and the
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fact that the disturbance is no longer isolated to a single node. These changes are manageable

but should be handled carefully to retain the desired properties.

Alternative Scenarios. The work in this dissertation may be adapted to mitigate other types

of uncertainty besides contingencies and wind availability. For example, ISO-NE faces

the risk of natural gas (NG) fuel shortages that can force generators to temporarily shut

down (ISO-NE, 2014a). Fuel disruptions may occur after clearing the day-ahead energy

market because many generators only procure their fuel in a NG market held later in the day,

where they must compete with other industries for utilization of limited pipeline capacity

5 . Natural gas shortages are infrequent but have the potential to be catastrophic if not

properly prepared for because almost half of the ISO-NE load is served by NG generation

(ISO-NE, 2014a). The capacity response sets from Chapter 6 may be adapted to help locate

capacity that protects against these types of scenarios. Such automated approaches may

be particularly beneficial because the potential disturbances (NG shortages) are distributed

across the grid in ways that can transcend traditional reserve zones.

Controlling Emissions. Cost and reliability are not the only meaningful criteria to power

system operators. Another important consideration is emissions. Improving emissions is

a primary goal behind efforts for renewable integration. However, minimizing cost can

encourage higher emissions even when clean generators are inexpensive (e.g., curtailing

wind can sometimes hurt cost but improve emissions overall by removing the need for

5Natural gas is extensively used for heating in the Northeastern US.
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generators that can respond quickly to variants in wind production (Deng, Hobbs, & Renson,

2014)). Deterministic unit commitment models have consequently been developed to

constrain or charge for emissions (Gjengedal, 1996; Catalão, Mariano, Mendes, & Ferreira,

2010), but the stochastic versions of these problems remain difficult to solve. Future work

may improve emissions across scenarios via response sets, e.g., by disqualifying reserve or

capacity that cannot contribute to both low costs and low emissions for different scenarios.

Sub-Tree Reserve Disqualification. The proposed algorithm for disqualifying reserves has

a similar structure to Benders’ Decomposition. Both methods can be applied by solving unit

commitment (the master problem), evaluating scenarios, and applying cuts when scenario

performance is unsatisfactory. The computational bottleneck in this process is the need to

solve unit commitment at each iteration. The other steps are less time consuming because

the subproblems are simpler and can be solved in parallel across scenarios.

Computational performance may be improved by reducing the number of times the

master problem is solved. In some instances, researchers have sped up Benders’ Decompo-

sition by applying it at localized portions of the branch and bound tree of the MILP solver

(Rubin, 2011; L. Wu, 2013). This approach can save time by eliminating the need to rebuild

the tree at each iteration. However, there is a trade-off because this practice may duplicate

efforts identifying the same cuts at different parts of the tree. Future research may investi-

gate sub-tree reserve disqualification to see if a consistent improvement to computational

performance can be found.
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It should be noted that Alstom (which provides the market software for several ISOs)

has proprietary heuristics that can quickly identify good upper bounds for SCUC. This

capability can greatly reduce the size of the branch and bound tree, to the point that the

solver will often terminate at the root node (Chen, X. Wang, & Wang, 2014). Obviously,

applying cuts to localized parts of the tree would not be beneficial in such instances. Any

benefit would come from when the solver spends time exploring the branch and bound tree,

which still happens using Alstom’s software but to a rarer extent (Chen, X. Wang, & Wang,

2014).

Pre-Disqualification and Re-Qualification. Another way to reduce the number of itera-

tions is to disqualify reserves or capacity ahead of time through off-line procedures. Such

approaches would not necessarily solve for the final response sets but try to improve initia-

tion conditions for the decomposition algorithms from Chapters 5 and 6. New tools may be

developed to ensure pre-disqualifications work well across a range of potential day-types.

When working with response sets defined ahead of time, it would be useful to have a

way to re-qualify reserve or capacity as needed. Such a mechanism would loosen restrictions

on the initial response sets because they could be modified in either direction (currently the

response sets have to start off large because they are made progressively smaller). It would

also allow for reserves or capacity to be re-qualified if they become more deliverable after

some iterations or moving closer to real time.
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7.2.3 Short-Term Scheduling. While this work has focused on day-ahead scheduling,

the developed methodologies may also be applied on shorter time scales. Moving closer to

real time, operators may wish to amend reserve requirements to incorporate new information

about the operating state. For example, operators could revise the recourse actions predicted

by congestion-based reserve requirements. This would be particularly effective in places

like MISO, where the initial contingency response is not determined by an optimization

model but by participating factors derived from the current operating state (Chen, Gribik, &

Gardner, 2014) 6 .

Future research can compare the downstream effects of the proposed reserve require-

ments to those of stochastic models. Operators that use stochastic day-ahead models may

experience problems if they revert back to deterministic for short-term operations. Simply

reverting back to deterministic models may undermine reliability and create a systematic

divergence between the day-ahead and real-time markets. This would be less of an issue

for the proposed methodologies because the new reserve requirements are easy to reap-

ply in downstream applications. The general impact of day-ahead scheduling policies on

short-term operations would be an interesting topic for future work.

Quick-Reserve Products. Various regions are updating their energy portfolios to include

more renewable generation. Meta-analysis by Holttinen et al. (2012) indicates that most

wind integration studies focus on uncertainty at the 10–30 minute range. For example,

6More precisely, MISO immediately starts ramping units following a contingency in proportion to the
amount of reserve cleared by the real-time market (Chen, Gribik, & Gardner, 2014).
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CAISO and MISO are considering requirements for 5–20 minute reserve products that can

respond to short-term wind fluctuations (CAISO, 2013; Navid & Rosenwald, 2013). Reserve

deliverability is not guaranteed because these products are procured on a zonal basis and are

subject to the same limitations as zonal contingency reserves. Future research may extend

the proposed policies to improve the deliverability of other quick-reserve products.

7.2.4 Hybrid Stochastic Models. It is common for stochastic models to retain some

deterministic reserve requirements to cover scenarios that are not given stochastic treatment.

For example, none of the stochastic models for wind in Section 3.3 consider contingencies

and vice versa. There is potential for advanced reserve requirements to improve stochastic

models and make them more scalable. Future research may investigate how the proposed

approaches can be combined with stochastic models to identify economical solutions in less

time.

Benders’ Decomposition. One hybrid approach would be to integrate reserve disqualifi-

cation with Benders’ Decomposition. The two methods would combine naturally because

both essentially have the same master problem; the main difference lies is in how cuts

are generated. Some situations would warrant Benders’ cuts over reserve disqualification

because:

1. Benders’ cuts are readily applicable for different uncertainties (e.g., transmission

outages).

2. Benders’ cuts are valid inequalities, which do not remove optimal solutions.
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Reserve disqualification has been shown to quickly improve reliability when the

incumbent solution has many contingency violations. Therefore, a reasonable strategy may

be to use reserve disqualification when there is a large gap between the master and slave

problems. Such an approach would leverage reserve disqualification early on to eliminate

large portions of the feasible space and then apply Benders’ cuts to refine the solution.

Optimality would not be guaranteed, but such an approach could reduce the number of

iterations and avoid the bloat that can sometimes occur after many iterations of adding

Benders’ cuts (Ryan, Wets, Woodruff, Silva-Monroy, & Watson, 2013).

Parallel Decomposition. Parallel decomposition methods such as progressive hedging and

Lagrangian relaxation have been applied to stochastic unit commitment (Takriti, Birge, &

Long, 1996; L. Wu et al., 2007, 2008; Papavasiliou et al., 2011; Papavasiliou & Oren, 2013).

These models relax the coupling constraints between scenarios and solve the scenarios as

separate subproblems. They can incorporate many scenarios because the subproblems are

independent and can be solved in parallel. However, it may take an unsatisfactory number

of iterations to converge to a solution. LaBove and Hedman (personal communication, June

24th, 2013) apply dynamic reserve requirements as a unifying force between scenarios, and

preliminary results suggest that this approach can improve the convergence of progressive

hedging. Reserve requirements may also address uncertainties that are not explicitly captured

by stochastic scenarios. For example, they may improve N-1 reliability across wind scenarios.

The policies in this dissertation may contribute to new hybrid models that improve reliability

and solution times for parallel decomposition algorithms.
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A potential downside is that meaningful computational improvements may neces-

sitate strict reserve requirements. Such requirements are more likely to remove optimal

and near-optimal solutions from the feasible set. Care should be taken to avoid these situa-

tions and avoid requirements that exceed necessary conditions for optimality because such

requirements may lead to uneconomical solutions.

Necessary Conditions for Optimality. The heuristics in this section combine reserve re-

quirements with established stochastic approaches. They would seize to be heuristics if

the reserve requirements correspond to necessary conditions for optimality, i.e., if they do

not remove all optimal solutions from the stochastic formulation’s feasible space. There

may be opportunities for future work to develop meaningful reserve requirements that are

guaranteed to preserve optimal solutions. This could represent a strong theoretical step for

making stochastic models more scalable without compromising optimality.

Scenario Selection. Scenario selection is the process of determining which scenarios will

be given stochastic treatment. It has been used to reduce the size of stochastic models so they

can be solved more quickly. Different scenario selection techniques have been developed to

ensure a range of scenarios is represented (Gröwe-Kuska et al., 2003; Papavasiliou et al.,

2011). To my knowledge, no scenario selection techniques in the literature attempt to

identify which scenarios do not need stochastic treatment due to being adequately addressed

by reserve requirements. Likewise, reserve requirements are not designed to reduce the

number of scenarios receiving stochastic treatment. Existing techniques instead try to get the

206



most from the respective approach when it is applied by itself. However, scenario selection

and reserve requirements do not need to both cast wide nets when they are combined as

part of the same algorithm. For example, one application would be to use response sets

for generator contingencies and stochastic scenarios for transmission contingencies. Other

opportunities may be currently overlooked because scenario selection is still a young topic

for stochastic unit commitment. The present state of this topic is described well by Ruiz

et al. (2009): “There is no obvious rule for the selection of optimal reserve requirements in a

stochastic formulation. Substantially more research is needed in this area.” The techniques

and approaches developed in this dissertation may be useful for focusing scenario selection

in future work.
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BA Balancing authority, such as an ISO or vertically integrated utility

CAISO California ISO

DAM Day-ahead market

DCOPF Direct current optimal power flow

EENS Expected energy not served (MWh)

ERCOT Electric Reliability Council of Texas (ISO)

FERC Federal Energy Regulatory Commission

GSF Generation shift factor

ISO Independent system operator

ISO-NE ISO New England

LMP Locational marginal price of energy ($/MWh)

LODF Line outage distribution factor

LOLP Loss of load probability

LSE Load-serving entity

MISO Midcontinent ISO

MW Megawatt (unit of power)

MWh Megawatt hour (unit of energy)

N-1 Failure of one generator or transmission branch

N-k Simultaneous failure of k resources

NERC North American Electric Reliability Corporation
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NYISO New York ISO

OMC Out-of-merit correction

PJM Pennsylvania – Jersey – Maryland (ISO)

PTDF Power transfer distribution factor

RMP Reserve marginal price for a particular reserve product ($/MW)

RTM Real-time market

SCUC Security-constrained unit commitment

SCOPF Security-constrained optimal power flow

TRM Transmission reliability margin

VOLL Value of lost load ($/MW or $/MWh)
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B.1 Sets

G Generators and reserve providers.

G(n)⊆ G Generators located at node n.

G (k)⊆ G Generators located in zone k.

H Transmission stress intervals.

I(g) Production intervals for generator g.

L Transmission lines (also including transformers).

LO(n)⊆ L Transmission lines out of node n (beginning at node n).

LI(n)⊆ L Transmission lines into node n (ending at node n).

N Nodes; n(g) ∈ N is the location of resource g.

P Reserve products. Each product has a time component and a type of

reserve (e.g., 10-minute spinning reserve).

P(sp)⊆P Spinning reserve products.

P(nsp)⊆P Non-spinning reserve products.

S Wind scenarios.

S̃⊆ S Wind scenarios for which to disqualify capacity.

T Time periods.

Z Reserve zones; z(c) ∈ Z is the zone where contingency c occurs.
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B.2 Parameters

In the following, index t represents the scheduling period.

ag
lt Operational generation shift factor on line l following failure of generator g.

dk
lt Operational line outage distribution factor on line l following failure of line k.

Bl Electrical susceptance of line l.

ci
g Marginal production cost of generator g in interval i.

cNL
g Fixed cost to operate generator g (no-load cost).

cSU
g Start-up cost of generator g.

cSD
g Shut-down cost of generator g.

C s
gt Committed capacity from generator g that belongs to the response set for

scenario s.

U s
gt Uncommitted capacity from generator g that belongs to the response set for

scenario s.

Cs Perfect-forecast solution bound for scenario s.

Dnt Demand for power at node n (load).

Fl Capacity of line l during normal operating conditions.

F̃10
l Capacity of line l imposed 10 minutes after a disturbance; F̃10

l ≥ Fl . This is

the limit used during contingency analysis (see Figure 2.5 and discussion).

În Net power injection at node n prior to re-dispatch (for a particular scenario-

period).
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Ks
nt Wind power available at node n during scenario s.

LODFk
l Sensitivity of flow on line l to the outage of line k, i.e., ∆ flt = LODFk

l fkt .

n Factor discounting transmission stress for unutilized lines.

P̃i
g Size of operating interval i for generator g.

Pmax
g Maximum operating level of generator g.

Pmax,s
gt Maximum operating level of generator g in scenario s, which fluctuates for

wind generators.

Pmin
g Minimum operating level of generator g.

PT DFnl Sensitivity of flow on line l to injections at node n or from generator n.

P̂s
gt Portion of capacity from generator g in the response set for scenario s.

Qs
t Required capacity for scenario s.

Rg Ramping capability of generator g over a normal scheduling period.

RSU
g Ramping capability of generator g over a start up period; RSU

g ≥ Rg.

RSD
g Ramping capability of generator g over a shut down period; RSD

g ≥ Rg.

Ṙπ
g Ramping capability of resource g for reserve product π (e.g., 10-minute

ramping).

R̂g Reserve held by resource g (for a particular scenario-period).

R̄ Prescribed maximum percent regret for any wind scenario.

UTg Minimum up time for generator g.

DTg Minimum down time for generator g.
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W Slow reserve requirement percent of the wind forecast.

α Conservativity factor for congestion-based reserve requirements.

β Presumed reserve needed to alleviate a marginal increase in predicted line

utilization.

Γc
gt Contingency response set membership; Γc

gt ∈ [0,1].

Γ̂g Contingency response set membership of resource g from the most recent

iteration (for a particular scenario-period).

ν Assumed value of lost load balance.

φgt Reserve payment to generator g.

ϕs Slope of piecewise linear segment s for congestion-based reserve require-

ments.

ωs Width of piecewise linear segment s for congestion-based reserve require-

ments.

ρc
it Assumed participation of resource i in the response to outage c.

B.3 Variables

In the following, index t represents the scheduling period.

bnt Flow imbalance at node n.

eg Exercised reserve from resource g (for a particular scenario-period).

flt Power flow on line l.
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int Net power injection at node n.

ks
nt Wind production at node n during scenario s.

mg Undeliverable reserve from resource g (for a particular scenario-period).

ms
gnt Costly capacity from resource g moved to node n as a dummy injection for

scenario s.

pgt Power produced by generator g.

p̃ i
gt Power produced by generator g in operating interval i.

rgt Reserve from resource g.

ṙπ
gt Reserve from resource g of a specific product π .

r̃ x
kt Reserve in zone k classified as deliverable to zone x or contingency x.

rslow
gt Reserve from resource g available within one scheduling period (e.g., 60-

minute reserve).

S j
kt Reserve sharing limit from zone k to zone j (may also be specified as a

parameter).

ugt Binary commitment indicator for generator g.

vgt Start up indicator for generator g.

wgt Shut down indicator for generator g.

γg Proportion of reserve from resource g that is not deliverable (for a particular

scenario-period).

γs
gt Proportion of capacity from resource g that is costly for scenario s.
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δ
+
lt Predicted largest increase of flow on line l after re-dispatch for any scenario.

δ
−
lt Predicted largest decrease of flow on line l after re-dispatch for any scenario.

ηt Minimum reserve margin.

θnt Voltage angle at node n.

λ c
kt Dual variable for the constraint classifying reserve in zone k as deliverable

for contingency c.

µlt Utilization of line l.

µ̃s
lt Utilization of line l across segment s.
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C.1 Unit Commitment

The formulation below is for the unit commitment problem, which serves as a base

for the methods proposed in this dissertation. The unit commitment problem determines

which generators (units) to turn on (commit) in order to minimize cost subject to physical

and operational constraints. A description of the model components is provided in Sections

2.2.2, 2.2.3, and 2.3.1. The nomenclature is described in Appendix B.

Minimize: ∑
g∈G

∑
t∈T

(
∑

i∈I(g)
ci

g p̃ i
gt + cNL

g ugt + cSU
g vgt + cSD

g wgt

)
(C.1)

Subject to:

Piecewise production segments:

∑
i∈I

p̃ i
gt = pgt , ∀g ∈ G, t ∈ T (C.2)

0≤ p̃ i
gt ≤ P̃i

g, ∀g ∈ G, i ∈ I(g), t ∈ T (C.3)

Transmission constraints:

∑
l∈LI(n)

flt − ∑
l∈LO(n)

flt + ∑
g∈G(n)

pgt = Dnt , ∀n ∈ N, t ∈ T (C.4)

flt = Bl (θnt−θmt) , ∀l = (m,n) ∈ L, t ∈ T (C.5)

−Fl ≤ flt ≤ Fl, ∀l ∈ L, t ∈ T (C.6)

235



Generator capacity and ramping constraints:

Pmin
g ugt ≤ pgt ≤ Pmax

g ugt , ∀g ∈ G, t ∈ T (C.7)

pgt− pg,t−1 ≤ Rgug,t−1 +RSU
g vgt , ∀g ∈ G, t ∈ T (C.8)

pgt− pg,t−1 ≥−Rgugt−RSD
g wgt , ∀g ∈ G, t ∈ T (C.9)

Minimum up and down times:

vgt−wgt = ugt−ug,t−1, ∀g ∈ G, t ∈ T (C.10)

t

∑
q=t−UTg+1

vgq ≤ ugt , ∀g ∈ G, t ∈ T (C.11)

t

∑
q=t−DTg+1

wgq ≤ 1−ugt , ∀g ∈ G, t ∈ T (C.12)

Reserve availability:

ṙπ
gt ≤ Pmax

g − pgt , ∀g ∈ G,π ∈P(sp), t ∈ T (C.13)

ṙπ
gt ≤ Ṙπ

g ugt , ∀g ∈ G,π ∈P(sp), t ∈ T (C.14)

ṙπ
gt ≤ Ṙπ

g (1−ugt) , ∀g ∈ G,π ∈P(nsp), t ∈ T (C.15)

Variable bounds:

ugt ∈ {0,1}, ∀g ∈ G, t ∈ T (C.16)

0≤ vgt ,wgt ≤ 1, ∀g ∈ G, t ∈ T (C.17)

The problem is labeled security-constrained unit commitment (SCUC) when reserve

requirements are adopted to improve reliability. The most basic reserve requirement is for
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10-minute reserves (spinning plus non-spinning) to exceed the largest generator contingency:

∑
h∈G\g

(
ṙ10(sp)

ht + ṙ10(nsp)
ht

)
≥ pgt , ∀g ∈ G, t ∈ T. (C.18)

This requirement is a necessary condition for N-1 reliability. More complex and restrictive

requirements are discussed throughout this dissertation to help ensure enough reserves are

deliverable. For simplicity and generality, the available reserve is usually referenced as rgt

without specifying the type of reserve product(s) involved. The equivalent to (C.18) under

the simplified notation is

∑
h∈G\g

rht ≥ pgt , ∀g ∈ G, t ∈ T. (C.19)

Reserve requirements help ensure there is a feasible contingency response. A model

for contingency response is formulated in the next section. The model is presented as

a stand-alone problem for contingency analysis, but it can also be combined with unit

commitment to create a two-stage stochastic model.
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C.2 Contingency Analysis

The formulation below evaluates recourse actions for scenarios with one or more

contingencies. The set C contains the contingency scenarios. Contingency response balances

supply and demand within 10 minutes while minimizing the sum of transmission violations

s+ and s− 1 . The parameter Ac
x indicates the availability of resource x during contingency

c ∈C (it takes the value one if the resource is available and zero otherwise). The decision

variables are also indexed by scenario, where c = 0 represents the base conditions before any

contingency occurs. Generator ramping is constrained in (C.25) and (C.26) relative to the

pre-contingency conditions. On-line generators can ramp by Ṙ10(sp) and off-line generators

can ramp by Ṙ10(nsp)
g . Non-spinning reserves may be omitted or ignored by setting all

Ṙ10(nsp)
g = 0, which disallows participation from units that were not committed prior to the

contingency.

1The problem is feasible whenever the network is connected (there are no islands) and the reserve quantity
exceeds the injections lost from generator contingencies.
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Minimize: ∑
c∈C

∑
t∈T

∑
l∈L

(
sc+

lt + sc−
lt

)
(C.20)

Subject to:

Transmission constraints:

∑
l∈LI(n)

f c
lt − ∑

l∈LO(n)
f c
lt + ∑

g∈G(n)
Ac

g pc
gt = Dnt , ∀c ∈C,n ∈ N, t ∈ T (C.21)

f c
lt = Ac

l Bl (θ
c
nt−θ

c
mt) , ∀c ∈C, l = (m,n) ∈ L, t ∈ T (C.22)

− F̃10
l ≤ f c

lt + sc−
lt − sc+

lt ≤ F̃10
l , ∀c ∈C, l ∈ L, t ∈ T (C.23)

Generator capacity and reserve ramping constraints:

Pmin
g uc

gt ≤ pc
gt ≤ Pmax

g uc
gt , ∀c ∈C,g ∈ G, t ∈ T (C.24)

pc
gt− p0

gt ≤ Ṙ10(sp)
g u0

gt + Ṙ10(nsp)
g

(
1−u0

gt
)
, ∀c ∈C,g ∈ G, t ∈ T (C.25)

pc
gt− p0

gt ≥−Ṙ10(sp)
g , ∀c ∈C,g ∈ G, t ∈ T (C.26)

Variable bounds:

sc+
lt ,sc−

lt ≥ 0, ∀c ∈C, l ∈ L, t ∈ T (C.27)

uc
gt ∈ {0,1}, ∀c ∈C,g ∈ G, t ∈ T (C.28)
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This appendix describes the test case used in Sections 4.6 and 5.6 to illustrate

congestion-based reserve requirements and reserve disqualification. The system has three

nodes, three generators, and three transmission lines. Figure D.1 provides a graphical

interpretation of the network. Tables D.1 and D.2 contain the generator and transmission

attributes. All 60 MW of load is at the same location as G1. The load can be served by

this generator alone, but the cheapest way to operate the system is to import power from

generators G2 and G3.

Table D.1: Generator characteristics of the three-node system.

Generator Pmin

(MW)
Pmax

(MW)
R10

(MW)
Cost/MWh

G1 0 60 60 $100
G2 0 45 15 $50
G3 0 45 15 $75

Table D.2: Transmission characteristics of the three-node network.

Line Rating F
(MW)

Rating
F10

(MW)

PTDFs

G1 G2 G3

L1 30 33 0 2/3 1/3
L2 30 33 0 1/3 2/3
L3 999 999 0 1/3 −1/3
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G1: $100 / MWh

Pmax:  60 MW

R10:  60 MW

60 MW

G2: $50 / MWh

Pmax:  45 MW

R10:  15 MW

G3: $75 / MWh

Pmax:  45 MW

R10:  15 MW

L2L1

L3

Figure D.1: Three-node network (the arrows indicate reference directions).

A single-period DCOPF is used to schedule the system. There is a reliability criterion

that the system must be able to restore the balance between supply and demand within ten

minutes following a generator contingency. The failure of G2 and G3 are trivial because

both can be replaced by G1 without increasing the flow on any constrained line 1 . This

example does not consider transmission contingencies. The deterministic formulation is

provided by equations (D.1)–(D.19) below. The recourse decisions for the outage of G1 are

described by (D.20)–(D.19). The N-1 reliable space is determined by taking all of these

constraints together.

1Lost injection from G2 or G3 can always be substituted by p1 because G1 has enough capacity to serve
all of the load and can ramp to full capacity during the contingency re-dispatching period. These substitutions
always decrease the right-hand-side of (D.6)–(D.7), but never below zero. Therefore, the flow on L1 and L2
will not be constrained. Furthermore, the flow on L3 is never constrained because its rating exceeds the total
load. Therefore, there is always a sufficient amount of deliverable reserve available to respond to the failure of
G2 or G3. This is an intuitive result because G1 provides a lot of reserve at a prime location.
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Minimize: 40p1 +100p2 +75p3 (D.1)

Subject to:

Transmission constraints:

i1 = p1−60 (D.2)

i2 = p2 (D.3)

i3 = p3 (D.4)

i1 + i2 + i3 = 0 (D.5)

f1 =
2
3

i2 +
1
3

i3 (D.6)

f2 =
1
3

i2 +
2
3

i3 (D.7)

f3 =
1
3

i2−
1
3

i3 (D.8)

−30≤ f1 ≤ 30 (D.9)

−30≤ f2 ≤ 30 (D.10)

−100≤ f3 ≤ 100 (D.11)

Generator constraints:

0≤ p1 ≤ 60 (D.12)

0≤ p2 ≤ 45 (D.13)

0≤ p3 ≤ 45 (D.14)

r2 ≤ 45− p2 (D.15)

243



r3 ≤ 45− p3 (D.16)

r2 ≤ 15 (D.17)

r3 ≤ 15 (D.18)

Reserve requirement with no locational component:

r2 + r3 ≥ p1 (D.19)

Recourse constraints for the outage G1:

i11 =−60 (D.20)

i12 = p1
2 (D.21)

i13 = p1
3 (D.22)

i11 + i12 + i13 = 0 (D.23)

f 1
1 =

2
3

i12 +
1
3

i13 (D.24)

f 1
2 =

1
3

i12 +
2
3

i13 (D.25)

f 1
3 =

1
3

i12−
1
3

i13 (D.26)

−33≤ f 1
1 ≤ 33 (D.27)

−33≤ f 1
2 ≤ 33 (D.28)

−999≤ f 1
3 ≤ 999 (D.29)

0≤ p1
2 ≤ 45 (D.30)

0≤ p1
3 ≤ 45 (D.31)

p1
2 ≤ p2 +15 (D.32)
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p1
3 ≤ p3 +15 (D.33)

p1
2 ≥ p2−15 (D.34)

p1
3 ≥ p3−15. (D.35)

The dual of the recourse problem is useful for the analysis in Section 5.6.3 that applies

Benders’ Decomposition. It is convenient to simplify the primal problem by substituting for

the variables i and f . The problem can also be simplified by noting that generators G2 and

G3 will not be limited when ramping down and that lines L1 and L2 will not be constrained

in the negative direction. The resulting primal and dual formulations are provided below

245



with the dual variable for each respective constraint shown in parenthesis.

(Primal) :

Minimize: 0 (D.36)

Subject to:

p1
2 + p1

3 = 60 (π1) (D.37)

p1
2 ≤ 45 (π2) (D.38)

p1
3 ≤ 45 (π3) (D.39)

p1
2 ≤ p2 +15 (π4) (D.40)

p1
3 ≤ p3 +15 (π5) (D.41)

2
3

p1
2 +

1
3

p1
3 ≤ 33 (π6) (D.42)

1
3

p1
2 +

2
3

p1
3 ≤ 33 (π7) (D.43)

p1
2, p2

2 ≥ 0 (D.44)

(Dual) :

Maximize: 60π1 +45(π2 +π3)+(p2 +15)π4

+(p3 +15)π5 +33(π6 +π7) (D.45)

Subject to:

π1 +π2 +π4 +
2
3

π6 +
1
3

π7 ≤ 0 (p1
2) (D.46)

π1 +π3 +π5 +
1
3

π6 +
2
3

π7 ≤ 0 (p1
3) (D.47)

π2,π3,π4,π5,π6,π7 ≤ 0 (D.48)

246


	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Overview
	Research Focus
	Summary of Chapters

	BACKGROUND
	Structure of Electric Power Industry
	Scheduling and Control
	Power Flow
	DC Optimal Power Flow
	Unit Commitment
	Scheduling Epochs

	Reliability 
	Reserves
	Transmission Margins
	Scheduling for Reliability
	Intermittent Renewable Resources
	Measures of Reliability

	Markets 
	LITERATURE REVIEW
	Reserve Requirements
	Probabilistic Reserve Levels
	Cost-Based Reserve Levels
	Reserve Zones
	Reserve Disqualification

	Transmission Constraints 
	Stochastic Models with Transmission-Constrained Recourse 
	Stochastic Programming
	Robust Optimization
	Hybrid Deterministic Methods

	Conclusion
	CONGESTION-BASED RESERVE REQUIREMENTS
	Introduction
	Extent of Intra-Zonal Congestion 
	Problem Formulation 
	Basic Transmission Stress Model
	General Transmission Stress Model

	Anticipating Re-dispatch 
	Alternatives for Anticipating Recourse

	Interpretation of Parameters 
	Illustrative Example 
	Analysis and Results: IEEE 73-Bus (RTS 96) Test Case 
	Interpretation
	Results for Normal Conditions
	Results for Stressed Conditions
	Reliability by Reducing Transmission Stress

	Conclusion 

	RESERVE DISQUALIFICATION FOR DISTINCT SCENARIOS
	Introduction 
	Baseline Reserve Requirements 
	Limitations of Traditional Reserve Requirements 
	Locational Disqualification 
	Pruning the Response Set for Contingency-Period (c, t)

	Market Settlement
	Illustrative Example 
	Two-Zone Model
	Reserve Disqualification
	Benders' Decomposition

	Analysis and Results: IEEE 73-Bus (RTS 96) Test Case 
	Baseline Reserve Requirements
	Disqualification as an Out-of-Market Correction
	Disqualification for the Day-Ahead Market
	Practical considerations

	Conclusion 


	CAPACITY DISQUALIFICATION FOR WIND UNCERTAINTY
	Introduction
	Stochastic Unit Commitment
	Objective Function

	Capacity Constraints
	Decomposition Algorithm
	Evaluating Scenarios
	Stopping Criterion
	Pruning Response Sets

	Wind Scenario Generation
	Analysis and Results: IEEE 73-Bus (RTS 96) Test Case 
	Design of the Analysis
	Analysis for No Fast Generators
	Analysis for Fast Generators

	Conclusion 

	CONCLUSIONS AND FUTURE RESEARCH TOPICS
	Conclusions
	Future Work
	Congestion-Based Reserve Requirements
	Response Sets (Reserve and Capacity Disqualification)
	Short-Term Scheduling
	Hybrid Stochastic Models



	REFERENCES
	ACRONYMS
	NOMENCLATURE
	Sets
	Parameters
	Variables
	POWER FLOW SCHEDULING MODELS
	Unit Commitment 
	Contingency Analysis 
	SMALL TEST CASE FORMULATION









