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ABSTRACT  

Traditional deterministic reserve requirements rely on ad-hoc, rule of thumb methods 

to determine adequate reserve in order to ensure a reliable unit commitment. Since 

congestion and uncertainties exist in the system, both the quantity and the location of 

reserves are essential to ensure system reliability and market efficiency. The modeling of 

operating reserves in the existing deterministic reserve requirements acquire the operating 

reserves on a zonal basis and do not fully capture the impact of congestion. The purpose of 

a reserve zone is to ensure that operating reserves are spread across the network. Operating 

reserves are shared inside each reserve zone, but intra zonal congestion may block the 

deliverability of operating reserves within a zone. Thus, improving reserve policies such 

as reserve zones may improve the location and deliverability of reserve.  

As more non-dispatchable renewable resources are integrated into the grid, it will 

become increasingly difficult to predict the transfer capabilities and the network congestion. 

At the same time, renewable resources require operators to acquire more operating reserves. 

With existing deterministic reserve requirements unable to ensure optimal reserve locations, 

the importance of reserve location and reserve deliverability will increase. While stochastic 

programming can be used to determine reserve by explicitly modelling uncertainties, there 

are still scalability as well as pricing issues. Therefore, new methods to improve existing 

deterministic reserve requirements are desired.  

One key barrier of improving existing deterministic reserve requirements is its potential 

market impacts.  A metric, quality of service, is proposed in this thesis to evaluate the price 

signal and market impacts of proposed hourly reserve zones. 



 

ii 

  

Three main goals of this thesis are: 1) to develop a theoretical and mathematical model 

to better locate reserve while maintaining the deterministic unit commitment and economic 

dispatch structure, especially with the consideration of renewables, 2) to develop a market 

settlement scheme of proposed dynamic reserve policies such that the market efficiency is 

improved, 3) to evaluate the market impacts and price signal of the proposed dynamic 

reserve policies. 
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1. INTRODUCTION 

1.1 Background 

Reliability standards are necessary in order to guarantee a continuous and high quality 

supply of energy. Uncertainties such as load, renewable, and contingencies, exist in the 

power system. Reserves are used as backup capacities to protect against these uncertainties. 

For instance, regulation reserve is used to follow load variations. 

 The North American Electric Reliability Corporation (NERC), which is the designated 

Electric Reliability Organization (ERO) by the Federal Energy Regulatory Commission 

(FERC), establishes and enforces the N-1 reliability standard, which requires the system to 

be able to survive any single generator or transmission contingency.  Adequate operating 

reserves are essential to ensure reliable system operations when contingencies happen. 

Operating reserves ensure that there is sufficient generation capacity available in case there 

are load forecast errors, potential generator outages, or transmission outages, [1]. The 

definition of operating reserves may vary from the consideration of only spinning and non-

spinning reserve to the inclusion of interruptible loads, voltage and frequency support, 

regulation, replacement reserve, [1]. For this research, the discussion of operating reserves 

will refer to regulation reserve, spinning reserve, and non-spinning reserve.  

Regulation reserve is used to compensate the variability and uncertainty of the system 

load within the shortest scheduling interval. Spinning reserve is defined as the reserve 

capacity offered by generators that are already spinning, synchronized with the grid. Many 

ISOs specify a ten-minute spinning reserve requirement where the generator must be able 

to immediately change its output once called upon by the system operator and must be able 

to reach the desired level specified by the system operator within ten minutes. Non-

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cts=1330557536909&ved=0CEEQFjAA&url=http%3A%2F%2Fwww.nerc.com%2F&ei=W7JOT6jfN-esiQK2m7ytCw&usg=AFQjCNFM4PGloRF8OrcF8OSoFs-gu2N8tA&sig2=AhInoP21LEer8ww3xZoazw
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spinning reserve comes from generators that are offline but can respond quickly once called 

upon. Similar to the ten-minute spinning reserve requirement, many operators specify a 

ten-minute non-spinning reserve requirement where the offline generator must be able to 

reach the required output level within ten minutes; however, they are not required to inject 

their output immediately unlike spinning reserve since these generators are not currently 

online and synchronized with the grid. 

Reserve requirements are typically based on a predefined set of rules. The California 

Independent System Operator (CAISO) states its requirement for its operating reserve (OR) 

in [2]. The operating reserve requirement in CAISO is the maximum of OR1 and OR2, 

then plus 100% of the non-firm (interruptible) imports. OR1 is calculated for each reserve 

zone and is equal to 5% of the demand met by hydro resources plus 7% of the demand from 

non-hydro resources. OR2 is based on the worst single contingency and it is calculated 

system wide. The worst contingency is based on the largest committed generator or the 

largest net tie-line import. The Western Electricity Coordinating Council (WECC) 

establishes its guidelines for contingency reserve, i.e., spinning and non-spinning reserve, 

in [3]. These rules vary from what is posted by CAISO, which raises the question as to 

which set of rules is more reliable and which set is more efficient. With more stringent 

reserve requirements, reliability should improve but this improvement in reliability may 

not be necessary if it goes beyond N-1, which may then result in unnecessary losses in 

economic efficiency. So there is a common tradeoff between reliability and economic 

efficiency. However, an even more pressing question is how they generate these prescribed 

rules and whether these rules can be improved.  
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Historically, ad-hoc methods or rule-of-thumb methods have been used to determine 

reserve requirements. The most basic rule-of-thumb is that the amount of reserves must be 

at least as great as the single worst contingency, as can be identified by the CAISO 

operating reserve requirement rule for OR2 above. It is often assumed that if a system 

acquires reserve equal to single largest contingency, then it has satisfied N-1 reliability. 

This is not always true, since most grids are congested or have voltage limitations. Simply 

having reserve equal to the single largest contingency may not suffice. 

Historical information on system operating conditions may also be used to estimate the 

level of reserves required in order to avoid involuntary load shedding. The problem with 

the use of historical information is that wide-spread load shedding is not a common event 

and it is very difficult to determine the actual optimal amount of reserves to acquire based 

on historical information when the grid and resources are ever changing; there is not 

sufficient historical information to validate a choice in reserves. Moreover, historical 

information is inadequate to capture future grid conditions especially when the available 

resources are transitioning from primarily fossil-fuel based controllable generators to 

variable, uncertain renewable resources.   

Such past ad-hoc or rule-of-thumb methods are archaic and will no longer suffice. First, 

there is a need for more systematic ways to determine the reserve levels and reserve zones. 

Many papers have proposed the use of probabilistic methods to determine reserve 

requirements by stochastic unit commitment; some of these papers are identified in the 

literature review section. Second, zones today come from ad-hoc methods. Furthermore, 

reserve zones are static and do not change with the market and operational conditions of 

the grid. Since the system operating condition is changing all the time, it is highly unlikely 
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that the optimal reserve zones would be static. Third, with the increasing penetration of 

variable generation, e.g., wind and solar, reserve requirements must be updated to 

accommodate for the intermittency and uncertainties of variable renewable generation. As 

a result, there are opportunities to greatly improve existing methods of determining reserve 

levels and reserve zones.  

The rest of this chapter includes a discussion on spinning reserve requirements and 

different methods to determine the reserve requirements.  

1.2 Reserve Procurement Methods 

1.2.1 Deterministic Reserve Requirements  

The most widely used deterministic criterion is to deploy the amount of spinning 

reserve greater or equal to the largest online generator and, in the unit commitment (UC) 

or economic dispatch (ED) formulation, it can be modeled by the following constraint [4]. 

Note that reserve quantity exceeding the largest contingency may not guarantee N-1 

reliability due to the network congestion. 

 𝑢𝑔𝑡𝑃𝑔
𝑚𝑎𝑥 − ∑ (𝑟𝑔𝑡

|𝐺|
𝑔=1 )  ≤ 0 (1—1) 

Constraint (1—1) can be replaced by  

 𝑆𝑅𝑡 − ∑ (𝑟𝑔𝑡
|𝐺|
𝑔=1 ) ≤ 0  (1—2) 

where 

 𝑆𝑅𝑡 = max
𝑔

(𝑢𝑔𝑡𝑝𝑔𝑡) (1—3) 

Another deterministic criterion is to set spinning reserve equal to a fraction of peak 

demand, i.e.,  ∑ (𝑟𝑔𝑡)𝑔⋲𝐺(𝑧) ≥ 𝜂𝑧 ∑ 𝐷𝑛𝑡𝑛⋲𝑁(𝑧)) . The Spanish system complies with this 
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deterministic criterion. Additional deterministic criterions are listed in the Table 1.1 [5]-

[8]. 

Table 1.1 Operating Reserve Requirements in Different Countries and ISOs 

Country or ISO Criterion of spinning reserve 

Australia and New 

Zealand 

max
𝑔

𝑢𝑔𝑡𝑝𝑔𝑡
 

BC Hydro max
𝑔

𝑢𝑔𝑡𝑝𝑔𝑡
 

CAISO 

50%×max(5%×Hydro Generation+7%×Non-Hydro 

Generation+ Interruptible Imports, Single Largest 

Contingency) 

UCTE √10 × 𝐷𝑚𝑎𝑥 − 1502 − 150 

Spain Between 3 × (𝐷𝑚𝑎𝑥)1/2 and 6 × (𝐷𝑚𝑎𝑥)1/2 

Southern PJM max
𝑔

𝑢𝑔𝑡𝑝𝑔𝑡
 

Western PJM 1.5%× 𝐷𝑚𝑎𝑥 

PJM (Other Zones) 
1.1%×Peak Load + probabilistic calculation based on 

typical day and hours 

Yukon Electrical max
𝑔

𝑢𝑔𝑡𝑝𝑔𝑡
 + 10% × 𝐷𝑚𝑎𝑥 

NYCA 50%×max
𝑔

𝑢𝑔𝑡𝑝𝑔𝑡
 

Eastern New York 25%×max
𝑔

𝑢𝑔𝑡𝑝𝑔𝑡
 

Long Land 5%×max
𝑔

𝑢𝑔𝑡𝑝𝑔𝑡
 

 

In spite that different Independent System Operators (ISOs) or utilities apply different 

reserve requirements criterions, as shown in Figure 1.1, there is a tradeoff between the 
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reliability and efficiency. The EENS [1] is used to measure the reliability cost, which can 

be mathematically expressed as the following,  

 𝐸𝐸𝑁𝑆𝑐𝑡 = 𝜌𝑐 ∑ 𝑙𝑠𝑛𝑐𝑡
|𝑁|
𝑛=1 , 𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶 (1—4) 

where c represents the probability of contingency (or event) c occurring. The 

probability of contingency c can be estimated based on historical outage rates, which is 

generally assumed to be constant.  

Insufficient reserve quantity may lower the system reliability, thereby increase the 

expected energy not served (EENS) cost. Excessive reserve quantity may incur more 

operating cost. 

Expected Total Cost

Operating Cost

EENS Cost

 Cost

Reserve LevelOptimal Reserve Level  

Figure 1.1 The Relationship Between Reserve Level and Total Cost 

Due to the continuous change of system operating conditions and uncertainties, it is 

very complex to optimize the reserve level such that minimize the expected total cost 

(operating cost plus EENS cost) for each period. To improve system operating efficiency, 
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deterministic reserve requirements can also be determined through offline statistical studies 

with consideration of generators outage rates and system operating conditions. 

1.2.2 Stochastic Programming to Procure Reserve 

Deterministic reserve requirements are approximate methods to acquire reliable backup 

capacities and they “blindly” choose the location of reserve without taking into 

consideration operational limitations, such as congestion and voltage limitations. In other 

words, there is no direct scenario-based determination of reserve using deterministic 

reserve. As a result, traditional reserve requirements do not guarantee N-1 reliability or the 

reserve requirement rules are likely to be overly conservative such that market efficiency 

is compromised.  

 Due to the drawbacks of deterministic criterions, stochastic programming, which 

models uncertainties, has been proposed to overcome these challenges. By explicitly 

modeling credible contingencies in UC, there are three ways to balance the system 

efficiency and reliability. The first way is that no load shedding and transmission violation 

is allowed and all the uncertainties scenarios must be feasible. This way follows the N-1 

reliability. 

Second one is to set an upper bound of the EENS through all the periods of the 

optimization process [9] as shown in (1—5), 

 𝐸𝐸𝑁𝑆𝑐𝑡 ≤ 𝐸𝐸𝑁𝑆𝑚𝑎𝑥 , 𝑡 ∈ 𝑇 (1—5) 

The ceiling of EENS is difficult to come up with and an improper ceiling of EENS may 

result in infeasibilities, which implies that there are not sufficient reserve capacities in the 

system to meet the EENS constraint or the units are not very reliable.  
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Third approach is to penalize the EENS by placing it in the objective with an associated 

cost. The penalization of EENS is usually the value of lost load (VOLL). There are different 

ways of defining VOLL; recently, operators have quantified the cost of new entry (CONE) 

as a mechanism to place a lower bound on VOLL; CONE refers to the cost to build a new 

power plant. The expected cost of load shedding during contingency c is 𝐸𝐸𝑁𝑆𝑐𝑡×VOLL. 

In order to maximize social welfare, there should be a balance between ensuring a more 

reliable system versus the associated costs.  

However, it is not practical to endogenously model all of the contingencies in the UC 

formulation because the number of constraints and variables increases dramatically. Since 

UC is a mixed integer linear programming (MILP), the solution time may increase 

exponentially with the number of endogenously modeled contingencies. As a result, a 

subset of contingencies is often modeled. Therefore, scenarios selection techniques of 

significant contingencies are essential to this penalization probabilistic method.  

In [10], P. A. Ruiz et al. realized the significance of scenarios selection and the 

relationship between the reserve requirements and scenarios. Only the loss of the three 

largest units are considered in [10] with the philosophy that it is better to select a subset of 

significant contingencies rather than none at all. Unfortunately, [10] didn’t provide a 

theoretical scenario selection technique. 

Reference [8] pre-selected a set of random generators and line contingencies with 

probabilistic outage rates based on historical data and the model incorporates involuntary 

load shedding. With contingencies endogenously modeled in the UC problem, spinning 

reserve requirements are determined endogenously in the UC formulation. However, since 

the MIP cannot be solved in polynomial time, the complexity of the problem increases 
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exponentially with additional endogenously modeled contingencies and, thus, modeling a 

large set of the contingencies in the UC is unsolvable to date. If only a subset of 

contingencies is considered, there may not be sufficient available capacity to prevent 

expensive involuntary load shedding since many contingencies are not included.  

As a result, there are still some limitations of stochastic programming to determine 

reserve, and they are not sophisticated enough to today’s real world system. A gradual 

change from deterministic reserve requirements to stochastic or a hybrid of stochastic 

programming and deterministic reserve requirements may be an alternative way that is 

more applicable and acceptable.  

1.3 Outline 

Chapter 2: Literature Review 

In this chapter, relevant literature will be reviewed. State of the art reserve policies will 

be investigated such as deterministic reserve requirements and stochastic programming. 

Comparisons between different reserve policies will be presented. 

Chapter 3: Proposed Reserve Zones Determination Method 

This chapter presents the proposed reserve zone determination method, which is based 

on the Power Transfer Distribution Factor Difference (PTDFD). The reserve zone is then 

partitioned by the K-means clustering algorithm. A different centrality measurement, 

electrical distance, is also evaluated. Furthermore, different clustering algorithms are also 

compared with the K-means clustering algorithm. Different results from the IEEE RTS96 

system and IEEE 118-bus system are presented to show the effectiveness of proposed 

reserve zone partitioning method. 

Chapter 4: Deterministic Unit Commitment 
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In this chapter, the mathematical formulation of a deterministic unit commitment 

problem is presented. The IEEE RTS96 system and IEEE 118-bus system are tested with 

deterministic unit commitment using proposed reserve zone partition method.  

Chapter 5: Reserve Zone Determination with High Penetration of Wind 

This chapter proposes a daily reserve zone determination procedure, which is able to 

reflect system operating conditions by utilizing probabilistic power flows. The proposed 

method is validated by testing it on a modified IEEE 118-bus system for multiple days; the 

proposed method is compared against existing reserve zone partitioning procedures. While 

the proposed reserve zone determination method is a heuristic, it is shown to be effective 

and it is a computationally tractable method. The proposed method can be used on its own 

and can be used along with stochastic programming techniques that implicitly determine 

reserves. 

Chapter 6: Hourly Reserve Zone Determination and Its Market Implications 

This chapter examines the market implications associated to implementing dynamic 

reserve zones, which change by the hour, in day-ahead SCUC for systems with intermittent 

renewable resources. Two case studies are performed in this chapter. For case study I, the 

proposed compensation mechanisms are more aligned with the services generators provide 

as dynamic zones are better equipped to identify a generator’s ability to respond to random 

disturbances and events and the market impacts of the proposed hourly reserve zone 

determination method are studied. For case study II, the proposed hourly reserve zone 

determination method is examined with MISO’s SCUC formulation with consideration 

MISO’s manual reserve disqualifications and the market results confidence interval is also 

provided to improve the credibility of the test results.  
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Chapter 7: A Nodal Regulation Reserve Pricing Model 

To improve the reserve deliverability, independent system operators (ISOs) acquire 

reserve on a zonal basis to ensure that reserve is at least zonally distributed across the grid. 

However, zonal reserve requirements cannot guarantee the reserve is deliverable on a nodal 

basis. In this chapter, a nodal regulation reserve pricing model is proposed with 

consideration of nodal post regulation reserve deployment constraints to balance the 

regulation reserve on a nodal basis.  

Chapter 8: Conclusion 

This chapter summarizes the main achievements of this thesis. 

Chapter 9: Future Work 

In this chapter, future research is suggested. 
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2. LITERATURE REVIEW 

While existing procedures to determine reserve requirements may be archaic, the 

modeling of reserve requirements is not new and has been an interesting topic in the 

research community for many years. Even still, there is a growing need for more attention 

on the modeling of reserve requirements. Back in 1963, the authors from [11] developed a 

probabilistic method to determine reserve requirements. The authors evaluated the forced 

outage probabilities from historical data and defined a uniform level of risk. The reserve 

requirements can be adjusted to meet the required uniform level of risk. However, the 

challenge with this approach is getting the correct risk level; furthermore, the risk level is 

approximated and vague, which may incur extra cost. 

In [12], the authors combined the determination of reserve requirements and unit 

commitment together and evaluated the system reliability based on various predefined risk 

levels. A two-stage UC model without optimal power flow (OPF) is solved based on 

Lagrangian Relaxation (LR). Each system risk level is evaluated in the first stage and the 

reserve requirements are adjusted in the second stage. The system risk level with the least 

expected total cost will be selected and the reserve requirement corresponding to the system 

risk is optimal. 

Reference [9] developed a UC problem considering contingency states, which are 

preselected, and also incorporated an OPF. Instead of enforcing spinning reserve 

requirements, spinning reserve is determined inherently in the UC problem. The objective 

function is the expected total costs with a penalty for involuntary load shedding. 

Appropriate spinning reserve may reduce the chances of involuntary load shedding and, 

thus, reduce the total cost; however, excessive spinning reserve may increase operating 
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cost substantially. The advantage of this approach is that spinning reserve is endogenously 

determined, which ensures that there is no power flow violation. The drawback of this 

approach is that a large number of preselected contingencies may be too computationally 

burdensome whereas reducing the number of preselected contingences may provide an 

inaccurate solution. How to best determine a set of preselected contingencies is still a 

challenging problem today. 

Ortega-Vazquez [13] discussed the tradeoff between the spinning reserve level and the 

expected outage costs. In [13], an approximate, linearized curve of expected outage cost 

with respect to spinning reserve is drawn and the optimal spinning reserve corresponding 

to the minimum total cost can be revealed in this curve. However, the drawback is that this 

UC formulation does not include an OPF. As a result, the location of spinning reserve may 

not be efficient; for instance, a contingency may cause expensive involuntary load shedding 

even though there is ample committed capacity in the power system if this available reserve 

cannot reach the desired locations due to power flow limitations, i.e., congestion. 

A two-stage stochastic programming approach is applied to manage the uncertainty in 

the power system in [14]. The commitment decision is made in the first stage and the 

dispatch decision is made in the second stage. The proposed approach in [14] reduces the 

uncertainty of the system by adding the number of scenarios in the unit commitment 

formulation and reserve requirements, so more scenarios can reduce the reserve 

requirements; however, the drawback is a longer solution time.  

Reference [15] proposed a long term stochastic programming unit commitment model 

with an upper bound on the loss of load expectation (LOLE). The total cost including the 

operating cost and expected load shedding cost depends on some uncertain factors such as 
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fuel cost, emission cost, and outages. Monte Carlo simulations are employed to simulate 

this stochastic UC model and calculate the expected load shedding cost. The spinning 

reserve is expected to meet the upper bounds of LOLE. However, the solutions may not be 

economically optimal if the LOLE bound is either too high, which would allow too much 

load shedding, or too low, which would cause operational costs to be higher than necessary.  

Due to national goals to increase the penetration level of variable renewable resources, 

the importance of developing reliable and efficient reserve requirements escalates as 

intermittent resources add even more uncertainties to power system operations. Based on 

the weighted scenarios in [16], a two-stage stochastic UC model is used to obtain spinning 

reserve from both fast and slow generators in the first state and reserve from fast generators 

in the second stage. The authors develop a novel scenario reduction technique so that they 

are able to properly model the characteristics of the wind with limited scenarios in order to 

reduce the computational burden.  

 Reference [17] states that optimizing the energy and ancillary services (e.g., reserve) 

simultaneously is better than optimizing these services sequentially since co-optimization 

will result in a higher level of social welfare. Based on optimization theory, co-optimization 

will lead to a global optimal solution, whereas optimizing sequentially may lead to a 

suboptimal solution. 

Table 2.1 provides an overview of the research literature on the topic of reserve 

requirements and stochastic unit commitment. 
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Table 2.1 Literature Review of Reserve Policies 

Authors Title Year Journal OPF 

Load 

shedding 

allowed1 

Scenarios 
Fast 

generators 

Contingency 

Generator2 Line 

L. T. 

Anstine 

et al. 

Application of 

probability methods 

to the determination 

of spinning reserve 

requirements for the 

Pennsylvania-New 

Jersey-Maryland 

interconnection [11] 

1963 

IEEE Trans 

on Power 

Systems 

N N Y N N N 

H. B. 

Gooi et 

al.  

Optimal scheduling 

of spinning reserve 

[12] 

1999 

IEEE  Trans 

on Power 

Systems 

N N N N N N 

F. 

Bouffard 

et. al. 

Market-clearing 

with stochastic 

security—Part I: 

Formulation [9] 

2005 

IEEE  Trans 

on Power 

Systems 

Y Y Y Y Y Y 

M. A. 

Ortega-

Vazquez 

et. al. 

Optimizing the 

Spinning Reserve 

Requirements 

Using A 

Cost/Benefit 

Analysis [13] 

2007 

IEEE  Trans 

on Power 

Systems 

N Y N N N N 
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Authors Title Year Journal OPF 

Load 

shedding 

allowed1 

Scenarios 
Fast 

generators 

Contingency 

Generator2 Line 

L. Wu 

et. al. 

Stochastic security-

constrained UC [16] 
2007 

IEEE  Trans 

on Power 

Systems 

Y N Y N Y Y 

L. Wu 

et. al. 

Cost of reliability 

analysis based on 

stochastic UC [14] 

2008 

IEEE  Trans 

on Power 

Systems 

Y Y Y N Y Y 

T. 

Zheng  

et. al. 

Contingency-based 

zonal reserve 

modeling and 

pricing in a co-

optimized energy 

and reserve market 

[18] 

2008 

IEEE  Trans 

on Power 

Systems 

Y N Y N Y N 

P. Ruiz 

et. al. 

Uncertainty 

management in the 

UC problem [10] 

2009 

IEEE  Trans 

on Power 

Systems 

N Y Y Y Y N 

A. 

Papavasi

liou et. 

al. 

Reserve 

requirements for 

wind power 

integration: a 

scenario-based 

stochastic 

programming 

framework [15] 

2011 

IEEE  Trans 

on Power 

Systems 

N N Y Y N N 
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Authors Title Year Journal OPF 

Load 

shedding 

allowed1 

Scenarios 
Fast 

generators 

Contingency 

Generator2 Line 

A. 

Papavasi

liou et. 

al. 

Multi-area 

stochastic UC for 

high wind 

penetration in a 

transmission 

constrained network 

[19] 

2011 
Operations 

Research 
Y N Y Y Y Y 

 

Y = Yes 
       

N = No           

           

1 Load shedding / disruption allowed based on VOLL. Some papers allow load shedding if no feasible solution can be 

found. 

2 In general, scenario based stochastic models should be able to model continuous and discrete generation (negative load) 

disruptions. Some papers choose to only evaluate one or the other. 
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3. PROPOSED RESERVE ZONE DETERMINATION METHOD 

3.1 Introduction 

Nowadays, reserve zones are primarily divided by asset ownership or geographic 

locations and there is no systematic way to partition reserve zones; thus, it is highly unlikely 

that reserve zones today are economically optimal. With poorly designed reserve zones, 

involuntary load shedding may happen even though there is enough committed reserve 

capacity if the reserves cannot be delivered due to network congestion. To reduce the 

expected cost of involuntary load shedding, a theoretical and mathematical way of 

partitioning reserve zones is of crucial importance. Efficiency and reliability of power 

system operations will be improved with well-designed reserve zones. 

Usually, existing reserve zones are treated as static; however, the operational conditions 

of power systems vary by hours, days, seasons, and years. As a result, it is not efficient to 

have static reserve zones when operating conditions constantly vary. Moreover, under the 

trend of more renewable energy in the grid, the location of reserves and their associated 

deliverability will increase in importance. New technologies to determine reserve 

requirements are needed to guarantee system reliability and market efficiency. While 

stochastic programming produces an optimal solution (with respect to the modeled 

uncertainties), the concerns are as below:  

1) Limitation of stochastic information. Modelling all the continuous and discrete 

uncertainties in the UC formulation is impossible today and usually selected 

“scenario trees” are modelled. Including more branches in the optimization 

formulation will improve the representation of the uncertainties but this also 
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increases the computational time. The modelled uncertainties in the day-ahead may 

be quite different from true scenarios. 

2) Scalability issue. Even though some alternative formulations or decomposition 

approaches are investigated [15], the computational times for most stochastic UC 

problems increases significantly (an order of 10 or more) compared to a 

deterministic UC problem, depending on the formulation structure, problem size, 

and the number of scenarios modelled.  

3) Pricing issues. There is an ongoing debate as to how to design a market where the 

internal mathematical program is a stochastic program. Therefore, stochastic UC is 

being considered for problems such as residual unit commitments but there is still 

hesitation due to the market complexities it adds to existing markets.  

An alternative way to improve reserve deliverability is by improving reserve zones.  

Thus, the development of a systematic way to determine reserve zones is one promising 

way to meet these future challenges.  

Chapter 3 will propose a method of partitioning reserve zones using statistical 

clustering techniques and Chapter 3 also demonstrates a comparison of different clustering 

methods. Moreover, two different clustering centrality measurements, PTDF difference 

and electrical distance, will be analyzed.  

3.2 Power Transfer Distribution Factor Difference and Electrical Distance 

3.2.1 PTDF Difference  

In the DC model, power transfer distribution factor, 𝑃𝑇𝐷𝐹𝑘,𝑖
𝑅 , is the flow on 

transmission line k when injecting one unit of active power at bus i and withdrawing the 
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unit of active power from reference bus R. Kumar et al. [20] used real and reactive 

transmission congestion distribution factors (TCDFs) based on an AC model to identify 

the congestion zones, which is a cluster of buses, selected based on the sensitivity of flow 

in the congested line. Buses with similar TCDFs to the congested lines are divided into the 

same congestion zones. To improve the market efficiency, the dispatch strategies of 

generators and capacitors are discussed with respect to various market models, including a 

pool model, a bilateral contract model, and a multilateral contract model.  

Similarly, in [21], the Electric Reliability Council of Texas (ERCOT) defines the 

congestion zones based on PTDFs; generators and loads that have similar impacts on the 

zonal links, which are the inter-tie lines between different congestion zones, are grouped 

together. A set of commercially significant constraints (CSCs) are selected and updated in 

November annually based on the analysis of load flow data from the Steady State Working 

Group (SSWG) under the current topology of the ERCOT system. Typically, CSCs are the 

high voltage transmission lines that are frequently congested. A statistical clustering 

technique is applied to determine the congestion zones based on the PTDFs relative to all 

the CSCs. 

To measure the difference of impact on all the power transmission lines by bus m and 

bus n, inspired by [20] and [21], PTDF differences (PTDFDs) are proposed in (3—1),  

 𝑃𝑇𝐷𝐹𝐷 𝑚𝑛 =
∑ |𝑃𝑇𝐷𝐹𝑘,𝑚

𝑅 −𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 |

|𝐾|
𝑘=1

|𝐾|
. (3—1) 

|𝐾| represents the number of transmission lines and  |𝑃𝑇𝐷𝐹𝑘,𝑚
𝑅 − 𝑃𝑇𝐷𝐹𝑘,𝑛

𝑅 | represents 

the difference between the flow on transmission line k due to a MW injection at bus m 

versus the flow on transmission line k due to a MW injection at bus n. The PTDFD is 

proposed as a metric that can be used to group buses together based on whether they have 
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similar impacts on the system. Smaller PTDFDs imply that two buses have relatively 

similar impacts on transmission lines. If the PTDFDs for bus m and bus n are zero, these 

two buses have the exact same impact on all of the transmission lines. Compared to [20] 

and [21], PTDFDs consider all the transmission lines instead of only considering congested 

transmission assets or CSCs. While the PTDFD takes all transmission lines into 

consideration equally, typically there are only a few critical transmission lines. 

One simple way to focus on critical transmission lines is by adding weights. Suppose 

there are |𝐾| transmission lines, then the weighted PTDFD (WPTDFD), with weight 𝜋𝑘 on 

transmission line k between bus m and bus n, is 

 𝑊𝑃𝑇𝐷𝐹𝐷𝑚𝑛 =
∑ 𝜋𝑘|𝑃𝑇𝐷𝐹𝑘,𝑚

𝑅 −𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 |

|𝐾|
𝑘=1

|𝐾|
. (3—2) 

For the weighted PTDFD reserve zone determination method, weights are essential to 

creating dynamic reserve zones that reflect expected operating conditions. The difficulty 

lies in determining appropriate weights since the weights will influence the clustering 

results. The weights are associated with each transmission asset and can be based on many 

different factors including the expected flow, the variance of the line’s flow, the probability 

of an outage, as well as other factors.  

Without weights, all of the transmission lines are treated as the same and the determined 

reserve zones are incapable of reflecting current operating conditions. The goal of 

partitioning reserve zones is to improve the reserve deliverability in order to improve the 

system reliability and market efficiency. As a result, it is preferred to integrate system 

operating conditions into the determination process of reserve zones. Weights can involve 

system operating condition, such as load information, expected available transfer capability 

(ATC), and flowgate price, which can come from historical data and forecasted data. The 
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weights can also be used to incorporate the information of uncertainties, such as renewable 

resources, and this will be discussed in Chapter 5. 
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Figure 3.1 Four-bus Example 

The rationale behind using PTDFDs as a metric stems from the fact that generators with 

similar PTDFs should be considered in the same reserve zone as their resulting impact on 

network flows will be relatively similar. The rationale behind using a weighted PTDFD 

scheme is due to the variation in operating conditions. With the advent of large levels of 

variable renewable resources, unexpected congestion may occur and, thus, the 

deliverability of operating reserve is critical in order to maintain system reliability. Figure 

3.1 provides a simple four-bus example to illustrate this fact. In this four-bus system, three 

generators (a wind generator, G2, a nuclear generator, G3, and an oil generator, G4) are 

modeled and the wind penetration level is 23%. The PTDFs and the line ratings are listed 
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in Table 3.1; with bus 1 as the reference bus, the PTDF for line 3 to 1, for an injection at 

bus 3, is 3z/5z.  

Table 3.1 PTDF Matrix and Line Rating 

Branches Bus 1 Bus 2 Bus 3 Bus 4 Line Rating 

2 to 1 0 4/5 2/5 3/5 200MW 

2 to 4 0 1/5 -2/5 -3/5 200MW 

3 to 4 0 -1/5 2/5 -2/5 200MW 

3 to 1 0 1/5 3/5 2/5 200MW 

 

Suppose that the forecasted wind power output is 100MW. The NREL 3+5 rule is 

applied to this system; note that this example focuses on uncertainty regarding the 

renewables and not N-1. To minimize the operating cost, assuming no forecast error, the 

optimal solution of this four-bus system is 𝑃𝐺3 = 300MW, 𝑃𝐺4 = 0MW,  and 

𝑃𝐺2,𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 = 100MW. Note that G4 is not committed and is not providing reserve. The 

power flows are 𝑃21= 50MW, 𝑃24= 50MW, 𝑃34= 200MW, and 𝑃31= 100MW. The only 

congested path is branch 3 to 4. If the actual wind power output is lower than the forecasted 

value, e.g., suppose the actual wind power output 𝑃𝐺3,𝑎𝑐𝑡𝑢𝑎𝑙 = 95MW, then the drop in 

renewable production is compensated by G3. If G3 increases its output to 305 MW, 𝑃34 

will increase to 203MW, which violates the line rating of branch 3 to 4. To avoid load 

shedding, the optimal solution is to increase 𝑃𝐺4 to 25MW and decrease 𝑃𝐺3 to 280MW, 

even though G4 is a more expensive generator. Such a change to the originally proposed 

dispatch solution can be considered an out of market corrections. 
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3.2.2 Electrical Distance 

Electrical distance is widely used to analyze the electrical network, such as voltage 

control and reactive power management. There are different methods to define electrical 

distance, including sensitivity methods or impedance. A sensitivity method can be based 

on the sensitivity study between voltage and reactive power [22]. Since unit commitment 

is based on a DC model, only impedance is discussed in this thesis. 

The impedance method is commonly based on examining the relationship between the 

voltage drop due to injecting a unit of current at one bus and withdrawing it at the receiving 

bus. The larger the voltage drop, the larger the electrical distance. To determine the 

electrical distance, the following equation is used: 𝛥V=𝑍𝐵𝑢𝑠𝛥I, where 𝑍𝐵𝑢𝑠 is the matrix 

of impedances,  𝛥V is the change of nodal voltage, and 𝛥I is the change of nodal current. 

If the change of any injected current is zero except the injected current at node m, then  

 (

𝛥𝑉1

𝛥𝑉2

…
𝛥𝑉𝑛

)=(

𝑍1m

𝑍2m

…
𝑍𝑛𝑚

) 𝛥𝐼𝑚 (3—3) 

In general, 

 𝑍𝑖𝑚=𝛥𝑉𝑖/𝛥𝐼𝑚  (3—4) 

The electrical distance between node i and j, 𝐷𝑖,𝑗, is defined as the voltage drop when 

a unit of current is injected at node i and withdrawn at node j, which can be stated as (3—

5): 

 𝐷𝑖,𝑗=𝑍𝑖𝑖+𝑍𝑗𝑗 −2𝑍𝑖𝑗. (3—5) 
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From equation (3—5), a smaller voltage drop between node i and node j implies a 

smaller electrical distance between node i and node j, which is consistent with the fact that 

power tends to flow between nodes with smaller electrical distance.  

Blumsack et al. [23] defined power network zones based on electrical distance and they 

examine four electrical centrality measurements based on electrical distance. With the use 

of clustering techniques, they rank the importance of buses and transmission lines in [23] 

and provide a new way of studying the relationship between power grid topology and 

electrical parameters. However, the measure of electrical distance proposed in [23] is 

‖𝑍𝑏𝑢𝑠‖, which is theoretically incorrect in comparison to equation (3—5). In [24], Wang 

et al. pointed out the mistake and corrected the definition of electrical distance given in 

[23].  

Determining zones can be used for alternative purposes as well. Reference [24] 

employed clustering techniques, with electrical distance as the centrality measurement, in 

order to develop secondary voltage control zones. Developing secondary voltage control 

zones can help ensure voltage stability across the power grid.  

3.2.3 Comparisons of PTDF Difference and Electrical Distance 

Partitioning the power grid network into reserve zones based on electrical parameters 

instead of asset ownership or geographic location is more reasonable to guarantee load 

deliverability.  Both PTDFDs and electrical distance include topology and electrical 

parameter information.  

Based on the definition of electrical distance, the larger the electrical distance is, the 

more voltage drop there is. Compared to PTDFDs, electrical distance is usually applied to 

voltage reliability and control issues. However, the voltage in the DC model, which is 



 

26 

  

applied in our UC formulation, is assumed to be 1 per unit, i.e., voltage is not considered 

in the DC model. Therefore, the electrical distances may not be an appropriate 

measurement for reserve zones in a DC model. 

One primary concern for developing reserve zones is the congestion throughout the 

network. Both PTDFDs and electrical distances without weights are independent of system 

operating conditions. Determining reserve zones without considering the operating status 

is not preferred. While neither PTDFDs nor electrical distances contain knowledge 

regarding line ratings and network flows, PTDFDs are still a better measurement because 

PTDFDs capture the impacts on transmission lines while electrical distance does not. The 

motivation to use PTDFDs is based on the fact that the spinning reserve provided by 

generators, which have similar PTDFDs and, thus, have similar impacts on transmission 

lines, should be clustered together. Generators and loads within the same zone will have 

similar reserve deliverability features. This increases the probability that the location of the 

reserves within a single zone is indistinguishable since the generators’ impacts on 

transmission lines are relatively similar. Such an approach is, thus, more congruent with 

the mathematical structure of reserve requirement modeling within unit commitment, 

which does not differentiate reserve from one generator in a zone from another in the same 

zone. Consequently, it is expected that reserve zones, based on PTDFDs, will improve 

reserve deliverability. Compared to PTDFDs, there is no evidence showing that electrical 

distance may cluster the buses with similar impacts on the transmission lines. Numerical 

comparisons of PTDFDs and electrical distance are presented in Chapter 3 Section 3.4.  
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3.3 Clustering Methods 

Clustering methods are used to extract useful information from huge amounts of data. 

Clustering methods are applied in many topics and fields, which become a very important 

tool for data analysis. In [25], various clustering methods, which are applied in power 

systems for electricity customer classification, are compared and evaluated. Similarly, 

clustering methods can also assist in partitioning reserve zones. Buses that have similar 

impacts on the power system tend to be viewed as one zone; in other words, buses with 

similar PTDFDs tend to be in the same zone. Therefore, reserve zones can be clustered 

based on PTDFDs or EDs. Four clustering methods, K-means algorithm, fuzzy c-means 

algorithm, self-organizing map (SOM), and hierachical clustering, will be discussed in this 

section. 

3.3.1 K-means Clustering Algorithm 

K-means is one elementary, but popular, clustering method that attempts to partition n 

observations into K clusters based on the closeness to the centers. In the K-means clustering 

algorithm, one observation can only belong to exactly one cluster and, for the power system, 

an observation represents a bus.  

The K-means clustering algorithm starts by randomly choosing K centroids; centroids 

are used to represent the center of a cluster (zone). Based on the chosen centrality 

measurement (PTDFDs or EDs), each node has a distance to each centroid and each node 

is assigned to the cluster whose centroid is closest to that node. At the end of each iteration, 

new centroids are calculated, the clusters are again updated by reassigning each node to its 

closest centroid, and this algorithm is repeated until the centroids are stable. 

http://en.wikipedia.org/wiki/Partition_of_a_set
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Generally, the K-means algorithm converges fast, unless there is an extreme number of 

data points; the computational complexity of K-means is O(mnKT), where m and n 

represent the dimension of data, K is the number of clusters, and T is the number of 

iterations. The number of clusters, K, is pre-determined and an inappropriate choice of K 

may cause poor results. Thus, it is important to run a diagnostic check to determine an 

appropriate number of clusters for the problem at hand. Reference [26] stated that one way 

to ensure a proper number of clusters is to maximize the stability of central points by 

selecting the optimal K. While this method to determine K may work for other applications, 

the motivation of determining reserve zones is not centered on ensuring a stable centroid 

for each zone.   

One drawback of the K-means clustering algorithm is that the starting points are 

selected randomly. Different sets of starting points may result in different sets of terminal 

central points and, thus, different clusters. Since the clustering results can be sensitive to 

the starting points, the stability issue is one main drawback of the K-means algorithm. 

Kuncheva [27] evaluated the relationship of the stability of K-means and random starting 

points and an exprimental comparsion of differerent K value reveals that clustering with 

larger K values is more stable. Reference [28] proposed a clustering algorithm with refined 

starting points that are determined by the expected maximation (EM) clustering method, 

and the refined initial starting points can converge to a “better” local minimum. Another 

simple solution is to try a number of different starting points and select the most frequent 

set of terminal points. However, K-means is a heuristic method and, thus, there is no 

guarantee that a global optimial solution is found. 
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Due to these K-means limitations, some modified K-means methods are proposed. 

Reference [29] proposed a novel K-means clustering method that can generate variable 

weights automatically; by applying variable weights, the convergence speed of K-means 

method will be accerelated. This automatic variable weighted K-means clustering method 

is useful in dealing with large datasets. 

3.3.2 Fuzzy C-means Clustering Algorithm 

Fuzzy C-means clustering algorithm was first proposed by J. C. Bezdek [30]. In fuzzy 

clustering [30], a soft membership of clusters replaces the hard memberhsip in the K-means 

clustering algorithm. Each point is assigned a probability of  belonging to one cluster, 

which can be viewed as weights. Various fuzzy clustering methods have been proposed in 

[31]. The widely used fuzzy c-means algorithm is as following: 

1. Choose the number of clusters. 

2. Set each point coefficent 𝑢𝑘  randomly such ∑ 𝑢𝑘(𝑖) = 1𝑁
𝑘=1 , where N 

represents the  number of clusters. 

3. Compute the centroid cente𝑟𝑘= 
∑ 𝑢𝑘

𝑚𝑁
𝑖=1 (𝑖)𝑥(𝑖)

∑ 𝑢𝑘
𝑚(𝑖)𝑁

𝑖=1

 for cluster k. 

4. For each point, compute its coefficients of being in the clusters, 

𝑢𝑘(i)=
1

∑ (
‖𝑥𝑖−𝐶𝑒𝑛𝑡𝑒𝑟𝑗‖

‖𝑥𝑖−𝐶𝑒𝑛𝑡𝑒𝑟𝑘‖
)2/(𝑚−1)𝐶𝑒𝑛𝑡𝑒𝑟𝑘

𝑘=1

  . 

5. Repeat until the algorithm has converged, i.e., the coefficients' change 

between two iterations is no more than a small number, ε. 

As is the case with K-means, the number of clusters has to be pre-determined and an 

inappropriate choice of the number of zones may result in poor results. The results also 

http://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set
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depend on the initial choice of weights and different weights may generate different 

clusters. The terminal weight may be a local optimum since the fuzzy c-means algorithm 

is a heuristic method. 

3.3.3 Self-Organizing Map  

A self-organzing map (SOM), which was first proposed by Teuvo Kohonen [32], is a 

type of unsupervised artificial neural network (ANN) and high-dimensional data can be 

presented in a lower dimensional space, which is typically two-dimentional. A SOM is 

comprised of nodes or neurons. Each node is corresponding to a weight vector with  the 

same dimension as the input data vector u. The weight vector w(t) is initialized randomly 

or evenly. Weight vectors of the neurons are adjusted close to the input vector u. The weight 

vector w(t) can be updated by equation (3—6), 

 w(t+1)=w(t)+θ(v,t)η(t)(u-w(t)) (3—6) 

where η(t) is a learning coefficient and θ(v,t) is the neighborhood function, which 

depends on the lattice distance between the neuron that is closest to the input vector u and 

neuron v [25]. The training process is a competing process, i.e., how close is the neuron to 

the input vector. The weight vector is updated during the training process based on the 

similarity that is obtained by caculating the Euclidean distance between the input vector 

and the neuron’s weight vector and there is only one winning neuron, which is closest to 

the input vector u. This process will be repeated and it is guaranteed to converge within a 

finite interval. In the end, the map is similar to the original set.  

The SOM can be used to visualize low-dimensional views of high-dimensional data. 

However, the clustering outcome cannot be obtained from SOM directly. Applying K-

means in the reduced dimension space of the resulting map will be based on the low-

http://en.wikipedia.org/wiki/Teuvo_Kohonen
http://en.wikipedia.org/wiki/Euclidean_distance
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dimensional data and not the high-dimensional data since data is lost. Reference [33] 

proposed a new learing algorithm, which clsuters not only based on the winning weight 

vector but also the neighboring units’ weights. 

3.3.4 Hierarchical Clustering 

Hierachical clustering takes a divisive or agglomerative approach to construct the 

hierarchy of clusters. At first, a similarity matrix can be obtained based on an appropriate 

metric such as Euclidean distance, squared Euclidean distance, or Manhattan distance. 

Differenct metrics may give different shape of clusters. Hierachical clustering starts from 

individual nodes and then clusters are merged (agglomerative) or split (divisive) iteratively 

based on the linkage criterion, which determines the distance between different sets of 

observations and the linkage criterion can be determined by similarity matrix.   

A linkage criterion measures the distance of clusters and it includes single-linkage 

clustering, complete linkage clustering, average linkage clustering, and minimum energy 

clustering. A different choice of linkage criterion may give a different cluster size. For 

example, single linkage criterion may lead to clusters with big sizes and complete linkage 

criterion may lead to clusters with small sizes. 

3.3.5 Comparisons of Different Clustering Methods 

Altought K-means clustering method is sensitive to initialization and the number of 

clusters is pre-determined, it is simple and efficient. K-means clulstering method randomly 

selects K buses as the centroids and converges to K zones and each bus only belongs to one 

zone. Moreover, the clustering outcomes are sensitive to the weights. With more weights 
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on the congested transmission lines, reserve zones boundaries tend to cut the congested 

transmission lines thereby improving the load deliverability.  

Compared to K-means, the fuzzy c-means clustering method assigns soft membership 

to the nodes. One problem of fuzzy c-means is the clustering centroids of two zones may 

overlap with each other. This problem will result in two overlaping reserve zones and, thus, 

the number of clusters may not be the number required and some undesired large reserve 

zones may be obtained.  

SOM can be used to project high dimensional data into one or two dimensional spaces. 

The structure of neural network and the number of cluster need to be pre-specified for SOM, 

which is the same as for K-means and fuzzy c-means. When SOM is applied to determine 

reserve zones, the size of clusters may be unbalanced, i.e., some large long reserve zones 

are not preferred because low load deliverability and small reserve zones may not have 

enough capacity to provide sufficient reserve. 

Hierachical clustering is simple to implement and the clustering result is more 

informative. Compared to other clustering methods, the number of clusters is not required 

to be pre-determined. The cutoff value is critical because once the clusters are merged or 

split, what has been done previously cannot be undone. Improper merge or split decisions 

may result in undesired clustering outcomes.   

Even though all the metioned clusering methods have drawbacks, K-means clustering 

is still prefered because it is simple to implement, unbiased, and reliable. 
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3.4 Numerical Clustering Results 

3.4.1 Test Cases without Weights 

In this section, both the IEEE 118-bus system and the 73-bus reliablity test system (RTS) 

are studied. Three different clustering methods, K-means algorithm, fuzzy c-means 

algorithm, and SOM are applied to obtain the reserve zones and there is no weights 

involved, i.e., all of the transmission lines are treated as the same. 

1) K-means algorithm 

K-means clustering method is used to partition reserve zones based on PTDFDs and 

EDs with K equal to 3. From the test results, the reserve zones based on PTDFDs are 

partitioned equally; however, the reserve zones based on EDs are biased in size. The 73-

bus RTS system is naturally a three-zone model because it is a replication of a 24-bus 

system, three times. The ED clustering results end up splitting zone three in half while 

combining the original zones one and two together. Without considering system operating 

conditions, equal reserve zones are prefered due to the symmetry of the system. The results 

are displayed by Figure 3.2. 

Comparing PTDFDs with EDs, the outcomes based on PTDFDs present better load 

deliverability than the outcomes based on EDs. From Figure 3.3, in the second zone, two 

buses are completely isolated from all other buses in the same zone and, thus, there is the 

question as to how reliable such a zone would be and load deliverability cannot be 

guaranteed in this case. 
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a) Clustering result based on PTDF difference

b) Clustering result based on Electrical Distance

                  

Figure 3.2 Reliability Test System Clustering Results 
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Figure 3.3 IEEE 118-Bus System Clustering Results with Different Number of Zones 

2) Fuzzy c-means algorithm 

The clustering result of fuzzy c-means is shown in Figure 3.4 for the RTS 96 system 

based on PTDFDs. Without weights considered, reserve zones are partitioned unevenly, 

which implies that fuzzy c-means algorithm may bias the clustering results. Compared to 

the numerical results of K-means for PTDFDs in Figure 3.2, the upper four buses of the 

original RTS 96 system’s second zone are a part of zone one for the Fuzzy c-means result. 

These four buses are connected by only one transmission line to the rest of the buses in 

zone one whereas they are connected to the remaining buses in zone two by four 
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transmission lines.  As a result, it is expected that the K-means reserve zones are more 

reliable than Fuzzy c-means reserve zones, and, thus, K-means is preferred. 

 

Figure 3.4 Reserve Zones without Weights Based on PTDFDs (K=3) for RTS96 

3) SOM 

The clustering results of SOM, applied to the IEEE 118-bus system, are shown in 

Figure 3.5. From the result, the first zone is much larger than the other two zones. Large 

reserve zones may degrade the reserve deliverability since reserve may not be 

deliverable across such a large zone if there is excess congestion. However, in 

comparison to the 3-zone K-means result for PTDFDs in Figure 3.3, it can be seen that 

the reserve zones are more similar in overall size. While it may not always be preferred 

to have zones of equivalent sizes, the inclusion of weighted factors can help correct for 

this by incorporating operational conditions into the statistical clustering techniques. 

Nonetheless, since these clustering results are currently only based on topological 

information, the results suggest that K-means is preferred over SOM.  
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Figure 3.5 Reserve Zones without Weights Based on PTDFDs (K=3) for IEEE 118bus 

System 

3.4.2 Test Cases with Weights 

Since congestion can substantially influence the deliverability of reserves, weights are 

added to the transmission lines, which are proportional to the power flow divided by each 

line’s rating. The motivation is to determine zones that have relatively minimal internal 

congestion such that the probability that the reserve internal to a zone can be delivered is 

higher. As a result, this should improve the deliverability of reserves system-wide and, 

hence, improve the systemy reliabilty and market efficiency. In Figures 3.6 and Figure 3.7, 

red represents heavy loading and blue represents light loading. Based on Figure 3.6 and 

Figure 3.7, reserve zones tend to have heavily loaded transmission lines as the inter-zonal 

links and, thus, the intra-zone congestion is lowered. Although system operating conditions 

may change with new reserve zones, these numerical results still present the benefits of 

involving the system operating conditions within the statistical clustering techniques. 

PTDF

Zone 2

Zone 3

Zone 1
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However, to update system operating condition, the weights can be updated iteratively until 

the reserve zones partitioning is stable. 

 

Figure 3.6 3-Zone 118-Bus with Weights 

 

Figure 3.7 5-zone 118-Bus with Weights 
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4. SECURITY CONSTRAINED UNIT COMMITMENT AND SECURITY 

CONSTRAINED ECONOMIC DISPATCH 

4.1 Security Constrained Unit Commitment 

Security constrained unit commitment (SCUC) is the process of deciding the 

commitment status of generating units and the dispatch levels of the units to meet all the 

power constraints, such as generator output constraints, power flow constraints, power 

balance constraints, spinning reserve requirements, ramp rate constraints, and minimum-

up and minimum-down time constraints. The objective is to minimize the total cost, which 

includes the variable operating costs, the no-load costs, the start-up costs, and the shut-

down costs. 

The SCUC problem is a complicated mixed integer programming (MIP) problem with 

a large number of constraints, continuous variables, and binary variables. The non-linear 

cost functions and start-up cost and shut-down cost also increase the complexity of the 

SCUC problem; thus, the SCUC problem is a difficult problem to solve. The formulation 

of the SCUC problem presented in this chapter includes a lossless DCOPF. 

4.1.1 Objective Function  

The objective function is to minimize the production cost, which includes fuel cost, 

start-up cost, shut-down cost, and no-load cost. Since the load is fixed, i.e., assumed to be 

perfectly inelastic, minimizing the total cost is the same as maximizing the social welfare. 

For energy markets, the objective is to maximize the market surplus. It can be formulated 

as follows: 
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 ∑ ∑ [𝐶𝑔𝑝𝑔𝑡 + 𝐶𝑔
𝑆𝑈𝑠𝑢𝑔𝑡 + 𝐶𝑔

𝑆𝐷𝑠𝑑𝑔𝑡 + 𝐶𝑔
𝑁𝐿𝑢𝑔𝑡]𝑔∈𝐺𝑡∈𝑇  (4—1) 

The start-up cost refers to the cost the unit incurs due to the startup process it must 

undergo before it connects to the grid; similarly, there is the shut-down cost. In order to 

model the startup and shutdown costs, new binary variables are needed: a startup variable 

that equals one when the unit is turned on (and zero otherwise) and a shutdown binary 

variable that equals one when the unit is turned off (and zero otherwise). The modeling of 

these variables is shown by Equation (4—2) through Equation (4—4). While these 

variables represent binary states, they can be modeled as continuous variables. While the 

variables can take on any fractional value, it can be proven that, with the right minimum 

up and down time constraints, these variables will always take on a binary solution even if 

they are modeled as continuous variables. The no-load cost is a fixed cost that the generator 

incurs during any period that the unit is operating. 

 𝑠𝑢𝑔𝑡 − 𝑠𝑑𝑔𝑡 = 𝑢𝑔𝑡 − 𝑢𝑔,𝑡−1, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (4—2) 

 0 ≤ 𝑠𝑢𝑔𝑡 ≤ 1, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (4—3) 

 0 ≤ 𝑠𝑑𝑔𝑡 ≤ 1, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (4—4) 

4.1.2 Node Balance Constraints 

At each period, the sum of power flow into bus n, the power flow out bus n, and the 

generation at but n must equal the demand at bus n. This is often referred to as the node 

balance constraint and the corresponding dual variable of the node balance constraint is the 

locational marginal price (LMP). 

 ∑ 𝑓𝑘𝑡𝑘∈𝐾+(𝑛) − ∑ 𝑓𝑘𝑡𝑘∈𝐾−(𝑛) + ∑ 𝑝𝑔𝑡𝑔∈𝐺(𝑛) = 𝐷𝑛𝑡 , 𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁 (4—5) 
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4.1.3 Power Output Constraints 

Every generator has its own operating constraints and usually there are minimum and 

maximum production limits. Hydro generating units are usually modeled with a minimum 

power output at 0MW while most thermal generating units have a positive minimum 

operating level. The power output constraint for unit 𝑔 at period 𝑡 can be written as follows: 

 𝑢𝑔𝑡𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑝𝑔𝑡  ≤ 𝑢𝑔𝑡𝑃𝑔

𝑚𝑎𝑥 , 𝑔 ∈ 𝐺 (4—6) 

where 𝑝𝑔
𝑚𝑖𝑛 and 𝑝𝑔

𝑚𝑎𝑥 are the lower and upper power output bound respectively and 𝑢𝑔𝑡 is 

the unit commitment binary variable. By multiplying lower and upper bound by the 

commitment variables 𝑢𝑔𝑡, 𝑝𝑔𝑡
 will be forced to 0 MW if generator 𝑔 is not committed.  

4.1.4 Spinning Reserve Requirements 

To ensure the system reliability, a required amount of market wide spinning reserve 

requirements 𝑅𝑀𝐾𝑇,𝑡
𝑆𝑃𝐼𝑁  should be satisfied for every period t: 

 ∑ (𝑟𝑔𝑡
𝑆𝑃𝐼𝑁|𝐺|

𝑔=1 ) ≥ 𝑅𝑀𝐾𝑇,𝑡
𝑆𝑃𝐼𝑁 , , 𝑡 ∈ 𝑇   (4—7) 

where 𝑟𝑔𝑡
𝑆𝑃𝐼𝑁 is the spinning reserve supplied by generator 𝑔 at period 𝑡.  For each generator, 

 𝑟𝑔𝑡
𝑆𝑃𝐼𝑁 = min (𝑢𝑔𝑡𝑝𝑔

𝑚𝑎𝑥 − 𝑝𝑔𝑡, 𝑅𝑔
10𝑢𝑔𝑡), 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (4—8) 

where 𝜏 is the response time by which the generators must ramp up their output, which is 

10 minutes in many systems, and 𝑅𝑔
𝑢𝑝

 is the minute ramp up rate of generator 𝑔. Equation 

(4—8) can be rewritten into two inequalities as shown below by Equation (4—9) and 

Equation (4—10). 

   𝑟𝑔𝑡
𝑆𝑃𝐼𝑁 ≤ 𝑢𝑔𝑡𝑝𝑔

𝑚𝑎𝑥 − 𝑝𝑔𝑡, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (4—9) 

 𝑟𝑔𝑡
𝑆𝑃𝐼𝑁 ≤ 𝑅𝑔

10𝑢𝑔𝑡, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (4—10) 



 

42 

  

SCUC also has regulation and supplemental reserve requirements and they have similar 

formulation as equation (4—7). 

4.1.5 Minimum-Up and -Down Time Constraints 

For thermal generating units, due to physical limitations, once a unit is turned off, it 

must stay off for a minimum length of time, which is called minimum down time. Similarly, 

there is the minimum up time. The minimum up and minimum down time constraints for 

unit 𝑔 can be expressed as follows: 

 ∑ 𝑠𝑢𝑔𝑡′
𝑡
𝑡′=𝑡−𝑈𝑇𝑔+1 ≤ 𝑢𝑔𝑡 , 𝑡 ∈ (𝑈𝑇𝑔 , . . , 𝑇), 𝑔 ∈ 𝐺 (4—11) 

where 𝑈𝑇𝑔 is the minimum up time, and 

 ∑ 𝑠𝑑𝑔𝑡′
𝑡
𝑡′=𝑡−𝐷𝑇𝑔+1 ≤ 1 − 𝑢𝑔𝑡 , 𝑡 ∈ (𝐷𝑇𝑔 , . . , 𝑇), 𝑔 ∈ 𝐺    (4—12) 

where 𝐷𝑇𝑔 is the minimum down time. There are many different ways to mathematically 

write the minimum up and down time constraints. The formulation of the minimum up and 

down time constraints can affect the solution time; an overview of various formulations is 

presented in [34]. This thesis chooses a formulation that provides the tightest possible 

representation for the UC problem. 

4.1.6 Ramp Rate Constraints 

Most generators have physical restrictions on how fast their output can change and such 

constraints are known as ramp rate constraints. For example, if the ramp up rate of a 

generator is 50MW/hour and if this unit is outputting 200MW during hour t, then it cannot 

operate at more than 250MW during hour t+1. The ramp rate constraints can be written as 

follows, 

 𝑝𝑔𝑡 − 𝑝𝑔,𝑡−1 ≤ 𝑅𝑔
𝐻𝑅 , 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺  (4—13) 

 𝑝𝑔,𝑡−1 − 𝑝𝑔𝑡 ≤ 𝑅𝑔
𝐻𝑅 , 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺  (4—14) 
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where 𝑅𝑔
𝐻𝑅 is the hourly ramp up (down) rate. There are more complex ways to formulate 

ramp rate constraints; for instance, it is possible to incorporate startup and shutdown ramp 

restrictions, [34]. 

The complete deterministic unit commitment formulation is presented in Appendix A.  

4.2 Security Constrained Economic Dispatch 

The security constrained economic dispatch (SCED) is the process of deciding the 

dispatch levels of the units to balance generation and system demand while minimizing the 

production cost in real time operation. SCUC determines the most commitment decisions 

for day-ahead operation and SCED balances generation and demand in the real-time. 

Deterministic SCED is a linear programming problem when the objective is a piecewise 

linear formulation of the operating cost. Its formulation is similar as SCUC without some 

inter-temporal constraints, commitment variables, and start-up and shun-down variables. 

Below is the formulation of SCED. 

Minimize ∑ ∑ [𝐶𝑔𝑝𝑔𝑡]𝑔∈𝐺𝑡∈𝑇  (4—15) 

Subject to: 

 ∑ 𝑓𝑘𝑡𝑘∈𝐾+(𝑛) − ∑ 𝑓𝑘𝑡𝑘∈𝐾−(𝑛) + ∑ 𝑝𝑔𝑡𝑔∈𝐺(𝑛) = 𝐷𝑛𝑡 , 𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁  (4—16) 

 𝑓𝑘𝑡 = 𝐵𝑘(𝜃𝑛𝑡 − 𝜃𝑚𝑡), 𝑡 ∈ 𝑇, 𝑘 = (𝑛, 𝑚) ∈ K (4—17) 

 −𝐹𝑘
𝑚𝑎𝑥 ≤ 𝑓𝑘𝑡 ≤ 𝐹𝑘

𝑚𝑎𝑥 , 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾 (4—18) 

 𝑈̅𝑔𝑡𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑝𝑔𝑡 ≤ 𝑈̅𝑔𝑡𝑃𝑔

𝑚𝑎𝑥 , 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (4—19) 

 𝑝𝑔𝑡 − 𝑝𝑔,𝑡−1 ≤ 𝑅𝑔
𝐻𝑅 , 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (4—20) 

 𝑝𝑔,𝑡−1 − 𝑝𝑔𝑡 ≤ 𝑅𝑔
𝐻𝑅 , 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (4—21) 

 𝑟𝑔𝑡 ≤ 𝑅𝑔
10𝑈̅𝑔𝑡, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (4—22) 
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 0 ≤ 𝑟𝑔𝑡
𝑆𝑃𝐼𝑁 ≤ 𝑈̅𝑔𝑡𝑃𝑔

𝑚𝑎𝑥 − 𝑝𝑔𝑡  (4—23) 

 ∑ (𝑟𝑔𝑡
𝑆𝑃𝐼𝑁)𝑔⋲𝐺 ≥ RMKT,t

SPIN    (4—24) 

4.3 Application of PTDFD Reserve Zone Determination on SCUC 

4.3.1 Case Study Based on RTS96  

To validate the concept of co-optimizing the reserve zones and reserve levels, 

numerical results are presented with four different reserve zone partitions based on K-

means: a single zone, a 3-zone partition based on PTDFDs, a 3-zone partition based on 

EDs, and a weighted PTDFD based 3-zone partition. The weights for the weighed 3-zone 

results are based on the power flow results when using the PTDFDs 3-zone model; the 

weight equals the average absolute value of transmission line’s power flow divided by its 

thermal capacity rating. Even though the process to determine the optimal weights is not 

straightforward and while there is no guarantee that using weights will produce better 

results, the use of weights is still beneficial since PTDFDs, by themselves, are incapable 

of reflecting grid operating conditions. One primary goal of reserve zones is to improve 

reserve deliverability, which is heavily dependent on grid operating conditions and 

congestion, not just the topological structure of the grid.  

The security constrained unit commitment model is implemented with the RTS96 test 

case and the reserve requirements specify that each zone must meet a specific reserve level. 

The detailed RTS96 test case information can be obtained from Appendix C Section C.1. 

The reserve level is determined based on a percentage of the demand in the reserve zone, 

as shown by (6), where 𝛼 represents the percent reserve level, 𝐷𝑛𝑡 represents the demand 

in period t at bus n, and 𝑁(𝑧) represents the set of buses in zone 𝑧. A 24 hour horizon is 
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tested and the system contains 18 hydro units, 6 nuclear units, and 72 thermal units with a 

total installed capacity of 10215MW. An offline N-1 contingency analysis is implemented 

with the value of lost load (VOLL) equal to $40,000/MWh, and the formulation of N-1 

contingency analysis is presented in Appendix B. The expected load shedding and expected 

total cost will be compared and analyzed among these different zone partitions.  

 ∑ 𝑟𝑔𝑡
𝑆𝑃𝐼𝑁

𝑔⋲𝐺(𝑧) ≥ 𝜂𝑧 ∑ 𝐷𝑛𝑡 𝑛⋲𝑁(𝑧)  (4—15) 

These cases were solved using the mixed-integer linear programming solver CPLEX 

12.2 version. The average solution time was 120 minutes with an average optimality gap 

of 0.7% on a Windows-based server with a 2.66-GHz processor and a 2-GB of RAM.   

As depicted in Figure 4.1, the original 3-zone result improves the involuntary load 

shedding due to contingencies as compared to the single zone result. The weighted 3-zone 

and ED 3-zone results are better than the original 3-zone result and the single zone result, 

since, by including weights, the intra-zone reserve deliverability of the weighted 3-zone 

model and ED 3-zone model is improved. Improving the reserve deliverability then 

decreases the amount of load shedding. As the reserve level goes up, the involuntary load 

shedding due to contingencies of all three reserve zones model goes down and approaches 

zero.  
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Figure 4.1 Expected Load Shedding (MW) from 3% to 7% of Peak Load with Single 

Zone, PTDFD 3-zone, ED 3-zone, and Weighted PTDFD 3-zone 

 

Figure 4.2 Operating Cost (Million dollars) from 3% to 7% of Peak Load with Single 

Zone, PTDFD 3-zone, ED 3-zone, and Weighted PTDFD 3-Zone 
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From Figure 4.2, as the reserve level goes up, the operating costs increase as well. The 

operating cost of the weighted 3-zone, ED 3-zone, and the original 3-zone is higher than 

the single zone because the network partitioning due to the reserve zones causes a different 

unit commitment solution to be chosen due to the zonal reserve requirements. Note that the 

operational costs in Figure 4.2 do not include the costs due to load shedding.  

 

Figure 4.3 Expected Total Cost (Million dollars) from 3% to 7% of Peak Load with 

Single Zone, PTDFD 3-Zone, ED 3-Zone, and Weighted PTDFD 3-Zone with the Value 

of Lost Load at $40,000/MWh 

From Figure 4.3, the minimum expected total cost is achieved at the 5% reserve level 

where the operating and total contingency costs is the lowest; the total contingency cost is 

determined by calculating the expected load shedding for N-1 contingencies and 

multiplying it by the VOLL. However, the expected total cost of these four zones are 

similar, since the RTS96 is a small system and the system was designed to be overbuilt and, 

hence, congestion is not a big issue in this system. The minimum expected total costs of 
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the original 3-zone model, the weighted 3-zone model, and the ED 3-zone model is not 

better than that of the single zone model and ED 3-zone for high reserve levels because the 

load shedding is primarily due to insufficient reserve and not congestion for these cases.  

4.3.2 Case Study Based on IEEE 118-Bus System 

Another case study is based on IEEE 118-bus system. Since the weighted PTDFD 2-

zone is the same as PTDFD 2-zone, only three different zone partitions will be presented, 

which are single zone, PTDFD 2-zone, and ED 2-zone.  

 

Figure 4.4 Expected Load Shedding (MW) from 3% to 7% of Peak Load with Single 

Zone, PTDFD 3-Zone, and ED 3-Zone 

The result of expected load shedding is present in Figure 4.4. What makes the results 

interesting is that as the reserve level goes from 3% to 4%, the expected load shedding 
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losing a small unit, losing a large unit may cause more load shedding. However, based on 

the results of Figure 4.4, the load shedding typically decreases while the reserve level 

increases. The result of ED 2-zone is better than that of the single zone and the PTDFD 2-

zone. Therefore, system reliability is improved by the ED 2-zone approach. 

As depicted in Figure 4.5, as the reserve level goes up, the operating costs increase as 

well. The operating cost of the ED 2-zone and the PTDFD 2-zone is higher than that of 

single zone approach because the spinning reserve of the ED 2-zone and the PTDFD 2-

zone approaches are more restricted.  

. 

Figure 4.5 Operating Cost (Million dollars) from 3% to 7% of Peak Load with Single 

Zone, PTDFD 3-Zone, and ED 3-Zone 
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single zone result increases instead, which implies that the ED 2-zone and PTDFD 2-zone 

improve both market efficiency. Note that congestion for this IEEE 118-bus test system 

rarely happened, since the average line loading is only 20.97%, so the main reason of load 

shedding is insufficient reserve capacity.  

 

Figure 4.6 Expected Total Cost (Million dollars) from 3% to 7% of Peak Load with 

Single Zone, PTDFD 3-Zone, ED 3-Zone, and Weighted PTDFD 3-Zone with the Value 

of Lost Load at $40,000/MWh 
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5. DAILY RESERVE ZONE DETERMINATION WITH HIGH PENETRATION 

OF RENEWABLES 

5.1 Introduction 

The amount of renewable resources is expected to increase substantially in order to 

reduce the use of fossil fuel generators and reduce greenhouse gas emissions. For example, 

California’s renewable portfolio standard (RPS) mandates that 33% of their electric energy 

production come from renewable resources by 2020 and beyond [35]. Most renewable 

resources (wind and solar) are semi-dispatchable (can only reduce power output) and their 

production is variable and uncertain. Due to the unpredictability and highly variable output 

of renewable generation, managing renewable resources while maintaining system 

reliability at least cost is a significant challenge. In order to manage the uncertainty and 

variability of renewable resources, adequate operating reserves must be acquired.  

Prior research has investigated the impacts that renewable resources may have on 

reserve requirements, [37]-[42]. The New York Independent System Operator (NYISO) 

performed studies on the effects of wind energy production on transmission system 

planning, reliability, and operations [37] and also reported on the impacts on operating 

reserve. Another study, performed by Arizona Public Service (APS) in 2007, determined 

the amount of required reserve for wind penetration levels ranging from 1-10% for day-

ahead scheduling [38]. In [39]-[40] the authors develop probabilistic metrics to determine 

the reserve requirements dynamically. The authors aimed to balance the operating costs 

with the outage costs by developing a probabilistic model, which accounts for renewable 

resources, generator outages, and transmission outages. M. A. Matos et al. [41] account for 

the probabilistic wind power forecasts, conventional generation outages, and load forecast 
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to determine the operating reserve level, and risk evaluation (e.g., risk of loss of load) is 

employed to determine the optimal level. [42] Short-term energy balancing with increasing 

levels of wind energy investigates the optimal short-term energy balancing to deal with the 

wind uncertainty, and it also states that dynamic reserve requirement can reduce the 

operating cost by decreasing excessive spinning reserve compared with static reserve 

policy, especially in the case of wind uncertainty.  

In recent studies, the National Renewable Energy Laboratory (NREL) proposed a 

heuristic rule: the reserve should be no less than 3% of load and 5% of forecasted renewable 

generation [43]-[44]. While research has focused on the reserve quantity in response to 

renewable resources, few researchers have addressed the locational aspect of reserves, 

without the use of stochastic programming algorithms. 

One method to address the locational aspect of reserves is to formulate a stochastic unit 

commitment framework; the imposed uncertainty of renewable resources can be implicitly 

modeled within the mathematical program, thereby allowing the optimal quantity and 

location of reserves to be determined, [15] [17] [45]. While stochastic programming 

produces an optimal solution (with respect to the modeled uncertainties), the concern is the 

computational burden.  

Even today, there are many approximations that are built into deterministic day-ahead 

unit commitment (UC) models. For instance, even a full DC optimal power flow (DCOPF) 

model, which approximates the AC optimal power flow (ACOPF), is rarely solved with 

unit commitment for realistic systems today. Instead, nomograms are created that 

approximate transmission bottlenecks and a few key transmission corridor limits are 

explicitly enforced by including the power transfer distribution factors (PTDF) associated 
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with the generation. Once the UC solution is obtained, it is checked against the base case 

and select N-1 contingencies; the resulting constraint violations (line overloads) are then 

handled by either out of market corrections (i.e., based on the operator’s discretion, the 

operator will modify the dispatch solution to obtain a reliable solution) or a feasibility cut 

is applied that enforces the previously violated constraints and the unit commitment model 

is solved again. While the process of applying feasibility cuts can be repeated (e.g., Benders’ 

decomposition can be applied) in order to obtain the global optimal solution, such 

approaches are generally not used due to time limitations. Instead, system operators will 

directly modify the solution to obtain an N-1 reliable solution, i.e., implement out of market 

corrections.   

Implementing stochastic programming will, therefore, be a greater challenge since 

stochastic programming relies on an accurate representation of power flow in order to 

obtain the optimal location for reserves. Thus, there is a need to improve the stochastic 

programming algorithms but there is also a need to enhance the approximations that exist 

today within unit commitment frameworks. Hence, there will be a need for better 

nomograms and dynamic reserve policies to complement stochastic unit commitment. 

Existing reserve requirements within deterministic unit commitment models, 

formulations that do not have a stochastic programming framework, see (5—14) – (5—17), 

simply impose quantity requirements, not a locational aspect of the reserves. The 

underlying assumption is, thus, that the acquired reserve is assumed to be deliverable no 

matter the operational state of the network. This is, undoubtedly, an egregious assumption.  

System operators address this issue by using reserve zones, producing nomograms that 

approximate transfer capabilities between regions and around key bottleneck areas, as well 



 

54 

  

as de-rating transmission lines. By specifying a partition of the network as a reserve zone, 

the operator is able to apply a regional reserve policy for that particular network partition. 

The motivation is to improve the deliverability of reserves by ensuring that the reserves are 

dispersed across the grid while not having to acquire more than is necessary in order to 

operate efficiently. However, there is still the assumption that there is no intra-zonal 

congestion that inhibits the deliverability of reserves.  

Costs associated to manage intra-zonal congestion are already high even without high 

penetration levels of renewables. The California Independent System Operator (CAISO) 

and the Electric Reliability Council of Texas (ERCOT) incur significant costs to manage 

intra-zonal congestion [46]-[47]. For example, CAISO spent approximately $207 million 

in 2006 to mitigate intra-zonal congestion. In [48], CAISO describes what they refer to as 

Minimum Load Cost Compensation (MLCC), which they state, “these costs result from 

generating units that are committed to operate on a day-ahead basis under the provisions 

of the Must-Offer Obligation in order to mitigate anticipated intra-zonal congestion,” [46].  

The MLCC costs in 2006 were $109 million out of the total $207 million. 

CAISO also describes in [46] that, if the market solution does not resolve the intra-

zonal congestion, they may dispatch reliability must run (RMR) units, call energy bids out 

of sequence (OOS) (change their scheduled dispatch), or they may call units out of market 

(OOM) (turn on additional units). In this thesis, such procedures are referred to as out of 

market corrections. Note that CAISO has since made changes to their market structure 

through their market redesign and technology upgrade (MRTU) by having a more accurate 

grid model in order to reduce such costs.  
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With the trend towards higher levels of intermittent renewable resources, the location, 

i.e., deliverability, of reserves will increase in importance. Higher levels of renewables not 

only increase the reserve level but also increase the difficulty to predict the network flows 

and the resulting bottlenecks. Existing procedures will, thus, be even more inefficient at 

achieving system reliability at least cost. Additional reserves will need to be acquired, 

thereby forcing generators to operate at undesirable production levels for the sake of 

providing reserves; many conventional fossil-fuel based generators are not designed to 

operate at such low operating levels where their average costs and emissions are higher. 

While it is possible to rely on such ad-hoc reserve policies and out of market corrections to 

ensure reliable operations, such procedures drive up the costs. Thus, the creation of new, 

efficient reserve policies is paramount to ensure reliable system operations at least cost.  

One way to improve reserve deliverability is by improving the reserve zones since the 

added computational complexities are minimal, if at all, and they are effective at imposing 

locational reserve requirements without incurring excessive operational costs. However, 

there is limited knowledge regarding how to optimally partition the network into reliable 

and efficient reserve zones while considering the system operational conditions and 

uncertainties, e.g., contingencies, load, area interchange, and renewable resources. For 

instance, one of the most common ways to determine reserve zones is based on asset 

ownership, instead of determining the reserve zones based on system operating conditions. 

Furthermore, existing reserve zones are treated as static even though the operational 

conditions widely vary. Such a static operational rule for such a dynamic and complex 

engineered system results in inefficiencies.  



 

56 

  

This chapter proposes a new method to determine reserve zones on a daily basis, which 

is capable of accounting for the variability and uncertainty in renewable resources and it is 

able to account for N-1 contingencies as well. First, due to the computational complexities 

of stochastic programming, limited renewable generation scenarios are modeled within 

dispatch optimization models (existing practices typically model one scenario, the 

forecasted wind, i.e., they solve deterministic unit commitment models). As a result, there 

will be unexpected congestion that operators will have to resolve (both at the day-ahead 

and real-time stages) for base-case (no-contingency) operations. Second, existing 

approaches also do not explicitly account for N-1 contingencies (while reserve rules are 

used, they do not optimally locate reserves). The proposed dynamic reserve zone model 

improves the locational aspect of reserves for the day-ahead scheduling process in an effort 

to reduce such out of market corrections.  

5.2 Dynamic Zones Based on Probabilistic Flow 

Day-ahead forecasting techniques for renewable resources are roughly 10% to 20% 

inaccurate [48]. While the accuracy of the forecast improves as the future period 

approaches, system operators must ensure a reliable solution at each look-ahead time stage 

(e.g., day-ahead, hour-ahead). Intermittent renewable resources impose added uncertainty 

to system operations, making it more challenging to guarantee that the acquired reserve 

will be deliverable, i.e., congestion will not impede the necessary reserve from reaching its 

destination. Inadequate procurement of reserves (quantity and location) forces operators to 

make costly out of market corrections. System operators may need to turn on additional 

local generation to compensate for deliverability issues. These actions, which are made 

outside of the optimization engine and based on operator knowledge (or lookup tables), are 
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costly. Furthermore, the probability that the system operator is able to determine a cost 

effective corrective solution is likely to decrease as resource uncertainty increases. 

Advanced reserve determination procedures can improve economic efficiency and 

reliability, by reducing costly out of market corrections and by reducing the probability of 

outages.  

This section proposes a reserve zone partitioning framework that involves the 

variability and uncertainty of renewable resources (wind) by creating a zone partitioning 

method based on wind scenarios. The zone partitioning procedure is demonstrated below 

and the flowchart is illustrated in Figure 5.1.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Flowchart for Daily Reserve Zones Based on Probabilistic Power Flows 

Step 1 A deterministic unit commitment is solved based on predetermined (e.g., 

seasonal) zones. The unit commitment solution is then fixed for Step 3. The unit 

commitment formulation will be discussed in Chapter 5 Section 5.3. 

Calculate weights 𝜋𝑘 = ( 
𝑚𝑘

𝐹𝑘
𝑚𝑎𝑥 +

2𝜎𝑘

𝐹𝑘
𝑚𝑎𝑥)

2 

Run optimal power flow; minimize load shedding for each scenario; calculate 𝑚𝑘 

and 𝜎𝑘 

Run day-ahead deterministic UC with predetermined (seasonal) reserve zones 

Generate scenarios by Monte-Carlo simulation based on the probability density 

function of the normalized wind output 

Cluster the reserve zones based on PTDFD with weights using K-means; send to 

day-ahead UC 
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Step 2 Generate the wind scenarios by Monte-Carlo simulation in order to characterize 

the potential wind power output. The wind scenario generation procedure is 

presented in Chapter 5 Section 5.6 

Step 3 Solve the optimal power flow (OPF) with selected wind scenarios and record the 

power flows for the various wind scenarios. The expected power flow on 

transmission line k, represented by 𝑚𝑘, and the standard deviation of power flow 

of transmission line k, i.e., 𝜎𝑘, are calculated. 

Step 4 
Calculate the weight, 𝜋𝑘, for each transmission line: 𝜋𝑘 = ( 

𝑚𝑘

𝐹𝑘
𝑚𝑎𝑥 +

2𝜎𝑘

𝐹𝑘
𝑚𝑎𝑥 )2; the 

term is squared in order to place more attention to the critical paths.  

Step 5 Run the statistical clustering algorithm (K-means) to partition the reserve zones 

based on PTDF differences and the weights from Step 4.  

 

The proposed method to determine the reserve zones is sensitive to the chosen weights. 

The first fraction of the weight, the expected line flow divided by the line’s maximum 

capacity, is similar to the commonly known performance index (PI) [4] for one specific 

line. The second fraction of the weight is based on the standard deviation. The desire is to 

identify critical lines not only based on their expected line flow (for the following day) but 

also by the variability and uncertainty of the line’s flow, which is caused by the 

intermittency of the renewable resources. This helps to ensure that critical transmission 

bottlenecks can be identified in order to determine better reserve zones. For the weight term 

that is used in this chapter, n (see [4], page 430) is equal to one.  

The standard deviation part can be viewed as a confidence interval. Using only the 

mean value  
𝑚𝑘

𝐹𝑘
𝑚𝑎𝑥  doesn’t reflect the potential power flow uncertainty, which is caused by 

intermittent resources. For instance, transmission line A with lower average power flow 

uncertainty may have a higher possibility of getting congested than that of transmission 
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line B, which has a higher average power flow due to higher uncertainties of the 

probabilistic power flow on the transmission line A. This is why the mean value of the line 

plus its variation is considered. However, increasing the bias on the standard deviation to 

4 seems to be too much, ( 
𝑚𝑘

𝐹𝑘
𝑚𝑎𝑥 +

4𝜎𝑘

𝐹𝑘
𝑚𝑎𝑥)

2, as this puts too much bias on the power flow 

variation. 

Table 5.1 Tested Weights and Resulting Congested Zonal Links 

Weights 
Critical Transmission lines as 

zonal links (Total number 10) 

|
𝑚𝑘

𝐹𝑘
𝑚𝑎𝑥| 3 

(|
𝑚𝑘

𝐹𝑘
𝑚𝑎𝑥|)2 4 

|
𝑚𝑘

𝐹𝑘
𝑚𝑎𝑥| +

2𝜎𝑘

𝐹𝑘
𝑚𝑎𝑥 3 

(|
𝑚𝑘

𝐹𝑘
𝑚𝑎𝑥| +

2𝜎𝑘

𝐹𝑘
𝑚𝑎𝑥)2 5 

(|
𝑚𝑘

𝐹𝑘
𝑚𝑎𝑥| +

2𝜎𝑘

𝐹𝑘
𝑚𝑎𝑥)4 5 

(|
𝑚𝑘

𝐹𝑘
𝑚𝑎𝑥| +

4𝜎𝑘

𝐹𝑘
𝑚𝑎𝑥)2 3 

 

Table 5.1 presents the number of critical lines cut by different reserve zone partition based 

on different weights. The metric that cuts most of the critical transmission lines (the line is 

not contained within any single zone) will be chosen. 
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Figure 5.2 Traditional Seasonal Zone 

From Figure 5.2, the traditional seasonal zone identifies the transmission bottleneck by 

historical information that does not take the advantage of the “newest” system operational 

conditions.  

 

 

 

 

 

 

 

 

 

Figure 5.3 The Reserve Zone Determination Method Based on Probabilistic Power Flow 

From Figure 5.3, the probabilistic flow has the information of baseline zone, 

uncertainties modeling (e.g., wind), and network information. The probabilistic flow can 

reflect the system operational conditions. For example, system operators will utilize the 

day-ahead wind forecast and potential forecast error to capture the wind output and its 

variation’s impact on the power flow, which is not accounted for in the seasonal zone. The 

method can be easily extended to other uncertainties such as other intermittent resources 

and load. 

Note that probabilistic flows are generated based on wind uncertainty and that the 

procedure can be easily extended to consider other uncertainties (load, N-1). 
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5.3 Security Constrained Unit Commitment 

Security constrained unit commitment is formulated as a mixed integer programming 

(MIP) problem and is shown by (5—1) to (5—18).  

Minimize: ∑ ∑ [𝐶𝑔𝑝𝑔𝑡 + 𝐶𝑔
𝑆𝑈𝑠𝑢𝑔𝑡 + 𝐶𝑔

𝑆𝐷𝑠𝑑𝑔𝑡 + 𝐶𝑔
𝑁𝐿𝑢𝑔𝑡]𝑔∈𝐺𝑡∈𝑇  (5—1) 

Subject to: 

 𝑠𝑢𝑔𝑡 − 𝑠𝑑𝑔𝑡 = 𝑢𝑔𝑡 − 𝑢𝑔,𝑡−1, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (5—2) 

 0 ≤ 𝑠𝑢𝑔𝑡 ≤ 1, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (5—3) 

 0 ≤ 𝑠𝑑𝑔𝑡 ≤ 1, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (5—4) 

 ∑ 𝑓𝑘𝑡𝑘∈𝐾+(𝑛) − ∑ 𝑓𝑘𝑡𝑘∈𝐾−(𝑛) + ∑ 𝑝𝑔𝑡𝑔∈𝐺(𝑛) − ∑ 𝑠𝑝𝑤𝑡𝑤∈𝑊(𝑛)  

 = 𝐷𝑛
𝑡 − ∑ 𝑃𝑤𝑡𝑤∈𝑊(𝑛) , 𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁 (5—5) 

 0 ≤ 𝑠𝑝𝑤𝑡 ≤ 𝑃𝑤𝑡 , 𝑡 ∈ 𝑇, 𝑤 ∈ 𝑊 (5—6) 

  𝑓𝑘𝑡 = 𝐵𝑘(𝜃𝑛𝑡 − 𝜃𝑚𝑡), 𝑡 ∈ 𝑇, 𝑘 = (𝑛, 𝑚) ∈ 𝐾 (5—7) 

 −𝐹𝑘
𝑚𝑎𝑥 ≤ 𝑓𝑘𝑡 ≤ 𝐹𝑘

𝑚𝑎𝑥 , 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾 (5—8) 

 𝑢𝑔𝑡𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑝𝑔𝑡 ≤ 𝑢𝑔𝑡𝑃𝑔

𝑚𝑎𝑥 , 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (5—9) 

  ∑ 𝑠𝑢𝑔𝑡′
𝑡
𝑡′=𝑡−𝑈𝑇𝑔+1 ≤ 𝑢𝑔𝑡 , 𝑡 ∈ (𝑈𝑇𝑔 , . . , 𝑇), 𝑔 ∈ 𝐺 (5—10) 

  ∑ 𝑠𝑑𝑔𝑡′
𝑡
𝑡′=𝑡−𝐷𝑇𝑔+1 ≤ 1 − 𝑢𝑔𝑡 , 𝑡 ∈ (𝐷𝑇𝑔 , . . , 𝑇), 𝑔 ∈ 𝐺 (5—11) 

 𝑝𝑔𝑡 − 𝑝𝑔,𝑡−1 ≤ 𝑅𝑔
𝐻𝑅 , 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (5—12) 

 𝑝𝑔,𝑡−1 − 𝑝𝑔𝑡 ≤ 𝑅𝑔
𝐻𝑅 , 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (5—13) 

 𝑟𝑔𝑡
𝑆𝑃𝐼𝑁 ≤ 𝑃𝑔

𝑚𝑎𝑥𝑢𝑔𝑡 − 𝑝𝑔𝑡, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (5—14) 

 𝑟𝑔𝑡
𝑆𝑃𝐼𝑁 ≤ 𝑅𝑔

10𝑢𝑔𝑡, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (5—15) 

 ∑ 𝑟𝛾𝑡
𝑆𝑃𝐼𝑁

𝛾∈𝐺 ≥ 𝑝𝑔𝑡 + 𝑟𝑔𝑡
𝑆𝑃𝐼𝑁 , 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (5—16) 

 ∑ 𝑟𝑔𝑡
𝑆𝑃𝐼𝑁

𝑔∈G(z) ≥ 3% ∑ 𝑑𝑛𝑡𝑛∈𝑁(𝑧)  
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 +5% ∑ 𝑃𝑤𝑡𝑤∈𝑊(𝑧) , 𝑡 ∈ 𝑇, z ∈ 𝑍 (5—17) 

 𝑢𝑔𝑡 ∈ {0,1}, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (5—18) 

The objective, (5—1), minimizes the operating cost, which includes start-up cost, shut-

down cost, no-load cost, and the variable operating cost. The modeling of the start-up and 

shut-down variables is shown by constraints (5—2) – (5—4). Constraint (5—5) is the node 

balance constraint, which ensures that the net injection into a bus equals the net withdrawal. 

Constraint (5—6) is the wind curtailment (wind spillage) constraint. Equation (5—7) is the 

linearized real power line flow equation. Constraint (5—8) imposes the transmission line’s 

rating (thermal or stability rating). Constraint (5—9) identifies the maximum and minimum 

operating capacity of each generator. Constraints (5—10) and (5—11) are the minimum-

up and down time constraints, which are facet defining valid inequalities for the u, v 

restriction. Constraints (5—12) and (5—13) are the hourly ramp rate constraints. 

Constraints (5—14) – (5—15) are the spinning reserve constraints. Constraint (5—14) 

shows that the committed production plus spinning reserve offered by unit 𝑔 cannot exceed 

its rated capacity. Note that the right hand side of (5—9) could be modified to capture (5—

14); they are written separately simply for convenience. Constraint (5—15) represents that 

a unit’s spinning reserve cannot be larger than its ten minute ramping capability. CAISO 

defines its operating reserve 2 (OR2) quantity as the maximum of the single largest 

generator outage, the largest net tie-line import, or based on an operator imposed value [5]. 

Constraint (5—16) is used to ensure that the amount of spinning reserve is no less than the 

single largest generator contingency; the formulation does not include restrictions related 

to tie-line imports or operator imposed quantities due to the chosen IEEE test system. 
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Constraint (5—17) shows that, for each zone h, the spinning reserve should not be less than 

3% of the load and 5% of the forecasted renewable production (wind), [44].  

5.4 N-1 and Wind Reliability Studies 

To test the system reliability of the unit commitment solutions, two cases will be studied: 

1) Only wind scenarios (this is the base-case, no-contingency case plus possible wind 

deviations – 1000 wind scenarios). 

2) N-1 contingencies combined with wind scenarios (this is a post-contingency 

evaluation with, at most, 237 single contingencies combined with ten wind scenarios to 

create roughly 2370 N-1 plus wind scenarios). 

Case 1 can be viewed as a normal operating condition without a generator or 

transmission contingency. Case 2 can be viewed as the contingency state with a single 

generator or transmission contingency; the simulation would represent the post-

contingency operating condition within ten-minutes of the event. The N-1 and wind 

contingency studies are performed by solving an optimal power flow; the objective is to 

minimize the load shedding for each scenario with the commitment variables fixed to the 

original UC solution. Generation re-dispatch is allowed to the extent that a generator’s 

output must be within its scheduled dispatch (from the original UC solution) plus or minus 

its ten-minute ramp rate, i.e., a generator can only move away from its scheduled dispatch 

level based on the amount of ten-minute reserve that it can provide. The probability of the 

normal operating condition is calculated to be 0.95 and the probability of any single N-1 

contingency is 0.05, for any single hour; this is an outage replacement rate (ORR) for one 

hour [1]. This probability is calculated based on the mean time to failure (MTTF), [49].  

The detailed calculation procedures are listed in the Appendix D. 
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5.5 Out of Market Corrections 

There are many uncertainties in the power system today, such as load, renewables, 

generation and transmission contingencies, and are interchange. Unit commitment, which 

has thousands of transmission assets and generators with complex operating constraints, is 

a very computationally challenging problem. There are three main ways of managing those 

uncertainties: 

1. Apply reserve requirements constrains to protect against uncertainties. For example, 

regulation reserve can be utilized to protect against load uncertainties and small forecast 

error of renewables, and operating reserve can be used to take care of contingencies. 

2. Stochastic programming can be used to explicitly model uncertainties in the power 

system. However, the computational complexity in the large scale optimization is still 

a huge challenging and it is still not scalable enough to apply in the realistic power 

system. 

3. Out of market corrections (OMCs) is an alternative to correct unreliable system solution 

such that reliable solutions are obtained. 

Out of market corrections (OMC), also called out of market corrections by CAISO, 

occur when a dispatch solution must be corrected by the operator in order to satisfy a 

system requirement that was not implicitly or adequately modeled within the dispatch 

optimization problem. For instance, in current industry practice, nomograms (hyperplanes) 

are applied to approximate the feasible solution region. Inaccuracy of nomograms may 

require correction of the solution to ensure a feasible solution. Such procedures are taken 

to simplify the complex combinatorial dispatch problems that are solved daily and, in some 

locations, hourly. While such procedures are currently necessary in order to ensure a 



 

65 

  

solution is obtained within the required timeframe, the resulting out of market corrections 

that are necessary to correct for these approximations are extremely costly. The California 

Independent System Operator (CAISO) and the Electric Reliability Council of Texas 

(ERCOT) collectively spent roughly $80 million in 2006 on their out of market corrections 

[46] [47]. 

In [50] and [51], CAISO develops OMCs with lower price inconsistencies. OMCs will 

be used by CAISO unless no feasible solution is obtained. Regional Transmission 

Operators, such as SPP and ERCOT, also perform OMCs [52] and [53], if no feasible 

solution is found with economic bids. In [54], how system reliability is considered in day-

ahead (DA) to real-time (RT) business processes of SPP integrated marketplace is 

discussed. System-wide and zonal requirement is evaluated based on system reliability and 

OMCs.  

OMCs (out of market corrections) are employed by all energy providers: vertically 

integrated utilities or independent system operators (ISO). In particular, implementing 

OMCs under a deregulated market structure impact the market outcomes for its 

stakeholders. Performing an OMC changes the original solution, which is considered to be 

the most economical solution but is infeasible since it does not satisfy the reliability 

requirements.  

5.6 Scenario Generation and Selection 

There are many different approaches to generate wind scenarios. In [15], the wind speed 

is forecasted based on an autoregressive (AR) model, which is developed based on 

historical data, and the wind power production is mapped to the forecasted wind speed. AR 

models are accurate for short-term or mid-term wind power forecasting [54]; however, for 
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day-ahead wind power forecasting other techniques, such as numerical weather predictors 

(NWP) and artificial neural networks (ANN), are used to improve the accuracy of the 

forecast [54]. Since this chapter is focused on determining reserve zone partitions, 

determining new forecasting methods for day-ahead wind predictions is outside the scope 

of this thesis. Accurate wind scenarios are needed to examine the proposed dynamic reserve 

zone determination technique. Instead of forecasting wind speed, wind power scenarios are 

generated directly. Wind forecast data is taken from NREL and one thousand wind power 

scenarios are generated by Monte-Carlo simulations. For each period t, it is assumed that 

the probability distribution of the wind forecast error is Gaussian with a mean of zero and 

a standard deviation represented by 𝜎𝑡. The folded Gaussian distribution can be used to 

determine the expected absolute error in order to calibrate the standard deviation to reflect 

typical forecasting errors, [48], for day-ahead wind forecasts. The expectation of the folded 

Gaussian distribution is shown by (21), where 𝜇𝑡 is the mean at time t and 𝜎𝑡 is the standard 

deviation at time t. Since the mean is zero, (21) becomes (22). 𝜎𝑡 is chosen to be 0.2 in 

order to create an expected absolute error of 16%, which is in the 10% to 20% range for 

day-ahead forecasting errors, [48]. 

 𝐸(𝑒𝑟𝑟𝑜𝑟𝑡) = 𝜎𝑡√
2

𝜋⁄ 𝑒(−𝜇𝑡
2 2𝜎𝑡

2⁄ ) + 𝜇𝑡[1 − 2Φ (
−𝜇𝑡

𝜎𝑡
)] (5—19) 

 𝐸(𝑒𝑟𝑟𝑜𝑟𝑡) = 𝜎𝑡√
2

𝜋⁄  (5—20) 

Note that the distribution for the forecast error for a particular wind farm is not 

necessarily Gaussian; [55] uses a Rayleigh distributions for the forecast error while other 

distributions, Weibull and Beta, have been used as well [56]-[59]. However, as discussed 

in [58] and shown by the empirical studies from [59], with geographically diverse locations 
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for the wind farms, it is appropriate to apply the central limit theorem and, thus, assume a 

normal distribution for the forecast error. To account for the fact that the wind speed cannot 

be negative and that the wind turbine cannot produce more than its capacity, a truncated 

normal distribution has been suggested by CAISO, [60]. The proposed reserve zone 

determination approach is general enough to be compatible with any forecast error 

probability distribution. 

Table 5.2 Selected Wind Scenario Probabilities 

Scenario Probabilities 

1 0.593 

2 0.08 

3 0.025 

4 0.06 

5 0.043 

6 0.072 

7 0.043 

8 0.011 

9 0.02 

10 0.053 

 

A scenario reduction procedure is used to reduce the number of scenarios. Scenarios 

with low probabilities are eliminated and scenarios that are similar are combined. The 

scenario reduction techniques presented in [61] and [62] are applied to select ten wind 

scenarios out of the 1000 scenarios, which are used within the extensive form stochastic 

unit commitment problems. With the predetermined number of selected scenarios, 

scenarios will be selected such that the distance between the deleted scenarios is minimized. 

The probability of the deleted scenarios will be combined with the selected scenarios. The 

probabilities of selected wind scenarios are listed below. 
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5.7 Numerical Results 

5.7.1 Data 

A modified IEEE 118-bus test system is used to test the proposed zone partitioning 

method [49], the detailed information is listed in the Appendix C Section C.2. The system 

has 57 units (3 of which are wind), 186 transmission lines, and 91 loads; since the IEEE 

118-bus test system is missing information, additional information is taken from the RTS 

1996 test system [49] and from [45]. The generation capacity is 6982MW and the peak 

load is 4919MW. Three wind farms with 1200MW of capacity are placed at three buses, 

which is roughly 17% of the total installed generation capacity (total wind capacity divided 

by total system-wide generation capacity). Seasonal load information is taken from the 

RTS96 test system [49] for twelve days between January 1st and March 31st; the highest 

load day is January 9th, which is 90% of the yearly peak. Three of these days are weekend 

days and two of these days have a peak hour that is roughly 55% of the yearly peak load. 

The wind data is collected from the NREL 2006 western wind database from January 1st 

to March 31st. The original 10-minute data is averaged into hourly data, which is used as 

the forecasted wind output. 

5.7.2 Numerical Results and Analysis 

The proposed daily probabilistic-based dynamic zone partitioning method is used in 

combination with a deterministic unit commitment model and it is also combined with an 

extensive form stochastic unit commitment model. These two proposed frameworks are 

compared against two traditional zone partitioning models (a seasonal method and a daily 

method) and a stochastic programming framework that explicitly represents ten wind 
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scenarios, has only one reserve zone, and uses traditional reserve rules (reserve must 

exceed the single largest contingency). The only difference between the two stochastic 

models is that the first has its reserve zones determined by the proposed dynamic reserve 

zone method and the second has one reserve zone. 

 

 

 

 

 

 

 

Figure 5.4 a) Flowchart for the Seasonal (Traditional) Method. b) Flowchart for the Daily 

(Traditional) Method 

The seasonal and daily zone methods are determined as shown by Figure 5.4. The 

seasonal method is meant to mimic modern zone partitioning methods at ERCOT [21] and 

MISO [63]. Seasonal zone partitioning methods use historical information to identify key 

transmission bottlenecks. Generators that have similar impacts on these key transmission 

corridors are grouped together by utilizing a statistical clustering algorithm (K-Means). 

The traditional daily method builds on the seasonal method by using weights to adjust the 

zones on a daily basis, as shown by Figure 5.4. 

The stochastic programming model is an extensive form scenario-based unit 

commitment formulation with ten scenarios modeled, which is similar to [9]. For all 

deterministic models, reserve requirements follow the NREL 3+5 rule as well as the largest 

contingency rule, which are constraints (5—16) and (5—17). For the stochastic models, 

b) Day-ahead deterministic UC with 

predetermined zones 

Weights 𝜋𝑘 = (
𝑚𝑘

𝐹𝑘
𝑚𝑎𝑥)

2 

a) Historical power flow data 

Weights 𝜋𝑘 = (
𝑚𝑘

𝐹𝑘
𝑚𝑎𝑥)

2 

Statistical clustering method to 

determine the reserve zones based on 

PTDFD and weights 

Statistical clustering method to 

determine the reserve zones based on 

PTDFD and weights 
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reserve requirements follow 3 percent of load in each reserve zone as well as the largest 

contingency rule; there is no reserve requirement imposed with respect to the forecasted 

wind output since that is handled by the explicit representation of the wind scenarios. The 

daily (probabilistic) zone model with stochastic UC follows the reserve rules used within 

the single-zone stochastic programming framework.  

The five zonal models are applied to a day-ahead unit commitment problem and their 

resulting solutions are then tested against wind scenarios combined with N-1 contingency 

analysis. Table 5.3 presents the results for the expected load shedding for one thousand 

wind scenarios associated to the row labeled wind. The wind+N-1 row reports the expected 

load shedding when testing the solutions against N-1 (contingency analysis) 

simultaneously combined with ten wind scenarios (i.e., each contingency is simulated ten 

times for each wind scenario). The total overall expected load shedding is also presented 

along with the percent improvement for the various models.  

When analyzing the proposed UC solutions against the 1000 wind scenarios, the 

expected involuntary load shedding for the seasonal (traditional) zone model is 3.522MW, 

with six days having involuntary load shedding, and the average load shedding of the daily 

(traditional) zone model is 2.55MW. This result demonstrates the advantage of updating 

reserve zones as operating conditions change since the load shedding reduced by 27.6%. 

The stochastic UC model with a single zone has 0.162MW of expected load shedding. 

Modeling all of the wind scenarios is computationally intractable; thus, ten scenarios are 

selected in this stochastic programming framework, which is why there is still load 

shedding. There is only 0.085MW of expected load shedding for the daily (probabilistic) 

zone model with a deterministic UC framework since it is better at ensuring reserve 
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deliverability. For this particular test case, the results show that the daily (probabilistic) 

zone model with stochastic UC is preferred over existing methods, since it has the lowest 

expected load shedding for the one thousand wind scenarios, with 0.01MW of expected 

load shedding. While the stochastic unit commitment framework only included ten wind 

scenarios out of the original one thousand, the expected load shedding is very close to zero, 

which shows the ability for the dynamic reserve zones to substantially improve the 

locational aspect of reserves.  

Table 5.3 Expected Load Shedding (MW) 

 

 Deterministic UC Stochastic UC 

Zonal Model Seasonal1 Daily2 Daily 

(Prob.)3 

Single 

zone4 

Daily 

(Prob.)5 

Wind 3.522 2.55 0.085 0.162 0.01 

Wind + N-1 13.5 13.13 10.45 20.37 9.62 

Total 17.022 15.68 10.535 20.532 9.63 

Improvement - 7.88% 38.1% -20.6% 43.42% 
 

1Seaonal (traditional) zone model; 2Daily (traditional) zone model; 3The proposed daily (probabilistic) zone 

model with deterministic UC; 4Stochastic UC model with a single zone; 5The proposed daily (probabilistic) 

zone model with stochastic UC. 

The five models are also tested against N-1 contingencies simultaneously with (plus) 

the selected ten wind scenarios; these methods against the N-1 contingencies plus the one 

thousand scenarios are not tested since it is computationally intense (more than 210k 

scenarios per hour per day). The involuntary load shedding of each case is presented in 

Table 5.3. The stochastic UC model with a single zone has the most involuntary load 

shedding, which is 20.37MW since the stochastic UC model with a single zone does not 

account for N-1 contingencies explicitly. The stochastic program only includes an explicit 

representation of the ten wind scenarios and traditional reserve requirements are used to 

protect against N-1 contingencies. The traditional (seasonal) zone model has 13.5MW of 
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expected involuntary load shedding, which is much better than the result of the stochastic 

program. This result is caused by the stochastic UC model including only one reserve zone 

whereas this seasonal model has three zones.  

The load shedding of the daily traditional method is 13.13MW, which is lower than the 

seasonal approach since it predicts the next day’s operating conditions better than the 

seasonal reserve zone model. The daily (probabilistic) zone model with deterministic UC 

has 10.45MW of expected load shedding, which demonstrates its ability to perform better 

than existing practices of using seasonal reserve zones. It also performs better than the daily 

(traditional) reserve zone procedure. The proposed daily (probabilistic) zone framework is 

able to identify congestion and reserve deliverability issues for the following day as it is 

based on probabilistic power flows related to the potential wind scenarios. Even though the 

daily (probabilistic) zone model with deterministic UC is a heuristic, the extensive 

empirical results demonstrate its superior ability to account for deliverability issues of 

reserves. The daily (probabilistic) zone model with stochastic UC performed the best with 

an expected load shedding of 9.62MW. However, while combining the dynamic reserve 

zone model with stochastic programming made an improvement, the solution time is much 

longer (see Table 5.9). 

Table 5.3 also presents the total expected load shedding when adding up the expected 

load shedding for the base-case (no-contingency plus wind scenarios) with the contingency 

case (N-1 contingencies plus wind scenarios). The percent improvements are also shown, 

with respect to the seasonal reserve zone model. The daily traditional method improved the 

result by 7.88%. The daily (probabilistic) zone model with a deterministic UC formulation 

has 10.54MW of load shedding, a 38% improvement over existing reserve zone methods. 
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The daily (probabilistic) zone model with a stochastic UC formulation has the least 

expected load shedding, with 9.63MW of load shedding, but it also has the longest 

computational time (see Table 5.9). The stochastic UC with a single zone result performed 

worse than the seasonal zone model, primarily because there was only one zone imposed. 

While the stochastic programming (single-zone) approach can be improved by imposing a 

similar reserve zone rule within its formulation, the results show that, even though reserve 

policies are approximations, such reserve policies can be very effective. Even as 

computational advances are achieved with stochastic programming algorithms, there will 

continue to be a reliance on such reserve policies. It is critical to advance reserve policies 

and stochastic programming algorithms as well as design algorithms that rely on a balanced 

approach between these methods. 

Note that the presented load shedding results come from contingency (or wind scenario) 

analysis; all solutions would be corrected via out of market corrections as the final day-

ahead schedule must satisfy N-1 and the wind uncertainty. Detailed results for the expected 

load shedding can be found in Table 5.7 and 5.8, which reports the expected load shedding 

for each day (), the number of scenarios that have a violation per one thousand scenarios 

(), and the worst-case single violation for any single hour across the entire day (). 

Table 5.4 Operating Cost and Expected Total Cost ($ Million) 

 Deterministic UC Stochastic UC 

Zonal Model Seasonal Daily 
Daily 

(Prob.) 

Single 

zone 

Daily 

(Prob.) 

Operating Cost  0.651 0.654 0.666 0.636 0.660 

Expected Cost  0.702 0.701 0.698 0.698 0.689 

Improvement - 0.16% 0.64% 0.64% 1.82% 
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Based on the results in Table 5.4, the stochastic UC model with a single zone has the 

least average operating cost, which is $0.636 million. The average operating costs of the 

daily traditional and the seasonal zone methods are similar: $0.654 million and $0.651 

million respectively. The daily (probabilistic) zone model with deterministic UC has the 

highest average operating cost, which is $0.666 million. The daily (probabilistic) zone 

model with stochastic UC has $0.660 million. Detailed results for the operating cost can be 

found in Table 5.9. 

The reported average operating cost above does not account for the fact that the 

solutions are not reliable, i.e., they allow for load shedding. After the original day-ahead 

unit commitment solution is obtained, contingency analysis is performed and, if the 

solution does not satisfy N-1, then out of market corrections are necessary. It is difficult to 

quantify the costs of the out of market corrections relative to the quantity of load shedding 

as the out of market corrections are based on operator knowledge. Furthermore, the process 

of adjusting day-ahead unit commitment schedules to achieve reliable solutions will 

become more difficult and costly in the future with higher levels of intermittent renewables. 

If the load shedding costs are approximated with an adjustment cost of $3,000/MW, the 

stochastic plus dynamic reserve zone model have the lowest expected total cost. Such a 

result implies the method improves the economic efficiency by 1.82% comparing with the 

seasonal model. Note that the number of violations and/or the size of the single worst 

violation may be a better indicator in regards to the costs to perform the out of market 

corrections as compared to the expected load shedding. In regards to these other metrics, 

the proposed methods perform even better in comparison to existing techniques (see the 

detailed results in the Appendix). Future work will focus on applying out of market 
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corrections procedures in order to determine a more accurate cost assessment of these 

methods.  

5.8  Computational Complexity 

All problems were solved using CPLEX12.2 with a 3.6GHz processor and 48GB RAM; 

the optimality gap was set to 0.01% for the deterministic UC problems. From Table 5.5, 

the proposed method has a similar solution time as compared to the other deterministic 

approaches.  

Table 5.5 Average Solution Time for Deterministic UC (s) 

Zone model Seasonal Daily (Traditional) Daily (Probabilistic) 

Solution time 18 23 26 

 

From Table 5.6, the extensive form stochastic UC problems take much longer time to 

solve in comparison to deterministic formulations. While Benders’ decomposition can be 

used to improve the solution time of stochastic UC, the solution time is still not as good as 

deterministic formulations and there is also a problem with scalability for large-scale 

systems today. Larger optimality gaps may improve the solution time but then the solution 

quality is generally worse. 

Note that there are a variety of decomposition algorithms that can be applied to try to 

improve the computational performance of stochastic unit commitment, e.g., Lagrange 

relaxation (LR), progressive hedging (PH), Benders’ decomposition, as well as others. For 

this IEEE test case, Benders’ decomposition did not improve the solution time dramatically.  

Table 5.6 Average Solution Time for Extensive Form Stochastic UC (s) 

Zone model Single zone Daily (Probabilistic) 

Benders No Yes Yes No 

Optimality gap 0.01% 0.01% 0.1% 0.01% 
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Solution time 339 321 90 505 
 

For this particular stochastic unit commitment formulation, the subprolem for the 

Benders’ decomposition approach is a feasibility problem and the subproblem formulation 

can be broken into ten independent subproblems that can be solved in parallel. This is 

possible as there are no constraints binding one scenario to another scenario; scenarios are 

only tied together through the first stage decisions, which are determined in the master 

problem and fixed within the subproblem formulation for Benders’ decompsition. This 

allows for these independent subproblems to be solved in parallel but note that the reported 

solution times reflect a sequential procedure for solving the subproblems; with only ten 

subproblems, which are all linear programs, the improvement in solution time is minimal 

for this particular experiment as the majority of the time is spent solving the master problem. 

However, for larger systems and when there are more scenarios, it would be beneficial to 

solve the subproblems in parallel.  

While Benders’ decomposition did not dramatically improve the solution time over the 

extensive form stochastic unit commitment problem, it is expected that, for large-scale 

models, it will perform better than an extensive form formulation that will have a massive 

memory requirement. However, this still does not mean that Benders’ decomposition will 

scale well. Benders’ decomposition is known to have a bloat problem; at each iteration, 

additional cuts are applied to the master problem and it is possible for the master problem 

to grow in size such that it takes too long to solve or there can be a memory issue for the 

master problem as well. On the other hand, this work has demonstrated that better reserve 

rules can be used within a deterministic unit commitment problem formulation to improve 

the reliability of the proposed SCUC solution without substantial increases in costs; 
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furthermore, such deterministic SCUC formulations will not suffer from scalability issues 

like stochastic programming formulations.   

More recent research has examined horizontal decomposition algorithms like 

progressive hedging (Benders’ decomposition is a vertical decomposition approach), [64]-

[66]. While PH cannot guarantee an optimal solution for mixed-integer programs, it has 

the advantage that it is trivial to parallelize and the problem structures at each iteration do 

not grow in complexity (suffer from bloating) like Benders decomposition. The drawback 

of PH is that it requires parameter tuning. PH may also struggle to converge. Overall, the 

preferred approach to handle stochastic unit commitment is not to rely fully on 

deterministic reserve policies or stochastic programming algorithms but to have a balanced 

approach; ongoing work is aimed at using the advances presented within this section to 

help improve the convergence of PH for stochastic unit commitment.  
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Table 5.7 Expected Load Shedding with Wind (MW) 

 Deterministic UC Stochastic UC 

Date Seasonal Daily Daily (Probabilistic) Single Zone Daily (Probabilistic) 

2-January 6.5 (4.7, 116)1 0.684 (2.1, 24) 0.36 (1.9, 14) 0.12 (0.6, 13) 0.09 (0.57, 10) 

9-January 0 0 0 0 0 

14-January 6.16 (3.5, 109) 0 0 0.31 (1.5, 15) 0 

24-January 8.44 (4.6, 121) 0.16 (1.2, 11) 0 0.16 (0.9, 11) 0 

5-February 0 0 0 0.1 (0.4, 11) 0 

7-February 0 0 0 0.62 (1.0, 31) 0 

14-February 0 0 0 0.64 (1.1, 30) 0 

22-February 0 0 0 0 0 

3-March 5.7 (3.3, 93) 8.55 (4.2, 132) 0 0 0 

11-March 12.08 (6.5, 132) 7.52 (5.4, 87) 0.66 (1.3, 33) 0 0 

14-March 0 0 0 0 0 

26-March 3.38 (5.2, 41) 13.68 (8.5, 127) 0 0 0 
1  (, );  represents the expected load shedding (MW),  represents the number of scenarios that have a violation per one thousand 

scenarios, and  represents the largest violation (MW) from any single hour across the entire day. 
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Table 5.8 Expected Load Shedding with Wind and N-1 Contingencies (MW) 

 Deterministic UC Stochastic UC 

Date Seasonal Daily Daily (Probabilistic) Single Zone Daily (Probabilistic) 

2-January 15 (2.5, 150)2 13.5 (3, 138) 10.7 (2.2, 109) 25.4 (3.2, 249) 9 (1.9, 117) 

9-January 14.6 (2.4, 112) 12.2 (2.4, 90) 12.1 (2.3, 90) 21.6 (3, 235) 10.3 (2.6, 90) 

14-January 11.7 (1.6, 142) 9.7 (1.5, 109) 7.7 (1.2, 90) 16.8 (2.6, 235) 5.4 (1.1, 84) 

24-January 16.8 (3, 156) 20.2 (3.2, 212) 11.5 (2.6, 133) 30.2 (4.2, 270) 10.5 (2.3, 130) 

5-February 15.6 (2.8, 183) 14 (2, 142) 13.1 (2.2, 118) 31.1 (3.8, 284) 12.5 (2, 121) 

7-February 15.4 (3.4, 186) 14.4 (3.2, 187) 12.8 (3, 110) 30.3 (3.6, 280) 12.3 (2.5, 105) 

14-February 15.4 (2.4, 193) 15.4 (2.4, 193) 9.6 (1.6, 111) 20.1 (3, 275) 9.3 (1.6, 107) 

22-February 12.9 (2, 145) 13 (2, 148) 11.2 (1.6, 82) 20.8 (3, 287) 10.7 (0.6 , 90) 

3-March 7.7 (1.2, 108) 8.5 (1.3, 158) 7.9 (1.4, 108) 8.9 (1.4, 132) 7.5 (1.2, 103) 

11-March 11 (1.7, 157) 10.6 (1.6, 149) 7.2 (1.2, 87) 11.7 (1.8, 189) 8.3 (1.4, 87) 

14-March 11.8 (2, 171) 12.1 (2, 183) 11.7 (2, 169) 12.7 (2, 90) 10.8 (2, 158) 

26-March 14.1 (2.4, 142) 14 (2.4, 142) 9.9 (1.7, 120) 14.8 (2.4, 166) 8.8 (1.6, 124) 
2  (, );  represents the expected load shedding (MW),  represents the number of scenarios that have a violation per one thousand 

scenarios, and  represents the largest violation (MW) from any single hour across the entire day. 
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Table 5.9 Operating Cost ($Million) 

 Deterministic UC Stochastic UC 

Date Seasonal Daily Daily (Probabilistic) Single Zone Daily (Probabilistic) 

2-January 0.8330 0.8510 0.8763 0.7707 0.8540 

9-January 1.3884 1.3910 1.3936 1.3736 1.3927 

14-January 0.4926 0.5000 0.5127 0.4829 0.5042 

24-January 0.6587 0.6748 0.7000 0.6309 0.6840 

5-February 0.7993 0.7977 0.8037 0.7873 0.8000 

7-February 0.8610 0.8668 0.8700 0.8460 0.8677 

14-Febuary 0.6352 0.6352 0.6724 0.6286 0.6631 

22-February 0.7400 0.7370 0.7423 0.7251 0.7465 

3-March 0.2153 0.2137 0.2240 0.2133 0.2161 

11-March 0.1878 0. 1886 0.1980 0.1864 0.1960 

14-March 0.6514 0.6505 0.6524 0.6480 0.6508 

26-March 0.3446 0.3424 0.3510 0.3412 0.3499 
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6. HOURLY RESERVE ZONE DETERMINATION AND ITS MARKET 

IMPLICATIONS 

6.1 Introduction 

Independent system operators (ISOs) operate the power grid with the goal of 

maximizing the market surplus. Day-ahead market (DAM) and real-time market (RTM) 

models approximate physical and operational system constraints within security-

constrained unit commitment (SCUC); generator capacity, ramping, and transmission 

constraints are important physical considerations that influence market decisions.  

Several deterministic reserve policies have been proposed to address reserve 

deliverability. References [67], [68] constrain power flows based on participation factors 

that estimate how generators respond under different scenarios. Chen at el. [67] utilizes the 

zonal reserve requirements and contingency-constraint model, in which the largest post-

contingency state is modelled, and the reserve price include market wide component, zonal 

component, and the contingency-constraint component. Their proposed model outperforms 

the original setting with operator manual disqualification in sending the correct price signal, 

which indicates that the contingency-constraint formulation reduce the distortion of reserve 

disqualification on reserve and energy price. Reference [69] proposes an algorithm for 

reserve disqualification that can be applied within the market model. MISO’s current 

practice is to re-evaluate zones quarterly, unless there is an emergency [70], but MISO has 

also shown interest in updating zones daily or even hourly [71].  

In Chapter 5, a reserve zone determination method is proposed to update the reserve 

zone on a daily basis. However, one barrier to updating zones more frequently is 

stakeholder opposition due to uncertainty in regards to their participating zone(s). However, 
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updating zones more frequently may improve market efficiency and reduce the need for 

out of market corrections, like reserve disqualification, which distort the market price 

signals and incur additional costs. 

In this chapter, the market implications of implementing dynamic reserve zones in 

systems with wind generation will be examined. The focus is on how wind uncertainty 

affects the deliverability of contingency reserves. The proposed dynamic reserve model in 

Chapter 5 will be used to create hourly zones, at the day-ahead time stage, and the model 

of [69] is used to disqualify reserves so that the system is reliable in real-time. The primary 

hypothesis is that dynamic reserve zones will require fewer reserve disqualifications in 

order to acquire a reliable solution.  

In order to carry out this analysis, a market settlement scheme is proposed for use with 

the reserve disqualification model of [69] for the test case I. Reserves are procured on a 

per-contingency basis, allowing reserves to be disqualified for a subset of contingencies. 

This settlement policy introduces a separate reserve product for each contingency, so that 

reserve providers cleared in the RTM are compensated only for contingencies for which 

they are qualified to provide ancillary service.  

More importantly, Chapter 5 is not adequate to produce incentive for the industry 

application of the proposed hourly reserve determination method. This Chapter is also 

supposed to bridge the proposed method with real-world system operation by studying the 

feasibility of the proposed method’s application based on real-life system operational rules 

and models. In the test case II, approximate MISO’s SCUCmodel and look-ahead unit 

commitment model will be used to better approximate the MISO’s market clearing process 

and to improve the quality and credibility of the numerical results. 
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In real-word operations, unreliable market solutions will be adjusted by operators. 

Evaluating the true operating cost using an assumed fixed value of lost load (VOLL) can 

be inaccurate. To obtain a better assessment of the cost of out-of-market corrections 

(reserve disqualifications) [72], unreliable solutions from the market SCUC are corrected 

based on similar procedures implemented today by ISOs. Reserve disqualifications occur 

after both the day-ahead SCUC and the look-ahead short-term SCUC. An accurate 

assessment of the actual costs to correct unreliable solutions is difficult to obtain and is 

generally overlooked as such ad-hoc practices are not well documented. This chapter 

utilizes an algorithm that mimics MISO’s reserve disqualification process to accurately 

account for such reserve disqualification costs. Furthermore, a statistical technique 

(confidence intervals) is used to provide a proper statistical assessment of the benefits of 

the proposed reserve rule refinement. 

6.2 Hourly Reserve Zone Determination 

To determine the reserve zone on an hourly basis, the weight for each transmission line 

should be updated hourly by using WPTDFD metric. The proposed hourly reserve zone 

determination method is expected to involve the uncertainty and variability of renewable 

resources (e.g, wind) and load based on the probabilistic power flow, which involves the 

information of renewable resources. 

To identify the critical transmission lines, two factors should be considered, the 

expected power flow and the deviation of power flow. To obtain the information of 

expected power flow and the deviation of power flow, simulations are needed to generate 

the sufficient power flow information based on different wind scenarios and contingencies. 

The procedures of generating weights and reserve zone are shown below, 
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Step 1 A deterministic unit commitment is solved based on predetermined zones. The 

unit commitment solution is then fixed for Step 3.  

Step 2 Generate the uncertainty scenarios in order to characterize the uncertainty and 

variability of wind power output and load. 

Step 3 Perform N-1 contingency analysis with generated wind scenarios while 

minimizing violations and record the power flows for the various wind 

scenarios. The expected power flow on transmission line k at hour t, represented 

by 𝑚𝑘𝑡 , and the standard deviation of power flow of transmission line k at 

period t, i.e., 𝜎𝑘𝑡, are calculated for each transmission line. 

Step 4 
Calculate each weight, 𝜋𝑘𝑡, for transmission line k: 𝜋𝑘𝑡 = ( 

𝑚𝑘,𝑡

𝐹𝑘
𝑚𝑎𝑥 +

2𝜎𝑘,𝑡

𝐹𝑘
𝑚𝑎𝑥 )2; 

the term is squared in order to place more attention to the critical paths.  

Step 5 If there is any violation at period t for any wind scenario and contingency, 

perform the statistical clustering algorithm (K-means) to partition the reserve 

zones based on WPTDFD and the weights from Step 4. Otherwise, the reserve 

zone at period t will remain the same as pre-determined zone. 

 

6.3 Reserve Disqualification 

The electric power system is one of the most complex engineered systems to date. 

Power systems scheduling problems are very complex and challenging optimization 

problems. Due to the approximations of existing commercial grade SCUC and SCED 

models, such as uncertainties caused by forecasting errors or differences between the 
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linearized DC power flow and the actual AC power flow, there are various stages where 

the approximate market solutions are corrected by system operators. In such situations, 

corrections to the market solution will be needed to guarantee the system reliability when 

the original dispatch solution fails to satisfy system operating requirements. CAISO refer 

such out of market corrections (OMCs) as uneconomic adjustments or exceptional 

dispatches [21]-[22]. While CAISO states that such uneconomic adjustments are used to 

obtain feasible solution when using economic bids alone could not guarantee feasibility, 

note that this is not a complete description. SCUC and SCED models include many 

mathematical approximations, e.g., a linearized power flow, and no such economic bid can 

correct for such mathematical approximations. The Electric Reliability Council of Texas 

(ERCOT) refers to such OMCs as out of merit capacity and out of merit energy. CAISO 

and ERCOT collectively spent roughly $80 million in 2006 on the OMCs [20] [23]. 

Intra-zonal congestion may occur after contingency and cause undeliverability of 

reserve, which may harm the system reliability. One way to mitigate intra-zonal congestion 

is to acquire a reserve margin within each reserve zone and ATC margin of reserve sharing. 

For instance, PJM deploys operating reserve at least 1.5 times of the largest generation loss. 

The second way is that operators may improve system reliability by disqualifying reserves 

that are not deliverable for one contingency, and reserve disqualification is a potential out 

of market correction. Only qualified resources may then contribute towards the reserve 

requirements the next time the schedule is updated. The updated model with contingency-

specific reserve disqualification is shown by (6—1)–(6—3) [69]. The binary parameter 

Γ𝑔𝑐𝑡 designates if resource 𝑔 is qualified to provide reserve for contingency 𝑐 in period 𝑡. 
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Note that the reserve sharing variable 𝑟̃𝑧𝑐𝑡
𝑆𝑃𝐼𝑁  is indexed by destination contingency 𝑐 

instead of destination zone 𝑗.  

 ∑ 𝑟̃𝑧𝑐𝑡
𝑆𝑃𝐼𝑁

𝑧∈𝑍 ≥ 𝑝𝑐𝑡 + 𝑟𝑐𝑡
𝑆𝑃𝐼𝑁, ∀𝑐 ∈ 𝒢(𝑗), 𝑡 ∈ 𝑇 (6—1) 

 𝑟̃𝑧𝑐𝑡
𝑆𝑃𝐼𝑁 ≤ ∑ Γ𝑔𝑐𝑡𝑟𝑔𝑡

𝑆𝑃𝐼𝑁
𝑔∈G(𝑧) , ∀𝑐 ∈ 𝐶, 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇 (6—2) 

 𝑟̃𝑧𝑐𝑡
𝑆𝑃𝐼𝑁 ≤ 𝑆𝑧,𝑧(𝑐),𝑡  ∀𝑧 ∈ 𝑍, ℎ ∈ 𝑍, 𝑡 ∈ 𝑇 (6—3) 

Equations (6—1)–(6—3) enable finer management of reserve locations, provided that 

proper values for 𝛤𝑔𝑐𝑡can be determined. MISO and ISO-NE manually disqualify reserves 

after the market model has cleared and there has been sufficient time to analyze reliability 

[73]–[75]. The DAM does not reflect these decisions because reserves are disqualified post 

hoc. The algorithm of reference [69] is used to simulate reserve disqualification decisions 

whenever the zonal reserve model provides a solution that is not N-1 reliable. In this thesis, 

this reserve disqualification algorithm is defined as Type I reserve disqualification 

algorithm. 

MISO employs “manual dispatch” when it needs to adjust the dispatch solution to 

obtain a reliable solution [15]. During real-time operations, it is common that some 

allocated reserves may be undeliverable, which will harm the system reliability if they are 

deployed. To alleviate the potential risk to system reliability, operators will rank the nodes 

based on the sensitivities on the congested transmission lines and label the resources on the 

top ranked nodes as “not reserve qualified.” The process is defined as reserve 

disqualifications at MISO. Such rule of thumb manual correction procedures are decided 

outside the energy and ancillary service co-optimization process and lead to uneconomic 

solutions. In some circumstances, operators may disqualify a large number of reserves to 

guarantee sufficient amount of deliverable reserve, which may incur significant costs. 
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Furthermore, implementing reserve disqualifications will impact the market outcomes for 

its stakeholder due to price distortion. To reduce the need for manual reserve 

disqualifications determined by operators, it is important to improve existing reserve 

requirement formulations in order to enhance the market efficiency while maintaining 

reliability. 

To mimic the reserve disqualification at MISO, for each period, resource with 1MW 

more power injection that aggravates most on binding transmission constraints will be 

disqualified. Reserve disqualification will be repeated until market solution is reliable. In 

this thesis, this reserve disqualification algorithm is defined as Type II reserve 

disqualification algorithm. 

6.4 Case Study I  

Note that this Section is collaborated with Joshua D. Lyon [76]. 

6.4.1 Proposed Market Clearing Process 

The flowchart in Figure 6.1 summarizes the process used to analyze different reserve 

zone policies. Zones partition will be used as an input in this market clearing process. After 

reserve zones have been determined, SCUC is solved to produce the DAM solution based 

on the forecasted wind availability. The commitments decisions will be fixed for generators, 

whose minimum down time less or equal to four hours. 

Several things occur between the DAM and RTM clearings. First, the wind forecast 

improves dramatically as operations move closer to real-time. Operators respond to 

forecast updates by re-dispatching the system and turning on additional generators if 

needed. Operators may also disqualify reserves, if congestion is found to threaten reliability, 
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and then procure additional reserves from available resources at preferred locations. All of 

these changes occur prior to the RTM, which is a spot market that is cleared near real-time. 

 

Figure 6.1 Summary of Analysis of Different Zonal Inputs for a Single Day 

 

Figure 6.2 Dispatch and RTM Simulation for an Individual Wind Scenario 

Figure 6.2 describes the simplified process used in this chapter to simulate actions that 

follow the DAM. It is assumed that wind uncertainty is revealed all at one time and a 24-

hour SCUC is solved to dispatch the system. Additional commitments are allowed for 

generators that have minimum down times of less than five hours. The SCUC solution will 
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represent the RTM solution if it passes contingency analysis without violations. Otherwise, 

the algorithm of [17] is used to disqualify undeliverable reserves and the process is repeated 

until a reliable solution is found. This approach simplifies actual operations in that 1) the 

RTM is solved with an hourly time resolution instead of a five minute period and 2) the 

RTM is cleared with a 24 hour model instead of a series of shorter problems with a rolling 

horizon. This simplified process still approximates the effect of the real-time wind 

availability deviating from the day-ahead forecast. 

6.4.2 Ancillary Services Market Settlements 

Most ISOs clear energy and ancillary services simultaneously using optimization 

engine with consideration of both energy and reserve bids in the objective function [17]. 

The lowest bids that satisfy all physical and operational constraints will be cleared first.  

Market clearing prices are calculated based on dual variables from the market model, 

which reflect shadow prices. Operators will solve the day-ahead unit commitment 

(scheduling) and fix all the commitment variables such that the dual variables can be 

derived from linear programming (pricing run) [77]. Service providers are compensated 

based on these dual variables, e.g., locational marginal prices (LMPs) are used to settle 

energy and reserve marginal prices (RMPs) are used to settle reserves. RMPs increase as 

reserve bids increase if locational reserves are scarce.   

However, ancillary service settlements are complicated by reserve sharing model. For 

instance, ISO-NE has nested zones and uses a settlement policy that assumes reserve 

sharing constraints are always binding in the direction to a child zone, such as a load pocket, 

but never binding in the opposite direction [18]. In this situation, reserve providers are paid 

to provide ancillary service to outside zones because, by assumption, reserve exports are 
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never obstructed by transmission constraints since the reserves would produce a counter-

flow. However, resources are not paid to provide ancillary service to inner zones because 

the binding reserve sharing constraint suggests that additional reserve may not be 

deliverable. However, this type of policy is based on operator’s confidence of interface 

flow predictions. A more general mechanism is presented to acknowledge service provided 

to neighboring zones only when marginal reserves are deliverable. Such a payment scheme 

is provided by (6—4):  

 ϕ𝑔𝑡 = − ∑ Γ𝑔𝑐𝑡𝑟𝑔𝑡
𝑆𝑃𝐼𝑁𝜆𝑧(𝑔),𝑐,𝑡𝑐∈𝐶 , (6—4) 

Γ𝑔𝑐𝑡𝑟𝑔𝑡
𝑆𝑃𝐼𝑁 is the amount of cleared spinning reserve and 𝜆𝑧𝑐𝑡 is the dual variable of  (6—

2). Economic theory specifies that the dual variable 𝜆𝑧𝑐𝑡 is a shadow price that reflects the 

marginal value of reserve in zone ℎ providing ancillary service for contingency 𝑐 [78]. 

Note that the payments in (6—4) compensate reserve service providers on an individual 

contingency basis.  

Cleared reserve will have no marginal value when reserve exceeds the sharing 

capability since it is assumed that additional reserve of zonal model would not be 

deliverable. Equation (6—5) describes the quantity of cleared reserve that the model values 

for each contingency. In Chapter 6 Section 6.4.3, a proposed algorithm is used to measure 

how much of this cleared reserve is deliverable in real-time market.  

 Δ𝑔𝑐𝑡 = {
Γ𝑔𝑐𝑡𝑟𝑔𝑡

𝑆𝑃𝐼𝑁      if  𝑟̃𝑧(𝑔),𝑐𝑡 < 𝑆𝑧(𝑔),𝑧(𝑐),𝑡

 0            otherwise           
 (6—5) 

6.4.3 Quality of Service 

As an additional measure, an algorithm is proposed to assess the real-time performance 

of ancillary services procured in the DAM. To incentivize the supply of ancillary services, 
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generators should be compensated based on the quality of service provided, e.g., the 

deliverability of reserve. It is expected that the reserve would be deliverable in the event of 

a random disturbance. Model (6—6)–(6—12) is used to evaluate the deliverability of 

reserve with the respect of a single generator 𝑔 following various generation contingencies. 

This model provides a basis for evaluating different reserve policies to measure how well 

the model anticipates the value of reserves in real-time. More precisely, (6—6)–(6—12) 

identify reserves that are not deliverable when the DAM anticipated they would be. 

Let 𝐹𝑘
𝑚𝑎𝑥 be the rating of line 𝑘 and let 𝑅𝑔𝑡

+  and 𝑅𝑔𝑡
−  be the available reserves in the up 

and down directions from resource 𝑔 in period 𝑡. For contingency 𝑐, let 𝐼𝑛,𝑐
𝑡  represent the 

net injection (generation minus load) at node 𝑛 prior to re-dispatch and 𝑥𝑔𝑐𝑡
+ − 𝑥𝑔𝑐𝑡

−  be the 

amount of reserve exercised (dispatched) from resource 𝑔. Equations (6—7) and (6—8) 

impose flow balance and linear transmission constraints, (6—9) models locational 

injections, and (6—10) constrains reserve availability. The model considers spinning 

reserves but can be generalized to include other reserve products such as non-spinning 

reserve.  

Ideally, a generator in zone z paid to provide Δ𝑔𝑐𝑡 of reserve for contingency 𝑐 should 

be able to dispatch that amount. If this amount of reserve cannot be exercised during a 

coordinated re-dispatch, then the resource provides a lower quality of service than 

anticipated by the zonal reserve model. Equation (6—11) measures how much reserve is 

dispatched from generator 𝑔, where 𝑠𝑔𝑐𝑡 represents the shortfall below Δ𝑔𝑐𝑡. The objective 

function (6—6) encourages a small shortfall: if the optimal solution is zero, then reserve 

from generator 𝑔  can be dispatched up to the anticipated level. A large penalty 𝑀  is 

included in the objective function to discourage down ramping. No generator may ramp 
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down during this process unless it is absolutely necessary to ensure reliability. Note that 

this assumption is not made to reflect actual operations; this model only estimates the 

quality of service provided by generator 𝑔 by measuring its ability to deliver its procured 

reserve.  

Minimize: ∑ ∑ ( 𝑠𝑔𝑐𝑡 + 𝑀 ∑ 𝑥𝛾𝑐𝑡
−

𝛾∈𝐺 )𝑡∈𝑇𝑐∈𝐶  (6—6) 

Subject to: ∑  𝑖𝑛𝑐𝑡𝑛∈𝑁 = 0, ∀𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇 (6—7) 

 −𝐹̅𝑘
𝑚𝑎𝑥 ≤ ∑ 𝑃𝑇𝐷𝐹𝑛𝑘𝑖𝑛𝑐𝑡𝑛∈𝑁 ≤ 𝐹̅𝑘

𝑚𝑎𝑥, ∀𝑘 ∈ 𝐾, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇 (6—8) 

 𝑖𝑛𝑐𝑡 = 𝐼𝑛𝑐𝑡 + ∑ (𝑥𝛾𝑐𝑡
+ − 𝑥𝛾𝑐𝑡

− )𝛾∈𝐺(𝑛) , ∀𝑛 ∈ 𝑁, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇 (6—9) 

 𝑅𝑔𝑡
− ≤ 𝑥𝑔𝑐𝑡

+ − 𝑥𝑔𝑐𝑡
− ≤ 𝑅𝑔𝑡

+ , ∀𝑔 ∈ 𝐺, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇 (6—10) 

 𝑥𝑔𝑐𝑡
+ ≥ 𝛥𝑔𝑐𝑡 − 𝑠𝑔𝑐𝑡, ∀ 𝑐 ∈ 𝐶 ∖ 𝑔, 𝑡 ∈ 𝑇 (6—11) 

 𝑥𝑔𝑐𝑡
+ , 𝑥𝑔𝑐𝑡

− ≥ 0, ∀ 𝑐 ∈ 𝐶, 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (6—12) 

An ideal market model would not pay generators for reserves that are unavailable. The 

proportion of reserve properly characterized as deliverable for each contingency is shown 

by 𝑄𝑂𝑆 in (6—13), where 𝑣𝑔𝑐𝑡 = 1 − 𝑠𝑔𝑐𝑡. Reserve policies that result in low values for 

𝑄𝑂𝑆𝑔,𝑐
𝑡  poorly anticipate the quality of service provided by generator 𝑔. Equation (6—14) 

defines the average quality of service of reserves, 𝑄𝑂𝑆̅̅ ̅̅ ̅̅ , procured in the DAM. Efficient 

models should have 𝑄𝑂𝑆̅̅ ̅̅ ̅̅  close to one, indicating that a large portion of reserves procured 

in the DAM are deliverable in real-time. 

 𝑄𝑂𝑆𝑔,𝑐
𝑡 =

𝑣𝑔𝑐𝑡

𝛥𝑔𝑐𝑡
 (6—13) 

 𝑄𝑂𝑆̅̅ ̅̅ ̅̅ =
∑ ∑ ∑ 𝑣𝑔𝑐𝑡𝑐∈𝐶𝑔∈𝐺𝑡∈𝑇

∑ ∑ ∑ 𝛥𝑔𝑐𝑡𝑐∈𝐶𝑔∈𝐺𝑡∈𝑇
 (6—14) 
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6.4.4 Reserve Sharing 

Reserve sharing is a practice of estimating how much reserve can be transferred 

between reserve zones. Reserve sharing can improve system economic efficiency by 

lowering the total reserve quantity required across the system. One way of modeling 

reserve sharing relies only on off-line studies to estimate available transfer capability (ATC) 

between zones, for example, MISO determines ten-minute requirements two days ahead 

by simulating the reserve deliverability between zones [71]. However, ATC estimates, 

based on off-lines study, may not be accurate since the real operating condition may be 

different from the off-line study. The other approach is dynamically updating reserve 

sharing capability based on the interface flows in the current DAM or RTM solution with 

a pre-determined capacity margin. That is, additional reserves are required for zones that 

import more power than anticipated and vice versa. PJM and ISO-NE employ such 

dynamic reserve sharing models in DAM and RTM [18], [75]. For both these two 

approaches, intra-zonal congestion may prohibit the reserve sharing. Dynamic reserve zone 

is able to lower intra-zonal congestion such that improve the efficiency of reserve sharing 

model. 

Equations (6—15)–(6—17) represent the basic structure of a dynamic reserve sharing 

model [69], which is a generalization of (1). This formulation allows reserve to be shared 

between adjacent zones and is similar to the nested zone formulation used in ISO-NE [18]. 

The variable 𝑟̃𝑧,𝑗
𝑡  represents how much reserve in zone 𝑧 is classified as deliverable to zone 

𝑗 in period 𝑡. Equation (6—15) requires there to be enough portable reserve to cover any 

generator contingency, (6—16) models reserve held within the zones, and (6—17) limits 

how much reserve may be shared between zones.  



 

94 

  

 ∑ 𝑟̃𝑧𝑗𝑡𝑧∈𝑍 ≥ 𝑝𝑐𝑡 + 𝑟𝑐𝑡, ∀𝑗 ∈ 𝑍, 𝑐 ∈ 𝐺(𝑗), 𝑡 ∈ 𝑇 (6—15) 

 𝑟̃𝑧𝑗𝑡 ≤ ∑ 𝑟𝑔𝑡𝑔∈𝐺(ℎ) , ∀𝑗 ∈ 𝑍, 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇 (6—16) 

 𝑟̃𝑧𝑗𝑡 ≤ 𝑆𝑧𝑗𝑡, ∀𝑗 ∈ 𝑍, 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇 (6—17) 

The sharing bounds (𝑆) may be based on off-line analysis and dynamically updated as 

flows change on zonal interfaces [18]. The above formulation is suitable for modeling 

reserve sharing between adjacent zones. Nested zones also exist in practice in ISO-NE [18]. 

Nested zones assume that reserve is only constrained in the direction of the central zone, 

which may be a load pocket. Reserve sharing models may mischaracterize congestion, 

making it necessary for operators to adjust the solution, which may be done by 

disqualifying reserves located behind transmission bottlenecks.  

6.4.5 Modified IEEE RTS96 Test Case  

A modified IEEE Reliability Test System (RTS) 96 is used to examine the market 

impact of the proposed dynamic reserve policies. The system has 73 nodes, 99 units, and 

117 lines, and 51 loads [49], [79]. Modifications to the test case follow [68], [69]: line (11–

13) is removed, 480 MW of load is shifted from nodes 14, 15, 19, and 20 to node 13, and 

the capacity of line (14–16) is decreased to 350 MW. These modifications affect each of 

the three identical areas within the system. A small amount of congestion is induced by 

removing hydro from all other areas and tripling the capacity of inexpensive hydro power 

in the area consisting of nodes 1–24. 

Wind farms with 1000 MW of capacity are placed at nodes 23 and 47 respectively, 

which are both central locations containing 660 MW of coal generation each. The wind is 

placed at central parts of the system because isolated areas may require additional 

transmission investments that are beyond the scope of this thesis. These two wind farms 
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comprise about 16% of the installed capacity. Wind energy has a production bid of zero 

and can be accepted up to the forecasted amount. 

The area consisting of nodes 49–73 is usually import constrained because there are no 

local wind or hydro plants. Statistical clustering is used to partition zones based on 

WPTDFDs (8). The line weights 𝜋𝑙 are calculated by simulating the system dispatch using 

a single zone model. Seasonal zones are calculated as in Chapter 5, where line weights are 

based on average line utilizations over a season. The seasonal zones are shown in Figure 

6.3. The dynamic zone line weights are based on post-contingency flows. For the dynamic 

reserve zone process, the number of zones is one if there are no post-contingency violations 

and the number of zones is three otherwise.  

 

Figure 6.3 RTS96 Two Wind Locations and Three Seasonal Reserve Zones. 

Only spinning reserves are considered in this analysis. Each generator’s reserve bid is 

25% of the energy bid, as is done by [80]. Constraint (7) limits reserve sharing by the 

import capability 𝑆 between zones. Similar as [75], the sharing limit is defined to equal the 

pre-determined interface capacity minus the power flows. The interface capacity is taken 

as the aggregate capacity across the individual lines less 5% because it may not be able to 
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fully utilize every line during a coordinated contingency response. This is a simplified 

representation of the more sophisticated reserve sharing assumptions used in practice.  

6.4.6 Wind Modeling 

Autoregressive integrated moving average (ARIMA) models are popular for describing 

how wind speed changes over time [81]. They are particularly convenient for simulation 

because movement is completely dictated by Gaussian error terms that can be produced 

using a random number generator. ARIMA generalizes autoregressive (AR) and moving 

average (MA) models, which capture temporal correlation present in the data. Reference 

[82] proposes an efficient way to also account for spatial correlation between wind sites by 

generating statistically dependent error terms across locations. Wind modeling in this 

section adopts the methodology of [82] to generate wind scenarios that have both spatial 

and temporal correlations. 

The wind data for the first two weeks of August 2005 are taken from NREL’s Western 

Wind dataset [83]. Figure 6.4 (a) maps 510 individual turbines that are distributed across 

two clusters; these clusters are aggregated to create two separate wind locations. Hourly 

ARIMA models are fit for each wind location and wind speeds are then converted to power 

using an estimate of the aggregate power curve of each cluster. A seasonal ARIMA model 

is adopted that includes an AR term for the most recent hour and a 24-hour MA term with 

seasonal differencing to capture daily seasonality. Since the model is fit using only 

historical data, the deviation between samples tends to exceed typical forecast errors seen 

in practice [84]. This bias is corrected by normalizing the sampled wind speeds so that the 

power stays within 20% of the mean approximately 80% of the time. Figure 6.4 (b) shows 

an example of 15 wind scenarios sampled from this model.  
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Figure 6.4 (a) Wind Data locations. (b) Fifteen Scenario Simulation Samples 

6.4.7 Numerical Results 

The seasonal and dynamic zones are analyzed across all seven days of the peak week 

(from Day 351 to Day 357). Each day is tested against 100 wind scenarios (different from 

100 wind scenarios used to generate dynamic zones). The same wind forecast and scenarios 

are used for each day; thus, uncertainty is highest on the weekend day 356 and day 357. 

The peak day has 10.8% energy from forecasted wind and the lowest load day has 14.5% 

energy from forecasted wind. 

Figure 6.5 (a) shows the number of reserve disqualifications for the seasonal and 

dynamic zones; each marker represents a single wind scenario for a day. Based on Figure 

6.5 (a), the number of reserve disqualifications required by dynamic zone is much fewer 

than that of seasonal zone: note that only one dynamic zone scenario exceeds 25 

disqualifications whereas half of the seasonal zone simulations exceed this amount. More 

reserve disqualifications are required as wind increases relative to load, which suggests that 

dynamic zones could offer even more improvement as wind penetration increases. 



 

98 

  

 

Figure 6.5 Reliability and Quality of Service Statistics. (a) The Number of Reserve 

Disqualifications for Different Wind scenarios, Where Marker Size Represents the Sum 

of Contingency Violations Prior to Reserve Disqualification. (b) Quality of Service, 𝑄𝑂𝑆̅̅ ̅̅ ̅̅ , 

Where Marker Size Represents the Number of Reserve Disqualifications 

Table 6.1 Average System Reliability Results over One Hundred Wind Scenarios 

Day 
Initial Violations (MW) #DQs QOS 

Seasonal Dynamic Seasonal Dynamic Seasonal Dynamic 

351 15.13 0.00 9.6 0.0 79.8% 79.3% 

352 0.00 0.00 0.0 0.0 81.5% 78.9% 

353 30.85 0.03 16.5 0.0 81.2% 80.2% 

354 127.20 0.01 44.7 0.0 80.7% 79.7% 

355 31.16 0.00 21.6 0.0 84.2% 90.5% 

356 1149.02 12.79 216.8 7.3 79.4% 89.3% 

357 781.56 0.76 167.0 1.0 80.0% 90.8% 

Average 304.99 1.94 68.0 1.2 81.0% 84.1% 
 

 

Table 6.2 Average System Market Results over One Hundred Wind Scenarios for 

Operating Cost and Load Payment 

Day 
Forecasted 

Wind/Load 

Operating Cost Load Payment 

Seasonal Dynamic Seasonal Dynamic 

351 11.64% $1,968,844 $1,965,208 $ 8,924,080   $9,127,960 

352 10.83% $2,629,842 $2,623,638 $13,002,000  $14,009,800 

353 11.05% $2,426,831 $2,424,256 $10,897,400  $10,754,000 

354 11.28% $2,236,601 $2,236,087  $ 9,088,700   $9,651,320 

355 11.52% $2,058,041 $2,054,286  $ 8,341,460   $8,397,860 

356 14.07% $1,032,966 $1,026,275  $ 2,268,850   $2,300,890 

357 14.45% $970,591 $966,097   $ 2,463,550   $2,147,260 

Average 12.12% $1,903,388 $1,899,407  $ 7,855,149   $8,055,584 
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Note that the size of the marker in Figure 6.5 (a) represents the sum of contingency 

violations of the SCUC solution prior to any reserve disqualification. For example, the sum 

of contingency violations (across all periods, wind scenarios, and contingencies) per day 

for the seasonal zonal approach is over 300 MW on average, whereas the dynamic zones 

have a sum of 2 MW on average. Table 6.1 presents the average system reliability results 

over 100 wind scenarios. From Table 6.1, the initial violation of DAM of dynamic zone is 

much lower than that of seasonal zone, and solutions with higher initial violations require 

more number of reserve disqualifications to obtain an reliable solution in the RTM. These 

results indicate that dynamic zones can significantly improve reliability and thereby 

significantly reduce the number of reserve disqualifications.  

Figure 6.5 (b) presents the results of the quality of service 𝑄𝑂𝑆̅̅ ̅̅ ̅̅  between seasonal and 

dynamic zones. Values of  𝑄𝑂𝑆̅̅ ̅̅ ̅̅  indicate that the percentage of reserve procured from the 

DAM is deliverable in real-time. The upward slope in Figure 6.5 (b) indicates that more 

reserve can be delivered on low load days and during individual scenarios that have high 

wind availability. Conventional generators generally provide more reserve when wind 

generation is high. The wind scenarios that exceed the forecast can be interpreted as 

additional unanticipated capacity, which helps the entire system achieve a higher 𝑄𝑂𝑆̅̅ ̅̅ ̅̅  

during the contingency analysis screening. The marker size in Figure 6.5 (b) represents the 

number of reserves disqualified. From Table 6.1 and Figure 6.5 (b), the average quality of 

service is higher using dynamic zones, especially when the number of reserve 

disqualifications performed from the seasonal model is large. These results indicate that 

overall dynamic zones tend to result in higher 𝑄𝑂𝑆̅̅ ̅̅ ̅̅  and that 𝑄𝑂𝑆̅̅ ̅̅ ̅̅  is lower when more 

reserve disqualifications are necessary.  
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Table 6.3 Average System Market Results over One Hundred Wind Scenarios for Energy 

Revenue and Reserve Revenue 

Day 
Forecasted 

Wind/Load 

Energy Revenue Reserve Revenue 

Seasonal Seasonal Seasonal Dynamic 

351 11.64% $8,165,179 $8,347,676 $137,979 $176,800 

352 10.83% $11,935,186 $12,889,251 $156,216 $157,277 

353 11.05% $9,986,626 $9,837,727 $115,685 $173,466 

354 11.28% $8,302,965 $8,810,239 $124,464 $190,266 

355 11.52% $7,616,376 $ 7,666,923 $97,907 $112,877 

356 14.07% $1,974,204 $ 2,013,131 $93,643 $99,017 

357 14.45% $2,150,320 $1,873,475 $99,679 $101,562 

Average 12.12% $7,161,551 $7,348,346 $117,939 $144,466 

 

Table 6.2 and Table 6.3 summarize the average market results between seasonal and 

dynamic zones over the 100 wind scenarios. Production cost of dynamic zone is slightly, 

but consistently, lower. What makes the results interesting is that the higher relative 

improvement is on days where wind provides a larger proportion of the energy. This 

observation is further validated by testing day 352 with twice as much wind penetration 

level: using the dynamic zones, the production cost decreases by 2% compared with the 

seasonal zone and, furthermore, fewer reserve disqualifications are required using dynamic 

zone.  

The load payments in Table 6.1 and energy and reserve revenues Table 6.2 are 

calculated based on the multi-settlement policy described by [85]. The reserve revenue for 

each resource is given by (6—8). Transactions occur in the DAM based on the locational 

marginal prices and spinning reserve prices. Transactions occur in the RTM in a similar 

manner but are settled relative to the quantities cleared in the DAM. For example, a 

generator cleared at 100 MW in the DAM and 101 MW in the RTM receives the day-ahead 

price for the first 100 MW and the real-time price for the last MW. Individual generators 

receive a make-whole uplift payment if their cleared bid costs exceed revenue from energy 
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and ancillary services combined. Figure 6.6 demonstrates the LMP percentile for both 

dynamic zone and seasonal zone, and the average LMPs across tested week of dynamic 

zone and seasonal zone are very similar. 

The market-wide reserve revenues are consistently higher using the dynamic zones. 

These higher payments correspond to a higher quality of service 𝑄𝑂𝑆̅̅ ̅̅ ̅̅  when a high 

proportion of energy comes from wind. Load payments and energy revenues tend to be 

higher using dynamic zones, and uplifts lower, but the results are not consistent enough to 

make general predictions, especially considering that market results are known to vary 

around near-optimal SCUC solutions [86]. While the results in Table 6.1 are relatively 

similar, the results in Table 6.3 demonstrate that the dynamic reserve zones have much 

fewer number of reserve disqualifications and require substantially fewer reserve 

disqualification, which generally means that the 𝑄𝑂𝑆̅̅ ̅̅ ̅̅  will be better. Fewer 

disqualifications tend to result in a better 𝑄𝑂𝑆̅̅ ̅̅ ̅̅ . 

 

Figure 6.6 Average LMP Percentile 
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Market complexity is something that is important to consider [87]. Should the markets 

be simple and transparent or should they be complex and better reflect operational realities?  

Inaccurate DAM policies may need to overcommit units in order to obtain a reliable 

solution. This excess capacity can suppress market prices because prices do not capture the 

effects of binary commitments decisions [78], only to be stripped away by reserve 

disqualification procedures (if the reserve is not deliverable) outside of the market 

environment. The advanced reserve policies investigated in this chapter are anticipated to 

produce price signals that better reflect the true value of ancillary services as compared to 

existing imprecise reserve policies. Also note that the reserve disqualification procedure 

used in this chapter is more efficient that what operators use today and operators may 

benefit more comparing with the numerical results presented by using proposed dynamic 

zone model.  

6.5 Case Study II 

6.5.1 Proposed Clearing Process 

Two different reserve zone models are compared, dynamic reserve zone and seasonal 

reserve zone. The process of determining dynamic reserve zone follows the algorithm 

Chapter 6 Section 6.2. The seasonal reserve zone is determined based on historical power 

flow data. The historical data is generated by running optimal power flow through the 

winter. The flowchart in Figure 6.7 shows the proposed market clearing process for case 

study II. The zonal models will be input to the day-ahead SCUC model. The market 

solution of the SCUC will be adjusted by the type II reserve disqualification presented in 

Chapter 6 Section 6.3 until the market solution is N-1 reliable. Once the market solution of 
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SCUC gets N-1 reliability approved, the commitments of generators, which has minimum-

down time larger than three hours, will be fixed for look ahead unit commitment (LAC). It 

is assumed that all the net load scenarios (wind uncertainties and load uncertainties) are 

revealed in the LAC process and the only uncertainties in the real-time market are 

contingencies. Figure 6.8 presents the details of LAC clearing process. In Figure 6.8, to 

ensure the LAC solution is N-1 reliable, reserve disqualification will be repeated until it is 

N-1 reliable for each net load scenario s.   

 

Figure 6.7 Proposed Market Clearing Process for Case Study II 
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Figure 6.8 Detailed LAC Clearing Process 

6.5.2 Wind and Load Scenarios Generation 

To mimic the uncertainty and variability of wind output and load, one hundred wind 

scenarios and load scenarios are generated. Various methods can be used to generate 

uncertainty scenarios [15], [19], [39], [40], [43].  

To generate wind scenarios, the same ARIMA model is presented in Chapter 6 Section 

6.4.6 is used. The historical wind data is taken from NREL’s Western Wind dataset for the 

first three weeks of August 2005 [83] is used to tune the parameters of ARIMA model. The 

error (residuals) of the ARIMA model follows normal distribution.  

Monte Carlo simulation [1] is used to produce the wind scenarios, and for each period 

t, it is assumed that the mean of the probability distribution is the forecasted load, and the 

folded Gaussian distribution is employed to accurately tune the forecasting error, which is 

designed as 3%. The load scenarios generation process is similar as Chapter 5 Section 5.6. 

Note that it is assumed that wind scenarios and load scenarios are independent, and the 

wind scenario s will be combined with load scenario s to produce the net load scenario s 

for each node.  
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6.5.3 MISO’s SCUC Formulation 

MISO co-optimizes energy and ancillary service the day-ahead market with energy bids 

and reserve bids to ensure adequate generation capacity to serve next day’s demand [93]. 

The security constrained unit commitment (SCUC) at MISO accounts for the transmission 

constraints. Before the day-ahead market solution gets approved, none of transmission 

constraints should be violation during contingency analysis, otherwise an adjustment will 

be made to SCUC formulation [89]. To lower expected transmission violation after reserve 

deployment, in [75], security constrained economic dispatch (SCED) is enhanced by 

incorporating post zonal reserve deployment and modelling the largest contingency in each 

reserve zone. The SCED formulation with post zonal reserve deployment transmission 

constraints is also extended to MISO’s SCUC model. The proposed SCUC formulation 

with consideration of post regulation and contingency reserve deployment is shown as 

below,  

Min
𝑝𝑔𝑡,𝑟𝑔𝑡

𝑥 ,𝑠𝑢𝑔𝑡,𝑠𝑑𝑔𝑡

∑ ∑ [𝐶𝑔𝑝𝑔𝑡 + 𝐶𝑔
𝑆𝑈𝑠𝑢𝑔𝑡 + 𝐶𝑔

𝑆𝐷𝑠𝑑𝑔𝑡 + 𝐶𝑔
𝑁𝐿𝑢𝑔𝑡 + 𝐶𝑔

𝑅𝐸𝐺𝑟𝑔𝑡
𝑅𝐸𝐺 +𝑔∈𝐺𝑡∈𝑇

𝑐𝑔
𝑆𝑃𝐼𝑁𝑟𝑔𝑡

𝑆𝑃𝐼𝑁 + 𝑐𝑔
𝑁𝐿𝑟𝑔𝑡

𝑆𝑈𝑃𝑃]   (6—18) 

Subject to: 

Power balance equation (𝜆𝑡) 

 ∑ (𝑖𝑛𝑡)𝑛∈𝑁 = 0 (6—19) 

Power injection  

 𝑖𝑛𝑡 = ∑ (𝑝𝑔𝑡)𝑛𝑔=𝑛 + ∑ (𝑠𝑝𝑤𝑡)𝑛𝑤=𝑛 − 𝐷𝑛𝑡 , ∀𝑛 ∈ 𝑁 (6—20) 

Transmission constraints (µ𝑖,𝑡) 

 𝑓𝑘𝑡 ≤ 𝐹𝑘
𝑚𝑎𝑥    ∀𝑘 ∈ 𝐾 (6—21) 

 𝑓𝑘𝑡 = ∑ {𝑝𝑔𝑡𝑃𝑇𝐷𝐹𝑛𝑗,𝑘
𝑅 } + ∑ {𝑖𝑛𝑡𝑃𝑇𝐷𝐹𝑛,𝑘

𝑅 }𝑛∈𝑁𝑔∈𝐺    ∀𝑘 ∈ 𝐾 (6—22) 
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Market-wide regulation reserve requirement (𝛾𝑡
𝑀𝑅𝑅) 

 ∑ 𝑟𝑧𝑡
𝑅𝐸𝐺

𝑧∈𝑍 ≥ 𝑅𝑀𝐾𝑇,𝑡
𝑅𝐸𝐺  (6—23) 

Market-wide regulation plus spinning reserve requirement (𝛾𝑡
𝑀𝑅𝑆) 

 ∑ {𝑟𝑧𝑡
𝑅𝐸𝐺 + 𝑟𝑧𝑡

𝑆𝑃𝐼𝑁}𝑧∈𝑍 ≥ 𝑅𝑀𝐾𝑇,𝑡
𝑅𝐸𝐺 + 𝑅𝑀𝐾𝑇,𝑡

𝑆𝑃𝐼𝑁  (6—24) 

Market-wide operating reserve requirement (𝛾𝑡
𝑀𝑂𝑅) 

∑ {𝑟𝑧𝑡
𝑅𝐸𝐺 + 𝑟𝑧𝑡

𝑆𝑃𝐼𝑁 + 𝑟𝑧𝑡
𝑆𝑈𝑃𝑃}𝑧∈𝑍 ≥ 𝑅𝑀𝐾𝑇,𝑡

𝑅𝐸𝐺 + 𝑅𝑀𝐾𝑇,𝑡
𝑆𝑃𝐼𝑁 + 𝑅𝑀𝐾𝑇,𝑡

𝑆𝑈𝑃𝑃  (6—25) 

Zonal regulation reserve requirement (𝛾𝑧𝑡
𝑍𝑅𝑅) 

 ∑ 𝑟𝑔𝑡
𝑅𝐸𝐺

𝑔∈𝐺𝑧 ≥ 𝑟𝑧𝑡
𝑅𝐸𝐺, 𝑧 ∈ 𝑍 (6—26) 

Zonal regulation plus spinning reserve requirement (𝛾𝑧𝑡
𝑍𝑅𝑆) 

 ∑ {𝑟𝑔𝑡
𝑅𝐸𝐺 + 𝑟𝑔𝑡

𝑆𝑃𝐼𝑁}𝑔∈𝐺𝑧 ≥ 𝑟𝑧𝑡
𝑅𝐸𝐺 + 𝑟𝑧𝑡

𝑆𝑃𝐼𝑁, 𝑧 ∈ 𝑍 (6—27) 

Zonal operating reserve requirement (𝛾𝑡
𝑀𝑅𝑆) 

 ∑ {𝑟𝑔𝑡
𝑅𝐸𝐺 + 𝑟𝑔𝑡

𝑆𝑃𝐼𝑁 + 𝑟𝑔𝑡
𝑆𝑈𝑃𝑃}𝑔∈𝐺(𝑧) ≥ 𝑟𝑧𝑡

𝑅𝐸𝐺 + 𝑟𝑧𝑡
𝑆𝑃𝐼𝑁 + 𝑟𝑧𝑡

𝑆𝑈𝑃𝑃, 𝑧 ∈ 𝑍 (6—28) 

Post regulation reserve up deployment (𝜇𝑘𝑡
𝑅𝐸𝐺𝑈𝑃) 

 𝑓𝑘𝑡 + ∑ {𝑟𝑧𝑡
𝑅𝐸𝐺𝑃𝑇𝐷𝐹z,𝑘

𝑅 }𝑧∈𝑍 − 𝑃𝑇𝐷𝐹𝐿𝐶,𝑘
𝑅 𝑅𝑀𝐾𝑇,𝑡

𝑅𝐸𝐺 ≤ 𝐹𝑘
𝑚𝑎𝑥 (6—29) 

Post regulating reserve down deployment (𝜇𝑘𝑡
𝑅𝐸𝐺𝐷𝑁) 

 𝑓𝑘𝑡 − ∑ {𝑟𝑧𝑡
𝑅𝐸𝐺𝑃𝑇𝐷𝐹z,𝑘

𝑅 }𝑧∈𝑍 + 𝑃𝑇𝐷𝐹𝐿𝐶,𝑘
𝑅 𝑅𝑀𝐾𝑇,𝑡

𝑅𝐸𝐺 ≤ 𝐹𝑘
𝑚𝑎𝑥 (6—30) 

Post zonal contingency event (𝜇𝑖,𝑧,𝑡
𝐶𝑅 ) 

 𝑓𝑘𝑡 − 𝐸𝑧,𝑡𝑃𝑇𝐷𝐹z,𝑘
𝑅 + 𝐷𝐹𝑧,𝑡

𝑆𝑃𝐼𝑁 ∑ {𝑟𝑧′,𝑡
𝑆𝑃𝐼𝑁𝑃𝑇𝐷𝐹𝑧′,𝑘

𝑅 }𝑧′∈𝑍 + 𝐷𝐹𝑧,𝑡
𝑆𝑈𝑃𝑃 ∑ {𝑟𝑧′𝑡

𝑆𝑈𝑃𝑃𝑃𝑇𝐷𝐹𝑧′,𝑘
𝑅 }𝑧′∈𝑍 ≤

𝐹̅𝑘
𝑚𝑎𝑥, 𝑧 ∈ 𝑍   (6—31) 

Resource limit constraints  

 𝑝𝑔𝑡 + 𝑟𝑔𝑡
𝑅𝐸𝐺 + 𝑟𝑔𝑡

𝑆𝑃𝐼𝑁 + 𝑟𝑔𝑡
𝑆𝑈𝑃𝑃 ≤ 𝑢𝑔𝑡𝑃𝑔

𝑚𝑎𝑥 , 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (6—32) 

 𝑝𝑔𝑡− 𝑟𝑔𝑡
𝑅𝐸𝐺 ≥ 𝑢𝑔𝑡𝑃𝑔

𝑚𝑖𝑛, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (6—33) 

Minimum-up and -down constraints 

 ∑ 𝑠𝑢𝑔𝑡′
𝑡
𝑡′=𝑡−𝑈𝑇𝑔+1 ≤ 𝑢𝑔𝑡 , 𝑡 ∈ (𝑈𝑇𝑔 , . . , 𝑇) (6—34) 
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  ∑ 𝑠𝑑𝑔𝑡′
𝑡
𝑡′=𝑡−𝐷𝑇𝑔+1 ≤ 1 − 𝑢𝑔𝑡 , 𝑡 ∈ (𝐷𝑇𝑔 , . . , 𝑇) (6—35) 

Ramp constraints 

 𝑝𝑔𝑡 − 𝑝𝑔,𝑡−1 ≤ 𝑅𝑔
𝐻𝑅 , 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺  (6—36) 

 𝑝𝑔,𝑡−1 − 𝑝𝑔𝑡 ≤ 𝑅𝑔
𝐻𝑅 , 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺  (6—37) 

 0 ≤ 𝑟𝑔𝑡
𝑅𝐸𝐺 ≤ 𝑅𝑔𝑡

𝑅𝐸𝐺
, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (6—38) 

 0 ≤ 𝑟𝑔𝑡
𝑆𝑃𝐼𝑁 ≤ 𝑅𝑔𝑡

𝑆𝑃𝐼𝑁
, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (6—39) 

 0 ≤ 𝑟𝑔𝑡
𝑆𝑈𝑃𝑃 ≤ 𝑅𝑔𝑡

𝑆𝑈𝑃𝑃
, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (6—40) 

Additional constraints 

 𝑢𝑔𝑡 ∈ {0,1}, 0 ≤ 𝑠𝑢𝑔𝑡, 𝑠𝑑𝑔𝑡 ≤ 1 (6—41) 

 0 ≤ 𝑠𝑝𝑤𝑡 ≤ 𝑃𝑤𝑡 (6—42) 

Where 

 𝐷𝑧,𝑡
𝑆𝑃𝐼𝑁 = min {1,

𝐸𝑧,𝑡

𝑅𝑀𝐾𝑇,𝑡
𝑆𝑃𝐼𝑁 }  (6—43) 

 𝐷𝑧,𝑡
𝑆𝑈𝑃𝑃 = max {0,

𝐸𝑧,𝑡−𝑅𝑀𝐾𝑇,𝑡
𝑆𝑃𝐼𝑁

𝑅𝑀𝐾𝑇,𝑡
𝑆𝑈𝑃𝑃 }. (6—44) 

Note that 𝑃𝑇𝐷𝐹z,𝑘
𝑅  represents the zonal PTDF on transmission line k and it is calculated based 

on the average PTDF of the nodes in the same zone. Therefore, it is assumed that the reserves 

cleared in the same zone have the same impact on the system. Constraints (6—29), (6—

30), and (6—31) balance the reserves on a zonal basis by using the zonal PTDFs. 

Improving the zonal PTDF can improve the accuracy of MISO’s SCUC reserve 

requirements. 

 Involving (6—43) and (6—44) will cause the formulation nonlinear, which may be 

very difficult to solve. To avoid the nonlinearity of proposed formulation, for the first round 

to solve this proposed SCUC formulation, constraints (6—31) are not considered. After the 
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first round, 𝐸𝑘,𝑡 can be determined. The SCUC will be solved repeatedly, until the value of 

𝐸𝑘,𝑡 is stable. 

Based on the concept of marginal pricing [90], the reserve market clearing price and 

energy price can be calculated as below, 

 

 𝑀𝐶𝑃𝑧,𝑡
𝑅𝐸𝐺 = 𝛾𝑧𝑡

𝑍𝑅𝑅 + 𝛾𝑧𝑡
𝑍𝑅𝑆 + 𝛾𝑧𝑡

𝑍𝑂𝑅 (6—45) 

 𝑀𝐶𝑃z,𝑡
𝑆𝑃𝐼𝑁 = γ𝑧t

𝑍𝑅𝑆 + γ𝑧t
𝑍𝑂𝑅 (6—46) 

 𝑀𝐶𝑃𝑧,𝑡
𝑆𝑈𝑃𝑃 = γ𝑧t

𝑍𝑂𝑅 (6—47) 

 𝐿𝑀𝑃𝑛,𝑡 = 𝜆𝑡 + ∑ {(µ𝑘,𝑡 + 𝜇𝑘,𝑡
𝑅𝐸𝐺𝑈𝑃 + 𝜇𝑘,𝑡

𝑅𝐸𝐺𝐷𝑁)𝑃𝑇𝐷𝐹𝑛,𝑘
𝑅 } +𝑘∈𝐾

∑ ∑ {𝜇𝑘,𝑧,𝑡
𝐶𝑅 𝑃𝑇𝐷𝐹𝑧,𝑘

𝑅 }𝑘∈𝐾𝑧∈𝑍    (6—48) 

6.5.4 Look Ahead Unit Commitment 

ISOs now prefer to have multiple scheduling horizons as compared to a one shot day-

ahead scheduling; with more uncertainties, a preferred approach is to use a multi-stage 

approach to adjust decisions based on the change in the uncertainties [91]. During the 

transition process from the day-ahead market to the real time market, a look-ahead unit 

commitment (LAC) is allowed to commit additional generators. PJM implements a two 

hour LAC model, which focuses on fast-start units [92].  

In MISO’s scheduling process, units with long lead times will be studied by multi-day 

forward reliability assessment commitment (FRAC). The majority of commitments 

decisions are made in the DAM and day-ahead FRAC. LAC is used to create a bridge 

between the DAM as well as the reliability assessment commitment (RAC) and the RT-

SCED. MISO uses a three hours LAC to ensure sufficient generation and ramp capacity 

with the most recent uncertainty forecasts and outage scheduler [93]. Intra-day reliability 
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assessment commitment (IRAC) has a similar formulation as RAC, but the time window 

of IRAC is from the current operating point to the end of the operating day. IRAC and LAC 

are better equipped with the most recent system operating information to improve 

commitment decisions.  

In this Section, to approximate the market clearing process at MISO, LAC is also 

employed to adjust the DAM commitment decisions of resources whose minimum down 

time is less than or equal to three hours with consideration of the revealed net load scenarios. 

The LAC formulation is similar as the SCUC, except that many slow units are fixed. 

6.5.5 Numerical Results  

Table 6.4 Average Number of Reserve Disqualifications for Each Day 

Model Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

Dynamic 0.34 2.11 1.72 15.95 0.65 10.63 8.74 

Seasonal 0.88 3.69 3.95 20.58 0.72 15.75 10.65 
 

In statistics, a confidence interval (CI) is an indicator of estimating the range of the 

results and it provides the probability of the true population mean falling within the 

calculated interval [94]. CI is a tool that can be used to analyze the simulation results as 

well as validate the credibility of the results. 

Reserve disqualification will be applied if the LAC solution is not N-1 reliable. Table 

6.4 presents the average number of reserve disqualifications for one hundred net load 

scenarios each day. The dynamic reserve zone dramatically reduces the number of reserve 

disqualifications. By improving the reserve zone, the accuracy of zonal sensitivities are 

increased. Post regulation reserve up/down deployment constraints and post contingency 

event constraints better reflect the system stage with regulation reserve or contingency 

reserve deployed. Therefore, the location of the procured reserve is preferred. 

http://en.wikipedia.org/wiki/Statistics
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Figure 6.9 95% Confidence Interval of Operating Cost of Each Day for Dynamic and 

Seasonal Model 

In Figure 6.9, the blue dot represents average operating costs after reserve 

disqualification (N-1 reliability approval) of the seasonal model and the red asterisk 

represents the results for the dynamic zone model. For results of each model, the top of 

each bar represents the upper bound of the 95% confidence interval and the bottom of each 

bar represents the lower bound of the 95% confidence interval. Obviously, the operating 

cost of the dynamic zone model is expected to be lower than the seasonal model. The 

average operating cost of the dynamic model for seven days is $1.90 million and the 

seasonal model is $1.95 million. The dynamic model updates the reserve zone on an hourly 

basis and the accuracy of zonal PTDFs (𝑃𝑇𝐷𝐹𝑘,𝑧) will be improved with the consideration 

of system operating conditions and, thus, the SCUC model will be more accurate. As a 
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result, the market solution for the dynamic zone provides a better starting point for LAC 

and RTM, which results in the lower operating cost. Therefore, the proposed dynamic 

model has effectively improved the market efficiency and has provided more accurate price 

signals while also lowering the number of undesirable manual reserve disqualifications, 

which ensures that the market solution produces a more reliable solution.  

The average load payment for seven days of the dynamic model is $7.11 million and 

that of the seasonal model is $7.56 million. Therefore, the load payment has been reduced 

by using the dynamic model since the average LMP of dynamic model is lower. The 

regulation reserve payment from the dynamic model has 1.2% higher average reserve 

payments than that of the seasonal model. The contingency reserve payment is the sum of 

the spinning reserve payment and the supplemental reserve payment. The average of the 

contingency reserve payment for the dynamic model is $0.17 million and the seasonal 

model is $0.13 million.  
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7. A NODAL REGULATION RESERVE PRICING MODEL 

7.1 Introduction 

Based on the response time and functionality, reserves can be categorized into three 

types [95]: regulation, spinning, and supplemental. The response time of each reserve 

product is longer than the preceding reserve product. Regulation (load following) reserve 

automatically adjusts its generation based on the feedback of area control error through 

central automatic control, which is also referred as automatic generation control (AGC). 

Regulation reserve can also be used to follow small system perturbations such as slow and 

small renewable or load deviations within several seconds. At MISO, regulation reserve is 

cleared as a 5-min product. Spinning reserve and supplemental reserve, which are 10 min 

products, are acquired to protect against large system perturbations such as contingencies 

[71]. However, each market may define reserve products differently based on the needs of 

its system.  

From the previous chapters, spinning and non-spinning reserve requirements have been 

studied and the proposed dynamic reserve zone determination method can be extended to 

regulation reserve. However, in this chapter, different from contingency reserve, regulation 

reserve will be studied on a nodal basis to further improve the models’ accuracy.  

Similar as SCUC discussed in Chapter 5 and 6, deterministic SCED allocates reserve 

with pre-defined reserve requirements at minimum cost. As discussed in the previous 

chapters of this thesis, allocated reserve may not be deliverable in real-time due to network 

congestion. In Chapter 5 and Chapter 6, updating reserve zones on a more frequent basis 

enables a more accurate representation of operating conditions, identification of key 

transmission bottlenecks, the preferred locations for reserves, and better reserve sharing 
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rules across zones.  However, zonal reserve requirements cannot fully solve the issue of 

undeliverable reserve due to the inaccuracy of zonal approximations that cannot ensure 

reserve deliverable on a nodal basis. Intra-zonal congestion causes significant cost to 

alleviate it for most ISOs using manual corrections. 

 The improvement of the SCED formulation described in this chapter is needed to lower 

ISOs’ manual corrections. The contributions of this chapter are as follows, 

1) Post regulation reserve deployment constraints are modeled in security constrained 

economic dispatch (SCED) on a nodal basis. Nodal formulation will improve the 

accuracy of calculating the post deployment power flow, improve the locations of 

the reserve, and result in more accurate price signals. The same model can also be 

applied to unit commitment models. 

2) A nodal regulation reserve pricing scheme is developed to better reflect the quality 

of service offered by generators on a nodal basis. The impact of modeling nodal 

basis post reserve deployment on electricity market, such as locational marginal 

prices (LMP) and reserve market clearing prices, are studied. 

7.2 Existing MISO Practice 

MISO co-optimizes energy and ancillary service every 5 min in the real–time SCED 

(RT-SCED) with energy bids and reserve bids [71]. The RT-SCED at MISO accounts for 

the transmission constrains that are determined by state estimation (SE) and real-time 

contingency analysis (RTCA) [98]. Transmission constraints, which cause transmission 

violations, will be added to the set of transmission constraints considered. To lower 

expected transmission violations after reserve deployment, in [67], RT-SCED is enhanced 
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by incorporating post zonal reserve deployment and modeling the largest contingency in 

each reserve zone. The resulting RT-SCED formulation is as follows, 

 

 Min
𝑝𝑔,𝑡,𝑟𝑔,𝑡

𝑅𝐸𝐺,𝑟𝑔,𝑡
𝑆𝑃𝐼𝑁,𝑟𝑔,𝑡

𝑆𝑈𝑃𝑃
∑ {𝐶𝑔𝑝𝑔𝑡 + 𝐶𝑔

𝑅𝐸𝐺𝑟𝑔𝑡
𝑅𝐸𝐺 + 𝐶𝑔

𝑆𝑃𝐼𝑁𝑟𝑔𝑡
𝑆𝑃𝐼𝑁 + 𝐶𝑔

𝑁𝐿𝑟𝑔𝑡
𝑆𝑈𝑃𝑃}𝑗∈𝐽  (7—1) 

s.t.: 

Power balance equation (𝜆𝑡) 

 ∑ (𝑖𝑛𝑡)𝑛∈𝑁 = 0 (7—2) 

Power injection 

 𝑖𝑛𝑡 = ∑ (𝑝𝑔𝑡)𝑛𝑔=𝑛 − 𝐷𝑛𝑡  , ∀𝑛 ∈ 𝑁 (7—3) 

Transmission constraints (µ𝑖,𝑡) 

 𝑓𝑘𝑡 ≤ 𝐹𝑘
𝑚𝑎𝑥    ∀𝑘 ∈ 𝐾 (7—4) 

 𝑓𝑘𝑡 = ∑ {𝑝𝑔𝑡𝑃𝑇𝐷𝐹𝑛𝑗,𝑘
𝑅 } + ∑ {𝑖𝑛𝑡𝑃𝑇𝐷𝐹𝑛,𝑘

𝑅 }𝑛∈𝑁𝑔∈𝐺    ∀𝑘 ∈ 𝐾 (7—5) 

Market-wide regulation reserve requirement (𝛾𝑡
𝑀𝑅𝑅) 

 ∑ 𝑟𝑧,𝑡
𝑅𝐸𝐺

𝑧∈𝑍 ≥ 𝑅𝑀𝐾𝑇,𝑡
𝑅𝐸𝐺  (7—6) 

Market-wide regulation plus spinning reserve requirement (𝛾𝑡
𝑀𝑅𝑆) 

 ∑ {𝑟𝑧,𝑡
𝑅𝐸𝐺 + 𝑟𝑧,𝑡

𝑆𝑃𝐼𝑁}𝑧∈𝑍 ≥ 𝑅𝑀𝐾𝑇,𝑡
𝑅𝐸𝐺 + 𝑅𝑀𝐾𝑇,𝑡

𝑆𝑃𝐼𝑁  (7—7) 

Market-wide operating reserve requirement (𝛾𝑡
𝑀𝑂𝑅) 

 ∑ {𝑟𝑧,𝑡
𝑅𝐸𝐺 + 𝑟𝑧,𝑡

𝑆𝑃𝐼𝑁 + 𝑟𝑧,𝑡
𝑆𝑈𝑃𝑃}𝑧∈𝑍 ≥ 𝑅𝑀𝐾𝑇,𝑡

𝑅𝐸𝐺 + 𝑅𝑀𝐾𝑇,𝑡
𝑆𝑃𝐼𝑁 + 𝑅𝑀𝐾𝑇,𝑡

𝑆𝑈𝑃𝑃  (7—8) 

Base zonal regulation reserve requirement (𝛾0𝑧,𝑡
𝑍𝑅𝑅) 

 ∑ 𝑟𝑔𝑡
𝑅𝐸𝐺

𝑔∈𝐺(𝑧) ≥ 𝑅𝑧,𝑡
𝑅𝐸𝐺 (7—9) 

Base zonal regulation plus spinning reserve requirement (𝛾0𝑧,𝑡
𝑍𝑅𝑆) 

 ∑ {𝑟𝑔𝑡
𝑅𝐸𝐺 + 𝑟𝑔𝑡

𝑆𝑃𝐼𝑁}𝑔∈𝐺(𝑧) ≥ 𝑅𝑧,𝑡
𝑅𝐸𝐺 + 𝑅𝑧,𝑡

𝑆𝑃𝐼𝑁 (7—10) 

Base zonal operating reserve requirement (𝛾0𝑧,𝑡
𝑍𝑂𝑅) 
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 ∑ {𝑟𝑔𝑡
𝑅𝐸𝐺 + 𝑟𝑔𝑡

𝑆𝑃𝐼𝑁 + 𝑟𝑔𝑡
𝑆𝑈𝑃𝑃}𝑔∈𝐺(𝑧) ≥ 𝑅𝑧,𝑡

𝑅𝐸𝐺 + 𝑅𝑧,𝑡
𝑆𝑃𝐼𝑁 + 𝑅𝑧,𝑡

𝑆𝑈𝑃𝑃 (7—11) 

Zonal regulation reserve requirement (𝛾𝑧,𝑡
𝑍𝑅𝑅) 

 ∑ 𝑟𝑔,𝑡
𝑅𝐸𝐺

𝑔∈𝐺(𝑧) ≥ 𝑟𝑧,𝑡
𝑅𝐸𝐺 (7—12) 

Zonal regulation plus spinning reserve requirement (𝛾𝑧,𝑡
𝑍𝑅𝑆) 

 ∑ {𝑟𝑔𝑡
𝑅𝐸𝐺 + 𝑟𝑔𝑡

𝑆𝑃𝐼𝑁}𝑔∈𝐺(𝑧) ≥ 𝑟𝑧,𝑡
𝑅𝐸𝐺 + 𝑟𝑧,𝑡

𝑆𝑃𝐼𝑁 (7—13) 

Zonal operating reserve requirement (𝛾𝑧,𝑡
𝑍𝑂𝑅) 

 ∑ {𝑟𝑔𝑡
𝑅𝐸𝐺 + 𝑟𝑔𝑡

𝑆𝑃𝐼𝑁 + 𝑟𝑔𝑡
𝑆𝑈𝑃𝑃}𝑔∈𝐺(𝑧) ≥ 𝑟𝑧,𝑡

𝑅𝐸𝐺 + 𝑟𝑧,𝑡
𝑆𝑃𝐼𝑁 + 𝑟𝑧,𝑡

𝑆𝑈𝑃𝑃 (7—14) 

Post regulation reserve up deployment (𝜇𝑘,𝑡
𝑅𝐸𝐺𝑈𝑃) 

 𝑓𝑘𝑡 + ∑ {𝑟𝑧𝑡
𝑅𝐸𝐺𝑃𝑇𝐷𝐹z,𝑘

𝑅 }𝑧∈𝑍 − 𝑃𝑇𝐷𝐹𝐿𝐶,𝑘
𝑅 𝑅𝑀𝐾𝑇,𝑡

𝑅𝐸𝐺 ≤ 𝐹𝑘
𝑚𝑎𝑥 (7—15) 

Post regulation reserve down deployment (𝜇𝑘,𝑡
𝑅𝐸𝐺𝐷𝑁) 

 𝑓𝑘𝑡 − ∑ {𝑟𝑧𝑡
𝑅𝐸𝐺𝑃𝑇𝐷𝐹z,𝑘

𝑅 }𝑧∈𝑍 + 𝑃𝑇𝐷𝐹𝐿𝐶,𝑘
𝑅 𝑅𝑀𝐾𝑇,𝑡

𝑅𝐸𝐺 ≤ 𝐹𝑘
𝑚𝑎𝑥 (7—16) 

Post zonal contingency event (𝜇𝑖,𝑘,𝑡
𝐶𝑅 ) 

𝑓𝑘𝑡 − 𝐸𝑧,𝑡𝑃𝑇𝐷𝐹𝑧,𝑘
𝑅 + 𝐷𝐹𝑧,𝑡

𝑆𝑃𝐼𝑁 ∑ {𝑟𝑧′,𝑡
𝑆𝑃𝐼𝑁𝑃𝑇𝐷𝐹𝑧′,𝑘

𝑅 }𝑧′∈𝑍 + 𝐷𝐹𝑧,𝑡
𝑆𝑈𝑃𝑃 ∑ {𝑟𝑧′𝑡

𝑆𝑈𝑃𝑃𝑃𝑇𝐷𝐹𝑧′,𝑘
𝑅 }𝑧′∈𝑍 ≤

𝐹̅𝑘
𝑚𝑎𝑥, 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾, 𝑔 ∈ 𝐺   (7—17) 

Resource limit constraints  

 𝑝𝑔𝑡 + 𝑟𝑔𝑡
𝑅𝐸𝐺 + 𝑟𝑔𝑡

𝑆𝑃𝐼𝑁 + 𝑟𝑔𝑡
𝑆𝑈𝑃𝑃 ≤ 𝑈̅𝑔𝑡𝑝𝑔

𝑚𝑎𝑥, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (7—18) 

 𝑝𝑔𝑡− 𝑟𝑔𝑡
𝑅𝐸𝐺 ≥ 𝑈̅𝑔𝑡𝑝𝑔

𝑚𝑖𝑛, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (7—19) 

Ramp constraints 

 𝑝𝑔𝑡 − 𝑝𝑔,𝑡−1 ≤ 𝑅𝑔
𝐻𝑅 , 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺  (7—20) 

 𝑝𝑔,𝑡−1 − 𝑝𝑔𝑡 ≤ 𝑅𝑔
𝐻𝑅 , 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺  (7—21) 

 0 ≤ 𝑟𝑔𝑡
𝑅𝐸𝐺 ≤ 𝑅𝑔𝑡

𝑅𝐸𝐺
, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (7—22) 

 0 ≤ 𝑟𝑔𝑡
𝑆𝑃𝐼𝑁 ≤ 𝑅𝑔𝑡

𝑆𝑃𝐼𝑁
, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (7—23) 

 0 ≤ 𝑟𝑔𝑡
𝑆𝑈𝑃𝑃 ≤ 𝑅𝑔𝑡

𝑆𝑈𝑃𝑃
, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 (7—24) 
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Where 

 𝐷𝐹𝑧,𝑡
𝑆𝑃𝐼𝑁 = min {1,

𝐸𝑧,𝑡

𝑅𝑀𝐾𝑇,𝑡
𝑆𝑃𝐼𝑁 }  (7—25) 

 𝐷𝐹𝑧,𝑡
𝑆𝑈𝑃𝑃 = max {0,

𝐸𝑧,𝑡−𝑅𝑀𝐾𝑇,𝑡
𝑆𝑃𝐼𝑁

𝑅𝑀𝐾𝑇,𝑡
𝑆𝑈𝑃𝑃 }. (7—26) 

The determination process of 𝐷𝐹𝑘,𝑡
𝑆𝑃𝐼𝑁  and 𝐷𝐹𝑘,𝑡

𝑆𝑈𝑃𝑃  follows the procedures in [75]. 

Based on the concept of marginal pricing [95], the reserve market clearing price and energy 

price can be calculated as below, 

 𝑀𝐶𝑃𝑧,𝑡
𝑅𝐸𝐺 = 𝛾𝑧𝑡

𝑍𝑅𝑅 + 𝛾𝑧𝑡
𝑍𝑅𝑆 + 𝛾𝑧𝑡

𝑍𝑂𝑅 + 𝛾0𝑧𝑡
𝑍𝑅𝑅 + 𝛾0𝑧𝑡

𝑍𝑅𝑆 + 𝛾0𝑧𝑡
𝑍𝑂𝑅 (7—27) 

 𝑀𝐶𝑃𝑧,𝑡
𝑆𝑃𝐼𝑁 = 𝛾𝑧𝑡

𝑍𝑅𝑆 + 𝛾𝑧𝑡
𝑍𝑂𝑅 + 𝛾0𝑧𝑡

𝑍𝑅𝑆 + 𝛾0𝑧𝑡
𝑍𝑂𝑅 (7—28) 

 𝑀𝐶𝑃𝑧,𝑡
𝑆𝑈𝑃𝑃 = 𝛾𝑧𝑡

𝑍𝑂𝑅 + 𝛾0𝑧𝑡
𝑍𝑂𝑅 (7—29) 

𝐿𝑀𝑃𝑛,𝑡 = 𝜆𝑡 + ∑{(µ𝑘,𝑡 + 𝜇𝑘,𝑡
𝑅𝐸𝐺𝑈𝑃 + 𝜇𝑘,𝑡

𝑅𝐸𝐺𝐷𝑁)𝑃𝑇𝐷𝐹𝑛,𝑘
𝑅 } + ∑ ∑{𝜇𝑘,𝑧,𝑡

𝐶𝑅 𝑃𝑇𝐷𝐹𝑧,𝑘
𝑅 }

𝑧∈𝑍𝑘∈𝐾𝑘∈𝐾

 

   (7—30) 

 

Different reserve products have different response times and reserves with shorter 

response times are supposed to provide a higher quality service, and they can be substituted 

for lower quality service products. To be more specific, regulation reserve can be used to 

replace both spinning reserve and supplemental reserve; similarly, spinning reserve can be 

used to substitute supplemental reserve. In the proposed formulation, based on duality 

theory, the shadow prices (𝛾𝑧𝑡
𝑍𝑅𝑅 , 𝛾𝑧𝑡

𝑍𝑅𝑆, 𝛾𝑧𝑡
𝑍𝑂𝑅 , 𝛾0𝑧𝑡

𝑍𝑅𝑅 , 𝛾0𝑧𝑡
𝑍𝑅𝑆, 𝛾0𝑧𝑡

𝑍𝑂𝑅) are nonnegative, which 

creates the relationship between different reserve products as shown below,  

 𝑀𝐶𝑃𝑧,𝑡
𝑅𝐸𝐺 ≥ 𝑀𝐶𝑃𝑧,𝑡

𝑆𝑃𝐼𝑁 ≥ 𝑀𝐶𝑃𝑧,𝑡
𝑆𝑈𝑃𝑃 (7—31) 

 

In this model, post reserve deployment constraints implicitly balance the reserve 

quantity in each zone while meeting the market-wide reserve requirements. However, this 
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formulation models the post regulation reserve deployment constraints on a zonal basis, 

which assumes that nodes in the same zone have the same zonal sensitivities. However, 

nodes in the same zone may have quite different nodal sensitivities on some transmission 

lines, some of which may be prone to transmission bottlenecks. 

7.3 Post Nodal Regulation Reserve Deployment Formulation 

 The transition from zonal energy clearing process to nodal energy clearing process is 

widely recognized as a success. This inspires the transition of zonal reserve requirements 

to nodal reserve requirements in this chapter. The regulation reserve is deployed more 

frequently compared to the spinning and supplemental reserve due to the low probability 

of contingencies. Thus, in this chapter, only regulation reserve will be modeled on a nodal 

basis. For the post nodal regulation reserve deployment formulation, it is assumed that the 

load increase happens in the load center and the assumption is the same as MISO’s current 

formulation, and the maximum load increase for period 𝑡 is assumed to be 𝑅𝑀𝐾𝑇,𝑡
𝑅𝐸𝐺 . The 

proposed formulation with consideration of post nodal regulation reserve constraints is 

listed as follows, 

 

Objective: (7—1) 

s.t.: 

Equations (7—2) — (7—14) and (7—17) — (7—24) 

Nodal post regulation reserve up deployment (𝛿𝑘𝑡
𝑅𝐸𝐺𝑈𝑃) 

 𝑓𝑘𝑡 + ∑ 𝑟𝑔,𝑡
𝑅𝐸𝐺𝑃𝑇𝐷𝐹𝑛𝑗,𝑘

𝑅
𝑔∈𝐺 − 𝑃𝑇𝐷𝐹𝐿𝐶,𝑘

𝑅 𝑅𝑀𝐾𝑇,𝑡
𝑅𝐸𝐺 ≤ 𝐹𝑘

𝑚𝑎𝑥
 (7—32) 

Nodal post regulation reserve down deployment (𝛿𝑘𝑡
𝑅𝐸𝐺𝐷𝑁) 

 𝑓𝑘𝑡 − ∑ 𝑟𝑔,𝑡
𝑅𝐸𝐺𝑃𝑇𝐷𝐹𝑛𝑗,𝑘

𝑅
𝑔∈𝐺 + 𝑃𝑇𝐷𝐹𝐿𝐶,𝑘

𝑅 𝑅𝑀𝐾𝑇,𝑡
𝑅𝐸𝐺 ≤ 𝐹𝑘

𝑚𝑎𝑥
 (7—33) 
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Equations (7—32) and (7—33) capture the regulation reserve deployment impacts on 

transmission lines more accurately by utilizing nodal sensitivities. Hence, the reserve 

quantity will be balanced at a higher resolution, i.e., on a nodal basis. Note that, in 

comparison to stochastic programming where each post nodal balance constraint is 

explicitly modeled [10], the proposed nodal regulation reserve deployment formulation is 

an improved deterministic reserve requirement model. The proposed formulation examines 

the post regulation reserve deployment for the case when the load increase is equal to the 

market-wide reserve requirement, 𝑅𝑀𝐾𝑇,𝑡
𝑅𝐸𝐺 , and all the cleared regulation reserves are 

deployed. The proposed formulation more accurately captures the impacts of deploying 

regulation reserve, as compared to the zonal method, while still maintaining a deterministic 

structure that is computationally tractable and does not have pricing issues in comparison 

to stochastic programming. 

7.4 Nodal Regulation Reserve Price and Scarcity pricing 

Nodal post regulation reserve deployment constraints will lead to nodal regulation 

reserve prices. The reserve market clearing prices (MCP) and the energy clearing prices 

can be calculated as shown below, 

 

 𝑀𝐶𝑃𝑛,𝑡
𝑅𝐸𝐺 = 𝛾𝑧𝑡

𝑍𝑅𝑅 + 𝛾𝑧𝑡
𝑍𝑅𝑆 + 𝛾𝑧𝑛𝑡

𝑍𝑂𝑅 + 𝛾0𝑧𝑡
𝑍𝑅𝑅 + 𝛾0𝑧𝑡

𝑍𝑅𝑆 + 𝛾0𝑧𝑛𝑡
𝑍𝑂𝑅 + ∑ 𝑃𝑇𝐷𝐹𝑛,𝑘

𝑅 (𝛿𝑘,𝑡
𝑅𝐸𝐺𝑈𝑃 −𝑘∈𝐾

𝛿𝑘,𝑡
𝑅𝐸𝐺𝐷𝑁)   (7—34) 

 𝑀𝐶𝑃n,𝑡
𝑆𝑃𝐼𝑁 = γ𝑧𝑛t

𝑍𝑅𝑆 + γ𝑧nt
𝑍𝑂𝑅 + γ0𝑧𝑛t

𝑍𝑅𝑆 + γ0𝑧nt
𝑍𝑂𝑅 (7—35) 

 𝑀𝐶𝑃𝑛,𝑡
𝑆𝑈𝑃𝑃 = γ𝑧𝑛t

𝑍𝑂𝑅 + γ0𝑧𝑛t
𝑍𝑂𝑅 (7—36) 

 𝐿𝑀𝑃𝑛,𝑡 = 𝜆𝑡 + ∑ {(µ𝑘,𝑡 + 𝛿𝑘,𝑡
𝑅𝐸𝐺𝑈𝑃 + 𝛿𝑘,𝑡

𝑅𝐸𝐺𝐷𝑁)𝑃𝑇𝐷𝐹𝑛,𝑘
𝑅 } + ∑ ∑ {𝜇𝑘,𝑧,𝑡

𝐶𝑅 𝑃𝑇𝐷𝐹𝑛,𝑘
𝑅 }𝑧∈𝑍𝑘∈𝐾𝑘∈𝐾  .

   (7—37) 
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Note that ∑ 𝑃𝑇𝐷𝐹𝑛,𝑘
𝑅 (𝛿𝑘,𝑡

𝑅𝐸𝐺𝑈𝑃 − 𝛿𝑘,𝑡
𝑅𝐸𝐺𝐷𝑁)𝑘∈𝐾  is part of the congestion component of the 

regulation reserve price. The congestion component may lead to 𝑀𝐶𝑃𝑛,𝑡
𝑅𝐸𝐺 < 𝑀𝐶𝑃n,𝑡

𝑆𝑃𝐼𝑁 for 

some nodes; this is known as a price reversal and was a problem that existed in early 

ancillary service market designs that led to market manipulation and the exercise of market 

power. Under the zonal reserve formulation, such situations may lead to a reverse clearing 

priority of regulation reserve, spinning reserve, and supplemental reserve. For example, a 

regulation reserve shortage may happen ahead of spinning reserve as a result of market 

manipulation. This may happen even without any market manipulation if the constraints 

are not formulated carefully. The shortage of high priority regulation reserve ahead of 

spinning or supplemental reserve will impose operational issues. With the implementation 

of this new approach, improvements in the market design and settlement schemes should 

be implemented in order to avoid such price reversals. Similar adjustments that were 

considered for earlier ancillary services market designs, which fell prey to market 

manipulation and price reversals, can be considered here to ensure price reversals do not 

occur. 

If price reversals occur, note that the negative congestion component is a sign that the 

reserve is not desired at that corresponding location. Therefore, cleared regulation reserve 

capacity on these nodes is expected to be minimal. However, regulation reserve on these 

nodes may be cleared to substitute for spinning reserve. Empirical evidence from this study 

supports these conjectures. As is discussed in Chapter 7 Section 7.3, the regulation price 

falls below the spinning reserve price only at nodes where no regulation reserve was 

procured; the proposed nodal model identifies nodes where regulation reserve is not 

beneficial whereas the zonal model is not able to make this preferred determination. 
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Furthermore, such improperly procured reserves from the zonal model, which are at nodes 

that have a poor deliverability (cause additional congestion problems), are likely to be 

disqualified anyways through the reserve disqualification procedures employed by MISO 

(similar procedures occur at other ISOs, e.g., ISONE refers to this as a reserve downflag). 

By enhancing the market model to procure deliverable reserves, the market surplus overall 

will be improved and the pricing signals are more accurate; the proposed model also 

reduces costly out of market corrections that distort market signals and are determined by 

operators based on ad-hoc policies. 

7.5 IEEE RTS-96 Test Case 

To validate the effectiveness and performance of proposed nodal post regulation 

reserve formulation, a modified IEEE Reliability Test System (RTS)-96 with 73 nodes, 99 

units, 117 lines, and 51 loads, is used.  

A twenty-four hours SCUC model is solved first to determine unit output and 

commitments for twenty-four periods, and each period can be viewed as a starting point 

for the RT-SCED. For each period, the RT-SCED will be solved for both nodal and zonal 

models, where zonal model refers to the MISO’s current formulation in Section 7.2, and 

nodal model refers to the proposed formulation in Section 7.3.  

Regulation, spinning, and supplemental reserves are considered in this analysis. Each 

generator’s regulation reserve bid is 25% of its energy bid, and spinning reserve bid is 10% 

of its energy bid, and supplemental reserve bid is 5% of its energy bid. The market-wide 

regulation reserve requirements, regulation reserve plus spinning reserve requirements, and 

operating reserve requirements are set as 60MW, 150MW, and 300MW respectively. All 

testing is performed using CPLEX v12.6 on a 2-core 2.8 GHz computer with 12 GB RAM. 
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Figure 7.1 Average Post Regulation Reserve Deployment Transmission Violation (MW) 

An evaluation problem is established to evaluate the transmission violation considering 

one thousand load scenarios based on the RT-SCED solution from each model. One 

thousand load scenarios with equal probability are generated by Monte Carlo simulation, 

and they are used to mimic the real-time load variation [1]. From Figure 7.1, the average 

transmission violations are presented for each period based on the one thousand load 

scenarios. For most of the periods, nodal model has much less average transmission 

violations comparing with the zonal model. To further confirm the improvement of the 

proposed regulation reserve pricing scheme on system reliability, the maximum 

transmission violation for each period is presented in Figure 7.2. From Figure 7.2, the worst 

case of the transmission violations (i.e., maximum transmission violation) of nodal model 

is much better than that of zonal model. The average maximum transmission violation of 
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nodal model is 10.7MW and that of zonal model is 26.9MW. The higher value of maximum 

transmission violation tends to incur more reserve disqualifications and additional 

operating cost. The improvement on average transmission violation and the maximum 

transmission violation indicates that the nodal model improves the modeling accuracy and 

better formulates the post regulation reserve deployment. Therefore, the proposed nodal 

model improves the solution reliability.  

 

Figure 7.2 Maximum Transmission Violation (MW) 

Figure 7.3 shows the objective, i.e. operating cost of the RT-SCED, before the reserve 

disqualifications, for both nodal and zonal model. It can be easily observed that the 

operating costs of these two models are very close except period 10. The operating cost of 

nodal model at period 10 is higher than that of zonal model. What makes this result 
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noteworthy is that the improvement on transmission violation is improved most in period 

10 by using the nodal model and the violations drop from 4.19MW to 0.63MW. Binding 

post nodal regulation deployment constraints drive up the operating cost. However, these 

constraints help improve the solution reliability dramatically as well as reduce the need for 

costly out of market corrections that distort market signals. 

  

Figure 7.3 Average RT-SCED Objective ($) 

Based on the discussion of nodal reserve pricing in Chapter 7 Section 7.5, post 

regulation reserve deployment constraints include a congestion component on the 

regulation reserve price. In Figure 7.6, the average regulation reserve price for twenty-four 

periods is calculated on a nodal basis by (7—34). For the zonal model, the nodes in the 
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same zone will have the same zonal price as calculated in (7—27) and the zonal regulation 

prices for the zonal model are $7.16/MW, $13.28/MW, and $12.74/MW respectively. 

Obviously, the regulation reserve price for the nodal model varies by nodes and sends better 

price signals. Similar to LMPs, the congestion component contributes to the difference of 

regulation reserve prices between different nodes. Resources that alleviate the congestion 

will receive a positive congestion component and resources that aggravate the congestion 

will receive a negative congestion component. Nodal model will encourage resources with 

higher regulation reserve prices to provide regulation reserve and vice versa. 

 

Figure 7.4 Reserve Payment for Each Period ($) 

From Figure 7.6 nodes 34-38 and 40-41 have negative nodal regulation reserve prices; 

as a result, the regulation reserves, at those nodes, are not preferred. For instance, the 
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average regulation reserve prices at node 14 and 15 are $192.70/MWh and $-16.63/MWh, 

respectively, and they receive average congestion components of $119.91/MWh and $-

89.4/MWh. Furthermore, nodal regulation reserve prices on nodes 15-19, 21-22, 60-61, 68, 

71, and 73 are less than the spinning reserve prices for all nodes within that same zone. 

Based on utilizing MISO data involving 24 different RT-SCED runs combined with 1,000 

different potential load scenarios for each of the 24 periods (a total of 24,000 ex-post 

simulations were conducted to analyze the performance of this technique), no regulation 

reserve is cleared on these nodes. However, the zonal model, on average, clears 24.4MW 

of regulation reserve from resources at these nodes. This is a very important result as it 

clearly demonstrates the value of the nodal approach. Note also that the procured reserve 

at these nodes by the zonal model would likely be disqualified by MISO’s reserve 

disqualification procedure since the actual regulation reserve is not deliverable (i.e., the 

reserve is undesirable at these nodes).  

In Figure 7.4, the total reserve payment of nodal model is much higher than that of 

zonal model for some periods. The reason is that nodal model may drive the regulation 

reserve prices at “good” locations, and regulation reserve at these locations are preferred 

because they can counter the network congestion. Thus, the reserve payment of nodal 

model is expected to be higher. The objectives, i.e. operating cost, of these two models are 

very similar and the increase of reserve payment can be viewed as welfare transfer from 

load to supply. Such welfare transfer may lower the uplift payment. 

Figure 7.5 and Figure 7.7 present the impacts on LMPs for the nodal model.  Figure 7.7 

shows that some of the LMPs of the nodal model are slightly higher than those of the zonal 
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model. This indicates that the congestion components of these LMPs are larger. Acquiring 

the regulation reserve on a nodal basis may increase the congestion component of LMPs. 

 

Figure 7.5 Load Payment for Each Period ($) 
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Figure 7.6 Average Regulation Reserve Price ($/MWh) 

 

 

 

10 20 30 40 50 60 70
-50

0

50

100

150

200

Node ID

A
v
e
ra

g
e
 R

e
g
u
la

ti
n
g
 a

n
d
 S

p
in

n
in

g
 R

e
s
e
rv

e
 P

ri
c
e

 

 

Nodal(Reg)

Nodal(Spin)

Zonal(Reg)

Zonal(Spin)



 

 

  

1
2
8 

 

 

 

 

Figure 7.7 Average LMP for Each Bus ($/MWh)
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7.6 MISO Test Case 

In this section, a prototype of the proposed post nodal regulation reserve deployment 

formulation was implemented on the MISO’s system with the assumption that the load 

increase happens in the load center. The tested RT-SCED case has 27 transmission 

constraints and about 1400 resources.  

Table 7.1 Comparison of Zonal and Nodal Results 

Model Penalty Cost Transmission Violation 

Zonal $120/MWh 15.34MW 

Nodal $120/MWh 0.64MW 

Nodal $300/MWh 0MW 

 

For the MISO test case, the post zonal regulation reserve deployment and post nodal 

regulation reserve deployment are relaxed with a pre-defined penalty factor with the 

assumption that the load increase happens in the load center. Table 7.1 shows the post 

reserve deployment transmission violations for the zonal model, with a penalty factor set 

at $120/MWh, and the violations for the nodal model, with penalty factors set at 

$120/MWh and $300/MWh; these results correspond to time interval 19:35. The RT-SCED 

clearing process in MISO is replicated using both zonal and nodal models. In this case, the 

zonal model may require more reserve disqualifications to avoid the transmission 

violations. For the nodal model, as the penalty factor increases, violating the post nodal 

regulation reserve deployment constraints will be more expensive and the transmission 

violation decreases. With the assumption that the transmission violation cost is 

$2,000/MWh, the social welfare is improved by roughly 2% by using the nodal model (with 

penalty costs at $120/MWh and $300/MWh).   
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8. CONCLUSION 

Current reserve zones are based on ad-hoc or rule of thumb approaches, such as utilities 

ownership and geographical boundaries, and are usually treated as static. With the growing 

concern to improve reserve requirements, there is a need to develop systematic approaches 

to determine reserve zones and reserve levels. A novel reserve zone partition method based 

on PTDFDs is proposed in this thesis. The PTDFD zone partitioning method is a heuristic 

method that does not guarantee optimality; however, one primary benefit of this method is 

that it is computationally tractable. Buses that have similar PTDFs on a group of 

transmission lines have similar impact on the grid, which is the basis for the choice to use 

PTDFDs to determine reserve zones. From the numerical results in Chapter 4 Section 4.3, 

improving reserve zones can improve deliverability of reserve, market efficiency, and 

reliability. Although optimality cannot be guaranteed, this reserve zones partition method 

provides more operational flexibility and validates the potential uses of reserve zones. 

With high penetration of renewables in the system, there are more uncertainties in the 

grid, which create new challenges to power engineers. The proposed dynamic (daily-

probabilistic) reserve zones in Chapter 5 Section 5.2 is used to generate reserve zone while 

the system has a high penetration of renewables. This proposed reserve zone determination 

method (daily-probabilistic) has been extensively studied with two approaches: a 

deterministic unit commitment framework and a stochastic unit commitment framework. 

These two approaches have been compared against three different models and across 

twelve days within the winter season. Sixty day-ahead 24-hour unit commitment models 

have been solved (5 for each of the 12 days) with 24 of those day-ahead unit commitment 

models being an extensive form stochastic unit commitment formulation (the remaining 
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models are deterministic unit commitment models). Contingency analysis and wind 

scenario analysis have been conducted on those 60 day-ahead unit commitment dispatch 

solutions, which required roughly 4.5 million simulations. The extensive numerical results 

demonstrate that a dynamic (daily-probabilistic) zonal partitioning method is preferred 

over seasonal methods as dynamic reserve zones are better equipped to reflect operational 

conditions of the network. The proposed dynamic reserve zone method, which relies on 

probabilistic power flow information, is more reliable. The proposed method improves 

reserve deliverability, leading to improvements in operating efficiency and reliability. 

Stochastic programming has been suggested as a solution to manage future resource 

uncertainties in grid operations. However, even with advanced algorithms and hardware, 

implementation of stochastic programming is still a huge challenge for large-scale unit 

commitment problems today. Even deterministic unit commitment problems are a 

challenge as there are vast assumptions and approximations that are built in these 

optimization problems. Improving reserve requirements will be useful no matter if the 

formulation is a deterministic or a stochastic programming framework. A balanced 

approach between dynamic reserves and stochastic programming techniques will be the 

preferred short-term and long-term answer to this challenge. The proposed dynamic reserve 

zone partitioning method provides a computationally tractable way to manage the issue of 

reserve deliverability, which leads to an improvement in reliability and economic 

efficiency.  

With the consideration of electricity market, the proposed dynamic policies can also 

improve the ancillary service market performance. Ancillary service markets are used to 

procure standby reserves that provide operators with additional flexibility to respond to 
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random disturbances. However, this flexibility is wasted when reserves are not deliverable 

due to transmission limitations. It is important to anticipate how uncertainty from 

intermittent renewable resources will affect congestion. It is desirable for the market model 

to anticipate what reserves will be deliverable in order to make efficient decisions and set 

prices that reflect the true locational scarcity of reserves.  

Zonal reserve requirements ensure reserve is held within import-constrained areas. 

However, congestion may still prohibit the deliverability of reserve. In such cases, 

operators will adjust the solution by disqualifying reserves that are inhibited by 

transmission limitations. These adjustments occur outside of the DAM model and, 

therefore, are not reflected in day-ahead prices. Analysis on the IEEE RTS96 test case in 

Chapter 6 Section 6.7 demonstrates how updating zones on a more frequent basis can 

reduce the need for reserve disqualification and improve the real-time value of reserves 

procured in the DAM. The benefit of dynamic zones is magnified as the percentage of 

energy provided by uncertain resources (e.g., wind) increases. To enhance the credibility 

of numerical results, confidence interval of the market solutions are presented. The 

numerical results has shown that the proposed dynamic model can lower the operators’ 

manual adjustments, i.e. reserve disqualification. Furthermore, the operating cost is 

lowered by using the proposed dynamic model. Therefore, the proposed hourly reserve 

zone improves the market solution of SCUC and LAC stages while also ensuring the 

market model more accurately captures system reliability. 

Chapter 7 proposed a novel reserve requirements formulation, which incorporates the 

post regulation reserve deployment constraints on a nodal basis.  Reserve acquired based 

on zonal approach may not be deliverable, and the proposed nodal model can improve the 
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reserve deliverability such that reduce or avoid the need of out of market corrections, i.e., 

regulation reserve disqualification. The market impact of nodal reserve is also studied in 

this Chapter. Regulation reserve price becomes more volatile due to added congestion 

component, and this change will encourage regulation reserve at “preferred” location to 

provide reserve. Another observation is that the reserve payment and load payment of nodal 

model are higher than those of zonal model, and it can be viewed welfare transfer. 

In summary, this thesis aims to improve existing deterministic reserve requirements 

without incurring additional computational cost. The existing deterministic reserve 

requirements have very limited ability to acquire the reserves while considering the 

deliverability of the reserves, and there is no existing systematic way of determining 

reserve zones. In this thesis, a systematic way of determining dynamic reserve zone for 

contingency reserve is proposed to better locate the reserve. Also a nodal regulation reserve 

pricing scheme is also demonstrated to balance the reserve on a nodal basis. As more 

renewables are integrated in the power grid, network congestion becomes more 

unpredictable. Updating reserve zone on a more frequent basis or implementing nodal 

reserve requirements will be more beneficial. The results in this thesis confirms the 

importance and benefits of proposed dynamic reserve policies. 
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9. SUGGESTED FUTURE WORK 

In this Chapter, additional future tasks are proposed to supplement the current work. 

1. K-means will cluster the nodes with smallest PTDFD to the center of each cluster 

(zone). The average PTDFD between each node to the center of each cluster. The 

number of reserve zones can be determined by set a threshold to average PTDFD 

to the center of each cluster. If the average PTDFD to the center of each cluster 

exceed the threshold, it indicates that the number of reserve zone is not sufficient 

to guarantee the required similarity for each cluster (zone), and the number of 

reserve zones should be increased. The number of reserve zones can be fixed and 

input to the SCUC and/or SCED if all the average PTDFD to each cluster (zone) is 

below the threshold. The threshold value should be investigated with the 

consideration of market efficiency and reliability. 

2. Nodal contingency reserve pricing can also be studied. The post contingency 

reserve deployment constraints can be reformulated on a nodal basis, and this 

change will also have impacts on electricity market. A study of nodal contingency 

reserve pricing should be performed to validate the feasibility and effectiveness of 

a nodal contingency reserve pricing scheme.  

Below is a potential formulation of a nodal reserve requirements, which include 

regulation, spinning, and supplemental reserves. 

Market wide regulation reserve requirements 

 ∑ 𝑟𝑔,𝑡
𝑅𝐸𝐺

𝑔∈𝐺 ≥ 𝑅𝑀𝐾𝑇,𝑡
𝑅𝐸𝐺  (9—1) 

            Market wide regulation and spinning reserve requirements 

 ∑ {𝑟𝑔,𝑡
𝑅𝐸𝐺 + 𝑟𝑔,𝑡

𝑆𝑃𝐼𝑁}𝑔∈𝐺 ≥ 𝑅𝑀𝐾𝑇,𝑡
𝑅𝐸𝐺 + 𝑅𝑀𝐾𝑇,𝑡

𝑆𝑃𝐼𝑁  (9—2) 
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            Market wide operating reserve requirements 

 ∑ {𝑟𝑔,𝑡
𝑅𝐸𝐺+ + 𝑟𝑔,𝑡

𝑆𝑃𝐼𝑁 + 𝑟𝑔,𝑡
𝑆𝑈𝑃𝑃}𝑔∈𝐺 ≥ 𝑅𝑀𝐾𝑇,𝑡

𝑅𝐸𝐺 + 𝑅𝑀𝐾𝑇,𝑡
𝑆𝑃𝐼𝑁 + 𝑅𝑀𝐾𝑇,𝑡

𝑆𝑈𝑃𝑃  (9—3) 

            Post regulation-up deployment 

 𝑓𝑘𝑡 + ∑ 𝑟𝑔,𝑡
𝑅𝐸𝐺𝑃𝑇𝐷𝐹𝑛𝑔,𝑘

𝑅
𝑔∈𝐺 − 𝑃𝑇𝐷𝐹𝐿𝐶,𝑘

𝑅 (𝑅𝑀𝐾𝑇,𝑡
𝑅𝐸𝐺 ) ≤ 𝐹𝑘

𝑚𝑎𝑥 (9—4) 

            Post regulation-down deployment 

 𝑓𝑘𝑡 − ∑ 𝑟𝑗,𝑡
𝑅𝐸𝐺𝑃𝑇𝐷𝐹𝑛𝑔,𝑘

𝑅
𝑗∈𝐽 + 𝑃𝑇𝐷𝐹𝐿𝐶,𝑘

𝑅 (𝑅𝑀𝐾𝑇,𝑡
𝑅𝐸𝐺 ) ≤ 𝐹𝑘

𝑚𝑎𝑥 (9—5) 

            Post contingency contingency event 

𝑓𝑖,𝑡 − 𝐸𝑧,𝑡𝑃𝑇𝐷𝐹𝑛𝑔𝑧 ,𝑘
𝑅 + 𝐷𝐹𝑧,𝑡

𝑆𝑃𝐼𝑁 ∑ {𝑟𝑔,𝑡
𝑆𝑃𝐼𝑁𝑃𝑇𝐷𝐹𝑛𝑔,𝑘

𝑅 }𝑔∈𝐺 +

𝐷𝐹𝑘,𝑡
𝑆𝑈𝑃𝑃 ∑ {𝑟𝑔,𝑡

𝑆𝑈𝑃𝑃𝑃𝑇𝐷𝐹𝑛𝑔,𝑘
𝑅 }𝑔∈𝐺 ≤ 𝐹𝑘

𝑚𝑎𝑥
 (9—6) 

Where 𝐷𝐹𝑧𝑡
𝑆𝑃𝐼𝑁 = min {1,

𝐸𝑧,𝑡

𝑅𝑀𝐾𝑇,𝑡
𝑆𝑃𝐼𝑁 } , 𝐷𝐹𝑘,𝑡

𝑆𝑈𝑃𝑃 = max {0,
𝐸𝑧,𝑡−𝑅𝑀𝐾𝑇,𝑡

𝑆𝑃𝐼𝑁

𝑅𝑀𝐾𝑇,𝑡
𝑆𝑈𝑃𝑃 }. 

While there are still reserve zones modelled in the formulation, their purpose is 

no longer to capture reserve deployment but to help filter critical contingencies 

modelled in the post contingency event. 

3. Stochastic programming has limitations such as market pricing, computation 

intensity, scenarios selection issues, but it can be used to determine the 

deterministic reserve requirements based on offline study. For instance, different 

scenarios can be generated ahead of day-ahead market SCUC, and the stochastic 

programming with modeled selected scenarios can be solved to output the 

deterministic reserve requirements for SCUC. The updated reserve requirements 

will carry the information of the scenarios generated each day. Such method is an 

alternative way of using stochastic programing in the power system operation 

problems while avoid its limitations. 
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4. Even though there are some limitations of stochastic programming’s application on 

SCUC or SCED, developing a hybrid of stochastic and deterministic reserve policy 

is still beneficial. Stochastic programming can be used to model credible and 

dominant scenarios (contingencies) within allowable computational tolerance while 

deterministic reserve policy can be used to protect against the rest of the 

uncertainties.  
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APPENDIX A  

UNIT COMMITMENT FORMULATION WITH RESERVE ZONES 
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Minimize 

∑ ∑ [𝐶𝑔𝑝𝑔𝑡 + 𝐶𝑔
𝑆𝑈𝑠𝑢𝑔𝑡 + 𝐶𝑔

𝑆𝐷𝑠𝑑𝑔𝑡 + 𝐶𝑔
𝑁𝐿𝑢𝑔𝑡]𝑔∈𝐺𝑡∈𝑇  (Objective) 

Subject to: 

0 ≤ 𝑠𝑢𝑔𝑡 ≤ 1, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺  (Start-up Variable) 

0 ≤ 𝑠𝑑𝑔𝑡 ≤ 1, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺  (Shut-down Variable) 

𝑠𝑢𝑔𝑡 − 𝑠𝑑𝑔𝑡 = 𝑢𝑔𝑡 − 𝑢𝑔,𝑡−1, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺  (Start-up and Shut-down) 

 ∑ 𝑠𝑢𝑔,𝑡′
𝑡
𝑡′=𝑡−𝑈𝑇𝑔+1 ≤ 𝑢𝑔𝑡 , 𝑡 ∈ (𝑈𝑇𝑔 , . . , 𝑇), 𝑔 ∈ 𝐺 (Minimum-up Time) 

 ∑ 𝑠𝑑𝑔,𝑡′
𝑡
𝑡′=𝑡−𝐷𝑇𝑔+1 ≤ 1 − 𝑢𝑔𝑡 , 𝑡 ∈ (𝐷𝑇𝑔 , . . , 𝑇), 𝑔 ∈ 𝐺 (Minimum-down Time) 

∑ 𝑓𝑘𝑡𝑘∈𝐾+(𝑛) − ∑ 𝑓𝑘𝑡𝑘∈𝐾−(𝑛) + ∑ 𝑝𝑔𝑡𝑔∈𝐺(𝑛) = 𝐷𝑛𝑡 , 𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁  (Node Balance) 

𝑓𝑘𝑡 = 𝐵𝑘(𝜃𝑛𝑡 − 𝜃𝑚𝑡), 𝑡 ∈ 𝑇, 𝑘 = (𝑛, 𝑚) ∈ 𝐾  (Power Angles) 

−𝐹𝑘
𝑚𝑎𝑥 ≤ 𝑓𝑘𝑡 ≤ 𝐹𝑘

𝑚𝑎𝑥 , 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾  (Thermal Limits) 

𝑢𝑔𝑡𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑝𝑔𝑡 ≤ 𝑢𝑔𝑡𝑃𝑔

𝑚𝑎𝑥 , 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺  (Generation Output Limits) 

𝑝𝑔𝑡 − 𝑝𝑔,𝑡−1 ≤ 𝑅𝑔
𝐻𝑅 , 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺  (Hourly Ramp-up Rate) 

𝑝𝑔,𝑡−1 − 𝑝𝑔𝑡 ≤ 𝑅𝑔
𝐻𝑅 , 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺  (Hourly Ramp-down Rate) 

𝑟𝑔𝑡
𝑆𝑃𝐼𝑁 ≤ 𝑅𝑔

10𝑢𝑔𝑡, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺  (Ten Minutes Reserve Ramp) 
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0 ≤ 𝑟𝑔𝑡
𝑆𝑃𝐼𝑁 ≤ 𝑢𝑔𝑡𝑃𝑔

𝑚𝑎𝑥 − 𝑝𝑔𝑡   (Reserve Variable) 

∑ (𝑟𝑔𝑡
𝑆𝑃𝐼𝑁)𝑔⋲𝐺 ≥ 𝑅𝑀𝐾𝑇,𝑡

𝑆𝑃𝐼𝑁    (Reserve Requirements) 

𝑢𝑔𝑡 ∈ {0,1}, 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺  (Commitment Variable) 
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APPENDIX B 

OFFLINE CONTINGENCY ANALYSIS 
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Objective: 

Minimize  

∑ (𝜌𝑐   
𝑀
𝑐=1 × 𝑙𝑠𝑛𝑐𝑡 × 𝑉𝑂𝐿𝐿)  (Objective) 

Subject to:  

∑ 𝑓𝑘𝑐𝑡𝑘(𝑛,;) − ∑ 𝑓𝑘𝑐𝑡𝑘(;,𝑛) + ∑ 𝑝𝑔(𝑛),𝑐,𝑡 = 𝐷𝑛𝑡 − 𝐿𝑆𝑛𝑐𝑡   (Post-contingency Node balance) 

−(𝑢𝑔𝑡𝑝𝑔
𝑚𝑖𝑛 − 𝑝𝑔𝑡) ≤ 𝑟𝑔𝑐𝑡 ≤ 𝑢𝑔𝑡𝑝𝑔

𝑚𝑎𝑥 − 𝑝𝑔𝑡  (Generation Output Limits) 

−𝑅𝑔
10𝑢𝑔𝑡 ≤ 𝑟𝑔𝑐𝑡 ≤ 𝑅𝑔

10𝑢𝑔𝑡   (Ten Minutes Ramp Rate) 

𝑝𝑔𝑐𝑡= 𝑁𝑔,𝑐𝑝𝑔𝑡+𝑁𝑔,𝑐𝑠𝑔𝑐𝑡                                 (Output of Generator 𝑔 during Contingency c) 

𝑃𝑘𝑐𝑡 = 𝐵𝑘(𝜃𝑛𝑐𝑡 − 𝜃𝑚𝑐𝑡)                     (Bus Angles during Contingency c) 

−𝐹̅𝑘
𝑚𝑎𝑥 ≤ 𝑓𝑘𝑐𝑡 ≤ 𝐹̅𝑘

𝑚𝑎𝑥   (Thermal Limits) 

𝑙𝑠𝑛𝑐𝑡 ≥ 0                                           (Involuntary Load Shedding at Bus n during Period t)  
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APPENDIX C  

TEST CASES INFORMATION 
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(1) RTS-96 System 

The RTS-96 system [80]-[81] is duplicating the Single RTS system three times.  

The detailed system information are listed below. 

Table C.1 Unit Type and Cost for RTS-96 System 

Unit Type Capacity 

Num. of 

Units 

Start-up 

Cost ($) 

Fuel Cost 

($/MWh) 

No-load 

Cost($/hour) 

Oil/Steam 12 15 571.2 94.74 72.68 

Oil/CT 20 12 75.85 163.02 1138.68 

Hydro 50 18 0 0 0 

Coal/Steam 76 12 1060.88 19.64 130.63 

Oil/Steam 100 9 4754.4 75.64 839.45 

Coal/Steam 155 12 1696.34 15.46 252.67 

Oil/Steam 197 9 6510 74.75 1159.93 

Coal/Steam 350 3 7953.04 15.89 358.23 

Nuclear 400 6 2400 5.46 215.08 

 

Table C.2 Generation Reliability Parameter for RTS-96 System 

Unit Type FOR MTTF MTTR λ 

Oil/Steam 0.02 2940 60 0.00034 

Oil/CT 0.1 450 50 0.002222 

Hydro 0.01 1980 20 0.000505 

Coal/Steam 0.02 1960 40 0.00051 

Oil/Steam 0.04 1200 50 0.000833 

Coal/Steam 0.04 960 40 0.001042 

Oil/Steam 0.05 950 50 0.001053 

Coal/Steam 0.08 1150 100 0.00087 

Nuclear 0.12 1100 150 0.000909 

 

Table C.3 Detailed System Information for RTS96 System 

Id Bus Min-up Time Min-dn Time Maximum Output Minimum Output 

1 1 1 1 20 15.8 

2 1 1 1 20 15.8 

3 1 8 4 76 15.2 

4 1 8 4 76 15.2 

5 2 1 1 20 15.8 

6 2 1 1 20 15.8 

7 2 8 4 76 15.2 

8 2 8 4 76 15.2 
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Id Bus Min-up Time Min-dn Time Maximum Output Minimum Output 

9 7 8 8 100 25 

10 7 8 8 100 25 

11 7 8 8 100 25 

12 13 12 10 197 68.95 

13 13 12 10 197 68.95 

14 13 12 10 197 68.95 

15 14 1 1 0 0 

16 15 4 2 12 2.4 

17 15 4 2 12 2.4 

18 15 4 2 12 2.4 

19 15 4 2 12 2.4 

20 15 4 2 12 2.4 

21 15 8 8 155 54.25 

22 16 8 8 155 54.25 

23 18 48 48 400 100 

24 21 48 48 400 100 

25 22 1 1 50 0 

26 22 1 1 50 0 

27 22 1 1 50 0 

28 22 1 1 50 0 

29 22 1 1 50 0 

30 22 1 1 50 0 

31 23 8 8 155 54.25 

32 23 8 8 155 54.25 

33 23 24 48 350 140 

34 25 1 1 20 15.8 

35 25 1 1 20 15.8 

36 25 8 4 76 15.2 

37 25 8 4 76 15.2 

38 26 1 1 20 15.8 

39 26 1 1 20 15.8 

40 26 8 4 76 15.2 

41 26 8 4 76 15.2 

42 31 8 8 100 25 

43 31 8 8 100 25 

44 31 8 8 100 25 

45 37 12 10 197 68.95 

46 37 12 10 197 68.95 

47 37 12 10 197 68.95 

48 38 1 1 0 0 

49 39 4 2 12 2.4 

50 39 4 2 12 2.4 

51 39 4 2 12 2.4 
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Id Bus Min-up Time Min-dn Time Maximum Output Minimum Output 

52 39 4 2 12 2.4 

53 39 4 2 12 2.4 

54 39 8 8 155 54.25 

55 40 8 8 155 54.25 

56 42 48 48 400 100 

57 45 48 48 400 100 

58 46 1 1 50 0 

59 46 1 1 50 0 

60 46 1 1 50 0 

61 46 1 1 50 0 

62 46 1 1 50 0 

63 46 1 1 50 0 

64 47 8 8 155 54.25 

65 47 8 8 155 54.25 

66 47 24 48 350 140 

67 49 1 1 20 15.8 

68 49 1 1 20 15.8 

69 49 8 4 76 15.2 

70 49 8 4 76 15.2 

71 50 1 1 20 15.8 

72 50 1 1 20 15.8 

73 50 8 4 76 15.2 

74 50 8 4 76 15.2 

75 55 8 8 100 25 

76 55 8 8 100 25 

77 55 8 8 100 25 

78 61 12 10 197 68.95 

79 61 12 10 197 68.95 

80 61 12 10 197 68.95 

81 62 1 1 0 0 

82 63 4 2 12 2.4 

83 63 4 2 12 2.4 

84 63 4 2 12 2.4 

85 63 4 2 12 2.4 

86 63 4 2 12 2.4 

87 63 8 8 155 54.25 

88 64 8 8 155 54.25 

89 66 48 48 400 100 

90 69 48 48 400 100 

91 70 1 1 50 0 

92 70 1 1 50 0 

93 70 1 1 50 0 

94 70 1 1 50 0 
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Id Bus Min-up Time Min-dn Time Maximum Output Minimum Output 

95 70 1 1 50 0 

96 70 1 1 50 0 

97 71 8 8 155 54.25 

98 71 8 8 155 54.25 

99 71 24 48 350 140 

 

(2) Modified IEEE 118-bus System 

Table C.4 Unit Type and Cost for Modified IEEE 118-bus System 

Unit Type Capacity 

Num. of 

Units 

Start-up 

Cost ($) 

Fuel Cost 

($/MWh) 

No-load 

Cost($/hour) 

Oil/Steam 12 10 571.2 94.74 72.68 

Oil/CT 20 4 75.85 163.02 1138.68 

Hydro 50 10 0 0 0 

Coal/Steam 76 6 1060.88 19.64 130.63 

Oil/Steam 100 5 4754.4 75.64 839.45 

Coal/Steam 155 7 1696.34 15.46 252.67 

Oil/Steam 197 5 6510 74.75 1159.93 

Coal/Steam 350 2 7953.04 15.89 358.23 

Nuclear 400 3 2400 5.46 215.08 

 

Table C.5 Generation Reliability Parameter for Modified IEEE 118-bus System 

Unit Type FOR MTTF MTTR λ 

Oil/Steam 0.02 2940 60 0.00034 

Oil/CT 0.1 450 50 0.002222 

Hydro 0.01 1980 20 0.000505 

Coal/Steam 0.02 1960 40 0.00051 

Oil/Steam 0.04 1200 50 0.000833 

Coal/Steam 0.04 960 40 0.001042 

Oil/Steam 0.05 950 50 0.001053 

Coal/Steam 0.08 1150 100 0.00087 

Nuclear 0.12 1100 150 0.000909 

 

Table C.6 Detailed System Information for Modified IEEE 118-bus System 

Id Bus Min-up Time Min-dn Time Maximum Output Minimum Output 

1 10 12 10 197 68.95 

2 10 24 48 350 140 

3 12 12 10 197 68.95 

4 25 8 8 155 54.25 
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Id Bus Min-up Time Min-dn Time Maximum Output Minimum Output 

5 25 8 8 155 54.25 

6 26 4 2 12 2.4 

7 26 24 1 400 100 

8 31 8 8 100 25 

9 46 4 2 12 2.4 

10 46 8 8 100 25 

11 49 8 8 155 54.25 

12 49 8 8 155 54.25 

13 40 1 1 0 0 

14 54 8 8 155 54.25 

15 55 1 1 0 0 

16 59 1 1 0 0 

17 59 8 8 100 25 

18 59 8 8 155 54.25 

19 61 4 2 12 2.4 

20 61 4 2 12 2.4 

21 61 1 1 50 0 

22 61 1 1 50 0 

23 65 1 1 50 0 

24 65 1 1 50 0 

25 65 1 1 50 0 

26 65 1 1 50 0 

27 65 1 1 50 0 

28 65 1 1 50 0 

29 65 1 1 50 0 

30 65 1 1 50 0 

31 65 1 1 50 0 

32 65 1 1 50 0 

33 66 4 2 12 2.4 

34 66 8 4 76 15.2 

35 66 24 1 400 100 

36 69 12 10 197 68.95 

37 69 12 10 197 68.95 

38 69 24 1 400 100 

39 80 8 4 76 15.2 

40 80 8 4 76 15.2 

41 80 8 4 76 15.2 

42 80 8 4 76 15.2 

43 80 8 4 76 15.2 

44 80 12 10 197 68.95 

45 87 4 2 12 2.4 

46 87 4 2 12 2.4 

47 87 4 2 12 2.4 
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Id Bus Min-up Time Min-dn Time Maximum Output Minimum Output 

48 87 4 2 12 2.4 

49 87 1 1 20 15.8 

50 87 1 1 20 15.8 

51 87 1 1 20 15.8 

52 92 8 8 100 25 

53 100 24 48 350 140 

54 103 8 8 155 54.25 

55 111 4 2 12 2.4 

56 111 1 1 20 15.8 

57 111 8 8 100 25 
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APPENDIX D 

OUTAGE RATE CACULATION 
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Table D.1 Outage Rates of Generators and Transmission Lines (For modified IEEE-118 

System) 

Authors Title 

Time 

period 

Basis 

Generator 

Outage 

Rate 

Transmission 

Line Outage 

Rate 

Outage 

Dependence  

Considered 

A 

Papavasiliou 

and S. S. 

Oren 

Multi-Area Stochastic 

Unit Commitment for 

High Wind Penetration 

in a Transmission 

Constrained Network 

Hourly 1% 0.1% No 

M. V. F. 

Pereira and 

N. J. Balu 

Composite 

Generation/Transmission 

Reliability Evaluation 

Hourly 

On the 

order of 

1% 

On the order 

of 0.01% 
Yes 

F. Bouffard 

et al. 

Market-Clearing With 

Stochastic security-Par 

2:Case Studies 

Hourly 1/MTTF N/A No 

R. Billinton 

and R. N. 

Allan 

Reliablity Evaluation of 

Power System 2nd 

edition 

Yearly 

 

Forced 

outage 

Rate 

Forced 

outage Rate 
No 

Proposed 

model in 

this thesis 

N/A hourly 1/MTTF Lam-p/87602 No 

 

Where MTTF is mean time to failure for each generator and Lam-p is the permanent outage 

rate (outages/year) for each transmission line. 

Comparisons of calculating outage rate in different literatures are listed in the Table D.1. 

The forced outage rate (FOR) is defined as below, 

 Unavailability (FOR) =
𝑟

𝑚+𝑟
=

Expectd Duration of Unavaiability per Year

One Year
    (D—1) 

Where r is the mean time to repair (MTTR), m is the mean time to failure (MTTF) 
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Expected failure rate 𝜆 is defined in (D—2) 

 𝜆 =
1

𝑀𝑇𝑇𝐹
=  Expected Number of Outages per Hour (D—2) 

One year=8760 Hours (Except the leap year), then, 8760×λ= Expected Number of 

Outages per Year. The proposed model in this thesis assume that all the outages are 

independent, and the probability of losing one unit at any particular hour will be equal to 

expected failure rate.  

Table D.2 Generator Reliability Parameter 

Unit Type Capacity FOR MTTF MTTR 

Num. of 

Units λ 

Oil/Steam 12 0.02 2940 60 10 0.00034 

Oil/CT 20 0.1 450 50 4 0.002222 

Hydro 50 0.01 1980 20 10 0.000505 

Coal/Steam 76 0.02 1960 40 6 0.00051 

Oil/Steam 100 0.04 1200 50 5 0.000833 

Coal/Steam 155 0.04 960 40 7 0.001042 

Oil/Steam 197 0.05 950 50 5 0.001053 

Coal/Steam 350 0.08 1150 100 2 0.00087 

Nuclear 400 0.12 1100 150 3 0.000909 

 

In Table D.2, the reliability parameters of different unit types and number of each unit 

type are given 

Since there is no transmission reliability parameter for the IEEE 118 test system, the 

transmission line information from the Reliability Test System (RTS) 1996 is used to the 

outage rate of transmission lines in RTS96. The average value of the outage rates of RTS 

transmission lines is 3.91×10-5 and it is assumed that the probability of any single 

transmission line contingency in IEEE 118-bus system is 3.91×10-5.  

The probability that no contingency happens 

 P(0) = ∏ (1 − 𝜆𝑖9
𝑖=1 )𝑁𝑈𝑖

× (1 − 𝜆𝑇)𝑁𝑈𝑇
= 0.9135 (D—3) 
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Where 𝑁𝑈𝑖 is the number of type i generators, and 𝜆𝑖 is the 1/MTTF 

𝜆𝑇 is the probability of single transsminon line outage, assume that all the transmission 

lines outage probablities are the same. 𝑁𝑈𝑇 is the number of non-radial transmission lines. 

For type i generator, the probability of single type i generator failure is  

 𝑃(𝑖) = 𝑃(0)  × 𝜆𝑖/(1 − 𝜆𝑖) (D—4) 

The results of any single contingency probability is shown as below 

Table D.3 Single Generator Contingency Probability 

Unit Type P(i) 

Oil/Steam 0.00031 

Oil/CT 0.00203 

Hydro 0.00046 

Coal/Steam 0.00047 

Oil/Steam 0.00076 

Coal/Steam 0.00095 

Oil/Steam 0.00096 

Coal/Steam 0.0008 

Nuclear 0.00083 

 

The probabilities of a single transmission line outage is: P(Transmission) =3.72 × 10−5 

For the N-1 reliability, it is assumed that only one contingency can happen at one time, 

then there are only two cases possible, normal operating condition and single generator or 

transmission line contingency. With this assumption, the probability of summation of 

normal operating state and any single contingency happened should be scaled to one. Then, 

the summation of the probability of normal operating state and any single contingency 

happened is 

 P(0) + ∑ 𝑃(𝑖) × 𝑁𝑈𝑖
9
𝑖=1 + 𝑃(T) × 𝑁𝑈𝑇 = 0.9581 (D—5) 
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Therefore, by scaling the result from (D—5) it to one, and the final probabilities of 

normal operating state 𝑃(0)𝑠𝑐𝑎𝑙𝑒  , each generator contingency 𝑃(𝑖)𝑠𝑐𝑎𝑙𝑒 , and each 

transmission line 𝑃(Transmission)𝑠𝑐𝑎𝑙𝑒 are shown below.  

 𝑃(0)𝑠𝑐𝑎𝑙𝑒 =
𝑃(0)

0.9581
= 0.95345 (D—6) 

 𝑃(𝑖)𝑠𝑐𝑎𝑙𝑒 =
𝑃(𝑖)

0.9581
 (D—7) 

 𝑃(Transmission)𝑠𝑐𝑎𝑙𝑒 = 3.7282 × 10−5 (D—9) 

 

The details of each scalded generator single contingency probability are shown in 

Table D.4. 

Table D.4 Scaled Generator Single Contingency Probability 

Unit Type 𝑃(𝑖)𝑠𝑐𝑎𝑙𝑒
 

Oil/Steam 0.00032 

Oil/CT 0.00212 

Hydro 0.00048 

Coal/Steam 0.00049 

Oil/Steam 0.00079 

Coal/Steam 0.00099 

Oil/Steam 0.00101 

Coal/Steam 0.00083 

Nuclear 0.00087 

 


