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ABSTRACT 

Increasing concentrations of carbon dioxide in the atmosphere will inevitably lead to 

long-term changes in climate that can have serious consequences. Controlling 

anthropogenic emission of carbon dioxide into the atmosphere, however, represents a 

significant technological challenge. Various chemical approaches have been suggested, 

perhaps the most promising of these is based on electrochemical trapping of carbon 

dioxide using pyridine and derivatives.  Optimization of this process requires a detailed 

understanding of the mechanisms of the reactions of reduced pyridines with carbon 

dioxide, which are not currently well known.  This thesis describes a detailed 

mechanistic study of the nucleophilic and Bronsted basic properties of the radical anion 

of bipyridine as a model pyridine derivative, formed by one-electron reduction, with 

particular emphasis on the reactions with carbon dioxide.  A time-resolved spectroscopic 

method was used to characterize the key intermediates and determine the kinetics of the 

reactions of the radical anion and its protonated radical form.  Using a pulsed nanosecond 

laser, the bipyridine radical anion could be generated in-situ in less than 100 ns, which 

allows fast reactions to be monitored in real time.  The bipyridine radical anion was 

found to be a very powerful one-electron donor, Bronsted base and nucleophile.  It reacts 

by addition to the C=O bonds of ketones with a bimolecular rate constant around 1 x 107 

M-1 s-1. These are among the fastest nucleophilic additions that have been reported in 

literature. Temperature dependence studies demonstrate very low activation energies and 

large Arrhenius pre-exponential parameters, consistent with very high reactivity. The 

kinetics of E2 elimination, where the radical anion acts as a base, and SN2 substitution, 

where the radical anion acts as a nucleophile, are also characterized by large bimolecular 
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rate constants in the range ca. 106 - 107 M-1 s-1.  The pKa of the bipyridine radical anion 

was measured using a kinetic method and analysis of the data using Marcus theory model 

for proton transfer. The bipyridine radical anion is found to have a pKa of 40±5 in 

DMSO.  The reorganization energy for the proton transfer reaction was found to be 70±5 

kJ/mol.  The bipyridine radical anion was found to react very rapidly with carbon 

dioxide, with a bimolecular rate constant of 1 x 108 M-1 s-1 and a small activation energy, 

whereas the protonated radical reacted with carbon dioxide with a rate constant that was 

too small to measure.  The kinetic and thermodynamic data obtained in this work can be 

used to understand the mechanisms of the reactions of pyridines with carbon dioxide 

under reducing conditions. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation for CO2 Capture and sequestration 

Climate change associated with increasing concentrations of greenhouse gases such 

as carbon dioxide in the atmosphere poses a serious threat to human-kind, and has 

been the subject of increasing concern in the scientific community over the last 30 

years.1  Figure 1.1 shows the global mean land ocean temperature from 1880 to 2005, 

that illustrates a clear increase with time.2  This increase in terrestrial temperature 

with time is commonly referred to as global warming.  Increasing concentrations of 

atmospheric CO2 have been linked to this observed increase in atmospheric 

temperature.3  

 The natural carbon cycle exchanges CO2 with the oceans and vegetation.4 When 

the cycle is balanced, the amount of carbon entering the atmosphere is equal to the 

carbon absorbed from the atmosphere.5,6 Carbon dioxide concentrations in the 

atmosphere have been rising constantly since the industrial revolution,7 however, see 

Figure 1.2. Petroleum products and other fossil fuels have become a major energy 

source due to their high energy content and ready availability. The dependency on 

fossil fuels as energy sources has grown with increases in population and global 

industrialization.8  Burning of fossil fuels creates carbon dioxide which results into a 

net increase of carbon dioxide in the atmosphere. Figure 1.2 shows measurements 

taken at the Mauna Loa Observatory in Hawaii that show how human activity has 

resulted in a clear trend of rising atmospheric CO2 concentration.7  Greenhouse gases  
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Figure 1.1. Plot of global instrumental temperature anomaly vs. time (Data from 

reference 2).  
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Figure 1.2. Plot of the atmospheric CO2 concentration (ppmv) vs. time, measured at 

Mauna Loa, Hawaii (Data from reference 7). 
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such as carbon dioxide absorb a portion of the infrared radiation that is reflected from 

earth that results in an increase in temperature at the Earth’s surface.9,10  

 In the US, energy-related sources accounted for 98% of the total CO2 emissions in 

2007, with electricity generation being the major contributor (40% of the total).11 EIA 

predicts that CO2 emissions from electricity generation in the US will account for 

43% of the total US emissions in 2030.12 Because it is the major contributor to the 

generation of CO2, it is understandable that electric power generation has been the 

primary focus of CO2 mitigation technologies. 

 The climate changes associated with global warming are dangerous because they 

will affect weather patterns,13 and will increase melting of polar ice caps that in turn 

will result in increased sea levels, which represents a major threat to the inhabitants 

of coastal areas.1  All of the consequences of climate change are not well understood, 

however.14   

 In an effort to decrease the rate of global warming, many research groups around 

the world are working to find cost-effective methods for sequestration of atmospheric 

carbon dioxide,15-19 and in particular from flue gases from power plants.20-23  A 

closely related area of research is directed towards finding methods for removal of 

carbon dioxide by chemical reduction to form value-added products such as methanol 

or even methane.24-32  The chemistry of carbon dioxide is thus a major scientific issue 

of the early 21st century. 
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1.2 Current status of CO2 capture technology 

Mineralization has also been discussed as a method to capture CO2.33,34 In this 

case, CO2 is reacted with a variety of inorganic species (typically oxides or 

hydroxides) under high temperature and/or high pressure conditions to produce a 

carbonate-containing or bicarbonate-containing mineral. These processes tend to 

consume large amounts of energy, however, and are generally irreversible in a 

practical sense (i.e. they are reversible only with input of very large amounts of 

thermal energy). 

In power plant post-combustion separation technology, CO2 is isolated by passing 

the flue gas through a continuous scrubbing system, which consists of an absorber 

and a desorber.  The absorption processes use a chemical reaction of CO2 with a 

trapping agent.  After trapping, the absorbed CO2 is released by initiating a reverse  

 

 

 

Scheme 1.1. Schematic diagram for post-combustion capture of carboin dioxide 
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chemical reaction that breaks the covalent bond to the carbon dioxide.  The CO2 

separated by this method is then compressed for further processing, and the solvent and 

trapping agent are regenerated and recycled back into the absorption chamber, Scheme 

1.1.  

The most commercially viable technology for carbon dioxide capture uses solution 

phase or immobilized amines. Several plant scale demonstrations using this technology, 

first patented in 1930, have now been reported.35 Monoethanolamine has been identified 

as a good candidate amine.  Carbon dioxide can react with aqueous monoethanolamine 

(MEA) to form an intermediate zwitterion structure, Eqn 1.1.36 This intermediate then 

reacts with another equivalent of MEA via deprotonation to form a stable complex of 

protonated MEA and MEA carbamate anion, Eqn 1.2, which is the conjugate base anion 

of the carbamic acid. 

 

 

 

Desorption of the carbon dioxide requires re-protonation and endothermic carbon-

nitrogen bond cleavage, Eqn 1.3.  Heat energy is thus required, and steam is usually used 

to drive CO2 liberation from the aqueous amine. This results in a significant energy 

requirement in addition to the energy required to compress the CO2 for storage.  As 

RNH2    +     CO2 N C
O

O

H

H

R

N C
O

O

H

H

R +     RNH2 N C
O

O

H

R
+     RNH3

CO2     +     2 RNH2N C
O

O

H

R
+     RNH2

heat

(1.1)

(1.2)

(1.3)
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discussed in a recent NETL report (DOE/NETL-2009/1366), the energy required for this 

process comprises approximately 40% of total plant output and increases the cost of 

electricity by approximately 85%.37 Thus, in spite of much study, amine scrubbing has 

not been widely implemented because of the poor energetics of the carbon dioxide 

release process. A better approach could be to engineer a system in which both the 

absorption and desorption steps are energetically favorable.  

 

1.3 Electrochemical systems for CO2 capture 

In order for both the trapping and release processes to be energetically favorable, an 

additional chemical process is required that can "switch" the driving force.  Such a 

switch could provide potential energy in various forms, for example, via a photochemical 

or electrochemical process.  Because power plants produce electricity, an electrochemical 

switch is clearly attractive. 

There are a few isolated previous reports of the use of electrochemical methods to 

capture CO2 or to effect its separation from other gases. In one of the earliest reports in 

1989 Mizen and Wrighton described the binding of CO2 to 9,10-phenanthrenequinone 

dianions prepared electrochemically by reduction of the parent quinone.38 Specifically, 

they showed that in the presence of CO2, the quinone was reduced by a single two 

electron step, generating a dianion that captured two equivalents of CO2. Oxidation of the 

quinone dianion-CO2 adduct (an organic carbonate) released the CO2 and regenerated the 

quinone. In a much later 2003 report Scovazzo et al. described CO2 binding to a different 

quinone derivative, 2,6-di-t-butyl-1,4-benzoquinone.39 They modeled the behavior 

expected for CO2 binding based on various values for the binding constant describing the 
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equilibrium between CO2 and the reduced form of the quinone to form the adduct. They 

also demonstrated electrochemical separation of carbon dioxide based on this chemistry, 

although not with a cell design that would be scalable to be useful industrially. Finally, in 

2011 Stern et al. modeled the thermodynamics of this type of electrochemical separation 

process based on reduced quinone capture agents.40 They showed that the energetics of 

the process are very attractive if the process can be run as a two stage process (i.e. if 

capture occurs at the cathode as a consequence of reduction, and release simultaneously 

occurs at the anode as a consequence of oxidation).  

Recent reports also describe electrochemical16,17,18 and photochemical24,25,28 systems 

that reduce CO2 to formate, formaldehyde and methanol, using N-heterocyclic 

compounds. Semiconductor materials and transition metal based catalysts have also been 

used to reduce CO2 to monoxide and other reduced forms.41-48 The Bocarsely group has 

studied the pyridinium cation as an electrochemical catalyst for reduction of CO2 to 

methanol on a palladium electrode.15 Although a mechanism has been proposed,15,49 see 

Scheme 1.2, the exact details have still not been completely confirmed.  Nevertheless, it 

is clear that a one electron reduced pyridinium ion is involved in a process that can also 

involve up to 6 electrons in sequential steps. 

An interesting step in this mechanism is formation of a new covalent bond between 

the pyridinyl nitrogen and the carbon atom of CO2.  This is interesting since it suggests a 

possible method for CO2 trapping based on this new covalent bond formation, that can be 

initiated electrochemically.  This observation forms the basis for the work described in  
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Scheme 1.2. Overall Proposed Mechanism for the Pyridinium-Catalyzed Reduction of 

CO2 to the Various Products of Formic Acid, Formaldehyde, and Methanol.15 

 

 

 

this thesis.  A pyridine radical anion formed by one-electron reduction can, in principle, 

be used to trap carbon dioxide, and if the carbon dioxide can be released upon on 

electron oxidation, then a reversible trapping system for CO2 could be developed. 

 

1.4 Photochemical Electron Transfer Reactions 

Charge separation and electron transfer play a crucial role in many photochemical 

processes.50 Photoinduced charge transfer between a neutral electron donor (D) and 

electron accepotor (A) can result in formation of an exciplex, which is an excited state 

charge-transfer complex that may have varying degrees of charge transfer, or may result 

in complete transfer and the formation of the radical cation of the donor (D•+) and radical 
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anion of the acceptor (A•–).50 In an electron transfer process, the excited state may act as 

the electron donor, Eqn 1.4, or as the electron acceptor, Eqn 1.5.  

The kinetics of the electron transfer process are dictated by the total free energy 

change associated with the electron transfer. Because no chemical bonds are broken or 

 

 

 

made in electron transfer reactions, an exerogonic electron transfer reaction, i.e. for 

which the change in the Gibbs free energy is negative, will usually also be exothermic.  

The free energy change associated with a ground state electron transfer reaction, Eqn 1.6,  

 

 

 

can be determined as the difference in the relevant redox potentials.  For the example 

reaction shown in Eqn 6, the free energy of the reaction is thus shown in Eqn 1.7.   

 

 

 

For a photoinduced electron transfer reaction, the excited state energy is also taken into 

account, and so for the reaction shown in Eqn 4, the reaction free energy, Eqn 1.8. 

 

 

  

D*   +     A (1.4)

(1.5)

D•+   +     A•–

D   +     A* D•+   +     A•–

(4)

(5)

X•–   +    Y (1.6)X     +     Y•– (6)

∆Get   =    Ered
Y   -   Ered

X (1.7) (7)

∆Get
*   =   (Eox

D   -   Ered
A)   -   Eex

D (1.8) (8)
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Figure 1.3. Orbital representation of the oxidation and the reduction processes for the 

ground state R and excited state *R. (adapted from reference 51) 
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Excited state species in either singlet or triplet excited state are always better oxidizing 

and reducing agents compared to ground states.  A molecular orbital diagram that 

illustrates this is shown in Figure 1.3. The ionization potential of the ground state R is 

smaller than the ionization potential of the excited state *R. The electron affinity of the 

ground state R is les negative than the electron affinity of the excited state *R. 

As shown in Figure 1.3, electron affinity for the excited state *R is more negative as a 

consequence of transfer of an electron from the lower energy HOMO to the higher 

energy LUMO. Similarly, less energy is needed to remove an electron from the LUMO 

orbital to the vacuum, resulting in a lower ionization potential for the excited state *R.  

 

1.5 Thesis Objective and Overview 

In this thesis describes a detailed study of analogue of simple pyridine. 4,4'-

Bipyridine, in its one-electron reduced radical anion form could be potentially used as a 

catalyst for CO2 capture and subsequent release in electrochemical systems.  Apart from 

the Bocarsly work, which did not include kinetic measurements of individual rate 

processes, the kinetics of the reaction between the pyridine based radical anions and 

carbon dioxide have not been investigated. The bipyridine radical anion would be 

expected to be very reactive as a one-electron reductant, as a Bronsted base and as a 

nucleophile, and characterizing these various reactivities will be important for any 

practical application of reduced bipyridine.  In this work, we have studied the kinetics of 

the reaction between the bipyridine redical anion and carbon dioxide using 

photochemical methods. We have also characterized the kinetics of the reactions of the 
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bipyridine radical anion as a nucleophile and a Bronsted base with a range of 

electrophiles and Bronsted acids.  This thesis describes a detailed characterization of 

bipyridine radical anion and its various chemical reactions using the nanosecond pulsed 

laser spectroscopic technique.  

In Chapter 2, experimental techniques, conditions and details have been discussed. 

Chapter 3 describes the characterization of bipyridine radical anion, its nucleophilic 

addition reactions to carbonyl systems and the temperature dependent kinetics, and 

elimination reactions of bipyridine with alkyl halides. Chapter 4 describes the details of 

the kinetics of the bipyridine radical anion addition to CO2, thermodynamic parameters 

and kinetics details. Measurement of the radical anion pKa is described in chapter 5.  In 

chapter 6, we have summarized our findings and scope of this study and suggest future 

work. 
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CHAPTER 2 

EXPERIMENTAL 

2.1 Time-Resolved Absorption Spectroscopy 

 Time resolved absorption spectra were recorded using a nanosecond pulsed laser 

system.1,2.  A simplified schematic representation of the apparatus is shown in Figure 2.1.  

A neodynium-doped yttrium aluminium garnet; (Nd:Y3Al5O12) YAG laser (Quantel, 

Brilliant B) was used as the excitation source.  This laser emits 1064 nm light which is 

frequency doubled to 532 nm light and then doubled again to 266 nm.  The 266 nm light 

is used to excite the bipyridine to the first excitd singlet state, which then intersystem 

crosses to the triplet state.  The laser was operated in Q-switched mode, meaning an 

electro-optical switch is inserted into the optical cavity, maximizing the neodymium ion 

excited state population inversion prior to cavity opening.  The pulse width is 

approximately 3 - 4 nanoseconds in the 266 nm pulse.   

 The 266nm laser light beam was separated from the 1064nm and 532 nm light using a 

prism, and was focused by the means of lenses onto the sample solutions that have 

optical densities adjusted to be ca.0.7 – 1.0 in a 1-cm path length optical cuvette.  Laser 

induced changes in transmitted light intensity in the solution were used to monitor the 

formation and decay of transient species.  The analyzing light is a 150 Watt pulsed xenon 

lamp (Osram XBO-150), that provides essentially continuous output through the UV and 

visible regions.  The laser beam and the analyzing xenon lamp light were focused into the 

center of the sample cell to generate a sufficient concentration of transient species.   
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Figure 2.1.  Schematic diagram of the transient absorption apparatus.  M = mirror, DM = 

dielectric coated mirror, F = filter, L = lens, BD = beam dump, S = shutter, WP = wave 

plate, PMT = photomultiplier tube, Mono = monochromator, Nd:YAG = Neodymium 

YAG laser. 
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An electronic shutter prevented the analyzing light to enter the sample when not required.  

The analyzing light was passed through an Instruments SA model H-20 monochromator.  

Changes in light intensity were detected using a Hamamtsu model R4840 photomultiplier 

tube.  The output is terminated into 50 Ohms and monitored as voltage as a function of 

time using a Tektronix DSA 601 digital signal analyzer.  The waveform data are 

transferred to a PC for conversion into optical density data as a function of time, and for 

kinetic analysis. 

 

2.2 Solvents and Donors 

Acetonitrile and 1,2-dichloroethane (DCE) was used as the solvents and were 

obtained from Sigma Aldrich. The solvents were dried with 4 Angstrom molecular sieves 

(8-12 mesh) for 72 hours before the experiment to reduce the water content. Sieves were 

present in the cuvettes throughout the experiments to minimize the interference of 

dissolved water.  4,4’-Bipyridine (BPy) and 1,4-Diazabicyclo[2.2.2]octane (DABCO) 

was obtained from Sigma Aldrich and used as such.   

1 mM solutions of 4,4'-bipyridine were analyzed in acetonitrile or 1,2-dichloroethane 

solvent in 1-cm cuvettes equipped with arms for purging with nitrogen or carbon dioxide 

gas.  2mM DABCO or triethylamine were used as the donors. 

 

2.3 CO2 Concentration  

The carbon dioxide concentration in the dichloroethane solutions was varied by 

purging with a mixture of CO2 and argon. Balloons filled with argon were weighed and 

then varying quantities of carbon dioxide were additionally added to the balloons, which 
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were then weighed again. Ideal gas behavior was assumed in order to calculate the 

weight percentage of CO2 in the mixtures in the balloons, which were then used to purge 

the sample solutions.   

 

2.4 CO2 solubility measurement in Dichloroethane 

The solubility of carbon dioxide in DCE was measured using gravimetric analysis. 

DCE saturated with CO2 was mixed with an excess aqueous Ba(OH)2 solution. The 

precipitated BaCO3 was filtered, dried and weighed, and the amount of CO2 was 

determined assuming one mole of carbon dioxide per mole of BaCO3. The solubility of 

carbon dioxide at all of the temperatures used to generate the Arrhenius plot was 

determined in the same way.  The solubilites obtained this way were 303 mM, 252 mM, 

93 mM and 46 mM at 10°C, 25°C, 45°C and 68°C, respectively. 

 

2.5 Kinetic study with the carbonyls and alkyl halides 

The kinetics of the reactions between the 4,4'-bipyridine radical anion and the 

carbonyl compounds (cyclohexanone, cycloheptanone, acetic Anhydride, 3-pentanone, 

Pentanal, di-t-butyl ketone, acetophenone, butyrolactone, Ethyl acetate) were measured 

using the time-resolved nano-second laser spectroscopic technique.  Acetic anhydride, 3-

pentanone and pentanal was purified by the methods described elsewhere.3  Apart from 

these, all of the chemicals were received from Sigma-Aldrich and were used as received. 

The bipyridine triplet state was generated in-situ by irradiating the 1 mM solutions of 

4,4'-bipyridine in acetonitrile using pulsed 266 nm laser excitatiuon. DABCO was used 

as an electron donor to donate an electron to the excited triplet bipyridine to form the 



24 
 

radical anion, which could be observed with an absorbance maximum at 380 nm. The 

rate of decay of the radical anion was measured in the presence of the carbonyls at 

different concentration. The pseudo-first ordere rate constant for decay of the radical 

anion decay were plotted as a function o fthe concentration of the carbonyl to give the 

bimolecular rate constant as the slope.  

The knetics of the reactions between the bipyridine radical anion and alkyl halides 

were measured in the same way.  t-butyl Bromide, 2-bromobutane, 1-bromobutane, 1-

iodobutane, 1-chlorobutane, iodomethane and methyl–p-toluenesulfonate were obtained 

from Sigma-Aldrich, and were used as received. 

 

2.6 pKa of the 4,4'-Bipyridine Radical Anion 

The pKa of bipyridine radical was estimated by measuring the kinetics of its reaction 

with a series of phenol derivatives. p-Nitrophenol, p-trifluoromethylphenol, 2-

fluorophenol, 3-fluorophenol, phenol, p-cresol, p-methoxyphenol, trimethylphenol, 

hexafluoroisopropanol and trifluoroethanol was received from Sigma-Aldrich and was 

used as such for the experiments. 

Bipyridine triplet state was generated in-situ by irradiating the 1 mM solutions of 4,4'-

bipyridine in acetonitrile using 266 nm laser shots. DABCO was used as a donor which 

donates an electron to the excited triplet bipyridine molecule to form the radical anion 

which could be observed with a maxima at 380 nm. Decay rate of the radical anion was 

studied in the presence of carbonyls at different concentration. Rate of the radical anion 

decay at different concentration of the carbonyls were plotted to obtain the bimolecular 

rate constants as the slopes.  
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CHAPTER 3 

BIPYRIDINE RADICAL ANION: CHARACTERIZATION AND REACTIVITY 

TOWARDS CARBONYLS AND ALKYL HALIDES 

3.1 Introduction 

Pyridine and its derivatives have been the subject of much current interest as 

potential catalysts for useful chemistry of carbion dioxide.1 Two main areas of research 

focus on the conversion of CO2 to liquid fuels,2 and the chemical trapping of CO2 for 

sequestration.3 These two processes are fundamentally related by formal reduction of 

carbon dioxide, either by one-electron transfer, formal hydrogen addition, or covalent 

bond formation to a nucleophile.  Of these, the reactions of CO2 with nucleophiles, in 

particular amines, have been extensively studied.4 Several electrochemical and 

photochemical systems have now been described that can convert CO2 to formate, 

formaldehyde and methanol in the presence of N-heterocyclic compounds.5-13 The 

electrochemical reduction of CO2 to methanol using the aromatic amine pyridine as a 

catalyst has recently been reported by Bocarsly et al.14  This process is related to 

ethanolamine capture of CO2 in that nucleophilic addition of pyridine to the carbonyl 

carbon of CO2 may be an important step in the mechanism.14 

One-electron reduction of 4,4'-bipyridine generates a radical anion, which should 

be strongly nucleophilic, and could be used to trap carbon dioxide via bond formation to 

the carbonyl carbon. The mechanisms of the carbon dioxide trapping and release 

reactions will be described elsewhere in this thesis. In this chapter, we describe studies 

that characterize the bipyridine radical anion quantitatively in terms of iuts 

nucleophilicity and Bronsted basicity.  The radical anion is generated in situ in 
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homogeneous solution and studied using time-resolved nano-second laser transient 

spectroscopy. We have studied the nucleophilic addition of the radical anion of 4,4'-

bipyridine with a variety of carbonyl compounds.  Bipyridine radical anion can also 

behave as a strong base, and we have found that it can be used to perform E2 elimination 

reactions with alkyl halides, that can occur in competition with nucleophilic substitution. 

Thse two processes for alkyl halides have been characterized kinetically and are 

discussed.  

 

3.2 Experimental 

Acetonitrile was used as the solvent and was obtained from Sigma Aldrich. 

Acetonitrile was dried with 4 Ao
 molecular sieves (8-12 mesh) for 72 hours before the 

experiment to reduce the water content. Sieves were present in the cuvettes throughout 

the experiments to minimize the interference of dissolved water. 4,4’-bipyridine (BPy) 

and  1,4-Diazabicyclo[2.2.2]octane (DABCO) was obtained from Sigma Aldrich and 

used as such.   

1 mM solutions of 4,4'-bipyridine were analyzed in acetonitrile in 1-cm cuvettes 

equipped with arms for purging with argon or carbon dioxide gas.  2mM DABCO was 

used as the donors. 

The kinetics of the reaction between the bipyridine radical anion and carbonyl 

compounds (cyclohexanone, cycloheptanone, acetic anhydride, 3-pentanone, pentanal, 

di-t-butyl ketone, acetophenone, butyrolactone, ethyl acetate) were measured using the 

time-resolved nano-second laser spectroscopic technique.  Acetic anhydride, 3-pentanone 

and pentanal was purified by the methods described previously.15 All of the chemicals 
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received from Sigma-Aldrich and were used as received. The bipyridine triplet state was 

generated in-situ by irradiating 1 mM solutions of 4,4'-bipyridine in acetonitrile using a 

nanosecond pulsed 266 nm laser. DABCO was used as an electron donor to the excited 

triplet bipyridine to form the bipyridine radical anion, which could be observed with an 

absorbance maximum at 380 nm. The decay rate of the radical anion was measured in the 

presence of carbonyls as electrophiles at different concentration. The pseudo first order 

rate constant for decay of the radical anion decay at different concentrations of the 

electrophiles were plotted to obtain the bimolecular rate constants as the slopes. 

The rate constants for reaction between the bipyridine radical anion and alkyl 

halides were obtained in the same way. t-Butyl bromide, 2-bromobutane, 1-bromobutane, 

1-iodobutane, 1-chlorobutane, iodomethane and methyl–p-toluenesulfonate as 

electrophiles were used as received from Sigma-Aldrich. 

 

3.3 The 4,4'-Bipyridine Radical Anion 

As shown previously,16 one-electron reduction of the first excited triplet state of 

bipyridine (Bpy) using amines (A) as the electron donor results in formation of a triplet 

geminate bipyridine radical anion (Bpy•–)/amine radical cation (A•+) pair, Scheme 3.1.  

When triethylamine is the donor, proton transfer within the geminate radical ion pair can 

occur, kH+, to form the bipyridyl radical (Bpy•–H) and an α-amino radical (A•), Scheme I.  

Separation within this geminate pair, ksep
R, yields these freely diffusing radicals.  With 

DABCO as the electron donor A, however, proton transfer in the geminate pair is much 

slower and separation of the radical ions occurs, ksep
I, to generate a freely diffusing  
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Scheme 3.1. Reaction scheme showing formation of the separated 4,4'-bipyridine radical 

anion (Bpy•–) for pulsed laser excitation in solution, using either triethylamine or 

DABCO as the amine electron donor (A). Proton transfer in the triplet geminate radical 

ion pair (kH+) competes with separation, ksep. 
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bipyridine radical anion (Bpy•–) and the DABCO radical cation (A•+).  The Bpy•– (λmax = 

380 nm) and Bpy•–H (λmax = 365 nm) are distinguishable on the basis of their absorption 

spectra, Figure 3.1 and Figure 3.2.  Bpy•– is a powerful one-electron donor and Bronsted 

base, and the time-resolved decay of the radical anion in fluid solution is pseudo-first 

order, presumably due to reaction with solvent impurities, or slow reaction with the 

solvent itself.  The measured lifetime of the Bpy•– is 1.2 µs in argon-purged acetonitrile. 

Figure 3.3 shows an example absorbance decay for the bipyridine radical anion in argon 

purged acetonitrile.  The first order rate constant was measured to be 5 x 105 s-1 in this 

case.  

Because the absorption spectra of the radical anion and the radical were similar, 

we performed experiments to assign the absorptions observed in the transient absorption 

on the basis of chemical reactivity.  Because the radical anion is a strong one-electron 

donor, it should react rapidly with electron acceptors.  The rate constants for reaction of 

the transient with absorption maximum at 380 nm generated in the presence of DABCO 

as the electron donor were obtained for reaction with tetracyanobenzene, 

dicyanobenzene, stilbene and oxygen. These data are summarized in Table 3.1, together 

with the relevant reduction potentials.  The reduction potentials for each of the acceptors 

is less negative than that of 4,4'-bipyridine itself, Table 3.1, which means that electron 

transfer to each should be exothermic. Indeed, rate constants close to the diffusion 

controlled limit are observed, consistent with exothermic electron transfer. In addition, 

with tetracyanobenzene the radical anion of the acceptor was observed after the reaction 

as a transient absorption, confirming the mechanism of reaction as electron  
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Figure 3.1. Transient absorption spectrum of the 4,4'-bipyridine radical anion in 

acetonitrile, measured 200 ns after pulsed laser excitation of the bipyridine in the 

presence of DABCO as an electron donor, at room temperature. 
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Figure 3.2. The transient absorption spectrum of the radical product of protonation of the 

4,4'-bipyridine radical anion in acetonitrile, measured 200 ns after pulsed laser excitation 

of the bipyridine, in the presence of triethylamine as the electron donor, at room 

temperature. 
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Figure 3.3. Representative absorbance decay showing decay of the 4,4'-bipyridine 

radical anion, monitored at 380 nm, in argon purged acetonitrile.  The smooth curve 

through the data represents the best first order kinetic fit, corresponding to a first order 

rate constant for decay of 5 x 105 s-1 and a lifetime of 1.9 µs.  

  

Time/ µs 



34 
 

Table 3.1.  Bimolecular Rate Constants for Reaction of the 4,4'-Bipyridine Radical 

Anion with Electron Acceptors, and Their Reduction Potentials 

 

Substrate Rate Const (k) 

M-1 s-1 

Reduction Potential 

V vs. SCE 

Oxygen 1 x 1010 -0.40 V 

Tetracyanobenzene 9 x 109 -0.65V 

Dicyanobenzene 5 x 109 -1.60 V 

4,4'-Bipyridine  -1.80 V 
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transfer. The same reactivity was not observed when the absorbance at 365 nm was 

monitored using triethylamine as the donor, where the protonated radical was expected to 

absorb. We conclude that the absorbance at 380 nm is exclusively due to the 4,4'-

bipyridine radical anion and that the absorbance of the protonated radical form can 

readily be distinguished at 365 nm. 

 

3.4 The Reaction of the 4,4'-Bipyridine Radical Anion With Carbonyl Compounds 

and Electrophiles 

Nucleophilicity is a fundamental property of an organic reactant. Nucleophilicity 

is the kinetic ability of a structure to act as a Lewis base, which is a basic concept for 

formation of new covalent bonds in organic chemistry. The nucleophilicities of very few 

organic radical anions have been described in the literature, however. Because of the 

importance of pyridine radical anions in carbon dioxide reduction and sequestration, we 

have characterized its nucleophilicity with a variety of electrophiles. Cyclohexanone was 

chosen as an archetype carbonyl electrophile and reaction with the bipyridine radical 

anion was readily observed in acetonitrile. A plot of the pseudo-first order rate constant 

for decay of the bipyridyl radical anion (Bpy•–) as a function of cyclohexanone 

concentration yields a bimolecular rate constant for reaction of 1.3 x 107 M-1 s-1, Figure 

3.4, Table 3.2. After reaction with CO2, the absorption spectrum of the Bpy•– is replaced 

by a new spectrum with absorption maximum at 370 nm, Figure 3.5. Even though this 

new species and the radical Bpy•–H have similar absorption spectra, Figure 2, it is 

apparent that the new species is not simply a radical derived from bipyridine because it  
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Figure 3.4. Observed pseudo-first order rate constant for decay of the 4,4'-bipyridine 

radical anion, kobs, as a function of concentration of cyclohexanone.  The bimolecular rate 

constant for reaction is given by the slope as 1.3 ± 0.2 x 107 M-1 s-1.   
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Figure 3.5. Transient absorption spectra of the distonic carbamate anion radical adduct 

of the 4,4'-bipyridine radical anion with cyclohexanone, in acetonitrile, measured 100 ns 

after excitation of the bipyridine in the presence of DABCO in 100mM cyclohexanone 

solution, at room temperature. 
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reacts with dissolved oxygen more slowly than does the radical, and in contrast to the 

radical, it is long lived on the timescale of the experiment. Its lifetime is greater than 10 

ms and is in fact too long to be measured with the experimental apparatus. We assign this 

new species to the product of nucleophilic addition of one of the bipyridyl nitrogens to 

the carbonyl carbon, Eqn. 3.1.   

 

 

 

The rate constant of 1.3 ± 0.2 x 107 M-1 s-1 represents a very fast nucleophilic 

addition to cyclohexanone,17 and is consistent with a low barrier for reaction. The 

temperature dependence of the rate constant was measured over the temperature range 

3°C - 70°C. An Arrhenius plot of the bimolecular rate constant for reaction of Bpy•– with 

cyclohexanone is shown in Figure 3.6. The Arrhenius activation energy is 18.8 ± 2.0 

kJ/mol and the pre-exponential factor is 3.2 ± 1 x 1010 s-1. The experimental uncertainties 

in these values are large because of the restricted temperature range of the measurements. 

Nevertheless, it is clear that the reaction has a small barrier. 

 The kinetics of the reactions of the bipyridine radical anion with a variety of carbonyl 

electrophiles are summarized in Table 3.2. It is evident that the anhydride reacts almost 

two times faster than cyclohexanone. 3-Pentanone, pentanal, di-t-butyl ketone and 

cycloheptanone react with BPy radical anion with similar rate constants. This is exactly 

the behavior expected for nucleophilic addition to a carbonyl, where anhydrides are more  
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Figure 3.6. Arrhenius plot of the rate constant for reaction of cyclohexanone with the 

bipyridine radical anion in acetonitrile. 
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reactive than aldehydes and ketones, and aldehydes and ketones react at similar rates.  

Similarly, acetophenone reacts more slowly than cyclohexanone, again consistent wiuth 

the conventional understanding of nucleophilic addition to carbonyls. The partial positive 

charge on the carbonyl carbon in acetophenone is delocalized into the benzene ring, thus 

decreasing reactivity. Esters exhibit very low reactivity and the rate constants in these 

cases are lower than our detection limit of 105 M-1s-1.  

Aldehydes are often observed to act as slightly weaker electrophiles than ketones, 

but in these experiments they are not distinguishable on the basis of their rate constants, 

Table 3.2. However, the rate constants measured here are among the fastest that have yet 

been recorded for nucleophilic attack on carbonyl structures, and consequently the 

reactivity/selecitivy principle suggests that small differences may not be discernable, 

especially for reactions with very low activation barriers. Nevertheless, the rate trends 

observed are clearly consistent with nucleophilic addition of a pyridyl nitrogen to the 

carbonyl carbon in these reactions, which conforms the bipyridine radical anion as being 

among the most reactive nucleophiles yet studied. Furthermore, the observation of a long 

product of the addition reaction to cyclohexanone provides a spectroscopic signature for 

nucleophilic addition that is distinct from the radical formed by protonation, Figures 3.2 

and 3.5. 

Nucleophilicity is often susceptible to solvent effects, and because we are 

interested in the chemistry of the bipyridine radical anion in various conditions, even 

perhaps in aqueous environments, we studied the kinetics of the reaction with 

cyclohexanone in different solvents with varying water content. In DMSO and 

acetonitrile the rate constants were essentially the same. This may not be surprising since 
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they are both high dielectric constant solvents that do not hydrogen bond. However in 

dichloroethane solvent, the water content was found to have a significant effect on the 

rate constant. In less polar solvents, the reactivity of nucleophiles is often diminished in 

the presence of hydrogen-bonding structures. In the presence of hydrogen bonding, the 

nucleophilic electrons are decreased in energy as a result of the electrostatic effect, and 

the nucleophilic atom may have larger radii due to hydration which reduces the 

nucleophilic strength. 

 

3.5 Bipyridine radical anion kinetics with alkyl halides 

 BPy radical anions are strong nucleophiles as demonstrated in the previous section 

pertaining to high rate constants towards the carbonyl compounds. Another aspect of this 

radical anion, the basicity, has not been explored much in detail.18 We explored the 

basicity of the BPy radical anion here in detail.  

 We also studied the kinetics of the reaction between the bipyridine radical anion and 

alkyl halides. Alkyl halides represent classic cases of electrophiles that can undergo 

competitive electrophilic reactions, specifically electrophilic reactions resulting in 

substitution, and Bronsted acidic reactions resulting in elimination. Table 3.4 summarizes 

the rate constants for several of these reactions. A plot of the pseudo-first order rate 

constant for decay of the bipyridyl radical anion (Bpy•–) as a function of t-butyl bromide 

concentration yields a bimolecular rate constant for reaction of 4.7 x 106 M-1 s-1. After 

reaction with t-butyl bromide, the absorption spectrum of the Bpy•– is replaced by a new  
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Table 3.2. Bimolecular Rate Constants, kr, For Nucleophilic Addition of the Bipyridine 

Radical Anion With Various Carbonyl Compounds 

Carbonyl kr  (M-1s-1) 

Cyclohexanone  1.3 x 107 
Cycloheptanone 1.3 x 107 
Acetic Anhydride 3.0 x 107 
3-pentanone 1.5 x 107 
Pentanal 1.4 x 107 
di-t-butyl ketone 1.6 x 107 
acetophenone 6.5 x 106 
butyrolactone ≤ 5 x 105 
Ethyl acetate ≤ 5 x 105 
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Table 3.3.  Effect of Solvent and Water Content on the Bimolecular Rate Constant for 

Reaction Between the Bipyridine Radical Anion and Cyclohexanone, kr 

 

Solvent Water Content kr  (M-1s-1) 

Dichloroethane 20 ppm 2.0 x 107 
Dichloroethane 160 ppm 5.9 x 106 
   
DMSO 280 ppm 1.9 x 106 
DMSO 40 ppm 1.9 x 106 
   
Acetonitrile 320 ppm 1.3 x 107 
Acetonitrile 80 ppm 1.5 * 107 
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spectrum with absorption maximum at 365 nm, Figure 3.7. This new species and the 

radical Bpy•–H have similar absorption spectra, Figure 3.2. This confirms formation of 

BPy radical by abstraction of a proton from t-butyl bromide, i.e., in this case the 

bipyridine radical anion is acting as a Bronsted base. No product was isolated but the 

spectra are consistent with an E2 elimination reaction between the radical anion and t-

butyl bromide. Depending upon the structure of the alkyl halide, SN2 and E2 elimination 

reactions were observed.  

Iodomethane reacts with the bipyridine radical anion with a bimolecular rate constant 

of 1.3 x 106 M-1 s-1. E2 elimination is not a feasible reaction with methyliodide, and so 

this bimolecular rate constant most likely corresponds to SN2 substitution. Spectra of the 

transients observed at the end of the reaction do not appear to be those of a single 

product.  

The bimolecular rate constants for reaction of the bipyridine radical anion with t-

butyl bromide, 2-bromobutane and 1-bromobutane (Table 3.4), clearly indicates E2 

elimination in each case.  It is well known that E2 reactions are fastest for tertiary halides 

and slowest for primary halides. Reaction with 1-bromobutane and 1-chlorobutane was 

too slow to be measured using our experimental apparatus. Although rate constants could 

not be determined, this behavior is again consistent with known reactivities of primary 

halides in SN2 reactions.   

We also studied the reactivity of alkyl halides with substituted bipyridine, 2,2'-

dimethyl-4,4'-bipyridine. We expected the bimolecular rate constants for both SN2 and 

E2 reactions to be slower for this structure compared to the parent bipyridine due to 
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Figure 3.7. Transient absorption spectra of the bipyridine radical adduct in acetonitrile, 

measured 100 ns after excitation of the bipyridine in the presence of DABCO in 60 mM 

t-butyl bromide solution, at room temperature. 
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Table 3.4.  Bimolecular rate Constants for the Reaction Between the Bipyridine Radical 

Anion and Various Alkyl Halides, kr.   

 

Substrate kr  (M-1s-1) 

t-butyl Bromide 4.7 x 106 

2-bromobutane 1.7 x 106 

1-bromobutane ≤ 5 x 105 

  

iodobutane 1.1 x 106 

bromobutane ≤ 5 x 105 

chlorobutane ≤ 5 x 105 

  

  

iodomethane 1.3 x 106 

Methyl – p-toluenesulfonate 1.3 x 107 
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Table 3.5. Bimolecular rate Constants for the Reaction Between the 2,2'-Dimethyl-4,4'-

bipyridine Radical Anion and Various Alkyl Halides, kr.  

  

Substrate kr  (M-1s-1) 

t-butyl Bromide 5.1 x 106 

iodobutane 4.2 x 107 

iodomethane 7.2 x 106 
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steric hindrance. To our surprise, we observed an increase in bimolecular rate constant, in 

particular for the alkyl iodides. This suggests that the rate-determining step in this case 

may be one-electron transfer from the radical anion to the halides. The additional methyl 

substituents will result in a more negative reduction potential for this bipyridine, which 

will make it a more powerful one-electron reductant. Such reaction behavior suggests 

that the mechanism has switched to the SRN1 reaction in which the rate-determinign step 

is electron transfer to the halide, which undergoes bind cleavage to form an alkyl radical 

which then reacts with substitution being the overall result.19 

 

3.6 Conclusion: 

The bipyridine radical anion was found to be a very powerful one-electron donor, 

Bronsted base and nucleophile. It reacts by nucleophilic addition to the C=O bonds of 

ketones with a bimolecular rate constants around 1x 107 M-1 s-1. These are among the 

fastest nucleophilic additions that have been reported in the literature. Temperature 

dependence studies demonstrate very low activation energies and large Arrhenius pre-

exponential parameters, consistent with very high reactivity. The kinetics of E2 

elimination, where the radical anion acts as a base, and SN2 substitution, where the 

radical anion acts as a nucleophile, are also characterized by large bimolecular rate 

constants in the range ca. 106 - 107 M-1 s-1.  These studies provide the basis for detailed 

investigations of the the nucleophilic reaction of the 4,4'-bipyridine radical anion with 

carbin dioxide, discussed in Chapter 4.   The Bronsted basicity of the bipyridine radical 

anion is further investigated both thermodynamicllay and kinetically in Chapter 5. 
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CHAPTER 4 

REVERSIBLE ELECTROCHEMICAL TRAPPING OF CARBON DIOXIDE 

USING 4,4'-BIPYRIDINE 

4.1 Introduction 

 In response to dwindling fossil fuel energy resources and the growing global warming 

problem, the chemistry of carbon dioxide has been the subject of substantial current 

recent research activity.1 Two main areas of research focus on the conversion of CO2 to 

liquid fuels,2 and chemical trapping of CO2 for sequestration.3 These two processes are 

fundamentally related by formal reduction of carbon dioxide, either by one-electron 

transfer, formal hydrogen addition, or covalent bond formation to a nucleophile. Of 

these, the reactions of CO2 with nucleophiles, in particular amines have been extensively 

studied.4 Systems that use nucleophiles such as ethanolamine and other amines have been 

developed for industrial-scale reversible carbon dioxide trapping applications.5 Covalent 

bond formation followed by deprotonation forms a carbamate anion, the deprotonated 

form of a carbamic acid. Thermal decomposition of such a carbamate anion liberates 

carbon dioxide and an amine,5 although the energy cost of the CO2 liberation process 

represents a limitation to its use in reversible carbon dioxide trapping schemes.6 

 Electrochemical reduction of CO2 to methanol using the aromatic amine pyridine as a 

catalyst has recently been reported by Bocarsly et al.7 This process is related to 

ethanolamine capture of CO2 in that nucleophilic addition of pyridine to the carbonyl 

carbon of CO2 may be an important step in the mechanism,7 although the details are still 

under investigation.8   
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 A method of CO2 trapping and release that does not require substantial thermal input 

in either direction would clearly be of interest. Electrochemical methods for reduction of 

CO2 to generate useful high-value structures have received a lot of attention,2,9 but 

reversible electrochemical trapping of CO2 has not yet been extensively studied, and no 

kinetic studies have been reported.  

Here we demonstrate a method for reversible trapping of CO2 using 4,4'-bipyridine 

that uses electrochemistry to switch between a structure that covalently bonds carbon 

dioxide, initiated by one-electron reduction of the 4,4'-bipyridine, and one that releases 

carbon dioxide and neutral bipyridine upon oxidation. Both the reaction that traps the 

carbon dioxide and the reaction that liberates the carbon dioxide are exergonic and both 

proceed with low reaction energy barriers. The mechanisms of the carbon dioxide 

trapping and release reactions are explored in detail, both experimentally and 

computationally. The trapping and release of carbon dioxide over more than twenty 

cycles is demonstrated at room temperature.   

 

4.2 Results and Discussion 

4.2.1. Reversible Trapping of CO2 using 4,4'-Bipyridine as an Electrochemical 

Switch. 

 One-electron reduction of 4,4'-bipyridine in the ionic liquid N-butyl-N-

methylpyrrolidinium bis(trifluoromethylsulfonyl)imide as the electrolyte in a nitrogen 

atmosphere is reversible, demonstrating that the bipyridine radical anion is stable on the 

millisecond timescale under the experimental conditions.  Electrochemical experiments 

were performed by a colleague, Jarred Olsen. The reduction potential is -2.3 V vs 
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ferrocene as an internal reference, Figure 4.1. In the presence of a saturated solution of 

carbon dioxide the electrochemical behavior changes dramatically, Figure 4.1. The 

cathodic peak shifts to lower potential, ca. -2.05 V vs. ferrocene, presumably as a result 

of rapid reaction of the bipyridine radical anion with carbon dioxide to form an adduct.  

The current density also increases, presumably due to the higher diffusion coefficient of 

carbon dioxide in the ionic liquid compared to bipyridine. Oxidation of the bipyridine 

radical anion is now absent in the reverse wave. Instead, an oxidation wave that is ca. 

700 mV less negative than the reduction wave is observed; this wave must correspond to 

a reaction product, presumably the bipyridine radical anion/carbon dioxide adduct.  

Attempts to replace the carbon dioxide with nitrogen again after electrochemical cycling 

were unsuccessful due to the high solubility of CO2 in the ionic liquid. However, the 

electrochemical behavior in the presence of carbon dioxide is reproducible and the same 

reduction and re-oxidation waves are observed for over 20 cycles, during which period 

all of the dissolved bipyridine would have been consumed if the reactions were not 

reversible  (the maximum number of repeatable cycles has not been determined). 

 These observations are consistent with reversible electrochemical reactions.  

Protonation of the neutral or electrochemically activated bipyridine by acid (such as 

carbonic acid derived from the reaction of water with CO2) can be ruled out since the 

concentration of water (determined by Karl-Fischer titration) in solution is less than the 

detection limit of the instrument (1.5mM), and separate experiments involving 

protonation of the bipyridine resulted in irreversible passivation of the electrode interface 

during voltammetric measurements. The reaction between the bipyridine radical anion 

and carbon dioxide is presumably nucleophilic addition to the carbonyl carbon to form a 
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carbamate anion, Eq. 4.1a, that also has a single non-bonding electron associated with the 

bipyridine π-system. One possible electron configuration is shown in Eq. 4.1a, which is 

consistent with the results of the computations, which suggest that the non-bonding 

electrons is associated with a π* M.O. on the bipyridine and not on the carboxyl. 

Oxidation of this distonic carbamate anion pyridyl radical is most easily envisioned as 

occurring at the pyridyl radical rather than the carboxylate, as shown in Eq. 4.1b. This is 

because the pyridyl radical is an α-amino radical,10 which are known to have much lower 

oxidation potentials than carboxylate anions,11 although biradical electron configurations 

corresponding to carboxylate oxidation should undoubtedly also be considered, see 

below.   

 

 

 

 In support of the assignment of the product of the reaction between the bipyridine 

radical anion and CO2 to the distonic carbamate anion radical shown in Eq. 1a, the 

oxidation potentials for substituted pyridyl radicals are usually found to be between ca. -

1.0 and ca. -1.5 V versus ferrocene,12 consistent with the oxidation wave observed in 

Figure 4.1. 
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Figure 4.1. Cyclic voltammetry of 10 mM 4,4'-bipyridine in N-butyl-N-

methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent at room 

temperature (black curve) purged with nitrogen gas, and (blue curve) purged with carbon 

dioxide gas, using a glassy carbon working electrode and platinum counter electrode with 

ferrocene as an internal reference. (Experiment performed by Jarred Olsen) 
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4.2.2. Kinetic Studies of the Reaction Between the 4,4'-Bipyridine Radical Anion 

and Carbon Dioxide. 

 The kinetics of the 4,4'-bipyridine radical anion reaction with CO2 were studied using 

transient absorption spectroscopy. As shown previously,11 one-electron reduction of the 

first excited triplet state of bipyridine (Bpy) using amines (A) as the electron donor 

results in formation of a triplet geminate bipyridine radical anion (Bpy•–)/amine radical 

cation (A•+) pair, Scheme I. When triethylamine is the donor, proton transfer within the 

geminate radical ion pair can occur, kH+, to form the bipyridyl radical (Bpy•–H) and an α-

amino radical (A•), Scheme 4.1. Separation within this geminate pair, ksep
R, yields these 

freely diffusing radicals. With DABCO as the electron donor A, however, proton transfer 

in the geminate pair is much slower and separation of the radical ions occurs, ksep
I, to 

generate a freely diffusing bipyridine radical anion (Bpy•–) and the DABCO radical 

cation (A•+). The Bpy•– (λmax = 380 nm) and Bpy•–H (λmax = 365 nm) are readily 

distinguished on the basis of their absorption spectra, Figure 4.2. Bpy•– is a powerful 

one-electron donor and Bronsted base, and the time-resolved decay of the radical anion 

in fluid solution is pseudo-first order, presumably due to reaction with solvent impurities, 

or slow reaction with the solvent itself. The measured lifetime of the Bpy•– is 1.2 µs and 

0.9 µs in argon-purged acetonitrile and dichloroethane, respectively. 

 Attempts to react Bpy•– with CO2 in acetonitrile solution failed due to formation of 

acidic species via reaction of CO2 with residual water in the solvent that resulted only in 

protonation of the radical anion with formation of the bipyridyl radical (Bpy•–H) with 

absorption maximum at 365 nm.12 However, reaction with CO2 was readily observed in  
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Scheme 4.1. Reaction scheme for formation of the separated 4,4'-bipyridine radical anion 

(Bpy•–) in the time-resolved laser experiments in solution, using either triethylamine or 

DABCO as the amine electron donor (A).  Proton transfer in the triplet geminate radical 

ion pair (kH+) competes with separation, ksep. 
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Figure 4.2. Transient absorption spectra of (left) the 4,4'-bipyridine radical anion in 

acetonitrile, measured 200 ns after pulsed laser excitation of the bipyridine in the 

presence of DABCO, (center) the radical product of protonation of the radical anion in 

acetonitrile measured 200 ns after pulsed laser excitation of the bipyridine in the 

presence of triethylamine, and (right) the distonic carbamate anion radical adduct in 

dichloromethane, measured 100 ns after excitation of the bipyridine in the presence of 

DABCO in a CO2 saturated solution, all at room temperature. 
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Figure 4.3. Observed pseudo-first order rate constant for decay of the 4,4'-bipyridine 

radical anion, kobs, as a function of concentration of carbon dioxide.  The bimolecular rate 

constant for reaction is given by the slope as 9.2 ± 0.2 x 107 M-1 s-1.  The inset is an 

Arrhenius plot for the reaction rate constant. 
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dried dichloroethane (see the Experimental section for details). A plot of the pseudo-first 

order rate constant for decay of the bipyridyl radical anion (Bpy•–) as a function of CO2 

concentration yields a bimolecular rate constant for reaction of 9.2 x 107 M-1 s-1, Figure 

3. After reaction with CO2, the absorption spectrum of the Bpy•– is replaced by a new 

spectrum with absorption maximum at 375 nm. Even though this new species and the 

radical Bpy•–H have similar absorption spectra, Figure 4.3, it is apparent that the new 

species is not the radical because it reacts with dissolved oxygen more slowly than the 

radical, and in contrast to the radical it is long lived on the timescale of the experiment.  

Its lifetime is greater than 10 ms and is too long to be measured with the experimental 

apparatus. We assign this new species to the product of nucleophilic addition of one of 

the bipyridyl nitrogens to the carbonyl carbon, Eqn. 4.1a. Support for this assignment 

comes from computational studies, described below. 

 To the best of our knowledge, the rate constant of 9.2 ± 0.2 x 107 M-1 s-1 represents the 

largest reported for a nucleophilic addition to CO2,13 and is consistent with a low barrier 

for reaction. The temperature dependence of the rate constant was measured over the 

temperature range 10°C - 68°C. An Arrhenius plot of the bimolecular rate constant for 

reaction of Bpy•– with CO2 is included as an insert in Figure 4.3. The Arrhenius 

activation energy is 16.7 ± 2.0 kJ/mol and the pre-exponential factor is 7.4 ± 3 x 1010 s-1. 

The experimental uncertainties in these values are large because of the restricted 

temperature range of the measurements, but more importantly because the change in 

solubility of the CO2 over the temperature range was larger than the change in the 

reaction rate constant (see Experimental section).  Nevertheless, it is clear that the 
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reaction has a small barrier.  The activation free energy at 300K corresponds to 27.7 ± 

2.0 kJ/mol. 

 

4.2.3. Computational Studies of the Reaction Between the 4,4'-Bipyridine Radical 

Anion and Carbon Dioxide 

 Computational analysis was performed by Edward D. Lorance, our collaborator at 

Vanguard University. The reaction between the Bpy•– and CO2 was studied 

computationally with Gaussian09 (see Experimental section), using the M06-2X hybrid 

meta-GGA density functional with the aug-cc-pVDZ basis, which has been found by 

Truhlar to give good results for kinetic studies.14  The solvent was included using 

IEFPCM as implemented in Gaussuan 09.  The adduct structure was first obtained, and a 

potential energy scan conducted lengthening the bipyridyl nitrogen-CO2 carbonyl (N-C) 

bond length, rN-C, to locate the transition state and any intermediates. When stationary 

points (minima or first-order saddle points) were located, they were then optimized 

without bond length restrictions and the free energy computed, including electrostatic 

and non-electrostatic solvation contributions.  These free energies were then used with 

transition state theory to compute the reaction rate. 

 In addition to the N-C bond length, the most significant molecular parameters that 

change are the O–C–O angle in the carboxyl, α, and the length of the carbon-carbon 

bond that joins the rings in the bipyridyl (the inter-ring C-C bond).  The O-C-O bond 

angle changes smoothly as the linear carbon dioxide transforms into a carboxylate as it is 

attacked by the bipyridyl radical anion, Figure 4.4.  In the bipyridyl radical anion, the 

inter-ring C-C bond is stretched, presumably to increase the space over which the extra 
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electron is spread.  In the course of the reaction the charge density in the bipyridyl radical 

anion is shifted toward the more electronegative oxygen atoms and generally diffused 

into larger molecular orbitals and the inter-ring C-C bond shortens.  The initial ring shape 

in the bipyridyl radical anion is distorted as a consequence of populating the bipyridyl 

LUMO π* orbital.  The attacking (proximal) ring is brought into a more regular 

hexagonal shape in the adduct, presumably due to a shift in electron density away from 

the distorting π* orbital. 

 In addition to the transition state, an energy minimum was found corresponding to a 

pre-reaction complex, Figure 4.4, within the single-solvent-cavity region of the N–C 

bond stepping (< 3.4 Å), it seems likely that it represents a real complex and not an 

artifact of the solvation method being used at extreme separations.  The relevant free 

energies are summarized in Figure 4.5.  The existence of a pre-reaction complex raises 

the question of whether the slower step in the reaction is formation of the complex or the 

actual nucleophilic addition; the computation predicts that it will be the formation of the 

complex. The free energy barrier from the complex to the nucleophilic addition transition 

state is 6.65 kJ/mol, yielding a rate constant (at 25°C, assuming a transmission 

coefficient of unity) of 4.2 × 1011 M-1 s-1, while the barrier to forming the complex from 

isolated reactants is 26.9 kJ/mol, yielding a bimolecular rate constant of 1.2 × 107 M-1 s-1, 

which is remarkably close to the experimentally measured value of 9.2 x 107 M-1 s-1.   
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Figure 4.4. Electronic energy (including the free energy of solvation contribution) as a 
function of the N–C bond length for reaction of bipyridine radical anion with carbon 
dioxide, rN-C, showing formation of a weak bimolecular complex before the transition 

state to form the distonic carbamate anion radical adduct. The inset shows the smooth 
change in the O-C-O bond angle, , as a function of decreasing rN-C, from 180° in the 

reactants to 129.8° in the adduct. 
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Figure 4.5.  Computed free energies and structures for stationary points along the 

reaction coordinate for the reaction of the bipyridine radical anion with carbon dioxide to 

give the distonic carbamate anion radical adduct (see text and experimental section for 

details), showing formation of a bimolecular complex prior to the transition state.  The 

energies are relative to the sum of the solvated free energies of 4,4'-bipyridyl radical 

anion and carbon dioxide, the indicated bond lengths are in Å. 
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 In turn this strongly supports the proposal that the reaction of the bipyridine radical 

anion with carbon dioxide under both electrochemical and photochemical conditions is 

formation of the carbamate radical ion adduct, Eqn 4.1a. 

 The overall reaction is computed to be exergonic, by 43.9 kJ/mol.  It is also computed 

to be exothermic, the reaction enthalphy is -88.3 kJ/mol, and the computed reaction 

entropy is -149.1 J/K.mol, which is not unusual for a reaction that forms one chemical 

species from two.15 

 

4.3. Computational Studies of the Distonic Carbamate Anion Radical Adduct 

 The carbamate product of addition of the 4,4'-bipyridine radical anion to carbon 

dioxide has radical character, and although it is fairly stable in solution on a seconds 

timescale, based on the reversible cyclic voltammetry, Figure 4.1, attempts to isolate it 

failed, presumably due to reaction with oxygen.  The kinetics of the oxidative 

decarboxylation could not, therefore, be directly measured using pulsed laser techniques.  

The oxidized adduct can be described in terms of biradical or zwitterion electron 

configurations, depending upon whether oxidation is considered to take place formally at 

the radical center or at the carboxylate anion.  As mentioned above, the oxidation 

potentials of conjugated amino radicals are known to be lower than the carboxylate 

anion,10,11 and the computed structure of the oxidized adduct is a ground state singlet 

(using an unrestricted method), so we draw the oxidized adduct as a zwitterion, Eq. 1b.  

Decarboxylation of the formal zwitterion thus closely resembles the known 

decarboxylation reaction of the radical cations of aniline carboxylates, which are known  

  



67 
 

 

 

 

Figure 4.6.  Computed free energies and structures for stationary points along the 

reaction coordinate for decarboxylation of the oxidized product of addition of the 4,4'-

bypyridine radical anion and carbon dioxide, to give neutral bipyridine and carbon 

dioxide (see text and experimental section for details), showing formation of a 

bimolecular complex after the transition state for bond cleavage.  The energies are 

relative to the free energy of the oxidized and solvated adduct, the indicated bond lengths 

are in Å. 
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to be exergonic and fast.16  Another one-electron-oxidized electron configuration is a 

biradical, Eqn. 4.1b, and because mixing of electron configurations is required for 

decarboxylation,16,17 this state could also be important in controlling the reaction kinetics.  

Decarboxylation of the biradical resembles fragmentations in other pyridyl radicals, 

which are known to be fast.17  In addition, we have also shown previously that density 

functional theory can accurately predict the kinetics of fragmentation of pyridyl 

radicals.17a,b  We thus expect that density functional theory should provide a good 

description of the kinetics of the oxidation decarboxylation of the adduct.   

 The fragmentation of the oxidized adduct was studied using the same methods and 

parameters as the nucleophilic addition of the bipyridyl radical anion described above, 

Figure 4.6. 

 The structure of the oxidized adduct was determined and a potential energy scan 

conducted by lengthening the bipyridyl nitrogen-CO2 carbonyl bond length, rN-C', where 

the prime symbol distinguishes the fragmentation reaction from the bond formation 

reaction above.  As with bond formation, a bimolecular complex was found, except that 

from the perspective of fragmenting the zwitterionic adduct, this is a post-reaction 

complex rather than a pre-reaction complex, Figure 4.7.  At larger separation distances 

than the complex, the electronic energy profile was very insensitive to rN-C', and was at 

the same time quite sensitive to the relative orientations of the CO2 and the bipyridyl 

long axis and the nearest pyridine plane.  Consequently, the transition state for the 

formation of the CO2-bipyridyl complex was not located.  Separation of the fragments 

from the complex is exergonic, Figure 4.6, therefore we equate formation of the complex  
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Figure 4.7. Electronic energy (including the free energy of solvation contribution) as a 

function of the N–C bond length for the fragmentation reaction of the oxidized bipyridine 

radical anion with carbon dioxide, rN-C', showing formation of a bimolecular complex 

after the transition state to form the neutral 4,4'-bypyridine and carbon dioxide.  

Although the electronic energy in the products is higher than that in the reactant, the 

reaction is exergonic, see Figure 4.5. 
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with the rate-determining step for overall reaction.  The free energy gap from the 

zwitterion to the transition state is 15.1 kJ/mol, which yields a rate constant (at 25°C, 

assuming a transmission coefficient of unity) of 1.4 × 1010 s-1.  This rate constant is very 

much in the range of rate constants for fragmentation in related systems.16,17 The overall 

reaction is computed to be exergonic, by 31.9 kJ/mol, although in this case the reaction is 

slightly endothermic: the reaction enthalpy is 9.79 kJ/mol.  However, the reaction 

entropy is highly favorable, 139.8 J/K.mol (as expected for a reaction that converts one 

chemical species into two), which results in an overall fast reaction.  

 

4.4. Summary 

 Trapping of carbon dioxide using the radical anion of 4,4'-bipyridine, formed 

electrochemically, is exothermic, exergonic and has a low barrier for reaction.  The 4,4'-

bypyridine radical anion/carbon dioxide adduct can be oxidized to a species that 

undergoes decarboxylation to release carbon dioxide in a reaction that, although is 

slightly endothermic, is exergonic and is expected to be very fast.  Each process involves 

the addition or removal of a single electron and the electrochemical switching voltage 

between trapping and release is only ca. 700 mV.  The energetic requirements for trap 

and release are thus quite minimal. 
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4.5. Experimental 

1. Electrochemistry.  The ionic liquid N-butyl-N-methylpyrrolidinium 

bis(trifluoromethylsulfonyl)imide was used as both the solvent and the electrolyte, and 

was synthesized according to literature.18  The ionic liquid was dried under vacuum with 

heating until the water content was <20ppm, determined by Karl Fischer titration.  The 

electrochemical apparatus was a modified H-cell, customized to enable titration with the 

inert (N2) or reactive (CO2) gases without introducing O2 and atmospheric moisture. The 

working electrode (3-millimeter diameter glassy carbon, CH Instruments) was placed in 

one chamber of the apparatus, and separate platinum wires (serving as counter and quasi-

reference electrodes, respectively) were both confined in the chamber opposite to the 

working electrode; ferrocene was used as an internal reference. A 10mM solution of 4,4'-

bipyridine in the ionic liquid was prepared inside a Vac Atmospheres glovebox (<1ppm 

H2O, O2). All voltammograms were recorded at 50 mV/s with a CH Instruments 618 

potentiostat. 

 

2. Photochemistry.  The transient absorption apparatus was as described previously.17c  

The excitation source was a frequency-quadrupled (266 nm) Quantel Brilliant B 

Ng:YAG laser.  1 mM solutions of 4,4'-bipyridine were analyzed in acetonitrile or 1,2-

dichloroethane solvent in 1-cm cuvettes equipped with arms for purging with nitrogen or 

carbon dioxide gas.  The dichloroethane solvent
 

was dried for 72 hours using activated 

molecular sieves. Sieves were present in the cuvettes throughout the experiments to 

minimize the interference of dissolved water.  2mM DABCO or triethylamine were used 

as the donors. 
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 The carbon dioxide concentration in the dichloroethane solutions was varied by 

purging with a mixture of CO2 and argon. Balloons filled with argon were weighed and 

then varying quantities of carbon dioxide were additionally added to the balloons, which 

were then weighed again. Ideal gas behavior was assumed in order to calculate the 

weight percentage of CO2 in the mixtures in the balloons, which were then used to purge 

the sample solutions.  The solubility of carbon dioxide in DCE was measured by 

gravimetric analysis. DCE saturated with CO2 was mixed with an excess aqueous 

Ba(OH)2 solution. The precipitated BaCO3 was filtered, dried and weighed, and the 

amount of CO2 was determined assuming one mole of carbon dioxide per mole of 

BaCO3. The solubility of carbon dioxide at all of the temperatures used to generate the 

Arrhenius plot was determined in the same way.  The solubilites obtained this way were 

303 mM, 252 mM, 93 mM and 46 mM at 10°C, 25°C, 45°C and 68°C, respectively. 

 

3. Computations.  Calculations were performed using Gaussian09 Rev. A.02,19 running 

on a 64-bit Macintosh BSD Unix system.  We found, after some preliminary exploration 

and in particular trials with B3LYP that the M06-2X hybrid meta-GGA density 

functional would be the best compromise between computational time and accuracy.  

The M06 family of functionals, and esp. the M06-2X hybrid, are well-known for their 

accuracy in standard main-group thermochemical and kinetic applications while having a 

significant improvement in long-range interaction accuracy.20 We used this method with 

the aug-cc-pVDZ basis;21 the M06-2X method with the aug-cc-pVDZ basis has been 

assessed for kinetics by Truhlar and co-workers and they found that it has a mean signed 
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error for nucleophilic substitution of –0.01 kcal/mol and for unimolecular and association 

reactions of –0.37 kcal/mol (those being the two most applicable categories).14    

 There was some question as to how best to include the solvent in the modeling since 

it seemed counterproductive to use a low-accuracy solvent model with a high-accuracy 

electronic structure method; however, this issue has been addressed by Truhlar and co-

workers, who determined that for solution phase kinetics the use of a solvation method is 

important but the quality of the method is generally not largest contribution to the error.22 

We therefore chose the integral equation formalism implementation of the polarizable 

continuum method in Gaussian09 (IEFPCM) with acetonitrile at 25°C and 1 atm 

pressure.  At very long distances, this method predicts that separate cavities will exist for 

the two reacting particles. 
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CHAPTER 5 

KINETICS AND THERMODYNAMICS OF THE 4,4'-BIPYRIDINE RADICAL 

ANION AS A BRONSTED BASE 

5.1 Introduction 

 One electron reduction of an organic molecule forms a radical anion, which compared 

to the corresponding neutral species is potentially a much stronger Brønsted base, Lewis 

base, one-electron reductant and nucleophile.1  Quantitative studies of the Brønsted 

basicity of a variety of organic radical anions have now been reported.2  Brønsted 

basicity and nucleophilicity are molecular properties that are often competitive, a famous 

example being the competition between substitution and elimination reactions of alkyl 

halides.3  Nucleophilicity is defined kinetically, whereas Brønsted basicity is usually 

defined thermodynamically, in terms of pKa.  When nucleophilicity and Brønsted 

basicity are competitive, a kinetic comparison of these two properties would be more 

useful in order to understand or even predict which would dominate.  The kinetics of 

proton transfer reactions have traditionally been described using transition state theory,4 

however, transition state theory has no predictive capability.  

 However, classical Marcus theory has also been extensively applied to proton transfer 

reactions.5  Because Marcus theory connects the kinetics of proton transfer with the 

thermodynamics of the reaction, knowing the pKa values of the acid and base could in 

theory allow prediction of the reaction kinetics, if the intrinsic barrier, or reaction 

reorganization energy is known.  Although quantum mechanical effects become 

important for highly exothermic proton transfer reactions,4,6 particularly in the so-called 
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inverted region, where the reaction rates decrease with driving force,7,8 the simple 

classical theory is useful for thermally activated  proton transfers.9   

 We are interested in the competition between nucleophilicity and Bronsted basicity 

because the reactions of one-electron reduced pyridines have recently been found to be 

useful in applications that either reversibly trap carbon dioxide,10 or convert it into higher 

value reduced forms such as methanol.11  In the latter example the reactions appear to 

involve mainly the protonated reduced pryridine, and in the former, protonation of the 

pyridine radical anion competes with the desired nucleophilic addition reaction.  

Quantitative studies of the nucleophilic reactions of the pyridine radical anions have 

recently been completed,12 but quantitative measurements of the Bronsted basicity of 

these species have not yet been reported.  In fact, although equilibrium pKa 

measurements of several transient radical anions have been made,13 there have been only 

a few reports of kinetics studies that allow the determination of reorganization energies 

for proton transfer to organic radical anions.8,9,14   Here we report quantitative 

measurements of the pKa of the radical anion of 4,4'-bipyridine and also the 

reorganization energy for proton transfer from phenols as proton donors.  

5.2 Experimental 

Transient absorption.  The kinetics of the proton transfer reactions were measured 

using pulsed laser transient absorption.  The apparatus has been described previously.15  

The excitation source was a frequency-quadrupled (266 nm) Quantel Brilliant B 

Ng:YAG laser.  1 mM solutions of 4,4'-bipyridine were analyzed in acetonitrile solvent 

in 1-cm cuvettes equipped with arms for purging with argon gas.  The concentration of 

the DABCO electron donor was 2 mM.  The decay kinetics of the bipyridine radical 
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anion were measured at 380 nm.  All chemicals and the solvent were obtained from 

Sigma-Aldrich and were used as received. 

 

5.3 Results and Discussion 

5.3.1. Reaction Kinetics.  The kinetics of the proton transfer reactions were measured 

using pulsed laser transient absorption spectroscopy.  As demonstrated previously,16 one-

electron reduction of the first excited triplet state of bipyridine (Bpy) using DABCO as 

the electron donor results in formation of a triplet Bpy•–/DABCO•+ pair.  Separation of 

the radical ions in the polar acetonitrile is rapid and efficient,17 and freely diffusing Bpy•– 

is formed within 50 ns of the laser pulse.  The Bpy•– is a strong one-electron donor and 

Bronsted base, and the time-resolved decay of the radical anion in acetonitrile is pseudo-

first order rather than second order via recombination with the DABCO•+.  The decay is 

presumably due to reaction with solvent impurities, or slow reaction with the solvent 

itself.  The measured lifetime of the Bpy•– under the experimental conditions is 1.2 µs in 

argon-purged acetonitrile. 

 The observed rate constant for pseudo-first order decay of the Bpy•– at 380 nm was 

measured as a function of added proton donor.  Plots of the observed rate constant as a 

function of  concentration of the added proton donor were linear, and from the slopes the 

bimolecular rate constant for proton transfer were obtained, Table 1.   
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Table 1.  Rate Constants, kH+, and Thermodynamic Data for Proton Transfer From 

Phenols and Other Alcohols to the Radical Anion of 4,4'-Bipyridine in Acetonitrile 

Solvent at Room Temperature. 

 

Proton Donor pKa a kH+ b 

(108 M-1 s-1) 

∆GH+ c 

(kJ/mol) 

p-nitrophenol 10.8 100 61.62 

p-trifluoromethylphenol 15.3 43 87.30 

o-fluorophenol 15.6 25 89.01 

m-fluorophenol 15.8 33 90.15 

phenol 18 12 102.70 

p-cresol 18.9 16 107.84 

p-methoxyphenol 19.1 12 108.98 

2,4,6-trimethylphenol ~20 6.5  114.12 

    

hexafluoroisopropanol 17.9 13.5 102.14 

trifluoroethanol 23.5 0.47 134.091 

a pKa values in DMSO solvent, from refs 18 and 19. 

b Bimolecular rate constant for proton transfer in acetonitrile. 

b Free energy change associated with proton transfer from the alcohol to the Bpy•– in 

DMSO solvent, assuming a pKa for the Bpy•– of 40 in DMSO. 
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 Substituted phenols were used as the proton donors since the pKa values for these 

structures can be readily varied over a fairly wide range, so that the driving force for 

proton transfer to the Bpy•– can be correspondingly varied.  The use of substituted 

phenols has been described previously by Jaworski et al.14  Two other alcohols were used 

as proton donors, hexafluoroisopropanol and trifluoroethanol, see below.  

Reaction with phenol derivatives were readily observed in acetonitrile.  A kinetic trace of 

the decay of bipyridine radical anion in the presence of 2mM trimethyl phenol have been 

shown in Figure 5.1. After reaction with phenol and its derivatives, the absorption 

spectrum of the Bpy•– is replaced by a new spectrum with absorption maximum at 360 

nm, Figure 5.1.  This new species and the radical Bpy•–H have same absorption spectra. 

It is apparent that the new species is the radical formed by the proton transfer from 

phenol derivatives to the bipyridine radical anion. 

 From the known pKa values of the phenols, it is apparent that the stronger Bronsted 

acids donate protons to the Bpy•– with larger rate constants, as expected.  The strongest 

proton donor, p-nitrophenol, reacts with the Bpy•– with a rate constant that is very close 

to the diffusion controlled limit.20  All other rate constants are lower due to less 

energetically favorable proton transfer. 

 

5.3.2. Data Fitting.  The kinetic data were fitted using a version of Marcus theory.  The 

important features of Marcus theory and the assumptions made in the analysis of the 

current data are as follows.5  The reactants and products are modeled as intersecting 

parabolic potential energy surfaces with a reaction coordinate that mainly reflects the  

  



83 
 

 

Figure 5.1. Absorbance decay showing decay of the 4,4'-bipyridine radical anion, 

monitored at 380 nm, in the presence of 2mM trimethyl phenol.  The smooth curve 

through the data represents the best first order kinetic fit, corresponding to a first order 

rate constant for decay of  9 x 106 s-1. Inset shows the spectra of bipyridine radical anion 

obtained by the proton transfer from phenol derivatives to bipyridine radical anion. 

  

Time/
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reorganization of the solvent molecules in response to the change in molecular charges 

asthe proton is transferred.  The curves are parabolic as a consequence of the continuum 

of possible solvation states.  The reaction activation energies, ∆G‡, are related to the 

reaction free energies, ∆G, via the reaction reorganization, λ Eqn 5.1a, which is a 

measure of the energy required to reorganize all of the nuclei to allow reaction to 

proceed.  The major contributor to the reorganization energy is usually associated with 

the required solvent motion, λs, and this is the assumption behind the parabolic energy 

surfaces.  Reorganization of the nuclei of the reactants also contributes to the total 

reorganization energy, λv, Eqn 5.1b.  The high frequency vibrations associated with these 

nuclear motions are quantized and should be treated separately.5,6,21  However, by 

analogy to electron transfer reactions, the influence of the high frequency contributions 

to the reaction kinetics can only be detected in the inverted region,6,21,22 and for thermally 

activated proton transfer reactions, therefore, it is reasonable to combine λs and λv into a 

total effective reorganization energy λ since they can't be separated experimentally 

anyway, Eqns. 5.1a, 5.1b. 
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 Thermally activated proton transfer reactions, i.e. those that are endergonic or close to 

endergonic can be described by classical adiabatic theory,6 thus the measured 

bimolecular rate constant has the transition state theory form of Eqn 5.1c.  The proton 

transfer reactions studied are shown schematically in Eqn. 5.2.  The Bpy•– reacts with a 

generic proton donor, R–H, to give the protonated conjugate acid of the radical anion, 

Bpy•–H, and the conjugate base anion of the acid, R–.  The free energy change for this 

reaction is determined by the difference in the pKas for the two acids, Bpy•–H and R–H, 

Eqn 5.1d.
 

 

 

 The reorganization energy can be obtained from fitting the observed bimolecular rate 

constan, kH+, rate constant as a function of the reaction free energy, ΔG.  In the absence 

of an intrinsic barrier associated with λ, a plot of the logarithm of kH+ versus ΔG will be 

essentially linear, with a Boltzmann slope of 1/RT.23  Deviations from this linear 

behavior are increasingly observed with increasing λ.  As the reactions become less 

endergonic with stronger acids R–H, these bimolecular reactions eventually approach the 

diffusion controlled limit, at which point the kinetics appear to have no information about 

the proton transfer process.  However, the deviations from Boltzmann behavior are 

greatest at the turn over from highly endergonic to the diffusion controlled limit.24  Thus, 

reactions that approach the diffusion controlled limit are the most informative with 
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respect to determining reorganization energies.  Most previous studies of the kinetics of 

proton transfer reactions have been of reactions that are much slower than this.9,14 

 

The observed bimolecular rate constant for proton transfer, kH+, is related to the 

unimolecular rate constant for proton transfer in the encounter complex between the 

reactants, kH+
E, and the diffusion controlled rate constant, kdiff, as shown in Eqn. 5.1e.  

The diffusion controlled rate constant for bimolecular encounter, kdiff, can be estimated 

to be ca. 1.5 x 1010 M-1 s-1 under the reaction conditions,20 and this is very close to the 

measured rate constant for proton transfer for the strongest acid p-nitrophenol, Table 5.1.  

Also included in Eqn. 5.1e is the rate constant for diffusive separation from the encounter 

complex, k-diff, and the usual assumption is this is twice the value of the rate constant for 

diffusion controlled encounter,25 i.e. ca. 2.0 x 1010 s-1.  Thus, using Eqns. 5.1, the rate 

constant for the bimolecular reaction of the Bpy•– with acids of known pKa is described 

in terms of the parameters kdiff, k-diff, λ and pKa (Bpy-H), i.e., essentially only the two 

unknown parameters of interest, λ and pKa (Bpy-H), since kdiff and k-diff can be estimated 

fairly accurately independently. 

 
Fits to the data according to Eqns. 5.1 are shown in Figure 5.2.  The best fit to the data 

is obtained for
 
pKa (Bpy-H) = 31 and λ = 2.0 eV.  The weak dependence of rate constant 

on driving force requires a large reorganization energy.  The calculated dependence for 

small λ (λ = 0.2 eV, grey curve, Figure 5.2), shows that the data would have a much 

stronger dependence on driving force if the reorganization energy was small.  Although 

there are essentially only two adjustable parameters to fit the data, unfortunately they are 

inter-related in the sense that similar driving force dependencies can be obtained over a 
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fairly wide range in, for example λ, by making corresponding changes to pKa (Bpy-H).  

For this reason the estimated uncertainties in these two parameters are fairly large, λ = 

2.0 ± 0.3 eV and pKa (Bpy-H) = 31 ± 3. 

 The measured pKa is thus large, consistent with the 4,4'-bipyridine radical anion being 

a very strong Bronsted base.  However, because of the large reorganization energy, it is 

interesting that proton transfer only becomes diffusion controlled when the reaction is 

exothermic by ca. 120 kJ/mol, Figure 5.2.  This behavior allows nucleophilic reactions to 

compete with protonation even though the base strength is large. 

 The reorganization energy is very large, however, it is similar to reorganization 

energies for electron transfer between organic molecules in solvent-separated radical ion 

pairs in acetonitrile, which range from ca. 1.5 eV to ca.2.0 eV.26  The solvent 

reorganization energy for electron transfer, λs, is typically much larger than the internal 

vibrational reorganization energy, λv. and the charges in charge for proton transfer and 

electron transfer are the same, thus the reorganization energy obtained seems to be quite 

reasonable. 
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Figure 5.2.  Log of the rate constant for bimolecular proton transfer from (closed circles) 

phenol and (open circles) aliphatic alcohol proton donors to the radical anion of 4,4'-

bipyridine, in acetonitrile at room temperature.  The solid curve through the data points 

corresponds to a best fit according to Eqns 1, with λ = 2.0 eV, pKa (Bpy•–H) = 31 and 

kdiff = 1.1 x 1010 s-1 and k-diff = 2.2 x 1010 s-1.  The solid grey curve represents a calculated 

driving force dependence with the same paraneters except with λ = 0.2 eV, showing the 

dramatic influence of λ at the turnover from diffusion controlled to activated proton 

transfer. 
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 The pKa of the Bpy•-H conjugate acid of the radical anion is large.  The pKa for this 

structure has previously been estimated using ab initio computations to be ca. 20.27  The 

computation was for water, and it would be expected that the pKa would be smaller in 

the less polar acetonitrile solvent.
 

 

5.4. Summary 

For comparison with nucleophilicity, Bronsted basicity needs to be defined kinetically 

rather than just thermodynamically in terms of pKa.  The reorganization energy for the 

proton transfer reactions of Bpy•– are characterized by a large reorganization energy of 

ca. 2 eV.  Consequently, although the Bpy•– is a very strong base, it is kinetically less 

reactive than might be expected on the basis of its pKa.  Together with nucleophility data 

collected elsewhere the data reported here allow the complete reactivity of the Bpy•– to 

be quantitatively understood.
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CHAPTER 6 

SUMMARY OF CHAPTERS AND OUTLOOK FOR FUTURE WORK 

6.1.  Summary of current work 

    One of the main themes of the work described in this dissertation is the use of 

conventional photochemical techniques to obtain a kinetic and mechanistic inderstanding 

of bipyridine radical anion properties and reactivity. As detailed in the previous chapters, 

bipyridine radical anion was successfully synthesized in-situ using a 266 nm 

monochromatic laser source and its reactivity was studied with various substrates. The 

decay kinetics of the bipyridine radical anion in the presence of various electrophiles 

give good insight into the fundamental understanding of the nucleophilic addition 

reactions. Along with high nucleophilicity, bipyridine radical anion acts as a strong base 

and facilitates elimination reactions on alkyl halides. We were able to estimate the pKa 

of the bipyridine radical anion utilizing Marcus’s proton transfer theory.   

The associated complexity of the CO2 reaction with bipyridine radical anion was 

studied in detail. Presence of trace amount of water in the solvent system makes it too 

difficult to understand and monitor the actual reaction. With dry solvent, we were able to 

study the CO2 kinetics with the radical anion.   

 

6.2.  What did we learn about the bipyridine radical anion  

    Bipyridine radical anion has a very small life time, ~ 1 microsecond under argon. 

It reacts very quickly with O2, with a bimolecular rate constant of 5 x 108. In the presence 



94 
 

of trimethylamine as the donor, bipyridine radical is the major product. DABCO, almost 

exclusively generates radical anions.  

Bpy radical anions are very strong nucleophiles and react with cyclohexanone with a 

bimolecular rate constant of ~1 x 107 Lmol-1s-1. The reactivity trend with other aldehyde, 

ketone, anhydride and esters confirms the nucleophilic addition behavior.  

Bpy radical anion acts as a strong base and abstracts a proton from alkyl halides to 

facilitate the E2 mechanism. SN2 mechanism was observed with primary halides. pKa 

measurement confirms high basic character of the radical anion, ~40 in DMSO. Radical 

anion undergoes diffusion controlled reaction with p-nitrophenol.  

Bpy radical anion reacts with CO2 with a rate constant ~1*109 LMol-1S-1, which is one 

of the fastest nucleophilic addition reactions studied so far.  

   

6.3.  Recommendations for future work 

The work described in this thesis contributes to ongoing research towards a 

plausible and cost-effective method for CO2 sequestration and trapping. Developing a 

comprehensive understanding of the reaction mechanism and steps involved will help in 

fine-tuning the variables for commercial CO2 trapping.  Instead of an electrochemical 

set-up to supply and withdraw electrons for subsequent trapping and release of CO2, 

research could be directed in employing UV-light as an source of energy to facilitate this 

process. Bipyridine radical anion is very reactive towards oxygen which limits its 

application in commercial process. Validating and fine-tuning the catalyst based on the 

reduction potential would be a step forward towards employing this technique for large 

scale commercial applications.   
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