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ABSTRACT

Resource allocation is one of the most challenging issues policy decision makers

must address. The objective of this thesis is to explore the resource allocation from an

economical perspective, i.e., how to purchase resources in order to satisfy customers’

requests. This thesis attends to answer the question: when and how to buy resources

to fulfill customers’ demands with minimum costs?

The first topic studied in this thesis is resource allocation in cloud networks. Cloud

computing heralded an era where resources (such as computation and storage) can

be scaled up and down elastically and on demand. This flexibility is attractive for its

cost effectiveness: the cloud resource price depends on the actual utilization over time.

This thesis studies two critical problems in cloud networks, focusing on the economical

aspects of the resource allocation in the cloud/virtual networks, and proposes six

algorithms to address the resource allocation problems for different discount models.

The first problem attends a scenario where the virtual network provider offers different

contracts to the service provider. Four algorithms for resource contract migration are

proposed under two pricing models: Pay-as-You-Come and Pay-as-You-Go. The

second problem explores a scenario where a cloud provider offers k contracts each

with a duration and a rate respectively and a customer buys these contracts in order

to satisfy its resource demand. This work shows that this problem can be seen as a 2-

dimensional generalization of the classic online parking permit problem, and present

a k-competitive online algorithm and an optimal offline algorithm.

The second topic studied in this thesis is to explore how resource allocation and

purchasing strategies work in our daily life. For example, is it worth buying a Yoga

pass which costs USD 100 for ten entries, although it will expire at the end of this year?

Decisions like these are part of our daily life, yet, not much is known today about good

online strategies to buy discount vouchers with expiration dates. This work hence
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introduces a Discount Voucher Purchase Problem (DVPP). It aims to optimize the

strategies for buying discount vouchers, i.e., coupons, vouchers, groupons which are

valid only during a certain time period. The DVPP comes in three flavors: (1) Once-

Expired-Lose-Everything (OELE): Vouchers lose their entire value after expiration.

(2) Once-Expired-Lose-Discount (OELD): Vouchers lose their discount value after

expiration. (3) Limited Purchasing Window (LPW):Vouchers have the property of

OELE and can only be bought during a certain time window.

This work explores online algorithms with a provable competitive ratio against a

clairvoyant offline algorithm, even in the worst case. In particular, this work makes the

following contributions: this work presents a 4-competitive algorithm for OELE, an 8-

competitive algorithm for OELD, and a lower bound for LPW. This work also presents

an optimal offline algorithm for OELE and LPW, and shows it is a 2-approximation

solution for OELD.
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Chapter 1

INTRODUCTION

Allocation of network resources is one of the most challenging and critical issues

that network administrators must carefully address. This thesis attends to this issue

by addressing economical aspects of resource allocation , namely we consider in broad

terms the problem of when and how to buy resources to fulfill customers’ demands

with minimum cost.

The first research topic studied in this thesis is resource allocation in cloud net-

works. Nowadays, the Internet is an integrated part of our daily life and information

spread becomes extremely fast. An emerging technology, called network virtualiza-

tion, helps realize the vision of an Internet where resources offered by different stake-

holders are used and shared by multiple co-existing virtual networks. The abstraction

introduced by network virtualization opens many new business opportunities. It is

expected that in the near future, infrastructure providers, resource brokers, and re-

source resellers will offer flexibly specifiable and on-demand virtual networks over

the Internet, similarly to the traditional elastic resources provided by today’s clouds.

This motivates us to explore virtual network resource allocation problems in clouds

from an economical perspective.

Resources in clouds (e.g., CPUs and storages) are provided as general utilities that

can be leased and released by users in an on-demand fashion through the Internet.

Network virtualization not only introduces an Internet-wide resource market, but also

initiates many new business models. One example is that a startup company running

web services no longer needs to invest in its own infrastructure, but can dynamically

lease cloud resources to provide the services to its customers in a dynamic and cost-
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efficient manner. For instance, online content provider Netflix is able to support

seamless global service by partnering with Amazon Web Services (AWS) for services

and delivery of content. AWS enables Netflix to quickly deploy thousands of servers

and terabytes of storage within minutes. Users can stream Netflix shows and movies

from anywhere in the world, including on the web, on tablets, or on mobile devices

such as iPhones. Another example is that of a hybrid resource provision framework.

Specifically, virtualized cloud resources can be used to help an infrastructure provider

deal with a large amount of loads during peak periods when this provider does not

have enough capacity in its infrastructure. Resource brokerage is another emerging

business model. A broker may lease a large amount of network resources from different

providers and resell them to its customers (at a higher price).

Most of the previous works for resource allocation focus on migration or resource

embedding in the networks. In this thesis, we attend to the economical aspects of the

resource allocation, i.e., cost reduction. In the perspective of the service providers,

they are faced with the challenge that while moving the server closer to the customers

improves QoS, frequent migrations come at service interruption and bulk data transfer

costs. We aim to minimize the total cost by balancing the tradeoff among all types

of the costs. In the perspective of the service customers, they are faced with the

challenge that its resource demand is not known in advance. In order to satisfy its

demand at any time, and to avoid over-purchasing of the service, resource contracts

need to be bought in advance. The goal is an online purchasing policy in which the

gap between the costs of the bought contracts and the costs of the actual needed

contracts is small.

Therefore, this thesis studies two critical problems in cloud networks, focusing on

the economical aspects of the resource allocation in the cloud/virtual networks The

first problem attends a scenario where the virtual network provider offers different

2



contracts to the service provider. Four algorithms for resource contract migration

are proposed under two pricing models: Pay-as-You-Come and Pay-as-You-Go. The

second problem explores a scenario where a cloud provider offers k contracts each

with a duration and a rate respectively and a customer buys these contracts in order

to satisfy its resource demand. We show that this problem can be seen as a 2-

dimensional generalization of the classic online parking permit problem, and present

a k-competitive online algorithm and an optimal offline algorithm.

The second research topic studied in this thesis is to explore how resource alloca-

tion/purchasing strategies work in our daily life. As the Internet becomes widespread

and the information spreads quickly, the competition among different companies be-

comes more and more drastic. In order to attract more customers in such a high-

ly competitive market, some companies or even brokers offer discount vouchers to

improve the profits. For example, a company called Groupon, offers one Groupon

voucher per day in each of the markets it serves where each Groupon may have one

or more discount rates.

Naturally, from customers’ perspective, they aim to minimize the overall money

spent and only buy the vouchers or passes if these are really needed. Let us consider

an example scenario, where Alice regularly takes yoga classes, and wants to decide

whether she shall buy a yoga pass for the next year (the pass will expire at the end of

the year). The yoga pass costs USD C, and allows Alice to join C
π(p)

yoga classes each

at a discounted price π(p) instead of the original price p per class. Unfortunately,

however, Alice is not sure on how long she will be interested in yoga, and in the worst

case, she may not attend any classes in the future after having bought the pass. This

thesis studies online strategies that help Alice to decide whether it is worth buying

the pass. More specifically, we are interested in online purchasing strategies which

ensure that the money spent by Alice is not far from the money spent by an optimal
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and clairvoyant offline algorithm which knows whether Alice will be interested in yoga

in the future.

We hence introduce a discount purchase problem, called the Discount Voucher

Purchase Problem (DVPP). It aims to optimize the strategies for buying discount

vouchers, i.e., coupons, vouchers, groupons which are valid only during a certain time

period. The DVPP comes in three policies:

Once expire lose everything (OELE): The voucher loses its entire value after its

expiration date.

Once expire lose discount (OELD): The voucher loses its discount for the un-

used face value after its expiration date.

Limited purchasing window (LPW): The voucher not only has the same prop-

erty as that of OELD, but also has a limited purchasing window allowed for

purchasing by customers.

We present an online algorithm that can compute a 4-competitive solution to OELE

and an 8-competitive solution to OELD. We also prove a lower bound on online

competitive ratio for LPW. In addition, we present an offline algorithm that can

compute an optimal solution to OELE and LPW and a 2-competitive solution to

OELD.

This thesis is organized as follows: In Chapter 1 we define the research problems

studied in this thesis. In Chapter 2, we study two pricing strategies Pay-as-You-Come

and Pay-as-You-Go for the optimal service migration in virtual networks, and then

discuss an online algorithm. In Chapter 3, we study an online cloud resource allocation

problem and analyze both upper and lower bounds on the competitive ratios. An

optimal offline algorithm is proposed as a blackbox for this online algorithm. In

Chapter 4, we study the Discount Voucher Purchase Problem (DVPP) and discuss
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three variants of DVPP. We show competitive online algorithms for OELE and

OELD and discuss the lower bound for LPW. We present an offline algorithm for

OELE and LPW, and show it is 2-approximation to OELD. In Chapter 5 we conclude

the completed work and discuss lines for future work.
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Chapter 2

OPTIMAL MIGRATION CONTRACTS IN VIRTUAL NETWORKS:

PAY-AS-YOU-COME VS PAY-AS-YOU-GO PRICING

2.1 Introduction

The Internet becomes more and more virtualized and programmable (or “software-

defined”), and we witness a trend towards extending the cloud paradigm to the net-

work. Researchers in the field of network virtualization develop prototype architec-

tures that herald flexibly specifiable, fully virtual networks (VNets) (also known as

CloudNets): virtual networks that can be requested at short notice (and even be

migrated arbitrarily within the specification constraints), while providing isolation

guarantees (e.g., in terms of QoS or security). This paradigm has the potential to

open a network infrastructure for a wide range of new and innovative services, and

it is believed that new economical entities will emerge that lease (or re-lease) infras-

tructure parts to service providers.

We expect that in the near future, such virtual networks connecting arbitrary

locations (and spanning multiple autonomous systems and providers) in the Internet

can be leased similarly to the resource leasing models of today’s clouds. The work in

this chapter attends to a use case for such dynamic VNets where a service provider

offers a flexible and latency-critical service (for instance a web service, an SAP server

or a game server) to its mobile customers whose demand and locations changes over

time (e.g., due to time-zone effects or commuting). We assume that the service

provider itself uses the resource services of a substrate infrastructure provider (e.g., a

physical infrastructure provider or a virtual network provider) in order to offer a low-
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latency access to a server which can be migrated seamlessly in the VNet (i.e., without

reconfiguration or changes of routable network addresses). The service provider is

faced with the challenge that while moving the server closer to the customers improves

QoS (and/or reduces roaming costs), frequent migrations come at service interruption

and bulk data transfer costs. We initiate the study of optimal offline and online

migration strategies for the service provider under two different pricing models.

Our Contribution. This work initiates the study of the virtual server migration

problem from an economical perspective. We compare the two most basic pricing

policies Pay-as-You-Come and Pay-as-You-Go (see, e.g., [34]), in which a service

provider has to pay in advance for time-based contracts respectively in retrospect for

the resources actually used. The service provider receives a discount when buying

larger contracts, e.g., a contract of twice the resource volume only costs 50% more.

As a first step, we design offline migration algorithms for different settings and dis-

count functions. We find that optimal offline solutions can indeed be computed in

polynomial time by using non-trivial dynamic programs. This work also initiates

exploring online migration strategies.

Work Organization. The rest of this chapter is organized as follows. We discuss

related work in section 2.2. In section 2.3, we discuss the model used in this work.

We present two offline migration strategies in section 2.4. As a first look, we have

a short discussion on online algorithm for both pricing strategies in section 2.6. We

conclude this problem in section 2.7.

2.2 Related Work

Our work is motivated by the advent of first network virtualization prototype

architectures such as GENI. For a good overview of the network virtualization field,

see [14]. Theoretical research on network virtualization often focuses on the problem
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of how to embed VNets, e.g., [13, 48, 37] (and especially the survey [8]), while bene-

fitting from specification flexibilities [29]. Naturally, there are also many papers and

results on migration (e.g., [2, 5, 23, 45]): the possibility to migrate is one of the key

advantages of the virtualization abstraction; it is due to the decoupling of services

from the physical infrastructure. Indeed, it has been shown that it can make sense

to migrate a Samba front-end server closer to the clients even for bulk-data applica-

tions [24]. Our work builds upon the formal migration model studied in [5] and ports

it to an economical setting.

Economical aspects of network virtualization are much less well-understood, but

there exist strong ties with related problems in, e.g., cloud computing. For example,

Armbrust et al. [30] made an effort to understand cloud computing economical models

for long-term hosting a service in the cloud. Dash et al. [17] proposed an economic

model for self-tuned cloud caching targeting the service of scientific data. Recently,

Pal and Hui [34] devised and analyzed three inter-organizational economic models

relevant to cloud networks, and formulated non-cooperative price and QoS games

between multiple cloud providers existing in a cloud market. In the context of network

virtualization, Schaffrath et al. [38] identified stakeholders and economical roles in

a network virtualization environment. The authors distinguish between a physical

infrastructure provider, a virtual network provider (i.e., resource reseller), a virtual

network operator and a service provider. In terms of pricing, Even et al. [18] presented

an online algorithm which decides which VNets to accept and embed such that the

overall provider benefit is maximized. The benefit threshold of when to accept a VNet

can be seen as a simple form of pricing. Migration is not considered in [18].

Finally, a description of our own network virtualization prototype (currently using

VLANs) which is developed at Telekom Innovation Laboratories and NTT DoCoMo

Eurolabs and which motivates our work can be found in [38]. Currently, migration
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is seamless (i.e., without the need for reconfigurations) but not live. See [16] for a

migration demo.

2.3 Model

A virtual network topology can be modeled as a graph G = (V,E) where V (G)

denotes the set of nodes and E(G) the set of links. We assume that a service provider

can place its service (i.e., the server) on any location in the virtual network. Requests

can originate from different access points in V (G), and the access cost is given by the

shortest path (depending on some given metric D) to the server location in V (G). In

order to reduce the access cost, the virtual server can be migrated along the links in

E(G). To do so, the service provider needs to purchase bandwidth along the migration

path.

We attend to a scenario where a virtual network provider offers the service provider

a choice of contracts of different durations in which dedicated resources can be leased

in the virtual network (e.g., for migration), i.e., D = {d1, d2, . . . , dk} (we assume

d1< d2<. . .< dk). In addition to the contract durations, the service provider can

choose between different bandwidths along the links, i.e., it can choose among the

following set of bandwidths for each link: B = {b1, b2, . . . , bq} (we also assume that

b1<b2 <. . .<bq).

We consider two different pricing models. Under Pay-as-You-Go pricing, a cus-

tomer only needs to pay for the used resources after the actual consumption (or at

regular time intervals T ), and the best contract is determined according to the usage

pattern a posteriori. Pay-as-You-Go pricing is often used in the context of cloud

resource leasing. In contrast, in the Pay-as-You-Come model, a customer needs to

decide in advance which kind of time-based contracts she is interested in, and needs

to buy them before the actual resource usage. Examples for this model can be found,
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e.g., in the context of private Internet access where users often pay in advance and

independently of the actual usage pattern.

In this work, in order to focus on the main tradeoffs, we initiate the study of

these pricing models in a simplified scenario where the virtual network consists of two

locations only (e.g., one in the U.S. and one in Asia); we will refer to these locations by

L (left) and R (right) respectively and normalize their distance to one unit. The server

can be migrated arbitrarily between the two locations if a corresponding resource

contract is present for the bulk-data transfers. Concretely, a contract in the Pay-

as-You-Come model consists of a duration di and the bandwidth bj to lease the

virtual link between the two sites for di units (e.g., days) and at a bandwidth of bj

(e.g., Mbit/s). The price of the contract is given by a function f(di, bj), where f(·, ·)

describes a monotonic increasing discount over the contract duration and over the

amount of reserved resources. For example, a twice as long contract may cost only

50% more, and doubling the reserved bandwidth may cost only 30% more. In the

Pay-as-You-Go model, the customer only needs to pay when the service is finished

or after a given duration, i.e., every T time units (e.g., a month), and only for the

resources (and bulk data transfers) that are actually used. Concretely, if µi migrations

are performed during the time period T at a bandwidth of bj ∈ B, the overall costs

amount to f(µi, bj).

The main objective is to minimize the migration and contracting costs (denoted

by MigCost and ConCost) while providing QoS guarantees (minimize access cost

AccCost). Hence, we seek to minimize the following cost function:

Cost = AccCost + MigCost + ConCost

We assume there are n requests total, denoted by a set < r1, r2, · · · , rn > at

respective times < t1, t2, · · · , tn >. The access cost is given by the latency of the re-
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quests ri ∈ V (G) to the location of the server si ∈ V (G), i.e., AccCost =
∑

iD[ri, si]

where ri and si denote the ith request node and the server location at time ti. The

migration cost MigCost is given by the service interruption time (see also [10]),

i.e., the time to transfer the server which is determined by the bandwidth of the

weakest link along the migration path. (In a system supporting live migration, this

cost can be negligible and set to zero.) Concretely, the migration cost is comput-

ed as MigCost =
∑

i S · D[si−1, si]/bi, where S is the server size, D[si−1, si] denotes

whether the locations si−1 ∈ {L,R} and si ∈ {L,R} differ (recall that D[si−1, si]

is 1 if si−1 6= si, and 0 otherwise), and bi ∈ B is the (minimal) bandwidth along

the migration path. Finally, the contract cost is computed as described above, i.e.,

ConCost =
∑

i f(di, bi) for the Pay-as-You-Come model and as ConCost = f(µ, bi) for

Pay-as-You-Go model, where di ∈ D, bi ∈ B and µ is the total number of migrations.

The following table summarizes the formalism used in this chapter.
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Terminology

AccCost Access cost

MigCost Migration cost

ConCost Contract cost

n Number of requests

ri, 1 ≤ i ≤ n Origin of ith request

ti, 1 ≤ i ≤ n Time of ith request

L,R Left node and right node

D Set of k contract durations

B Set of q different bandwidths

f Discount function

S, sinit Server size and initial server position

s, s′ Server location at the beginning and the end of a time step

Cn×n×4, (Cm)n×n×4 Total cost matrices in PAYC, and PAYG (for each band-

width bm)

(AMm)n×n×4 Combined access cost and migration cost matrix for band-

width bm

(Am)n×n×4 Access cost matrix for bandwidth bm

(Nm)n×n×4 Number of migrations matrix for bandwidth bm

2.4 Service Migration Strategies

This section presents optimal algorithms to compute the best set of contracts

and optimal migration strategies for the two presented pricing models. We will first

present an algorithm PAYC for the Pay-as-You-Come model and prove its optimality,

and then extend this algorithm to a PAYG algorithm which solves the Pay-as-You-Go
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model. Both our algorithms PAYC and PAYG are based on dynamic programming,

and fill out matrices such that optimal substructures are reused.

2.4.1 Pay-as-You-Come

Let us now turn our attention to the first, time-based pricing model. Our PAYC

algorithm stores intermediate minimum total cost results (access, migration and con-

tract costs) in a 3-dimensional matrix Cn×n×4 where n is the total number of requests.

C[i, j, k] denotes an entry of the matrix, where i, j ∈ [1, n] and k ∈ {(s, s′)|s, s′ ∈

{L,R}}. C[i, j, (s, s′)] denotes the minimum total cost for satisfying all requests from

ri to rj for a scenario where at the beginning of the ith request the server is at n-

ode s and at the end of request j the server is at node s′. We also need a matrix

(AMm)n×n×4 for each bandwidth bm ∈ B. For a fixed bandwidth bm during the entire

interval [ti, tj], entry AMm[i, j(s, s′)] stores the combined access and migration costs

for the best migration strategy that satisfies the sequence of requests from ri to rj,

assuming that the server is located at node s at the start of request ri and at node s′

at the end of request rj. The contract costs, given by the function f , are not included

in the entries of AMm.

Given these data structures, we can describe algorithm PAYC (Algorithm 1) for

the Pay-as-You-Come model. PAYC exploits that the optimal contract from request

time ti to request time tj can either be decomposed into two consecutive subperiods

with no overlapping contracts, or be obtained by buying a contract of long duration

dv and bandwidth bm if dv−1 < tj − ti + 1 ≤ dv, where dv, dv−1 ∈ D.

PAYC starts by initializing the optimal costs if we were to serve only one request

ri, for all possible combinations of starting server location s and ending server location

s′ at time ti. According to our model, the access cost is equal to the distance between

the current requesting node ri and the server location s′ at the end of time ti, denoted
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Algorithm 1 Algorithm PAYC

Input: Requests <r1, r2, ..., rn> at respective times <t1, t2, ..., tn>.

Output: Minimum cost.

1: for i = 1 to n do

2: for all pairs (s, s′) ∈ {L,R}2 do

3: for m = 1 to q do

4: AMm[i, i, (s, s′)]← D[s′, ri] + S ·D[s, s′]/bm

5: C[i, i, (s, s′)]← min1≤m≤q{AMm[i, i, (s, s′)] + f(d1 ∗D[s, s′], bm)}

6: for l = 2 to n do

7: for i = 1 to n− l + 1 and pairs (s, s′) ∈ {L,R}2 do

8: j ← i+ l − 1

9: C[i, j, (s, s′)]← mini≤u<j;s′′∈{L,R}{C[i, u, (s, s′′)] + C[u+ 1, j, (s′′, s′)]}

10: if dv−1 < tj − ti + 1 ≤ dv, for some v = {1, · · · , k} then

11: for m = 1 to q do

12: AMm[i, j, (s, s′)] ← mins′′∈{L,R}{AMm[i, i, (s, s′′)] + AMm[i + 1, j,

(s′′, s′)]}

13: if C[i, j, (s, s′)] > min1≤m≤q{AMm[i, j, (s, s′)] + f(dv, bm)} then

14: C[i, j, (s, s′)]← min1≤m≤q{AMm[i, j, (s, s′)] + f(dv, bm)}

15: return minsfinal∈{L,R}C[1, n, (sinit, sfinal)]

by D[ri, s
′]. If the request at time ti comes from the server location s′, then no access

cost is needed since D[ri, s
′] is 0; otherwise the access cost is positive. Recall that

the migration cost for request ri is computed as S · D[s, s′]/bm, where bm ∈ B is

the selected bandwidth and S is the migrated server size. We store the respective

optimal cost of satisfying request ri (which may or may not incur a non-zero access

cost D[ri, s
′], depending on whether ri 6= s′ or not) using bandwidth bm, with starting
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and ending positions of the server s and s′ respectively, in AMm[i, i, (s, s′)]. We choose

a bandwidth bm ∈ B such that the total cost, including the contract cost f(d1, bm) if

a migration accurs, is minimized, and store the optimal total cost in C[i, i, (s, s′)].

Next, we consider the total costs for sequences of more than one request. Note

that there are l requests occurring between time ti and tj, where i < j are defined in

Lines 7 and 8 of the algorithm and l (= j−i+1) > 1. We have two alternative options:

(i) we can split the interval [ti, tj] at the time tu of request ru, where i ≤ u < j, and

buy contracts for the intervals [ti, tu] and [tu+1, tj] independently for the two possible

locations s′′ of the server at time tu; or (ii) we can buy a long contract of duration

dv ∈ D and some bandwidth bm ∈ B to cover all the l requests if the period tj− ti+1

is between dv−1 and dv. The smaller cost of these two cases gives the optimal cost for

the interval [ti, tj].

We also update AMm[i, j, (s, s′)], for all possible bandwidths bm. Basically we ex-

tend the intervals already considered by one request (ri), and we store inAMm[i, j, (s, s′)]

the migration strategy that minimizes the total access and migration costs for satisfy-

ing requests ri through rj using bandwidth bm for starting and ending positions of the

server s and s′ respectively. Note that by taking into account all possible positions

of the server at the end of request ri, we consider all the possibilities of adding ri

to all the best possible strategies already computed for the subsequence ri+1, . . . , rj

(ending at node s′).

We process the previous steps in increasing order of l until l spans all the requests.

Thus, the optimal cost is given by minsfinal∈{L,R}C[1, n, (sinit, sfinal)], where sinit is the

initial server location.

Theorem 1. PAYC (see Algorithm 1) computes the optimal contracts for Pay-as-

You-Come model. The time complexity of PAYC is O(n2(n+ kq)), where n is the
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number of requests, k is the number of contract durations and q is the number of

different bandwidth contracts.

Proof. The correctness follows by induction over the number of request l and by the

optimal substructure property. Due to space constraints, we only sketch the proof.

The claim is trivially true for sequences of one request (Lines 1–5). Consider the time

interval from ti to tj with l requests, where 1 ≤ i ≤ j ≤ n and 2 ≤ l(= j− i+ 1) ≤ n.

This interval is split into two subintervals (Case I), or a long contract is bought that

covers the entire interval (Case II). In Case I, we split the cost at time tu with the

server located at s′′ such that the total cost C[i, u, (s, s′′)] + C[u + 1, j, (s′′, s′)] is

minimized, where i ≤ u ≤ j and s′′ ∈ {L,R}. Since the number of requests in the

two subintervals, u− i+ 1 and j− u, are shorter than l, by the induction hypothesis,

C[i, u, (s, s′′)] and C[u + 1, j, (s′′, s′)] already store the optimal costs for these two

intervals respectively. In Case II, we buy a long contract to cover the whole interval.

Given a certain server location s′′ at the start of the time ti+1, AMm[i+ 1, j, (s′′, s′)]

already stores the optimal access and migration strategy cost for bandwidth bm for

interval [ti+1, tj]. Therefore, an optimal migration strategy for interval [ti, tj] using

bandwidth bm can be obtained by adding ri to the optimal strategies selected for the

interval [ti + 1, tj] and optimizing over the choice on whether to migrate the server to

serve ri or not (resulting in the two possible choices for s′′, the position of the server

right after satisfying request ri).

Now we consider the time complexity of the PAYC algorithm. Clearly, the first

phase of the algorithm requires time O(nq). The second phase consists of three nested

loop and has a complexity of O(n2 · (n+ kq)).
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2.4.2 Pay-as-You-Go

Optimal solutions can also be computed for the Pay-as-You-Go model, and the

algorithm PAYG is similar to the algorithm PAYC. As discussed above, in the Pay-

as-You-Come model we need to decide when to migrate, which contracts to buy, and

how much bandwidth to use. In the Pay-as-You-Go model, we still need to make a

decision on when to migrate and how much bandwidth should be reserved, but we

do not have to explicitly decide on a time contract. However, unlike the Pay-as-you-

Come model, in the Pay-as-you-Go model, a bandwith bm has to be chosen and fixed

for satisfying the entire sequence of requests ri, . . . , rj. Also, the contract cost in this

model is directly dependent on the number of migrations of the server, and hence we

explicitly have to keep track of this number.

Algorithm PAYG is listed in Algorithm 2. PAYG uses a new matrix (Am)n×n×4

to store the access cost under a certain bandwidth bm, 1 ≤ m ≤ q, and another

matrix (Nm)n×n×4 is used to store the migration number for bandwidth bm. A matrix

(Cm)n×n×4 stores the total cost for bandwith bm. In the entries of the new matrices,

the elements Am[i, j, (s, s′)] and Nm[i, j, (s, s′)] store the access cost and the number

of migrations, respectively, for the optimal solution between time ti and tj with an

initial server location s and a final server location s′, where s, s′ ∈ {L,R}. The entry

Cm[i, j, (s, s′)] stores the total optimal cost within this time period for bandwith bm.

The basic idea behind PAYG is to compute the optimal solution for a scenario

where all the requests require the same bandwidth, and then choose the smallest

cost among all the bandwidth options. PAYG starts off by computing the optimal

costs for satisfying one request (Lines 1-5). Given the request ri and the starting

and ending server locations s, s′, the access cost is given by D[s′, ri] which is 0

if the final server location s′ and the request location ri coincide, and 1 otherwise.
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Algorithm 2 Algorithm PAYG

Input: Requests <r1, r2, ..., rn> at respective times <t1, t2, ..., tn>.

Output: Minimum Cost.

1: for i = 1 to n do

2: for all pairs (s, s′) ∈ {L,R}2 and 1 ≤ m ≤ q do

3: Am[i, i, (s, s′)]← D[s′, ri]

4: Nm[i, i, (s, s′)]← D[s, s′]

5: Cm[i, i, (s, s′)]← Am[i, i, (s, s′)] + S ·Nm[i, i, (s, s′)]/bm + f(D[s, s′], bm)

6: for l = 2 to n do

7: for i = 1 to n− l + 1 do

8: j ← i+ l − 1

9: for all pairs(s, s′) ∈ {L,R}2 and 1 ≤ m ≤ q do

10: Cm[i, j, (s, s′)] ← mini≤u<j;s′′∈{L,R}{Am[i, u, (s, s′′)] + Am[u + 1, j,

(s′′, s′)] + S · (Nm[i, u, (s, s′′)] + Nm[u + 1, j, (s′′, s′)])/bm +

f((Nm[i, u, (s, s′′)] +Nm[u+ 1, j, (s′′, s′)]), bm)}

11: Let (u, s′′) be the parameter and location of request ru at tu that mini-

mized Line 10.

12: Am[i, j, (s, s′)]← Am[i, u, (s, s′′)] + Am[u+ 1, j, (s′′, s′)]

13: Nm[i, j, (s, s′)]← Nm[i, u, (s, s′′)] +Nm[u+ 1, j, (s′′, s′)]

14: return minsfinal∈{L,R}, 1≤m≤q Cm[1, n, (sinit, sfinal)]

Meanwhile D[s, s′] will indicate that the server migrates to the other location to serve

the current request if D[s, s′] is 1. Otherwise, there is no migration, and the starting

and ending server locations s, s′ describe the same node. We store the optimal

solution in the entry Cm[i, i, (s, s′)] for each bandwidth bm, where Cm[i, i, (s, s′)] =

D[s′, ri] + S ·D[s, s′]/bm + f(D[s, s′], bm).
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Now PAYG iterates over the number of requests l (Line 6). For each value of l, we

compute all the possible cases, as in Lines 7-13. First, we select from [1, n− l−1] the

value i denoting the index of the first of these l requests. Obviously, the index of the

last of the l requests (denoted by j) would be i+ l− 1, as in Line 8. Assume that the

server is located at node s at the time when the ith request occurs, and located at node

s′ at the end of the jth request, where s, s′ ∈ {L,R}. We look for a way to split the

duration such that the total cost Cm[i, j, (s, s′)] is minimized, as shown in Line 10. We

use u, m, and s′′ to denote the index of the request occurring at the chosen split point,

the chosen bandwidth, and the location of the server (Line 11). Therefore, the total

cost consists of the summation of the access costs of two subintervals, the summation

of the migration costs of two subintervals, and a long contract cost covering the whole

period. Here, the access cost is computed as Am[i, u, (s, s′′)] + Am[u + 1, j, (s′′, s′)],

the migration cost is computed as (Nm[i, u, (s, s′′)] +Nm[u+ 1, j, (s′′, s′)])/bm and the

contract cost is computed as f(Nm[i, u, (s, s′′)]+Nm[u+1, j, (s′′, s′)], bm), for a certain

bandwidth bm. We store the access cost in Am[i, j, (s, s′)] (Line 12) and the number

of migrations in Nm[i, j, (s, s′)] (Line 13) for the current duration.

For each bandwidth bm, we store the optimal solution to serve all the requests in

Cm matrix. Thus the optimal cost is hence obtained by computing minsfinal∈(L,R),1≤m≤q

Cm[1, n, (sinit, sfinal)] (Line 14).

The following claim follows by simple induction over the number of requests.

Theorem 2. PAYG (see Algorithm 2) computes the optimal contracts for the Pay-

as-You-Go model. The time complexity is O(qn3), where n is the number of requests

and q is the number of different contract bandwidths.
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2.5 Simulation

The presented economical migration algorithms allow us to shed light on the

properties of the two pricing models. We study three different discount functions

flin, fsqrt, flog which offer cheaper contracts if longer (in terms of days) or larger (in

terms of leased bandwidth) contracts are bought: flin is linear (“get twice as much

for a 50% higher price”), fsqrt grows according to a square root function and hence

describes a steeper discount, and flog even gives an even steeper logarithmic discoun-

t. For all three discount functions, the cost of a one-day contract with 50 Mbit/s

bandwidth is the same, namely fi(1, 50) = 6 for i ∈ {lin, sqrt, log}. Concretely, we

use flin(di, bj) = 1.5 · flin(di/2, bj) = 1.5 · flin(di, bj/2)=1.5(blog dic+bj/50−1) · flin(1, 50),

fsqrt(di, bj) =
√
dibj/50 · fsqrt(1, 50), and flog(di, bj) = log(dibj/50) · flog(1, 50). We

assume a server of size S = 250 MB, and we assume that the access cost for one

remote request is five units (a request originating at the node where the service is lo-

cated is free). We study a scenario where the provider offers two different bandwidth

capacities, namely 50 Mbit/s and 100 Mbit/s, and four types of contract durations,

namely 1, 30, 60 and 100 days (i.e., B = {50, 100} and D = {1, 30, 60, 100}).

We study a simple request pattern where requests originate from two server lo-

cations L and R in turn, e.g., requests originating in Asia alternate with requests

originating in the U.S..

Simplified Demand Scenario: We assume that requests alternate infinitely

between the two sites L and R in the following manner: requests originate from

one site (one per round) for a time interval duration which is chosen according to an

exponential distribution with parameter λ, before requests originate from the opposite

side again (according to the same distribution).
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Figure 2.1: Cost Distribution for PAYC and PAYG.

We simulate n = 1500 requests, and present the average over five runs for each

experiment.

We discuss the following simulations in more detail.

Cost Distribution and Number of Migrations. We analyze how the cost

distributes among the access cost, the migration cost, and the contract cost for the two

algorithms PAYC and PAYG. All experiments discussed here are conducted under

the natural flin discount function. Figure 2.1a shows the absolute costs of PAYC as

a function of λ. We observe that the total cost and the access cost decrease for larger

λ while the migration and contract stay much more stable. This is clear as requests
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Figure 2.2: Number of Migrations and Effect of Discount Function.

originating from one site for longer time periods render it worthwhile to migrate and

buy longer contracts. The contract increases firstly and then decrease after some

point, since the total migration numbers decrease and hence the contract cost is

reduced. As the number of migrations decrease, the average number of migrations

within a contract is also decreased. Therefore, PAYC will buy smaller bandwidth

for such contract, which will result in larger migration costs(also shown in Table 2.2).

Figure 2.1b presents the relative shares of the three costs. While the access costs

approach zero for larger λ since the server is often at the right location, the contract

costs and the migration costs stay stable since PAYC migrates a lot even for larger

λ. The same results for PAYG are shown in Figures 2.1c and 2.1d, respectively. As a
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first takeaway, we see that the cost distribution of Figure 2.1c defers from Figure 2.1a

in that the total costs are lower, i.e., Pay-as-You-Go is always the cheaper option

than Pay-as-You-Come pricing for the customer. Also note that in contrast to the

Pay-as-You-Come model, the migrations constitute a larger share of the overall costs,

since the contract cost is given by the number of migrations and the amount of leased

bandwidth under the discount function; hence the contract cost is lower than the one

of PAYC for the same number of migrations. Moreover, there are relatively more

frequent migrations under the PAYG model, see Figure 2.2a, which also explains

the lower access costs (i.e., this improves QoS experienced by the users). Regarding

the relative cost shares (Figure 2.1d), we can see that the percentage for the access

cost is decreasing while the percentages for the migration cost and the contract cost

are increasing slowly. Again, when λ is large enough and the requests become more

local, since migrations only occur at the beginning of each interval, the number of

migrations (as well as all three cost components) eventually decreases.

Contract Distribution. Different pricing models and scenarios result in different

types and combinations of contracts, and it is interesting to study the frequency (or

popularity) distribution of the contracts. Table 2.1 reports on the average number

of the contracts as a function of λ, for different contract durations and bandwidths,

under the PAYC algorithm and for discount function flin. We see that when λ is

small and migrations are dense, longer duration contracts occur frequently since the

server migrates often. However, as λ increases, all lengths of contracts decrease. As

λ increases, the average number of migrations in a contract decreases and hence the

smaller bandwidth will benefit more than the larger one. Therefore, it turns out to

buy more contracts with smaller bandwidth. This can also be seen in Table 2.2 which

records the average number of migrations in different contracts accordingly (average

over five runs).
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Table 2.1: Distribution of Purchased Contracts (Discount Function flin).

HH
HHH

HHH
HH

Dur-Bw

λ
3 4 5 6 7 8

1-50 11.2 8 15.4 13.8 18.4 39.2

60-50 0 0 0 0 2.4 0.8

60-100 1.4 2 1.4 2.8 1 0.4

100-50 0 0 0 0.6 2 5.4

100-100 11 11 11.2 10 7.6 3.4

Table 2.2: Number of Migrations for Each Contract (Discount Function flin).

HH
HHH

HHH
HH

Dur-Bw

λ
3 4 5 6 7 8

1-50 1 1 1 1 1 1

60-50 0 0 0 0 8,5 0

60-100 17.67 14 13.5 11.5 0 0

100-50 0 0 0 13 13 12.57

100-100 27.33 23.58 19.45 17.33 15 14.5

Impact of Discount Function. Finally, let us compare the different discount

functions in more detail. Figure 2.2b and Figure 2.2c explore the absolute and relative

(in %) cost distributions for PAYC and PAYG under different discount functions.

Clearly, the higher the discount, the smaller the total cost. Moreover, not surprisingly

the performance of PAYG is always better than that of PAYC since the total cost is
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less for PAYG compared to that for PAYC. However, the difference of the costs for

the two models is smaller for higher discounts, i.e., the difference for the logarithmic

discount function is smaller than for a discount function which follows a square root.

2.6 A First Look at Online Migration

Although the main focus of this work is on predictable demand scenarios and

offline algorithms, in this section, we want to initiate the discussion of online algo-

rithms. The online discussion builds upon our offline results in two respects: First,

some algorithmic techniques from the offline variant may be used also for the online

variants. For example, an online algorithm may try to predict the future from the

past, and apply an optimal offline algorithm on a sequence of recent past requests in

order to make decisions on how to deal with upcoming requests. Second, offline algo-

rithms are often needed to evaluate the performance of an online algorithm. The ratio

of the cost of an online algorithm divided by the cost of an optimal offline algorithm

is also known as the competitive ratio [5].

Both online algorithms presented in the following are inspired by the (optimal)

offline variants and seek to amortize costs over time. To simplify the presentation,

we assume a constant bandwidth scenario.

OnC: The online Pay-as-You-Come algorithm OnC tracks the access costs it

incurs at the current location using a counter C. Once the counter exceeds the

migration cost (given by the server size divided by the bandwidth), OnC migrates

the server and resets C. If there is currently no contract available for migration,

OnC checks whether a contract longer than the most recently used contract would

have been better for the past requests. Concretely, OnC checks longer contracts one

by one (in increasing order of length) and compares their costs in the corresponding
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intervals (starting from the last migration) to the cost OnC incurred during that

time period. As soon as a better contract is found, it is chosen. Otherwise, OnC

checks whether a contract shorter than the most recent contract should be chosen.

The following heuristic is applied: OnC checks whether during the last contract, the

number of migrations was larger in the first half or the second half of the contract

time interval. In case of the first half, OnC will buy the shorter contract; otherwise,

OnC chooses the same contract as last time.

Now let us discuss a simple online algorithm OnG for the Pay-as-You-Go model.

Since the customers only need to pay for the resources actually consumed, OnG just

needs to decide when to migrate.

OnG: Let the counter C1 record the number of the migrations performed so far

and let the counter C2 denote the total access costs. If the access cost C2 reaches the

migration cost plus marginal migration contract costs (i.e., f(C1 +1, b)−f(C1, b), for

bandwidth b), OnG migrates the server, increments counter C1, and resets counter

C2.

Given our optimal offline algorithms, it is interesting to study the competitive

ratio of OnC and OnG. We study three different discount functions flin, fsqrt, flog

which offer cheaper contracts if longer (in terms of days) or larger (in terms of leased

bandwidth) contracts are bought: flin is linear (“get twice as much for a 50% higher

price”), fsqrt grows according to a square root function and hence describes a steeper

discount, and flog even gives an even steeper logarithmic discount. For all three

discount functions, the cost of a one-day contract with 50 Mbit/s bandwidth is the

same, namely fi(1, 50) = 6 for i ∈ {lin, sqrt, log}. Concretely, we use flin(di, bj) = 1.5·
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flin(di/2, bj) = 1.5·flin(di, bj/2)=1.5(blog dic+bj/50−1)·flin(1, 50), fsqrt(di, bj) =
√
dibj/50·

fsqrt(1, 50), and flog(di, bj) = log(dibj/50) · flog(1, 50). We assume a server of size

S = 250 MB, and we assume that the access cost for one remote request is five units

(a request originating at the node where the service is located is free). We study

a scenario where the provider offers two different bandwidth capacities, namely 50

Mbit/s and 100 Mbit/s, and four types of contract durations, namely 1, 30, 60 and

100 days (i.e., B = {50, 100} and D = {1, 30, 60, 100}).

The competitive ratios for OnC and OnG are presented in Figure 2.3. We observe

that the ratios for both algorithms are relatively small (between 1.5 and 4) and

decrease for larger λ (lower dynamics). This can be explained by the fact that with

higher λ, requests remain more local and migration patterns more obvious. A second

takeaway is that the competitive ratio for the lowest discount function flin is best,

while higher discounts like flog are handled worse by our online algorithms. Especially

in the Pay-as-You-Come model, our online algorithm has more difficulties to deal

with high discounts, as it tends to buy too many short contracts (OnC migrates

more often than the offline algorithm). Also under Pay-as-You-Go pricing, the offline

algorithm can exploit discounts relatively better, although to a lesser extent. (The

offline algorithm migrates relatively more frequently for higher discounts.)

2.7 Conclusion

There is a large body of literature on economical aspects of cloud computing, but

much less is known about efficient (virtual) network pricing. Interestingly, while cloud

(or node) resources are often priced according to a flexible per-use or pay-as-you-go

policy, networking services such as MPLS connectivity are often charged according to

usage-independent, time-based policies [40]. This is particularly surprising as network

demand is likely to exhibit a higher variance over time than, e.g., storage resources.
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Figure 2.3: Effect of Discount Function on Competitive Ratio. We Simulate 1500

Requests and Present the Average over Five Runs.

For instance, distributed SAP systems may be fully synchronized only sporadically

(but then lead to high network loads), whereas the resource requirements of, e.g., a

mail service normally grows monotonically over time.

We understand this work as a first step to study the effect of virtual network

pricing policies on service migration. We focused on the offline setting where demand

patterns are given (e.g., describe regular time-of-day or commuter effects). Such on-

line algorithms can also be useful to evaluate the competitive ratio of online algorithms

in simulations. We presented two optimal algorithms for efficient service migration

in different economic settings. We believe that the used algorithmic techniques are

relatively general and can be extended to more complex scenarios, e.g., to networks

supporting live migration or more complex virtual network topologies.
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Chapter 3

COMPETITIVE STRATEGIES FOR ONLINE CLOUD RESOURCE

ALLOCATION WITH DISCOUNTS: THE 2-DIMENSIONAL PARKING PERMIT

PROBLEM

3.1 Introducation

As the Internet becomes increasingly virtualized, resources can be allocated more

flexibly and at large scale. Virtualization not only introduces an Internet-wide re-

source market, but also new business models. For example, a startup company run-

ning a webservice no longer needs to invest in its own infrastructure, but can dy-

namically lease cloud resources to provide the service to its users in a cost-efficient

manner. Also a hybrid model is possible where the cloud resources are just used to

complement a limited own infrastructure in peak demand times (a.k.a. “cloud burst-

ing”). New business models are also introduced by resource brokering opportunities:

a broker may lease a large amount of resources from different providers and resell

them to its customers (at a higher price).

This work studies the problem of a (cloud) customer who rents resource bundles

from a (cloud) provider, in order to offer a certain service to its users (or to resell

the resources). The customer is faced with the challenge that its resource demand

(e.g., the popularity of its webservice) is not known in advance. In order to ensure

that its resource demand is satisfied at any time, and in order to avoid a costly over-

provisioning of the service, additional resources must be bought in an online manner.

The online resource allocation problem may further be complicated by the fact that

the provider offers discounts for larger and longer resource contracts.
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The goal of the customer is to come up with a smart resource renting strategy to

satisfy its dynamic and unpredictable resource demand, while minimizing the overall

costs of the bought resource bundles.

Our Contributions. This work shows that at the heart of efficient cloud re-

source allocation lies a fundamental algorithmic problem, and makes the following

contributions. We first observe that the problem of renting a single resource over

time can be seen as a 2-dimensional variant of the well-known online Parking Per-

mit Problem (PPP). While in the classic parking permit problem, only the contract

durations need to be chosen, in the 2-dimensional variant PPP2 introduced in this

work, also the resource rates are subject to optimization.

Our main contribution is the deterministic online algorithm On2D whose perfor-

mance is close to the one of a clairvoyant optimal offline algorithm which knows the

entire resource demand in advance: On2D provably achieves a competitive ratio of

O(k), where k is the total number of available resource contracts; this is asymptoti-

cally optimal in the sense that there cannot exist any deterministic online algorithm

with competitive ratio o(k).

We also give a constructive proof that the offline variant of the PPP2 problem

can be solved in polynomial time, by presenting a dynamic programming algorithm

Off2D accordingly. To the best of our knowledge, Off2D is also the first offline

algorithm to efficiently solve PPP and PPP2 for long enough request sequences σ.

Off2D is used as a subroutine in On2D.

Finally, we show that our algorithms and results also generalize to multi-resource

scenarios, i.e., to higher-dimensional parking permit problems.

Work Organization. The remainder of this chapter is organized as follows. Sec-

tion 3.2 reviews related work. Section 3.3 formally introduces our model. Section 3.4

presents our online algorithm. In detail, we discuss an example and provides intuition
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for the analysis, and present the general analysis in this section . We show that our

algorithm is almost optimal by deriving a lower bound in Section 3.5. Section 3.6

presents a polynomial-time optimal offline algorithm, and Section 3.7 shows how to

extend our results from 2-dimensions to D-dimensions (for a constant D). Finally,

we conclude our work in Section 3.9.

3.2 Related Work

Cost reductions (due to economy-of-scale effects) are arguably the main moti-

vation behind today’s trend to out-source infrastructure and software to the cloud.

Accordingly, a large body of literature in the field focuses on resource allocation and

scheduling problems: the more virtual services that can be multiplexed on a given

physical network, the better the resource sharing and hence provider revenue. For a

good overview of the field, we refer the reader to the surveys [4, 14]. We will structure

the discussion of related works according to the following categories: cloud network

performance, economic models, and online optimization algorithms.

Cloud Network Performance. This work assumed that the service of the cloud

customer comes with hard resource requirements, which is motivated by the varying

and often unpredictable performance in today’s oversubscribed datacenters. Indeed,

several studies have shown that services and applications without strict performance

isolation suffer from poor performance. [32] Accordingly, researchers have proposed to

make resource reservations more explicit and also provide bandwidth isolation. For

example, SecondNet [22] and Oktopus [6] introduce the notion of virtual networks

that provide the illusion of a dedicated network, specified as a graph resp. Hose

model. Proteus [46] generalizes these concepts in the time-dimension, supporting

a flexible interleaving of reservations over time. In order to deal with unexpected

external interference and failures, Q-Clouds [33] saves certain resource which can

31



be allocated to mask interrupting events. For a good overview on cloud network

performance issues, we refer the reader to [32]. Virtual services and networks have

also been investigated outside datacenters. Especially Software-Defined Networking

and Network Function Virtualization offer appealing innovation opportunities to ISPs,

and allow the introduction of new services in the network core. [13, 48]

Economic Roles and Challenges. Compared to the algorithmic problem-

s of the resource allocation and scheduling, the economical aspects are less well-

understood. Different economical cloud models have been proposed and compared

by various authors, e.g., by Armbrust et al. [30], Pal et al. [34], or Dash et al. [17].

Some of the studied pricing models have their origins in the context of ISP-customer

relationships [42] and are also related to classic economic problems [20]. An inter-

esting tradeoff between time and price has been studied in [25], from a scheduling

complexity perspective. More generally, there are several interesting proposals for

novel adaptive resource and spot market pricing schemes, e.g., [1].

Our role model is motivated by the network virtualization architecture presented

by Schaffrath et al. [39]: the authors identify stakeholders and new economical roles,

and distinguish between a physical infrastructure provider, a virtual network provider

(i.e., resource reseller or broker), a virtual network operator and a service provider.

In the terminology used in this work, the physical infrastructure provider corresponds

to our provider, and the virtual network provider corresponds to the customer. The

customer and broker role more arises in virtualization architectures allowing for sub-

renting and recursion [12, 39].

Online Algorithms and the Parking Permit Problem. The work closest to

ours is the Parking Permit Problem (PPP) work [31]. Analogously to the classic ski-

rental problem, PPP is the archetype for online problems where purchases have time

durations which expire regardless of whether the purchase is used or not. Formally,

32



PPP specifies a set of k different types of parking permits of a certain price πi

and duration di. In [31], Meyerson presents an asymptotically optimal deterministic

online algorithm with competitive ratio O(k) (together with a lower bound of Ω(k)).

The work also discusses randomized algorithms and an application to Steiner forests.

While we can build upon some of the techniques in [31], the rate dimension renders

the problem rather different in nature, both from an online and an offline algorithm

perspective.

To the best of our knowledge, there does not exist any work on online algorithms

for two-dimensional, time and rate based resource rental problems.

More generally, online problems with discounts have also been studied in various

contexts already, especially rental [47] and ticket purchase problems [19]. There

also exist online algorithms with provable competitive ratios for other optimization

problems arising in the context of cloud computing and network virtualization, such

as online access control [7, 18] or service migration [9].

3.3 Model

We attend to the following setting (for an illustration, see Figure 3.1). We consider

a customer with a dynamically changing resource demand. We model this resource

demand as a sequence σ = (σt)t, where σt refers to the resource demand at time t.

We use σ̂ to denote maxt σt. The customer is faced with the challenge that its future

resource requirements are hard to predict, and may change in a worst-case manner

over time: We are in the realm of online algorithms and competitive analysis.

In order to cover its resource demand, the customer buys resource contracts from

a (cloud) provider. For ease of presentation, we will focus on a single resource scenario

for most of our work; however, we will also show that our results can be extended

to multi-resource scenarios. Concretely, we assume that the provider offers different
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Figure 3.1: Overview of the Model: A Customer Has to Cover Its Resource Demand

σ by Buying Contracts C = {C1, C2, . . . , Ck} from the Provider. Larger Contracts Ci

Come with a Price Discount (Price π(Ci)).

resource contracts C(r, d) of resource rate r and duration d. We will refer to the

set of available contracts by C = {C1, C2, . . . , Ck}. Each contract type has a price

π(C) = π(r, d), which depends on its rate r(C) = r and its duration d(C) = d. We

will assume that resource contracts have a monotonically increasing rate-duration

product r × d, and will denote by Ci the ith largest contract.

A specific contract instance of type Ci will be denoted by C
(j)
i , for some index j.

Each instance C
(j)
i of contract type Ci(r, d) has a specific start time t

(j)
i , and we will

sometimes refer to a contract instance by C
(j)
i (t

(j)
i , ri, di). The identifiers are needed

since multiple contracts of the same type can be stacked in our model, but will be

omitted if the contract is clear from the context.

We will make three simplifying assumptions:

A1 Monotonic Prices: Prices are monotonically increasing, i.e., larger contracts

are more expensive than shorter contracts: π(Ci−1) < π(Ci) since ri−1× di−1 <

ri × di for any i.
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A2 Multiplicity: The duration and resource rate of a contract of type Ci(ri, di) are

perfect multiples of the duration and rate, respectively, of contract Ci−1(ri−1, di−1).

That is, we assume that di = x · di−1 and ri = y · ri−1 for fixed bases x, y ≥ 2.

Moreover, w.l.o.g.1 we will assume that the smallest contract has d1 = 1 and

r1 = 1.

A3 Intervals: We assume that a contract of duration d can only be bought at time

t0 + i · d, where t0 = 0 is the start time.

Figure 3.2: The Interval Model with Four Different Contracts: Each Contract C(r, d)

Can only Be Bought at Time t0 + i · d.

Assumption A1 is natural: contracts which are dominated by larger, cheaper

contracts may simply be ignored. Assumption A2 restricts the variety of available

contracts the customer can choose from, and constitutes the main simplification made

in this work. Assumption A3 mainly serves the ease of presentation: as we will

prove in this work (and as it has already been shown for the classic Parking Permit

1Without loss of generality.
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Problem [31]), an offline or online algorithm limited by the interval model is at most

a factor of two off the respective optimal solution in the general model.

Now, let On be some online algorithm, let Ct(On) denote the set of contracts

bought according to On at time t and let C≤t(On) denote the set of contracts bought

according to On through time t. We will use the notation C∗t (On) ⊆ C≤t(On) to

describe the set of active contracts at time t: i.e., contracts Ci(ti, ri, di) bought by

On with ti ≤ t < ti + di. Likewise we denote the set of contracts bought by an

optimal offline algorithm Off to cover the demand prefix σ1, ..., σt until time t by

C≤t(Off).

Since a correct algorithm must ensure that there are always sufficient resources

to cover the current demand, the invariant
∑

C(r,d)∈C∗t (On) r ≥ σt must hold at any

moment of time t. We will use the one-lookahead model [11] frequently considered

in online literature, and allow an online algorithm to buy a contract at time t before

serving the request σt; however, On does not have any information at all about σt′

for t′ > t.

The goal is to minimize the overall price πσ(On) =
∑

C∈C≤t(On) π(C). More specif-

ically, we seek to be competitive against an optimal offline algorithm and want to

minimize the competitive ratio ρ of On: We compare the price πσ(On) of the online

algorithm On under the external (online) demand σ, to the price πσ(Off) paid by an

optimal offline algorithm Off, which knows the entire demand σ in advance. Formal-

ly, we assume a worst-case perspective and want to minimize the (strict) competitive

ratio ρ for any σ: ρ = maxσ πσ(On)/πσ(Off).

We are interested in long demand sequences σ; in particular, we will assume that

the length of σ, |σ|, is at least as large as the largest single demand σt.

Our problem is an interesting variant of the classic Parking Permit Problem

PPP [31], which we review quickly in the following. In PPP, a driver has to choose
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between k parking permits of different durations and costs in order to satisfy all of

his/her parking needs while minimizing the total cost paid. More precisely, the driver

has a sequence of days when he/she needs a parking space at a parking garage and

there are k different parking permits, where each parking permit Pi allows the driver

to use one parking space for di consecutive days at a cost of ci. In the online version

of the problem, the sequence of days when the driver will need a parking space is not

known in advance.

3.4 Competitive Online Algorithm

This section presents the deterministic online algorithm On2D for the PPP2

problem. As a subroutine, in order to determine which contracts to buy at time t,

On2D uses an optimal offline algorithm Off2D that computes optimal contracts for

a prefix σ≤t of the demand through time t. In this section, we will treat Off2D as a

black box, but will describe a polynomial-time construction later in Section 3.6 of this

chapter. Moreover, for ease of presentation, by default we will focus on the Interval

Model. (The competitive ratio increases at most by a factor 2 in the general model.)

3.4.1 The Algorithm

In order to formally describe and analyze our algorithm, we propose a scheme that

assigns bought contracts to the 2-dimensional time-demand plane (see Figure 3.2 for

an illustration). Our model requires that each point below the demand curve σ

is covered by a contract, i.e., the mapping of contracts to demand points must be

surjective.

We pursue the following strategy to assign contracts to the time-demand plane:

at any time t, we order the set of active contracts by their duration, and stack the

active contracts in such a way that longer contracts are embedded lower in the plane,
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i.e., the longest running contract Ci(ri, di) covers the demand from 1 to ri, the next

shorter contract Cj(rj, dj) then covers the demand ri + 1 to ri + rj, and so on. This

guarantees a unique mapping of a demand point p(time, demand) at time t to a

contract Ci for the offline algorithm.

Algorithm 3 Online Algorithm On2D

Input: Demand prefix σ≤t = σ1, σ2, ..., σt; set of contracts C≤t−1(On2D) bought by

On2D through time t− 1

Output: Contracts to be bought at time t: Ct(On2D)

1: Ct(Off2D)← Off2D(σ1, σ2, ..., σt)

2: for C ∈ Ct(Off2D) do

3: if ∃ demand point p covered by C such that p is not covered by C≤t−1(On2D)

then

4: Ct(On2D).add(C)

5: return Ct(On2D)

Our online algorithm On2D (see Algorithm 3) is based on an oracle Off2D com-

puting optimal offline solutions for the demand so far. On2D uses these solutions to

purchase contracts at time t. Concretely, On2D mimics the offline algorithm in an

efficient way, in the sense that it only buys the optimal offline contracts covering time

t if the corresponding demand is not already covered by contracts bought previously

by On2D: At each time t, On2D compares the set of previously bought contracts

C≤t−1(On2D) with the set of contracts Ct(Off2D) that Off2D would buy for an of-

fline demand sequence σ1, ..., σt; On2D then only buys the contracts C ∈ Ct(Off2D)

for the demand at time t that is not covered by C≤t−1(On2D).
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3.4.2 Case Study

In order to provide some intuition of the behavior of On2D, as a case study, we

consider the special scenario where contracts are perfect squares, i.e., Ci = (2i−1, 2i−1),

and where the contract prices have a specific discount structure, namely π(Ci) =

2 · Ci−1, with π(C1) = 1. This price function ensures that Off2D will buy at most

one Cj contract before it is worthwhile to buy the next larger contract Cj+1 for the

given time interval.

Let us now study the maximal cumulative price Π(Ci). It is easy to see that

under the price function above, the demand sequence σ with a constant demand

of one unit per time, maximizes Π(Ci) for Ci = (2i−1, 2i−1) and π(Ci) = 2 · Ci−1:

higher demands imply missed opportunities to charge On2D for smaller contracts,

as already a demand of two at given time t renders it worthwhile to buy C2, and a

demand of four renders it worthwhile to buy C3, etc.

With the given demand σ, Off2D will end up buying each of the smaller contracts

once before it buys the next larger contract. The cumulative price derived from σ

according to this behavior is Π(Ci) =
∑i−1

j=1 Π(Cj) + π(Ci). We prove this claim by

induction over the contract types i. For the base case i = 1, Π(Ci) = π(Ci) holds

trivially. Assuming the induction hypothesis for i we have:

Π(Ci+1) =
i∑

j=1

Π(Cj) + π(Ci+1)

=
i−1∑
j=1

Π(Cj) + Π(Ci) + π(Ci+1)

IH
=

i−1∑
j=1

Π(Cj) +
i−1∑
j=1

Π(Cj) + π(Ci) + π(Ci+1)

Due to the induction hypothesis, the cost of a quarter of 2i+1x2i+1 is maximized

for
∑i−1

j=1 Π(Cj) + π(Ci). In order to maximize the cost in the second quarter (at the
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bottom of the time-demand plane) Off2D would need to buy
∑i−1

j=1 Π(Cj) again and

instead of buying a second contract Ci the pricing scheme would lead to the purchase

of contract Ci+1. Therefore buying the same contracts again (despite Ci) must lead

to Π(Ci+1) =
∑i

j=1 Π(Cj) + π(Ci+1).

Figure 3.3: Worst-case Example Where σt = 1 ∀t. While Off2D at Time Point d5

Buys a Single Contract C5, On2D Is Forced to Buy all the Depicted Contracts, in

Addition to C5. For Instance, Buys C1 in Every Second Time Step.

In conclusion, for the considered price function, we have derived a worst-case

sequence σ, that shows that On2D achieves a k-competitive ratio.

Theorem 3. For the special setting considered in our case study, On2D is k-competitive.

Proof. Consider the discussed worst-case sequence σ, where On2D has to buy every

contract (total cost Π(Ci)) while Off2D can simply buy Ci at price π(Ci). We can

show that Π(Ci) ≤ i · π(Ci) and hence Π(Ci) ≤ k · π(Ci). According to the observed

behavior of Off2D, every second contract bought by On2D is C1 (2i−2 times), every
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fourth is C2 (2i−3 times), etc., and finally On2D also buys Ci. See Figure 3.3 for an

example. Thus,

Π(Ci) = 2i−2 · π(C1) + 2i−3 · π(C2) + · · ·+ 1 · π(Ci)

= 2i−2 · 20 + 2i−3 · 21 + · · ·+ 2i−i · 2i−2 + 1 · 2i−1

≤ 2i−1 + 2i−1 + 2i−1 + · · ·+ 2i−1 + 2i−1

= i · 2i−1 = i · π(Ci)

3.4.3 General Analysis

With these intuitions in mind, we now present a general analysis of On2D. First,

we derive some simple properties of the contracts bought by the optimal offline algo-

rithm Off2D over time. Let us fix an arbitrary demand point p, i.e., a point below

the σ-curve in the time-demand plane. We make the following claim: if p is covered

by a certain contract C in C≤t(Off2D), p will never be covered by a smaller contract

C ′ in Ct′(Off2D) for any t′ > t. In other words, when considering a longer offline

demand sequence σ1, . . . , σt′ , Off2D will never buy a smaller contract than C to

cover the demand point p. This property of “growing contracts” together with the

assumption of disjoint intervals motivates the notion of contract independence, which

we formalize in the lemma below:

Lemma 1 (Contract Independence). Consider a demand point pi covered by con-

tract Ci ∈ C≤t(Off2D) and a demand point pj covered by a distinct contract Cj ∈

C≤t(Off2D). Then there does not exist a contract C ∈ Ct′(Off2D) for any t′ < t

such that pi, pj are covered by C. We say that the two contracts Ci and Cj are inde-

pendent.

41



Independence between contracts is always trivially ensured in our model. This

enables a simple characterization of the scenarios maximizing the competitive ratio.

Lemma 2. The competitive ratio is maximized in a scenario where Off2D buys only

one contract to satisfy the entire demand σ.

Proof. By contradiction. Assume Off2D buys more than one contract, say Ci and

Cj. Now assume that over time, On2D buys a set of (possibly smaller) contracts

Ci′ , Ci′′ , . . . to cover the demand points of Ci and Cj′ , Cj′′ , . . . to cover the demand

points of Cj. Thus, On2D pays π(Ci) +π(Ci′) + . . . and π(Cj) +π(Cj′) + . . . whereas

Off2D pays π(Ci) and π(Cj); the resulting competitive ratio is ρCi
= (π(Ci) +

π(Ci′)+. . .)/π(Ci) for the Ci part and ρCj
= (π(Cj)+π(Cj′)+. . .)/π(Cj) respectively.

Since all contracts in Off2D are independent, the competitive ratio ρ of Off2D will

be max{ρCi
, ρCj
} which would also be achieved if the larger contract was the only one

bought by Off2D.

We hence want to show that On2D will never buy too many small contracts to

cover a demand for which Off2D would later only buy one contract. Concretely, let

us fix any contract Ci ∈ C≤t(Off2D), and let us study the set of contracts S bought

by On2D during the time interval [0, t) which overlap with Ci in the time-demand

plane. Recall that S will only contain distinct instances of the contracts (since On2D

does not buy “repeated” contracts) and it will be contained in ∪t′<tCt′(Off2D). By

the interval and independence property, we know that contracts in S are all “inside”

Ci, i.e., do not exceed its boundary in the plane. Accordingly, we can compute an

upper bound on the maximum cumulative price spent on contracts in S by On2D

while Off2D at time t only bought a single contract Ci at price π. In the following,

let us refer to this cumulative price paid by On2D by Π(Ci) =
∑

C∈S π(C).
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Lemma 3. The maximum cumulative price paid by On2D to cover a contract Ci,

Π(Ci), is less than or equal to i · π(Ci), for any i ≥ 0.

Proof. Consider a contract Ci ∈ C≤t(Off2D) and S as defined above. Let ` be such

that On2D has bought ` contracts Ci−1 to cover the area of Ci during time [0, t), where

0 ≤ ` ≤ π(Ci)
π(Ci−1)

. For all other C ∈ S, we must have C ∈ {C1, . . . , Ci−2}. Let S ′ =

{C ∈ S, s.t. C ∈ {C1, . . . , Ci−2}}. Hence we have
∑

C∈S′ π(C) ≤ π(Ci)− ` · π(Ci−1),

since the area covered by all contracts in S is at most equal to the area covered by

Ci, and given Assumption A1. We argue by induction on i.

Base case i = 1: If there is just one type of contract C1, the online algorithm will

buy the same contracts as the offline algorithm, and the claim holds trivially.

Inductive step i > 1: Assuming the induction hypothesis holds for all j < i, we

have:

Π(Ci) = ` · Π(Ci−1) + π(Ci) +
∑

C
(p)
j ∈S′

Π(C
(p)
j )

≤ ` · (i− 1) · π(Ci−1) + π(Ci) +
∑

C
(p)
j ∈S′

j · π(Cj)

≤ ` · (i− 1) · π(Ci−1) + π(Ci) + (i− 2)
∑

C
(p)
j ∈S′

π(Cj)

≤ ` · (i− 1) · π(Ci−1) + π(Ci) + (i− 2) [π(Ci)− ` · π(Ci−1)]

= ` · π(Ci−1) + (i− 1) · π(Ci)

≤ π(Ci)

π(Ci−1)
· π(Ci−1) + (i− 1) · π(Ci)

= π(Ci) + (i− 1) · π(Ci) = i · π(Ci)

With these results, we can derive the competitive ratio. According to Lemma 3,

for each contract C
(j)
i ∈ C≤t(Off2D), the accumulated cost Π(C

(j)
i ) is bounded
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by i · π(Ci). Therefore, summing up all the accumulated costs of each contract

in C≤t(Off2D), we get the total cost of On2D at time t. Note that every con-

tract bought by On2D must be totally covered by contracts in Ct(Off2D), since

Ct(Off2D) is an optimal solution for the entire demand sequence σ≤t and the con-

tract independence property holds. Since we have k different contracts and for each

contract Ci in Ct(Off2D), we have Π(Ci) ≤ i · π(Ci) ≤ k · π(Ci), and:

Theorem 4. On2D is k-competitive, where k is the total number of contracts.

As we will show in Section 3.5, this is almost optimal.

Finally, observe that restricting On2D to Assumption A3 does not come at a

large cost.

Theorem 5. Let Alg1 be an optimal offline algorithm for PPP2, and let Alg2

be an optimal offline algorithm for PPP2 where we relax Assumption A3. Then

π(Alg2) ≤ π(Alg1) ≤ 2 · π(Alg2).

Proof. Consider any contract C
(m)
i (ri, di) bought by an optimal offline algorithm for

PPP2 without Assumption A3. When time is divided into intervals of length di, C
(m)
i

will overlap in time at most two contracts C
(j)
i and C

(l)
i of duration di. Therefore, we

can modify the optimal solution output by Alg2 by purchasing those two contracts

instead of C
(m)
i , eventually transforming the optimal solution output by Alg2 into

a feasible solution for PPP2 (under Assumption A3). Hence, we can guarantee that

π(Alg2) ≤ π(Alg1) ≤ 2 · π(Alg2).

Hence, since On2D is k-competitive under Assumption A3 (Theorem 4), and since

the optimal offline cost is at most a factor of two lower without the interval model

(Theorem 3.4.3), we have:
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Corollary 1. On2D is 2k-competitive for the general PPP2 problem without As-

sumption A3, where k is the number of contracts.

3.5 Lower Bound

Theorem 4 is essentially the best we can hope for:

Theorem 6. No deterministic online algorithm can achieve a competitive ratio less

than k/3.

The proof is the 2-dimensional analogon of the proof in [31]. We consider a scenario

where the next larger available contract doubles in cost. With k being the number of

different contracts, each contract is 2k times longer and has 2k times more rate, i.e.,

in our plane representation contracts are squares covering an area (2k)2i.

π(Ci) = 2i−1

r1 = 1; ri = 2k · ri−1 = (2k)i−1

d1 = 1; di = 2k · di−1 = (2k)i−1

In the following, let us focus on a simple demand which only assumes rates σt ∈

{0, 1} for all t. We let the adversary schedule demand only when On has no valid

contract. For each interval (2k)i where the adversary asks for a 1-demand, On can

choose between three options (see also Figure 3.4):

1 Eventual purchase of contract Ci. Assume that this happens ni times.

2 Eventual purchase of larger contracts Cj, j > i. Assume that this happens∑k
j>i nj times.

3 Never purchase contract Ci or any larger contracts. Assume this happens mi

times.
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Figure 3.4: On Buys ni = 4 Contracts Ci and ni+1 = 1 Contract Ci+1 over Seven

Intervals of Length di. In Two of These Seven Intervals On Buys Several Contracts

Smaller than Ci to Cover the Demand.

Thus the sum of all contracts bought by On is given by π(On) =
∑k

i=1 ni ·

π(Ci). Given an interval of length `, we estimate the cost of Off by less than buying

multiples of only one kind of contract over the full interval, i.e., `/di contracts for any

i: π(Off) ≤ π(Ci)(mi +
∑k

j≥i nj). In order to derive the lower bound we first prove

a minimum cost of any algorithm On on intervals that start with a demand rate of

1.

Lemma 4. Any On must pay at least π(Ci) on each interval of length di that starts

with a demand rate of 1.

Proof. By induction on the different intervals 2i−1. For i = 1, each algorithm must at

least buy a contract of type C1 in order to cover that demand. Assume that for i− 1,

it holds and now let us argue for i. If On does not buy a contract of type Ci, we can

divide the volume into (2k)2 squares with side length di−1 each, where 2k · di−1 = di.

We let each of these 2k intervals (at the bottom row) start with a demand of 1 which

then cost at least π(Ci−1) due to the induction hypothesis. The total cost is at least

2k · π(Ci−1) = k · π(Ci) for every interval where On does not buy a contract i and at

least π(Ci) otherwise.
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Consider now an interval of length (2k)i−1 where no contract of type i or higher

was bought. We know from the induction that π(On) ≥ mi · k ·π(Ci). We can derive

the following lower bound:

k · π(Off) ≤
k∑
i=0

[
π(Ci)(mi +

k∑
j≥i

nj)

]
(3.1)

≤
k∑
i=0

[
ni

i∑
j=1

π(Ci) +mi · π(Ci)

]
(3.2)

≤
k∑
i=0

[2ni · π(Ci) +mi · π(Ci)] (3.3)

≤ 3 · π(On) (3.4)

Inequality (3.1) is given by the cost estimation of Off against any On buying

only one kind of contracts. Inequality (3.2) is a reorganization of the sum since π(Ci)

is multiplied by every nj, j ≥ i which is also given after the reordering. Afterwards,

we use the geometric sum on the cost of the contracts to derive Inequality (3.3). This

leads to a lower bound of k/3 since π(On) =
∑k

i=1 ni ·π(Ci) and π(On) ≥ mi ·k ·π(Ci).

3.6 Optimal Offline Algorithm

So far, we have treated the optimal offline algorithm on which On2D relies as a

black box. In the following, we show that offline solutions can indeed be computed

in polynomial time, and present a dynamic programming algorithm Off2D.

The basic idea behind the offline algorithm Off2D is that the optimal cost for

any contract over a certain interval is obtained either by splitting the cost at some

time, or by buying a long contract with a certain rate r. In the following, recall that

dk is the duration of the largest contract Ck.

Off2D proceeds as follows: It splits time into intervals of length dk and solves

each of these interval separately. Off2D relies on the following data structures: For
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each dk-length time interval I, we precompute the maximum demand within any

subinterval [i, j] of I, and store this information in position M [i, j] of a dk×dk matrix

M (Algorithm 4). In particular the maximum requested demand σ̂ in interval I is

stored in M [1, dk]. A dk× dk× σ̂ matrix OP is used to compute the optimal cost. The

entry OP[i, j, λ] indicates the optimal cost of covering a demand rate of M [i, j]−λ over

the interval [i, j] — i.e. λ indicates the amount of covered demand for [i, j]. Initially,

all entries are set to 0.

Algorithm 4 Pre-computation of matrix M

Input: Demand sequence σt, . . . , σt+dk (over interval [t, t+ dk]).

Output: Matrix M .

1: for i = 1 to dk do

2: M [i, i]← σt+i

3: for i = 1 to dk − 1 do

4: for j = i+ 1 to dk do

5: M [i, j]← max{M [i, j − 1], σt+j}

6: return M

Algorithm 4 pre-computes the matrix M over the dk-length interval [t, t + dk],

where t = b · dk, for integer b ≥ 0. Lines 1-2 initialize the matrix and store the

demand σt+i in entry M [i, i]. Lines 3-5 compute the maximum demand within any

time interval [t+ i, t+ j], 0 ≤ i ≤ j ≤ dk. The demand can be obtained by comparing

the demand at time t + j (i.e., σt+j) with the maximum demand between time t + i

and t+ j − 1, which has already been computed by our algorithm.

After obtaining the matrix M over interval [t, t+dk], we can compute the optimal

solution for PPP2 problem over the same interval using Algorithm 5.

For the sake of ease of explanation, we assume that t = 0 in the arguments that

follows. Off2D computes the optimal cost for any interval [i, j] by either combining
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Algorithm 5 Offline Algorithm Off2D

Input: Precomputed matrix M over interval [t, t+ dk].

Output: Optimal total costs OP for all intervals within [t, t+ dk].

1: Initialize all entries in OP to be 0.

2: for i = 1 to dk do

3: for λ = M [i, i]− 1 to 0 do

4: OP[i, i, λ]← minC(r,d)∈C{OP[i, i,min{σ̂, λ+ r}] + π(r, d)

5: for ` = 2 to dk do

6: for i = 1 to dk − `+ 1 do

7: j = i+ `− 1

8: for λ = M [i, j]− 1 to 0 do

9: OP[i, j, λ]← mini≤z<j{OP[i, z, λ] + OP[z + 1, j, λ]}

10: C ′ ← {C(x)(t(x), r, d) ∈ C : t(x) = b · d for some positive integer b and

t(x) ≤ i < j ≤ t(x) + d}

11: if C ′ is not empty then

12: OP[i, j, λ]← min{OP[i, j, λ]; minC(r,d)∈C′ OP[i, j,min{σ̂, λ+ r}] + π(r, d)}

13: return OP[1, dk, 0]

the independent optimal solutions obtained for the subintervals [i, z] and [z+ 1, j], or

by buying a long contract that covers a demand of r over the entire interval [i, j]. Note

that according to Assumptions A1 and A2, these are the only two necessary options

to consider. In the former case, it is obvious that the best splitting of the interval

will give the minimum cost. In the latter case, a long contract with certain rate r is

bought, however, the rate r may be lower than the maximum demand, M [i, j], over

[i, j]: In this case, we need to take into account how to best cover any remaining

uncovered demand in [i, j], which has been computed in OP[i, j, λ+ r].
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Theorem 7. Off2D computes an optimal offline solution for any given interval of

length dk in time O(d3
k · σ̂), where σ̂ is the maximum demand over the interval.

Proof. We again assume for the sake of simplicity and without loss of generality, that

t = 0 and the dk-length interval we consider is [0, dk].

Correctness: By induction over the length of the subintervals ` = j− i+1 and the

respective uncovered demand λ. Clearly, the claim is true for intervals [i, i] (` = 1)

(Lines 2-4): If λ > 0 we need at least one contract C(r, d) to finish covering the

demand at time i; the remaining demand at time i not covered by C must be covered

optimally by other contracts, as previously computed in OP[i, i, λ+ r].

For any OP[i, i, λ], we compute the optimal remaining cost when λ demand is

already covered. In order to obtain this value, we need to buy a new contract C(r, d)

which covers r units if demand of the M [i, j] − λ uncovered untis of demand. Here

any contract C(r, d) ∈ C should be considered. After the newly bought contract,

λ+ r demand has already been covered and the cost to cover the remaining M [i, j]−

(λ + r) has already been computed and stored in OP[i, i, λ + r]. Hence, summing up

OP[i, i, λ + r] and the cost π(r, d) for the new contract C(r, d), we get the value for

OP[i, i, λ].

Now consider a subinterval [i, j] of length ` = j− i+ 1 ≥ 2, where 1 ≤ i ≤ j ≤ dk.

This interval is either split into two non-overlapping subintervals of smaller length

(Case I), or a long contract of length equal to or greater than ` that completely

covers [i, j] is bought, at a certain demand rate r, where 0 ≤ r ≤ M [i, j] (Case II).

Given Assumption A2 and A3, for any instances of contracts C
(y)
x and C

(q)
p , either

the duration of one contract is fully contained in the other, or the two contracts never

overlap in time: Hence, given that we consider all intervals [i, j], including the ones

that may correspond to actual instances of contracts, it is enough to consider only

these two cases.
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In Case I, we split the interval at time z such that the solution OP[i, z, λ] + OP[z+

1, j, λ] is minimized over all z between i and j (Line 9). Since the lengths of the two

subintervals z − i+ 1 and j − z are both smaller than `, OP[i, z, λ] and OP[z + 1, j, λ]

already store the cost of optimal solutions for these subproblems, respectively, by the

induction hypothesis. Hence OP[i, z, λ] + OP[z + 1, j, λ] will yield the optimal solution

for OP[i, j, λ] if Case I applies.

In Case II, we buy a long contract with rate r. First, we need to check which con-

tracts with longer durations can cover [i, j] fully, and store the candidate contracts

in C ′. A candidate contract C(x)(t(x), r, d), where t(x) = b · d according to Assump-

tion A3, satisfies t(x) ≤ i < j < t(x) + d). The algorithm picks the valid candidate

contract that minimizes π(r, d) plus the optimal cost of covering the largest remaining

demand M [i, j]− (λ+ r) over [i, j], which has been previously computed and stored

in OP[i, j, λ+ r] (Line 10).

By choosing the smaller value of Cases I and II, we obtain the optimal cost for

subproblem [i, j, λ] (Line 12).

Time Complexity: Now we consider the time complexity of Off2D. The total

time complexity for the pre-computation part in Algorithm 4 is O(d2
k). The first part

of Algorithm 5 in (Lines 2-4) takes O(dk ·k · σ̂) time, where σ̂ is the maximum demand

for the whole time interval. The first two loops of the second part (Lines 5-6) take

O(d2
k) time and the for-loop in Line 8 takes O(σ̂) time. The statement in Line 9

requires O(dk) time and Lines 10 and 12 take time O(k) each. Therefore, the total

time complexity is O(d3
k · σ̂) for a subinterval with length dk.

Thus, by summing up the computation time of d|σ|/dke subintervals of length dk,

where |σ| is the total duration of σ, we have an overall complexity of O(|σ| · d2
k · σ̂).
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3.7 Higher Dimensions

Off2D and On2D are designed for the two-dimensional version of the PPP prob-

lem but they can also be extended towards a D-dimensional version of the problem,

where each additional dimension (other than the time duration dimension) would

indicate the rate at which you would buy a certain resource. Regarding Off2D we

need to do the following changes: For each additional dimension we need to extend

the dimension of the optimal cost matrix OP by one and add two additional loops in

Off2D’s Algorithm 5. Furthermore we only need to add one additional dimension

for the M matrix in Algorithm 4 which indicates the current demand dimension β,

M [i, j, β] and run the algorithm β times for the pre-computation.

Assume a scenario where a third dimension is added, e.g. computational and

network resources over time. The contracts C(r, r′, d) then cover r × r′ × d cuboids.

In order to adjust Algorithm 5, we add another loop after Line 3 which goes through

the maximum values λ′ of the additional demand (for λ′ = M [i, i, 2] − 1 to 0 do)

and change the statement in Line 4 to: OP[i, i, λ, λ′]← minC(r,r′,d)∈C′ OP[i, i, λ+ r, λ′+

r′] + π(r, r′, d). The same loop must also be added after Line 8 and the updates of

the OP matrix must be changed accordingly in Lines 9 and 12.

The runtime of the pre-computation in Algorithm 4 would be increased by a factor

of D (i.e., by the dimension of the problem) and still be negligible regarding the overall

runtime (assuming D is a constant). For Algorithm 5 the runtime would increase by

a factor of Πi≥2σ̂
i, where σi is the maximum demand for resource i, for i ≥ 1, leading

to an overall runtime of O(d3
k · Πi≥1σ̂

i) for each interval dk.

No changes are needed regarding On2D. It still mimics Off2D’s behavior and

given the Assumptions A2 and A3, the contract independence still holds for higher

dimensions. Hence, the proof for the competitive ratio of k still applies.
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The offline algorithm, for the D-dimensional problem is presented in Algorithms 6

and 7. As in two dimensions, the D-dimensional online algorithm can simply mimick

the D-dimensional offline algorithm. Given the resulting contract independencies, the

O(k)-competitiveness is maintained.

Algorithm 6 Pre-computation of matrix M

Input: Demand sequences σdimt , . . . , σdimt+dk (over interval [t, t + dk]) with dim ∈

{1, 2, ..., D − 1}.

Output: Matrix M .

1: for i = 1 to dk do

2: for dim = 1 to D − 1 do

3: M [i, i, dim]← σdimt+i

4: for i = 1 to dk − 1 do

5: for j = i+ 1 to dk do

6: for dim = 1 to D − 1 do

7: M [i, j, dim]← max{M [i, j − 1, dim], σdimt+j }

8: return M
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Algorithm 7 Offline Algorithm OffD-D

Input: Precomputed matrix M over interval [t, t+ dk, D].

Output: Optimal total costs OP[i, j, ·, ·, . . . , ·] for all intervals within [t, t+ dk].

1: Initialize all entries in OP to be 0 and dim = D − 1.

2: for i = 1 to dk do

3: for λ1 = M [i, i, 1]− 1 to 0 do

4: for λ2 = M [i, i, 2]− 1 to 0 do

5:
...

6: for λdim = M [i, i, dim]− 1 to 0 do

7: OP[i, i, λ1, λ2, . . . , λdim] ← minC(r1,r2,...,rdim,d)∈C OP[i, i, λ1 + r1, λ2 +

r2, . . . , λdim] + π(r1, r2, . . . , rdim, d)

8: for ` = 2 to dk do

9: for i = 1 to dk − `+ 1 do

10: j = i+ `− 1

11: for λ1 = M [i, j, 1]− 1 to 0 do

12: for λ2 = M [i, j, 2]− 1 to 0 do

13:
...

14: for λdim = M [i, j, dim]− 1 to 0 do

15: OP[i, j, λ1, λ2, . . . , λdim] ← mini≤z<j{OP[i, z, λ1, λ2, . . . , λdim] + OP[z +

1, j, λ1, λ2, . . . , λdim]}

16: C ′ ← {C(x)(t(x), r1, r2, . . . , rdim, d) ∈ C : t(x) = b · d for some positive

integer b and t(x) ≤ i < j ≤ t(x) + d}.

17: if C ′ is not empty then

18: OP[i, j, λ1, λ2, . . . , λdim] ← min{OP[i, j, λ1, λ2, . . . , λdim];

minC(r1,r2,...,rdim,d)∈C′1 OP[i, j, λ1 + r1, λ2 + r2, . . . , λdim + rdim] +

π(r1, r2, . . . , rdim, d)}

19: return OP[1, dk, 0, 0, . . . , 0]

54



3.8 Simulation

We have conducted a small simulation study to complement our formal analy-

sis. In this simulation, we consider k different square contracts where each contract

Ci(ri, di) has rate and duration ri = di = 2i−1, for 1 ≤ i ≤ k. The price π of a con-

tract is a function of the rate-duration product ri · di, and we study a parameter x to

vary the discount. Concretely, we consider a scenario where a twice as large time-rate

product is by factor (1 + x) more expensive, i.e., π(2 · d · r) = (1 + x) · π(d · r); we set

π(1) = 1.

To generate the demand σ, we use a randomized scheme: non-zero demand re-

quests arrive according to a Poisson distribution with parameter λ, i.e., the time

between non-zero σt is exponentially distributed. For each non-zero request, we sam-

ple a demand value uniformly at random from the interval [1, y].

In this experiment, each simulation run represents 1000 time steps, and is repeated

10 times.

Impact of the request model. We first study how the competitive ratio de-

pends on the demand arrival pattern. Figure 3.5a plots the competitive ratio ρ as a

function of the Poisson distribution parameter λ. The price model with x = 0.5 is

used, and there are k = 8 contract types. First, we observe that the competitive ratio

ρ is bounded by approx. 5, which is slightly lower than what we expect in the worst-

case (cf Theorem 4). Another observation is that the competitive ratio decreases as

λ increases. This can be explained by the fact that demand rates become sparser for

increasing λ, and hence less contracts will be bought. Meanwhile, when the demand

rates are sparse, the offline algorithm will have less chance to buy a larger contract.

Put differently, the online algorithm will pay relatively more compared to the offline

algorithm for small λ, as it purchases more small contracts.
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Figure 3.5: Simulation Results under Different Settings.

Impact of the price model. Different price models also affect the purchasing

behavior.Figure 3.5b shows the competitive ratio ρ for different values x. (For this

scenario, we set y = 128, k = 8 and λ = 2.) We see a tradeoff: for small x, until

x = 0.5, the competitive ratio increases and then begins to decrease again. The

general trend can be explained by the fact that for small x, it is worthwhile to buy

larger contracts earlier, and it is hence impossible to charge On2D much; for larger

x, also an offline solution cannot profit from buying a large contract.
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Impact of the number of contracts. Finally, Figure 3.5c shows the competitive

ratio as a function of the number of contracts k. (We fix x = 0.5, y = 128 and

λ = 2 in this simulation.) The competitive ratio first increases as k increases but

then stabilizes. This stabilization is due to the fact that when we have eight or more

contracts (k ≥ 8), the largest contract can cover the maximum rate. In the beginning,

the ratio increases since the offline algorithm buys larger and larger contracts, and

the online algorithm pays for many small contracts along the way.

3.9 Conclusion

This work has shown that at the heart of efficient cloud resource allocation lies

a fundamental algorithmic problem, and we introduced the PPP2 problem, a 2-

dimensional variant of the online Parking Permit Problem PPP. We presented a

deterministic online algorithm On2D that provably achieves a competitive ratio of

k, where k is the total number of available contracts; if we relax Assumption A3,

the competitive ratio of our algorithm is 2k. We also showed that On2D is almost

optimal in the sense that no deterministic online algorithm for PPP2 can achieve a

competitive ratio lower than k/3. Finally, we proved that the offline version of PPP2

can be solved in polynomial time.

We believe that our work opens interesting directions for future research.

1. Optimality: The obvious open question regards the gap between the upper

bound k and the lower bound k/3 derived in this work.

2. Interval assumption: Interestingly, while the interval model only comes at the

cost of a small constant approximation factor, it seems hard to remove the

restriction while keeping optimality. In fact, we conjecture that computing an

optimal offline solution may even be NP-hard in general.
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3. Randomized algorithms: It will be interesting to study whether the random-

ized algorithms known from the classic parking permit problem can also be

generalized to multiple dimensions.
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Chapter 4

HOW TO BUY DISCOUNT VOUCHERS WITH EXPIRATION DATES?

A COMPETITIVE ANALYSIS APPROACH

4.1 Introduction

In our modern times where alternatives are plenty, companies constantly look

for new ways to differentiate themselves from competitors, offering a wide range of

complex discounts and vouchers. For example, many gyms today offer daily, weekly

and yearly passes, at different rates. Also other consumable good industries offer

discount vouchers which expire independently of whether they have been used up by

then or not. Companies such as Groupon even follow a business model which to a

large extent consists in offering various discount vouchers for other companies.

Whether it makes sense to buy a pass or discount voucher with expiration date

is a difficult decision problem, due to uncertainty: customers often do not know how

frequently and how long they will be interested in a certain consumable good or

service. In the worst-case, right after having bought a yearly pass or a large number

of vouchers, a customer may lose interest or time.

We, in this work, initiate the study of the discount voucher purchasing problem:

the problem of how to buy discount vouchers with expiration dates, in an online

fashion, i.e., without knowing the future. We assume a conservative worst-case per-

spective and consider Murphy’s Law: whether and when a customer can make use of

its vouchers is determined by an adversary.

We are in the realm of online algorithms and competitive analysis, and we are in-

terested in online voucher buying strategies which are competitive against an optimal
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offline algorithm: the overall amount of money spent by the online algorithm is not

much higher than the money spent by a clairvoyant optimal offline algorithm, which

knows the entire future demand ahead of time.

The problem shares many similarities with evergreen online optimization problems

such as the the Parking Permit Problem [31] and the Bahncard Problem [19], where

benefits expire with time, regardless of usage. We consider the following two problem

variants:

1. Once-Expired-Lose-Discount (OELD): The voucher loses its discount for

the unused face value after its expiration date. However, its value can still be

used to buy goods at their regular price.

2. Once-Expired-Lose-Everything (OELE): The voucher loses its entire value

after its expiration date.

Sometimes, companies even limit the time window in which vouchers can be

bought. We will refer to this variant by Limited Purchasing Window (LPW).

Our Contribution. We initiate the study of the online voucher purchase prob-

lem, from a competitive analysis perspective. We present deterministic online algo-

rithms to compute a 4-competitive solution for OELE—which is optimal due to the

multi-discount ski rental lower bound [47]—and an 8-competitive solution to OELD.

We also prove a lower bound on the LPW variant, showing that the problem is in-

herently hard. Additionally, we also consider offline versions of the problems, and

present a polynomial-time optimal offline algorithm for OELE and LPW, as well as

a 2-competitive solution for OELD.

Organization. The remainder of this work is organized as follows. In Section 4.2,

we review related work. In Section 4.3, we introduce three variants of the discount
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voucher purchasing problem and formulate our model. In Section 4.4, we discuss on-

line algorithms and competitive analysis for each variant respectively. In Section 4.4.1,

we present a case study and provide the general analysis for OELE. In Section 4.4.2,

we discuss the competitive analysis for OELD using the same algorithm for OELE. In

Section 4.4.3, we provide a lower bound analysis for LPW. In Section 4.5, we present

algorithms for these three variants. We present a polynomial-time optimal offline

algorithm for OELE in Section 4.5.1, and prove it to be be 2-competitive solution to

OELD in Section 4.5.2 and an optimal solution to LPW in Section 4.5.3. Finally, we

conclude our work in Section 4.6.

4.2 Related Work

Our work is motivated by the practical discount voucher purchasing problem and

by the online purchasing manner, i.e., the future demands of customers are unknown

in advance. One frequently used assumption in many online models is that once the

resource has been purchased, it will never expire, such as ski-rental problems [11],

facility location problems [21], buy-at-bulk [35] and rent-or-buy [28] problems. Some

other online problems, such as the Parking Permit Problem [31] and the Bahncard

Problem [19], instead assume purchases have time durations which expire regardless

of whether the purchase is used or not. Our work works on the second model which

assumes that the resource will expire after certain duration.

This work focuses on an online resource purchasing problem in which discount

vouchers or groupons are considered as resource to be bought. This work is motivated

by a real discount voucher or groupon purchasing problem. Refer to [44] and [43]

respectively for general information. The topics which are close to our work are

ski-rental problem or parking permit problem. The ski rental problem proposed in

[27] is one of the most fundamental problems and the authors in [27] studied its
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online version in economical aspects. There have been quite many generalizations

to this problem. For example, the authors in [36] studied the situation in which the

purchasing price varies over time while the rental cost stays at a fixed price. Ali et

al. [3] introduced a variant of the problem by assuming the skier knows the first

(or second) moment of the distribution of the number of ski days in a season. They

showed that knowing this information leads to achieving the best worst-case expected

competitive ratio performance. Other classic generalizations of this problem include

the replacement problem of Chunlin et al. [15] and cloud resource management [41].

Recently, Meyerson [31] proposed the parking permit problem and Hiroshi et al.

extends the classic ski rental problem to multislope ski rental problem [26].

The paper closest to our work is the ski rental problem studied by Guiqing et

al. [47]. The authors proposed the ski-rental problem with multiple discount options

in which there are n options each with a rental duration respectively. They presented

a 4-competitive online algorithm for continuous request sequence scenarios and also

showed a matching lower bound for this problem. Our work considers a discount

voucher purchasing problem with expiration dates, in which the cost of a voucher is

computed based on the volume of the resource, i.e., the number of yoga visits when

the voucher is a yoga pass. In [47], the contract is computed based on the time

duration. The first variant OELE studied in this work is similar to the ski rental

problem except that vouchers will expire at expiration date. Therefore, OELE is

multi-discount ski rental problem in each discount window. However, we extend this

problem to another two variants (OELD and LPW) and show approximation analysis

for each respectively. Our algorithm can work for any request sequences, while the

requests are required to be continuous in [47], i.e., every day there must be a request.

In addition to online algorithms with competitive analysis, we also make an effort on

the offline algorithm.
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4.3 Model

We are given a range of k different discount vouchers of increasing value V =

(v1, v2, · · · , vk). For simplicity, we will use vi to denote both the voucher as well as

its value, i.e., the number of consumable goods it represents. The price of the voucher

vi is denoted by Π(vi), and the price per unit consumable is denoted by π(vi), i.e.,

π(vi) = Π(vi)/vi. Without loss of generality (w.l.o.g.), we assume that π(vj) ≤ π(vi)

for j > i: more expensive, smaller vouchers are never interesting and can be ignored.

We will denote by v0 the “voucher” which represents a single unit, without discount;

its price is denoted by π(v0) = Π(v0).

Each discount voucher has an expiration date, which is independent of the con-

sumption of the good. After expiring, a voucher vi may either lose its entire value

Π(vi), or it may fall back to its so-called face value: in this case, it can only be used

to buy bΠ(vi)/Π(v0)c ≤ vi many goods. We will refer to the first variant by Once-

Expire-Lose-Everything (OELE), and to the second variant by Once-Expire-

Lose-Discount (OELD). Sometimes, we will also restrict the time window in which

new vouchers can be bought: we will refer to this variant by Limited Purchasing

Window (LPW).

We model the demand for a given consumable good over time using a binary

consumption request sequence σ = (σ1, σ2, . . .): the entry σt = 1 denotes that the

good is consumed at time t, and σt = 0 denotes that the good is not consumed. If

clear from the context, we will sometimes refer by σt to the time t of the request. All

algorithms and results in our work can easily be extended if the demand for a good

is non-binary. The sequence σ is revealed over time to the online algorithm: at time

t, the online algorithm only knows the first t− 1 entries, henceforth denoted by σ<t.

Whenever a consumption request occurs (σt = 1), the online algorithm either has to
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(equivalent to 1 single visit) 

remaining face value = 0 

e

p
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Figure 4.1: Example for OELE, OELD and LPW Given a Voucher v1 = 4 with

Π(v1) = 40 and a Single-unit Option v0 with Price Π(v0) = 20. When v1 Is Bought

within the Purchasing Window, the Remaining Face Value after the Voucher Expires

Is Shown for Each Variant.

have a voucher ready or buy a new one (possibly v0). The offline algorithm always

knows the entire sequence σ.

Example. Figure 4.1 gives an example to describe our model in details. Consider

a yoga voucher v1 for 4 entries costs 40 dollars, i.e., v1 = 4 and Π(v1) = 40, while

a single entry v0 without discounts costs 20 dollars (Π(v0) = 20). If Alice buys the

voucher v1 at her first visit, and ends up going only to two classes before the voucher

expires, she will not have won anything in the OELE model compared to a scenario

where she buys two v0 single vouchers. However, in the OELD model, there will be 20

dollars face value left after the expiration date, which is worth one additional single

visit. In the LPW model, there also exists the constraint that the purchasing time

window is limited (marked as dark grey in the figure). Alice either purchases the
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vouchers within this purchasing window, or she is forced to buy single entries (i.e.,

v0’s). �

Throughout this work, we will make the practically motivated assumption that

vouchers are issued for disjoint time intervals, and start at purchase time p and expire

at time e. That is, using the notation pi and ei for voucher vi, we have for any two

vouchers vj and v` we assume pj ≤ ej < p` ≤ e` or p` ≤ e` < pj ≤ ej.

Let Alg be an algorithm and let ΠAlg(σ) denote the overall cost that Alg incurs

on a request sequence σ. Moreover, let ΠAlg(σ≤t) denote the cost of Alg from the

beginning of σ through time t.

Our goal is to find an online algorithm On whose cost is not much larger than

the cost of an optimal offline algorithm Off. Concretely, we seek to minimize the

(worst-case) competitive ratio ρ over all σ: ρ = maxσ(ΠOn(σ)/ΠOff(σ)) + c, where c

is some additive constant.

4.4 Competitive Online Algorithm

This section first studies the OELE and OELD problem variants and presents

competitive online algorithms in turn, together with an analysis. Subsequently, we

prove that LPW is inherently hard to solve in an online setting.

4.4.1 Once-Expired-Lose-Everything (OELE)

The OELE problem variant can be seen as a generalization of classic ski rental:

the ski rental problem can be modeled using two contracts v0 and v1, where v1 has an

infinite duration and does not expire: the skis are bought. It is also a generalization

of multi-discount ski rental [47] as in each discount window each voucher in OELE

can be seen as a contract in multi-discount ski rental problem. The volume of the

voucher can be seen as the duration of the contract. The expiration date can be set
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as the date for the last request. After the vouchers are expired and the next discount

window starts, we apply a new generalization of multi-discount ski rental problem.

Therefore, our problem is volume based in which each voucher has an expiration date

while multi-discount ski rental problem is time based. This variant is provided as a

building block for the other variants, OELD and LPW, for both online and offline

versions.

The Algorithm

In order to solve this problem, we propose the following algorithm On, see Algorith-

m 8. For ease of explanation, assume dummy vouchers v−1 and vk+1 with Π(v−1) = 0

and Π(vk+1) =∞. On pursues an amortization strategy: it always seeks to buy the

largest voucher whose cost is less than or equal to the accumulated cost within the

current discount window.

On maintains two values: C to store the total accumulated cost and C ′ to indicate

the cost incurred within each discount window. We denote by τ1, τ2, · · · the time

point at which On decides to buy a new voucher, i.e., τi indicates the time for the

first request covered by the ith voucher. We use j as an index to indicate the current

request (i.e., the jth request occurs at time σj), and i to indicate the index of the

current voucher that On is going to buy. τs indicates the starting point of the requests

for sth voucher bought by our online algorithm, where s is an index starting from 1.

Initially, C is set to be 0, while j and s are both set to be 1 (Line 1). In the beginning

of each discount window, C ′ is initially set to be 0 and i is set to be 1 (Line 3).

Therefore, we can get the starting point τs of each bought voucher which is denoted

by σj (Line 4). Then we can update the current discount window. For example, if

the expiration date is t, the last request is σe where σe ≤ t and σe is the largest time

which is less than or equal to t. Hence, the current discount window spans from σj to
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Algorithm 8 Online algorithm On

Input: online request sequence σ = (σ1, σ2, . . .)

Output: overall cost

1: C ← 0, j ← 1, s← 1

2: while new ∃ request σj do

3: C ′ ← 0, i← 0

4: τs ← σj

5: update discount window

6: for each new request at σj coming within the current discount window do

7: if request at σj is not yet covered by a voucher then

8: buy voucher vi

9: update i s.t. Π(vi) ≤ C ′ < Π(vi+1)

10: C ′ ← C ′ + Π(vi)

11: j ← j + 1

12: s← s+ 1

13: C ← C + C ′

14: return C

σe. After the initialization of the data structures, On computes the cost C ′ for each

discount window separately (Lines 6-Line 11). If the current request σj is not covered

by a voucher, buy voucher vi and update index i such that Π(vi) ≤ C < Π(vi+1)

(Lines 8-Line 9). In other words, On buys the largest voucher whose cost is less than

or equal to the accumulated cost within the current discount window. Update the

cost C ′ by adding voucher cost Π(vi) into it (Line 10). Increment request index j by

1 (Line 11). After finishing dealing with all the requests within the current discount

window, increment index s by 1 (Line 12) and add the cost C ′ obtained within the

current discount window to the total cost C (Line 13).
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Case Study

In order to illustrate the behavior and the performance of On within a discount

window in some specific scenarios, we consider the following study cases: let the

vouchers and discount be the way such that there will always exist such voucher vi

satisfying f(vi) = 2i−1 for integer i where 1 ≤ i ≤ k. Assume that v1 = v0 is a single

visit.

Now let us take a look at how On behaves in the following two study cases.

Case 1 : We assume that the request sequence T is not sufficient enough for On

such that On cannot buy multiple vk’s and the largest voucher On purchase is vx,

where 1 ≤ x ≤ k. It is trivial to see that initially On will purchase v1 with cost 1

and another v1 for the second request. After that, On will turn to buy each voucher

from v2 to vi once sequentially. Hence, we have:

Π(On) = Π(v1) + Π(v1) + Π(v2) + · · ·+ Π(vx)

= 1 + 1 + 2 + · · ·+ 2x−1

= 1 +
x−1∑
i=0

2i

= 2x = 4 · 2x−2

Let the total number of requests be V . Note that except for the last voucher, the

length of the voucher is the number of the requests within this voucher. Therefore,

we can obtain V by summing up all the vouchers before vx and the real data requests

within the last voucher vx. In the following, we use Π−1(c) to denote the length of

the voucher whose cost is equal to c.
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V ol > Π−1(1) + Π−1(1) + Π−1(2) + · · ·+ Π−1(2x−2)

= Π−1(1) +
k−2∑
i=0

Π−1(2i)

> Π−1(2x−2)

Therefore, we have Π(Off) ≥ Π(V ol) > Π(f−1(2k−2)) = 2x−2 and hence ρ =

Π(On)
Π(Off)

< 4.

Case 2: In this case we assume that On buys multiple vouchers vk, i.e., On buys

α vouchers vk where α ≥ 2. Similarly On will buy 2 vouchers v1 and then turn to

buy each voucher from v2 to vk−1 once sequently. Finally On keeps purchasing the

same voucher vk for α times. We can compute the cost of the online algorithm and

offline algorithm similarly:

Π(ON) = π(v1) + π(v1) + π(v2) + · · ·+ α · π(vk)

= 1 + 1 + 2 + · · ·+ α · 2k−1

= 1 +
k−1∑
i=0

2i + (α− 1)2k−1

=
α + 1

2
2k = (α + 1) · 2k−1

Now we compute the total requests V ol:

V ol > π−1(1) + π−1(1) + π−1(2) + · · ·+ π−1(2k−2) + (α− 1)π−1(2k−1)

= π−1(1) +
k−2∑
i=0

π−1(2i) + (α− 1)π−1(2k−2)

> (α− 1)π−1(2k−1)

It is trivial to see that within a discount window the cost of the offline algorithm

should be at least equal to the total cost of α − 1 vouchers vk, i.e., Π(Off) ≥

(α − 1)2k−1. Therefore, ρ = Π(On)
Π(Off)

< (α+1)·2k−1

(α−1)·2k−1 ≤ 2. Since the behavior of On for
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each discount window is independent for OELE, we can derive the competitive ratio

for the whole request sequence σ is 4.

General Analysis

Note that τ1, τ2, · · · are the starting points of the vouchers at which On decides to

buy a new voucher. To discuss the competitive analysis of our algorithm, let τ0 be 0,

which indicates that there is no voucher bought yet. Let the ith voucher bought be

v′i.

Now we prove that the competitive ratio ρ = Πτ (On)/Πτ (Off) ≤ 4 for all τ ’s

within each discount window, where τ ∈ (τ1, τ2, · · · ) is the starting point of vouchers

bought by On. Lemma 5 proves the competitive ratio for the requests within the first

discount window. It is obvious to show the ratio for the requests within other discount

windows by rebuilding the index i of starting point τi. For example, if the starting

point sequence for a discount window starts at τx, we just need to set τj = τx+j−1,

where j ≥ 1. We discuss the ratio between the cost of On before it decides to buy

a new voucher Πτm−1(On) (note that between vouchers, On will not buy any other

vouchers) and the cost of Off after On decides to buy this new voucher is Πτm(Off).

Lemma 5. The cost of On before it decides to buy a new voucher at τm is at most

twice the cost of Off after On decides to buy this new voucher for request τm, i.e.,

Πτm−1(On)/Πτm(Off) ≤ 2 within each discount window, where m ≥ 1.

Proof. We argue by induction on m1. Note that τ0 = 0.

Base case (m = 1 and m = 2): When m = 1, according to our algorithm On,

Πτ0(On) = 0. Since there is a request at time τ1 and the offline algorithm will buy

1This work was developed concurrently and independently to [47]; however this proof shows many

similarities to the one in [47].
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a voucher v0, we have Πτ1(Off) = Π(v0). Therefore, we have Πτ0(On)/Πτ1(Off) =

0 ≤ 2. Now consider the case m = 2. Since at time τ1, On has already bought a

voucher v0, Πτ1(On) = Π(v0). For Off it either buys two vouchers v0 with cost

of 2Π(v0) or buy a voucher vj with cost Π(v0) < Π(vj) ≤ 2Π(v0). Hence, we have

Πτ1(On)/Πτ2(Off) ≤ 2.

Induction case (m ≥ 2): According to the induction hypothesis, we assume that

Πτm−2(On)/Πτm−1(Off) ≤ 2 and Πτm−1(On)/Πτm(Off) ≤ 2 and we intend to show

Πτm(On)/Πτm+1(Off) ≤ 2. By our algorithm, Π(v′m−1) ≤ Πτm−2(On) and Π(v′m) ≤

Πτm−1(On). Note that no voucher satisfies Π(vi) ∈ (Π(v′m−1),Πτm−2(On)] or Π(vi) ∈

(Π(v′m),Πτm−1(On)] according to the algorithm structure.

Now consider the vouchers that Off buys to cover the interval [τ1, τm+2). Assume

that Off purchases a sequence of vouchers v∗1, v
∗
2, · · · , v∗l . W.l.o.g., we assume

v∗1 ≤ v∗2, · · · ,≤ v∗l . We have Πτm+1(Off) = Π(v∗1) + · · · + Π(v∗l ). Now we consider

the following three cases on the cost of the largest voucher v∗l Off buys:

1. Π(v∗l ) ≥ Πτm−1(On). We have Πτm+1(Off) ≥ Π(v∗l ) ≥ Πτm−1(On). Since

Πτm(On) = Πτm−1(On)+Π(v′m) ≤ 2Πτm−1(On), we have Πτm(On) /Πτm+1(Off)

≤ 2.

2. Πτm−2(On) ≤ Π(v∗l ) < Πτm−1(On). In this case, recall that Π(v∗l ) /∈ (Π(v′m),

Πτm−1(On)] and Π(v∗l ) ≤ Π(v′m). The example is shown in Figure 4.2a. Since

Π(v∗l ) ≤ Π(v′m), the requests with green are covered by vouchers v∗α, · · · , v∗l−1

where 1 ≤ α ≤ l − 1. Therefore, Π(v∗1) + · · · + Π(v∗l−1) ≥ Πτm(Off). Note

that v∗l is fully used. Moreover, by the induction hypothesis, Πτm(Off) ≥

Πτm−1(On)/2. Hence, we have Π(v∗1)+· · ·+Π(v∗l−1) ≥ Πτm(Off) ≥ Πτm−1(On)/2.
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Bought by On.

Figure 4.2: Example to Show Proof for Lemma 5.

Now we can compute Πτm+1(Off) as following:

Πτm+1(Off) = Π(v∗1) + · · ·+ Π(v∗l ) (4.1)

≥ Πτm−1(On)/2 + Π(v∗l ) (4.2)

≥ (Πτm−2(On) + Π(v′m−1))/2 + Πτm−2(On) (4.3)

≥ Π(v′m−1) + Πτm−2(On) (4.4)

Equality (4.1) holds by the definition and Inequality (4.2) is obtained by the in-

duction hypothesis as discussed before. We substitute Πτm−1(On) with Πτm−2(On)

+Π(v′m−1) by algorithm structure and derive Inequality (4.3). In Inequali-
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ty (4.4), according to the algorithm structure of On, we have Πτm−2(On) ≥

Π(v′m−1).

Note that Πτm(On) = Πτm−1(On) + Π(v′m) ≤ 2Πτm−1(On) = 2(Πτm−2(On) +

Π(v′m−1)). Hence, we have Πτm(On)/Πτm+1(Off) ≤ 2.

3. Π(v∗l ) < Πτm−2(On). Recall that Π(v∗l ) /∈ (Π(v′m−1),Πτm−2(On)], hence Π(v∗l ) ≤

Π(v′m−1) and v∗l ≤ v′m−1. Note that v∗l is the largest voucher among those Off

buys. Now consider the interval [τm, τm+1]. Since no voucher v∗1, v
∗
2, · · · , v∗l

can cover the requests that start before τm−1 and end after τm (otherwise it

violates Π(v∗l ) ≤ Π(v′m−1)), there exists a y such that the last time voucher v∗y

is used is within the interval [τm−1, τm], where 1 ≤ y < l showed in Figure 4.2b.

By the induction hypothesis, we have Π(v∗1) + · · ·+ Π(v∗y) ≥ Πτm−2(On)/2. On

the other hand, the interval that the vouchers v∗y+1 to v∗l cover is no less than

the interval [τm, τm+1], therefore, we have Π(v∗y+1) + · · · + Π(v∗l ) ≥ Π(v′m) and

Πτm+1(Off) ≥ Πτm−2(On)/2+Π(v′m). Hence Πτm(On) = Πτm−1(On)+Π(v′m) =

Πτm−2(On) + Π(v′m−1) + Π(v′m) ≤ Πτm−2(On) + 2Π(v′m).

Therefore, it holds for all the cases that Πτm(On)/Πτm+1(Off) ≤ 2.

Theorem 8. Algorithm On is 4-competitive.

Proof. According to Lemma 5, within each discount window we have:

ρ ≤ max
m

Πτm(On)/Πτm(Off) = (Πτm−1(On) + Π(v′m))/Πτm(Off)

≤ 2Πτm−1(On)/Πτm(Off) ≤ 4.

We have already shown above that the competitive ratio within each discount window

is bounded by 4. Since it is independent among all the discount windows, we can

know that Algorithm On is 4-competitive.
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4.4.2 Once-Expired-Lose-Discount (OELD)

In contrast to the OELE model, the OELD model allows to keep the face value of

the voucher, to buy goods at a price without discounts. In order to solve the OELD

problem, we only slightly modify the algorithm On: our proposed algorithm OELD

is essentially On, with the obvious improvement that new vouchers are only bought

once remaining face values are used up.

Note that after a voucher expires, we lose discount for the remaining unused value.

For example (Figure 4.3), a voucher v for 6 days yoga visit costs 60 dollars and it

is valid before an expiration date, i.e., May 1st 2015, while a single yoga visit costs

20 dollars. After May 1st when the voucher expires, 4 visits have been used and the

remaining value for the unused 2 visits becomes 20 dollars, which equals to 1 single

visits, instead of 2 visits. That is, the remaining value is the real cost in proportional

to the unused visits. As shown in Figure 4.3, when there is one future request coming

in the second discount window, OELD can take advantage of the remaining face value

to cover the new coming request while OELE has to buy a new single visit instead.

OELD 

OELE 

Example for 2-factor 

4 requests covered by v 
($60) with 2 unused visits a single visit ($20) is bought 

covered by remaining face 
value ($20) which is 
equivalent to 1 single visit 

4 requests covered by v 
($60) with 2 unused visits 

Figure 4.3: Example to Show that the Optimal Solution for OELD Is at least Half of

That for OELE Given a Voucher v = 6 with Π(v) = 60 and Π(v0) = 20.
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Theorem 9. Algorithm On is 8-competitive.

Proof. We first prove the following helper lemma: it shows that by introducing re-

maining face value without discount in OELD, the optimal solution to OELE is not

far away from that to OELD.

Lemma 6. Let Off1 be the optimal solution to our voucher purchasing problem

under OELD model. And let Off2 be the optimal solution for OELE. By introducing

remaining face value without discount, Off1 is a constant factor away from Off2,

i.e., Π(Off2) ≤ maxi(2− vi−1

vi
)Π(Off1).

Proof. Let Off1 be the optimal solution for OELD. W.l.o.g, Off1 starts to use a

voucher until it is fully used, then turns to buy next one. Thus all the other vouchers

are fully consumed except for the last voucher within each discount window. Such

optimal solution exists since if there is a voucher v in Off1 which is fully unused

within the current discount window, we can buy single visits instead with the same

cost to cover those requests in future discount windows covered by the remaining

value from v.

First let us construct an intermediate solution Off′ as following: for each request

covered by the remaining value in Off1, replace it with a newly bought single visit.

As discussed in our example above, the newly bought single visits add extra cost

into Off′, while the same amount of cost has already been paid by purchasing large

voucher with some unused visits after the expiration date. We claim that for any

voucher vi in Off1 with unused remaining value where i > 1, the used number of

visits must be no less than vi−1. Otherwise, Off1 can buy vi−1 and single visits for

the requests covered by vi instead with less cost, which violates the optimality of

Off1. Therefore, the minimum used value is vi−1

vi
Π(vi), and the maximum remaining

value without discount can be computed by (1 − vi−1

vi
) · Π(vi). This guarantees that
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for each such vi, the cost Off′ pays is the summation of the cost for vi (Π(vi)) and

the cost for the newly bought single visits (at most (1 − vi−1

vi
) · Π(vi)), that is Off′

pays at most (1 − vi−1

vi
) · Π(vi) + Π(vi) = (2 − vi−1

vi
) · Π(vi). Note that 0 < vi−1

vi
< 1.

Summing up the cost for all vouchers, we have Π(Off′) ≤ maxi(2− vi−1

vi
)Π(Off1).

Now consider the optimal solution Off2 for OELE. It is obvious to see that in

Off′, the remaining value is not reused. Given the optimality of Off, we can obtain

that Π(Off2) ≤ Π(Off′). Therefore, we have Π(Off2) ≤ Π(Off′) ≤ maxi(2 −
vi−1

vi
)Π(Off1).

Now consider applying the online algorithm OELD shown in Algorithm 8 to the

OELD model. OELD can be seen as an online algorithm for OELD which does

not use the remaining face value. Theorem 9 shows that OELD is an 8-competitive

online algorithm for OELD.

According to Theorem 8, On is 4-competitive for OELE. Moreover, Lemma 6

indicates that in the worst case the optimal solution for OELD costs at least half of

that for OELE. Hence we have: ρ = Π(On)/Π(Off1) ≤ 2Π(On)/Π(Off) ≤ 8.

4.4.3 Limited Purchasing Window (LPW)

Note that the major difference between OELD and LPW lies on the length of the

purchasing window. In OELD model, the purchasing window is same as the discount

window, therefore, customers can buy vouchers anytime before the expiration date.

However, in LPW model, the purchasing window is limited and customers need to

decide to buy which vouchers and how many of them without knowing information

about future requests. For any online algorithm, there must be a certain request

sequence such that for any large vouchers bought within the purchasing window,

there will be no more future requests to consume them within the same discount

window. Therefore, for those vouchers, all the visits will lose discount and be treated
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as single visits. That is, for an online algorithm which buys single visits for all the

requests will give us a competitive ratio at the discount factor. Theorem 10 formally

describes this observation.

Theorem 10. The lower bound for any algorithm equals the discount factor.

Proof. Assume that there is a smart adversary and the adversary follows two basic

principles: 1. The adversary will never schedule demand within a purchasing window

and 2. The adversary never schedules demand whenever the algorithm has a valid

voucher for an discount window. If the algorithm buys a voucher within a discount

window, the adversary will not schedule any demand, causing the voucher to be left

unused within the period and therefore losing its discount factor. If the algorithm

buys no voucher within the purchasing window, the adversary schedules demand for

the rest of the discount window which can only be served by vouchers with no discount

(either remaining or newly bought). Off on the other hand will buy a voucher for

this discount window to cover the demand after the purchasing window, which leads

to a lower bound equal to the discount factor.

4.5 Optimal Offline Algorithm

In this section, we present an efficient algorithm to solve the offline version of

discount voucher purchase problem. We show that the solution could be computed

by a dynamic programming algorithm in polynomial time. We prove the optimality

of the algorithm for OELE and LPW separately and show the algorithm is a 2-

approximation solution for OELD.
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4.5.1 Once-Expired-Lose-Everything (OELE)

We present an optimal solution for this variant, shown in Algorithm 9, which is a

dynamic programming based algorithm with a polynomial time complexity. In order

to analyze the time complexity of the offline algorithm, we assume that there are n

requests in σ, i.e., σ = {σ1, σ2, . . . , σn}.

The basic idea behind the offline algorithm is that the optimal cost for any number

of requests within the same discount window is obtained by the summation of the costs

of two parts: one for buying a voucher to cover a certain amount of requests while the

other one is the cost to cover the previous amount of request. Note that the optimal

solutions to this smaller number of requests have already been computed. Since the

purchasing behavior for each discount window is independent, we can compute the

optimal solution for each discount window respectively.

First, let us discuss the data structure used in Algorithm 9. We recompute the

request sequence and store the number of requests within each discount window in an

array R. Assume that there are m such discount windows. Therefore, R[s] represents

the number of requests within the sth discount window, where 1 ≤ s ≤ m. We store

the optimal solution for the sth discount window in an array Cs of size R[s] + 1, in

which the entry Cs[i] indicates the optimal solution to the requests from the beginning

to time σi, for 1 ≤ i ≤ n. Initially, Cs[0] is set to 0 and Cs[i] is set to infinity for

i ∈ [1, R[s]]. The summation of optimal solutions for all discount windows yields the

optimal solution, which is denoted as C in the algorithm.

The algorithm proceeds as follows: It computes the optimal solution for the num-

ber of requests n′ starting from 1. When the number of requests is x, where x > 1, the

optimal solution can be computed by picking such a voucher g that the summation

of the voucher cost Π(g) and the cost for the uncovered requests by g (denoted as
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Cs[x− g] for certain s) is minimum. Note that Cs[x− g] has already been computed

optimally, this summation will yield the optimal solution for n′ = x.

Algorithm 9 Offline Algorithm Off

Input: Request sequence σ = {σ1, σ2, . . . , σn}.

Output: Total Cost.

1: Let R[1], · · · , R[m] be the number of requests within each discount window and

m be the number of discount windows

2: C ← 0

3: for s = 1 to m do

4: Cr[0]← 0

5: for i = 1 to R[s] do

6: Cs[i]←∞

7: for i = 1 to R[s] do

8: for j = 1 to k do

9: l← max{0, i− vj}

10: Cs[i]← min{Cs[i], Cs[l] + Π(vj)}

11: C ← C + Cs[R[s]]

12: return C

Theorem 11 shows the optimality and the time complexity of this algorithm.

Theorem 11. Algorithm Off computes an optimal offline solution to OELE in

O(nk) time.

Proof. Correctness: Due to the independency among discount windows, we just

need to prove the correctness for each discount window. Given a request sequence in

the sth discount window, we prove the correctness of our algorithm by induction on

i, the number of the requests. In the base case of i = 1, it is trivial to see that the
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minimum cost to cover a request is the cost of the minimum voucher, i.e., Π(v0). In

Line 9, l will be 0 since the length of any voucher is at least 1. Hence, since initially

Cr[1] is infinity, Cs[0] + Π(v0)(= Π(v0)) will give the optimal solution for the first

request in Line 10.

Now we consider the inductive case when i ≥ 2. The optimal solution is obtained

by buying a voucher, say vj, which minimizes the total cost of the newly bought

voucher vj and the optimal cost to cover the other i − vj requests. Since the new

voucher will cover vj requests, there are l = max{i − vj, 0} requests uncovered by

vj. According to the induction hypothesis, C[l] stores the optimal solution to cover

l = max{i−vj, 0} requests since l ≤ i. Therefore, the minimum value of Cs[l]+Π(vj)

over all j, where 1 ≤ j ≤ k, computes the optimal cost of covering i requests. We

then know that Cs[R[s]] is an optimal solution to our problem in the current discount

window. Hence, the summation of Cs[R[s]] for all s ∈ [1,m] will give the optimal

solution (Line 11).

Time complexity: Now let us consider the time complexity of our algorithm. The

precomputation in Line 1 takes O(n) time. For the sth discount window, the initial-

ization part of our algorithm (Lines 4-6) takes O(R[s]) times. The two for-loops in

Lines 7 and 8 take O(R[s]k) time. Since there will be m discount windows (Line 3),

the total time is n +
∑m

s=1R[s]k = n + nk. Therefore, the total time complexity is

O(nk).

4.5.2 Once-Expired-Lose-Discount (OELD)

Note that in Theorem 6 we have already shown that the optimal solution to OELE

is not far away from that to OELD, i.e., the optimal solution to OELE is at most

twice of that to OELD. In Theorem 12, we show that optimal solution On to OELE

shown in Algorithm 9 gives a 2-approximation solution to OELD.
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Theorem 12. Algorithm 9 gives a 2-approximation solution to OELD in time O(nk).

Proof. Theorem 11 has already shown the optimality of Algorithm 9 for OELE. Ac-

cording to Lemma 6, in the worst case the optimal solution to OELD is at least half

of that to OELE. Therefore Algorithm Off gives a 2-approximation algorithm for

our problem in time O(nk).

4.5.3 Limited Purchasing Window (LPW)

For the offline algorithm, the request sequence is given in advance hence the

behavior of the offline algorithm is the same as that of OELE. Theorem 13 proves the

optimality of Off for LPW.

Theorem 13. Algorithm 9 computes an optimal solution to our problem in time

O(nk).

Proof. Since all the requests are known in advance for the offline algorithm, the deci-

sion to buy vouchers is not limited by the purchasing window any more. This variant

shares the same offline algorithm as OELE. Therefore, Algorithm 9 also computes an

optimal solution to LPW in O(nk) time.

4.6 Conclusion

This work studied the Discount Voucher Purchasing Problem and three variants

of this problem:

OELE: Vouchers lose their entire value after expiration;

OELD: Vouchers lose their discount value after expiration;

LPW: Vouchers can only be bought during a certain time window.
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We have presented an online algorithm On that can compute a 4-competitive solution

to OELE and an 8-competitive solution to OELD. We have also proven a lower bound

on online competitive ratio for LPW. In addition, we have presented an offline algo-

rithm that can compute an optimal solution to OELE and LPW and a 2-competitive

solution to OELD.

We propose the following three interesting research topics:

1. Online algorithms: Currently, the remaining value in OELD is not used. One

possible future topic is to design an online algorithm which takes use of the

remaining value.

2. Computational complexity: We have presented a 2-competitive optimal algo-

rithm for OELD. It would be useful to have theoretical computational complex-

ity analysis for this variant.

3. In this work, we have not evaluated the performance of our algorithm in sim-

ulation. In order to have some knowledge of the performance, we propose to

evaluate the following metrics which can show the properties of our algorithms:

• Different discount functions: Different discount functions affect the pur-

chasing pattern of the online algorithm. We propose to evaluate the com-

petitive ratio under different discount functions and compare the contracts

purchased along the proceeding to the largest one for the online algorithm.

• Different voucher sets: The behavior (e.g., competitive ratios) of the online

algorithm under different voucher sets is an interesting research topic to

explore.
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Chapter 5

CONCLUSION AND FUTURE WORK

In this thesis, we have studied three critical problems in resource allocation.

In the first problem, we have discussed a scenario where a service can be seamlessly

migrated closer to users for better quality of service. We have studied the strategies of

when and where to migrate the service, and also how much resource to purchase while

migrating the service. We have presented optimal migration contracts purchasing

strategies under two different pricing models: Pay-as-You-Come and Pay-as-You-

Go. We have also discussed two online algorithms and validated their quantified

competitive results via simulation.

For future work, we propose the following two possible research directions for the

first work:

1. Online algorithms: One interesting research task is to discuss the competitive

online algorithm for our first problem.

2. Experiments: Currently, we propose two online algorithms and evaluate their

competitive ratios with experiments. However, the settings used in the eval-

uation have some constraints. Therefore, another possible future work could

be to investigate the competitive ratio under different simulation settings, i.e.,

different request models.

In the second problem, we have studied a cost-effective cloud resource allocation

problem and introduced the 2-dimensional Parking Permit Problem PPP2. We have

showed that our problem can be seen as equivalent to the PPP2 problem and we

have presented an online algorithm with competitive analysis on its upper bound and
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lower bound. We have also proposed an offline algorithm which the online algorithm

relies on as a black box. At the end of this work, we have extended the 2-dimension

problem to higher dimensions, introducing the D-dimension PPP problem, and have

proposed an optimal algorithm.

We propose the following two interesting research topics:

1. Randomized algorithms: It would be interesting to investigate whether the

randomized algorithms known for the classic parking permit problem can also

be generalized to two or even higher dimensions.

2. Experiments: We have already evaluated the performance of our algorithms

under the request model in which the rate the of the requests follows a uniform

distribution. An interesting research direction is to evaluate the performance for

other different distributions (e.g., normal distribution) and analyze how these

request models affect the competitive ratios. Since different discount functions

may affect the competitive results, it would be useful to simulate under different

discount functions, such as logarithmic or square discount.

In the third problem, we have introduced the Discount Voucher Purchasing Prob-

lem and three variants of this problem:

OELE: Vouchers lose their entire value after expiration;

OELD: Vouchers lose their discount value after expiration;

LPW: Vouchers can only be bought during a certain time window.

We have presented an online algorithm On that can compute a 4-competitive solution

to OELE and an 8-competitive solution to OELD. We have also proven a lower bound
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on online competitive ratio for LPW. In addition, we have presented an offline algo-

rithm that can compute an optimal solution to OELE and LPW and a 2-competitive

solution to OELD.

We propose the following three interesting research topics:

1. Online algorithms: Currently, the remaining value (the value after expiration

date and without discount) in OELD is not used. One possible future topic is

to design an online algorithm which takes use of the remaining value.

2. Computational complexity: We have presented a 2-competitive optimal algo-

rithm for OELD. However, we have not discussed the hardness to find an opti-

mal solution. It would be useful to have theoretical computational complexity

analysis for this variant.

3. In this work, we have not evaluated the performance of our algorithm in sim-

ulation. In order to have some knowledge of the performance, we propose to

evaluate the following metrics which can show the properties of our algorithms:

• Different discount functions: Different discount functions affect the pur-

chasing pattern of the online algorithm. We propose to evaluate the com-

petitive ratio under different discount functions and compare the contracts

purchased along the proceeding to the largest one for the online algorithm.

• Different voucher sets: The behavior (e.g., competitive ratios) of the online

algorithm under different voucher sets is an interesting research topic to

explore.
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