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ABSTRACT

While discrete emotions like joy, anger, disgust etc. are quite popular, continuous

emotion dimensions like arousal and valence are gaining popularity within the research

community due to an increase in the availability of datasets annotated with these

emotions. Unlike the discrete emotions, continuous emotions allow modeling of subtle

and complex affect dimensions but are difficult to predict.

Dimension reduction techniques form the core of emotion recognition systems and

help create a new feature space that is more helpful in predicting emotions. But these

techniques do not necessarily guarantee a better predictive capability as most of them

are unsupervised, especially in regression learning. In emotion recognition literature,

supervised dimension reduction techniques have not been explored much and in this

work a solution is provided through probabilistic topic models. Topic models provide

a strong probabilistic framework to embed new learning paradigms and modalities.

In this thesis, the graphical structure of Latent Dirichlet Allocation has been explored

and new models tuned to emotion recognition and change detection have been built.

In this work, it has been shown that the double mixture structure of topic models

helps 1) to visualize feature patterns, and 2) to project features onto a topic simplex

that is more predictive of human emotions, when compared to popular techniques

like PCA and KernelPCA. Traditionally, topic models have been used on quantized

features but in this work, a continuous topic model called the Dirichlet Gaussian

Mixture model has been proposed. Evaluation of DGMM has shown that while mod-

eling videos, performance of LDA models can be replicated even without quantizing

the features. Until now, topic models have not been explored in a supervised con-

text of video analysis and thus a Regularized supervised topic model (RSLDA) that

models video and audio features is introduced. RSLDA learning algorithm performs

both dimension reduction and regularized linear regression simultaneously, and has
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outperformed supervised dimension reduction techniques like SPCA and Correlation

based feature selection algorithms. In a first of its kind, two new topic models, Adap-

tive temporal topic model (ATTM) and SLDA for change detection (SLDACD) have

been developed for predicting concept drift in time series data. These models do not

assume independence of consecutive frames and outperform traditional topic models

in detecting local and global changes respectively.
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Chapter 1

INTRODUCTION

1.1 Motivation

Medical diagnosis of patients, federal investigations, human-computer interactions

and many other applications need an understanding of human emotions. This research

broadly addresses the application of social interaction assistance for people who are

blind. This needs pattern recognition algorithms that can extract discernible fea-

tures from video data, learn their relationship with emotions, predict the appropriate

emotional state and deliver the prediction to the visually impaired. Human facial

expression recognition systems have long relied on discovering basic facial movement

patterns that can in turn explain emotions. E.g. Facial Action Units [23] are one such

set of facial patterns manually coded and have been used to decipher the emotional

states. When a blind user interacts with her peers, she may be interested not only

in the exact behavioral state but also in the actual changes in facial patterns. The

motivation for this dissertation is to aim for two birds at one shot, where we could

extract both emotions and facial changes at the same time.

Happy, sad, disgust, surprise, contempt and anger are most widely accepted affective

states and will be called discrete emotions throughout this document. In recent years

four new dimensions of emotions have gained popularity viz. arousal (energy), va-

lence (positivity), power (dominance) and expectancy (anticipation) (Figure 1.1 gives

more details). Unlike discrete emotions, each of these dimensions can be assigned a

real number within a given range and thus are called continuous dimensions. Arousal

and valence in fact can be used to define most of the discrete emotions e.g. a high

1



Figure 1.1: Continuous emotion dimensions and what they represent

arousal and valence indicates happiness.

Recognizing both discrete and continuous emotions involves prediction of the state

or dimension value at each time step of a video while Emotion change detection (con-

cept drift) is prediction of time steps where prominent changes in emotion occur.

These two applications are the focus of discussion and evaluation in this work. To

address both these problems we need algorithms that can extract meaningful features

and can learn an association between features and emotions. In our search for models

that can extract the latent facial patterns, we have come across Probabilistic topic

models which are used to extract latent patterns in text documents. At the outset,

it looks unreasonable for a novice as to how topic models may be related to problem

at hand and the answer lies in the graphical structure of topic models. If we analyze

the problem we are trying to solve, it is two fold, 1) to extract facial patterns, and

2) to learn predictive features from video data. This fits well into the framework of

topic models because they are double mixture models, where one mixture addresses

the first problem and the second mixture solves the second problem.

1.2 Probabilistic Topic Models

Topic models are clustering techniques that have originated to solve the prob-

lem of text document retrieval. Text documents contain lots of features, and finding

similarity between them is useful to cluster them and also find inherent topics that

are common to them. In order to cluster documents, they are represented as fre-

2



quency vectors of terms that occur and the matrix of all document features is called

a document-frequency matrix. Latent Semantic Indexing models were the first topic

models formulated by Deerwester [20] where he proposed an Singular Value Decom-

position over the document-term matrix. Thus LSI model can be perceived as a

feature projection or dimension reduction technique. Even though LSI models have

been very much able to improve document retrieval, they do not work well when

new documents containing new topics are to be clustered. They also do not perform

well for supervised learning like classifying documents, reviews etc. This led to the

formulation of a probabilistic extension to LSI called the probabilistic LSI (pLSI) by

Hoffman [27]. Hoffman provided a probabilistic graphical structure to LSI model and

showed that the double mixture structure of pLSI is powerful when compared to LSI

model. Even though pLSI model provided a probabilistic learning framework, it had

some of the disadvantages of LSI with respect to unseen documents. David Blei et

al. [13] have proposed Latent Dirichlet Allocation which forms the basis of many of

the current topic models. LDA model provided two different insights, 1) how features

group to form topics 2) how topics define a document.

Now taking forward our discussion to the context of emotion recognition we il-

lustrate it with diagram. The application of topic models to emotion recognition is

an extension to their application to image analysis. In Figure 1.2, we have shown

a skying image and let us assume that the image features have been quantized. If a

human being were to annotate the image , then they would be human, trees, snow ,

sky etc. Topic models precisely do this where they annotate an image with topics that

occur and they also define how a topic is defined in terms of features. Similarly we

hypothesize that topic models can model audio and image frames where they assign

topics to images and these topics are defined in terms of the audio and video features.

The first insight into topics per image can be used to predict emotions and the second

3
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Figure 1.2: How dow we relate Topic models to Image processing? A pictorial

explanation.

insight can be used to define basic facial patterns similar to manually encoded facial

action units.

In this thesis we have studied topic models’ usefulness in predicting continuous

emotions from the point of view of dimension reduction techniques. The reason behind

this is that what topic models do is to project image/audio features to a new topic

simplex that is more informative and useful. We will now discuss some of the common

dimension reduction techniques and discuss them in the light of topic models.

1.3 Dimension Reduction Techniques

While building an emotion recognition system, be it for discrete or continuous

emotion predictions, we need to reduce the dimensions of the feature space given that

4



the video and audio contain large number of features. A dimension reduction tech-

nique plays an important role in label prediction and in this thesis we have applied

topic models to emotion prediction as dimension reduction techniques. Throughout

this work we have evaluated topic models against many dimension reduction tech-

niques and one of the most popular among them is the Principal Component Analysis.

PCA model operates on a continuous feature space and projects data into a new fea-

ture space where the basis vectors are orthogonal to each other thereby reducing the

redundancy. LDA can be viewed as the counterpart of PCA for discrete features. The

basis vectors of the PCA are conceptually equivalent to the topics of LDA but the

difference is that the topics can be visualized and also interpreted. While PCA mod-

els the linear dependencies within features, Kernel PCA [50] is a non linear extension

to it. in KPCA the kernel trick is used where in the projections of the features are

made from a higher dimensions space than the original feature space. It guarantees a

linear projection when features are projected from a higher dimensional transformed

space than the original space. KPCA thus gives a non linear perspective to dimension

reduction techniques.

1.4 Extensions to Graphical structure of topic models

In recent years, probabilistic topic models have made significant contribution to

both feature learning as well as supervised learning. From a set of visual/audio fea-

tures extracted from video and audio frames, latent factors (topics) are learnt and

used to predict emotions as well as changes in states. This latent topic space is richer

than the original feature space as it considers correlations and co-occurrences of fea-

tures. In the context of text and web mining several extensions to the basic graphical

structure of topic models has been made to handle the application at hand. E.g. Hu

et al [29] extended LDA to include dependencies between two different sets of text
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corpora like twitter feeds and event commentaries. Chang et al. [16] extended LDA to

model links between documents thereby building a document relation network which

is very useful in web mining. Extensions to topic models have also been proposed in

some of the image processing applications, e.g. Caro et al. [14] have extended LDA to

achieve better image segmentation using spatial regions within the model framework.

Since topic models are tuned to text documents, we need to quantize real-valued

features. Topic models assume that data or words in a document are exchangeable

which is not true for video data which has a temporal and spatial dependency in

its features. Topic models have also not been explored in the context of emotion

analysis and specifically for supervised concept drift problems. In this work all these

challenges are touched upon and new topic models and quantization techniques to

handle them are proposed.

In this research, apart from validating the LDA model to other dimension re-

duction techniques for emotion analysis, we have proposed several extensions. To

model the continuous features without quantizing video and audio features, we have

proposed Dirichlet Gaussian mixture model. To use the response variable in the pro-

cess of dimension reduction we have used Supervised LDA [12] and validated them

against supervised dimension reduction techniques like supervised PCA (SPCA) [9].

To avoid overfitting of supervised LDA models we have added regularization to the

SLDA framework and evaluated their performance. Since multiple modalities like

both audio and video contain different information about the emotions, it is more

enriching to build models that consider them together. To achieve this we have pro-

posed multi modal topic models that generate supervised topic by modeling audio

and video features together rather than individually.

Emotion change detection is another important application where we have to

predict only changes in emotions rather than the actual emotions. In order to predict
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change, we need to build models that have a temporal aspect to them. For this reason

we have proposed two temporal extensions to topic models Adaptive Temporal Topic

Model [35] and Supervised LDA for change detection [36], where we have incorporated

dependency between pairs of consecutive documents into the topic models.

1.5 Overview

Chapter 2 discusses existing research in human affect analysis and probabilistic

topic models and argues the significance and contributions of this research. Chapter

3 introduces the overall methodology used to address two applications 1) emotion

recognition, and 2) emotion change detection (or concept drift). It also contains

details about experimental methodology that describes how topic models have been

applied to these specific applications. The different datasets, features used in this

work and the evaluation techniques are also explained in Chapter 3.

The major contributions of this research are in area of probabilistic topic models and

we have developed and experimented with four different categories viz. 1) unsuper-

vised models, 2) supervised models, 3) continuous models, and 4) temporal models.

Unsupervised topic models are discussed in Chapter 4 where the graphical models do

not model the response variables. Chapter 5 contains discussion on supervised topic

models where the response variable is also included in the model training. In addi-

tion, we also discuss multimodal fusion where different modalities are considered to

predict responses. Chapters 4 and 5 contain evaluation and results on emotion recog-

nition. Unlike emotion recognition, change detection needs a temporal component

in the model so that the temporal changes in features can be mapped to changes in

emotions. Chapter 6 delves into topic models which incorporate the time component

into the graphical structure. In chapter 6 we have specifically looked at the emotion

change detection problem and have evaluated topic features. Apart from our theo-
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retical contributions, we have contributed to the Social Interaction Assistant project

which has been discussed in Chapter 7.
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Chapter 2

RELATED WORK

Automated detection and analysis of human behavior is one of the most popular re-

search areas of this age due to its applicability to a wide range of applications like

smart home technologies, pervasive healthcare, athletic training, security and surveil-

lance etc . Human behavior analysis can be partitioned into two broader categories,

1) human activity/ gesture analysis, and 2) human affect/emotion analysis. The for-

mer deals with physical activities and the latter indicates the metal state of a person.

The affective state of a human being can be perceived through vocal communication,

facial movements, and certain body gestures. In this thesis we will be concerned

with automatic recognition of human affective states using vocal communication and

facial movements. This area of research is interdisciplinary in nature which has at-

tracted attention of researchers from computer vision, machine learning, psychology

and social sciences. We will address this problem from a computer vision and ma-

chine learning perspective. From this perspective human emotion recognition is yet

another supervised learning problem.

2.1 Emotion Recognition Models

Face detection and tracking algorithms have achieved high amount of automation

and sophistication in the area of computer vision. Whereas emotion recognition sys-

tems have not yet reached such level of accuracies especially in real time environments.

And this is true for both discrete as well as continuous emotions. The primary areas

of improvement in this area are the extraction of features that can explain emotions

better and building of pattern recognition models specific to this application.
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Two popularly used facial features are the shape/geometric and appearance based

features. Shape features by themselves do not have enough information to explain

subtle emotions and thus most of the papers use appearance descriptors instead.

Facial landmarks extracted using active shape models (ASM) and active appearance

models (AAM) are used as geometric features to predict emotions in [40], [8]. Mean

appearance models , linear binary patterns (LBP) [52], local phase quantizations

(LPQs) [61], histogram of gradients (HOG) [22], scale invariant feature transform

(SIFT) [55], Gabor features [59] are few examples of appearance features used for

emotion recognition.

Features for emotion analysis can be also categorized as spatial and temporal

where the former retain the spatial dependencies between regions of images while the

latter retain he temporal dependencies between audio or video frames. Some of the

examples of spatial features are the Landmarks features, region based bag-of word

features and facial fiducials based SIFT features. The most prominent temporal fea-

tures are the Low Level Descriptor and Mell-Gibbs spectral coefficient audio features

where these features are extracted using a window of frames. Gabor wavelet, Discrete

Cosine Transforms and Fourier transforms are also few examples of temporal features.

Some of the temporal features that are gaining popularity are the temporal bag of

words features like LBPTop [41], LGBPTop [60] features which are extension of LBP

[47] and LGBP [67] features to 3 dimensions.

Since features extracted from images can be correlated, noisy and redundant,

selecting the best of them is common technique. Feature selection can be done using

the labels and annotations (emotions) and is a supervised approach. AdaBoost is

one of the most popular feature selection approaches and has been used for emotion

recognition by Hao et al [57]. Another approach for supervised feature selection

is cascade of classifiers approach as in Li et al [38] where SVM cascades are used
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to extract features. Since these models heavily rely on the labeled training data

for validation, they tend to overfit the data. Once features are extracted, either

their dimensionality is reduced using Principal Component Analysis [46], Independent

Component Analysis [54] or a sparse representation is created using Singular Value

Decomposition [68].

Audio Visual Emotion Challenge (AVEC) is one of the most popular emotion

recognition challenges in recent years and the only competitions that deal with con-

tinuous emotion recognition systems. AVEC 2012 [52] through 2014 [60] have released

datasets and features with annotated arousal and valence dimensions. These chal-

lenges have attracted quite few researchers to work on continuous emotion recognition.

These challenges were able to produce benchmarks and state of the art research for

continuous emotion recognition.

2.2 Topic models for Image and Video analysis

In general, a direct mapping of the features to emotions is avoided and instead,

the feature space is projected to a lower dimensional space which is then mapped

to the emotion space. Serious thought is not given to find a low dimensional space

that retains as much information from the original space, considers correlations be-

tween features and ignores redundant and contradictory information. In text mining

this problem is tackled using latent space models and topic models where the word

features are projected to a latent topic space which is then used in unsupervised

and supervised settings. Probabilistic latent semantic indexing (PLSI) model pro-

posed by Hofmann [27] is a latent space model that gave a probabilistic dimension

to latent semantic indexing that projects the word frequencies to a latent topic eigen

space. Blei et al [13] have proposed Latent Dirichlet Allocation (LDA) model which

is a more generalized topic model with explicit modeling of all the variables using
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multinomial-dirichlet conjugate distributions. In recent years topic models have been

gaining popularity in image and video analysis, e.g. Li et al [24] used a broad esten-

sion of LDA to identify the events and objects in scene images, supervised LDA has

been used for image annotation [17] and temporal topic models that were tailor made

for video scene analysis [63].

There has not been much work on application of topic models in the affect analysis

community. There are only two cited works that have used topic models for facial

expression (discrete emotion) recognition. Temporal latent topic model (TLTM) pro-

posed by Shang & Chang [34] is an extension to LDA that considers each image as

a document and uses the temporal dependency between adjacent images to predict

emotion from a image sequence. Shang [53] developed a discriminative model that

uses an asymmetric dirichlet prior and weights the image words to predict emotions.

Both of these works have focused on six basic discrete emotions and considered facial

landmarks and datasets that contain artificially stimulated expressions. In this work

we propose to apply topic models to complex continuous emotions and real valued

appearance based image descriptors. Along with unsupervised topic models we also

have used supervised topic models so that the emotions can affect the topics that are

extracted.

As time passes, the distribution of both features and labels can change and in many

applications predicting these changes is useful. Especially, predicting changes in emo-

tions is useful in medical diagnosis, federal investigations, human computer interac-

tion and many other applications. There has been some work in detecting changes in

emotion from human speech but not from facial videos and images. And surprisingly

there have been not much work on topic models for concept drift based applications

making it interesting to see how topic models can be applied to emotion change

detection which is proposed in next chapters.
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Chapter 3

EXPERIMENTAL METHODOLOGY

This chapter provides an overview of the experimental methodology that has been

followed throughout this thesis. The major contributions of this thesis are int the area

of dimension reduction and supervised learning and the thesis has been structured to

highlight the performance of probabilistic topic models. Figure 3.1 contains a snap-

shot of all the techniques we have evaluated and developed. The models annotated

with an asterix have been contributed through this research and we have used the

rest of the models for prototyping and benchmarking.

We have evaluated topic models’ performance as dimension reduction techniques in

the context of Emotion recognition and change detection applications. We have used

five different features in this work which have been discussed in detail in Section 3.1.

Since topic models need quantized features, we performed feature quantization on

all the features and more details can be found in Section 3.1. Once the features are

quantized, we applied different probabilistic topic models depending on the appli-

cation at hand. We have used Latent Dirichlet Allocation (LDA), Supervised LDA

(SLDA) and Regularized SLDA (RSLDA) on quantized features for dimension reduc-

tion to predict emotions and emotion changes. We used Dirichlet Gaussian Mixture

model (DGMM) on continuous features and in the context of emotion recognition

only. Adaptive Temporal Topic Model (ATTM) and Supervised LDA for Change

detection (SLDACD) have been developed and evaluated to predict emotion changes

only. Each of these models will be discussed in detail in Chapters 4, 5 and 6 and

have been compared with prominent dimension reduction techniques like Principal

Component Analysis (PCA), Kernel PCA and Supervised CPA (SPCA).
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Landmarks
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Audio
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DGMM *
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K Means

SLDACD *
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Figure 3.1: A snapshot of all the algorithms and features explored in this thesis

The performance of the reduced feature spaces has been tested on two continuous

emotions arousal and valence using different regression models like, Linear regression,

Support Vector regression with RBF and Cosine kernels, and supervised topic models

like SLDA and RSLDA. In order to evaluate the performance we have used two pub-

licly available continuous emotion datasets AVEC2012 and AVEC2014 that contain

annotations of arousal and valence. These datasets will be explored in Section 3.2

where we also define the evaluation criteria used throughout this thesis, mean cross
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Figure 3.2: Landmark features are quantized using Neutral and Current frames

correlation and area under ROC curves for emotion recognition and change detection

applications.

3.1 Feature Extraction and Quantization

In our experimentations we have used both video and audio frames for emotion

recognition, and to use topic models, the real valued features need to be quantized

to words. In this work we have used some of the popularly used video and audio

features as base features and quantized them into words. Below are the description

of all features that have been used in this work.
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Landmark Features

49 facial landmarks are extracted from the neutral and peak frames of a video. We

then discretize the relative movements of these points in terms of two variables, r, the

amount of movement, and θ, the direction of movement. The r values are obtained

through a histogram of K bins, which are generated uniquely for each landmark Li,

by considering the movements of that landmark Li across all available face image se-

quences. The θ values are quantized into 4 bins - top left, top right, bottom left, and

bottom right. Hence, given the neutral and peak frames of the video, a facial docu-

ment for the video is generated using θis for each of the landmarks Li, i = 1, . . . , 49,

as the individual facial words, and then repeating these facial words ri times in the

document thus capturing the amount or intensity of movement. Figure 3.2(a) illus-

trates how the facial words for a sample landmark point are generated. These facial

words represent the temporal movement of landmarks and their counts represent the

intensity of movement. We have used the software provided by Intraface API [66] to

detect, align faces and extract the facial landmark points. Even though the quantiza-

tion is meaningful, there is a caveat that we always need a neutral frame for this. We

have tackled this issue by defining the first frame of a video sequence as the neutral

frame . The logic behind this is that the emotional state of a person is a relative to

the user’s state of mind for that particular session.

Linear Binary Pattern (LBP) features

Linear Binary Pattern features were introduced by Ojala [47] for texture analysis but

have been shown to be promising for emotion analysis by Jiang et al. [30] in their work

on sparse representations for expression analysis. Local Binary Patterns (LBPs) that

are calculated at each pixel are used to generate facial words. An image is divided
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K Clusters K Clusters 

Figure 3.3: Linear Binary Pattern features are quantized using K Means clustering

on each block

into smaller image blocks in the XY direction and the histogram of the counts of

59 unique uniform LBPs is calculated for each block. Depending on the number of

image blocks B, the total dimensionality of the features turns out to be B × 59. The

histograms from all images that belong to the block B are considered and quantized

to K clusters using K-Means algorithm. Since these vectors are multidimensional, we

need to define a distance metric for the K-Means algorithm. In general histograms

are normalized vectors or frequency counts, and in either way cosine distance is a

popular distance measure for such vectors. So we have used K-Means algorithm with

cosine distance to cluster each of the B blocks and the total number of code words

that are generated are B ×K. The formula for calculating cosine distance between
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two vectors is given below:

Cosine(xxx,yyy) = 1−

∑
n

xnyn√∑
n x

2
n

√∑
n y

2
n

After clustering the features, each 59-dimensional histogram belonging to block b are

assigned the one of clusters say k and their code would be (b − 1) ∗ K + k where

K is the total number of clusters per block. Figure 3.3 demonstrates pictorially the

quantization procedure for LBP features. Since the same quantization algorithm has

been used for all the video features, it is useful to provide an algorithmic form to it

as in in Algorithmm 1.

Algorithm 1 Algorithm to vector quantize real values features

Input: Feature vector XXX , # of clusters K, # of blocks B , distance function

Output: Quantized Feature vector X̃̃X̃X

procedure VectorQuantize

for each block b do

Cluster the feature vectors XbXbXb using K-Means clustering with

distance function

end for

for each sample n do

for each block b do

Assign the cluster id of the block nb as the new quantized feature X̃nb

end for

end for

end procedure
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Figure 3.4: LBP Top features are quantized performing K Means clustering on each

block in each of the XY , XT and Y T dimensions

LBP Top features

LBPTop features are an extension to LBP features and have been proposed in [41]

specific to the context of video analysis. At each time step the consecutive frames

that succeed the current frame including it are considered and for each of the B

blocks in the XY dimension voxels of size XbxYbyT are considered, where Xb and Yb

are the dimensions of block b. As shown in Figure 3.4, we obtain three histograms for

each block each from their respective dimension and these histograms are appended

as 1x177 dimensional features and so the total size of the LBPTop feature vector will

be B ∗ 177. Following a similar quantization technique as in LBP, we cluster each
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of the 3 ∗ B block histograms using K Means clustering. The code word for a b-th

histogram is assigned as (b− 1) ∗K + k where b = 1 . . . 177 ∗B and K is the number

of clusters. We have extracted LBPTop features by detecting the faces using Viola

Jones [64] algorithm and have used the API provided by Zhao et al. [41] to extract

LBPTop features from facial block voxels.

LGBP features

Linear Gabor Binary Pattern features have been proposed in [67] as an extension to

LBP features. To extract LGBP features, each video frame is convolved using 18

different Gabor wavelet filters proposed by Lee et al. [37]. LBP features are then

extracted from each of the B blocks of 18 of the transformed images and appended to

form a vector of B∗18∗59 dimensions. Since the feature vector is still a concatenation

of 59-dimensional histograms we used the same quantization technique as in LBP and

LBPTop features with cosine distance as the distance function for clustering.

SIFT features

Scale Invariant Feature Transforms (SIFT) are among the most popular features pro-

posed by Lowe [39] in which images are transformed with Difference of gaussians at

different scales. In general the key points are automatically selected by SIFT tech-

nique but since we are aware that the key points for facial movements are the fiducial

points, we instead extracted the SIFT features at 49 landmarks and 22 interpolated

points between these points as shown in Figure 3.5. We used a fixed scale of 2 to

extract the features and concatenated the vectors from different orientations at each

point. We have used euclidean distance to quantize the vectors using Algorithm 1

where the number of blocks B = 71. We have used the Matlab based SIFT toolbox

provided by [5].
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Figure 3.5: Plot of SIFT [39] features extracted from 71 interpolated facial fiducial

points

Audio Features

Following the approach taken by [49], 25 energy and spectral LLDs each with 42

functionals and 6 voice related LLD with 32 functionals each have been selected

making it a total of 1242 features. In order to apply topic models each audio feature

is clustered into K clusters using K-Means algorithm and then each feature in every

audio document is replaced with its cluster-id.

3.2 Evaluation

Since this work deals primarily with continuous emotion recognition, we have

worked on datasets released under the Audio Visual Emotion Challenges (AVEC)

organized by the Social Signal Processing Network (SSPNET) [3] which is a Euro-

pean agency to enhance human emotion and behavior sensing and analysis. AVEC

challenges have been organized since 2011 through 2014 at major conference venues
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like ACM International Conference on Multimodal Interaction (ICMI), ACM Interna-

tional conference on Multimedia (ACMMM), IEEE International Conference on Mul-

timedia and Expo (ICME). As part of these challenges three major datasets have been

released each year and the most prominent have been the AVEC2012 [52], AVEC2013

[61] and AVEC2014 [60] datasets. Each of these have released raw videos and text of

conversations, challenge-specific audio and video features, continuous emotion labels

for arousal and valence. In all of these datasets the videos contain recorded sessions of

facial videos of users having a conversation with Audiovisual sensitive Artificial Lis-

tener (ASAL) that engage users in discussions varying across the range of emotions.

Few examples of the ASAL’s engaging the users are shown in Figure 3.6.

Figure 3.6: An example from [51] of how Sensitive Artificial Listeners look like.

In each of the above datasets, each facial video is annotated with the continuous

emotions arousal and valence at each frame. Thus each video is associated with two
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Figure 3.7: Plots of Arousal for sample videos from AVEC 2012 [52]

emotion based time series. Figure 3.7 shows sample plots of the arousal dimension for

the first 10 training videos of the AVEC2012 dataset. The AVEC datasets contain

a set facial videos (includes audio) divided into Training, Development and Test

sets. The labels for training and development sets are available whereas the test

labels are not available for testing the accuracies. While building and testing the

models, the training data is used to select different parameters by performing cross

validation which are then used to make predictions on development set. And similarly

while generating predictions for the test sets both training and development sets.

Throughout this work training and testing has been done on training and development

videos.

Once the continuous emotions are predicted, the performance of the models is

evaluated using mean cross correlation and area under ROC curves for recognition
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and change detection. The Mean Pearson Cross-correlation is given by:

MeanCorrelation =
∣∣∣ 1

V

∑
v

∑
n

(yvn − ȳyyv)(ỹvn − ¯̃yyyv)√∑
n

(yvn − ȳyyv)2

√∑
n

( ˜yvn − ¯̃yyyv)2

∣∣∣ (3.1)

where V is the total number of videos, yyy and ỹ̃ỹy are the actual and predicted emotion

time series values, ȳyy and ¯̃yyy are the mean values of the emotion time series. Thus

higher the correlation over more videos, the better would be the model’s predictive

capabilities. The ROC (Receiver Operating Characteristic) curves are popularly used

to evaluate classification or change detection models. Change detection is a binary

classification problem and the model predictions are used to calculate True Positive

Rate (TPR) and False Positive Rate (FPR) given by:

TPR =
TP

TP + FN

FPR =
FP

FP + TN

where TP, FN, FP and TN indicate the true positive, false negative, false positive and

true negative predictions from the classifier. To plot ROC curves, the predictions from

the model are extracted using different threshold or confidence parameters and the

(FPR, TPR) coordinates are plotted. The area under the ROC curves is calculated

across the models and the one with better area indicates better prediction capabilities.

In Chapter 4 we will begin our description of topic models and inference and then

evaluate their performance in comparison to other models.
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Chapter 4

UNSUPERVISED TOPIC MODELS

In Chapter 2 we have discussed the utility of topic models in mining feature co-

occurrences and also their contribution to predictive analytics. Topic models have

been traditionally used to categorize text and web corpora into meaningful grouping

so that their retrieval becomes faster and accurate. They have also been used in

a supervised learning setting to predict movie or review ratings. The most popular

unsupervised topic model is Latent Dirichlet Allocation (LDA) proposed by Blei et al.

[13] which is a probabilistic generative model. In Section 4.1 of this chapter we will

focus on probabilistic topic models that are unsupervised by introducing LDA and the

inference techniques as they lay the foundation for the rest of the models throughout

this thesis. We will interpret the topics extracted using LDA across features and

evaluate their performance on continuous emotion recognition. Since LDA model

operates on quantized features we discuss a new Dirichlet Gaussian Mixture Model

(DGMM) in Section 4.2 as an extension of LDA to continuous features.

Let XXX be an m x n matrix of document samples, where each sample represents a

feature vector of frequencies of words occurring in the sample. Latent Semantic Index-

ing (LSI) model proposed by Hoffman [27], performs a Singular Value Decomposition

on this matrix to obtain document-to-topic (DDD) , topic-topic (SSS) and topic-term (TTT )

matrices as shown in the Figure 4.1.

The DDD matrix can be considered as a new feature matrix and these features are

a projection of the original term vector space to the topic vector space. Unlike

prevalent projection techniques, LSI also gives an interpretation of the new topic

features, where TTT represents topic definitions. A probabilistic interpretation to LSI
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Figure 4.1: Singular Value Decomposition of document-term matrix into

document-topic and topic-term matrices

was proposed by Hoffman [27] as pLSI model where each document sample is modeled

using a Multinomial distribution. pLSI model is a double mixture model and fits a

mixture of Multinomials instead of a mixture of Gaussian as in Gaussian Mixture

Models. Another advantage of having a probabilistic interpretation is that it can be

used as a generative model to generate new documents given the model. Blei [13]

have highlighted that even though pLSI model makes the inference more meaningful,

the model does not perform well on unseen documents especially when they contain

new co-occurrences of words.

Latent Dirichlet Allocation proposed by Blei [13] address the pitfalls of pLSI

model by make it more generalizable. LDA model is a double mixture model with

priors attached to the mixture distribution itself. LDA assumes a Dirichlet prior

over the mixture of topics for each document sample, and the assumption is made

because Dirichlet distribution is the conjugate for Multinomial distribution. Similar

to pLSI, LDA is also a generative model where given the set of Dirichlet parameters,

it can generate document samples. This chapter deals with different unsupervised

topic models used in this work and since LDA is the basis for both unsupervised and

supervised models, it will be discussed in much detail.
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Figure 4.2: Graphical model for Latent Dirichlet Allocation (LDA) model

4.1 Latent Dirichlet Allocation model

Figure 4.2 shows the graphical model for LDA model with the description of

random variables in the inset. θtθtθt is a Multinomial distribution of topics in a document

t and φkφkφk is a Multinomial distribution of words in a topic k. Given a set of K

topics, each word vtn in a document t is generated by assigning a topic ztn from the

distribution θtθtθt and then generating a word from the topic distribution πztnπztnπztn . Now,

given a set of documents, we need to infer the distributions θtθtθt and πkπkπk. To make

LDA a better generative model, Dirichlet prior distributions are assumed over each

of the Multinomial distributions θtθtθt and πkπkπk. ααα are the Dirichlet prior parameters for

θtθtθt. Even though a Dirichlet prior can be assumed over the distribution πkπkπk to make

the Multinomial distributions much smoother, we will ignore this parameter in the

following discussion.

A Dirichlet distribution is a multivariate extension to the 2-dimensional Beta

distribution and in considered as a Distribution over distributions. A Dirichlet distri-

bution takes an K-dimensional probability vector xxx where
∑

k xk = 1 and is parame-
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terized by an K-dimensional vector ααα where αk > 0. The probability density function

for a Dirichlet distribution is given by [2]:

Dir(xxx,ααα) =
1

B(ααα)

K∏
k=1

xαi−1
k

where the Beta function B is given by B(xxx) =
∏K

i=1 Γ(x(i))

Γ(
∑K

i=1(x(i)))
and Γ is a gamma function.

The Dirichlet distribution assigns probabilities to probability distributions there by

giving a generic shape to the distribution space instead of assuming a particular

distribution. Theααα parameters influence the shape of the Dirichlet distribution, where

a symmetric ααα implies uniform importance to all K dimensions and an unsymmetric

ααα implies the other way. For α > 1, the shape is concave whereas for α < 1 the shape

becomes convex (boat shaped). For a Multinomial distribution, a smooth estimation

of its parameters can be obtained using a Dirichlet prior over its parameters. Since

Dirichlet distribution is a conjugate prior, the posterior distribution of Multinomial

parameters is also a Dirichlet distribution, which eases the Bayesian inference of these

parameters.

LDA model is generative model and thus its structure can be used to generate

data samples. While creating generative graphical models it is extremely important

to show they can be used to generate samples. Below is the generative process of

Latent Dirichlet Allocation model with K topics.

Generative Process of LDA:

1. Draw Multinomial K-topic distribution θθθ ∼ Dirichlet(ααα)

2. For each of the N words,

(a) Assign a topic, zn ∼ Multinomial(θθθ) to nth word

(b) Draw a term wn ∼ Multinomial(πππzn)
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In LDA model the only observed variable is vvv whereas θtθtθt and zzzt are latent variables.

and the parameters to be estimated are the Dirichlet priors ααα and the Multinomials

πkπkπk. The likelihood of observing a document vtvtvt given these parameters is:

p(vtvtvt|ααα,πππ) =

∫
θtθtθt

p(θtθtθt|α)
∑
ztztzt

Nt∏
n=1

p(vtn|πππztn)p(ztn|θθθt)dθtdθtdθt (4.1)

The parameters ααα and πππ can be estimated by maximizing the logarithm of the like-

lihood function given by Eq 4.1. But the term p(vtn|πππk)p(k|θθθt) inside the integral

couples the variables θθθ and πππ thereby making this calculation intractable during es-

timation. Due to the availability of latent variables θθθ and zzz, we can estimate the

parameters using the Expectation Maximization (EM) algorithm [21] where the com-

plete likelihood p(vvv,zzz, pmbθ) is maximized instead of the incomplete likelihood p(vvv).

Since various graphical models and their parameter estimation techniques will be

discussed throughout this work, it is important to understand how EM algorithm

works.

4.1.1 EM Algorithm for LDA

In situations where it is difficult to optimize the incomplete likelihood function,

EM algorithm can be used instead to optimize the complete likelihood of observed vvv

and hidden variables zzz. . Let q(zzz) be a distribution over zzz and for any given q(zzz)

and consider the following derivation where βββ represents all the parameters to be
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estimated and ZZZ represents all latent variables in the model.

log(p(vvv|βββ)) =
∑
ZZZ

q(ZZZ) log(p(vvv|βββ))(∵ constant = E[constant])

=
∑
ZZZ

q(ZZZ) log(p(vvv|βββ)) +
∑
ZZZ

q(ZZZ) log(p(ZZZ|vvv,βββ))−
∑
ZZZ

q(ZZZ) log(p(ZZZ|vvv,βββ))

=
∑
ZZZ

q(ZZZ) log(p(vvv,ZZZ|βββ))−
∑
ZZZ

q(ZZZ) log(p(ZZZ|vvv,βββ))

=
∑
ZZZ

q(ZZZ) log(p(vvv,ZZZ|βββ))−
∑
ZZZ

q(ZZZ) log(q(ZZZ))

+
∑
ZZZ

q(ZZZ) log(q(ZZZ))−
∑
ZZZ

q(ZZZ) log(p(ZZZ|vvv,βββ))

=
∑
ZZZ

q(ZZZ) log
p(vvv,ZZZ|βββ)

q(ZZZ)︸ ︷︷ ︸
L(q,βββ)

+
∑
ZZZ

q(ZZZ) log
q(ZZZ)

p(ZZZ|vvv,βββ)︸ ︷︷ ︸
KLD(q(ZZZ),p(ZZZ|vvv,βββ))

(4.2)

In the above derivation KLD denotes the Kullback-Leibler Divergence [33] between q

and the posterior distribution p(ZZZ|vvv,βββ), which is a measure of dissimilarity between

the distributions. Since by definition KLD > 0, the above derivation implies that for

any distribution q over the latent variables, the first term L(q,βββ) is always less than

or equal to log likelihood. So the first term is the lower bound for likelihood and

through EM algorithm we try to maximize the lower bound to indirectly increase the

log likelihood.

Figure 4.3 gives a visual interpretation to the Expectation Maximization algo-

rithm. The algorithm begins with a random assignment of values to the parameters

and in each iteration i, the posterior p(ZZZ|vvv,βββi) is calculated using current parameters

and the distribution q in the formula for L(q,βββ) is replaced with the posterior to

obtain LBi. The lower bound LBi is then maximized by estimating the parameters

βββi+1 which will be used in the next iteration. The convergence of the algorithm is

indicated by the amount of change in the log likelihood function values between itera-

tions. Given the above interpretation, EM algorithm thus contains two steps, E-step

where the lower bound is calculated as an expectation of the posterior distribution

and an M-step where the calculated lower bound is maximized with respect to the
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Figure 4.3: Interpretation of Expectation Maximization Algorithm. After each

iteration, the difference between the lower bound (LB) and log likelihood diminishes.

model parameters thereby estimating the optimal parameters. Algorithm 2 demon-

strates the EM algorithm using the context and variables defined in Latent Dirichlet

Allocation model..

Since EM algorithm requires evaluation of the Posterior distribution, for LDA it

is given by:

p(θθθ,zzz|vvv,ααα,πππ) =
p(θθθ,zzz,vvv,ααα,πππ)

p(vvv|ααα,πππ)
(4.3)

It can be observed that the above posterior is also intractable as the denominator

contains the likelihood term which is difficult to calculate due to the above men-

tioned couplings. This makes it difficult to estimate LDA parameters directly using

the plane vanilla EM algorithm shown in Algorithm 2. In these circumstances, two

popular methodologies are used viz. Gibbs Sampling [26] or Variational Expectation

Maximization [31]. Gibbs sampling, as the name suggests is a sampling technique used

to estimate the parameters of an intractable distribution where random variables are

sampled iteratively. During each iteration independent variables are sampled one at a

times assuming the rest to be constant and continuing until convergence. The values
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Algorithm 2 Expectation Maximization Algorithm

Input: All documents vvv

Latent Variables: Topic assignment vectors zzz and document-topic distributions

θθθ

Parameters: Dirichlet Priors ααα0 and Multinomial topic-term distributions πππ0

Initialize the parameters to random values e.g. assign equal probabilities to all

terms in πππ

i := 0

procedure EM Algorithm(I) . I is # of iterations

while i < I or !converged do . Iterate till convergence

E-Step:

(i) Calculate the Posterior p(θθθ,zzz|vvv,αααi−1,πππi−1) using Eq 4.3

(ii) Derive the lower bound L(q,αααi−1,πππi−1) using the above Posterior

M-Step:

(i) Estimate the parameters αααi,πππi that maximize L(q,αααi−1,πππi−1)

i := i+ 1

end while

end procedure

sampled so far are used during the current iteration and convergence is guaranteed

after a certain time period called the Burn-in period. The samples extracted during

the burn-in period are used to estimate the parameters of the distribution. In the

following section, we will delve into Gibbs sampling equations for LDA model.
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4.1.2 Gibbs Sampling Algorithm for LDA

For LDA, Gibbs sampling involves sampling the topic of each word ztn conditioned

on topics assigned to the rest of the words. Among the two methodologies discussed

above, even though Gibbs sampling techniques can assure globally optimal solution,

deriving the equations is not straight forward. In this context Collapsed Gibbs sam-

pling is a popular method to derive sampling equations and Griffiths [56] provided

the derivations for LDA model. By definition Collapsed sampling techniques sample

the latent distribution zzz by integrating over (collapsing) the variables θθθ and πππ. In the

following equations a Dirichlet prior β is assumed on the topic-term distributions πππ

as well. The posterior distribution of zzz is given by:

p(zzz|ααα,βββ,vvv) ∝ p(vvv|zzz,βββ)p(zzz|ααα)

=

∫
p(vvv|zzz,πππ)p(πππ|βββ)dπdπdπ

∫
p(zzz|φφφ)p(θθθ|ααα)dθdθdθ

=
∏
t

B(ααα + nnnt)

B(ααα)

∏
k

B(βββ + nnnk)

B(βββ)

where B is the the Beta function. For a given word with index (t, n), the topic is

sampled using this sampling equation:

p(ztn = k|ααα,βββ,vvv,zzz¬(tn)) =
p(vvv,zzz|ααα,βββ)

p(vvv,zzz¬(tn)|ααα,βββ)
(4.4)

∝ B(nnnt +ααα)

B(nnnt−(t,n) +ααα)

B(nnnk + βββ)

B(nnnk−(t,n) +ααα)
(4.5)

where ntntnt is the vector of counts of topics assigned to document t, nknknk is the vector of

counts of terms assigned to topic k and ¬(tn) implies all but the index (tn). Algo-

rithm 3 explains the overall procedure for Gibbs sampling and variable estimation.

For a given number of iterations I, pre-assigned parameter values ααα and βββ and input

documents vvv the procedure iterates till burn in period. Step 3 samples the topics

for each word using Eq 4.5 and once all topics are assigned in current iteration, the
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Algorithm 3 Collapsed Gibbs sampling algorithm for LDA by [56]

Input: All documents, vvv . Step 1

Initialize zzz to topics 1 to K using Uniform(1,K) . Step 2

procedure Gibbs(I) . I is # of iterations

for iter = 1 to I do . Iterate till burn-in

for t = 1 to T do . Iterate over documents

for n = 1 to Nt do . Iterate over words

Sample ztn using p(ztn|zzz¬tn, vvv) . Step 3

end for

end for

Update counts nknknk and ntntnt . Step 4

end for

Update the parameters θθθ and πππ . Step 5

end procedure

counts are updated in Step 4. And in Step 5 the values of θθθ and πππ are updated using

the expectations of the following distributions:

p(πππk|vvv,βββ) ≈ Dirichlet(πππk; (βββ + nnnk)) (4.6)

p(θθθt|vvv,ααα) ≈ Dirichlet(θθθt; (ααα + nnnt)) (4.7)

A stark distinction between Gibbs Sampling and EM algorithm is that the pa-

rameters like ααα and βββ are assumed to be known in the former methodology whereas

the latter has a way to estimate these parameters. Unlike Gibbs sampling which is a

probabilistic approach to estimate parameters, Variational EM algorithm is a deter-

ministic way of estimation built upon the structure of EM algorithm. The following

section explains how variational EM approach is used to estimate the parameters of

LDA.
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4.1.3 Variational EM Algorithm for LDA

Variational EM, given by Jordan et al. [31] considers alternatives to posterior

distribution which is evaluated in the EM algorithm. As we observe in Figure 4.3,

in each step we aim to reduce the KL divergence between the distribution q and the

posterior. If the posterior can be evaluated, posterior itself can be selected as the

distribution q, but in cases otherwise, different q distributions are considered and the

optimal distribution that is most closest to the actual posterior is selected. The distri-

bution q is called a surrogate as it is trying to replace or simulate the actual posterior

and the method is called Variational EM because it derives concepts from the Vari-

ational Calculus. Since the complex relationships between random variables makes a

posterior intractable, this methodology tries to simplify the graphical model by drop-

ping some edges and models the new posterior distributions indexed by variational

parameters. This relaxation also helps in choosing a simpler family of distributions

for optimization.

Figure 4.4: A simplified graphical model for LDA to approximate the actual

posterior using simple surrogate family of distributions.
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Figure 4.4 shows a simpler graphical model for LDA where the coupling between θθθ

and πππ have been simplified by removing the edges between θθθ and zzz and removing the

observed variables vvv from the model. The joint distribution of this model represented

as q is given by:

q(θθθt, zzzt|γγγt,φφφt) = q(θθθt|γγγt)
Nt∏
n=1

q(ztn|φφφtn)

Thus the new distribution is defined over the latent variables of the original model, zzz

and θθθ but with new parameters γγγ and φφφ. In the simple version, the observed variables

vvv are ignored and thus the variational parameters are in a way dependent on vvv. To

find the optimal variational parameters, the Kullback Leibler Divergence between q

and posterior p is minimized which is given below:

[γγγ∗(vvv),φφφ∗(vvv)] = arg min︸ ︷︷ ︸
γγγ,φφφ

log
(
q(θθθ,zzz|γγγ,φφφ)

q(θθθ,zzz|γγγ,φφφ)

p(θθθ,zzz|vvv,ααα,πππ)

)
As shown in the EM algorithm, minimizing the KL-divergence is equivalent to max-

imizing the lower bound L(γγγ,φφφ;ααα,πππ). Expanding this lower bound using Eq 4.2 we

have:

L(γγγ,φφφ;ααα,πππ) = Eq

[
log
(p(vvv,θθθ,zzz|,ααα,πππ)

q(θθθ,zzz|γγγ,φφφ)

)]
= Eq[log(p(θθθ|ααα)) + log(p(zzz|θθθ)) + log(p(vvv|zzz,πππ))− log(q(θθθ,zzz|γγγ,φφφ))]

= Eq[log(p(θθθ|ααα))] + Eq[log(p(zzz|θθθ))] + Eq[log(p(vvv|zzz,πππ))]

−Eq[q(θθθ)]− Eq[q(zzz)] (4.8)
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Expanding each of the terms in Eq 4.8 we have:

Eq[log(p(θθθ|ααα))] = log

(Γ(
∑
k

αk)∏
k

Γ(αi)

)
+ Eq[log(

∏
k

θαk−1
k )]

(used definition of Dirichlet distribution)

= log(Γ(
∑
k

αk))−
∑
k

log(Γ(αi)) + Eq[
∑
k

(αk − 1) log(θk)]

= log(Γ(
∑
k

αk))−
∑
k

log(Γ(αi)) +
∑
k

(αk − 1)(Ψ(γk)−Ψ(
∑

γk))

(where Ψ is a Digamma function derived a in [13])

Eq[log(p(zzz|θθθ))] = Eq[log(
∏
n

∏
k

θznk
n )]

(whereznk = 1 if zn = k, znk = 0 otherwise)

=
∑
n

∑
k

Eq[znk]Eq[log(θn)]

=
∑
n

∑
k

φnk(Ψ(γk)−Ψ(
∑

γk))

Eq[log(p(vvv|zzz,πππ))] =
∑
n

∑
k

q(znk) log(πznk,vn)

=
∑
n

cn
∑
k

φnk log(πk,vn)

(where cn = count of word vn)

Eq[q(θθθ)] = log(Γ(
∑
k

γk))−
∑
k

log(Γ(γi)) +
∑
k

(γk − 1)(Ψ(γk)−Ψ(
∑

γk))

(used definition of Dirichlet distribution)

Eq[q(zzz)] =
∑
n

∑
k

q(znk) log(q(znk)

=
∑
n

∑
k

q(znk) log(q(znk)

=
∑
n

∑
k

φnk log(φnk)
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Appendix B.1 contains Java code that calculates the above mentioned lower bound

which indeed is the log likelihood of the given data.

Maximizing L with respect to φφφ and γγγ involves constrained optimization. To solve

for the Multinomials φφφ, we solve the following optimization function that deals with

terms in L that contain only φφφ:

maximize φnk(Ψ(γk)−Ψ(
∑
γk)) + φnk log(πk,vn)− φnk log(φnk)

subject to
∑
k

φnk = 1

Converting this optimization to include the constraint using the Lagrange Multipliers

[11], the maximization function is transformed to:

maximize φnk(Ψ(γk)−Ψ(
∑

γk))+φnk log(πk,vn)−φnk log(φnk)+λn(
∑
k

φnk−1) (4.9)

Differentiating Eq 4.9 with respect to Multinomial φnk and equating it to zero we

obtain the optimal value as given below:

φnk ∝ πkn exp(Ψ(γk)−Ψ(
∑

γk)) (4.10)

Differentiating Eq 4.9 with respect to the Dirichlet parameter γk and equating it to

zero, we obtain the optimal value as given below:

γk = αk +
∑
n

φnk (4.11)

The above formula indicates intuitively that the Dirichlet prior parameter for

topic k is the sum of the probabilities of all words being assigned to topic k. We can

observe that estimating γ requires prior estimates of φ, so each of these parameters

are estimated iteratively until convergence. Maximizing the lower bound with respect

to variational parameters is the E-step of the variational EM algorithm. Once these
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Algorithm 4 Variational Bayes algorithm for LDA by [13]

Input: All documents vvv and Dirichlet Priors ααα

Parameters: Multinomial topic-term distributions πππ0

Output: Document-Topic distributions γγγ and Topic-Term distributions πππ

Initialize the parameters to random values e.g. assign equal probabilities to all

terms in πππ0

i := 0

procedure LDAVBAlgorithm(I,J) . I is # of EM iterations, J is # of E

iterations

while i < I or !converged do . Iterate till convergence

E-Step:

for each document t do

Initialize equal values to all topics in γtγtγt as γtk = αk + Nt

K

j := 0

while j < J or !converged do

(i) Calculate the Multinomials φtφtφt using Eq 4.10

(ii) Calculate the Dirichlet priors γtγtγt using Eq 4.11

j := j + 1

end while

end for

M-Step:

(i) Estimate πππi using Eq 4.12

i := i+ 1

end while

end procedure
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parameters are estimated, as in the regular EM algorithm, the parameters πππ and

ααα will be estimated in the M-step. But throughout this work we have chosen to

select ααα values using cross validation rather than direct estimation because this work

mostly deals with supervised learning where we have access to prediction accuracies.

Maximizing the lower bound 4.8 with respect to the parameter πππ gives the estimate

as:

πkw =
∑
t

∑
n

φtnkInw (4.12)

where Inw =


1 if n = w

0 if n 6= w

The above formula is intuitive because at the end of the iteration it consolidates the

topic assignments to all the words to estimate the topic-term distributions. Algo-

rithm 4 contains the flow of estimation of parameters in LDA using Variational Bayes

approach.

By analyzing the space and time complexities of the Variational EM algorithm the

total space complexity needed to estimate the optimal topic assignments is of the or-

der O((T ∗N)+(K ∗V )) where T,N,K, V are number of documents, average number

of words per document, number of topics and total vocabulary size respectively. The

total time complexity of the algorithm is O(I ∗ ((T ∗ J ∗N ∗K) + (K ∗ V ))) where I

is the total number of iterations and the first and second terms are for running the E

and M steps respectively. This complexity increases drastically as the number of doc-

uments increase and to address this issue in this work we have used Map Reduce [19]

methodology to make the training process parallelizable. This parallelization would

not be possible in the implementation of Gibbs Algorithm 3 as the topic assignments

in each document are dependent on rest of the documents. Whereas in Variational

EM each document can be dealt separately and thus enabling us to train the LDA
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model in parallel. Appendix B.2 provides the java implementation of the Map reduce

algorithm for Variational E-step. We can observe that the number of documents that

can assigned topics in parallel depends on the available system processors. A Mapper

is spawned per each document that performs the E-step as a child thread and yields

to the parent thread. Once the output from all documents is received, the M-step is

then executed using all the φφφ values to estimate πππ.

Inference on Unseen Documents:

Typical of any generative model, the process of estimation of parameters of a

graphical model like LDA is called Learning. Once the topic-term distributions πππ are

learnt we can use the same EM set up to estimate the topic assignments for a new

unseen document. This is called inference and we use the E-step from Algorithm 4 to

estimate the document-topic distributions of a new document. We do not need the

M-step for inference as we do not want to alter the topic-term distributions. But in

recent years researchers have proposed online algorithms for LDA where the topic-

term distributions are updated as and when a new document is observed. In this work

we restrict our focus to offline EM learning and assume that the topic definitions are

unaltered once they are learnt during training. In fact we will address the learning

process as LDA training and inference on new documents as testing. Since this work

concerns with supervised learning we use the features extracted using LDA along with

classifiers and regressors to predict either discrete or continuous response labels. It

has to be noted that the topic distributions that are used as features are derived by

normalizing the variational parameters γγγ.

4.1.4 Experiments and Results

We hypothesize that 1) topic models are able to extract latent feature patterns co-

occurring in a set of image sequences, 2) the latent topics extracted by topic models

41



can be visualized and have a semantic interpretation and 3) latent topics evolve

with emotions over time and thus are able to predict continuous affect dimensions.

In Section 4.1.4, latent topics extracted from different features are visualized and

analyzed and it also contains results from LDA model on emotion recognition. A

comparative analysis of LDA’s performance across different features is also provided

but before diving into these results, we present the experimentation methodology and

evaluation criteria.

Experimental Setup

Using different feature quantization techniques described in Chapter 3, we have gen-

erated one document per video frame. For our pilot studies we have considered the

AVEC12 dataset [52] that contains 31 training videos and 32 development videos.

We have evaluated all the models and features on continuous emotion prediction of

arousal and valence dimensions. Since the predictions and actual labels are time

series values, we have used mean Pearson cross correlation across all test videos as

the evaluation criteria. Before we analyze the results we will discuss the feature pa-

rameters used for this study. In this evaluation we have considered Landmarks (LM)

[66], SIFT [39], LBP [47], LBPTop [41], and MFCC-LLD (Audio) [45] features as

base features from which latent topic features have been extracted. The tools used to

align faces and extract relevant features have been explained in detail in Section 3.1.

Since each of these features have been quantized using K-means and since the

number of clusters K is a parameter, we selected the K values using cross validation

on the training videos. Table 4.1 contains the distance measures and the number of

clusters that gave the best cross validation results over emotion recognition. The third

column in Table 4.1 contains the final vocabulary size for each of these features and

here is how we arrive at them, for LM features it is 49 landmarks x 4 directions, for
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Base Feature Distance Function # of Clusters Vocabulary

LM Euclidean 20 196

LBP Cosine 50 5000

LBPTop Cosine 50 13500

SIFT Euclidean 100 7100

Audio Euclidean 50 62100

Table 4.1: The distance functions and number of clusters used to quantize each of

the base features in K-Means algorithm and these parameters are specific to

AVEC12 data.

LBP features it is 100 blocks x 50 clusters, for LBPTop it is 90 blocks x 3 dimensions x

50 clusters, for SIFT features it is 71 key points x 100 clusters and for audio features it

is 1242 LLDs x 50 clusters. Please refer to Table 4.2 for more detailed cross validation

results where we evaluated all parameters using 3-fold cross validation and using same

set of LDA parameters across the board. We have used Linear Regression models

and trained them using topic features. The optimal parameters that maximized

the performance of LDA-Linear models have been selected. Some of the distance

functions are not applicable to all features as the vector dimension of the vectors that

are quantized is one.

Using the ideal parameters, we have generated the image and audio documents

with quantized words and used LDA model to extract the latent topics. Since LDA

model is an iterative technique dependent on the convergence of the likelihood values,

we have plotted the log likelihood values calculated using Eq 4 after each EM iteration.

Figure 4.5 contains plots of changes in log likelihood values for LDA model on LM and

LBPTop features on AVEC2012 training videos. We observe that the convergence is

43



# of Clusters Distance Function LM LBP LBPTop SIFT Audio

20 Euclidean 0.13 0.17 0.14 0.15 0.18

Cosine NA 0.18 0.15 NA NA

50 Euclidean 0.127 0.21 0.19 0.18 0.21

Cosine NA 0.23 0.24 NA NA

100 Euclidean 0.11 0.14 0.18 0.13 0.20

Cosine NA 0.13 0.20 NA NA

Table 4.2: 3 Fold Cross-validation results on Arousal prediction on AVEC12

training videos that are used to select Feature quantization parameters. LDA-Linear

regression models have been used to select the optimal parameters.

slower for the LBPTop features in comparison to LM features due to the difference

in vocabulary size where it takes longer time for the model to stabilize when the

vocabulary is larger.

Interpreting Latent Topics

One of the primary motivations to use Topic models is that it is a double mixture

model where one mixture (document-topic mixture) is used to predict response values

whereas the second mixture (topic-term mixture) comes handy in visualizing facial

patterns that are common across users. In fact we hypothesize that these patterns

can be considered as the building blocks for different facial movements. Also, when

topic models are perceived as dimension reduction techniques, unlike PCA where the

projection may not have a visual interpretation (but for the fact that they are the

eigen vectors of the covariance matrix), LDA’s basis vectors or topics can be repre-

sented semantically. In this context topic models can also be addressed as Semantic

44



C
ha

ng
e 

in
 L

og
 L

ik
el

ih
oo

d 
(L

B
PT

op
)

0

0.013

0.025

0.038

0.05

C
ha

ng
e 

in
 L

og
 L

ik
el

ih
oo

d 
(L

M
)

0

0.035

0.07

0.105

0.14

EM Iteration

2 3 4 5 6 7 8 9 10

LM
LBPTOP

Figure 4.5: Changes in likelihood after each EM iteration in LDA model for

Landmark and LBPTop features

Projection techniques. Since LDA model is built upon quantized features extracted

from exiting audio, shape and geometric features which we call the base features, the

topics extracted from each base feature has a different visual interpretation.

Figure 4.6 contains sample plots of LDA based topics obtained from SIFT features.

As explained earlier, we have extracted sift features at 71 fiducial interpolated points

as the key points in which case a term represents the quantized SIFT feature at a

fiducial point. Thus a topic is defined a Multinomial over over quantized fiducial

points where the higher the probability of a term implies that fiducial point has a

higher affect over the topic. In this context Figure 4.6 contains plots of four different

topics where the radius of the bubble represents the probability of that fiducial point
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Eyebrow Region Cheek Region 

Eyebag Region Eye Region 

Figure 4.6: Sample plots of Topics extracted using LDA on SIFT features

in the topic. We can observe that each topic is influenced by a particular region of

the face e.g. in the figure we see that the topics are influenced by eyebrow, cheek,

eyeball and eye regions respectively.

One of the most prominent facial changes that we perceive in our daily lives are

the facial landmark movements that are caused by the underlying facial muscles. We

have used LDA on the landmark features where the angle and movement of each

landmark is quantized to terms. In this case the topics are defined over direction

of movement of landmarks e.g. 35-top-left which signifies that this topic models the
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Topic - Term (Feature) Definitions Document (Image) - Topic Plots

Figure 4.7: Sample plots of Topics extracted using LDA on Landmark features.

(left) Topic - Term mixture plots i.e. topic definitions and (right) Document - Topic

mixture plots

top left movement of landmark 35. We have shown some sample plots of landmark

based topics extracted from AVEC 2012 dataset in Figure 4.7. In the left we have

plotted topic definitions where, as described earlier, each topic models the movement

of certain points in certain directions. E.g. the first topic models the pulling of left eye

brow and similarly the second topic model the opening of mouth. And we realize that

these definitions are in fact the Action Units provided by the Facial Action Coding

system [23]. In Figure 4.7 (right) we have plotted the topics over the face where the
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point and direction represent a word in the document and their color indicates the

topic assigned to them.

LBPTop Topics 

LBP Topics 

Figure 4.8: 2-D and 3-D illustration of sample topics extracted from LBP and

LBPTop features respectively.

Now let us consider the appearance based features LBP and LBPTop which are

quantized per block where the block are divided along XY direction for LBP features

and XY , XT and Y T directions for LBPTop features. Figure 4.8 contains plots of

two topics each extracted from LBP and LBPTop features. The color coding of a

topic corresponds to the probability of that particular spatio-temporal block e.g. the
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Table 4.3: Comparison of Topic features vs Base features on CK+ dataset.

Classifier Base-SVML LDA-SVML LDA-SVMR LDA-NB LDA-KNN

Accuracy 66.68% 85.62% 84.4% 79.5% 85.32%

darker the block is, the higher the probability that it influences a particular topic. For

LBPTop the extension from XY to other dimensions is straightforward and the same

interpretation hold to XT and Y T dimensions. The plots we have seen until now are

topic definitions and some of them may not be intuitive because they are topic-term

probabilistic distributions plotted with a spatio-temporal context. While until now

we have analyzed topic-term mixtures, in the following section we will consider the

second mixture, the document-topic mixtures which are the new features. We will

now evaluate these features for their predictive capabilities.

Preliminary Results

Before discussing results from continuous emotion recognition, we briefly experi-

mented with LDA features on Discrete emotion recognition. We have used CKPlus

dataset [40] to conduct preliminary analysis and the results that follow are derived

using a Gibbs Sampling based LDA model. The CK+ database contains 327 image

sequences, annotated with 7 discrete emotions and 34 AUs, from 118 subjects. As

in [40], subject wise leave-one-out validation strategy was used in these experiments.

Different classifiers like Naive Bayes (NB), K-Nearest Neighbors (KNN), SVML (SVM

with Linear kernel) and SVMR (SVM with RBF kernel) have been trained on topic

features to predict one of the 7 emotions.

Table 4.3 shows the mean accuracies over all the folds. The base features here are

the drifts in the landmark positions and it can be seen that the topics extracted from

these base features outperform them irrespective of the classification algorithm used.
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Figure 4.9: Cross Validation results for LDA based topic features on LM, Audio and

LBPTop features. Linear regression is used to select the best LDA parameters, # of

topics and α’s
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Table 4.4: Confusion matrix (in %) for 7 emotions using Linear SVM and topic

features

An Co Di Fe Ha Sa Su

An 82.22 0.00 8.89 0.00 0.00 8.89 0.00

Co 0.00 66.67 11.11 5.56 11.11 5.56 0.00

Di 5.08 0.00 91.53 1.69 0.00 1.69 0.00

Fe 4.00 0.00 0.00 68.00 8.00 4.00 16.00

Ha 0.00 0.00 0.00 5.80 92.75 0.00 1.45

Sa 7.14 7.14 7.14 10.71 0.00 64.29 3.57

Su 0.00 1.20 0.00 3.61 0.00 1.20 93.98

LDA-SVML i.e. the SVM classifier with linear kernel with topic features performed

the best. The confusion matrix for the LDA-SVML model on 7 emotions is shown

in Table 4.4 and it can be deduced that fear is commonly misclassified as surprise

in this model, which can be explained by the fact that these two expressions share

similar facial movements and hence, similar topics. On the other hand, contempt and

sadness are not expressions of high intensity, and hence are misclassified as other

expressions. We will move the discussion to the main set of results where all the

LDA models have been evaluated on AVEC12 dataset and have been trained using

Variational EM algorithm over all training videos.

Effect of Parameters

Every LDA model is trained using a set of key parameters which are selected using

3-fold cross validation over training data. These parameters are the # of topics K,

the Dirichlet priors ααα and # of EM iterations and they are independently optimized
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for each base feature. To cover a broad range of parameters we have used # of

topics to be {10, 20, 30, 40 ,50} and α’s from the set {0.01, 0.1, 1.0, 10.0}. It is

to be noted that since we are using a symmetric Dirichlet prior i.e. same α value

for all the topics, our α values are scalar. We have used used LDA Variational EM

over different combinations of parameters to extract topic features and used Linear

regression to predict the continuous emotions arousal and valence from these features.

We have used 3-Fold cross validation over the AVEC12 training videos and selected

the parameters that gave the best mean-correlation values (Eq 3.1).
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Figure 4.10: Effect of the # of topics on the cross validation performance of LDA

topics across features

Figure 4.9 contains detailed plots of the cross validation results from LM, Au-

dio and LBPTop features for both arousal and valence prediction. We observe that

the parameters are unique to each feature and the emotion dimension and the # of

topics do have an impact on the model performance. Unlike the # of topics, the
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α parameter does not effect the model performance for a given set of topics. We

illustrate this in Figure 4.10 where we have plotted only the topic parameters for LM,

Audio and LBPTop features and average correlations across different α values. It

can bee seen that the # of topics has a predominant affect on the prediction perfor-

mance and it is very important to chose the best parameters using cross validation.

We also calculated mean correlations by varying α’s by having topics fixed and the

standard deviations for LM, Audio and LBPTop features are 0.029, 0.013 and 0.048

respectively. This implies that the overall change in the performance does not change

too much by changing the α parameters. Another important parameter for training

an LDA model are the # of EM iterations and throughout this work we have not

contained the number of EM iterations but instead continued until the likelihood

convergence criteria has been met. Now we will discuss the results of the LDA model

on the AVEC12 development videos and evaluate the model in comparison to other

techniques.

Comparison of LDA vs PCA

To evaluate LDA features we have used three different regression models viz. linear

regression (LR), support vector regression with RBF kernel (SVR-R) and support

vector regression with a Cosine kernel (SVR-C). We have trained LDA models using

5 base features LM, LBP, LBPTop, SIFT and Audio features and trained the models

using parameters that have been selected with cross validation. We have compared

the topic features with the Raw base features and since LDA is a dimensionality

reduction technique we have compared it to Principal Component Analysis (PCA) as

well. While evaluating PCA we have projected the data onto new space comprising

of basis vectors of decreasing priority and whose sum of eigen values account for 98%

of the entire sum. The number of features that are reduced after PCA project are 38,
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2674, 4865, 4156 and 700 features for LM, LBP, LBPTop, SIFT and Audio features

respectively.

Table 4.11 contains the mean cross correlations averaged across all videos for

Arousal and Valence prediction. The table contains results across three feature ex-

traction techniques, LDA, Raw (Base) and PCA, where Raw are the actual real values

features. For each of the LM, LBP, LBPTop, SIFT and Audio features the correla-

tions from there extraction techniques and three regression models are shown. The

row V ariance is the variance of three correlations using three regression models, e.g.

for the LM feature which has correlations 0.174, 0.174 and 0.14, the variance across

three models is 0.0003. Variance is an important factor as it indicates the stability

of the features being considered. For arousal prediction, from Table 4.11(top) it is

evident that LDA based topic features have outperformed the other two base features

and also PCA features. The performance of LDA is better than PCA with respect to

each of the three regression models individually. Audio based topic features gave the

best performance for arousal prediction and among the video features SIFT based

topi features performed the best. Among all the features, the most stable topic fea-

tures are based on LM (0.0003), LBPTop (0.0002) and Audio (0.0007) and the most

unstable are the topics from LBP (0.0016) and SIFT (0.007).

Table 4.11(bottom) contains the correlations from Valence prediction and it is

again evident that LDA model has again outperformed the Raw and PCA models.

The overall variance of LDA model based correlations is 0.002 whereas the variances

of correlations from the Raw and PCA models are 0.004 and 0.006 which indicates

the stability of the features. As in arousal prediction, for valence, the most stable

LDA topics are LM (0.0002), LBPTop (0.0004),and Audio (0.0005) whereas LBP and

SIFT features are unstable. The best prediction for valence is given by LBP features

and there is a pattern that comes out of these results. The video modality performs
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Arousal LM LBP LBPTop SIFT Audio

LDA

LR 0.174 0.11 0.16 0.08 0.259

SVR-C 0.174 0.16 0.19 0.14 0.208

SVR-R 0.14 0.191 0.17 0.25 0.247

Variance 0.0003 0.0016 0.0002 0.007 0.0007

RAW

LR 0.15 0.18 0.006 0.03 0.22

SVR-C 0.09 0.12 0.177 0.07 0.006

SVR-R 0.03 0.19 0.12 0.19 0.06

Variance 0.003 0.001 0.007 0.007 0.012

PCA

LR 0.099 0.14 0.157 0.03 0.2

SVR-C 0.059 0.06 0.08 0.04 0.026

SVR-R 0.023 0.09 0.062 0.24 0.069

Variance 0.001 0.001 0.003 0.014 0.008

Valence LM LBP LBPTop SIFT Audio

LDA

LR 0.185 0.11 0.24 0.07 0.152

SVR-C 0.157 0.15 0.23 0.12 0.166

SVR-R 0.163 0.264 0.2 0.128 0.161

Variance 0.0002 0.006 0.0004 0.001 0.0005

RAW

LR 0.092 0.04 0.09 0.04 0.119

SVR-C 0.09 0.17 0.1 0.07 0.034

SVR-R 0.011 0.2 0.018 0.07 0.001

Variance 0.002 0.007 0.002 0.0003 0.003

PCA

LR 0.099 0.14 0.14 0.01 0.089

SVR-C 0.148 0.06 0.013 0.08 0.040

SVR-R 0.011 0.24 0.09 0.022 0.001

Variance 0.005 0.008 0.005 0.001 0.002

Figure 4.11: The Mean Cross correlation across development videos of AVEC12 [52]

from LDA models on five different features and three regressors.
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Figure 4.12: Plots illustrate the evolution of (top) landmark topics with discrete

emotion disgust and (bottom) LBP topics with continuous emotion arousal

better in predicting valence whereas audio modality performs better when it is arousal

prediction. This is an interesting result as this may be indicative of the inherent

relationship between modalities and continuous emotions. The reason for why we

looked into stability of prediction is to conclusively prove that certain modality and

model performs better. It is conclusive from these results that LBP and SIFT features

are not very stable when compared to the rest which can be explained by the nature

of these features. LBP and SIFT are both non-temporal and spatial features unlike

LM, LBPTop and Audio which are in fact temporal features. This also throws some

light that for continuous emotion recognition temporal features tend to give more
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Arousal LM LBPTop Audio

LDA

LR 0.174 0.16 0.259

SVR-C 0.174 0.19 0.208

SVR-R 0.14 0.17 0.247

KPCA

LR 0.079 0.02 0.09

SVR-C 0.05 0.036 0.027

SVR-R 0.008 0.06 0.07

Valence LM LBPTop Audio

LDA

LR 0.185 0.24 0.152

SVR-C 0.157 0.23 0.166

SVR-R 0.163 0.2 0.161

KPCA

LR 0.008 0.082 0.044

SVR-C 0.035 0.002 0.018

SVR-R 0.048 0.035 0.041

Figure 4.13: Cross correlation using LDA and KPCA (with RBF Kernel) models on

AVEC12 development set videos.

stable performance. For this reason, in rest of the chapters we have thus restricted

our evaluation to LM, LBPTop and Audio features only.

Comparison of LDA vs KPCA

Earlier we have compared LDA model performance with that of PCA. LDA can

viewed as a non linear projection whereas PCA is a linear projection technique. For
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this reason we compared the performance of LDA with Kernel PCA (KPCA) which

is a non linear projection technique. Kernel PCA was first proposed by Scholkopf et

al. [50] which uses the kernel trick to transform the data into a higher dimensional

space and then project them onto their eigen vector space. Unlike PCA where we

calculate the decomposition of covariance matrix, in KPCA we just calculate the final

projection using the formula:

( N∑
n=1

aknΦ(xnxnxn)
)T

Φ(xxx)

where k is the k-th principal component onto which the data is projected and N is

the total number of data points. We can observe that we actually do not calculate

the principal components and are using the Kernel matrix to compute K(xixixi,xjxjxj). The

aaa vector is calculated using the eigen vector and eigen values of the kernel matrix.

We have built the KPCA model using the Radial Basis Function (RBF) kernel.

To compare LDA with KPCA as in PCA we have used top 98% of the eigen space

to project the data onto and Table 4.13 contains these results. These results again

show that LDA model has outperformed KPCA for all features and regressors which

reiterates the power of LDA model.

4.1.5 Analysis

In this section we will look into some of the indicators that point out as to why

LDA based topics perform well irrespective of the features used. To understand this

we plotted the topic features on a human face as an emotion progresses. We studied

the evolution of topics with emotions over time and Figure 4.12 illustrates few sample

plots. In Figure 4.12(top) we have plotted the probability of a single topic over a set

of 7 frames of a discrete emotion disgust. We have used CohnKanadePlus (CKPlus)

[40] database to extract the LM features and trained an LDA model and plotted the
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probabilities of topics along the intensities of emotions. As shown in the figure, we

observed that some of the topics are highly correlated with the intensity of emotions.

Similarly, Figure 4.12(bottom) contains the plot of LBP based topic probabilities

along with the continuous emotion arousal. In the inset we have highlighted the

frames and color coded the topic and we again find that there is high correlation

between certain topics and emotion. One of the reasons as to why topic features

perform better in comparison to traditional dimension reduction technique like PCA

is that LDA considers co-occurrence of features and thereby avoids modeling noise.

In general the predictive capability of a dimensionality reduction or feature se-

lection technique depends on whether the features are able to separate the feature

space. Figures 4.14 and 4.15 contain plots of two sample videos one for arousal and

the other for the valence. Since these emotions are continuous, we considered quan-

tized them into two classes, Class 1 and Class 2 and projected the features to a

2-dimensional space using t-distributed stochastic neighbor embedding (t-SNE) al-

gorithm. Figures 4.14a and 4.14b contain plots of t-SNE projections of the original

landmark features and landmark based topic features. We can see that the separabil-

ity of the feature space with respect to the emotion class is greater in topic features.

Similarly Figures 4.15a and 4.15b contain plots for the valence class and it is very

clear that the separability of topic features is greater than that of the original feature

space.

Latent Dirichlet Allocation model can be viewed as a dimension reduction tech-

nique where the projection is from a quantized document-term space to a topic feature

space. From the results discussed in Section 4.1.4, we can infer that LDA model suc-

cessfully reduces dimensions into a space that is both semantic as well as predictive.

Specific to the context of continuous emotion recognition LDA features have given a

better performance with respect to two dimensions arousal and valence. Unlike PCA
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Figure 4.14: t-SNE [62] projection of Landmark features (a) and LDA features (b)

mapped to two Arousal classes
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Figure 4.15: t-SNE [62] projection of Landmark features and LDA features mapped

to two Valence classes
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where the projection is done on the original continuous space, LDA needs a discrete

space and thus the features need to be quantized. While trying to retain the inherent

capabilities of LDA model, we wanted to find a way to avoid feature quantization.

We propose a continuous version of LDA model called the Dirichlet Gaussian Mixture

Model (DGMM) where the topic-term mixture is not a Multinomial mixture but a

continuous distribution over features. In Section 4.2 we will discuss this model and

evaluate its performance against LDA.

4.2 Dirichlet Gaussian Mixture model

LDA model works very well for features that are quantized meaningfully and

care has to be taken about the methodology used for quantizing the features. Also,

quantizing bag-of-words based video features is quite straightforward but quantizing

any other features needs to be well thought. Since almost every multimodal feature

is a continuous one, we built and tested a continuous version of the LDA model

which we call the Dirichlet Gaussian Mixture Model (DGMM). In this section we

show that this continuous model gives a comparable performance as LDA and can be

used in scenarios where a proper quantization mechanism cannot be found. Another

motivation to build continuous mixture models is that there is always a chance that

information is lost during quantization which may decrease the predictive capabilities

of the LDA features.

LDA is a double mixture model and we model the continuous double mixture

model as an extension to Gaussian Mixture Model (GMM) proposed McLahlan et al.

[44]. We will begin our discussion of DGMM by introducing GMM and its inference

which come handy in explaining our model. Figure 4.16 contains the graphical models

for GMM where ftftft is the continuous feature vector of a multimodal document t and

in this context θtθtθt is the mixture weight vector. And we assume that each of the
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Figure 4.16: Graphical models for Gaussian Mixture Model without prior (left) and

with prior (right)

topics is a Gaussian distribution with a mean µk and variance σ2
k. The significant

difference between LDA and GMM is the way a topic is defined, where it represents

a Multinomial over words in LDA whereas it represents a Multivariate Gaussian over

feature vectors. Another difference is that in LDA each word feature is assigned a

topic whereas in GMM the entire feature vector is assigned a topic and thus in GMM

a multimodal document does not represent a frame but a sequence of frames or a clip.

LDA has Dirichlet prior over θθθ and as shown in Figure 4.16(right), in GMM generally

a prior is assumed over the Gaussian parameters. The Gaussian Wishart prior is

assumed over these parameters with a conditional dependence introduced between µk

and variance σ2
k and this dependence is indicated as p(µk, σ

2
k) = p(µk)p(µk|σ2

k).

As an extension to GMM, Hu et al. [28] proposed Gaussian LDA (GLDA) model

which is displayed in Figure 4.17(left). In GLDA, instead of modeling a multimodal

document, a set of documents are grouped to sequences and each sequence is modeled

individually. Each feature vector ftftft corresponding to a multi modal document is

considered as a word and features from all sequences are modeled usingK multivariate

Gaussian distributions. It can be observed that GLDA is a Bayesian extension to
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Figure 4.17: Graphical models for Gaussian LDA [28] and Dirichlet Gaussian

Mixture Model proposed in this work

GMM with priors on the weight parameters and also the Gaussian parameters. We

have proposed a DGMM model where unlike the GLDA model, we propose to model

each multimodal document and consider each feature to be a word. In DGMM model,

there are a total of K ∗ N Gaussian distributions where K is the number of topics

and N is the number of features in each continuous multimodal document. Below is

the generative process for DGMM:

Generative Process for DGMM:

1. Draw Multinomial K-topic distribution θθθ ∼ Dirichlet(ααα)

2. For each of the N features,

(a) Assign a topic, zn ∼ Multinomial(θθθ) to nth feature

(b) Draw a feature fn ∼ Normal(µzn,n, σ
2
zn,n)
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We observe that the mean and variance are no longer vectors but are scalars because

each feature is associated with a Gaussian distribution. These parameters can in

fact be extended to become vectors if we chose to model groups of features. This

depends on the features that are being considered, e.g. if the features are audio LLD

features, then since each one is self descriptive, modeling each feature individually is

meaningful. But if the feature vector is a concatenation of histograms, then it makes

sense to group all the features within the histogram.

4.2.1 Variational EM Algorithm for DGMM

The likelihood of observing a document feature vector ftftft given the Dirichlet and

Gaussian parameters is:

p(ftftft|ααα,µµµ,σ2σ2σ2) =

∫
θtθtθt

p(θtθtθt|α)
N∏
n=1

K∑
k=1

p(ftn|µkn, σ2
kn)p(k|θθθt)dθtdθtdθt (4.13)

Similarly, the posterior distribution is given by:

p(θθθ,zzz|fff,ααα,µµµ,σ2σ2σ2) =
p(θθθ,zzz,fff,ααα,µµµ,σ2σ2σ2)

p(fff |ααα,µµµ,σ2σ2σ2)

As in LDA, the likelihood and the posterior distributions are intractable and so we

will use Variational EM algorithm to deterministically infer the DGMM parameters.

Figure 4.4 very well defines the simplified version of DGMM model as the dependence

between the features and Gaussian parameters is dropped. We assume a surrogate

distribution q that corresponds to the simplified model in Figure 4.4 to approximate

the above posterior. We aim to minimize the KLDivergence between the surrogate

and original posterior distribution which is equivalent to maximizing the Expected

Lower Bound, L(γγγ,φφφ;ααα,µµµ,σ2σ2σ2), which is given by Eq 4.8. The solution for DGMM

differs from the one in Eq 4.8 only through the term Eq[log(p(fff |zzz,µµµ,σ2σ2σ2))] instead of

Eq[log(p(vvv|zzz,πππ))]. The expected lower bound for DGMM is given by:
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Algorithm 5 Variational Bayes algorithm for DGMM

Input: All multimodal document features fff and Dirichlet Priors ααα , # of Topics

K, # of EM iterations I, # of E iterations J

Parameters: Gaussian parameters µµµ0 and σ2σ2σ2
0

Output: Document-Topic distributions γγγ and Topic-Feature distributions µµµ and

σ2σ2σ2

Initialize the parameters using K Means with k clusters on each feature n.

i := 0

procedure DGMMVBAlgorithm

while i < I or !converged do . Iterate till convergence

E-Step:

for each document t do

Initialize equal values to all topics in γtγtγt as γtk = αk + Nt

K

j := 0

while j < J or !converged do

(i) Calculate the Multinomials φtφtφt using Eq 4.16

(ii) Calculate the Dirichlet priors γtγtγt using Eq 4.11

j := j + 1

end while

end for

M-Step:

(i) Estimate Gaussian means µµµi using Eq 4.18

(i) Estimate Gaussian variances σ2σ2σ2
i using Eq 4.19

i := i+ 1

end while

end procedure

66



L(γγγ,φφφ;ααα,πππ) = Eq[log(p(θθθ|ααα))] + Eq[log(p(zzz|θθθ))] + Eq[log(p(fff |zzz,µµµ,σ2σ2σ2))]

−Eq[q(θθθ)]− Eq[q(zzz)] (4.14)

where the term Eq[log(p(fff |zzz,µµµ,σ2σ2σ2))] is given by

Eq[log(p(fff |zzz,µµµ,σ2σ2σ2))] =
∑
n

∑
k

q(znk) log(N (fn|µkn, σ2
kn))

Maximizing the function L with respect to φφφ with the constraint that
∑
k

φnk = 1 we

arrive at:

φ∗tnk = arg max︸ ︷︷ ︸
φtnk

{φtnk(Ψ(γnk)−Ψ(
∑
γnk)) + φtnk log(N (ftn|µkn, σ2

kn))

−φtnk log(φtnk)}+ λtn(
∑
k

φtnk − 1) (4.15)

where t, n, k represent the document, features and topic respectively. Differentiating

the above equation with φtnk and equating it to zero we obtain the optimal φtnk as:

φ∗tnk ∝ N (ftn|µkn, σ2
kn) exp(Ψ(γk)−Ψ(

∑
γk)) (4.16)

In order to obtain the optimal values for µµµ we maximize Eq 4.14 with respect to µµµ as

given below:

[µ∗kn, σ
2∗

kn] = arg max︸ ︷︷ ︸
µkn,σ

2
kn

∑
t

∑
n

∑
k

{φtnk log(N (ftn|µkn, σ2
kn))}

∼ arg max︸ ︷︷ ︸
µkn,σ

2
kn

∑
t

∑
n

∑
k

{
φtnk

(
log(σ2

nk) +
(ftn − µkn)2

2σ2
kn

)}
(4.17)

We observe that the summation constraint over the topic probabilities p(f |µ, σ2) is

no longer enforced because we are dealing with a continuous Gaussian distribution

whose cumulative density function ensures that
∞∫
−∞
N (f |µkn, σ2

kn)df = 1 for all k.
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Calculating the partial derivative of the function in Eq 4.17 with respect to µkn and

equating it to zero we have:

∑
t

φtnk
(ftn − µkn)

σ2
kn

= 0

=⇒ µ∗kn =

∑
t

φtnkftn∑
t

φtnk
(4.18)

The above formula has an intuitive explanation that the mean of a feature within

a topic is a weighted sum of the feature values weighted by their topic assignment

probabilities. Calculating the partial derivative of the function in Eq 4.17 with respect

to σ2
kn and equating it to zero we have:

∑
t

φtnk(
1

σ2
kn

− (ftn − µkn)2

2(σ2
kn)2

) = 0

=⇒ σ2∗

kn ∝

∑
t

φtnk(ftn − µkn)2∑
t

φtnk
(4.19)

Again the intuitive explanation to this formula is that the variance is a weighted sum

of the individual variances weighted by the topic assignment probabilities.

It is important to note that in the the derivation of values for µ and σ2 in GLDA

[28], the authors made a mistake in deriving this formula where they ignored the nor-

malizing factor. This factor is extremely important as the results change drastically

if the formulae are not normalized. We observe that the calculating of φtnk using

Eq 4.16 is the E-step in the variational inference. Since we need the φtnk values to

calculate the Gaussian parameters, calculating µnk and σ2
nk becomes the M-step of the

variational EM algorithm. While calculating the σ2
nk value, the µnk value calculated

in the current iteration is used and not the one from the previous iteration.

Algorithm 5 puts together the entire Variational EM algorithm for DGMM model

and as in LDA model we iterate until convergence or for a fixed number of iterations.

68



The quality of the optimal parameters and topic assignments given by DGMM depend

a lot on the initial parameters. Algorithm 6 shows the steps in the initialization

procedure of DGMM. We consider all feature values of nth feature fnfnfn and perform

K-Means [42] clustering using K clusters where K is the number of topics used in the

DGMM model. After clustering, we extract all the nth feature values that have been

assigned to kth cluster as fnkfnkfnk. A Gaussian distribution is fit to these feature values

and consequently µnk and σ2
nk become the Gaussian estimates. This initialization is

very efficient in comparison to the initialization in LDA where topic assignment is

done using a Uniform distribution.

Algorithm 6 Algorithm to initialize parameters of DGMM model

Input: All multimodal document features fff , # of Topics K

Output: Gaussian parameters µµµ and σ2σ2σ2

procedure InitializeDGMM

for each feature n do

Cluster the feature values fnfnfn to K cluster using K-Means clustering

Obtain fnkfnkfnk as feature values assigned to topic k

for each topic k do

Estimate µnk and σ2
nk by fitting a Gaussian distribution on fnkfnkfnk

end for

end for

end procedure

In equations Eq 4.10 and Eq 4.16 we observe that estimation of the φ values needs

the calculation of p(vtn|πk) and p((ftn|µkn, σ2
kn). It is straightforward to calculate these

for LDA because vtn belong to a finite vocabulary and thus estimating p(vtn|πk) is

dependent only of the size of the vocabulary V and need not be calculated for each
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document. But in the case of DGMM this probability of each feature has to be

calculated for each document as we are dealing with continuous features. And thus

these calculations are dependent on the total number of documents and Appendix B.3

shows a snapshot of this calculation during the M-step so that they can be reused in

the E-step. There is a possibility that the log probability could be infinity in cases

where the feature may be an outlier or has not been observed before and in such cases

we assign an extremely low probability to that feature.

The total space complexity of the algorithm is of the order O((T ∗N) + (T ∗K ∗

N) + (K ∗N)) where T , N and K are the number of documents, features and topics

respectively. Since K is far smaller than T and N the complexity approximates to

O(T ∗ K ∗ N) which is greater than that of LDA which is O(K ∗ V ). This is due

to the fact that the Gaussian probabilities are precalculated and stored as shown

in Appendix B.3. The time complexity of DGMM algorithm is of the order O(I ∗

((T ∗ J ∗ N ∗K) + (T ∗ N ∗K))) which is also greater than that of LDA as we are

dealing with continuous features instead of a fixed vocabulary. As in LDA we have

implemented DGMM algorithm using Map Reduce framework there by parallelizing

the E-step over the training documents. As discussed earlier we address the parameter

estimation as training because we use documents from a training set to learn DGMM

model. During testing, we infer the document-topic distributions on unseen or test

documents by using the same EM algorithm 5 but by only running the E step until

convergence.
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4.2.2 Experiments and Results

Comparison of DGMM vs LDA:

We have evaluated DGMM model on two criteria, 1) its predictive performance in

comparison to LDA model, and 2) its algorithmic complexity in comparison to LDA

model. We considered these criteria because there is a trade off between the complex-

ity and performance of a model. In Figure 4.18 we have plots of the log likelihood

changes for LDA and DGMM models and it is interesting to observe that the conver-

gence of DGMM EM algorithm is much faster than that of LDA e.g. in this figure,

LDA takes 10 iterations to converge whereas DGMM coverages almost after 5 iter-

ations. Another interesting observation is that the rate of change of likelihood in

DGMM is pretty small right from the second iteration. The probable explanation to

this is that since we are using Gaussian distributions, once the the optimal parameters

are being set in an iteration, not much change is occurring to them over the next few

iterations. This can be a case of the model clinging to local optimal values which is

a matter of concern to us.

Table 4.19 contains the results from DGMM in comparison to LDA and PCA

models. We have used AVEC12 development videos for our evaluation and we three

different features, viz.LM, LBPTop and Audio. We have chosen these three features

as discussed in Section 4.1.4, these features have given the most stable results. The

results shown in Table 4.19 are the cross correlations from a Linear regression model.

The take away from these results is that DGMM has given a comparable if not bet-

ter results when compared to LDA model. DGMM performed well for the LM and

LBPTop features for valence and arousal respectively and gave comparable perfor-

mance to LDA for video modality. In the case of the audio modality, DGMM has

not performed as well as LDA (not very comparable) which indicates the value of
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Figure 4.18: Comparison of changes in log likelihood values after each EM iteration

for LDA and DGMM

quantization especially for audio features. Immaterial of the modality, DGMM has

outperformed PCA model which is also a dimension reduction technique that operates

on continuous feature space.

We have evaluated the complexity of DGMM as a function of the time taken to

train the model. In Figure 4.20, we have plotted the times taken by EM algorithm

to train DGMM and LDA models across different features and topics. These run

times are in minutes and we have gathered them from an Intel i7 3.4GHz, 12 core

processor where the EM algorithm has been parallelized to run on 12 cores. We

observe that DGMM takes a bit longer to complete training when compared to LDA

and it increases with the size of topics. The reason the models take highest time for

LBP top is due to its large dimension size. We have to note that the execution time

72



LM LBPTop Audio

LDA DGMM PCA LDA DGMM PCA LDA DGMM PCA

Arousal 0.174 0.171 0.009 0.16 0.17 0.157 0.259 0.23 0.2

Valence 0.185 0.23 0.099 0.24 0.22 0.14 0.152 0.1 0.089

Figure 4.19: Comparison of performances of LDA and DGMM models using mean

cross correlations across AVEC12 dataset. Linear Regression has been used for this

evaluation.

for PCA is much slower than DGMM and in that point of view also DGMM is a

better reduction technique when compared to PCA models.

From these results it is conclusive that DGMM is a better dimension reduction

technique than PCA both interns of performance and execution time. When com-

pared to LDA, DGMM has given a comparable performance but does not scale as well

as LDA does with increasing feature size and topic size. The reason behind the longer

execution times in DGMM are due to the calculation of the probability densities for

each feature in each document after every EM step. Unlike in LDA the probability is
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Figure 4.20: Comparison of time taken to train LDA and DGMM models for

different features and topics.

a normalized frequency matrix, in DGMM the probability density is continuous and

has to be evaluated for every feature under consideration.

4.3 Conclusions

In this chapter we have introduced the Expectation Maximization framework using

the graphical structure of unsupervised topic models specifically Latent Dirichlet

Allocation. We have derived and discussed the Variational inference techniques for

two unsupervised models, LDA and DGMM. We have proved our hypothesis that

LDA model based feature extraction generates meaningful visualizable topics whose
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performance is better than traditional dimension reduction techniques. We have

evaluated models across features and regressors and analyzed the reasons behind the

good performance of LDA models. Since LDA requires feature quantization and

there may be loss of information in that process, we proposed a double mixture

model based on the framework of LDA called the Dirichlet Gaussian Mixture Model

(DGMM). We have derived the inference of different parameters of DGMM using

Variational technique. DGMM is a mixture model with Multinomial and Gaussian

mixture distributions and is assumes a Dirichlet prior over the Multinomial. We have

specifically evaluated these unsupervised models on Continuous emotion recognition

which is generalizable to any multimodal time series application.

From our evaluation we glean that since the same topic features are used for both

arousal and valence, they tend to model either dimension well but not both. This

is due to the fact that the topics may not necessarily contain feature correlations

that are valuable for emotion analysis but may also contain other information like

the texture or facial indicators of the person himself. In order to specifically learn

topics that are aligned towards emotion, in chapter 5 we discuss supervised extensions

to topic extraction. We will introduce supervised LDA model and its inference and

propose new models that do not overfit and do consider multi modal and multi feature

interactions.
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Chapter 5

SUPERVISED TOPIC MODELS

In Chapter 4 we discussed how unsupervised probabilistic topic models can be trained

and used in emotion recognition. These models can be perceived as feature extraction

or dimension reduction techniques. Different classification and regression models have

been used with topic features to perform the predictions of emotions. In unsuper-

vised topic models, the feature extraction phase is not effected by the emotion values

associated with documents. In this chapter we discuss existing and new supervised

topic models where the feature extraction or dimension reduction is effected by the

emotion labels. These are called the supervised topic models as the emotion label is

also part of their graphical structure and the quality of topics extracted is influenced

by the emotions that are being modeled.

5.1 Supervised Latent Dirichlet Allocation model

Topic models are based on Latent Semantic Indexing models which can be looked

at as dimension reduction or projection techniques equivalent to PCA but for discrete

data. There has been some research on supervised versions of PCA e.g. Bair et al.

[9] propose a supervised version by performing PCA on only a subset of features that

are most informative. Barshan et al. [10] have proposed another supervised method

but it is restricted to classification where the class labels are categorical. Not much

attention has been given to the discrete counterpart of PCA and also in the context

of a regression model. The primary reason is that LSI models are more often used

for information and document retrieval than to predict something unlike PCA which

is a very popular technique in prediction modeling. But supervised versions of the

76



probabilistic topic models have come in soon after the unsupervised LDA models

have been proposed. Interestingly the context in which the first supervised topic

model has been proposed is in computer vision [17] where SLDA has been used to

automatically annotate images. But later on, different supervised models have been

proposed in the context of text analysis and ratings prediction [12]. Even though the

earlier versions of SLDA model only dealt with regression models, [17] have proposed

a supervised topic model for classification where labels are discrete in nature. The

major distinction between supervised models for regression and classification lies in

the assumption of the distribution used to model the response variables. E.g Gaussian

and Poisson distributions are used to model continuous variables whereas a softmax

[6] function is used in discrete cases.

Since we are mostly interested in modeling continuous responses, the discussion

in this chapter is based on the work published by Blei [12]. Figure 5.1(top) is a

representation of the graphical model of SLDA and each of the random variables

are explained in Figure 5.1(bottom). The entire graphical structure is similar to

LDA model except for the new random variable ytytyt and a new parameter bbb which

represent the continuous response labels and regression coefficients respectively. From

Figure 5.1 we observe that the response variable yt of a given document t is dependent

on the topic assignments ztztzt. This implies that the normalized empirical distribution

z̃t̃zt̃zt given below is responsible for the response.

z̃t̃zt̃zt =
1

Nt

∑
n

InwInwInw

where Inw =


1 if n = w

0 if n 6= w

It is interesting to note that the response variable yt is not dependent on the generic

Multinomial distribution θtθtθt but instead on the empirical topic distribution z̃t̃zt̃zt. This is
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Figure 5.1: Graphical model for Supervised Latent Dirichlet Allocation (SLDA)

model

to emphasize that the response variable is realistically more aligned to the distribu-

tion specific to the document rather than a generalized distribution. The dependency

between z̃t̃zt̃zt and yt is modeled using a Generalized Linear Model (GLM) with a linear

combination bbbT z̃t̃zt̃zt where bbb are the predictor coefficients. A GLM is an exponential
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probability distribution family defined specifically as a function of a linear combina-

tion bbbT z̃t̃zt̃zt and a dispersion parameter δ and is given by:

p(yt|z̃t̃zt̃zt, bbb, δ) = h(yt, δ) exp
{(bbbT z̃t̃zt̃zt)yt − A(bbbT z̃t̃zt̃zt)

δ

}
where h and A are functions of yt, δ and z̃t̃zt̃zt depending on the distribution that is

assumed. The most popular distributions that fit into GLM family are the Gaussian

and Poisson distributions where GLM becomes linear regression for the former and

poisson regression for the latter. In this context since SLDA is also a generative

model, we will look into the generative process:

Generative Process for SLDA:

1. Draw a Multinomial K-topic distribution θθθ ∼ Dirichlet(ααα)

2. For each of the N words,

(a) Assign a topic, zn ∼ Multinomial(θθθ) to nth word

(b) Draw a term wn ∼ Multinomial(πππzn)

3. Draw the response variable yt ∼ GLM(z̃t̃zt̃zt, bbb, δ)

The joint distribution of SLDA model is given by:

p(θtθtθt, ztztzt, vtvtvt, yt,πππ,ααα,bbb) = p(θtθtθt|ααα)p(ztztzt|θtθtθt)p(vtvtvt|ztztzt,πππ)p(yt|ztztzt, bbb)

= p(θtθtθt|α)
( Nt∏
n=1

p(vtn|πππztn)p(ztn|θθθt)
)
p(yt|ztztzt, bbb) (5.1)

The likelihood of generating the observed variables vtvtvt and yt for a document t is given

by integrating or summing over the hidden variables as:

p(vtvtvt, yt|ααα,πππ,bbb) =

∫
θtθtθt

p(θtθtθt|α)
(∑

ztztzt

( Nt∏
n=1

p(vtn|πππztn)p(ztn|θθθt)
)
p(yt|ztztzt, bbb)

)
dθtdθtdθt (5.2)
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Using the above formula the posterior of the latent variable given the observed variable

and parameters is given by:

p(θtθtθt, ztztzt|vtvtvt, yt,πππ,ααα,bbb) =
p(θtθtθt, ztztzt, vtvtvt, yt,πππ,ααα,bbb)

p(vtvtvt, yt|ααα,πππ,bbb)
substituting Eq 5.1 and Eq 5.2 we have

=
p(θtθtθt|α)

(∏Nt

n=1 p(vtn|πππztn)p(ztn|θθθt)
)
p(yt|ztztzt, bbb)∫

θtθtθt
p(θtθtθt|α)

(∑
ztztzt

(∏Nt

n=1 p(vtn|πππztn)p(ztn|θθθt)
)
p(yt|ztztzt, bbb)

)(5.3)

In order to estimate the parameters and assign topics to documents we should

evaluate either the likelihood or posterior functions. But both Eq 5.2 and Eq 5.3 turn

out to be intractable as in LDA due to the coupling between the θθθ and πππ variables.

Thus we cannot use the plain vanilla EM algorithm as in the usual setting and will

resort to approximate solutions like Gibbs Sampling or Variational EM algorithms.

Since this is a supervised model, there are two parts to the estimation where in the

E-step the random variables πππ and θθθ are estimated and the regression coefficients bbb

are estimated as part of M-step.

5.1.1 Gibbs Sampling Algorithm for SLDA

In this section we will discuss the Collapsed Gibbs sampling algorithm for learning

and inference of SLDA parameters as given by Chang [15]. Collapsed Gibbs sampling

estimates values of the topic assignments zzz by collapsing the random variables θθθ and

parameters πππ. In this derivation, a Gaussian distribution is assumed as a specific case

of GLM and thus the probability of generating yyy is given by:

p(yt|ztztzt, bbb, δ) ∝ exp(−(yt − bbbT z̃t̃zt̃zt)2)

∝ exp(−2(bbbT z̃t̃zt̃zt)yt − (bbbT z̃t̃zt̃zt)
2)

where terms that are only dependent on ztztzt have been retained
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The posterior distribution of zzz is given by:

p(zzz|ααα,βββ, δ,vvv,yyy, bbb) ∝ p(vvv|zzz,βββ)p(zzz|ααα)p(yyy|zzz, bbb, δ)

∝
∏
t

B(ααα + nnnt)

B(ααα)

∏
k

B(βββ + nnnk)

B(βββ)
exp(−2(bbbT z̃t̃zt̃zt)yt − (bbbT z̃t̃zt̃zt)

2)

and the above posterior has the extra term from the random variable yyy. Using the

above equation we arrive at the following sampling equation for the variable ztn for

the tth document and nth term.

p(ztn|ααα,βββ, δ,vtvtvt, yt, bbb, zzz¬(tn)) ∝
B(nnnt +ααα)

B(nnnt−(t,n) +ααα)

B(nnnk + βββ)

B(nnnk−(t,n) +ααα)

exp
( bk
Nt

(yt − bbbT z̃̃z̃z¬nt )− (
bk
Nt

)
2)

(5.4)

where zzz¬(tn) indicates the topic assignments of all words other than ztn and similarily

z̃̃z̃z¬nt is the mean topic distribution over all words with ztn. The second term in the

above equation is derived from the Gaussian error assumed between the actual and

predicted labels. As in LDA, the topic assignments are used to calculate the counts

nnnk and nnnt which are used to estimate πππ and θθθ given below:

p(πππk|vvv,βββ) ≈ Dirichlet(πππk; (βββ + nnnk)) (5.5)

p(θθθt|vvv,ααα) ≈ Dirichlet(θθθt; (ααα + nnnt)) (5.6)

The estimation of πππ and θθθ pertains to the E-step and we observe that the coef-

ficients bbb from previous are used in their calculation. In the M-step, the values of

the coefficients are estimated using a simple linear regression model. As in a linear

regression model the regression coefficients as given below:

bbb = (z̃̃z̃zT z̃̃z̃z)−1z̃̃z̃zTyyy (5.7)

Now we will discuss the Variational EM algorithm for SLDA where a deterministic

approximation of the posterior is dealt with.
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Algorithm 7 Collapsed Gibbs sampling algorithm for SLDA by [15]

Input: All documents, vvv and responses yyy

Output: θθθ and πππ

Initialize zzz to topics 1 to K using Uniform(1,K)

procedure Gibbs(I) . I is # of iterations

for iter = 1 to I do . Iterate till burn-in

for t = 1 to T do . Iterate over documents

for n = 1 to Nt do . Iterate over words

Sample ztn using Eq 5.4

end for

end for

Update counts nknknk and ntntnt

end for

Update the variables θθθ and πππ using Eqs 5.5 and 5.6

Update the regression coefficients bbb using Eq 5.7

end procedure

5.1.2 Variational EM algorithm for SLDA

Since the posterior 5.3 cannot be evaluated directly we will again assume a sur-

rogate distribution q as an estimate to the posterior. q is defined over a family of

distributions that arrive from a simplified version of SLDA model and we aim to

decrease the Kullback Leibler Divergence between the actual posterior p and the sur-

rogate q. The simplified SLDA graphical model is shown in Figure 5.2 and we observe

that the variables related to supervised setting are dropped as bbb can be dealt as a

parameter and to untie the coupling between πππ and θθθ. The new distribution q is mod-

eled by parameters γγγ and φφφ which are Dirichlet prior and Multinomial distributions
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respectively and q is given by:

q(θθθt, zzzt|γγγt,φφφt) = q(θθθt|γγγt)
Nt∏
n=1

q(ztn|φφφtn)

It is interesting to note that from the above definition, q is independent of the response

variables. As discussed in Section 4.1.3, minimizing KLdivergence is equivalent to

increasing the expected lower bound L given by:

Figure 5.2: A simplified graphical model for SLDA to approximate the actual

posterior using simple surrogate family of distributions.

L(γγγ,φφφ;ααα,πππ) = Eq[log(p(θθθ|ααα))] + Eq[log(p(zzz|θθθ))] + Eq[log(p(vvv|zzz,πππ))]

−Eq[q(θθθ)]− Eq[q(zzz)] + Eq[log p(yyy|z, bbbz, bbbz, bbb)] (5.8)

The difference between the Elbo formulae of LDA and SLDA is the last term that

included the response probability. Since all other terms remain the same we expand

the last term here.

Eq[log p(yt|ztztzt, bbb)] = Eq

[
log(

1√
2πδ

) +
−(yt − bbbT z̃t̃zt̃zt)2

2δ

]
= Eq[−

yt
2δ

] + Eq[
ytbbb

T z̃t̃zt̃zt
δ

] + Eq[−
bbbT z̃t̃zt̃ztz̃t̃zt̃zt

Tbbb

2δ
]

=
1

δ

(
bbbTEq[z̃t̃zt̃zt]y − Eq[bbbT z̃t̃zt̃ztz̃t̃zt̃ztTbbb]

)
(5.9)
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where Eq[z̃t̃zt̃zt] =
1

N

∑
n

φtnφtnφtn is evaluated as a mean of all the topic assignment probabil-

ities in a document t. The term E[z̃t̃zt̃ztz̃t̃zt̃zt
T ] is needed in both the E and M steps and is

given by:

E[z̃t̃zt̃ztz̃t̃zt̃zt
T ] =

1

N2
t

(∑
n

∑
m6=n

φnφnφnφmφmφm
T +

∑
n

diag{φnφnφn}
)

(5.10)

Following the procedure discussed in Variational EM for LDA model, we now derive

the formulae to estimate φφφ and γγγ. φtnk is calculated by optimizing:

maximize︸ ︷︷ ︸
φ∗tnk

φtnk(Ψ(γtk)−Ψ(
∑

γtk)) + φtnk log(πk,vtn)− φtnk log(φtnk)

+
ytbbb

TE[z̃t̃zt̃zt]

δ
− bbbTE[z̃t̃zt̃ztz̃t̃zt̃zt

T ]bbb

2δ
+ λn(

∑
k

φtnk − 1) (5.11)

Differentiating the above equation with φtnk and equating it to zero we obtain the

optimal value as:

(Ψ(γtk)−Ψ(
∑

γtk))+log(πk,vtn)− log(φtnk)+1+(
yt
Nδ

)bk−
∂

∂φtnk

{bbbTE[z̃t̃zt̃ztz̃t̃zt̃zt
T ]bbb

2δ

}
= 0

=⇒

φ∗tnk ∝ exp
{

(Ψ(γtk)−Ψ(
∑

γtk)) + log(πk,vtn) + (
yt
Nδ

)bk−
1

2N2
t δ

[2(bbbTφ¬tnφ¬tnφ¬tn)bbb+ (bbbTbbb)]
}

(5.12)

If we observe the above estimate of φtnk with that of LDA’s estimate in Eq 4.10,

there is new term that contains φ¬tnφ¬tnφ¬tn which is the mean vector of Multinomials over

all words except for the current word (t, n). This makes SLDA a bit slower than LDA

in terms of the execution time as the topic assignments of words in each document

cannot be done in parallel. And as in LDA, the estimate of γtγtγt remains the same

as the one given in Eq 4.11. Once the above parameters are estimated as part of

the E-step, as in the Gibbs sampling procedure, the linear predictors bbb are evaluated

in the M-step. Unlike the Gibbs sampling algorithm where the topic assignments
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Algorithm 8 Variational Bayes algorithm for SLDA by [12]

Input: All Documents vvv, responses yyy and Dirichlet Priors ααα, # of EM and E

iterations I, J

Output: Topic distributions γγγ , Term distributions πππ and Linear predictors bbb

Assign equal probabilities to all terms in πππ0

procedure SLDAVBAlgorithm

while i < I or !converged do . Iterate till convergence

E-Step:

for each document t do

Initialize equal values to all topics in γtγtγt as γtk = αk + Nt

K

while j < J or !converged do

for each word n do

(i) Calculate the Multinomials φtnφtnφtn using Eq 5.12

end for

(ii) Calculate the Dirichlet priors γtγtγt using Eq 4.11

j := j + 1

end while

end for

M-Step:

(i) Estimate πππi using Eq 4.12

(ii) Estimate bbb using Eq 5.13

i := i+ 1

end while

end procedure

85



variable z̃t̃zt̃zt are directly used as features, it is a bit complex in Variational inference.

The optimal values for bbb are estimated by maximizing the following function derived

from Eq 5.11:

maximize︸ ︷︷ ︸
bbb∗

( T∑
t=1

(
ytbbb

TE[z̃t̃zt̃zt]

δ
− bbbTE[z̃t̃zt̃ztz̃t̃zt̃zt

T ]bbb

2δ
)
)

Differentiating the above function with bbb and equating to zero we arrive at:

1

δ

{∑
t

E[z̃t̃zt̃zt]yt − bbb
∑
t

E[z̃t̃zt̃ztz̃t̃zt̃zt
T ]
}

= 0

=⇒

bbb∗ = (E[z̃t̃zt̃ztz̃t̃zt̃zt
T ])−1E[z̃̃z̃z]Tyyy (5.13)

where E[z̃t̃zt̃ztz̃t̃zt̃zt
T ] is calculated using Eq 5.10. When we compare this estimate with

that of the Gibbs estimate give in Eq 5.7 they are very similar in the sense that they

represent the solution of linear regression. But the difference is that the features in

this case are the variational Multinomial distributions unlike in Gibbs sampling where

the features are the actual empirical topic assignnments. The values of the topic-term

Multinomials πππ are estimated using the same equation used in LDA. Also another

parameter that can also be estimated is the dispersion or the error variance δ which

can also be estimated by differentiating the function. But from our experiments we

found that doing so over fits the linear predictors onto the training documents and

thus the better approach will be to select δ using cross validation. Same is also the

case with the Dirichlet parameter α.

Algorithm 8 consolidates all the steps involved in the Variational inference for

SLDA model. It is very similar to the LDA model except for the estimate updates

and we also note that in each E-step within each document, there is an extra loop

for each word n and this is to indicate that calculation of φtn is dependent on the

previous word and cannot be technically executed in parallel. We have used a similar

structure as in LDA for implementing SLDA model using a Map reduce framework.
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An interesting implementation is that since the log likelihood in SLDA is a combi-

nation of unsupervised terms as in LDA and terms that contain supervised responses,

we have calculated two likelihoods one that comprises unsupervised terms and the

other the supervised ones. Listing B.4 contains the sample code that computes these

two likelihoods separately and while checking for convergence the sum of both like-

lihoods is used. In the Results section we will analyze how these likelihoods evolve

after each EM step. The space complexity of the SLDA Variational EM algorithm

is the same as LDA but the time complexity is greater than that of LDA by the

mere fact that the E step for a word is dependent on rest of the words. The time

complexity of SLDA is of the order O(I ∗ ((T ∗ J ∗N ∗K) + (T ∗N ∗K +K ∗ V )))

and the additional term comes from the M step of SLDA where we need to estimate

the values E[z̃t̃zt̃ztz̃t̃zt̃zt
T ] which is of the order O(T ∗N ∗K) where I, J, T,N,K and V are

the # of EM iterations, # of E iterations, # of documents, average # of words per

document, # of topics and vocabulary size respectively.

Inference and Prediction on Unseen Documents:

What we have seen so far is learning or model training where the needed dis-

tributions and linear predictors are learnt from a set of training documents. SLDA

inference on new unseen documents is performed exactly like in LDA where just the

E step shown in Algorithm 4 is performed on the test documents. We cannot use

the E step in Algorithm 8 as it needs the response labels for the documents which

are not available for testing documents. Unlike LDA where it is just a dimension

reduction technique, SLDA is not only a dimension reduction technique but also a

linear regression model. Once the topic features , γγγ are extracted from a test doc-

ument the response variable y is predicted as y = γγγTbbb. Even though SLDA can be

used to predict the continuous response variable, since it is a linear model it does not
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capture the non linear dependency between the topics and the response variables. So

we also test SLDA features by using other regression algorithms like Support Vector

Regression with different kernels.

5.1.3 Experiments and Results
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Figure 5.3: Changes in likelihood for supervised and unsupervised terms after each

EM Iteration in SLDA model for Landmark features

Comparison of SLDA vs LDA:

We have used AVEC12 dataset to test the efficacy of SLDA models. We have picked

up the Audio, LM and LBPTop features to test SLDA model because they have given
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Figure 5.4: Plot of Mean Correlations on Training Data after every EM Iteration in

SLDA model. The response variable here is Valence.

the most stable results across various regressors when tested with LDA models. Before

moving to the prediction capabilities of the SLDA model it is essential to understand

how the EM algorithm affects the prediction capability of the model. Figure 5.3 shows

the plot of the changes in the joint likelihood or ELBO value given in Eq 5.8 for SLDA

model trained on the LM features. In this figure we separately calculated and plotted

the likelihood from the supervised and unsupervised terms in Eq 5.8 and thus the

sum of changes tends towards zero. It is interesting to observe that the unsupervised

likelihood changes converge to zero sooner than the supervised likelihood changes.

E.g. in Figure 5.3, there is not significant change in the unsupervised likelihood
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after 7-th iteration whereas the supervised likelihood does change for the rest of the

iterations.

Figure 5.5: The mean cross correlations on AVEC12 dataset using SLDA and

LDA-Linear topic models

Arousal Valence

LDA-LR SLDA LDA-LR SLDA

LM 0.174 0.19 0.185 0.25

LBPTop 0.11 0.21 0.24 0.29

Audio 0.259 0.30 0.152 0.18

It is also interesting to see how the mean cross correlations across all training data

vary with each EM iteration. Figure 5.4 contains a plot of the mean correlation across

all AVEC12 videos for response Valence using SLDA on the LM features. We observe

that in SLDA model the training correlations increase with iteration or equivalently,

the training error decreases with the iterations. This signifies that the supervised

nature of SLDA is able to model both topics and responses as the EM algorithm

converges to optimal parameters.

The first evaluation criteria is the comparative performance of SLDA model with

LDA in relation to arousal and valence prediction. Since running SLDA model is

equivalent to the combination of LDA and Linear regression (LDA-LR), we compare

them in Table 5.5. It is evident from the results in Table 5.5 that SLDA model in deed

performs better than LDA and this true across the features and emotion dimensions.

90



It is also interesting to see that the trend that has been observed in the LDA results

also stands out from SLDA results, that Audio modality has performed again well for

the Arousal dimension whereas video modality has performed better for the Valence

dimension.

Our experiments have shown that supervised LDA model is an extremely useful

supervised dimension reduction technique and also that it is a promising model for

multimodal video based time series data. There has not been much research on

supervised dimension reduction techniques for regression modeling whereas supervised

models like Fischer’s Latent Discriminant Analysis [25] and its extensions are used in

classification settings. Since SLDA model internally behaves like a linear regression,

it inherits the pitfalls from it and therefore tends to overfit the topic features to

emotions. In order to address overfitting we provide an extension to SLDA called the

regularized SLDA (RSLDA) model by assuming hyper prior over the linear predictors

that model the Gaussian error. We will discuss the inference and results from RSLDA

model in Section 5.2.

5.2 Regularized Supervised Latent Dirichlet Allocation model

Supervised LDA model that has been discussed in the previous section is a su-

pervised generative model that assumes a generalized linear model while modeling

the dependency between response and topics. But since (a) it is an iterative learning

scheme and the convergence is evaluated in terms of the likelihood and not response

prediction, and (b) it is based on linear regression model, it tends to overfit the re-

sponses onto the topic features. Figure 5.6 shows the plot of correlations on training

and test data on landmark features after every SLDA EM iteration. We observe that

the training correlation increases with each EM Iteration and the correlation of test

data also increases. But the correlations on test data decrease after few iterations
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e.g. in Figure 5.6 it starts decreasing from iteration 5. This indicates that from that

EM step onwards SLDA is probably starting to over fit the topics onto the training

responses. In a typical regression setting over fitting is most often reduced by using

regularization. We have facilitated regularization into topic model by adding an ex-

tra prior over the parameters of the generalized linear model and specifically over the

Gaussian probability density function.

Figure 5.7 graphically presents the Regularized SLDA (RSLDA) model where in

addition to all the variables from SLDA model there is an extra Gaussian prior r

over the linear predictors bbb. The probability density function of bbb is thus p(bbb|rrr) ∼

N (0,RRR−1) where RRR is a diagonal matrix with regularization parameters occupying

the diagonal values. We will address the regularization parameter as also ridge pa-

rameter. The data generation process for RSLDA is the same as SLDA except that

the linear predictors are also generated as below:

Generative Process for RSLDA:

1. Draw a Multinomial K-topic distribution θθθ ∼ Dirichlet(ααα)

2. For each of the N words,

(a) Assign a topic, zn ∼ Multinomial(θθθ) to nth word

(b) Draw a term wn ∼ Multinomial(πππzn)

3. Draw the linear predictors bbb ∼ Gaussian(0,RRR−1)

4. Draw the response variable yt ∼ Gaussian(z̃t̃zt̃zt, bbb, δ)

92



Te
st

in
g 

C
or

re
la

tio
n

0

0.033

0.065

0.098

0.13

Tr
ai

ni
ng

 C
or

re
la

tio
n

0

0.225

0.45

0.675

0.9

EM teration
1 2 3 4 5 6 7 8 9 10

Mean Correlation (Training)
Mean Correlation (Testing)

Figure 5.6: Plot of Mean Correlations on Training and Testing Data after every EM

Iteration in SLDA model using Landmark features.

The joint distribution of RSLDA model is given by:

p(θtθtθt, ztztzt, vtvtvt, yt,πππ,ααα,bbb, rrr) = p(θtθtθt|ααα)p(ztztzt|θtθtθt)p(vtvtvt|ztztzt,πππ)p(yt|ztztzt, bbb)

= p(θtθtθt|α)
( Nt∏
n=1

p(vtn|πππztn)p(ztn|θθθt)
)
p(yt|ztztzt, bbb)p(bbb|rrr)

where the additional term is from the prior on the linear predictors bbb. Using a similar

Variational approach to inference as in SLDA the ELBO L is given by:

L(γγγ,φφφ;ααα,πππ,rrr) = Eq[log(p(θθθ|ααα))] + Eq[log(p(zzz|θθθ))] + Eq[log(p(vvv|zzz,πππ))]

−Eq[q(θθθ)]− Eq[q(zzz)] + Eq[log p(yyy|z, bbbz, bbbz, bbb)]

+Eq[log p(bbb|rrr)] (5.14)
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Figure 5.7: Graphical representation of the Regularized Supervised Latent Dirichlet

Allocation Model.

The inference on variational parameters φφφ and γγγ remain the same as in SLDA and

thus regularization does not effect the E step at all. The updates differ for the linear

predictors bbb and thus the M step is a bit different from that in the SLDA algorithm.

Let us consider the last two terms from the Eq 5.14 that involve bbb:

Eq[log p(yyy|z, bbbz, bbbz, bbb)] + Eq[log p(bbb|rrr)] =
1

δ

∑
t

(
bbbTEq[z̃t̃zt̃zt]y − Eq[bbbT z̃t̃zt̃ztz̃t̃zt̃ztTbbb]

)
+Eq

[
log(

RRR√
2Π

)− bbbTbbbRRR
]

By maximizing the above function with respect to bbb and thus differentiating and

equaling it to zero we have:

1

δ

{∑
t

E[z̃t̃zt̃zt]yt − bbb
∑
t

E[z̃t̃zt̃ztz̃t̃zt̃zt
T ]
}

+
{
E[−RRRbbb]

}
= 0
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=⇒

bbb∗ =
1

δ

(1

δ
E[z̃t̃zt̃ztz̃t̃zt̃zt

T ] +RRR
)−1

E[z̃̃z̃z]Tyyy (5.15)

By assuming a symmetric ridge over all topic features we can write R = rI where r

is a scalar ridge parameter and I is a K-dimentional identity matrix. We find that

the formula to calculate regression coefficients in Eq 5.15 is similar to that of ridge

regression or Tikhonov regularization [58].

E
M

 It
er

at
io

n

2

3

4

5

6

7

8

9

10

Change in Log Likelihood
-0.18 -0.135 -0.09 -0.045 0 0.045 0.09

Supervised Unsupervised

Figure 5.8: Changes in likelihood for supervised and unsupervised terms after each

EM Iteration in RSLDA model for Landmark features
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Figure 5.9: Cross Validation results for RSLDA based topic features on LM, Audio

and LBPTop features using Linear regression. The plots show the effect of ridge

parameters on the performance.
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5.2.1 Experiments and Results

Effect of Parameters

The parameters for the RSLDA model, # of topics, α values and the ridge values

and we selected them using cross validation. Figure 5.9 contains plots from cross

validation over the ridge parameter for different topics generated from LM, Audio

and LBPTop features. The results with ridge value 0.0 correspond to plain vanilla

SLDA model. These plots indicate that for all features, independent of the # of

topics, the best cross validation results comes from a non zero ridge value. This is

very promising and exactly replicates the scenario of a regularized regression model.

Comparison of RSLDA vs SLDA

The goal of this evaluation is to find if regularization improves the performance of the

SLDA model and if RSLDA model provided a more generalized model. In Figure 5.8

we have plotted the changes in log likelihood from the unsupervised and supervised

terms of RSLDA. Unlike the changes in likelihood values of supervised terms in SLDA

where the change tends to zero and thereby overfits the topics, in RSLDA we observe

that even though the total likelihood change converges to zero, the supervised likeli-

hood changes do not. E.g. In Figure 5.8, the supervised likelihood changes converge

to zero until Iteration 5 and then in fact increases again. To understand how this

effects the training and testing errors, we have plotted the mean correlations across

all training and development videos in Figure 5.10. In this figure we observe that

the Training correlations increase and then decrease but the corresponding Testing

correlation keeps increasing until convergence. It is interesting to not that the exact

point of change in the Training correlation occurs at Iteration 6 which corresponds

to the increase in the likelihood change.
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Figure 5.10: Plot of Mean Correlations on Training and Testing Data after every

EM Iteration in RSLDA model using Landmark features.

Comparing Figures 5.6 and 5.10, we clearly observe the benefits of RSLDA model

over SLDA. Instead of overfitting the topics, it builds a more generalized model.

We have evaluated RSLDA model over all the features using AVEC12 development

dataset and compared its performance against the SLDA model without regulariza-

tion. Table 5.11 contains results from regularized and unregularized SLDA models

from three different regressors. The regressor LR in Table 5.11 does not mean that

we have separately applied Linear regression but it means that we have directly used

the linear predictors generated by SLDA and RSLDA models. RSLDA gave the
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Figure 5.11: Cross correlation using RSLDA and SLDA models on AVEC12

development set videos.

Arousal LM LBPTop Audio

SLDA

LR 0.19 0.21 0.30

SVR-C 0.174 0.19 0.31

SVR-R 0.15 0.2 0.25

RSLDA

LR 0.19 0.23 0.335

SVR-C 0.18 0.229 0.322

SVR-R 0.154 0.221 0.29

Valence LM LBPTop Audio

SLDA

LR 0.25 0.29 0.18

SVR-C 0.26 0.28 0.18

SVR-R 0.23 0.26 0.14

RSLDA

LR 0.28 0.33 0.2

SVR-C 0.29 0.34 0.21

SVR-R 0.24 0.29 0.19

best performance over all features and Support Vector Regression with Cosine kernel

performed best among all the models.
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Comparison of RSLDA vs Supervised Dimension Reduction models

In Sections 4.1.4 and 4.2.2 we have compared performance of LDA and DGMM against

unsupervised dimension reduction techniques like PCA and KPCA. Since RSLDA is

a supervised technique it is prudent that we compare RSLDA model with supervised

dimension reduction techniques. We have considered two supervised dimension re-

duction techniques, 1) Correlation based Supervised Feature Selection (CSF) and 2)

Supervised PCA (SPCA). In CSF model we considered each dimension of the feature

sets LM, Audio and LBPTop separately and selected the features that are positively

correlated to the response or label space (arousal and valence). Supervised PCA

model was first proposed by Bair et al. [9] wherein the following methodology is used

to reduce the dimensions by including the labels in the process:

1. For each dimension of the feature space, build univariate regression models over

the responses

2. Consider a subset of features whose regression coefficients are greater than a

threshold t

3. Perform PCA on the subset of features

where we have used cross validation to select the threshold values t by modeling

arousal and valence separately.

We have plotted the mean cross correlations for all features using RSLDA, CSF

and SPCA models from AVEC12 dataset in Figure 5.12. The mean correlations have

been averaged across three regressors, the linear regression, support vector regression

with Rbf and with cosine kernels. The error bars indicate the standard deviations of

correlations from all three regressor. The results form Plot 5.12 show that RSLDA

model performs better than both CSF and SPCA models. The results also prove that
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RSLDA based topic features are stable across the board whereas the CSF and SPCA

based features have huge variance and indicate instability or noise in the feature

space.
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Figure 5.12: Plot of Mean Correlations on AVEC12 development data using

RSLDA, CSF and SPCA models. The results are averaged across three regressors.

Another observation we would like to make at this juncture is that the results in

Sections 4.1.4, 5.1.3 and 5.2.1 have shown that the Cosine Kernels have performed

very well in comparison to RBF kernels especially for the topic features. The reason

behind this is that cosine distance helps capture distances between density functions

and since topic features are Multinomial probability distributions, cosine kernels are

able to group features accurately. To generalize the performance of RSLDA model, we
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have also tested it using AVEC14 dataset with 50 training videos and 50 development

videos. Figure 5.13 contains the mean cross correlations across three regressors using

video and audio features. For this dataset we have used LGBP features described in

Section 3.1 as the video features and as with AVEC12 results, we can observe that

for RSLDA has again outperformed both CSF and SPCA models.
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Figure 5.13: Plot of Mean Correlations on AVEC14 development data using

RSLDA, CSF and SPCA models. The results are averaged across three regressors.

Multimodal Fusion

Until now we have tested topic features from different models on each base feature

individually. But we observe that certain modalities perform better for certain emo-

tions e.g. audio modalities performs better on arousal and video performs better on

valence dimension. To make use of the capabilities of both modalities we have tested
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Table 5.1: Multimodal fusion results from RSLDA model. V1 - LM, V2 - LBPTop

and A1 - Audio features

Dimension Arousal Valence

LR SVR-C SVR-R LR SVR-C SVR-R

V1 0.19 0.18 0.154 0.28 0.29 0.24

V2 0.23 0.229 0.221 0.33 0.34 0.29

A1 0.335 0.322 0.29 0.2 0.21 0.19

A1V1 0.27 0.23 0.24 0.27 0.28 0.25

A1V2 0.34 0.32 0.31 0.37 0.38 0.32

A1V1V2 0.367 0.364 0.273 0.39 0.38 0.3

RSLDA models by performing a multimodal fusion of audio and video features. By

fusion we mean that we have concatenated the features from different modalities and

trained the regression models one new combine features. Table 5.1 contains the re-

sults from multimodal fusion of RSLDA features on AVEC12 dataset. It can be seen

that the combined results of two modalities is better than the performance of the low-

est modality. E.g. the average correlation from A1V1 is 0.24 which is greater than the

performance of V1 with average correlation 0.174 for arousal prediction. The combi-

nation of Audio and LBPTop features has boosted the performance of both arousal

and valence. As pointed out earlier, Audio and LBPTop performed better on arousal

and valence respectively but their fusion boosted prediction of both dimensions.
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5.3 Conclusions

In this chapter, we have explored learning techniques that perform dimension

reduction conjointly with supervised learning. Supervised LDA models provide a

natural extension to unsupervised topic models by including the linear predictors for

regression within the model structure. Since we have considered continuous emotion

recognition we have used a SLDA with a Gaussian distribution error and showed

that they perform better than LDA models. Similar to a linear regression model,

SLDA overfits topics from training data onto the the emotions and this restricts

the generalizability of SLDA model. We thus proposed a regularized extension to

SLDA model by including hyper priors on the linear predictors. The new RSLDA

models have generalized very well in comparison to SLDA and we have also evaluated

RSLDA against some of the supervised dimension reduction techniques like SPCA.

Topic models have shown a lot of promise in reducing the dimensions as well as

improving the performance and at the same time by maintaining stability of the

features. Unlike other dimension reduction techniques or feature selection models,

RSLDA based topic features gave a stable performance across regressors and this is

very promising. Since certain modalities tend to model certain emotions better, we

used feature fusion to concatenate features from different modalities. This improved

the performance much more and the final results of RSLDA on arousal and valence

emotions have increased in comparison to all the results from individual modalities.

Throughout chapters 4 and 5 we have compared the results from different topic

models against other dimension reduction techniques. Even though the focus of this

research is to evaluate the performance of topic models as dimension reduction models,

we would like to discuss how these results compare to the state of the art models on

AVEC12 datasets. Nicole et al. [46] obtained the best results on the AVEC12 dataset
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with mean cross correlations of 0.35 and 0.644 for valence and arousal respectively.

They have used a fusion of appearance based AAM [18] features and audio features

and have accounted for the lag between predictions and actual labels. In this work

we have not concentrated on the lag between the predictions and the actual labels as

our aim has not been to maximize the results on a particular dataset.

In Chapters 4 and 5 we have discussed the application of topic models to emotion

recognition and we have assumed image features to be independent of each other.

But while building models for applications like emotion change detection, we cannot

make these assumptions. Thus in Chapter 6, we have proposed two temporal topic

models to perform change prediction. We have compared them with non temporal

topic models and PCA models and have shown that temporal models in fact perform

very well.

105



Chapter 6

TEMPORAL TOPIC MODELS

In Chapters 4 and 5 we discussed topic models in continuous and supervised settings

and have always assumed each multimodal document to be independent of the other.

This assumption is very restrictive in some applications like emotion change detection

where change can be modeled only by considering pair of documents. To handle such

scenarios, in this chapter we discuss two new topic models Adaptive Temporal Topic

Model (ATTM) and Supervised LDA for Change Detection (SLDACD) that factor in

the temporal dependencies between consecutive documents. We specifically created

these models to predict changes in emotions rather than the actual emotion values. In

applications like mental healthcare and criminal investigations, it is more important

to know when the changes in emotion occurs rather than the actual emotion that is

displayed.

The premise for work in this chapter is that changes in topic distributions of video

frames reflect changes in emotions and vice versa. But existing topic models LDA

and SLDA are non-temporal models and so the previous emotion or topic distribution

do not effect the topic extraction process. So two temporal topic models have been

proposed in this chapter one that models threshold based changes and the other that

models Cusum based changes. The first model is called the Adaptive Temporal Topic

model (ATTM) and the second one is the Supervised LDA for Change Detection

(SLDACD) model which are discussed below.
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Figure 6.1: Graphical model for ATTM model with explanation of notation used

6.1 Adaptive Temporal Topic Model (ATTM)

Adaptive Temporal Topic Model (ATTM) extracts topics from audio/video doc-

uments by adapting them to the changes in the human emotional state at each time

step. The presence or absence of a significant change in the emotion defines the

temporal dependencies between topics in two adjacent frames. Once the topics are

extracted as in other topic model based methods regression models are used to cal-

culate the emotions using the new topic features. These values are thresholded to

detect change. Figure 6.1 shows the graphical model of ATTM and the notations

used in this model. This topic model assumes that every document is part of a time

series and let t− 1 and t be two adjacent documents in a particular sequence. Most

of the variables are part of LDA model and have the same interpretation in ATTM

also.

The new variables that have been added in ATTM are eyt , δ
z
tδ
z
tδ
z
t and ezte

z
te
z
t . e

y
t is the emotion
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change indicator and takes a value of 1 when there is significant change in the emotion

state yt or 0 otherwise. δztδ
z
tδ
z
t is a vector of K Beta variables assigned to each document

where each δztk is the probability of selecting a topic k for the document t. The δztk’s

depend on the variables eyt , θt−1k and θtk. Each δztk ∼ Beta(αztk,β
z
tk) where αztk and

βztk are obtained from θt−1k and θtk. This calculation is explained in Section 6.1.2.

ezte
z
te
z
t is a vector of bernoulli variables (zeros or ones), where each eztk is sampled using

the probability δztk. Each eztk indicates whether the words in the document t can be

sampled from the topic k or not. ezte
z
te
z
t vector will be referred as Topic indicator vector.

In this model all the variables are hidden except for vvv, and eyeyey.

As in LDA and SLDA collapsed Gibbs sampling has been used to estimate variables

zzz and ezezez. The joint distribution of all the variables in ATTM is given by :

P (vvv,zzz, ezezez|ααα,βββ,eyeyey) = P (vvv|zzz,βββ)P (zzz|ezezez,ααα)P (ezezez|eyeyey) (6.1)

In the collapsed Gibbs sampling we use the joint distribution to sample a single

variable conditioned on remaining variables. We first sample the topic indicators ezezez

and then use these to sample the topics zzz. The Gibbs sampling algorithm for ATTM

is explained in Algorithm 9. A few details about the sampling equations are given in

the following sections. For a detailed derivation of these equations please refer to the

Appendix A.

6.1.1 Sampling zzz

Assuming that the ezezez vector is given, ztn is sampled for each word vtn in each

document t. In ATTM while the number of topics is K, the last topic K is used as

a dummy topic and the effective number of topics are only K − 1. Given a topic

indicator ezte
z
te
z
t , let k′k′k′ be a set such that k ∈ k′k′k′ if eztk = 1 i.e k′k′k′ is the set of topics

that are selected for this document. Using k′k′k′ a new Multinomial distribution θ̂t̂θt̂θt is
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Algorithm 9 ATTM Gibbs sampling algorithm

Input: vvv and eyeyey

Initialize all zzz to topics 1 to K using Uniform(1,K)

Initialize all ezezez to 0 or 1 using Bernoulli(0.5)

procedure Gibbs(I) . I is # of iterations

for iter = 1 to I do . Iterate till burn-in

for s = 1 to S do . Iterate over sequences

for t = 1 to T do . Iterate over documents

if t = 1 then

Sample z1z1z1 using LDA

else

for k =1 to K − 1 do

Sample eztk using Eqs (6.5) and (6.6)

end for

eztK = 1 . Always include topic K

for n = 1 to Nt do . Iterate over words

Sample ztn using Eqs (6.2), (6.3) and (6.4)

end for

end if

end for

end for

end for

Update the parameters θθθ and φφφ using expectations of (4.7) and (4.6 )

end procedure
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generated which is obtained as: IF k ∈ k′k′k′ then θ̂tk = θtk, IF k /∈ k′k′k′ then θ̂tk = 0 and IF

k = K then θ̂tk =
∑

k/∈k′k′k′ θtk + θtK . We observe that the new θ̂t̂θt̂θt is still a Multinomial

distribution and θ̂t̂θt̂θt ∼ Dir(αk
′

αk
′

αk
′
,
∑

k/∈k′k′k′ αk + αK). For the term w which is the nth word

in document t, the collapsed Gibbs formula for ztn is given by (ααα,βββ are ignored for

brevity):

P (ztn = k|zzz¬(tn), vvv,e
zezez, eyeyey) =

P (vvv,zzz, ezezez, eyeyey)

P (vvv,zzz¬(tn), e
zezez, eyeyey)

∝ P (vvv|zzz)

P (vvv¬(tn)|zzz¬(tn))

P (zzz|ezezez)
P (zzz¬(tn)|ezezez)

By expanding and deriving the above two ratios the following sampling equations are

obtained:

∀k 6= K,P (ztn = k|eztk = 0) ∼
nw¬k + βw∑

v 6=w
nvk + nw¬k +

V∑
v=1

βv

1

n¬t +
K∑
i=1

αi

(6.2)

∀k 6= K,P (ztv = k|eztk = 1) ∼

nv¬k + βw∑
v 6=w

nvk + nw¬k +
V∑
v=1

βv

nk¬t + αk

n¬t +
K∑
i=1

αi

(6.3)

If k = K,P (ztv = K) ∼

nw¬K + βw∑
v 6=w

nvK + nw¬K +
V∑
v=1

βv

nK¬t +
∑
k/∈k′k′k′

αk + αK

n¬t +
K∑
k=1

αk

(6.4)

where nw¬k is # of times the term w has been assigned to topic k excluding the current

assignment, nṽk is # of times the term ṽ has been assigned to topic k, n¬t is the total

# of terms in document t excluding the current term, nk¬t is # of times topic k has
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Figure 6.2: Illustration of how change in emotion effects the topic selection. x and y

are scaled values of θt−1k and θtk respectively.

been assigned to document t excluding the current assignment. The derivations of all

these three cases can be found in the Appendix A whose equivalents are derived as

Eqs A.13,A.14 and A.17.

6.1.2 Sampling ezezez

A topic indicator vector of a document indicates whether a topic should be used

in the document or not. In ATTM for every document t, a θtθtθt distribution is generated

using the Dirichlet distribution with ααα as the parameters. Before sampling the topics

from this distribution we want to calculate δztk’s which indicate the probability of

retaining the topic k in the document. The fundamental principle of ATTM is that,

If there is a significant change, retain topics that are ‘different’ from the previous

document. If not, retain topics that are ‘similar’ to the previous document. In the
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first case for a given topic k, we want δztk to be high when its topic probabilities θt−1k

and θtk are different. Similarly in the second case the value of δztk has to be high when

its topic probabilities are similar. Given the values of θt−1k and θtk, we calculate δztk

as follows:

Scale θt−1k and θtk to the range of [1,100]

Calculate αztk = |θt−1k − θtk| and βztk = 100-αztk

Case 1: Generate δztk ∼ Beta(αztk,β
z
tk)

Case 2: Generate δztk ∼ Beta(βztk,α
z
tk)

The above concept is illustrated in Figure 6.2. In the figure θt−1k = 0.66 and θtk = 0.4

and when there is a significant change in emotion we obtain δztk ∼ 0.25 which indicate

that there are less chances of selecting the topic k because they are very similar.

Similarly when there is no significant change in emotion δztk ∼ 0.75 that is there is

high probability of picking topic k as they are very similar. The Bernoulli variables

eztk for each topic k are then sampled using δztk as the probability. The vector ezte
z
te
z
t for

document t now indicates whether a topic need to be considered for the document.

The conjugacy between the Bernoulli variables ezte
z
te
z
t and Beta variables δztδ

z
tδ
z
t is used in the

derivation of sampling equations for eztk which are given by:

P (etk = 1) ∼
∏nk

t
s=0(αk + s)∏nt

s=n¬t
(
∑K

i=1 αi + s)

αztk
αztk + βztk

(6.5)

P (etk = 0) ∼ 1∏nt

s=n¬t
(
∑K

i=1 αi + s)

βztk
αztk + βztk

(6.6)

where nt is the total # of terms in document t, nkt is the # of times topic k has been

assigned to document t and n¬t is the total # of terms in document t excluding the

words that have been assigned to current topic. The detailed derivations for above

equations are given in Section A.2 and the corresponding equations are Eqs A.22,

A.23, A.24 and A.25. After calculating ezezez and zzz vectors θtθtθt and φkφkφk are estimated using

4.7 and 4.6. The θtθtθt distributions learned from training documents are used as their
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Figure 6.3: ROC curves of ATTM, LDA and TLTM topic models for Arousal,

Expectancy, Power and Valence (top-left to bottom-right) using Audio features and

Linear Regression for a threshold of 30.0

new features and the φkφkφk distributions are used to extract topics from unseen test

documents.

6.1.3 Experiments and Results

In continuous emotion recognition, an assumption that is usually made is that the

distribution of the emotion remains the same over a period of time. But this assump-

tion necessarily need not hold as the environment may effect the human cognition

which may create a drift from the expected behavior. Detecting these change points

have a two fold benefit, firstly action can be taken by whenever a change is detected,

secondly changes can be used to predict the actual emotion as well by training blocks

of cohesive distributions instead of using entire data. In this work we have explored
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Figure 6.4: Plot of change points extracted using threshold based approach. The

threshold used is Th = 20

change detection independent of emotion recognition and will later propose to com-

bine them for improving the emotion prediction accuracies. Given the features XtXtXt at

time t and the corresponding label Yt, change detection aims to find a t̂ such that

p(Yt|XtXtXt, t < t̂) 6= p(Yt|XtXtXt, t > t̂). But empirically annotating a stream of data with

change points for ground truth is a difficult task and there is no publicly available

emotion database that contains annotated change points. In this work we define two

ways to describe a change point, a) Threshold based and b) CuSum based which are

described below.

The AVEC 2012 dataset used for emotion recognition is used for change detec-

tion as well. While predicting changes in emotions a value 1 indicates that a major

change has occurred and 0 indicates that there has not been a significant change in

the emotion. Since the AVEC 2012 datasets is not annotated with changes we used a
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Threshold based methodology to annotate change. In this methodology, an nth emo-

tion time series YnYnYn (i.e. a video annotated with emotions at each frame) is considered

and the let minn and maxn be the minimum and maximum values of emotion in this

video. The entire range of values within [minn,maxn] is scaled to a uniform range

of [1,100] (please note that any range can be considered but we chose this one for

consistency throughout this work). The new set of emotions are considered and the

differences between consecutive values are calculated as Y diff
nt = Ynt − Ynt−1. For a

given threshold Th ∈ [1,100] all the points t̂ 3 Y diff

nt̂
> Th are considered as change

points. Figure 6.4 shows a sample of change points extracted for valence dimension

using a threshold Th = 20. The drawback of using this methodology is the selection

of a threshold which has to chosen empirically.

Each document in an audio sequence or a video is supplied with the intensity

of emotions in 4 dimensions. The differences in the intensities for each document

in comparison with its predecessor have been extracted. All these differences (from

training data) have been scaled to a range of [1,100] and a threshold is applied to

all documents. Documents whose difference exceeds the threshold is assigned 1 and

0 otherwise. Due to unavailability of ground truth, Area Under (ROC) Curve has

been used as a test metric. Due to imbalance in class sizes F1-Score is also used as a

comparative metric.

To train the topic models α= 0.1, β=0.02, γ=0.1 (a parameter for TLTM model), K=

30 have been used. These parameters can be varied but for a comparative analysis

of topic models these parameters have been chosen empirically. The threshold that

is used to indicate if a change has occurred or not, is also a parameter. The results

using different thresholds ranging from 10 (too many changes) to 50 (few changes)

are produced. Since LDA and TLTM are unsupervised, they are independent of the

dimensions and thresholds. Therefore we trained a single LDA and TLTM model
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each for all dimensions and thresholds. But since ATTM model takes the change in

the dimension intensity into the learning process and one model is for each dimension

and for each threshold has been learnt. {10,20,30,40,50} have been used as possible

thresholds and thus have trained 20 models to cover all dimensions and thresholds.

For each threshold the topic features are extracted from 31 training sequences using

three topic models followed by two regression algorithms viz Linear and Support

Vector regression (with Radial Basis Function Kernel) that are trained using the

topic features. These training models are then used to extract the topic features form

32 test sequences followed by affect dimension prediction by regression models. For

each combination of three topic models and two regression algorithms the TP (true

positive), FN (false negative), FP (false positive) and TN (true negative) on 32 test

sequences are extracted.

Audio Based Results

The sample ROC curves of the three topic models and Linear regression for a thresh-

old value of 30.0 are plotted in Figure 6.3. It can be observed that for this particular

threshold the proposed ATTM model has better area under curve for all the dimen-

sions. As shown in Table 6.1 (a), the AUC values of ATTM are greater than the

other two models irrespective of the regression algorithm and over all dimensions.

Also Linear regression has performed better than the SVR method for audio features.

In comparison to video, audio features performed better for the Power and Valence

dimensions (highlighted in red). We have also tested Linear regression by changing

the ridge parameter from 0 through 1000 but any noticeable change was not observed

in the performance. Since the number of changes (or 1’s) are very skewed compared

to the 0’s the F1 measures have been plotted along with the accuracies of predicting

changes for a threshold 20, in the left plot of Figure 6.5 (b). It can be seen that
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Figure 6.5: F1- Measures and Accuracies from AVEC data using Audio features

with Linear Regression, across all thresholds

the ATTM model performs better than other topic models in terms of F1 scores and

accuracies as well.

Video Based Results

The video based topic features were extracted using the same set of topic model pa-

rameters that have been used in modeling audio. The Areas Under Curve have been

calculated for all thresholds and the mean AUCs of video data over all dimensions

and thresholds is shown in Table 6.1. In contrast to audio features, for video, SVR

performed better than linear regression. This indicates that audio features have a
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Table 6.1: Mean AUCs obtained from ATTM , LDA and TLTM models on Audio

and Video data with Linear and SVM Regression (SVR). Mean and Variance are

calculated using AUCs across 5 thresholds.

Dimension TopicModel Mean AUC (Variance)

Linear SVR

Audio Video Audio Video

Arousal ATTM 70 (0.2) 50 (0.1) 68 (0.1) 85 (0.3)

LDA 65 (0.1) 49 (0.0) 65 (0.1) 63 (2.4)

TLTM 61 (0.1) 47 (0.1) 61 (0.1) 75 (2.5)

Expectancy ATTM 77 (0.3) 50 (0.1) 76 (0.1) 87 (0.9)

LDA 72 (0.1) 49 (0.0) 72 (0.2) 87 (0.9)

TLTM 62 (0.0) 51 (0.0) 61 (0.1) 87 (0.8)

Power ATTM 79 (0.2) 48 (0.1) 76 (0.1) 72 (0.0)

LDA 75 (0.1) 46 (0.1) 72 (0.0) 72 (0.0)

TLTM 74 (0.2) 46 (0.0) 70 (0.2) 72 (0.0)

Valence ATTM 80 (0.3) 49 (0.0) 63 (0.2) 60 (0.9)

LDA 60 (0.0) 48 (0.0) 62( 0.0) 49 (0.1)

TLTM 57 (0.1) 48 (0.0) 57 (0.0) 50 (0.1)

linear dependency on the emotions whereas video features have a non linear depen-

dency. In comparison to audio, video features performed better for the Arousal and

Expectancy dimensions (highlighted in red). It is interesting to observe that all the

topic models performed equally well for expectancy and power dimensions. One of

the reasons for this is that the frequency of changes in both power and expectancy

are very less compared to arousal and valence. Due to small number of change pre-

dictions to be made, the topic models have performed equally good. The F1 scores
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Figure 6.6: F1- Measures and Accuracies from AVEC data using Video features

with SVM Regression, across all thresholds

and accuracies of video features with SVR for threshold 20, are plotted in right plot

of Figure 6.6 (b). The ATTM model has better accuracies and F1-scores over the

other topic models. Although all the topic models gave the same AUC values for

expectancy and power, in Figure 6.6(b) we see that ATTM has higher F1 scores and

accuracies.

6.2 Supervised LDA for Change Detection (SLDACD) model

ATTM model is a complex model with many variables and the concept of dummy

topic assignment may have a negative effect past few iterations. If the sampling is
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Figure 6.7: Graphical model for SLDACD model with explanation of notation used

continued beyond certain number of iterations, there is a chance that all words are

assigned to the single dummy topic. To avoid this and to reduce the complexity we

proposed another topic model supervised LDA for change detection (SLDACD) which

is based on the supervised LDA discussed in Chapter 5.

Figure 6.7 shows the graphical model for SLDACD model with the notation. In this

model we assume that at a given time step, the change in emotion depends on both

current and previous normalized topic probabilities z̄t−1 and z̄t through the variable

δtδtδt. yt is the observed variable assuming 0 or 1 depending on whether change has

occurred, and is modeled as a Logistic function of δtδtδt and bbb where bbb are the regression

coefficients. For each topic k, δtk is calculated from zt−1k and ztk as: (i) Scale zt−1k

and ztk from [0, 1] to [min,max] where min,max > 1; (ii) Calculate the differences

a1 = |zt−1k − ztk| and a2 = max − a1; and (iii) Calculate δtk = a2/(a1 + a2). Note

that for each topic k, δtk is the expected value of the Beta(a1, a2) distribution. If

the topic probabilities zt−1k and ztk are very close then a1 increases and a2 decreases

and thus the distribution Beta(a1, a2) will be right-skewed with a mean that moves

towards 1 and vice versa. Thus δtk can be seen as the probability of zt−1k and ztk
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being similar. This topic wise similarity probability vector is used as feature vector

to predict change at current time step.

Similar to the one in SLDA, the conditional distribution of zzz over the rest of the

variables is given by:

p(zzz|ααα,βββ, σ2, vvv,yyy, bbb) ∝ p(vvv|zzz,βββ)p(zzz|ααα)p(yyy|zzz, bbb, σ2)

and the distribution of change indicator variable yt which is a logistic function over

the variables is given by

p(yt = 1|δtδtδt, bbb) ∼
1

(1 + e( − bbbδtδtδt))

Using the collapsed Gibbs Sampling approach discussed in Section 5.1.1 and [15], the

topic ztn of the nth word w of document t is sampled using the following equation:

p(ztn = k|vvv, yt, zzz¬tn, α, β) ∼ (n¬ntk + α)
(nwvk + β)

(nk + V β)
p(yt|δ¬wtδ

¬w
tδ
¬w
t , bbb)

where p(yt = 1|δ¬wtδ¬wtδ¬wt , bbb) ∼ 1/(1 + exp(bbbδ¬wt )exp(bk/Nt)). n¬ntk is the # of times topic

k is assigned to document t excluding current word, nwvk is the # of times the word

w is assigned to topic k and δ¬wtδ
¬w
tδ
¬w
t is the δtδtδt vector that does not include the current

topic assignment to the document. At the end of each Gibbs iteration, all of the zzz

are sampled and the δδδ vectors are calculated using the method described earlier. An

EM type of algorithm is used to estimate all the variables zzz, δδδ and bbb as follows:

E-Step: Variables zzz, δδδ are estimated

M-Step: Coefficients bbb are estimated using Logistic regression over (δtδtδt, yt) pairs.

6.2.1 Experiments and Results

AVEC12 dataset has been used for evaluation SLDACD model on emotion change

detection. Unlike ATTM model that specifically works for threshold based change
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Figure 6.8: Plot of change points extracted using CuSum based approach. The

confidence used is Conf = 99%

detection, SLDACD is used to model annotations that consider the entire sequence.

We annotated the dataset using a method called CuSum which is detailed below.

CuSum based change annotation:

CuSum stands for Cumulative Summation and this methodology is used to extract

change points by cumulatively summing the emotions and was proposed by Wayne

[65]. For an nth emotion time series YnYnYn, the cumulative sums SnSnSn are calculated as

Snt = Snt−1 + Ynt − Ȳn where Ȳn is the mean of current video/series and Sn0= 0. A

statistic Sn,diff = Sn,max − Sn,min is calculated for each video YnYnYn and its bootstrap

samples Y boot
nY
boot
nY
boot
n (permutations of the original sequence YnYnYn ). For a given confidence

level Conf the statistic Sn,diff is compared with the statistics Sbootn,diff and confidence

is calculated as 100 ∗ (#of samples whose statistic Sboot
n,diff<Sn,diff )

(# of bootstrap samples )
. If this confidence is greater
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Figure 6.9: Plot of change points extracted using CuSum based approach on arousal

and valence for the same video

than the required confidence Conf then a change is assumed to have occurred. And

the change point is calculated as t̂ = max
t
|Snt| i.e. the time step that has the maxi-

mum value of statistic. This implies that a change point is one that has the maximum

amount of change over the average in comparison to the rest. Once a change point t̂

is extracted the series is split to two sub-series and recursively the change points are

extracted from each of the sub-series.

Figure 6.8 shows the plot of change points extracted using the CuSum algorithm.

There are many difference between the threshold and Cusum based approaches.

Firstly Cusum is more unsupervised approach where the selection of a threshold

is not needed. Secondly while threshold based method only uses the emotion from

previous time step, this approach uses the average information from entire series.

123



So threshold approach can handle streaming data but Cusum requires batch data.

Another interesting observation regarding Cusum method is that for many videos,

most of the change points detected for arousal were matching with those detected for

valence. This implies that the dimensions are very correlated in terms of changes in

the signals. A sample plot for a given video is shown in Figure 6.9 where the green

lines indicate the change points that have matched for both arousal and valence.

Figure 6.10: ROC curves of topic models in comparison to baseline and PCA

features for Arousal and Valence using Audio and Video features
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Results

In this work only arousal and valence have been considered as they are considered to

be more informative. We have used LDA, sLDA, TLTM [34] (a topic model where

the current word is influenced by both θtθtθt and θt−1θt−1θt−1), the proposed SLDACd, PCA and

Baseline (B) methods. SVM Regression with Radial basis function (SVRR) kernel

has been used with the baseline and PCA features to predict the emotions. SLDACd

predicts 0/1 directly and for other topic models the topic features and δtδtδt are calculated

for each document and then used logistic regression for predictions. For Baseline and

PCA methods, we used the actual predictions of arousal and valence and extracted

changes at different confidence intervals.

The ROC curves are shown in Figure 6.10 with the AUC values in parentheses next to

the corresponding model. It can be observed that the Baseline and PCA methods do

not perform as well as topic models on change detection, indicating that they possibly

do not predict variations in emotions. This is in line with the results and discussion

given in Table 4.11 which indicate that the predictions by PCA are so small that the

changes are not considered to be significant. The proposed SLDACD method gave

the best AUC values for most dimensions except for arousal-audio and valence-video

where it performed equally as good as LDA and SLDA. The inclusion of temporal

information helped SLDACD to outperform LDA and SLDA and the inclusion of

changes into the model in a semi-supervised fashion helped in performing better than

TLTM model.

6.3 Conclusions

In this chapter, two new topic models have been proposed, the inference equations

have been derived and they have been evaluated for emotion change detection. Two
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models, ATTM and SLDACD have been used to model local and global changes in the

response variables. We have compared their performance against non temporal topic

models and other dimension reduction techniques and have shown that these models

outperform in their evaluation over change detection. The models and evaluation

presented in this chapter have been published at IEEE ICME [35] and NIPS Workshop

on Topic Models [36].
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Chapter 7

OTHER CONTRIBUTIONS

In Chapters 4 through 6 we have presented and evaluated graphical models over

emotion recognition and change detection applications. While we have worked on

the theoretical aspects of the pattern recognition models, we also contributed to the

Social Interaction Assistant project for people who are blind. This project has been a

motivating factor that enabled us to work on emotion recognition and also look into

the structure of topic models. In Section 7.1, we will discuss implementation details

of a real time emotion recognition system we have built. Another outcome of this

research is Java API specifically developed for using Probabilistic topic models for

video analysis and we will discuss this ins Section 7.2.

7.1 Social Interaction Assistant

Social Interaction Assistant is a flagship project undertaken at Cognitive Ubiqui-

tous Computing Center (CUbiC) [1] to assist people who are visually impaired in their

daily social interactions. Most of the non verbal cues, gestures, emotions and facial

expressions that are taken for granted during our conversation are in fact extremely

important in guiding our social and personal well being. People who are blind do not

have access to this information and there by miss out on many social cues that occur

during our conversations, meetings and in public life. Sreekar et al. [32] have done a

requirement analysis where blind users have indicated the importance of technologies

that they want to have to improve their social well being, Taking cues from these

findings we learnt that one of the top priority of blind users was to know the facial

expressions and emotions of other people. Thus we went ahead to build an Assistive
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Figure 7.1: System Architecture of the Social Interaction Assistant Project

technology which could help blind users with understanding and perceiving other’s

emotion states.

7.1.1 System Architecture

We have designed the system architecture for the Social Interaction Assistant

(SIA) project as shown in Figure 7.1. The main software of this project is integrating

into a Mobile Application that can run on the blind user’s smart phone. This device

can be placed on the table top set up and the mobile device will track the faces of

people with whom the blind user may be having a conversation with or may be in-

terested in. The faces that are tracked are communicated to an Emotion recognition

engine that can run on any system with sufficient computing power. It should be

noted that in future we will be including the engine in the mobile device itself but
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this may need the device to have much more computing and battery power. The

recognition engine extracts faces from the images and executes fast and reliable emo-

tion recognition algorithms and detects the facial expressions. It then communicates

the emotions to the third key component of the application which is Haptic based

chair that will vibrate certain patterns that can appropriately deliver the emotion to

the user.

We have used Android Development Toolkit to develop the Mobile Application.

There are three primary modules within the application, 1) Face Tracker, 2) Device

vibrator, and 3) Image Communicator. The Face Tracker tracks and detects faces

and we have used OpenCV API to achieve this. In order to help the blind user to

fixate on a particular person, we vibrate the device in certain patterns to indicate

the facial position with respect to the camera. Finally, the device captures the facial

images and communicates to the engine through bluetooth.

Emotion Recognition Engine

Figure 7.2 describes various components of the Emotion Recognition Engine where the

the input comes from the mobile device and the output goes to the Haptic chair. The

engine continuously polls for images and extracts two different features, 1) geometric

features (based on facial landmarks), and 2) appearance features (LBPTop). Once

these features are extracted they are passed on to the emotion classification models

that can clarify the current image. In this application we have used Naive Bayes and

Support Vector Machines as the classifiers for geometric and appearance features.

We have used the Intraface API [66] to extract landmarks and LBPTop API [41] to

extract LBPTop features. Since it is not meaningful to used the landmarks directly,

we have devised a way to extract features from the landmarks.
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Figure 7.2: Various Components Within the Emotion Recognition Engine

We have extracted a set of 36 (18x2) measurements from the landmark features

which are displayed in Figure 7.3. We calculated the distances and the angles between

the 18 points shown in the picture. From every frame we extract 36 features and then

we find the ratios of the changes in 36 measurements in comparison to a neutral

frame. Since it is difficult to obtain a neutral frame for every person we picked up a

single neutral frame as reference and trained all our models on those features. This

helped us work around the problem and to avoid the scaling, we normalized and scaled

every image to the size and scale of neutral image. For LBPTop features, we need a

sequence of images and thus we used the preceding 7 frames and extracted the voxel

features of a total size 2832 which are obtained from 16 blocks, 3 dimensions and

59 LBP patterns. We used the Cohn Kanade Plus [40] dataset to train classifiers on

these features with 7 discrete emotions, anger, happy, disgust, surprise, sad, contempt
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Neutral Peak

Figure 7.3: Different Features Extracted from Facial Landmarks

and fear. We have used Naive Bayes classifier for landmark features and SVM for

LBPTop features.

We performed a 3 fold cross validation for each classifier and we achieved 89%

and 100% classification accuracies using Landmark and LBPTop features respectively.

Since LBPTop features performed better we have included them in the engine. We

have also retained landmarks based classifier so that in cases where we may need both

classifiers to enhance the performance. McDaniel et al [43] have worked extensively

on haptic patterns that can best convey human emotions and the emotions detected

by the engine are communicated to the chair using the patterns explained in [43].

We have a working prototype for the Social Interaction assistant device and we will

be performing user studies so that we can get feedback from the blind users and can

improve upon the existing features.
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7.2 Java API for Topic models for Video Analysis

In this thesis, we have proposed and developed several graphical models to perform

video analysis. A major roadblock in implementing or using existing code is the need

for consistency across models and inference techniques. There are many open source

Latent Dirichlet Allocation based Packages like StanfordNLP (Scala) , Mallet Toolbox

(Java), LDABlei (C++) and CRanTopicModels (R) that are available. But since each

of them had only particular implementation of certain model in different programming

language, it is very difficult to compare and replicate results. And none of these have

been written specifically to address video datasets and features. This has motivated

us to implement all the topic models from the scratch and it was very useful while

benchmarking our results.

7.2.1 Package Structure

We have developed an open source Java based API that contains Map-Reduce

based implementations of different topic models . Since our research is about super-

vised learning, we have also developed wrappers for different regression and classi-

fication models based on the open source machine learning package Weka [7]. The

major packages and the classes are shown in Figure 7.4. The Dimension Reduction

package contain implementations for all the topics models we have presented in this

work, LDA, SLDA, RSLDA and DGMM models. We have also implemented PCA

and GMM models as one of the dimension reduction techniques. Since each of these

are probabilistic models with different inference techniques, we have implementations

for Gibbs based sampling and Variational EM algorithms for LDA, SLDA and GMM.

This will help researchers to benchmark different algorithms at a go.
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Figure 7.4: Package Structure in Topic Models Java API.

The API also contains another package for regression models like Support Vector

Regression, Bagged methods, Linear Regression etc. It should be noted that these

are just wrappers for Weka API and we have not implemented the models in general.

Since many of these methods may need different Kernels and distances we have im-

plemented Histogram Intersection, Cosine, KL Divergence distance based kernels. To

reduce the hassle of providing parameters for each algorithm in a different format, we

have created a Parameters.properties file where users can fill in the needed features,

parameters and model names and the required models are then automatically loaded.

For example to run the LDA model on LBPTop features with 10 topics, α = 0.1 and

10 iterations we fill in the properties file as:

baseFeature = video, lbptop

dimensionReduction = LDAVB_10_10_0.1
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Figure 7.5: Parameters properties file that can be used to specify any features,

options and models

phase = dimreduction

Since we have implemented the EM algorithms using a map-reduce framework, users

will benefit from multi core or multi node systems or super computing machines

where documents are shared between the cores. It has to be noted that some of the

algorithms like Gibbs sampling where the sampling a document depends on the rest

of corpora, we will not be able to take advantage of parallel systems. The API allows

for threes phases, viz. training, texting and dimension reduction but the user needs

to ensure that the required phases have been executed in the required sequence. In

Chapter 8 we will summarize all the work done as part of this thesis and propose

some future work in this area of research.
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Chapter 8

CONCLUSIONS

With increasing availability of multi modal data over the web and through publicly

collected datasets, there is a dire need to analyze the corpus using reliable and faster

techniques. Like text and web data, video and audio features are very high dimen-

sional and contain information that may not be relevant to the task at hand. These

tasks could be activity recognition, emotion recognition, video retrieval or clustering.

In this thesis we have focused our attention on Continuous emotion recognition where

the predicted values are continuous emotion dimensions, arousal and valence, and the

predictions are made at every frame of a video.

Dimension reduction plays a very important role in understanding features and

training regression models. In this thesis we have touched upon a new framework

for dimension reduction based on probabilistic topic models. Latent Dirichlet Alloca-

tion is a dimension reduction technique proposed for text datasets to achieve efficient

clustering of documents. We have applied these models to the context of dimension

reduction of multimodal video data. In Chapter 4 we discussed the graphical structure

of topic models and the learning and inference methodologies estimate parameters.

We discussed the Variational Expectation maximization technique in detail and have

illustrated a Map-Reduce framework to implement it. We have then shown that the

new topic features extracted from various video and audio features can be interpreted

and visualized. In Section ?? we have provided evidence to show that LDA outper-

forms traditional PCA technique in the context of continuous emotion recognition.

Along with PCA which is a linear projection model, we have also compared LDA to
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KernelPCA which is non linear version of PCA. LDA has shown better performance

in comparison to KernelPCA models also.

Since LDA models cannot handle continuous features which occur in most of video

and audio data, we have proposed a new Dirichlet Gaussian Mixture Model (DGMM)

that can be used without quantizing features. DGMM assumes a continuous proba-

bility density for the topic-term space and we derived the Variational EM equations to

infer the parameters. We have shown that DGMM which falls under the category of

techniques like PCA that work on continuous feature space, has again outperformed

PCA model. And we have also see that DGMM gave comparable performance to

LDA for emotion recognition though the model training is extremely slow when com-

pared to LDA model. Dimension reduction techniques project data to a space where

the the variance between the features is maximized but they don consider the label

or response space. There has not been much work done in the area of supervised

dimension reduction for multi modal data where the response variable is continuous.

In Chapter 5 we have given details about Supervised LDA model (SLDA) which is a

supervised extension to LDA model.

SLDA models the continuous response variable within its graphical structure as

a linear combination over the empirical topic distributions. We have derived the

Variational EM inference for SLDA and illustrated the likelihood changes and the

effect of EM algorithm on the training error. We evaluated SLDA models on the

Avec12 dataset and have shown that they consistently do better than LDA across all

features , regressors and dimensions. Since SLDA model tends to overfit topics to

emotions, we have incorporated regularization into SLDA’s graphical structure called

RSLDA (Regularized SLDA). In Section 5.2 we derived the EM equations for the

RSLDA model where we included the hyper prior parameters in inference. We have

illustrated how the inherent structure of RSLDA ensures a better generalization than
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SLDA model. We have evaluated arousal and valence prediction for RSLDA model

in Section 5.2.1.

Since RSLDA is a supervised model we compared its performance with two su-

pervised reduction techniques, Correlation Based Supervised Feature selection (CSF)

and Supervised PCA (SPCA) models. In Section 5.2.1 we have validated that RSLDA

performs very well in comparison to both CSF and SPCA models. Throughout our

studies we have found an inherent pattern that video based topics tend to perform

well for valence prediction and audio topics for arousal. To make use of this pattern

we have multimodal fusion of topic features from audio and video modalities. The

results are extremely encouraging and we were able to achieve good performance on

both arousal and valence prediction.

Other outcomes of this work have been creating a Social Interaction Assistant

application for people who are visually blind where we convey the behavior state of

people to visually impaired through emotion recognition models and haptic interface

devices. We have built a Mobile Application that can decipher the emotions and send

the information to blind users. Another major outcome of this work is a Java API for

Topic models specifically tuned to video data. We have made it available to public

through GitHub [4] which can be used to train different topic models discussed in

this thesis for various applications at hand.

In Chapter 6 we have introduced two new topic models Adaptive Temporal Topic

model (ATTM) and Supervised LDA for Change Detection (SLDACD) model. In

Chapters 4 and 5 we have evaluated models for emotion recognition but emotion

change detection is another promising application. In Chapter 6 we have addressed

emotion change detection using topic models where we have incorporated the tem-

poral component into the model. We have modeled pairs of documents instead of

considering them independent and used two different generative models to learn the
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relationship between topic changes and emotion changes. ATTM and SLDACD, each

have performed better than the non temporal topic models and PCA in detecting

changes to emotions.

Along with these theoretical contributions, in Chapter 7, we have discussed two

other outcomes of this thesis. We have developed a Social Interaction Assistant

device that assists people who are blind. At the core of this device lies the emotion

recognition engine where we have trained classification models on 7 discrete emotions

using CKPlus database [40]. Another outcome of this research is Java API that

contains topic model implementations. All the models that have been evaluated have

been made available to research community along with API for supervised learning

specific to video and audio data.

8.1 Future Work

There is a lot of learning and a lot of scope in the application of topic models

to video analysis. Its graphical structure is very useful that we can incorporate the

modalities and components that are needed by the application at hand. Some of the

models that we have not explored in this thesis are topic models that can consider the

spatial relationships between features and supervised continuous topic models. There

is lot of promise in application of topic models as dimension reduction techniques for

video data and this thesis evaluated this promise and proved it to be correct.

In Chapter 4 we have discussed continuous unsupervised models but were not able

to extend it to a supervised setting due to the time it takes to extract topic features.

In future we would like to improve this model by 1) modeling groups of continuous

features instead of single features, 2) providing an online learning mechanism that

can update parameters by feeding in one document after other, and 3) developing a
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supervised continuous model that has the advantages of both RSLDA and DGMM

models.
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Figure 8.1: Graphical Structue of Multi Modal Supervised LDA Model.

Regularized Multimodal SLDA model:

At the end of Section 5.2.1 we have evaluated multimodal fusion of features and

their good performance has motivated us to think of a new multi modal topic model.

Researchers have worked on multi modal topic models earlier [48] but in the context

of image annotation where one modality is the image and the other modality contains

text labels. And the generative model assumes that the actual topics are related to
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the labels and the labels generate image features. But in the context of multimodal

video analysis we need to model audio and video models jointly as shown in Figure 8.1.

By analyzing the multimodal fusion results from Section 5.2.1, it can be noted that

LR regressor has performed the best and for RSLDA when we say LR it does not mean

a separate regression but the linear regressor within the RSLDA model. This indicates

that the linear predictors within RSLDA model perform better when topics from

different modalities are combined. This gives an interesting idea about a probable

extension of RSLDA model to a Multimodal model which we call the Regularized

Multimodal SLDA (RMMSLDA). Even though we have not tested this model we

would like to close this section by introducing the model’s structure. Multimodal

Topic model shown in Fgiue 8.1 extends the structure of RSLDA model but we find

a new plate notation and a new variable M . M is the number of feature modalities

being considered, e.g. if LM, LBPTop and Audio, all three are considered then M = 3.

Thus every document is indexed by the feature id m and then the document id n.

The Variational EM algorithm will be similar to RSLDA model but the major change

would be that while calculating the linear predictors bbb we will consider the empirical

topic features from all modalities. We have not implemented this model but would

like to explore these models in future.

In this thesis we have restricted our analysis to emotion datasets but we would like

to extend our evaluation to other datasets like activity recognition, image retrieval

and video clustering in future.
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APPENDIX A

GIBBS SAMPLING FOR ATTM
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In this Appendix the Gibbs sampling equations (6.5), (6.6), (6.2), (6.3) and (6.4)
corresponding to the ATTM model discussed in Chapter 6 are derived in detail. The
joint distribution of all the variables in ATTM is given by :

P (vvv,zzz, ezezez|ααα,βββ,eyeyey) = P (vvv|zzz,βββ)P (zzz|ezezez,ααα)P (ezezez|eyeyey) (A.1)

In order to derive the collapsed Gibbs sampling equations for zzz and ezezez, the three
terms in the right hand side need to be derived.
The first term of Eq A.1, P (vvv|zzz,βββ) is given by:

P (vvv|zzz,βββ) =

∫
P (vvv|zzz,φφφ)P (φφφ|βββ)dφφφ

=
K∏
k=1

∫ V∏
v=1

(φkv)
nv
k

1

B(βββ)

V∏
v=1

(φkv)
βvdφkφkφk

=
K∏
k=1

∫
B(nknknk + βββ)

B(β)β)β)

1

B(nknknk + βββ)

V∏
v=1

(φkv)
nv
k+βvdφkφkφk︸ ︷︷ ︸

Dir(φkφkφk;nknknk+βββ)

=
K∏
k=1

B(nknknk + βββ)

B(β)β)β)
(A.2)

The second term of Eq A.1, P (zzz|ezezez,ααα) is given by:

P (zzz|ezezez,ααα) =
T∏
t=1

∫
P (ztztzt|θtθtθt)P (θtθtθt|ezte

z
te
z
t ,ααα)dθtθtθt (A.3)

In the above equation P (ztztzt|θtθtθt) is the multinomial distribution but to calculate the
second term P (θtθtθt|ezteztezt ,ααα) we use ezte

z
te
z
t to transform the dirichlet distribution P (θtθtθt|ααα)).

As an example let K = 5 be the number of topics and ezte
z
te
z
t = (1, 0, 0, 1, 1) , then

θtθtθt = (θt1, θt2, θt3, θt4, θt5) is transformed into (θt1, θt4, θt2+θt3+θt5) i.e. θtθtθt is tranformed

to θ̂t̂θt̂θt = (θk
′
tθ
k′
tθ
k′
t , (
∑

k/∈k′k′k′ θtk) + θtK) where K is the dummy topic and k′k′k′ are the indices
of topics to be retained in the current document. Using the aggregation property of
Dirichlet distribution we have

(θk
′

tθ
k′

tθ
k′

t , (
∑
k/∈k′k′k′

θtk) + θtK)︸ ︷︷ ︸
θ̂t̂θt̂θt

∼ Dir(θ̂t̂θt̂θt; (αk
′

αk
′

αk
′
,

α¬k
′k′k′︷ ︸︸ ︷

(
∑
k/∈k′k′k′

αk) + αK)︸ ︷︷ ︸
α̂̂α̂α

) (A.4)

and thus P (θtθtθt|ezteztezt ,ααα) is transformed to P (θ̂t̂θt̂θt|α̂̂α̂α). Expanding Eq A.2 we have,

P (zzz|ezezez,ααα) =
T∏
t=1

∫ ∏
k∈k′k′k′

θ
nk
t
tk ((

∑
k/∈k′k′k′

θtk) + θtK)n
K
t

∏
k∈k′k′k′ θ

αk−1
tk ((

∑
k/∈k′k′k′ θtk) + θtK)α

¬k′k′k′−1

B(α̂̂α̂α)
dθtθtθt

=
T∏
t=1

B(nk
′
tn
k′
tn
k′
t +αk

′
αk
′

αk
′
, nKt + α¬k

′k′k′)

B(α̂̂α̂α)
(A.5)
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The third term of Eq A.1, P (ezezez|eyeyey) is given by:

P (ezezez|eyeyey) =
T∏
t=2

∫
P (ezte

z
te
z
t |δztδ

z
tδ
z
t )P (δztδ

z
tδ
z
t |e

y
t , θt−1θt−1θt−1, θtθtθt)dδ

z
tδ
z
tδ
z
t (A.6)

While P (ezte
z
te
z
t |δztδztδzt ) is a product of K bernoulli distributions, P (δztδ

z
tδ
z
t |e

y
t , θt−1θt−1θt−1, θtθtθt) is calculated

for two cases , eyt = 0 and eyt = 1.
Case 1 (eyt = 0):
If eyt = 0 then yt−1 is not similar to yt and so uncommon topics have to be retained
i.e. δztk ∼ 1 ∀k ∈ uncommon topics and δztk ∼ 0 ∀k ∈ common topics. Define

αztk = |θ̂tk− θ̂t−1k|+ 0.0001 and βztk = 100−αztk. In these calculations the use of 100 is
not mandatory and any value can be used depending on the range to which θ values
are scaled and in this work they have been scaled to lie between 0 and 100. 0.0001
has been used to represent an infinitesimal value to avoid αztk = 0.
Case 2 (eyt = 1):
If eyt = 1 then yt−1 and yt are almost similar and thus common topics have to be
retained i.e. δztk ∼ 1 ∀k ∈ common topics and δztk ∼ 0 ∀k ∈ uncommon topics. Define

βztk = |θ̂tk − θ̂t−1k|+ 0.0001 and αztk = 100− βztk
Once αztk and βztk are calculated ∀k, we can estimate:

P (δztδ
z
tδ
z
t |e

y
t , θt−1θt−1θt−1, θtθtθt) =

K∏
k=1

P (δztkδ
z
tkδ
z
tk|αztk, βztk)︸ ︷︷ ︸

Beta(δztk;αz
tk,β

z
tk)

where each of the probabilities in the product are calculated using Beta distributions.
Using the above equation we can calculate P (ezezez|eyeyey) as follows:

P (ezezez|eyeyey) =
T∏
t=2

K∏
k=1

∫
P (eztk|δztk)P (δztk|αztk, βztk)dδztk

=
T∏
t=2

K∏
k=1

∫
δ
eztk
tkz(1− δ

z
tk)

1−eztk
δ
αz
tk−1

tk (1− δztk)β
z
tk−1

B(αtk, βtk)
dδtkz

=
T∏
t=2

K∏
k=1

∫
B(αztk + eztk, β

z
tk − eztk + 1)

B(αztk, β
z
tk)

(δztk)
αz
tk+eztk−1(1− δztk)β

z
tk−e

z
tk

B(αztk + eztk, β
z
tk − eztk + 1)︸ ︷︷ ︸

Beta(δztk;αz
tk+eztk,β

z
tk−e

z
tk+1))

dδztk

=
T∏
t=2

K∏
k=1

B(αztk + eztk, β
z
tk − eztk + 1)

B(αztk, β
z
tk)

(A.7)

The following sections contain the derivations for sampling zzz and ezezez that correspond
to the word and document levels respectively.

A.1 Sampling zzz

Using collapsed Gibbs sampling the probability of sampling ztn is conditioned on
the rest of the topic assignments and is given below. For brevity α and β have been
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ignored. Let w be the nth word in the document t, k is the topic assigned to this
word.

P (ztn = k|zzz¬(tn), vvv,e
zezez, eyeyey) =

P (vvv,zzz, ezezez, eyeyey)

P (vvv,zzz¬(tn), e
zezez, eyeyey)

∝ P (vvv|zzz)

P (vvv¬(tn)|zzz¬(tn))︸ ︷︷ ︸
a

P (zzz|ezezez)
P (zzz¬(tn)|ezezez)︸ ︷︷ ︸

b

(A.8)

Evaluating the expression a of Eq A.8: Using Eq A.2 and retaining only topic k we
have:

P (vvv|zzz)

P (vvv¬(tn)|zzz¬(tn))
=

B(nknknk + βββ)

B(βββ)
/
B(n¬kn¬kn¬k + βββ)

B(βββ)

=
Γ(nwk + βw)

Γ(nw¬k + βw)

Γ(
∑

v 6=w n
v
k +

∑
v βv + nw¬k)

Γ(
∑

v n
v
k +

∑
v βv)

where nwk is no of times term w has been assigned to topic k

and nw¬k is no of times term w has been assigned to topic k

excluding current assignment, ∴ nw¬k = nwk − 1

=
Γ(nw¬k + 1 + βw)

Γ(nw¬k + βw)

Γ(
∑

v 6=w n
v
k +

∑
v βv + nw¬k)

Γ(
∑

v 6=w n
v
k +

∑
v βv + nw¬k + 1)

=
nw¬k + βw∑

v 6=w n
v
k +

∑
v βv + nw¬k

(A.9)

Evaluating the expression b of Eq A.8: As mentioned earlier let w be the nth word in
the document t, k is the topic assigned to this word and k′k′k′ is the set of topics retained
in current document t. There are three cases to be considered, eztk = 1 and eztk = 0
depending on whether the current topic k is retained or not respectively and k = K
i.e. if the topic is the dummy topic.
Case 1 (eztk = 1 i.e. k is retained):
Using Eq A.5 and the notation defined in Eq A.4 we have:

P (zzz|ezezez)
P (zzz¬(tn)|ezezez)

=
B(nk

′
tn
k′
tn
k′
t +αkαkαk, nKt + α¬k

′k′k′)

B(α̂̂α̂α)
/
B(nk

′
¬tnk
′
¬tnk
′
¬t +αk

′
αk
′

αk
′
, nKt + α¬k

′k′k′)

B(α̂̂α̂α)

=
Γ(nkt + αk)

Γ(nk¬t + αk)

Γ(
∑K

i=1 αi + n¬t)

Γ(
∑K

i=1 αi + nt)

(where n¬t is the no of terms in t without w)

(and nt is the no of terms in t including w)

=
nk¬t + αk∑K
i=1 αi + n¬t

(A.10)
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Case 2 (eztk = 0 i.e. k is not retained):

P (zzz|ezezez)
P (zzz¬(tn)|ezezez)

=
Γ(
∑K

i=1 αi + n¬t)

Γ(
∑K

i=1 αi + nt)

=
1∑K

i=1 αi + n¬t
(A.11)

Case 3 (k = K i.e. k is the dummy topic):

P (zzz|ezezez)
P (zzz¬(tn)|ezezez)

=
Γ(nKt +

∑
i/∈k′k′k′ αi + αK)

Γ(nK¬t +
∑

i/∈k′k′k′ αi)

Γ(
∑K

i=1 αi + n¬t)

Γ(
∑K

i=1 αi + nt)

=
nK¬t +

∑
i/∈k′k′k′ αi + αK∑K

i=1 αi + n¬t
(A.12)

Substituting all the above results in the Eq A.8 and considering the 3 cases discussed
above, we have the following sampling equations for ztn:
Case 1 : etk = 0 and k 6= K
Substituting Eqs A.9 and A.11 for expressions a and b respectively in Eq A.8 we have:

P (ztn = k|zzz¬(tn), vvv,e
zezez, eyeyey) =

nw¬k + βw∑
v 6=w

nvk +
∑
v

βv + nw¬k

1
K∑
i=1

αi + n¬t

(A.13)

Case 2 : etk = 1 and k 6= K
Substituting Eqs A.9 and A.10 for expressions a and b respectively in Eq A.8 we have:

P (ztn = k|zzz¬(tn), vvv,e
zezez, eyeyey) =

nw¬k + βw∑
v 6=w

nvk +
∑
v

βv + nw¬k

nk¬t + αk
K∑
i=1

αi + n¬t

(A.14)

Case 3 : k = K
Substituting Eqs A.9 and A.12 for expressions a and b respectively in Eq A.8 we have:

P (ztn = K|zzz¬(tn), vvv,e
zezez, eyeyey) =

nw¬K + βw∑
v 6=w

nvK +
∑
v

βv + nw¬K

nK¬t +
∑
i/∈k′k′k′

αi + αK

K∑
i=1

αi + n¬t

(A.15)

A.2 Sampling ezezez

As described in the previous section, we again use collapsed Gibbs sampling to
evaluate the probability of the random variable eztk as described below.

P (eztk|eze
zez¬tk, zzz,vvv,eyeyey) =

P (vvv,zzz, ezezez, eyeyey)

P (vvv,zzz, ezezez¬tk, e
yeyey)

∝ P (zzz|ezezez)
P (zzz¬tk|ezezez¬tk)︸ ︷︷ ︸

a

P (ezezez|eyeyey)
P (ezezez¬tk|eyeyey)︸ ︷︷ ︸

b

(A.16)
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where zzz¬tk is the set of all topic assignments in document t except those that have
been assigned topic k.
Evaluating the expression a of Eq A.17:
Case 1 : eztk = 1 Expanding the formula in Eq A.10 we have

P (zzz|ezezez)
P (zzz¬tk|ezezez¬tk)

=
Γ(nkt + αk)

Γ(αk)

Γ(
K∑
i=1

αi + n¬t)

Γ(
K∑
i=1

αi + nt)

(where n¬t is the no of terms in t excluding those assigned to k)

=

∏nk
t
s=0(αk + s)∏nt

s=n¬t
(
K∑
i=1

αi + s)

(A.17)

(A.18)

where Γ(a + b) =
(∏b

i=0(a+ i)
)

Γ(a) is used to derive the above equation. Case 2 :

eztk = 0 Again expanding the formula in Eq A.10 we have

P (zzz|ezezez)
P (zzz¬tk|ezezez¬tk)

=

Γ(
K∑
i=1

αi + n¬t)

Γ(
K∑
i=1

αi + nt)

=
1∏nt

s=n¬t
(
K∑
i=1

αi + s)

(A.19)

Evaluating the expression b of Eq A.17:
Using the Eq A.7 and ignoring all terms except for those that correspond to t and k,
the expression b becomes:

P (ezezez|eyeyey)
P (ezezez¬tk|eyeyey)

∝ B(αztk + eztk, β
z
tk − eztk + 1)

B(αztk, β
z
tk)

=
Γ(αztk + eztk)Γ(βztk − eztk + 1)

Γ(αztk + βztk + 1)

Γ(αztk + βztk)

Γ(αztk)Γ(βztk)

Case 1 : eztk = 1

P (ezezez|eyeyey)
P (ezezez¬tk|eyeyey)

=
Γ(αztk + 1)Γ(βztk)

Γ(αztk + βztk + 1)

Γ(αztk + βztk)

Γ(αztk)Γ(βztk)

=
αztk

αztk + βztk
(A.20)

Case 2 : eztk = 0
P (ezezez|eyeyey)
P (ezezez¬tk|eyeyey)

=
βztk

αztk + βztk
(A.21)
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By substituting Eqs A.17 A.19 A.20 and A.21 in Eq A.17 we derive the following four
cases:
Case 1 : eztk = 1 and eyt = 0 Substituting Eqs A.17 and A.20 in Eq A.17 we have:

P (eztk|eze
zez¬tk, zzz,vvv,eyeyey) =

∏nk
t
s=0(αk + s)∏nt

s=n¬t
(
K∑
i=1

αi + s)

αztk
αztk + βztk

(A.22)

where αztk = |θ̂tk − θ̂t−1k|+ 0.0001 and βztk = 100− αztk

Case 2 : eztk = 1 and eyt = 1

P (eztk|eze
zez¬tk, zzz,vvv,eyeyey) =

∏nk
t
s=0(αk + s)∏nt

s=n¬t
(
K∑
i=1

αi + s)

αztk
αztk + βztk

(A.23)

where βztk = |θ̂tk − θ̂t−1k|+ 0.0001 and αztk = 100− βztk

Case 3 : eztk = 0 and eyt = 0 Substituting Eqs A.19 and A.21 in Eq A.17 we have:

P (eztk|eze
zez¬tk, zzz,vvv,eyeyey) =

1∏nt

s=n¬t
(
K∑
i=1

αi + s)

βztk
αztk + βztk

(A.24)

where αztk = |θ̂tk − θ̂t−1k|+ 0.0001 and βztk = 100− αztk

Case 4 : eztk = 0 and eyt = 1

P (eztk|eze
zez¬tk, zzz,vvv,eyeyey) =

1∏nt

s=n¬t
(
K∑
i=1

αi + s)

βztk
αztk + βztk

(A.25)

where βztk = |θ̂tk − θ̂t−1k|+ 0.0001 and αztk = 100− βztk
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Listing B.1: Code to calculate the Variational LowerBound

double compute_likelihood(int doc, HashMap<Integer,Integer> currDoc,
double[][] phi){

double likelihood = 0, digSum = 0, varGammaSum = 0;
double[] dig=new double[K];
int total= currDoc.size();
int[] termsInDoc= new int[total];
int[] counts= new int[total];
int index=0;
for(Integer key: currDoc.keySet()){

termsInDoc[index]= key;
counts[index]= currDoc.get(key);
index++;

}
for (int k = 0; k < K; k++){

dig[k] = Utilities.digamma(varGamma[doc][k]);
varGammaSum += varGamma[doc][k];

}
digsum = Utilities.digamma(var_gamma_sum);
likelihood = Utilities.LogGamma(alpha * K)- K *

Utilities.LogGamma(alpha)- (Utilities.LogGamma(varGammaSum));
for (int k = 0; k < K; k++){

likelihood += (alpha - 1)*(dig[k] - digSum) +
Utilities.LogGamma(varGamma[doc][k])
- (varGamma[doc][k] - 1)*(dig[k] - digSum);

for (int n = 0; n < total; n++){
if (phi[n][k] > 0){

likelihood += counts[n]*(phi[n][k]*((dig[k] - digSum) -
Math.log(phi[n][k])+ Math.log(pi[k][termsInDoc[n]])));

}
}

}
return(likelihood);

}

Listing B.2: Map Reduce Code to run the Variational E step in parallel

ExecutorService service = Executors.newFixedThreadPool(threads);
List<Future<EStepOutput>> futures = new ArrayList<Future<EStepOutput>>();
// Map
int numThreads= Runtime.getRuntime().availableProcessors();
for(int i=0; i<numThreads;i++){

// Mapper for document t + i
Callable<EStepOutput> mapper= this.new EStepMapper(t+i,i);
futures.add(service.submit(mapper));

}
// Reduce
for(Future<EStepOutput> futureoutput: futures){

likelihood+= futureoutput.get().likelihood;
}
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t += numThreads;
after= System.currentTimeMillis();
service.shutdown();

Listing B.3: Reusable Calculation of Log Normal probabilities in M-Step of DGMM

for (int k = 0; k < K; k++){ // K Topics
for (int n = 0; n < N; n++){ // N features
double total=0;
for(int t=0; t<documents.length; t++){ // all documents

log_prob_w[k][n][t]= Utilities.normalPDF(documents[t][n],
topicMeans[k][n], Math.sqrt(topicSigmas[k][n]));

total+= log_prob_w[k][n][t];
}
for(int t=0; t<documents.length; t++){

log_prob_w[k][n][t]= log_prob_w[k][n][t]/total;
log_prob_w[k][n][t]= Math.log(log_prob_w[k][n][t]);
if(Double.isNaN(log_prob_w[k][n][t]) ||

Double.isInfinite(log_prob_w[k][n][t]))
log_prob_w[k][n][t] = -1000;

}
}

}

Listing B.4: Java Code that computes unsupervised and supervised likelihoods for
SLDA

double[] compute_likelihood(int doc, HashMap<Integer,Integer> currDoc,
double[][] phi, double[][] EZTZ){
double likelihoodW = 0, likelihoodY = 0, digsum = 0, varGammaSum = 0;
// likelihoodW: likelihood terms from SLDA that does not contain ys
// likelihoodY: likelihood terms from SLDA that contain ys
double[] dig=new double[K]; int total= currDoc.size();
int[] termsInDoc= new int[total]; int[] counts= new int[total];
int index=0;
for(Integer key: currDoc.keySet()){

termsInDoc[index]= key;
counts[index]= currDoc.get(key);
index++;

}
likelihoodY += Math.log(1/(Math.sqrt(2*Math.PI)*delta))-

(Math.pow(ys[doc],2)/2);
double term1=0; double[] EZ= new double[K];
for (int k = 0; k < K; k++){

EZ[k]=0;
for (int n = 0; n < total; n++){

EZ[k]+= counts[n]*phi[n][k];
}
EZ[k]/=docLengths[doc];
term1+= b[k]*EZ[k]*ys[doc];
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}
double term2=0; Matrix result = new Matrix(EZTZ);
term2= new Matrix(b,K).transpose().times(result).times(new

Matrix(b,K)).getArray()[0][0];
term2/=(2*docLengths[doc]*docLengths[doc]);
likelihoodY += (term1-term2)/delta;
for (int k = 0; k < K; k++){

dig[k] = Utilities.digamma(varGamma[doc][k]);
varGammaSum += varGamma[doc][k];

}
digsum = Utilities.digamma(varGammaSum);
likelihoodW = Utilities.LogGamma(alpha * K)- K *

Utilities.LogGamma(alpha)- (Utilities.LogGamma(varGammaSum));
for (int k = 0; k < K; k++){

likelihoodW += (alpha - 1)*(dig[k] - digsum) +
Utilities.LogGamma(varGamma[doc][k]) - (varGamma[doc][k] -
1)*(dig[k] - digsum);

for (int n = 0; n < total; n++){
if (phi[n][k] > 0){

likelihood_w += counts[n]*(phi[n][k]*((dig[k] - digsum) -
Math.log(phi[n][k]) + log(pi[k][termsInDoc[n]])));

}
}

}
double[] wyLikelihoods = new double[2];
wyLikelihoods[0] = likelihoodW;
wyLikelihoods[1] = likelihoodY;
return(wyLikelihoods);

}
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