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ABSTRACT 

Seismic observations have revealed two large low shear velocity provinces 

(LLSVPs) in the lowermost mantle beneath Pacific and Africa. One hypothesis for the 

origin of LLSVPs is that they are caused by accumulation of subducted oceanic crust on 

the core-mantle boundary (CMB). Here, I perform high resolution geodynamical 

calculations to test this hypothesis. The result shows that it is difficult for a thin (~ 6 km) 

subducted oceanic crust to accumulate on the CMB, and the major part of it is viscously 

stirred into the surrounding mantle. Another hypothesis for the origin of LLSVPs is that 

they are caused by thermochemical piles of more-primitive material which is remnant of 

Earth’s early differentiation. In such case, a significant part of the subducted oceanic 

crust would enter the more-primitive reservoir, while other parts are either directly 

entrained into mantle plumes forming on top of the more-primitive reservoir or stirred 

into the background mantle. As a result, mantle plumes entrain a variable combination of 

compositional components including more-primitive material, old oceanic crust which 

first enters the more-primitive reservoir and is later entrained into mantle plumes with the 

more-primitive material, young oceanic crust which is directly entrained into mantle 

plumes without contacting the more-primitive reservoir, and depleted background mantle 

material. The result reconciles geochemical observation of multiple compositional 

components and varying ages of oceanic crust in the source of ocean-island basalts. 

Seismic studies have detected ultra-low velocity zones (ULVZs) in some localized 

regions on the CMB. Here, I present 3D thermochemical calculations to show that the 

distribution of ULVZs provides important information about their origin. ULVZs with a 

distinct composition tend to be located at the edges of LLSVPs, while ULVZs solely 
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caused by partial melting tend to be located inboard from the edges of LLSVPs. This 

indicates that ULVZs at the edges of LLSVPs are best explained by distinct 

compositional heterogeneity, while ULVZs located insider of LLSVPs are better 

explained by partial melting. The results provide additional constraints for the origin of 

ULVZs. 
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CHAPTER 1 

INTRODUCTION 

The Earth is formed about 4.6 billion years ago by accretion of asteroids and 

planetesimals. It is hypothesized that about 20-100 million years after the formation of 

Earth, a Mars-size object impacted the proto-Earth and formed the Moon [Canup and 

Asphaug, 2001; Touboul et al., 2007; Bourdon et al., 2008]. It is hypothesized that the 

Moon-forming impact led to large scale of melting in Earth’s mantle, which is called the 

“magma ocean” [Tonks and Melosh, 1993; Solomatov, 2000; 2007]. As the Earth cools 

down, crystallization of the magma ocean causes differentiation in Earth’s mantle (e.g., 

forming a dense layer of primordial mantle material at the bottom of the mantle 

[Labrosse et al., 2007; Lee et al., 2010]). The process and consequences of magma ocean 

crystallization play significant role in dictating how the Earth’s mantle evolves to the 

present day. Understanding the composition and interior structure of Earth, and the 

thermal and chemical evolution of Earth’s mantle remains one of the most challenging 

and important problems in Earth science. 

In this chapter, I will first discuss the composition, structure, and mineral phases 

of Earth’s mantle, which are followed by a summary of major tools used in studying the 

composition, structure and dynamics of Earth’s deep mantle. I will then focus on the 

structure and dynamics of Earth’s lowermost mantle, and pay special attention to the 

structure, dynamics and origin of the seismically observed large low shear velocity 

provinces (LLSVPs) and ultra-low velocity zones (ULVZs). A brief summary of this 

dissertation is provided at the end of this chapter. 
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1.1 Composition, Structure and Mineral Phases of Earth’s Mantle 

The Earth contains a silicate crust and mantle which are mainly made of Oxygen, 

Silicon, Magnesium, Iron and Aluminum, and a metallic core which is mainly made of 

Iron and Nickel. There are several ways to estimate the composition of the Earth. 

Chondrites, a type of undifferentiated meteorites which are believed to be fragments of 

primordial accretionary material, have the same composition as the Sun that holds 

99.86% mass of the solar system [Anders and Ebihara, 1982; Anders and Grevesse, 

1989]. Thus, one way to estimate the composition of the Earth is by analyzing the 

composition of chondrites and assuming that the concentration of refractory elements (the 

opposite of volatiles) of Earth are the same as that of chondrites [Taylor, 1964; 

McDonough and Sun, 1995]. Another method to constrain the composition of Earth is 

through chemical and petrological models [Ringwood, 1962; Sun, 1982; Hart and 

Zindler, 1986; Irifune, 1987; McDonough and Sun, 1995]. The philosophy behind this 

method is that decompression melting beneath mid-ocean ridge at a depth of about 60-80 

km [McKenzie and Bickle, 1988] produces basaltic melts and leaves behind a layer of 

depleted mantle consisting of harzburgite. The composition of mid-oceanic ridge basalts 

(MORBs) and harzburgite are well known from direct samples on Earth’s surface and 

xenoliths from the deep Earth, and the bulk composition of Earth’s mantle rock is 

proposed to be equivalent to a mixture of 1 part of MORB with 4 parts of harzburgite 

[Ringwood, 1962; Irifune, 1987]. This theoretical mantle rock is called pyrolite 

[Ringwood, 1962].  

The composition of pyrolite is different from chondritic Earth, with chondritic 

Earth has higher SiO2 content and lower MgO content than pyrolite [McDonough and 
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Sun, 1995]. This contradiction has led some authors to propose that the pyrolite model is 

only applicable to the upper mantle while the Earth’s lower mantle has different 

composition than the upper mantle [Hofmann, 1997], or there is a hidden reservoir in the 

lower mantle with Si enriched [Kellogg et al., 1999], or the missing Si in pyrolite model 

has been partitioned into Earth’s core [O'Neill, 1991; Takafuji et al., 2005], or the bulk 

silicate Earth is not chondritic [Campbell and O'Neill, 2012; Fitoussi and Bourdon, 

2012]. 

In addition to major elements, the Earth also contains trace elements whose 

concentration is less than 100 ppm. In terms of trace element chemistry, the bulk silicate 

Earth contains several compositional components, including subducted oceanic crust, 

depleted mantle material, more-primordial reservoir, and some other enriched reservoirs 

(EM1 and EM2) which may be related to continental crust and oceanic sediments 

[Hofmann, 1997; Hofmann et al., 2007; Tackley, 2007]. The oceanic crust is formed at 

mid-ocean ridges by decompression melting and is later subducted into the deep mantle 

with the cold oceanic lithosphere. The fate of subducted oceanic crust is still 

controversial. It has been proposed to accumulate on the core-mantle boundary 

[Christensen and Hofmann, 1994; Brandenburg and van Keken, 2007; Nakagawa et al., 

2010], be brought up to the surface by mantle plumes [Li and McNamara, 2013; Li et al., 

2014a], or be mixed into the background mantle [Li and McNamara, 2013; Li et al., 

2014a]. Geochemists often attribute the high 238=ߤU/204Pb of oceanic island basalts 

(OIBs) to the recycled oceanic crust which has been brought up to the surface by mantle 

plumes [Hofmann, 1997; Hofmann et al., 2007; Tackley, 2007]. The depleted mantle 

refers to the mantle which has undergone partial melting and is highly degassed 
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[Hofmann, 1997; Hofmann et al., 2007; Tackley, 2007]. The more-primordial reservoir 

refers to the part of mantle which is formed during the early differentiation events and 

survives later mixing due to mantle convection and is less degassed after its formation 

[Hofmann, 1997; Deschamps et al., 2012]. The feature of high 3He/4He ratio of some 

OIBs is often attributed to the occurrence of more-primordial material in their melting 

sources [Hofmann, 1997; Graham, 2002]. 

An indirect way to estimate the composition of Earth’s mantle is through 

geophysical studies [Ricolleau et al., 2009; Stixrude and Lithgow-Bertelloni, 2011; 

2012]. The basic assumption is that different mineral phases have different physical 

properties such as seismic velocities and density. Thus, the mineral assemblage and thus 

composition of Earth’s mantle can be estimated once seismic velocities and/or density of 

the Earth’s mantle are measured through geophysical studies. However, the difficulty of 

interpreting seismic velocities and density in terms of composition and mineral 

assemblage is that these physical properties are significantly affected by pressure, 

temperature, mineral phases, amount of partial melting and volatile content as well, and 

the composition model of Earth’s mantle constrained using this method is often non-

unique. 

The 1D model of Earth’s seismic structure is featured by a number of seismic 

discontinuities [Dziewonski and Anderson, 1981]. From Earth’s surface to the core, the 

major seismic discontinuities include crust-mantle boundary, lithosphere-asthenosphere 

boundary, 410 km discontinuity, 520 km discontinuity, 660 km discontinuity, D” 

discontinuity, core mantle boundary, and inner-outer core boundary. These seismic 

discontinuities are caused by either composition changes, or phase transitions, or 
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rheology changes. A lot of efforts have been devoted to understand the origin of these 

seismic discontinuities. In addition, seismic studies have shown that the structure of 

Earth’s mantle is far away from the 1D average model. Strong lateral variations of 

seismic velocities are observed, particularly in the upper and lowermost mantle [Ritsema 

et al., 2011]. 

Olivine and pyroxene are two major mineral phases in Earth upper mantle. In 

Earth’s transition zone from 410 to 660 km, olivine undergoes a series of phase 

transitions [Ringwood, 1982; 1991]. At ~410 km depth (~13.8GPa), olivine is 

transformed to wadsleyite. At ~520 km (~18GPa), wadsleyite is transformed to 

ringwoodite. At ~660 km (~23.5 GPa), ringwoodite is disproportionated to Mg-

perovskite and (Mg,Fe)O manesiowüstite. In Earth’s transition zone, pyroxene is 

gradually dissolved into garnet until about 700 km at which depth garnet is transformed 

into Mg-perovskite. Phase transitions in the transition zone cause rapid increase of 

density and seismic velocities. In the lower mantle, Mg-perovskite and (Mg,Fe)O 

manesiowüstite are two major mineral phases. Mineral physical experiments found that 

Mg-perovskite (pv) is further transformed to post-perovskite (ppv) at a depth of several 

hundred kilometers above the core-mantle boundary (CMB) [Murakami et al., 2004; 

Oganov and Ono, 2004; Tsuchiya et al., 2004; Shim, 2008]. The depth of pv-ppv phase 

transition coincides with the depth of D” layer and the D” seismic discontinuity is often 

explained by this phase transition [Hernlund et al., 2005; Wookey et al., 2005; Lay et al., 

2006; Lay, 2008]. 
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1.2 Tools to Study the Structure and Dynamics of Earth’s Mantle 

The study of structure and dynamics of Earth’s mantle involves incorporative 

work from multiple disciplines, including seismology, mineral physics, geochemistry and 

geodynamics. 

Seismology is the most important and efficient way through which we know the 

interior structure of the Earth. Seismic waves are elastic waves which travel through 

Earth’s interior from source (location of earthquakes) to receiver (seismic stations). The 

travel time of seismic phases depends on seismic velocities along the traveling paths. The 

frequencies of seismic waveforms are sensitive to seismic heterogeneities with different 

length scale. The amplitude of some reflective seismic phases is influenced by the 

contrast of seismic velocities and density between seismic heterogeneities and their 

surroundings. By analyzing the travel time and amplitude of seismic phases and 

comparing synthetic seismograms with observed seismic waveforms, seismologists are 

able to calculate seismic velocities and density of the deep Earth. 

However, in order to better understand the structure and dynamics of Earth’s 

mantle, we often need to interpret seismic observations in terms of other parameters, such 

as pressure, temperature, composition, mineral phases, partial melting, and water content. 

The relationship between these parameters and seismic velocities could be understood 

through high-pressure-temperature mineral physics experiments. In addition, physical 

properties (e.g., viscosity, density, thermal expansivity and thermal diffusivity) that 

greatly influences the dynamics of Earth’s mantle are also measured in mineral physics 

experiments. Mineral physics experiments thus provide fundamental information for us to 

explore the structure and dynamics of Earth’s mantle. 
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The bulk composition of the Earth is mainly constrained through geochemical 

observations of the composition of chodrodites, surface rocks, sediments, and xenoliths 

from the deep interior. In addition, trace elements whose concentration is less than 100 

ppm also play significant role for us to understand the process of Earth’s differentiation 

and chemical evolution. Depending on their ability to enter the structural site of crystals, 

trace elements are divided into compatible and incompatible elements. Different from 

compatible elements, the incompatible elements are unsuitable for the cation sites of 

crystals. Once partial melting occurs within the Earth, incompatible trace elements are 

partitioned into melts while compatible elements remain in the solid phase. Thus the 

abundance of compatible and incompatible trace elements within magmas (and rocks 

after the crystallization of magmas), not only depends on the composition of their melting 

sources, but also depends on their partition coefficient between melt and solid mineral 

phases and the amount of partial melting. Because of this, the abundance of trace 

elements give important information about the melting process, the composition and 

mineral phases of melting sources. By analyzing the abundance of radioactive isotopes 

(e.g., 235U, 238U, 40K, 147Sm) within rocks, geochemists could estimate the age of these 

rocks, which is also the time when partial melting or metamorphism occurs. By 

combining this age information with the partial melting process unveiled through the 

analysis of trace elements within rocks, clear process of Earth’s chemical evolution could 

be depicted by geochemists. 

One challenge in geochemical studies is to constrain the location of compositional 

reservoirs, such subducted oceanic crust and more-primitive reservoir. This problem can 

be addressed when combining with seismic observations of the location of these 



8 

 

compositional reservoirs, if these reservoirs have large enough contrast of seismic 

velocities and density from their surrounding mantle. 

Geodynamical modeling is one of the most powerful tool to explore the thermal 

and chemical evolution and dynamics of Earth’s mantle. For geological time scale, 

Earth’s mantle can be treated as ductile like viscous fluid, and the process of mantle 

convection should follow the fundamental rules of conservation of mass, momentum and 

energy. In geodynamical modeling, we solve these conservation equations using 

computers. We setup numerical models and the solution for temperature, velocity and 

pressure are found at every time-step. However, because some physical parameters 

(especially viscosity) about the Earth’s mantle are not very well constrained and because 

of the limitation of computational power, modeling the ‘real Earth’ is not practical. More 

often, we treat geodynamical modeling as an experimental tool to answer specific 

scientific questions. That is, appropriate numerical models are setup to address these 

specific questions. For example, a numerical model could be either two dimensional or 

three dimensional, either isochemical or thermochemical, either spherical or Cartesian, 

depending on the scientific questions we need to answer. Usually, numerical models 

include a reference case with the best estimation of physical parameters of the Earth’s 

mantle. In addition to the reference case, a series of other cases are performed to 

investigate how changes of physical parameters affect the results. The results of 

geodynamical modeling are often compared with geochemical and geophysical 

observations. A good model should be as simple as possible, but still be able to explain 

most phenomenon and observations.  
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1.3 Earth’s Lowermost Mantle 

The Earth’s lowermost mantle acts as a lower boundary layer for mantle 

convection. As a result, the thermochemical structure and dynamics of Earth’s lowermost 

mantle play crucial role in controlling the style of mantle convection and the thermal and 

chemical evolution of Earth’s mantle. 

1.3.1 Seismic Structure 

Seismic observations have revealed strong seismic heterogeneities in Earth’s 

lowermost several hundred kilometers of the mantle [Masters et al., 2000]. The large-

scale features of Earth’s lowermost mantle are characterized by degree two seismic 

heterogeneities with large low shear velocity provinces (LLSVPs) beneath central Pacific 

and Africa  [Li and Romanowicz, 1996; Su and Dziewonski, 1997; Garnero and 

McNamara, 2008; Dziewonski et al., 2010; Ritsema et al., 2011; He and Wen, 2012], 

which are surrounded by high seismic velocity regions that have been suggested to be 

locations of past subducted slabs [Garnero and McNamara, 2008; Ritsema et al., 2011]. 

Roughly, the LLSVPs reside in regions with increased density and anti-correlation 

between shear wave velocity and bulk sound velocity [Ishii and Tromp, 2004; Trampert 

et al., 2004]. High dlnVୱ/dlnV୮ ratio (>2.5) have also been reported in the lowermost 

mantle [Masters et al., 2000; Romanowicz, 2003; Ishii and Tromp, 2004], indicating that 

the lowermost mantle is compositionally heterogeneous.  

Using high resolution seismic forward modeling, seismologists have found a lot 

interesting small-scale structures in Earth’s lowermost mantle. These structures include 

seismic discontinuities within LLSVPs [Lay et al., 2006; Ohta et al., 2008], rapid shear 

wave velocity increase across the D” discontinuity [Kito et al., 2007; van der Hilst et al., 
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2007; Lay, 2008; He and Wen, 2011], ultra-low velocity zones (ULVZs) with significant 

reduction of seismic velocities and possibly increased density [Garnero and Helmberger, 

1996; Revenaugh and Meyer, 1997; Wen and Helmberger, 1998b; Rost et al., 2005; 

Cottaar and Romanowicz, 2012], and seismic scatters on the core-mantle boundary [Niu 

and Wen, 2001; Miller and Niu, 2008; Rost and Earle, 2010]. In addition, seismic 

anisotropy is found in the lowermost mantle at subducting regions [Yamazaki et al., 2006; 

He and Long, 2011; Walker et al., 2011; Cottaar et al., 2014] and at the edges of 

LLSVPs [Wang and Wen, 2007a; Lynner and Long, 2014], which provides important 

information of the mantle flow velocity in these regions. 

1.3.2 Compositional Heterogeneity 

The Earth’s core mantle boundary is a first order discontinuity, with solid silicate 

mantle above the molten metallic outer core. Because of large density and viscosity 

contrast between Earth’s lowermost mantle and outer core, large exchanges of material 

between core and mantle are not possible (although it has been suggested that interaction 

between core and mantle could produce a small amount of iron enriched materials in the 

lowermost mantle [Buffett et al., 2000; Kanda and Stevenson, 2006]). Thus, the 

lowermost mantle acts as a grave yard for dense compositional heterogeneities [Masters 

et al., 2000]. Candidates of compositional heterogeneities of the lowermost mantle 

include: (1) production of interaction between mantle and core [Buffett et al., 2000; 

Kanda and Stevenson, 2006], (2) a more-primitive dense reservoir formed by 

differentiation in early history of the Earth [Kellogg et al., 1999; Labrosse et al., 2007; 

Nomura et al., 2011], and (3) accumulation of subducted oceanic crust at the CMB 

[Hofmann and White, 1982; Christensen and Hofmann, 1994; Hirose et al., 2005; 
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Brandenburg and van Keken, 2007; Fujita and Ogawa, 2009; Nakagawa et al., 2010; 

Ogawa, 2010]. Some features of the LLSVPs such as increased density [Ishii and Tromp, 

2004; Trampert et al., 2004] and sharp edges [Ni et al., 2002; To et al., 2005; Sun et al., 

2007a; Sun et al., 2007b] are better explained by compositional heterogeneity. Seismic 

scatters and discontinuities within LLSVPs have been proposed to be caused by 

subducted oceanic crust [Miller and Niu, 2008; Ohta et al., 2008]. Recently, it is found 

that density and seismic velocities of ULVZs are consistent with iron enriched (Mg,Fe)O 

[Wicks et al., 2010; Bower et al., 2011], which could be caused by accumulation of 

Banded Iron Formation (BIF) [Dobson and Brodholt, 2005], subducted oceanic crust 

[Ohtani and Maeda, 2001; Andrault et al., 2014] or production of core mantle interaction 

[Knittle and Jeanloz, 1989; Brandon and Walker, 2005; Hayden and Watson, 2007; 

Otsuka and Karato, 2012]. 

Previous numerical modelling results have shown that the dense compositional 

heterogeneity on the CMB could be passively pushed by cold subducting slabs into 

thermochemical piles beneath upwelling regions [McNamara and Zhong, 2005; Zhang et 

al., 2010; Bull et al., 2014]. However, the interaction between the compositional 

heterogeneity in the lowermost mantle and subducting slabs is still unclear. In fact, past 

plate motion reconstruction and paleo-magmatic results have shown that the LLSVPs 

remain in the same location for over 540 million years [Torsvik et al., 2014], which 

implies that the compositional heterogeneity that causes LLSVPs are very stable and may 

not be passively swept by subducting slabs.  

What happens in Earth’s lowermost mantle sometimes manifests on the surface in 

term of geochemistry of hotspot lavas which are suggested to be caused by mantle 
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plumes [Hofmann, 1997; Samuel and Farnetani, 2003; Tackley, 2007; Hahm et al., 2009; 

Deschamps et al., 2011; Li et al., 2014a]. It is thus of great interest and importance to 

explore the interaction between mantle plumes and compositional reservoirs and see how 

does it contribute to the geochemistry of hotspots basalts. 

1.3.3 Thermal Structure and Mantle Plume 

Earth’s lowermost mantle is a thermal boundary layer, with rapid temperature 

change across the lowermost mantle (on the order of 1,000 K for the lowermost 200 km 

of Earth’s mantle [Lay et al., 2008]). Thermal instabilities origin from the lowermost 

mantle cause upwelling mantle plumes. It has been suggested that the LLSVPs are caused 

by superplumes or plume clusters, although the origin of LLSVPs is still under debate. 

Extrapolating temperature at the inner-core boundary to CMB gives the CMB 

temperature in the range of 3,500-4,300 K [Lay et al., 2008]. Melting temperature of 

chondritic mantle at the CMB pressure is constrained to be around 4000 K [Andrault et 

al., 2011], and much lower melting temperature (3,500-3,800 K) at the CMB condition 

has also been proposed by mineral physicists for hydrous pyrolite and basalts [Andrault 

et al., 2014; Nomura et al., 2014]. Thus, partial melting in the lowermost mantle is not 

impossible and large reduction of seismic velocities (e.g., ULVZs) is often attributed to 

partial melting [Williams and Garnero, 1996]. 

The structure of Earth’s lowermost mantle is directly linked to its dynamics. 

Mantle plumes forming in the lowermost mantle advect heat out of Earth’s core to the 

mantle. As these mantle plumes reach the surface, they may cause large igneous 

provinces and hotspots. However, the process of how mantle plumes form and advect 

heat to the surface is greatly controlled by thermal and compositional structure of the 
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lowermost mantle. For an isochemical lowermost mantle, mantle plumes form on the 

CMB and directly advect heat to the surface [Li and McNamara, 2013]. However, a layer 

of dense material on the CMB, (e.g., primordial reservoir, accumulation of subducted 

oceanic crust), will block heat from directly coming out of the core to the mantle. Mantle 

plumes would form on top of the dense material [Farnetani, 1997; Li et al., 2014a], but 

with lower temperature than mantle plumes forming on the CMB [Farnetani, 1997; 

Zhong, 2006]. In addition, due to the insulating effects of the dense compositional 

heterogeneity, temperature within the compositional heterogeneity increases rapidly, 

which has a big effect on CMB heat flux [Nakagawa and Tackley, 2004], and 

temperature of the mantle above the dense layer would decrease much faster than 

isochemical condition [Zhong, 2006]. 

1.3.4 Post-Perovskite Phase Transition 

Ten years ago, high-temperature-pressure experiments demonstrated that 

perovskite (pv) is not sable under temperature and pressure conditions of Earth’s 

lowermost mantle, but is transformed into a different structure post-perovskite (ppv) with 

increasing of density and shear wave velocity [Murakami et al., 2004; Oganov and Ono, 

2004; Tsuchiya et al., 2004; Shim, 2008]. The D” seismic discontinuity is often attributed 

to the pv-ppv phase transition [Lay et al., 2006; Kito et al., 2007; van der Hilst et al., 

2007; Lay, 2008]. In addition, the pv-ppv phase transition has also been used to explain 

seismic discontinuities within LLSVPs [Lay et al., 2006]. Furthermore, the ppv phase 

transition occurs at different depths for MORB, pyrolite and harzburgite, leading to 

multiple seismic discontinuities in the D” layer [Shang et al., 2014]. Anisotropy in the D” 
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layer has also been attributed to the ppv phase transition [Merkel et al., 2007; Ammann et 

al., 2010; Nowacki et al., 2010]. 

The pv-ppv phase transition leads to about 1% density increase [Oganov and Ono, 

2004; Shim, 2008], and the Clapeyron slope for this phase transition is constrained to be 

about ~7-10 MPa/K [Oganov and Ono, 2004; Tsuchiya et al., 2004]. Past numerical 

modeling results have shown that this phase transition significantly increases the CMB 

heat flux. In addition, results from lab experiments and first-principle calculations 

showed that ppv is weaker (lower viscosity) than pv [Hunt et al., 2009; Ammann et al., 

2010]. The weak ppv could noticeably modify the dynamics of Earth’s lowermost mantle, 

such as accelerates the speed of downwelling slabs [Nakagawa and Tackley, 2011], 

enhances the segregation of subducted oceanic crust [Li and McNamara, 2013; Li et al., 

2014a] and leads to large steepness of the thermochemical piles of chemical 

heterogeneity [Li et al., 2014b]. 

1.3.5 Spin Transition 

The Fe spin crossover from high-spin to low-spin in Earth’s lower mantle has 

been proved by both experiments [Lin et al., 2005; Fei et al., 2007; Lin et al., 2007] and 

first-principle calculations [Wu and Wentzcovitch, 2014]. The spin transition could affect 

seismic velocities of Earth’s lower mantle [Irifune et al., 2010; Badro, 2014; Wu and 

Wentzcovitch, 2014]. Using first-principles calculations, Wu and Wentzcovitch [2014] 

found that the anti-correlation between shear wave velocity and bulk sound velocity in 

Earth’s lower mantle could be explained by spin transition within ferropericlase. 

However, seismic observations do not find a discontinuity at the mid-lower mantle. This 
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may be because the spin transition occurs gradually and does not cause a noticeable sharp 

changes of seismic velocities [Badro, 2014]. 

The Fe spin transition in Earth’s lower mantle results in about 2-4% of density 

increase [Lin et al., 2013; Badro, 2014]. Previous numerical modeling studies by Bower 

et al. [2009] found that the spin transition could lead to enhanced mantle convection and 

fast mantle plumes. 

1.3.6 LLSVP 

Seismic observations have revealed two Large Low Shear Velocity Provinces 

(LLSVPs) in the lowermost mantle beneath central Pacific and Africa [Li and 

Romanowicz, 1996; Su and Dziewonski, 1997; Garnero and McNamara, 2008; 

Dziewonski et al., 2010; Ritsema et al., 2011; He and Wen, 2012]. The LLSVPs cover 

about 21% area of the CMB [Burke et al., 2008] and reach a height of about 1000 km [He 

and Wen, 2009; 2012]. Seismic forward modeling have shown shear wave velocity of 

LLSVPs ranges from 3% to 5% lower than the 1D PREM model [He and Wen, 2009; 

2012] and the edges of LLSVPs are sharp [Luo et al., 2001; Ni et al., 2002; To et al., 

2005]. The LLSVPs are further suggested to be denser than their surrounding mantle as is 

shown by seismic studies using Earth’s free oscillation [Ishii and Tromp, 1999; Trampert 

et al., 2004]. In addition, seismic discontinuities are found within LLSVPs [Lay et al., 

2006; Ohta et al., 2008]. Statistical analyses found that the edges of LLSVPs coincide 

well with the locations of ancient and present hotpots on Earth’s surface [Wen, 2006; 

Torsvik et al., 2010].  

The structure, composition, origin and dynamics of LLSVPs are crucial for us to 

understand the thermal and chemical evolution of Earth’s mantle. Various mantle 
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convection models have been put forward to explain the origin and evolution of LLSVPs, 

among which are superplumes [Su et al., 1994; Davaille, 1999; Davaille et al., 2002; 

Jellinek and Manga, 2004; Davaille et al., 2005], plume clusters [Schubert et al., 2004], 

piles with high bulk modulus [Tan and Gurnis, 2005; 2007] and thermochemical piles 

[Tackley and Xie, 2002; McNamara and Zhong, 2005] consist of accumulation of 

subducted oceanic crust [Christensen and Hofmann, 1994] and/or more-primitive 

material [Deschamps et al., 2012] which is remnants of Earth’s early differentiation. 

Each of these models is related to different style of mantle dynamics of the Earth. 

For the superplume model, large thermal domes are formed in hot regions of the 

lowermost mantle where thermal buoyancy of dense material overcomes its intrinsic 

chemical buoyancy. As the dense and hot material goes up, it cools down. When it 

becomes cold enough and becomes negative buoyant, it again sinks to the CMB. Thus the 

hot and dense domes are oscillating between different stage of rises and falls [Davaille, 

1999]. Numerical studies show that compositional increase of viscosity is needed for 

superplumes to form from a dense layer [McNamara and Zhong, 2004]. 

Different from large superplumes, the plume cluster model is characterized by a 

collection of small-scale mantle plumes which are swept by horizontal flows toward the 

upwelling center, forming clusters of plumes [Schubert et al., 2004]. For this model, 

composition only plays a second order role. Owing to the low resolution of seismic 

tomography, the plume cluster model cannot be simply ruled out [Bull et al., 2009; Bull 

et al., 2010]. 

By conducting compressible numerical calculations, [Tan and Gurnis, 2005; 

2007] show that if the bulk modulus of denser material is higher than that of the 
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background mantle, the slope of chemical density anomaly with depth can be negative 

(this is, the intrinsic density anomaly decreases with depth). Because temperature 

increases with depth, it is possible that at some depth (named HNB in [Tan and Gurnis, 

2005; 2007]) chemical buoyancy neutralizes with thermal buoyancy. In that sense, the net 

buoyancy force will be negative above the HNB and positive below the HNB. With 

proper bulk modulus and density anomaly, metastable superplumes can form, with high 

topography and sharp side boundaries [Tan and Gurnis, 2007]. This is the so-called high-

bulk modulus model. 

When viscosity in the lower mantle is temperature dependent, dense and hot 

material at the CMB are passively advected to the upwelling center by cold and more 

viscous subducted slabs, forming thermochemical piles with ridge-like shape and sharp 

boundaries [Tackley, 1998; McNamara and Zhong, 2005]. Mantle plumes form on top of 

the piles and material from the piles is slowly entrained into mantle plumes [Deschamps 

et al., 2011; Li et al.]. This is called thermochemical pile model. In this model, the 

compositional heterogeneity could be caused by either accumulation of subducted 

oceanic crust on the CMB [Christensen and Hofmann, 1994], or more-primitive material 

[Deschamps et al., 2012], or both [Li et al., 2014a; Nakagawa and Tackley, 2014]. 

1.3.7 ULVZ 

Compared to the large volume of LLSVPs, ultra-low velocity zones (ULVZs) 

have much smaller length scale (on the order of 10 km thick and 100 km across). In 

general, the small size ULVZs have significant reduction of seismic velocities and 

possibly increased density. However, the physical properties of ULVZs (seismic velocity 

and density), the locations of ULVZs respected to the location of LLSVPs, and the 
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morphology of ULVZs are found to be quite different in different regions on the CMB. 

The P wave speed anomaly of reported ULVZs varies from -4% [Avants et al., 2006] to -

25% [Ross et al., 2004] and the S wave speed anomaly varies from -2% [Avants et al., 

2006] to -50% [Rondenay and Fischer, 2003]. The density anomaly of some ULVZs has 

been revealed to be about 10% [Rost et al., 2005] denser than surrounding mantle, but up 

to 50% increase of density of some ULVZs has also been reported by seismologists [Rost 

and Revenaugh, 2003]. The height of ULVZ is normally in the range of 5-40 km 

[Garnero and Helmberger, 1996; Rost and Revenaugh, 2003; Rost et al., 2006]. 

However, some ULVZs have a thickness more than 80 km [To et al., 2011; Sun et al., 

2013]. In general, the lateral scale of ULVZs is to the order of several hundred kilometers 

[Wen and Helmberger, 1998b; Helmberger et al., 2000; Rost et al., 2006; To et al., 

2011]. However, mega-ULVZ is also found whose lateral scale is almost 1,000 km 

[Cottaar and Romanowicz, 2012]. Furthermore, while most ULVZs are found to be 

located at the edges of LLSVPs [Rost et al., 2006], ULVZs within LLSVPs have also 

been reported [Wen and Helmberger, 1998a]. The seismic detections of ULVZs are 

summarized in McNamara et al. [2010] and Bower et al. [2011]. 

Several hypotheses for the origin of ULVZs have been proposed. Here, in terms 

of composition of ULVZs, we divided the hypotheses of origin of ULVZs into two 

groups. One hypothesis is that ULVZs have the same composition as LLSVPs. In this 

hypothesis, ULVZs are caused by partial melting in the hottest regions of LLSVPs 

[Williams and Garnero, 1996]. This hypothesis is supported by the 3:1 ratio of seismic S 

and P wave speed reduction of some ULVZs [Williams and Garnero, 1996; Rost et al., 

2005], which could be explained by about 5-30% partial melting [Williams and Garnero, 
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1996; Hier-Majumder, 2008]. Mineral physics experiments suggests that partial melts are 

more compressible and are denser than the solid phase at pressure and temperature 

condition of Earth’s lowermost mantle [Murakami and Bass, 2011]. In order to cause 

partial melting on the CMB, temperature at the CMB should equal to or higher than the 

melting temperature of Earth’s lowermost mantle material. There is still big uncertainty 

on the temperature of the CMB [Lay et al., 2008]. Within this uncertainty, mineral 

physical studies found that it is still possible for partial melting to occur at the bottom of 

the mantle [Andrault et al., 2011; Andrault et al., 2014; Nomura et al., 2014]. In addition, 

numerical calculations by Steinbach and Yuen [1999] showed that viscous heating can 

heat up the interior of mantle plumes to around 100 degrees above the CMB temperature. 

They proposed that this amount of temperature increase is sufficient to cause partial 

melting within upwelling regions in the deep lower mantle. 

The other hypothesis for the origin of ULVZs is that ULVZs have different 

composition as LLSVPs [Wicks et al., 2010]. For example, ULVZs are caused by distinct 

composition which is iron-enriched and/or has lower melting temperature, and may or 

may not include partial melting [Ohtani and Maeda, 2001; Mao et al., 2005; Hernlund 

and Jellinek, 2010; Nomura et al., 2011; Andrault et al., 2014]. In this case, the locations 

of ULVZs are mainly controlled by mantle convection [McNamara et al., 2010]. This 

hypothesis explains why some ULVZs do not have 3:1 ratio of seismic S and P wave 

speed reduction [Avants et al., 2006]. Wicks et al. [2010] found that the sound speed and 

density of iron-enriched solid (Mg.16Fe.84)O are compatible with seismic observations of 

ULVZs and they proposed an iron-enriched solid origin of ULVZs. Mao et al. [2005] and 

Mao et al. [2006] found that post-Perovskite in Earth’s lowermost mantle is able to 
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contain a large amount of iron (up to 40 mol% FeSiO3), and they proposed that ULVZs 

are caused by iron-enriched post-Perovskite. Several hypothetical processes have been 

proposed to explain the iron-enriched compositional heterogeneity in Earth’s lowermost 

mantle: (1) small accumulation of subducted banded iron formation [Dobson and 

Brodholt, 2005], or subducted oceanic crust on the CMB [Ohtani and Maeda, 2001; 

Andrault et al., 2014]; (2) products of core mantle interaction [Knittle and Jeanloz, 1991; 

Kanda and Stevenson, 2006] and (3) remnants of Earth’s early differentiation and magma 

crystallization [Labrosse et al., 2007]. 

The origin and dynamics of ULVZs are among the most important questions in 

Earth science. Whether ULVZs contain partial melts or not depends on solidus of Earth’s 

lowermost mantle material and temperature at the CMB. Understanding the solid or 

molten state of ULVZs helps to constrain the temperature at the CMB and heat flux from 

the core, and also helps to constrain the composition of ULVZs. The composition and 

origin of ULVZs are important for understanding the process of Earth’s chemical 

evolution. Furthermore, the distribution and morphology of ULVZs are controlled by 

physical properties (e.g., density, viscosity) of ULVZs and their interaction with 

LLSVPs, which as a result, provide information about the dynamics of Earth’s lowermost 

mantle. 

The morphology, distribution and dynamics of ULVZs are best assessed with 

geodynamic models. If ULVZs are caused by partial melting, Hernlund and Tackley 

[2007] found that melts would form a thin molten layer on the CMB if they have 

increased density, which is inconsistent with the topography of ULVZs detected by 

seismic studies. Later, Hernlund and Jellinek [2010] proposed that viscous stress is able 



21 

 

to suspend the dense melts in solid matrix. Hier-Majumder and Revenaugh [2010] found 

that the topography of ULVZs is strongly controlled by the viscosity of ULVZs. They 

proposed that ULVZs are about two orders weaker than the background lower mantle, 

based on the topography of ULVZs as is observed by seismic studies. Beuchert and 

Schmeling [2013] found that the viscosity reduction of ULVZs has a large effects on 

enhancing mantle flow velocity and increasing mantle temperature. The dynamics of 

dense solid-state ULVZs is studied by Bower et al. [2011], who found that the shape of 

these ULVZs is largely dictated by their density, with denser ULVZs having larger aspect 

ratio (relief/half-width). McNamara et al. [2010] investigated the interaction between 

small accumulations of compositionally different ULVZs and large scale dense 

thermochemical piles at the lowermost mantle. They demonstrated that small 

accumulations of compositionally different ULVZs can be supported by mantle 

convection. The ULVZs tend to be located at the edges of the piles, though the location 

of ULVZs change with mantle flow pattern.  

Previously, the dynamics of ULVZs are simulated in 2D numerical models. 

However, in order to better understand the morphology and distribution of ULVZs and 

their interaction with LLSVPs, 3D models which simulate the entire mantle convection 

are essential, and this work is presented in Chapter 5. 

1.4 Summary 

In this dissertation, we use numerical modeling to study the structure and 

dynamics of Earth’s lowermost mantle. In Chapter 2, we describe the conservation 

equations and numerical method. In Chapter 3, we investigate the possibility of forming 

LLSVPs by accumulation of subducted oceanic crust. In Chapter 4, we study the 
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interaction between mantle plumes, more-primitive reservoir and subducted oceanic crust 

and its implication for the trace element chemistry of OIBs. In Chapter 5, we explore the 

3D morphology and distribution of ULVZs and their implication for the origin of 

ULVZs. In Chapter 6, we summarize our main conclusions and their implications. 
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CHAPTER 2 

GOVERNING EQUATIONS AND NUMERICAL METHOD 

We perform numerical calculations to study the nature of mantle convection by 

solving the equations of conservation of mass, momentum and energy under the 

Boussinesq approximation. In this chapter, I describe these equations first and give a 

brief introduction of numerical methods to solve these equations. 

The equation for conservation of mass is: 

డఘ

డ௧
൅ ׏ ⋅ ൫ρሬܸԦ൯ ൌ 0         (2.1) 

or  

஽ఘ

஽௧
൅ ׏ߩ ⋅ ሬܸԦ ൌ 0         (2.2) 

where 
஽

஽௧
 is the material derivative, ߩ is density, ݐ is time, ሬܸԦ is velocity. 

For incompressible fluid, particles have constant density and 
஽ఘ

஽௧
ൌ 0. The 

equation for conservation of mass becomes: 

׏  ⋅ ሬܸԦ ൌ 0          (2.3) 

The equation for conservation of momentum is: 

ߩ ቀడ௏
ሬሬԦ

డ௧
൅ ൫ሬܸԦ ⋅ ൯ሬܸԦቁ׏ ൌ െ׏ ⋅ ധߪ ൅  (2.4)       ݖ̂݃ߩ

where ߪധ is stress tensor and ݃ is gravitational acceleration, and ̂ݖ is unit vector in vertical 

direction. 

The stress tensor could be constructed by adding pressure ܲ with a deviatoric 

stress tensor, ߬̿: 

ധߪ ൌ ߬̿ ൅ ܲ          (2.5) 
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Plug Eq. (2.5) into Eq. (2.4), the equation for conservation of momentum 

becomes: 

ߩ ቀడ௏
ሬሬԦ

డ௧
൅ ൫ሬܸԦ ⋅ ൯ሬܸԦቁ׏ ൌ െ׏ ⋅ ߬̿ െ ܲ׏ ൅  (2.6)      ݖ̂݃ߩ

where the deviatoric stress is caused by viscous forces. Its value is proportional to strain 

rate for Newtonian material: 

߬̿ ൌ െߝߟሶ ̿          (2.7) 

where ߟ is viscosity and ߝሶ ̿is strain rate tensor. The negative sign on the right part of Eq. 

(2.7) is due to our convection of defining direction of compression as the positive 

direction of normal stress.  

Plug Eq. (2.7) into Eq. (2.6), the equation for conservation of momentum 

becomes: 

ߩ ቀడ௏
ሬሬԦ

డ௧
൅ ൫ሬܸԦ ⋅ ൯ሬܸԦቁ׏ ൌ െܲ׏ ൅ ׏ ⋅ ሶ̿ߝߟ ൅  (2.8)      ݖ̂݃ߩ

Next, let’s further simplify Eq. (2.8). The pressure, density and gravitational 

acceleration could be written as the summation of a reference value and the deviatoric 

value: 

	ܲ ൌ ோܲ ൅ ෨ܲ          (2.9) 

ߩ ൌ ோߩ ൅  ෤          (2.10)ߩ

݃ ൌ ݃ோ ൅ ෤݃          (2.11) 

where ோܲ, ߩோ, and ݃ோ are reference values for pressure, density and gravitational 

acceleration based on hydrostatic compression, and ෨ܲ, ߩ෤, and ෤݃ are deviatoric pressure, 

density and gravitational acceleration from the reference values. 

Notice that ோܲ, ߩோ, and ݃ோ are not independent but relate to each other by: 
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׏ ோܲ ൌ  (2.12)          ݖோ݃ோ̂ߩ

Plug Eq. (2.9)-Eq. (2.11) into Eq. (2.8), and take into account Eq. (2.12), the 

equation for conservation of momentum becomes: 

ߩ ቀడ௏
ሬሬԦ

డ௧
൅ ൫ሬܸԦ ⋅ ൯ሬܸԦቁ׏ ൌ െ׏ ෨ܲ ൅ ׏ ⋅ ሶ̿߳ߟ ൅ ோߩ൅ݖ෤݃ோ̂ߩ ෤݃̂ݖ ൅ ෤ߩ ෤݃̂(2.13)    ݖ 

Assuming ෤݃ ൎ 0 and ݃ ൌ ݃ோ	(anomaly of gravitational acceleration is small 

enough), we can further simplify Eq. (2.13) to:  

ߩ ቀడ௏
ሬሬԦ

డ௧
൅ ൫ሬܸԦ ⋅ ൯ሬܸԦቁ׏ ൌ െ׏ ෨ܲ ൅ ׏ ⋅ ሶ̿ߝߟ ൅  (2.14)      ݖ෤݃̂ߩ

The conservation of energy is given as follows: 

ߩ ஽௤

஽௧
ൌ ׏ ⋅ ሺ݇ܶ׏ሻ ൅ ܪߩ ൅ ߶        (2.15) 

where ݍ is heat flow, ݇ is thermal conductivity, ܶ is temperature, ܪ is heat production 

rate, and ߶ is viscous heating. 

Using thermodynamics, heat flow ݍ can be written as: 

ݍ݀ ൌ ܶ݀ܵ          (2.16) 

and 

݀ܵ ൌ
஼೛
்
݀ܶ െ ఈ

ఘ
݀ܲ         (2.17) 

where ܵ is entropy, ߙ is thermal expansivity, and ܥ௣ is heat capacity. 

Plug Eq. (2.16) and Eq. (2.17) into Eq. (2.15), the equation for conservation of 

energy becomes: 

௣ܥߩ
஽்

஽௧
െ ܶߙ ஽௉

஽௧
ൌ ׏௣ܥߩ ⋅ ሺܶ׏ߢሻ ൅ ܪߩ ൅ ߶      (2.18) 

where ߢ is thermal diffusivity. 

Remember, ܲ ൌ ோܲ ൅ ෨ܲ, then 
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஽௉

஽௧
ൌ ஽௉ೃ

஽௧
൅ ஽௉෨

஽௧
ൌ డ௉ೃ

డ௧
൅ ௭ܸ

డ௉ೃ
డ௭

൅ ஽௉෨

஽௧
       (2.19) 

In Eq. (2.19), ோܲ is the reference pressure, which is independent of time. Thus, 

డ௉ೃ
డ௧

ൌ 0          (2.20) 

In addition,  

డ௉ೃ
డ௭

ൌ  ோ݃          (2.21)ߩ

Plug Eq. (2.20)-Eq. (2.21) into Eq. (2.19), we get: 

஽௉

஽௧
ൌ ௭ܸߩோ݃ ൅

஽௉෨

஽௧
         (2.22) 

Plug Eq. (2.22) into Eq. (2.18), the equation for conservation of energy becomes: 

௣ܥߩ
஽்

஽௧
െ ሺܶߙ ௭ܸߩோ݃ ൅

஽௉෨

஽௧
ሻ ൌ ׏௣ܥߩ ⋅ ሺܶ׏ߢሻ ൅ ܪߩ ൅ ߶    (2.23) 

In summary, the equations for conservation of mass, momentum and energy for 

incompressible fluid are: 

׏ ⋅ ሬܸԦ ൌ 0          (2.24) 

ߩ ቀడ௏
ሬሬԦ

డ௧
൅ ൫ሬܸԦ ⋅ ൯ሬܸԦቁ׏ ൌ െ׏ ෨ܲ ൅ ׏ ⋅ ሶ̿ߝߟ ൅  (2.25)      ݖ෤݃̂ߩ

௣ܥߩ
஽்

஽௧
െ ሺܶߙ ௭ܸߩோ݃ ൅

஽௉෨

஽௧
ሻ ൌ ׏௣ܥߩ ⋅ ሺܶ׏ߢሻ ൅ ܪߩ ൅ ߶    (2.26) 

Let’s non-dimensionalize Eq. (2.24)-Eq. (2.26) using: 

ߩ ൌ  (2.27)          ′ߩ଴ߩ

ߙ ൌ  (2.28)          ′ߙ଴ߙ

݃ ൌ ݃଴݃′          (2.29) 

ߢ ൌ  (2.30)          ′ߢ଴ߢ

ߟ ൌ  (2.31)          ′ߟ଴ߟ
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௣ܥ ൌ  ௣′          (2.32)ܥ௣଴ܥ

ሬܸԦ ൌ ఑బ
஽
ሬܸԦ′          (2.33) 

ܶ ൌ ∆ܶܶ′          (2.34) 

ܪ ൌ ఑బ
஽మ
 (2.35)         ′ܪܶ∆௣଴ܥ

ݐ ൌ ஽మ

఑బ
 (2.36)          ′ݐ

෨ܲ ൌ ఎబ఑బ
஽మ

ܲ′          (2.37) 

ൌ׏ ଵ

஽
 (2.38)          ′׏

where ߩ଴, ߙ଴, ݃଴, ߢ଴, ߟ଴, and ܥ௣଴ are reference density, reference thermal expansivity, 

reference gravity, reference thermal diffusivity, reference viscosity, and reference heat 

capacity, respectively. ܦ is the thickness of the mantle, and ∆ܶ is temperature difference 

between surface and the core-mantle boundary. Parameters with a prime are non-

dimensional parameters. 

Plug Eq. (2.27)-Eq. (2.38) into Eq. (2.24)-Eq. (2.26), we get: 

′׏ ⋅ ሬܸԦ′ ൌ 0          (2.39) 

ଵ

௉ೝ
′ߩ ቀడ௏

ሬሬԦᇱ

డ௧
൅ ൫ሬܸԦ′ ⋅ ൯ሬܸԦ′ቁ′׏ ൌ െ׏′ܲ′ ൅ ̿′ሶߝ′ߟ′׏ ൅ ஽య

ఎబ఑బ
 (2.40)    ݖ෤݃̂ߩ

′௣ܥ′ߩ
஽்ᇲ

஽௧ᇲ
െ ௜ܦ′ܶ′ߙ ቀ

ఈబ∆்

ோ௔

஽௉෨

஽௧
൅ ቁ	ݖோܸߩ ൌ ′׏′௣ܥ′ߩ ⋅ ሺߢᇱ׏ᇱܶᇱሻ ൅ ′ܪ′ߩ ൅ ஽೔

ோ௔
߶′  (2.41) 

where ܦ௜ is the dissipation number, which is defined as: 

௜ܦ ൌ
ఈబ௚బ஽

஼೛బ
          (2.42) 

The vigor of mantle convection is measured by Rayleigh number ܴܽ, which is 

defined as follows: 
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ܴܽ ൌ ఘబ௚బఈబ∆்஽య

ఎబ఑బ
         (2.43) 

The Prandtl number ௥ܲ is defined as: 

௥ܲ ൌ
ఎబ
ఘబ఑బ

          (2.44) 

The viscosity and thermal diffusivity of Earth’s mantle are on the order of 1e22 

and 1e-6, respectively. Given a density of Earth’s mantle of 4000 kgm-3, the Prandtl 

number ௥ܲ is on the order of 2.5e24, and the inverse of Prandtl number is almost infinite. 

Thus, the term on the left side of Eq. (2.40) which is the “inertia” of Earth’s mantle can 

be removed. The equation of conservation of momentum becomes: 

0 ൌ െ׏′ܲ′ ൅ ̿′ሶߝ′ߟ′׏ ൅ ஽య

ఎబ఑బ
 (2.45)       ݖ෤݃̂ߩ

which is also called the stokes equation. 

The density anomaly ߩ෤ in Eq. (2.45) could be approximated as: 

෤ߩ ൌ ܥߩ∆ െ  ଴∆ܶܶ′         (2.46)ߙ଴ߩ

where ∆ߩ is the density difference between different materials and ܥ is the fraction of 

dense material. 

Plug Eq. (2.46) into Eq. (2.45) and considering the definition of Rayleigh number 

ܴܽ, the non-dimensional form of the equation for the conservation of momentum 

becomes: 

 0 ൌ െ׏ᇱܲᇱ ൅ ሶᇱ̿ሻߝᇱߟᇱሺ׏ െ ܴܽሺܶ′ െ  (2.47)      ݖሻ̂ܥܤ

or 

െ׏ᇱܲᇱ ൅ ሶ′̿ሻߝᇱߟᇱሺ׏ ൌ ܴܽሺܶ′ െ  (2.48)       ݖሻ̂ܥܤ

where, ܤ is buoyancy number, which is defined as: 
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ܤ ൌ ∆ఘ

ఘబఈబ∆்
          (2.49) 

The equations for conservation of mass, momentum and energy for 

incompressible fluid with infinite Prandtl number are: 

′׏ ⋅ ሬܸԦ′ ൌ 0          (2.50) 

െ׏ᇱܲᇱ ൅ ሶ′̿ሻߝᇱߟᇱሺ׏ ൌ ܴܽሺܶᇱ െ  (2.51)       ݖሻ̂ܥܤ

′௣ܥ′ߩ
஽்ᇲ

஽௧ᇲ
െ ௜ܦ′ܶ′ߙ ቀ

ఈబ∆்

ோ௔

஽௉෨

஽௧
൅ ቁ	ݖோܸߩ ൌ ′׏′௣ܥ′ߩ ⋅ ሺߢᇱ׏ᇱܶᇱሻ ൅ ′ܪ′ߩ ൅ ஽೔

ோ௔
߶′  (2.52) 

Under the Boussinesq approximation, the Dissipation number is assumed to be 

zero. Thus, all the terms containing Dissipation number ܦ௜ in Eq. (2.52) are dropped. In 

addition, under the Boussinesq approximation, non-dimensional values of ܥ ,′ߩ௣′ and ߢ′ 

in Eq. (2.52) all equal to 1. The equations for conservation of mass, momentum and 

energy under the Boussinesq approximation becomes: 

′׏ ⋅ ሬܸԦ′ ൌ 0          (2.53) 

െ׏ᇱܲᇱ ൅ ሶ′̿ሻߝᇱߟᇱሺ׏ ൌ ܴܽሺܶᇱ െ  (2.54)       ݖሻ̂ܥܤ

డ்ᇱ

డ௧ᇲ
൅ ሺሬܸԦ′ ⋅ ′ሻܶ′׏ ൌ ′ᇱଶܶ׏ ൅  (2.55)       ′ܪ

For convenience, we drop the prime in these equations for non-dimensional 

values and the non-dimensional form of these conservation equations under the 

Boussinesq becomes: 

׏ ⋅ ሬܸԦ ൌ 0          (2.56) 

െ׏P ൅ ሶሻ̿ߝߟሺ׏ ൌ ܴܽሺܶ െ  (2.57)       ݖሻ̂ܥܤ

డ்

డ௧
൅ ሺሬܸԦ ⋅ ሻܶ׏ ൌ ଶܶ׏ ൅  (2.58)        ܪ
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In this dissertation, we use the finite element code Citcom (a 2D code) [Moresi 

and Solomatov, 1995; Moresi and Gurnis, 1996] and CitcomCU (a 3D code) [Zhong, 

2006] to solve these equations. In numerical modeling, the selection of geometry (2D or 

3D), initial condition and boundary condition for solving these equations and the chosen 

of physical parameters, such as viscosity and Rayleigh number, are all based on the 

nature of the scientific questions we want to answer and the specific mantle dynamics we 

want to understand. The details of numerical method for understanding the 

thermochemical structure and dynamics of Earth’s lowermost mantle are described in 

Chapter 3, 4 and 5. 
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CHAPTER 3 

THE DIFFICULTY FOR SUBDUCTED OCEANIC CRUST TO ACCUMULATE AT 

THE EARTH’S CORE-MANTLE BOUNDARY 

 

The work presented in this chapter was published as Li, M. and A. K. McNamara 

(2013). "The difficulty for subducted oceanic crust to accumulate at the Earth's core-

mantle boundary." J. Geophys. Res. 118(4): 1807-1816, doi:10.1002/jgrb.50156.  

 

3.1 Abstract 

Seismic tomography has revealed two large low shear velocity provinces 

(LLSVPs) in the lowermost mantle beneath the central Pacific and Africa. The LLSVPs 

are further shown to be compositionally different from their surroundings. Among several 

hypotheses put forth in recent years to explain the cause of the LLSVPs, one postulates 

that they are thermochemical piles caused by accumulation of subducted oceanic crust at 

the core-mantle boundary (CMB). Mineral physics experiments indicate that oceanic 

crust becomes denser than surrounding mantle at lower mantle pressures. In addition, 

seismic observations provide evidence of subducted slabs arriving at the CMB. However, 

a major question pertains to whether subducted oceanic crust can survive viscous stirring 

associated with mantle plumes and accumulate into piles with the same spatial scale as 

LLSVPs. We perform a set of high resolution convection calculations to examine this 

hypothesis by investigating the interaction of thin oceanic crust (6 km) with mantle 

plumes. Our results show that as subducted oceanic crust is swept toward upwelling 

plume regions, the majority of it is viscously stirred into surrounding mantle. Only a 
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small amount of oceanic crust may accumulate at the base of plumes, but it is consistently 

entrained away into the plume at a rate equal to or greater than it is accumulated. We find 

that it is difficult for subducted oceanic crust to accumulate into large thermochemical 

piles at the CMB. 

3.2 Introduction 

Understanding the role that compositional heterogeneity plays in controlling 

mantle dynamics, and therefore heat transport and thermal evolution, remains one of the 

most challenging problems in Earth Science. A critical question relates to the origin and 

dynamic nature of proposed large-scale compositional heterogeneity in Earth’s lower 

mantle. Although it has long been proposed that the lowermost mantle of the Earth is 

compositionally heterogeneous on a global scale [Masters et al., 2000; Trampert et al., 

2004], the cause of this heterogeneity and how it affects mantle dynamics is not well 

understood. 

Seismic tomography studies have discovered the existence of two large low shear 

velocity provinces (LLSVPs) in the lowermost mantle beneath the central Pacific and 

Africa [Li and Romanowicz, 1996; Su and Dziewonski, 1997; Grand, 2002; Ritsema et 

al., 2004]. These are regions furthest removed from paleosubduction, and geodynamical 

studies have revealed that Earth’s subduction history should act to drive upwellings in 

these regions [Bunge et al., 1998; Zhong et al., 2000; McNamara and Zhong, 2005]. The 

two LLSVP anomalies beneath Africa and central Pacific are both of large size. As 

demonstrated in recent seismic studies, the African anomaly maybe a single massive pile 

reaching 1300 km above the CMB, and the Pacific anomaly may contain several piles 

whose height ranges from ~400 km to at least 740 km [Wang and Wen, 2007b; He and 
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Wen, 2009; 2012]. Interestingly, paleo-magnetic constraints infer that the LLSVPs may 

have been in their current locations for several hundred million years [Torsvik et al., 

2010]. The LLSVPs are also characterized by increased density [Ishii and Tromp, 1999; 

Trampert et al., 2004], large ݈ܸ݀݊݌ܸ݈݊݀/ݏ ratio [Wang and Wen, 2007b] and anti-

correlation between seismic shear velocity and bulk sound speed [Trampert et al., 2004]. 

In addition, seismic travel-time and waveform studies indicate sharp edges [Wen et al., 

2001; Wen, 2001] and large contrasts in elastic properties within the LLSVP regions, 

particularly along the margins [Ni et al., 2002; Ni and Helmberger, 2003; Wang and Wen, 

2004; To et al., 2005; Ford et al., 2006; He and Wen, 2009].  

The characteristics of the LLSVPs discussed above suggest that their composition 

is different from that of the background mantle [Ishii and Tromp, 1999; Masters et al., 

2000; Trampert et al., 2004; Hernlund and Houser, 2008]. Possible origins for a distinct 

composition of LLSVPs may include (1) products resulting from interaction between 

mantle and core [Buffett et al., 2000; Kanda and Stevenson, 2006], (2) remnants of 

primordial dense reservoirs formed by differentiation in Earth’s early history [Wen et al., 

2001; Wen, 2001; Labrosse et al., 2007; Lee et al., 2010; Nomura et al., 2011] and (3) 

accumulation of subducted oceanic crust at the CMB [Christensen and Hofmann, 1994; 

Brandenburg and van Keken, 2007; Nakagawa et al., 2009; Tackley, 2011]. Each of these 

possibilities is related to different dynamics and Earth’s chemical evolution [Wen et al., 

2001; Wen, 2001; Garnero and McNamara, 2008; Tackley, 2012].  

In this study, we test the third possibility using numerical modeling. Seismic 

tomography shows that subducted lithosphere is able to reach the lowermost mantle 

[Grand et al., 1997; Li et al., 2008]. In addition, mineral physics experiments indicate 
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that oceanic crust becomes denser than surrounding mantle at lower mantle pressures 

[Hirose et al., 2005].  Furthermore, geodynamical experiments reveal that oceanic crust 

can delaminate from oceanic lithosphere in the lowermost mantle [Tackley, 2011]. 

However, an important question is whether subducted oceanic crust can survive vigorous 

stirring associated with mantle plumes and accumulate into large thermochemical piles 

with the same spatial scale as LLSVPs. The fact that oceanic crust becomes denser than 

surrounding mantle at lower mantle pressures would support this idea; however, because 

oceanic crust is so thin compared to mantle-scale convection, it may not be able to 

survive viscous stirring (i.e., viscous forces dominate buoyancy forces). We investigate 

this question here by performing high resolution mantle convection calculations that 

include realistic, 6 km, crustal thickness. We investigate whether oceanic crust can 

accumulate in significant quantities in upwelling plume regions over billion-year 

timescales.  

Previous numerical calculations have been conducted to explore the possibility of 

subducted oceanic crust to accumulate at the CMB [Christensen and Hofmann, 1994; 

Brandenburg and van Keken, 2007; Huang and Davies, 2007; Nakagawa et al., 2009; 

Tackley, 2011]. Christensen and Hofmann [1994] modeled the process of segregation and 

accumulation of subducted oceanic crust at the CMB. They found that of the order of 1/6 

of the subducted oceanic crust accumulated in pools at the bottom of the model, which 

resides underneath thermal plumes. In their study, the thickness of oceanic crust is about 

30 km and the Rayleigh number is moderately low because of computational limitation. 

Later, Brandenburg and van Keken [2007] expanded the results of Christensen and 

Hofmann [1994] by studying models with more Earth-like vigor. Their results show that 
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significant accumulation is still possible at high Rayleigh number, but only when the 

excess density of oceanic crust in the lower mantle is larger than that currently suggested 

from laboratory experiments. Huang and Davies [2007] showed the ability of subducted 

oceanic crust to accumulate at the CMB using 3D calculations in which the mantle is 

only heated within and zero heat flux is employed at the CMB. As a result, plumes are 

suppressed in their study. By incorporating self-consistently calculated mineral physics 

into mantle convection models, Nakagawa et al. [2009] found that a large amount of 

subducted dense materials accumulate at the CMB. However, they state that they assume 

more MORB material in the petrological model, which explains why their calculations 

produce a much thicker layer of segregated MORB above the CMB. Most recently, 

Tackley [2011] simulated the process of segregating subducted oceanic crust from a 

compositionally-stratified slab in both two-dimensional (2-D) and three-dimensional (3-

D) models. The results show that a large fraction of subducted oceanic crust can 

segregate and remain at the CMB if a primordial dense layer exists at the lowermost 

mantle. However, the thickness of oceanic crust in his study is 30 km. 

It is not understood whether realistic thin 6 km oceanic crust could survive 

vigorous entrainment from plumes and accumulate into large piles at the CMB. In this 

study, we test the possibility of accumulating large amount of subducted oceanic crust at 

CMB in the existence of upwelling plumes. Our calculations are featured by high 

resolution which allows us to study the subduction and accumulation of a realistic thin 

oceanic crust (6 km). 
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3.3 Method 

We conducted geodynamic calculations by solving the following non-dimensional 

equations for conservation of mass, momentum, and energy using Boussinesq 

approximation: 

׏ ⋅ ሬԦݑ ൌ 0          (3.1) 

െ׏P ൅ ሶሻ̿ߝߟሺ׏ ൌ ܴܽሺܶ െ  (3.2)       ݖሻ̂ܥܤ

డ்

డ௧
൅ ሺሬܸԦ ⋅ ሻܶ׏ ൌ ଶܶ׏ ൅ ܳ        (3.3) 

where, ݑሬԦ is velocity, ܲ is dynamic pressure, ߟ is viscosity, ߝሶ ̿is strain rate tensor, ܶ is 

temperature, ܥ is composition, ̂ݖ is unit vector in vertical direction, ݐ is time and ܳ is 

internal heating. The thermal Rayleigh number ܴܽ is defined as: 

ܴܽ ൌ ఘబ௚బఈబ∆்஽య

ఎబ఑బ
          (3.4) 

where ߩ଴, ߙ଴, ∆ܶ, ߟ଴, and ߢ଴ are dimensional reference values of density, thermal 

expansivity, temperature difference between CMB and surface, reference viscosity at 

temperature ܶ ൌ 0.5 (non-dimensional), and thermal diffusivity, respectively. ݃ and ݄ 

are dimensional gravitational acceleration and thickness of mantle, respectively.  

The chemical density anomaly is measured by buoyancy number ܤ, which is 

defined as: 

ܤ ൌ ∆ఘ

ఘబఈబ∆்
          (3.5) 

where, ∆ߩ is the dimensional density contrast between oceanic crust and background 

mantle. 

All boundaries have free-slip velocity boundary conditions. Temperature 

boundary conditions are isothermal on the top and bottom and insulating on the sides. In 
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this study, we examine the dynamical relationship between plumes and subducted 

oceanic crust, so by trial and error, we established a long-lived stable convection 

configuration which contains downwellings surrounded by upwelling regions on both 

sides. To develop an appropriate initial condition, we first performed a series of 

isochemical calculations to find the model with stable downwellings between two 

upwellings. After finding one, we ran the calculation until it reached a steady thermal 

state. Then, we interpolated to a high resolution mesh and introduced about 6 million 

tracers to represent the compositional field. 

Compositional advection is performed using the ratio tracer method [Tackley and 

King, 2003]. On average, each element has 20 randomly distributed tracers which are 

advected with mantle flow. To provide a constant oceanic crust at the surface, we 

prescribe a composition of 1 to tracers that reach the upper 6km of the model. As noted in 

[Christensen and Hofmann, 1994], we also found that some crustal tracers become 

artificially trapped to the side boundaries, which overemphasize the amount of crustal 

material that accumulates in the lowermost mantle because it descends directly into the 

lowermost thermal boundary layer. To avoid this problem, on the upper half of model, 

crustal tracers are reverted back to normal background mantle if they enter a thin buffer 

width of 0.1 from the side boundaries. In other words, we ignore crust that is subducted 

along the side boundaries of the domain to avoid artificial accumulation of crust in the 

lowermost mantle. 

O'Farrell and Lowman [2010] found that it is appropriate to disregard internal 

heating in Cartesian models in order to better simulate temperature conditions within 

spherical models that do include internal heating.  In other words, adding internal heating 
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to Cartesian models will overheat them and as a consequence, suppress plume formation. 

Our previous experience with both spherical and Cartesian mantle convection modeling 

support this idea, and we arrive at the same general conclusion as [O'Farrell and 

Lowman, 2010]. Therefore, we exclude internal heating for most of our cases except Case 

3.9 in which we employ internal heating to the subducted oceanic crust to explore how 

this affects our results. 

The Perovskite to post-Perovskite phase transition is expected to form in 

relatively cooler portions of the lowermost mantle [Murakami et al., 2004; Oganov and 

Ono, 2004; Tsuchiya et al., 2004; Hernlund et al., 2005].  It is possible that the post-

Perovskite phase could be less viscous than the background mantle by about 5-1000 

times [Hunt et al., 2009; Ammann et al., 2010]. We investigate this possibility in Case 

3.10 by decreasing the viscosity of post-Perovskite of two orders. The phase transition is 

expected to experience a double crossing in downwelling regions [Hernlund et al., 2005] 

which has possibly been observed by seismology [van der Hilst et al., 2007]. We found 

that the following non-dimensional depth-temperature relationship produces double 

crossings of the transition within lowermost mantle portions of the downwellings: 

ܦ ൌ ܶ ൅ 0.5          (3.5) 

where D is non-dimensional depth and T is non-dimensional temperature. We use this 

relation as phase boundary between Perovskite and post-Perovskite and we modify 

viscosity in post-Perovskite regions. 

Viscosity is a function of temperature, depth and Perovskite/post-Perovskite 

phase: 

ߟ ൌ ሾ0.5ܣሾ	௣௣௩expߟ଺଺଴ߟ െ ܶሿሿ       (3.6) 
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where ܣ and ܶ are activation parameter for temperature-dependence of viscosity and non-

dimensional temperature, respectively. The viscosity contrast due to temperature can be 

computed by ∆்ߟ ൌ exp	ሺܣሻ. ߟ଺଺଴ represents the viscosity increase at the 660 km 

discontinuity. In all cases of this study ߟ଺଺଴ ൌ 50, indicating a 50 times viscosity 

increase from upper mantle to lower mantle across the 660km depth [LithgowBertelloni 

and Gurnis, 1997]. ߟ௣௣௩ represents the prescribed viscosity decrease for post-Perovskite 

phase transition (for Case 3.10). 

All cases are performed in 2D Cartesian geometry. We employed an aspect ratio 

of 6 for all cases except Case 3.11, for which the aspect ratio is 7. There are 1152 and 256 

elements in the horizontal and vertical direction, respectively (1344 x 256 elements for 

Case 3.11). The grid is refined in the top 6 km and bottom 600 km, resulting in 

resolutions of 3 km and 6 km in these regions, respectively. 

To solve the conservation equations, we use our modified version of the 

convection code, Citcom [Moresi and Solomatov, 1995; Moresi and Gurnis, 1996], that 

includes the thermochemical convection and compositional-dependent rheology. 

We perform the calculations for about 50 slab transit times, equating to several 

billion years of geologic time. Dimensionalized model time is often not that useful for 

timing geologic events because it is highly sensitive to accurately representing the 

viscosity structure, hence effective Rayleigh number, of the actual Earth.  In other words, 

modest uncertainties in viscosity lead to large uncertainties associated with using 

dimensional time to reference geologic time.  Instead, for problems such as this one, it is 

more appropriate to reference the transit time that takes for a slab to descend to the 

lowermost mantle, based on surface velocity and mantle thickness. We use the following 
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transit time scaling law, from Christensen and Hofmann [1994] to calculate the 

geological time: 

ீݐ ൌ  (3.7)          ∗ݐ଴ݑݐ

where, ீݐ is geological time, ݐ and ݑ଴ are non-dimensional time and average non-

dimensional surface velocity at the surface, respectively. ݐ∗ is the transit time, which is 

given by ݐ∗ ൌ ݄ெ/ݑ௣ , where ݄ெ is the thickness of the mantle and ݑ௣ is a representative 

mean plate velocity for the Earth. We use a transition time of 60 Ma in this study. 

3.4 Results 

Here, we describe 11 representative cases (Table 3.1). All cases have a thin, 6 km 

thick crust and an intrinsic 50x viscosity increase from upper mantle to lower mantle (in 

addition to temperature-dependent viscosity). In Cases 3.1-3.5, the density of oceanic 

crust is varied. Effects of different Rayleigh number are explored in Case 3.6 and Case 

3.7. The temperature-dependence of viscosity is increased in Case 3.8. In Case 3.9, we 

employ internal heating to the subducted oceanic crust. Case 3.10 investigates a viscosity 

softening due to post-Perovskite in high-pressure, cooler regions [van der Hilst et al., 

2007]. In Case 3.11, we choose a different aspect ratio for the model. In order to be 

consistent with experimental and theoretical results [Ringwood, 1990; Hirose et al., 2005; 

Ricolleau et al., 2010], the buoyancy number of oceanic crust in all cases is kept in the 

range of 0.6-1.5 which is equivalent to a density increase of about 1.0-4.5% (depending 

on parameters used for non-dimensionalization) for oceanic crust with respect to 

background mantle. 

We define Case 3.1 as the reference case, in which the buoyancy number is 0.8 

and we use an activation parameter of ܣ ൌ 6.91 for the temperature dependent viscosity, 
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which leads to a maximum of 1000x viscosity contrast due to temperature. The Rayleigh 

number for this case is ܴܽ ൌ 1.0 ൈ 10଻. The steady-state, initial condition features a 

downwelling region in the middle of the domain, surrounded by upwelling plume regions 

on both sides of it. Oceanic crust is continuously introduced in the upper 6 km of the 

model, and most of which is ultimately subducted into the center downwelling region. 

Figure 3.1a illustrates the combined temperature and compositional field after 1 billion 

years of model time. Note the thin ribbon of oceanic crust within the downwelling region. 

The relatively undisturbed crust descends with the downwelling, without being stirred 

into the surrounding mantle. Once the crust reaches the lowermost mantle, along with the 

downwelling, it begins to migrate laterally toward one of the plume regions. Although the 

oceanic crust is denser than the surrounding mantle, most of it is unable to escape the 

viscous drag and settle to the lowermost mantle. Once it reaches a plume, it is viscously 

stirred into the background mantle. Several convection transit times have occurred by this 

time, and the mantle is littered with remnants of older crust that had been previous stirred 

by mantle plumes and is now being stirred by larger-scale mantle convection flow. The 

logarithm of the viscosity field at this time is shown in Figure 3.1b. Figures 3.1c and 3.1d 

show similar results at 2.0 and 2.8 billion years. At any given time, a small fraction of 

oceanic crust may reside in a tiny pile in the lowermost 0-200 km of a mantle plume, but 

this amount is variable and does not grow with time; it is continually entrained into the 

mantle plume itself. Figure 3.1e-g shows the depth profiles of average temperature, 

viscosity and velocity magnitude, respectively. 

Case 3.2 employs a lower density crust, with a buoyancy number of 0.6.  

Snapshots in time are shown at 1.0 and 2.8 billion years in figures 3.2a and 3.2b, 
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respectively. The results are very similar to that of Case 3.1, with the main difference 

being that small piles of oceanic crust do not form at the base of mantle plumes in this 

lower-density case.  Case 3.3 employs a higher density crust, with a buoyancy number of 

1.0.  Snapshots at 1.0 and 2.8 billion years are shown in figures 3.2c and 3.2d, 

respectively. The results are characteristically similar to Case 3.1, and we did not identify 

any noticeable differences from the reference case. 

In Case 3.4, the buoyancy number of the oceanic crust is increased to 1.2. 

Snapshots in time are shown at 1.0 and 2.8 billion years in figures 3.3a and 3.3b, 

respectively. The results are quite similar to Case 3.1, with the main difference being that 

only a slightly larger fraction of oceanic crust resides at the base of plumes. However, 

this amount does not grow with time. In fact, there is a smaller accumulation of crust at 

the CMB at 2.8 billion years (Figure 3.3a) than at 1.0 billion years (Figure 3.3b). In Case 

3.5, the density of the oceanic crust is further increased, with a buoyancy number of 1.5. 

Snapshots in time are shown at 1.0 and 2.8 billion years in figures 3.3c and 3.3d, 

respectively. In this case, we see an increased amount of oceanic crust resides at the base 

of plumes. However, the majority of the subducted oceanic crust is still entrained up by 

plumes. At any given time, the piles are quite small compared to the size of LLSVPs, 

which extend vertically over 1000 km above CMB [Wang and Wen, 2007b; He and Wen, 

2009; 2012]. From Case 3.1 to Case 3.5, we find that the fraction of oceanic crust that 

accumulates at the CMB increases with the density of oceanic crust. However, none of 

these cases generates large accumulations of oceanic crust at the CMB at the scale of 

LLSVPs. 
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Case 3.6 employs a lower Rayleigh number ܴܽ ൌ 5.0 ൈ 10଺. The combined 

temperature and composition field is shown in Figure 3.4a. In this case, two stable 

plumes form at the CMB which consistently entrain the subducted oceanic crust. Case 3.7 

employs a higher Rayleigh number ܴܽ ൌ 5.0 ൈ 10଻. The combined temperature and 

composition field is shown in Figure 3.4b. The higher Rayleigh number leads to a more 

vigorous convection. Subducted oceanic crust experiences more vigorous entrainment 

into upwelling plumes and is difficult to accumulate into large piles at the CMB. 

Case 3.8 employs a higher temperature-dependence of viscosity, such that the 

temperature dependent viscosity contrast between hottest and coldest regions is 10,000x. 

The combined temperature and composition field and the logarithm of viscosity at 1.0 

billion years are shown in figures 3.5a and 3.5b, respectively. We found 2 notable 

differences between this case and the reference case. Case 3.8 lacked the small piles of 

oceanic crust at the base of mantle plumes, and oceanic crust was more-efficiently stirred 

into the back ground mantle. Lowered viscosity in the high temperature regions led to 

weaker and more vigorously advecting mantle plumes. Oceanic crust was unable to 

accumulate at the base of plumes due to more vigorous entrainment into the plume 

conduit. Furthermore, the decreased viscosity in the upper mantle promoted more rapid 

stirring there, and oceanic crust that returned to the upper mantle via plume upwelling 

and return flow was promptly and efficiently stirred into the background mantle. 

In Case 3.9, the subducted oceanic crust includes an internal heating of ܳ௖௥௨௦௧ ൌ

20. Figure 3.6 shows the combined temperature and composition field for Case 3.9 at 1.0 

billion years. The results are very similar to Case 3.1. We did not identify noticeable 

differences from the reference case.  
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In Case 3.10, we investigated the potential softening of downwelling material due 

to the Perovskite to post-Perovskite phase change [Hunt et al., 2009; Ammann et al., 

2010]. Because the post-Perovskite transition is expected to occur in higher-pressure, 

colder regions of the mantle, it should be mostly present in the lowermost mantle portion 

of downwellings. In this case, we imposed a 100x viscosity reduction in regions of post-

Perovskite phase transition. The combined temperature and composition field and the 

logarithm of viscosity are shown in Figure 3.7a and Figure 3.7b, respectively, at 1 billion 

years of model time. Note the lowered viscosity at the base of downwelling regions. The 

lowered viscosity at the base of the downwelling region allows oceanic crust to migrate 

deeper, into the lower thermal boundary layer above the bottom boundary (i.e., core-

mantle boundary). However, the crust is still easily entrained up by upwelling plumes. 

In Case 3.11, we employ an aspect ratio of 7 for the model. Figure 3.8 shows the 

combined temperature and composition field for Case 3.11 at 1.3 billion years. This case 

is featured by two downwellings on both sides of one upwelling plume in the center of 

the model. Although approximately twice the amount of oceanic crust comes into 

interaction with this plume compared to previous cases, the subducted oceanic crust is 

still entrained into this plume and no crustal material resides at the base of the plume. 

Small piles exist at the base of the plumes at/near the side boundaries. However, these 

piles could be more influenced by boundary conditions and are not representative. 

3.5 Discussion  

We investigated whether the negative buoyancy associated with subducted 

oceanic crust can overcome the viscous forces associated with mantle plumes and 

accumulate into large thermochemical piles with the same size of LLSVPs. In the cases 
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presented here, we varied the density of oceanic crust relative to the surrounding mantle, 

the temperature dependence of viscosity, Rayleigh number, internal heating of subducted 

oceanic crust, and a potential weakening of slab regions due to a rheological weakening 

from the post-Perovskite phase transition. We also explore influences of different aspect 

ratio of the model. We found that viscous stirring caused by mantle plumes was stronger 

than the negative buoyancy of oceanic crust, and the majority of subducted oceanic crust 

was stirred into the surrounding mantle.  For some cases, a small amount of oceanic crust 

formed small, narrow piles on the order of hundreds of kilometers or less in height at the 

base of mantle plumes. This material was subsequently entrained into plumes at a rate 

equal or exceeding the rate at which it could accumulate. Even the buoyancy number of 

subducted oceanic crust is increased to 1.5, it is still difficult to accumulate into large 

piles at the CMB with the same scale as LLSVPs. Our results are consistent with 

Deschamps et al. [2012] who shows that seismic velocities of LLSVPs are better 

explained by iron and silicate-rich primordial materials than subducted oceanic crust. 

Our cases assumed a crustal thickness and density that remained constant, at 

present-day values, over billions of years. If oceanic crust was thicker or denser in the 

geologic past, it would have stronger negative buoyancy and could therefore accumulate 

into large thermochemical structures in the lowermost mantle. For example, 

[Brandenburg and van Keken, 2007] found that if oceanic crust has a density higher than 

that inferred from experimental results, significant accumulation of crust could occur. 

This also occurs in calculations in which the oceanic crust is significantly thicker than 

present day values [Nakagawa et al., 2009].  Furthermore, warmer mantle temperatures 

associated with earlier geologic times could facilitate temporary storage of oceanic crust 
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in the transition zone that could episodically avalanche into the lower mantle, enhancing 

accumulation within the lower mantle [Davies, 2008]. Therefore, it is possible that 

different conditions associated with early Earth history may have promoted the 

accumulation of oceanic crust.  

We found that weakened post-Perovskite facilitated segregation of oceanic crust, 

allowing it to reach the lowermost thermal boundary layer, consistent with [Nakagawa 

and Tackley, 2011]. However, their study found that weakened post-Perovskite increased 

the amount of accumulation, whereas we find that once the oceanic crust reaches the 

lowermost thermal boundary, it is sheared and stretched, becoming even thinner and 

more easily stirred and entrained into mantle plumes. The thickness of crust in 

[Nakagawa and Tackley, 2011] is unclear because they employ a melt algorithm to 

generate crust, which may lead to thicker crust at earlier times. 

We allow downwellings to form self-consistently, which results in symmetric 

subduction. As a result, our effective crustal thickness in the downwelling varies up to 

twice the crustal thickness (we measured a representative snapshot to be ~9 km thick at 

the top of the lower mantle). In order to keep the mesh resolution in the lowermost 

mantle at least as fine as the crustal thickness, we did not explore thinner crust. From our 

preliminary calculations and other studies [Nakagawa et al., 2009], we found that the 

amount of long-term crustal accumulation at the base of the mantle increases with greater 

crustal thickness. Therefore, our results likely represent an upper bound, and thinner crust 

would be more easily stirred by and entrained into mantle plumes.  Alternatively, we 

explored using kinematic boundary conditions at the surface which generated asymmetric 

subduction, but we were unable to find a satisfactory configuration that prevented 
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downwellings from unnaturally deflecting in an artificial, kinematically-induced mantle 

wind.  Tackley [2011] reproduced asymmetric subduction by imposing a slab in a 

uniform, non-convecting mantle as the initial condition. In some cases, the descending 

lithosphere and crust flipped upside-down, allowing the crust to come into contact with 

the lowermost thermal boundary layer (not being impeded by the lithosphere), allowing it 

to  be more easily segregated, especially in 3D calculations. It is unclear how to compare 

this study to ours, in terms of the amount of crustal accumulation. In [Tackley, 2011], 

plumes form in response to the slab contacting the CMB, whereas, in our calculations, 

oceanic crust is swept toward pre-existing plumes within upwelling regions. Furthermore, 

in [Tackley, 2011], the oceanic crust is prescribed to be 30 km thick because of presumed 

thickening as a slab passes through a viscosity increase at the top of the upper mantle.  

Our calculations employ a 50x viscosity increase; however, we find that the crust does 

not thicken when passing into higher viscosity lower mantle. Some previous studies on 

viscous mixing show that mixing in 3D is as efficient as in 2D [Ferrachat and Ricard, 

1998; Coltice and Schmalzl, 2006]. This implies that there should not be large difference 

between 2D and 3D calculations in terms of the amount of crustal material that can 

accumulate in upwelling regions. 

In Case 3.1 and Case 3.8, we investigated changing the temperature dependence 

of viscosity from 1000x (Case 3.1) to 10,000x (Case 3.8). We found that increasing the 

temperature dependence of viscosity did not cause an increase in accumulation of oceanic 

crust at the CMB. At first glance, this appears to contradict to Christensen and Hofmann 

[1994], who found that the amount of crust segregation increases with the degree of 

temperature dependence of viscosity. Therefore, we performed additional cases with 
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temperature dependent viscosity in the range of isoviscous to 10,000x viscosity contrast 

due to temperature. Like Christensen and Hofmann [1994], we found that the amount of 

oceanic crust accumulating at the CMB roughly increases with degree of temperature 

dependence of viscosity. However, in all cases, the amount of accumulation remains 

small. After more detailed comparison between Case 3.1 and Case 3.8, we found that a 

higher degree of temperature dependence of viscosity leads to higher viscosity contrast 

around the top of downwelling regions. This leads to larger velocity gradient in these 

regions where oceanic crust is more stretched and becomes slightly thinner (about 1 km 

thinner). Therefore, to first order, the amount of crustal accumulation at the CMB should 

increase with degree of temperature dependence of viscosity; however, our results show 

that even a slight reduction of crustal thickness can counteract the effects of increasing 

the temperature dependence of viscosity by a factor of 10. 

3.6 Conclusion 

In summary, one hypothesis for the cause of LLSVPs is that they are 

thermochemical piles caused by accumulation of subducted oceanic crust at the CMB. 

However, although subducted oceanic crust is denser than its surroundings, it was unclear 

whether thin oceanic crust could provide enough negative buoyancy to overcome viscous 

stresses that act to stir the crust into mantle. Our results find that viscous forces caused by 

mantle plume regions are stronger than the negative buoyancy of subducted oceanic 

crust, so crust is easily stirred into the background mantle. A small amount of crustal 

material may collect at the base of plumes, but it is sufficiently entrained away into the 

plume and does not accumulate into larger-scale thermochemical structures. Therefore, it 

is difficult for the subducted oceanic crust to accumulate into large piles at the CMB with 
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the same size as LLSVPs. Our study does not preclude accumulation of oceanic crust at 

earlier times in Earth’s history when oceanic crust may have been thicker and/or early 

Earth’s mantle facilitated storage and later avalanching of crust at the transition zone. 
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Table 3.1 

Cases Used in Chapter 3. 

Case B Ra A Qcrust μppv Aspect 
 ratio 

 

3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
3.10 
3.11 

0.8 
0.6 
1.0 
1.2 
1.5 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 

107 
107 
107 
107 
107 

5×106 
5×107 

107 
107 
107 
107 

6.91 
6.91 
6.91 
6.91 
6.91 
6.91 
6.91 
9.21 
6.91 
6.91 
6.91 

0 
0 
0 
0 
0 
0 
0 
0 
20 
0 
0 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
0.01 
1.0 

6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
7 

 

 
B: Buoyancy number; Ra: Rayleigh number; A: activation parameter for temperature 
dependent viscosity; Qcrust: internal heating for subducted oceanic crust; μppv: viscosity 
contrast between post-Perovskite and Perovskite. 
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Figure 3.1. Snapshots for Case 3.1. (a) Snapshot (at 1.0 Gyr) of the non-dimensional 
temperature field with oceanic crust superimposed (shown in green). (b) Logarithm of non-
dimensional viscosity at 1.0 Gyr. Black lines are contours of viscosity with an interval of 
0.5. (c) Non-dimensional temperature and oceanic crust at 2.0 Gyr. (d) Non-dimensional 
temperature and oceanic crust at 2.8 Gyr. (e-g) Profiles of horizontally averaged non-
dimensional temperature (e), logarithm of non-dimensional viscosity (f), and magnitude of 
non-dimensional velocity (g) at 1.0 Gyr. This is the reference case. 
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Figure 3.2. Snapshots of the non-dimensional temperature and oceanic crust for Case 3.2 
(a, b) and Case 3.3 (c, d) at 1.0 Gyr (a, c) and 2.8 Gyr (b, d). The buoyancy number is 
B=0.6 for Case 3.2 and B=1.0 for Case 3.3. 
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Figure 3.3. Snapshots of the non-dimensional temperature and oceanic crust for Case 3.4 
(a, b) and Case 3.5 (c, d) at 1.0 Gyr (a, c) and 2.8 Gyr (b, d). The buoyancy number is 
B=1.2 for Case 3.4 and B=1.5 for Case 3.5. 
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Figure 3.4. Snapshots (at 1.0 Gyr) of the non-dimensional temperature and oceanic crust 
for Case 3.6 (a) and Case 3.7 (b). The Rayleigh number is Ra=5e6 for Case 3.6 and Ra=5e7 
for Case 3.7. 
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Figure 3.5. Case 3.8 (a) Snapshot (at 1.0 Gyr) of the non-dimensional temperature and 
oceanic crust. (b) Logarithm of non-dimensional viscosity at 1.0 Gyr. Black lines are 
contours of viscosity with an interval of 0.5. This case employs 10x higher temperature-
dependence of viscosity than that of the reference case. 



79 

 

 
Figure 3.6. Snapshots of the non-dimensional temperature and oceanic crust for Case 3.9 
at 1.0 Gyr. The subducted oceanic crust includes an internal heating of 20 in this case. 
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Figure 3.7. Case 3.10 (a) Snapshot (at 1.0 Gyr) of the non-dimensional temperature and 
oceanic crust. (b) Logarithm of non-dimensional viscosity at 1.0 Gyr. Black lines are 
contours of viscosity with an interval of 0.5. The viscosity is reduced by 100x in post-
Perovskite regions. 
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Figure 3.8. Snapshots of the non-dimensional temperature and oceanic crust for Case 3.11 
at 1.3 Gyr. The aspect ratio is 7 in this case. 
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CHAPTER 4 

CHEMICAL COMPLEXITY OF HOTSPOTS CAUSED BY CYCLING OCEANIC 

CRUST THROUGH MANTLE RESERVOIRS 

 

The work presented in this chapter was published as Li, M., et al. (2014). "Chemical 

complexity of hotspots caused by cycling oceanic crust through mantle reservoirs." Nature 

Geosci 7(5): 366-370, DOI: 10.1038/NGEO2120. 

 

4.1 Abstract 

Ocean-island basalts erupted from hotspots such as Hawaii display a rich 

chemistry derived from multiple compositional sources, including a more-primitive, less-

degassed, component and several recycled, oceanic crustal components [Hofmann, 1997; 

Jackson et al., 2010; Mukhopadhyay, 2012]. These sources have been hypothesized to 

originate from mantle reservoirs that are entrained to the surface by mantle plumes 

[Tackley, 2000]. However, it remains unclear how individual mantle plumes could 

succesively sample each of these reservoirs. Furthermore, it is challenging to reconcile 

crustal signatures in ocean-island basalts that display vastly different crustal ages 

[Sobolev et al., 2011; Cabral et al., 2013]. Here, we perform high resolution calculations 

to investigate the interaction between plumes, subducted oceanic crust, and a more-

primitive lower mantle reservoir. We show that, while some subducted oceanic crust is 

entrained directly into mantle plumes, a significant fraction (up to ~10%) enters more-

primitive reservoirs. This fraction increases with the intrinsic density of oceanic crust and 

is strongly enhanced by a rheologically weaker post-Perovskite in the lowermost mantle. 
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As a result, mantle plumes entrain a variable combination of (a) relatively young oceanic 

crust, (b) ancient more-primitive material stirred with older oceanic crust, and (c) 

background, depleted mantle. This work provides an explanation for multi-component 

geochemical signatures of ocean-island basalts and reconciles the vastly different ages of 

oceanic crust observed in these basalts [Sobolev et al., 2011; Cabral et al., 2013]. 

4.2 Introduction 

The two large low shear velocity provinces (LLSVPs) of the lower mantle 

[Garnero and McNamara, 2008; Dziewonski et al., 2010; He and Wen, 2012] are 

hypothesized to be caused by large accumulations of intrinsically denser more-primitive 

material [Tackley, 1998; Labrosse et al., 2007; Deschamps et al., 2011; Deschamps et al., 

2012], perhaps formed by Earth’s early differentiation processes [Labrosse et al., 2007]. 

This material could be swept into thermochemical piles beneath upwelling regions by 

Earth’s subducting history [McNamara and Zhong, 2005; Bull et al., 2009]. Plumes are 

predicted to root from the top of these piles, entraining a small amount of more-primitive 

material into them [Deschamps et al., 2011]. This conceptual framework provides an 

understanding for the more-primitive chemical signature of ocean-island basalts, but it 

doesn’t explain the recycled oceanic crustal components (e.g., HIMU, EM1, EM2) 

[Hofmann, 1997]. Previous numerical calculations have shown that the interaction 

between subducted oceanic crust and a dense layer of undegassed material could result in 

plumes entraining both components [Samuel and Farnetani, 2003; Tackley, 2011]. 

However, it is unclear how subducted oceanic crust would interact with the 

thermochemical piles that are hypothesized to cause the LLSVPs and lead to 

compositional heterogeneity within plumes. It is also unclear how plumes could entrain 
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recycled oceanic crust with vastly different ages, ranging from Archean time [Cabral et 

al., 2013] to geologically-recent [Sobolev et al., 2011]. 

4.3 Method 

We modified the 2D Cartesian code Citcom [Moresi and Gurnis, 1996] to include 

multiple thermochemical species and compositional rheology to solve the following 

equations of conservation equations of mass, momentum and energy in Boussinesq 

approximation: 

׏ ⋅ ሬԦݑ ൌ 0          (4.1) 

െ׏P ൅ ሶሻ̿ߝߟሺ׏ ൌ ܴܽሺܶ െ  (4.2)       ݖሻ̂ܥܤ

డ்

డ௧
൅ ሺሬܸԦ ⋅ ሻܶ׏ ൌ ଶܶ׏ ൅ ܳ        (4.3) 

where, ݑሬԦ is velocity, ܲ is dynamic pressure, ߟ is viscosity, ߝሶ ̿is strain rate tensor, ܶ is 

temperature, ܥ is composition, ̂ݖ is unit vector in vertical direction, ݐ is time and ܳ is 

internal heating. The thermal Rayleigh number ܴܽ is defined as: 

ܴܽ ൌ ఘబ௚ఈబ∆்஽య

ఎబ఑బ
         (4.4) 

where ߩ଴, ߙ଴, ∆ܶ, ߟ଴, and ߢ଴ are dimensional reference values of density of the 

background mantle, thermal expansivity, temperature difference between core-mantle 

boundary and surface, reference viscosity at temperature ܶ ൌ 0.5 (non-dimensional), and 

thermal diffusivity, respectively. ݃ and ݄ are dimensional gravitational acceleration and 

thickness of mantle, respectively.  

The buoyancy number ܤ is defined as the ratio between chemical density 

anomaly and density anomaly due to thermal expansion: 

ܤ ൌ ∆ఘ

ఘబఈబ∆்
          (4.5) 
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where, ∆ߩ is intrinsic density difference from the background mantle. Both ߙ଴ and ߩ଴ are 

constant throughout the model. In this study, we use ߙ଴=1e-5 (which is the value 

representative of the lowermost mantle [Chopelas and Boehler, 1992]) and ∆ܶ ൌ  ܭ3000

for non-dimensionalization. The term ܶ െ  in the right part of Eq. (4.2) is effective ܥܤ

buoyancy, which reflects density contributions from chemical intrinsic density and from 

density changes due to thermal effects. 

We employ a Rayleigh number Ra=1×107 for most cases. Viscosity is both depth- 

and temperature-dependent. A 50x viscosity increase is employed from upper mantle to 

lower mantle. The temperature dependent viscosity is expressed as ்ߟ ൌ exp	ሾܣሺ0.5 െ

ܶሻሿ, where T is non-dimensional temperature, and we use a non-dimensional activation 

coefficient of A=9.21, leading to a 10,000x viscosity range due to changes in 

temperature. Table 4.1 lists all cases used in this study. 

MgSiO3-Perovskite (Pv) is expected to undergo a phase transition to post-

Perovskite (pPv) at lowermost mantle pressures in cold downwelling regions [Murakami 

et al., 2004; Oganov and Ono, 2004; Tsuchiya et al., 2004; Shim, 2008] where it may 

undergo a double crossing [Hernlund et al., 2005], which has possibly been observed by 

seismology [Lay et al., 2006; van der Hilst et al., 2007]. Mineral physics experiments and 

theoretical calculations have suggested a reduction of viscosity for pPv, compared to Pv 

[Hunt et al., 2009; Ammann et al., 2010], which may influence the segregation of oceanic 

crust from the downwelling slab [Nakagawa and Tackley, 2011; Li and McNamara, 

2013]. In this study, a viscosity reduction due to pPv phase transition is employed in the 

lowermost mantle. We found that the non-dimensional depth-temperature relationship, D 

= T + 0.5, produces double crossings of the phase transition within downwelling regions 
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of the lowermost mantle (for D>0.9), where D and T are non-dimensional depth and 

temperature respectively. We use this relation as phase boundary between Perovskite and 

post-Perovskite, and we explore different viscosity reduction in post-Perovskite regions 

in this study. Because the Clapeyron slope of post-Perovskite phase transition is not very 

well constrained and large uncertainties exist for the temperature of Earth’s lowermost 

mantle, the justification for this non-dimensional phase equation is only based on the goal 

to obtain a lens of the post-Perovskite phase in colder regions of the lowermost mantle, as 

is observed by seismic studies [Lay et al., 2006; van der Hilst et al., 2007]. This simple 

non-dimensional phase equation does not place contraints on the dimensional parameters 

for the post-Perovskite phase transition. 

Our models contain three compositional components, including background 

mantle, subducted oceanic crust and an ancient more-primitive material. Different 

compositional components are represented by different type of tracers, and we use the 

ratio tracer method [Tackley and King, 2003] to simulate the composition field. About 7.4 

million tracers are used in this study. 

To generate an appropriate initial condition, we first perform a lower-resolution 

(1152 x 192 elements), 2-component calculation that includes only the more-primitive 

material and background mantle until the model comes to thermal equilibrium and large-

scale thermochemical piles (composed of denser more-primitive material) are developed. 

Then, we interpolate the temperature and composition fields to higher resolution 

(1152x320 elements). The new mesh is refined in the very top (3 km resolution) and 

lowermost 1200 km of the mantle (6 km resolution). Thereafter, we continually introduce 

a 6-km-thick oceanic crust near the surface of the model. In order to introduce a 6 km 
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thick oceanic crust at the surface, tracers are changed into crustal type once they are 

advected up by mantle flow and pass through the 6 km depth below surface. The crustal 

tracers are changed into background mantle tracers as they enter a buffer width of 0.1 

from the side boundaries to avoid artificially embedding it into the lower thermal 

boundary layer along side boundaries [Christensen and Hofmann, 1994; Li and 

McNamara, 2013]. 

All boundaries are free-slip. Temperature boundary conditions are isothermal on 

the top and bottom and insulating on both sides. 

When constructing the composition field in our figures, we first define a high 

resolution mesh with 5 km resolution for each element. We then calculate the number of 

tracers for each material within every element and the composition for the element is 

estimated based on the following criteria: 

1. If there are crustal tracers within the element, the composition of the element is 

treated as crust. 

2. If the element does not contain crustal tracers, but contain more-primitive 

material tracers, the composition of the element is treated as more-primitive material. 

3. If the element does not contain any crustal tracers or more-primitive material 

tracers, the composition of the element is treated as background mantle material. 

4.4 Results 

We define a reference case in which the oceanic crust and more-primitive material 

have the same buoyancy number of 0.8 (about 2-3% denser than background mantle) and 

the viscosity of the pPv phase is reduced by 100 times (in addition to the temperature-

dependence of viscosity). Figure 4.1 shows a snapshot of the reference case well into the 
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calculation, at 856 Myr. Figure 4.1a is the temperature field with mantle velocity 

superimposed as arrows. Figure 4.1b shows the compositional field. Figure 4.1c shows 

the logarithm of viscosity; note the viscosity increase from upper to lower mantle and 

lenses of lowered viscosity at the base of downwellings due to the presence of pPv. The 

more-primitive material forms 3 piles in the lowermost mantle that are separated by 

downwellings, which carry a thin layer of oceanic crust that is ultimately incorporated 

into the lower thermal boundary layer and advected towards the piles. 

Each pile is characterized by high temperature and undergoes vigorous internal 

convection. The composition of the piles is largely more-primitive material (~90%) but 

contains oceanic crust (~2%) and background mantle (~8%) (Figure 4.1b). As shown in 

Figure 4.2, the proportion of subducted oceanic crust and background mantle within piles 

slightly increases with time, leading to evolving composition of the piles. Thermal 

plumes forming on top of the piles entrain multiple materials: ~2% more-primitive 

material, ~3% subducted oceanic crust (including geologically younger oceanic crust 

originating outside of the piles and relatively older crustal material that is stirred and later 

entrained out with the more-primitive material), and background mantle (Figure 4.1b). 

Figure 4.3 shows the proportion of oceanic crust and more-primitive material within 

plumes as a function of time. Outside of the piles, subducted oceanic crust and material 

entrained from piles are stirred into the background mantle, forming a “marble cake” 

texture [Allegre and Turcotte, 1986]. 

Figure 4.4 shows a representative time sequence of snapshots from the reference 

case, illustrating how subducted oceanic crust is transported into and out of the pile and 

into the mantle plume. Figure 4.4a-c are zoomed-in at the top of the central pile, in the 
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region at the root of the mantle plume where material is exchanged between the pile and 

surrounding mantle. The corresponding effective buoyancy (which reflects density 

contributions from chemical intrinsic density and from density changes due to thermal 

effects) for Figure 4.4a-c is illustrated in Figure 4.5. Figure 4.4d-e are zoomed-out for the 

entire central pile. Figure 4.4a shows a time when oceanic crust is being carried directly 

into the mantle plume. Furthermore, two-way material exchange is observed at the top of 

the pile, where pile material is being entrained into the plume and background mantle is 

being entrained into the pile. Figure 4.4b shows a later time at which oceanic crust 

accumulates at the base of the plume, atop the pile. After ~20 Myr, the accumulation of 

oceanic crust (from Figure 4.4b) is flushed into the pile (Figure 4.4c). A significant 

amount of background mantle material with positive effective buoyancy (Figure 4.5) gets 

trapped within this crustal package on top of the pile (Figure 4.5b) and hence gets 

viscously coupled and later incorporated into the pile with the crustal material (Figure 

4.5c). We find this time sequence of events to be a typical process throughout all of the 

calculations performed, in which the subducted oceanic crust is episodically flushed into 

the more-primitive reservoir. Figures 4.4d and 4.4e show later times at which the flushed 

accumulation of crust (on the scale of ~100 km) is stretched and stirred because of 

internal convection within the pile (Figure 4.4e). 

In the reference case discussed above, the oceanic crust and more-primitive 

material have the same intrinsic density. An important question relates to how different 

density contrasts between the two components affects the dynamics, particularly whether 

it could lead to density stratification (e.g., separate oceanic crust and more-primitive 

reservoirs). In Figure 4.6a-d, we show two cases in which the oceanic crust is either 
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intrinsically less dense (Bc=0.6, Figure 4.6a-b) or more dense (Bc=1.0, Figure 4.6c-d) 

than the more-primitive material. We find that these two cases highly resemble the 

reference case, and therefore, relatively modest intrinsic density contrasts (~1%) between 

oceanic crust and more-primitive material do not change the fundamental dynamics. This 

indicates that the relevant dynamics are more controlled by viscous forces than buoyancy 

forces for realistically thin oceanic crust. Furthermore, we explored additional cases 

(Case 4.4-4.5) in which the buoyancy number of oceanic crust ranged from Bc=0.0 to 

Bc=1.2, corresponding to ~0-4% denser than the background mantle [Hirose et al., 2005]. 

In all cases, the relevant dynamics resembled the reference case, characterized by 

multiple, alternative pathways of oceanic crust which is either directly entrained into 

upwelling plumes, episodically flushed into the more-primitive reservoir, or stirred into 

the background mantle. Nevertheless, we did find that the fraction of subducted oceanic 

crust within the piles increases with the intrinsic density of oceanic crust, as shown in 

Figure 4.7. 

Figure 4.7 shows the percentage of total oceanic crust that resides within piles as 

a function of time. It is important to note that relative differences are more meaningful 

than absolute values because the magnitude of entrainment is somewhat dependent upon 

mesh resolution (as is typical in numerical models), even for these high resolution 

calculations. In all cases, the percentage is zero near the beginning because it takes a 

finite amount of time for the crust to descend into the lower mantle before being 

incorporated into piles. After about 350 Myrs, the reference case (solid black line) is 

characterized by about 7-10% of oceanic crust being incorporated into the piles.   
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Figure 4.7 also shows how the viscosity of the pPv phase significantly influences 

the amount of oceanic crust that is incorporated into piles. The reference case employed a 

100x viscosity reduction in the pPv phase that allowed oceanic crust to go deeper into the 

lower thermal boundary layer [Nakagawa and Tackley, 2011; Li and McNamara, 2013], 

where it is dragged closer to the pile surface by mantle flow and more easily incorporated 

into the pile. As we lessen the viscosity reduction of the pPv phase, oceanic crust doesn’t 

penetrate the lower thermal boundary layer as deeply, and therefore, the amount of 

oceanic crust being incorporated into the piles is reduced. 

Here, we varied the buoyancy number of oceanic crust (Case 4.2-4.5) and the 

intrinsic viscosity reduction associated with the pPv phase (Case 4.6-4.7), both being 

parameters expected to play important, first-order roles in the underlying dynamics 

associated with this study. We found that although these parameters controlled the 

amount of oceanic crust that is incorporated into piles (Figure 4.7), the fundamental 

dynamical process remained unchanged. 

We also investigated parameters such as Rayleigh number (Case 4.8-4.9), 

temperature-dependence of viscosity (Case 4.10), amount of internal heating (Case 4.11), 

and buoyancy number of more-primitive material (Case 4.12), which lead to only second-

order effects as expected (Figure 4.8-4.17).  

In Figure 4.8, we show a snapshot at 1.0 Gyrs for Case 4.4 in which the buoyancy 

number of oceanic crust is B=0.0. In this case, only a very small amount of oceanic crust 

could enter the piles. The major part of it is entrained into plumes and mixed into the 

background mantle. However, as the buoyancy number of oceanic crust is increased to 

B=1.2 (Case 4.5) which is shown in Figure 4.9, a great increase of the amount of oceanic 
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crust inside piles is observed. Nevertheless, the interaction between subducted oceanic 

crust and the more-primitive reservoir material resembles the reference case. Subducted 

oceanic crust takes alternative pathways at the top piles, either being directly entrained 

into plumes or flushed into the piles. 

In Figure 4.10, we show a snapshot of Case 4.6 in which no viscosity reduction is 

applied to post-Perovskite. In this case, the major part of subducted oceanic crust is 

dragged to upwellings before arriving at the lower thermal boundary layer. Only a small 

amount of oceanic crust could enter the piles (Figure 4.7). We lower the viscosity of post-

Perovskite by 10x in Case 4.7 which is shown in Figure 4.11, but no noticeable change is 

observed.  

In Figure 4.12, we show a snapshot at 839 Myr for Case 4.8 with lower Rayleigh 

number (ܴܽ ൌ 5 ൈ 10଺) than that of the reference case (ܴܽ ൌ 1 ൈ 10଻). The result is 

similar to the reference case. A significant amount of subducted oceanic crust is flushed 

into the more-primitive reservoir through the top of piles, and undergoes vigorous stirring 

within the piles. Plumes forming on top of piles entrain a combination of different 

compositions. 

In Figure 4.13, we show a snapshot at 828 Myr for Case 4.9 with higher Rayleigh 

number (ܴܽ ൌ 5 ൈ 10଻) than that of the reference case (ܴܽ ൌ 1 ൈ 10଻). At higher 

Rayleigh number, piles become more stagnant with a lower topography. The same result 

is also found by Tackley [1998], who explained that higher Rayleigh number leads to 

decreasing stresses associated with thicker upwellings and downwellings. Nevertheless, 

the subducted oceanic crust accumulates at the top of piles and episodically flushed into 
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the piles. The interaction between the subducted oceanic crust and the more-primitive 

reservoir is similar to the reference case.  

In Figure 4.14, we show a snapshot at 855 Myr for Case 4.10 with lower 

temperature dependence of viscosity than that of the reference case, which leads to 

1,000x temperature-dependent viscosity contrast between the hottest and coldest region. 

Different from the reference case, we notice that more materials from piles are entrained 

away by plumes and mixed into the background mantle. The same result is also found by 

Deschamps and Tackley [2008]. The reason may be that lower degree of temperature 

dependent viscosity increases the viscous coupling between hot piles and their 

surroundings. Referring to the interaction between subducted oceanic crust and more-

primitive reservoir, we did not identify noticeable differences from the reference case. 

In Figure 4.15, we show a snapshot at 343 Myr for Case 4.11 with internal heating 

(Q=20). Compared to the reference case, temperature difference between piles and their 

surroundings is reduced and mantle plumes become less effective to supporting piles, 

which leads to a reduction in topography of piles. In addition, entrainment of pile 

materials by mantle plumes also decreases. These results are also found and discussed in 

[Tackley, 1998]. At the base of mantle plumes, the subducted oceanic crust takes dual 

pathways: either being directly entrained up into plumes or being episodically flushed 

into the piles, with the same process to the reference case.  

In Figure 4.16, we show a snapshot at 653 Myr for Case 4.12 in which the 

buoyancy number for the more-primitive reservoir material is increased to 1.0. Because 

of increased density of the piles, entrainment of pile materials by plumes is decreased. In 

this case, the oceanic crust is less dense than the more-primitive reservoir. The subducted 
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oceanic crust interact with the more-primitive reservoir in similar way as the reference 

case, but the fraction of oceanic crust inside piles is reduced as is shown in Figure 4.17. 

In Figure 4.17, we show the fraction of total oceanic crust that is incorporated into 

the piles as a function of time for Case 4.8-4.12 and the reference case. Except for Case 

4.12, where the fraction is lower than that of the reference case, the fraction in Case 4.8-

4.11 is of the same level as the reference case. Compared to the effects of density contrast 

between subducted oceanic crust and more-primitive reservoir material and the viscosity 

of weakened post-Perovskite, parameters including Rayleigh number, temperature-

dependent viscosity and internal heating generate only second-order differences for the 

amount of subducted oceanic crust that could enter the thermochemical piles. 

4.5 Discussion and Conclusion 

This work shows how subducted oceanic crust interacts with long-lived, 

originally more-primitive compositional reservoirs (which are hypothesized to cause the 

LLSVPs). We show that oceanic crust first enters the lowermost thermal boundary layer 

at the CMB in downwelling regions and is then transported laterally toward and then, up 

along the surface of the piles. At the top of the piles where plumes are rooted, the oceanic 

crust is either entrained into plumes (along with material from the pile) or flushed into the 

pile. This process appears to be dominated by viscous forces and is relatively insensitive 

to density contrasts between the oceanic crust and more-primitive material. 

Within piles, oceanic crust is continually stirred within the more-primitive 

material, leading to multi-scale compositional heterogeneity in space and time. This 

could possibly contribute to seismic heterogeneity and/or discontinuities within LLSVPs 

as is observed by seismic studies [Lay et al., 2006; Ohta et al., 2008]. In particular, future 
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seismological studies should focus on the tops of LLSVPs, where the oceanic crust may 

be detected.  More importantly, this heterogeneity would be reflected in hotspot basalt 

chemistry because mantle plumes would entrain a time-variable combination of different 

compositions, including (a) relatively young oceanic crust, (b) older oceanic crust that 

was flushed into the pile at an earlier time, (c) ancient, more-primitive reservoir material, 

and (d) depleted background mantle. In addition, plumes sampling geographically 

different parts of the LLSVPs could have different composition [Weis et al., 2011]. These 

factors provide an explanation for the spatial and temporal variability of trace element 

chemistry in hotspot basalts [Hofmann, 1997; Farnetani et al., 2002; Weis et al., 2011], 

and provide an understanding of why signatures of oceanic crust in hotspot basalts can 

range from Archean age [Cabral et al., 2013] to geologically recent [Sobolev et al., 

2011]. 
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Table 4.1 

Cases Used in Chapter 4.  

Case ߟ߂௣௉௩ ܤ௖ ܤ௣ ܴܽ ܣ ܳ 

4.1(REF) 
4.2 
4.3 
4.4 
4.5 
4.6 
4.7 
4.8 
4.9 
4.10 
4.11 
4.12 

0.01 
0.01 
0.01 
0.01 
0.01 

1 
0.1 
0.01 
0.01 
0.01 
0.01 
0.01 

0.8 
0.6 
1.0 
0.0 
1.2 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 

0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
1.0 

1e7 
1e7 
1e7 
1e7 
1e7 
1e7 
1e7 
5e6 
5e7 
1e7 
1e7 
1e7 

9.21 
9.21 
9.21 
9.21 
9.21 
9.21 
9.21 
9.21 
9.21 
6.91 
9.21 
9.21 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
20 
0 

 
REF: reference case; ߟ߂௣௉௩ : viscosity reduction due to the pPv phase; ܤ௖ : buoyancy 
number of oceanic crust; ܤ௣: buoyancy number of more-primitive material; ܴܽ: Rayleigh 
number; ܣ: activation coefficient; ܳ: internal heating. Numbers in bold are parameters 
different from the reference case. 
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Figure 4.1. Snapshot of the reference case (Case 4.1) at 856 Myrs. a, temperature field 
(non-dimensional) with mantle flow velocity superimposed (gray arrows). b, composition 
field with 3 components: oceanic crust (yellow), more-primitive material (cyan), and 
background mantle (black). In this case, the more-primitive material and oceanic crust 
have the same density (0.8=ܤ). c, logarithm of non-dimensional viscosity. Gray lines are 
contours with an interval of 0.5. A 100x viscosity reduction is employed for pPv, which 
exists near the base of downwelling regions. 



102 

 

 
Figure 4.2. Proportion of subducted oceanic crust and background mantle within piles as 
a function of time, for the reference case. Note that the proportion of subducted oceanic 
crust and background mantle within piles increases with time, leading to a changing of 
composition of the thermochemical piles and plumes which entrain material from piles. 
In this study, the pile region is defined by ܶ> 0.75 (non-dimensional), and the proportion 
of each compositional component within piles is estimated using the number of tracers 
within piles for each component. 
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Figure 4.3. Proportion of subducted oceanic crust and more-primitive material in plumes 
as a function of time, for the reference case. Here, the proportion of each compositional 
component within plumes is estimated using the number of tracers of each component 
within plume regions where ܶ>0.5 (non-dimensional), and with a depth range of 0-1690 
km (excluding tracers within piles). 
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Figure 4.4. Sequence of snapshots for the reference case, showing multiple pathways for 
subducted oceanic crust. Only the non-dimensional temperature ܶ>0.5 is displayed, 
which outlines plumes, piles and the thermal boundary layer. a-c, zoomed-in panels 
showing regions around the top of the central pile (see Figure 4.1) at 264 Myrs, 296 Myrs 
and 319 Myrs, respectively. d-e, zoomed-out panels showing the entire central pile at 350 
Myrs and 390 Myrs, respectively. 
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Figure 4.5. Effective buoyancy (ܶ െ  with horizontal average deducted for snapshots (ܥܤ
shown in Figure 4.4a-c. 
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Figure 4.6. Snapshots of two cases showing the effects of density contrast between more-
primitive reservoir and oceanic crust on dynamics. a-b, snapshot (at 880 Myrs) of Case 
4.2 in which oceanic crust is less dense (B=0.6) than the more-primitive reservoir 
(B=0.8). c-d, snapshot (at 840 Myrs) of Case 4.3 in which oceanic crust is more dense 
(B=1.0) than the more-primitive reservoir (B=0.8). a, c, temperature field with mantle 
flow velocity superimposed (gray arrows). b, d, composition field (colors are the same as 
Figure 4.1). 
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Figure 4.7. Percentage of total subducted oceanic crust that resides in piles as a function 
of time. ΔηpPv : viscosity reduction due to the pPv phase; ܤ௖: buoyancy number of oceanic 
crust. 
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Figure 4.8. Snapshot of Case 4.4 at 1.0 Gyrs. a, temperature field (non-dimensional) with 
mantle flow velocity superimposed (gray arrows). b, composition field with 3 
components: oceanic crust (yellow), more-primitive material (cyan) and background 
mantle (black). c, logarithm of viscosity (non-dimensional). Gray lines are contours with 
an interval of 0.5. In this case, the buoyancy number for the oceanic crust is ܤ௖ =0.0. 
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Figure 4.9. Snapshot of Case 4.5 at 856 Myrs. a, temperature field (non-dimensional) 
with mantle flow velocity superimposed (gray arrows). b, composition field with 3 
components: oceanic crust (yellow), more-primitive material (cyan) and background 
mantle (black). c, logarithm of viscosity (non-dimensional). Gray lines are contours with 
an interval of 0.5. In this case, the buoyancy for the oceanic crust is ܤ௖ =1.2. 
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Figure 4.10. Snapshot of Case 4.6 at 828 Myrs. a, temperature field (non-dimensional) 
with mantle flow velocity superimposed (gray arrows). b, composition field with 3 
components: oceanic crust (yellow), more-primitive material (cyan) and background 
mantle (black). c, logarithm of viscosity (non-dimensional). Gray lines are contours with 
an interval of 0.5. In this case, no additional viscosity reduction is applied to post-
Perovskite. 
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Figure 4.11. Snapshot of Case 4.7 at 843 Myrs. a, temperature field (non-dimensional) 
with mantle flow velocity superimposed (gray arrows). b, composition field with 3 
components: oceanic crust (yellow), more-primitive material (cyan) and background 
mantle (black). c, logarithm of viscosity (non-dimensional). Gray lines are contours with 
an interval of 0.5. In this case, a 10x viscosity reduction is applied to post-Perovskite. 
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Figure 4.12. Snapshot of Case 4.8 at 839 Myrs. a, temperature field (non-dimensional) 
with mantle flow velocity superimposed (gray arrows). b, composition field with 3 
components: oceanic crust (yellow), more-primitive material (cyan) and background 
mantle (black). c, logarithm of viscosity (non-dimensional). Gray lines are contours with 
an interval of 0.5. In this case, the Rayleigh number is Ra=5e6. 
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Figure 4.13. Snapshot of Case 4.9 at 828 Myrs. a, temperature field (non-dimensional) 
with mantle flow velocity superimposed (gray arrows). b, composition field with 3 
components: oceanic crust (yellow), more-primitive material (cyan) and background 
mantle (black). c, logarithm of viscosity (non-dimensional). Gray lines are contours with 
an interval of 0.5. In this case, the Rayleigh number is Ra=5e7. 
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Figure 4.14. Snapshot of Case 4.10 at 855 Myrs. a, temperature field (non-dimensional) 
with mantle flow velocity superimposed (gray arrows). b, composition field with 3 
components: oceanic crust (yellow), more-primitive material (cyan) and background 
mantle (black). c, logarithm of viscosity (non-dimensional). Gray lines are contours with 
an interval of 0.5. In this case, the activation energy is A=6.91, which leads to 1,000x 
temperature viscosity contrast between hottest and coldest regions. 
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Figure 4.15. Snapshot of Case 4.11 at 343 Myrs. a, temperature field (non-dimensional) 
with mantle flow velocity superimposed (gray arrows). b, composition field with 3 
components: oceanic crust (yellow), more-primitive material (cyan) and background 
mantle (black). c, logarithm of viscosity (non-dimensional). Gray lines are contours with 
an interval of 0.5. In this case, the internal heating is Q=20. 
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Figure 4.16. Snapshot of Case 4.12 at 653 Myrs. a, temperature field (non-dimensional) 
with mantle flow velocity superimposed (gray arrows). b, composition field with 3 
components: oceanic crust (yellow), more-primitive material (cyan) and background 
mantle (black). c, logarithm of viscosity (non-dimensional). Gray lines are contours with 
an interval of 0.5. In this case, the buoyancy number for the more-primitive reservoir 
material is ܤ௣ =1.0. 
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Figure 4.17. Percentage of total subducted oceanic crust that resides in piles as a function 
of time for Case 4.1 and Case 4.8-4.12. ܴܽ: Rayleigh number; ܣ: Activation parameter; 
ܳ: internal heating; ܤ௣ : Buoyancy number of the more-primitive material.
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CHAPTER 5 

INVESTIGATING THE ORIGIN OF ULTRA-LOW VELOCITY ZONES 

5.1 Abstract 

Discovering the origin of seismic anomalies in Earth’s lowermost mantle, such as 

the large low shear velocity provinces (LLSVPs) beneath the central Pacific and Africa 

[Garnero and McNamara, 2008; Dziewonski et al., 2010; He and Wen, 2012] and the 

much smaller-scale ultra-low velocity zones (ULVZs) observed in some localized regions 

on the core mantle boundary (CMB) [Williams et al., 1998; Rondenay and Fischer, 2003; 

Rost et al., 2005; Hutko et al., 2009; McNamara et al., 2010], provides important 

constraints on Earth’s thermal and chemical evolution. While the LLSVPs are 

hypothesized to be caused by large-scale compositional heterogeneity in Earth’s 

lowermost mantle[Tackley, 1998; McNamara and Zhong, 2005; Labrosse et al., 2007; 

Deschamps et al., 2012], one question centers on whether ULVZs are caused by 

additional, small-scale compositional heterogeneity or whether they are simply caused by 

partial melting of LLSVP material. Furthermore, it is important to determine whether the 

spatial distribution of ULVZs (relative to LLSVPs) can provide information as to their 

origin.  Here, we present numerical experiments to demonstrate that if ULVZs have 

different composition than LLSVPs, they will preferentially accumulate into 

discontinuous patches of variable size and shape along the margins of LLSVPs; however, 

if ULVZs are caused by partial melting of LLSVP material, they would be located 

inboard from the edges of LLSVPs, where temperatures are highest. Our results suggest 

that ULVZs along the edges of LLSVPs are best explained by compositional 
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heterogeneity, while ULVZs located inside LLSVPs may be better (but not exclusively) 

explained by partial melting. 

5.2 Introduction 

ULVZs are seismic anomalies detected on the CMB with a significant reduction 

of seismic velocity (generally greater than 10%) and increased density [Rost et al., 2005; 

Rost et al., 2006]. Compared to the large-scale LLSVPs (covering ~21% area of the CMB 

and up to ~1000 km thick; [Burke et al., 2008; He and Wen, 2012]), the ULVZs are much 

smaller structures (on the order of 10 km thick and 100 km across; [Williams et al., 1998; 

Rondenay and Fischer, 2003; Rost et al., 2005; Hutko et al., 2009]). The LLSVPs are 

hypothesized to be caused by intrinsically more-dense material, possibly remnant from 

earlier differentiation events [Labrosse et al., 2007; Deschamps et al., 2012], that are 

swept to upwelling regions by downwelling subducted slabs [McNamara and Zhong, 

2005]. However, the origin of ULVZs remains unclear. If ULVZs have the same 

composition as LLSVPs, ULVZs could be best explained by partial melting within the 

hottest regions of LLSVPs. Some seismic studies have found that S- and P-wave velocity 

of ULVZs are reduced by ~30% and ~10%, respectively [Helmberger et al., 1998; 

Williams et al., 1998; Rost and Revenaugh, 2003]. The 3-to-1 ratio of S and P velocity 

reduction of ULVZs is consistent with ~5-30% partial melting [Williams and Garnero, 

1996]. Alternatively, if ULVZs have a different composition from LLSVPs (for example, 

enriched in iron; [Wicks et al., 2010; Bower et al., 2011]), the location of ULVZs would 

be largely controlled by mantle dynamics rather than temperature [Hernlund and Jellinek, 

2010; McNamara et al., 2010]. Previously proposed causes for compositional ULVZs 

include remnants of crystallization of Earth’s early magma ocean [Labrosse et al., 2007], 
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accumulation of banded iron formation at the CMB [Dobson and Brodholt, 2005], and 

products of core mantle interaction [Buffett et al., 2000; Kanda and Stevenson, 2006]. 

Previous two-dimensional numerical simulations have demonstrated that a small volume 

of compositionally distinct and more-dense ULVZ material can be topographically 

supported by mantle convection to form distinct accumulations of ULVZ along the 

margins of thermochemical piles (which are hypothesized to cause LLSVPs) [McNamara 

et al., 2010]. However, two-dimensional studies cannot provide information on the three-

dimensional morphology of compositional ULVZs, so it remains unclear whether they 

would be ubiquitously located along the edges of LLSVPs (like a ribbon) or form into 

discontinuous patches. 

5.3 Method 

Here, we perform high resolution three-dimensional calculations to investigate the 

morphology, distribution and dynamics of ULVZs by solving the following non-

dimensional equations for conservation of mass, momentum, and energy under the 

Boussinesq approximation: 

׏ ∙ ሬԦݑ ൌ 0          (5.1) 

െܲ׏ ൅ ׏ ∙ ൫ߝߟሶ൯̿ ൌ ܴܽሺܶ െ ∑ ௜ܥ௜ܤ
௡
௜ୀଵ ሻ̂(5.2)       ݎ 

డ்

డ௧
൅ ሺݑሬԦ ∙ ሻܶ׏ ൌ ଶܶ׏ ൅  (5.3)         ܪ

where, ݑሬԦ	is velocity, ܲ is dynamic pressure, ߟ is viscosity, ߝሶ ̿is strain rate tensor, ܶ is 

temperature, ̂ݎ is unit vector in radial direction, ݊ is the number of compositional 

components, ܤ௜ is the buoyancy number of the ݅th compositional component and ܥ௜ is the 

corresponding composition fraction. The term ∑ ௜ܥ௜ܤ
௡
௜ୀଵ  in Eq. (5.2) is the summation of 
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chemical driving force or effective buoyancy number (hereafter denoted as ܨ௖) from all 

compositional components. ݐ is time and ܪ is internal heating. Physical parameters in the 

above equations are all non-dimensional. 

The thermal Rayleigh number ܴܽ is defined as: 

ܴܽ ൌ ఘబ௚ఈబ∆்஽య

ఎబ఑బ
         (5.4) 

where ߩ଴, ߙ଴, ∆ܶ, ߟ଴ and ߢ଴ are dimensional reference values of background mantle 

density, thermal expansivity, temperature difference between core-mantle boundary and 

surface, reference viscosity at temperature ܶ ൌ 0.6 (non-dimensional), and thermal 

diffusivity, respectively. ݃ and ܦ are dimensional gravitational acceleration and mantle 

thickness, respectively. 

The internal heating ܪ is non-dimensionalized as: 

ܪ ൌ ஽మ

఑బ௖ುబ∆்
 (5.5)         ∗ܪ

Here, ܿ௉బ is heat capacity, ܪ∗ is the dimensional heal production rate. 

The buoyancy number B is defined as the ratio between chemical density anomaly 

and density anomaly due to thermal expansion: 

ܤ ൌ ∆ఘ

ఘబఈబ∆்
          (5.6) 

Here, ∆ߩ is intrinsic density difference between an individual compositional 

component and the background mantle. 

The conservation equations of mass, momentum and energy are solved using our 

modified version of the code CitcomCU [Zhong, 2006] in the Boussinesq approximation. 

We employ a Rayleigh number Ra=9.4×106 for most cases. A 50x viscosity increase is 
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employed from upper mantle to lower mantle. The temperature dependent part of the 

viscosity is expressed as ்ߟ ൌ exp	ሾܣሺ0.6 െ ܶሻሿ, where ܶ is non-dimensional 

temperature, and we use a non-dimensional activation coefficient of 9.21=ܣ for most 

cases, leading to a 10,000x viscosity range due to changes in temperature. Table 5.1 lists 

parameters for all cases used in this study. 

The entire mantle convection system is modeled in a three-dimensional partial-

sphere geometry (Figure 5.1a). The longitude of the model ranges from 30o to 120o, and 

the colatitude ranges from 30o to 150o. The model is divided into 512, 512 and 128 

elements in longitude, colatitude and radial direction, respectively. The mesh is gradually 

refined towards the bottom of the model, resulting in a resolution of 5 km thick and ~14.5 

km across for the lowermost 50 km. All boundaries are free-slip. Temperature boundary 

condition is isothermal on the top (ܶ ൌ 0) and at the bottom (ܶ ൌ 1), and insulating on 

the sides. The model is both heated from below and internally with an internal heating 

rate of ܪ ൌ 12. 

The compositional field contains three compositional components: the 

background mantle, large-scale compositional heterogeneities (i.e., thermochemical piles) 

that resemble the LLSVPs (hereafter denoted as LLSVP material), and smaller scale 

compositional heterogeneities that resemble the ULVZs (herereafter denoted as ULVZ 

material). We developed a new hybrid tracer method to simulate the compositional field, 

in which the background mantle and the LLSVPs are modeled with ~710 million ratio 

tracers and the ULVZs are modeled with 50-110 million absolute tracers. The hybrid 

tracer method allows us to model both large-scale LLSVPs and much smaller scale 

ULVZs efficiently, with a much smaller number of total tracers, compared to each 
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method alone. The description and benchmark of hybrid tracer method are provided in 

Appendix A. 

In order to develop an appropriate initial condition, we first carried out a lower 

resolution (192x192x128 elements) calculation with two compositional components 

(background mantle and LLSVP material) until it reached thermal equilibrium and large-

scale thermochemical piles were established. Then, we interpolated the temperature and 

composition fields to higher resolution (512x512x128 elements).  For LLSVP material, 

we employ a buoyancy number (definined in Supplementary Information) ܤ௅௅ௌ௏௉ ൌ 0.8 

which leads to them being ~2-3% denser than the background mantle for most cases 

(Table 5.1). For the cases that treat ULVZ as an additional component (cases 5.1, 5.3-

5.9), a thin layer of ULVZ material was introduced to the bottom of the model, the 

thickness and density of which depends on the particular case. 

5.4 Results 

We first show the morphology and distribution of ULVZs under the hypothesis 

that ULVZs are caused by chemical heterogeneity. In Case 5.1, we initially introduced 

ULVZ materials with a buoyancy number of ܤ௎௅௏௓ ൌ 2.0 (corresponding to ~5-10% 

denser than background mantle) in the lowermost 5 km of the mantle. Immediately after, 

the ULVZ material was advected by mantle flow toward the edges of LLSVPs, and later, 

accumulated into discontinuous patches with varying size and shape. Figure 5.1 shows a 

snapshot of this case at 227 Myr, from the start of the calculation.  Figure 5.1a shows the 

LLSVP material (in gold) focused into piles by downwellings.  Mantle plumes (red) arise 

from the tops of the piles. In Figure 5.1b (zoomed into the lower mantle), the pile is made 

partially transparent, and the compositional field at a depth of 5 km above the CMB is 
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displayed, illustrating the distribution and morphology of ULVZ material (ranging from 

green to red, depending on how diluted it has become from stirring with LLSVP 

material). We found that most of the ULVZ material is located within local 

accumulations at the edges of the piles, forming discrete patches of varying size (from 

~100 km to ~1000 km). In addition, these accumulations have either round shape or 

linear morphologies, which provides important information about mantle flow velocity 

(discussed later in Figure 5.2). The thickness of the ULVZs ranges from 5 to 100 km 

(Figure 1c). Note that some ULVZ material is temporarily present (in transit) within pile 

interiors (due to either piles merging or being entrained into mantle flow within piles). 

Figure 5.1d-f shows cross-sections of temperature superimposed on the 

compositional field at locations marked by gray cross-section lines in Figure 5.1b. The 

LLSVP material is swept into thermochemical piles beneath upwelling regions by 

downwellings, with ULVZ materials located at the edges of the piles. Some ULVZ 

material is stirred into the LLSVP material (e.g., Figure 5.1e). Regions outlined by gray 

boxes in Figure 5.1d-f are enlarged and shown in Figure 5.1g-h. Note that most ULVZs 

have an asymmetric shape, thicker on the outboard side of piles (Figure 5.1g, 5.1i), 

consistent with previous two-dimensional numerical modeling results[McNamara et al., 

2010]. 

Figure 5.2, 5.3 and 5.4 show a time sequence of snapshots for Case 5.1, 

illustrating the time-dependence of ULVZs. All three figures show the composition field 

at 5 km above the CMB, with mantle flow velocity arrows superimposed. At 121 Myr 

(Figure 5.2), two ULVZs (ULVZ #1 and #2) are located at the edges of the pile. At 160 

Myr (Figure 5.3), ULVZ #2 is advected into a linear shape by mantle flow, whereas 
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ULVZ #1 maintains its round shape, being in a region where mantle flow velocity 

converges. At 227 Myr (Figure 5.4), ULVZ #2 is split into three parts: one migrates 

toward ULVZ #1, one forms into smaller scale ULVZ #3 with round shape, and the third 

part is entrained into the pile and stirred with LLSVP material (ULVZ #4). We observed 

that rounded ULVZs tended to be stable within regions with converging mantle flow 

velocity, whereas linear ULVZs were relatively quickly split into discrete smaller parts. 

 The alternative hypothesis for the origin of ULVZs is that they are caused by 

partial melting of LLSVP material [Williams and Garnero, 1996]. Figure 5.5 shows a 

snapshot at 218 Myr for Case 5.2, which does not include the additional compositional 

heterogeneity for ULVZ material. Figure 5.5a shows the temperature field at 5 km above 

the CMB. The hottest regions (marked by black contours, covering about 10% areas of 

the piles at this depth), and thus hypothetical locations of partial melt, occur inboard from 

the edges of the piles (pile edges are outlined by red lines). 

Figure 5.5b shows a cross-section (marked by purple cross-section line in Figure 

5.5a) of temperature field, superimposed with the composition field. The regions outlined 

by black boxes in Figure 5.5b are enlarged and shown in Figure 5.5c-d, superimposed 

with arrows of mantle flow velocity. We found that hot thermal instabilities (illustrated 

by black contours in Figure 5.5c-d) are developed within piles and are advected by 

mantle flow (illustrated by cyan arrows) toward their edges. Because the margins of piles 

are slightly cooled due to thermal diffusion with the cooler background mantle (further 

demonstrated in Appendix B), the hottest regions (red patches) occur significantly 

inboard from the pile edges. 
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We have calculated the distances between ULVZs and the edges of LLSVPs 

throughout the model run for both Case 5.1 and Case 5.2. First, the LLSVPs are defined 

as regions (grids) with ܨ௖ ൐ 0.1. The ULVZs caused by additional compositional 

heterogeneity are defined as regions (grids) with ܨ௖ ൐ 1.5. For ULVZs caused by partial 

melting, the melting temperature of LLSVP material is chosen to allow ~10% of LLSVP 

material is partially molten. Then, the closest distances between ULVZs and the edges of 

LLSVPs are calculated every 2.5 Myr. We exclude regions that are less than 500 km 

from side boundaries. Because for cases in which ULVZs are caused by additional 

compositional heterogeneity, it takes about 50 Myr for a layer of ULVZ material to be 

pushed to edges of LLSVPs, we thus exclude the first 50 Myr for these cases when 

calculating the distances between ULVZs and the edges of LLSVPs. 

The distances between ULVZs and the edges of LLSVPs for all timesteps are 

summarized and shown in Figure 5.6. At all depths, the compositionally different ULVZ 

material (Case 5.1) is accumulated within local distances from the edges of LLSVPs; 

however, the distances between hottest regions of LLSVPs (or partial melting ULVZs, 

Case 5.2) and the edges of LLSVPs range from several hundred kilometers to over 1,500 

km. 

In cases 5.3-5.13, we investigate the effects of initial thickness of ULVZ material, 

density of ULVZ material, density of LLSVP material, temperature-dependence of and 

intrinsic viscosity of ULVZ material, and Rayleigh number. We found that although 

varying these parameters changes the details of dynamics (Figure 5.7-5.15), the overall 

fundamental conclusions about the morphology and distribution of ULVZs remain 

unchanged: (1) if ULVZs are chemically distinct from LLSVPs, ULVZs are 
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preferentially located along the edges of LLSVPs, with varying size and shape. ULVZ 

material may be temporarily located within LLSVPs when two or more LLSVPs merge 

together (Figure 5.7) or when ULVZ material is entrained into LLSVPs (Figure 5.1e). 

However, they are quickly advected to the edges of LLSVPs by mantle flow (Figure 

5.7d). (2) If ULVZs are caused by partial melting of LLSVP material, they would be 

located inboard from the edges of LLSVPs. 

Figure 5.7 shows a time series of snapshots for Case 5.3, in which the buoyancy 

number of ULVZ material is B=3.0. As the buoyancy number of ULVZ material 

increases, the amount of ULVZ material that is entrained into LLSVPs decreases, 

consistent with previous 2D numerical modeling results [McNamara et al., 2010]. 

However, most ULVZ material is located along the edges of LLSVPs. We also found that 

some ULVZ material could be temporally located at the center of LLSVPs, however, it is 

quickly pushed to the edges of LLSVPs. For example, at 504 Myr, ULVZ #1 is located at 

the edges of LLSVPs (Figure 5.7a). At 538 Myr, ULVZ #1 is located at the center of 

LLSVPs because of the merging of LLSVPs (Figure 5.7b). However, this ULVZ is again 

pushed to the edges of LLSVPs at 608 Myr (Figure 5.7c). 

Figure 5.8 shows the result of Case 5.4, in which the initial thickness of ULVZ 

material is doubled from 5 km in the reference case to 10 km. Although the initial volume 

of ULVZ material is two times as the reference case, the ULVZ material does not form a 

continuous ribbon along the edges of LLSVPs, but is pushed into discontinuous patches 

with variable size and shape along the edges of LLSVPs, similar to the reference case. 

Figure 5.9 shows the result of Case 5.5, in which we employ a 100x viscosity 

reduction to the ULVZ material to simulating the dynamics of compositionally different 
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ULVZs which are partially molten. We found that as the viscosity of ULVZ material is 

reduced by 100 time, it becomes easier to be mixed with the LLSVP material in our 

calculations. Nevertheless, we found that most ULVZs are still located at the edges of 

LLSVPs, similar to the reference case. 

We also investigated the effect of stronger temperature dependent viscosity on our 

results. In Figure 5.10, we show the results of Case 5.6, in which the temperature 

dependent of viscosity is increases to 100, 000x viscosity contrast due to changes of 

temperature. We did not find noticeable differences from our reference case. 

In Figure 5.11, we higher the Rayleigh number to Ra=4.7e7 (Case 5.7). At higher 

Rayleigh number, the LLSVP material tends to form a continuous layer on the CMB. In 

order to generate isolated thermochemical piles, we also reduced the buoyancy number of 

LLSVP material to B=0.6. Because of higher Rayleigh number and higher density 

contrast between ULVZ and LLSVP material, the entrainment of ULVZ material into 

LLSVPs is impaired. However, ULVZs still tend to be located at the edges of LLSVPs, 

with varying size and shape. 

In Figure 5.12, we increases the buoyancy number of LLSVP material to B=1.0 

(Case 5.8). Although more ULVZ material tends to be entrained into LLSVPs due to 

reduced density contrast between ULVZ and LLSVP material, the major part ULVZ 

material remains at the edges of LLSVPs, similar to the reference case. 

In Figure 5.13-5.15, we explored how temperature dependent viscosity, Rayleigh 

number and density of LLSVP material affect the location of hottest regions of LLSVPs. 

We found that in all of these cases (case 5.9-5.11), the hottest regions, or partial melting 

ULVZs, are located within and inboard from the edges of LLSVPs. 
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5.5 Discussion and Conclusion 

In this study, we investigated two end-members of hypothetical origin for 

ULVZs. In reality, both types of ULVZs may co-exist. In addition, ULVZs caused by 

partial melting could be enriched in iron [Nomura et al., 2011; Jackson et al., 2014], 

which could increase the density [Nomura et al., 2011] and lower the melting 

temperature of ULVZ material [Boehler, 1992; Zerr and Boehler, 1994]. In such case, 

these partially molten and compositionally-modified ULVZs would be advected by 

mantle flow to the edges of LLSVPs (shown in Case 5.5; Figure 5.9). 

Here, we show that the relative distances between ULVZs and the edges of 

LLSVPs place significant constraints on the origin of ULVZs. Dozens of findings of 

ULVZs at the lowermost mantle have been reported (summarized by McNamara et al., 

[2010]) by seismic waveform modeling studies. However, the precise lateral extent of 

these ULVZs remains unclear, mainly due to its trade-offs with seismic velocity anomaly. 

Past seismic tomography results also do not have enough resolution to show the locations 

of ULVZs and the edges of LLSVPs. As a result, the distribution of ULVZs respected to 

the edges of LLSVPs remains vague. Nonetheless, our results suggest that ULVZs at the 

edges of LLSVPs are caused by chemical heterogeneities (with or without partial 

melting) that are chemically distinct from LLSVPs and, ULVZs located within and off 

the edges of LLSVPs are better explained by partial melting in these regions. Future 

seismological studies should focus on the distribution and morphology of ULVZs, 

particularly the distance from the edges of LLSVPs and the shape of ULVZs, owing to 

their rich information about the origin of ULVZs and dynamics of Earth’s lowermost 

mantle. 
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Table 5.1 

Cases Used in Chapter 5.  

Case ࢆࢂࡸࢁ࡮ ࢆࢂࡸࢁࡴ ࢆࢂࡸࢁࣆ  ࡼࢂࡿࡸࡸ࡮ ࢇࡾ ࡭
1(REF) 2.0 5 km 1.0 9.21 9.4e6 0.8 

2 N/A N/A N/A 9.21 9.4e6 0.8 
3 3.0 5 km 1.0 9.21 9.4e6 0.8 
4 2.0 10 km 1.0 9.21 9.4e6 0.8 
5 2.0 5 km 0.01 9.21 9.4e6 0.8 
6 2.0 5 km 1.0 11.51 9.4e6 0.8 
7 2.0 5 km 1.0 9.21 4.7e7 0.6 
8 2.0 5 km 1.0 9.21 9.4e6 1.0 
9 N/A N/A N/A 11.51 9.4e6 0.8 
10 N/A N/A N/A 9.21 4.7e7 0.6 
11 N/A N/A N/A 9.21 9.4e6 1.0 

 
REF: reference case; ܤ௎௅௏௓ : buoyancy number of ULVZ material; ܪ௎௅௏௓: initial 
thickness of ULVZ material; ߤ௎௅௏௓: viscosity reduction of ULVZ material; ܣ: activation 
coefficient; ܴܽ: Rayleigh number; Numbers in bold are parameters whose value is 
different from the reference case. Parameters of cases in which ULVZs have different 
composition as LLSVPs are shown in green color; Parameters of cases with no additional 
ULVZ material are shown in red color. 
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Figure 5.1. Snapshot of the reference case at 227 Myr, showing the morphology and 
distribution of ULVZs. a, LLSVP material (golden) forms into a pile at the lowermost 
mantle with mantle plumes forming on tops of the pile. The three dimensional partial 
spherical geometry of the model is outlined by black lines. The Earth’s core (grey color) 
is exposed by removing downwelling slabs above it. b, composition field at 5 km above 
the CMB. Red: ULVZ material; green: LLSVP material; yellow: stirring between ULVZ 
and LLSVP material. c, thickness of ULVZs with partially transparent LLSVP materials 
superimposed (green). d-e, cross-sections of temperature field imposed with composition 
field at locations marked by gray cross-section lines in Figure 5.1b. g-h, zoomed-in at the 
regions outlined by black lines in Figure 5.1d-5.1f, respectively. 
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Figure 5.2. Snapshot of Case 5.1 at 121 Myr. Showing here is composition field at 5 km 
above the CMB, superimposed with mantle flow velocity (arrows). Red: ULVZ material; 
green: LLSVP material; yellow: stirring between ULVZ and LLSVP material. Gray color 
represents Earth’s core. 
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Figure 5.3. Snapshot of Case 5.1 at 160 Myr. Showing here is composition field at 5 km 
above the CMB, superimposed with mantle flow velocity (arrows). Red: ULVZ material; 
green: LLSVP material; yellow: stirring between ULVZ and LLSVP material. Gray color 
represents Earth’s core. 
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Figure 5.4. Snapshot of Case 5.1 at 227 Myr. Showing here is composition field at 5 km 
above the CMB, superimposed with mantle flow velocity (arrows). Red: ULVZ material; 
green: LLSVP material; yellow: stirring between ULVZ and LLSVP material. Gray color 
represents Earth’s core. 
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Figure 5.5. Snapshot of Case 5.2 at 218 Myr. a, Temperature field at 5 km above the 
CMB. Black contours show hottest regions with T>0.999 (non-dimensional). Red lines 
show the edges of LLSVPs. b, cross-sections of temperature field imposed with 
composition field at locations marked by purple cross-section lines in Figure 5.3a. 
Potential locations of ULVZs are shown as red patches. c-d, zoomed-in at the regions 
outlined by black lines in Figure 5.3b. Mantle flow velocity arrows are superimposed. 
Black lines show the temperature (non-dimensional) contours at T=0.98, 0.99, 0.995, and 
0.999. 
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Figure 5.6. Distances between ULVZs and the edges of LLSVPs for Case 5.1 and Case 
5.2. We calculated the distances throughout the model run, but excluding the first 50 Myr 
for Case 5.1 because during this time most ULVZ material is on its way to the edges of 
LLSVPs. We excludes ULVZs that are less than 500 km from side boundaries. The y-
axis of the histograms is normalized with the total number of ULVZ samples for each 
case. 
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Figure 5.7. Mechanism of locating compositionally different ULVZs within LLSVPs. a-
c, snapshots showing the composition field at 5 km above the CMB for Case 5.3, in 
which the buoyancy number of ULVZ material is B=3.0. Red: ULVZ material; green: 
LLSVP material; yellow: stirring between ULVZ and LLSVP material. a, Mantle flow 
velocity starts to converge around ULVZ #1. b, ULVZ #1 with round shape forms in the 
center of LLSVPs. c, ULVZ #1 is moved to the edges of LLSVPs. d, Distances between 
ULVZ material and the edges of LLSVPs. 
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Figure 5.8. Snapshot for Case 5.4 at 462 Myr, in which the initial thickness of ULVZ 
material is 10 km. a, composition field at 5 km above the CMB. Red: ULVZ material; 
green: LLSVP material; yellow: stirring between ULVZ and LLSVP material. b, 
Distances between ULVZ material and the edges of LLSVPs. 
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Figure 5.9. Snapshot for Case 5.5 at 144 Myr, in which a 100x viscosity reduction (in 
addition to the reduction due to temperature-dependence) is applied to the ULVZ 
material, in addition to temperature dependent viscosity. a, composition field at 5 km 
above the CMB. Red: ULVZ material; green: LLSVP material; yellow: stirring between 
ULVZ and LLSVP material. b, Distances between ULVZ material and the edges of 
LLSVPs. 
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Figure 5.10. Snapshot for Case 5.6 at 166 Myr, in which the temperature dependent of 
viscosity is A=11.51, leading to 100,000x viscosity contrast due to temperature. a, 
composition field at 5 km above the CMB. Red: ULVZ material; green: LLSVP material; 
yellow: stirring between ULVZ and LLSVP material. b, Distances between ULVZ 
material and the edges of LLSVPs. 
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Figure 5.11. Snapshot for Case 5.7 at 466 Myr, in which the Rayleigh number is 
Ra=4.7e7 and the buoyancy number for the LLSVP material is ܤ ൌ 0.6. a, composition 
field at 5 km above the CMB. Red: ULVZ material; green: LLSVP material; yellow: 
stirring between ULVZ and LLSVP material. b, Distances between ULVZ material and 
the edges of LLSVPs. 
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Figure 5.12. Snapshot for Case 5.8 at 281 Myr, in which the buoyancy number for the 
LLSVP material is B=1.0. a, composition field at 5 km above the CMB. Red: ULVZ 
material; green: LLSVP material; yellow: stirring between ULVZ and LLSVP material. 
b, Distances between ULVZ material and the edges of LLSVPs. 
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Figure 5.13. Snapshot for Case 5.9 at 108 Myr, in which the temperature dependent of 
viscosity is A=11.51, leading to 100,000x visocisty contrast due to temperature. a, 
temperature field at 5 km above the CMB. Black contours show hottest regions. Red lines 
show the edges of LLSVPs. b, Distances of hottest regions of LLSVPs, or partial melting 
ULVZs, from the edges of LLSVPs. 
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Figure 5.14. Snapshot for Case 5.10 at 393 Myr, in which the Rayleigh number is 
Ra=4.7e7 and the buoyancy number for the LLSVP material is ܤ ൌ 0.6. a, temperature 
field at 5 km above the CMB. Black contours show hottest regions. Red lines show the 
edges of LLSVPs. b, Distances of hottest regions of LLSVPs, or partial melting ULVZs, 
from the edges of LLSVPs. 
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Figure 5.15. Snapshot for Case 5.11 at 312 Myr, in which the buoyancy number for the 
LLSVP material is ܤ ൌ 1.0. a, temperature field at 5 km above the CMB. Black contours 
show hottest regions. Red lines show the edges of LLSVPs. b, Distances of hottest 
regions of LLSVPs, or partial melting ULVZs, from the edges of LLSVPs.
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CHAPTER 6 

FINAL SYNOPSIS 

In this dissertation, I performed numerical calculations to investigate the 

thermochemical structure and dynamics of Earth’s lowermost mantle. 

In Chapter 2, I described the equations for conservation of mass, momentum 

energy and numerical method used to solve these equations. 

In Chapter 3, we performed high resolution 2D calculations to study the 

possibility of subducted oceanic crust to accumulate at the core-mantle boundary. We 

found that as the oceanic crust is subducted to the lowermost mantle, the majority of it is 

entrained up by upwelling mantle plumes and stirred into the background mantle. Only a 

small amount of the subducted oceanic crust could accumulate at the core-mantle 

boundary, but it is consistently entrained away into mantle plumes. Under current Earth-

like condition, it is difficult for the thin (~6 km) subducted oceanic crust to accumulate at 

the CMB into large scales as that of LLSVPs. 

In Chapter 4, we studies the interaction between mantle plumes, subducted 

oceanic crust and more-primitive reservoir. We found that the subducted oceanic crust 

takes multiple pathways as it is subducted to the lowermost mantle. While some part of 

the crust is directly entrained into mantle plumes without contacting the more-primitive 

reservoir, a significant of it (up to 10%) enters the more-primitive reservoir and 

undergoes vigorous stirring with the more-primitive material. As a result, plumes forming 

on top of the more-primitive reservoir entrain a varying combination of more-primitive 

material, oceanic crust with varying ages and background mantle. The result reconciles 

geochemical observation of multiple compositional components and varying ages of 
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oceanic crust in the source of ocean-island basalts. In addition, this provides explanation 

to the seismic heterogeneities within the LLSVPs. 

In Chapter 5, we performed 3D high resolution numerical calculations to 

investigate the morphology and distribution of ULVZs. We found if ULVZs are caused 

by chemical heterogeneities with different composition as LLSVPs, ULVZs tend to be 

located at the edges of LLSVPs. Alternatively, if ULVZs are caused by partial melting 

within the hottest regions of LLSVPs, ULVZs will be located in board and off the edges 

of LLSVPs. The results indicate that ULVZs at the edges of LLSVPs are best explained 

by distinct compositional heterogeneity and ULVZs insider to LLSVPs are better 

explained by partial melting of LLSVP material. 
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The rate of chemical diffusion is nearly zero. In numerical modeling, the 

composition field is often simulated by tracers that are advected with mantle flows. The 

buoyancy forces due to intrinsic density anomaly of compositional components in each 

element of the model are scaled with the number of tracers within the element. In this 

appendix, I will first describe the ratio tracer method and absolute tracer method [Tackley 

and King, 2003]. This is followed by the theory of hybrid tracer method we developed 

and used in Chapter 5. Finally, benchmark results for the hybrid tracer method are 

provided.  

A.1 Absolute Tracer Method and Ratio Tracer Method 

In thermochemical geodynamical modeling, two methods are typically used to 

model the compositional advection: ratio tracer method and absolute tracer method 

[Tackley and King, 2003]. 

For the absolute tracer method, the composition fraction (ܥ௜) of each 

compositional component (except the background mantle) is proportional to the number 

of tracers per volume: 

௜ܥ ൌ
ே೔௏బ
௏

          (A.1) 

Here, ௜ܰ is the number of tracers for the ݅th compositional component in an 

element, ܸ is the volume of the element and ଴ܸ is a constant which equals to average 

volume per tracer for the ݅th compositional component.  

From Eq. (A.1), when ௜ܰ equals zero (i.e., no trace in the element), ܥ௜ becomes 

zero, which is the case for the background mantle. For absolute tracer method, all tracers 

are used to simulate chemical heterogeneities and background mantle contains zero 
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number of tracers. Thus, the number of tracers required is related to the volume of 

chemical heterogeneities. This becomes a big advantage when the size of chemical 

heterogeneities is very small (e.g., the ULVZs), which could be efficiently simulated with 

a small amount of tracers. 

For ratio tracer method, the background mantle is also represented by tracers. 

Usually, the density of the background mantle is the reference density and the buoyancy 

number for the background mantle equals zero. The compositional fraction (ܥ௜) for each 

compositional component within an element is: 

௜ܥ ൌ
ே೔
ே

           (A.2) 

Here, ௜ܰ is the number of tracers in the element used to simulate the ݅th 

compositional component. ܰ is the total number of tracers in that element.  

The ratio tracer method is benchmarked, and compared with absolute tracer 

method in [Tackley and King, 2003]. The ratio tracer method has several advantages over 

the absolute tracer method, such as minimal numerical diffusion and low entrainment. 

Thus, ratio tracer method is often used when dealing with large-scale chemical 

heterogeneities (i.e., LLSVPs), because in this case the absolute tracer method also needs 

large amount of tracers and no longer has the advantage of modeling the compositional 

heterogeneities using less amount of tracers. 

A.2 Hybrid Tracer Method 

In the work presented in Chapter 5, our model is featured by both large- and small 

scale compositional heterogeneities, which resemble the LLSVPs and ULVZs, 

respectively. We developed a new hybrid tracer method which combines the advantages 
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of ratio and absolute tracer method. Here, the background mantle and large scale 

compositional heterogeneity of LLSVPs are simulated with ~710 million ratio tracers and 

the smaller scale compositional heterogeneity of ULVZs is modelled with ~52-110 

million absolute traces (depending on the initial volume of ULVZ material). 

For hybrid tracer method, the chemical driving force (the last term of Eq. (5.2)) 

contains two parts. One part is from background mantle and LLSVP material which are 

modelled with ratio tracers, and is given as: 

௖௥ܨ ൌ ௅௅ௌ௏௉ܤ ∗ ௅௅ௌ௏௉ܥ ൅ ௕௚ܤ ∗  ௕௚       (A.3)ܥ

Here, ܤ௅௅ௌ௏௉ is the buoyancy number of LLSVP material and ܥ௅௅ௌ௏௉ is 

compositional fraction of LLSVP material which is calculated using Eq. (A.2). ܤ௕௚ and 

 ,௕௚ are buoyancy number and compositional fraction for the background mantleܥ

respectively. The buoyancy number of background mantle is ܤ௕௚ ൌ 0, so Eq. (A.3) 

effectively becomes: 

௖௥ܨ ൌ ௅௅ௌ௏௉ܤ ∗  ௅௅ௌ௏௉         (A.4)ܥ

The other part of the chemical driving force is from ULVZ material which is 

modelled with absolute tracers, and is given as: 

௖௔ܨ ൌ ௎௅௏௓ܤ ∗  ௎௅௏௓          (A.5)ܥ

Here, ܤ௎௅௏௓ is the buoyancy number of ULVZ material and ܥ௎௅௏௓ is 

compositional fraction of ULVZ material which is calculated using Eq. (A.1). We 

truncated ܥ௎௅௏௓ at 1 to avoid unphysically settling of tracers [see Tackley and King, 

2003]. 
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In the hybrid tracer method, the chemical driving force (ܨ௖) is a summation of Fୡ௔ 

and Fୡ௥: 

Fୡ ൌ Fୡ௔ ൅ ௖௥ܨ ∗ ሺ1 െ  ௎௅௏௓ሻ        (A.6)ܥ

or,  

Fୡ ൌ ௎௅௏௓ܤ ∗ ௎௅௏௓ܥ ൅ ௖௥ܨ ∗ ሺ1 െ  ௎௅௏௓ሻ      (A.7)ܥ

Notice that, for ܥ௎௅௏௓ ൌ 0 (element has no ULVZ material), ܨ௖ is equivalently calculated 

using ratio tracer method; for ܥ௎௅௏௓ ൌ 1 (element is saturated with ULVZ material), ܨ௖ is 

equivalently calculated using absolute tracer method. 

A.3 Benchmarks 

Here, we perform numerical calculations to test the hybrid tracer method, which is 

compared with ratio tracer method. The 2D Cartesian model we used here contains 

128x128 elements, with grid gradually refined towards the bottom of the model, resulting 

in 5 km resolution at the lowermost 50 km. We use both visual comparison of the 

temperature and composition field and quantitative diagnostics to evaluate the robustness 

of the hybrid tracer method. 

A.3.1 Entrainment of a Dense Thin Layer 

This test treats the entrainment of a thin layer of dense material. To obtain an 

appropriate initial condition, an isochemical calculation is performed until thermal 

equilibrium and the temperature field after thermal equilibrium is used as initial 

temperature condition for thermochemical calculations. Initially, a 10 km thick dense 

layer (ܤ ൌ 2.0) is introduced at the bottom of the mantle. For ratio tracer method (Case 

R1.1-R1.4, where “R” in the name of these cases refers to ratio tracer method), both the 

background mantle and dense material are simulated with ratio tracers. For hybrid tracer 
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method (Case H1.1, where “H” in the name of this case refers to hybrid tracer method), 

the background mantle is simulated with ratio tracers, and the dense layer is modelled 

with about 5,664 number of absolute tracers, or ~22 absolute tracers per element in dense 

layer regions. Cases used in this test are listed in Table A.1. 

Shortly after the initial condition, the dense material is swept to the upwelling 

region beneath a mantle plume and the dense material is consistently entrained into the 

mantle plume and mixed into the background mantle. Figure A1 shows a snapshot at ݐ ൌ

0.06 (non-dimensional) for Case R1.2 and Case H1.1. Notice that both cases have similar 

convection pattern. However, the size of dense pile for the case with hybrid tracer method 

(Figure A1c, d; Case H1.1) is larger than that for the case with ratio tracer method 

(Figure Aa, b; Case R1.2), which indicates that hybrid tracer method results in slower 

entrainment.  

We further defined the ‘Mass’ of dense elements (elements whose chemical 

driving force ܨ௖ is larger than 1.0) to quantify the entrainment rate: 

ݏݏܽܯ ൌ ׬ ݒ௖݀ܨ
ଶ.଴
ଵ.଴                   (A.8) 

The changes of this Mass as a function of time is shown in Figure A2. We see that 

for cases with ratio tracer method (Case 1.1-Case 1.4), more tracers per element leads to 

slower entrainment of the dense material. However, the dense material is entirely 

entrained away by the mantle plume after t~0.085 for these cases. In the contrast, the 

dense material remains at the bottom of the model until ݐ ൌ 0.1 for Case H1.1 in which 

the compositional field is simulated with hybrid tracer method. This result shows that the 

hybrid tracer method enables slower entrainment rate than the ratio tracer method. In 
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addition, for Case R1.4, up to 983,040 tracers are used (averaging 60 tracers per element) 

to model the advection of composition, while only 87,584 tracers (including 5,664 

absolute tracers and 81,920 ratio tracers) are used for Case H1.1, less than 9% of the 

number of tracers used for Case R1.4. In fact, since the buoyancy number of the 

background mantle is zero, the 81,920 ratio tracers used in Case H1.1 to simulate the 

background mantle are redundant. Only 5,664 absolute tracers are needed to simulate the 

dense layer for the hybrid tracer method, which is less than 0.58% of the number of 

tracers used in Case R1.4.  

In conclusion, in this test we find that the hybrid tracer method uses much less 

amount of tracers, but results in lower entrainment rate than the ratio tracer method. 

A.3.2 Interaction between Large Scale and Small Scale Compositional 

Heterogeneity 

This test treats the interaction between three compositional components: a large 

scale composition heterogeneity with an initial thickness of 300 km (hereafter denoted as 

LLSVP material) and buoyancy number of ܤ ൌ 0.8, a small scale compositional 

heterogeneity with an initial thickness of 10 km (hereafter denoted as ULVZ material) 

and buoyancy number ܤ ൌ 2.0, and the background mantle which has a buoyancy 

number of zero. To obtain an appropriate initial condition, we first run a calculation with 

only two compositional components, including the large scale chemical heterogeneity 

and background mantle, until thermal equilibrium. Then the temperature field under 

thermal equilibrium is used as initial temperature condition for three compositional 

components thermochemical calculations. Here, the thermochemical calculations are 

performed using either ratio tracer method (Case 2.1-Case 2.4) in which all three 
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compositional components are modeled with ratio tracer method or hybrid tracer method 

(Case H2.1-Case H2.4) in which the background mantle and LLSVP material are 

modeled with ratio tracer method while the ULVZ material is modeled with about 5,664 

number of absolute tracers, or ~22 absolute tracers per element in ULVZ regions. Cases 

used in this test are listed in Table A.2. 

Shortly after the initial condition, the LLSVP material is formed into a large pile 

beneath an upwelling mantle plume at the right corner of the model and the ULVZ 

material is located at the left edge of the pile and the ULVZ material is consistently 

entrained into the pile. Figure A3 shows a snapshot at ݐ ൌ 0.019 (non-dimensional) for 

Case R2.2 and Case H2.1. Notice that the dynamics shown in both cases are similar, 

except that for Case H2.1, slightly more ULVZ material resides at the edge of the pile 

than Case R2.2. 

Figure A4 shows a snapshot at ݐ ൌ 0.033 (non-dimensional) for the same cases 

(Case R2.2 and Case H2.1) shown in Figure A3 At this time, all ULVZ material is 

entrained into the pile and background mantle and no ULVZ material is left at the edge of 

the LLSVP pile. However, for Case R2.2, some elements at the bottom of the model still 

have high chemical driving forces, which are shown by yellow and red color in Figure 

A4b. This is unrealistic and is caused by not enough ratio tracers are used in Case R2.2. 

Because of grid refinement, the number of tracers per element at the lowermost mantle is 

less than the average number of tracers per element. So, averaging 10 tracers per element 

in Case R2.2 results in only about 2 tracers per element at the lowermost 50 km of the 

model. For the ratio tracer method, the chemical driving force of one element is 

calculated from the fraction of different types of ratio tracers. As a result, very small 
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amount of tracers in the element could lead to artifacts. For example, if the element only 

contains 1 ratio tracer representing the ULVZ material, the chemical driving force of the 

element is 2.0 (which equals to the buoyancy number of ULVZ material); if this tracer 

represents the LLSVP material, the chemical driving force of the element is 0.8 (which 

equals to the buoyancy number of LLSVP material). This leads to neighboring elements 

having very different chemical driving forces, which is numerical noise. The problem is 

solved when increasing the number of tracers (showed in Figure A5). However, for the 

case with hybrid tracer method (Case H2.1), the chemical driving forces of elements are 

much smoother (Figure A4d). 

Figure A5 shows the time evolution of the Mass of dense elements as defined in 

Eq. (A.8), for cases in which ratio tracer method is used (Case R2.1-Case R2.4). After 

 the Mass almost becomes zero when more than averaging ,(non-dimensional) 0.045~ݐ

10 ratio tracers per element are used, indicating all ULVZ material is either mixed into 

the background mantle or entrained into the large LLSVP pile. The high Mass for the 

cases (Case R2.1 and Case R2.2) using only averaging 5 or 10 ratio tracers per element is 

due to artifacts as discussed above.  

However, for the hybrid tracer method, the effect of number of ratio tracers on the 

entrainment of dense material is negligible, as is shown in Figure A6. We vary the 

averaging number of ratio tracers per element from 5 in Case H2.1 to 60 in Case H2.4. 

However, all cases with hybrid tracer method show similar Mass as a function of time. In 

summary, to avoid artifacts due to not enough number of tracers, at least 491,520 tracers 

(or averaging 30 tracers per element) are needed for the ratio tracer method. However for 

the hybrid tracer method, only 87,584 tracers (including 5,664 absolute tracers and 
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81,920 ratio tracers) are needed for hybrid tracer method, less than 18% of the number of 

tracers for the ratio tracer method. 

A.4 Discussion and Conclusion 

In numerical modeling, high resolution calculations are always challenging, 

especially in 3D thermochemical calculations. One of the difficulties is to increase the 

number of tracers needed to simulate the compositional field. It is because increasing the 

number of tracers not only increases the amount of computing time, the number of tracers 

is limited by the memory of the computational cluster as well. Thus, a good method 

should be able to model the advection of composition efficiently using less amount of 

tracers.  

The ratio tracer method has several advantages over absolute tracer method such 

as less minimal statistical “noise” and low entrainment [Tackley and King, 2003]. 

However, the drawback of ratio tracer method is that the total amount of tracers needed is 

much more than absolute tracer method if the size of chemical heterogeneities is very 

small. Here, we developed a new hybrid tracer method which combines the advantages of 

both ratio and absolute tracer method. For hybrid tracer method, the large scale 

background mantle and large scale chemical heterogeneities are simulated with ratio 

tracers and the small scale chemical heterogeneities are simulated with absolute tracers. 

The hybrid tracer method enables us to model the interaction between large and small 

compositional reservoirs using much less amount of tracers than that of the ratio tracer 

method and absolute tracer method. 
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Table A.1 

Cases Used in Modeling the Entrainment of A Thin Dense Layer. 

Case Average number of ratio tracers per element Total number of absolute tracers
R1.1 5 N/A 
R1.2 10 N/A 
R1.3 30 N/A 
R1.4 60 N/A 
H1.1 5 5,664 
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Table A.2 

Cases Used in Modeling the Interaction between Large Scale and Small Scale 

Compositional Heterogeneities. 

Case Average number of ratio tracers per element Total number of absolute tracers
R2.1 5 N/A 
R2.2 10 N/A 
R3.3 30 N/A 
R2.4 60 N/A 
H2.1 5 5,664 
H2.2 10 5,664 
H2.3 30 5,664 
H2.4 60 5,664 
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Figure A1. Snapshot (ݐ ൌ 0.06) for Case R1.2 (a, b) and Case H1.1 (c, d). a, c, 
temperature field. b,d, composition field represented by chemical driving force. For ratio 
tracer method, averaging 10 ratio tracers per element are used to simulate the 
compositional field. For hybrid tracer method, averaging 5 ratio tracers are used to 
simulate the background mantle and 5,664 absolute tracers are used to simulate the dense 
material with buoyancy number B=2.0. 
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Figure A2. Time evolution of mass of the dense elements. For cases with ratio tracer 
method, the averaging number of ratio tracers per element is 5 (Case R1.1), 10 (Case 
R1.2), 30 (Case R1.3), and 60 (Case R1.4). For the case with hybrid tracer method (thick 
green line), we use averaging 5 ratio tracers per element to model the background mantel 
and additional 5,664 absolute tracers to model the dense material (Case H1.1). 
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Figure A3. Snapshot (ݐ ൌ 0.019) of Case R2.2 (a, b) and Case H2.1 (c, d). a, c, 
temperature field. b,d, composition field represented by chemical driving force. For ratio 
tracer method, averaging 10 ratio tracers per element are used to simulate the 
compositional field. For hybrid tracer method, averaging 5 ratio tracers are used to 
simulate the background mantle and an additional 5,664 absolute tracers are used to 
simulate the ULVZ material. 
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Figure A4. Snapshot (ݐ ൌ 0.033) of Case R2.2 and Case H2.1. a, c, temperature field. 
b,d, composition field represented by chemical driving force. The intersection in b, and d 
is zoomed-in from the region outlined by black rectangle in b, and d, respectively. 
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Figure A5. Time evolution of mass of the dense elements. Four cases using ratio tracer 
method are shown with varying averaging number of ratio tracers per element. For 
comparison, we also show the result of Case H2.1 (thick green line) with hybrid tracer 
method which contains averaging 5 ratio tracers per element and additional 5446 absolute 
tracers to model the ULVZ material. 
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Figure A6. Time evolution of mass of the dense elements for cases with hybrid tracer 
method. Here, the averaging number of ratio tracers per element is 5 (Case H2.1), 10 
(Case H2.2), 30 (Case H2.3), and 60 (Case H2.4), and we use additional 5,664 absolute 
tracers to model the ULVZ material. 
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APPENDIX B 

COOLING THE EDGES OF LLSVPS BY THERMAL DIFFUSION 
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Here, we performed 2 two-dimensional isochemical calculations (Case B1 and 

Case B2) to study the process of cooling the edges of thermochemical piles by thermal 

diffusion. In these 2D models, temperature is isothermal both on the top (T=0.0) and at 

the bottom (T=1.0). All boundaries are free slip. Viscosity is temperature dependent with 

ߟ ൌ expሾAሺ0.5 െ ܶሻሿ, where A=6.91, leading to 1,000 viscosity change due to changes 

of temperature. In addition, a viscosity increases of 50x is employed from upper mantle 

to lower mantle. Both cases have a Rayleigh number of Ra=1e6. The model has an aspect 

ratio of 1 and is divided into 128x128 elements. 

All physical parameters of both cases are the same, except that for Case B1, both 

side boundaries are insulating, while for Case B2, the right boundary is insulating but the 

left boundary is isothermal with a temperature of T=0.5, which acts as a ‘cooling’ 

boundary. Figure B1 shows snapshots of temperature field for both two cases when in 

thermal equilibrium. For Case B1 (Figure B1a), single cell convection is established with 

cold downwelling occuring at the right boundary and hot upwelling at the left boundary. 

Hot thermal instabilities in the lowermost mantle are advected to the left side boundary. 

In this case, the hottest regions occur at the lower left of the model. However, when a 

cooling left boundary is employed (Case B2, Figure B1b), the hottest regions are located 

away from the left boundary, because of cooling by the left boundary. 

Similarly, the edges of LLSVPs are cooled down by thermal diffusion from 

surrounding cold background mantle, and as a result, the hottest region appears inboard 

from the edges of LLSVPs. 
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Figure B1. Steady state temperature field for (a) Case B1 and (b) Case B2. For Case B1, 
both side boundaries are insulating; for Case B2, the right boundary is insulating while 
the left boundary is isothermal with a temperature of T=0.5. Notice that for Case B1, the 
hottest regions occur at the lower left corner of the model. For Case B2, the hottest 
regions are located off the left boundary which is cooled down by thermal diffusion.  


