
Approximate A-priori Estimation of the Response Amplification Due to 

 

Geometric and Young's Modulus Mistuning 

by 

Saurav Sahoo 

 

 

 

 

 

A Thesis Presented in Partial Fulfillment 

of the Requirements for the Degree 

Master of Science 

 

 

 

 

 

 

 

 

 

 

Approved December 2014 by the 

Graduate Supervisory Committee: 

 

Marc Mignolet, Chair 

Aditi Chattopadhyay 

Jay Oswald 

 

 

 

 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY 

May 2015 



 i 

ABSTRACT 

  

 Monte Carlo simulations are traditionally carried out for the determination of the 

amplification of forced vibration response of turbomachine/jet engine blades to 

mistuning. However, this effort can be computationally time consuming even when using 

the various reduced order modeling techniques. Accordingly, some investigations in the 

past have focused on obtaining simple approximate estimates for this amplification. In 

particular, two of these have proposed the use of harmonic patterns of the blade 

properties around the disk as an approximate alternative to the many random patterns of 

Monte Carlo analyses. These investigations, while quite encouraging, have relied solely 

on single degree of freedom per sector models of the rotor. 

 In this light, the overall focus of the present effort is a revisit of harmonic 

mistuning of rotors focusing first the confirmation of the previously obtained findings 

with a more detailed model of the blisk in both conditions of an isolated blade-dominated 

resonance and of a veering between blade and disk dominated modes. The latter 

condition cannot be simulated by a single degree of freedom per sector model. Further, 

the analysis will consider the distinct cases of mistuning due to variations of material 

properties (Young’s modulus) and geometric properties (geometric mistuning). In the 

single degree of freedom model, both mistuning types are equivalent but they are not, as 

demonstrated here, in more realistic models. The difference arises because changes in 

geometry induce not only changes in natural frequencies of the blades alone but of their 

modes and the importance of these two sources of variability is discussed with both 

Monte Carlo simulation and harmonic mistuning results. 
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 The present investigation focuses also on the possible extension of the harmonic 

mistuning concept and of its quantitative information that can be derived from such 

analyses. From it, a novel measure of blade-disk coupling is introduced and assessed in 

comparison with the coupling index introduced in the past. In conclusions, the low cost of 

harmonic mistuning computations in comparison with full Monte Carlo simulations is 

demonstrated to be worthwhile to elucidate the basic behavior of the mistuned rotor in a 

random setting. 
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CHAPTER 1 

INTRODUCTION AND REVIEW 

1.1 MISTUNING 

 Bladed disks are typically designed to exhibit rotational symmetry, i.e. a rotation 

of the system by an angle of nφ, where φ = 2π/N,N being the number of blades, will leave 

the structural and geometric properties unchanged. Such bladed disks are referred to as 

tuned and their vibration response possesses a series of properties which are reminiscent 

of the circular disk [1]. First, their mode shapes can be characterized by a number of 

nodal diameters in that the corresponding displacements of points at the same distance 

from the center but at angles φ, 2φ,3φ etc. of each other are sampled from the curves 

θpsin   and θpcos  where θ is the angle of the point from a fixed reference. The 

frequency p in these curves is the number of nodal diameters. The natural frequencies 

corresponding to these mode shapes are repeated for all modes with p≠ 0 to allow the 

existence of both θpsin   and θpcos  mode shapes. 

The rotational symmetry of each component of the engine/turbomachine (rotors, 

stators, fuel nozzles, etc.) suggests that the flow field will also exhibit similar harmonic 

components of the form θrsin and θrcos , referred to as engine order excitations with r 

being the engine order (EO). Owing to the orthogonality of the θpsin  and θpcos  

functions, an rth engine order excitation induces modal forces in only the p = r nodal 

diameter modes leading to significant simplifications in the computations of the forced 

steady state response of the bladed disks. In fact, such a response can be derived from an 

appropriate analysis, finite element typically, of just a sector under appropriate 
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periodicity conditions. Such analyses are referred to as cyclosymmetric or sector 

analyses. 

Mistuning refers to blade to blade variations of their properties, either material 

(Density, Young’s modulus, etc.) and/or their geometry. These variations, induced by the 

finite tolerances of the manufacturing process and/or in-service wear or damage, are 

typically small but their effects on the steady state response of the rotor are often much 

larger. Blade-to-blade variations of their natural frequencies by a few percent have been 

reported to generate changes, increases in particular, of the forced response of some 

blades by 50%, 100%, and even larger. These increased responses are expected, and have 

been found, to lead to significant reductions in fatigue life of the blades. 

The existence of this severe sensitivity has equally important computational 

implications. Indeed, by its nature, mistuning perturbs the rotational symmetry of the 

bladed disk structure and thus prevents the use of cyclosymmetric/sector analyses thereby 

leading to a large increase in the computational cost of a vibration analysis. Moreover, 

given their origin, the exact variations of the blade properties are typically not known in 

advance and vary from one physical bladed disk to another. Accordingly, the most 

appropriate representation of these properties is in terms of random variables recasting 

the prediction of the response as a random vibration problem. Unfortunately, no closed 

form solution for the statistics, e.g., mean, standard deviation, percentiles, of the 

amplitude of blade response leaving only comprehensive Monte Carlo simulations as sole 

option. 

Given the practical significance of the problem and the associated computational 

effort, a large number of papers have been devoted in the last 50 years to the 
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understanding and prediction of the effects of mistuning. Much of the early literature on 

this topic focused on the phenomenological aspects of blade free and forced response in 

mistuned disks but also on the development of predictive approaches of the statistical 

distribution of the response. The deterministic problem of predicting the largest 

amplitude of blade that can be induced by mistuning of either finite or arbitrary 

magnitude has also received sporadic attention. However, the rapid increase in 

computational capabilities in the mid 1990’s shifted the focus to the successful 

development of reduced order modeling strategies for single stage and later on to multi 

stage configurations. With such methods and computational capabilities, bladed disk 

designs that are less sensitive to small differences in blade properties have also been 

actively sought, in particular by using intentional mistuning (or detuning) of the blades. A 

limited review of these various aspects of mistuning research is provided in [2]. 

 

1.2 BLADED DISK MODELS 

 To study and compare the effects of mistuning, two bladed disk models were 

considered. 

1: Single Degree of freedom system: 

The 1
st
 model considered was the single degree of freedom (SDOF) per sector 

model, as shown in Figure 1, in which each sector, blade and disk, is modeled as having 

only 1 degree of freedom. This model is clearly an oversimplified one but it has been 

used in a large number of past investigations and thus is well characterized from the 

standpoint of mistuning. The values of the different structural properties of the blades 

were as follows. The stiffness of the tuned blades was selected to be kt = 430000 N/m, the 
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mass of each blade as m = 0.0114 kg, the damping ratio of the sector was chosen as 1% 

and the blade to blade coupling stiffness as Ck = 45430 N/m. The number of blades on 

the disk was taken to be N = 24.  

 

Figure 1.1.Single Degree of Freedom per Sector Bladed Disk Model. 

 

2: Multi degree of freedom Reduced Order Model: 

The 2
nd

model considered was the 12 bladed disk (referred to as blisk, a 

contraction of bladed-disk to highlight the single piece construction) shown in Fig. 2a for 

the full finite element model and in Fig. 2b for a representative sector. This system, 

which is a reduction to 12 blades of the disk originally modeled in [3], was analyzed both 

directly from the finite element model (Nastran) and using a reduced order model derived 

by using the University of Michigan code REDUCE v2.2 [4]. Each sector of the finite 

element model was constructed using 543 disk nodes and 210 blade nodes with 3 degrees 

of freedom each, resulting in a total of 27108 degrees of freedom for the full disk. The 

reduced order model was built using set of 60 disk-induced modes and 8 cantilevered 
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blade modes for each blade, resulting in a total of 156 degrees of freedom. A damping 

ratio of 0.1% of critical was considered for all modes. 

 

Figure 1.2. Blisk Model. (a) Full Model, (b) Single Sector Finite Element Mesh. 

 

The natural frequencies of tuned bladed disks are usually presented in a figure, 

plotted vs. the number of nodal diameters to which they are associated. This plot is 

presented in Fig. 1.3 for the blisk of Fig. 1.2, each marker corresponding to a particular 

frequency. Also shown on this figure are the coupling indices [5] associated with each 

resonance. These indices provide a measure of the blade-disk coupling at a particular 

resonance. Specifically, a coupling index of zero is a blade mode in which there is no 

participation from the disk while a coupling index of one is indicative of a mode where 

the blade moves as a rigid extension of the disk, i.e. a disk dominated mode. Further 

discussion of the coupling index will be presented in Chapter 3. Note on Fig. 1.3 that the 

high coupling index modes, i.e., the disk modes, follow a rather quadratic behavior vs. 

number of nodal diameters while the blade dominated ones of small coupling indices are 

nearly constant vs. this number. When these fictitious lines intersect near an integer 
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number of nodal diameters, a veering is obtained in which the two modes have a mix of 

disk and blade motions and intermediate values of the coupling index. 

 

Figure 1.3.Natural Frequencies vs. Number of Nodal Diameters, Blisk Model. 

 

A blade overall response was defined as the norm of the 8 generalized coordinates 

of the 8 blade modes for every blade in the reduced order model and as the norm of the 

630 nodal displacements in the full finite element model. 

Often defined in mistuning analyses is the amplification factor which was defined 

as the ratio of the maximum response of the mistuned and tuned systems taken over all 

the blades in the disk and over the frequency band of interest. For the blisk, this 

amplification factor was determined using the overall blade response. 

 

1.3 HARMONIC MISTUNING 

 Harmonic mistuning refers to a particular mistuning in which the blade properties 

(mass, stiffness, etc.) vary harmonically around the disk, i.e., as ( )[ ]Njs /12cos −πβ
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where β is the amplitude of mistuning, i is the blade number, s is the harmonic of 

mistuning and N is the number of blades. Harmonic mistuning has been considered in a 

very limited number of investigations, [5,6] most notably, as a simple mistuning model to 

derive some qualitative and quantitative information on the behavior of a bladed disk to 

the more characteristic random mistuning. The motivation for this form of mistuning is 

the parallel between the equations for a response of the mistuned bladed disk, written as a 

function of the angle θ, and the equations of parametrically excited vibrating systems, 

written as a function of time. As an example, consider the ring model of [6], see Fig. 1.4, 

as a simple bladed disk model. As shown in [6], its mode shapes )(θU  are solution of 

the equation 

    ( )[ ] 0)(
)(

2

2

=θθγ+α+
θ

θ
Uk

d

Ud
       (1.1) 

which is identical (except for the boundary conditions vs. initial conditions) to 

parametrically excited systems. In these systems, the case of a harmonic variation of the 

parameters leading to the Mathieu equation is known to provide significant qualitative 

perspective on the system response. 

 

Figure 1.4. Ring Model of Bladed Disk [6]. 



 8 

A significant advantage of harmonic mistuning lies in that the computation of its 

response is expedient in comparison of the lengthy Monte Carlo simulations. A key 

question however is whether this response can be useful in assessing the response 

obtained with random mistuning. This issue received an initial assessment in [5]; some 

quantitative agreement was found at low mistuning levels between harmonic and random 

mistuning on the single degree of freedom model of Fig. 1.1 in single frequency 

excitation. It was shown that the most important harmonic at those low mistuning levels 

is s = 2 r where r is the engine order of the excitation. 

The insightful work of [6] provided significant clarifications of the observations 

of [5] and detailed the features of the response of the ring model of Fig. 1.4. Through a 

first order perturbation, it was shown in [6] that: 

(a) the natural frequencies of a harmonically mistuned disk are those of the tuned 

system except for those associated with p nodal diameters where s = 2p. 

(b) harmonic mistuning distorts all mode shapes inducing fluctuations of them 

around the disk in the form of sine and cosine of ( )θ− ps  and ( )θ+ ps  of magnitudes 

inversely proportional to ( )ps 2−  and ( )ps 2+ , respectively. That is, the mode with 

number of nodal diameters close to s = 2p are more significantly distorted than those 

away from this condition. This distortion implies that an rth engine order excitation will 

no longer excite only the p = r nodal diameters modes but will excite the entire families 

rps =− and rps =+ , i.e., rsp −= and srp −= . 

 On the basis of these observations, the mechanism for increased response at low 

mistuning levels was related to the split of the repeated modes corresponding to s = 2p as 

the modal force induced by modal distortion is then small. When the natural frequencies 
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are repeated, the modes are only defined up to a linear combination (or rotation in this 

case) of each other and thus the response to a particular excitation can always be 

construed as originating from one mode with the other being appropriately rotated to 

induce a zero modal force. When a split of frequency occurs, the modes become locked 

in the structure and each one induces a peak: the one originally with large modal force 

being most significant. As the frequency split increased, the two modes induce more 

equal contributions to the response which increases as long as a single peak results. As 

demonstrated in [7], the largest response obtained in this manner occurs right before the 

peak separates into two distinct ones, see Fig. 1.5. As the split continues to increase, the 

peaks become more and more separated, influence each other less, and the maximum 

response decreases. 

Thus, for small enough mistuning, the amplification results from the frequency 

split of the p = r nodal diameters modes induced by the harmonic s = 2 r (as shown in 

[5]). This phenomenon is dominant until the peaks induced by these two modes separate 

from each other. For larger mistuning levels, other harmonics s play the dominant role, 

primarily those close to s = 2 r because of their increase distortion level. 
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Figure 1.5. Variation of Peak Amplitude Induced by the Splitting of a Pair of Natural 

Frequencies [7]. 

 

1.4 YOUNG’S MODULUS AND GEOMETRIC MISTUNING 

 While mistuning has always been recognized as induced by blade to blade 

changes of material properties and/or geometry, the latter is the one which has almost 

consistently been considered in the past, at least until rather recently. Moreover, the 

material property variations that have been considered focus on Young’s modulus. A 

practical reason for this choice is linked to the availability of data. Vibration tests of 

blades from which mistuning can be identified typically provide only a few frequencies, 

more challenging was obtaining mode shape data, and thus Young’s modulus provides an 

easily identifiable model from experiments as it involves only a scalar parameter per 
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blade. A similar reason is encountered in the context of modeling random mistuning, 

until the introduction of the nonparametric approach [8], it was challenging to develop a 

stochastic model of the blade properties that involves random variations of mode shapes. 

A turning point in the open literature has been the publication of data obtained with a 

Coordinates Measurement Machine (CMM) [9] which has led to the modeling of the 

variations in blade geometry as a sum of random amplitudes multiplied by deterministic 

functions consistently with a Karhunen-Loeve representation of the geometry fluctuation 

field [9,10,12]. Using such a model or actual blade measurements [11,13] has led to an 

assessment of the effects of geometry mistuning. The comparison of these effects with 

those resulting from a Young’s modulus mistuning has surprisingly received little 

attention, having been addressed briefly only in [13]. 
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CHAPTER 2 

PERTURBATION 

2.1 INTRODUCTION 

 This section discusses the possibility of applying perturbation methods to find an 

approximate response of mistuned bladed disks. For small enough mistuning levels, 

perturbation methods may be applicable to analyze the changes in frequencies, mode 

shapes and forced response for both the blade alone (considered cantilevered) and for the 

entire disk. Perturbation methods are usually less computationally demanding than their 

full counterparts but have a well-defined, often small, radius of convergence. 

Specifically, this technique is appropriate when the blade-disk coupling and damping are 

large enough for the radius of convergence to include the levels of mistuning of practical 

interest [14,16]. This method also works with smaller damping ratios but with a 

significant blade-disk coupling and modification of the method leading to increase in 

complexity. In case of weak blade-disk coupling (for e.g. in case of axial machinery for 

low frequency and/or large number of nodal diameter resonances) the mistuned disk 

response is then dominated by localization and thus an alternate perturbation approach 

was formulated [14,15] that assumes the blade-disk coupling to be small. Again, this 

method (the modified perturbation method) does provide reliable prediction of the 

response provided that the damping and the mistuning are large enough. 

 Focusing on appropriately small levels of mistuning, the present chapter reviews 

and assesses the applications of perturbation methods to first order techniques to the 

determination of the natural frequencies, mode shapes, and response of blades alone and 

entire disks. In the former case, the natural frequencies are assumed to be all well 
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separated while in the latter the pair of tuned natural frequencies focused on is considered 

well separated of all others.  

 

2.2 SINGLE MODE PERTURBATION 

 Denote by K and M the stiffness and mass matrices of the original system, a blade 

here, and the corresponding mistuned system matrices by K̂ and M̂ . It is desired to 

determine the resulting change in the response of the system to a force tieFF ω=  when it 

is assumed to have small classical damping. 

 Assuming that a single mode is dominant, the response of the perturbed system is 

approximately given by  

ψ= ˆˆˆ qX                                                            (2.1) 

Here, q̂ is the modal (generalized) coordinate, ψ̂ is the mode shape of the mode at 

resonance and X̂ is the amplitude of response. The mode shape of the perturbed satisfies 

the eigen-vector equation 

ψλ=ψ ˆˆˆˆˆ MK                                                       (2.2) 

with the normalization ψψ ˆˆˆ M
T

= 1. Setting up the perturbation problem, the matrices are 

first separated into tuned and mistuned components as follows 

KKK ∆+=ˆ                                                       (2.3) 

MMM ∆+=ˆ                                                     (2.4) 

ψ∆+ψ=ψ̂                                                     (2.5) 

λ∆+λ=λ̂                                                         (2.6) 
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Introducing Eqs. (2.3) - (2.6) in Eq. (2.2) and retaining only the 1
st
 order terms yields 

ψ∆+ψ∆+ψ=ψ KKKK ˆˆ                                            (2.7) 

ψ∆λ+ψ∆λ+ψλ∆+ψλ=ψλ MMMMM ˆˆˆ                             (2.8) 

Since, ψλ=ψ MK and ψλ=ψ ˆˆˆˆˆ MK , the above equations can be written as 

ψ∆λ+ψ∆λ+ψλ∆=ψ∆+ψ∆ MMMKK  

or                                    ( ) ( )ψ∆−∆λ+ψλ∆=ψ∆λ− KMMMK                                (2.9) 

Turning next to the normalization condition, it is found that 

1ˆˆˆ =ψ∆ψ+ψ∆ψ+ψψ∆+ψψ=ψψ MMMMM
TTTTT

             (2.10) 

Since 1ˆˆˆ =ψψ M
T

, 1=ψψ M
T

and ψψ∆=ψ∆ψ MM
TT

, Eq. (2.10) reduces to 

02 =ψ∆ψ+ψψ∆ MM
TT

or )(
2

1
ψ∆ψ−=ψψ∆ MM

TT
 (2.11) 

Now, left multiplying Eq. (2.9) by Tψ , it is found that 

)()( ψ∆ψλ−ψ∆ψ=λ∆ MK
TT                              (2.12) 

 The change in eigen-value λ∆ can be determined from the above equation since 

all the other variables are known. Plugging then the calculated λ∆ from equation (2.12) 

into equation (2.9), leads to the estimation ψ∆ . In this regard, note that the matrix 

MK λ−  is singular and thus ψ∆  can only be determined to within a multiple of the null 

space of MK λ− , i.e. ψ . The solution procedure followed here was to eliminate the row 

and columns of MK λ− corresponding to the largest component of ψ , solve for the 
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corresponding reduced size vector ψ∆ , then determine the missing component to satisfy 

the normalization condition of Eq. (2.11)  

The response of the system is given by Eq. (1) where the generalized coordinate q̂ is 

given by: 

)]([2

ˆ)(
ˆ

ψ∆ψλ+λ∆+λζ

ψ∆+ψ
=

M

F
q

T

T

                                       (2.14) 

or 

][
22

ˆ ψ∆ψ−
λ

λ∆
−

ζλ

ψ
+

ζλ

ψ∆
+= M

FF
qq T

TT

                             (2.15) 

 The system chosen for validation, was a cantilevered blade alone model 

corresponding to the blades of the blisk of Fig. 1.2. The finite element model has 210 

nodes each with 3 degrees of freedom. The perturbation of mass and stiffness was 

induced by perturbing the geometry of the blade at a single node. The following figures 

represent the comparison of the perturbation solution for differences in frequency, mode 

shape and response of the unperturbed vs. perturbed system as compared to the full 

eigen-value analysis. The red dots represent the actual eigen-value analysis and the black 

lines are the perturbation solutions. All figures are plotted with respect to the degrees of 

freedom of the blade. A very good match is obtained when considering eigen-value, 

eigen-vector, and response changes. 
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                                (a)                                                      (b) 

Figure 2.1. (a) Comparison of Eigen-Value Changes λ∆  between Perturbation Solution 

and Full Eigen-Value Analysis for the Ensemble of Modes. (b) Same as (a), Zoomed. 

 

Figure 2.2. Comparison of Eigen-Vector Change ψ∆  between Perturbation Solution and 

Full Eigen-Value Analysis for a Particular Mode. 
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Figure 2.3. Comparison of Forced Response Change X∆  between Perturbation Solution 

and Full Eigen-Value Analysis. 
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Consider next the perturbed system: 
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At the contrary of the single mode perturbation, one cannot simply assume that the modes

φ are small perturbations of the modes iψ  because these modes are not uniquely defined; 

any linear combination of 1ψ  and 2ψ  is also a bona fide solution of Eq. (2.16). It can 

however be assumed that φ  are small perturbations of an appropriate linear combinations 

of 1ψ  and 2ψ . That is, the 2 perturbed mode shapes are expressed as 

111

~ ψ∆+ψ=φ                                                      (2.18) 

222

~ ψ∆+ψ=φ                                                    (2.19) 

where: 

2121111
~ ψ+ψ=ψ aa                                                  (2.20) 

2221212
~ ψ+ψ=ψ aa                                                (2.21) 

Proceeding as in the previous section, introduce the perturbation in stiffness and mass 

matrices and their corresponding perturbation in eigen-value and eigen-vector. Then, 

ii MMKK φ∆+λ∆+λ=φ∆+ ))(()( 000                                 (2.22) 

Neglecting 1
st
 order terms and expanding leads to 

iiiii MMMKK ψ∆λ+ψ∆λ+ψλ∆=ψ∆+ψ∆ 000000
~~~                 (2.23) 

Rearranging terms, it is found that 

iiiii KMMMK ψ∆−ψ∆λ+ψλ∆=ψ∆λ− ~~~)(
000000                      (2.24) 

Pre-multiplying by
T

iψ~  as in the previous section yields 

i

T
ii

T
ii

T
i

ii

T
i KMMMK ψ∆ψ−ψ∆ψλ+ψψλ∆=ψ∆λ−ψ ~~~~~~)(~

000000  (2.25) 

Since, 0)( 000 =λ− MK and 1~~
0

=ψψ i

T
i M  assuming mass normalized eigen-vectors, one 
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obtains 

i

T
i MKi ψ∆λ−∆ψ=λ∆ ~)(~

0                (2.26) 

The change in eigen-value iλ∆ can be solved from Eq. (2.26).Reintroducing this result in 

Eq. (2.24) provides a means to solve for iψ∆ . However, 000 MK λ− has two zero eigen-

values corresponding to eigen-vectors 1
~ψ and 2

~ψ . To avoid an unbounded solution, it is 

necessary that the right-hand-side of Eq. (2.24) be orthogonal to 1
~ψ∆ and 2

~ψ∆ . Since 

0)(~)(~
00020001 =λ−ψ=λ−ψ MKMK

TT
                              (2.27) 

it is necessary to have 

)~~~(~
00 iiii

T
j KMM ψ∆−ψ∆λ+ψλ∆ψ = 0                            (2.28) 

for i, j = 1,2. For i = j, this condition reduces to Eq. (2.26). However, for j = 2 and i =1, it 

is required that 

0)~~~(~
1101012 =ψ∆−ψ∆λ+ψλ∆ψ KMM

T
 

or    0~)(~~~
1021021
=ψ∆−∆λψ+ψψλ∆ KMM

TT
 

Since 0~~
10

2 =ψψ M
T

 by orthogonality of the eigen-vectors, the above relation holds if the 

coefficients 22211211 ,,, aaaa are such that: 

0~)(~
102 =ψ∆λ−∆ψ MK

T
                      (2.29) 

To maintain the normalization and orthogonality of the modes 1
~ψ and 2

~ψ , it is required 

that 

1~~
10

1 =ψψ M
T

                                                (2.30) 
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1)()( 2121110212111
=ψ+ψψ+ψ aaMaa                            (2.31) 

Therefore, 

1
2

12
2

11 =+aa and similarly 1
2

22
2

21 =+aa                             (2.32) 

Since 0~~
10

2 =ψψ M
T

, 0)()( 2221210212111
=ψ+ψψ+ψ aaMaa . Hence, 

022211211 =+ aaaa                                                 (2.33) 

These relations admit the solution: 

ϕ== cos1211 aa and ϕ== sin2221 aa                                  (2.34) 

The angle ϕ is determined as follows. Let  

j
T

iij MKh ψ∆λ−∆ψ= )( 0                                  (2.35) 

then 

0221222211122121221111121 =+++ haahaahaahaa                        (2.36) 

Using Eq.  (2.34) and solving yields 

2211

212
tan

hh

h

−
=ϕ                                              (2.37) 

The angle ϕ  can be determined from the above equation with coefficients ijh calculated 

from Eq. (2.35). The difference of eigen-value λ∆ is then from Eq. (2.26) and the 

difference of modes from Eq. (2.23) using first an elimination of two rows and columns, 

as described in the previous section.  

Since, there are repeated modes, the response in the perturbed case is given by 

2

2
22

2

2
1

1
22

1

1

ˆ2ˆˆ2ˆ
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while it was for the unperturbed system 

2
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22
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ωζω+ω−ω

ψ
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eF
X

tiTtiT

             (2.39) 

 The validation of this perturbation solution was carried out on the reduced order 

model of the blisk of Fig. 1.2. The perturbation used was Young’s mistuning which 

results in the splitting of the natural frequencies from the repeated pair of the tuned case. 

It was then convenient for validation to focus on the split between the two frequencies 

shown in Fig. 2.4 vs. mistuning level. Clearly, the perturbation provides the correct 

solution for small enough mistuning levels. Comparisons of the changes in mode shape 

and response in such conditions are excellent, see Figs 2.5 and 2.6, demonstrating the 

applicability of the perturbation method. 

 

Figure 2.4.Comparisonof the Eigen-Value Change λ∆  between Perturbation Solution 

and Full Eigen-Value Analysis as a Function of the Mistuning Level. 
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Figure 2.5. Comparison of the Mode Shape Change ψ∆  between Perturbation Solution 

and Full Eigen-Value Analysis. 

 

Figure 2.6. Comparison of the Change in Response X∆  between Perturbation Solution 

and Full Eigen-Value Analysis. 

0 20 40 60 80 100 120 140 160
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Degrees of Freedom

D
e
lt
a
 P

s
i

 

 

Eigen-Value

Perturbation

0 20 40 60 80 100 120 140 160
-2

-1.5

-1

-0.5

0

0.5

1

1.5
x 10

-3

Degrees of Freedom

D
e
lt
a
 X

 

 

Eigen-Value

Perturbation



 23 

CHAPTER 3 

HARMONIC MISTUNING 

3.1 INTRODUCTION AND PLAN 

 The investigations on the effects of harmonic mistuning reported in Chapter 1, 

i.e., [5,6], were carried out at a transition time. Before then, the mistuning analyses were 

typically carried out on small bladed disk models and were focused on both qualitative 

understanding and quantitative predictions while after that transition, they were rather 

solely aimed at the latter. This poor timing is one reason for the lack of impact of these 

publications on the current mistuning research. Another likely reason is that they both 

focused only on single degree of freedom per sector model and thus left unanswered 

questions on their applicability to more complex bladed disk models. This lack of results 

represented a key motivation for the present investigation. 

 The following sections will focus first on a revisit of the single degree of freedom 

model which will bring some new observations, then on an assessment of a modified 

model which includes decaying exponential and harmonic mistuning. Next, complex 

bladed disk models will be considered both in isolated resonance and tight veering 

conditions. 

 

3.2REVISIT OF THE SINGLE DEGREE OF FREEDOM PER BLADE MODEL 

 The analyses of [5,6] provided good support for the consideration of harmonic 

mistuning as first estimator of its effects but both had weaknesses. The analysis of [5] 

focused solely on the forced response problem and moreover at the single frequency 

corresponding to a tuned system natural frequency. The analysis of [6] was more 
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complete but was carried out on a continuous structure and thus did not include any 

potential effects induced by the periodicity of the number of blades. Clearly, one such 

effect is that the optimum harmonic s = 2 r should be understood modulo the number of 

blades, i.e., s = N – 2 r, if r>N/4. 

 Focusing next on other modes j≠s / 2, it was restated in Chapter 1 that the 

distortion of its mode shapes involves, to first order in the mistuning, harmonic terms of j 

– s and j + s. These term will give rise to nonzero modal force, and thus to the appearance 

of the corresponding resonance in the response vs. frequency plot, when j – s = r or j – s 

= N – r and similarly when j + s = r or j + s = N – r. Solving these equalities under the 

condition s = 2 r gives, in addition to the obvious solution j = r, a resonance condition j = 

3 r orj = N – 3 r. This discussion suggests that the presence of a resonance of the mode 

with that many nodal diameters in the close neighborhood of the one with r nodal 

diameters would result in an interaction between the two modes. The cases r = N/3 and r 

= N/4 are peculiar in this analysis as the first one yields 3 r = N or 0 given the periodicity 

of the bladed disk while the second leads to 3 r = 3 N/4 = N/4 = r again with the 

periodicity. In the former case, the mode that could be excited is the 0 nodal diameter one 

which leads to uniform increases or decreases or response which are seldom large. In the 

latter case, the mode that could be excited is already the one excited and no new physics 

would be observed. 

 When the mistuning becomes large enough, the linearized analyses of [5,6] no 

longer apply and one must resort to full computations to determine the amplification of 

amplitude induced by a particular harmonic of mistuning (s) at a particular level (β). 

Such data can conveniently be presented on 3D plots such as shown in Fig. 3.1-3.5 
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obtained for the model of Fig. 1.1. Note in these figures that the behavior is indeed fully 

consistent with the analyses of [5,6], i.e., at small mistuning levels, the only significant 

harmonic is the s = 2 r one which peaks rapidly and decreases (see [6] for discussion 

based on the work of [7]). Following closely below the s = 2 r curve are those of the 

neighboring values of s. At higher level however, these curves are themselves replaced as 

largest across the set of harmonics by others: s = 6, for r = 2 (Fig. 3.1), s = 9, for r = 3 

(Fig. 3.2), s = 11, for r = 4 (Fig. 3.3), ands = 11, for r = 8 (Fig. 3.5). Note that the plots 

for r = 4 and r = 8 are quite similar, most likely owing to the fact that s = 8 in both cases 

given periodicity. These sets of harmonics are strongly correlated to s = 3 r. 

 Note finally that the case r = 6 of Fig. 3.4 gives rise to much smaller increases in 

amplitude of blade response as compared to those seen in other figures. This result is 

consistent with generally accepted, yet not fully understood, finding that resonance of N/4 

nodal diameters are less sensitive to mistuning than other.  
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Figure 3.1. Maximum Amplitude of Blade Response in Sweep, Single Degree of 

Freedom per Sector Model, r =2. 

 

Figure 3.2. Maximum Amplitude of Blade Response in Sweep, Single Degree of 

Freedom per Sector Model, r =3. 
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Figure 3.3. Maximum Amplitude of Blade Response in Sweep, Single Degree of 

Freedom per Sector Model, r =4. 

 

Figure 3.4. Maximum Amplitude of Blade Response in Sweep, Single Degree of 

Freedom per Sector Model, r =6. 
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Figure 3.5. Maximum Amplitude of Blade Response in Sweep, Single Degree of 

Freedom per Sector Model, r = 8. 
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modes discussed in Chapter 1, should not be affected by the change in properties and thus 
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where +ω p  and −ω p  are the two, high and low, natural frequencies of the p nodal diameter 

modes with harmonic mistuning s = 2p, 0
pω  is the corresponding tuned frequency, and  

+ω
b

,  
−ωb  , and 

0
b

ω  are their counterparts for the blade alone. The hci value, referred to 

here as harmonic coupling index, equals 0 for pure blade modes and 1 for pure disk 

modes. 

 The above definition of the harmonic coupling index is very similar to the one of 

the coupling index [2,19] 

   

( ) )1(11

)1()1(
1

pE

pEp
ci

ω−δ+

ω−δ+ω
−=    (3.2) 

where )1(pω  and )1( Ep δ+ω  denote the p nodal diameter natural frequencies of the 

tuned bladed disks with blade Young’s modulus equal, respectively, to its design value 

and to this value multiplied by the factor Eδ+1 . Note that the increment of Young’s 

modulus affects only the blades, not the disk. 

 Clearly, the ci and hci are very similar in intent but also in construction. Indeed, 

the coupling index corresponds to a uniform change in the blade properties which is 

identical to a harmonic mistuning with s = 0. So, the key difference between hci and ci is 

the harmonic of mistuning under which they are computed. Note however that the hci is a 

measure of coupling pertinent to a mistuned model while the ci is based on tuned 

analyses. 

 A comparison of hci and ci values obtained for the single degree of freedom per 

sector model is shown in Fig. 3.6. For this particular bladed disk model, it is seen that the 
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hci and ci are equal (the value for N/4 nodal diameters is ignored because of its 

specificity described above). A full clarification of this property and an assessment of the 

hci in more complex situations will be necessary in a future research. 

 

Figure 3.6. Harmonic Coupling Index (hci) and Coupling Index (ci) Values for the Single 

Degree of Freedom per Sector Model Vs. Number of Nodal Diameters. 
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harmonic mistuning provides a close quantitative estimate of the effects of random 

mistuning. At higher levels, the matching becomes qualitative only. 

 

 

Figure 3.7. Maximum amplification of blade response for harmonic and exponential-

harmonic mistuning. Single degree of freedom per sector model, r = 3. 
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( )[ ] ( )[ ]Njsjkk tj /12cos1exp −π−α−β+= .      (3.3) 

 Note that this equation is valid only till the blade j = N/2, symmetry of the 

mistuning pattern is enforced for the other half of the disk. The response in sweep of the 

single degree of freedom system to the mistuning of Eq. (3.3) was determined for a broad 

range of values of the “decay” parameter α, the magnitude β, and all values of the 

harmonic s. Then, the maximum of these values over α and s were obtained and are 

plotted as the red stars in Fig. 3.7. Note that these values provide a much better fit of the 

quantitative behavior of the random mistuning predictions at small mistuning level and of 

the qualitative behavior of this curve at higher levels. Also shown on this curve is the 

exponential-harmonic curve corresponding to s = 2r (black stars) which does quite well 

while needing a smaller computational effort. 

 Note that similar comparisons were also obtained with lower values of Ck  and/or 

lower values of the damping (down to 0.1%) of the single degree of freedom system of 

Fig. 1.1 suggesting that the above results are typical.  

 

3.3 ISOLATED RESONANCE OF THE BLISK FINITE ELEMENT MODEL 

When considering a more complex bladed disk model, such as the one of the blisk 

of  Fig. 1.2, different resonances conditions can be encountered which should be studied 

separately. The first case corresponds to isolated resonances of the tuned model, i.e., for 

the particular engine order excitation, there is only one pair of modes (one mode for r = 0 

or r= N/2 for N even) excited in the frequency band of interest. The second possibility is 

to have two pairs of modes closely spaced; it can originate from either a veering of a disk 
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mode with a family of blade modes or from two blade modes close to each other. This 

second possibility will be discussed in the ensuing section in the case of a veering. 

To assess the role/influence of harmonic mistuning, Young’s modulus mistuning 

was considered here to remove the potential effects induced by changes in blade alone 

mode shapes. The blisk model of Fig. 1.2 was selected for this analysis with an 1st engine 

order excitation (r = 1) in the range of 5800 Hz. Shown in Fig. 3.8 is the maximum 

amplitude of blade response vs. frequency in this range obtained at 0.1% of mistuning 

standard deviation. Note that the corresponding harmonic mistuning is indeed the 

dominant effect, between the mean + 2 standard deviations of the response and its 95th 

percentile. 

A similar analysis was also carried out for 1% of mistuning standard deviation 

and the results are presented in Fig. 3.9. Notice there that the harmonic mistuning 

predictions are much lower than the random mistuning ones. Clearly, this mistuning level 

exceeds the level at which the maximum effect of natural frequency splitting/peak 

separation occurs. 
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(a) 

 
(b) 

Figure 3.8.(a) Maximum Amplitude of Blade Response, Blisk Model, 1st Engine Order 

Excitation, 0.1% Mistuning Standard Deviation. (b) Same as (a), Zoomed. 
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Figure 3.9. Maximum Amplitude of Blade Response (Zoomed), Blisk Model, 1st Engine 

Order Excitation and 1% Mistuning Standard Deviation. 
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Figure 3.10. Maximum Amplification of Blade Response for Harmonic and Exponential-

Harmonic Mistuning. Blisk Model of Fig. 1.2, r = 1. 
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The comparison between harmonic and random mistuning was again carried out 

as in the previous section, starting with a 0.1% change in frequency as mistuning standard 

deviation. Then, shown in Fig. 3.12 are the predictions obtained by both harmonic and 

random mistuning. Even though the two frequencies are close, the harmonic mistuning 

leads to an excellent match of the random results but it is unclear if there is actual 

interaction between the two modes. At 1% standard deviation of frequency mistuning, see 

Fig. 3.13, it is again seen that the harmonic mistuning significantly underpredicts the 

amplification factor obtained from the random mistuning analysis as in Fig. 3.9. The 

discussion of [6] suggests that the values of the mistuning harmonic s in the 

neighborhood of 2 r = 8 would likely be more representative. This is indeed the case, see 

Fig. 3.14 with the s = 2 r +1 (= 9) giving a substantially larger amplification, still smaller 

than the one obtained from random mistuning, but this increase over the s = 2 r suggests 

that the corresponding level of mistuning is fully in the distortion range, i.e., with 

amplification controlled by the distortion of the modes. A similar comparison for engine 

orders 1, 2, and 5, see Figs 3.15-3.17, shows a different situation. First, the harmonics s = 

2 r and s = 2 r +1 give very similar peak amplitudes in all three cases. More interestingly 

though, the appearance of the curves is similar to the one of Fig. 3.14 with two strong 

peaks near 7kHz. Yet, the tuned responses corresponding to these engine orders do not 

show a double peak.(see Fig. 3.18) It is suggested that one of the peak (splitting as 

expected) originates from the excited mode while the second corresponds to another 

number of nodal diameters and is excited by the engine order excitation through the 

distortion. The possibility for this phenomenon was discussed in section 3.2. 
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Noteworthy in Fig. 3.13 are the very large amplification factors obtained on the 

two peaks, which are both approximately of the order of 2.5. Given the number of blades, 

12, it is necessary to confirm the possibility to obtain such large numbers. As 

demonstrated in [20,21] the largest possible amplification factor can be expressed as the 

product of a tuned amplification factor, resulting from changes in the mean disk model, 

by a mistuned factor which is of the order of the Whitehead limit [22], i.e. ( ) 2/1 N+ = 

2.23 for 12 blades. The amplification factors of 2.5 can thus be consistent only with the 

presence of a tuned amplification factor. To assess the existence of this term, the disk was 

uniformly mistuned, i.e., all blade properties were changed equally, and the changes in 

the peak response at the two corresponding natural frequencies in 4th engine order 

excitation were recorded. Shown in Fig. 3.19 are the plots of the tuned amplification 

factors for the left and right peaks in the veering zone as a function of the relative change 

in overall blade frequency. Clearly, 30% to 40% change in amplitudes can be observed 

with as little as 2% change in the blade alone frequencies. These large factors enable the 

amplification factor in random mistuning analyses to achieve the 2.5 noted earlier. 
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(a) 

 
(b) 

Figure 3.11. Mode Shapes of the Two Modes in Veering Near 7khz, (a) Mode of Natural 

Frequency 6903Hz, (b) Mode Of Natural Frequency 7007Hz. 



 40 

 
(a) 

 
(b) 

 

Figure 3.12. (a) Maximum Amplitude of Blade Response, Blisk Model, 4th Engine Order 

Excitation, 0.1% Mistuning Standard Deviation. (b) Same as (a), Zoomed. 
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Figure 3.13.Maximum Amplitude of Blade Response (Zoomed), Blisk Model, 4th Engine 

Order Excitation and 1% Mistuning Standard Deviation. 

 

Figure 3.14. Maximum Amplitude of Blade Response (Zoomed), Blisk Model, 4th 

Engine Order Excitation and 1% Mistuning Standard Deviation, s = 2 r,2 r + 1, And 2 r + 

2 Harmonics. 
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Figure 3.15. Maximum Amplitude of Blade Response (Zoomed), Blisk Model, 1st 

Engine Order Excitation and 1% Mistuning Standard Deviation, s = 2 r,2 r + 1, And 2 r + 

2 Harmonics. 

 

Figure 3.16. Maximum Amplitude of Blade Response (Zoomed), Blisk Model, 2nd 

Engine Order Excitation and 1% Mistuning Standard Deviation, s = 2 r,2 r + 1, And 2 r + 

2 Harmonics. 
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Figure 3.17. Maximum Amplitude of Blade Response (Zoomed), Blisk Model, 5th 

Engine Order Excitation and 1% Mistuning Standard Deviation, s = 2 r,2 r + 1, And 2 r + 

2 Harmonics. 

 

Figure 3.18. Tuned Amplitudes of Blade Response, Blisk Model, 1st, 2nd and 5th Engine 

Order Excitations. 
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(a) 

 
(b) 

Figure 3.19. Tuned Amplification for the Left and Right Peaks of the Veering Zone. 
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CHAPTER 4 

GEOMETRIC VS. YOUNG'S MODULUS MISTUNING 

The focus of this chapter is on a preliminary assessment, on the model and 

resonance conditions investigated in Chapter 3, of the effects of geometric mistuning on 

the amplification of forced response as compared to those obtained by Young’s modulus 

mistuning. As suggested in [9,10,12], the changes in blade geometry will be modeled as 

random amplitudes multiplying deterministic shape variations. The three shape variations 

considered here are: (i) a uniform change in blade thickness, (ii) a change in blade 

thickness varying linearly from blade root (where it is zero) to blade tip (where it is max), 

(iii) a change of blade thickness that is linearly varying from leading to trailing edge. 

Two sets of analyses were conducted. In the first, random variations along each of the 

three patterns alone were imposed and the response of the corresponding mistuned disks 

was determined as a function of the excitation frequency. A comparison of these results 

with those of Young’s modulus, at equal deviation of the natural frequency provides a 

perspective on the effects of mode shape mistuning. A second comparison assesses these 

effects directly by using combinations of two different patterns to cancel out any change 

in natural frequency. These two analyses were conducted for both the isolated resonance 

and the veering conditions. Shown in Fig. 4.1 is the prediction of the maximum 

amplitude of blade response at the isolated resonance with the three patterns, both with 

random mistuning and harmonic mistuning. These figures are quite consistent with each 

other and with Fig. 3.9, in fact with slightly lower peak amplitudes. This analysis 

repeated for the veering conditions of the 4th engine order excitation leads the results of 

Fig. 4.2 which again are quite consistent with each other and with those obtained with 
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Young’s modulus except that a slight increase in the magnitude of the two peaks is 

obtained with respect to the latter mistuning. The results would suggest that mode shape 

mistuning has very little effect in the isolated resonance case and only a small one in the 

veering case. 

To confirm these expectations, combinations of 2 shape patterns were created that 

canceled the changes in blade alone frequencies that they created when considered alone. 

The three combinations 1-2, 2-3, and 3-1 were considered for both the isolated resonance 

and the veering case. The maximum amplitudes of blade response for these mistuned 

scenarios are shown on Figs 4.3 and 4.4. As expected, it is seen in Fig. 4.3 that the mode 

shape mistuning effects are very small, amplifications that are of the order of 3%. On the 

contrary, in the case of the veering, amplification of the response at the peak by 

approximately 25% is obtained. 

It is thus tentatively concluded that mode shape mistuning effects are negligible 

when considering isolated resonance but provide some small, additional amplification for 

veering conditions. 
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(c) 

 

Figure 4.1. Maximum Amplitude of Blade Response, (Zoomed), Blisk Model, 1st Engine 

Order Excitation and 1% Mistuning Standard Deviation on Pattern (a) 1, (b) 2, (c) 3. 
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(b) 

 
(c) 

Figure 4.2. Maximum Amplitude of Blade Response, (Zoomed), Blisk Model, 4th Engine 

Order Excitation and 1% Mistuning Standard Deviation on Pattern (a) 1, (b) 2, (c) 3. 
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(c) 

Figure 4.3. Maximum Amplitude of Blade Response, (Zoomed), Blisk Model, 1st Engine 

Order Excitation and Combinations of 1% Mistuning Standard Deviations on Patterns (a) 

1-2, (b) 2-3, (c) 3-1. 
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(b) 

 
(c) 

Figure 4.4. Maximum Amplitude of Blade Response, (Zoomed), Blisk Model, 4th Engine 

Order Excitation and Combinations of 1% Mistuning Standard Deviations on Patterns (a) 

1-2, (b) 2-3, (c) 3-1. 
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CHAPTER 5 

SUMMARY AND CONCLUSION 

 The focus of this thesis was first on a detailed revisit of the applicability of 

harmonic mistuning of rotors to provide qualitative and/or quantitative information on 

their response to random mistuning. The single degree of freedom per sector bladed disk 

model was initially revisited. As demonstrated in the earlier investigation [6], it was 

shown that the dominant harmonics are first s = 2 r, then s = 2 r+1 but it was found that 

the next harmonic is s = 3 r, where r is the engine order of the excitation, which appears 

to be justified from second order perturbation arguments. The effects of the finite number 

of blades was also discussed, demonstrating the known but not proved low sensitivity of 

the N/4 number of nodal diameter modes to mistuning and suggesting the possible 

presence of 3 r number of nodal diameter modes in the response if they are in the band of 

interest. Finally, an exponential-harmonic mistuning model was introduced that leads to a 

better quantitative approximation of random mistuning effects than the harmonic 

mistuning model. These observations were confirmed on both an isolated resonance and a 

veering condition of a finite element blisk model. 

 The final aspect of this thesis was an initial assessment of the differences in 

amplification of blade response induced by either Young’s modulus or geometric 

mistuning. The physical difference between the two mistuning models is the presence in 

the latter of variations in blade alone mode shapes not considered in the former. The 

current findings were that there is extremely little difference between the two models 

when considering isolated resonance. However, in veering zones, a small increase in 

maximum blade amplitude was observed under geometric mistuning at equal change in 
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frequency than Young’s modulus mistuning. A direct analysis of the effects of mode 

shape mistuning was proposed that involves generating geometry variations that do not 

lead to any change in blade alone frequencies. This process led to amplification of blade 

response by about 25% in a tight veering zone. 
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