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ABSTRACT

This thesis explores the different aspects of higher curvature gravity. The “membrane

paradigm” of black holes in Einstein gravity is extended to black holes in f(R) gravity

and it is shown that the higher curvature effects of f(R) gravity causes the membrane

fluid to become non-Newtonian. Next a modification of the null energy condition in

gravity is provided. The purpose of the null energy condition is to filter out ill-behaved

theories containing ghosts. Conformal transformations, which are simple redefinitions

of the spacetime, introduces serious violations of the null energy condition. This vio-

lation is shown to be spurious and a prescription for obtaining a modified null energy

condition, based on the universality of the second law of thermodynamics, is provided.

The thermodynamic properties of the black holes are further explored using merger

of extremal black holes whose horizon entropy has topological contributions coming

from the higher curvature Gauss-Bonnet term. The analysis refutes the prevalent

belief in the literature that the second law of black hole thermodynamics is violated

in the presence of the Gauss-Bonnet term in four dimensions. Subsequently a specific

class of higher derivative scalar field theories called the galileons are obtained from

a Kaluza-Klein reduction of Gauss-Bonnet gravity. Galileons are null energy condi-

tion violating theories which lead to violations of the second law of thermodynamics

of black holes. These higher derivative scalar field theories which are non-minimally

coupled to gravity required the development of a generalized method for obtaining the

equations of motion. Utilizing this generalized method, it is shown that the inclusion

of the Gauss-Bonnet term made the theory of gravity to become higher derivative,

which makes it difficult to make any statements about the connection between the

violation of the second law of thermodynamics and the galileon fields.
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Notations and conventions

We will be working with metrics in mostly plus signature (–+++). Our convention

follows that of Wald with the Riemann tensor defined as,

Ra
bcd = ∂cΓ

a
db − ∂dΓ

a
cb + ΓacmΓ

m
db − ΓadmΓ

m
cb (1)

The Ricci tensor is defined as the contraction of the first and third index of the

Riemann tensor: Rab = Rc
acb and the Ricci scalar is R = Ra

a.

The sign of the extrinsic curvature is such that its trace is positive for convex

surfaces. It is defined as Kab = hca∇cnb for surfaces with metric hab and normal na.

We will use small Latin alphabets to express the indices in all quantities. This is

different from the old convention of using the Greek alphabets as subscripts. We will

write the metric as gab instead of gµν . KAB will be used to denote (D-1)–dimensional

extrinsic curvature. Where a confusion might arise due to the presence of quantities

of both higher and lower dimensions, the dimensionalities of the tensorial quantities

will be made explicit by the use of projection operators.

Units to be used are the natural units with ~ = 1, c = 1, G = 1 unless otherwise

stated.
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Chapter 1

BLACK HOLES AND HIGHER CURVATURE GRAVITY

1.1 Black Holes

After Einstein discovered his theory of general relativity he attempted to find

solutions that would explain the universe and its evolution. However the field equa-

tions in his theory were so complex and non-linear that he concluded that it was

not possible to obtain a solution in a closed form. Yet, no more than a month later,

an exact solution for a spherically symmetric spacetime was found by Schwarzschild.

The solution was simple and elegant but confusing at the same time: it contained a

singularity in the coordinate system at a fixed radius. This baffled mathematicians

like Hilbert for years until 1924 when Eddington and Finkelstein realized that it must

be a coordinate artifact, similar to the harmless breakdown of polar coordinates at

the origin of the Euclidean plane, only this was at a nonzero radius. Moreover, once

a particle crosses that particular radius (which marks the event horizon) it will not

be able to come out. In the following years several solutions possessing these event

horizons were obtained and these solutions collectively came to be known as black

holes. The black holes are not just theoretical constructs. They are found to be

strewn everywhere across the universe. In fact when a star whose mass exceeds four

solar masses exhausts its fuel and collapses under its own gravity, it forms a black

hole.

In this work, we are interested only in the theoretical aspects of the black holes.

We wish to explore the properties of the horizon and the spacetime around it. There-

fore we will need a formal definition of a black hole.
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Black holes are the complement of the past of future null infinity of a strongly asymp-

totically predictable spacetime. The boundary between the complement and the past of

the future null infinity is called the event horizon.

We do not need to go into the details of this definition. The essential point is that the

event horizon is a kind of globally defined inner boundary of spacetime. An example

of a black hole solution is a Schwarzschild solution.

ds2 = −
(

1− 2M

r

)

dt2 +

(

1− 2M

r

)−1

dr2 + r2dθ2 + r2sin2(θ)dφ2 (1.1)

The coordinates t describes time (loosely) outside the horizon while r is the radius

and there is a coordinate singularity at r = 2M . This is the location of the event

horizon or simply horizon. The horizon is a lightlike surface and if an observer wishes

to visit r = 2M + ǫ and return to infinity from there, then he has to fire rockets

which would propel him to almost light speed in order to escape the force of gravity.

Otherwise he would fall into the black hole. Even photons, which are emitted near the

horizon, have to work to overcome the tremendous gravitational potential of the black

hole. The work done in climbing out of the potential will cause the photons to lose

energy and get heavily redshifted. The redshift becomes more and more pronounced

for photons emitted closer to the horizon and at the horizon the redshift becomes

infinite. The photons can no longer escape and light gets trapped. This is why the

horizon is called a marginally trapped surface and all the surfaces inside it are trapped

surfaces. Since the horizon is a place of infinite redshift, a distant observer will be

oblivious to its existence. All she will see are objects moving towards an imaginary

surface but never reaching it. So she will conclude that the horizon is a boundary

of the spacetime. And she will not be too far from the truth. The horizon is really

an inner boundary of the spacetime and a major part of our work will be to explore

this concept. The presence of a boundary naturally leads to the black hole membrane
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paradigm and allows for a theory-independent definition of the black hole entropy

called the Wald entropy (reviewed at the end of this chapter). We will have more to

say about the ramification of the horizon being a boundary in a subsequent section.

1.1.1 Types of Black Holes

The black hole we saw before is a spherically symmetric black hole with mass as

the only parameter. There was no charge or angular momentum. Most realistic black

holes would have some angular momentum. The rotating black holes are called Kerr

black holes. They are interesting in their own right being accurate descriptions of

astrophysical black holes. However we do not need them for our purposes. The black

holes we will be interested are the ones which have some electric charge. These are

called Reissner-Nordström (RN) black holes. RN black holes are spherically symmet-

ric and have two concentric horizons. They have an interesting property that they

are traversable, meaning that observers can in principle come out of the black hole

into another universe. When an observer first crosses the outer horizon, the radius r

(which outside the black hole is a spatial coordinate) becomes a timelike coordinate

and the observer has no choice but to move along the path of decreasing r. After

crossing the inner horizon, the r coordinate becomes spatial again and the observer

can choose to reverse her course to avoid falling to r = 0. When she reverses her

course and moves outwards and crosses the inner horizon, the r coordinate is timelike

again and motion of the observer is forced along the path of increasing r and con-

tinues till she comes out of the black hole to emerge in a parallel universe. In our

subsequent chapters we will be working with extremal black holes. Therefore it would

be instructive to review them.

Extremal black holes: The RN black holes have multiple horizons, one outer and

one inner horizon, both of which are functions of the mass and charges. When the
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mass equals the charge, the two horizons coincide and we get an extremal black hole.

It is not possible to reduce the mass further than this without creating a “naked

singularity” and violating the cosmic censorship conjecture. The Reissner-Nordström

(RN) black hole metric is,

ds2 = −
(

1− 2M/r +Q/r2
)

dt2 +
dr2

1− 2M/r +Q/r2
+ r2dθ2 + r2sin2(θ)dφ2

The horizons are at r± = M ±
√

M2 −Q2 and the black hole becomes extremal at

M = Q. The metric of an extremal RN black hole is

ds2 = − (1−M/r)2 dt2 + (1−M/r)−2 dr2 + r2dθ2 + r2sin2(θ)dφ2

One interesting fact about these extremal black holes is that the gravitational attrac-

tive force is exactly balanced by electromagnetic repulsion. So two such black holes

will exert no force on each other, a fact we will exploit in Chapter 5.

The Schwarzschild, Kerr, Reissner-Nordström and Kerr-Newman (having both

electric charge and angular momentum) black holes are the only types of stationary

black holes in four dimensions. In fact the uniqueness theorem [1–9] and no-hair

theorem [10–13] together imply that the only parameters a stationary black hole may

have are mass, charge, and angular momentum.

1.2 Black Hole Thermodynamics

During the early 70’s Hawking discovered that, in the presence of quantum fields,

black holes radiate thermally [14–16] and have a temperature that is proportional to

the surface gravity of the black holes 1 . Earlier, Bekenstein [17–19] had argued that

1Surface gravity is the work done per unit mass on a body to hold it at a fixed distance from
the horizon of a black hole. It is the amount of acceleration that a fiducial observer (one who
hovers over a black hole horizon) must have which will prevent her from falling into the black hole.
Formally, it is the square root of the square of the divergence of the null generators of the horizon
κ2 = − 1

2
∇alb∇alb. For a Schwarzschild black hole of mass M, its value is κ = 1

4M
.
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black holes could be attributed an entropy proportional to the area of the horizon.

Thus a black hole behaves as a thermodynamic system with a Hawking temperature

and a Bekenstein-Hawking entropy.

T =
G~

c3
κ

2π
SBH =

kBc
3

~

A

4G
(1.2)

where kB is the Boltzmann constant. This is the last time we will use the universal

constants explicitly in an equation. We would set ~ = 1, G = 1, c = 1, kB = 1 in the

rest of the work. The presence of the ~ demonstrates the quantum mechanical origin

of these quantities.

1.2.1 Raychaudhuri Equation

The proof of the second law of black hole thermodynamics is impossible without

the existence of a geometrical relation known as the Raychaudhuri equation. This

equation is a theory-independent statement about the behavior of a congruence of

geodesics which are the generators of a null or timelike surface.

An observer on whom no force is acting moves along paths called geodesics. Evi-

dently, this implies the geodesics should be defined as paths of zero acceleration. And

since acceleration is defined as Ab = va∇av
b for tangent vectors va to a path, a path

whose tangent vector satisfies the equation va∇av
b = 0 is a geodesic. A bundle of

curves which are all geodesics is called a geodesic congruence. The proper time on a

geodesic is called the affine time and any linear combination of it can be used as an

“affine” parameter to label the geodesic. Consider the slice of a spacelike surface at a

constant value of the affine parameter. The geodesics are proportional to the normal

to this surface. If the surface is the horizon and the geodesics are null generators of

this horizon then the horizon would be increasing in size if the geodesics are diverg-

ing (normals). And since the entropy is proportional to the area of a horizon, an
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increasing horizon would imply increasing entropy, thereby proving the second law.

To formally obtain the Raychaudhuri equation we require to understand how

neighboring geodesics deviate from each other. This geodesic deviation is measured

in terms of the derivative of the tangent vector to geodesics Bab = ∇alb. This is a

two tensor which means that it can be decomposed into a traceless symmetric part,

an anti-symmetric part and a trace part.

Bab =
1

D − 2
θγab + wab + σab (1.3)

This is the decomposition for a null geodesic congruence in D–dimensions. The trace

part is the expansion scalar θ which measures how much the neighboring geodesics

are diverging away from each other. The traceless symmetric part is the shear σab.

And the anti-symmetric part is the rotation wab. The Frobenius theorem states that

if the geodesic congruence is hypersurface orthogonal 2 , which is the case for the

generators of the event horizon, then the rotation has to be zero [20]. The celebrated

Raychaudhuri equation determines the derivative of the expansion scalar θ of the

congruence with respect to the affine parameter λ

dθ

dλ
= − 1

D − 2
θ2 − σabσ

ab −Rabl
alb (1.4)

What this equation says is that the evolution of the expansion scalar θ is determined

by the square of the geodesic deviation and by the Ricci curvature. If there is no

curvature then the expansion is always slowing down. Gravity will generally enhance

this effect (due to its attractive nature) provided the Ricci convergence condition

Rabl
alb ≥ 0 is satisfied. Since la are null vectors, Einstein’s equations imply Rabl

alb =

Tabl
alb. And since the Ricci convergence condition has no physical motivation it is

2This means the tangent vectors to the geodesics generating the (D-1)–dimensional surface are
also normal vectors to the (D-2)-dimensional spacelike cross-section of the horizon.
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replaced by a more physical condition on matter called the null energy condition

Tabl
alb ≥ 0. We will generalize this condition in Chapter 4.

1.2.2 Laws of Thermodynamics

The theory of general relativity is based on the simple principle of equivalence

of gravity and curvature and that the laws of physics are invariant under arbitrary

changes of the coordinate (diffeomorphism invariance). The simplest possible diffeo-

morphism invariant action we can write down is,

∫

ddx
√−gR (1.5)

This is the Einstein-Hilbert action. We are intentionally working in d–dimensional

spacetime to keep things as general as possible so that we can expand on this at a later

stage. Unlike most Lagrangians, which are quadratic in first derivatives of the fields,

the Einstein-Hilbert Lagrangian has second derivatives. Hence when varying this

action, the Euler-Lagrange equations are not obtained unless the variation of the first

derivatives at the boundary are taken care of. Hamilton’s variational principle tells

us that in presence of a boundary any variation of the action will generate boundary

terms proportional to the momentum of the bulk fields 3 . Therefore, we need to

cancel the unwanted term by adding another counter-term at the boundary which

is proportional to the momentum of the bulk fields. This counter-term is called the

Gibbons-Hawking term [21] and equals the trace of the extrinsic curvature for the

case of the Einstein-Hilbert action.

∫

V

ddx
√−gR +

∫

∂V

dd−1x
√
h K (1.6)

3In this case the bulk field is the metric and the momentum is the extrinsic curvature Kab to the
boundary.
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Now, we have already established that the event horizon can be viewed as a boundary

of spacetime. If we have a spacelike slice which runs from spacelike infinity to the

black hole horizon we will have a bulk section with two boundaries – one outer and one

inner boundary. On using the Gibbons-Hawking term from eqn. (1.6) and evaluating

it over this slice it will lead to the ADM mass M at the outer boundary 4 and surface

gravity times the area of the horizon at the inner boundary [22]. This ultimately

leads to

dM =
κ

8π
dA (1.7)

and a slight redefinition of terms S = A/4 and T = κ/2π yields the first law of black

hole thermodynamics: dM = TdS. As noted in the beginning of the section, the

surface gravity of the black hole is identified with the temperature of the black hole

and the area over 4 with the entropy of the black hole. The existence of the first

law is an encouragement to look for the second law of thermodynamics. We need to

prove dS > 0 or rather dA > 0. The expansion scalar θ which measures the degree

of divergence and convergence of a geodesic congruence is proportional to the rate of

change of the area, θ = 1
A
dA
dλ
, λ is the affine parameter parametrizing the geodesic

congruence. When the geodesic congruence converges it forms a caustic. In physical

spacetimes this corresponds to a naked singularity, something which is excluded by the

cosmic censorship conjecture. Therefore a geodesic congruence should always diverge.

This implies θ > 0 ⇒ dA > 0 ⇒ dS > 0 proving the second law of thermodynamics.

However a hidden assumption has been made about the matter content of the theory

which we will revisit in Chapter 4.

4The ADM mass of an asymptotically flat spacetime is defined as M =
∫

S→∞
(K −K0).
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1.3 Higher Curvature Theories

Einstein had written down the simplest diffeomorphism invariant action pos-

sible. Nevertheless his action has the all-important property that not only is it

diffeomorphism-invariant but it also gives second-order equations of motion. There-

fore the theory does not contain any ghosts. However, we know that this theory is not

renormalizable and loop corrections add counter-terms to the action which are higher

order in the curvature scalars. Additionally, the Einstein-Hilbert action is obtained

at the leading order in the α′ expansion of string theory, where
√
α′ is the string

length. At higher order in α′ expansion of string theory, higher curvature corrections

appear. These expansions are motivation enough for us to extend gravity beyond

Einstein theory and to explore the interesting black hole solutions in those theories.

We would want to extend the theory while preserving the diffeomorphism invariance

and at the same time preventing the appearance of ghosts.

1.3.1 f(R) Theories

The simplest possible extension of the Einstein gravity appears to be adding the

square of the Ricci scalar to the usual Einstein-Hilbert term.

∫

R + αR2 (1.8)

This action which is sometimes known as the Starobinsky model [23] is clearly dif-

feomorphism invariant. It is part of a much more general class of Lagrangians which

are simple polynomial functions of the Ricci scalar. These theories are called f(R)

theories and are very good toy models (and sometimes realistic ones such as the one

above) to test the laws of black hole thermodynamics. In fact they are equivalent to

Einstein gravity minimally coupled to a scalar field. That is why they are also known

as scalar-tensor theories. The scalar field turns out to be proportional to the first
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derivative of the function φ = log(f ′(R)). Clearly, f ′(R) has to be positive, otherwise

the map to scalar-tensor theory does not exist. This restricts the theories to only

those which do not have contain ghosts. Therefore, even though the f(R) theories

have fourth-order equations of motion and by the Ostrogradski theorem [24] should

contain ghosts, the scalar-tensor subset of the f(R) theories do not have ghosts.

1.3.2 Lovelock Theories

The next class of theories which are interesting extensions of Einstein gravity are

the ones which are explicitly constructed to have second order equations of motion.

This is a unique class of theories called the Lovelock theories. They are well behaved

theories without ghosts (by Ostrogradski) [25, 26]. The actions are topological invari-

ants 5 in even dimensions [27]. A Lovelock term of order m is the Euler characteristic

of dimension 2m. A general Lovelock term is written as,

Lm = δb1b2b3b4···a1a2a3a4···R
b1b2

a1a2
R b3b4
a3a4

· · · (1.9)

where the R b1b2
a1a2

are the Riemann tensors and the δb1b2b3b4···a1a2a3a4··· is the generalized Kro-

necker delta 6 . The first order Lovelock term is the Einstein-Hilbert term itself. The

second one is called the Gauss-Bonnet term, LGB = R2 − 4RabR
ab +RabcdR

abcd. The

third order and higher are not required for our purpose. The Gauss-Bonnet term

is topological in four dimensions and the Einstein term is topological in two dimen-

sions. However, they are topological over Riemannian manifolds which means the

usual spacetimes used in general relativity need to be Euclideanized (Wick rotated)

5A topological invariant is a quantity whose value depends only on the topology of a manifold.
For example the genus is a topological invariant. It counts the number of handles in a manifold.
The value of the genus is the same for any deformation of the manifold. The genus of a sphere
is zero, that of a torus is 1, of a two-torus is two and so forth. There are many other topological
invariants. The Euler character is one which is related to the genus of a manifold as χ = 2 − 2g.
The term topological is synonymous with non-dynamical in the present context as the action, being
topological, has no infinitesimal variation.

6For example δabcd = 1

2!

(

δac δ
b
d − δadδ

b
c

)

.
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before such statements can be made. This point is elaborated in Chapter 5. The

Gauss-Bonnet term integrated over an Euclideanized manifold (without boundary)

gives the Euler character of the manifold [28].

χ4 =
1

32π2

∫

d4x
√

(g)E
(

R2 − 4RabR
ab +RabcdR

abcd
)

E
(1.10)

The fact that the Gauss-Bonnet term is topological makes it non-dynamical (does

not affect the equations of motion) in four dimensions. A term in the action which

does not affect the equations of motion behaves as a total derivative. In fact it can

be demonstrated very easily, using differential forms, that the Gauss-Bonnet term in

four dimensions is a total derivative (see Appendix A). However, this is true only in

four dimensions. In lower dimensions it is identically zero. In higher dimensions it is

dynamical. Therefore the equations of motion which exists in higher dimensions must

become identically zero when the dimension is brought down to four. The reason for

this phenomenon is that there exists an identity called the Bach-Lanczos identity [29],

CaklmC
klm
b − 1

4
gabCijklC

ijkl = 0 (1.11)

where Cabcd is the Weyl tensor. In four dimensions the variation of the Gauss-Bonnet

Lagrangian is equal to the left-hand side of this identity.

The
∫

R+LGB is also the low energy effective action of heterotic string theory at

sub-leading order in the α′ expansion [30, 31]. Black hole solutions in Gauss-Bonnet

gravity are known [32–51]. Black hole solutions were also found in other Lovelock

theories [52–65].

1.3.3 Wald Entropy

For higher curvature theories of gravity, the temperature of the black holes is still

proportional to the surface gravity, but the entropy is no longer proportional to the
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area of the horizon. Wald [66] found the generalization of the Bekenstein-Hawking

entropy for black holes of general theories of gravity. Given a gravitational Lagrangian

of the form L(gab, Rabcd), the Wald entropy of a stationary black hole is [67, 68]

S = −2π

∫

P abcdǫabǫcd (1.12)

where the ǫab = kalb− lakb is the binormal to a bifurcate Killing horizon. For Einstein

gravity, P abcd = ∂L
∂Rabcd

= 1
32πG

(

gacgbd − gadgbc
)

. Using this and the fact that the

square of the binormals is ǫabǫ
ab = −2 we get back the usual area over four law for

the entropy, S = A/4. The normalization of the quantity P abcd is due to convention

used by Wald et al. for the Lagrangian, L = 1
16πG

R (instead of just L = R).
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Chapter 2

EQUATIONS OF MOTION IN GENERALIZED GRAVITY

2.1 Introduction

A common action encountered in theories like Kaluza-Klein gravity, higher curva-

ture gravity, and higher derivative scalar field theories is the one which has various

forms of non-minimal scalar couplings to gravity. Some of them are even kinetically

coupled like Gab∂aφ∂bφ. A case by case evaluation of the equations of motion of these

theories is a time consuming process. Existence of a generalized expression for the

equations of motion, applicable to a wide variety of non-minimally coupled theories,

will greatly simplify the process. Existing efforts [69] in that direction builds upon

the vision of Wald et al. [70, 71] using a compact representation of the physical quan-

tities (viz. entropy) in terms of generalized quantities. For example, when dealing

with the entropy functional for non-Einsteinian theories of gravity an elegant rep-

resentation of the generalized entropy can be made possible by defining an object

P bcd
a = ∂L/∂Ra

bcd, which encodes the non-Einsteinian higher curvature effects. This

quantity facilitates the writing of the Wald entropy [72] in a more compact manner

and opens up the possibility for a proof of the second law of black hole thermodynam-

ics for arbitrary theories of gravity. This approach is the motivation for obtaining a

generalized expression for the equations of motion of higher curvature gravity.

In the following sections we will first derive a generalized equation of motion as-

suming the symmetries of the Riemann curvature tensor on the generalized quantity

Pabcd. However our preliminary attempt will be met with failure, as several subtle

features emerge. It appears to be obvious to assume that since the quantity P bcd
a
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is obtained by differentiating the Lagrangian with respect to the Riemann tensor, it

should inherit the symmetry properties of the Riemann tensor Rabcd [69]. However

the assumption about the symmetries of the quantity Pabcd only works for theories

which are homogeneous functions of the curvature scalars. For cases of non-minimal

scalar kinetic couplings to gravity and in presence of the derivatives of the Riemann

curvature in the Lagrangian the quantity P bcd
a does not inherit the symmetry prop-

erties of the Riemann curvature. Therefore the procedure needs to be revised, so as

to accommodate the symmetries of the quantity Pabcd (or lack thereof). For example,

in galileon theories we encounter certain Lagrangians of the type Gab∂aφ∂bφ which

causes this procedure to fail. Our task will be to extend the paradigm; in order to

provide a more rigorous treatment of the derivation of the generalized equations of

motion for all forms of non-minimally coupled Lagrangians (except the ones which

contain derivatives of the Riemann curvature).

First we will perform a derivation of the generalized equations of motion using the

assumption that the Lagrangian is a function of the curvature scalars only. Then in

the subsequent section we will extend it to include all forms of non-minimally coupled

Lagrangians (but not the ones which contain derivatives of the Riemann curvature).

At the end we will verify our procedure by evaluating the equations of motion for a

non-minimally kinetically coupled Lagrangian using brute force variational principle

method and by comparing the resulting expression with the one obtained from our

expression for the generalized equations of motion.

2.2 Derivation of Generalized Equations of Motion for Lagrangians without

Kinetic Non-Minimal Couplings

In this section we will derive a generalized equation of motion for a Lagrangian

which is a homogeneous function of curvature scalars. It can also include non-minimal
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scalar couplings as long as the scalar couplings are not kinetic in nature. The pro-

cedure involves varying the Lagrangian with respect to the metric and the Riemann

tensor separately and then reducing the varied expression further by expanding the

variation of the Riemann tensor again. So it is not a Palatini variation even though

we are varying using two independent quantities at first. We will assume that the

Lagrangian is a scalar function of gab and Ra
bcd only, L(gab, Ra

bcd). The variation of

the Lagrangian is [69]

δ
(

L
√−g

)

=

(

∂L
√−g
∂gab

)

δgab +

(

∂L
√−g

∂Ra
bcd

)

δRa
bcd

=

(

∂L
√−g
∂gab

)

δgab +
√−gP bcd

a δRa
bcd (2.1)

The variation of the determinant of the metric is δlog(g) = δgab g
ab which implies the

following relation.

δ
√−g = −1

2

√−ggabδgab (2.2)

To evaluate δRa
bcd we use the Palatini identity and use a gauge choice of the Riemann

normal coordinates i.e. the Christoffel are all zero but their derivatives are not. This

allows us to replace the partial derivatives with covariant derivatives. And since the

variation of the Christoffel is a tensor quantity, the whole expression becomes gauge

invariant and we no longer have to worry about whether we are in the Riemann

normal coordinates or not.

δRa
bcd = δ [∂c (Γ

a
db)− ∂d (Γ

a
cb)] = ∇c (δΓ

a
db)−∇d (δΓ

a
cb)

=
1

2
∇c

[

gai (−∇iδgdb +∇dδgbi +∇bδgdi) + δgaiΓidb
]

− {term with c↔ d}

=
gai

2
∇c [−∇iδgdb +∇dδgbi +∇bδgdi]− {term with c↔ d} (2.3)

Using this expression the last term in eqn. (2.1) can be simplified as

P bcd
a δRa

bcd = P ibcd∇c [−∇iδgdb +∇dδgbi +∇bδgdi] (2.4)
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where we have used the anti-symmetry of c and d indices. But P ibcd∇c∇dδgbi = 0

because of anti-symmetry in the indices i and b of P ibcd. The rest of the terms

−∇iδgdb +∇bδgdi are anti-symmetric in i and b. They contribute a total of 2∇bδgdi

and we obtain

P bcd
a δRa

bcd = 2P abcd∇c∇b(δgad)

= 2∇c

[

P abcd∇bδgad
]

− 2∇b

[

∇cP
abcdδgad

]

+ 2∇b∇cP
abcdδgad (2.5)

Discarding the total derivatives, only the last term contributes to the equation of

motion. However, it needs to be rearranged so that the variation is with respect to

δgab. This is easily done with raising and lowering indices and keeping track of the

indices. A useful identity which we will use often is the one involving contraction of

the metric with both components of a two–tensor.

Aabδgab = Amn(g
amganδgab) = Amn(δg

mn − δgamgbngab − gamδgbngab) = −Amnδgmn

(2.6)

This identity, when used with the above expression leads to, 2∇b∇cP
abcdδgad =

2∇c∇dPacbdδg
ab, where we have used both the above identity and the anti-symmetry

property of Pabcd. Now going back to eqn. (2.1) and collecting terms proportional to

δgab we obtain a generalized equation of motion

∂L

∂gab
− 1

2
gabL+ 2∇c∇dPacbd = 8πGTab (2.7)

Care needs to be taken while differentiating the Lagrangian with respect to the metric,

because there may be contractions with gab. The δgab term contributes a negative

term to the equations of motion. As an example, let us consider RabcdR
abcd. We

need to rewrite this as Ra
bcdR

p
qrsgapg

bqgcrgds because the independent variable is the

Riemann tensor with one up index and not the one with all index down. The variation

of the three gab and one gab will give a total of 2 RabcdR
bcd
e . The symmetry factor
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is the number of contravariant metric contractions minus the number of covariant

metric contractions. As an application of this procedure, the equations of motion for

the Gauss-Bonnet gravity is obtained in Appendix A using the generalized expression,

eqn. (2.7).

Failure of this method

The method to derive a generalized equation of motion outlined in the previous

section makes several assumptions. While the procedure still works for non-minimally

coupled scalar fields as shown at the end of Appendix A, it fails for Lagrangians with

a non-minimal kinetic scalar coupling, for example with L = Gab∂aφ∂bφ. The failure

is a result of the assumption that the quantity Pabcd has the same symmetries as

the Riemann curvature tensor, which is impossible to impose if the Lagrangian is

not a homogeneous function of the curvature. This is because our variation was

carried out using Ra
bcd and not Rabcd. While the latter has all the symmetries of

the Riemann curvature tensor the previous one does not have the anti-symmetry in

the first two indices (see [73]). If the Lagrangian is not a homogeneous function of

the curvature then P a
bcd will have some up index term which will not inherit the

symmetries of the curvature tensor when lowered. To illustrate this with an example

we will derive the equations of motion for the above Lagrangian, L = Gab∂aφ∂bφ, by

brute force variational method and then compare it with the one obtained from our

generalized equations of motion. The calculation has been carried out in Appendix A.

The equation of motion is

(Rac∂bφ+Rbc∂aφ)∂
cφ− 1

2
R∂aφ∂bφ− 1

2
(∂φ)2Rab +∇a∇cφ∇b∇cφ−�φ∇a∇bφ

+Racbd∂
cφ∂dφ+

1

2
gab
(

(�φ)2 −∇c∇dφ∇c∇dφ
)

− 1

2
gab

(

−1

2
(∂φ)2R

)

− gabRcd∂
cφ∂dφ = 8πGTab (2.8)
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We shall not go through the steps but the reader can easily verify that this is not the

same equation of motion which is obtained when eqn. (2.7) is used.

2.3 Derivation of Generalized Equations of Motion for Lagrangians with Kinetic

Non-Minimal Couplings

We wish to find a generalized equation of motion from a generalized variational

principle which applies to all kinds of Lagrangians, not just the ones which are ho-

mogeneous in the curvature scalars 1 . The Lagrangian which is a function of the

metric and its derivatives L(g, ∂g, ∂∂g . . . ;φ, ∂φ, ∂∂φ . . .) can be written in a locally

flat gauge ∂g ∼ 0 (Riemann normal coordinates), which keeps the analysis covariant

and the physics invariant. We also assume that the Lagrangian has derivatives of

the metric (and all other fields) upto second order only. Any higher derivatives of

the metric (or any other field) will introduce ghosts in the theory. The Lagrangian

L(g, ∂∂g;φ, ∂φ, ∂∂φ; . . .) can now be varied as δL = Hδg + Pδ(∂∂g). However, the

double derivative of the metric only appears as the curvature scalars and their cou-

pling to matter fields. So we can rewrite the variation as δL = Hδg + PδR. Now

the equation of motion depends on whether we vary with respect to the Riemann

with all down indices or one up index. In the previous case the equation of motion is

much more compact and P inherits all the symmetries of the Riemann while in the

latter case the equation of motion is more complicated but no symmetries needs to

be imposed on P. We shall begin with the latter case first.

The variation procedure is similar to the one depicted in Section 2.2. All equations

from eqn. (2.1) to eqn. (2.3) are still true, only we no longer assume or impose the

symmetries of the Riemann curvature tensor on Pabcd. There is no eqn. (2.5) and the

1The Lovelock invariants are examples of homogeneous Lagrangians.
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equation of motion is,

∂L

∂gab
− 1

2
gabL+

1

4
∇c∇d [(Pabcd − Pabdc) + (Pbacd − Pbadc) + (Pcadb − Pcabd)

+(Pcbda − Pcbad) + (Pbcad − Pbcda) + (Pacbd − Pacdb)] = 8πGTab (2.9)

So far we have varied the Riemann tensor and not the Ricci tensor. However, if

the Lagrangian contains only the Ricci tensor and not the Riemann tensor, like the

Einstein-Hilbert Lagrangian, then it makes sense to vary with respect to the Ricci

tensor. The question is whether a generalized equation of motion derived from vari-

ation of the Ricci tensor would lead to a completely different equation of motion or

whether our equation of motion can be reduced to the one obtained by variation of

the Ricci tensor. To answer this let us find a generalized expression for the equa-

tion of motion using the variation of the Ricci tensor. We write the variation of the

Lagrangian as,

δ
(

L
√−g

)

=

(

∂L
√−g
∂gab

)

δgab +

(

∂L
√−g
∂Rab

)

δRab

=

(

∂L
√−g
∂gab

)

δgab +
√−gP ab δRab (2.10)

After discarding some total derivatives, the equation of motion is

∂L

∂gab
− 1

2
gabL+

1

4

(

∇d∇d(Pab + Pba) + 2gab∇c∇dPcd −∇d∇b(Pad + Pda)

−∇d∇a(Pbd + Pdb)
)

= 8πGTab (2.11)

This is the equation the previous eqn. (2.9) should reduce to. The Pabcd is actually

related to Pab by Pabcd = gacPbd. If we use this expression for Pabcd in eqn. (2.9) we will

obtain eqn. (2.11) thereby proving that the generalized equation of motion eqn. (2.9)

works for all types of higher curvature Lagrangians (without scalar kinetic couplings).
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We can further simplify eqn. (2.9) to,

∂L

∂gab
− 1

2
gabL+

1

2

(

Rkcd
a P(kb)cd +Rkcd

b P(ak)cd

)

+
1

2
∇c∇d

(

Pca[db] + Pcb[da]

+Pbc[ad] + Pac[bd]
)

= 8πGTab (2.12)

The symmetrization symbols have symmetry factors in them (ab) = 1
2
(ab+ ba); [ab] =

1
2
(ab− ba).

At the beginning of this section we had claimed that we will obtain the generalized

equations of motion by varying with respect to the Riemann tensor with one up index,

Ra
bcd and then obtain it with by varying with respect to the Riemann tensor with

all down indices, Rabcd. We did the first one and now we proceed to do the latter.

We do a similar variation as eqn. (2.9) but with the Riemann tensor with all indices

down. Here the anti-symmetry of the Riemann tensor in all of its indices are manifest.

Hence when we write down the Pabcd , it has to be correctly anti-symmetrized so that

its indices have the same symmetries as the Riemann tensor. We can do this since

all index lowered Pabcd will inherit the symmetry properties of the Riemann tensor,

as explained in the previous section. The variation of the Lagrangian is,

δ
(

L
√−g

)

=

(

∂L
√−g
∂gab

)

δgab +

(

∂L
√−g

∂Rabcd

)

δRabcd

=

(

∂L
√−g
∂gab

)

δgab +
√−gP abcd δRabcd

=
√−g

((

∂L

∂gab
− 1

2
gabL

)

δgab + P acdeRb
cdeδgab + P bcd

a δRa
bcd

)

(2.13)

There is a subtlelty here. Even though we have defined the generalized quantity Pabcd

as a variation of the Lagrangian with respect to Rabcd, the actual variation of the

action still has to be with respect to the Riemann tensor with one up index, Ra
bcd.

This has to do with the way the Riemann curvature tensor is defined. It is defined

with respect to the Christoffel’s with one index up. This adds an extra term P · R

term to the variation which will be crucial to the analysis, as explained at the end.
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We can now use the Palatini identity (eqn. (2.3)) to simplify the last term of this

expression in a similar fashion to Section 2.2. Going back to eqn. (2.13) and collecting

terms proportional to δgab we have the generalized equations of motion,

∂L

∂gab
− 1

2
gabL− 1

2

(

P cde
a Rbcde + P cde

b Racde

)

+∇c∇d (Pacbd + Pbcad) = 8πGTab (2.14)

where the explicit symmetrization of the indices a & b is done as the equations

of motion are expected to be symmetric in those indices. The rule regarding the

derivative with respect to the metric, mentioned below eqn. (2.7), still applies and

the symmetry factor is again the number of contravariant metrics minus the number

of covariant metrics.

This equation of motion eqn. (2.14) differs from the one in eqn. (2.12) in many

ways. In eqn. (2.12) the Pabcd has no symmetries at all while in eqn. (2.14) it has

the symmetries of the Riemann tensor. The appearance of the P · R terms in the

equations of motion is very interesting. Even though it appears that the∇∇P term in

the equations of motion accounts for the variation of the Ricci or the Riemann tensor,

it is in fact not entirely true. A part of it is proportional to δR but there are extra

terms which are cancelled by the P·R term. But there’s more. The P·R will still have

a remaining piece that cancels the extraneous terms which arises due to writing the

Lagrangian in terms of the Riemann tensor when it can be expressed in terms of the

Ricci tensor only. For example, if the Ricci scalar is written as Rabcd
1
2

(

gacgbd − gadgbc
)

instead of Rabg
ab. This point becomes apparent while evaluating the terms in the

generalized expression (see Appendix A and Appendix A)

For Lagrangians with a scalar field pre-factor, a further useful formula for the
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equations of motion can be written down using L = eµφL′ and Pabcd = eµφP ′
abcd,

eµφ
(

∂L′

∂gab
− 1

2
gabL

′ − P cde′
(a Rb)cde +∇c∇d (P ′

acbd + P ′
bcad)

+ 2P ′
acbd

(

µ∇c∇dφ+ µ2∂cφ∂dφ
)

)

= 8πGTab (2.15)

Discussion

We obtained a generalized equation of motion for higher curvature gravity. This

expression works for most types of higher derivative Lagrangians expect for La-

grangians which contains derivatives of the curvature scalars, viz. L = ∇cRab∇cRab.

However, these Lagrangians are third order in the derivatives of the metric and will

contain ghosts and therefore not realistic models of gravity. Our expression is the most

generalized expression possible for any type of non-minimally coupled Lagrangian.
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Chapter 3

THE BLACK HOLE MEMBRANE PARADIGM

3.1 Introduction

The membrane paradigm is the surprising idea that, to an outside observer, black

hole horizons behave like fluid membranes. That is, when a black hole is perturbed

by external fields, the equations of motion describing the response of the horizon are

exactly what they would be if the fields were interacting instead with a bubble, or

membrane, enveloping the horizon. The membrane is endowed with the sources for

whatever external fields are present. In particular, to source the gravitational field,

the membrane possesses the stress tensor of a viscous fluid. This external perspective

of horizons as fluid membranes provides not only an intuitive way of understanding

black hole interactions but also the original semiclassical realization of holography.

The membrane paradigm was first discovered [74, 75] by re-writing particular

field equations of perturbed black hole horizons in terms of familiar nonrelativistic

dissipative equations such as Ohm’s law and the Navier-Stokes equation. A more

systematic action-based derivation was obtained in [76], which in principle enabled

membrane properties to be determined for arbitrary field theories. Nevertheless,

many puzzles remain. For what gravitational theories does a black hole horizon

behave as if it were a Newtonian fluid? What are the fluid transport coefficients in

more general theories of gravity? Does the membrane always obey the Navier-Stokes

equation? And more generally, for what gravitational theories does the membrane

paradigm even exist? In this paper, we attempt to shed some light on these questions

by considering the action formulation of the membrane paradigm for f(R) theories
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of gravity. These theories serve as a model for higher-derivative gravity; they are a

simple extension of Einstein gravity in that they introduce exactly one extra degree

of freedom.

3.2 Geometric Set-Up

Before entering into the details of the membrane action, it will help to specify

precisely the geometric set-up. We will work inD spacetime dimensions. Let the black

hole event horizon, H, which is a D−1-dimensional null hypersurface, be generated

by null geodesics la. We take these generators to have a nonaffine parameterization,

τ . That is, la = (∂/∂τ)a and the geodesic equation is la∇al
b = κlb, rather than zero.

Here κ is a nonaffine coefficient; for a stationary spacetime, la coincides with the

null limit of the timelike Killing vector and κ can then be interpreted as the surface

gravity of the horizon.

Although the membrane paradigm can be formulated entirely on the event horizon,

it proves convenient to introduce a timelike stretched horizon, Σ, positioned slightly

outside H, the advantage being that a timelike surface has a nondegenerate metric

which permits one to write down a conventional action. The precise choice of the

timelike surface is somewhat arbitrary. We consider Σ to be one among a foliation

of timelike surfaces, each labeled by a parameter α such that in the limit α → 0, the

stretched horizon approaches the true horizon. In the absence of horizon caustics,

a one-to-one correspondence between points on H and Σ are always possible by, for

example, using ingoing light rays that connect both the surfaces.

We can also regard the stretched horizon as the world-tube of a family of “fiducial”

observers hovering just outside the black hole. We take these observers to have world

lines ua; then just as H is generated by the null congruence la, the stretched horizon is

generated by the timelike congruence ua. The stretched horizon also has a spacelike,
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outward pointing unit normal vector na.

In the limit α → 0, we require that αua → la and αna → la i.e. the stretched

horizon tends to the true horizon in this limit, as we have already envisaged. This

is nothing more than the statement that the null generator la is both normal and

tangential to the true horizon, which is the defining property of null surfaces. The

metric hab on the stretched horizon Σ can be expressed in terms of the spacetime

metric gab and the normal vector na. Similarly we can define a metric γab on a

D − 2-dimensional spacelike cross-section of Σ, to which ua is normal:

hab = gab − nanb and γab = hab + UaUb. (3.1)

We will choose the stretched horizon among all possible choices, such that the normal

vector na obeys an affine geodesic equation, na∇anb = 0, and as a result, for any

vector va ∈ Σ, we have ∇av
a = va|a where |a is the covariant derivative with respect to

the metric hab. Next, we denote {A,B, ...} as the coordinates on the D−2-dimensional

spacelike cross-section of H and kAB = γdBl
A
||d as the extrinsic curvature on the D−2-

dimensional cross-section of the null surface, where ||A is the covariant derivative with

respect to γAB.

We define the extrinsic curvature of Σ as Ka
b = hcb∇cn

a. In the null limit α → 0,

the various components of the extrinsic curvature become [74]

As α → 0 : KU
U = Ka

bUaU
b → −α−1κ

KU
A → 0;KA

B → α−1kAB

K → α−1(θ + κ) (3.2)

where θ is the expansion scalar of the geodesic congruence generating the horizon.

Note that, for a D−1-dimensional timelike hypersurface, the extrinsic curvature of a

D−2-dimensional spacelike section with respect to its timelike normal ua within the
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hypersurface has nothing to do with the (projection of the) extrinsic curvature KA
B

with respect to the spacelike normal na off the hypersurface. However, in the null

limit, both ua and na map to the same null vector la. Hence we have KA
B → α−1kAB

where kAB is the the extrinsic curvature of a D−2-dimensional spacelike section of the

horizon. We can then decompose kAB into a traceless part and a trace as

kAB = σAB +
1

D − 2
θγAB

where σAB is the shear of the null congruence. In the null limit, various components

of the extrinsic curvature diverge and we need to renormalize them by multiplying

by a factor of α. The physical reason behind such infinities is that, as the stretched

horizon approaches the true one, the fiducial observers experience more and more

gravitational blue shift; on the true horizon, the amount of blue shift is infinite. This

completes the description of our geometric set-up. Next, we review the derivation of

the black hole membrane paradigm in standard Einstein gravity.

3.3 The Membrane Paradigm in Einstein Gravity

Since the region inside the event horizon cannot classically affect an outside ob-

server, the classical equations of motion for such an observer must follow from the

variation of the action restricted to the spacetime external to the black hole. However,

the external action, Sout, is not stationary on its own because boundary conditions

are not fixed at the horizon, and hence the boundary term in the derivation of the

Euler-Lagrange equations does not vanish at the horizon as it does at infinity. In or-

der to obtain the correct equations, we must add a surface term to the action whose

variation cancels this residual boundary variation. We do this by splitting the action

as

S =
(

Sin − Ssurf
)

+
(

Sout + Ssurf
)

, (3.3)
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where Ssurf is the requisite surface term, chosen so that δSout + δSsurf = 0. The

surface term corresponds to sources such as surface electric charges and currents

for the Maxwell action, or a surface energy-momentum tensor for the gravitational

action. These sources are fictitious in a traditional sense because an infalling observer

passing through the horizon will not detect them. Nevertheless, to the external

observer they are very much real and observable. An ontologically different stance,

as advocated by the principle of observer complementarity, is that both the infalling

and external viewpoints are equally valid, even though they seemingly contradict each

other; indeed, the infalling observer is unable to detect Hawking radiation either but

that is not usually regarded as implying that Hawking radiation is fictitious.

For Einstein gravity, the external action is given by

Sout =
1

16πG

∫

dDx
√−g R +

1

8πG

∮

∞
dD−1x

√
h K , (3.4)

where the second term is the Gibbons-Hawking boundary term required to cancel the

normal derivatives of the variation of metric on the boundary at infinity. As before,

extremizing this action does not yield the Einstein equations because of variational

contributions at the (stretched) horizon. To cancel this contribution, we add a surface

term Ssurf whose variation,

δSsurf =
1

2

∫

dD−1x
√
h tab δhab , (3.5)

defines a surface energy-momentum tensor on the stretched horizon. This can be

shown [76] to take the form

tab =
1

8πG

(

Khab −Kab
)

, (3.6)

where Kab is the extrinsic curvature of the stretched horizon. By invoking the Gauss-

Codazzi equations, the energy-momentum tensor can be shown to satisfy a conserva-
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tion equation:

tab|b = −hacT cdnd , (3.7)

where T ab is the energy-momentum tensor of real (bulk) matter outside the black

hole. This is a continuity equation; it indicates that the divergence of the horizon

energy-momentum tensor is equal to the flow of outside matter on to the horizon. The

fact that the horizon energy-momentum tensor participates in a continuity equation

with actual outside matter is crucial in sustaining the outside observer’s belief that

the surface energy-momentum tensor describes real matter.

In the limit that the stretched horizon approaches the true horizon, we can use 3.2

to express the regularized stress tensor in terms of the horizon expansion and shear.

Remarkably, the stress tensor projected on a D−2-dimensional cross-section of the

horizon then takes the form of the stress tensor of a viscous fluid [74, 76, 77]:

tAB = pγAB − 2ησAB − ζθγAB , (3.8)

where p = κ
8πG

is the pressure, η = 1
16πG

the shear viscosity, and ζ = − 1
8πG

D−3
D−2

the bulk viscosity of the membrane. The constancy of the transport coefficients

means that the event horizon behaves as a D−2-dimensional Newtonian fluid. Note

that, unlike ordinary fluids, the membrane has negative bulk viscosity. This would

ordinarily indicate an instability against generic perturbations triggering expansion

or contraction. It can be regarded as reflecting a null hypersurface’s natural tendency

to expand or contract.

Inserting the energy density tabUaU
b = Σ = α−1ΣH into the conservation equation

of the membrane stress tensor, we find that

dΣH
dτ

+ ΣHθ = −pθ + ζθ2 + 2ησ2 + T ab lal
b . (3.9)

This is again the same as the energy conservation equation of a fluid with pressure

p, shear viscosity η, and bulk viscosity ζ [78]. Next, inserting the Ath-momentum
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density, πA = tbaγ
a
AUb, into the conservation equation of the membrane stress tensor,

we arrive at the momentum conservation equation of the membrane:

Lla πA + θ πA = −∇Ap+ 2ησBA||B + ζ∇Aθ + T lA , (3.10)

where Lla is the Lie derivative along the null direction. Since the Lie derivative along

a congruence plays the role of the convective derivative in ordinary fluid dynamics,

we recognize this as the Navier-Stokes equation of a viscous fluid. This completes

our short review of the membrane paradigm in Einstein gravity. Next, we turn to its

extension to higher derivative gravity and treat f(R) gravity as a special case.

3.4 The Membrane Paradigm in Higher Curvature Gravity

In our approach to derive a generalized expression for the boundary stress tensor

we will need to assume that the generalized Lagrangian is homogenous. While mem-

brane paradigm should work for most theories of gravity, it is impractical to analyze

Lagrangians with non-homogeneous curvature couplings. This includes Lagrangians

with derivatives of the curvature tensor. Because such Lagrangians have higher order

equations of motion and by the Ostrogradski theorem they will contain ghosts. This

analysis applies to all forms of higher curvature gravities. However whether all higher

derivative theories admit black hole solutions is not known. Black hole solutions are

known to exist for Gauss-Bonnet gravity [32], for higher order Lovelock gravity [52],

for f(R) gravity [79], for Weyl gravity [80], and Kaluza-Klein gravities [81]. We pro-

ceed by assuming that the higher derivative theory of gravity admits a black hole

solution.

This general procedure also applies to Lagrangians with all forms of scalar cou-

plings to the Riemann curvature tensor. But certain subtleties are involved in dealing

with scalar couplings. Scalar fields add one extra degree of freedom to the theory
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without adding any extra gauge degree of freedom. And we shall see later that the

conservation of the membrane stress tensor is a result of the momentum constraint

which in turn is a manifestation of the gauge degree of freedom of the theory. So the

membrane stress tensor will no longer be conserved if one of the fields lacks gauge

degree of freedom. This point is illustrated in Section 3.5 for the case of f(R) theory

which is a minimally coupled scalar-tensor theory.

For the purpose of generalized analysis consider a general diffeomorphism-invariant

action with boundary terms

S =
1

16πG

∫

dDx L(gab, Rabcd) + S∞ + Smatter , (3.11)

where S∞ is the appropriate generalization of the Gibbons-Hawking term at infinity

whose precise form we do not need. Its sole purpose is to cancel the variation of this

action at infinity.

The surface term in generalized gravity is obtained by varying the Lagrangian

and picking out the total derivative term, then decomposing the (D-1)–dimensional

quantities on the (D-1)–dimensional surface into (D-2)–dimensional quantities and

then taking the null limit. This will eliminate some terms as the event horizon

is approached asymptotically. Therefore we can discard those terms in the (D-1)–

dimensional stress tensor and define it as the membrane stress tensor. On-shell the

variation of the action is just the surface term

δSΣ =
1

8πG

∫

dD−1x
√−g∇a

[

P abcd∇dδgbc − δgbc∇dP
abcd
]

(3.12)

= − 1

8πG

∫

dD−1x
√
−hna

[

P abcd∇dδgbc − δgbc∇dP
abcd
]

(3.13)

We have used the fact that the stretched horizon is timelike (which gives a positive

sign) and the normal na is outward pointing (in comparison to the surface element,

which gives a negative sign), hab is the (D-1)–dimensional metric.
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The action eqn. (3.13) still contains a D–dimensional total derivative

δSΣ = − 1

8πG

∫

dD−1x
√
−h

(

∇d(naP
abcdδgbc)− (∇dna)P

abcdδgbc − 2δgbcna∇dP
abcd
)

(3.14)

We cannot discard the total derivative because it is a D–dimensional derivative while

the action is a (D-1)–dimensional boundary. However, as shown in Appendix B, that

on asymptotically approaching the event horizon or equivalently the null limit of the

stretched horizon this term becomes zero and the surface term becomes,

δSΣ =
1

8πG

∫

dD−1x
√
−h

[

(∇dna)P
abcd + 2na∇dP

abcd
]

δgbc (3.15)

However in this expression for the surface term, the integrand consists of D–dimensional

quantities while the integration is over (D-1)–dimensions. We have to manipulate the

integrand into quantities defined just on the stretched horizon. Most importantly the

variation of the bulk metric δgab at the boundary must be reduced to the variation

of the boundary metric δhab. We can exploit the diffeomorphism degrees of freedom

of the theory to set the variation of the normal vector to zero δna = 0. This would

lead to δgab → δhab. After some amount of algebra and using the properties of the

stretched horizon (see Appendix B) it can be shown that eqn. (3.15) can be reduced

to PnklmK
mn and an interesting extra term 2np∇qPpklq which is non-zero only for the

theory of gravities which are not in the Lovelock-Lanczos form 1 .

δSΣ =
1

8πG

∫

dD−1x
√
−h

(

PpklqK
pqhkbhlc + 2np∇qPpklqh

kbhlc
)

δhbc (3.16)

The resulting action reduces to the Einstein membrane action in the appropriate

limit. The membrane stress-energy tensor on the (D-1)–dimensional hypersurface

can be obtained directly from this action.

tab = − 1

4πG
(PnklmK

mn + 2np∇qPpklq)h
kahlb (3.17)

1This is because ∇qPpklq = 0 for Lovelock-Lanczos theories, as a result of the Bianchi identity.
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However, the transport coefficients cannot be read directly from this stress tensor.

This stress tensor is a (D-1)–dimensional quantity and needs to be decomposed further

and then evaluated on the spacelike section of the horizon. And this needs to be done

case by case for every theory of gravity because Pabcd contains powers of the Riemann

tensor and its contractions, and the decomposition of Pabcd is theory dependent.

The last term plays an important role for non-Lovelock theories. When we in-

dependently derive the f(R) membrane stress tensor in the following section we will

notice that the stress tensor could also be obtained directly from this generalized

stress tensor.

3.5 Extension to f(R) Gravity

In this section we derive the transport coefficients of the membrane fluid for black

hole solutions in f(R) gravity [79]. We specialize to the particular case for which the

Lagrangian is a function f(R) of the Ricci scalar only. The equations of motion for

f(R) gravity is

f ′(R)Rab −∇a∇bf
′(R) +

(

�f ′(R)− 1

2
f ′(R)

)

gab = 8πG Tab , (3.18)

where the prime denotes a derivative with respect to the argument; when f(R) = R,

this reduces to Einstein’s equation. In order to obtain this equation, we need to add

a surface term to the action, with variation

δSsurf
Σ = − 1

8πG

∫

dD−1x
√
−h (F1 + F2) , (3.19)
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where, using P abcd = 1
2
(gacgbd − gadgbc)f ′(R), the terms F1 and F2 are given by, 2

F1 =
1

2
hbc (∇c (f

′(R)naδgab)−∇a (f
′(R)naδgbc)) (3.20)

F2 = −1

2
hbd (∇dn

cf ′(R) + 2nc∇df
′(R)) δgbc + hbc (f ′(R)∇an

a + 2na∇af
′(R)) δgbc

(3.21)

The contribution from the term F1 can be shown to vanish in the limit in which the

stretched horizon approaches the event horizon. We first note that any variations in

the metric that are merely gauge transformations can be set to zero. Using a vector

va where va vanishes on the stretched horizon, we can gauge away the variations in

the normal direction so that δgab → δhab. Next we notice that for any vector va ∈ Σ,

we have ∇av
a = va|a where |a is the covariant derivative with respect to hab; integration

over any divergence term like va|a over the stretched horizon gives zero. We also use

relations like habn
b = 0 and ad = ne∇en

d = 0. Then the integral of the F1 term is

∫

d3x
√
−hhbc (∇a (f

′(R)naδhbc)−∇c (f
′(R)naδhab))

=

∫

d3x
√
−h

(

∇a

(

hbcf ′(R)naδhbc
)

+
(

ncab + nbac
)

f ′(R)δhbc −
(

hbcnaf ′(R)δhab
)

|c

−f ′(R)hbcnaδhabac −Kf ′(R)nbnaδhab − abnaf ′(R)δhab
)

=

∫

d3x
√
−h

(

∇a

(

hbcf ′(R)naδhbc
)

−Kf ′(R)nbnaδhab
)

=

∫

d3x
√
−h

(

∇a

(

hbcf ′(R)naδhbc
)

−Kf ′(R)
(

δ
(

nbnahab
)

− nahabδn
b − nbhabδn

a
))

=

∫

d3x
√
−h∇a

(

hbcf ′(R)naδhbc
)

(3.22)

Now let us take an auxiliary vector ka such that na = ua + αka. When α → 0, we

have na → ua → α−1la on the true horizon. Then the term F1 ultimately becomes

F1 =

∫

d3x
√
−h∇a

(

hbcf ′(R)uaδhbc
)

+ α

∫

d3x
√
−h∇a

(

hbcf ′(R)kaδhbc
)

(3.23)

2We have used the gauge choice δna = 0, which implies gabδgbc = habδgbc = gabδhbc = habδhbc.
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The second term does not contribute in the null limit and the integrand of the first

piece is of the form ∇av
a = va|a where va ∈ Σ. Hence, this term also does not

contribute anything. This completes our proof that F1 term in (3.19) vanishes in the

null limit.

After some straightforward manipulation we find that

δSsurf
Σ = − 1

16πG

∫

dD−1x
√
−h

(

f ′(R)
(

Khab −Kab
)

+ 2nd∇df
′(R)hab

)

δhab

≡ −1

2

∫

dD−1x
√
−h tab δhab (3.24)

where tab is the membrane stress tensor:

tab =
1

8πG

(

f ′(R)
(

Khab −Kab
)

+ 2nd∇df
′(R)hab

)

. (3.25)

This is the stress tensor for the membrane in f(R) gravity. However, taking its

divergence does not give a conservation equation analogous to (3.7). This would seem

to undermine the interpretation of tab as real energy-momentum, which an observer

will naturally require to be conserved. One way out is to note that the membrane

stress tensor produces a discontinuity in the extrinsic curvature across the stretched

horizon. The relationship between the discontinuity and the source term is given by

the appropriate Israel junction condition [82] for f(R) gravity, which is

|f ′(R) (Khab −Kab) + habn
d∇df

′(R)| = 8πG tab , (3.26)

where |A| ≡ A+ − A− denotes the difference between the quantities evaluated on

the stretched horizon between its embedding in the external universe and in the

spacetime internal to the black hole. Comparing the junction condition (3.26) with

the membrane stress tensor (3.25), we find

f ′(R) (Khab −Kab) + habn
d∇df

′(R)|− + habn
d∇df

′(R)|+ = 0 . (3.27)
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Now, junction conditions for a general f(R) gravity theory have to be supplemented

with an additional condition namely, the continuity of the Ricci scalar across the

junction [82]. The reason behind this extra constraint is that, unlike for Einstein

gravity, the equations of motion of a general f(R) gravity is of fourth order. Unless

the continuity of the Ricci scalar is imposed on the junction, the junction conditions

do not reduce to the familiar Israel junction conditions as f(R) → R. Another

alternative but equivalent way to understand this extra constraint is that any f(R)

theory, other than Einstein gravity, can be cast into a scalar-tensor theory via a

conformal transformation. Thus, apart from the tensor mode, a general f(R) gravity

also contains an extra scalar degree of freedom; it is the Ricci scalar that plays the

role of this scalar field in the scalar-tensor picture. Hence, the continuity of the Ricci

scalar actually ensures that the scalar degree of freedom is continuous across the

junction. On the other hand, it is not possible to write down a conserved membrane

source for scalar field theory due to the absence of a conserved current. By imposing

this condition on our membrane, we are thereby effectively removing the scalar degree

of freedom. The continuity of R across the membrane leads to the continuity of the

trace of extrinsic curvature K [82]. Using this, (3.18) and (3.27), we find that

tab|b = −hacT cdnd . (3.28)

This is once again a conservation law.

Although the use of the junction conditions unambiguously leads to the correct

conservation law, there is still something dissatisfying about it. The whole idea of the

membrane paradigm is that we should not have to consider conditions on the other

side of the membrane; using junction conditions does not seem to fit that philosophy.

It will be nice to find another motivation for (3.28). One intriguing possibility arises

from observing that, for Einstein gravity, (3.6) is simply the momentum of gravity
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in a Hamiltonian picture where “time” runs in a spacelike direction off the stretched

horizon. The existence of the conservation equation (3.7) can then be recast as the

momentum constraint equation. That in turn arises because of gauge invariance.

This viewpoint explains why scalar field theories do not have a realistic intepretation

in terms of the membrane paradigm. Applied to f(R) theory it suggests that, since

the theory does possess diffeomorphism invariance, there must exist some kind of

conservation equation for the membrane stress tensor. It could be very illuminating

to make these ideas more precise. In particular, it suggests that Lovelock theories,

which have the same number of degrees of freedom as Einstein gravity, might admit

a very clean interpretation in terms of fluid membranes.

The projection of the membrane stress tensor, (3.25), to a spatial (D−2)-dimensional

slice of the horizon gives

tAB =
1

8πG

((

κf ′(R) + 2
df ′(R)

dτ

)

γAB +
(D − 3)

(D − 2)
θf ′(R)γAB − f ′(R)σAB

)

(3.29)

where τ is the nonaffine parameter of the null congruence and la∇a = d/dτ . The

stress tensor resembles that of a viscous fluid and readily allows us to find the fluid

transport coefficients:

Pressure : p =
1

8πG

(

κf ′(R) + 2
df ′(R)

dτ

)

Shear viscosity : η =
f ′(R)

16πG

Bulk Viscosity : ζ = −(D − 3)

(D − 2)

f ′(R)

8πG

Energy Density : ΣH =
1

8πG

(

−θf ′(R)− 2
df ′(R)

dτ

)

(3.30)

As in Einstein gravity, then, the membrane stress tensor for any general f(R) gravity

can indeed be written as a fluid stress tensor. However, there are a few differences:

• Transport coefficients are not constants but depend on the flow, characteristic

of a non-Newtonian fluid [83].
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• For any f(R) theory, the bulk viscosity coefficient is always negative provided

D > 3. As in Einstein gravity, this is related to the teleological definition of the

event horizon; it is independent of the theory of gravity.

• Since, the transport coefficients are not constants, the relevant Navier-Stokes

equation, which involves the derivative of the stress tensor, will have extra

terms proportional to the derivatives of these transport coefficients. For fluid

with constant viscosity, such terms do not contribute and we obtain the regular

Navier-Stokes equation 3 .

Another important property of the membrane fluid is the saturation of the so-called

KSS bound [84]. As in Einstein gravity, the ratio of the shear viscosity to entropy

per unit area is 1/4π. In fact, in the context of finite temperature AdS/CFT, it was

suggested that, for any f(R) gravity theory, the ratio η/s always saturates the KSS

bound [85]. Our result confirms this for the membrane fluid as well.

We can cast the conservation law into equations of fluid dynamics. Inserting the

A-momentum density πA = tbaγ
a
AUb into the conservation equation of the membrane

stress tensor, we arrive at the momentum conservation equation of the membrane as:

LlπA + θπA = −∇Ap+ 2
(

ησBA
)

||B + ζ∇Aθ + T lA + θγBA∇Bζ (3.31)

This is identical to the Navier-Stokes equation of a viscous fluid provided we generalize

the usual Navier-Stokes equation for the case of non-Newtonian fluids with noncon-

stant transport coefficients [78]. As a result, compared to Eq. (3.10), this equation

has extra terms involving the change of transport coefficients along the flow. In Ein-

stein gravity, all such terms vanish since the viscous transport coefficients in that case

are constants.
3The derivation of the Navier-Stokes equation usually assumes the constancy of various transport

coefficients. But it is straightforward to lift that assumption and derive a general Navier-Stokes
equation for a fluid with nonconstant viscosity; see, e.g., section 15 in [78]
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Let us summarize the broad picture as follows: we have derived the membrane

stress tensor for a general f(R) gravity theory and proved that the stress tensor

behaves like that of a non-Newtonian viscous fluid provided we imposed the continuity

of the scalar curvature across the membrane. This condition can be justified both by

imposing the junction condition and also by the observation that in the scalar-tensor

picture of f(R) gravity, the scalar curvature plays the role of the scalar field, and the

continuity of R is merely a statement of the fact that there is no membrane paradigm

for a scalar field.

We can also study the thermodynamics of the fluid membrane. We turn to that

next.

3.6 Thermodynamics of the Membrane

In order to study the thermodynamics of the membrane, we will assume that the

spacetime is stationary with a timelike Killing vector which is null on the horizon.

In the semiclassical limit, where the dominant contribution comes from classical field

configurations, the partition function is

Z ≈ exp
(

−(IoutE + I∞E + IsurfE )
)

= exp (−βF ) , (3.32)

where IE is the Euclidean action for the Euclideanized solution. Here F is the free

energy and β is the periodicity of Euclidean time which is initially a free parameter

but will ultimately be set to the inverse of Hawking temperature. The boundary

term at infinity, I∞E , is the appropriate generalization of the Gibbons-Hawking term,

and is assumed to include any counter terms necessary to render the expression finite

(such as a subtraction of the corresponding action for Minkowski space). Now, in any

stationary spacetime, the last term in (3.25) vanishes in the null limit. The variation
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of the membrane action therefore reduces to

δIsurfΣ = − 1

8πG

∫

dD−1x
√
−hf ′(R)

(

Khab −Kab
)

δhab . (3.33)

We will like to integrate this variation to obtain an action for the membrane. If we

set the variation of the Ricci scalar to zero on the horizon, we can easily integrate

the membrane action [76]. The result is

Isurf = − 1

8πG

∫

dD−1x
√
−hf ′(R)K . (3.34)

The condition δR = 0 on the horizon amounts to setting the variation of the scalar

degree of freedom to zero in the scalar-tensor picture. In fact, the same condition

is used on the external boundary to obtain the bulk equations of motion using a

generalization of the Gibbons-Hawking surface term [25]. To evaluate the Euclidean

action for the membrane, note that (3.2) gives K = α−1κ in a stationary spacetime,

while Euclidean time, tE, runs from 0 to β = 2π/κ. Hence

IsurfE =
1

4G

∫

f ′(R)
√
γdD−2x , (3.35)

We can therefore calculate the entropy of the membrane:

Ssurf = β2∂F

∂β
= − 1

4G

∫

f ′(R)
√
γdD−2x . (3.36)

The membrane entropy is exactly equal and opposite to the Wald entropy for f(R)

gravity [72, 66]. If the entropy of the external universe is the same as the Wald

entropy, then the entropy of the total system “Membrane + External Universe” van-

ishes. In the membrane approach, this suggests the following interpretation. For an

external observer, there is no black hole — only a membrane. The entropy of the

external world is then simply the total entropy of everything outside, which is equal

and opposite to the entropy of the membrane. This number decreases as matter leaves
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the external system to fall through and be dissipated by the membrane. When all

matter has fallen through the membrane, the outside is in a single state — vacuum

— and has zero entropy.

To demonstrate this explicitly, consider the standard Schwarzschild spacetime of

mass M in four dimensions. This is still a solution of the vacuum f(R) equations

of motion. The stretched horizon can be taken to be simply a surface of constant

Schwarzschild coordinate r. The bulk action vanishes on-shell and we find that

I∞E = 4πGM2 . (3.37)

Hence, the entropy of the external universe is

Sext = 4πGM2 . (3.38)

Now, for any polynomial f(R) theory of the form f(R) = R+ ..., we have f ′(R) = 1

for this solution. In that case the entropy of the membrane is just

Ssurf = −4πGM2 . (3.39)

The membrane entropy precisely cancels compensate the external entropy. As befits

the generalized entropy, in a spacetime with no matter and no horizons, the total

entropy is zero. That the membrane action reproduces (albeit with a properly in-

terpreted minus sign) the black hole entropy is one of the advantages of the action

formulation and one of the pleasing aspects of the membrane paradigm; it seems more

satisfying that the horizon entropy can be traced to a term in the action that actually

lives at the horizon, rather than at infinity.

Summary

We have extended the membrane paradigm for black hole horizons to general

f(R) gravity theories. We have found that the membrane generically behaves like
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a non-Newtonian fluid with curvature-dependent transport coefficients; the dynami-

cal equations of the membrane are identical to the corresponding equations in fluid

dynamics adapted to a fluid with inhomogeneous and velocity-gradient-dependent

viscosity coefficients. We have also calculated the entropy of the membrane: it agrees

with the suitable Wald entropy provided we set the variation of the Ricci scalar to

zero on the horizon. Our calculations indicate that a membrane paradigm viewpoint

may exist for general higher-derivative theories of gravity, but that there are sub-

tleties, largely because there are additional physical degrees of freedom. It would be

especially interesting to study the fluid properties of black hole horizons in Lovelock

gravity, which has the same number of degrees of freedom as Einstein gravity.
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Chapter 4

GENERALIZING THE ENERGY CONDITIONS

4.1 Introduction

By themselves, Einstein’s equations impose virtually no restrictions on the kinds

of spacetimes that are physically permissible. Any symmetric, suitably differentiable

metric that satisfies the boundary conditions is a solution to the Einstein’s equations

since, formally, one can simply equate the energy-momentum tensor to the left-hand

side of the Einstein’s equations.

To restrict the solution space, one can impose some physical requirements. In

particular, energy conditions are imposed on the types of matter considered. The

various energy conditions — null (NEC), weak (WEC), dominant (DEC), and strong

(SEC) — each express some seemingly reasonable expectation regarding matter, such

as that the speed of energy flow be no greater than the speed of light. The energy

conditions are inequalities that apply locally, and are asserted to hold everywhere

in spacetime. They are generalizations of the notion that local energy density be

non-negative and are implemented by requiring various linear combinations of the

components of the matter energy-momentum tensor to be non-negative. The energy

conditions are violated by potentially pathological forms of matter, such as certain

instances of tachyons (WEC) and ghosts (NEC), and in turn eliminate many of the

arbitrary metrics that would otherwise tautologically satisfy the Einstein’s equations.

Furthermore, the energy conditions play a critical role in a variety of important

theorems in general relativity. They are crucial, for example, to the singularity the-

orems which indicate that our universe began with a Big Bang singularity; almost
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all theoretical attempts to evade the Big Bang singularity require the violation of at

least one or some of the energy conditions at some step. Energy conditions are also

invoked in the topological censorship theorem, in positive energy theorems [86, 87],

in prohibiting time machines [88], in the black hole no-hair theorem [10, 12, 13] and,

in particular, in the area-law increase for black holes [17, 22, 89].

Given their importance, it is disturbing that the energy conditions are not derived

from any fundamental principles. Indeed, the status of the energy conditions — why

or even whether they hold — remains unclear [90]. For example it is unclear what

happens to the energy conditions in higher derivative theories of gravity; should they

be modified, or do the physical laws that depend on them (viz. the laws of black hole

thermodynamics) require modification? In f(R) gravity [91] and Brans-Dicke gravity

[92] no modification is required. But the question is still open for other higher cur-

vature theories of gravity. The null energy condition is routinely violated in higher

derivative theories [93–96], in the presence of extra dimensions [97], in ghost con-

densate models [98], in string cosmology [99, 100] and in other cosmological models

which evade the big-bang singularity with a cosmic bounce [101–103]. The presence

of the quantum effects and backreaction also tend to introduce ambiguities in the en-

ergy conditions [104, 105]. Even if we restrict ourselves to only the lowest-curvature

tree-level classical actions, ambiguities also appear when non-minimal couplings are

introduced [106]. Indeed, even simple conformal frame transformations seem to vi-

olate the energy conditions [107]. The reason for this is easy to understand: the

energy conditions are conditions on the stress tensor of matter but Weyl transforma-

tions (local re-scalings of the metric) mix matter and gravity, thereby altering the

stress tensor non-trivially.

The role of the energy conditions in any theory of gravity is to select only the

healthy theories from an infinite space of possible theories. However any deviations
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NEC

Einstein-frame Jordan-frame

NEC

No-NEC

(a) Null energy condition maps to a

different set under conformal trans-

formation

NEC

Einstein-frame Jordan-frame

NEC

(b) Null energy condition maps to

the same set under conformal trans-

formation

Figure 4.1: Null Energy Condition Before and After Conformal Transformation

from the minimally coupled Einstein gravity causes them to fail. Then there are

higher derivative theories [93] which explicitly violate the energy conditions but still

possess well behaved solutions. Therefore it is apparent that the energy conditions

are not fulfilling their roles as good predictors of well behaved theories. Either the

energy conditions are inadequate for the task or they require some form of modifica-

tions to remain a faithful indication of a well behaved theory. Discarding the energy

conditions is not an option, therefore we will explore the latter option in considerable

detail. To further illustrate this point let us look at Fig. 4.1. The figure on the left

depicts what happens to the set of the null energy condition abiding theories under

conformal transformations. They are mapped to another set, a part of which contains

theories with ghosts. The theories did not change fundamentally under the conformal

transformation and hence the illusion of becoming ghostly is undesirable. Our aim is

to make sure that the null energy condition is also modified in such a way that the

set of healthy theories maps to the set of healthy theories in the conformal frame.

To get this effect we will propose a new ad hoc form of the null energy condition,

in Section 4.2.1, that is valid in all rescaled Weyl frames. Our new null energy
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condition reduces to the usual form of the null energy condition in the Einstein frame

and is consistent with the invariance of the second law of thermodynamics for black

holes under conformal transformations. We use our modified null energy condition to

supply a direct proof of the second law in the Jordan frame. The result motivates the

following conjecture: the energy conditions, unlike the second law, does not appear

to be fundamental. Therefore the second law should be taken as given and the energy

conditions should be derived from them. Then the correct modification of the null

energy condition in a given theory of gravity is that condition on matter that ensures

that a classical black hole solution of the theory has an entropy that grows with time.

4.2 Energy Conditions in Jordan Frame

Consider a minimally coupled, Einstein-Hilbert scalar field action with canonically

normalized scalar field φ:

I =

∫

dDx
√−g

(

MD−2
P

2
R− 1

2
(∂φ)2 − V (φ)

)

(4.1)

Here gab is the Einstein-frame metric that couples minimally to the scalar field. The

Einstein-frame energy-momentum tensor of the scalar field, TEab, manifestly satisfies

the null energy condition:

TEabk
akb = (k · ∂φ)2 ≥ 0 (4.2)

for any null vector ka. Let us consider the modification of the Lagrangian due to

a Weyl transformation, g̃ab = Ω2(x)gab. The existence of a well-defined inverse of

the metric requires a nowhere-vanishing conformal factor. In addition, we need Ω(x)

to be related to the previously existing fields in Einstein frame; otherwise, we will

have introduced a new degree of freedom. We therefore take Ω(x) = eζφ(x)/µ with

µ = M
D−2
2

P where ζ is a dimensionless constant, and µ is a dimensionful constant

with the same dimensions as φ. We have chosen the conformal factor to be linear in
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φ for simplicity; our results can trivially be extended to a general conformal factor of

the form exp(f(φ(x)/µ)).

It is important to emphasize here that we have merely redefined field variables

from (gab(x), φ(x)) to (g̃ab(x), φ(x)). Although the action is typically not invariant

under such transformations (unless the metric transformation was induced by a dif-

feomorphism), the physics is exactly the same [108] provided only that the number of

degrees of freedom is unchanged, which is the case here 1 . Field redefinitions between

the matter and gravitational sectors are used routinely in both string theory and cos-

mology. In particular, if the energy conditions are to have physical significance, they

too must continue to hold after field redefinition. Let us check whether this is the

case.

Using the above choice of conformal factor the action reduces to

∫

dDx
√

−g̃ e−ζ(D−2)φ/µ

(

MD−2
P

2
R̃− 1

2

(

1− ζ2(D − 2)(D − 3)
)

(∂aφ)
2 − e−2ζφ/µV (φ)

)

(4.3)

We will refer to this action as the Jordan-frame action because gravity is non-

minimally coupled, via the term in which the Ricci scalar is directly coupled to

matter. The various pieces of the Lagrangian no longer split cleanly into a grav-

ity Lagrangian and a matter Lagrangian, and hence it is no longer sensible to define

the Jordan-frame stress tensor, T Jab, naively, as the variation of the matter action:

T Jab 6= − 2√−g̃
δImatter

δg̃ab
(4.4)

However, The equation of motion for g̃ab can be rewritten so as to get the Einstein

tensor on the left-hand side. Then whatever is on the right-hand side is covari-

antly conserved as a result of the Bianchi identity. Thus we can simply define the

1Indeed, this is true not only classically, but also quantum-mechanically. In the path integral, the
fields are just integration variables. We can redefine these, just as we are free to redefine integration
variables in ordinary calculus.
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Jordan-frame stress tensor as the quantity proportional to the Einstein tensor in the

gravitational equations:

G̃ab ≡
1

MD−2
P

T Jab (4.5)

Explicitly, the stress tensor in Jordan frame is

T Jab = (1 + ζ2(D − 2))(∂aφ)(∂bφ)− g̃ab

(

1

2

(

1 + ζ2(D − 1)(D − 2)
)

(∂aφ)
2

+ e−2ζφ/µV (φ)
)

+ ζ(D − 2)M
D−2
2

P

(

g̃ab∇̃2 − ∇̃b∇̃a

)

φ (4.6)

which is covariantly conserved:

∇̃aT Jab = 0 (4.7)

4.2.1 Null Energy Condition on the Stress Tensor in Jordan Frame

The covariantly-conserved stress tensor, eqn. (4.6), can still violate the null energy

condition in its Einstein-frame form [107]. To see this, contract T Jab with null vectors:

T Jabk
akb =

(

1 + ζ2(D − 2)
)

(ka∂aφ)
2 − ζ(D − 2)M

D−2
2

P kakb∇̃a∇̃bφ (4.8)

Notice that the positivity of the last term is ambiguous. If this were the correct

form of the NEC, the set of physical solutions (gab, φ) in Einstein frame — namely,

those that obey the Einstein frame null energy condition — will not map to the set

of physical solutions (g̃ab, φ) in Jordan frame — those that satisfy T Jabk
akb ≥ 0. But

the set of physical solutions should not change under field redefinitions. It must be,

then, that this naive version of the null energy condition is incorrect in Jordan frame.

We propose that the correct null energy condition in Jordan frame is

[

T Jab + ζ(D − 2)M
D−2
2

P ∇̃a∇̃bφ
]

kakb ≥ 0 (4.9)

Once this condition is imposed on the matter fields in Jordan frame the ambiguity is

resolved and we have (solution set in Jordan frame) ≡ (solution set in Einstein frame).
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To see this explicitly, consider our energy-momentum tensor. Using the expression

eqn. (4.6) in the relation eqn. (4.9), we find

(

T Jab + ζ(D − 2)M
D−2
2

P ∇̃a∇̃bφ
)

kakb =
(

1 + ζ2(D − 2)
)

TEabk
akb (4.10)

Hence, (modified null energy condition obeyed in Jordan frame) ⇔ (usual null

energy condition obeyed in Einstein frame). Our expression for the Jordan-frame

null energy condition can be generalized to arbitrary non-minimal couplings of matter

sources to the Ricci scalar. The generalized version is

[

T Jab + (D − 2)MD−2
P ∇̃a∇̃b ln Ω

]

kakb ≥ 0 (4.11)

This inequality reduces to the usual Einstein frame NEC, eqn. (4.2), in the case of min-

imal coupling (Ω = 1) and to the modified NEC, eqn. (4.9), when Ω = exp(ζφ(x)/µ).

To summarize, we propose a new form of the null energy condition, eqn. (4.11),

that applies to non-minimally coupled scalar fields and whose solution set is the same

as that of the usual Einstein frame null energy condition. This is as it should be,

since the two frames are related by a field redefinition.

4.3 Entropy Increase in Jordan Frame

Our proposal for the modified null energy condition in Jordan frame was somewhat

ad hoc. It happened to work for non-minimally coupled scalar fields in conformally

transformed actions. We will now motivate the prescription by a robust physical

principle. If we regard black hole entropy as counting the number of degrees of freedom

via the dimensions of its Hilbert space, or alternatively, the number of possible initial

configurations from which the black hole could be formed, then the entropy is clearly

conformally invariant. If the entropy increases in one frame as a result of imposition of

the null energy condition then it should also increase in the conformal frame without

48



any extra requirement, viz. the modified null energy condition of Jordan frame. In

this section, we will prove that our modified null energy condition in Jordan frame

indeed guarantees that, classically, black hole entropy never decreases.

Consider a stationary black hole solution to the Einstein equation in D spacetime

dimensions. The entropy of black hole solutions of the Einstein-Hilbert action is

just proportional to its “area” [17], by which we mean a (D-2)–dimensional spacelike

section of the horizon. But in dealing with spacetimes which are solutions to non-

Einstein-Hilbert actions, such as the one in Jordan frame with non-minimal scalar

coupling, a notion of entropy is absent. TheWald prescription of entropy [70] identifies

a conserved charge with the entropy of the horizon for stationary solutions to these

non-Einsteinian theories of gravity. The correct entropy to use for dynamical horizons

is Jacobson-Myers entropy [71]. But since the metric has rescaled, we can obtain the

entropy just by applying a field redefinition to the Bekentein-Hawking entropy [67].

The black hole entropy in Jordan frame is not simply proportional to the area. Rather

it is

S =
1

4GD

∫

dD−2x
√

γ̃ Ω−(D−2) (4.12)

The increase of entropy in Jordan frame has been studied before from the perspective

of f(R) theories [91] and the second law was proved in Jordan frame in [109] using the

Einstein-frame NEC. We provide a proof directly in Jordan frame using our modified

Jordan-frame NEC.

To see how the rate of change of black entropy in Jordan frame depends on the

Jordan-frame null energy condition we first find the expression for the change in the

black hole entropy.

dS

dλ̃
=

1

4GD

∫

dD−2x
√

γ̃ Ω−(D−2)

(

θ̃ − (D − 2)
d ln Ω

dλ̃

)

≡ 1

4GD

∫

dD−2x
√

γ̃ Ω−(D−2)Θ (4.13)
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where we have defined

Θ(λ̃) = θ̃ − (D − 2)
d ln Ω

dλ̃
(4.14)

Here θ̃ is the expansion scalar for the null generator k̃a of the horizon in Jordan frame:

θ̃ = ∇̃ak̃
a =

d(ln
√
γ̃)

dλ̃
(4.15)

Black hole entropy would not decrease if Θ were non-negative, as evident from

eqn. (4.13). We will now give a direct proof of the second law of thermodynam-

ics for scalar-tensor theories in Jordan frame. As in the proof that the surface area

of black holes in Einstein gravity always increases [22], we will show that, if Θ < 0,

then a caustic necessarily forms.

Notice that the vector k̃a = (d/dλ̃)a is related to ka = (d/dλ)a. This is easiest to

see for a normalized timelike velocity vector, ua = (d/dτ)a. Since dτ 2 = −gabdxadxb,

rescaling the metric causes τ to scale: τ̃ = Ωτ . Then dτ̃
dτ

= Ω and hence ũa ≡

(d/dτ̃)a = dτ
dτ̃
(d/dτ)a = (1/Ω)ua. Similarly, we have

k̃a ≡
(

d

dλ̃

)a

=
dλ

dλ̃

(

d

dλ

)a

=
1

Ω
ka (4.16)

Since Ω(x) is a function of space and time, k̃a is not in general affinely parameterized.

Thus

k̃b∇bk̃
a = κk̃a (4.17)

where

κ =
d

dλ̃
ln Ω (4.18)

The corresponding Raychaudhuri equation for θ̃ is

dθ̃

dλ̃
= κθ̃ −

(

θ̃2

D − 2
+ σ̃abσ̃

ab + ω̃abω̃
ab + R̃abk̃

ak̃b

)

(4.19)

The presence of the κθ̃ term on the right is a sign that λ̃ is not an affine parameter.

Hypersurface orthogonality of the null generators k̃a of the event horizon causes the
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rotation (w̃ = 0) to vanish by the Frobenius theorem. We can now use the equation

of motion in Jordan frame and replace the Ricci tensor with the Jordan-frame stress

tensor:

R̃abk̃
ak̃b =

1

MD−2
P

T Jabk̃
ak̃b (4.20)

Taking the derivative of eqn. (4.14) and substituting eqn. (4.19) then gives

dΘ

dλ̃
=

dθ̃

dλ̃
− (D − 2)

d2

dλ̃2
ln Ω

= κθ̃ −
(

θ̃2

D − 2
+ σ̃2

ab + R̃abk̃
ak̃b

)

− (D − 2)
d2

dλ̃2
ln Ω

= − Θ2

D − 2
− κΘ− (D − 2)κ2 − σ̃2

ab −
k̃ak̃b

MD−2
P

(

T Jab + (D − 2)MD−2
P ∇̃a∇̃b ln Ω

)

(4.21)

The last line follows from the relation between κ and Ω above eqn. (4.18). Note

the presence of the terms in brackets in eqn. (4.21): this is proportional to precisely

the expression that appears in our modified null energy condition in Jordan frame,

eqn. (4.11). When that is obeyed we have

dΘ

dλ̃
≤ − Θ2

D − 2
− κΘ− (D − 2)κ2 (4.22)

We will now analyze this equation carefully in order to prove that only solutions

with Θ > 0 do not have caustics. Cosmic censorship — which in this context means

the prohibition of caustics — eliminates all solutions with Θ < 0 and hence, by

eqn. (4.13), the second law of black hole thermodynamics holds in Jordan frame.

Suppose, then, that at some parameter λ̃0, a pencil of horizon null generators has

Θ0 < 0. For a sufficiently thin pencil, the surface gravity is effectively constant over

spacelike sections of the pencil. Therefore, we can regard κ as a function of λ̃ only.

First, consider κ ≤ 0. But then every term on the right-hand side of eqn. (4.22)

is nonpositive for Θ < 0. Hence dΘ
dλ̃

≤ 0. In fact, dΘ
dλ̃

≤ − Θ2

D−2
whose solution is

51



Θ(λ̃) ≤ Θ0/(1 +
λ̃−λ̃0
D−2

Θ0). For all negative values of Θ0, Θ(λ̃) diverges at some finite

λ̃, resulting in a caustic. Hence, for κ ≤ 0, all solutions with Θ < 0 lead to caustics.

Next, consider κ > 0. In this case, the term −κΘ in eqn. (4.22) is positive for

Θ < 0. However, the three terms on the right-hand side together are always negative.

To see this, consider the right-hand side of eqn. (4.22) as a quadratic polynomial in Θ;

this quadratic has no real roots for κ > 0. Hence again dΘ
dλ̃

≤ 0; Θ is a monotonically

decreasing function of λ̃. However, to prove that this inevitably results in a caustic

is more subtle because the positivity of the −κΘ term does not permit us to write

dΘ
dλ̃

≤ − Θ2

D−2
.

A monotonically decreasing negative function Θ(λ̃) can have three different asymp-

totic possibilities. Possibility 1 is that Θ asymptotically and monotonically ap-

proaches some finite negative value, Θmin i.e. limλ̃→∞Θ(λ̃) = Θmin. Possibility 2

is that Θ is unbounded from below but reaches negative infinity only in the infinite

future i.e. limλ̃→∞Θ(λ̃) = −∞. This is not a caustic because Θ is finite at all finite

values of λ̃. Possibility 3 is that Θ diverges at some finite λ̃c: limλ̃→λ̃c
Θ(λ̃) = −∞.

This corresponds to a caustic. These three possibilities are illustrated schematically

by the curves in Fig. 4.2. We will now show that κ > 0 and Θ < 0 always gives rise

to possibility 3.

First we rule out possibility 1; Θ(λ̃) does not asymptotically approach a finite

value. Suppose that were true, then for large values of λ̃, we would have Θ ≈ Θmin

and dΘ
dλ̃

≈ 0. Regarding the right-hand side of eqn. (4.22) as a quadratic in κ, we see

that there are no real solutions for κ when Θ = Θmin and dΘ
dλ̃

= 0. Hence, possibility

1 is eliminated and Θ(λ̃) is therefore unbounded from below.

Since Θ is unbounded from below, consider a very large (negative) value of Θ. Fo-

cus on an infinitesimal interval of λ̃. In that interval, κ(λ̃) can be regarded effectively
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Figure 4.2: Possible Curves for a Negative Monotonically Decreasing Function Θ(λ̃).

as a constant. Then we can integrate eqn. (4.22) to obtain

Θ(λ̃) =

√
3
2
Θ0 −

(

Θ0 +
7
4
(D − 2)κ

)

tan
(√

3
2
κ(λ̃− λ̃0)

)

√
3
2
+
(

Θ0

κ(D−2)
+ 1
)

tan
(√

3
2
κ(λ̃− λ̃0)

) (4.23)

Scrutiny of this reveals that the denominator vanishes for certain values of λ̃:

λ̃− λ̃0 ≈ −D − 2

Θ0

(4.24)

Hence if Θ0 is large and negative, Θ becomes divergently negative in finite time: a

caustic.

We have proven that, whether κ is positive or negative, we always find a caustic in

finite parameter λ̃ whenever Θ0 < 0. Cosmic censorship bans these solutions leaving

only those with Θ ≥ 0. This in turn implies that black hole entropy must be non-

decreasing in Jordan frame. Our proof relied crucially on eqn. (4.22), which follows

from eqn. (4.21) only when our modification to the Jordan-frame null energy condition
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is satisfied. A quick check on our result comes from the observation that Θ = θE/Ω,

where θE is the expansion in Einstein frame. Then, when the usual Einstein-frame

null energy condition is satisfied, θE is positive. This in turn means that Θ must

be positive and that the Jordan-frame entropy also increases. Here we have proven

that fact directly in Jordan frame without relying on a correspondence with Einstein

frame.

4.4 Ambiguity in the Canonical Null Energy Condition in the presence of Multiple

Fields

In the presence of multiple fields it becomes ambiguous whether to impose the null

energy condition on each individual field or the entire field content as a whole. Even

the physical principles will fail to provide any guidance since the physical laws (like

the second law of thermodynamics) are insensitive to the microscopic details. This

can be best illustrated with an example. We will show how the presence of ghosts

can introduce ambiguities in the null energy condition in the Einstein frame and how

our improved null energy condition salvages the situation.

4.4.1 A Ghost with a Scalar Field

Let us take a gravitational system minimally coupled to a free canonical scalar

field and a free ghost field

∫

dDx
√−g

(

R− 1

2
(∂φ)2 +

1

2
(∂ψ)2

)

(4.25)

Here φ(x) is a regular canonical scalar field and ψ(x) is a ghost field. Einstein frame

null energy condition is

T φabk
akb + Tψabk

akb = (k · ∂φ)2 − (k · ∂ψ)2 (4.26)
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Depending on how strong the gradient of the ghost field is along the null vectors ka

compared to that of the canonical scalar field, this quantity is sometimes positive

and sometimes it is not. It is normal to assume that the null energy condition in

this case should be applied to the individual pieces of the stress tensor, however this

is too strong an assumption classically. From the point of view of quantum systems

it makes perfect sense because the ghostlike degrees of freedom are undesirable and

should be discarded. From classical point of view there is nothing wrong with the

ghost fields in the presence of normal matter as long as they do not cause the total

stress tensor to become unbounded from below.

Therefore, we propose a further conjecture that the matter fields should be inte-

grated over all Jordan frames. This means that if any of the matter sources violate

the null energy condition in any Jordan frame then the theory should be discarded

altogether. To demonstrate our conjecture let us transform the above Einstein frame

action to Jordan frame using the canonical scalar field φ(x) just like previous sec-

tions but this time keeping the coefficient of the φ(x) in the exponent arbitrary, i.e.

Ω(x) = e
n

MP
φ(x) 2 .

∫

dDx
√

−g̃e−
n(D−2)

MP
φ

(

M2
P

2
R̃− 1

2

(

1− (D − 2)(D − 3)n2
)

(∂aφ)
2 + e−2nφ/MP

1

2
(∂aψ)

2

)

(4.27)

In the last equation we have assumed that the ghost field ψ(x) does not transform

under the conformal transformation. The stress tensor is a function of both the scalar

2We can also transform using the ghost field. However, the final result will not be affected by
our choice of the scalar field.
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field and the ghost field.

T Jab =
(

1 + n2(D − 2)
)

∂aφ∂bφ− e−2nφ/MP ∂aψ̃∂bψ̃

− g̃ab

(

1

2

(

1 + n2(D − 1)(D − 2)
)

(∂aφ)
2 − 1

2
e−2nφ/MP (∂aψ)

2

)

+ n(D − 2)MP

(

g̃ab∇̃2 − ∇̃b∇̃a

)

φ (4.28)

This stress tensor can be used in conjunction with the general form of the new im-

proved null energy condition for Jordan frame (eqn. (4.11)).

T Jabk
akb +M2

P kakb∇̃b∇̃a ln

(

∂L

∂R

)

≥ 0

Instead of having the extra piece in terms of the scalar field φ(x) (as in eqn. (4.9)), we

will write the expression in terms of the conformal factor Ω(x) so that the numerical

pre-factor n can be kept of arbitrary sign. The left hand side of the eqn. (4.11) in

this case becomes,

Tabk
akb +M2

P ∇̃b∇̃alnΩ =
(

1 + n2(D − 2)
)

(k · ∂φ)2 − e−2nφ/MP (k · ∂ψ)2 (4.29)

It is apparent from this expression that in some Jordan frames the kinetic term of

the ghost field will be enhanced and in some it will suppressed in comparison to the

canonical scalar field. If in the Einstein frame it was suppressed then classically those

theories are allowed because they are not forbidden by gravitational dynamics. How-

ever, if the same theories wreak havoc to thermodynamical laws in other conformal

frames then they should be discarded. This principle of universal validity of theories,

irrespective of frames considered, allows rejection of quantum mechanically sick the-

ories in a classical manner. The prescription also removes any ambiguity in the case

of multiple fields. We can conclude from this exercise that actions containing ghosts

should not be considered even if they appear to naively satisfy the energy conditions

in the Einstein frame.

56



Example of Scalar and Ghost Field System in FRW Background

We have conclusively proven that even the modified Jordan-frame null energy con-

dition will be violated when matter fields contains ghost degrees of freedom. To

complete the proof, we consider a concrete example of the action (eqn. (4.25)) in

a FRW background. Assuming that the scalar and the ghost only have time de-

pendence, this is an exactly solvable system with analytical solutions. To look for

solutions we need to solve the equations of motion; which is the Friedman equations

and the Klein-Gordon equations in curved spacetime (using 8πG =
M2

P

2
),

H2 =
2

3M2
P

(

ρ+ p
)

=
2

3M2
P

(

φ̇2 − ψ̇2
)

(4.30)

φ̈+ 3Hφ̇ = 0 (4.31)

ψ̈ + 3Hψ̇ = 0 (4.32)

In eqn. (4.30), the pressure and the density are same since the potential is zero. This

gives a stiff equation of state for matter p = ωρ with ω = 1. Equations 4.31 and 4.32

have the following solutions,

φ̇ =
A

a3
; ψ̇ =

B

a3
(4.33)

Now, since the time dependence of the scale factor is a(t) = t
2

3(1+ω) ≈ t1/3, the above

equations can be solved for each field.

φ = A ln(t) + C; ψ = B ln(t) + C (4.34)

The divergence of the scalar fields near the Big Bang arises due to the absence of a

potential term. Normally the initial conditions are devised in a way that the fields

go to zero at t = 0 and the constant is just the counter-term there. In this case the

function is divergent at t = 0, choosing the constant to cancel this divergence is not

the correct choice. It will make all future values of the solution become divergent.
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The best thing to do, in this case, is to let the fields diverge near the Big Bang just

the right amount so that C = 0

φ = a MP ln(t); ψ = b MP ln(t) (4.35)

Here we have chosen a normalization of the fields which is the most obvious choice on

dimensional grounds and a and b are just arbitrary constants whose values can only

be decided from experiments performed. However, due to the Friedman equations

eqn. (4.30), they must satisfy

a2 − b2 ≥ 0 (4.36)

Otherwise there is no gravitational dynamics. This inequality is nothing but the null

energy condition of the Einstein frame 3 . So we see that the equation of motion

implies the Einstein frame NEC. The Jordan-frame equations of motion have the

same form in the Einstein frame but the null energy condition of Jordan frame is

different. The Jordan-frame null energy condition can be potentially violated with

an appropriately chosen conformal transformation. Putting the values of φ̇, ψ̇ and φ

in the modified null energy condition of Jordan frame (eqn. (4.29)) we have

(

1 + n2(D − 2)
)

(k · ∂φ)2 − e−2nφ/MP (k · ∂ψ)2

≈ M2
P

a6

(

(

1 + n2(D − 2)
)

a2 − t−anb2
)

(4.37)

Since t is always positive choosing n = − 2
a
violates this null energy condition for all

times later than t =
(

1 + 4D−2
a2

)

. This demonstrates that even though the Einstein

frame null energy condition may be satisfied, the modified Jordan-frame null energy

condition will not fail to detect ghostly instabilities in the theory.

3As the fields are only time dependent: k · φ = φ̇ = A
a3 and k · ψ = φ̇ = B

a3 ; the null energy
condition (eqn. (4.26)) produces this same equation.
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Discussion

By using a field redefinition, we have seen that the form of the null energy con-

dition is modified in Jordan frame. Similar rewritings lead to modified versions of

other energy conditions, whose forms are not particularly illuminating. However, field

redefinitions from the Einstein frame do not exist for generic theories, such as most

higher-derivative theories. The question naturally arises as to what the appropriate

generalization of the null energy condition is for such theories. A possible clue is to be

found in eqn. (4.21). Given only that equation plus the requirement that the second

law hold, one could in fact have inferred the modified null energy condition directly

invoking neither a field redefinition nor even the original Einstein-frame null energy

condition. This is because all terms on the right-hand side of eqn. (4.21) need to be

negative in order to guarantee the validity of the second law. It is a very interesting

observation since, rather than using the modified null energy condition to prove the

second law, we will in this approach take the second law as a given and derive the

appropriate condition for matter. The null energy condition – unlike the second law

– does not seem to rest on any fundamental principles of physics. Therefore, in the

same spirit as Jacobson’s Einstein equation of state paper [110] (in which thermody-

namic laws are taken as axioms rather than as statements to be proved), one should

perhaps begin, not end, with the second law. This approach would generalize to other

gravitational theories, provided one had the correct formulation of entropy, valid in

non-stationary situations.
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Chapter 5

THE SECOND LAW IN 4D EINSTEIN-GAUSS-BONNET GRAVITY

Bekenstein-Hawking entropy [17], which is proportional to the surface area of

a black hole, always increases in time for classical processes [15, 22]. This is true

even when the black hole is subject to large changes, as during black hole mergers

[111]. However, the Bekenstein-Hawking entropy is the correct entropy only if the

gravitational sector of the underlying theory is described by the Einstein-Hilbert

action; when the action contains higher-order Riemann curvature terms a different

expression for entropy is necessary. For example, Wald entropy [72] is constructed in

order to explicitly satisfy the first law of thermodynamics for black holes in higher-

curvature gravity. It remains an open question whether the entropy formulas for

event horizons in these more general gravitational theories also obeys the second

law of thermodynamics. Indeed, it has been argued in [112] and [113] (see also [71])

that the presence of a Gauss-Bonnet term in the four-dimensional gravitational action

should — on general grounds that are reviewed below — lead to second law violations

during black hole mergers. In the following sections, we examine this claim carefully

and argue that no violations of the second law can occur in the regime where both

Einstein-Gauss-Bonnet holds as an effective theory and black hole thermodynamics

is valid. Our approach differs from Hawking’s proof of the area theorem in three

ways. First, we are including a Gauss-Bonnet term. Second, for black hole mergers,

we are dealing with the micro-canonical ensemble (fixed total energy) whereas the

area theorem applies to the canonical ensemble of fixed temperature. Third, a black

hole merger is a topology-changing process rather than a small perturbation. Thus

our demonstration of the validity of the second law is an addition to the pre-existing
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proofs and does not automatically follow from them.

Consider the Einstein-Hilbert action with a Gauss-Bonnet term (disregarding sur-

face terms [114]):

I =
1

16πG

∫

d4x
√−g

(

−2Λ +R + α(R2 − 4RabR
ab +RabcdR

abcd)
)

(5.1)

Here α is a constant with dimensions of (length)2. This combination of curvature-

squared terms is non-dynamical in four dimensions. One quick way to see this is to

Wick-rotate the action. Then the Euclideanized Gauss-Bonnet term integrated over

a compact 4-surface is simply proportional to the Euler character of that surface:

χ4 =
1

32π2

∫

d4x
√

(g)E
(

R2 − 4RabR
ab +RabcdR

abcd
)

E
(5.2)

Because it is topological, the Gauss-Bonnet term in four dimensions does not affect

Einstein’s equations, and therefore (when Wick-rotated back), this action has the

same class of black hole solutions as pure Einstein gravity. Nevertheless, even though

it does not contribute to the equations of motion, the extra Gauss-Bonnet contribution

does have ramifications for semi-classical gravity (see, e.g. [112, 71, 115, 116]), because

it alters the definition of entropy. In Lovelock gravity, the entropy is not given by

the area but by the Jacobson-Myers entropy formula [71]; modification of the entropy

formula is necessary for the validity of the first law. Jacobson-Myers entropy is

suitable for dynamical black hole horizons similar to the boost-invariant form of the

Wald entropy [70]. Since we are attempting to study black hole mergers, this entropy

is preferable in form to the Wald entropy [72] which assumes the stationarity of

horizons. The Jacobson-Myers entropy associated with arbitrary black holes of 4D

Einstein-Gauss-Bonnet theory [71] is

S =
1

4G

∫

dA
(

1 + αR(2)

)

(5.3)
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Here R(2) is the Ricci scalar of a two–dimensional spacelike section of the event hori-

zon. Integrating eqn. (5.3) is straightforward because the last part of the integral is

simply the Euler character of the surface of the black hole:

χ =
1

4π

∫

dAR(2) (5.4)

(Since this integral is over a spacelike hypersurface it directly gives the Euler number

without any Euclideanization; also, χ is the two-dimensional Euler character, which

should not be confused with χ4 in eqn. (5.2).) The entropy is now the sum of two

terms, the usual Bekenstein-Hawking term plus an additional term proportion to the

Euler number:

S =
A

4G
+ π

α

G
χ (5.5)

At first glance, this formula opens the door to second law violations when α > 0. To

see this, consider the merger of two black holes with spherical topology (χ = 2). For

each black hole the Gauss-Bonnet term contributes 2πα
G

to the entropy, but after the

merger only one hole exists. Thus, it might be that the increase in area entropy could

be outweighed by the decrease in the topological contribution to the entropy.

However, we need to keep in mind two regimes of validity. Since gravity is not

a renormalizable theory, the effective action consists of an infinite number of terms

of ever-higher order in powers of the Riemann tensor. For example, the Einstein-

Gauss-Bonnet action appears as only the leading terms in the low-energy effective

action of heterotic string theory [26, 117]. In order to be able to neglect higher-order

terms, a necessary condition is that O(|α|R) < 1, where R2 denotes some quadratic

curvature scalar. Just on dimensional grounds, we see that the largest value the

curvature scalar can have is of the order R ∼ 1/ℓ2P ∼M2
P ∼ 1/G, which implies that

|α|/G < 1 1 . Moreover, in order for a semi-classical thermodynamic description to

1ℓP is the Planck length and MP is the Planck mass. In natural units, ℓP = 1/MP and 1

16πG
=

M2

P

2
.
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be valid, at least one of the merging black holes must have a large entropy i.e. it

must be macroscopic: M ≫MP . Thus any semi-classical treatment of black holes in

Einstein-Gauss-Bonnet gravity assumes the validity of two conditions:

|α|
G

< 1 (5.6)

M

MP

≫ 1 (5.7)

With these conditions in mind, let us attempt to force a violation of the second law

in a merger. This can be attempted for black holes in asymptotically Minkowski, de

Sitter, and anti-de Sitter space, depending on the value of any cosmological constant.

We treat these three cases in turn.

5.1 Asymptotically Flat Black Hole Spacetimes

Since we are attempting to engineer a violation of the second law, let us first

identify a scenario in which the increase in area is minimal, since any area increase

contributes positively to the change in entropy. For a given mass, extremal black

holes have the smallest area, A = 4πG2M2 (compared with, say, 16πG2M2 for a

Schwarzschild black hole). Let us therefore consider the merger of two extremal black

holes (neglecting the loss due to gravitational waves emitted). Extremal black hole

solutions with the same charge, known as Majumdar-Papapetrou black holes [118],

have no mutual forces and hence solutions of single black holes can be superimposed to

give exact multi-centered solutions. The entropy of the collection of black holes is then

just the sum of the entropies of each individual black hole. The Bekenstein-Hawking

entropy of a single extremal black hole in pure Einstein gravity is S = πGM2. If

two extremal black holes of masses M and M ′ merge, the net change in the area

entropy is therefore ∆S = 2πGMM ′. For a macroscopic M , the smallest possible

increase in area entropy occurs when the second black hole has a mass of MP . Then
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the change in area entropy is ∆S = 2πGMPM . Let us try to offset this by including

the Gauss-Bonnet contribution. The initial entropy of the system is

Si = πG(M2 +M2
P ) +

4πα

G
(5.8)

The entropy after merger is

Sf = πG(M +MP )
2 +

2πα

G
(5.9)

The change in entropy is then

∆S = 2πGMPM − 2π
α

G
(5.10)

For a violation of the second law to occur, we require

α

G
> GMPM =

(

M

MP

)

(5.11)

However, this requirement contradicts eqns. (5.6) and (5.7). Thus, in order for a

second law violation to take place in Einstein-Gauss-Bonnet gravity, either we must

have M/MP < 1, in which case the “black hole” has no description in terms of

classical geometry, or we must have α/G≫ 1, invalidating Einstein-Gauss-Bonnet as

an effective theory of gravity.

Although the coefficient α is positive in string theory, let us briefly consider the

consequences of negative α. When α < 0, the merger process actually causes entropy

to increase, by eqn. (5.10). However, now we have to check that the entropy of even

one hole is positive. For the holes to have positive entropy,

|α|
G

<
1

2

(

M

MP

)2

(5.12)

In our regime of validity, eqns. (5.6) and (5.7) are obeyed, this bound is automati-

cally satisfied. Thus the negative α case presents no problems insofar as black hole

thermodynamics is concerned.
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For more general (e.g. Kerr) black holes, there are no exact stable two-black hole

solutions. However, the area entropy of such black holes is greater than that of the

Majumdar-Papapetrou black holes we considered. So one expects that in a merger of

Kerr black holes, the entropy should increase even more.

5.2 Asymptotically de Sitter Black Hole Spacetimes

Consider next black hole mergers in asymptotically de Sitter space. If the two

black holes are both much smaller than the de Sitter scale, the de Sitter curvature

scale becomes irrelevant and our results for asymptotically flat black holes apply.

Alternatively, if both black holes are large, we cannot merge them. This is because

in de Sitter space, there is a maximum mass black hole, the Nariai solution, with

GMmax = L/
√
27, where L is the de Sitter length. Hence we cannot merge two

black holes whose combined mass exceeds the Nariai mass. Moreover, even if the

total mass is less than Mmax, large black holes cannot be separated in a manner

where we can reliably add their entropies. The only case left consists of one black

hole has large mass and another with infinitesimal mass. Consider then a black hole

with mass Mmax − MP and a black hole of mass MP , so that the combined mass

is the Nariai mass (for simplicity). The horizon of the large mass black hole has

radius r1 = L√
3

(

1− ǫ− 1
6
ǫ2
)

, where ǫ ≡
√

2MP/3M ≪ 1 [119], while the small

mass black hole has radius r2 = 2GMP . The final configuration has only a Nariai

black hole. Since the total mass is fixed, the cosmological horizon does not change

during the merger and we can neglect the entropy contribution of the cosmological

horizon. Considering only the black hole horizons, the Nariai black hole has entropy

πL2

3G
+ 2πα

G
. On the other hand, the entropy of the large black hole and small black

hole system is π
G
(r21) + 4πGM2

P + 4πα
G

≃ πL2

3G
(1− 2ǫ) + 4πGM2

P + 4πα
G
. Note that the

entropic contribution of the microscopic black hole and the Gauss-Bonnet terms are
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both sub-leading in ǫ. Hence, to leading order in ǫ, the change in entropy is

∆S ≃ πG
√

216MPM3 (5.13)

which is obviously positive. This result is consistent with earlier results [120].

5.3 Asymptotically Anti-de Sitter Black Hole Spacetimes

One of the features of asymptotically AdS spaces is that it allows black hole

solutions with non-compact horizons. Even though the “uniqueness theorem” [1]

dictates that the horizon topology of asymptotically flat 4D black holes must be

spherical, no such restrictions apply for black holes in asymptotically AdS spaces;

flat and hyperbolic horizon topologies are also allowed [121–126]. The generalization

of the Schwarzschild solution is

ds2 = −fdt2 + f−1dr2 + r2dΣ2
2 , (5.14)

where

f = k − 2GM

r
+
r2

L2
(5.15)

Here dΣ2
2 is the line element of the spacelike section of the horizon with constant curva-

ture, k = +1, 0,−1, corresponding to a positive-, zero, or negative-curvature horizon

respectively. The mass of the black hole isM , which is obtained by the Abbott-Deser-

Tekin formalism for asymptotically AdS spaces [127, 128]. The k = −1, 0 black holes

have infinite area but can be made compact by suitable identifications (e.g. [129]). In

the hyperbolic case (k = −1), identification allows for horizons with different spatial

topologies; spacelike sections with genus g > 1 are isomorphic to the quotient space

of two-dimensional hyperbolic space under discrete isometries.
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Compact Black Holes in AdS

First we shall consider merger of black holes with compact horizons, one which is

the solution eqn. (5.14) with f(r) = 1 − 2GM/r + r2/L2. However, black holes in

AdS which have small masses are thermodynamically unstable by the Hawking-Page

transition [130]. Therefore, we need to consider only large mass black holes. The

horizon is at

rh = L2/3Q+Q;Q =
(

GML2 +
√

G2M2L4 + L6/27
)1/3

(5.16)

In the large mass limit, GM ≫ L. The horizon radius becomes

rh ≈ (2GML2)1/3

(

1 +
1

3

(

L

2GM

)2/3
)

(5.17)

Including the Gauss-Bonnet term in the entropy and setting χ = 2 for the compact

horizon, we find

S =
A

4G
+ π

α

G
≃ π

G

(

(2GML2)2/3 +
2

3
L2 + 2α

)

(5.18)

The entropy can potentially be rendered negative by the last Gauss-Bonnet term if

the coupling constant α is negative. However, for effective field theory to be valid, the

Gauss-Bonnet term in the action, eqn. (5.1), must be much smaller than the preceding

terms. This means in particular that αR2 ≪ Λ ⇒ α/L4 ≪ 1/L2. Therefore we have

|α|
L2

≪ 1 (5.19)

In view of this constraint, it is easy to see that the entropy is always positive.

Having established the positivity of the entropy, let us consider the merger, for

simplicity, of two equal-mass AdS black holes. The change in the entropy due to this

merger process would be

∆S ≃ π

G

(

(22/3 − 2)(2GML2)2/3 − 2

3
L2 − 2α

)

(5.20)
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In the limit that we are working, GM ≫ L, the first two terms always add up to a

negative value and the last Gauss-Bonnet term just makes things worse when α > 0.

Thus it appears that, even in Einstein gravity, the merger of AdS black holes appears

to violate the second law.

The resolution is as follows. Our approach has been to compare the final entropy

of one black hole (given by an exact solution) to the initial entropies of two black

holes. Except in the Majumdar-Papapetrou case, the two-black-hole geometries are

not exact stable solutions of general relativity. To get the entropy, we have added

the entropies of single black hole solutions. That is acceptable if the presence of each

black hole is only a small perturbation on the geometry near the other black hole. In

asymptotically flat space, we could consider two widely separated black holes. When

2GM/r ≪ 1, the metric near each black hole would be independent of the existence of

the other black hole. In order to be able to add entropies, our initial configuration has

to have a minimum separation of the holes. Now, in asymptotically AdS space, the

minimum separation depends on the AdS scale too: 2GM/r ≪ r2/L2. This means

that, in the background and coordinates of an AdS black hole of mass M1 = M ,

the other black hole of mass M2 must be located at least at r0 ≫ (2GML2)1/3 ≃

η(2GML2)1/3 (where η is a large number). However, in AdS, this requires climbing

up a potential energy barrier. One can estimate how much energy is required to

separate black holes to our minimum separation by considering a point particle in the

geometry of the other. Let the energy of the black hole be M2 = −p0, where pµ is the

four-momentum of the black hole (we can treat it as a particle by ignoring its back

reaction on the background). For a particle of mass M at rest at a radius r0 in an

AdS space, p0 = −M
√

1 + r20/L
2, which follows from −M2 = p20g

00. Hence when the

second black hole is brought from r = r0 to r = 0, the total energy of the combined

black hole system is not just the sum of the two masses, but must also include this
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potential energy:

Mtot =M1 +M2 =M +M
√

1 + r20/L
2 ≃M

(

1 +
r0
L

)

≃ η

(

2G

L

)1/3

M4/3 (5.21)

When we compare the entropy of the resultant black hole, we find that it exceeds the

sum of the initial entropies:

∆S = S(Mtot)− 2S(M) ≃ π

G

(

(2GL2)2/3

(

(

2η3G

L

)2/9

M8/9 − 2M2/3

)

− 2

3
L2

)

(5.22)

The term in brackets is positive because M > 27/2L
η3G

always, since GM ≫ L and

η ≫ 1. Also, it is of the order M2/3 implying that ∆S ∼ (GML2)2/3 − L2 and since

GM is large compared to L, ∆S is positive.

Now we can add the Gauss-Bonnet contribution to the entropy. Taking minimum

mass black holes so that the M
2/3
tot − 2M2/3 ∼ L2,

∆S ≃ π

G

(

L2 − 2α
)

(5.23)

However, as argued earlier, the coupling constant α satisfies the constraint |α|/L2 < 1.

Therefore, ∆S > 0 even with the Gauss-Bonnet contribution to the entropy.

Non-Compact Black Holes in AdS

AdS also admits black holes with non-compact horizons. Consider a hyperbolic black

hole with f = −1− 2GM/r + r2/L2. The horizon is at

rh = L2/3Q+Q;Q =
(

GML2 +
√

G2M2L4 − L6/27
)1/3

(5.24)

One important thing to note from this expression is that the mass of a hyperbolic

black hole in AdS has a minimum value. It has to satisfy GM ≥ L/
√
27. To obtain a

finite entropy, we have to compactify the horizon by making discrete identifications.

In the large mass limit, the total entropy of the compactified horizon of genus g > 1
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is

S ≃ A0

4G

(

(2GML2)2/3 +
2

3
L2

)

+ π
α

G
χ

≃ π|χ|
G

(

(

GML2

2

)2/3

+
1

3
L2 − α

)

, (5.25)

where A0 is the dimensionless area of the compact, orientable horizon of genus (>

1) = −2πχ (by the Gauss-Bonnet theorem) which is positive since χ < 0 for g > 1.

Here we do not need to worry about the positivity of entropy as in eqn. (5.18) because

the first two terms are order ∼ L2 and we have already seen that the coupling constant

α satisfies the constraint |α|/L2 ≪ 1.

After merging two such hyperbolic black holes of equal mass and ignoring the

Gauss-Bonnet contribution for the moment, the change in entropy is

∆S ≃ (π|χ|/G)
(

2−1/3(22/3 − 2) (GML2)2/3 − 1

3
L2

)

(5.26)

which is negative. But we have again neglected the effect of the potential energy

gained by the black holes while coming from a large distance in AdS. An analysis

similar to that for compact AdS black holes leads to a change in entropy of the form

∆S ≃ π|χ|
G

(

(

G2L4

2

)1/3
(

(

2Gη3

L

)2/9

M8/9 − 2M2/3

)

− 1

3
L2 + α

)

(5.27)

Similar to the previous case of compact black holes, a black hole mass M > MP is

enough for ∆S to be positive. The Gauss-Bonnet term again cause no trouble due to

its smallness compared to the AdS scale.

For planar black holes, with f = −2GM/r+r2/L2, the analysis is similar. A finite

entropy can be obtained by making a toroidal identification on the plane. Again, a

proper accounting of the potential energy ensures that the entropy increases in a

merger. The Gauss-Bonnet term has no effect here since the Euler character of a

torus is zero.
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Conclusion

We have investigated the validity of the second law of thermodynamics for black

hole mergers in four-dimensional Einstein-Gauss-Bonnet effective theory. Contrary

to previous claims in the literature, we see that the second law remains valid within

the regime of validity of approximations, even though the presence of a topological

term threatens to decrease the total entropy. Our calculations here are not at the

level of a proof, and we did not consider the most general 4D black hole. But we have

shown that the reasoning suggesting that the second law is violated does not apply

and we see no reason to suspect second law violation for more general black holes.

Nevertheless, it would be worth examining mergers of other types of black holes.

Of course, the second law is one of the most robust laws in physics: in any theory

with a consistent underlying statistical mechanics, the coarse-grained entropy is ex-

pected to increase when two macroscopic systems merge. Had we found a violation

of the second law for black holes in Einstein-Gauss-Bonnet gravity, it would have

called into question not so much the second law as a principle of nature, but the

semi-classical consistency of Einstein-Gauss-Bonnet theory. Our results show that

the second law is indeed obeyed; we regard this as evidence that the thermodynam-

ics of Einstein-Gauss-Bonnet gravity is consistent with some underlying statistical

mechanics.
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Chapter 6

GALILEONS FROM STRING THEORY

6.1 Introduction to Galileons

While attempting to explore the possibilities of modifying the long distance behav-

ior of gravity by kinetically mixing a light scalar field, Nicolis et al. [93] came across

a very specific type of higher-derivative scalar field theory that has the peculiar prop-

erty that, in addition to the usual diffeomorphism degrees of freedom it also has an

additional degree of freedom, called the galilean symmetry, reminiscent of the galilean

transformation. This symmetry arose because the authors unmixed the scalar by a

Weyl transformation but chose a gauge in which the theories are physically equivalent

to each other; this means that they were dealing with a theory that is conformally

coupled to gravity. The conformal invariance of the theory manifests itself in the

galilean symmetry of the scalar field and generates a series of higher-derivative scalar

field Lagrangians with the property that all of them have second-order equations of

motion. The galileon (as obtained in [93]) propagates on a flat background. Covari-

antizing the galileons turns out to be straightforward [131] but with the side-effect

that it introduces ghosts in the theory. These ghosts can only be removed by adding

certain non-minimal couplings of gravity to the galileon action, which in turn breaks

the galilean symmetry explicitly. Therefore, nowadays galileon is a generic term for

higher-derivative scalar field theories with second-order equations of motion.

In fact galileons are not the most general higher-derivative scalar field actions with

second-order equations of motion. They are actually a subset of a much more general

class of theories with higher-derivative, non-minimally coupled scalar field actions
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with second-order equations of motion called the Horndeski theories [132]. Let us

demonstrate this connection by first writing down the Horndeski Lagrangians [132],

L2 =
√−g

(

P2(φ,X)R− 2Ṗ2(φ,X)
(

(�φ)2 −∇c∇dφ∇c∇dφ
)

)

(6.1)

L3 =
√−gP3(φ,X)

(

(∂φ)2�φ− ∂cφ∇c∇dφ∂cφ
)

(6.2)

where the X = (∂φ)2 and the dot denotes differentiation with respect to X i.e.

Ṗ2(φ,X) = ∂P2(φ,X)/∂X. Pi(φ,X) are arbitrary functions of φ and (∂φ)2. This

is the most general Lagrangian possible which leads to second-order equations of

motion when a scalar field is non-trivially (read kinetically) coupled to gravity. To

demonstrate how the galileons end up being a special case of the Horndeski theories

we write down the covariant galileons as obtained by [131],

Lcurved4 =
√−g(∂φ)2

(

2(�φ)2 − 2∇a∇bφ∇a∇bφ− 1

2
(∂φ)2R

)

(6.3)

This Lagrangian contains a non-minimal coupling with the Ricci scalar, which is nec-

essary to keep the equations of motion second-order when the background is curved.

If we compare this Lagrangian with the Horndeski Lagrangian, eqn. (6.1), it is clear

that this Lagrangian is a special case of the Horndeski Lagrangian L2 with the choice

of the function P2 = −1
2
X2 = −1

2
(∂φ)4. Now we compare these Lagrangians with the

original conformal galileons which were derived on a flat background [93].

Lflat4 =
(

(�φ)2(∂φ)2 − (∂φ)2(∇c∇dφ)(∇c∇dφ) + 2 ∂aφ(∇a∇bφ)(∇b∇dφ)∂dφ

−2 �φ ∂cφ(∇c∇dφ)∂dφ
)

(6.4)

The eqn. (6.4) is the flat space cousin of the Lagrangian eqn. (6.3). To see this let us
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evaluate the following quantity,

Rab∂
aφ∂bφ(∂φ)2 = R c

ca b∂
aφ∂bφ(∂φ)2 = ((∇c∇a −∇a∇c)∂

cφ) ∂aφ(∂φ)2

= (�φ)2(∂φ)2 − (∂φ)2(∇c∇dφ)(∇c∇dφ)− 2∂aφ(∇a∇bφ)(∇b∇dφ)∂dφ

+ 2 �φ ∂cφ(∇c∇dφ)∂dφ (6.5)

where we have discarded some total derivatives at the end. It is clear that the two

galileon Lagrangians are related as

Lcurved4 = Lflat4 +Gab∂
aφ∂bφ(∂φ)2 (6.6)

This is the extra covariant coupling that needs to be added to the action in order

to keep the equations of motion second-order. However the last term breaks the

galilean invariance explicitly because the symmetry φ→ φ+ bax
a+ c is broken in the

presence of the first derivatives of the scalar field. Looking at the Lagrangians (6.1) –

(6.3) we notice one important thing. These Lagrangians contain at most second-order

derivatives of the scalar field and no more. This is in fact a result of a theorem in

the Horndeski paper [132] which states that the most general second-order equations

of motion can be obtained from Lagrangians which are at most second-order in the

derivatives of the fields. We should note the similarity with the Lovelock Lagrangians.

Even though the Lovelock theories are higher curvature theories of gravity they still

possess second-order equations of motion and the action of these theories contain at

most second-order in the derivatives of the metric. The connection is very evident

and we are led to conjecture that the galileon field might not be an arbitrary scalar

field but one which is related to a particular degree of freedom of the metric. In

fact this insight turns out to be true. The galileons can be obtained as the volume

modulus of extra dimensions [65] or as the position modulus of a brane embedded in

a higher-dimensional bulk [133]. We will call the previous one conformal galileon and
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the latter one DBI galileon (since the DBI action was used for the brane). It also

has been shown recently [134] that the galileons can be obtained by Kaluza-Klein

reduction of Lovelock theories over arbitrary cycles. This makes the galileons scalar

field cousins of the Lovelock theories. They share the similar feature that both of

them are high derivative field theories without ghosts which makes them part of a

very attractive class of non-linear theories 1 . In this chapter, we will show how the

galileons are recovered in the Kaluza-Klein reduction of the ten dimensional Heterotic

string theory 2 [65, 138] (from five to four dimensions), how the resulting theory is

related to the galilean genesis model of Creminelli et al. [139], and how this resolves a

point of confusion in the literature regarding the connection between the null energy

condition (NEC) and the stability of a non-linear theory.

6.1.1 Connection between Galileons, NEC Violation, and Stability

The galileons possess NEC (null energy condition) violating solutions with a sta-

ble, Poincaré invariant vacuum. They are known to allow stable NEC violating per-

turbations to propagate at subluminal speeds. There is of considerable interest in

the literature regarding the NEC-stability connection and NEC-superluminality con-

nection with the higher-derivative galileon theories being the test cases. Examples

of theories which violate the NEC but have stable superluminal modes were found

[140] and it was concluded that the correlation between NEC and stability is a weak

one. However this superluminality is consistent with unitarity [141]. In fact the su-

perluminal modes can be mapped onto subluminal modes when transforming from

the Weyl to the DBI representation of the conformal galileons [142]. It was soon

1The effects of non-linearity introduced by the galileons can provide explanation for the dark
forces at work at large scales [135, 136].

2They were first discovered in [137] but the scalar terms were not recognized as galileons or part
of the Horndeski theories.
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realized [143] that these NEC violating modes lead to a dispersion relation of the

form ω2 = −ak2 + bk4 which clearly has a gradient instability due to the wrong sign

quadratic term coming from the kinetic part of the galileon field. However the insta-

bility is avoided at short wavelengths (large wavenumber) due to the presence of the

higher-derivative term in the action. This severance of the connection between NEC

and stability prompted others [144] to explore NEC ↔ subluminality connection.

The point was to find a NEC-violating background with a stable, Poincaré invariant

vacuum so that the theory admits a NEC violating solution which is stable under

generic perturbations of the background and which propagates subluminally. The

trick is to parametrically distort the galileon genesis action [139] in a way that the

NEC is violated. When the action is perturbed around a deSitter background, the

gradient term has the right sign implying subluminality 3 . Similar NEC violating,

subluminal solutions were found in [96] for DBI galileons [133].

The NEC violating subluminal perturbations violates the second law of black

hole thermodynamics. The galileons are coupled to the Einstein-Hilbert term and

therefore the galileons violating the NEC implies the violation of the Ricci convergence

condition (by the Einstein’s equation Rabk
akb = Tabk

akb) which in turn leads to the

violation of the second law. We wish to demonstrate, however, that the connection

between the null energy condition and the Ricci convergence condition is severed.

This is because the galileons can be obtained at sub-leading order in the α′ correction

to the low energy effective action of Heterotic string theory by Kaluza-Klein reduction

of the Gauss-Bonnet term. Therefore, it is not correct to just couple the bare galileons

to the Einstein-Hilbert term alone but the Gauss-Bonnet term must also be included.

This almost severs the NEC argument because the NEC violation would not reflect

3The sound speed is proportional to the coefficient of the gradient term: c2s = 2−α
2α

where α is

the coefficient of the (∂φ)4 term in the galileon action.
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directly on the Ricci tensor part alone; there will be other terms in the relation to

absorb this apparent violation.

6.2 Galileans from Kaluza-Klein Reduction of String Theory

Let us consider an action of the form,
∫

(R + LGB). When this action is Kaluza-

Klein reduced over a circle, the third order galileon terms arise as volume modulus

of the compact extra dimension. The lower dimensional action is the sum of the

Gauss-Bonnet term and the third order galileon term (the other fields can be set to

zero consistently). The equations of motion no longer leads to the equality of the

Ricci scalar and the stress tensor.

In order to demonstrate our argument about the inclusion of the Gauss-Bonnet

term, we begin by looking at the string effective action at sub-leading order in the α′

expansion [116, 145] (put in this form by appropriate field redefinitions)

1

2κ210

∫

d10x
√−gse−2φ

[

R + 4(∂φ)2 + α′
(

1

8
(R2

abcd − 4R2
ab +R2)− 2Gab∇aφ∇bφ

+ 2�φ(∂φ)2 − 2(∂φ)4
)]

(6.7)

This action is in string-frame. We need to do a Weyl transformation to put it in the

Einstein-frame. But if we look at the equations of motion, it is simple to convince

ourselves that we can set the scalar field to zero consistently and the effective action

reduces to,

1

2κ210

∫

d10x
√−gs

(

R +
α′

8
(R2

abcd − 4R2
ab +R2)

)

(6.8)

This is still in the string-frame as signified by the subscript “s”. Now we want

to Kaluza-Klein [146, 147] reduce this action. First, we have to reduce this ten–

dimensional action to a five–dimensional action by compactifying the extra five di-

mensions over a five-torus, T 5. From there on, there are two ways to proceed. One
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way is to remain in five–dimensions and remove the non-minimal coupling from the

Gauss-Bonnet term and obtain galileons in five dimensions. The other way is to

perform another Kaluza-Klein reduction over a S1 and reduce this action to a four–

dimensional action and then remove the non-minimal coupling from the Einstein part

since the non-minimal coupling of curvature squared terms are non-removable in four–

dimensions for dimensional reasons. The conformal transformation will still generate

galileon terms but now there is a Gauss-Bonnet term non-minimally coupled to them.

Before proceeding it is interesting to note an interesting property specific to Love-

lock terms which would simplify the analysis greatly. When Kaluza-Klein reducing

the Lovelock terms (which includes the Einstein and the Gauss-Bonnet term) over

a S1, the kinetic terms of the scalar fields, which are generated in the action (while

keeping the U(1) gauge fields fixed), turn out to be total derivatives.

1

2κ2D+1

∫

dD+1x
√

−gD+1

(

R(D+1) +
α′

8
L
(D+1)
GB

)

=
1

2κ2D

∫

dDx
√−gDeφ

(

R(D) − 2((∂φ)2 +�φ) +
α′

8

(

L
(D)
GB + 8G̃ab(∇a∇bφ+ ∂aφ∂bφ)

)

)

=
1

2κ2D

∫

dDx
√−gD eφ

(

R(D) +
α′

8
L
(D)
GB

)

(6.9)

This action has only a non-minimal coupling of the scalar field. The equations of

motion shows that this scalar field can also be set to zero consistently (provided the

gravity part obeys the constraint of being Ricci flat) since there are no other matter

fields present and what is left is a lower dimensional action with the same functional

form as the higher dimensional action. And this procedure can be repeated multiple

times for every dimension and the ten-dimensional action can be reduced to one in six–

dimensions over a 4-dimensional torus of constant volume. The metric decomposition
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looks like,

gµν =



























g5ab

exp(2φ) 0

1

0
. . .

1



























(6.10)

We can now perform a Kaluza-Klein reduction of the 6–dimensional action over a S1

with the volume eφ. The resulting action in five dimensions is the five dimensional

version of the last term in eqn. (6.9) with the right coefficients from eqn. (6.8) .

1

2κ25

∫

d5x
√−g5 eφ

(

R(5) +
α′

8
L
(5)
GB

)

(6.11)

A conformal transformation needs to be performed to remove the non-minimal cou-

pling of the scalar field. However, since the Einstein term and the quadratic term

scale under different powers of the conformal factor the non-minimal couplings of both

the terms cannot be removed simultaneously. We choose to remove the non-minimal

coupling of the Gauss-Bonnet term. The resulting action is,

1

2κ25

∫

d5x
√−g5

[

e2φ
(

R(5) − 2(∂φ)2 − 6 �φ
)

+
α′

8

(

L
(5)
GB + 8G

(5)
ab ∂

aφ∂bφ

+ 24�φ(∂φ)2 − 24(∂φ)4
)]

(6.12)

The equations of motion for this action are still second-order. We can identify the

galileon terms in this equation. However when we write down the equations of motion

the Einstein tensor is no longer proportional to the matter part, which implies that the

Ricci convergence condition is not obviously violated even when the NEC is violated

by these galileon terms. Now we can go one dimension lower to four dimensions. We

start with the five–dimensional action eqn. (6.12) and again set φ = 0 consistently
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and reduce over a S1 of size eφ. We get the four–dimensional version of the action

eqn. (6.9).

However in four–dimensions, the non-minimal coupling of the curvature squared

terms cannot be removed by any conformal transformation. Hence the only option is

to remove the non-minimal coupling of the Einstein term giving the action.

1

2κ24

∫

d4x
√−g4

[

R(4) − 2(∂φ)2 +
α′

8
e−2φ

(

L
(4)
GB + 16G

(4)
ab ∂

aφ∂bφ+ 24�φ(∂φ)2
)

]

(6.13)

This matches the one found by the authors in [138]. However, this action do not

contain all the terms from the galileon genesis action [139]. The (∂φ)4 term is miss-

ing. The equations of motion are still second-order. This is because each term in

eqn. (6.12) independently has second-order equation of motion. The scalar field φ is

obtained as a Kaluza-Klein field and has mass dimension zero. It needs to be nor-

malized properly to get a canonical scalar field action. Redefine φ→
√
2πG4φ. Since

κ24 = 8πG4, the action eqn. (6.13) becomes

1

16πG4

∫

d4x
√−g4

[

R(4) +
α′

8
e−

√
8πG4φL

(4)
GB

]

+

∫

d4x
√−g4

[

−1

2
(∂φ)2

+
α′

8
e−

√
8πG4φ

(

2G
(4)
ab ∂

aφ∂bφ+ 3
√

2πG4 �φ(∂φ)2
)

]

(6.14)

These actions have two different parameters and hence two different scales in them.

However, the presence of non-perturbative objects like D-branes provides a relation

between Newton’s constant and the coupling constant α′. The relation between them

comes from the fact that the coupling of the supergravity action is obtained from

Kaluza-Klein reduction of the M-theory action: κ210 = 8πG10 = 1
2
(2π)7g2sα

′4. The

string coupling constant can be assumed to be gs = 1 and G10 = G4V6 where the Gd

is the d–dimensional Newton’s constant and Vm is the volume of the m–dimensional

internal space. The size of the internal compact space is of the order of the string

scale. Hence its volume can be written as V6 = η′′l6s = η′α′3 with ls =
√
2πα′ being the
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string length. Therefore 8πGN = 26π7

η′
α′ = να′ ⇒ α′ = µGN where we have chosen

the numerical pre-factor for convenience and GN is the four–dimensional Newton’s

constant.

∫

d4x

[

R

16πGN
− 1

2
(∂φ)2 + µe−

√
8πGNφ

(

L
(4)
GB

128π
+
GN
4
Gab∂

aφ∂bφ+
3

8

√

2πG3
N�φ(∂φ)

2

)]

(6.15)

The equation of motion for this action can be easily obtained by using the generalized

equations of motion derived in Chapter 2. The action contains a non-minimal scalar

coupling to the Gauss-Bonnet term therefore we can use the eqn. (A.5).

Gab − 8πGN

(

∂aφ∂bφ− 1

2
gab(∂φ)

2

)

+
µ

4
e−

√
8πGNφ

(

GN Hab −
√

8πG3
N Qab

+8πG2
N Kab +

√

128π3G5
N Mab

)

= 0 (6.16)

with

Hab = RRab − 2RacR
c
b − 2RcdRacbd +Rcde

a Rbcde −
1

4
LGB (6.17)

Qab = Racbd∇c∇dφ+Rd(a∇b)∇dφ+
R

2

(

gab�φ−∇a∇bφ
)

−Rab�φ− gabRcd∇c∇dφ

(6.18)

Kab =
3

2
R
(

gab(∂φ)
2 − ∂aφ∂bφ

)

− 2Rab(∂φ)
2 − 4gabRcd∂

cφ∂dφ+ 3Rc(a∂b)φ∂
cφ

+ 3Racbd∂
cφ∂dφ+ 2(∇a∇cφ)(∇b∇cφ)− 2�φ∇a∇bφ

+ gab
(

(�φ)2 − (∇c∇dφ)(∇c∇dφ)
)

(6.19)

Mab = (∇a∇bφ)(∂φ)
2 + (�φ)∂aφ∂bφ+ 2∂(aφ(∇b)∇cφ)∂cφ− 2gab ∂cφ(∇c∇dφ)∂dφ

− 1

2
gab(�φ)(∂φ)

2 (6.20)

This equation of motion contains only one parameter, the four–dimensional Newton’s

constant GN and the terms are expanded in powers of GN which decides the mass

dimensions of each order in the series. The equation is a modified form of the covariant
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galileons and is second-order. This equation of motion contracted with the null vectors

will give the null energy condition for the galileon fields.

Rabk
akb = 8πGN(k · φ)2 −

µ

4
e−

√
8πGN

(

GN Habk
akb −

√

8πG3
N Qabk

akb

+8πG2
N Kabk

akb +
√

128π3G5
N Mabk

akb
)

(6.21)

The violation of the NEC by the Galilean terms Mab does not imply the violation

of the Ricci convergence condition since they are no longer linearly related by the

equations of motion.

We have demonstrated that higher order, ghost free, kinetic terms of scalar fields

like the galileons when coupled with gravity cannot appear with the Einstein term

alone. The Gauss-Bonnet term is also present. Therefore the NEC violation of

the galileon terms does not imply the violation of the Ricci convergence condition,

Rabk
akb ≥ 0, since the equations of motion are no longerGab = Tab butGab+α/8Hab =

Tab where Hab is the Gauss-Bonnet contribution to the equations of motion. Since the

black hole entropy for higher curvature gravity is no longer simply proportional to

the area of the event horizon but proportional to a complex combination of curvature

terms, the violation of the Ricci convergence condition is no longer related to the

violation of the second law. Therefore the status of the second law of black hole

thermodynamics is unclear. However, it is no longer clearly violated as before when

the galileons were minimally coupled to the Einstein-Hilbert action.
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A.1 Equations of Motion for Gauss-Bonnet Gravity

The Lanczos-Lovelock Lagrangians are special in that they are higher curvature

Lagrangians which have second order equation of motion. The first order Love-

lock Lagrangian is the Einstein-Hilbert term which forms the basis of Einsteinian

general relativity and the second order term is the Gauss-Bonnet Lagrangian. The

Gauss-Bonnet Lagrangian is a topological term in four dimensions but has dynamical

equations in higher dimensions. It is defined as,

Lm = δb1b2b3b4a1a2a3a4
R b1b2
a1a2

R b3b4
a3a4

= R2 − 4RabR
ab +RabcdR

abcd (A.1)

The Pabcd is straightforward to calculate. We just remove one Riemann P cd
ab =

δcdb3b4aba3a4
R b3b4
a3a4

. The generalized δ is the Kronecker delta. We will need to express

everything in terms of Ra
bcd in order to derive the equation of motion. Therefore, the

Lagrangian could be rewritten as L = P cd
abR

ab
cd = gpag

qbgrcgsdP p
qrsR

a
bcd. The one down

and three up metrics contribute a factor of two. And ∇aPabcd = 0 for all Lovelock

theories. We can now use this in the master equation eqn. (2.7),

P pqr
a Rbpqr −

1

4
gabL = 4πGTab (A.2)

And using the specific form of Pabcd for the Gauss-Bonnet

Pabcd =
1

2

(

R(gacgbd − gadgbc)− 2(Racgbd −Radgbc −Rbcgad +Rbdgac) + 2Rabcd

)

(A.3)

we get the equation of motion for the Gauss-Bonnet Lagrangian. Explicitly,

Rcde
a Rbcde − 2RacR

c
b − 2RcdRacbd +RRab −

1

4
gab(R

2 − 4RabR
ab +RabcdR

abcd) = 4πGTab

(A.4)

This is a well known result. The real power of this general procedure is apparent when

there are some non-minimal scalar couplings to the Lagrangian. For example, if we
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want the equation of motion for a Lagrangian of the form L = eµφ(R2 − 4RabR
ab +

RabcdR
abcd) we repeat the procedure with ∇c∇dPacbd with Pabcd = eµφPGB

abcd where the

PGB
abcd is the one from minimally coupled Gauss-Bonnet Lagrangian, eqn. (A.3). This

Pabcd no longer satisfies the Bianchi identity ∇aPabcd = 0 because of the non-minimal

coupling. The equation of motion can be easily calculated by evaluating

e−µφ∇c∇dPacbd = PGB
acbd

(

µ∇c∇dφ+ µ2∇cφ∇dφ
)

= µ

(

1

2
R(gab�φ−∇a∇bφ)−Rab�φ− gabRcd∇c∇dφ+Rad∇b∇dφ+Rbd∇a∇dφ

+Racbd∇c∇dφ
)

+ µ2

(

1

2
R(gab(∂φ)

2 − ∂aφ∂bφ)−Rab(∂φ)
2 − gabRcd∂

cφ∂dφ+Rad∂bφ∂
dφ+Rbd∂aφ∂

dφ

+Racbd∂
cφ∂dφ

)

(A.5)

We have intentionally multiplied the derivative of Pabcd with e−µφ to get rid of that

pre-factor. The equation of motion is now the same as eqn. (A.4) but with a factor

e−µφ on the stress tensor and with eqn. (A.5) included on the LHS of eqn. (A.4).

A.2 Derivation of the Equations of Motion for Gab∂
aφ∂bφ by Brute Force

Doing a straightforward variation of just Gab∂
aφ∂b (without the square root of

the metric) leads to,

δRab∂
aφ∂bφ+Rac∂

cφ∂bφδg
ab +Rbc∂

cφ∂aφδg
ab − 1

2
R∂aφ∂bφδg

ab − 1

2
(∂φ)2δRabg

ab

− 1

2
(∂φ)2Rabδg

ab (A.6)

We can easily add the −1/2gabL term to the equation of motion after evaluating this

variation. Before proceeding with the variation to Ricci tensor terms we will need the

form of their variation which is easily obtained by contracting eqn. (2.3),

δRab =
1

2

(

−∇d∇dδgab +∇d∇aδgbd +∇d∇bδgad −∇a∇b(g
cdδgcd)

)

(A.7)
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A contraction with the metric gives,

δRabg
ab = ∇a∇bδgab −∇d∇d(g

cdδgcd) (A.8)

Now we are equipped to handle the variation of the Ricci terms,

−1

2
(∂φ)2(δRabg

ab) =
(

∇b∇a∇cφ∂cφ+∇a∇cφ∇b∇cφ− gab(∇d∇d∇cφ∂cφ

+ ∇c∇dφ∇c∇dφ)
)

δgab (A.9)

where we have used eqn. (2.6) and discarded the total derivatives. The other term is

longer. We will just quote the final result.

δRab∂
aφ∂bφ =

1

2

(

−2�φ∇a∇bφ+ gab((�φ)
2 +∇c∇dφ∇c∇dφ+ ∂dφ∇d∇c∇cφ

+∂dφ∇c∇d∇cφ)− 2∂dφ∇d∇a∇bφ
)

δgab (A.10)

Adding these two variations together,

−1

2
(∂φ)2(δRabg

ab) + δRab∂
aφ∂bφ

=

(

∇a∇cφ∇b∇cφ−�φ∇a∇bφ+Racbd∂
cφ∂dφ+

1

2
gab
(

(�φ)2 −∇c∇dφ∇c∇dφ
)

−1

2
gabRcd∂

cφ∂dφ

)

δgab (A.11)

The full equation of motion for Gab∂
aφ∂bφ is obtained by substituting this last ex-

pression in the eqn. (A.6) and also adding the −1/2gabL term from the square root

of the metric,

(Rac∂bφ+Rbc∂aφ)∂
cφ− 1

2
R∂aφ∂bφ− 1

2
(∂φ)2Rab +∇a∇cφ∇b∇cφ−�φ∇a∇bφ

+Racbd∂
cφ∂dφ+

1

2
gab
(

(�φ)2 −∇c∇dφ∇c∇dφ
)

− 1

2
gab

(

−1

2
(∂φ)2R

)

− gabRcd∂
cφ∂dφ = 8πGTab (A.12)

Since all the work is already done we can use the brute-force method to obtain

the equations of motion for the Lagrangian L = Rab∂
aφ∂bφ. This Lagrangian does
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not possess the symmetry properties of the Lagrangian L = Gab∂
aφ∂bφ, which is

a conserved quantity coupled with kinetic terms. The equation of motion for just

Rab∂
aφ∂bφ is,

(Rac∂bφ+Rbc∂aφ)∂
cφ− 1

2
gabRcd∂

cφ∂dφ−�φ∇a∇bφ− ∂dφ∇d∇a∇bφ

+
1

2
gab((�φ)

2 +∇c∇dφ∇c∇dφ+ ∂dφ∇d∇c∇cφ+ ∂dφ∇c∇d∇cφ) = 8πGTab (A.13)

A.3 Equations of Motion for Rab∂
aφ∂bφ using Generalized Equations of Motion

We are going to find the generalized equation of motion for the Lagrangian L =

Rab∂
aφ∂bφ using the formula eqn. (2.12) in Section 2.3. The Pabcd with the right

symmetries is

Pacbd =
1

4
(gab∂cφ∂dφ− gad∂bφ∂cφ+ gcd∂aφ∂bφ− gbc∂aφ∂dφ) (A.14)

and the derivative of the Lagrangian with the metric gives,

∂L

∂gab
= (Rbd∂aφ+Rad∂bφ)∂

dφ+Racbd∂
cφ∂dφ (A.15)

We need the quantity P ·R in the equation of motion

P cde
a Rbcde =

1

2
Racbd∂

cφ∂dφ+
1

2
Rbd∂aφ∂

dφ (A.16)

and its a↔ b counterpart P cde
b Racde together with the derivatives

∇c∇dPacbd =
1

4

(

−2∂dφ∇d∇a∇bφ− 2�φ∇a∇bφ+ gab((�φ)
2 +∇c∇dφ∇c∇dφ

+∂dφ∇d∇c∇cφ+ ∂dφ∇c∇d∇cφ)
)

+
1

4
Rbd∂aφ∂

dφ− 1

4
Racbd∂

cφ∂dφ (A.17)

and ∇c∇dPbcad all added together in eqn. (2.12) leads to

(Rac∂bφ+Rbc∂aφ)∂
cφ− 1

2
gabRcd∂

cφ∂dφ−�φ∇a∇bφ− ∂dφ∇d∇a∇bφ

+
1

2
gab((�φ)

2 +∇c∇dφ∇c∇dφ+ ∂dφ∇d∇c∇cφ+ ∂dφ∇c∇d∇cφ) = 8πGTab (A.18)

which is same as eqn. (A.13).
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A.4 Equations of Motion for Gab∂
aφ∂bφ using Generalized Equations of Motion

In this section we see an explicit demonstration of the generalized method outlined

in Section 2.3 for the Lagrangian L = Gab∂
aφ∂bφ. The Pabcd with the right symmetries

is

Pacbd =
1

4
gab

(

∂cφ∂dφ− 1

2
(∂φ)2gcd

)

− 1

4
gad

(

∂bφ∂cφ− 1

2
(∂φ)2gbc

)

+
1

4
gcd

(

∂aφ∂bφ− 1

2
(∂φ)2gab

)

− 1

4
gbc

(

∂aφ∂dφ− 1

2
(∂φ)2gad

)

(A.19)

and the derivative of the Lagrangian with the metric gives,

∂L

∂gab
= (Rbd∂aφ+Rad∂bφ)∂

dφ+Racbd∂
cφ∂dφ− 1

2
R∂aφ∂bφ− 1

2
(∂φ)2Rab (A.20)

We are ignoring the term coming from the variation of the square root of the metric

for the moment since it is trivially proportional to the Lagrangian itself.

P cde
a Rbcde =

1

2
Racbd∂

cφ∂dφ+
1

2
Rbd∂aφ∂

dφ− 1

2
Rab(∂φ)

2 (A.21)

The term left to calculate is the contribution by the variation of the Riemann,

∇c∇dPacbd =
1

4
gab
(

(�φ)2 −∇c∇dφ∇c∇dφ
)

− 1

2
(�φ∇a∇bφ−∇a∇dφ∇b∇dφ)

− 1

4
gabRcd∂

cφ∂dφ+
1

4

(

Racbd∂
cφ∂dφ+Rbm∂

mφ∂aφ
)

(A.22)

Adding up all these expressions (A.20) (A.21) (A.22) with their a ↔ b counterparts

in eqn. (2.12) we get eqn. (A.12).

(Rac∂bφ+Rbc∂aφ)∂
cφ− 1

2
R∂aφ∂bφ− 1

2
(∂φ)2Rab +∇a∇cφ∇b∇cφ−�φ∇a∇bφ

+Racbd∂
cφ∂dφ+

1

2
gab
(

(�φ)2 −∇c∇dφ∇c∇dφ
)

− 1

2
gab

(

−1

2
(∂φ)2R

)

− gabRcd∂
cφ∂dφ = 8πGTab (A.23)
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A.5 Demonstrating that the Gauss-Bonnet Term is a Total Derivative in Four

Dimensions

The Gauss-Bonnet term can be written in form notation using the Riemann two

forms (we are suppressing the tensorial indices),

G = R ∧R (A.24)

However the Riemann two form Ra
b itself is defined as the exterior derivative of the

connection one-forms (which is the exterior derivative over a fiber bundle with affine

spin connection one-form wab ).

R = dw + w ∧ w (A.25)

For an exposition to tensor valued forms see the appendix of [148]. Using this in the

eqn. (A.24) and expanding

R ∧R = dw ∧ dw + 2dw ∧ w ∧ w + w ∧ w ∧ w ∧ w (A.26)

The first term can be converted to a total derivative and the last term is proportional

to the volume form in four dimensions (only in four dimensions). The first term is,

dw ∧ dw = d(w ∧ dw)− w ∧ d2w = d(w ∧ dw) (A.27)

and for the second term we have the following identity,

dw ∧ w ∧ w =
1

3
d
(

w ∧ w ∧ w
)

(A.28)

which is obvious and collectively they lead to,

R ∧R = d

(

w ∧ dw +
2

3
w ∧ w ∧ w

)

+ ǫ (A.29)

For a vector valued (D-1)–form αn1...nD−1
= ǫan1...nD−1

va, the exterior derivative is a

total derivative times the volume form, dα = ∇av
a
ǫ. Therefore the Gauss-Bonnet
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term in eqn. (A.29) is clearly a total derivative plus a constant. A proof for the

general Lovelock theories in d–dimensions is a straightforward extension to this proof

[149].
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101



B.1 Derivation of the Surface Term for Generalized Gravity

The surface term in generalized gravity could be obtained by variation of the

Lagrangian L
√−g . The variation has terms proportional to second derivatives of

the variation of the metric, the first derivatives of the variation of the metric and just

the variation of the metric. The term proportional to δgad contributes to the equation

of motion so we drop that term. The surface term is then,

δSΣ =
1

16πG

∫

dD−1x
√−g

[

∇c

(

2P abcd∇bδgad
)

− 2∇b

(

∇cP
abcdδgad

)]

=
1

8πG

∫

dD−1x
√−g∇c

[

P abcd∇bδgad − δgad∇bP
acbd
]

(B.1)

Rearranging the indices we get,

δSΣ =
1

8πG

∫

dD−1x
√
−h∇a

[

P abcd∇dδgbc − δgbc∇dP
abcd
]

(B.2)

B.2 Decomposition of the D-Dimensional Derivative

D-dimensional derivative could be decomposed into the (D-1)-dimensional deriva-

tive along the (D-1)-dimensional surface and the components along the normal to the

(D-1)-dimensional surface.

∇iA = Aj|iej +KijA
j n

n · n (B.3)

Since n is spacelike and the extrinsic curvature Kij = hci∇cnj we have

∇iA
k = Aj|ie

k
j + (hci∇cnj)A

jnk (B.4)

Taking trace of this equation,

∇iA
i = Ai|i + (hci∇cnj)A

jni = Ai|i (B.5)
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B.3 To show that the Total Derivative Term does not contribute

We begin by taking the general boundary term and decomposing it into its normal

and tangential components. hab are projection operators and na are the normals to the

surface. Following Wald’s [148] notation, the indices are not replaced from Roman to

Greek as was previously done in the literature [74, 76]. Instead the 3-quantities are

understood by the presence of the projection operators hab . For example,

naP
abcd∇dδgbc = naP

aijkhbih
c
jh

d
k∇dδgbc + naP

aijkhbih
c
jn

dnk∇dδgbc

+naP
aijkhbin

cnjh
d
k∇dδgbc (B.6)

All others terms are zero due to symmetry of P abcd (which is same as the Riemann

tensor). The projection operators needs to be present due to our convention. For

example, the index “a” can be used to denote any dimension but the projection

operator acting on this index will decide the dimension it will represent.

We need to show that the D–dimensional total derivative term in eqn. (3.14)

vanishes in the null limit. First we will need to decompose the total derivative into

(D-1)–dimensional quantities and then show that each term becomes zero when the

stretched horizon approaches the event horizon asymptotically. To achieve this, we

decompose both the quantity P abcd and the total derivative using the relation: gdf =

hdf + ndnf .

∇d(naP
abcdδgbc) = ∇d(naP

abcdδhbc)

= hed∇e(naP
abcfhdfδhbc) + nend∇e(naP

abcfhdfδhbc)

+ hed∇e(naP
abcfndnfδhbc) + nend∇e(naP

abcfndnfδhbc)

= A+ B + C +D (B.7)

We now treat each term in the above equation separately and obtain the form they
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would reduce to, as the null limit of the stretched horizon is approached asymptoti-

cally.

A: hed∇e(naP
abcfhdfδhbc)

We use the relation na − ua = αka where ka is the auxiliary null vector. In the limit

the stretched horizon approaches the event horizon, α → 0 and the normal vector

na can be replaced by the vector ua, which is tangent to the horizon. Now since the

entire quantity hed∇e(uaP
abcfhdfδhbc) is projected onto the (D-1)–dimensional surface,

the D–dimensional derivative can be replaced by the (D-1)–dimensional derivative.

hed∇e(naP
abcfhdfδhbc)

α→0
= (uaP

abcfhdfδhbc)|eh
e
d (B.8)

B: nend∇e(naP
abcfhdfδhbc)

nend∇e(naP
abcfhdfδhbc)

= nend(∇enaP
abcfhdfδhbc + na∇eP

abcfhdfδhbc + naP
abcf∇eh

d
fδhbc

+ naP
abcfhdf∇eδhbc) (B.9)

Now the (D-1)–dimensional metric hdf contracted with the normal nd (which is or-

thogonal to it) gives zero and also the (D-1)–dimensional metric does not change in

the normal direction,

ne∇eh
d
f = ne∇e(g

d
f − ndnf ) = 0 (B.10)

So all the terms on the right hand side of eqn. (B.9) vanishes.

nend∇e(naP
abcfhdfδhbc) = 0 (B.11)

C: hed∇e(naP
abcfndnfδhbc)

We use the relation na − ua = αka again where ka is the auxiliary null vector and in

the null limit we just replace all na by ua which converts the D-dimensional derivative
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into a (D-1)–dimensional derivative.

hed∇e(naP
abcfndnfδhbc)

α→0
= (uaP

abcfudufδhbc)|eh
e
d (B.12)

D: nend∇e(naP
abcfndnfδhbc)

We use the relation na − ua = αka, ka is the auxiliary null vector.

nend∇e(naP
abcfndnfδhbc)

= nend∇e(naP
abcf (ud + αkd)nfδhbc)

= nend∇e(naP
abcfudnfδhbc) + αnend∇e(naP

abcfkdnfδhbc)

= (naP
abcfnfδhbc)ndn

e∇eu
d + αnend∇e(naP

abcfkdnfδhbc) (B.13)

α→0
= 0 (B.14)

where in the eqn. (B.13) we have used the fact that the vector ud is orthogonal to the

normal vector nd and in the last line we have used the fact that the acceleration of

the vector nd is zero: ndn
e∇eu

d = −udne∇end = 0.

Therefore, the terms B and D are zero in the null limit of the stretched horizon.

And in that limit the terms A and C add up to

(uaP
abcfhdfδhbc)|eh

e
d + (uaP

abcfudufδhbc)|eh
e
d

= (uaP
abcfhdfδhbc)|eh

e
d + (uaP

abcfndnfδhbc)|eh
e
d +O(α)

α→0
=
(

uaP
abcdδhbc

)

|d (B.15)

Therefore the D–dimensional total derivative on the stretched horizon becomes the

(D-1)–dimensional total derivative in the null limit.

− 1

8πG

∫

dD−1x
√
−h
(

∇d

(

naP
abcdδgbc

))

α→0
= − 1

8πG

∫

dD−1x
√
−h
(

uaP
abcdδhbc

)

|d

= − 1

8πG

(∫

t=end

dD−2x
√
γ
(

uduaP
abcdδhbc

)

−
∫

t=begin

dD−2x
√
γ
(

uduaP
abcdδhbc

)

)

= 0 (B.16)
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ud is normal to na and to the (D-2)–dimensional spacelike section of the horizon.

Eqn. B.16 is zero because the variation of the (D-1) metric goes to zero on the two

boundaries of stretched horizon which are located at timelike infinity.

B.4 The Black Hole Membrane Stress Tensor

The first term in eqn. (3.15) can be simplified by using the properties of the

stretched horizon: eqns. B.18-B.21. We can use the diffeomorphism degrees of

freedom to set the variation of the normal vector to zero, δna = 0. This leads to

δgab → δhab. We also use the fact that na is normal to the (D-1)–dimensional metric

hab: h
abna = 0.

P abcd(∇dna)δgbc = P abc
mg

md(∇dna)δgbc = P abc
m(h

md + nmnd)(∇dna)δgbc

= P abc
mK

m
a δgbc [Using B.18]

= P abc
mK

m
a δhbc

= P a
klmK

m
a g

kbglcδhbc = P a
klmK

m
a (h

kb + nknb)(hlc + nlnc)δhbc

= PaklmK
amhkbhlcδhbc [Using B.19 & B.21]

(B.17)

where we have used the relations :

aa = nd∇dna = 0 (B.18)

nchkbδhbc = nc(−δhkbhbc) = 0 (B.19)

nbncδhbc = δ(nbnchbc)− hbcδn
bnc − hbcn

bδnc = 0 (B.20)

habna = 0 (B.21)

For the second term in the eqn. (3.15) we use the projection operators on the indices

(bc) of P abcd and hence effectively project these indices onto the (D-1)–dimensional
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surface.

δSΣ =
1

8πG

∫

dD−1x
√
−h

[

(∇dna)P
abcd + 2na∇dP

abcd
]

δgbc

=
1

8πG

∫

dD−1x
√
−h

[

PpklqK
pqhkbhlc + 2np∇qPpklqh

kbhlc
]

δhbc (B.22)

= −1

2

∫

dD−1x
√
−h tab δhab (B.23)

The stress-energy tensor on the (D-1)–hypersurface is,

tab = − 1

4πG

(

PnklmK
mn + 2np∇qPpklq

)

hkahlb (B.24)
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C.1 Conformal Transformation of the Ricci Scalar

Given the conformal transformation of the metric gab with a conformal factor

Ω(x),

g̃ab = Ω(x)2gab (C.1)

the Ricci scalar transforms as [148] (we will suppress the coordinate dependence of

the conformal factor from now on),

R̃ = Ω−2
(

R− (D − 2)(D − 1)(∂lnΩ)2 − 2(D − 2)∂2lnΩ
)

R = Ω2
(

R̃− (D − 2)(D − 1)(∂lnΩ)2 + 2(D − 2)∂2lnΩ
)

(C.2)

The Einstein-Hilbert term which is the product
√−gR, transforms as

√

−g̃ Ω−D
(

Ω2R̃− (D − 2)(D − 1)(∂Ω)2 + 2(D − 2)Ω2∂2lnΩ
)

=
√

−g̃
(

Ω−(D−2)R̃ + (−(D − 2)(D − 1) + 2(D − 2)2)Ω−D(∂Ω)2

+2(D − 2)∂(Ω−(D−2)∂Ω)
)

=
√

−g̃
(

Ω−(D−2)R̃ + (D − 2)(D − 3)Ω−D(∂Ω)2 + total derivative
)

(C.3)

C.2 Equations of Motion in Jordan Frame

A variation of the action eqn. (4.3) with respect to the conformally transformed

metric g̃ab would give the equations of motion,

M2
P

2

(

R̃ab −
1

2
g̃abR̃

)

=
1

2
f(∂aφ)(∂bφ)−

1

2
g̃ab

(

1

2
f(∂aφ)

2 + V2(φ)

)

− M2
P

2
e2φ/MP

(

g̃ab∇̃2 − ∇̃b∇̃a

)

e−2φ/MP

where, f = 1− 4

(

D − 3

D − 2

)

and V2(φ) = e
−4

D−2
φV (φ) (C.4)
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In the equation of motion the last term can be expanded,

e2φ/MP ∇̃b∇̃ae
−2φ/MP =

2

M2
P

(

2∇̃aφ∇̃bφ− ∇̃b∇̃aφ
)

e2φ/MP ∇̃2e−2φ/MP =
2

M2
P

(

2(∇̃aφ)
2 − ∇̃2φ

)

(C.5)

and the equations of motion be rewritten in a manner which will have the Einstein

tensor on the left hand side of the equations of motion so that the terms on the right

hand side of the equation is covariantly conserved as a result of the Bianchi identity.

And it is customary to identify the quantity on the right hand side of the Einstein’s

equations as the stress tensor.

R̃ab −
1

2
g̃abR̃ =

1

M2
P

T Jab (C.6)

where the modified stress tensor in Jordan frame is,

T Jab = f1(∂aφ)(∂bφ)− g̃ab

(

1

2
f2(∂aφ)

2 + V2(φ)

)

+ 2MP

(

g̃ab∇̃2 − ∇̃b∇̃a

)

φ

f1 = 1 +

(

4

D − 2

)

; f2 = 1 + 4

(

D − 1

D − 2

)

; V2(φ) = e
−4

D−2
φV (φ) (C.7)

This stress tensor is conserved (by the Bianchi identity),

∇̃aT Jab = 0 (C.8)
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