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ABSTRACT

Skyline queries are a well established technique used in multi-criteria decision ap-

plications. There is a recent interest among the research community to efficiently

compute skylines but the problem of presenting the skyline that takes into account

the preferences of the user is still open. Each user has varying interests towards each

attribute and hence “one size fits all” methodology might not satisfy all the users.

True user satisfaction can be obtained only when the skyline is tailored specifically

for the user based on his preferences.

This research investigates the problem of preference aware skyline processing

which consists of inferring the preferences of the user and computing a skyline specific

to that user, taking into account his preferences. This research proposes a transfor-

mation that transforms the data from a given space to a user preferential space where

each attribute represents a preference of the user. This study proposes two techniques

Preferential Skyline Processing and Latent Skyline Processing to efficiently compute

preference aware skylines in the user preferential space. Finally, through extensive

experiments and performance analysis the correctness of the recommendations and

the algorithm’s ability to outperform the naive ones are confirmed.
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Candan. I am very thankful for his insightful guidance and inspiring thoughts which

has totally transformed my problem solving attitude and made my research possible.

I am certain the skills, expertise and wisdom he imparted on me will help my future

endeavours. I am grateful to my committee members Dr. Hasan Davulcu and Dr.

Mohamed Sarwat for being part of my committee and their valuable guidance for

shaping my thesis. I would like to thank the advisors from school of computing,

informatics and decision systems engineering and International Students and

Scholars Office for helping me with all my paperwork needed to complete my degree.

I am grateful to developers of Euclidean Vector Algebra (EVA). EVA is a symbolic

calculator to work with Clifford numbers. I would like to thank my lab mates Mijung

Kim, Jung Hyun Kim, Parth Nagarkar, Mithila Nagendra, Shengyu Huang, Xiaolan

Wang, Xilung Chen, Xinsheng Li, Sicong Liu and Yash Garg for their thoughtful

discussions and advice. I would like to thank my friends Ilam Anna, Senthil,

Akshaya and Tharanee for their continued support and cooperation. I am also

thankful to Mithun for helping me analyze the results of the thesis related to

basketball. Finally, I would like to thank my family for their continued support and

cooperation without whom this thesis wouldn’t have been possible.

iii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Latent Skylines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Sequential Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Index Based Skyline Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Other Skyline Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 BACKGROUND AND PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Latent Semantic Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Dominance Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Definition Of Skyline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Incomparable Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.4 Preferential Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.5 Preferential Skylines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.6 Characteristic Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.7 Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 PREFERENTIAL SKYLINE PROCESSING . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Quadtree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Quadtrees And Z-order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

iv



CHAPTER Page

3.2.2 Preferential Lower And Upper Vertex . . . . . . . . . . . . . . . . . . . . . 27

3.3 Pruning Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Proofs: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Proof I: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.2 Proof II: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 LATENT SKYLINE PROCESSING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.2 Characteristic Vectors Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.3 Nullification Point Of Subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.4 Stretching Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Projection Vs Stretch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Limitations Of Vector Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 Introduction To Clifford Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6.1 Cliffs And Grades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6.2 Outer Product Or Wedge Product. . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6.3 Geometric Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6.4 Clifford Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6.5 Rotations And Other Formulations . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7 Stretch Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.8 Scope for Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.8.1 Sub-regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

v



CHAPTER Page

4.8.2 Pruning Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.9 Final Stretch Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.10 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.10.1 Proof I: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.1 NBA Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.2 DBLP Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Preferential Skyline Processing - Ground Truth Evaluation. . . . . . . . . 74

5.3 Latent Skyline Processing - Ground Truth Evaluation . . . . . . . . . . . . . 76

5.3.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Efficiency Of Preferential Skyline Processing . . . . . . . . . . . . . . . . . . . . . . 77

5.4.1 Effect Of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.2 Effect Of Cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.3 Effect Of Preferences dimensionality . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.4 Effect of Angle Offset of Preferential Space . . . . . . . . . . . . . . . . 84

5.5 Efficiency Of Latent Skyline Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.1 Effect Of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5.2 Effect Of Cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5.3 Effect Of Preferences dimensionality . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.4 Effect Of Preferential Space Volume . . . . . . . . . . . . . . . . . . . . . . . 90

5.5.5 Evaluation of Pruning Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

vi



LIST OF TABLES

Table Page

4.1 Skyline Of Players Through Projection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Skyline Of Players Through Stretching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Evaluation Of Preferential Skyline Processing: Comparison Of Our

Algorithm With ESPN And Hoopsworld Ratings . . . . . . . . . . . . . . . . . . . . . 75

vii



LIST OF FIGURES

Figure Page

1.1 Representation Of Skylines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Japanese Fans And Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 An Example For Preferential Skyline Processing . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Quadtree - A R2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Z Order Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Preferential Upper And Lower Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Projection Vs Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Multiplication By i Leads To Rotation By 90◦ . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Clifford Subspaces And Grades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Wedge Product Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Effectiveness Of Latent Skyline Processing - Analyzing The Stretched

Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Effect Of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Effect Of Cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Effect Of Latent/Preferences’ Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Effect Of Angle Offset Of Preferential Space . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.6 Effect Of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.7 Effect Of Cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.8 Effect Of Latent Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.9 Effect Of Preferential Space Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.10 Analysis Of Pruning Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.11 Evaluation Of Pruning Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

viii



Chapter 1

INTRODUCTION

1.1 Motivation

In the current era of information explosion, the users are often challenged by two

obstacles that hinder their ability to quickly perceive data. The first challenge is the

“problem of plenty” where the users are overloaded with information, part of which

is inferior compared to the rest. The second challenge is that the data can be often

too general and it does not necessarily describe concepts that best represents users’

needs. In recent times, The Skyline Operator introduced by Börzsönyi et al. (2001)

has emerged as an important summarization technique for multi-dimensional high

cardinal data sets so much so, it has sparked a growing interest in the area of efficient

skyline query processing among the database research community1 indicated by works

of Kossmann et al. (2002); Papadias et al. (2003); Wu et al. (2006). Multi-criteria

optimization described in Ehrgott (2005) describes solution to a decision problem as

the ability to distinguish between good and bad objects among a set of objects on

the assumption of existence of certain criteria, according to which the quality of the

objects are ascertained. Considering each input datum as a tuple in a database, the

skyline can be defined as a technique to filter out a subset of interesting input tuples

from a potentially large set of data. In particular, the result of a skyline query consists

of those input tuples for which there is no input tuple having better or equal values in

all the attributes and a better value in at least one attribute. For example, in order to

attend a conference at a foreign country, a traveler might be interested in the hotels

1The work of Börzsönyi et al. (2001) has received more than 1500 citations in Google scholar.
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that are cheapest and closest to the conference venue. It might so happen that there

could be few cheap hotels very near to the venue making the decision making easier

or the venue could be a downtown city where in the hotels are considerable more

expensive. In the latter case, as the two goals are contradictory, making up a decision

can be tough specially when there are too many options. In such cases, the skyline

computation can help us out by filtering only those hotels that are best trade-offs

between the two attributes, price and distance. Skyline query processing eases the

problem of decision making thus helping us overcome the first challenge.

However in few cases the data themselves do not best describe the users’ require-

ments and the second challenge remains unsolved. This challenge manifests in two

ways and both the problems are described in this section. Consider an example where

an NBA team manager wants to recruit a new player to play in Point Guard (PG) po-

sition. There are different attributes to players like Points per Game (PPG), Assists

per game (APG), Rebounds per game (RPG) and blocks per game (BPG) amongst

others to gauge them. However, there are certain attributes which are more important

and characterizes a point guards’ game more than others. Identifying that charac-

teristic might not be straightforward and even if identified the skyline on the NBA

player statistics might not help the manager in deciding the point guard to recruit.

In this case the data do not describe the users’ preferences and makes the decision

making more challenging. The problem is due to the presence of a gap between the

existing data and the data that describe the users’ needs referred to as the semantic

gap. There are numerous other fields where semantic gap exists. Consider a retail

store selling laptops to its customers. Different customers have different needs and

different laptops have different purposes. The skyline computation on the entire data

set might always present choices which are irrelevant to a particular user. Another

area where this problem persist is in Information Retrieval – Consider the following

2



setup, where there are text documents in a TF-IDF space [Salton and McGill (1986)].

TF-IDF is a vector space model where text documents (in general any objects) can be

represented as vectors in an algebraic space. Different users can also be represented

in the same TF-IDF space using keywords that are relevant to the user. Keywords

interesting to the user can be obtained from the articles user had authored or liked.

The problem of finding the preference aware skyline of interesting documents to a

particular user is yet to be solved.

The second problem is to find the skyline of interesting documents to a group

of users. Recommendations to a group of people have also been recognized as an

important problem and have gained attention recently [Jameson and Smyth (2007)].

Different users can have different interests and there is a new problem where it is

needed to find the skyline of interesting documents not just to a particular user but

to the entire group. Another example of this problem could the case where the same

NBA manager is now trying to recruit a player who can play in both Point Guard

(PG) and shooting guard (SG) position. The manager does not need the skyline of

just point guard players, but he needs skyline of players who can play in both point

guard and shooting guard positions and this is a much harder problem to solve. The

solution proposed to solve this problem can in general be extended to compute sky-

lines in latent spaces, where the characteristics (preferences) are not independent, but

to preserve the semantics, the transformation has to treat those preferences as inde-

pendent concepts. More about latent skyline processing is discussed in 1.2. Motivated

by the above observations, this thesis proposes Preferential and Latent skyline Query

Processing techniques to enable users to quickly and effectively obtain information. In

the literature of skyline query processing, the closest to our work is Dynamic Skylines

[Papadias et al. (2003); Sharifzadeh and Shahabi (2006); Deng et al. (2007)] where

the query is not executed in the original data space but in a dynamic space that is

3



query independent, however this does not take into account neither the preferences

for the user nor the group.

1.2 Latent Skylines

Section 1.1 describes that the solution to a decision problem as the ability to dis-

tinguish between good and bad objects among a set of objects, on the assumption

of existence of certain criteria, according to which the quality of the objects is ascer-

tained. Section 1.1 also introduced semantic gap and the need to transform points

from given data space to a preferential space. When preferential skylines are com-

puted for a single user, the preferences are obtained as an alternative orthonormal

space using Singular Value Decomposition. This has many computational advantages

as the data can be moved from the given domain space to the user preferential space

by rotation, which is a simple linear transformation. However, there are instances

where the preferences (or characteristics) are not orthogonal to each other and yet

these characteristics are the criteria according to which the quality of the objects

should be measured. The preferences or characteristics can be visualized as vectors

in the given space and there is a need to evaluate data points not on the basis of

existing dimensions (attributes) but based on these characteristic vectors.

The straightforward way to solve this problem is to project the data points on

to the characteristic vectors. Simple dot product semantics can be used to obtain

the membership of each data point with the characteristic vectors. This would again

lead to a simple linear transformation, however there is a significant downside to this

approach. Recall that each of these characteristic vectors represent semantics that

are significant to the user. When the points are projected on to the characteristic

vectors, it so happens that, since the characteristic vectors aren’t independent of

each other (possibly correlated), a data point that lie perfectly on a characteristic

4



vector might have a membership on the other characteristic vector. This would

mean that the characteristic vectors can never truly be differentiated independently

of each other. Consider another scenario, where a NBA manager is trying to recruit

a player who can play both as a Point Guard (PG) and a Shooting Guard (SG).

These are different positions and requires different skill and techniques, however it

is fairly common in basketball for a player to play in two positions. The latent skill

required to excel in a particular position (PG/SG) can be obtained through Singular

Value Decomposition on statistics of players who play the best in those positions. The

latent semantic obtained from SVD will give the characteristics of players who play in

a position. One can use intuition and predict that there would be correlation between

the characteristic vectors of these two positions. Hence any player who is perfectly

aligned with the characteristic vector will have membership scores on other vector

too. This would semantically mean, that these are the characteristics (definitions) of

PG and SG and though a player is aligned with the definition of a particular position

(say PG), on transformation, the new space would indicate him as a SG player as well.

Projections does not retain the semantics of the space and hence a transformation

that retains the semantics of the space is needed. A point perfectly aligned with a

characteristic vector should hold membership only on to that characteristic vector

upon transformation. This motivates to propose new methods of transformation and

this research introduces a novel transformation technique called Stretching.

Stretching tries to pull apart the space between the characteristic vectors so that

the characteristic vectors become mutually independent of each other while preserving

the semantics of the space. On completion of stretching, the skyline is computed in

the stretched space and is referred as the latent skyline. The latent skyline suggests

the set of possibilities to consider given the latent preferences.
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1.3 Related Work

The skyline of a dataset is defined as those points which are not dominated by

any other point in the data set. A point dominates another point in the dataset

if it is as good or better in all attributes and better in at least one attribute. For

example, consider a dataset of hotels having two attributes: price and distance. It is

quite natural to prefer hotels that are cheaper and closer to our location. Thus hotels

that are cheaper and closer will dominate our selection over costlier hotels which are

far off. Figure 1.1a adopted from Börzsönyi et al. (2001) shows the skyline of cheap

hotels near the beach in Nassau, Bahamas
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Abstract

Skyline queries ask for a set of interesting
points from a potentially large set of data
points. If we are traveling, for instance, a
restaurant might be interesting if there is no
other restaurant which is nearer, cheaper,
and has better food. Skyline queries retrieve
all such interesting restaurants so that the
user can choose the most promising one. In
this paper, we present a new online algo-
rithm that computes the Skyline. Unlike
most existing algorithms that compute the
Skyline in a batch, this algorithm returns
the first results immediately, produces more
and more results continuously, and allows
the user to give preferences during the run-
ning time of the algorithm so that the user
can control what kind of results are pro-
duced next (e.g., rather cheap or rather near
restaurants).

1 Introduction

1.1 Skyline Queries

Recently, there has been a growing interest in so-
called Skyline queries [BKS01, TEO01]. The Skyline
of a set of points is defined as those points that are
not dominated by any other point. A point domi-
nates another point if it is as good or better in all
dimensions and better in at least one dimension.
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Figure 1: Skyline of hotels in Nassau (Bahamas)

The classic example is shown in Figure 1. The
figure shows the Skyline of hotels in Nassau (Ba-
hamas) which are supposed to be cheap and close
to the beach. The bold points (which are connected
in the graph) represent those hotels which are part
of the Skyline. The other hotels are not part of the
Skyline because they are dominated in terms of price
and distance to the beach by at least one hotel which
is part of the Skyline. Such a Skyline could be use-
ful, for instance, for a travel agency; it helps users
to get a big picture of the interesting options. From
the Skyline of hotels, the user can then choose the
most promising hotels and make further inquiries.

Skyline queries can also involve more than two
dimensions and they could depend on the current
position of a user. For instance, (mobile) users could
be interested in restaurants that are near, cheap, and
have good food (according to some rating system).
The distance is based on the current location of the
user. Again, the idea is to give the user the big
picture of interesting options and then let the user
make a decision. If the user moves on, the Skyline
should be re-computed continuously in order to give
the user a choice of interesting restaurants based on
the user’s new location.

(a) Skyline of hotels in Nassau, Bahamas

(b) A view of night sky in Manhattan

Figure 1.1: Representation Of Skylines

The task of finding the skyline of a set of data points where first attempted by

Kung et al. (1975) in 1975 under the name of maximum vector problem. Kung et

al proposed a solution for maximum vector problem based on Divide and Conquer

algorithm. Another solution was proposed by Stojmenovic and Miyakawa (1988)

involving parallel computation. However, these algorithms were applicable only in

situations where the data set fits into the main memory.
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Börzsönyi et al. (2001) was the first to investigate maximal vector problem in

context of databases and coined the term skyline. The term skyline is uses because of

its graphical representation. He suggests the skyline of Manhattan can be computed

as the set of buildings which are high and close to river Hudson. In other words every

building seen in Figure 1.1b is a part of skyline of Manhattan. Chomicki et al. (2013)

suggested a formal model for expressing Pareto dominance.

Let A = {A1...Ad} be a finite set of attributes (a relation schema) where d is the

number of dimensions. Every attribute AiεA is associated with an infinite domain

DAi
. We work with the universe of tuples U =

∏
AiεADAi

Given a tuple tεU , the

value of its attribute Ai is denoted by t[Ai]. The Pareto dominance or just dominance

relation � of tuple t over tuple s is defined as

t � s ≡
∨
AiεA

t[Ai] >Ai
s[Ai] ∧

∧
AiεA

t[Ai] ≥Ai
s[Ai] (1.1)

Since the introduction of skyline operator, numerous algorithms has been sug-

gested for efficient computation of skyline queries. These algorithms can be classified

into two categories depending on whether the data is preprocessed or not. The first

category discussed in section 1.3.1 is called sequential algorithms because they have

to scan all of the input to compute skyline. The second category discussed in sec-

tion 1.3.2 called Indexing algorithms includes all index based methods which uses an

indexing mechanism to prune points which are not guaranteed to be skylines.

1.3.1 Sequential Algorithms

Börzsönyi et al. (2001) proposed two algorithms for processing skyline queries in

large databases. Divide-and-conquer (D&C) and Block Nested Loop (BNL). D&C ap-

proach divides the dataset into several partitions so that each partition fits into main

memory. The partial skyline of each partition is obtained using any skyline algorithm
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and the final complete skyline is obtained by merging all the partial skylines. BNL

algorithm scans the entire data set and keeps a list of candidate points in the main

memory. The list initially contains only the first data point and for every subsequent

data point p, there are three cases:

1. If p is dominated by any point in the list, it is discarded and is not part of a

skyline.

2. If p dominates any point in the list, it is inserted, and all of the points dominated

by p are dropped.

3. If p is neither dominated nor dominates any point in the list, it is inserted into

the list

Chomicki et al. (2003) proposed a variation of BNL algorithm called Sort First

Skyline (SFS). SFS first sorts the dataset based on a monotone function. Candidates

are inserted into the list in the order of their scores and sorting ensures that a point p

dominating p′ is encountered before p′, hence unlike BNL any point in the list of can-

didate points is a skyline. Godfrey et al. (2005) proposed LESS (Linear Elimination

Sort for Skyline) algorithm which is a combination of SFS and BNL. The external

sort routine used by SFS is integrated into LESS and the sort routine has two major

changes.

1. It uses an elimination filter window in pass zero of the external sort routine to

eliminate records quickly.

2. It combines the final pass of the external sort with the skyline-filter pass.

The Elimination Filter window of LESS is similar to candidates list in BNL and the

skyline-filter pass used in the last pass of the external sort filters skyline like SFS.
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Typically LESS saves a pass by combining the last merge pass of the external sort

with the Skyline-filter pass.

Bartolini et al. (2008) proposed a new sequential scanning algorithm called SaLSa

(Sort and Limit Skyline algorithm). Salsa is based on the observation, that for a

suitably chosen sorting functions, it is possible to compute skyline without looking

at all of the data.

1.3.2 Index Based Skyline Algorithms

Tan et al. (2001) proposed a technique which uses bitmaps to decide if a point

is in skyline. A data point P = (p1, p2...pd), where d is the number of dimensions,

is mapped to a m bit vector, where m is the total number of distinct values over all

dimensions. The skylines of a data set are computed by just using bit wise operations

like ‘AND’ and ‘OR’. For more information on the bitmap based algorithm please

refer to Tan et al. (2001). In the very same paper, Tan et al. (2001) proposed another

technique called index to compute skylines. It employs an index mechanism where a

d dimensional space is mapped into d single dimensional lists where each list is imple-

mented as a B+ tree. The idea behind this algorithm is, if the minimum value among

all dimensions in a tuple is larger than the maximum value among all dimensions in

another tuple, then the first tuple dominates the second tuple. Since the structure is

sorted based on the maximum value, there is no need to examine all the records to

filter the skylines thus saving on I/O.

Kossmann et al. (2002) proposed an algorithm called Nearest Neighbors (NN) that

can compute skylines in a progressive manner. NN uses R-Trees to split the domain

spaces to regions recursively and compute the NN in certain regions while pruning the

remaining. The algorithm can ignore regions which are not guaranteed to contain any
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skylines. Each of the NN is a part of the skyline and thus the algorithm progressively

computes the entire skyline by finding NN on all the regions that can’t be pruned.

Branch and Bound Skyline (BBS) is an algorithm proposed by Papadias et al.

(2005) that improves on NN algorithm. Some of the regions investigated by NN are

redundant meaning they return the skyline points found by previous queries. BBS

alleviates this problem and is I/O optimal (i.e.) it performs a single access only to

those nodes that may contain skyline points. In this paper, Papadias et al. (2005)

also suggests different types of skyline queries

1. Constrained Skyline: A set of constraints is additionally specified and the algo-

rithm returns only those skyline points that satisfies the constraints.

2. Ranked Skyline: A monotone preference function f and a parameter k is ad-

ditionally specified and the algorithm returns the top k skyline points which

maximizes or minimizes the function f .

3. Dynamic Skyline: Dynamic Skyline queries specifies m dimensions functions,

where each function f1, f2, ...fm takes as parameters coordinates of data points

along a subset of d axis, where d is the dimensionality of the data and m ≤ d.

The goal is to find the skyline in the new data space with dimensions defined

by f1, f2, ...fm.

4. Group-By Skyline: This is similar to the group-by clause in traditional RDBMS.

Instead of aggregation over group by clause, the goal is to find the skyline for

each value in the group by clause.
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1.3.3 Other Skyline Algorithms

In addition to the problem of computing skyline over a dataset, the database

research community have focused on other interesting problems involving skyline

queries.

1. Subspace Skyline Queries: Tao et al. (2006) investigated the problem of finding

skylines in various sub-spaces and proposed a new technique called SUBSKY.

SUBSKY converts each d-dimensional point to a 1-D value and indexes it with

a B-Tree. The converted value represents the best value of the point among

all attributes. The algorithm then proceeds to scan all the points in the sorted

order and finds skylines in the subspaces while maintaining the worst value of

the point among all attributes, which will eventually increase and when it is

greater than the best value previously indexed, the algorithm can terminate

and report the skylines. Pei et al. (2005) proposed an algorithm called skyey

that takes a set of objects S in space D as input, and returns the set of objects

that are part of a subspace skyline for each non empty subspace. The algorithm

finds the decisive sub-spaces (attributes) in which objects are good. Yuan et al.

(2005) proposed an algorithm called Skycube which precomputes the results of

all possible sub space skyline queries for a given dataset in an efficient manner.

2. Skyline On Distributed Databases: Given the growing popularity of decentral-

ized databases, the problem of finding skylines over distributed data sources

had also been studied. Balke et al. (2004) was one of the seminal works in

this domain and it assumed the data to be vertically partitioned. The future

works like Rocha-Junior et al. (2009) also dealt with the case of horizontal data

partitioning.
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3. Skyline On Continuous Data Streams: Lin et al. (2005) considered the problem

of efficiently computing the skyline against the most recent N elements in a

stream of data. (i.e.) computing the skyline for the most recent n(∀n ≤ N)

elements.

4. Skyline On Incomplete Data Sets: Lofi et al. (2013) focused on the problem

of computing skylines over incomplete data. This paper presents a hybrid ap-

proach combining dynamic crowd sourcing with heuristic prediction techniques

to reduce the error in skyline result while also reducing the time taken for com-

putation of result. They propose a heuristic approach for predicting missing

data and also a prediction risk along with it. The prediction risk is a measure

of error, the prediction can bring to the skyline result. By resorting to crowd

sourcing only for data with high prediction risk, they minimize the error and as

well as the time taken for the result.
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Chapter 2

BACKGROUND AND PRELIMINARIES

2.1 Latent Semantic Indexing

Singular Value Decomposition (SVD) is a well-known matrix factorization tech-

nique proposed by Deerwester et al. (1990). SVD can be used in scenarios where there

is an underlying latent semantic structure in the data that is partially obscured by

some noise. SVD attempts to use a statistical technique called Eigen decomposition

to recover the latent structure. SVD factors a m× n matrix R into three matrices as

following:

R = U.S.V T (2.1)

Where, U and V are two orthogonal matrices of size m× r and n× r respectively.

The column vectors of U , also called the left singular matrix are the eigenvectors

of the m × m square matrix R.RT . The column vectors of V , also called the right

singular matrix are the eigenvectors of the n×n square matrix RT .R. r is the rank of

matrix R. S is a diagonal matrix of size r×r having all singular values of matrix R as

its diagonal entries. These singular values are the square roots of the eigenvalues of

R.RT and RT .R. All entries of matrix S are positive and stored in decreasing order of

magnitude. It is possible to reduce the r× r matrix S to have only k largest diagonal

values to obtain a matrix Sk, k < r. If the matrices U and V are reduced accordingly,

then the reconstructed matrix Rk = Uk.Sk.V
T
k is the closest rank-k matrix to R. The

Uk and Vk matrices has the following properties. The r column vectors of U form a

r dimensional basis in which the m rows of the matrix can be described. Similarly,
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the r column vectors of V form a r dimensional basis in which the n columns of

the matrix can be described. These column vectors reveal associative patters in the

data. In fact, the values of the diagonal matrix S, represent the strength of these

associations or correlation. The patterns which have significantly higher eigenvalues

do represent the latent patterns in the data, while patterns having smaller values are

often noise. By ignoring the smaller singular values, SVD escapes the unreliability,

ambiguity and redundancy of underlying data.

Deerwester et al. (1990) initially proposed SVD for automatic indexing and re-

trieval of text documents. It was introduced to tackle the problem of synonymy and

polysemy in the domain of information retrieval. Synonymy refers to the condition

when multiple words describe the same fact. Polysemy refers to the condition, when

a single word can have multiple meanings. In this research, SVD is used to identify

the preferences of the user. The problems involved in finding the preferences of a user

is analogous to the condition suggested by synonymy. In real world, the reason for

user liking a set of products can be modeled as a fact. Sarwar et al. (2000) says, a

customer who likes recycled letter pad and recycled memo pad indicates the latent

feature that he likes recycled office products.

The impact of latent semantic indexing on Recommendation Systems had been

studied by Cacheda et al. (2011). They compared the prediction accuracy of different

model based approaches and memory based approaches and concluded that SVD

based methods provided the best results.

2.2 Problem Statement

Consider a d dimensional data space D and a data set P on D with cardinality S.

A point P given by {p1, p2...pd} where pi, 1 ≤ i ≤ d is the value of P along dimension

i. Given the above, the goal of this thesis is twofold.
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1. To find the personalized skyline of a user U , given a set of objects of his interest,

P int in the same domain space D.

2. To find the latent skyline, when there are k preferences or latent char-

acteristics. The latent characteristics are specified as vectors given by

{V pref
1 , V pref

2 , ..., V pref
k }, where each V pref

i , 1 ≤ i ≤ k indicates a distinct

preference or latent characteristic. These V pref
i characteristics are not mutually

independent in the domain space D, but semantically each vector suggests a

characteristic or a concept that is to be treated independent of the others.

This section begins with definition of dominance relationships and skyline. Later

on user preferences, preferential space and preference aware skylines are explained.

2.2.1 Dominance Relations

A point PεP is said to dominate another point QεP , denoted as P � Q , if

1. On every dimension, pi ≥ qi, where 1 ≤ i ≤ d.

2. On at least one dimension, pi > qi, where 1 ≤ i ≤ d

Without loss of generality, it is assumed that for all dimensions maximum values are

preferable.

2.2.2 Definition Of Skyline

The skyline of a data set P are the set of points S where S ⊆ P , such that no

point in the set S is dominated. The set of points in S are called the Skyline of the

dataset P .
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2.2.3 Incomparable Points

Consider points P,QεP where neither point dominates the other. Such points are

called as incomparable points and are denoted as P ∼ Q. All the points that makes

up a skyline are incomparable points.

As pointed out already in 2.1, SVD is used on items that are of interest to a user,

to infer his preferences. The singular vectors given by SVD form an orthonormal

preferential space of a user and can be formally defined as follows.

2.2.4 Preferential Space

The preferential space of a user U , denoted by D′ is an orthonormal space of

dimensionality k, k ≤ d. In the experiments conducted as a part of this work, the

k eigenvectors are derived from SVD computed over a set P int, which are objects of

interest to the user U . The dimensionality of the preferential space, k can be decided

based on the eigenvalues from the singular matrix of SVD. It is to be noted that P int

should be present in the same domain D as P .

Once the preferential space D′ of the user is obtained, the data P from the existing

data space D is transformed to the user preferential space D′ by just projecting the

points pεP on to it. Now we are ready to formally define preferential skylines.

2.2.5 Preferential Skylines

The preferential skylines of a user U for a given data space D represented by

PS(P ,U) can be defined as the skyline of the dataset P ′, where P ′ is obtained from

transforming P from the domain space D to the user preferential space D′.

In the definition of latent skylines, the latent characteristics are specified as vectors

and not as a preferential space. These vectors, called as characteristic vectors, can be
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considered as preferential spaces of dimensionality 1. In context of preferential spaces,

the preferential space can be of any dimension, k, k ≤ d. Each of these k dimensions

of a preferential space can be considered as a distinct characteristic vector.

2.2.6 Characteristic Vectors

Characteristic vectors, V pref are preferential spaces, D′ of dimensionality 1.

In the experiments conducted as part of this work, the Characteristic vectors are

the first eigenvector from the left or right singular matrix of SVD. It is to be noted

that the singular vectors of SVD are always unit vectors. The latent skylines involve

the problem of finding skylines in an alternate space where its dimensions are given

by the characteristic vector. However, to accomplish this in a useful manner, these

characteristic vectors must be mutually independent of each other in the alternate

space after transformation. This research introduces a novel concept called stretching

to achieve it. Stretching is introduced in section 2.2.7 and is discussed in detail in

section 4.3.4.

2.2.7 Stretching

Given d characteristic vectors, stretching aims to align these d characteristic vec-

tors with d axis, while stretching the space in between them. This nonlinear trans-

formation makes the d characteristic vectors independent of each other.

In linear algebra, a transformation is an orthogonal transformation when the trans-

formation preserves the lengths of vector and the angles between them. Stretching on

the other hand preserves the lengths of vector and the semantic relationships of the

vector with the characteristic vector while making the space orthonormal. Stretching
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takes inspiration from the folding fans of the Japanese shown in the Figure 2.11. The

ends can be folded on to a single line or stretched 180◦ between them. The two ends

of the fan have one edge hinged on each other and the other edge is free to move

about the hinge. Now consider a two dimensional space, with two characteristic vec-

tors V pref
1 and V pref

2 . Consider these characteristic vectors to be the ends of the fan

hinged at origin. Suppose if the ends of the fan are pulled apart until they are aligned

with the coordinate axis; this would transform the space in between the characteristic

vectors while making them independent.

(a) Folded Japanese fan

(b) Opened Japanese fan

Figure 2.1: Japanese Fans And Stretching

1These images were obtained from website http://www.nintendolife.com/news/2010/10/north -

america cools down with club nintendo folding fans
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Chapter 3

PREFERENTIAL SKYLINE PROCESSING

3.1 Introduction

As described in 2.2.5, Preferential Skylines are obtained by initially transforming

all data to a new orthonormal space called preferential space and finding skylines in

this preferential space. The naive way to accomplish this would be to transform all

points from the domain space to the preferential space and to find skylines in this

new space using any existing skyline algorithm. This thesis, however tries to answer

the question, “Is this point dominated by another point in the preferential space?”

without transforming the point. If such points are identified, they can be ignored for

rest of the computation. This is the idea behind the quad tree based index algorithm

that efficiently process preference aware skyline queries.

We begin by stating few assumptions.

• Given a real valued space of d dimensions and for each dimension (attribute)

the user can either prefer the maximum or minimum of it.

Figure 3.1 shows an example with six points {a, b, c, d, e, f} in a two dimensional

space given by axes X and Y . The preferential space for the user is given by X ′

and Y ′ in which the six points are transformed as {a′, b′, c′, d′, e′, f ′}. For ease of

explanation, an assumption is made that in the original space, tuples with higher

values are considered better along all dimensions. The solid gray and dashed gray

lines denote the region of dominance of the points in the original and transformed

space respectively. The aim is to find the skyline in the preferential space. Observing

the transformation, following observations can be made
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1. A point a dominating another point b in original space, may or may not continue

the dominance or be dominated in the preferential space. Proof is presented in

3.4.1.

2. A point a incomparable (neither dominates the other) with another point b, may

remain incomparable or either one can dominate the other. Proof is presented

in 3.4.2

From the above observations, the following inferences can be made about the

skylines in the preferential space.

1. Skylines in original space can be dominated in the preferential space, which

means they are no longer part of the preferential skyline. As described in

Figure 3.1, d which was initially a skyline in the given space, is no longer a

skyline in the preferential space.

2. Points which were dominated in the original space, may no longer be dominated

in the preferential space and can become skylines. As described in Figure 3.1, a

was dominated by c in the given space but becomes a skyline in the preferential

space.

In this research, the preferences of the users are captured as eigenvalues and eigen-

vectors. The semantics of eigenvalues and eigenvectors in context of user preferences

is described below.

1. The number of preferences for the user is same as the number of eigenvectors

(or eigenvalues).

2. The strength of the user’s preference is given by the eigenvalue.
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Figure 3.1: An Example For Preferential Skyline Processing

3. Each eigenvector is a linear combination of all the existing attributes (or dimen-

sions). If the coefficient corresponding to an attribute is less than zero, it means

the user has dislike towards that attribute and positive coefficient denotes liking

towards the attribute.

4. The absolute value of the coefficient in the eigenvector denotes the strength of

like or dislike towards that attribute.

Based on above inferences, it is evident that it is desirable to find the max-skyline

in the new space as each dimension in the preferential space indicates the preference

of the user. In order to not transform all the points from the given space to the

preferential space, there is a need to isolate those points that would be dominated

in the preferential space. To achieve this, the points in the given space are indexed

using a Quadtree.

3.2 Quadtree

Quadtree is a hierarchical data structure that provides a grid like sub-division

of the space while adapting to the distribution of the data. They are based on the
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principle of recursive decomposition of space to form nodes that contain the points.

There are many variants of quadtree based on the principle guiding the decomposition

of space. In our research, the Point-Region quadtree is used, where the space is always

split at the center of partitions and data are stored in the leaves. The leaves of the

tree can be thought of as a bucket as it can store more than one data object. A

two dimensional space with points and its corresponding point-region tree is shown

in Figure 3.2a and 3.2b respectively.

(a) Sample Two dimensional space

(b) Quadtree for space given in figure

3.2a

Figure 3.2: Quadtree - A R2 Example

Consider a d dimensional real valued space, where each dimension can take on a

value between 0 and 1. Then (0.5, 0.5 ... 0.5) becomes the point which is at the center

of all dimensions. This becomes the root of the tree as well and divides the space into

2d regions or quadrants. These quadrants, called nodes become the children of the

root and represent all the data points within the entire quadrant. These quadrants

can be further split into 2d sub quadrants and so on, hence this technique is a recursive

decomposition of space. Finally the leaf nodes of the tree contain the data points in

that region. In the implementation used in this research, the tree is made to grow to

a specified predetermined depth.
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The algorithm for insertion is specified in 1. The following quadtree methods are

used for insertion.

1. function getQuadrant(P,N) gives the node of the quadtree representing the

quadrant in which P is located with respect to the quadtree node N .

2. add(P, N) adds the point P to the leaf node N .

Algorithm 1 Inserting a point in the Quadtree

Require: P is a point in a d dimensional space of the form {p1, p2...pd} where pi is

the value of the point P along dimension i.

Require: R is the root node of the tree.

function Insert(P )

Node N ← getQuadrant(P , R)

while N is not a leaf do

Node N ← getQuadrant(P , N)

end while

add(P , N)

end function

3.2.1 Quadtrees And Z-order

Lee et al. (2007) was the first to observe the unique properties of the Z-order curve

that matches perfectly with the processing strategies for skyline query processing. Z-

order is a fractal1 that offers a method to map a multidimensional space to one

dimensional space. Fractals are recursive in nature and Z-order covers the entire space

through repeated application of the pattern Z. A Z-order curve on a two dimensional

space is shown as a red line in figure 3.3a.

1A fractal is composed of similar structures at multiple scales
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(a) Z Order Curve (b) Bit Shuffling
(c) Regions Of Z Order

Curve

Figure 3.3: Z Order Curve

The properties of Z-order curves that makes them attractive for skyline processing

are

1. Bit Shuffling: The bit shuffling or bit interleaving is an extremely efficient

implementation to determine the Z-order value of a point. In a d dimensional

integer-valued vector space, the z-order value of a point can be determined by

interleaving the bits of all the coordinates of that point. This is best illustrated

using an example which is visualized in Figure 3.3b2. Consider a point (2, 3)

in a two-dimensional space. Its Z-order value denoted by Cz(2, 3) is 0011012

(= 1310) and is obtained by shuffling the bits of the inputs, 0102 (= 210) and

0112 (= 310).

2. Monotonic Ordering: Section 1.3.1 suggested that if a dataset is ordered based

on a monotone function, it ensures that a point p dominating p′, is encountered

before p′. This ordering has several advantages when computing skylines and

many algorithms are based on monotonic ordering of data points. Data sorted

2This image is adopted from Candan and Sapino (2010)
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based on their Z-order values has a monotonic ordering. For example, in the

Figure 3.3a3, h which dominates a and c is encountered before a and c.

3. Prunable Regions: The algorithms discussed in 1.3.2 were based on the principle,

that by using an index structure, points that are not guaranteed to be skylines

can be ignored and this speeds up the computation of skyline. The Z-order curve

offers a similar advantage where regions which are not guaranteed to be skylines

can be pruned. Consider the Figure 3.3c, any point in “region 4” will dominate

all the points in “region 1”. Thus if presence of a data point in “region 4” can

be ascertained then “region 1” can be eliminated from rest of the computation.

The result of Z-ordering can be described as the order, one would get from a depth

first traversal of a quadtree. Gargantini (1982) was the first to takes advantage of

Z-ordering to build a quadtree and he proposed the linear quadtree. In our work, all

the leaf nodes of the quadtree is assigned a Z-order based on its lowest left vertex and

the leaf nodes are sorted by its morton order.

The following observations can be drawn about a quadtree of dimension d and

depth t.

3.2.1.1. A d dimensional quadtree of depth t can have up to 2dt leaf nodes.

3.2.1.2. The quadtree can be considered as a d dimensional lattice made up of layers of

d− 1 dimensional sub-lattices along any particular dimension and there are 2t

such sub-lattices along that dimension. Each d − 1 dimensional sub-lattice is

made of 2(d−1)×t leaf nodes.

3.2.1.3. All the Z order values of the leaf nodes in a given sub-lattice along a dimension

(say d1) will have a common pattern. In a d dimensional space, t bits from d

3This image is adopted from Liu and Chan (2010)
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attributes are interleaved to obtain z ordering which spans d×t bits as indicated

by the possible 2dt leaf nodes. For a given layer among 2t possible layers, the z

value of all leaf nodes in it is computed by interleaving the layer number as the

value of the dimension d1. In other words the t bits of the dimensions d1 used

for bit interleaving would equal the layer number.

3.2.1.4. The layer obtained from interleaving bit 0 represents the lowest d−1 dimensional

layer along a dimension. Similarly layer obtained from interleaving bit 2t − 1

represents the highest d− 1 dimensional layer along that dimension.

Given the properties of quadtree, it could be advantageous to identify the leaf

nodes that can be pruned. A leaf node can be pruned on the claim that all points in

the leaf node is dominated by some point in the preferential space. In a d dimensional

space, a leaf node of a quadtree has the following properties.

1. All nodes of the quadtree can be considered as a hypercube with 2d vertices.

2. For each of the d dimensions, all the vertices can have only two possible values

for that dimension. Let those value be a, a + k with a + k > a. There are 2d/2

vertices which has value a and the remaining 2d/2 vertices has value a + k for

that dimension.

3. Each vertex of the leaf node has a bitmap representation, called vertex signature

obtained by replacing the lower value, a with bit 0 and higher value, a+ k with

bit 1. The vertex signature would be a number between 0 and 2d − 1.

4. Since each vertex of the 2d vertexes of leaf node are unique, each vertex has a

unique vertex signature and takes a value between 0 and 2d − 1.
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5. There is a vertex, referred to as Lower Vertex, which is dominated by all the

points in the leaf node in the original space D. The vertex signature of lower

vertex would be d-bit zeroes.

6. There is another vertex, referred to as Upper Vertex which dominates all the

points in the leaf node in the original space D. The vertex signature of upper

vertex would be d-bit ones.

The above knowledge on lower vertex and upper vertex does not help in deter-

mining if a leaf node is dominated in the preferential space. Hence a technique to

find the lower vertex and upper vertex of a leaf node in preferential space is proposed

in section 3.2.2

3.2.2 Preferential Lower And Upper Vertex

It is already established that, points are transformed from the given space D to the

preferential space D′ by projecting them on to the preferential space obtained from

SVD. In a d dimensional space, the eigenvectors of SVD have d coefficients which

can be either positive or negative. Each eigenvector has a bitmap representation

referred as vector signature obtained by replacing all the positive coefficients with bit

1 and replacing all the negative coefficients with 0. Given the above, the relationship

between the vertex signature and vector signature is as follows.

1. For a given leaf node, since each of the 2d vertices signatures are unique, the

vertex which has the highest projection on a eigenvector is the vertex which has

the same signature as that of the eigenvector.

2. Similarly, for a given leaf node, the vertex which has the lowest projection on a

eigenvector is the vertex, whose signature is the ones’ complement form of the

eigenvector’s signature
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The vertex whose signature matches the eigenvector is projected on that vector.

The resulting value is the maximum membership that any point in that leaf node can

have along the dimension specified by the eigenvector. Similarly, for each eigenvector,

the vertex which has the same signature as that of the eigenvector is picked and

projected on to that vector. Combining all the projection scores for the d eigenvectors

gives the upper vertex of the leaf node in the preferential space. Similarly projecting

the d vertices whose signature is the ones’ complement of the eigenvector, the lower

vertex of the leaf node in the preferential space is obtained. The computation of the

upper and lower vertices of a leaf node in the preferential space simplifies pruning as

follows.

1. If a point P ′ dominates the upper vertex of a leaf node in the preferential space,

then P ′ dominates all the points in the leaf node.

2. If a point P ′ doesn’t dominate the lower vertex of a leaf node in the preferential

space, then P ′ doesn’t dominate any point in the leaf node

3. If a point P ′ doesn’t dominate the upper vertex but dominates the lower vertex

in the preferential space, then P ′ dominates few points in the leaf node but not

all.

A figure illustrating the preferential lower and upper vertex is given in Figure

3.4. In the Figure 3.4, {v1, v2, v3, v4} are the vertexes of a node of a quadtree in the

original space given by X and Y axis. The transformed space is indicated by axes

X ′ and Y ′. It can be inferred that the signatures of v4 and Y ′ is same. Similarly the

signatures of v3 and X ′ is same. Hence the preferential upper vertex indicated by P1

is obtained from nodes v3 and v4. The algorithm for getting lower vertex and upper

vertex in preferential space denoted as preferential lower vertex and preferential upper

vertex is given in Algorithm 2.
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Figure 3.4: Preferential Upper And Lower Vertex

Once the preferential upper and lower vertex of the leaf nodes is established in

the preferential space, it is possible to prune away those nodes which are dominated

by other nodes in the quadtree. If the upper preferential vertex of a leaf node (say

N1) is dominated by the lower preferential vertex of an another node (say N2), then

any point in node N2 will dominate all the points in node N1.

There is however one caveat with the above approach for pruning the nodes of

the quadtree. Remember the vertices of a quadtree can have only two possible values

for each dimension and are assumed as a and a + k, where k > 0. This implies the

each side of the leaf node is k units. A cube can be constructed knowing the length

of the side of the leaf node. As each side of quadtree is k units, in a d dimensional

space, the volume of the leaf node would be kd. When upper preferential vertex

and lower preferential vertex is computed, a hypercube is formed in the preferential

space (for the same node) as well but the volume of the hypercube formed in the

preferential space is many times larger than the volume of the hypercube formed in

the original space. Consider two vertices v1 and v2 such that the vertex signature

of v1 is ones’ complement of v2. The vertex signature of v1 is same as the vector

signature of some eigenvector (say e1) that makes up the preferential space with other

29



Algorithm 2 Finding the preferential lower and upper vertices

Require: N is a leaf node of the quadtree

Require: D′ is the orthonormal user preferential space given by SVD

function getPrefLowerAndUpperVertex(N , D′)

N.prefUpperV ertex ← [ ]

N.prefLowerV ertex ← [ ]

i ← 0

for all eigenvector V in D′ do

Vsign ← GetSignature(V )

Pupper ← GetVertex(N , Vsign)

Plower ← GetVertex(N , 2d − 1− Vsign)

N.prefUpperV ertex[i] ← Project(Pupper, D′)

N.prefLowerV ertex[i] ← Project(Plower, D′)

i ← i+ 1

end for

end function

eigenvectors vectors. Hence v1 will participate towards creation of upper preferential

vertex and v2 will participate towards creation of lower preferential vertex. In a d

dimensional space, each eigenvector vector has d coefficients and they can be either

positive or negative. Let us assume there are i positive coefficients and d− i negative

coefficients. Since e1 and v1 have the same vertex signature, the projection of v1 on

e1 must be (a + k)Σmi − (a)Σmd−i, where Σmi denotes the sum of all the positive

coefficients and Σmdi denotes the sum of all the negative coefficients. Since vertex

signature of v2 is ones’ complement of v1, the projection of v2 on e1 must be (a)Σmi−

(a + k)Σmd−i. Subtracting latter from the former, the length of the side of the

node in the preferential space is obtained as kΣmi + kΣm − d− i which is k ×
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(sum of coefficients of eigenvector vector) which can be approximated as km. Thus

the volume of hypercube in the preferential space will be (km)d which is exponentially

larger than the volume of the hypercube in the original space.

Though the number of the points in the leaf node doesn’t change from the original

space to the preferential space, the volume of the hypercube enclosing the volume

increases exponentially with dimensions. The additional space in which no point is

situated is called the dead space. As a consequence, the chance of the lower preferential

vertex of a leaf node dominating the upper vertex of a leaf node decreases with increase

in dimensionality of the space. To overcome the limitations we suggest two techniques

3.2.2.1. Increase the depth of the quadtree, to reduce the volume of a leaf node of a

quadtree.

3.2.2.2. Instead of using the lower preferential vertex of a node as a candidate to prune,

find a point within the node which has high chances of pruning other nodes.

3.3 Pruning Strategy

In a d dimensional space, the k(k ≤ d) preference vectors are expressed as linear

combination of the d attributes that makes the space. Thus each of the d dimensions

(attributes) has a membership score towards each of the k preference vectors. For

a given attribute, if all of its membership scores with the k preference vectors are

positive, then those tuples which has high value for this attribute is likely to have

high value in the preferential space as well. Thus by studying the membership scores

of the d attributes, it is possible to predict the attributes whose value when high,

increase the likelihood of the tuple to be part of the skyline. This attribute among

all attributes that have the highest likelihood is called the Critical Attribute. The

algorithm for finding the critical attribute is given in Algorithm 3.
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Algorithm 3 Finding the Critical Attribute

Require: d is the dimensionality of the original space

function GetCriticalAttribute(D′)

critAttr ← −1

sum ← 0

maxSum ← 0

for all i from 0 to d− 1 do

sum ← 0

for all eigenvector V in D′ do

sum ← sum+ V [i]

end for

if sum > maxSum then

maxSum ← sum

critAttr ← i

end if

end for

return critAttr

end function

As pointed out in section 3.2.1.4, each dimension has 2t sub-lattices of quadtree

nodes and the sub-lattice which has high values on that dimension can be inferred by

bit interleaving value 2t for that particular dimension. Since it is possible to predict

the attribute which is likely to perform well on transformation, it is fair to claim

that the tuples which has high values on that attribute (or dimension) is likely to be

part of the skyline in the preferential space. Further the top most sub-lattice along

the “critical attribute”, contains all of the tuples which has high values along that

dimension and hence they are the potential candidates of being the skylines in the
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preferential space. Also the sub-lattices which has low values for that attribute are

likely to be dominated by sub lattices which has high values along that dimension.

In section 3.2.2, it is pointed out that the likelihood of a quadtree node dominating

an other node in preferential space is low because of the dead space. To overcome

this problem it is needed to find candidates which have significant dominance region

that can prune other nodes.

The pruning strategy adopted in this work is to:

1. Collect all the points from the top most sub-lattice along the “critical attribute”

and sort them based on their volume of dominance in the preferential space.

2. Pick the top K points called the “candidate points” from the sorted list and use

them to prune the other nodes, by checking the dominance of the point with

the preferential upper vertex and preferential lower vertex of the node.

3. If the candidate point dominates the preferential upper vertex, it dominates all

the points in that leaf node.

4. If the candidate point doesn’t dominate the preferential upper vertex, but dom-

inates the preferential lower vertex, then it may dominate some points in the

node.

5. If the candidate point doesn’t dominate the preferential lower vertex, then it

doesn’t dominate any point with the node.

6. The points that are not dominated by the candidate point are collected and

added to the sorted list of points already maintained.

7. The list is sorted using the in-built merge sort of java which is optimized for

nearly sorted lists. Hence sorting the list twice shouldn’t add any significant

overhead.
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8. The Sort Skyline First algorithm is applied on this sorted list to identify the

skylines of the preferential space.

We present the algorithm of preferential skyline processing in Algorithm 4

3.4 Proofs:

3.4.1 Proof I:

Let P = {p1, p2...pd} and Q = {q1, q2...qd} be two points in a d dimensional space

where P � Q. Let the preferential space D′ be comprised of set of orthonormal

eigenvectors {V pref
1 , V pref

2 ...V pref
k }, where k ≤ d. Since P � Q, ∀i, 1 ≤ i ≤ d, pi ≥ qi

and ∃j, 1 ≤ j ≤ d, pj > qj. In the preferential space P and Q is projected to P ′ and

Q′.

3.4.1.1. case 1: P ′ � Q′. Let D′ be an one dimensional space with one eigenvector V pref
1 .

Let V pref
1 = {v11, v12...v1d} has all positive coefficients. Since points form the

original space are projected to the preferential space, P ′ = {p′1} can be defined

as P ′ = {v11 ∗p1 + v12 ∗p2 + ...+ v1d ∗pd}. Similarly Q′ = {q′1} can be defined as

Q′ = {v11 ∗q1 +v12 ∗q2 + ...+v1d ∗qd}. Since ∀i, 1 ≤ i ≤ d, v1i > 0 and P � Q, it

is possible to say v11 ∗p1 +v12 ∗p2 + ...+v1d ∗pd > v11 ∗ q1 +v12 ∗ q2 + ...+v1d ∗ qd
which implies P ′ � Q′.

3.4.1.2. case 2: Q′ � P ′. The proof is similar to 3.4.1.1, except for the assumption

V pref
1 to have all negative coefficients. In other words, ∀i, 1 ≤ i ≤ d, v1i < 0.

Since P � Q, it is possible to say v11 ∗ p1 + v12 ∗ p2 + ... + v1d ∗ pd < v11 ∗ q1 +

v12 ∗ q2 + ...+ v1d ∗ qd which implies Q′ � P ′.

3.4.1.3. case 3: P ′ ∼ Q′. The proof is combination of 3.4.1.1 and 3.4.1.2. Let D′ be a

two dimensional space specified by eigenvectors V pref
1 and V pref

2 . Let V pref
1 has
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Algorithm 4 Preferential Skyline Processing

Require: D′ is the orthonormal user preferential space given by SVD

Require: d is the dimensionality of the space

Require: Nodes is the list of leaf nodes of the quadtree of depth t sorted by the

Z-order values of its lower vertex

Require: CZ(P ) is the Z-order value of point P

Require: AddPoints(N,D′, L) transforms all the points in a leaf node N and adds

it to the list L

Require: AddNode(N,L) adds a leaf node N to the list L

Require: DominanceSort(P ) sorts a set of points based on its volume of dominance

function PSP(D′)

critAttr ← −1

maxV alue ← (1 << t)− 1

mortonMask ← 0

P ′short ←

prunableNodes ← []

for all node N in Nodes do

GetPrefLowerAndUpperVertex(N , D′)

end for

critAttr ← GetCriticalAttribute(D′)

while true do

for all i from 0 to t− 1 do

if maxV alue&i = i then

mortonMask ← mortonMask|1 << (i× d) + critAttr

end if

end for
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for all node N in Nodes do

if CZ(N) &mortonMask == mortonMask then

AddPoints(N , D′, P ′short)

else if

thenAddNode(N , prunableNodes)

end if

end for

if Size(P ′short) > 0 then

break

end if

maxV alue ← maxV alue− 1

end while

DominanceSort(P ′short)

P ′topK ← GetTopK(P ′short, K)

for all point P in P ′topK do

for all node N in Nodes do

if P � N.prefUpperV ertex then

Prune(N)

all positive coefficients similar to 3.4.1.1 and V pref
2 has d-1 negative coefficients

and one positive coefficient. P ′ and Q′ can be represented as P ′ = {p′1, p′2} and

Q′ = {q′1, q′2}. From 3.4.1.1, it is possible to infer that p′1 > q′1. Now, V pref
2 can

be represented as {v21, v22...v2d} and ∃j, 1 ≤ j ≤ d, v2j > 0 and ∀i, i 6= j, v2i < 0.

p′2 can be specified as {v21 ∗ p1 + v22 ∗ p2 + ...+ v2d ∗ pd} and similarly q′2 can be

specified as {v21 ∗ q1 + v22 ∗ q2 + ...+ v2d ∗ qd}. Depending on values of P and Q,
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else if P ′ � N.prefLowerV ertex then

PartialyPrune(N)

N.PartialPruner ← P ′

end if

end for

end for

for all node N in Nodes do

if isPruned(N) then

continue

else if IsPartiallyPruned(N) then

for all point P in N do

P ′ ← Project(P )

if N.PartialPruner � P ′ then

Add(P’, P ′short)

end if

end for

else

for all point P in N do

P ′ ← Project(P )

Add(P ′, P ′short)

end for

end if

end for

return SFS(P ′short)

end function
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p′2 can be greater than or lesser than q′2. Consider the scenario where p′2 < q′2,

it is possible to say P ′ ∼ Q′ since p′1 > q′1 and p′2 < q′2

3.4.2 Proof II:

Let P = {p1, p2...pd} and Q = {q1, q2...qd} be two points in a d dimensional space

where P ∼ Q. Let the preferential space D′ be comprised of set of orthonormal

eigenvectors {V pref
1 , V pref

2 ...V pref
k }, where k ≤ d. Since P ∼ Q, ∃i, 1 ≤ i ≤ d, pi > qi

and ∃j, 1 ≤ j ≤ d, pj < qj. In the preferential space P and Q is projected to P ′ and

Q′.

3.4.2.1. case 1: P ′ � Q′. Let D′ be an one dimensional space with one eigenvector

V pref
1 . Let V pref

1 = {v11, v12...v1d}. Let V pref
1 has positive coefficients for all

the dimensions where pi > qi and negative coefficients when pi < qi. Math-

ematically, this can be expressed as ∀i, 1 ≤ i ≤ d, pi > qi ⇒ v1i > 0 and

∀i, 1 ≤ i ≤ d, pi < qi ⇒ v1i < 0. This implies that on projection of P and Q to

D′, P ′ will always dominate Q′.

3.4.2.2. case 2: Q′ � P ′. This proof is similar to 3.4.2.1 except for the assumption

that V pref
1 has negative coefficients for all the dimensions where pi > qi and

positive coefficients when pi < qi. Mathematically, this can be expressed as

∀i, 1 ≤ i ≤ d, pi > qi ⇒ v1i < 0 and ∀i, 1 ≤ i ≤ d, pi > qi ⇒ v1i > 0. This

implies that on projection of P and Q to D′, Q′ will always dominate P ′.

3.4.2.3. case 3: P ′ ∼ Q′. This proof is a combination of 3.4.2.1 and 3.4.2.2. Let D′ be

a two dimensional space specified by eigenvectors V pref
1 and V pref

2 . P ′ and Q′

can be represented as P ′ = {p′1, p′2} and Q′ = {q′1, q′2}. Let V pref
1 be similar to

3.4.2.1 in which case p′1 > q′1. Let V pref
2 have all positive coefficients, that is

∀i, 1 ≤ i ≤ d, v2i > 0. p′2 can be specified as {v21 ∗ p1 + v22 ∗ p2 + ...+ v2d ∗ pd}
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and similarly q′2 can be specified as {v21 ∗ q1 +v22 ∗ q2 + ...+v2d ∗ qd}. Depending

on the values of P and Q, p′2 can be greater than or lesser than q′2. Consider

the scenario where p′2 < q′2, it implies P ′ ∼ Q′ since p′1 > q′1 and p′2 < q′2.
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Chapter 4

LATENT SKYLINE PROCESSING

4.1 Introduction

Section 1.2 introduced the concept of latent skyline processing. Latent skyline pro-

cessing is similar to preferential skyline processing, except that the subspace enclosed

by the characteristic vectors isn’t orthonormal. Since the subspace isn’t orthogonal,

there is a need to have a transformation that would not only map the data from the

original space to the preferential space, but also maintain the semantical indepen-

dence of the characteristic vectors. The semantical independence of the preferential

space is important because each characteristic vector denotes a specific concept which

are independent of other characteristic vectors.

If the transformation does not enforce the semantic independence of the character-

istic vectors, there could be correlation or anti-correlation between the characteristic

vectors. Skyline on such a space would result in vital information loss. The loss

is explained in section 4.4 through a transformation in section 4.2. This research

introduces a novel transformation technique called Stretching in section 4.3 which

maintains the semantic independence of the characteristic vectors.

Consider a d dimensional data space D and a data set P on D. Consider a sub-

space of D formed by k, k ≤ d characteristic vectors denoted by Dprefk . These charac-

teristic vectors are denoted as {V pref
1 , V pref

2 ...V pref
k } and together form the sub-space

Dprefk . Each of these characteristic vector indicates a specific independent concept in

the original space D. When the transformation is complete, the new space, D′ should

be a k dimensional orthogonal space. In case, the number of characteristic vectors
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exceeds the dimensionality of the data space, additional dimensions are introduced

in the data space to equal the number of characteristic vectors. Introduction of addi-

tional dimensions are trivial as all data would have zero membership towards the new

dimension. As a consequence, for rest of the discussion, the number of characteristic

vectors k is considered lesser or equal to dimensionality of the data space d.

4.2 Projection

Projection describes a transformation where a point P , PεP is projected on to

each of the k characteristic vectors and the projection, P makes on the characteristic

vector V pref
k is considered as the membership of point P along that dimension. The

k projections, P makes on each of the k characteristic vectors would indicate the

P ′ score along the k dimensions in the new k dimensional space. An algorithm for

projection is specified in Algorithm 5

Algorithm 5 Projecting a point in the subspace

Require: P is a point in the d dimensional space D

Require: Dprefk are the k characteristic vectors: {V pref
1 , V pref

2 , ...V pref
k }

function Project(P , mathcalprefk )

i ← 0

P ′ ← [ ]

for all characteristic vector V pref
i in Dprefk do

P ′[i] ← Project(P , V pref
i )

i ← i+ 1

end for

return P ′

end function
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We consider the point P ′ to be the point in the new k dimensional space D′. We

prove that the above transformation does not maintain the semantic independence

of the characteristic vectors in section 4.10.1. The weakness of the transformation

through projection is that even if a data point lies completely on a characteristic

vector, it still has a non zero membership value with other characteristic vectors in

the new space. This is a clear violation of principles of mutual independence which

suggests that orthonormal vectors should have no correlations between them.

4.3 Stretching

In a d dimensional orthonormal system, a vector v’s membership with the coor-

dinate axis is resolved using the |v| cos θ formula where θ is the angle, the vector v

makes with the independent dimensions. Further when a vector, v is aligned with

a dimension (makes 0◦), the vector has non zero membership only with that dimen-

sion. This prevents any correlation between the dimensions. From section 4.2 it is

evident that projection doesn’t work if the dimensions are not independent. In sce-

narios, where the sub-space is not orthonormal, two fundamental questions needs to

be answered.

1. Given a vector v, find those characteristic vectors with which the vector has

non zero membership.

2. Given a vector v and the set of characteristic vectors with which it has non zero

membership, find its memberships.

The outline of stretching algorithm is presented in section 4.3.1. The description

of the algorithm is given in section 4.3.4 and section 4.9 presents a formal algorithm

for calculating latent skylines.
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4.3.1 Outline

We begin with the assumption that we have d characteristic vectors in a d di-

mensional space and later we extend to cover the more general scenario of having k

characteristic vectors in a d dimensional space, where k ≤ d in section 4.9. Given d

characteristic vectors in a d dimensional space, we map each of the characteristic vec-

tor to an axis in the original space. Each characteristic vector is mapped to the axis

closest to it. Then the subspace is divided into d regions with help of a Nullification

Point (explained in section 4.3.3), represented by ĉ which is a weighted arithmetic

mean of the characteristic vectors. Thus the “nullification point”, ĉ is always within

the subspace. Now each of the d characteristic vectors are pulled towards its mapped

axis, thus stretching the space between them and making the characteristic vectors

orthonormal to each other.

In a d dimensional space, the nullification point divides the subspace into d regions.

Each of the d regions are bounded by d − 1 dimensional hyperplanes and there are

d such hyperplanes. This is true for any d dimensional space and can be observed

in the original given space as well. For example, a two dimensional space has two

one dimensional hyperplane (lines) which we call as X-axis and Y-axis. Similarly a

three dimensional space is bounded by three two dimensional hyperplanes namely

XY-plane, YZ-plane and ZX-plane. These hyperplane boundaries are formed by

characteristic vectors and nullification point. Among d hyperplane boundaries, one

boundary is made up only characteristic vectors. It is convenient to visualize the

stretching algorithm as stretching of the outer hyperplanes of the regions to the

hyperplanes formed by the axis.
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4.3.2 Characteristic Vectors Mapping

In section 4.3.1 we suggested that each characteristic vector is associated to the

axis closest to it. In some cases, there can be multiple characteristic vectors, for

which, a certain axis is closer than the rest. To deal with such conflicts, we propose

an iterative algorithm that would map the characteristic vector to an axis. The

iterative algorithm is based on the condition, that a characteristic vector is mapped

to an axis, if and only if it is the closest unmapped characteristic vector to it. The

algorithm used to map characteristic vectors to the axes is given in Algorithm 6.

4.3.3 Nullification Point Of Subspace

Consider a d dimensional space with d characteristic vectors. During stretching

we pull all of the d vectors to map to the d dimensions. Each of the point in the

sub-space could be pulled along any of the d directions. The nullification point

of the sub-space divides the sub-space into d regions with each region pulled in a

direction. A straightforward method to compute the nullification point might be to

take the arithmetic mean of all the characteristic vectors but this could skew the

stretch in favor of a characteristic vector. The skewing is explained in detail through

two examples in 4.3.3.1 and 4.3.3.2.

4.3.3.1. Consider the following example where we have two characteristic vectors V pref
1

and V pref
2 in a two dimensional space. Let V pref

1 make 10◦ with X axis and

V pref
2 make 20◦ with X axis. In this case V pref

1 will be stretched towards X axis

over a region spanning 10◦ while V pref
2 will be stretched towards Y axis over a

region spanning 70◦. If the nullification point is determined by the arithmetic

mean of V pref
1 and V pref

2 , the nullification point ĉ will make 15◦ with X axis.

Now if the points between ĉ and V pref
1 , called region 1 are stretched towards X
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Algorithm 6 Characteristic Vector Mapping

Require: Dprefk are the k characteristic vectors: {V pref
1 , V pref

2 , ...V pref
k }

Require: The k axis vectors are {A1, A2...Ak}

function Map(Dprefk )

angles ← [ ][ ]

isAssigned ← [ ]

i ← 0

for all characteristic vector V pref
i in Dprefk do

j ← 0

isAssigned[i] ← -1

for all axis vector Aj in {A1, A2...Ak} do

angles[i][j] ← GetAngle(V pref
i , Aj)

j ← j + 1

end for

i ← i+ 1

end for

done ← False

minAngle ← infinity

closestAxis ← NULL

while (!done) do

i ← 0

for all characteristic vector V pref
i in Dprefk do

j ← 0

for all axis vector Aj in {A1, A2...Ak} do

if angles[i][j] < minAngle then
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minAngle ← angles[i][j]

closestAxis ← j

end if

j ← j + 1

end for

l ← 0

for all characteristic vector V pref
l in Dprefk do

if angles[l][closestAxis] < minAngle then

if isAssigned[l] 6= −1 then

if isAssigned[l] 6= closestAxis then

continue

else

angles[i][closestAxis] ← infinity

break

end if

end if

end if

end for

isAssigned[i] ← closestAxis

i ← i+ 1

end for

if all characteristic vectors are mapped then

done ← true

end if

end while

end function
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axis and points between ĉ and V pref
2 , called region 2 are stretched towards Y

axis, the stretch of region 2 covers larger area (87.5%more) than the stretch of

region 1 thus skewing the stretch in favor of points in region 2.

4.3.3.2. Consider a three dimensional space with three characteristic vectors V pref
1 , V pref

2

and V pref
3 . Let ~i, ~j and ~k represent the unit vectors along X, Y and Z axis

respectively. Let ĉ be the arithmetic mean on the three characteristic vectors.

Let V pref
1 = 0.9~i + 0.2~j + 0.2~k, V pref

2 = 0.3~i + 0.9~j + 0.3~k and V pref
3 = 0.4~i +

0.4~j + 0.8~k. V pref
1 , V pref

2 and V pref
3 are stretched towards X, Y and Z axis

respectively. When V pref
1 and V pref

2 are stretched towards X and Y axis, The

plane formed by V pref
1 and V pref

2 coincide with XY plane. This makes up one

stretch. Similarly planes formed by vectors V pref
2 and V pref

3 and vectors V pref
3

and V pref
1 coincide with YZ and ZX plane respectively making the other two

stretches. The data vectors within the sub space will participate in one of the

above three stretches depending on its position relative to ĉ: for instance, if a

data vector is present in a volume enclosed by V pref
1 , V pref

2 and ĉ, it will be

stretched towards XY plane. One can infer that each stretch will span different

volume and thus a nullification point based on arithmetic mean will skew the

stretches.

When the stretches are skewed, data within one of the regions are stretched con-

siderably more and it takes up more space, there by standing a greater chance of

being part of the skyline in the new space. To avoid this bias, we divide the region

in proportion with the space available for a region to stretch. Thus in case of 4.3.3.1

region 1’s available space to stretch is one-seventh of region 2’s available space to

stretch. So we formulate the nullification point in such a way that the region 1 is
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one-seventh of the area of region 2, thus eliminating the bias. The algorithm for

computation of nullification point of subspace is given in Algorithm 7

4.3.4 Stretching Algorithm

We are ready to formally present the stretching algorithm. We had previously

established that, we compute the nullification point of the sub space to divide the

subspace into regions. For a d dimensional subspace, we form d regions with each of

the d regions enveloped by d−1 dimensional hyperplanes. Consider the d characteris-

tic vectors, {V pref
1 , V pref

2 , ..., V pref
d }. These d vectors form a d dimensional space. We

can replace a characteristic vector by the nullification point vector to form d regions.

For example, {ĉ, V pref
2 , ...., V pref

d } and {V pref
1 , ĉ, ..., V pref

d } would be two of the d re-

gions. Each of this region is enveloped by d − 1 dimensional hyperplanes and there

are d such hyperplanes. Thus if {ĉ, V pref
2 , ...., V pref

d } is the region in consideration,

then {V pref
2 , V pref

3 ..., V pref
d } and {ĉ, V pref

2 , ..., V pref
d−1 } would be two of the d such d− 1

hyperplanes. Of those d hyperplanes, we can observe there would be a hyperplane

formed with d− 1 characteristic vectors called the outer hyperplane. We stretch the

region by keeping the nullification point ĉ fixed, while stretching the outer hyperplane

to coincide with the hyperplane formed by those axis vectors which maps to these

characteristic vectors. Let {A1, A2, ...Ad} be the d axis in the original dimensions with

an one to one mapping between the characteristic vectors and axis. Let’s assume that

the characteristic vector V pref
i is mapped to the axis Ai where 1 ≤ i ≤ d. Then the

hyperplane formed by vectors {V pref
2 , V pref

3 , ..., V pref
d } would be stretched to coincide

with the hyperplane formed by the vectors {A2, A3, ..., Ad}. All of the points found

in that region would be subjected to this stretch. Consequently the points that are

outside the subspace are discarded and not included in the skyline computation.
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Algorithm 7 Computation of Nullification Point

Require: Dprefd contains the d characteristic vectors

Require: Array Anglesd contains the angles d regions make with d axis planes

function computeNullificationPoint(Dprefk )

angleSum ← 0

i ← 0

j ← 0

temp ← 0

ĉ ← []

for all angle A in array Anglesd do

angleSum ← angleSum + A

end for

while i < d do

temp ← 0

while j < d do

temp ← V pref
j [i] ∗ (Anglesd[(j + d− 1)%d]/angleSum)

end while

ĉ[i] ← temp

end while

return ĉ

end function
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When a region is stretched, the position of all the vectors in the region change

but the nullification point. If we can imagine all the stretches to be concurrent forces

acting on the sub-space, then the nullification point can be considered to be in equi-

librium under all those forces. It is called the nullification point because all the forces

that stretch the space are nullified and the point stays in equilibrium. Since the

outer hyperplane coincides with the hyperplane formed by axes after stretching, we

can establish that any vectors lying in the outer hyperplane will coincide with the

hyperplane formed by the axis. These are the boundary conditions, where nullifica-

tion point represents area of no stretch and the outer hyperplane represents area of

maximum stretch. Every point in the region can be stretched relatively based on the

boundary conditions. We answered the question “how much to stretch a point?” but

this beckons us with an important question “Where should a point be stretched to?”.

Stretching can be considered as a rotation operation where the data is rotated along

a plane by a certain angle. We know the nullification point is rotated by 0◦ and the

outer hyperplane is rotated through an angle θ where θ is the angle between outer

hyperplane and axis hyperplane. With these two information we can figure the angle

by which any data should be stretched (rotated). We have only one clue to determine

the direction of the rotation and that is, if the data lies on the outer hyperplane, it

is stretched all the way to the hyperplane formed by axes. So we begin by rotating

the data to coincide with the outer plane. We can also consider stretching as an

application of non coplanar, concurrent forces on a non rigid body with all the forces

intersecting at the nullification point. So it is only natural to rotate the data through

the plane formed by the data and the nullification point, and this is guaranteed to

intersect the outer plane. The vector as a result of this intersection is termed as Data

at intersection. We can measure the angles the data at intersection makes with the

characteristic vectors that forms the hyperplane. We also know that if the original
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location of the data was on the outer hyperplane, it would have been stretched to

the hyperplane formed by axes. We term the vector on the hyperplane formed by

axes as data on axes hyperplane. Further the angles made by the Data at intersection

with the characteristic vectors must be relative to the angles made by data at axes

hyperplane with the axis. In section 4.3, we mentioned that it is imperative to find

those characteristic vectors with which a data vector has non zero membership. For

the above reason we introduce a new concept called the critical characteristic vec-

tors. The critical characteristic vectors of a data vector are the characteristic vectors

that forms a hyperplane and has the lowest dimensionality among all the hyperplanes

that contains the data vector. For example, in a three dimensional space with three

characteristic vectors V pref
1 , V pref

2 and V pref
3 , If a vector v, lies along a characteristic

vector V pref
1 , then just that characteristic vector (V pref

1 ) is the critical characteristic

vector of the vector v. Similarly if the vector v and two other characteristic vectors,

say V pref
1 and V pref

2 are coplanar, then those two characteristic vectors (V pref
1 and

V pref
2 ) become the critical characteristic vectors of the vector v. We claim a given

vector must have non zero membership only with its critical vectors.

4.3.4.1. Let θ1, θ2 ... θk where k ≤ d− 1 be the angles, data on intersection makes with

the k critical characteristic vectors that makes the outer hyperplane.

4.3.4.2. We can express these angles as θ1, m2 ∗ θ1 ... mk ∗ θ1 on the assumption θ1 ≤ θi,

where 2 ≤ i ≤ k and m2,m3...mk are positive real constants.

4.3.4.3. Let α1, α2 ... αk be the angles, data on axes hyperplane makes with k axis. It is

to be noted these k axis are mapped to the k characteristic vectors previously.

4.3.4.4. Since the location of the data on axes hyperplane should be relative to location

of data on intersection, 4.3.4.3 can be expressed as α1, m2 ∗ α1 ... mk ∗ α1.
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4.3.4.5. Since the sum of direction cosines of a vector is 1, we know α2
1 + (m2 ∗ α1)

2 +

...+ (mk ∗ α1)
2 should be 1.

From 4.3.4.5 we can resolve for α1 and thus the location of data on axes hyperplane.

Now we propose the plane of rotation of the data as the plane that contains data and

data on axes hyperplane. We again find the intersection of the plane of rotation with

the outer hyperplane and call this intersection as data on outer hyperplane. Given

this plane of rotation we know that if data lies on data on outer hyperplane, it would

coincide with the data on axis hyperplane. Thus by measuring the angles between

these three vectors we can determine the final position of the data.

β = Angle between data and “data on axes hyperplane”

γ = Angle between “data on outer hyperplane” and “data on axes hyperplane”

δ = ((90− β)× 90/(90− γ))− (90− β) (4.1)

Thus δ specified in equation 4.1 gives the angle of stretch along the plane of rota-

tion formed by the vectors data and data on axes hyperplanes. Now we try to assert

the usefulness of the stretching algorithm by trying to answer the question posed at

the beginning of the section 4.3 which are crucial to a transformation technique. The

questions are repeated here.

1. Given a vector v, find those characteristic vectors with which the vector has

non zero membership.

2. Given a vector v and the set of characteristic vectors with which it has non zero

membership, find its memberships.

Once the critical characteristic vectors of a data vector are established, its mem-

bership when stretched should be relative to its similarity with those critical char-
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acteristic vectors in the original space. Thus we can see the stretching algorithm’s

transformation is consistent with both the requirements.

4.4 Projection Vs Stretch

We saw an example problem involving latent skylines in section 1.2, where a NBA

manager is trying to recruit a player who can play in both SG and PG positions.

In this section, we use the same example to compare the projection and stretching

transformations. The example is re-explained here for convenience. A NBA manager

wants to sign a player who can play in both PG and SG positions. His decision making

can be eased if he can find the skyline of players where the attributes are their PG

rating and SG rating. The manager has all statistics of the players. He needs to find

the characteristic vectors of the PG and SG position and transform the existing space

into the two dimensional space where one dimension indicates the players’ skill (or

rating) as a PG player and other position indicates the players’ skill (or rating) as a

SG player. He can obtain the characteristic vector of PG (and SG) by doing SVD on

statistics of players who are classified as legendary PG (and SG) players by NBA. In

other words, the skill of these players is the very definition of the PG (and SG) role.

Once the characteristic vectors are obtained, he can transform into the latent space

either using projection or stretching.

For the sake of the experiment we assume the manager doesn’t know the positions

of these players. He just knows their statistics and relies on the system to get the best

PG and SG players. Figure 4.1 compares the transformation through both projection

and stretching and tables 4.1 and 4.2 gives the skyline via both the transformations.

Tables 4.1 and 4.2 gives the name of the player and the position he plays. We can see

from Figure 4.1a that projection doesn’t make the characteristic vectors independent

as there is significant correlation and all the players are clumped together. There
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(a) Transformation through projec-

tion.

(b) Transformation through Stretch-

ing.

Figure 4.1: Projection Vs Stretching

is no useful inferences that can be drawn and the skyline in table 4.1 is just three

players with very good statistics. However Figure 4.1b treats the two characteristic

vectors independent, as one can see players who play in SG position are clumped

together Y axis which is the axis SGs’ characteristic vector has been stretched to.

Similarly players who play as PG are more crowded near X axis which is the axis

PGs’ characteristic vector has been stretched to. Semantically we can infer

1. The players in the middle of the plot to be a good PG and SG player.

2. The players near X axis are good PG players.

3. The players near Y axis are good SG players.

Thus we can perceive stretching to be a superior transformation to projection.

4.5 Limitations Of Vector Calculus

Vector calculus is the de facto standard for solving problems in Euclidean space.

The stretching algorithm also can be implemented using vector calculus but only for

two and three dimensions. The above limitation is due to the fact that in vector cal-

culus, cross product in particular does not generalize to higher dimensions. Stretching
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Player Position

LeBron James SF

Kevin Durant SF

Chris Paul PG

Table 4.1: Skyline Of Players Through

Projection.

Player Position

LeBron James SF

Jrue Holiday PG

Kyrie Irving PG

Kobe Bryant SG

Russell Westbrook PG

Monta Ellis PG

Stephen Curry PG/SG

Mike Conley PG

Jason Kidd PG

Brandon Jennings PG

Manu Ginobili SG

Table 4.2: Skyline Of Players Through

Stretching.

algorithm involves rotation of a vector on a plane for a particular angle. In order to

compute the equation of the plane, we need to find the vector normal to the plane and

the common way to find that normal is by using cross product. The cross product can

help us find the normal to a plane in three dimensions but fails for higher dimensions,

reasons for which is explained below.

Given two linearly independent vectors in R3, these two vectors form a plane and

the dimension of the space perpendicular to the plane on both sides of the plane

is one. We use right hand rule to decide one of the opposing directions. In higher

dimensions, the problem becomes more complicated since the perpendicular space on

both sides of the plane has higher dimensions and a way to consistently choose one
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of the many possible directions is not apparent. Thus the non applicability of cross

product at higher dimensions prevents us from implementing stretching algorithm

using vector calculus.

4.6 Introduction To Clifford Algebra

Lehar (2014) describes Clifford Algebra a.k.a Geometric Algebra as a most extraor-

dinary synergistic confluence of a diverse range of specialized mathematical fields, each

with its own methods and formalisms, all of which find a single unified formalism un-

der Clifford Algebra. History of algebra has seen many confounding theories since

its Arabic origins around 810 AD. Clifford algebra attempts to incorporate all these

theories to achieve a single consistent formalism that generalizes to arbitrary num-

ber of dimensions. Lehar (2014) and Diek and Kantowski (1995) lists the historical

summary that led to Clifford algebra as follows.

Figure 4.2: Multiplication By i Leads To Rotation By 90◦

1. Introduction of complex numbers and the apparent discovery that multiplication

of the imaginary component performs a rotation. For example multiplication

by i results in a 90◦ rotation as explained in Figure 4.21.

1This image is obtained from Lehar (2014)
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2. Gibbs introduced vectors and introduced dot product and cross product. Dot

product has been incorporated into Clifford algebra but cross product as we

saw in section 4.5 does not generalize well to arbitrary dimensions.

3. Hamilton proposed the quaternions format where he used three imaginary axis (i

j and k) to take advantage of the rotational property of imaginary numbers along

with a scalar. He defined a compound number of the form v = a+ bi+ cj + dk

and to this date many applications use quaternions for handling rotation as

opposed to standard vector calculus.

4. Grassman proposed an alternative to the flawed cross product known as exterior

product or wedge product. Wedge product is an important component of clifford

algebra and is discussed in detail in section 4.6.2.

5. Clifford took all the best ideas from the above works to achieve a consistent

formalism that generalizes to arbitrary number of dimensions and is described

in this section.

4.6.1 Cliffs And Grades

(a) Grades 0 to 3 (starting from left) (b) Clifford subspaces specified by

Pascal’s Triangle

Figure 4.3: Clifford Subspaces And Grades
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Clifford defined a hierarchy of compound number knows as “clif”, or “multivec-

tor”, that range from zero dimensions (scalar) to one dimension (vector) to two di-

mensions (bivector), to three dimensions (trivector), and so on. In Clifford Algebra

dimensions are referred to as grades, so a scalar is grade zero, a vector is grade 1, etc.

Figure 4.3a2. depicts the grades from 0 to 3.

Any component (includes subspace) in a clifford algebra is specified as a cliff. Any

scalar quantity is just represented as a scalar of grade 0 and a vector is represented

as a vector of grade 1. Any plane is represented as a bivector having grade 2 and so

on. In a R2 space with basis {e1, e2} there is a bivector formed by vectors e1 and e2

and can be represented as e12. However in R3, there are three basis {e1, e2, e3} which

makes three possible configurations for bivectors possible, namely {e12, e13, e23}. In

fact, R3 is composed of a scalar, three vectors (e1, e2, e3), three bivectors (e12, e13, e23)

and a trivector (e123). This way we can decompose any space into its lower grades

and this decomposition follows the pattern corresponding to Pascal’s triangle. The

pascal triangle and breakdown of number of grades for dimensions up to eight is given

in Figure 4.3b. We can infer from the Figure 4.3b that a given dimension d would be

composed of 2d grades.

4.6.2 Outer Product Or Wedge Product

Lehar (2014) defines the wedge product of two vectors as a patch of surface (bivec-

tor) whose area is equal to the product of the two vectors, as if one vector was swept

along the other, and that surface is within the plane that contains both of the origi-

nal vectors. Wedge products are anti-commutative and can be called as an oriented

area as shown in Figure 4.4a3. In Figure 4.4a, P and Q are the two vectors and the

2This image is obtained from Lehar (2014)
3This image is obtained from Lehar (2014)
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(a) Wedge Product Representation

(b) Wedge Product in Euclidean

Plane R2

Figure 4.4: Wedge Product Representation

shaded area represents their wedge product. Wedge product of two vectors p and q is

represented as p∧ q. An important consequence of the above definition is that wedge

product of a vector with itself is 0 since there is no area to be swept across.

p ∧ p = 0 (4.2)

p ∧ q = −(q ∧ p) (4.3)

Suter (2003) presents an elegant description as how arbitrary grades are decom-

posed to their basis. Given any n-dimensional vector a, it has to be decomposed to its

basis {e1, e2...en}. In other words any vector is expressed as a linear combination of

its orthonormal bases. Bivectors are very much alike and can be expressed as linear

combination of basis bivectors.

Consider two vectors a = (α1, α2) and b = (β1, β2) in the Euclidean Plane R2

depicted in Figure 4.4b4. The vectors can be decomposed to their basis as

4This image is obtained from Lehar (2014)
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a = α1e1 + α2e2

b = β1e1 + β2e2

The outer product of a and b becomes

a ∧ b = (α1e1 + α2e2) ∧ (β1e1 + β2e2)

a ∧ b = (α1e1 ∧ β1e1) + (α1e1 ∧ β2e2) + (α2e2 ∧ β1e1) + (α2e2 ∧ β2e2)

a ∧ b = (α1β1e1 ∧ e1) + (α1β2e2 ∧ e2) + (α2β1e2 ∧ e1) + (α2β2e2 ∧ e2) (4.4)

Using 4.2 we can simplify 4.4 as

a ∧ b = (α1β2e1 ∧ e2) + (α2β1e2 ∧ e1)

LetI = e1 ∧ e2

⇒ −I = e2 ∧ e1

⇒ a ∧ b = (α1β2 − α2β1)I (4.5)

The outer product of two vectors is given in 4.5, which is a bivector and is expressed

in terms of basis bivectors, which in euclidean plane R2 is I = e1∧e2. In 3-dimensional

space R3 made up of basis {e1, e2, e3}, a bivector can also be expressed in terms of

basis bivectors but the expression would be different as there are three basis bivectors

namely {e1 ∧ e2(e12), e2 ∧ e3(e23), e3 ∧ e1(e31)}.

Let a and b be two vectors given by 4.6 and 4.7 respectively,
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a = α1e1 + α2e2 + α3e3 (4.6)

b = β1e1 + β2e2 + β3e3 (4.7)

(4.8)

The wedge product of a and b is given by 4.9. Please note the basis of the

multivector in 4.9 are the bivectors in R3

a ∧ b = (α1β2 − α2β1)e12 + (α1β3 + α3β1)e13 + (α2β3 − α3β2)e23 (4.9)

4.6.3 Geometric Product

Geometric product is a clifford operator obtained from combining dot product and

geometric product. Geometric product of vectors a and b is given in equation 4.10.

Geometric product of two vectors have important significance in rotations of vectors

discussed in section 4.10.

ab = aḃ+ a ∧ b (4.10)

4.6.4 Clifford Reversal

Clifford algebra defines the reverse of a product of vectors as the multivector

formed by reversing the order of vectors. For example if v = αe1 ∧ e2, then reverse of

v given by v∼ is αe2 ∧ e1.

4.6.5 Rotations And Other Formulations

Denker (2003) suggests that rotation can be specified by two parameters
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1. Plane of rotation

2. Angle of rotation

These two parameters can be encoded by specifying two vectors. The plane con-

taining the two vectors is the plane of rotation and the angle between the two vectors

specify the angle of rotation. In clifford algebra, the term “rotor” is used when de-

scribing rotations. Given two vectors a and b to specify the rotation, the rotor of the

rotation is given as the geometric product of a and b. The rotor has both a scalar

component and a bivector component.

In clifford algebra, the general formula to rotate a vector using a rotor is specified

in 4.11

v′ = r∼vr (4.11)

where

v = given vector

r = rotor

r∼ = clifford reversal of rotor

v′ = vector obtained by rotating v using the rotor r

This is the formula to rotate cliffs of any grade in any dimensional space. The full

proof for this formula is beyond this text. Please refer Suter (2003) for more details.

In this way clifford algebra presents consistent formalism to compute intersection of

subspaces of arbitrary dimensions and find angles between them. For an introduction

to clifford algebra please refer Denker (2006). For more advanced reading please refer

Dorst and Mann (2002).
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4.7 Stretch Algorithm

Having introduced the concepts of clifford algebra, we can formally present the

core stretching algorithm which is implemented using concepts of clifford Algebra.

The core stretching algorithm is given in Algorithm 8

Algorithm 8 Simple Stretch Algorithm

Require: outerHyperplane is the outer hyperplane of the region in which data is

present

function Stretch(Vector data)

initP laneofRotation ←WedgeProduct(nullificationpoint, data)

dataAtIntersection ← Meet(outerHyperplane, initP laneOfRotation)

dataAtAxisHP ← GetDataAtAxis(dataAtIntersection, GetMagni-

tude(data))

finalP laneofRotation ←WedgeProduct(data, dataAtAxisHP )

dataOnOuterHP ← Meet(finalP laneofRotation, outerHyperplane)

angle ← GetStretchAngle(data, dataOnOuterHP , dataAtAxisHP )

stretchedData ← Rotate(finalP laneofRotation, angle, data)

return stretchedData

end function

4.8 Scope for Pruning

In the context of latent skyline processing, we have so far figured an algorithm to

stretch all the points that would fall within the space enclosed by the characteristic

vectors, but stretching is a costly operation not because of the complex rotations

involved but also because of the inherent complexity of each clifford operations. As

mentioned in section 4.6, a given dimension d is composed of 2d grades. So operations
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in clifford algebra are always exponential in nature. Since we are interested in the

latent skyline, we have to use any known skyline algorithm like Sort-Skyline-First to

find the skyline amongst all of the stretched data. Our next technique is to figure if

a point would be dominated in the stretched space without stretching it.

The only information we have available is whether a given point q, is dominated

by some point (say p). We wish to leverage this information and try to understand if

p′ would continue to dominate q′ without stretching q (p′ and q′ represent stretched

p and q respectively). This is the central idea behind our pruning algorithm and we

present the basic concepts in the subsequent sections.

4.8.1 Sub-regions

We saw in section 4.3.1 that in a d dimensional space, the nullification point di-

vides the subspace enclosed by the characteristic vectors into d regions. Each of these

d regions is close to an d− 1 dimensional axis hyperplane on to which the outer hy-

perplane of the region is stretched and superimposed. We can further divide a region

into d− 1 sub-regions based on the axes that is the closest. Given the d− 1 axis that

makes the axis hyperplane, a given data in a region can be classified into one of the

d−1 sub-regions based on the axes it is closest too. This classification has important

implication during stretching, because when we stretch we can now ascertain the di-

mension along which the datum’s value will increase and the dimensions along which

the datum’s value would decrease.

Let us assume that a point p = {x1, x2, ...xk...xd} in a d dimensional space is in a

sub-region k (k ≤ d). We know that {A1, A2...Ak...Ad} are the d axis in the original

space. Since p is in the sub-region corresponding to axes Ak, we can now say that

when p is stretched to p′ = {x′1, x′2, ...x′k...x′d} then x′k ≥ xk and ∀i, i 6= k, x′i ≤ xi.
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4.8.2 Pruning Strategy

Let p = {p1, p2...pd} and q = {q1, q2...qd} be two points from the same sub-region

in a d dimensional space with p � q. Let p′ = {p′1, p′2...p′k} and q′ = {q′1, q′2...q′k}

denote the p and q after stretching respectively. Now after stretching the dimensions

along which values would increase, is same for both p and q. However the amount of

increase would be different and in fact the amount would depend on the angle made

by the point with the nullification point. Let pangle and qangle denote the angle p and

q makes with the nullification point respectively. The point with the greater stretch

will be point which makes the larger angle with the nullification point.

There are two possible scenarios where qangle could be either lesser or greater than

pangle. Consider the case where qangle is greater than pangle. This scenario is henceforth

referred as “Pruning I”. In this case, q is stretched more than p. Since both p and q

are from the same sub-region, let the axes along which the stretching happens be k

for both the points. Since p dominates q and q is stretched more than p, we can infer

pi ≥ qi∀1 ≤ i ≤ d (4.12)

qangle > pangle

⇒ ql − q′l > xl − x′l∀1 ≤ l ≤ dandl 6= k

⇒ x′l > q′l + xl − ql

Using 4.12

x′l > y′l + cwhere c > 0 (4.13)

4.13 indicates that p′ dominates q′ in all dimensions but dimension k. Along

dimension k, q′ experiences greater increase than p′. The maximum value q′k can

possibly achieve is equal to magnitude of q which would happen if q is aligned with
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the characteristic vector. So if we compare the p′k with magnitude of q and if p′k is

still greater than q, then we can know for sure that p′ will dominate q′ even without

stretching q.

Consider the case where qangle is lesser than pangle. This scenario henceforth re-

ferred as “Pruning II”. Now p is stretched more than q along dimension k. Along all

other dimensions q will have a smaller decrease than p. So along dimensions k

p′k − pk > q′k − qk

⇒ p′k > q′k + pk − qk

Using 4.12

pk ≥ qk

⇒ p′k > q′k + cwhere c > 0 (4.14)

(4.15)

Using 4.14, we can conclude p′ dominates q′ along dimension k. However for other

dimensions we can’t be sure if p′ would still dominate q′. q will have least decrease

when q is aligned with the nullification point, in which case qangle is 0. In all other

cases q will experience a decrease along all dimensions but k. So if p′ can dominate

q then we can be assured that p′ will dominate q′.

Thus, with the knowledge of angle the point makes with the nullification point

and the tuple which dominates it in a given sub-region, we can check if the point

needs to be stretched or not using few dominance checks. This completes our pruning

strategy.
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Algorithm 9 Orthonormal Space Reduction

function OrthonormalSpaceReduction(Dprefk )

D′ ← {}

D′[0] ← Dprefk [0]

angle ← 90◦

blade ←WedgeProduct(Dprefk [0], Dprefk [1])

D′[1] ← Rotate(blade, angle, Dprefk [0])

for all Dprefk [i], i ranging from 2 to k do

proj ← Project(Dprefk [i], blade)

D′[i] ← Rotate(blade, angle - GetAngle(proj, Dprefk [i]), Dprefk [i])

blade ←WedgeProduct(blade, Dprefk [i])

end for

return D′

end function

4.9 Final Stretch Algorithm

In this section we combine the earlier stretch algorithm in section 4.7 and the

pruning strategy in section 4.8.2 to present the final stretching algorithm. In our

previous section we assumed the number of characteristic vectors are same as the

dimensionality of the given space. We now present the method to deal with the

more general scenario when the number of characteristic vectors k is less than the

dimensionality of the space d.

Consider a d dimensional space with k characteristic vectors. Accord to clifford

algebra, the k characteristic vectors together form a subspace of grade k. Our aim

is to make this subspace orthonormal and project the points from the original space

to this orthonormal subspace. We will also project the k characteristic vectors from
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the original space to this orthonormal space. Thus we have a new k dimensional

orthonormal space with k characteristic vectors which can be stretched to the k axis,

to observe the latent skyline. The algorithm for orthonormal reduction of space is

given in Algorithm 9. The algorithm starts by making the first characteristic vector as

the first axis of the orthonormal sub space. It then forms the plane involving first two

characteristic vectors and rotates the first characteristic vector over that plane for an

angle of 90◦. That makes the second orthonormal axes. For the other characteristic

vectors, we follow the following four steps to include them into the orthonormal sub

space.

1. We project the characteristic vector on to the orthonormal subspace built so

far, to get its projection.

2. We find the plane containing the characteristic vector and its projection. This

is the plane of rotation.

3. We rotate the characteristic vector by 90◦ − angle it makes with its projection

to make it perpendicular.

4. We include the now orthonormal characteristic vector into the orthonormal

subspace.

In section 4.8.2 we said if a point p dominates q, then we can use additional checks

to determine if q can be pruned without stretching. To make good use of this we need

to know points that dominate a given point in a given sub-region. We use skylines

in the given space as the candidates to determine if it would dominate a given point.

When we project the points from the given dimensions to the orthonormal sub space,

we maintain the skylines in the original space. These skylines are stretched before
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Algorithm 10 Latent Skyline Processing

Require: P is the set of all the points in the given space

Require: S is the set of Skyline points in the given space

function LSP(Dprefk )

S ′ ← {}

P ′ ← {}

SubRegionMap ← [ ][ ]

tempV ector ← []

D′ ← OrthonormalSpaceReduction(Dprefk )

for all Vector p in P do

p ← Project(p, D′)

end for

for all CharacteristicVector V pref
i in Dprefk do

V pref
i ← Project(V pref

i , D′)

end for

i ← 0

for all Vector s in S do

S ′[i] ← Stretch(Project(s, D′))

i ← i+ 1

AddtoSubRegionMap(S ′[i])

end for

for all Vector p in P do

s ← GetDomFromSubRegionMap(p)

if s! = NULL then

if sangle > pangle then

if IsDominating(s′, p) then
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continue

end if

else

tempV ector ← p

tempV ector[SUBREGION ] ← GetMagnitude(p)

if IsDominating(s′, tempV ector) then

continue

end if

end if

end if

AddVector(P ′, Stretch(p))

end for

return SFS(P ′)

end function

hand and is used to pruned other points.The algorithm for latent semantic processing

is present in Algorithm 10.

In Algorithm 10 once we get the orthonormal sub space, we project all the data

and the characteristic vectors into the subspace. Then we stretch all the skylines in

the original space and partition the skylines by sub region. Then we process each

point not part of a skyline and check for a skyline from the same sub-region that

dominates it. If we find a dominating point, we check if the point can be pruned

by the skyline; if not, we stretch the point and later use any known algorithm like

Sort-First-Skyline to find the latent skyline among all the stretched points. This same

algorithm can also be used to shrink the sub space. When the angle between any two
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characteristic vectors is more than 90◦, we have to shrink/contract the space between

them to make the characteristic vectors independent.

4.10 Proofs

4.10.1 Proof I:

Let Dprefk be a two dimensional sub-space made up of two characteristic vectors

V pref
1 and V pref

2 . These two vectors are not orthogonal and hence the angle θ between

them is not 90◦. Consider a point P lying on V pref
1 which means it makes 0◦ with

V pref
1 and θ◦ with V pref

2 . The projection of P on V pref
1 indicated by p′1 is |P | and

the projection of p on V pref
2 indicated by p′2 is |P | cos θ and if θ < 90◦, we can see

p′2 increases with p′1. Since there is correlation between the two projections, the

D′ formed using this transformation does not preserve the independence of the two

vectors.
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Chapter 5

EXPERIMENTS

In this section, we evaluate the effectiveness and efficiency of both our preference

aware skyline processing techniques.

1. Preferential Skyline Processing

2. Latent Skyline Processing

. The proposed preference aware skyline processing techniques were implemented as a

Java application and the experiments were run on data stored locally. We tested our

methods using both real and synthetic data. We have described our dataset in 5.1. We

have focused on two types of experiments. In the first set of experiments explained in

5.2 and 5.3, we attempt to prove that the results generated by our algorithm do take

into account the preferences of the user by comparing the results generated with the

known ground truth for that preference. Next we prove the efficiency of our approach

in 5.4 and 5.5 with respect to various parameters like dimensionality and cardinality

of the data set and dimensionality of the user preferences against synthetic and real

dataset. All of the experiments where run as a java application on a quad core Intel

i5 processor running Ubuntu with 6 GB of RAM.

5.1 Data Sets

Börzsönyi et al. (2001) suggested three different kinds of synthetic databases that

differ in the way values are generated. We have adopted those same synthetic data

sets for our experiments. The three synthetic data sets are
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1. Independent: In this type of database, all attribute values are generated inde-

pendently using a uniform distribution.

2. Correlated: In this database, points have high values in all dimensions or they

have low values in all dimensions.

3. Anti-Correlated: In this database, points having high values in one dimension,

are bad in one or all of the other dimensions.

In addition to the synthetic data sets we also used real data set. The main chal-

lenge regarding the choice of the real data set was to make sure that the preference

aware results generated by the algorithm can be verified against a universally ac-

claimed system. The two real data sets used in our applications are

1. NBA data set (2012-2013) season 1

2. DBLP data set 2

.

5.1.1 NBA Data Set

The NBA data set consists of statistics of 470 players who played the 2012-2013

season. For each player, we recorded 8 attributes namely Field Goals per game,

Three pointers per game, Free throws per game, rebounds per game, assists per

game, steals per game, blocks per game and points per game. In order to compute

personalized skylines, we need the data to construct the user preferences. We inferred

the users’ preferences from the player statistics of the greatest players (legends) in

1The data set was obtained from http://espn.go.com
2The DBLP data set was downloaded from dblp website http://dblp.uni-trier.de/xml/
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NBA history.3. There were 76 players classified as legends by the official website of

NBA and the career statistics of all these players were obtained. We normalized the

records of current and the legendary players to avoid bias.

5.1.2 DBLP Data Set

The dblp data set consists of bibliographic information on major computer science

journals and proceedings. In our experiment we used abstracts of 136422 computer

science publications on various domains published in different conferences. The ab-

stracts of all these publications were downloaded and a TF-IDF space was built using

Apache Lucene. The dimensionality of the data set was reduced to 8 using Singular

Value Decomposition on the data set. The SVD was run using Apache Mahout on

a hadoop cluster. Further the conferences were grouped into different domains using

information from wikipedia4. For example, SIGMOD and VLDB were grouped as

“Data Management” conferences. This classification is used to infer latent character-

istics of different domains like “Operating Systems” and “Data Management”.

5.2 Preferential Skyline Processing - Ground Truth Evaluation

We attempted to find the skyline of best players in NBA for each position for the

2012 - 2013 season and compare our results with other sources like ESPN rankings

and HoopsWorld5 rankings. We computed SVD on the statistics of all the legendary

players to play in a position to infer the characteristics that are needed in the statistics

to become successful in that particular position. Once we inferred the characteristics

3The legends to play the game of NBA was obtained from http://www.nba.com/history/legends-

index/index.html
4http://en.wikipedia.org/wiki/List of computer science conferences
5Hoopsworld shuts down to became hoopshype. source:“http://thedissnba.com/2014/01/16/

hoopsworld-shuts-down-founder-launching-new-venture/”
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Position Player ESPN Rating Hoops World Rating

PG Chris Paul 5 1

SG James Hardeen 2 2

PF Kevin Love 5 -a

SF Kevin Durant 2 2

C Joakim Noah 6 4

Table 5.1: Evaluation Of Preferential Skyline Processing: Comparison Of Our Algo-

rithm With ESPN And Hoopsworld Ratings

aKevin Love was injured the season and didn’t play all of the games and so hoops world didn’t

rank him

as a reduced orthonormal space, we found the skyline of the players in the new

space. This skyline can semantically be considered as the skyline of players who

has the potential to become legends in the future. Since the reduced space inferred

from SVD had significant eigenvalue only along the first singular vector, we identified

skylines along one dimension. This is analogous to preferential skyline processing

in the following manner. Consider a NBA team manager who wants to recruit a

new player to his team for a particular position based on the players statistics in the

previous season. He further wants the new player to emulate legendary players like

Michael Jordan and Magic Johnson. The preference aware skylines for his needs can

be computed by the aforementioned approach.

We tried to verify the correctness of our result by trying to analyze the performance

or ranking of that player in the season. In particular we compared with the ESPN

ratings and HoopsWorld ratings for the 2012 - 2013 season.

75



The results are given in table 5.1. The column Position refers to the position of the

player in the field. (PG = Point Guard, SG = Shooting Guard, PF = Power Forward,

SF = Small forward and C = Center). Since the player suggested by our algorithm is

also agreed upon by other ranking systems, the above experiment indicates that the

preference aware skyline indeed captures the user selection criteria.

5.3 Latent Skyline Processing - Ground Truth Evaluation

We prove the correctness of our latent skyline processing through the following

strategy. We have a data set with different classes of data whose label is known in

advance. For each dataset, we split the data into training and testing data set. We

have used 80% of available data to train the dataset. We select few classes from

the data set and identify the hidden semantics of those classes by doing a SVD on

a training set for each class. We stretch the space between the latent semantics and

analyze the pattern of the stretched space.

5.3.1 Experiments

The input consists of research papers from the following domains.

1. Data Management

2. Operating Systems

3. Cryptography

4. Geometric Algorithms

5. Computer Hardware

6. Artificial Intelligence
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The latent semantics obtained from Data Management and Operating Systems

were employed as characteristic vectors. The stretched space is visualized in Figure

5.1a. In the next experiment the latent characteristics related to Data Management

and Cryptography were used as characteristic vectors. The stretched space was visu-

alized in Figure 5.1b. Following characteristics can be inferred from the figure.

1. Research papers related to Data Management are aligned closely to the latent

concept indicated by Data Management training set.

2. Operating Systems related research papers are aligned closely to the latent

concept indicated by Operating Systems training set.

3. Cryptography related research papers are aligned closely to the latent concept

indicated by cryptography training set.

4. Artificial Intelligence papers are closely aligned with data management as they

have many interdisciplinary topics like TF-IDF, classification and indexing.

5. Operating systems related research papers are closer towards Computer Hard-

ware related research papers.

6. Operating systems related research papers are closer towards Data Management

than Cryptography related research papers.

The results produced by the LSP algorithm are in line with the expectations,

proving the correctness of the LSP algorithm.

5.4 Efficiency Of Preferential Skyline Processing

In this section, we evaluate the efficiency of the proposed algorithm with respect

to the cardinality of the data, dimensionality of the data and dimensionality of the
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(a) Database Management And Operating Systems

(b) Database Management And Cryptography

Figure 5.1: Effectiveness Of Latent Skyline Processing - Analyzing The Stretched

Space
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preferences. We evaluate our algorithm on both synthetic and real data sets. Since

there is no existing work that identifies personalized skylines, our baseline method

is to transform all points from the domain space to the user preferential space and

run SFS on the transformed points. Section 5.4.1 focuses on effect of dimensionality.

Section 5.4.2 focuses on effect of cardinality and section 5.4.3 focuses on the effect of

the dimensionality of the preferences. In the experiments conducted with synthetic

data, the data can be either independent, correlated or anti-correlated. Similarly the

data from which the preferences are computed using SVD can either be independent,

correlated or anti-correlated. The data from which preferences are inferred for the

user is referred as seed. In each experiment, we record

1. the average CPU time for a personalized skyline computation.

2. the percentage of time gained/lost using our algorithm over the naive method.

3. the amount of pruning achieved using our index mechanism.

5.4.1 Effect Of Dimensionality

In order to study the effects of dimensionality, we use the data sets with cardinality

100K and vary the number of dimensions between 2 and 8. In a d dimensional data

set, as much as d preferences can be perceived for a user. We have preserved all the

d preferences of the user. Section 5.4.3 covers the case where we vary the count of

preferences preserved for the user. The graphs indicating the perceived performance

gain and pruning is given in Figure 5.2. Since the number of dimensions is increased

but not the cardinality, the pruning is expected to drop as the number of dominated

points decreases with increase in dimension. In our experiments percentage of points

that are pruned is between 50% and 60% in 2 dimensions and drops to a range between

15% to 30% at 8 dimensions and the drop in pruning appears to be linear in time. In
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Figure 5.2: Effect Of Dimensionality
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high dimensions, even 20% of pruning can result in significant savings as Sort-First-

Skyline can become slow in high dimensions. SFS is slow at high dimensions because

the worst case complexity of SFS is O(nk) where n is the number of points and k

is the number of skylines. Since number of skylines increases with dimensions, SFS

gets slow at high dimensions. Hence marginal reduction in n at high dimensions can

produce significant gain. In almost all cases, the percentage of time gained increases

with increase in dimensions. In some cases it appears to temporarily drop at low

dimensions only to rise at high dimensions.

5.4.2 Effect Of Cardinality

In order to study the effects of cardinality, we use data sets with dimension 4 and

vary the cardinality of the data. The different cardinality of the data we used are

25K, 50K, 100K, 500K, and 1M. The graphs indicating the performance gain and

percentage of data pruned is given in Figure 5.3. The percentage of data pruned

appears to be constant with increase in cardinality for all the experiments. This

shows our pruning algorithm is robust and there are no special cases for which it

would fail. The percentage of gain in running time is negative at high dimensions as

SFS is fast for low cardinality data and the amount of time spent on pruning the data

is costlier than SFS at low cardinality. When the cardinality increases, SFS becomes

slower and the amount of data pruned starts to positively effect the running time of

the PSP algorithm.

5.4.3 Effect Of Preferences dimensionality

As seen in section, we can control the number of user preferences we want to

preserve when we transform data to the preferential space. In other words the dimen-

sionality of the preferential space can be controlled. In this section, we used data sets
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Figure 5.3: Effect Of Cardinality
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Figure 5.4: Effect Of Latent/Preferences’ Dimensionality
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with cardinality 100K and dimensionality 8 but we controlled the dimensionality of

the preferential space between 1 and 7 and studied the performance of our algorithm.

The graphs indicating the performance gain and percentage of data pruned is given

in Figure 5.4. The pruning drops when the number of latent dimensions increase for

reasons already described in section 5.4.1. When the number of latent dimensions

are low, the percentage of time gain is low or negative because SFS is fast in low

dimensions and the amount of time we spend on pruning negatively impacts the per-

formance. When the number of latent dimensions is closer to the number of original

dimensions then PSP algorithm is about 20% faster than the baseline method in all

cases.

5.4.4 Effect of Angle Offset of Preferential Space

In this experiment, the angle that the preferential space makes with the data

space is varied and the pruning capabilities and the performance gain of PSP algo-

rithm over baseline method is studied. We used data sets with dimensionality 5 and

cardinality 100K. We used preferential spaces of dimensionality 5 as well. The results

of the experiment is given in Figure 5.5. In case of correlated data, pruning rate and

performance gain is very high when the angle offset is low but both decrease with

increase in angle offset. This is expected as correlated data are easier to prune, but as

the angle offset increases, the data loses it’s correlations and is considerably harder to

prune. In case of independent data, angle offset does not influence the pruning rate or

performance gain and both stay relatively constant. In case of anti-correlated data,

the pruning rate has a gradual increase with angle offset but the performance of the

algorithm decreases with increase in angle offset. When the angle offset is low, the

data stays anti-correlated even after transformation to the preferential space. Since

the number of skylines is high when the data is anti-correlated, the SFS algorithm
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Figure 5.5: Effect Of Angle Offset Of Preferential Space

on complete dataset is very expensive and even a minimal pruning produces signif-

icant gains. However when the angle offset is high, the transformed data is not as

anti-correlated as before and has lesser number of skylines. In such cases SFS over

complete dataset is comparatively faster and the pruning rate of less than 20% does

not yield significant gains in performance.

5.5 Efficiency Of Latent Skyline Processing

In this section, we evaluate the efficiency of the proposed algorithm with respect

to the cardinality of the data, dimensionality of the data and dimensionality of the la-

tent characteristics. We evaluate our algorithm on both synthetic and real data sets.

Since there is no existing work that identifies latent skylines, our baseline method

is to stretch all points from the domain space to the latent space and run SFS on

the stretched points. Section 5.5.1 focuses on effect of dimensionality. Section 5.5.2

focuses on effect of cardinality and section 5.5.3 focuses on the effect of the dimen-

sionality of the preferences. In the experiments conducted with synthetic data, the
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Figure 5.6: Effect Of Dimensionality

data can be either independent, correlated or anti-correlated. In each experiment, we

record

1. the average CPU time for a latent skyline computation.

2. the percentage of time gained/lost using our algorithm over the naive method.

3. the amount of pruning achieved using our algorithm.

5.5.1 Effect Of Dimensionality

In order to study the effects of dimensionality, we use the data sets with cardinality

100K and vary the number of dimensions between 4 and 6. We maintained the number

of latent dimensions as 3. The graphs indicating the performance gain and percentage

of data pruned is given in Figure 5.6. In all cases, the pruning rate increases with the

dimensionality.
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Figure 5.7: Effect Of Cardinality

1. In case of correlated and independent data, our algorithm achieves 20% faster

running time than the baseline approach for low dimensions and the gain in-

creases up to 30% with increase in dimensionality.

2. In case of anti-correlated data, the algorithm’s gain is in between 10% and 20%

5.5.2 Effect Of Cardinality

In order to study the effects of cardinality, we use data sets with dimension 4

and vary the cardinality of the data. The different cardinality of the data we used

are 10K, 50K, 100K, 500K and 1M. The graphs indicating the performance gain and

percentage of data pruned is given in Figure 5.7. In all cases, the percentage of

data pruned is fairly constant and is between 35% and 45%. The LSP algorithm

performs better than the baseline method in all trials and the percentage of time

gained increases from about 15% to 25% with increase in cardinality.
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Figure 5.8: Effect Of Latent Dimensionality

5.5.3 Effect Of Preferences dimensionality

The number of latent characteristics on which we determine the skyline becomes

the dimensionality of the stretched space and hence its influence in the performance of

the algorithm can’t be ignored. In order to study the effects of latent dimensionality,

we use data sets with dimensionality 6 and cardinality of 100K. The graphs indicating

the performance gain and percentage of pruning achieved is given in Figure 5.8. As the

number of latent dimensions increase the pruning power and the percentage gain in

running time of our algorithm decreases. In case of correlated data, gains in running

time decreases from 30% to 5% while in case of independent data, the decrease is

from 30% to 15% and in case of anti-correlated data, the decrease is from 20% to no

gain. As the number of latent dimensions increase, the amount of data that is pruned

by LSP algorithm decrease, resulting in decrease in percentage of time gain.
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Figure 5.9: Effect Of Preferential Space Volume

Figure 5.10: Analysis Of Pruning Checks
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5.5.4 Effect Of Preferential Space Volume

In this experiment, we control the volume of the preferential space and study the

pruning capabilities and performance gain of LSP algorithm over the baseline method.

The preferential space can be viewed as a polyhedron connecting a polygonal base to

an apex at the origin. Each line that connects the origin to a vertex in the polygonal

base is a characteristic vector. Thus the volume of the preferential space can be

computed using the formula (1/3) ∗ b ∗ h where b is the base area of the polygon

and h is the height of the base from the apex. The results of the experiments is

given in Figure 5.9. All the experiments were conducted on data of dimensionality

5 and cardinality 100K. The dimensionality of the latent characteristic space was

3. In case of correlated data, when the volume of the preferential space increases,

the pruning rate and the performance gain of LSP algorithm also increases. In case

of anti-correlated and independent data, when the volume of the preferential space

increases, the pruning rate of LSP algorithm increases but the performance gain of the

LSP algorithm decreases. The decrease in performance gain is more pronounced if the

data is anti-correlated. This can be attributed to the fact that the number of skylines

in the original space is comparatively more when the data is independent or anti-

correlated. Since pruning of a point involves finding a skyline point that dominates

it, the number of checks needed to prune a data is high when the data is independent

or anti-correlated. The number of tests needed to prune a data for different types

of data distribution is given in Figure 5.10. When the volume of preferential space

increases, the number of tests needed for independent and anti-correlated data is very

high and hence the decrease in performance gain.
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Figure 5.11: Evaluation Of Pruning Strategies

5.5.5 Evaluation of Pruning Strategies

In section 4.8.2 two pruning techniques namely “Pruning I” and “Pruning II” were

suggested which would help prune data without stretching them. In this experiment,

the latent dimensionality of the space was varied and the contributions of the pruning

techniques were observed. Experiments were run on dataset of dimensionality 6 and

cardinality 100K. The latent dimensionality of the data was varied from 3 to 5. The

results of the experiments is given in Figure 5.11. When both pruning options are

possible, the algorithm will try to prune by “Pruning II” before “Pruning I”. The

results of the experiments are

1. Correlated Data: “Pruning II” is accountable for 80% to 90% of pruning.

2. Independent Data: “Pruning II” is dominant when latent dimensionality is

low. When latent dimensionality increases, “Pruning I” becomes dominant

than “Pruning II”.
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3. Anti-Correlated Data: ““Pruning II” is dominant when latent dimensionality

is low. When latent dimensionality increases, “Pruning I” becomes dominant

than “Pruning II”.
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Chapter 6

CONCLUSION

In this thesis, we present an efficient way to incorporate preferences into Skyline

Query processing systems. This research identifies two core problems users’ are faced

with when making decisions and proposes algorithms

1. Preferential Skyline Processing

2. Latent Skyline Algorithm

to solve them. Preferential Skyline Processing is used in situations where the users’

preference are independent of each other. This research points out that there are

situations where the preferences/characteristics may not be independent and proposes

Latent Skyline Processing for such situations. This study also introduced a novel

transformation technique called stretching to treat preferences independent of each

other when dealing with non orthogonal user preferences.

As indicated in the experimental section, the preference framework model intro-

duced in this study was able to prove its claim that it captures the preference of the

user and provides preference aware skylines. Through extensive experiments it was

shown that the performance of the proposed algorithms significantly outperforms the

naive implementations.
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