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ABSTRACT 

With a ground-based Doppler lidar on the upwind side of a wind farm in the 

Tehachapi Pass of California, radial wind velocity measurements were collected for 

repeating sector sweeps, scanning up to 10 kilometers away. This region consisted of 

complex terrain, with the scans made between mountains. The dataset was utilized for 

techniques being studied for short-term forecasting of wind power by correlating changes 

in energy content and of turbulence intensity by tracking spatial variance, in the wind 

ahead of a wind farm. A ramp event was also captured and its propagation was tracked. 

Orthogonal horizontal wind vectors were retrieved from the radial velocity using 

a sector Velocity Azimuth Display method. Streamlines were plotted to determine the 

potential sites for a correlation of upstream wind speed with wind speed at downstream 

locations near the wind farm. A “virtual wind turbine” was “placed” in locations along 

the streamline by using the time-series velocity data at the location as the input to a 

modeled wind turbine, to determine the extractable energy content at that location. The 

relationship between this time-dependent energy content upstream and near the wind 

farm was studied. By correlating the energy content with each upstream location based on 

a time shift estimated according to advection at the mean wind speed, several fits were 

evaluated. A prediction of the downstream energy content was produced by shifting the 

power output in time and applying the best-fit function. This method made predictions of 

the power near the wind farm several minutes in advance.  Predictions were also made up 

to an hour in advance for a large ramp event. The Magnitude Absolute Error and 

Standard Deviation are presented for the predictions based on each selected upstream 

location.   
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Chapter 1  

INTRODUCTION 

As wind power becomes a more substantial component of the electrical grid, its 

intermittency causes unreliability in the grid that requires additional forecasting 

capability to mitigate (Lange & Focken, 2006, p. 3). Wind farm generation provided to 

the grid is scheduled conservatively to avoid underperformance, and sudden changes in 

power output, called ramp events, decrease stability of the grid and must be balanced by 

other power sources (Parks, Wan, Wiener, & Liu, 2011). Turbulent winds cause high 

loading on wind turbines which decreases the lifespan of the turbines (Frehlich, 2013). 

Advanced knowledge of changes in wind power make it possible for wind farm operators 

to modify their control systems to improve their reliability, capture more power, and 

decrease the loading on turbines when scheduled electrical demand is lower than the 

available wind power (Zhang, Wang, & Wang, 2014). 

Wind power is extracted from kinetic energy in the wind by placing a turbine into 

the wind stream. The wind exerts lift and drag onto the turbine blades, rotating the 

turbine. Modern wind turbines usually operate at variable, low speeds, between 30 and 60 

revolutions per minute, controlled by changing the pitch of the blades. The rotating 

turbine turns a shaft that provides an input to a gearbox which increases the angular 

velocity. The rotating shaft leaving the gearbox transmits the torque to a generator that 

converts the rotational kinetic energy to electricity, which is transmitted to a transformer 

and supplied to the electrical grid. 
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Since the wind power is dependent on the wind speed, unforeseen changes in the 

atmospheric conditions cause unanticipated variations in the power output of the wind 

turbine. As a result, observations of meteorological conditions and predictions of 

variation in the wind provide useful information to wind farm operators (Lange & 

Focken, 2006). Short term predictions inform operators of impending fluctuations in the 

wind farm output, such that they can make operations decisions to best meet their 

requirements. Measurements were made in the ‘upstream’ direction for the current 

experiment (“NOAA’s National Weather Service,” n.d.). Upstream is defined as “towards 

the source of flow, or located in the area from which the flow is coming.” The method 

being applied uses real-time measurements of wind velocity taken upstream of the wind 

farm and models the power output of a turbine as though it were located upstream. A 

modifying function is applied based on correlation studies of the relationship between 

measurements made at the upstream location and near the actual wind farm, to predict the 

extractable power available in the oncoming wind. Regions of high turbulent intensity in 

this oncoming wind are predicted from the spatial variance of the wind speed, the 

difference between the speed advecting toward the wind farm and the average speed 

measured over a given distance downstream, closer to the wind farm. Ramp events 

propagating from directions other than upstream are studied by comparison of the profiles 

at locations across the scan domain to track and monitor large changes in the extractable 

power. The ramp events can also be detected visually in radial velocity plots when a 

region of higher magnitude is seen moving through the scan domain in successive plots.  
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Chapter 2  

THEORETICAL BACKGROUND 

Wind is created when pressure differences over parts of the earth’s surface occur 

since air masses to move from places of high pressure to places of low pressure (Brower, 

2012, p. 2-4). The continual diurnal solar heating of the earth’s surface creates surface 

temperature differences. Over hot surfaces, the air is heated, which results in expansion 

and rising of the air and a decrease in pressure. Surface cooling causes the opposite 

process, causing an increase in pressure. This pressure difference due to the earth’s 

uneven solar heating is the wind’s driving force. Other effects, such as the Coriolis effect 

due to the rotational reference frame of the earth’s surface, also contribute to the air 

movement experienced in the atmosphere.  

A sea breeze is a mesoscale circulation caused by pressure differences in coastal 

regions (Brower, 2012, p. 2-4). Sea breezes become strong where they are concentrated 

by the terrain and are the primary mechanism driving strong winds in coastal mountain 

passes in places such as California. Sea breezes occur because, during a typical summer 

day, the land becomes warmer than the ocean. The warmer air over the land expands and 

rises, causing the pressure to drop, so that the relatively cool, dense air over the ocean is 

pulled in. A land breeze occurs at night when the process happens in reverse. The 

topography of the region and the density of the air mass both impact the movement of the 

air. Wind typically accelerates over rises in the terrain, such as ridges that are oriented 

transverse to the flow, but the dense air of a sea breeze often is forced instead to move 

through mountain passes as it is heavy compared to the surrounding air.  
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Figure 1 depicts the stratified layers within the troposphere (Lange & Focken, 

2006, p. 24). Winds within the surface layer are affected by the surface of the earth, 

losing momentum due to drag from the surface. A typical vertical wind profile is shown, 

consisting of a logarithmic increase in wind speed with height above ground level. Wind 

turbines are located within the surface layer, often with hub heights up to 80 meters 

above ground level. 

 

Figure 1. Layers of the Troposphere (Lange & Focken, 2006, p. 24). Reproduced with 
kind permission of Springer Science+Business Media © Springer 2006. 

 

2.1 Remote Sensing  

The measurements for this study are made through remote sensing. By using 

remote sensing, it is possible to make measurements over a large space much more 

quickly than in situ measurements, for which the measurement device must be situated at 
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the location of interest. The remote sensing device can be located in one place and make 

measurements of conditions in the surrounding area using properties of radiation. Active 

remote sensing can be done by emitting radiation at certain wavelengths and measuring 

the backscatter radiation. While radar, using radio waves, can only make atmospheric 

measurements from precipitation and visible clouds, it is possible to make measurements 

of naturally occurring aerosol particles in clear air by using light waves (Hutton, 2008). 

To determine wind speed, the shift in frequency of the radiation is measured. 

Called the Doppler frequency shift, this frequency shift occurs when radiation is reflected 

from a particle moving along the direction of travel of the emitted radiation, referred to as 

the line of sight, and is related to the instantaneous speed of the particle along this 

direction. The Doppler frequency shift, ∆𝜈, is 

 ∆𝜈 =  − 2𝑣�
𝜆�  (1) 

where 𝑣� is the radial velocity, and 𝜆 is the operating wavelength (Hutton, 2008). 

Algorithms work in conjunction with the remote sensing devices to interpret the 

frequency shift by evaluating the frequency spectrum of the reflected radiation in order to 

determine the velocity of the particle along the line of sight direction.  

It is assumed that the particles are suspended and have low enough slip with the 

surrounding air flow that their measured speed is representative of the speed of the air in 

the particles’ vicinity.  There is great flexibility in the acquisition method for remote 

measurement technologies. Remote sensing devices can make remote measurements from 

the ground, from airplanes, and from satellites.  
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This study employed a Windtracer lidar to measure wind speeds along its line of 

sight at up to 10 kilometers from its location. Named for the acronym of Light Detection 

and Ranging and also referred to as an infrared Doppler radar, the lidar is an active 

remote sensing instrument that emits an eye-safe, infrared beam and measures the 

backscatter from the atmospheric particles to calculate the Doppler Frequency Shift. This 

lidar emits a coherent beam with a wavelength of 1.6 µm, with very little divergence such 

that side lobe reflection is eliminated and that the sampling volume is not substantially 

changed even at far ranges (Hutton, 2008). A laser local oscillator is used for the 

heterodyne, or coherent, detection for very high sensitivity (Hutton, 2008). The light 

beam is transmitted in pulses with a length of approximately 90 meters and at a rate of 

500 pulses per second, or a pulse repetition frequency (PRF) of 500 Hertz (Hutton, 2008). 

According to the distance from the lidar, the beams are 10-30 centimeters wide (Hutton, 

2008). Two typical types of scan methods are made using a lidar, PPI (Plan Position 

Indicator- only varying azimuth) or RHI (Range Height Indicator- only varying 

elevation) (Hutton, 2008). Further details about the Windtracer lidar system are provided 

in Table 1.   
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Table 1. Summary of System Functionality, adapted from Lockheed Martin Coherent 
Technologies (Hutton, 2008). 

Mode Performance Comments 

Base Wind 
and 
Aerosol 
Profiling 

Max Range: 10km (atmos. condition 
dependent) 
Range Resolution: 50 - 100 m 
Minimum Range: 400 m 
Accuracy: 0.5-1 m/sec, range dependent 
Line of Sight Update Rate: 0.1-20 Hz 
Spatial Res: 100x100m to 200x400m 
typical 
Max Height: 2-4 km 

Range-resolved radial 
velocity, SNR and 
spectral width; 

System scanning in 
azimuth at fixed 
elevation angle (PPI) and 
or in elevation at fixed 
azimuth angle (PPI)  

 

The remote sensing capability of the lidar provides measurements that can cover a 

wider area in a shorter time than would be possible with in situ measurements by balloon 

sounders or aircraft sounders, better representing the small-scale changes in wind speed 

throughout the atmosphere. 

2.2 Literature Review 

2.2.1 Wind Forecasting 

Zhang et al. (2014) created a breakdown of the applicability of different time-

ahead forecasts for the wind power industry. The current study examines a method of 

very short-term forecasting on the order of ten minutes. According to Zhang et al., the 

forecast of wind at this time horizon provides operators with information that contributes 

to control of the wind farm and to power system frequency control which improves 

reliability on the grid. Also examined in the current research are detection and advance 
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notification of ramp events on the order of an hour. Projections on this time-scale 

contribute to improved electrical grid scheduling of power sources and reserve 

requirements (Zhang et al.) to optimize power capture and ensure wind power decreases 

are balanced. 

Krishnamurthy (2013) studied how lidar measurements can represent the wind 

field and how predictions of the wind at the wind farm can be used as an input for control 

methods to meet the needs of wind farm operators. The current work uses the lidar 

measurements and a correlation to make the control system input more closely represent 

the actual wind that will be experienced at the wind farm.  

An understanding of the limitations of current wind forecasting methods, 

particularly in monitoring sudden large changes in wind power, called ramps, and the 

existing efforts related to upstream measurements to make wind power and turbulence 

predictions using correlation methods provides a context for this study. 

A study produced by National Renewable Energy Laboratory (NREL) on a wind 

power forecasting collaboration between the National Center for Atmospheric Research 

(NCAR) and Xcel Energy, a company that manages wind power generation as well as 

fossil, nuclear, and hydro based generation, was performed to make improvements to 

wind power forecasting to improve the efficiency and reliability of wind power grid 

integration (Parks et. al, 2011). The paper notes that for common wind forecast models 

used at wind farms, significant ramp events are often poorly predicted or not predicted at 

all as a result of imprecision in the meteorological conditions modeled (Parks et. al, 2011, 

p. 2). Weather models may capture large-scale ramps, such as cold fronts, but often 
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incorrectly predict their time of arrival by minutes to hours. Weather models often miss 

smaller scale events, for example outflows due to convective activity. The limited ability 

of the forecasts in making predictions of the magnitude and timing of ramp events cause 

grid operators to schedule wind power output conservatively to avoid having to balance 

unexpected changes in power.  The report details the method NCAR uses for improving 

the forecasting used by Xcel Energy (Parks et. al, 2011, p. 24). They apply a mesoscale 

ensemble prediction model which gives a probabilistic wind prediction through numerical 

weather prediction (NWP) modeling as the core forecasting system. This model has skill 

predicting power ramps from large-scale weather events, but needs improvement for 

predicting the time, magnitude, and duration of intermediate and smaller-scale events. To 

meet the need for short-term ramp forecasting, Doppler radar and public meteorological 

data near the wind farm are added. The reflectivity and radial velocity measured by the 

Doppler radar are assimilated into a numerical model and correctly detected oncoming 

ramps in preliminary tests, suggesting the Doppler radar is useful for providing warnings 

of ramp events on the scale of 0-2 hours. 

From Frehlich’s study, ‘Scanning Doppler Lidar for Input into Short-Term Wind 

Power Forecasts’ (2013), it was emphasized that Doppler lidar fills an important role in 

wind power forecasts as it provides the high resolution weather observations necessary 

for improving forecasts made by numerical weather prediction (NWP). A scanning 

coherent Doppler lidar, such as the Windtracer lidar, is considered the most advantageous 

method of making the upstream measurements of wind profiles necessary for short-term 

forecasting because of its range and high resolution due to its small laser beam, which 
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best matches the high resolution of NWP models over a large domain compared to other 

measurement options such as instrumented surface weather stations. The Doppler lidar is 

valuable in providing ramp forecasting, a key area requiring further study. Ramps may 

not be captured by the very short-term NWP forecasts and will certainly not be captured 

by the commonly used persistence model which assumes future wind speeds are the same 

as the current wind speeds.  

Frehlich also determined that analysis of wind speed measured by the Doppler 

lidar within several kilometers from the wind farm can provide the turbulence conditions 

which are useful for making real-time operations improvements by wind farm operators. 

At the time of Frehlich’s publication, there were no scanning Doppler lidar field 

campaigns located at wind farms and the impact of complex terrain, such as an increase 

in wind variation increasing the spectral width, was not known. Other questions raised 

were whether aerosols near wind farms were sufficient for making measurements and 

whether atmospheric processes, for example frontal passages, make short-term forecasts 

possible. The current thesis involves a lidar field campaign at a wind farm in complex 

terrain, showing that aerosols at this wind farm location make measurements possible, 

and includes a study of turbulent conditions from radial velocity measurements and 

tracking of a ramp event due to a likely frontal passage. 

Frehlich and Kelley’s 2008 study of wind and turbulence profiles from lidar scans 

provides a comparison between lidar profiles and weather tower measurements for wind 

speed, direction, variance σ, turbulent eddy size Lo, and energy dissipation rate ε. This 

paper discussed the need for accurate measurements of turbulence profiles due to the 
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effects of turbulence on wind energy generation shown in previous studies. The authors 

noted that, with the improved statistical accuracy of the volume-averaged profiles 

provided by Doppler lidar measurements, sudden changes in wind conditions can be 

monitored, making appropriate wind farm control possible. The study used 

approximations of the mean wind speed for each range gate over a varying azimuth angle 

to determine the turbulence statistics from a best fit of a von Karman turbulence model. 

The authors concluded that measurements with smaller range gates would give more 

accurate estimates of the turbulence statistics. The authors also studied the wind speed 

and direction results from subsets of the data, finding the changes at different times as 

well as for smaller measurements regions. They found that the wind speed and direction 

changed based on the use of angular subsectors, which are different azimuthal sector 

sizes, showing spatial variability. They also found that the statistical properties degraded 

with the use of smaller subsectors and concluded that the statistical properties of the 

profiles need further study for quantification. 

A study by Carpenter et. al (2013) used two Windtracer lidars, one located at a 

wind farm (Glacier Wind Farm) and one located to the west higher up on a mountain, 

further upstream. The measurements were made for 5 PPI sweeps at low elevations 

separated by 1° and a sixth PPI at a 45° elevation to measure the conditions at higher 

levels of the atmosphere. By processing the radial velocity with a sector Velocity 

Azimuth Display (VAD) method and propagating the wind vectors ahead to predict a 

future wind field, the researchers found that a direct advection model provided an 

improved power prediction compared to a persistence model, the method often used as a 
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baseline for prediction evaluation. Based on metrics of Mean Absolute Error and 

Standard Deviation of the absolute error, the advection model had the best result in the 

10-15 minute range and gave a 40% reduction in the error for predictions as far as 45 

minutes in advance.  

Treinish et. al studied forecasting for the isolated wind farms located on the 

Canary Islands (2013). The researchers found that NWP forecasts at the islands missed 

most of the ramp events. They emphasized the importance of predicting ramp events for 

an isolated grid where the large power output variations that ramps can cause are not 

easily balanced. The researchers recognized a need for turbulence-scale modeling to 

capture the flow due to the islands’ complex topography. They applied large eddy 

simulations (LES) and an output every 5 minutes to capture transients and integrated it 

with a Weather Research and Forecasting (WRF-ARW 3.3.1) model. No observation 

system existed so no data assimilation studies were possible. Treinish et. al are in the 

process of creating a training set for Machine Learning to relate modeled wind conditions 

to power generation based on historical data of weather forecasts and power output 

during ramp events and as well as a six-month continuous time period. 

Wilde (2012) performed a project, also at Glacier Wind Farm, with the goal of 

applying off-site measurements to create short-term predictions of ramps. Ramps were 

defined as a change in hourly average wind farm power generation by at least 15% of 

installed capacity between 3 hours. The researchers set up additional measurement 

stations in upstream locations and used the real-time data with a Weather Research and 

Forecasting (WRF) model. The pressure differential with other locations was useful to 
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predict the ramps that will happen at the wind farm. Northern winds diverted winds 

coming from the more common westerly direction. The model proved better than 

persistence, but was not much better than existing models used at the site already. They 

did prove that off-site measurement stations do improve forecasting for sites with 

complex terrain. 

2.2.2 Correlation Method 

The log law, or Law of the Wall, logarithmically relates the speed of air flow to 

the height above ground level, and was shown in the vertical wind profile in Figure 1. 

The log law was considered as a prediction of wind speeds for this study according to the 

height above ground level. Although it is reasonable to expect that the log law will hold, 

it may not suitably apply to the wind profile in the Tehachapi Pass because it does not 

account for the mountainous terrain with wind traveling perpendicular to the ridgeline 

where the lidar and wind farm are located. According to Wharton, Alai & Myers (2011), 

the vertical wind profile may not closely follow the log law in such conditions. In their 

experiment, they found that the log law is more closely approximated when winds are 

traveling parallel to ridgelines rather than across them. The winds in their test site were 

predominantly moving perpendicular to the ridgelines and actually decreased as a 

function of height. Especially during the night, negative shear was measured such that 

wind speeds closer to the ground were greater than those above. A peak wind speed 

location was around 23 meters above the ground.  

Wharton et al. (2011) also found that the energy flux did not adequately predict 

times of well mixed atmosphere. During the summer there was increased buoyant 
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sensible heat flux, but the expected well-mixed atmosphere was not seen, and instead a 

negative shear was measured. The complex terrain had more impact on the wind shear 

and turbulence than the surface energy fluxes did, which are influential in flat terrain. 

Therefore, it is likely that wind profiles in Tehachapi Pass will also not exhibit typical 

atmospheric mixing based on times of sensible energy. A correlation method is used 

instead to take into account the greater complexity in the relationship between wind 

speeds at different terrain heights. 

In a study by Bilgili, Sahin, and Yasar (2007), an Artificial Neural Network 

(ANN) was used for wind speed prediction. A neural network is a model designed to train 

itself to the correlation in data sets for complex relationships that are difficult to 

analytically model. Historical data from 1992-1999 for a target location and surrounding 

reference locations that were found to have a correlation coefficient above a threshold of 

.59 were used to train the ANN. Successful prediction for the following two years, with a 

mean absolute percentage error ranging from 4.49% to 14.13% depending on the target 

station, showed that correlation analysis of historical wind measurements can make 

prediction possible without needing information on topography or other meteorological 

measurements. Sheela and Deepa (2013) presented a review of the available neural 

network techniques and showed the effectiveness of neural networks for correlation 

analyses.  

The studies described by Sheela and Deepa use meteorological stations for the 

correlation. A study with lidar data opens the way for more accurate and earlier 

predictions by finding better correlation locations and at further locations upstream. No 
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papers were found that applied lidar measurement data to neural network methods for 

wind power prediction. This is a new route that can be taken for future expansion of this 

project. 

Scanning Doppler lidar data near wind farms can provide high-density 

measurements for assimilation in high-resolution NWP models to improve smaller-scale 

predictions, as well as provide measurements over a large spatial extent to ANN models 

for statistical correlation where meteorological or topographical data is not sufficient for 

high-resolution NWP models. Correlations from such distributed data make predictions at 

each turbine possible, rather than making a single forecast for an entire wind farm 

empirically. Wake modeling can be used to extend the correlation prediction and model 

the energy content at each turbine across the wind farm, as simulated and validated with 

nacelle-based lidar measurements by Aitken (2014), and also as done by Adams (2014) 

and Hirth et. al (2014) using the concept of wind speed deficits according to the amount 

of energy removed from the wind by each wind turbine. The concept of using lidar data 

to track advection of small-scale wind structures, turbulent regions, and oncoming ramp 

events and to make predictions of energy content downstream is demonstrated in the 

current study. 
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Chapter 3  

EXPERIMENTAL SETUP 

3.1 Deployment Process 

An initial test demonstration of the lidar was set up on the Arizona State 

University campus. After the electrical supply was connected and the lidar scanner and 

transceiver were carefully assembled, practice scan patterns were applied. Test data was 

collected to verify operability of the transceiver. A dry air purge was done for the 

transceiver to keep the humidity down. An extra-large socket wrench had to be attained 

to open the transceiver for the purge. 

A remote desktop connection to the lidar’s System Control Computer (SCC) was 

established. The remote connection was first established using a Local Area Network 

connection and remote control of the lidar transceiver through the SCC was confirmed. A 

wireless router was then set up, using a static IP address, to make remote connection 

possible without a Local Area Network. This was necessary for Tehachapi where the 

Verizon Wireless 4G internet coverage was utilized as the internet source to make remote 

access possible. The router required frequent refreshing by Verizon or use of an 

automatically refreshing webpage to keep it active. 

The lidar was disassembled and shipped in a large air ride truck to provide as little 

vibration to the sensitive lidar equipment as possible. At the site, the lidar was 

reassembled by the research team. Another dry air purge was performed, and vacuum 

grease was acquired and applied to maintain the seal in the transceiver. Operation of the 

scanning patterns and the remote connection were confirmed. Two external 4-terabyte 
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hard drives were connected to the lidar computer and data was pushed to each of them as 

backup. The lidar was remotely monitored and data was collected through the remote 

connection and from onsite collection of the hard drives. Additional support was required 

from Beyond Photonics for aligning the laser optics and addressing computer errors. 

3.2 Tehachapi 

The second largest group of wind power generators in California is in the 

Tehachapi Pass, with about 5,000 wind turbines (“Tehachapi Wind Farm,” n.d.). To scan 

the wind upstream of the wind farms in Tehachapi, the prevailing wind direction had to 

be found. Figure 2 shows the wind rose for June of the years 2010 through 2014, 

measured from the Tehachapi Municipal Airport (“Wind Roses,” 2014). The prevailing 

wind is from the northwest. 
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Figure 2. Wind rose for the month of June in the years 2010 through 2014. Prevailing 
wind is from the northwest. 

 

Several sites in Tehachapi were evaluated for placement of the lidar. The site was 

chosen for visibility of the prevailing upstream (NW) direction without obstacles, 

proximity to an operational wind farm, and access to a secure power supply and wireless 

internet coverage to make a remote connection possible. 

The lidar was located on the Windland, Inc. wind farm which is on a ridge at the 

northwest part of the Tehachapi wind farms. Figure 3 shows the topography of the 

Tehachapi region. The red triangle is at the location of the lidar. The y-axis increases to 
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the north and the x-axis increases to the east and are measured in meters according to 

United States Geological Survey (USGS) map topography values. To the northwest of the 

ridge where the lidar is located is a valley where the lidar can scan with little obstruction. 

To the southeast of the lidar location are the majority of the wind farms in the region.  

 

Figure 3. Tehachapi topography around the lidar, with height measured in meters. The 
lidar location is identified by the red triangle. 

3.3  Lidar Setup 

Four data sets were taken during the lidar deployment: one in March of 2014, one 

in early June of 2014, one in late June of 2014, and one in July of 2014. The late June 

dataset, June 26 to June 28, was considered most applicable to the current analysis 

because the other datasets included scan patterns that did not sweep the same area 

frequently enough, with about eight minutes separating the corresponding sweeps. The 

scanning pattern applied for this research from late June consisted of back and forth 
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sweeps between the azimuth angles of 265° and 330°, clockwise from north, at an 

elevation of 0°. The beginning of each consecutive sweep is separated by approximately 

30 seconds.  

For a wind speed of 14 m/s, the distance of advection over 30 seconds, the time 

between sweeps, is approximately 420 meters. Future experiments should use repeating, 

rather than back and forth, scans to have a consistent time step between data at each 

location and should repeat the sweep frequently enough that the distance of advection is 

sufficiently smaller than the extent of the measured region. For a measured region of 10 

kilometers along the mean wind direction and an advection distance of 420 meters, 

advection of a durable structure can be tracked for about 24 sweeps.  

Figure 4 shows the region that is scanned by the lidar for this dataset relative to 

the topography of Tehachapi. The photo in Figure 5 shows the view to the northwest, in 

the direction of the scan, from the location of the lidar at the wind farm. 
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Figure 4. The sweep region (dark blue sector) shown over the Tehachapi topography, 
with a scale measuring the ground level elevation in meters above sea level. The lidar 

location is identified by the red triangle.  
 

 

Figure 5. Photo of view to the northwest, where the upstream scan is performed, from the 
lidar location. 
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The scan was made over the city of Tehachapi, which is at an altitude of about 1220 

meters, from the wind farm on a ridge at an altitude of about 1450 meters. Mountains can 

be seen at either side of the scan, which create a mountain pass through which the wind 

travels. The mountains visible in the photo can be seen as obstructions in the scan as 

shown earlier in Figure 4. In Figure 6, the location where the lidar was placed, at the base 

of a lattice tower wind turbine which provided the electrical supply, can be seen.  

 

Figure 6. Photo showing the lidar location and the view to the southeast. 
 

The photo in Figure 6 shows the view to the southeast, toward the large nearby wind 

turbines, downstream of the lidar location. Additionally, many more wind farms are also 

further to the southeast of the lidar’s location.  
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Chapter 4  

ANALYSIS 

4.1 Volume Velocity Processing and Sector VAD 

It would be desirable to have the magnitude of the wind speed and the direction to 

determine the power output by a wind turbine. However, the lidar only provides 

measurements of component velocities in the radial direction around the lidar. The radial 

velocity, 𝑣�, measured by the lidar depends on u, v, and w, the orthogonal components of 

the wind in the x, y, and z directions, and the azimuth and elevation angles, 𝜃 and 𝜙, of 

the line of sight, and is given by 

 𝑣� =  𝑢𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 + 𝑣𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝑤𝑠𝑖𝑛𝜙 (2) 

In order to determine the magnitude and direction of the wind, assumptions must be made 

to retrieve the two horizontal orthogonal components from radial velocity. At low 

elevation angles, for which sin𝜙 ~ 0, the component of the wind in the z-direction, 𝑤, is 

assumed to be negligible (Krishnamurthy, 2013, p. 22). The orthogonal components 𝑢 

and 𝑣 were retrieved mathematically by the Volume Velocity Processing (VVP) method, 

which assumes a linear function can be used to approximate the analysis volume 

(Krishnamurthy, 2013, p. 21) for each volume of the scan that has a small change in 

range, azimuth angle, and elevation angle. The assumption is made that all of the radial 

velocity vectors in the volume approximately represent one single actual velocity vector 

that is constant over the volume. In this way, independent information is provided by 

each of the radial vectors in the volume since they show components of the overall 

velocity from nonparallel directions. Single Value Decomposition is performed on a 
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matrix of values from each point in the volume and a least squares method is applied to 

determine a best fit for the overall velocity in each volume of the scan (for additional 

details, see Krishnamurthy, 2013, p. 21). 

The radial velocities determined by the lidar from the Doppler frequency shift 

were plotted and animated with time to depict the radial velocity time series. In order to 

study the magnitude of the wind speed throughout the region, the radial velocities were 

decomposed into components in orthogonal directions x and y, parallel to the ground. 

Since the data set did not contain any measurements at a second elevation, it was 

necessary to modify the VVP formulation to only use data from one sweep, such that it 

actually processed the velocity within an area. As a result, the retrieval that was applied 

for this study is considered a sector Velocity Azimuth Display (VAD) method. The 

measurements were made at a 0° elevation, so any vertical components of velocity are 

tangential to the lidar’s line of sight and do not contribute to the radial velocity.  

4.2 Virtual Projected Wind Farm and Correlation 

The concept of a virtual projected wind farm involves simulating the power 

output of turbines as though they are part of a wind farm that is located upstream. This 

determines the extractable energy content in the upstream wind and can be used to give a 

prediction of the power output when the wind reaches the actual wind farm. The 

prediction is created based on a function of how the energy content changes as the wind 

features advect toward the actual wind farm. The time required for advection at the mean 

wind speed over the distance between the upstream and downstream locations was 

considered to be the time shift between the wind profiles. This makes the simplifying 
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assumption that the time shift is constant over the time period, although in reality it will 

depend on the changing speed of the wind. The best fit between a direct relationship, a 

linear relationship, and a second order polynomial relationship was then determined to 

correlate the wind speeds at each upstream location. The linear fit was evaluated by 

Matlab by the ‘poly1’ fit function, the second order polynomial fit was determined by the 

‘poly2’ fit function, and higher order fits were evaluated by the ‘fit’ function with the 

respective order defined as an input. Predictions based on additional time periods were 

made by applying the analyzed fit to the upstream time series as a function. The 

predictions were evaluated using Mean Absolute Error and standard deviation of the 

absolute error calculations. 

4.3 Discussion of Assumptions and Potential Sources of Error 

Negative radial velocity measurements represent movement toward the lidar, 

according to standard procedures for remote sensing. For this experiment, the velocities 

reported by the lidar were positive for radial measurements to the northwest, representing 

movement from the southeast, away from the lidar. This was in the opposite direction as 

those reported by the National Oceanic and Atmospheric Administration (NOAA) for 

local weather data from the Tehachapi Airport (“NOAA National Climatic Data Center,” 

n.d.). NOAA reported that the wind was coming from about 300° clockwise from north, 

meaning that the upstream direction was to the northwest. Figure 7 shows the wind speed 

and direction measured by NOAA for June 27 GMT.  
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Figure 7. Wind Measurement at Tehachapi Airport at 1219 meter elevation for June 27 in 
GMT, adapted from NOAA (“NOAA National Climatic Data Center,” n.d.). (Top) Wind 

direction clockwise from north. (Bottom) Wind velocity and gusts. 
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It was also noted that the magnitude of the NOAA wind speeds is lower than those 

reported by the lidar. This is likely due to the measurements being taken near the ground 

at the Tehachapi airport, which is in the valley and has an elevation of 1219 m. 

Meanwhile, the lidar was situated on a mountain ridge and took measurements at 0° 

elevation at 1450m across the valley, observing wind that has less of a frictional effect 

from the ground. It was determined that, based on the comparison with NOAA, 

inspection of the direction of advecting structures in plots created from the radial 

velocity, and responses from the lidar manufacturer that implied the lidar could have a 

reversed value as part of its spectral analysis, it would be assumed for this research study 

that the radial velocities were reported in reverse by the lidar, so all values were 

multiplied by -1. The framework developed in this study would be applicable to any wind 

direction for which measurements are made along the mean wind direction. Future work 

using lidar should include a comparison with collocated measurements from a validated 

instrument, such as an anemometer, to confirm the lidar’s output. Such data was not 

available for this study. 

Working with lidar data involves error associated with the instrumentation, the 

retrieval, and the data analysis. It is important to consider the sources and magnitudes of 

the error introduced by each portion of the experiment to understand how accurate the 

results will be. 

The lidar itself has limitations in its accuracy. The spatial and temporal accuracy 

are dependent on the measurement technique as well as the internal mechanisms and 

clock in the lidar. The radial velocity that is measured by the lidar is not measured just at 
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a point in space, but is the average radial velocity determined by backscatter of each 

particle along the lidar beam within a range gate, which is a distance measured radially 

from the lidar. The range gate used in this experiment was 100 meters. The volume of the 

atmosphere that is sampled at each successive range gate increases as the laser beam 

diverges, although as a coherent laser beam, there is expected to be little divergence of 

the beam (Hutton, 2008). The distance between successive azimuthal measurements 

increases at range gates further from the lidar since the chord-length of a circular sector 

with a constant interior angle increases with distance from the center. The spatial 

resolution therefore decreases with each range gate away from the lidar. According to 

Table 1, from the handbook for the lidar, the spatial resolution is typically from 

100x100m to 200x400m (Hutton, 2008). In addition to being an averaged quantity, the 

velocity measured by the lidar has a level of error. The radial velocity has an accuracy of 

0.5-1 m/s according to the handbook (Hutton, 2008). The measurements made by the 

lidar are therefore accurate to this amount. The radial velocity measurements made in the 

prevailing wind direction were compared with NOAA data from a nearby location to 

show that the measurements are reasonable. The consistency of the lidar’s measurements 

shows that the lidar instrumentation has reasonable precision, as well.  

The data analysis process also introduces sources of error. The truncation error 

associated in any computational analysis is present. It is dependent on the properties of 

the computer, which in this case was a 64-bit operating system, as well as the calculations 

that are done. For example, the effect of truncation error may have been recognized when 

squared radial velocity measurements were subtracted from each other to find the change 
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in kinetic energy between sweeps. The radial velocities measured near the mountains on 

both ends of the sweep were very small and were also close together due to the sweeping 

back and forth motion of the scan pattern, which covered the area at a very small time 

difference. The result alternated between positive and negative values that were not 

reasonable. This was mitigated when every other sweep was removed such that there was 

an equal time step between each beam of the consecutive remaining sweeps and there 

were sufficient differences between sweeps at these locations. These regions of small 

radial velocity were also excluded from the correlation analysis because their radial 

directions were not in the prevailing wind direction. 

Interpolation was used to collocate the points from successive sweeps, so that 

error was introduced due to the interpolation. Since the data for each range gate is an 

average of all values taken in that region, interpolation compounds the error due to the 

limited spatial resolution. For the input to the turbine model, the radial velocity data was 

interpolated over time by location at each time step that had any missing data points. The 

output of the model was resampled to provide data points at approximately one-minute 

time steps. 

The correlation process for predicting wind speeds compounds error due to the 

spatial and temporal resolution. The correlation itself fits data to make the prediction and 

therefore contains additional error. The implementation of Euler’s method that is 

suggested as a way to predict movement of wind structures introduces an error dependent 

on the time step between data points. The data applied has a time step of approximately 

30 seconds, therefore leading to errors on the order of 30 seconds. There are also physical 
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errors that are included in the prediction. The lidar measures the radial velocity but does 

not measure other physical properties. Effects on wind velocity due to local conditions 

are neglected as a result. The assumption is therefore made that, over the time period and 

region of measurement, the air density, viscosity, temperature, and atmospheric stability 

are constant. 

One of the methods used in the analysis is retrieval of the radial velocity into two-

dimensional Cartesian coordinates, called sector VAD processing. This method involves 

assuming homogeneity over each sector of the region as well as neglecting any vertical 

component of velocity. The small-scale characteristics of the flow are not resolved with 

this method. Due to the complex topography of the Tehachapi Pass region used for this 

experiment, the assumptions may not be valid, though the result of this analysis may give 

useful information about the large-scale flows in the region.  

The evaluation of extractable energy content according to the wind speed includes 

error due to the model that is used. The model takes into account turbine parameters from 

NREL to determine the power produced at a certain wind speed, however the model will 

not necessarily represent an actual wind turbine that has variations from the ideal case. It 

also makes the assumption that the turbine has instantaneous yawing into the wind which 

is idealized since there is some delay in actual wind turbines. 
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Chapter 5  

RESULTS AND DISCUSSION 

5.1 Advection 

The analysis focused on whether Doppler lidar can make measurements that 

provide information for useful short-term forecasts and can make it possible to track 

changes in the energy content of the wind as it moves toward the wind farm. To do this, 

data collected during the deployment was studied for temporal and spatial correlation 

between upstream and downstream. Visual inspection of radial velocity plots from each 

sweep showed that there are visible structures that can be recognized and tracked moving 

toward the lidar. This inspection suggested that a mathematical correlation exists between 

the upstream energy content and the energy content downstream after a time shift. 

An example of the plotted radial velocity showing a structure advecting that can 

be easily tracked visually is shown in Figure 8 and Figure 9. The example structure is 

identified by its recognizable shape, as it is shaped like a ‘V.’ In Figure 8, the location of 

the V in the sweep can be seen. Figure 9 shows the movement of the structure, enclosed 

in the black box for convenience. The sweeps that are shown are approximately one 

minute apart and were all made by a counterclockwise sweep so that all corresponding 

parts of the images are at a consistent time step. The shape and magnitude of the structure 

are maintained throughout the region. This structure represents a high speed area in the 

wind that could cause an increase in wind power output when it reaches the farm. 

Advanced knowledge of such structures could provide wind farm operators with 

information about impending changes in energy content. 
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Figure 8. V-shaped high speed structure, with and without the structure identified by the 

black ‘V’ shape. June 27 12:09 GMT. The colorbar gives measurements in m/s, and 
positive values represent movement away from the lidar along its line of sight. 
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Figure 9. V-shaped structure advecting along the radial direction. First image is at GMT 
12:09:30, with about 1 minute between each following image. The colorbar is in m/s and 

positive values represent movement away from the lidar along its line of sight. 
 

The average advection speed, 𝑈, can be determined by the distance traveled, ∆𝐷, during a 

given time period, 𝜏. 

 𝑈 =
∆𝐷
𝜏

 (3) 

The distance traveled over the time period, or the advection distance, is measured to be 

about 2,275 meters for sweeps separated by a time period of about 2 minutes and 26 

seconds. The advection speed is calculated to be about 15.6 m/s which is similar to the 

wind speeds measured, showing that the structure can be tracked as it advects with the 

speed of the wind. 
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The magnitude and direction of the wind at each location can be determined from 

the radial velocity using retrieval methods. When performing the retrieval, data near hard 

targets should be removed to avoid erroneous results. This can be done by filtering the 

data that have high values of backscatter. The data near the mountains that obstruct the 

scans needed to be removed for this experiment. The backscatter, showing the high 

values near the mountains, is presented in Figure 10. The backscatter was calculated at 

each range gate, at a distance r from the lidar, from the Signal-to-Noise ratio (SNR) 

measured in decibels, by the following formula (Hutton, 2008). 

 𝐵𝑎𝑐𝑘𝑠𝑐𝑎𝑡𝑡𝑒𝑟 = 𝑆𝑁𝑅 × 𝑟� (4) 

 

Figure 10. Backscatter. High values are recorded near the hard targets. 
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The sector VAD retrieval method was applied for this study due to the scan 

pattern of a single Plan Position Indicator at 0° elevation. An example vector field 

resulting from the retrieval is provided in Figure 11. Sectors with a 30° azimuth were 

used. This sector size was necessary to ensure that the retrieval method did not 

experience mathematical instability, which was seen at lower sector sizes by 

unrealistically high retrieved velocities and overlapping velocity directions. However, 

this retrieval method uses data at surrounding points in the sector to determine the 

velocity based on a least-squares approximation. As a result, with larger sector sizes the 

velocity field becomes increasingly uniform. The 30° sector size was chosen to balance 

these effects for stability as well as maintaining the non-uniformity of the vector field. 

 

Figure 11. Retrieved velocity field for June 27 09:09 GMT. Regions with hard targets 
were removed. The colorbar gives wind magnitude in m/s. 
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With the vectors of wind speed at each location, the direction of advection can be 

evaluated. Using the assumption that the direction of the wind vectors over the scanned 

region is consistent over time, streamlines can be created in the wind field. In Figure 12, 

the velocity field from July 27 09:23 GMT can be seen to be consistent compared to that 

of Figure 11. 

 

Figure 12. Retrieved velocity field for June 27 09:23 GMT. Regions with hard targets 
were removed. The colorbar gives wind magnitude in m/s. 

 

The streamlines provide an estimation of the path that the wind takes to move 

downstream. For a given downstream location, the nearest streamline can be traced back 

to determine an upstream location. This location experiences the wind that will advect to 

the downstream location, and can be used to give a short-term prediction of the wind 

speeds that will be seen downstream. The streamlines can be updated over time to find 
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the real-time upstream location, based on this assumption of a consistent wind field over 

the time period of advection. For this study, the streamlines remained mostly consistent 

over the measured time period from GMT 11:48 to 12:33. The streamlines for the 

velocity field approximately 20 minutes apart are shown in Figure 13. 
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Figure 13. Streamlines over retrieved velocity field at (top) GMT 11:51 and (bottom) 

GMT 12:10 on July 27. 
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A selected location, marked by a red circle, was considered the ‘downstream’ location. 

The streamlines were traced back from this point. Since the streamlines from this point 

are approximately along the radial direction at the center of the scan, locations along the 

radial direction at 296 degrees clockwise from north were used for the correlation and 

prediction.  The locations along this radial direction are shown in Figure 14, where the 

downstream location has a large marker and each upstream location is about 670 meters 

further away. 

 

Figure 14. Selected locations along radial direction for correlation study. Large marker 
indicates the ‘downstream’ location. Markers are about 670 meters apart. The lidar is 

indicated by the red triangle. 
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A radial direction at the center of the scan was important because it means that each 

sample is at a consistent time step, while near the edges each time step alternates between 

large and small due to the back and forth scanning pattern that was used by the lidar.  

An important parameter for wind forecasting is the variance in the wind, or 

dispersion of the speed about the mean speed, which quantifies the intensity of turbulence 

(Atkins, 2001). The variance can be used to determine the Turbulent Kinetic Energy 

(TKE), a parameter frequently used to study turbulence. According to Taylor’s 

Hypothesis, with the assumption of a frozen turbulence field, the time scale of the 

turbulence is related to the length of the eddies making up the turbulence field (Atkins, 

2007). Based on this concept, the variance was measured according to the wind speeds 

over space, in place of measuring them over time, and was defined as the spatial variance 

along a streamline. The difference between the value at an upstream point and the mean 

over an appropriate length scale along the streamline is calculated. The intensity of the 

turbulence as it advects can therefore be determined, and regions of high turbulence can 

be seen as they move toward the wind farm. The oncoming turbulence is important for 

wind farm operators to apply control methods such as blade pitching to their turbines to 

minimize loading. With this method, regions of higher turbulence can be forecasted. 

 TKE is calculated by first calculating the mean wind speed over the time period. 

The following equations provide the formula for calculating the mean of a variable, A, 

over a given time period,       

 N =  
𝑇
∆t

+ 1 (5) 
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 A� =  
1

𝑁
� A�

���

���

 (6) 

where N is the number of samples in the time period, T, and ∆t  is the time step between 

sampled measurements. Variance, 𝜎��, is the dispersion about a mean value A. With N as 

the number of points in the dataset, the variance can be calculated according to the 

following formula. 

 𝜎�� =  
1
𝑁
� (Ai − A�)2
N−1

i=0
= a′2����

 (7) 

Taking u, v, and w to be the orthogonal components of the velocity, TKE per unit mass is 

calculated by the following equation (Šavli, 2012). 

 
𝑇𝐾𝐸
𝑚𝑎𝑠𝑠

=  
1
2
�u′2
����

+ v′2 + w′2�����
� (8) 

The spatial variance along the streamline can be determined in a similar fashion 

based on the assumption that the mean value of the previous time period can be 

approximated by the mean value of the points downstream of the location. The time 

period corresponding to a given advection distance is determined by 

 𝑇 = ∆𝐷 × 𝑈 (9) 

where T is the time period, ∆𝐷 is the distance between locations, and U is the wind 

speed. N is the number of sampled data points along the streamline that correspond to the 

time shift for the selected advection distance, used to calculate the spatial mean of the 

radial velocity, 𝑅𝑉����.  
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 N =  
∆D × U
∆t

+ 1 (10) 

 𝑅𝑉���� =  
1

𝑁
� 𝑅𝑉�

���

���

 (11) 

For this dataset, 1 kilometer was chosen, an advection distance corresponding to about 71 

seconds for a mean wind speed of 14 m/s. For TKE calculations, an average on the order 

of thirty minutes is recommended to separate the turbulence from the mean wind 

component (Šavli, 2012). The spatial variance is being calculated on a smaller length 

scale to show the turbulent fluctuation structures as they advect toward the wind farm. 

The spatial variance, or variation from the mean, along the streamline, gives the 

turbulence intensity. The formula used for the spatial variance at a point along the 

streamline with respect to the measured radial velocity, RV, is 

 (𝑅𝑉 − 𝑅𝑉���� )� = 𝑟𝑣′� (12) 

This could be calculated for a range of points to find the variance over a spatial range 

corresponding to a time period of interest, by 

 𝜎��� =  
1
𝑁
� (𝑅𝑉i −𝑅𝑉�����)2
N−1

i=0
= 𝑟𝑣′2������

 (13) 

The turbulence intensity, 𝑟𝑣′�, was plotted with time as a representative value of the 

TKE given by this spatial variance. Figure 15 shows a series of plots of this spatial 

variance, from sweeps one minute apart. It can be seen that the high turbulence structures 

can be tracked as they move from the northwest closer to the lidar location at the wind 

farm. 
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Figure 15. Spatial variance for 1 kilometer advection distance. Sweeps at 1 minute apart 
are shown, each with lidar scans in the same clockwise direction to show equivalent time 

steps at each location. These sweeps are taken at about 02:38 to 02:40 July 27 GMT. 
 

Therefore, the advection of the turbulent structures can be monitored. This information 

would be useful to the wind farm operators as they could know in advance about times of 

turbulence for their wind turbines and the length of the turbulent patch to make proper 

preparations. 

5.2 Energy Content 

The extractable energy content of the wind is the actual power that can be 

generated from the wind by a real wind turbine. It is also important to wind farm 

operators to have advance knowledge of the power that they will be able to generate from 
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the wind. The energy content can be evaluated by creating a ‘virtual wind farm’ in the 

upstream wind. This is done by modeling the output of turbines at the true wind farm as 

though they are experiencing the wind at the upstream location. With this ‘projected’ 

energy content, a correlation can be found that relates the upstream profile to the wind 

power that can be generated at the wind farm after advection.  

A Simulink model of a 5MW wind turbine from NREL specifications 

(Krishmanurthy et. al, 2013; Jonkman et al, 2007) determines the power that can be 

produced by the turbine from a given wind speed time series. The turbine has a cut-in 

wind speed of 3 m/s, a rated wind speed of 11.4 m/s for its nameplate power output of 5 

MW, and a cut-out wind speed of 25 m/s.   

The Simulink model was given example speeds to display its reactions, shown in 

Figure 16.  



 

  47 

 

Figure 16. The power output (bottom) based on an example wind speed profile (top) for 
the modeled NREL 5 MW turbine from Simulink. 

 

The model output has a delay time for increases in wind speed, as would be expected in 

the output of an actual wind turbine. The model does not exhibit a cut-out point; however 

that will not affect the results of the current study since the lidar measurements were 

limited to 20 m/s. The model required an input wind speed profile with a value at equally 

spaced time intervals. Since some of the profiles of wind speed measured by the lidar 

contained missing values, due to speeds over 20 m/s and to measurements with a low 

Signal to Noise ratio, the wind profiles were interpolated using Matlab’s ‘interp’ 

function. This modification was most significant for the locations closest to the lidar, 

which experienced a time period with greater than 20 m/s speed. The model provided 



 

  48 

output power profiles with slightly differing lengths, so Matlab’s ‘resample’ function was 

used to align the samples from each profile and to use fewer points since the output was 

at a very high temporal resolution compared to the input wind speed profile. 

Since the measured wind speeds were almost always greater than the rated speed 

of 11.4 m/s, the profiles were scaled down so that the relative energy content of the 

increases and decreases could be represented. Each velocity measurement was multiplied 

by a factor of 0.60.  

Locations according to the streamlines from the radial velocity retrieval, marked 

in Figure 14, were selected for input to the wind turbine model to explore the correlation. 

The wind speed at all locations in the wind field can also be provided to the model such 

that the extractable energy content throughout the region at each time step can be plotted 

and tracked. Then a best fit can be done between the energy content at locations across 

which structures are seen advecting to provide the predicted energy at the downstream 

location. 

The profile for the location nearest the lidar, the ‘downstream’ location, is shown 

in Figure 17. The high peak at about 500 minutes reaches the rated wind speed of the 

turbine so that even if the measurements greater than 20 m/s had been included, the 

energy content would be the same, unless the profile was scaled down further. The power 

output from the model maintains a profile that has the same trends as the wind speed 

profile. The output is much smoother and the substantial amount of noise in the wind 

speed profile is diminished.  
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Figure 17. Wind speed input to model for “downstream” location, nearest the lidar (top) 
and the power output determined by the model (bottom). The wind speed profile was 

scaled down to 60% of the original speed to show the relative changes in energy content. 
 

Dips and peaks in the wind speed can also be seen as changes in the energy content. This 

is shown on a smaller time scale in Figure 18. 
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Figure 18. Short time period of the wind speed and energy content profiles at the 
downstream location.  

 

Figure 19 demonstrates the similarity between the energy content at the 

downstream location and at Location 2, which is the second location from the 

downstream and 1340 meters upstream. Figure 20 also shows the similarity between the 

profiles at the different locations as well as the relative magnitudes and time of peaks. 

Other than the meteorological event that occurred between 05:00 and 08:00, the furthest 

upstream location in Figure 20 (top), Location 4 NW, has the highest magnitude and 

experiences the high and low peaks first, and further downstream locations have 

consecutively lower magnitudes and later peaks.  
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Figure 19. Energy content of the downstream location, near the lidar, and the upstream 
location that is second from downstream. The locations are 1340 meters apart. The wind 

speed profiles were scaled down to 60% of the original speed. 
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Figure 20. Energy content of the upstream locations, where Location 1 is closest to the 
downstream location. Each consecutive location is 670 meters further upstream. The 

wind speed profiles were scaled down to 60% of the original speed. Locations 1 through 
4 (top) and selected Locations 1, 4, 7, and 10 (bottom). 

The locations are each separated by 670 meters and very similar profiles are determined. 

With a high temporal measurement of the region, advection of structures that change the 

energy content available to the wind farm can be tracked and power predictions can be 

made.   
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Figure 21. Height above sea level (meters) of the topography in Tehachapi at the location 
of the lidar (red triangle, located on the ground), the downstream location (red marker), 
and each upstream location (blue markers, numbered). The blue beam shows the height 

of the lidar measurements made at each location. The location of the lidar in the 
horizontal direction is not to scale. 

 

The different magnitudes seen at each location in Figure 20 (bottom) result from both the 

momentum losses due to the earth’s surface as well as funneling over the different 

heights of the terrain, shown in Figure 21,  as described by Brower (2012, p. 2-4). The 

profiles presented in Figure 20 are based on the radial velocity measurements under the 

assumption that the wind is approximately in the radial direction, and further analysis of 

the magnitude relationship at locations with different terrain heights could be determined 
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after retrieval of the lidar data. The changes in relative magnitudes contribute to difficulty 

in correlating between these selected locations. 

 To make the prediction of energy content from upstream measurements, a 

correlation needs to be made between the wind farm location and the upstream location 

energy content profiles. First, the time shift, τ, between the profiles needs to be calculated 

according to Equation 2 based on the distance to the upstream location and the mean 

wind speed. This time shift could be made more accurate by an application of Euler’s 

Method to incrementally update the time shift according to changes in wind speed along 

the streamline (Press et. al 1992). For events coming from other directions, such as the 

large peak at about 08:00 that was created by a meteorological event that did not advect 

along the direction of the mean wind, the propagation speed of those events as they move 

between locations can be used to predict their impact at the wind farm.  

The upstream energy content time series should be truncated and shifted in time 

to align with that of the downstream profile. An example of the time shift after truncation 

is shown in Figure 22, from the downstream location and the ninth location upstream. 
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Figure 22. (Top) Truncated and (bottom) time shifted energy content profiles. 
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After shifting the upstream profile later in time by the determined time shift, a fit between 

the energy content profiles must be made. For this experiment, the fits that were tested 

were a linear fit, and a second, third, and fourth order polynomial fit. The given best fit 

can be used as a function to modify the energy content output by the ‘virtual wind farm’ 

at the upstream location to create a prediction for the following time period. 

5.3 Prediction Accuracy 

 The predictions need to be evaluated according to standard metrics. A 

demonstration of how a prediction could look is shown in Figure 23 for analysis. 

 

Figure 23. Example prediction plot 
 

Two types of errors are defined for predicted peaks: phase and magnitude error (Ferreira 

et. al, 2010). The example prediction plot in Figure 23 gives examples of each. While the 

peak experienced at about 16:00 hours has approximately the same magnitude, the 

prediction peaks after the actual measured peak, an example of a phase error since the 
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prediction is not correct in time. On the other hand, the predicted peak at about 13:00 

hours occurs at the correct time but has an incorrect magnitude. A ‘false positive’ occurs 

when a peak is predicted but does not occur, as shown just before 12:00 hours (Ferreira 

et. al, 2010). 

The prediction was made for a time shift based on the average advection speed, 

approximated as 14 m/s. The energy content profiles at the upstream Location 3 and at 

the downstream location near the wind farm, 2010 meters apart, are displayed in Figure 

24. The results of the predictions for various fit functions are given in Figure 25. 

 

 

Figure 24. Energy content profiles at the upstream Location 3 and at the downstream 
location near the wind farm, 2010 meters apart. 
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Figure 25. Predictions of energy content at the downstream location using various fit 
functions with the energy content at Location 3, 2010 meters upstream. 

 

Figure 25a shows the energy content at Location 3 upstream as the prediction, with no 

time shift. This represents the actual measured energy content profiles at Location 3, 

given as the prediction, and at the downstream location near the wind turbine in real-time. 

In Figure 25b, this profile is shifted by 3 minutes, according to the advection speed of 14 
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m/s and distance between the locations, 2010 meters. For this small time shift, the profile 

does not show a very noticeable change, and any improved alignment of small peaks is 

difficult to identify. The first order polynomial fit is applied to the time-shifted upstream 

profile to create the prediction shown in Figure 25c. The first order fit is determined by 

calculating the best correlation between the energy content profiles during a training 

period of historic data for the time period before the prediction is started. In this case, the 

training period was six hours long from 08:00 to 14:00 and the prediction is started at 

14:00. That function is then applied to the upstream profile to create the prediction. The 

magnitude between about 14:00 and 16:00 is improved, but the magnitude for the 

downward peak around 18:00 is worsened. This implies that the fit, which is based on the 

training period from just before the start of the prediction, decreases in validity as time 

progresses, likely because of changes in the meteorological conditions. It is expected that 

a continually updated fit would improve this result. Figure 25d shows the prediction 

according to a second order polynomial fit. While the peak at 16:00 has a larger 

magnitude error, the rest of the signal has an improved magnitude and gives the best 

prediction.  

The prediction using the first order polynomial fit but a shorter training period is 

shown in Figure 26. 
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Figure 26. Prediction of energy content at the downstream location with the energy 
content at Location 3, 2010 meters upstream, using 1st Order Polynomial from training 

period between 08:00 to 12:00. R2=0.42. 
 

This prediction used a 4-hour training period, from 08:00 to 12:00. The magnitude of this 

prediction is better than the first order fit from a longer training period which is because 

the misshaped peak at 13:00 was not part of the training period. The R2correlation value 

is lower because less information was used for the training. 

The Mean Absolute Error (MAE) and the standard deviation of the absolute error 

(Std) are commonly used metrics for predictions in the wind industry (Ferreira et. al, 

2010). MAE and Std were calculated for each of the predictions compared to the actual 

energy content. 

 𝐴𝐸(𝑡) = |ŷ(𝑡) − 𝑦(𝑡)|  (14) 

 𝑀𝐴𝐸 =  
∑ 𝐴𝐸(𝑡)�
���

𝑁
 (15) 
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 𝑆𝑡𝑑 =  �
∑ (𝐴𝐸(𝑡) −𝑀𝐴𝐸)�
���

𝑁 − 1
 (16) 

AE is the Absolute Error between the prediction, ŷ(t), and the observed value, y(t), at a 

given time, t. N is the number of points in the prediction. Lower MAE and Std values 

signify better predictions. 

The MAE is plotted for the linear and second order polynomial fit for both the 4 

and 6-hour training periods in Figure 27. The linear fit with the 4 hour training gave the 

prediction with the lowest error for most of the upstream locations. The second order fit 

with the 6-hour training has slightly better performance for several locations, as was seen 

in the results shown in Figure 25. For all the locations further upstream than Locations 6, 

the 6-hour training did not perform as well as the 4-hour training. The different relative 

magnitudes that were captured in the longer training period caused difficulty in 

performing a successful correlation, resulting in high error in the predictions for these 

cases. In Figure 28 the MAE is shown for a prediction made based on the real-time 

upstream energy content, the time-shifted upstream energy content according to 

advection at 14 m/s, and the linear and second order polynomial fit correlations, after the 

time shift, using the 4-hour training period. The time shift alone has a small effect on the 

error compared to the prediction using the real-time upstream measurements. The 

polynomial fits actually do not improve the prediction for the closest two locations and 

for Locations 6 and 7. The relative magnitudes with the downstream energy content were 

not well-established by the correlation for these locations. 
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Figure 27. MAE for the linear and 2nd order polynomial fit for both the 4 and 6-hour 
training periods for the prediction result from time-shifted energy content according to 

advection at approximate wind speed. 
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Figure 28. MAE for upstream energy content without any time shift, the time-shifted 
upstream energy content according to advection at 14 m/s, and the linear and second 

order polynomial fit correlations, after the time shift, using the 4-hour training period. 
 

While it was expected that the relationship between wind speed profiles would be 

linear as speed would change due to momentum loss at the surface and, according to a 

factor calculated by the Law of the Wall, for different heights above ground level, the 

energy content in fact relates the cube of the wind speed and likely requires a higher-

order fit to relate the profiles for that reason as well as due to the more complex effects of 

the terrain. The prediction and error statistics using third and fourth order polynomial fits 

are shown in Figure 29. 
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Figure 29. Predictions of energy content at the downstream location using (a) 3rd order 
and (b) 4th order polynomial fit functions with the energy content at Location 3, 2010 

meters upstream. MAE statistics for predictions according to location upstream for (c) 4-
hour and (d) 6-hour training time periods. 

 

The magnitude is better captured by the third and fourth order polynomial fits except at 

the local minima in energy content just before 18:00, as the conditions have changed 

from the training period conditions by that time. The linear fit still has the best 

performance for the 4-hour training period, but does not have as good performance as the 
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4th order polynomial fit for many of the locations when the 6-hour training period is used. 

The predictions with an MAE of greater than 0.4, the predictions were not considered 

successful. For the furthest upstream locations, none of the fits give successful 

predictions.  

A more complex correlation, such as the correlation generated by training an 

Artificial Neural Network model, is expected to provide a better prediction. An Artificial 

Neural Network could also make use of the spatially dense and extensive measurements 

made by the lidar, such that measurements at more than one location can be input to 

make the prediction. For correlations according to energy profiles at a single upstream 

location, the location could be selected to more closely follow the streamlines and use 

retrieved wind speed and direction from a validated retrieval technique. The location also 

could be selected according to the upstream energy content profile that gives the best 

correlation during each training period. Training could be done over a long period of time 

that averages out the misaligned peaks and could be updated as wind conditions change. 

Testing the predictions over a longer time period, and in the context of the surrounding 

meteorological conditions, would provide information for conditions under which the 

correlation method is most valid. 

5.4 Ramp Detection 

A change in the extractable energy content of the wind compared to the previous 

average is called a ramp. Differing definitions are used to evaluate ramps (Ferreira et. al, 

2010).  To identify ramps for this study, a change in power output by 25% of the turbine 

power capacity, compared to the average for the previous hour, was applied. A positive 
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ramp is defined as an increase by 25% and a negative ramp as a decrease by 25% of the 

power capacity. The change in power output, P’ at a time t, is calculated from the 

difference between the power output, P(t), and the mean of the previous time period by,   

 N =  
T
∆t

+ 1 (17) 

 P’(t) = P(t) −
∑ P(t − n∆t)���
���

N
 (18) 

where N is the number of samples in the time period, T, which in this case is one hour, 

and ∆t  is the time step between sampled measurements. A ramp event, shown in Figure 

30, was detected by the lidar. The ramp event propagated from the southeast, counter to 

the direction from which the wind advects, reaching Location 11 last. 

 

Figure 30. Ramps of 25% of turbine power capacity, June 27 GMT. Each of the presented 
locations are 2.25 km apart. 
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The positive ramp can be detected at Location 2, 6.75 km ahead, and can be seen 

occurring subsequently at the further locations. At Location 2, this ramp is recognized 

before 06:00 GMT. It occurs closer to the wind farm, at Location 11, after 07:00 GMT, 

giving over an hour of advance notice of the oncoming ramp event. The negative ramp, 

just before 08:00 GMT, also occurs subsequently at locations further downstream. The 

time between peaks at each location is smaller than for the positive ramp. The speed of 

propagation must be considered, as described for the correlation studies of advection, to 

predict the time of arrival of the ramp at the wind farm. 

 This ramp is barely noticeable when the full extractable energy content is 

assumed, rather than scaled to 60% of the energy content, since the wind speeds barely 

drop below the turbine’s rated value. However, correlating the energy content without 

this limit makes it possible to account for the decrease in magnitude of wind speeds 

between upstream and downstream that could cause a decrease below rated power at the 

downstream location.  

 In Figure 31, the radial velocity is plotted for several sweeps 30 minutes apart. 

The data was limited to 20 m/s and any higher values were removed. The interface 

between velocity at 20 m/s and missing data where the velocity was higher can be seen 

moving through the domain. 
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Figure 31. Propagation of the ramp event where radial velocities greater than 20 m/s are 
shown as missing data. First image is at GMT 06:03 on June 27, with about 30 minutes 

between each following image. The colorbar is in m/s and positive values represent 
movement away from the lidar along its line of sight. 

 

Visual inspection of the plots also makes it possible to recognize this ramp event and 

track its movement. 

The ramp is expected to be a meteorological event due to a propagating front 

creating a depression in the height of the inversion capping layer, causing an increase in 

wind speed as winds are funneled through a narrower volume between the terrain and the 

capping layer. Since the ramp event moved opposite the direction of advection, wind 

farm operators must monitor changes in energy content from all directions to capture all 

ramp events. The height of the terrain (Brower, 2012, p. 2-4) and the direction of the 

ramp event’s propagation will affect the magnitude of the change in the energy content at 

locations along streamlines.  
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This result shows that ramps can be detected as they propagate by monitoring the 

change of the extractable energy content from the running average over the selected time 

period. A lidar makes it possible to measure the winds over a large spatial region with 

high accuracy and temporal resolution and effectively predict large ramp events. 
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Chapter 6  

CONCLUSIONS 

This study provided an example of a correlation analysis to make predictions of 

wind power output based on velocity measurements upstream of a wind farm using a 

“Virtual wind farm” concept, presented a value quantifying turbulence intensity and 

tracking movement of turbulent regions, and gave an example of identifying propagation 

of a ramp event. This study showed that there is clearly a relationship between the energy 

content measured with time by the Doppler lidar at the different locations.  

The assumption of advection along a radial direction from the lidar provided a 

reasonable fit between energy content at upstream and downstream locations, making a 

prediction possible. An improved selection of locations could be made after retrievals of 

the decomposed velocity so that wind speed and direction at all measured locations are 

available. Streamlines can be followed upstream from a wind farm location to determine 

a location from which wind structures are expected to advect. A sector VAD approach 

was applied to show that streamlines remained consistent over a 20-minute period and 

did follow a radial direction near the center of the sweep, supporting the choice of 

upstream locations for this study. To determine the streamlines for future projects, 

retrieval techniques such as Volume Velocity Processing should be evaluated for 

applicability in complex terrain. Experimentation should include in situ measurements 

within or near the region of the lidar’s scans for validation.  

Some additional work should be performed studying the use of VVP in complex 

topography to consider whether smaller sector sizes are valid. For application of the VVP 
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method, the lidar scanning pattern should include sweeps of at least two different 

elevation angles to provide a volume for processing. If only one sweep can be made, it 

should be at zero-degree elevation to remove components of vertical velocity from the 

measurements. The sweeps should be repeating rather than back and forth and should 

view the same location with a small enough time interval to track advection at the speed 

of expected prevailing winds. 

A formulation of the turbulence intensity is defined spatially, relating time of 

advection to the size of eddies. Termed spatial variance, it is calculated by the variation 

from the mean along the streamline in the downstream direction over a distance related to 

the speed of advection and time scale of interest. With this formulation, regions of 

increased turbulence can be tracked as they advect. This makes it possible to provide 

advance information of intensity and length of turbulent patches to wind farm operators 

who can apply pitch controls to their turbines to harness the additional energy or 

minimize loading due to the turbulence. 

Energy content was determined from the radial velocity measurements at 

locations along a streamline parallel to the radial direction using a Simulink model of the 

NREL 5MW turbine. The energy content was capped for wind speeds above the turbine’s 

rated speed. However, correlating the energy content without this capping, for example 

by decreasing the wind speed profile by a constant factor, makes it possible to account for 

the decrease in magnitude of wind speeds between upstream and downstream that could 

cause a decrease below rated power at the downstream location. 



 

  73 

The phase and magnitude errors in the predictions could result from the points not 

actually being along a streamline and therefore not actually experiencing the same 

structures. The locations were chosen based on advection of small-scale structures 

approximately along streamlines from historical data. The time shift was calculated 

according to the speed of advection and the distance between the locations. For more 

precision, the time shift should be updated from the velocity of the wind speed over the 

streamline in real-time.  

The prediction was calculated from a best fit between locations over a training 

period of historical data. For this study, it was found that the linear fit, which relates the 

magnitude and the rate of change of the wind velocities, worked best, and the longer 

training time period also decreased the error. Making this fit for a longer training period 

or updating it for the latest historical data would improve the correlation. Since 

magnitude errors were seen even from the linear fit, it is also recommended that 

additional fit types could be evaluated.  

A straightforward correlation method was applied in this study to present the 

ability of lidar measurements to inform short-term power predictions by tracking 

advection of energy content in wind structures. With this shown, it is suggested that 

future work should explore the advectability of structures across larger distances 

upstream of wind farms. The lidar can be located ahead of wind farms, when the 

upstream direction is known, and make measurements of structures moving toward the 

wind farm further in advance. For lidars that are located so far upstream that they cannot 

measure energy content at the wind farm, correlations of energy content can be done 
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using in situ measurements at the wind farm or the power generated by the turbines. 

Applying the results to real practice would assist in evaluating this method. It is 

important to evaluate this prediction method using real data from wind turbines to include 

effects that are not sufficiently addressed by the turbine model, such as yaw effects, 

vertical wind gradients over the turbine rotor, and turbulence, which can be measured by 

the lidar at the turbine and upstream (Wagner, 2009). 

Opportunities are available to expand on the correlation method using historical 

data between two locations that was presented in this study. Recommended next steps are 

using the lidar data with terrain data as input to a NWP model or generalizing the 

correlation to a neural network with learning and adaptability in addition to the capacity 

for multiple inputs which the lidar is highly capable of providing (Sheela and Deepa, 

2013; Bilgili, Sahin, & Yasar, 2007). Since no papers were found that applied lidar 

measurement data to neural network methods for wind power prediction, this is a new 

route that can be taken for future expansion of this project. The prediction can be made 

for a wind farm by expanding the turbine model into a model of a full wind farm, which 

also makes it possible to determine control schemes according to wake effects.  
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