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ABSTRACT

Pre-Exposure Prophylaxis (PrEP) is any medical or public health procedure used be-

fore exposure to the disease causing agent, its purpose is to prevent, rather than treat

or cure a disease. Most commonly, PrEP refers to an experimental HIV-prevention

strategy that would use antiretrovirals to protect HIV-negative people from HIV in-

fection. A deterministic mathematical model of HIV transmission is developed to

evaluate the public-health impact of oral PrEP interventions, and to compare PrEP

effectiveness with respect to different evaluation methods. The effects of demographic,

behavioral, and epidemic parameters on the PrEP impact are studied in a multivari-

ate sensitivity analysis. Most of the published models on HIV intervention impact

assume that the number of individuals joining the sexually active population per

year is constant or proportional to the total population. In the second part of this

study, three models are presented and analyzed to study the PrEP intervention, with

constant, linear, and logistic recruitment rates. How different demographic assump-

tions can affect the evaluation of PrEP is studied. When provided with data, often

least square fitting or similar approaches can be used to determine a single set of ap-

proximated parameter values that make the model fit the data best. However, least

square fitting only provides point estimates and does not provide information on how

strongly the data supports these particular estimates. Therefore, in the third part of

this study, Bayesian parameter estimation is applied on fitting ODE model to the re-

lated HIV data. Starting with a set of prior distributions for the parameters as initial

guess, Bayes’ formula can be applied to obtain a set of posterior distributions for the

parameters which makes the model fit the observed data best. Evaluating the poste-

rior distribution often requires the integration of high-dimensional functions, which is

usually difficult to calculate numerically. Therefore, the Markov chain Monte Carlo

(MCMC) method is used to approximate the posterior distribution.
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Chapter 1

INTRODUCTION

Mathematical models have been used extensively to simulate HIV transmission

and to study the use of male circumcision, antiretroviral therapy (ART), microbicides,

and pre-exposure prophylaxis (PrEP) for HIV prevention. My study will focus on

PrEP for HIV prevention.

PrEP is any medical or public health procedure used before exposure to the dis-

ease causing agent, its purpose is to prevent, rather than treat or cure a disease

(such as malaria, and HIV). PrEP can also refer to the aggressive use of vaccination

(such as for rabies). Most commonly, PrEP refers to an experimental HIV-prevention

strategy that would use antiretrovirals to protect HIV-negative people from HIV in-

fection. With an estimated 39.5 million people living with HIV worldwide and 4.3

million new infections per year (UNAIDS (2013)), many people are at risk for HIV

infection through sexual transmission. Therefore preemptive measures must be taken

to prevent further dissemination. PrEP provides a promising prevention strategy for

further HIV transmission.

In 2010, evidence from two different randomized clinical trials (Grant et al. (2010);

Karim et al. (2010)) suggested that PrEP products based on antiretroviral drug Teno-

fovir taken orally as a pill (oral PrEP) or applied topically in the form of gel (vaginal

microbicides (VMB)) can help prevent HIV. First in South Africa, the CAPRISA

004 trial demonstrated a 39% (95%CI, 6% to 60%) overall decrease in HIV incidence

among women in the VMB (gel) arm of the trial who were advised to use the product

before and after each sex act (Karim et al. (2010)). Later, the Global iPrEx trial

of a daily use of a combination of two oral antiretroviral drugs, emtricitabine and

1



tenofovir disoproxil fumarate, demonstrated a 44% efficacy (95%CI, 15% to 63%) re-

duction in the incidence of HIV, among men-who-have sex with men (MSM) (Grant

et al. (2010)).

The search for a safe and effective HIV vaccine is still ongoing. There is no HIV

vaccine and it is not expected in a near future, which makes the study of PrEP

important and practical. In 2012, one product (oral Truvada) was approved for PrEP

use by FDA in United States, and recommended for use in South Africa. And there

has been a broad discussion on what will be population-level benefits from wide-scale

PrEP use in high prevalence settings.

Mathematical models have been used to simulate HIV transmission and to study

the use of chemoprophylaxis among MSM (Desai et al. (2008); Supervie et al. (2010)).

Deterministic mathematical models of HIV heterosexual transmission stratified by

gender have been analyzed in Abbas et al. (2007); Dimitrov et al. (2011, 2010); Pre-

torius et al. (2010); Vissers et al. (2008); Wilson et al. (2008). Often a single inter-

vention outcome based on cumulative number or fractions of infections prevented,

on reduction in HIV prevalence or incidence has been used to evaluate the effective-

ness of PrEP interventions. These indicators express a wide variation over time and

often disagree in their forecast on the success of the intervention (Dimitrov et al.

(2010); Pretorius et al. (2010)). Therefore, the conclusions of many modeling studies

are significantly influenced by the choice of the evaluation method and the period of

evaluation. In particular, it has been pointed out that indicators based on prevented

infections tend to show mixed results over time due to their sensitivity to changes in

population dynamics (Dimitrov et al. (2011)).

In the first part of my study (Zhao et al. (2013)), I develop a deterministic mathe-

matical model of HIV transmission to evaluate the public-health impact of oral PrEP

interventions, compare PrEP effectiveness with respect to different evaluation meth-
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ods, and analyze its dynamics over time. Four traditional evaluation methods are

compared, including relative reduction in HIV prevalence and incidence which avoid

the ambiguity associated with commonly used indicators based on the absolute num-

ber of prevented infections. Two additional methods are considered which estimate

the burden of the epidemic to the public-health system. I then investigate the short

term and long term behavior of these indicators and the effects of key parameters on

the expected benefits from PrEP use. The effects of demographic, behavioral, and

epidemic parameters on the PrEP impact are studied in a multivariate sensitivity

analysis.

Since HIV is acquired predominately through sexual contacts, it is usually mod-

eled as a sexually transmitted disease, ignoring the other routes of transmission. In

this study, sexually active heterosexual population aged from 15 to 49 year are con-

sidered, as assumed in many published papers. Most of the published models on

HIV intervention impact I found assume that the number of individuals joining the

sexually active population per year is constant (constant entrance) or proportional

to the total population (linear entrance). In sexually active population with no mi-

gration, constant entrance implies that the same number of people reaches sexual

maturity annually. This may be an acceptable approximation over some short time

period, but not reasonable as the simulation period increases. The progression of

HIV infection from acquisition to symptoms of AIDS and then death is incredibly

slow compared with many other fatal diseases, and it can be further delayed by ART.

Therefore, a meaningful impact of prevention intervention should be expected over

several decades, which explains simulation periods of 20-50 years used in mathemat-

ical models. In the second part of this study, I will present and analyze three models

to study the PrEP intervention, with constant, linear, and logistic recruitment rates.

Except the recruitment rate, all the assumptions for the three models stay the same.

3



How different demographic assumptions can affect the evaluation of PrEP will be

studied.

In the third part of this study, I will apply Bayesian inference on parameter

estimation on the basic HIV model without PrEP intervention. The least square

fitting (or similar approaches) only gives a single set of approximated parameter values

that make the model fit the data best. It only provides point estimates and does not

provide information on how strongly the data supports these particular estimates.

Therefore, a second approach I will try is the Bayesian parameter estimation on

fitting ODE model to the related HIV data. Starting with a set of prior distributions

for the parameters as initial guess, we can apply Bayes’ formula to obtain a set of

posterior distributions for the parameters which make the model fit the observed data

best. The posterior distributions provide the probability for each parameter to equal

any possible value.

4



Chapter 2

EFFECTIVENESS INDICATORS FOR HIV INTERVENTIONS

Details of the work in this section can be found in Zhao et al. (2013).

2.1 Model Description

Figure 2.1: Flow diagram of a PrEP intervention for the model (1) formulation.

In my models (see Figure 2.1) the population is divided into two major classes,

PrEP users (superscript p, Sp + Ip) and those that do not use PrEP (S + I), and

further stratified according to their HIV status into susceptible (S, Sp) and infected

(I, Ip). Individuals who develop AIDS are accumulated in non-sexually active class

A. Individuals join the community (reaching sexual maturity) and departure from

the sexually active population at constant rates (Λ, µ). A proportion k of the new

recruits start using PrEP. PrEP users are assumed to strictly follow the prescribed

regimens. The model which assumes that PrEP reduces both susceptibility and infec-

tiousness of the users (“dual-protection” model) is formulated by the following system

of differential equations:

5



dSp

dt
= kΛ− (1− αs)β S

pI
N
− (1− αs)(1− αi)β I

pSp

N
− µSp

dS

dt
= (1− k)Λ− β IS

N
− (1− αi)β I

pS
N
− µS

dIp

dt
= (1− αs)β IS

p

N
+ (1− αs)(1− αi)β I

pSp

N
− (µ+ d)Ip

dI

dt
= β IS

N
+ (1− αi)β I

pS
N
− (µ+ d)I.

(2.1)

Table 2.1: Parameter description and baseline values

Par. Description Value Ref.

d HIV carrier’s annual rate of progression to AIDS 0.1302 fitted sta (2012)

Λ Annual rate at which individuals 38094 calc. sta (2012)

become sexually active

1
µ Time (in years) to remain sexually active 1

0.0250 fitted sta (2012)

ba HIV acquisition risk per act 0.0030 fitted sta (2012)

n Number of sexual acts per year per individual 65.8494 fitted sta (2012)

β Cumulative HIV-acquisition risk β(n, ba) calc.

N(0) Initial sexually active population 106 assumed

P Initial HIV prevalence 0.166 sta (2012)

k1 Initial PrEP coverage 0.2 assumed

θ Reduction in the initial fraction of HIV positive 0.5 assumed

individuals as a result of pre-enrollment screening

k Proportion of the new recruits k = k1 assumed

that start using PrEP

αs Efficacy of PrEP in 0.5 assumed

reducing susceptibility of PrEP users

αi Efficacy of PrEP in 0.5 assumed

reducing infectiousness of PrEP users

6



Since the differential equations for these four compartments are independent from

the AIDS class (A), it is not included in the ODE system. Here N = Sp + S +

Ip + I represents the sexually active population and αs (αi) measures the efficacy of

PrEP in reducing susceptibility (infectiousness) of PrEP users. The cumulative HIV

acquisition risk per year β is calculated based on the HIV risk per act (ba) with a

HIV-positive partner and the average number of sex acts per year (n):

β = 1− (1− ba)n.

Cumulative acquisition risk (β) is an increasing function with respect to HIV-

acquisition risk per act ba and average number of sexual acts per year n.

PrEP is introduced at time (t = 0) in a population with N(0) = 1, 000, 000 and

HIV-prevalence (P ). It is assumed that PrEP is initially adopted by a fraction k1 of

the individuals and that the initial fraction of HIV-positive individuals is reduced by

θ as a result of pre-enrollment HIV screening:

Sp(0) = k1(1− P )N(0)

S(0) = (1− k1)(1− P )N(0)

Ip(0) = (1− θ)k1PN(0)

I(0) = (1− (1− θ)k1)PN(0),

The initial distribution of the epidemic classes may not be critical for the asymp-

totic behavior of the system but it is essential for the impact indicators calculated

over fixed periods of time after the start of the intervention. To isolate the impact of

the choice of the evaluation method I simplify the intervention schedule and assume

instantaneous uptake of PrEP at predetermined level (k = k1).

Clinical trials in HIV prevention are usually designed to evaluate the efficacy of

the tested products in reducing susceptibility (αs) only. Although a reduction in
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infectiousness (αi) is plausible it is not verifiable since all HIV positive participants

are immediately withdrawn from the product. Moreover, the biomedical products

currently in testing, are based on antiretroviral drugs and are not recommended for

use by infected individuals due to the risk of drug resistance development. Therefore,

the majority of the modelers assume uni-directional PrEP protection (αi = 0) which

means that using PrEP has no effect on the infectiousness or that infected individuals

do not take PrEP anymore. This scenario may also represent the idea of control of

the PrEP usage by the HIV-positive individuals since fast removal of the infected

users from PrEP is the equivalent of setting αi = 0. To address that possibility I

consider a “single-protection” model in which the variable Ip is removed from the

baseline model as follows:

dSp

dt
= kΛ− (1− αs)β S

pI
N
− µSp

dS

dt
= (1− k)Λ− β SI

N
− µS

dI

dt
= β SI

N
+ (1− αs)β S

pI
N
− (µ+ d)I

(2.2)

with initial conditions:

Sp(0) = k1(1− P )N(0)

S(0) = (1− k1)(1− P )N(0)

I(0) = PN(0).

In my analysis HIV epidemics are simulated in presence and in absence of PrEP. If

PrEP is not available the “no intervention” model is reduced to the following system:

dS

dt
= Λ− β SI

N
− µS

dI

dt
= β SI

N
− (µ+ d)I

(2.3)

with S(0) = (1− P )N(0) and I(0) = PN(0).
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2.1.1 Modeling Assumptions

Several important assumptions are incorporated into the model:

• The HIV prevalence in the whole population is representative for the HIV preva-

lence among each gender, i.e., the chance to have a HIV-positive partner is pro-

portional to the total HIV prevalence. Transmission and susceptibility do not

differ between the sexes, either with or without PrEP.

• Individuals are assumed to have a fixed number of sex acts per year.

• Sexual behavior of an individual does not change if he/she starts using PrEP

but sexual activity stops once AIDS is developed.

• The use of PrEP reduces both HIV susceptibility and infectiousness (indepen-

dently) and by this reduces the HIV acquisition risk per sex act.

• Perfect adherence to PrEP is assumed: individuals who start using PrEP con-

tinue to follow the prescribed regimen indefinitely. However, the scenario with

no reduction of infectiousness due to PrEP (αi = 0) is equivalent to immediate

withdrawal from PrEP after HIV acquisition.

• The use of other HIV prevention measures including condom use, male circum-

cision, and ARV treatments are not considered separately in my model. Their

effects on HIV transmission are aggregated in the HIV acquisition risk per act.

2.1.2 Model Parametrization

To parameterize the model in the scenario without PrEP, I used demographic and

HIV prevalence data representative for the sexually active population (15-49 years

9



old) in South Africa for the period between 2001 and 2011 provided by the Statistical

Institute of South Africa (sta (2012)) .

First, I estimate the recruitment rate in the sexually active population (Λ). Calcu-

lations are based on the approximated number of 15-year olds (population aged 15 to 19
5

=

5175400
5

= 1035100) and the total population size (27,172,400) aged 15 to 49 , in year

2011. In the model without PrEP, initial total sexually active population is assumed

to be N = 106. Therefore, I scale the estimated entrance rate to obtain the recruit-

ment of the sexually active population (Λ) in the model: Λ = 106 · 1035100
27172400

≈ 38094

which willed be used in the epidemic simulations.

Next, I fit the projected HIV prevalence I
S+I

by the model without PrEP to the

2001-2011 prevalence data from South Africa (sta (2012)). I use the Matlab built-

in function ‘fminsearch’ to do the data fitting, with error measurement
∑n
i=1 |psi−pi|

n
,

where psi represents the HIV prevalence from model simulation, pi represents the

HIV prevalence from data, and n represents the number of data points. Starting with

initial parameter values borrowed from published studies: ba = 0.0038(Boily et al.

(2009)), n = 80(Kalichman et al. (2009); Wawer et al. (2005)), µ = 1/35(UNAIDS

(2009)), and d = 1/10(Morgan et al. (2002); Porter and Zaba (2004)), I obtain the

following parameter set which fits best the prevalence data from year 2001 to year

2011: ba = 0.0030, n = 65.8494, µ = 0.0250, and d = 0.1302 (with error of data

fitting=0.0737). Figure 2.2 shows the HIV prevalence data and the best-fitting es-

timates obtained by the “no intervention” model for the period 2001-2011 (Figure

2.2(a)) as well as its long-term projections (Figure 2.2(b)).
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Figure 2.2: (a) HIV prevalence among sexually active population in South Africa

for the period 2001- 2011 from data and fitted with the “no intervention” model; (b)

Long-term projections of the HIV prevalence based on fitted “no intervention” model.

2.2 Effectiveness Indicators

The impact of PrEP in my analysis is evaluated by the quantitative indicators

described in Table 2.2. The first four indicators are widely used in modeling studies

to evaluate the impact of interventions over fixed periods [0, T ]. The cumulative and

the fractional indicators measure the intervention effectiveness based on the infections

prevented in scenarios with PrEP compared to scenarios without PrEP. The preva-

lence and incidence indicators measure the reduction of the projected HIV prevalence

and incidence due to PrEP. I propose the last two evaluation methods based on the

reduction of the number of infected individuals as they are closely related to the eco-

nomic burden of the HIV epidemic on the public health system at community and

state level since the money allocated for HIV treatment is proportional to the size of

the infected population.

Predictions of mathematical models based on quantitative indicators are often
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Table 2.2: Indicator description

Indicator Name Description

CI(T ) Cumulative indicator Cumulative number of infections prevented

over the period [0, T ] due to the usage of PrEP

FI(T ) Fractional indicator Fraction of infections prevented

over the period [0, T ] due to the usage of PrEP

PI(T ) Prevalence indicator Reduction in HIV-prevalence

at time t = T due to the usage of PrEP

aII(T ) Incidence indicator Reduction in the annual HIV incidence

at time t = T due to the usage of PrEP

ĈI(T ) Reduction indicator Reduction in the projected number of infections

at time t = T due to the usage of PrEP

F̂I(T ) Fractional reduction Fraction of the number of infections reduced

indicator at time t = T reduced due to the usage of PrEP

used to estimate the effectiveness of novel interventions and to compare the expected

benefits from different prevention options. The analytical conclusions in favor of spe-

cific option are usually based on evaluations of the indicators over a few fixed periods

of intervention time, most likely 10 years but almost certainly between 5 and 30 years.

However, all indicators vary over time and may express different preferences when used

to decide between comparable prevention programs. The idea is illustrated with a

comparison of the indicator dynamics for two hypothetical PrEP interventions. Inter-

vention 1 assumes no control of the PrEP use by HIV-positive individuals (θ = 0) and

50% PrEP efficacy in reducing both susceptibility and infectiousness (αs = αi = 0.5)

while Intervention 2 requires a negative HIV test as a condition for prescribing PrEP
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Figure 2.3: Comparison of the indicators projections for two PrEP interventions over

50-year period. Intervention 1 assumes that θ = 0 and αs = αi = 0.5. Intervention 2

assumes that θ = 1, αs = 0.5 and αi = 0.9. All other parameters are fixed on their

baseline parameter values from Table 2.1.

(θ = 1) and better PrEP efficacy in reducing infectiousness (αs = 0.5, αi = 0.9). Each

of the incidence, prevalence and fractional indicators shows increasing effectiveness

of both interventions over 50 years after initiation of PrEP (Figure 2.3) with more

benefits attributed to Intervention 1 initially but higher impact of Intervention 2 in a

long-term. However, they disagree on the timing when the advantage of Intervention

1 ends. For instance, a preference to Intervention 2 is given after 17 years of PrEP

use if based on reduction in HIV incidence and after 22 years if based on reduction

in HIV prevalence. The public-health impact of Intervention 1 measured in terms of

cumulative fraction of prevented infections remains higher compared to Intervention

2 for up to 32 years which is substantially longer than the evaluation periods used

in the majority of the quantitative analyses. Therefore, if PrEP is evaluated over

periods between 17 and 32 years the choice of quantitative indicator is critical. Now

take a closer look at the key drivers of those discrepancies in the indicators’ dynamics.
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2.2.1 Indicator Expressions

To utilize the calculation of the cumulative indicators it is necessary to keep track

of the cumulative number of new infections. For this reason I add two equations to

the “dual-protection” model (2.1):

d(IpNew)

dt
= (1− αs)β S

pI
N

+ (1− αs)(1− αi)β S
pIp

N

d(INew)

dt
= β SI

N
+ (1− αi)β SI

p

N
,

(2.4)

and add an equation to the “single-protection” model (2.2):

d(INew)

dt
= β SI

N
+ (1− αs)β S

pI
N

(2.5)

with initial conditions INew(0) = IpNew(0) = 0, and INew(0) = 0 respectively. These

new variables (IpNew and INew) represent cumulative HIV infections in PrEP users and

non-users, respectively.

If PrEP is not available, the “no intervention” model becomes:

dS

dt
= Λ− β SI

N
− µS

dI

dt
= β SI

N
− (µ+ d)I

d(INew)

dt
= β SI

N

(2.6)

with initial conditions S(0) = (1− P )N(0), I(0) = PN(0), and INew(0) = 0.

I proceed with analysis of the behavior of the indicators assuming “dual pro-

tection”. [ ] is used to denote variables from the model without PrEP (2.6) and

[ ]DP for variables from the “dual-protection” model with PrEP (2.4). Using these

notations, the qualitative indicators have the following expressions:
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CI(T ) =
∫ T

0
([ d
dt
INew(t)]− [ d

dt
IpNew(t) + d

dt
INew(t)]DP )dt

FI(T ) =
∫ T
0 ([ d

dt
INew(t)]−[ d

dt
IpNew(t)+ d

dt
INew(t)]DP )dt∫ T

0 [ d
dt
INew(t)]dt

PI(T ) = 1−
[

Ip(T )+I(T )
Sp(T )+S(T )+Ip(T )+I(T )

]DP

[
I(T )

S(T )+I(T )
]

aII(T ) = 1−
[

∫T+1
T

[ d
dt
I
p
New

(t)+ d
dt
INew(t)]dt

Sp(T )+S(T )
]DP

[

∫T+1
T

d
dt
INew(t)dt

S(T )
]

ĈI(T ) = [I(T )]− [Ip(T ) + I(T )]DP

F̂I(T ) = [I(T )]−[Ip(T )+I(T )]DP
[I(T )]

= 1− [Ip(T )+I(T )]DP
[I(T )]

.

Since integral evaluated on derivative function can be simplified, previous expres-

sions of the indicators are equivalent to the following:

CI(T ) = [INew(T )]− [IpNew(T ) + INew(T )]DP

FI(T ) =
[INew(T )]−[IpNew(T )+INew(T )]DP

[INew(T )]
= 1− [IpNew(T )+INew(T )]DP

[INew(T )]

PI(T ) = 1−
[

Ip(T )+I(T )
Sp(T )+S(T )+Ip(T )+I(T )

]DP

[
I(T )

S(T )+I(T )
]

aII(T ) = 1−
[
I
p
New

(T+1)+INew(T+1)−(I
p
New

(T )+INew(T ))

Sp(T )+S(T )
]DP

[
INew(T+1)−INew(T )

S(T )
]

ĈI(T ) = [I(T )]− [Ip(T ) + I(T )]DP

F̂I(T ) = [I(T )]−[Ip(T )+I(T )]DP
[I(T )]

= 1− [Ip(T )+I(T )]DP
[I(T )]

.

From these expressions it can be seen that the indicators FI , PI , aII , FI and F̂I
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are dimensionless and do not depend on the population size. The other two indicators

CI and ĈI measure changes in population group sizes, and are not dimensionless.

2.2.2 Initial Dynamics of the Indicators

To understand the practical value of the qualitative indicators I examine their

short, intermediate and long term dynamics. I begin with indicator approximations

shortly after the start of the intervention. Using the initial conditions defined above,

the following expressions associated with the initial indicators’ behavior are obtained

(details can be found in the Appendix of Zhao et al. (2013)):

CI ≈ [αs + (1− θ)αi(1− αsk1)]k1βP (1− P )N(0)dt

FI ≈ [αs + (1− θ)αi(1− αsk1)]k1

PI ≈ [αs + (1− θ)αi(1− αsk1)]k1β(1− P )dt

aII ≈ (1− αsk1)[1− (1− θ)αik1]{1− (1− αsk1)k1[1− (1− θ)αik1]}k1βPdt

ĈI ≈ [αs + (1− θ)αi(1− αsk1)]k1βP (1− P )N(0)dt

F̂I ≈ [αs + (1− θ)αi(1− αsk1)]k1β(1− P )dt.

Here I assume dt = 1 for the approximation for aII because the definition of the

incidence indicator is on annual basis.

Note that the expression for the fractional indicator (FI) depends only on the

PrEP efficacy (αs, αi) and factors related to the implementation of the intervention

at its start such as initial coverage (k1) and the introductory control of the PrEP usage

by HIV-positive individuals (θ) but not on the demographic, behavioral and epidemic

parameters. Therefore, fractional indicator represents a metric of the “immediate

impact of PrEP” on the HIV epidemic, which is independent of the specific population

and the status of the HIV epidemic in it. This metric accounts for the effects of the

reduced susceptibility (αs) of the fraction k1 of the population which initially uses

PrEP combined with the reduced infectiousness (αi) of a limited fraction (1− θ)k1 of
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the infected population when in contact with partners unprotected by PrEP (1−αsk1).

Clearly, if PrEP provides uni-directional protection (αi = 0) or none of the infected

individuals is using PrEP (θ = 1) then the “immediate impact of PrEP” is given by

the product of PrEP efficacy and coverage (αsk1). The initial behavior of all other

indicators depend on the HIV prevalence (P ) at the time of PrEP introduction as well

as on the cumulative HIV-acquisition risk (β). Moreover, the cumulative (CI) and

reduction (ĈI) indicators also depend on the initial population size (N(0)), which is

consistent with the fact that only indicators CI and ĈI measure changes on population

group sizes, and are not dimensionless.

The initial rate of change of the indicators can be approximated as:

CI
′ ≈ [αs + (1− θ)αi(1− αsk1)]k1βP (1− P )N(0)

PI
′ ≈ [αs + (1− θ)αi(1− αsk1)]k1β(1− P )

aII
′ ≈ (1− αsk1)[1− (1− θ)αik1]{1− (1− αsk1)k1[1− (1− θ)αik1]}k1βP

ĈI
′

≈ [αs + (1− θ)αi(1− αsk1)]k1βP (1− P )N(0)

F̂I
′

≈ [αs + (1− θ)αi(1− αsk1)]k1β(1− P ).

Notice that initially CI
′ ≈ ĈI

′
and PI

′ ≈ F̂I
′
. Now study the sensitivity of

the initial rate of change of the reduction indicators (ĈI and F̂I) to some of the

intervention (θ, k1) and epidemic (P ) parameters by bifurcation simulations (Figure

2.4). These bifurcation parameters were chosen because they are easier to evaluate at

community levels compared to HIV-acquisition risk and PrEP efficacy. The graphs in

Figure 2.4, (a) and (b) demonstrate that the growth of both indicators accelerates if

more people start on PrEP (larger k1) but decelerates if the control of the PrEP usage

by infected individuals is more effective (larger θ). The initial rate of change is more

sensitive to k1 than to θ but it is clear that the growth rate of both indicators at the

time of PrEP introduction expresses qualitatively similar behavior with respect to the

intervention parameters (θ, k1). In contrast, the graphs presenting the dependence
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Figure 2.4: Initial growth rate of reduction (ĈI) and fractional reduction (F̂I) indica-

tors with respect to θ, k1 and P . ĈI is denoted by green solid line, while F̂I is denoted

by blue dashed line. All other parameters are fixed on their baseline parameter values

from Table 2.1.

on the initial HIV prevalence show serious discrepancies (Figure 2.4(c)). The initial

growth rate of the reduction indicator (ĈI) increases when the HIV prevalence ranges

from 0 to 50% which includes all realistic values observed so far, particularly in Sub-

Saharan Africa (Figure 2.4(c)). In comparison, the increase in HIV prevalence within

the same range implies smaller growth rate of the fractional reduction indicator F̂I .

2.2.3 Asymptotic Behavior of the Indicators

In resource-constrained settings, it is unrealistic to expect the HIV epidemic will

die out without additional intervention. Therefore, in the following, I assume that

the basic reproduction number of the “no intervention” model is R0 = β
µ+d

> 1. The

asymptotic HIV prevalence in this case is given by: [ I
S+I

] = 1− µ+d
β

= 1− 1
R0

.

I want to point out that if the PrEP intervention is strong enough to cause the

eradication of HIV in the population, i.e., the HIV epidemic approaches the disease-
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free equilibrium with the “dual-protection” model, then the asymptotic behavior of

all indicators is well determined: i) the cumulative indicator will grow to infinity; ii)

the reduction indicator will stabilize at [I] = R0−1
β−d Λ; and iii) all other indicators will

approach one. Unfortunately, PrEP intervention alone is unlikely to be sufficient to

eradicate HIV. In that case it is shown that the asymptotic behavior of the indica-

tors can be expressed in terms of the asymptotic proportion (p) of the HIV-positive

subpopulation which have been infected while using PrEP (details are presented in

Appendix of Zhao et al. (2013)), where p is defined as follows:

p = [
Ip

Ip + I
]DP .

Expressions for the asymptotic values of four of the indicators:

PI = 1−
R0− 1−αs(1−p)

(1−αs)(1−αip)
R0−1

aII = 1−
R0

(1−αs)(1−αip)
1−αs(1−p) −1

R0−1

ĈI = [R0−1
β−d −

R0(1−αip)(1−αsk)−1
β(1−αip)(1−αsp)−d ]Λ

F̂I = 1− R0(1−αip)(1−αsk)−1
R0−1

β−d
β(1−αip)(1−αsp)−d

and the asymptotic rate of growth of the cumulative indicator:

CI
′ = (µ+ d)[R0−1

β−d −
R0(1−αip)(1−αsk)−1
β(1−αip)(1−αsp)−d ]Λ = (µ+ d)ĈI .

show that they are independent of the initial HIV prevalence (P ) and the initial

control on the PrEP use by HIV-positive individuals (θ) which have been of critical

importance for the initial dynamics of the indicators. Cumulative indicators (ĈI and

CI) depend indirectly on the population size (N) which determines the entry rate in

the population (Λ). Notice that CI
′ = (µ+d)ĈI so the value of the reduction indicator

is proportional to the annual number of new infections prevented due to PrEP use in

the long term. The rest of the indicators are not influenced by the population size

(N). Although recruitment parameters such as k and Λ are not explicitly present in
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Figure 2.5: (a) Asymptotic values of the proportion of the HIV-positive individuals

who have been infected while using PrEP (p) as a function of the PrEP efficacies

(αs and αi) assuming 10 % PrEP coverage (k = k1 = 0.1). (b) Long term dynamics

of the quantitative indicators based on simulations with “dual-protection” and “no

intervention” models using parameters from Table 2.1.

some of the expressions above they may affect the asymptotic proportion of PrEP

users among infected sub-population (p).

Because of the algebraic complexity, I can not explicitly express p. Therefore, a

good approximation of p is important for the evaluation of the asymptotic levels of

the indicators.

Now study the variation of p when the reduction in susceptibility and infectious-

ness range from 0 to 100 % (Figure 2.5(a)) for intervention coverage (k = 0.1) which

is not sufficient to eradicate HIV even if the PrEP protection against HIV is perfect

(αs = αi = 1). It shows that p depends greatly on the reduction in susceptibility

(αs) and very little on the reduction in infectiousness (αi). It is clear that the frac-

tion of infections which occur when using PrEP (p) ranges from zero, in case that

PrEP provides complete protection against HIV (αs = 1) and no PrEP users ever
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get infected, to the level of the PrEP coverage (k) in case that PrEP is completely

ineffective (αs = 0) and infections are proportionally distributed among PrEP users

and non-users.

The next goal is to examine and compare the long-term behavior of the indicators

(specifically those expressed as ratios) for a fixed PrEP intervention (Figure 2.5(b)).

Although qualitatively similar the trajectories of the indicators show some important

differences. First, some indicators such as the reduction in HIV prevalence and the

reduction in the infected fraction start at zero while others such as the fraction of

prevented infections and the reduction in HIV incidence initiate at positive values.

Therefore, it is not surprising that the indicators reach a specific threshold of 20% at

times varying from 3 to 11 years after the introduction of PrEP. The times needed

to report 50% effectiveness are even farther apart. It takes the intervention 24 years

and 33 years to reduce in half the expected HIV incidence and HIV prevalence, re-

spectively. However, almost 90 years are necessary to reduce the cumulative number

of new infections by 50%, i.e., such reduction is infeasible over traditionally used

evaluation periods of up to 30 years.

2.2.4 Evaluation of the Public-health Impact of PrEP

The initial and asymptotic behavior of the indicators are useful in understanding

what drives the observed differences in their projections. However, from a public

health perspective it is more important to analyze the indicators values over more

practical time intervals. Although no fixed standards exist, the majority of the quan-

titative studies assume that preventive interventions are implemented for 10 years

when their effectiveness is evaluated. The same period is recommended by the World

Health Organizations as an evaluation period when cost-effectiveness analyses are

conducted (Edejer (2003)). Longer periods are investigated in few studies but always
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Figure 2.6: Contour plots of the indicators (FI , PI , and aII) over 10 and 30 years

with respect to selected intervention parameters αi and αs. All other parameters are

fixed at the baseline parameter values from Table 2.1.
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Figure 2.7: Contour plots of the indicators (FI , PI , and aII) over 10 and 30 years

with respect to selected epidemic parameters β and k1. All other parameters are fixed

at the baseline parameter values from Table 2.1.
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up to 30 years.

In this section it is explored the dependence of the indicator readings over 10 and

30 years on key epidemic and intervention parameters. Clearly, the impact of PrEP

is positively correlated with both reductions in susceptibility (αs) and infectiousness

(αi) regardless of what indicator is used to quantify it (Figure 2.6). The slopes of

the contour plots in the PrEP efficacy parameter space show that if the susceptibility

efficacy(αs) is relatively low (up to 30 %) all indicators are equally dependent of

both αs and αi. However, with the increase of the PrEP protection against HIV the

influence of the reduction of infectiousness decreases significantly. The prevalence

indicator (PI) projects the least effectiveness over 10 years of PrEP use. It predicts

that more than 70 % and 55% PrEP efficacy is needed to achieve 20% reduction in HIV

prevalence with uni-directional (αi = 0) and bi-directional (αi = αs) interventions,

respectively. In comparison, 20% reduction in the expected HIV infections is possible

with 65% effective uni-directional and 55% bi-directional PrEP while 20% reduction

in HIV incidence is feasible even if less than 45% effective uni-directional and 30%

bi-directional PrEP is used over 10 years. The order of predicted effectiveness by the

prevalence and the fractional indicators is reversed over an evaluation period of 30

years. More than half of the parameter space results in more than 50% reduction in

HIV prevalence (PI), an unreachable threshold as a reduction in expected infections

(FI).

All indicators increase with coverage k = k1 (Figure 2.7). The prevalence and

fractional indicators are more sensitive to changes in the transmission rate (β) than

is the annual incidence indicator, with increasing influence of β on the fraction of

prevented infection for larger evaluation periods. The maximum PrEP effectiveness

over 10 years of PrEP use is predicted for complete coverage (k) and modest level of

the transmission rate (β) while over 30 years it is achieved for the lowest possible β.
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2.3 Sensitivity Analysis

Finally, it is explored the sensitivity of the indicators to changes in each param-

eter. Using the algorithm presented in Blower and Dowlatabadi (1994) I calculate

the Partial Rank Correlation Coefficients (PRCC) which evaluate the monotonicity

of the model outcomes (indicators) in terms of the model parameters. Values of

PRCC closer to ±1, imply stronger correlation between the output indicator and the

input parameter while the sign of the coefficients determines if the outcomes grow or

decrease with an increase of the input parameters.

I study separately the sensitivity of the indicators to the parameters (ba, n, µ, and

d) which are fitted using data from South Africa. In the analysis I choose 1000 random

parameters combinations of those input parameters sampled uniformly from their

corresponding ranges: [0.0015, 0.0045] for ba, [32.9247, 98.7741] for n, [0.0125, 0.0375]

for µ, and [0.0651, 0.1953] for d. Each range is chosen as [0.5, 1.5]∗(baseline parameter

value in Table 2.1). The rest of the parameters are fixed on their baseline values in

Table 2.1. For each parameter set I simulate the models with “dual-protection” and

no intervention and calculate PRCC matrix of all six indicators CI , FI , PI , aII , ĈI ,

and F̂I for the first 10 years (standard analysis) as well as for the 100 years (long-term

analysis). Similarly, I investigate the indicators’ sensitivity to the remaining epidemic

and intervention parameters (αs, αi, P , k1(k = k1), and θ), uniformly sampled from

their corresponding ranges: [0.25, 0.75] for αs, [0.25, 0.75] for αi, [0.083, 0.249] for P ,

[0.1, 0.3] for k1, and [0.25, 0.75] for θ. Results are presented in Figure 2.8.
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Figure 2.8: Partial rank correlation coefficients (PRCC) between model parameters

and the quantitative indicators over 10 and 100 years.

Correlations for 10-year intervention suggest that from the fitted parameters the

indicators are most sensitive to the factors (ba and n) which determine the trans-

mission rate β. However, their influence over time decreases. CI and ĈI are still

positively correlated to the two factors while the rest of the indicators are negatively

correlated to the two factors over 100 years, both dependencies are weak. The in-

tervention outcomes are split into two groups with respect to their correlation with

the HIV induced mortality (d): the cumulative indicators being negatively correlated

while the rest being positively correlated with d. Similar discrepancy is observed with

respect to the influence of the initial HIV prevalence P over 10 years but the corre-
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lations are reversed (positive - for the the cumulative indicators and negative for the

rest). Interestingly, in that case the difference between the indicators disappears in a

long term. Note that although P appears in the initial conditions only, it continues

to have strong influence on all the cumulative and reduction indicators for more than

10 years while its impact on the fraction of prevented infection gets even stronger

over time.

Among the intervention parameters, PrEP coverage (k) and PrEP efficacies per

act (αs and αi) express strong positive correlation with all the indicators in a short

term. It remains significant in a long term for all outcomes. This confirms that PrEP

coverage and protection level are critical to the intervention success regardless which

qualitative metric is used. In contrast, the influence of the initial control on the PrEP

use by HIV-positive individuals (θ) diminishes substantially in time.

The prevalence (PI) and the annual incidence (aII) indicators have almost the

same sensitivity to all parameters. Therefore they should have consistent projections

when evaluating the impact of the intervention.

2.4 Discussion

Precise evaluation of the expected public-health impact of biomedical interventions

for HIV preventions becomes increasingly important with more prevention options

entering the pipeline toward licensure. The practice shows that even if the products

are effective in reducing the individual risk of acquisition (individual efficacy) the

benefits from general usage (population effectiveness) may be limited by variety of

epidemic, behavioral and intervention factors.

It is demonstrated that the quantitative indicators have distinct dynamical pro-

file shortly after the start of PrEP intervention which modifies substantially over

time. As a result, when calculated over a fixed period of time these indicators may
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project significantly different PrEP effectiveness and therefore influence the decision

if particular products are potentially good enough for implementation. In general,

new prevention methods need to prove their effectiveness in randomized clinical trial

(RCT), i.e., to demonstrate that the observed efficacy is significantly larger than zero

(positive 95% confidence interval), before applying for licensure. In reality, developers

and public-health officials try to avoid PrEP products with low efficacy because the

controlled environments of the clinical trials are difficult to be replicated at commu-

nity level. Another concern is that the availability of PrEP may affect sexual behavior

and encourage risky sex practices. Therefore, minimal efficacy thresholds of 20% or

higher are often included in the design of RCTs and similar levels of effectiveness is

expected when interventions are modeled at population level (Dimitrov et al. (2013);

Grant et al. (2010)). Other studies imply that 50% biological efficacy is needed to

guarantee significant public-health impact. The question remains what does 20% or

50% PrEP effectiveness mean? It has been shown the widely used evaluation metrics

may disagree over practical intervals of time (Figure 2.5). A reduction in HIV inci-

dence at pre-specified levels seems most realistic as an intervention goal but it is not

easy to be estimated in the population. In contrast, a reduction in HIV prevalence is

easier to be recorded but more difficult to be achieved in a short term. The reduction

in the number of new HIV infections, which is the most popular public-health metric,

projects strong PrEP effectiveness initially but grows slower than the other indicators

over time.

Moreover, if used to compare the impact of PrEP interventions different indi-

cators may give preference to different options (Figure 2.3). Public-health officials

who consider PrEP to be integrated in HIV prevention programs should base their

decision on a complex of quantitative metrics. Although is specifically focused on

HIV prevention, the same theoretical approach may be extended to model other in-
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fectious diseases, such as malaria, cholera, and tuberculosis, or evaluate the impact

of interventions, such as male circumcision, vaccination or quarantine strategies.

Presented results, assuming perfect adherence and instantaneous uptake, are likely

to give optimistic views of the potential impact of a PrEP intervention. Although,

overall self-reported adherence in the concluded clinical trials is high it is unclear how

consistently PrEP will be used in real settings. Perfect adherence and other simpli-

fying assumptions allowed to support the observations on the indicators and their

simulated dynamics with analytical expressions which were easier to be interpreted.

I believe that more complex and realistic modeling setup will be more useful in pro-

jecting benefits due to PrEP use but it is unlikely to resolve the differences between

the interventional outcomes reported in this section.
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Chapter 3

DEMOGRAPHIC ENTRANCE RATES FOR MATHEMATICAL MODELING OF

HIV INTERVENTIONS

The most often mathematically modeled prevention interventions for HIV are male

circumcision, test and treat strategy as prevention, microbicides, and PrEP.

Three randomized controlled trials have shown that male circumcision reduces the

risk of heterosexually acquired HIV infection in men by approximately 60%. Male

circumcision for HIV prevention has been broadly modeled in heterosexual population

(Alsallaq et al. (2013, 2009); Andersson et al. (2011); Cox et al. (2011); Dushoff et al.

(2011); Hallett et al. (2008); Nagelkerke et al. (2007); Podder et al. (2007); Williams

et al. (2006)), and also has been modeled in male homosexual population(Londish

et al. (2010)).

Standard antiretroviral therapy (ART) consists of the combination of at least

three antiretroviral (ARV) drugs to suppress the HIV virus and stop the progression

of HIV disease. Besides individual-wise benefits, expanded access to ART can also

reduce the HIV transmission at population level antiretroviral, so treatment is also

considered as an HIV prevention strategy. Mathematical models have been used to

study antiretroviral therapy (Alsallaq et al. (2013); Cremin et al. (2013); Law et al.

(2001); Lima et al. (2008)), also to discuss treatment as prevention or ‘test and treat’

strategy (Andrews et al. (2012); Hallett et al. (2009); Sorensen et al. (2012)). Within

these papers, Granich et al. (2009); Wagner and Blower (2012) proposed that universal

test and treat of HIV may be used as a prevention method, and it may eliminate the

HIV.

Microbicides are compounds that can be applied inside the vagina or rectum to
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protect against sexually transmitted infections (STIs) including HIV. Many papers

have used mathematical models to study this HIV prevention method (Boily et al.

(2011); Breban et al. (2006); Cox et al. (2011); Dimitrov et al. (2010); Karmon et al.

(2003); Wilson et al. (2008)).

PrEP is a new HIV prevention method in which people who do not have HIV

infection take a pill daily to reduce their risk of becoming infected. Only people who

are HIV-negative should use PrEP. An HIV test is required before starting PrEP

and then every 3 months while taking PrEP. PrEP, although is a relatively new HIV

prevention method, has also been extensively mathematically modeled (Abbas et al.

(2007); Cremin et al. (2013); Desai et al. (2008); Dimitrov et al. (2012); Grant et al.

(2010); Juusola et al. (2012); Nichols et al. (2013); Supervie et al. (2011, 2010); Zhao

et al. (2013)).

Using related key words, I collected and screened papers from ‘Web of Knowl-

edge’ database and ‘PubMed’ database. For each related paper, I collect the infor-

mation about the population being modeled, recruitment mechanism, mechanisms of

departures from the population, assumptions regarding migration. The results are

summarized in Table B.1, B.2, and B.3.

As observed from this summary, models use different demographic assumptions on

the population entrance rate and departure rate. Models use either constant entrance

rate or linear entrance rate. Although logistic entrance rate has not been observed

in the collected published papers, I will include it in the main study to be compared

with constant and linear entrance rates. Population departure rates are assumed in

these papers, while most of the papers do not include the migration in their studies.

The following study will discuss the different assumptions on the population en-

trance rate, on the study of PrEP intervention. Except that no evidence shows that

PrEP reduces the infectiousness of HIV positive people, and I assume αi = 0, all the
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modeling assumptions will be the same as in section 2.1.1. And for briefness, I do

not present the details for model descriptions and parameterizations in this section,

which are similar to what have been done in section 2.1. Indicators are also defined

in the same way as in section 2.2.1.

3.1 Models without Intervention

First being studied is the impact of the assumptions about the recruitment rate

on the population dynamics in absence of PrEP.

dS

dt
= f(N)− β SI

N
− µS , P (S, I)

dI

dt
= β SI

N
− (µ+ d)I , Q(S, I).

(3.1)

with S(0) = (1 − P )N(0) and I(0) = PN(0), where P is the initial HIV prevalence

in the initial population of size N(0).

Here the total population N is divided into two major classes, susceptibles (S)

and infected (I). Frequency-dependent transmission is assumed and the cumulative

HIV acquisition risk per year β is calculated based on the HIV risk per act (βa) with

a HIV-positive partner and the average number of sex acts per year (n):

β = 1− (1− ba)n.

Individuals join the population (become sexually active) at rate f(N). Recruit-

ment formulations f(N) = Λ, f(N) = rN , and f(N) = rN(1− N
K

) will be explored,

corresponding to constant, proportional to size and logistic entrance rate, respectively.

All model parameters are described in Table 3.1.

3.1.1 Models with Constant Recruitment

In this section, it is assumed that f(N) = Λ in model (3.1).
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Table 3.1: Parameter description for models with different entrance rates

Par. Description

Λ Annual rate at which individuals become sexually active

r Growth rate at which individuals become sexually active

K Population carrying capacity

ba HIV acquisition risk per act

n Number of sexual acts per year per individual

β Cumulative HIV-acquisition risk(calculated from ba and n)

1
µ

Time (in years) to remain sexually active

d HIV carrier’s annual rate of progression to AIDS

k Proportion of the new recruits that start using PrEP

αs Efficacy of PrEP in reducing susceptibility of PrEP users

Proposition 3.1.1.1. With nonnegative initial conditions all solutions of model (3.1)

are nonnegative and bounded with total population size N(t) ≤ max{N(0), Λ
µ
}.

• When the basic reproduction number R0 = β
µ+d

< 1, model (3.1) has an unique

disease-free equilibrium E0 = ( 1
µ
Λ, 0) which is (globally) stable.

• When R0 > 1, E0 is unstable and the model possesses an unique endemic equi-

librium E∗ = ( 1
β−dΛ, 1

(β−d)
· (R0 − 1)Λ) which is (globally) stable.

Proof. Proof can be found in Appendix C. Also see Hwang and Kuang (2003).

3.1.2 Models with Linear Recruitment

In this section, it is assumed that f(N) = rN in model (3.1).
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Notice that

lim
(S,I)→(0,0)

SI

N
= lim

(S,I)→(0,0)

SI

S + I
= 0.

Thus it is defined that P (0, 0) = 0 and Q(0, 0) = 0. With this assumption, E = (0, 0)

is a unique steady state of (3.1), and both P (S, I) and Q(S, I) are continuous on

{(S, I)|S ≥ 0, I ≥ 0}.

Proposition 3.1.2.1. With nonnegative initial conditions all solutions of model (3.1)

are nonnegative.

The unique steady state (E = (0, 0)) implies population extinction. A solution of

(3.1) either approaches E or the population size grows unbounded under endemic or

infection-free conditions, depending on different parameter values:

• When r < µ, (S(t), I(t))→ (0, 0).

• When r > µ, and further β > d and µ+ d > r,

– when β < µ+ d, (S(t), I(t))→ (∞, 0) unbounded infection free;

– when µ+ d < β < (µ+d)d
µ+d−r , (S(t), I(t))→ (∞,∞) unbounded endemic;

– when β > (µ+d)d
µ+d−r , (S(t), I(t))→ (0, 0) extinction.

See Appendix C for proof. Notice that boundedness of solutions is not observed.

HIV prevalence is estimated and reported periodically in the statistical data.

Therefore to study the projected HIV prevalence by the model, the dynamics of

the fractional form of model (3.1) in terms of s = S
N

and i = I
N

= 1 − s are also

analyzed:
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ds

dt
= [r − (β − d)s](1− s)

dN

dt
= [r − µ− d(1− s)]N

dI

dt
= [βs− (µ+ d)]I.

Notice that the first equation is independent of N which allows to study s(t)

directly. The following proposition summarizes the solution behavior for different

parameter values and initial conditions.

Proposition 3.1.2.2. With no infected individuals initially (i(0) = 0 ,s(0) = 1), the

population remains disease free (s(t) ≡ 1) with population size given by dN
dt

= (r−µ)N .

Any other initial conditions result in one of the following cases (assume r > µ,

β > d, and µ+ d > r):

• when β < µ+ d, (S(t), I(t))→ (∞, 0) with (s(t), i(t), N(t))→ (1, 0,∞);

• when µ+d < β < r+d, (S(t), I(t))→ (∞,∞) with (s(t), i(t), N(t))→ (1, 0,∞);

• when r + d < β < (µ+d)d
µ+d−r , (S(t), I(t)) → (∞,∞) with (s(t), i(t), N(t)) →

( r
β−d , 1−

r
β−d ,∞);

• when β > (µ+d)d
µ+d−r , (S(t), I(t))→ (0, 0) with (s(t), i(t), N(t))→ ( r

β−d , 1−
r

β−d , 0).

See Appendix C for proof.

3.1.3 Models with Logistic Recruitment

In this section, it is assumed that f(N) = rN(1− N
K

) in model (3.1).

Notice that

lim
(S,I)→(0,0)

SI

N
= lim

(S,I)→(0,0)

SI

S + I
= 0.
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It is defined that P (0, 0) = 0 and Q(0, 0) = 0. Under this assumption, E00 = (0, 0)

is a steady state of (3.1) and the right-hand sides (P (S, I) and Q(S, I)) of (3.1) are

continuous in {(S, I)|S ≥ 0, I ≥ 0}.

Proposition 3.1.3.1. The biologically relevant region {(S(t), I(t))|S(t) ≥ 0, I(t) ≥

0, S(t) + I(t) ≤ K} is positively invariant with respect to (3.1).

The model has three possible steady states: population extinction E00 = (0, 0),

disease-free E01 = ( r−µ
r
K, 0) and endemic E∗ =

r−µ−d(1− 1
R0

)

r
K( 1

R0
, R0−1

R0
) where R0 =

β
µ+d

.

The following global stability results hold.

• When r < µ, (S(t), I(t))→ E00 the extinction steady state.

• When r > µ, and further β > d and µ+ d > r,

– when β < µ + d, (S(t), I(t)) → E01 the infection free steady state, while

E00 is unstable and E∗ does not exist;

– when µ+d < β < (µ+d)d
µ+d−r , (S(t), I(t))→ E∗ the endemic steady state, while

E00 and E01 are unstable;

– when β > (µ+d)d
µ+d−r , (S(t), I(t)) → E00 the extinction steady state, while E01

and E∗ are unstable.

See Appendix C for proof.

The behavior of the model (3.1) can be further studied by investigating its frac-

tional form in terms of s = S
N

and i = I
N

= 1− s:

ds

dt
= [r(1− N

K
) + (d− β)s](1− s)

dN

dt
= [r(1− N

K
)− µ− d(1− s)]N.

(3.2)
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Proposition 3.1.3.2. Model (3.2) is used to study the local stability of the extinction

steady state E00. The following results hold:

• E00 is unstable when β < (µ+d)d
µ+d−r ;

• E00 is stable when β > (µ+d)d
µ+d−r .

See Appendix C for proof.

Table 3.2 summarizes the long-term dynamic results when the model (3.1) is using

different recruitment rates. Notice that β = β̃ , (µ+d)d
µ+d−r makesE4 = ( 1

R0
,
r−µ−d(1− 1

R0
)

r
K)

= E2 = ( r
β−d , 0) for (3.2).

Table 3.2: Stability conditions for the models in absence of PrEP. Extinction steady

state is globally stable when r < µ, so in the table it is assumed that r > µ and

further assumed that β > d and µ+ d > r for linear and logistic entrance rates.

Recruitment type Parameter conditions Outcomes HIV prevalence

Constant β < µ+ d disease free state 0

β > µ+ d endemic state 1− µ+d
β

Linear β < µ+ d disease free state 0

µ+ d < β < (µ+d)d
µ+d−r endemic state 0 or 1− r

β−d

β > (µ+d)d
µ+d−r extinction 1− r

β−d

Logistic β < µ+ d disease free state 0

µ+ d < β < (µ+d)d
µ+d−r endemic state 1− µ+d

β

β > (µ+d)d
µ+d−r extinction 1− r

β−d
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3.2 Models with PrEP Intervention

Next, it will be investigated the influence of the recruitment mechanisms on the

projected impact of PrEP interventions. The model with intervention is formulated

by the following system of differential equations:

dSp

dt
= kf(N)− (1− αs)β S

pI
N
− µSp

dS

dt
= (1− k)f(N)− β SI

N
− µS

dI

dt
= β SI

N
+ (1− αs)β S

pI
N
− (µ+ d)I

(3.3)

with initial conditions:

Sp(0) = k(1− P )N(0)

S(0) = (1− k)(1− P )N(0)

I(0) = PN(0).

Here P is the initial HIV prevalence, N(0) is the initial population size, and k

is the initial coverage of PrEP among susceptible individuals. All parameters are

explained in Table 3.1.

In this model the population is divided into three major classes, according to

their HIV and PrEP status: susceptible individuals who don’t use PrEP (S); sus-

ceptible PrEP users (Sp) and infected individuals (I). A constant proportion k

of the new recruits are assumed to start using PrEP. The same proportion of the

susceptible individual are assumed to start on PrEP initially. Since PrEP pro-

vides imperfect protection against HIV some of the PrEP users become infected.

The risk of drug-resistance emergence among infected PrEP users has been dis-

cussed in the HIV prevention community (Dimitrov et al. (2012); Supervie et al.

(2011, 2010)) and wide-scale PrEP interventions will likely include periodic HIV

screening of all prescribed users. Therefore, it is assumed that PrEP users stop
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using the product after acquiring HIV and all infected individual accumulate in

the compartment (I). The basic reproduction number of model (3.3) is given by

R0 = (1− k)R0(S) + kR0(Sp) , (1− k) β
µ+d

+ k (1−αs)β
µ+d

= (1−αsk)β
µ+d

.

Different expressions (f(N) = Λ, f(N) = rN , and f(N) = rN(1 − N
K

)) will be

explored for the population recruitment.

3.2.1 Intervention Models with Constant Recruitment

In this section, it is assumed that f(N) = Λ in model (3.3).

Proposition 3.2.1.1. With nonnegative initial conditions, solutions for (3.3) are

nonnegative and bounded with N(t) = max{N(0), Λ
µ
}. Now assume β > d.

• When R0 < 1 the model (3.3) has an unique (disease-free) equilibrium E0 =

( k
µ
Λ, 1−k

µ
Λ, 0) which is stable. Global stability of E0 has been proved given extra

condition R0 <
µ
µ+d

.

• When R0 > 1 the disease-free equilibrium E0 is unstable. The system has a

single endemic equilibrium E∗ = (Sp∗, S∗, I∗) which satisfies Sp∗ =
Λ(Λ− dI∗)

µ
·

k

Λ + ((1− αs)β − d)I∗
and S∗ =

Λ(Λ− dI∗)
µ

· 1− k
Λ + (β − d)I∗

, where I∗ is the

unique solution of F (I) , Λ− kΛ(Λ− dI)

(1− αs)βI + Λ− dI
− (1− k)Λ(Λ− dI)

βI + Λ− dI
− (µ+

d)I = 0 in the interval (0, Λ
d
). The endemic equilibrium E∗ is stable when

µ+d
d

[(1− αs)β − d] + αs(1− k)d > 0. (E∗ may be stable whenever exists, can be

further studied in future.)

Hyman and Li (2000, 2005a,b, 2006) have studied epidemic models with differ-

ential infectivity and differential susceptibility in several papers. In particular, they

studied a general compartmental differential susceptibility SIR model with disease-

induced mortality in Hyman and Li (2005a). So here to get some results on the
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positive steady state(s), the same technique is applied as in section 3.2 of Hyman and

Li (2005a) to the model with intervention and constant entrance rate. See proof for

Proposition 3.2.1.1 in Appendix C.

3.2.2 Intervention Models with Linear Recruitment

In this section, it is assumed that f(N) = rN in model (3.3).

Notice that

lim
(Sp,S,I)→(0,0,0)

SpI

N
= lim

(Sp,S,I)→(0,0,0)

SpI

Sp + S + I
= 0

and

lim
(Sp,S,I)→(0,0,0)

SI

N
= lim

(Sp,S,I)→(0,0,0)

SI

Sp + S + I
= 0.

It is defined that P (0, 0, 0) = Q(0, 0, 0) = R(0, 0, 0) = 0. Under this assumption, E =

(0, 0, 0) is a unique steady state of (3.3), and P (Sp, S, I), Q(Sp, S, I) and R(Sp, S, I)

are continuous in {(Sp, S, I)|Sp ≥ 0, S ≥ 0, I ≥ 0}.

Proposition 3.2.2.1. All solutions of (3.3) with nonnegative initial conditions re-

main nonnegative.

Periodic solutions for (3.3) do not exist when β − d > 0.

The unique steady state (E = (0, 0, 0)) implies population extinction. It is globally

stable if r < µ.

Assume r > µ and β > d,

• when (1−k)β+k(1−αs)β < d+r, E1 = (k, 0) is globally stable (see Proposition

3.2.2.2), with lim
t→∞

N(t) =∞ and

– lim
t→∞

I(t) = 0 if R0 < 1,

– lim
t→∞

I(t) =∞ if R0 > 1;
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• when (1−k)β+k(1−αs)β > d+r, E2 = (p∗, i∗) is globally stable (see Proposition

3.2.2.2),

– lim
t→∞

N(t) = 0 if i∗ > r−µ
d

, and lim
t→∞

I(t) = 0,

– lim
t→∞

N(t) =∞ if i∗ < r−µ
d

, and lim
t→∞

I(t) =∞.

See proof in Appendix C.

Similar to the scenarios without intervention, the dynamics of the fractional form

of (3.1) will be studied in terms of p = Sp

N
, s = S

N
, then i = I

N
= 1− p− s:

dp

dt
= kr − rp− [(1− αs)β − d]pi , X(p, i) (3.4)

di

dt
= [β − (d+ r)− αsβp− (β − d)i]i , Y (p, i) (3.5)

dN

dt
= [r − µ− di]N (3.6)

dI

dt
= [β(1− p− i) + (1− αs)βp− (µ+ d)]I. (3.7)

which allows to understand the expected changes in HIV prevalence due to PrEP use.

Notice that the first two equations are decoupled from the rest of the system which

allows to study the reduced system (3.4) and (3.5).

Proposition 3.2.2.2. The biologically relevant region {(p(t), i(t))|p(t) ≥ 0, i(t) ≥

0, p(t) + i(t) ≤ 1} is positively invariant with respect to (3.4) and (3.5).

When β − d > 0, periodic solutions do not exist for the transformed system.

E1 = (k, 0) for the reduced system is stable when (1−k)β+k(1−αs)β < d+r, and

is globally stable if further assume β > d. A positive steady state E2 = (p∗, i∗) of the

reduced system exists and is globally stable provided that (1−k)β+k(1−αs)β > d+r.

See proof in Appendix C.

A summary on the global stability results confirmed by simulations is provided in

Table 3.3.
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3.2.3 Intervention Models with Logistic Recruitment

In this section, it is assumed that f(N) = rN(1− N
K

) in model (3.3).

Notice that

lim
(Sp,S,I)→(0,0,0)

SpI

N
= lim

(Sp,S,I)→(0,0,0)

SpI

Sp + S + I
= 0

and

lim
(Sp,S,I)→(0,0,0)

SI

N
= lim

(Sp,S,I)→(0,0,0)

SI

Sp + S + I
= 0.

It is defined that P (0, 0, 0) = Q(0, 0, 0) = R(0, 0, 0) = 0. Under this assumption,

E00 = (0, 0, 0) is a steady state of (3.3), and P (Sp, S, I), Q(Sp, S, I) and R(Sp, S, I)

are continuous in {(Sp, S, I)|Sp ≥ 0, S ≥ 0, I ≥ 0}.

Proposition 3.2.3.1. The biologically relevant region {(Sp(t), S(t), I(t))|Sp(t) ≥

0, S(t) ≥ 0, I(t) ≥ 0, Sp(t) + S(t) + I(t) ≤ K} is positively invariant with respect

to (3.3).

The model has three possible steady states: population extinction E00 = (0, 0, 0),

disease-free E01 = (k r−µ
r
K, (1− k) r−µ

r
K, 0) and endemic E∗ = (Sp∗, S∗, I∗) .

The extinction steady state is globally stable if r < µ.

Assume r > µ,

• the infection free steady state E01 is stable when R0 < 1 and unstable when

R0 > 1;

• the extinction steady state E00 is stable when (1− k)β+ k(1−αs)β > d+ r and

unstable when (1− k)β + k(1− αs)β < d+ r;

• further assume β > µ+ d, then the positive steady state E∗ exists when R0 > 1

and i∗ = I∗

N∗
< r−µ

d
and does not exist when R0 < 1 or i∗ = I∗

N∗
> r−µ

d
.
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See proof in Appendix C.

The behavior of the model (3.3) is further studied by investigating its fractional

form in terms of p = Sp

N
, s = S

N
, and i = I

N
= 1− p− s:

dp

dt
= kr(1− N

K
)− r(1− N

K
)p− [(1− αs)β − d]pi

di

dt
= [β − d− r(1− N

K
)− αsβp− (β − d)i]i

dN

dt
= [r(1− N

K
)− µ− di]N

(3.8)

Proposition 3.2.3.2. Assume r > µ.

Equilibrium E1 = (k, 0, 0) for (3.8) is unstable.

Equilibrium E2 = (p∗, i∗, 0) (p∗ > 0, i∗ > 0) for (3.8) does not exist when (1 −

k)β + k(1− αs)β < d+ r and is stable otherwise.

Equilibrium E3 = (k, 0, r−µ
K

) (infection free steady state) for (3.8) is stable when

R0 < 1 and unstable otherwise.

Further assume β > µ+ d, then a positive steady state E4 = (p∗, i∗, N∗) for (3.8)

exits when R0 > 1 and i∗ < r−µ
d

and does not exist otherwise.

See proof in Appendix C.

A summary of the asymptotic behavior of the system with PrEP confirmed by

simulations is provided in Table 3.3.

Next, a threshold value β̃ (used in Table 3.3) will be determined for β. β̃ will be

derived from substituting (p∗log, i
∗
log = r−µ

d
, 0) into (3.8). First

r − µ
d

= i∗ =
β̃ − µ− d− αsβ̃p∗

β̃

leads to p∗ = (1−i∗)β̃−µ−d
αsβ̃

. Then from (3.8),

dp∗

dt
= 0

implies

kr(1− N∗

K
)− r(1− N∗

K
)p∗ − [(1− αs)β̃ − d]p∗i∗ = 0
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Table 3.3: Models with intervention, assume r > µ and β > d. Notice that β̃ is a

solution to (3.9). i∗lin is the i∗ appears in Proposition 3.2.2.1 and 3.2.2.2. i∗log is the i∗

appears in Proposition 3.2.3.1 and 3.2.3.2.

Recruitment type Parameter conditions Outcomes HIV prevalence

Constant β < µ+d
1−αsk disease free state 0

β > µ+d
1−αsk endemic state µI∗

Λ−dI∗

Linear β < µ+d
1−αsk disease free state 0

µ+d
1−αsk < β < max{ r+d

1−αsk , β̃} endemic state 0 or i∗lin(< r−µ
d )

β > β̃ extinction i∗lin(> r−µ
d )

Logistic β < µ+d
1−αsk disease free state 0

µ+d
1−αsk < β < max{ r+d

1−αsk , β̃} endemic state i∗log(< r−µ
d )

β > β̃ extinction i∗log(> r−µ
d )

, i.e.,

kr − rp∗ − [(1− αs)β̃ − d]p∗i∗ = 0

with p∗ = (1−i∗)β̃−µ−d
αsβ̃

and i∗ = r−µ
d

. This eventually can be simplified to be

krαsβ̃ − [(1− i∗)β̃ − µ− d][i∗(1− αs)β̃ + µ] = 0

where i∗ = r−µ
d

or

krαsβ̃ − [(1− r − µ
d

)β̃ − µ− d][
r − µ
d

(1− αs)β̃ + µ] = 0. (3.9)

Some bifurcation results are presented in Figure 3.1. Note that the trajectories

of the models with constant and logistic recruitment are bounded while the linear

recruitment allows for unbounded solutions. As the HIV risk (β) increases, the model

with constant recruitment switches from infection-free to endemic steady state while
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the model with logistic recruitment equilibrium goes from infection-free to endemic

equilibrium and further to population extinction. The trajectories of the linear model

follow a similar pattern as the logistic recruitment model: from unbounded infection-

free through unbounded endemic state to population extinction. However, the transi-

tion (bifurcation) points where the behavior changes occur are different for the three

models. As a result the projected long-term prevalence with each of the three models

differ for epidemic conditions with R0 greater than one.

What in common for all the three models is when R0 < 1, the status of the

population approaches infection free; when R0 > 1, the status of the population

approaches coexistence or extinction.

These figures in Figure 3.2 illustrate the possible solutions that can not be ex-

pressed explicitly in the previous analysis work. Figure 3.2 and 3.1 both confirm the

propositions that haven been proved and the summary proposed in Table 3.3.

45



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3
x 10

7

β (Cumulative HIV−acquisition risk)

su
sc

ep
tib

le
 o

r 
in

fe
ct

ed
 p

op
ul

at
io

n

constant entrance rate:  β varies

 

 

β =
µ + d

1− αsk
→

susceptible using PrEP
susceptible not using PrEP
infected population

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β (Cumulative HIV−acquisition risk)

pr
op

or
tio

n 
of

 s
us

ce
pt

ib
le

 o
r 

in
fe

ct
ed

 p
op

ul
at

io
n constant entrance rate: β varies

 

 

β =
µ + d

1− αsk
→

p
i

(b)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

5

6

7

8

9

10
x 10

6

β (Cumulative HIV−acquisition risk)

su
sc

ep
tib

le
 o

r 
in

fe
ct

ed
 p

op
ul

at
io

n

linear entrance rate: β varies

 

 

β =
µ + d

1− αsk
→ ← β = β̃

susceptible using PrEP
susceptible not using PrEP
infected population

(c)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β (Cumulative HIV−acquisition risk)

pr
op

or
tio

n 
of

 s
us

ce
pt

ib
le

 o
r 

in
fe

ct
ed

 p
op

ul
at

io
n linear entrance rate: β  varies

 

 

β =
µ + d

1− αsk
→ ← β = β̃

p
i

(d)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

7

β (Cumulative HIV−acquisition risk)

su
sc

ep
tib

le
 o

r 
in

fe
ct

ed
 p

op
ul

at
io

n

logistic entrance rate: β varies

 

 

β =
µ + d

1− αsk
→ ← β = β̃

susceptible using PrEP
susceptible not using PrEP
infected population

(e)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β (Cumulative HIV−acquisition risk)

pr
op

or
tio

n 
of

 s
us

ce
pt

ib
le

 o
r 

in
fe

ct
ed

 p
op

ul
at

io
n logistic entrance rate: β varies

 

 

β =
µ + d

1− αsk
→ ← β = β̃

p
i

(f)

Figure 3.1: Bifurcation diagrams of models employing different recruitment functions:

(a-b) constant; (c-d) linear; (e-f) logistic. Epidemic parameter values (except β) are

chosen by fitting projected HIV populations to data from South Africa (see Table

D.1). PrEP coverage (k = 0.2) and PrEP efficacy (αs = 0.5) are assumed. Initial

conditions are adapted from year 2011.
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(a) (b)

(c) (d)

Figure 3.2: Parameter values(except β, see Table D.1) are chosen from data fitting,

with k = 0.2 and αs = 0.5 are assumed. Initial conditions are adapted from year

2011. Figures are truncated for better view. Figure (a) corresponds to model (3.3)

with constant entrance. Figure (b) corresponds to the transformed system (3.4) with

linear entrance. Figures (c) and (d) both correspond to transformed system (3.8)

with logistic entrance. (c) highlights possible steady states (p∗ > 0, i∗ > 0, N∗ = 0),

and (d) highlights possible steady state (p∗ > 0, i∗ > 0, N∗ > 0).
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3.3 Public-health Impact of PrEP Use

3.3.1 Parameterizations and Simulations

The models are simulated using different recruitment mechanisms (different f(N)),

and keeping all the remaining parameters the same. It is assumed that the annual

influx of people in the population is 1,000,000 initially, and then the parameter val-

ues are calculated corresponding to such recruitment for each mechanism. Therefore,

Λ = 106 is used for the model with constant recruitment, r = 106

N0
for the model with

linear recruitment and r = 106K
N0(K−N0)

with K = 9 × 107 (Figure A.1) for the model

with logistic recruitment, where N0 = 27172431 is the initial population size from

Table A.1.

The resulting population dynamics over 70 years under scenarios with and with-

out PrEP are presented in Figure 3.3. Note that with identical initial recruitment

and using the same values for all other parameters the population dynamics substan-

tially diverge over the simulated period. In absence of PrEP, the population suffers

the smallest decrease in size (34%) under the constant recruitment scenario because

the disease-related mortality does not impact the influx of newly susceptible people

(Figure 3.3 (a),(b),(c)). In comparison, the population loses 67% and almost 83%

over 70 years under the logistic and linear recruitment scenarios. In addition to the

population size the proportion of infected individuals is affected as well. Starting

at 16.6% the models predict that the HIV prevalence will raise to 25.4% with con-

stant, 32.9% with logistic and 41.9% with linear recruitment (Figure 3.3 (d)). The

results do not change qualitatively if 20% of the population use PrEP. Naturally,

for all recruitment methods the projected number of susceptibles is larger compared

to the scenario without PrEP. However, the model with constant recruitment also

projects smaller number of infected vs the scenario without PrEP while the model
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with linear recruitment shows substantial increase in infected individuals due to the

fact that healthier population size is preserved when PrEP is used. The relative order

of projected population size by recruitment mechanism remains the same (Figure 3.3

(e),(f),(g)). The model with linear recruitment is most pessimistic with respect to

HIV prevalence ( 18.8%) while the other two mechanisms predict decrease of HIV

prevalence to 15.9% and 14.4%.
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Figure 3.3: Population dynamics for models with different recruitment rates: constant

(blue), linear (red), and logistic (black). Initial recruitment and parameter values

unrelated to recruitment are kept the same across the models (see Table D.1).

49



3.3.2 Influence of Recruitment on the PrEP Effectiveness

The effectiveness of PrEP use is often evaluated by different quantitative indica-

tors. It has been demonstrated in previous work that the choice of evaluation method

may influence the conclusions of the modeling analyses (Zhao et al. (2013)). Here,

study will focus on four indicators already used in modeling studies to quantify the

impact of PrEP interventions (see Table 3.4). The fractional indicator (FI) measures

the intervention effectiveness based on the difference in expected infections between

scenarios with and without PrEP. The prevalence (PI) and incidence (aII) indicators

measure the reduction in the projected HIV prevalence and incidence due to PrEP,

respectively. The last evaluation method (F̂I) is based on the reduction of the number

of infected individuals and correlates with the economic burden of the HIV epidemic

on the public health system at community and state level since the money allocated

for HIV treatment is proportional to the size of the infected population.

Table 3.4: Indicator description

Indicator Name Description

FI(T ) Fractional indicator Fraction of infections prevented

over the period [0, T ] due to the usage of PrEP

PI(T ) Prevalence indicator Reduction in HIV-prevalence

at time t = T due to the usage of PrEP

aII(T ) Incidence indicator Reduction in the annual HIV incidence

at time t = T due to the usage of PrEP

F̂I(T ) Fractional reduction Fraction of the projected number of infected

indicator at time t = T reduced due to the usage of PrEP
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To track the cumulative number of new infections over time, the following equation

is added to model (3.1):

d(INew)

dt
= β

SI

N
,

and similarly to model (3.3):

d(INew)

dt
= β

SI

N
+ (1− αs)β

SpI

N
.

[ ] is used to denote variables from the model without PrEP (3.1) and [ ]P for

variables from the model with PrEP (3.3). Using these notations, the qualitative

indicators are defined as follows:

FI(T ) =
[INew(T )]−[IpNew(T )+INew(T )]P

[INew(T )]
= 1− [IpNew(T )+INew(T )]P

[INew(T )]

PI(T ) = 1−
[

Ip(T )+I(T )
Sp(T )+S(T )+Ip(T )+I(T )

]P

[
I(T )

S(T )+I(T )
]

aII(T ) = 1−
[
I
p
New

(T+1)+INew(T+1)−(I
p
New

(T )+INew(T ))

Sp(T )+S(T )
]P

[
INew(T+1)−INew(T )

S(T )
]

F̂I(T ) = [I(T )]−[Ip(T )+I(T )]P
[I(T )]

= 1− [Ip(T )+I(T )]P
[I(T )]

.

The impact of the recruitment on the projected PrEP effectiveness is investigated

in Figure 3.4. The choice of recruitment mechanisms shows no substantial impact over

the initial period of 20-30 years but leads up to 21% difference in predicted reduction

in HIV prevalence and incidence after 70 years (Figure 3.4 (a),(b)). The model using

linear recruitment is most optimistic predicting 55% reduction in HIV prevalence and

61% in HIV incidence, respectively. Conversely, the model with constant recruitment

projects largest fraction of infection prevented (Figure 3.4 (c)). Interestingly, the

same indicator projects negative overall PrEP impact of the models with linear and

logistic recruitment in a long term. It is a result of the critical decline in population

size under the scenario without PrEP which limits the number of HIV infections in a

long term.
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Figure 3.4: Dynamics of PrEP effectiveness for models with different recruitment

rates: constant (blue), linear (red), and logistic (black). Initial recruitment and

parameter values unrelated to recruitment are kept the same across the models (see

Table D.1). Some indicators take negative values for models with linear entrance rate

and logistic entrance rate (not shown).

Finally, simulation of the HIV epidemics has been done by fitting the models with

different recruitment to 10-year HIV data representative for South Africa. Parameters

values (see Table D.1) were determined to minimize the L1 norm of the difference be-

tween projected HIV population and data in absence of PrEP following the approach
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proposed in a previous study (Zhao et al. (2013)). The relative short duration of

the fitted period did not allow for significant difference in the “best fit” parameters

across models. As a result the predictions of HIV dynamics and PrEP effectiveness

with that “best fit” parameter sets (see Figure D.1 and Figure D.2 in the Appendix),

were qualitatively similar to the simulations with fixed parameter sets (Figure 3.3

and 3.4).

3.4 Discussion

Mathematical models are employed to estimate the expected effectiveness of differ-

ent interventions for HIV prevention under various epidemic settings. In this paper it

has been demonstrated that the assumptions regarding population recruitment have

a strong influence on the future course of the HIV epidemic and as a result impacts

the projected success of the planned interventions. Models are compared equipped

with three distinct recruitment mechanisms (constant, linear and logistic) and studied

their behavior. The analysis shows that the three models posses qualitatively different

dynamic characteristics. The model with constant recruitment always stabilizes in

population size and supports two asymptotic states, corresponding to disease-free and

endemic equilibrium respectively. In comparison, linear and logistic recruitment sup-

port three asymptotic states including disease free equilibrium, endemic equilibrium

and population extinction under the pressure of HIV. The parameter conditions (bi-

furcation points) where the transitions between asymptotic states occur are the same

for these two models but different from those for the model with constant recruit-

ment. On the other hand, constant and logistic model share an endemic fractional

equilibrium which is different from the linear model, i.e., they project different HIV

prevalence over long-term.

As a result the simulations of the HIV epidemics with the three models over 70
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years show large discrepancies in population size and epidemic distribution under

identical initial conditions and forces of infection. The projected HIV prevalence

varies from 25% when constant recruitment is assumed and 42% when linear recruit-

ment is assumed. In addition, significant difference in the reduction in HIV prevalence

and incidence (almost 20%) is predicted when 50% effective PrEP is used by 20% of

the population. Over the entire simulated period, linear recruitment provides the

most optimistic estimates of the PrEP effectiveness in terms of prevalence reduction

while constant recruitment predicts larger fraction of infections prevented.

It can be argued that regardless of the differences in the dynamic behavior all

three models agree in their effectiveness projections over 20-30 years which is the usual

period over which the intervention are evaluated. However, often the models are run

for extended periods in order to simulate “mature” epidemics and the intervention is

introduced afterwards. The key message of this analysis is that the way recruitment is

incorporated in the models impacts the HIV epidemic and may have significant effect

on the projected effectiveness of different HIV intervention in a short and long term.

Demographic data, including statistics on births and age-specific mortality, should be

used to inform the modeling mechanisms before HIV prevention is considered.
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Chapter 4

BAYESIAN PARAMETER ESTIMATION

Previously, I tried to fit models to the data by minimizing the L1 norm of the difference

between projected HIV population and data (Figure D.1). This approach starts with

a single set of initial guess values for the parameters, and ends up with another single

set of approximated parameter values that make the model fit the data best. It

works by finding the set of parameter values that minimize the sum of the absolute

differences between the data and the model predictions. The issue is that this method

only provides point estimates and does not tell how strongly the data supports these

particular estimates. Distributions provide much more information than the point

estimates. In reality, information on distributions of certain parameters can often be

found in literature (see Table 4.1).

The Bayesian estimation of an unknown parameter Θ using some newly acquired

data can be worked out based on Bayes’ formula. First what is needed is the likelihood

function p(D|Θ = θ), which specifies the conditional distribution of the data (D) on

each possible set of parameter values (Θ = θ). Then I choose some prior distribution

p(θ) which indicates how strongly Θ = θ is believed before accessing the new data.

Finally using the information provided by the new data, Bayes’ formula p(θ|D) =

p(θ)
p(D|θ)
p(D)

provides the posterior distribution given the new data. The belief in how

strong Θ = θ now has been modified from p(θ) to p(θ|D).

Therefore, in this chapter, a second approach I will try is the Bayesian parameter

estimation on fitting ODE model to the related HIV data. Now one can start with

a set of prior distributions for the parameters as initial guess, and try to obtain a

set of posterior distributions for the parameters which make the model fit the data
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best. Prior distributions are distributions of the parameters assigned before data

is observed. Prior distributions can either be derived from existing literature or

be assumed. Posterior distributions are obtained by Bayesian inference given the

observed data.

ODEs are not based on a probability model, to apply Bayesian inference directly

on ODEs, likelihoods are therefore generally defined in a nonlinear regression context,

such as assuming that the data are normally distributed around the deterministic

solution(Toni et al. (2009); Vyshemirsky and Girolami (2008)).

In this chapter, I will try Bayesian method on estimating the parameters for model

(4.1) from data on South Africa HIV population of year 2001-2011 (Table A.1).

4.1 Model

dS

dt
= Λ− β SI

N
− µS

dI

dt
= β SI

N
− (µ+ d)I

(4.1)

Model (4.1) is the HIV model without intervention. See Table 4.1 for more infor-

mation on the parameters. Throughout this chapter, Λ derived from Table A.1 will be

assumed to be constant entrance rate. β, calculated from ba and n (β = 1−(1−ba)n),

will be studied directly. I will start with prior distributions on µ, d, and β, then apply

Bayesian method to get posterior distributions for these parameters.

4.2 Parameter Prior Distributions

Table 4.1 has showed information on mean and possible confidence intervals from

literature for parameters ba, n, µ, and d. Then I assume lognormal distributions for ba,

µ, d, and Poisson distribution (Boily et al. (2009)) for n. The lognormal distributions

were chosen for ba, µ, and d since these parameters must be non-negative. To fit
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Table 4.1: Parameter description and values from literature

Par. Description Mean 95% CI Reference

Λ Annual rate 996344 derived from Table A.1

at which individuals

become sexually active

ba HIV acquisition risk per act 0.0038 0.0013-0.011 Boily et al. (2009)

n Number of sexual acts 120 Wawer et al. (2005),

per year per individual Boily et al. (2009)

β Cumulative derived from ba and n

HIV-acquisition risk

1
µ Time (in years) 35 UNAIDS (2009)

to remain sexually active

d HIV carrier’s annual rate 1/10.9 1/11.3-1/10.6 Porter and Zaba (2004)

of progression to AIDS

the confidence intervals best (see (b) and (c) in Figure 4.1), I found the log standard

deviations for ba and d as in Table 4.2. For µ, log standard deviation is assumed to

be 0.15.

Recall that when I minimized the L1 norm of the difference between HIV popu-

lations from ODE model and from data (Figure D.1), I obtained µ = 0.029793556,

d = 0.119146121, and β = 0.196924711. Notice that the value for d is not consistent

with the prior distribution as in Figure 4.1(b). This reminds me to revisit the liter-

ature from which I obtained the prior distribution for d. 10.9 years was observed in

industrialized countries, as mean survival time for those aged 24-35 years at serocon-

version, with 95% CI 10.6-11.3 years (Babiker et al. (2000); Porter and Zaba (2004)).
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Here, I expect the mean time to be shorter to develop AIDS in South Africa compared

with industrialized countries. Also notice that age group 15-49 years is studied instead

of 24-35 years, so a wider 95% confidence interval should be expected. Therefore I

will increase the corresponding standard deviation.

To make a better prior for d, I modify the prior distribution for d by increasing

σ2 from 0.0161875 to 0.25. Then the prior distribution for d is modified as in Figure

4.1(f).

Table 4.2: Assumptions for parameters. d̂ is modified d. β = 1− (1− ba)n.

Par. Distribution Log mean Log standard Mean Standard 95% CI

deviation deviation

Λ constant

ba lognormal ln(0.0038) 0.542394 0.004402 0.0025746 0.0013126

-0.011001

n Poisson 120

β β = β(ba, n)

µ lognormal ln(1/35) 0.15(assumed) 0.028895 0.0043587

d lognormal ln(1/10.9) 0.0161875 0.091755 0.0014854 0.088888

-0.09469

d̂ lognormal ln(1/10.9) 0.25 0.094655 0.024038

Now the probability density functions (PDF) for the prior distributions have been

derived as following.

µ has lognormal PDF p(µ) =
1

µσ1

√
2π
e
− (ln(µ)−µ1)2

2σ2
1 with µ1 = ln(1/35) and σ1 =

0.15.
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d has the lognormal PDF p(d) =
1

dσ2

√
2π
e
− (ln(d)−µ2)2

2σ2
2 with µ2 = ln(1/10.9) and

σ2 = 0.25.

ba has the lognormal PDF p(ba) =
1

baσ4

√
2π
e
− (ln(ba)−µ4)2

2σ2
4 with µ4 = ln(0.0038) and

σ4 = 0.542394.

n has the Poisson PDF p(n) =
λn

n!
e−n with λ = 120. For convenience, the

Poisson distribution for n is approximated by a normal distribution with mean 120

and standard deviation
√

120. So it is approximated by the normal PDF p(n) =

1√
2πσ5

e
− (n−µ5)2

2σ2
5 , with µ5 = 120 and σ5 =

√
120 (see Figure 4.1(d)).

Since ba and n are independent, then the cumulative distributive function (CDF)

for β becomes

F (β) =

∫ 1

0

∫ ln1−ba (1−β)

0

p(ba)p(n) dndba,

and the PDF for β is

p(β) =
d

dβ
F (β) =

d

dβ

[∫ 1

0

∫ ln1−ba (1−β)

0

p(ba)p(n) dndba

]
.

Then by Leibniz rule,

p(β) =

∫ 1

0

p(ba)p(n(ba, β))
−1

(1− β) ln(1− ba)
dba

=

∫ 1

0

1

baσ4

√
2π
e
− (ln(ba)−µ4)2

2σ4
2

1√
2πσ5

e
−

(log1−ba (1−β)−µ5)2

2σ5
2

−1

(1− β) ln(1− ba)
dba,

(4.2)

with µ4 = ln(0.0038), σ4 = 0.542394, µ5 = 120, and σ5 =
√

120.

This can be approximated by a lognormal distribution of PDF p(β) ≈ 1

βσ3

√
2π
·

e
− (ln(β)−µ3)2

2σ2
3 with µ3 = ln(0.3704) and σ3 = 0.4422 (see Figure 4.1(e)).

Then the prior distributions for µ, d, and β are illustrated in Figure 4.1 and

summarized in Table 4.3.
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Figure 4.1: Parameter prior distributions. 95% confidence intervals(dashed black) are

also included for ba and d. Poisson distribution and approximated normal distribution

have both been included for n. Calculated distribution (4.2) and approximated log-

normal distribution have both been included for β. Solid black lines indicate values

obtained from data fitting as in Figure D.1. (f) is a modification of (b) with a larger

standard deviation.
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Table 4.3: Parameter prior distributions

Par. Distribution Log mean Log standard Mean Standard

deviation deviation

µ lognormal µ1 = ln(1/35) σ1 = 0.15 0.028895 0.0043587

d lognormal µ2 = ln(1/10.9) σ2 = 0.25 0.094655 0.024038

β lognormal µ3 = ln(0.3704) σ3 = 0.4422 0.40844 0.18981

Let zi represent the ith year HIV infected population since 2001 from data (z0:T ),

and xi represent the ith year HIV infected population predicted by the model (x0:T ).

Because of the observation error (assumed to be normally distributed with stan-

dard deviation σ) in z0:T , another two parameters are added into the study: the

starting point of HIV population in the model x0, and the related standard deviation

σ. x0 and σ are not independent since x0 depends on both z0 and σ.

Notice that only positive values are acceptable for x0, so let p(x0|z0, σ) = 0 is

assumed when x0 ≤ 0 and

p(x0|z0, σ) =
1√

2πσ2
e−

(x0−z0)2

2σ2 /

∫ ∞
0

1√
2πσ2

e−
(x−z0)2

2σ2 dx = e−
(x0−z0)2

2σ2 /

∫ ∞
0

e−
(x−z0)2

2σ2 dx

(4.3)

when x0 > 0.

I did not find a prior distribution for σ from literature, therefore I choose a non-

informative prior distribution which is invariant under reparameterization. Since the

likelihood is normal with known mean and unknown standard deviation σ (see (4.4)),

then I assume a Jeffreys prior for σ as

p(σ) ∝ 1

σ
with σ ∈ [1, 106]
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or p(σ) = Cσ
σ

with σ ∈ [1, 106] and Cσ = 1
6 ln(10)

. Since the observed HIV population

as in Table A.1 shows x0 ∈ [3.8 × 106, 4.6 × 106], it is practical to assume that the

possibility of σ lies outside [1, 106] is negligible, with σ being the standard deviation

when the observation is normally distributed.

Then prior for x0 becomes

p(x0|z0) =

∫ 106

1

p(σ)p(x0|z0, σ) dσ =

∫ 106

1

p(σ)
1∫∞

0
e−

(x−z0)2

2σ2 dx
e−

(x0−z0)2

2σ2 dσ,

with p(σ) = Cσ
σ
.

Then

p(x0) ≈
∫ 106

1

Cσ
σ

1√
2πσ

e−
(x0−z0)2

2σ2 dσ =

∫ 106

1

Cσ√
2πσ2

e−
(x0−z0)2

2σ2 dσ

v=
x0−z0√

2σ
=======

Cσ√
π(x0 − z0)

∫ x0−z0√
2

x0−z0√
2

10−6

e−v
2

dv(when x0 6= z0),

and

p(x0 = z0)
u= 1

σ====

∫ 1

10−6

Cσ√
2π

du =
Cσ(1− 10−6)√

2π
.

Thus, all the prior distributions needed for Bayesian inference have been derived

(see Figure 4.1 and 4.2).
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Figure 4.2: Figure (a) is the prior distribution for x0 when σ = 6.4 × 104 is fixed.

Figure (c) is the prior distribution for x0 when σ has a Jeffreys prior as in figure (b).

4.3 Bayesian Estimation

Now that parameter prior distributions have been derived, Bayesian method is

ready to be applied.

Let θ = (θ1, θ2, θ3, σ, x0) = (µ, d, β, σ, x0) represent 5 parameters to be studied and

denote D = z0:T .

Bayesian inference computes the posterior distributions according to the Bayes’

63



formula

p(θ|D) = p(θ)
p(D|θ)
p(D)

,

where

• p(θ) represents the prior density, the probability of θ before D is observed;

• p(θ|D) represents the posterior probability, the probability of θ after D is ob-

served;

• p(D|θ) is the likelihood (or sampling probability for D), the probability of ob-

serving D given θ;

• p(D) is the marginal likelihood, all possible hypotheses being considered:

p(D) =

∫
θ

p(θ)p(D|θ) dθ.

Observation error is assumed to be normally distributed with standard deviation

σ. Then the total likelihood function is given by

p(D|θ) =
T∏
i=1

N(zi|xi; θ) =
T∏
i=1

1√
2πσ2

e
−(zi−xi)

2

2σ2 , (4.4)

where a Jeffreys prior distribution for σ is assumed and xi = xi(θ) for i ≥ 1.

4.3.1 Analytic Solutions

From Bayes’ formula p(θ|D) = p(θ)p(D|θ)
p(D)

, one can first determine the shape for

p(θ|D) by calculating p(θ|D) ∝ p(θ)p(D|θ) , g(θ). Notice that p(D) is a constant:

p(D) =

∫
θ

p(θ)p(D|θ) dθ.

4.3.1.1 σ uncertain

In this case, it is assumed that σ is a distribution with a Jeffreys prior.
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The following parameters were assigned independent prior distributions: (µ, d, β, σ).

But x0 = x0(σ), and xi = xi(µ, d, β, σ) for i ≥ 1. So using (4.3) with notation

∆ ,
∫∞

0
1√

2πσ2
e−

(x−z0)2

2σ2 dx, the joint probability becomes

p(θ) = p(µ)p(d)p(β)p(σ)p(x0|z0, σ) = p(µ)p(d)p(β)p(σ)
1

∆
e−

(x0−z0)2

2σ2

=

(
3∏
j=1

1√
2πσjθj

e
−

(ln θj−µj)2

2σ2
j

)
Cσ
σ

1

∆
e−

(x0−z0)2

2σ2 . (4.5)

Then using (4.5) and (4.4),

g(θ) , p(θ)p(D|θ)

=

(
3∏
j=1

1√
2πσjθj

e
−

(ln θj−µj)2

2σ2
j

)
Cσ
σ

1

∆
e−

(x0−z0)2

2σ2

T∏
i=1

1√
2πσ2

e
−(zi−xi)

2

2σ2

∝

(
3∏
j=1

1

θj
e
−

(ln θj−µj)2

2σ2
j

)
1

σT+1

1

∆

T∏
i=0

e
−(zi−xi(θ))

2

2σ2

, g̃(θ).

For product of small numbers, I will calculate the natural log of the product first:

ln(g̃(θ))

= −
3∑
j=1

ln θj −
3∑
j=1

(ln θj − µj)2

2σ2
j

− (T + 1) ln(σ)− ln(∆)− 1

2σ2

T∑
i=0

(xi(θ)− zi)2

, G(θ). (4.6)

Thus,

p(θ|D) ∝ p(θ)p(D|θ) , g(θ) ∝ g̃(θ) = eG(θ).

Now the marginal distributions can be calculated. Remember that (θ1, θ2, θ3) =

(µ, d, β). With

H =

∫ ∞
0

∫ 106

1

∫ 1

0

∫ 1

0

∫ 1

0

eG(θ) dθ1dθ2dθ3dσdx0,
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the following marginal distributions as posterior probability are obtained:

p(θ1)

=

(∫ ∞
0

∫ 106

1

∫ 1

0

∫ 1

0

eG(θ) dθ2dθ3dσdx0

)
/H ∝

∫ ∞
0

∫ 106

1

∫ 1

0

∫ 1

0

eG(θ) dθ2dθ3dσdx0;

p(θ2)

=

(∫ ∞
0

∫ 106

1

∫ 1

0

∫ 1

0

eG(θ) dθ1dθ3dσdx0

)
/H ∝

∫ ∞
0

∫ 106

1

∫ 1

0

∫ 1

0

eG(θ) dθ1dθ3dσdx0;

p(θ3)

=

(∫ ∞
0

∫ 106

1

∫ 1

0

∫ 1

0

eG(θ) dθ1dθ2dσdx0

)
/H ∝

∫ ∞
0

∫ 106

1

∫ 1

0

∫ 1

0

eG(θ) dθ1dθ2dσdx0;

p(σ)

=

(∫ ∞
0

∫ 1

0

∫ 1

0

∫ 1

0

eG(θ) dθ1dθ2dθ3dx0

)
/H ∝

∫ ∞
0

∫ 1

0

∫ 1

0

∫ 1

0

eG(θ) dθ1dθ2dθ3dx0;

p(x0)

=

(∫ 106

1

∫ 1

0

∫ 1

0

∫ 1

0

eG(θ) dθ1dθ2dθ3dσ

)
/H ∝

∫ 106

1

∫ 1

0

∫ 1

0

∫ 1

0

eG(θ) dθ1dθ2dθ3dσ.

4.3.1.2 σ fixed

Then I also tried to set σ to be a constant, assuming information of σ can be found in

literature. I tried σ = 6.4× 104, since this is approximately the mean of the posterior

distribution for σ (see Figure 4.3 and 4.5). Then in this case, only 4 parameters need

to be studied: θ = (θ1, θ2, θ3, x0) = (µ, d, β, x0).

The following parameters are independent of each other: (µ, d, β, x0(σ)). So using

(4.3) with notation ∆ ,
∫∞

0
1√

2πσ2
e−

(x−z0)2

2σ2 dx, the prior probability becomes

p(θ) = p(µ)p(d)p(β)p(x0) = p(µ)p(d)p(β)
1

∆
e−

(x0−z0)2

2σ2

=

(
3∏
j=1

1√
2πσjθj

e
−

(ln θj−µj)2

2σ2
j

)
1

∆
e−

(x0−z0)2

2σ2 . (4.7)
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Then using (4.7) and (4.4),

g(θ) =

(
3∏
j=1

1√
2πσjθj

e
−

(ln θj−µj)2

2σ2
j

)
1

∆
e−

(x0−z0)2

2σ2

T∏
i=1

1√
2πσ2

e
−(zi−xi(θ))

2

2σ2

∝

(
3∏
j=1

1

θj
e
−

(ln θj−µj)2

2σ2
j

)
T∏
i=0

e
−(zi−xi(θ))

2

2σ2 , g̃(θ).

Then (4.6) becomes

ln(g̃(θ)) =−
3∑
j=1

ln θj −
3∑
j=1

(ln θj − µj)2

2σ2
j

− 1

2σ2

T∑
i=0

(xi(θ)− zi)2 , G(θ). (4.8)

Then with

H =

∫ ∞
0

∫ 1

0

∫ 1

0

∫ 1

0

eG(θ) dθ1dθ2dθ3dx0,

the following marginal distributions as posterior probability are obtained:

p(θ1) =

(∫ ∞
0

∫ 1

0

∫ 1

0

eG(θ) dθ2dθ3dx0

)
/H ∝

∫ ∞
0

∫ 1

0

∫ 1

0

eG(θ) dθ2dθ3dx0;

p(θ2) =

(∫ ∞
0

∫ 1

0

∫ 1

0

eG(θ) dθ1dθ3dx0

)
/H ∝

∫ ∞
0

∫ 1

0

∫ 1

0

eG(θ) dθ1dθ3dx0;

p(θ3) =

(∫ ∞
0

∫ 1

0

∫ 1

0

eG(θ) dθ1dθ2dx0

)
/H ∝

∫ ∞
0

∫ 1

0

∫ 1

0

eG(θ) dθ1dθ2dx0;

p(x0) =

(∫ 1

0

∫ 1

0

∫ 1

0

eG(θ) dθ1dθ2dθ3

)
/H ∝

∫ 1

0

∫ 1

0

∫ 1

0

eG(θ) dθ1dθ2dθ3.

4.3.2 MCMC Method

Evaluating the posterior distribution often requires the integration of high dimen-

sional functions (see previous section). I did not get good results from numerically

calculating these triple integrals and quadruple integrals using Matlab. Therefore

I will try the Markov Chain Monte Carlo (MCMC) method using the Metropolis-

Hastings algorithm.

The original Monte Carlo method uses random number generation to compute

integrals. To generate a Markov chain, one uses the previous sample value to generate
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the next sample value, and the transition probability is just a function of the previous

sample value. As the chain continues, the sample values get spread out over the

possible state space. The idea of discrete-time Markov chain can be generalized to a

continuous-time Markov process.

The MCMC method initially proposed by Metropolis requires the proposal dis-

tribution (or the transition probability) to be symmetric. Later this method was

modified by Hastings to work for asymmetric proposal distributions as well (Gregory

(2005)). In the simulations, to better make sure the convergence of the chains, one

should use multiple chains each starting from different initial values.

4.3.2.1 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm consists of two stages: the first stage is to generate

a candidate from the proposal distribution, and the second stage is the accept-reject

step. The proof of that the stationary distribution of the Markov chain generated by

the M-H algorithm is the target posterior distribution can be found in many material

(such as in (Gregory (2005))). Now let’s present the algorithm with details.

Metropolis-Hastings algorithm(MCMC method):

1. Initialize parameters θ.

2. Repeat

(a) Propose new values for θ as θ∗ by sampling from the proposal density

Q(θ∗, x∗1:T |θ, x1:T ), and calculate corresponding x∗1:T from ODE.

(b) With probability

min

(
Pr(θ∗, x∗1:T |z1:T )

Pr(θ, x1:T |z1:T )

Q(θ, x1:T |θ∗, x∗1:T )

Q(θ∗, x∗1:T |θ, x1:T )
, 1

)
,

set θ = θ∗; otherwise set θ = θ.
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Derived from the Bayes’ formula : Pr(θ, x1:T |z1:T ) =
Pr(z1:T , x1:T |θ) Pr(θ)

Pr(z1:T )
and

Pr(θ∗, x∗1:T |z1:T ) =
Pr(z1:T , x

∗
1:T |θ∗) Pr(θ∗)

Pr(z1:T )
, where Pr(z1:T , x1:T |θ) and Pr(z1:T , x

∗
1:T |θ∗)

are the total likelihoods. So the acceptance probability can be rewritten as:

min

(
Pr(θ∗, x∗1:T |z1:T )

Pr(θ, x1:T |z1:T )

Q(θ, x1:T |θ∗, x∗1:T )

Q(θ∗, x∗1:T |θ, x1:T )
, 1

)
= min

(
Pr(z1:T , x

∗
1:T |θ) Pr(θ∗)

Pr(z1:T , x1:T |θ) Pr(θ)

Q(θ, x1:T |θ∗, x∗1:T )

Q(θ∗, x∗1:T |θ, x1:T )
, 1

)
,

as the marginal probability of the data Pr(z1:T ) cancels out during the calculation.

4.3.2.2 σ uncertain

In this case, it is assumed that σ is a distribution with a Jeffreys prior, then θ =

(θ1, θ2, θ3, θ4, θ5) = (µ, d, β, σ, x0(σ)). Then θis initialized as θ0 = (0.01, 0.01, 0.01, 103,

normrnd(z0, 103)) with a normrnd(z0, 103) > 0. Then the stochastic kernel Q(θ∗1:5|θ1:5)

is chosen such that θ∗1:4 = eln(θ1:4)+ε (generates only positive values) and θ∗5 = z0 +

N(0, θ∗4
2) (accepts only positive values), where ε has the multivariate normal distribu-

tion N(0,Σ2). Here Σ = (σ̃1, σ̃2, σ̃3, σ̃4), which is assumed to be Σ = (0.1, 0.1, 0.1, 10)

in the simulations. Notice that I choose a much larger value σ̃4 = 10 for σ.

Now calculate
Q(θ, x1:T |θ∗, x∗1:T )

Q(θ∗, x∗1:T |θ, x1:T )
in details first.

θ∗1:4 = eln(θ1:4)+ε and x∗0 ∼ N(z0;σ∗) (accepts only positive values) imply that

Q(θ∗|θ) =

 4∏
j=1

1√
2πσ̃2

j

e

−(ln(θ∗j )−ln(θj))2

2σ̃2
j

 e
−(x∗0−z0)2

2σ∗2 /

∫ ∞
0

e−
(x−z0)2

2σ∗2 dx.

Similarly,

Q(θ|θ∗) =

 4∏
j=1

1√
2πσ̃2

j

e

−(ln(θj)−ln(θ∗j ))2

2σ̃2
j

 e
−(x0−z0)2

2σ2 /

∫ ∞
0

e−
(x−z0)2

2σ2 dx.

Then

Q(θ|θ∗)
Q(θ∗|θ)

=

∫∞
0
e−

(x−z0)2

2σ∗2 dx∫∞
0
e−

(x−z0)2

2σ2 dx
e

(x∗0−z0)2

2σ∗2
− (x0−z0)2

2σ2 .
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Recall the likelihood function expressed in equation (4.4) and prior probability

expressed in equation (4.5), then

Pr(z1:T , x
∗
1:T |θ∗) Pr(θ∗)Q(θ|θ∗)

Pr(z1:T , x1:T |θ) Pr(θ)Q(θ∗|θ)

= exp

(
3∑
j=1

(ln(θj)− µj)2 − (ln(θ∗j )− µj)2

2σ2
j

+
T∑
i=0

(
(xi − zi)2

2σ2
− (x∗i − zi)2

2σ∗2

))

·

(
3∏
j=1

θj
θ∗j

)( σ
σ∗

)T+1
∫∞

0
e−

(x−z0)2

2σ2 dx∫∞
0
e−

(x−z0)2

2σ∗2 dx
· exp

(
(x∗0 − z0)2

2σ∗2
− (x0 − z0)2

2σ2

) ∫∞
0
e−

(x−z0)2

2σ∗2 dx∫∞
0
e−

(x−z0)2

2σ2 dx

=

(
3∏
j=1

θj
θ∗j

)( σ
σ∗

)T+1

· exp

(
3∑
j=1

(ln(θj)− µj)2 − (ln(θ∗j )− µj)2

2σ2
j

+
T∑
i=1

(
(xi − zi)2

2σ2
− (x∗i − zi)2

2σ∗2

))

,eF ,

with

F =

(
3∑
j=1

(ln(θj)− ln(θ∗j ))

)
+ (T + 1)(ln(σ)− ln(σ∗))

+
3∑
j=1

(ln(θj)− µj)2 − (ln(θ∗j )− µj)2

2σ2
j

+
T∑
i=1

(
(xi − zi)2

2σ2
− (x∗i − zi)2

2σ∗2

)
.

Thus, the acceptance probability in each iteration (2(b)) becomes min(eF , 1).

Notice that the expression for F is closely related to expression (4.6).

In the simulation, I assume that during each step (2(a)), a new sample is obtained

by perturbing just one component of θ with equal probability. Thus, during each step,

the probability of (only) perturbing θi is 1
5

for i = 1, 2, 3, 4, 5. Therefore the stochastic

kernel Q(θ∗1:5|θ1:5) is actually chosen such that θ∗i = eln(θi)+N(0,σ̃2
i ) with probability 1

5

for each 1 ≤ i ≤ 4 and θ∗5 = z0 +N(0, θ∗4
2) with probability 1

5
.

3× 106 iterations have been performed in each simulation. The simulation results

with the burn-in period (first 103 iterations) omitted is presented in Figure 4.3.
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4.3.2.3 σ fixed

In this case, σ = 6.4× 104 is fixed, then θ = (θ1, θ2, θ3, θ4) = (µ, d, β, x0). It is initial-

ized as θ0 = (0.01, 0.01, 0.01, normrnd(z0, 6.4×104)) with a normrnd(z0, 6.4×104) > 0.

Then the stochastic kernel Q(θ∗1:4|θ1:4) is chosen such that θ∗1:3 = eln(θ1:3)+ε (generates

only positive values) and θ∗4 = z0 + N(0, (6.4× 104)2) (accepts only positive values),

where ε has the multivariate normal distribution N(0,Σ2). Here Σ = (σ̃1, σ̃2, σ̃3),

which is assumed to be Σ = (0.1, 0.1, 0.1) in the simulations.

In this case, θ∗1:3 = eln(θ1:3)+ε and x∗0 ∼ N(z0;σ) (accepts only positive values)

imply that

Q(θ∗|θ) =

 3∏
j=1

1√
2πσ̃2

j

e

−(ln(θ∗j )−ln(θj))2

2σ̃2
j

 e
−(x∗0−z0)2

2σ2 /

∫ ∞
0

e−
(x−z0)2

2σ2 dx.

Similarly,

Q(θ|θ∗) =

 3∏
j=1

1√
2πσ̃2

j

e

−(ln(θj)−ln(θ∗j ))2

2σ̃2
j

 e
−(x0−z0)2

2σ2 /

∫ ∞
0

e−
(x−z0)2

2σ2 dx.

Then

Q(θ|θ∗)
Q(θ∗|θ)

= e
(x∗0−z0)2−(x0−z0)2

2σ∗2 .

Recall the likelihood function expressed in equation (4.4) and prior probability

expressed in equation (4.7), then

Pr(z1:T , x
∗
1:T |θ∗) Pr(θ∗)Q(θ|θ∗)

Pr(z1:T , x1:T |θ) Pr(θ)Q(θ∗|θ)

=

(
3∏
j=1

θj
θ∗j

)
exp

(
3∑
j=1

(ln(θj)− µj)2 − (ln(θ∗j )− µj)2

2σ2
j

+
T∑
i=0

(xi − zi)2 − (x∗i − zi)2

2σ2

)

· exp

(
(x∗0 − z0)2 − (x0 − z0)2

2σ∗2

)
,eF ,
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with

F =

(
3∑
j=1

(ln(θj)− ln(θ∗j ))

)

+
3∑
j=1

(ln(θj)− µj)2 − (ln(θ∗j )− µj)2

2σ2
j

+
T∑
i=1

(xi − zi)2 − (x∗i − zi)2

2σ2
.

Thus, the acceptance probability in each iteration (2(b)) becomes min(eF , 1).

Notice that the expression for F is closely related to expression (4.8).

This time, during each iteration, the probability of (only) perturbing θi is 1
4

for

i = 1, 2, 3, 4. Therefore the stochastic kernel Q(θ∗1:4|θ1:4) is actually chosen such that

θ∗i = eln(θi)+N(0,σ̃2
i ) with probability 1

4
for each 1 ≤ i ≤ 3 and θ∗4 = z0+N(0, (6.4×104)2)

with probability 1
4
.

3× 106 iterations have been performed in each simulation. When σ = 6.4× 104 is

fixed, the simulation results without burn in period (first 103 iterations) is presented

in Figure 4.4. See the corresponding posterior distribution results also in Figure 4.4.
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Figure 4.3: σ random. All 3 × 106 iterations. Burn in period dropped. Red curves

indicate the prior distributions. See Figure 4.2 for prior distributions for σ and x0.
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Figure 4.4: σ = 6.4× 104 fixed. All 3× 106 iterations. Burn in period dropped. Red

curves indicate the prior distributions.
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4.3.2.4 Improved MCMC

From previous simulation results (Figure 4.3 and 4.4), it shows that the chains for d

and β are not mixing as well as other parameters. Also, the chains for β and d are

highly correlated to each other (correlation coefficients are 0.9822 and 0.9683 for Fig-

ure 4.3 and 4.4 respectively). I think the strong correlation can be interpreted in the

following way. Once β (cumulative HIV-acquisition risk) increases, more susceptible

population become infected. Then in order to balance the HIV population, d (annual

rate of progression to AIDS) needs to be increased as well, so that more infections

will become sexually inactive as they develop AIDS. Therefore to get better results,

or better mixing chains for d and β, I will treat β and d as a group in the following

way.

• When σ has a Jeffreys prior:

– the probability to perturb µ is 1
5
;

– the probability to perturb both d and β is 2
5
;

– the probability to perturb σ is 1
5
;

– the probability to perturb x0 is 1
5
.

Thus, for a probability of 2
5
, a new sample θ∗ is proposed by proposing a new

value d∗ for d and a new value β∗ for β independently at the same time. If θ∗

is accepted, then both d∗ and β∗ are accepted. It is called that d and β are

grouped in this case. See corresponding results in Figure 4.5.

• When σ = 6.4× 104 is fixed:

– the probability to perturb µ is 1
5
;

– the probability to perturb both d and β is 2
5
;
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– the probability to perturb x0 is 2
5
.

See the corresponding results in Figure 4.6.

The Markov chains in Figure 4.5 and 4.6 show much better mixing in d and β,

after they have been grouped. Therefore the corresponding posterior distributions

are better than those before d and β are grouped (Figure 4.3 and 4.4).
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Figure 4.5: σ is random. All 3× 106 iterations. Burn in period dropped. Red curves

indicate the prior distributions. β and d grouped.
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Figure 4.6: σ = 6.4× 104 fixed. All 3× 106 iterations. Burn in period dropped. Red

curves indicate the prior distributions. β and d grouped.
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4.4 Parameter Posterior Distributions

From data fitting as in Figure D.1, µ = 0.02979, d = 0.1191, and β = 0.1969

are obtained as a set of baseline parameter values. Now from Bayesian parameter

estimation (Figure 4.5 and 4.6), the posterior distributions are obtained for these

parameters. The mode and mean of these distributions are presented in Table 4.4.

The mean values are quite different from the parameter values obtained from data

fitting as in Figure D.1, especially a relative difference about |0.197−0.16|
|0.16| ≈ 23% for β

is observed.

Table 4.4: Parameter values comparison

Figure D.1 σ as distribution σ fixed

mean mode mean mode

µ 0.02979 0.02779 0.027 0.02803 0.0276

d 0.1191 0.09057 0.085 0.09066 0.0827

β 0.1969 0.1599 0.154 0.1604 0.15

x0 3892911.84 3.8911×106 3.89×106 3.8907×106 3.89×106

If the mode and mean are very different, the posterior PDF is too asymmetric to

be adequately summarized by a single estimate (Gregory (2005)). Here, the mode and

mean are quite close, but I still present the simulation results from two independent

Markov chains.

For each simulation, two independent Markov chains are generated. The summary

of mean, standard deviation, 95% credibility interval, and acceptance rate for each

parameter is presented in Table 4.5-4.8.

After d and β are grouped (Table 4.7 and 4.8), the posterior distributions from
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two independent Markov chains are very close to each other, and the convergence

of chains is believed. On the other hand side, the posterior distributions from two

independent Markov chains are not that close when d and β are not grouped (Table

4.5 and 4.6).

After combining d and β as a group during perturbation, although the acceptance

has been decreased from 12.13% and 8.31% (Table 4.5) to 6.51% (Table 4.7), I have

increased the probability to perturb d or β from 1
5

to 2
5

which is a compensation.

Therefore a better mixing is obtained for the Markov chains of d and β (Figure 4.5).

Table 4.5: Posterior distributions of 2 independent chains, corresponding to Figure

4.3. Total acceptance rate is 18.08% for MCMC 1 and 18.09% for MCMC 2.

MCMC 1 µ d β σ x0

Mean 0.0277 0.09193 0.1616 65202.6 3.8899×106

Standard Deviation 4.11×10−3 25.76×10−3 32.43×10−3 18.87×103 45.79×103

95% [0.02018 [0.05527 [0.1146 [37450.7 [3.7909×106

Credibility Interval 0.0358] 0.15548] 0.2407] 104879.9] 3.969×106]

Acceptance Rate 31.78% 12.13% 8.31% 2.92% 35.27%

MCMC 2 µ d β σ x0

Mean 0.02786 0.08886 0.1579 64900.5 3.8915×106

Standard Deviation 4.064×10−3 16.8×10−3 20.97×10−3 18.53×103 44.18×103

95% [0.02066 [0.05983 [0.1209 [41664.3 [3.8058×106

Credibility Interval 0.03616] 0.1216] 0.1989] 105424.4] 3.9671×106]

Acceptance Rate 31.56% 12.14% 8.33% 2.94% 35.47%
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Table 4.6: Posterior distributions of 2 independent chains, corresponding to Figure

4.4. Total acceptance rate is 21.95% for MCMC 1 and 21.73% for MCMC 2.

MCMC 1 µ d β x0

Mean 0.02775 0.0894 0.1584 3.892×106

Standard Deviation 4.034×10−3 18.82×10−3 23.53×10−3 41.9×103

95% Credibility Interval [0.02072

0.03574]

[0.05844

0.12386]

[0.1193

0.2033]

[3.8068×106

3.9655×106]

Acceptance Rate 31.83% 12.15% 12.15% 35.55%

MCMC 2 µ d β x0

Mean 0.02782 0.09601 0.1668 3.8893×106

Standard Deviation 4.139×10−3 23.59×10−3 29.47×10−3 41.99×103

95% Credibility Interval [0.02057

0.03577]

[0.05479

0.15023]

[0.1136

0.234]

[3.8051×106

3.9630×106]

Acceptance Rate 31.8% 11.56% 11.56% 35.48%
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Table 4.7: Posterior distributions of 2 independent chains, corresponding to Figure

4.5. Total acceptance rate is 16.58% for MCMC 1 and 16.6% for MCMC 2.

MCMC 1 µ d β σ x0

Mean 0.02779 0.09057 0.1599 64786.9 3.8911×106

Standard Deviation 4.143×10−3 19.94×10−3 25.15×10−3 18.53×103 44.04×103

95% [0.02062 [0.05545 [0.119 [39298.1 [3.8018×106

Credibility Interval 0.03609] 0.13109] 0.2104] 105758] 3.9601×106]

Acceptance Rate 31.45% 6.51% 6.51% 2.94% 35.5%

MCMC 2 µ d β σ x0

Mean 0.02781 0.09077 0.1602 64862.6 3.8912×106

Standard Deviation 4.194×10−3 20.34×10−3 25.52×10−3 18.77×103 44.34×103

95% [0.02061 [0.05783 [0.1155 [39039.5 [3.8085×106

Credibility Interval 0.03589] 0.13135] 0.2117] 106115.7] 3.9709×106]

Acceptance Rate 31.52% 6.5% 6.5% 2.96% 35.5%
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Table 4.8: Posterior distributions of 2 independent chains, corresponding to Figure

4.6. Total acceptance rate is 23.09% for MCMC 1 and 23.09% for MCMC 2.

MCMC 1 µ d β x0

Mean 0.02803 0.09066 0.1604 3.8907×106

Standard Deviation 4.155×10−3 19.9×10−3 24.78×10−3 41.83×103

95% Credibility Interval [0.02069

0.03632]

[0.05747

0.13002]

[0.119

0.2126]

[3.8063×106

3.9654×106]

Acceptance Rate 31.56% 6.44% 6.44% 35.51%

MCMC 2 µ d β x0

Mean 0.02804 0.09134 0.1612 3.8904×106

Standard Deviation 4.17×10−3 20.32×10−3 25.39×10−3 41.65×103

95% Credibility Interval [0.02095

0.03585]

[0.058

0.13298]

[0.1166

0.2119]

[3.8095×106

3.9651×106]

Acceptance Rate 31.49% 6.40% 6.40% 35.54%

It shows that the posterior distributions for both µ and d stays close to their

corresponding prior distributions; while the posterior distribution for β differs a lot

with its prior distribution, both in mean value and standard deviation. For β, the

standard deviation (0.02515 from Table 4.7) of the posterior distribution is much

smaller than the standard deviation (0.18981) of the prior distribution, providing a

sharper estimation for β.

The little difference between prior and posterior distributions for µ and d implies

that the data used is not very informative. Therefore the posterior distributions are

mainly determined by the information provided by the prior distributions.

Notice that β = 1− (1− ba)n is a composite parameter. Information on ba and n
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can both be found in literature (Boily et al. (2009),Wawer et al. (2005)). In this study,

a posterior distribution for β (mean = 0.1599 and standard deviation = 0.02515 from

Table 4.7) is also obtained, which can be a supplement to the previous HIV studies.

σ assumed with a Jeffreys prior, or assumed to be a constant, give similar posterior

distributions for x0 (as well as µ, d, and β), and standard deviation for the former is

slightly larger. This is because, the posterior distribution of σ adds a diffusive effect

on x0(σ) compared with when σ fixed as a constant.

From the simulation results, it is believed that σ ∈ [39298, 105758] (95% CI from

Table 4.7) gives a good approximation for the observation error in HIV population

in South Africa. Correspondingly, it is believed that x0 ∈ [3.8018× 106, 3.9601× 106]

(95% CI) gives a good approximation for the actual HIV population in 2001.

4.5 Model Validation

Because the consecutive values generated generated by a MCMC simulation are

correlated, they provide less accurate estimates than independent samples. One mea-

sure of the accuracy of the estimate and how well the chain is mixing is the effective

sample size (ESS).

The ESS is equal to

ESS =
N

1 + 2
∞∑
k=1

ρk(θ)
,

where N is the number of posterior samples, ρk is the autocorrelation at lag k. The

infinite sum is often truncated when ρk < 0.05 (ESS (2014),Kass et al. (1998)). I will

use the sample autocorrelation function to estimate the ESS:

ρk(θj) =

N−k∑
i=1

[θj(i)− µ̃] · [θj(i+ k)− µ̃]

N∑
i=1

[θj(i)− µ̃]2
, k = 1 · · ·N − 1.
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Here µ̃ is the sample mean of θj, and
N∑
i=1

[θj(i)− µ̃]2 is the sample variance of θj. The

sum will be truncated when ρk < 0.01.

Table 4.9: Effective Sample Size, when d and β are not grouped.

number of samples µ d β σ x0

104 6 5 7 44 75

105 48 5 4 252 489

106 − 103 422 21 22 2610 4282

3× 106 − 103 1431 24 24 2154 624

Table 4.10: Effective Sample Size, when d and βd are grouped.

number of samples µ d β σ x0

104 19 10 10 41 59

105 39 131 123 302 388

106 − 103 404 935 877 3095 3154

3× 106 − 103 1298 2639 2326 7873 9081

Then for Figure 4.3 and 4.5, the corresponding results for ESS for each parameter

are presented in Table 4.9 and 4.10 respectively. I have calculated the ESS given

different number of samples. Originally, only 106 iterations were performed in each

iteration. After dropping the first 103 iterations, the ESS of some parameters (µ, d

and β in Table 4.10) can be less than 1000. Then I decided to run 3× 106 iterations

to get a better result. Then after dropping the first 103 iterations, the ESS for each

parameter becomes 1298, 2639, 2326, 7873, and 9081, all greater than 1000 (ESS

(2014)).

Also, notice that after d and β are grouped, the ESS for d and β have been
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increased dramatically. This is consistent with the better mixing in Markov chains

that have been observed. ESS given 3×106−103 samples is expected to greater than

ESS given 106− 103 samples. However, for σ and x0 in Table 4.9, this is not the case.

I think this may be due to the fact that ESS can only be estimated but calculated

exactly.
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Figure 4.7: From year 2003 to 2011, 1000 samples of simulated HIV population

observations are plotted for each year. The mean of the simulated observations is

plotted in yellow for each year. The true observation is plotted in red for each year.

For model validation, 1000 independent samples are drawn from the posterior

distributions, for all the parameters. Then for each sample of parameter values µ,

d, β and x0, the ODE (4.1) is solved and the solutions saved (HIV population from

year 2001 to 2011). Finally for each year (2003 to 2011), simulated observations

are generated with the ODE solutions as mean and sample values of σ as standard
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deviation. These simulated observations for all 1000 samples are plotted in Figure

4.7, compared with the true observation from South Africa (Table A.1).

The mean of simulated observations from year 2003 to 2011 is

106 × [4.0344, 4.1087, 4.1843, 4.2610, 4.3384, 4.4161, 4.4938, 4.5709, 4.6471],

while the true observations from year 2003 to 2011 is

106 × [4.1198, 4.0816, 4.0408, 4.1815, 4.1985, 4.2632, 4.3349, 4.4582, 4.5106].

Not only the simulated observations contains the true observations from data, the

mean of the simulates observations are very close to the true observations. This

validates that the estimations are consistent with the true observations.

I think the Bayesian parameter estimation provides more reliable information for

the parameters than the least square fitting (or similar approaches) does, as it provides

distributions for each parameter, and it takes the observation error in HIV population

into account. The posterior distributions give possible regions for parameter values

such as 95% credibility intervals, also the the probability for a parameter to equal

some specific value.

87



Chapter 5

CONCLUSION AND FUTURE WORK

In Chapter 2, the study was focused on six different effectiveness indicators for HIV

interventions. Four of them are dimensionless (PI , aII , FI , F̂I) and two depend on the

population size (CI , ĈI). These indicators were defined for the HIV model with PrEP

interventions. Then I studied their dynamics at the beginning of the interventions,

and their asymptotic behaviors when the ODE system approaches the steady state.

I mainly looked at how these indicators depend on the parameters. The parameters

can be divided into two groups, the ones that are related to HIV infection (ba, n, µ,

d); the ones that are related to the epidemic (P ), or effectiveness and implementation

of PrEP (αs, αi, k1, θ).

To intuitively show the dependence of the indicators on the parameters, by the

end of this chapter, some results are presented from sensitivity analysis. I chose 10

years to illustrate the short term dynamics at the beginning of the intervention, and

100 years to illustrate the long time dynamics approaching the steady state. Despite

all the discrepancies one can see, I also observed the similarity between indicators.

Among the intervention parameters, PrEP coverage (k) and PrEP efficacies per act

(αs and αi) express strong positive correlation with all the indicators in a short

term. It remains significant in a long term for all outcomes. This confirms that

PrEP coverage and protection level are critical to the intervention success regardless

which qualitative metric is used. The prevalence (PI) and the annual incidence (aII)

indicators express almost the same sensitivity to all parameters. Therefore they

should have consistent projections when evaluating the impact of the intervention.
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Minimal efficacy thresholds of 20% or higher are often included in the design of

RCTs and similar levels of effectiveness is expected when interventions are modeled

at population level (Dimitrov et al. (2013); Grant et al. (2010)). Other studies imply

that 50% biological efficacy is needed to guarantee significant public-health impact.

It has been shown that the widely used evaluation metrics may disagree over practical

intervals of time (Figure 2.5). A reduction in HIV incidence at pre-specified levels

seems most realistic as an intervention goal but it is not easy to be estimated in the

population. In contrast, a reduction in HIV prevalence is easier to be recorded but

more difficult to be achieved in a short term. The reduction in the number of new

HIV infections, which is the most popular public-health metric, projects strong PrEP

effectiveness initially but grows slower than the other indicators over time. Public-

health officials who consider PrEP to be integrated in HIV prevention programs should

base their decision on a complex of quantitative metrics.

In Chapter 3, analytic study and bifurcation simulations have been done on models

with 3 different entrance rates: constant recruitment, linear recruitment, and logistic

recruitment. Analytic results haven been summarized for models without intervention

in Section 3.1, Table 3.2. For models with interventions, similar summary based on

both analytic study and bifurcation simulations is presented in Section 3.2, Figure

3.3.

Note that the trajectories of the models with constant and logistic recruitment

are bounded while the linear recruitment allows for unbounded solutions. As the HIV

risk (β) increases, the model with constant recruitment switches from infection-free

to endemic steady state while the model with logistic recruitment equilibrium goes

from infection-free to endemic equilibrium and further to population extinction. The

trajectories of the linear model follow a similar pattern as the logistic recruitment

model: from unbounded infection-free through unbounded endemic state to popu-
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lation extinction. However, the transition (bifurcation) points where the behavior

changes occur are different for the three models. As a result the projected long-term

prevalence with each of the three models differ for epidemic conditions with R0 greater

than one. What in common for all the three models is when R0 < 1, the status of

the population approaches infection free; when R0 > 1, the status of the population

approaches coexistence or extinction.

I also looked at influence of different recruitment on the PrEP effectiveness. As a

result the simulations of the HIV epidemics with the three models over 70 years show

large discrepancies in population size and epidemic distribution under identical initial

conditions and forces of infection. The projected HIV prevalence varies from 25%

when constant recruitment is assumed and 42% when linear recruitment is assumed.

In addition, significant difference in the reduction in HIV prevalence and incidence

(almost 20%) is predicted when 50% effective PrEP is used by 20% of the population.

Over the entire simulated period, linear recruitment provides the most optimistic

estimates of the PrEP effectiveness in terms of prevalence reduction while constant

recruitment predicts larger fraction of infections prevented.

It can be argued that regardless of the differences in the dynamic behavior all

three models agree in their effectiveness projections over 20-30 years which is the usual

period over which the intervention are evaluated. However, often the models are run

for extended periods in order to simulate “mature” epidemics and the intervention is

introduced afterwards. The key message of this analysis is that the way recruitment is

incorporated in the models impacts the HIV epidemic and may have significant effect

on the projected effectiveness of different HIV intervention in a short and long term.

Demographic data, including statistics on births and age-specific mortality, should be

used to inform the modeling mechanisms before HIV prevention is considered.
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The models I studied are based on many simplified assumptions, presented in

Section 2.1.1. There are many more practical models in literature considering more

complicated models when age structure, population heterogeneity, drug resistance,

and more are taken into account. However, to illustrate how different evaluation

indicators and recruitment rates can affect the modeling results, it is better to start

with the simplified model. The simplicity of the model makes these differences more

significant. Modelers can refer to this and be aware of the possible different choices

regarding the intervention evaluation methods and entrance rates. These different

choices probably will also affect more complicated models at various levels.

In the previous chapters, the parameter values (β, µ, d) are either chosen from

literature or obtained from fit model to data using an approach similar to least square

fitting. In Chapter 4, to obtain more comprehensive information on parameter val-

ues, Bayesian inference is applied to fit the HIV model without intervention to South

Africa HIV data (Table A.1). Bayesian parameter estimation eventually provide a

distribution for each parameter. Evaluating the posterior distribution often requires

the integration of high-dimensional functions, which is usually difficult to calculate

numerically. However, the Markov Chain Monte Carlo (MCMC) method using the

Metropolis-Hastings algorithm can be applied to approximate the posterior distribu-

tion, which is not difficult to implement. The convergence of the Markov chains is

believed in this study. These chains provided good approximations for the posterior

distributions of the key parameters (β, µ, d). The mean, standard deviation, and

95% confidence interval for the posterior distribution of each parameter can be easily

summarized.

The little difference between prior and posterior distributions for µ and d implies

that the data used is not very informative. Therefore the posterior distributions are

mainly determined by the information provided by the prior distributions. Notice
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that β = 1− (1− ba)n is a composite parameter, which can not be measured directly.

Information on ba and n can both be found in literature (Boily et al. (2009),Wawer

et al. (2005)). In this study, a posterior distribution for β (mean = 0.1599 and

standard deviation = 0.02515 from Table 4.7) is obtained, which can be a supplement

to the previous HIV studies.

Bayesian inference can also be applied in model selection (Gregory (2005); Raftery

(1995); Toni et al. (2009)). If more data is available, the three models with different

entrance rates may be differentiable.

92



REFERENCES

“Mid-year population estimates, 2011”, Statistics South Africa URL http://www.
statssa.gov.za/publications/P0302/P03022011.pdf (2012).

“Effective sample size due to autocorrelation”, http://www.bayesian-inference.
com/softwaredoc/ESS, accessed: 2014-11-03 (2014).

Abbas, U. L., R. M. Anderson and J. W. Mellors, “Potential impact of antiretroviral
chemoprophylaxis on hiv-1 transmission in resource-limited settings”, PLoS One 2,
9, e875 (2007).

Alsallaq, R. A., J. M. Baeten, C. L. Celum, J. P. Hughes, L. J. Abu-Raddad, R. V.
Barnabas and T. B. Hallett, “Understanding the potential impact of a combination
hiv prevention intervention in a hyper-endemic community”, PloS one 8, 1, e54575
(2013).

Alsallaq, R. A., B. Cash, H. A. Weiss, I. M. Longini Jr, S. B. Omer, M. J. Wawer,
R. H. Gray and L. J. Abu-Raddad, “Quantitative assessment of the role of male
circumcision in hiv epidemiology at the population level”, Epidemics 1, 3, 139–152
(2009).

Andersson, K. M., D. K. Owens and A. D. Paltiel, “Scaling up circumcision programs
in southern africa: the potential impact of gender disparities and changes in condom
use behaviors on heterosexual hiv transmission”, AIDS and Behavior 15, 5, 938–948
(2011).

Andrews, J. R., R. Wood, L.-G. Bekker, K. Middelkoop and R. P. Walensky, “Pro-
jecting the benefits of antiretroviral therapy for hiv prevention: the impact of
population mobility and linkage to care”, Journal of Infectious Diseases 206, 4,
543–551 (2012).

Babiker, A., S. Darby, D. De Angelis, D. Kwart, K. Porter, V. Beral, J. Darbyshire,
N. Day, N. Gill, R. Coutinho et al., “Time from hiv-1 seroconversion to aids and
death before widespread use of highly-active antiretroviral therapy: a collaborative
re-analysis”, Lancet 355, 9210, 1131–1137 (2000).

Baggaley, R. F., G. P. Garnett and N. M. Ferguson, “Modelling the impact of an-
tiretroviral use in resource-poor settings”, PLoS Medicine 3, 4, e124 (2006).

Blower, S. and H. Dowlatabadi, “Sensitivity and uncertainty analysis of complex mod-
els of disease transmission: an hiv model, as an example”, International Statistical
Review/Revue Internationale de Statistique pp. 229–243 (1994).

Boily, M.-C., R. F. Baggaley, L. Wang, B. Masse, R. G. White, R. J. Hayes and
M. Alary, “Heterosexual risk of hiv-1 infection per sexual act: systematic review
and meta-analysis of observational studies”, The Lancet infectious diseases 9, 2,
118–129 (2009).

93

http://www.statssa.gov.za/publications/P0302/P03022011.pdf
http://www.statssa.gov.za/publications/P0302/P03022011.pdf
http://www.bayesian-inference.com/softwaredoc/ESS
http://www.bayesian-inference.com/softwaredoc/ESS


Boily, M.-C., D. Dimitrov, S. S. A. Karim and B. Mâsse, “The future role of rectal and
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Figure A.1: Initial guess for capacity K is approximated by 2×(South Africa popu-
lation at year 2001), because of the turning point observed at year 2001.
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Proof for Proposition 3.1.1.1:

Proof. Positivity and boundedness of solutions can be easily proved. Then periodic
solutions can be excluded by Dulacs Criteria: ∂

∂S
P
SI

+ ∂
∂I

Q
SI

= − Λ
S2I

< 0.

(3.1) has two possible steady states E0 = ( 1
µ
Λ, 0) and E∗ = ( 1

β−dΛ, 1
β−d(R0−1)Λ),

with notation R0 = β
µ+d

.

Eigenvalues λ1 = −µ < 0 and λ2 = (µ+ d)(R0− 1) for E0 imply that E0 is stable
when R0 < 1 and unstable when R0 > 1.

Notice that E∗ (positive steady state) exists if and only if R0 > 1. Then cor-
responding eigenvalues λ1 + λ2 = (µ + d)(1 − R0 − µ

µ+d
) < 0 and λ1 × λ2 =

(µ+ d)[β(R0 − 1)2 + µR0(R0 − 1)] > 0 imply that when exists E∗ is stable.
Finally by Poincaré-Bendixson theorem, about global stability we have the fol-

lowing results:

• when R0 < 1, E0 is globally stable and E∗ does not exist;

• when R0 > 1, E∗ is globally stable and E0 is unstable.

Proof for Proposition 3.1.2.1:

Proof. The positivity of the solutions can be easily proved. Then dN
dt

= dS
dt

+ dI
dt

=
rN − µS − (µ + d)I = (r − µ)N − dI ≤ (r − µ)N implies that N(t) → 0 extinction
if r < µ. Next we study the cases when r > µ. Further if we assume β > d and
µ+ d > r, by Proposition 3.1.2.2, we have the following results:

• when β < µ+ d, (S(t), I(t))→ (∞, 0) unbounded infection free.

• when µ+ d < β < (µ+d)d
µ+d−r , (S(t), I(t))→ (∞,∞) unbounded endemic.

• when β > (µ+d)d
µ+d−r , (S(t), I(t))→ (0, 0) extinction.

Proof for Proposition 3.1.2.2:

Proof. Assume that r > µ, β > d and µ + d > r. If s(0) ∈ [0, 1), then lim
t→∞

s(t) = 1

( lim
t→∞

i(t) = 0) if r
β−d ≥ 1; lim

t→∞
s(t) = r

β−d ( lim
t→∞

i(t) = 1 − r
β−d) if r

β−d < 1. Further,

we can study N(t) from dN
dt

, and I(t) from dI
dt

. In each case, for different parameter
values, we have lim

t→∞
N(t) = 0 or lim

t→∞
N(t) =∞; and lim

t→∞
I(t) = 0 or lim

t→∞
I(t) =∞:

• when β < µ+ d, (S(t), I(t))→ (∞, 0) with (s(t), i(t), N(t))→ (1, 0,∞);

• when µ+d < β < r+d, (S(t), I(t))→ (∞,∞) with (s(t), i(t), N(t))→ (1, 0,∞);

• when r + d < β < (µ+d)d
µ+d−r , (S(t), I(t)) → (∞,∞) with (s(t), i(t), N(t)) →

( r
β−d , 1−

r
β−d ,∞);
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• when β > (µ+d)d
µ+d−r , (S(t), I(t))→ (0, 0) with (s(t), i(t), N(t))→ ( r

β−d , 1−
r

β−d , 0).

Proof for Proposition 3.1.3.1:

Proof. Periodic solutions can be excluded by Dulac’s Criteria: ∂
∂S

( P
SI

) + ∂
∂S

( Q
SI

) =

− r
K

( 1
S

+ 1
I
)− r

S2 (1− S+I
K

) < 0.

(3.1) has three possible steady states E00 = (0, 0), E01 = ( r−µ
r
K, 0) and E∗ =

r−µ−d(1− 1
R0

)

r
K( 1

R0
, R0−1

R0
), with notation R0 = β

µ+d
.

Similar to Proposition 3.1.2.1, we can show that N(t)→ 0 if r < µ, also E01 and
E∗ both do not exist. So next we will study the cases when r > µ. Further we assume
β > d and µ+ d > r.

Eigenvalues λ1 = −(r − µ) < 0 and λ2 = β − (µ + d) for E01 imply that when
exists E01 is stable if R0 < 1, and unstable if R0 > 1.

Notice that E∗ (positive steady state) exists if and only if R0 > 1 and r >
µ + d(1 − 1

R0
) (⇔ R0r + d > β > µ + d ⇒ R0r > µ). Eigenvalues λ1 + λ2 =

−[r−µ−d(1− 1
R0

)]−(1− 1
R0

)(β−d) < 0 and λ1 ·λ2 = [r−µ−d(1− 1
R0

)][β−(µ+d)] > 0
for E∗ imply that E∗ is stable when exists.

Thus,

• when r < µ, E00 is (globally) stable, while E01 and E∗ do not exist.

• When r > µ(assume β > d and µ+ d > r),

– if β < µ+ d(R0 < 1), E01 is stable and E∗ does not exist;

– if R0r+d > β > µ+d(R0 > 1), E∗ exists and is stable and E01 is unstable;

– if β > R0r + d(R0 > 1), E01 is unstable and E∗ does not exist.

This can be simplified as: when r > µ, β > d, and µ+ d > r,

• if β < µ+ d, E01 is stable and E∗ does not exist;

• if µ+ d < β < (µ+d)d
µ+d−r , E

∗ exists and is stable and E01 is unstable;

• if β > (µ+d)d
µ+d−r , E01 is unstable and E∗ does not exist.

Next we combine the local stability results for E00 from Proposition 3.1.3.2.
Finally by Poincaré-Bendixson theorem, about global stability we have the fol-

lowing conclusions(assume r > µ, β > d, and µ+ d > r):

• when β < µ+ d, (S(t), I(t))→ E01 = ( r−µ
r
K, 0) the infection free steady state,

while E00 is unstable and E∗ does not exist;

• when µ + d < β < (µ+d)d
µ+d−r , (S(t), I(t)) → E∗ =

r−µ−d(1− 1
R0

)

r
K( 1

R0
, R0−1

R0
) the

endemic steady state, while E00 and E01 are unstable;
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• when β > (µ+d)d
µ+d−r , (S(t), I(t)) → E00 = (0, 0) the extinction steady state, while

E01 and E∗ are unstable.

Proof for Proposition 3.1.3.2:

Proof. There are four possible steady states for (3.2): E1 = (1, 0), E2 = ( r
β−d , 0),

E3 = (1, r−µ
r
K), and E4 = ( 1

R0
,
r−µ−d(1− 1

R0
)

r
K). Notice that E3 and E4 are equivalent

with E01 and E∗ respectively, while E1 and E2 are both corresponding to E00. So we
only study E1 and E2 here, and we assume r > µ, β > d, and µ+ d > r.

Eigenvalues λ1 = β − d− r and λ2 = r − µ > 0 for E1 imply that E1 is unstable.
Eigenvalues λ1 = d + r − β and λ2 = −µ+d

β−d(β − d − R0r) for E2 imply that E2 is

stable if β > d + r and β > d+ R0r. Thus, E00 is stable if β > max{d+ r, d + R0r}
with (s(t), i(t), N(t))→ ( r

β−d , 1−
r

β−d , 0) and unstable if β < max{d+ r, d+R0r}.
Then,

• when R0 < 1(β < µ+ d), E00 is unstable since β < d+ r;

• when R0 > 1(β > µ+d), E00 is stable if β > d+R0r and unstable if β < d+R0r.

This can be simplified to be:

• if β < (µ+d)d
µ+d−r , E00 is unstable;

• if β > (µ+d)d
µ+d−r , E00 is stable.

Proof for Proposition 3.2.1.1:

Proof. Positivity and boundedness of solutions can be easily proved. Then dSp

dt
≤

kΛ − µSp implies lim sup
t→∞

Sp ≤ kΛ
µ

and dS
dt
≤ (1 − k)Λ − µS implies lim sup

t→∞
S ≤

(1−k)Λ
µ

. Therefore dN
dt

= dSp

dt
+ dS

dt
+ dI

dt
= Λ − µN − dI ≥ Λ − (µ + d)N implies

lim inf
t→∞

N ≥ Λ
µ+d

. Then in long term S
N
≤ (1−k)(µ+d)

µ
, Sp

N
≤ k(µ+d)

µ
, and so dI

dt
≤

I
[
β (1−k)(µ+d)

µ
+ (1− αs)β k(µ+d)

µ
− (µ+ d)

]
= I (µ+d)2

µ

[
β 1−k
µ+d

+ (1− αs)β k
µ+d
− µ

µ+d

]
=

I (µ+d)2

µ

(
R0 − µ

µ+d

)
. Now if R0 <

µ
µ+d

, then because of the positivity of the solution,

we know lim
t→∞

I = 0. Then combine with equations in (3.3), we know lim
t→∞

Sp = kΛ
µ

and lim
t→∞

S = (1−k)Λ
µ

. Thus, global stability of infection free steady state E0 =

(kΛ
µ
, (1−k)Λ

µ
, 0) under condition R0 <

µ
µ+d

is proved.

For local stability of E0, we look the corresponding eigenvalues λ1 = −µ < 0,
λ2 = −µ < 0 and λ3 = (µ + d)(R0 − 1). Therefore, E0 is stable when R0 < 1 and
unstable when R0 > 1.
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Now assume that β > d. For F (I) over [0, Λ
d
], the following results hold: F (0) = 0,

F (Λ
d
) = −µ < 0, F ′(0) = (µ+d)(R0−1), and F ′′(I) = −2k(1− αs)β[(1− αs)β − d]Λ2

[Λ− dI + (1− αs)βI]3

−2(1− k)β(β − d)Λ2

[Λ− dI + βI]3
=

2k(1− αs)β[d− (1− αs)β]Λ2

{Λ− [d− (1− αs)β]I}3
− 2(1− k)β(β − d)Λ2

[Λ + (β − d)I]3
. Fur-

ther if (1 − αs)β ≥ d then F ′′(I) < 0 over[0, Λ
d
]; else if (1 − αs)β < d then F ′′(I)

increases over [0, Λ
d
]. Thus, F is either concave down, or concave up, or changes from

concave down to concave up over [0, Λ
d
]. Now if R0 > 1, then F (0) = 0, F ′(0) > 0 and

F (Λ
d
) < 0 implies a unique solution of F (I) = 0 over [0, Λ

d
], because of the concavity

of F (I) over [0, Λ
d
]. Else if R0 < 1, then F (0) = 0, F ′(0) < 0 and F (Λ

d
) < 0 implies no

solution of F (I) = 0 over [0, Λ
d
], because of the concavity of F (I) over [0, Λ

d
]. Thus,

assume that β > d, then we have a unique E∗ if R0 > 1 and no E∗ if R0 < 1.
Notice that Because of the complexity of the expressions, we will not express the

positive steady state explicitly. Now assume that R0 = (1−αsk)β
µ+d

> 1. The Jacobian

matrix for a positive steady state can be expressed as:

J =

[−(1− αs)βi∗(1− p∗)− µ (1− αs)βp∗i∗ −(1− αs)βp∗(1− i∗)
βs∗i∗ −βi∗(1− s∗)− µ −βs∗(1− i∗)

[(1− αs)β − (µ+ d)]i∗ [β − (µ+ d)]i∗ −(µ+ d)i∗

]
, with p∗ =

Sp∗

N∗
, s∗ = S∗

N∗
, and i∗ = I∗

N∗
. With P =

[
1 −1 −1
0 1 0
0 0 1

]
, J is similar to

H = P−1JP =

[ −µ 0 d
βs∗i∗ −µ− βi∗ −βs∗

[(1− αs)β − (µ+ d)]i∗ αsβi
∗ −(1− αs)βi∗

]
.

Then J and H share the same eigenvalues. Let λ be an arbitrary eigenvalue, then we
can eventually get the characteristic equation

1

d
(λ+ µ)[λ+ (1− αs)βi∗] +

αsβ
2i∗s∗

d
· λ+ µ+ di∗

λ+ µ+ βi∗
+ [(1− αs)β − (µ+ d)]i∗ = 0.

Now plug λ = u + iv in the characteristic equation, and extract the imaginary
part we obtain:

v

d
[2u+ µ+ (1− αs)βi∗ +

αsβ
2(β − d)i∗2s∗

(u+ µ+ βi∗)2 + v2
] = 0.

Notice that β−d > 0 since R0 > 1, then v 6= 0 implies u < 0. Otherwise v = 0 implies

f(λ) = f(u) ,
1

d
(u+µ)[u+(1−αs)βi∗]+

αsβ
2i∗s∗

d
· u+ µ+ di∗

u+ µ+ βi∗
+[(1−αs)β−(µ+d)]i∗

and f(u) increases over [0,∞) since β > d. Then

110



f(0) =
1

d
µ(1− αs)βi∗ +

αsβ
2i∗s∗

d
· µ+ di∗

µ+ βi∗
+ [(1− αs)β − (µ+ d)]i∗

>
1

d
µ(1− αs)βi∗ +

αsβ
2i∗ (1−k)d

β

d
· d
β

+ [(1− αs)β − (µ+ d)]i∗

=
1

d
µ(1− αs)βi∗ + αs(1− k)di∗ + (1− αs)βi∗ − (µ+ d)i∗

= {µ+ d

d
[(1− αs)β − d] + αs(1− k)d}i∗.

Notice that s∗ = S∗

N∗
= Λ(1−k)

Λ+(β−d)I∗
> Λ(1−k)

Λ+(β−d) Λ
d

= (1−k)d
β

. I hope to show that f(0) > 0

and so f(u) > 0 over [0,∞), and further f(u) = 0 can only have negative solutions.
But it seems I can only show this given extra condition µ+d

d
[(1−αs)β−d]+αs(1−k)d >

0.
I believe in f(0) > 0 without this extra condition, which needs to be further

studied in future.

Proof for Proposition 3.2.2.1:

Proof. The positivity of the solutions can be easily proved. Then similar to Proposi-
tion 3.1.2.1, we can show that the unique steady state E = (0, 0, 0) is globally stable
if r < µ. Next we will study the cases when r > µ.

From Proposition 3.2.2.2, we know when β > d, there is no periodic solution for
the reduced system (3.4) , and (3.5), and therefore E1 = (k, 0) is globally stable
when (1 − k)β + k(1 − αs)β < d + r, while E2 = (p∗, i∗) is globally stable when
(1 − k)β + k(1 − αs)β > d + r. Then by (3.6), the total population N(t) either
approaches 0 when r − µ − d lim

t→∞
i(t) < 0, or blows up when r − µ − d lim

t→∞
i(t) >

0. Similarly by (3.7), the infected population I(t) either approaches 0 when β(1 −
lim
t→∞

p(t) − lim
t→∞

i(t)) + (1 − αs)β lim
t→∞

p(t) − (µ + d) < 0, or blows up when β(1 −
lim
t→∞

p(t)− lim
t→∞

i(t)) + (1− αs)β lim
t→∞

p(t)− (µ+ d) > 0.

Thus, periodic solutions for (3.3) do not exist when β > d.

Proof for Proposition 3.2.2.2:

Proof. Positivity of solutions for the transformed system can be easily checked. Fur-
ther,

dp

dt
+
di

dt
= kr − rp− βpi+ αspi+ dpi+ (β − d)i− ri− αsβpi− (β − d)i2

= kr − r(p+ i)− βpi− (β − d)pi+ (β − d)i− (β − d)i2

= kr − r(p+ i)− βpi+ (β − d)i[1− (p+ i)].

Then at p + i = 1, d(p+i)
dt

= −r + kr − βpi = −r(1 − k) − βpi < 0 implies that
(p+ i)(t) ≤ 1 for t > 0 given that (p+ i)(0) ≤ 1.
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The periodic solutions for the reduced system (therefore for the transformed sys-
tem) can be excluded by Dulac’s Criteria: ∂

∂p
(X
pi

) + ∂
∂i

(Y
pi

) = − kr
p2i
− β−d

p
< 0, when

given β − d > 0.

For the reduced system, there are possibly several steady states: E1 = (k, 0)(always
exists), E2 = (p∗, i∗)(positive steady state(s), existence depends on parameter values).

For E1, we have eigenvalues λ1 = −r < 0 and λ2 = (1− αsk)β − (d+ r). Then if
(1− αsk)β < (d+ r), E1 is locally stable; if (1− αsk)β > (d+ r), E1 is unstable.

For E2, we have Ap∗2 + Bp∗ + C = 0 and i∗ = 1 − αsβp∗+r
β−d , with A = αsβ[(1 −

αs)β−d], B = −{(β−d− r)[(1−αs)β−d]+(β−d)r}, and C = (β−d)kr. If further
0 < p∗ < 1 and 0 < i∗ < 1, then (p∗, i∗) exists as a positive steady state. (There may
be more than one positive steady state.)

Notice that p∗ ∈ (0, β−(d+r)
αsβ

) and i∗ ∈ (0, β−(d+r)
β−d ). So we assume that β > d + r.

Denote F (p) = Ap2 + Bp + C, then we have the following results for F (p) over

(0, β−(d+r)
αsβ

): F (0) = (β − d)kr > 0, and F (β−(d+r)
αsβ

) = − (β−d)r
αsβ

[(1 − kαs)β − (d + r)].

Now if (1 − kαs)β > d + r, then F (0) > 0 and F (β−(d+r)
αsβ

) < 0 implies a unique

solution of F (p) = 0 over (0, β−(d+r)
αsβ

), because F (p) is a parabolic function.

Now look at the case when (1−kαs)β < d+r(⇒ (1−αs)β−d < r). If (1−αs)β ≤ d,

then F (0) > 0 and F (β−(d+r)
αsβ

) > 0 implies no solution of F (p) = 0 over (0, β−(d+r)
αsβ

),

because F (p) is linear or concave down. If (1 − αs)β > d, then F (p) is concave up

and attains its minimum at p̂ = β−(d+r)
2αsβ

+ (β−d)r
2αsβ[(1−αs)β−d]

> β−(d+r)
2αsβ

+ (β−d)r
2αsβr

> β−(d+r)
αsβ

.

Therefore if (1− αs)β > d, then F (0) > 0 and F (β−(d+r)
αsβ

) > 0 implies no solution of

F (p) = 0 over (0, β−(d+r)
αsβ

), because F (p) is decreasing over (0, β−(d+r)
αsβ

).

Together if β ≥ d+ r, a unique solution of F (p) = 0 exists over (0, β−(d+r)
αsβ

) when

(1− kαs)β > d+ r and no solution exists over (0, β−(d+r)
αsβ

) when (1− kαs)β < d+ r.

Next, we can show that E2 when exists, is stable. Notice that the existence of E2

requires (1− αsk)β > (d+ r) (when E1 is unstable). We have

kr − rp∗ − [(1− αs)β − d]p∗i∗ = 0

⇒ −r − [(1− αs)β − d]i∗ = −kr
p∗
, −[(1− αs)β − d]p∗ = −kr − rp

∗

i∗
,

and
β − (d+ r)− αsβp∗ − (β − d)i∗ = 0.

And we have the following Jacobian matrix for E2:

J(E2) =

∣∣∣∣ −r − [(1− αs)β − d]i∗ −[(1− αs)β − d]p∗

−αsβi∗ −(β − d)i∗ + β − (d+ r)− αsβp∗ − (β − d)i∗

∣∣∣∣ .
Then

J(E2) =

∣∣∣∣ −kr
p∗

−kr−rp∗
i∗

−αsβi∗ −(β − d)i∗

∣∣∣∣ .
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The corresponding eigenvalues satisfy

λ1 + λ2 = −kr
p∗
− (β − d)i∗ < 0,

and

λ1 · λ2 =
kr

p∗
(β − d)i∗ − αsβ(kr − rp∗).

Further

λ1 · λ2 =
kr

p∗
(β − d)(1− αsβp

∗ + r

β − d
)− αsβ(kr − rp∗)

=
r

p∗
[k(β − d− αsβp∗ − r)− αsβ(k − p∗)p∗]

=
r

p∗
[αsβp

∗2 − 2αsβkp
∗ + k(β − d− r)].

We next conclude λ1 · λ2 > 0 from f(p∗) = αsβp
∗2 − 2αsβkp

∗ + k(β − d− r) > 0.
We know f(p∗) attains the minimum value f(k) at p∗ = k. Now it is sufficient to
show that f(k) > 0. Since (1− αsk)β > (d+ r)⇒ β − d− r > αskβ, then

f(k) = αsβk
2 − 2αsβk

2 + k(β − d− r)
= k(β − d− r)− αsβk2

> kαskβ − αsβk2

= 0.

Thus, we have proved that E2 when exists (require (1−αsk)β > (d+r)), is stable.
Further since (1 − αsk)β > (d + r) implies β > d (no periodic solutions) and E1 is
unstable, then E2 when exists is globally stable.

If (1 − αsk)β < (d + r), then E1 is stable and E2 does not exist. Further β > d
implies no periodic solutions, therefore we conclude that E1 is globally stable provided
that (1− αsk)β < (d+ r) and β > d.

Proof for Proposition 3.2.3.1:

Proof. The invariance of the biologically region can be easily proved.
Then similar to Proposition 3.1.2.1, we can show that the extinction steady state

E00 is globally stable if r < µ.
From now on, we assume r > µ. About the eigenvalues for E01, we have λ1 +λ2 =

−r < 0, λ1 × λ2 = µ(r − µ) > 0 and λ3 = (µ + d)(R0 − 1). Therefore E01 is stable
when R0 < 1 and unstable when R0 > 1.

From Proposition 3.2.3.2, we know when r > µ, then extinction steady state is
stable if (1− k)β + k(1−αs)β > d+ r and unstable if (1− k)β + k(1−αs)β < d+ r;
further when β > µ+ d, the positive steady state exists if R0 > 1 and i∗ = I∗

N∗
< r−µ

d

and does not exist if R0 < 1 or i∗ = I∗

N∗
> r−µ

d
.

Proof for Proposition 3.2.3.2:
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Proof. For (3.8), there are possibly several steady states: E1 = (k, 0, 0)(always exists),
E2 = (p∗, i∗, 0)(existence depends on parameter values), E3 = (k, 0, r−µ

r
K), and E4 =

(p∗, i∗, N∗)(existence depends on parameter values). Notice that E3 is equivalent with
E01 = (k r−µ

µ
K, (1 − k) r−µ

µ
K, 0) for (3.3), and E4 is equivalent with positive steady

state E∗ for (3.3) if exists, while E1 and E2 are both corresponding to E00 = (0, 0, 0)
for (3.3). We will assume r > µ.

For E1, we have eigenvalues λ1 = −r < 0, λ2 = (1 − αsk)β − (d + r), and
λ3 = r − µ > 0. So E1 is unstable.

For E2, we have Ap∗2 + Bp∗ + C = 0 and i∗ = 1 − αsβp∗+r
β−d , with A = αsβ[(1 −

αs)β−d], B = −{(β−d− r)[(1−αs)β−d]+(β−d)r}, and C = (β−d)kr. If further
0 ≤ p∗ ≤ 1 and 0 ≤ i∗ ≤ 1, then (p∗, i∗, 0) exists as a steady state. This is similar to
the case E2 = (p∗, i∗) in Proposition 3.2.2.2(with linear entrance rate).

For E4, we have Ap∗2 +Bp∗+C = 0, i∗ = β−µ−d−αsβp∗
β

, N∗ = r−µ−di∗
r

K, with A =

αs(1−αs)β, B = −[(1−αs)(β−µ−d)+µ+kαsd], and C = kdβ−µ−d
β

+kµ. Therefore,

positive steady states may exist but too complicated to be expressed explicitly.

Notice that i∗ ∈ (0, r−µ
d

) and p∗ ∈
(
β−(µ+d)− r−µ

d

αsβ
, β−(µ+d)

αsβ

)
. So we assume that

β > µ + d and r > µ so that E4 may exist as an endemic steady state. Denote

F (p) = Ap2 + Bp + C, then we have the following results for F (p) over (0, β−(µ+d)
αsβ

):

F (0) = k(µ+d)(β−d)
β

> 0, and F (β−(µ+d)
αsβ

) = −µ(µ+d)
αsβ

(R0 − 1). Now if R0 > 1, then

F (0) > 0 and F (β−(µ+d)
αsβ

) < 0 implies a unique solution of F (p) = 0 over (0, β−(µ+d)
αsβ

),

because F (p) is a parabolic function. Further if the solution p∗ >
β−(µ+d)− r−µ

d

αsβ
, then

there exists a unique E2. Thus, if β > µ + d and r > µ, then there is a unique E2

when R0 > 1 and p∗ >
β−(µ+d)− r−µ

d

αsβ
(⇔ i∗ < r−µ

d
).

Now look at the case when R0 < 1(⇒ β < µ+d
1−kαs ). F (p) is concave up and attains

its minimum at p̂ = β−(µ+d)
2αsβ

+ µ+kαsd
2αs(1−αs)β >

β−(µ+d)
αsβ

, since

β − (µ+ d)

2αsβ
+

µ+ kαsd

2αs(1− αs)β
− β − (µ+ d)

αsβ

=
µ+ kαsd− (1− αs)[β − (µ+ d)]

2αs(1− αs)β

>
µ+ kαsd− (1− αs)[ µ+d

1−kαs − (µ+ d)]

2αs(1− αs)β

=
(2− αs − 1−αs

1−kαs )µ+ kαs(1− 1−αs
1−kαs )d

2αs(1− αs)β
> 0.

Therefore F (β−(µ+d)
αsβ

) > 0 implies no solution of F (p) = 0 over
(
β−(µ+d)− r−µ

d

αsβ
, β−(µ+d)

αsβ

)
,

because F (p) is decreasing over
(
β−(µ+d)− r−µ

d

αsβ
, β−(µ+d)

αsβ

)
.

Together if β > µ + d and r > µ, a unique solution of F (p) = 0 exists over(
β−(µ+d)− r−µ

d

αsβ
, β−(µ+d)

αsβ

)
when R0 > 1 and i∗ < r−µ

d
and no solution exists over
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(
β−(µ+d)− r−µ

d

αsβ
, β−(µ+d)

αsβ

)
when R0 < 1 or i∗ > r−µ

d
.

Because of the complexity of the expressions, we will not express the positive
steady state explicitly. Now assume that R0 > 1 and i∗ < r−µ

d
. The Jacobian matrix

for a positive steady state can be expressed as:

J =

[−µ− (1− αs)βi∗ −[(1− αs)β − d]p∗ r
K

(−k + p∗)
−αsβi∗ −(β − d)i∗ r

K
i∗

0 −dN∗ − r
K
N∗

]
. The study of the eigen-

values may be continued in future, for corresponding stability results.
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APPENDIX D

ADDITIONAL SIMULATION RESULTS
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No intervention models (data fit and predict)
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Figure D.1: Blue color corresponds to model with constant entrance rate. Red color
corresponds to model with linear entrance rate. Black color corresponds to model
with linear entrance rate.

Table D.1: Baseline parameter values generated from data fitting

constant entrance linear entrance logistic entrance initial guess
β 0.196924711 0.196935536 0.196924711 1− (1− 0.0038)80

≈ 0.26256628106
µ 0.029793556 2.93E-02 0.02438153 1/35

≈ 0.028571428571429
d 0.119146121 0.11955454 0.125 1/10 = 0.1
Λ 996344 fixed value

calculated from data
r 0.04095 0.0511875 fixed value

or initial guess 0.04095
K 1.13E+08 9.00E+07

(Figure (A.1))
err 0.044056109 0.044755966 0.043080597
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Effectiveness indicators (k=0.2, α
s
=0.5)
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Figure D.2: For each simulation, models with different entrance rates use the cor-
responding parameter values from outfitting(see Table D.1). Blue color corresponds
to model with constant entrance rate. Red color corresponds to model with linear
entrance rate. Black color corresponds to model with linear entrance rate. Notice
that for models with linear entrance rate and logistic entrance rate, some indicators
are not well defined and can have negative values which are not shown in the figures.
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