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ABSTRACT

The ability to identify unoccupied resources in the radio spectrum is a key capability

for opportunistic users in a cognitive radio environment. This paper draws upon and

extends geometrically based ideas in statistical signal processing to develop estimators

for the rank and the occupied subspace in a multi-user environment from multiple

temporal samples of the signal received at a single antenna. These estimators enable

identification of resources, such as the orthogonal complement of the occupied sub-

space, that may be exploitable by an opportunistic user. This concept is supported

by simulations showing the estimation of the number of users in a simple CDMA

system using a maximum a posteriori (MAP) estimate for the rank. It was found

that with suitable parameters, such as high SNR, sufficient number of time epochs

and codes of appropriate length, the number of users could be correctly estimated

using the MAP estimator even when the noise variance is unknown. Additionally, the

process of identifying the maximum likelihood estimate of the orthogonal projector

onto the unoccupied subspace is discussed.
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Chapter 1

INTRODUCTION

The problem of determining whether a signal is present in two or more channels

of sensor data has applications in many different fields. The application context

where it has been most studied is in defense and security systems, such as radar and

sonar, where it pertains to detecting and localizing a target from data collected at

multiple geographically distributed sensors. However, due to the need to improve the

utilization of spectrum resources, detection methods of this kind have been applied

over the past decade in spectrum sensing for cognitive radio in order to determine

the presence of a primary user.

Tests for determining the presence of a common but unknown signal in two or more

noisy channels have been studied extensively in connection with passive localization

of emitters. Such detectors include those based on the magnitude-square coherence

(MSC) estimate and generalized coherence (GC) estimate, which are functions of the

determinant of a Gram matrix formed from the collected data. The rise of multiple

input, multiple output (MIMO) systems in sensing and communications has led to a

renewed interest in multiple-channel detection. Motivated in part by MIMO appli-

cations, a variety of statistical hypothesis tests including generalized likelihood ratio

tests (GLRTs ), Bayesian tests, locally most powerful invariance tests (LMPITs),

and maximum a posteriori (MAP) tests have been recently been derived for various

multiple-channel sensing problems, in many cases yielding results that are functions

of the eigenvalues of the Gram matrix.

This thesis explores how recently derived detectors and their properties can be

applied to the spectrum sensing problem. Chapter 2 looks at the previous work ac-
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complished. This includes a summary of spectrum sensing in cognitive radio and

various relevant detection methods. Additionally, the Gram matrix is examined and

various established detectors and their features are explored. Chapter 3 shows the

similarities between the problem formulations for application in spectrum sensing and

more classical problems motivated by radar/sonar. Chapter 4 discusses the formu-

lation of the MAP estimate for signal rank. Chapter 5 shows the use of the MAP

estimate for the rank of a signal to estimate the number of users in a CDMA system,

and also discusses estimation of the occupied subspace. Finally, Chapter 6 discusses

potential problems in real world utilization.
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Chapter 2

BACKGROUND

Cognitive radio aims to improve the utilization of the radio frequency (RF) spec-

trum by allowing unlicensed secondary users to transmit on the spectrum when it

is not being used by a licensed primary user. As stated in [1], usage of allocated

spectrum has been reported to have utilization ranging from 15% to 85%. Spectrum

sensing is a fundamental part of cognitive radio, as it helps to identify available spec-

trum, thus maintaining low interference for the primary user, while enabling access of

secondary “opportunistic” users. As discussed in [2], spectrum sensing can be used to

obtain the spectrum usage characteristics across multiple dimensions including time,

space, frequency and code.

2.1 Spectrum Sensing Methods

There are many different techniques used for spectrum sensing, such as the meth-

ods described in [3] which include energy detection, cyclostationary detection, matched

filter detection and detection using multiple antennas.

One of the most common methods of spectrum sensing is the energy detector,

which has low computational and implementation complexities. Additionally, the

receivers require no knowledge of the primary user’s signal. The test statistic for the

energy detector was given in [2] as

TED =
N∑
n=0

|y(n)|2

where N is the size of the observation vector and y(n) is the received signal. However,

the energy detector has poor performance under low-SNR conditions and does not
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work efficiently for detecting spread spectrum signals. Additionally, it was discussed

in [3] that the energy detector is the optimal detector if the only the noise power is

known. However, it is unable to distinguish between different types of signals which

can increase the probability of false alarm. Additionally, the influence of uncertain

noise power can make it challenging to determine the detection threshold.

Cyclostationary-based sensing exploits the cyclostationarity features of the re-

ceived signals using feature detection for detecting primary user transmissions. Such

features are caused by the periodicity in the signal statistics such as mean and auto-

covariace. Detection is typically based on an estimate of the cyclic spectral density,

given in [2] for a discrete-time process y as

S(f, α) =
∞∑

τ=−∞

Rα
y (τ)e−j2πfτ

where

Rα
y (τ) = E

[
y(n+ τ)y∗(n− τ)ej2παn

]
is the cyclic autocorrelation function and α is the cyclic frequency. The cyclic spectral

density outputs peak values when the cyclic frequency and the fundamental frequen-

cies of the transmitted signal are equivalent. As discussed in [3], the main advantage

of cyclostationary spectrum sensing is the ability to differentiate the primary signal

from noise as well as interference with different cyclic frequencies, which might arise

from the presence of interfering signals with different modulation types or parameters.

Additionally, the SNR does not affect the cyclostationary feature, which enables this

method of detection to be successful even at very low SNRs. Various specific detectors

for cyclostationary features have been developed in [4, 5, 6, 7], some quite recently

and with impetus from spectrum sensing [8].

Matched filtering is also discussed in [2], and is the optimal detector for one

receiver when the transmitted signal is known. However, it requires the cognitive
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radio to be able to demodulate the received signals, as perfect knowledge of the

primary users’ signaling features is required. The matched filter statistic is given in

[9] for a real signal as

TMF (x) =
N−1∑
n=0

sT (n)x(n)

where s(n) is the source signal and is deterministic and known, and x(n) is the

received data.

In [10] a multitaper spectral estimation method using Slepian tapers was used

to define a decision statistic for detecting the transition into a spectrum hole. A

spectrum hole is defined as a band of frequencies assigned to a primary user that

is not being utilized at a particular time and geographical location. The detector is

based on the statistic

D(t) =
L−1∑
l=0

M−1∑
v=0

|σl (flow + v ·∆f ; t)|2 ∆f

where L represents the number of largest eigenvalues of the matrix A(f)†A(f) that are

considered to play important roles in estimating the interference temperature, where

A(f) is a spatiotemporal complex-valued matrix whose columns are produced using

stimuli sensed at different gridpoints, and whose rows are computed using different

Slepian tapers with variable weights accounting for relative areas of gridpoints. The

lth largest eigenvalue produced by the burst of RF stimuli received at time t is denoted

by |σl(f, t)|2, and M denotes the number of frequency resolutions of width ∆f which

occupy the occupied space under scrutiny, flow is the lowest end of an occupied space,

and f = flow +v ·∆f, v = 0, 1, . . . ,M−1. This method is shown to be almost optimal

for wideband signals, however has a high computational complexity [11]. This method

was expanded in [12] to include an adaptive multitaper method for when the number

of tapers is increased towards the limiting value of 2NW where NW is the time-

bandwidth product. The adaptive method is computed through an iterative process.
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Additional methods discussed in [2] include radio identification based sensing

which identifies the transmission technology (e.g. modulation type) used by the

primary users by extracting features from the received signal that are used for se-

lecting the more probable primary user technology and then using energy detector

based methods for detection. Also mentioned are wavelet transform based estimation,

Hough transform and time-frequency analysis.

However, as expressed in [13], the detection of a source with a sensor array is of

particular interest in cognitive radio where it can be used with a mutlisensor cognitive

device or a collaborative network. As stated in [3], spectrum sensing using multiple

antennas can be accomplished using eigenvalue-based detection. Such detectors tend

to be robust to noise power uncertainty as the noise variance and signal power are

estimated simultaneously. A review of eigenvalue-based detectors will be given in

section 2.5.

Although the focus of this thesis is on cognitive radio, it is worth noting that

there has been renewed interest in multiple channel detection and estimation for

radar purposes. This is due in part to the rise in interest in passive radar, which

uses one or more high-SNR direct path signals from illuminators of opportunity. For

example, [14] illustrates the use of geosynchronous satellites and a terrestrial TV

transmitter as illuminators of opportunity. Interest in such applications has resulted

in new findings for multiple channel detection in radar settings over the past couple

of years [15, 16, 17, 18] .

With this in mind, previous and recent detectors and estimators developed with

application focusing on radar/sonar and spectrum sensing will be explored. These

detectors generally turn out to be functions of the eigenvalues of the Gram matrix.
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2.2 Gram Matrix

Consider M complex N -vectors x1, . . . ,xM with M < N corresponding to seg-

ments of time-series data from a collection of M channels. The channels may be from

distinct receivers or formed from time segments of a single receiver. Denoting the

associated matrix as

X =


− x1 −

...

− xM −


From [19, Pg 177], the positive semidefinite Gram matrix of X is an M ×M matrix

of the inner products denoted as

G = XX† =


〈x1,x1〉 〈x1,x2〉 . . . 〈x1,xM〉

...
...

〈xM ,x1〉 〈xM ,x2〉 . . . 〈xM ,xM〉

 (2.1)

where X† denotes the Hermitian transpose of X. And the inner product 〈xi,xj〉 , i, j =

1, . . . ,M is defined by

〈xi,xj〉 =
N∑
k=1

xi,kx
∗
j,k

where ∗ denotes complex conjugation.

If the vectors xm are normalized to unit length (i.e. xM is replaced by xM
||xM ||

), the

Gram matrix takes the form

G =


1

〈
x1

||x1|| ,
x2

||x2||

〉
. . .

〈
x1

||x1|| ,
xM
||xM ||

〉
...

. . .
...〈

xM
||xM ||

, x1

||x1||

〉 〈
xM
||xM ||

, x2

||x2||

〉
. . . 1


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2.2.1 Determinant of the Gram Matrix

The determinant of the Gram matrix is denoted as

g = g(x1, . . . ,xM) = |G|

From [19, Pg 178], the determinant is bounded by

0 ≤ g(x1, . . . ,xM) ≤
M∏
i=1

||xi||2 (2.2)

If the elements of the matrix have been normalized, then

0 ≤ g(x1, . . . ,xM) ≤ 1

Where g = 0 occurs if and only if vectors xm, m = 1, . . . ,M are linearly dependent

(i.e. X is not full rank), and the upper extreme occurs if and only if the vectors are

orthogonal.

The determinant of the Gram matrix has the following properties [19, Pg 184]

(a) g is a symmetric function of its arguments.

(b) g(x1, . . . , σxj, . . . ,xn) = |σ|2g(x1, . . . ,xn).

(c) g(x1, . . . ,xj + σxk, . . . ,xn) = g(x1, . . . ,xn), j 6= k.

(d) g
1
2 (x′1 + x′′1,x2, . . . ,xn) ≤ g

1
2 (x′1,x2, . . . ,xn) + g

1
2 (x′′1,x2, . . . ,xn).

(e) g(x1, . . . ,xn) ≤ g(x1, . . . ,xp)g(xp+1, . . . ,xn), 1 ≤ p < n.

These properties add desirable attributes to detectors, such as the generalized

coherence detector, and are important in deriving the distributions of eigenvalue-

based detection statistics under suitable null hypotheses.
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2.2.2 Distribution and Invariance of the Normalized Gram Matrix

In [20], a geometric perspective is used to determine the distribution of the nor-

malized Gram matrix under suitable H0 conditions. Additionally, it is shown that the

null distribution of the normalized Gram matrix does not depend on the distribution

of one channel, and thus is invariant to the statistics of one channel. This invariance

result carries over to the spectrum of the Gram matrix.

The invariance to the statistics of one channel is an important tool especially in

the case of passive and active radar when the transmitted signal can be obtained via

a high SNR received signal, or an exact replica respectively. These benefits extend to

spectrum sensing in cases when the primary user is known. The invariance property

means that the replica or high SNR signal can be contained in one channel of data

without affecting the thresholds set using a desired false alarm probability rate.

2.2.3 Sample Covariance Matrix

The sample covariance matrix is the maximum likelihood estimate for the co-

variance matrix of a M × N random matrix X and assuming zero mean is denoted

by

R̂ =
1

N
XX† (2.3)

R̂ is an M ×M matrix. The N ×N matrix

W =
1

N
X†X (2.4)

has the same non-zero eigenvalues as the sample covariance matrix.

2.2.4 Eigenvalues of the Gram Matrix

Recently the individual eigenvalues of the Gram matrix have been seen to be

useful in various detection tests. The invariance of the distribution of the eigenvalues
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to the statistics of one channel was proven in [21].

2.2.4.1 Distribution of the Eigenvalues of Complex Wishart Distributed Matricies

Detection thresholds corresponding to false alarm probabilities are set using the

known distribution of the detection statistic under the signal absent null hypothesis.

When the null hypothesis conditions are assumed, that is that the M channels are

independent and contain only independent complex Gaussian noise, the Gram matrix

belongs to the class of complex Wishart distributed matrices.

In [22], it is shown that Wishart distributed matrices can be factored into T†T,

where T is a upper triangular matrix with real values on the main diagonal. Such

factoring is useful in determining the distribution of functions of the elements of a

complex Wishart matrix, such as the multiple coherence between the last variable in

a M -tuble, and the remaining M − 1 variables.

In [23], the distribution of the largest eigenvalue was found by integrating the

joint PDF of λ over λ2, . . . , λM where λ2 and λM are the second largest, and smallest

eigenvalues respectively. Thus, the PDF of the largest eigenvalue can be written as

fλ1(x1) =

∫ x1

0

∫ x2

0

· · ·
∫ xM−1

0

fλ(x)dxM . . . dx3dx2

where

fλ(x) = K|Φ(x)| · |Ψ(x)|
M∏
l=1

(ξ(xl))

and x = [x1, · · · , xM ]T and λ = [λ1, · · · , λM ]T is a vector of ordered eigenvalues (λ1 ≥

· · · ≥ λM). The values of the normalizing constant K, Φ(x), Ψ(x) and ξ(x) are given

in Table 1 of [23] for uncorrelated central, uncorrelated non-central, and correlated

central Wishart matrices. Additionally, the PDF for the smallest eigenvalue, and the

mth ordered eigenvalue was found.

In [24], the exact joint density function for the M eigenvalues is found for complex

10



Wishart matrices. Additionally, the PDFs for the largest and smallest eigenvalues

of real and complex Wishart matrices are discussed, with exact distributions being

given for some cases.

In [25], the exact distribution was derived for the scaled largest eigenvalue given

by

X :=
λ1

1
M

∑M
i=1 λi

=
λ1
T

where λ1 > λ2 > . . . > λM > 0 are the eigenvalues of the matrix G as given in

equation (2.1).

Similarly, in [26], the exact density of the condition number of a complex Wishart

matrix was found and used to calculate the exact probability of false alarm for the

ratio of the maximum and minimum eigenvalues.

Additionally, some thresholds for detectors based on the eigenvalues of R̂ can be

approximated since as N,M → ∞, the distribution of some eigenvalue-baed detec-

tion statistics asymptotically follow a second order Tracy-Widom distribution. An

example of this was shown in [27].

Thus, there are cases for which false alarm thresholds can be analytically deter-

mined using the known, if rather obstinate, distributions of the eigenvalues of complex

Wishart-distributed matrices.

2.3 Magnitude-Squared Coherence Estimator

The magnitude-squared coherence (MSC) estimate has seen wide application in

situations involving two channels for over five decades. The MSC is a function of the

inner product of two channels shown in [28] to be

γ2(x1,x2) =
|〈x1,x2〉|2

||x1||2 ||x2||2
(2.5)

The geometry of the MSC was shown in [29] by denoting x1 = {τn + iηn}N1 and

11



x2 = {un + ivn}N1 , α,β1 and β2 are unit vectors in R2N defined by

α ,
(τ1, · · · , τN , η1, · · · , ηN)∑N

n=1

√
τ 2n + η2n

β1 ,
(u1, · · · , uN , v1, · · · , vN)∑N

n=1

√
u2n + v2n

β1 ,
(−v1, · · · , vN , u1, · · · , uN)∑N

n=1

√
u2n + v2n

so that (2.5) reduces to

γ2(x1,x2) = 〈α,β1〉
2 + 〈α,β2〉

2

and the distribution can be seen to be the square of the length of the projection of α

onto the plane defined by β1 and β2, and β1 and β2 are orthonormal by construction.

In [29], the geometry of the MSC was used to determine the cumulative distribu-

tion function (CDF) given as

Pr{γ2(x1,x2) ≤ R} = 1− (1−R2)N−1

This was accomplished by determining the fraction of the surface of the unit sphere

in R2N that projects onto the annular region in R2 written in polar coordinates as

{(r, θ) : |R| < r ≤ 1 and 0 ≤ θ < 2π}. From this, the fraction of the sphere that

projects on the disk of radius R centered at the origin in R2 was implicitly determined.

The distribution can be utilized to set thresholds for desired false alarm probabilities.

The invariance of the MSC to the distribution of the data on one channel was

shown in [28] under the conditions that the two channels are independent and the

second channel contains only white Gaussian noise. This was accomplished by eval-

uating the conditional CDF of γ2 holding x2 fixed, and showing that there is no

dependence on the values of x2. This invariance was given a geometric interpretation

in [29].
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2.4 Generalized Coherence Estimator

The generalized coherence (GC) estimate was introduced in 1988 [30] for detection

use in M ≥ 2 channels. To form the GC estimate, the MSC estimate was written as

γ2(x1,x2) = 1− g(x1,x2)

||x1||2||x2||2

By generalizing the MSC estimate to the case of M non-zero sequences, the GC

estimate is defined as

γ2(x1, . . . ,xM) = 1− g(x1, . . . ,xM)

||x1||2 · · · ||xm||2
(2.6)

Due to the limits of g(x1, . . . ,xM) provided in (2.2), the generalized coherence esti-

mate will have values between zero and one.

Recently in [31], the GC estimate was derived from the Bayesian perspective, when

each vector xm contains independent samples of independent zero-mean Gaussian

noise and the covariance matrix of x1, . . . ,xM is diagonal under the signal-absent

hypothesis and non-diagonal under H1. Non-informative priors were determined for

the covariance matrices under H0 and H1 and used to establish the likelihood ratio

p(X|H1)
p(X|H0)

. It was determined that the result of the likelihood function is a monotonic

function of the GC estimate.

The geometry of the GC estimate is discussed in [32]. The determinant of the

Gram matrix may be regarded as the squared volume of a parallelepiped in a complex

N -dimensional space formed by sample vectors, x1, . . . ,xM . Normalizing the product

of the squared lengths of the vectors yields a number between zero and one that is

subtracted from unity to give the GC estimate.

The distribution of the GC estimate under H0 can be found by using a Gram-

Schmidt procedure to factor (2.6) into γ2(x1, . . . ,xM) = 1 −
∏M

j=2 zj and in [30], it

was found that the zj are independent and that each zj has a beta distribution with

13



2N−2(j−1) and 2(j−1) degrees of freedom under H0. In [33] a recursion formula was

found and applied to generate values for the GC for two and three-channel estimates

according to a range of false alarm probabilities and various sample sequence lengths

N . Due to the difficulty of evaluating the probability distribution function under the

signal absent null hypothesis, and the fact that the distribution is unknown for the

signal present case, a more tractable asymptotic (in M) analysis of the GC estimate is

shown in [34]. The false alarm probabilities found using the asymptotic method were

shown to closely match the theoretical false alarm probabilities for the three-channel

GC estimate, and the theoretical predictions of detection performance are shown to

closely match empirical results obtained by Monte Carlo simulations.

The invariance property of the GC was proven in [35] by using a Gram-Schmidt

procedure to express x1, . . . ,xM in terms of orthogonal vectors, and expressing the

GC in terms of an MSC estimate, which could be seen to have the desired invariance

as discussed in 2.3. As a note, the invariance of distribution of the Gram matrix

discussed in 2.2.2 supersedes the invariance of the distributions of the GC, the MSC

and the individual eigenvalues.

2.5 Estimators Based on Individual Eigenvalues

Recently, detectors based on individual eigenvalues of the Gram matrix have been

derived for both spectrum sensing applications and radar/sonar applications using

various principles (e.g. GLRT, ML, MAP). In the derivations of these detectors,

under the null hypothesis the received data contains only white noise whose strength

is the same on each channel and may not be known. The alternative hypothesis

varies from case to case. In some settings, the received data in each channel contains

a common signal in additive noise. In others, the covariance matrix of the channels

is assumed non-diagonal under H1.
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In [36] detection statistics were derived for multiple channel detection of signals

with a known rank K in M independent channels using generalized likelihood ratio

tests (GLRTs) and a Bayesian approach. For known noise variance, the GLR was

given as

GLR = e
N
σ2

∑K
i=1 λi

where N is the number of samples, σ2 is the noise variance and λi denotes the ith

eigenvalue λ1 > λ2 > . . . > λN of the matrix W. Similarly, the GLR for unknown

noise variance was given as

GLR =

(
1−

∑K
i=1 λi∑N
i=1 λi

)−MN

Using the Bayesian approach, the decision statistic in the case of known noise variance

was found to be

p(X|H1)

p(X|H0)
= Qe

Nα
σ2

∑K
i=1 λi

N−K∏
i=1

K∏
j=1

1

λj − λK+i + σ2

α

where Q =
(
πσ2

Nα

)K(N−K)
1

(1+β2)MKvol(GK,N )
and vol(GK,N) is the volume of the complex

Grassmanian manifold, α = β2

1+β2 and β2 = σ2
a

σ2 . Similarly, when the noise variance is

unknown, the decision statistic can be seen to be

p(X|H1)

p(X|H0)
= Q

(
1 = α

∑K
i=1 λi∑N
i=1 λi

)K(N−K)−p N−K∏
i=1

K∏
j=1

1

λj − λK+i + δ

where Q =
π
pα

K(N−K)

((1+β2)MKvol(GK,N ))
and p = MN + 1.

In [37], the GLR was derived for a system of M ≥ 2 antennas, with a primary

signal known to have known spatial rank K. The log-GLR was found to be a function

of the ratio between the geometric and arithmetic means of all eigenvalues and the

difference of the number of antennas and known spacial rank smallest eigenvalues of
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the known covariance matrix given by

ln(L) = MN log


(∑M

i=1 λi

) 1
M

1
M

∑M
i=1 λi

−N(M −K) log


(∑M

i=K+1 λi

) 1
M−K

1
M−K

∑M
i=K+1 λi


For a rank one signal, this ends up being a function of the largest eigenvalue.

The locally most powerful invariant test for the signal-plus-noise model for linearly

independent K signals impinging on an antenna monitoring system is given in [38]

by

L ∝
M∑
k=1

λ2k =
∥∥∥ ˆ̃R
∥∥∥2
F

where ˆ̃R = R̂

Tr(R̂)
and R̂ is the sample covariance matrix.

In [27], likelihood ratio analysis was performed to find the detection statistics

when the noise was known and unknown. When the noise was known, the statistic

was seen to reduce to Roy’s largest root test which can be given by

TRLRT ,
λ1
σ2
v

where σ2
v is the noise variance and λ1 is the largest eigenvalue of the sample covariance

matrix. Additionally, a GLRT was calculated when the noise variance was unknown,

the detection statistic for which is given by

TGLRT ,
λ1

1
M

Tr(R̂)

In [39] a maximum-minimum eigenvalue detector is derived by considering the

effects of the presence of a signal on the eigenvalues of the sample covariance matrix.

The detection statistic was seen to be

TMME =
λmax

λmin

The covariance of the matrix formed by the transmitted signal being sent through the

linear channel H is denoted as HRsH with eigenvalues ρ̂. The detector was formed
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by considering the eigenvalues of R̂ to be the sum of the ρ̂ and the noise variance,

thus, λ̂max = ρ̂max + σ2
n. A similar expression was derived for λmin. It can be seen

that ρ̂max = ρ̂min only when HRsH = δIML with δ > 0. However, when a signal is

present, this scenario is very unlikely to occur. Thus, if there is no signal, the detector

evaluates to one, and when a signal is present, the ratio is greater than one.

In [40], a detector was determined by optimally combining the received samples

in space and time on the principles of maximizing SNR. The blindly combined energy

detector is designed to work solely on the received data and is given by

TBCED(N) =
1

N

N−1∑
n=0

|z̃(n)|2 = λ̂max(N)

where z̃(n) = β̃Tx(n) and β̃ is chosen to maximize the SNR cost function, and is

found to be the normalized eigenvector corresponding the largest eigenvalue of R̂.

In the case of an unknown primary signal covariance and noise variance, the GLR

was found to be the ratio of the arithmetic mean to the geometric mean of the

eigenvalues, and is given in [41] as

TAGM(λ) =
1
M

∑
m λm

(
∏

m λm)
1
M

The detector depends solely on the eigenvalues of the sample covariance matrix, R̂,

and λ = [λ1, . . . , λM ].

The GLR for the scenario when the noise variance is known and the primary signal

covariance is unknown is shown in [41] to be

TSSE(λ) =
Nm′

2

[
AM (λs)

σ2
− ln

(
GM (λs)

σ2

)
− 1

]
H1

≷
H0

γ

where AM and GM denote the arithmetic and geometric means over the elements

in a vector x respectively, m′ corresponds to the largest m such that λm > σ2, and

λs = [λ1, . . . , λm′ ] denotes the vector of signal-subspace eigenvalues of R̂ in decreasing

order.
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Also of interest are methods estimating of the rank of a signal. The maximum

likelihood (ML) estimate for rank was given in [42] to be

K̂ = arg min
K∈{0,...,M−1}

MN log

(
1−

∑K
j=1 λj

Tr(W)

)

where again, M is the number of sensors, N is the number of samples and λ1 ≥

λ2 ≥ . . . ≥ λN are the eigenvalues of W. However, as K increases, the hypothesis

corresponding to the rank of that K becomes increasingly likely compared to H0.

In [43], the Bayesian information criterion (BIC) was used to mitigate this short-

coming of the ML estimator by penalizing the more complex models corresponding

to larger K. This gives an estimate of the form

K̂ = arg min
K∈{0,...,M−1}

NTr(W)

σ2

(
1−

K∑
j=1

λj
Tr(W)

)
+ (K(N +N)−K2) logN

when the noise variance is known. For an unknown noise variance the BIC-penalized

ML rank estimator takes the form

K̂ = arg min
K∈{0,...,M−1}

MN log

(
1−

K∑
j=1

λj
Tr(W)

)
+ (K(M +N)−K2 +

1

2
) log(N)

and the penalty function for the Bayesian information criterion is

L(ν(K), N) =
ν(K)

2
logN

where ν(K) is the number of parameters.

Additionally the maximum a posteriori estimate when the noise variance is known

is the value of K that gives the maximum value for the posterior density given by

p(K|X, σ2) =
C

vol(GK,N)

(
πσ2

N

)K(N−K)

e
N
σ2

∑K
i=1 λi

K∏
i=1

N−K∏
j=1

(λi − λK+j + σ2)−1

where C = p(K = 0 |X, σ2). The MAP estimate for unknown noise variance was also

derived and is shown in detail in Chapter 4.
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Chapter 3

SCOPE

Determining detectors for radar purposes has seen a renewed interest in the past

few years due to the rise in the use of MIMO systems as well as growing interest

in applications such as passive radar. Similarly the past decade has seen the rise of

interest in spectrum sensing due to the limits of the physical spectrum available for

use. The similarities between sensing to determine if a primary user signal is present

and multiple channel detection and estimation for radar/sonar applications can be

seen by considering sample problem statements for the different applications.

In the detection problem [40], for example, the signal model for a multi-antenna

spectrum sensing scenario is given as

H0 : xm(n) = ηm(n)

H1 : xm(n) = sm(n) + ηm(n),

m = 1, . . . ,M

(3.1)

where M ≥ 1 represents the number of antennas at the receiver, ηm is the noise and

sm(n) =
∑K

k=1

∑qmk
l=0 hmk(l)s̃k(n− l) is the signal received by antenna m with K being

the number of primary user/antenna signals, s̃k(n) being the transmitted signal from

primary user/antenna k, hmk(l) the impulse response of the propagation channel from

user k to receiver m and qmk the channel order. The noise samples ηm(n) are assumed

iid across both n and m.

In [36], the system model to detect the presence of a rank-K emitter with M > K
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spatially distributed sensors is given as

H0 :X = ν

H1 :X = AS + ν,

(3.2)

where a K-dimensional signal subspace is defined by an unknown N × K complex

matrix S whose columns are orthonormal vectors in CN , and the element akm of the

unknown K ×M complex matrix A is the complex amplitude of the component of

the signal received at sensor m and in the subspace corresponding to the kth column

of S. The noise ν is assumed to be normally distributed with zero mean and both

spatially and temporally white with covariance matrix σ2INM .

It can be seen that both applications entail very similar multiple channel detection

problems, and as such detectors and their properties may be applicable to either

application. For instance, the geometrical nature of tests developed in [36, 43] and

related work leads to estimators of pertinent signal structure, such as rank, and the

occupied subspace. With this insight, one can consider estimating the unoccupied

subspace in settings where multiple access is not based on frequency division, opening

the possibility of opportunistic use of unoccupied communication resources that are

not necessarily defined by spectral bands.
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Chapter 4

MATHEMATICAL FORMULATION

To estimate the number of users K in a CDMA system, the detection scheme is

adapted from [43], which draws on work completed in [31], [36] and [44]. To formulate

the maximum a posteriori estimator for rank the problem definition becomes a multi-

hypothesis test modified from (3.2)

H0 :X = ν

HK :X = AKSK + ν,

(4.1)

for K = 1, . . . ,M − 1. SK denotes the complex N × K matrix that defines the K-

dimensional signal subspace, AK is the K ×M matrix of complex amplitudes, and

the N ×M noise matrix ν is assumed to be normally distributed with covariance

matrix σ2INM . The joint probability density function (pdf) of X conditioned on σ2

under H0 is given by

p
(
X|H0, σ

2
)

=
(
πσ2
)−MN

e
N
σ2

Tr(W) (4.2)

The joint pdf of X conditioned on AK , SK , and σ2 is

p
(
X|H1,SK ,AK , σ

2
)

=
(
πσ2
)−MN

e−
N
σ2

Tr(W)e−
1
σ2

Tr((AKA†K−AKSKX†−XS†KA†K)) (4.3)

with K > 0.

The matrix P = S†KSK and is an N × N , rank-K orthogonal projection matrix

into subspace V which is spanned by the rows of SK . This definition is used in order

to obtain a non-redundant model parameterization, and it is possible to associate

a unique choice of SK with each P. Since P is a projection matrix, it satisfies the
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conditions P = P†, P2 = P and Tr(P) = K. The collection of all orthogonal

projection matrices constitute the complex Grassmannian GK,N , which has complex

dimension K(N −K).

The likelihood function (4.3) is invariant under the transformations

X→ µUXL, A→ µUA, S→ SL, and σ → µσ (4.4)

where U and L are unitary matrices of dimensions M ×M and N ×N respectively,

and µ > 0.

4.0.1 Prior Distributions

In order to determine the estimate, priors for A, P and σ2 are taken to be

as non-informative as possible, and invariant under the transforms given in (4.4).

The invariant non-informative prior measure on the space of unknown parameters is

dAdσ−2dµP, where dµ(P) is the normalized invariant measure on GK,N , and dA is

the Lebesgue measure in CMK . However, this prior is not proper. To this end, proper

priors are found by approaching the non-informative prior in an appropriate limiting

sense. Thus the prior is taken to have the form

p(K,A, σ2)dAdσ−2dµ(P) = p(K|β2)p(A|K, σ2, β2)p(σ−2|τ)dAdσ−2dµ(P)

and the components are assigned as follows. The prior for A is chosen to be

p
(
A|K, σ2, β2

)
=
(
πβ2σ2

)−MK
e

1
β2σ2

Tr(AA†)

which becomes less informative as β2 → ∞. The prior for σ2 is taken to be the

maximum entropy prior

p
(
σ−2|τ

)
= τMe−τMσ−2

which becomes less informative as τ → 0. Additionally, the prior used for K is

p(K|β2) =
(1 + β2)

MK∑M−1
K=0 (1 + β2)MK
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which ensures that as the prior for A becomes less informative, the posterior ratio for

any two ranks K and K ′ approaches a finite non-zero limit. Otherwise, the hypothesis

HK with the smallest value of K would dominate regardless of the data.

To determine the invariant measure on GK,N it is necessary to parameterize P in

local coordinates on GK,N . As there can be many matrices SK that can represent the

same point on GK,N , the orthogonal projector P is used. Thus, P is constructed such

that V → P is one-to-one and onto. This is achieved by writing SK as

SK =

[
S1 S2

]
where S1 is K×K, and it is assumed that a basis is chosen for which S1 is invertible.

S2 is then a K × (N −K) matrix. SK can then be written as

SK = S1

[
IK S−11 S2

]
= S1T

where T is standard form and completely characterized by S−11 S2. The subspace V

is specified uniquely by the K × (N −K) matrix S−11 S2 = Z†. Denoting

Sz = (IK + Z†Z)−
1
2

[
IK Z†

]
the projection can be written as the block matrix

P = S†zSz

=

 Ik

Z

 (IK + (Z†Z)−
1
2 (IK + Z†Z)−

1
2

[
Ik Z†

]

=

 (
IK + Z†Z

)−1 (
IK + Z†Z

)−1
Z†

Z
(
IK + Z†Z

)−1
Z
(
IK + Z†Z

)−1
Z†


Thus, there can be one-to-one mapping between the entities

Matrices Z†K×(N−K) ↔ Subspaces V ↔ Projectors P↔ Elements of GK,N
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Through the use of differential forms following [45], the normalized invariant mea-

sure on the Grassmanian GK,N is shown in [36] to be

dµ(P) =
1

vol(GK,N)
det
(
IK − Z†Z

)−N
dZ

where

dZ =
N−K∏
i=1

K∏
j=1

dRe(zij)dIm(zij)

and the volume of the Grassmanian is

vol(GK,N) =

∏N
n=N−K+1A2n−1∏K

n=1A2n−1

where An is the area of the unit sphere in Rn

An =
2π

n
2

Γ
(
n
2

)
and Γ denotes the gamma function.

4.0.2 MAP Estimate

Assuming σ2 is unknown, the marginalized likelihoods are

p(X|K = 0) =
τMΓ(p)Tr

(
W̃
)−l

N lπMN

and

p
(
X|K, β2, τ

)
=
p (X|K = 0)

(1 + β2)MK

∫
GKN

1− αTr (WP)

Tr
(
W̃
)
−l dµ(P)

where l = MN + 1 and W̃ = W + Mτ
N2 IN .

Using the results obtained in section 4.0.1, the integral can be rewritten as

p(X|K, β2, τ) =
p(X|K = 0)

(1 + β2)MKvol(GK,N)

∫
Z∈C(N−K)×K

1− αTr (WP)

Tr
(
W̃
)
−l det

(
IK − Z†Z

)−N
dZ

=
p(X|K = 0)

(1 + β2)MKvol(GK,N)

∫
Z

e
−l log

(
1−αTr(WP)

Tr(W̃)

)
e−N log det(IK−Z†Z)dZ
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As β2 →∞ and τ → 0, the integrals can be approximated using Laplace approx-

imation and some matrix identities. The posteriors are found to be

p(K = 0|X) = C

and

p(K|X) = C
1

vol(GK,N)

(
π

p

)K(N−K)

γK(N−K)−p
K∏
i=1

N−K∏
j=1

(
λ̃i − λ̃K+j +

Nγ

p

)−1
(4.5)

where p = M(N −K) + 1, γ = (1 −
∑K

i=1 λ̃i) where in the limit λ̃i = λi
Tr(W)

and

λ1 ≥ λ2 ≥ . . . ≥ λN are the eigenvalues of W.

For this problem, assuming the noise variance σ2 is unknown, the MAP estimate

of K is

K̂ = arg max
K

p(K|X) (4.6)

for which the computation of C is unnecessary as it is constant for all values of K.
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Chapter 5

RESULTS

To evaluate the performance of the MAP described in Chapter 4, a simple CDMA

system was simulated and the MAP detector (4.6) was applied to estimate the number

of users in the CDMA system. Additionally, an estimate for the orthogonal projector

of the occupied subspace is shown.

5.1 Simulation Parameters

A K user CDMA system was simulated by generating K QPSK signals and en-

coding them on K PN codes of length N . M denotes the number of time epochs

that are taken, and K < M < N . The K code vectors are normalized to unit

length and are the rows of SK×N in equation (4.5). The mth row of matrix AM×K

corresponds to the mth measurement epoch, and its elements are determined by the

QPSK sequence elements qmk belonging to each of the K users during that epoch,

with qmk ∈ {1 − 1 i − i}. The diversity needed to obtain full rank is provided by

the presence of the same codes in different linear combinations in the respective data

segments. The noise is assumed to be zero mean white complex Gaussian, νM×N .

5.2 Estimation of Rank

Using the setup described above, the MAP estimate (4.5) was calculated for k =

1, . . . ,M − 1 without exploiting knowledge of S,A, or ν beyond what was described.

The value of k yielding the maximum posterior probability was taken as the estimate

of the number of users in the CDMA system. The simulation was performed for

various combinations of actual rank K, number of time epochs M , length of the code
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N , and SNR values at the receiver, which were identical and held constant for each

user.

A system with PN codes of length N = 100 and utilizing M = 95 time epochs

was simulated for K = 30, 50, 70, 90 users. It can be seen in figure 5.1 that when

the actual value of K is well below the limit of M − 1, the MAP estimator does

an excellent job correctly estimating the correct rank. However, as the value of the

actual K approached the maximum value, the performance degrades markedly.

Figure 5.1: MAP Estimate Results for M = 95, N = 100, K = 30, 50, 70, 90 for the
Blue, Green, Red and Cyan Lines Respectively, with an SNR at the Receiver of 12dB.
The Red Asterisk Represents the Point Where the True Rank Falls on the MAP.

By increasing the SNR, the rank can be correctly estimated closer to the limit of

M . This can be seen by keeping the same values for K, M and N as before, but

increasing the SNR at the receiver to 24dB, it can be seen in figure 5.2 that the esti-

mate is improved closer to the limit, however, at a certain point, the detector cannot

estimate the number of users correctly regardless of the SNR. At this point, it is only

possible to obtain a correct estimation by increasing the number of time segments,
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and accordingly the length of the codes. While this can increase the computation

time, a correct estimate can then be obtained with a lower SNR, as seen in figure 5.3.

Figure 5.2: MAP Estimate Results for M = 95, N = 100, K = 30, 50, 70, 90 for the
Blue, Green, Red and Cyan Lines Respectively, with an SNR at the Receiver of 24dB.
The Red Asterisk Represents the Point Where the True Rank Falls on the MAP.

Figure 5.3: MAP Estimate Results for M = 150, N = 200, K = 30, 50, 70, 90 for
the Blue, Green, Red and Cyan Lines Respectively, with an SNR at the Receiver
of 12dB. The Red Asterisk Represents the Point Where the True Rank Falls on the
MAP.
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However, if the number of time epochs M is not approaching its limit of N − 1,

then desired performance can be provided solely with an increase in SNR, as shown

below in figure 5.4. This is compared to the effect of changing the SNR when the

value of M is close to the limit, shown in figure 5.5, where even extremely high SNRs

cannot resolve the estimate.

Figure 5.4: MAP Estimate Results for M = 50, N = 100, K = 49 and the SNR
at the Receiver is Varied to Be 12dB, 24dB, 36dB and 60dB for the Blue, Green,
Red and Cyan Lines Respectively. The Red Asterisk Represents the Point Where the
True Rank Falls on the MAP.
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Figure 5.5: MAP Estimate Results for M = 95, N = 100, K = 90 and the SNR at
the Receiver is Varied to be 12dB, 24dB, 36dB and 60dB for the Blue, Green, Red
and Cyan Lines Respectively. The Red Asterisk Represents the Point Where the True
Rank Falls on the MAP.

5.3 Estimation of the Subspace

The likelihood function corresponding to the H1 signal model (4.1) with known

noise variance σ2 and signal rank K is

p(X|H1,A,S, σ
2) =

(
πσ2
)−MN

e−
N
σ2

Tr(W)e
− 1
σ2

Tr
(
(A−XS†)(A−XS†)

†
−XS†SX†

)
(5.1)

Maximizing the function with respect to A can be achieved by minimizing(
A−XS†

) (
A−XS†

)†
, thus the estimate is obtained to be Â = XS†. The estimate

for the projector is found by substituting Â for A and is the value of P that maximizes

the function in (5.1). The Schur-Horn theorem [46] is given in [36] to be

dH =
∑
ρ

aρρ(Λ), 0 ≤ aρ ≤ 1,
∑
ρ

aρ = 1

where dH is the vector of diagonal elements of a Hermitian matrix H that lies in

the convex hull of all permutations ρ(Λ) of Λ = (λ1, λ2, . . . , λN) which is the matrix
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of non-increasing eigenvalues of H. By using the Schur-Horn theorem to maximize

P = S†KSK over the Grassmanian GK,N as in [44], the estimate for the orthogonal

projector is found to be

P̂ =
K∑
k=1

vkv
†
k (5.2)

where v1, . . . ,vK are the normalized eigenvectors of W corresponding to its K largest

eigenvalues. The estimated occupied subspace is uniquely specified by the orthogonal

projector P̂ and from this, the estimation of the (N − K)-dimensional orthogonal

complement can be found.

Note that the K value in the estimate is the value of the actual rank. In practice,

the estimate for K would have to be used provided the real K is unknown. In such a

case, the accuracy of the estimate of the orthogonal projector of subspace would be

dependent upon the accuracy of the estimate of the rank.

The ability to obtain this subspace is useful, as the codes for the secondary users

can be generated to be in the unoccupied subspace, and thus will be orthogonal to

the codes of the primary users, theoretically resulting in less interference.
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Chapter 6

NOTES ON IMPLEMENTATION

While this paper shows how the MAP can be applied to a spectrum sensing

problem, the MAP estimate does not yield correct estimates when the SNR is not

sufficiently high. However, in spectrum sensing applications, the SNR can be very

low, with it being necessary to detect signals when the SNR is as lower than -20dB

as described in [39].

Additionally, it would be beneficial to run simulations showing the difference in

transmission error of transmission when additional users are added to the CDMA

system using random PN codes of length N as opposed to using PN codes that are

known to be based in the unoccupied subspace. However, when determining the

occupied subspace, the synchronicity of the system must be considered. In order to

obtain the correct location of the occupied subspace (and by extension its orthogonal

complement) the opportunistic user may need to know the location of the transmitters

of the primary users.
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Chapter 7

CONCLUSIONS

Determining the presence of an unknown signal can be useful in a variety of

applications. To this end, a summary of the current work in spectrum sensing and

radar/sonar applications was provided, with focus on detectors based on the eigenval-

ues of the Gram matrix. Additionally, it was shown that the detection problem posed

by spectrum sensing and radar/sonar is similar, and thus detectors and properties

found for either application can be successfully applied in the other.

To illustrate this concept, an example was completed using the MAP estimator for

rank to predict the number of users in a simple CDMA system. It was seen that the

detector worked well when estimating the number of users under certain parameters,

mainly that the signal had a high SNR and that the values were well within their

limits. However, as the number of users increases, the number of time epochs and

correspondingly, the length of the codes must increase as well to obtain adequate

performance. This can result in added computational time.

Additionally, an estimator for the orthogonal projector of the occupied subspace

was shown. From this projector, it is possible to determine the associated occupied

subspace, and by extension the orthogonal complement of the occupied subspace. By

selecting codes known to be in the unoccupied subspace, and thus orthogonal to the

codes in use, it is theoretically possible to reduce the interference caused by secondary

users.
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