
Continuous Spatio Temporal Tracking of Mobile Targets

by

Harsh Vachhani

A Thesis Presented in Partial Fulfillment
of the Requirement for the Degree

Master of Science

Approved November 2014 by the
Graduate Supervisory Committee:

Arunabha Sen, Chair
Srikanth Saripalli

Shahrzad Shirazipourazad

ARIZONA STATE UNIVERSITY

December 2014

ABSTRACT

There has been extensive study of the target tracking problems in the recent years.

Very little work has been done in the problem of continuous monitoring of all the

mobile targets using the fewest number of mobile trackers, when the trajectories of

all the targets are known in advance. Almost all the existing research discretized

time (and/or space), or assume infinite tracker velocity. In this thesis, I consider the

problem of covering (tracking) target nodes using a network of Unmanned Airborne

Vehicles (UAV’s) for the entire period of observation by adding the constraint of fixed

velocity on the trackers and observing the targets in continuous time and space. I

also show that the problem is NP-complete and provide algorithms for handling cases

when targets are static and dynamic.

i

DEDICATION

To my family

ii

ACKNOWLEDGMENT

Foremost, I would like to express my sincere gratitude to my advisor Dr. Arunabha

Sen for his continuous support of my study and research, for his patience and immense

knowledge. Thanks to him, I had the opportunity to work on many research topics.

I appreciate all his contributions including his time and patience, which helped me

throughout the time of my masters and writing of this thesis. He taught me, both

consciously and unconsciously, to learn from myself and how the research is done. He

has supported me not only financially but also gave me support and the freedom I

needed.

For this thesis, I would also like to thank my committee members Dr. Srikanth

Saripalli and Dr. Shahrzad Shirazipourazad who provided encouraging and construc-

tive feedback. I am grateful for their time, interest and helpful comments on my

work. I praise the enormous amount of help and support of Dr. Shirazipourazad who

guided me from the beginning of my thesis. She was the first one with whom I worked

in our lab and then she later became a mentor and a friend. Her scientific advice and

suggestions were instrumental for my research work. She always supported me and I

would have never been able to finish without her guidance.

The members of my lab have contributed immensely to my personal and profes-

sional time at ASU. The group has been source of friendships and as well as good

advice. I am especially grateful to previous lab member Dr. Sujogya Banerjee, who

had provided some good advice when I joined the research lab. I thank my current

fellow lab-mates Arun Das (provided helpful guidance, moral support and teaching

me how to approach problems), Anisha Mazumder (friendly, nice and smart girl who

I’m glad to be friends with), Joydeep Banerjee (always friendly and cheerful) and

Zahra Derakhshandeh (encouraging and helpful friend), for the stimulating discus-

iii

sions and for the time and effort they spent in the research work related to my thesis.

It would have been lonely in the lab without them. I would like to acknowledge Brian

Bogard who worked with me on few projects. I was always amazed by his speed of

writing code and his ability to manage time. I very much appreciate him for giving

me a great opportunity to work with him after my studies.

Dozens of people have helped me immensely here at ASU. I have appreciated

and gratefully acknowledged the help and support by Professor Mutsumi Nakamura

and Professor Alan Skousen. They provided financial assistance and I enjoyed taking

their courses. I also thank Daniel and Rinkal for the opportunity to intern at Dow

Agrosciences. I had a great time with other interns and I learned a lot during those

three months. Thank you to everyone from 5th floor BYENG staff, CIDSE Advising,

and ISSC (especially Monica Dugan who has been an amazing help all this time).

Also I thank my friends in Arizona State University. My life here was made en-

joyable in large part due to many friends that became part of my life. I am grateful

for the time spent with my roommate and good friend Pankaj Khatkar, for the hiking

trips, intellectual debates and his encouragement. He taught me cooking and many

useful life skills. Thanks for being such a great friend. I also thank Khushboo(and her

family), Himanshu, Sudip, Rashmin, Urvish, Anindita, Parminder, Dipal, and Shree-

niwas for giving me so many good memories. I value their friendship and support.

I also thank Mr. Bhagirath Gohil, Mr. Nilesh Patel and their families who always

welcomed me to their home and invited me over during holidays.

I have special friends to thank, going back to pre-ASU days for their continued

friendship since my undergrad. Jyoti and Sourabh, thanks for being there to listen,

bear the frustrations and share the joy of successes during this journey. I am grate-

ful for all the memorable trips and your support. Ateendra and Shashank, thanks

for influencing me in creative pursuits and inspiring me. I also thank my friends

iv

Tanupriya, Divya, KV, Mustahsan, Kunal, Priyesh, Prakhar and Amol for providing

support and friendship that I needed. I have to thank a special teacher and manager,

Mrs. Shipra Mudgal and Mr. Mahendra Nath, for their help when I was trying to

apply for higher studies and also for their reference.

Lastly, I would like to thank my family: My parents, Rajesh Vachhani and Munila

Vachhani, for their infinite love and for supporting me in all my pursuits. My brother

Shilp, who has been my oldest best friend. My Nani, who supports and loves me.

Thank you.

v

TABLE OF CONTENTS

Page

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

1.1 Background . 1

1.2 Motivation . 3

1.3 Related Work . 4

1.4 Overview. 5

2 NETWORK MOBILITY MODEL . 6

2.1 Mobility Models . 6

2.1.1 Random Walk Mobility Model . 7

2.1.2 Random Waypoint Mobility Model . 7

2.1.3 Random Direction Mobility Model . 8

2.1.4 Pursue Mobility Model . 8

2.1.5 Exponential Correlated Random Mobility Model 9

2.1.6 Column Mobility Model . 9

2.1.7 Nomadic Community Mobility Model . 9

2.2 Our Model Description . 10

3 PROBLEM FORMULATION . 12

3.1 Preliminaries . 12

3.2 Restrictions/Assumptions . 12

3.3 Problem Statement . 14

3.4 Geometric Disc Cover Problems. 15

3.5 NP Completeness Proof of our Problem . 16

4 ALGORITHM FOR STATIC CASE . 18

vi

CHAPTER Page

4.1 SCR Algorithm . 18

4.2 Algorithm for Static Targets . 20

4.2.1 Description . 20

4.2.2 Maximum Matching in a Bipartite Graph 21

4.2.3 Network Max Flow Problem . 21

4.2.4 Ford Fulkerson Algorithm . 22

4.3 Graph Construction . 23

4.4 Algorithm PseudoCode . 25

4.5 Analysis . 25

4.6 Alternate Approaches . 27

5 ALGORITHM FOR DYNAMIC CASE . 29

5.1 Description . 29

5.1.1 Min-Heap Data Structure. 30

5.2 Events . 30

5.3 Propagation . 32

5.4 Algorithm PseudoCode . 33

6 VISUALIZATION . 37

6.1 Visualization Software . 37

6.1.1 Back-end . 37

6.1.2 Front-end . 39

6.1.3 Interface . 39

7 CONCLUDING REMARKS AND FUTURE WORK. 41

REFERENCES . 44

vii

LIST OF FIGURES

Figure Page

1.1 Uavs Track a Target in Different Environments . 1

3.1 Rectangle Encapsulated Cover in Disk Model for Tracker 13

4.1 An Example of a Region with Target Observation Area and Tracker

Base Stations . 19

4.2 Covering of Static Targets at Time t1 . 24

4.3 Trackers Selected for Covering of Targets at Time t1 24

4.4 Multiple Solutions for Covering of Targets at Time t1 28

5.1 Case 1 for Event in Dynamic Cover . 31

5.2 Case 2 for Event in Dynamic Cover . 32

5.3 Propagation Example . 33

6.1 Software Interface Screenshot . 40

7.1 Covering by rectangles . 42

7.2 Covering by disc . 43

viii

Chapter 1

INTRODUCTION

1.1 Background

There has been dramatic growing research in the field of airborne networks and its

military and civilian applications. During the last years, an increased use of UAV’s

(Unmanned Airborne Vehicle) has been noticed. The invention of light materials,

low energy consumption machines and high performance processing units led to the

construction of flexible flying drones (Chen et al. (2009)). Figure 1.1 (image source:

http://jaredzichek.com/) shows a UAV tracking two ships.

Figure 1.1: Uavs Track a Target in Different Environments

Supported by the advances in sensing and wireless communication technologies,

Airborne networks hold promise in providing practical, wide-applicable, low-cost, and

secure information exchange among airborne vehicles. The ability for multiple UAVs

1

to organize and cooperate for the tracking of a moving target (SUV, vessel, tank, etc.)

has prime benefit for intelligence operations for tracking evading targets with minimal

interaction from operators. This means that one operator could control many UAVs

to monitor many targets, thereby gaining more time. These teams of vehicles open

up very important research questions such as: What information is shared between

the vehicles? How do the vehicles cooperatively plan trajectories and tasks for each

mission type? How can the impact of communications constraints, such as outages

and dropped packets be minimized?

UAVs are being used increasingly for target tracking problems. The use of UAVs

has gained considerable momentum given their success in recent military operations,

and their promise for important domestic applications such as border and coast pa-

trol, fire perimeter monitoring, search and rescue, etc. The UAVs can be used to

accomplish tasks that are dangerous for human operators, and they can reduce op-

erational costs by implementing tasks using smaller and cheaper UAVs rather than

larger more expensive ones (Zhan et al. (2005)).

Typically, target tracking involves two steps. First, it needs to estimate or predict

target positions from noisy sensor data measurements by autonomous tracking of

moving and evading targets. Second, it needs to control mobile sensor tracker to

follow or capture the moving target. For both of the steps the tracker needs to report

to a centralized database (without operator attention): the position, position history,

velocity vector.

Reporting expected position of the assigned target enables Intelligence, Surveil-

lance, and Reconnaissance (ISR) missions to be more cost effective and efficient. ISR

resources have generally been regarded as the number one resource scarcity during

recent operations in Iraq and Afghanistan. ISR resources will continue to be lim-

ited by personnel constraints unless the vehicle’s autonomy and cooperation can be

2

increased (Wheeler et al. (2006)).

The following scenario provides an example motivation for this work: A ground

vehicle moves at high speed along a hill road, away from a town where it committed

a hit and run attack on a group of civilians. The security forces want to find the

attackers and follow them to their hideout. Multiple UAVs are sent to the area

where the attackers were reported to have retreated. One of the UAVs identifies

the attacker’s vehicle based on reports from the civilians and notifies nearby UAVs

of its location. The UAVs alter their flight paths relative to that point, to look for

other attacker vehicles or by maintaining position near it, without attracting attention

from the attackers. As the attackers move through the region, responsibility for direct

sensing passes from one UAV to another to always keep the target in sight. Through

collaboration, autonomous unmanned air vehicles would be able to complete tasks

that each could not have done alone.

In the work mentioned here, we focus on the problem of continuous tracking of all

mobile targets using the fewest number of mobile trackers, when the trajectories of

all the targets are known in advance. This optimization where the number of trackers

are minimized to reduce costs and to use the trackers efficiently has received very

little attention. Although it may appear that the assumption regarding complete

knowledge of the trajectories of the target makes the problem simple, we show that

this problem remains hard, i.e. NP-complete.

1.2 Motivation

Most of the previous work is (i) too impractical to implement(running time), (ii)

assume the trackers have infinite speed, or (iii) cannot guarantee cover for continuous

time and space. Motivated by the importance of target tracking in military and

civilian environment, we attempt to develop algorithms that does not fall in any of

3

the above cases and are easily implementable.

1.3 Related Work

Considerable research has been conducted in target tracking using UAVs and

mobile sensors (Zorbas et al. (2013); Zhan et al. (2005); Wheeler et al. (2006); Niti-

nawarat et al. (2011); Xu et al. (2013); Zou and Chakrabarty (2007)). All the funda-

mental tools of how a target can be detected, how to takeoff and how to land a drone

are well analyzed in the literature (Fujita and Shimada (2007); Hsia et al. (2010);

Kubota and Iwatani (2011)). There also has been large body of research on target

tracking using sensor networks. The authors in (Naderan et al. (2009)) provide a

survey of these studies. Though, most of these studies have static sensor nodes and

the concept of path planning of trackers does not exist.

Generally, the target tracking problem using mobile trackers has two elements- (i)

estimating target positions using sensor(tracker) data and (ii) managing mobility of

trackers. Many of the studies on target tracking using mobile trackers focus on the

quality of detection of mobile targets with a given set of UAV’s. The authors in (Zou

and Chakrabarty (2007)) track a single target using distributed mobility management

of a given set of mobile sensors. In (), authors study a case when there is one

mobile tracker, a set of static sensors and a mobile sensor controller. The controller

receive data from the tracker and sensors and estimate the location of the target. In

(Adamey and Ozguner (2012)) the authors study multi target tracking using multiple

UAVs and develop a decentralized approach for target location estimation and UAV

mobility management. The authors in () focus on energy efficiency issues, related to

mobile target tracking and they give a power efficient solution by adjusting the UAVs

altitude. In spite of the extensive studies, the problem of finding minimum mobile

trackers during the continuous time tracking of the target has been studied by very

4

few.

In (Zorbas et al. (2013)), the authors study a similar problem in which their

goal is to find the smallest set of mobile backbone trackers such that the regular

trackers are always under coverage of at least one backbone tracker. The work in

(Zorbas et al. (2013); Srinivas et al. (2009)) assume that the trackers have infinite

speed. In (Radhakrishnan and Saripalli (2010)), the authors find the optimal set

of trackers, consider finite speed of tracker, and compute the solution of coverage

problem for each discrete time instance using a greedy algorithm. They also propose a

motion assignment algorithm determining the motion of UAVs. The greedy algorithm

proposed does not guarantee optimality of the solution.

1.4 Overview

The thesis is organized as follows. In Chapter 2, I describe some of the mobility

models and propose our own mobility model for target tracking. Chapter 3 presents

the problem formulation, assumptions and proof of NP-completeness for our problem.

In Chapter 4, I provide the extension of existing algorithm to handle the covering of

static targets and provide theoretical analysis. Chapter 5 contains the detailed de-

scription of proposed algorithm for continuous tracking of mobile targets. In Chapter

6, the software for simulation and calculations of the proposed model is discussed.

Finally, a brief conclusion and discussion about future work is provided in Chapter 7.

5

Chapter 2

NETWORK MOBILITY MODEL

2.1 Mobility Models

The mobility models commonly serve as the fundamental mathematical frame-

works for network connectivity studies, network performance evaluation, and the

design of reliable routing protocols (Ravikiran and Singh (2004)). It is imperative

that mobility models are able to accurately capture the movement pattern of each

mobile node, based on which information related to the varying network configuration

and structure can be derived. Information such as node distribution, movements, link

and path should be simulated using such models.

There has been many mobility models proposed in the recent research literature

(Bai and Helmy (2004)). They are generally classified into two types: traces and

synthetic models. Traces are mobility patterns which are observed in real life systems,

and provide accurate information, especially when they involve appropriately long

observation period and large number of participants (Camp et al. (2002)). However,

some network environments like ad-hoc networks are not easily modeled if traces are

not available. In this situation, it becomes necessary to use synthetic models which

attempt to realistically represent the behaviors of MNs.

There are many entity and synthetic mobility models in literature. Out of them I

will briefly discuss interesting ones such as Random Walk(Hong et al. (1999)), Ran-

dom Waypoint(Johnson and Maltz (1996)), Random Direction(Gloss et al. (2005)),

which are the entity models and Pursue, Exponential Correlated Random, Column,

Nomadic Community Mobility Model(Camp et al. (2002)), which are the synthetic

6

models. Some of the mobility models have been studied extensively, the most well

known being random direction (RD), and random waypoint (RWP) (Bettstetter et al.

(2004); Hyytia et al. (2006); Le Boudec and Vojnovic (2005); Yoon et al. (2003b)).

The random walk(RW) is also a widely used model (Bar-Noy et al. (1995); Garcia-

Luna-Aceves and Madruga (1999); Rubin and Choi (1997); Zonoozi and Dassanayake

(1997)).

We believe that mobility models need to be application-specific, due to the wide

range of variability in their applications, and different movement patterns associated

with each application. Therefore it is worthwhile to propose our own synthetic model

by extending one of the popular mobility models, by focusing on: a) the specific

application, and b) the movement pattern associated with our work.

2.1.1 Random Walk Mobility Model

The Random Walk Mobility model was designed for mimic unpredictable move-

ments that is observed in nature. In this model, an MN moves from its current

position to new position by selecting random speed and direction to travel. The

speed and direction are taken from predefined ranges. Each movement occurs either

for constant time interval t or till constant distance is traveled, after which new speed

and direction is computed. It is a memory less model and each movement’s speed

or direction is independent of the previous movement speed or direction. If the MN

encounters a border, it bounces off depending on the angle of incoming direction.

2.1.2 Random Waypoint Mobility Model

The RWP model assumes that each node chooses a random destination (waypoint)

and traveling velocity; upon the arrival, it pauses for specified time before traveling

to the next waypoint. The mobile nodes(MNs) are initially distributed randomly

7

around the simulation area. It includes pause times between changes in direction

and/or speed. The node begins by staying in one random location for a certain

time period. Once the time expires, the node chooses a random destination(in the

simulation region) and speed(uniformly distributed between (Vmin, Vmax], where Vmin

and Vmax are the min speed and max-speed respectively). The node then travels to

the new location with the chosen speed and once it reaches the destination, it pauses

for specific time again. This process repeats for the entire simulation time.

2.1.3 Random Direction Mobility Model

RD models assume that nodes choose random direction and then travels to the

region boundary. After it has reached the border, it will pause for a fixed time

and then choose a direction from a range to travel to another boundary waypoint,

continuing the process.

An extended version of it assumes that each node randomly chooses a speed and

direction after the completion of a randomly selected traveling time and no longer

needs to touch the boundary.

2.1.4 Pursue Mobility Model

This model attempts to represent a MN tracking a moving target. The positions

are calculated using an update equation newposition = oldposition+acceleration(targetoldposition)+

randomvector where random vector is a offset for each node. The value of this vector

can be obtained from any entity mobility model. An example for this model could be

police cars chasing a criminal.

8

2.1.5 Exponential Correlated Random Mobility Model

In this model a function is used to create MN motion. Suppose
−→
b (t) is the given

position at time t, the next position at t+1 (for MN or group) is given as

b(t+ 1) = b(t)%−
1
τ + (σ

√
1− (%−

1
τ)2r

where r is a random Gaussian variable with variance σ and τ adjusts the rate of

change of the node’s previous location to its new location (small τ equates to large

change). Unfortunately, it is very hard to create a given motion pattern by selecting

appropriate values for τ and σ.

2.1.6 Column Mobility Model

This model represents a set of nodes that mode in a column(or a given line), which

is moving in forward direction. For example: a group of young children walking in

straight line or a row of soldiers marching towards the enemy. To implement this

model, an initial reference column is defined, and a node is placed in relation to a

reference point in its reference column. The node then moves around randomly around

the reference point(based on predefined offset) using a Random Walk Mobility model

or any other Entity model. The new reference point is given by newreferencepoint =

oldreferencepoint + advancevector where old reference point is the node’s previous

reference and advance vector is the offset that moves the column.

2.1.7 Nomadic Community Mobility Model

In this model, each group of MN’s have their own personal spaces where they move

randomly. Each node uses a entity mobility model for roaming around their reference

point. After a random interval of time the reference point changes and the nodes

9

in the group travel to new location where they begin roaming around new reference

point. For example, this model can represent class of students touring a museum.

2.2 Our Model Description

A mobility model should be able to mimic the moments of nodes(targets and

trackers). We create a synthetic model based on Random Waypoint for capturing

the path of the vehicles. Random Waypoint model(RWP) is a widely used mobility

model (Garcia-Luna-Aceves and Spohn (1999); Broch et al. (1998); Chiang and Gerla

(1998); Johansson et al. (1999)) for ad-hoc networks.

We create a simplified version of RWP where we ignore the pause time and change

in velocity. In our analysis, the target node trajectory is provided beforehand. The

trajectory is piece wise linear function that contains line segments from one waypoint

to another. We consider trajectory for node i denoted as Πi = {w1, w2, . . . , wn} is

defined as set of n waypoints in a plane, where the starting position is w1 and final

destination is wn. Each waypoint wi is denoted by x − y tuple (xi, yi)∀i. The node

moves from waypoint wi−1to wi in a straight line with constant velocity. All kinds

of path can be captured by this model(for e.g. a curve path can be approximated

by using series of broken line segments). The model can be used to represent mobile

nodes whose movements are independent of each other (targets) and also represent

mobile nodes whose movements are dependent (trackers). For representing the mobile

nodes with dependent movements, the trajectory waypoints are dependent on the

information of the target nodes being pursued.

Our model is robust in capturing the movement of nodes in ad-hoc network when

trajectory is known. The most common problem with simulation studies using RWP

is a poor choice of velocity distribution (Yoon et al. (2003a)) , like having a uni-

form distribution U(0, Vmax) that leads to average velocity decreasing over time and

10

reaching a steady state where nodes stop moving. However, we avoid this problem

by choosing constant velocity for both targets and trackers. As I discuss in Chapter

2.2, this model does not reflect the the kinematics of turning objects, node acceler-

ation and changes in elevation(of the tracker). It is easy to argue that this model

is elementary and may not realistically capture the motion of high-speed airborne

vehicles(trackers). Yet it is a robust model, analyzable for node distribution and

connectivity analysis. It also provides reasonable performance with a wide range of

motion patterns.

11

Chapter 3

PROBLEM FORMULATION

3.1 Preliminaries

Throughout this paper, we assume that the input consists of set of targets A =

{a1, a2, . . . , an} and their trajectories. Motion is assumed to be in Euclidean 2-

dimensional space. The motion of target ai is entirely described by the set of way-

points {w1, w2, . . . , wz} and the velocity V = {v1, v2, . . . , vz−1} such that the velocity

is vi for moving from wi to wi1 . The initial position of ai, is w1 at time t1. Observe

that every target is moving on a straight line between waypoints with the specified

velocity.

The input also consists of set of tracker base station L = {l1, l2, . . . , lm} and

trackers B = {b1, b2, . . . , bn} available at each base station. The max velocity Vmax

for tracker is provided. The trackers starting position is at their corresponding base

station at time t0. Lead time given by |t1 − t0| is the spare time available to trackers

to prepare themselves.

We use dist(i, j) to denote distance between any node i and j or their geometric

points pi and pj respectively.

The proposed algorithm solution will tell us the minimum trackers needed and

trajectory(along with velocity) of the each needed tracker.

3.2 Restrictions/Assumptions

Each tracker is assumed to have a sensor (E.g. camera) to detect mobile events.

The sensor has a maximum range beyond which it cannot detect any nodes. We

12

assume the communication channel to be disk connectivity model. The authors in

(Srinivas et al. (2009)) used the rectangle encapsulated in disks, without any addi-

tional modification to obtain an algorithm(MOAC) with 3-approximation ratio for the

geometric disk cover problem within the strip. We will also use rectangle encapsulated

in disks for our heuristic (Please see Figure 3.1). We consider all the targets within

the rectangle area as coverable by the respective tracker. The height H and width

W of the rectangle can be changed. We have height = αD and width =
√

1− α2D

where D is the diameter of the disk and α is a variable, 0 < α < D.

Figure 3.1: Rectangle Encapsulated Cover in Disk Model for Tracker

The diameter of the disk is given by D = 2r. Thus the tracker is able to sense the

target only if it falls within the rectangle encapsulated in the disk’s sensing diameter

D. The sensors can be camera, sonar, laser, infra-red or any other sensors (depending

on cost and environment) as long as it is able to detect the events within its radius.

We will set the base location of the trackers such that (i) In each of the base

station there are as many trackers as there are targets and (ii) All the points in the

observation area are within flying distance of trackers from atleast one base station.

If L is the set of base locations and A is the set of number of targets, then for

our initial computation of our algorithm, the number of trackers needed would be

13

|L| × |A|. During the real deployment, the number of trackers will be upper bounded

by |A|, though we will try to minimize the number of trackers.

We consider the case where the target and trackers are both mobile with finite

velocity, the trajectories of the targets is known, and the communication algorithm

of trackers with base station for dispatch and routing is given. There is a long range

control channel available to send information to trackers.

The trackers can identify their own location using GPS. Also for the sake of

simplicity, the trackers have no constraints on energy (fuel, battery cells). With

the increasing use of energy efficient drones and advances in high mileage endurance

vehicles, it is a valid assumption.

The environment is generalized to stable environment with no wind. For similar

weather conditions like heat, cold, rain; it is entirely dependent on the tracker’s

resilient structure and is out of scope for this research.

3.3 Problem Statement

Continuous tracking problem for mobile targets (CTPFMT): We are

given a set (A) of ’n’ targets {a1, a2, ..., an} moving in a 2-D plane with known tra-

jectories and velocities, and set (B) of trackers {b1, b2, ..., bm} with specified location

bases {l1, l2, ..., li}, max velocity Vmax and lead time tL. Also, the base location of

the trackers are placed such that (i) In each of the base station there are as many

trackers as there are targets and (ii) All the points in the observation area are within

flying distance of trackers from atleast one base station. The problem is to find the

minimum set of trackers and their trajectories that satisfy the following requirements-

• Coverage - for every target ai at any time t ∈ <, there exists at least one tracker

bi such that distance between them dist(i, j) < r, where r is the radius of the

tracker.

14

• Mobility - for any tracker bj with max velocity Vmax, | p(bj, t) ∼ p(bj, t+1) ≤ v |

3.4 Geometric Disc Cover Problems

There is a similar problem which has been studied extensively in the past known as

the Geometric Disc Cover problem (Gonzalez (1991)) in the context of static points.

Given a set of points in the plane P , the problem is to identify a minimum cardinality

set of fixed sized of disks (of prescribed radius) covering all points in P . Each point

must be inside or on the boundary of atleast one of the disks in the cover. This

problem can be generalized to d-dimensional space where the points will be in d-

dimensions and the covering is by orthogonal hyperdisks of size D. These problems

have many applications such as locating the least number of emergency facilities such

that all potential users are located within a reasonable small distance from one of the

facilities.

There are variations of this problem when the disks are replaced by squares or

rectangles which has important application to image processing. An example is to

store information in square patches, such that all pixels(points with information) are

contained in at least one of the patches (Hochbaum and Maass (1985)).

All the problems described above are difficult to solve. They are strongly NP-

Complete (Fowler et al. (1981)). Heuristics have been presented in (Tanimoto (1979);

Tanimoto and Fowler (1980)) and polynomial time approximation algorithms are

given in (Franceschetti et al. (2001); Srinivas et al. (2009); Hochbaum and Maass

(1985))

This is similar to our problem when the time ≤ t1, where the targets(points)

haven’t started moving yet (they will move when time > t1). The minimum trackers

need to be identified and placed such that all the targets are covered at time instance

t1.

15

The authors in (Srinivas et al. (2009)) gave a 6 approximation algorithm (SCR)

for static covering using rectangles, and 4 approximation algorithm (SCD) for static

covering using disks. We will use the SCR algorithm in our proposed solution to our

problem for static case(that is when time ≤ t1).

In the next section, we will reduce our problem to Geometric disc cover problem

and prove that our problem is also NP-Complete.

3.5 NP Completeness Proof of our Problem

We will prove that our problem is NP-complete.

Theorem 1 CTPFMT is NP-complete

Proof: Consider the instance of GDC having set of targets on a geometric plane

and fixed size objects(like disc, rectangles or squares).

Consider the instance of CTPFMT having set of targets (along with their trajec-

tories and velocities) on a plane with available trackers (having maximum velocity

and base stations).

We will show that GDC problem is a special case of CTPFMT problem and use

the restriction technique to prove NP-completeness.

In CTPFMT problem we have a continuous time function (t) where t0 < t1 ≤ t ≤

tn and t ∈ <. Let tn = t1. Then we have only one instance of t which is t1, which is a

snapshot of continuous time. The positions of targets are static during that instance.

The maximum velocity of trackers is Vmax. The trackers have to reach the locations

(given by GDC solution) to cover the targets at time instance t1. This Vmax is given

by V = dist(i,j)
tL

, where dist(i, j) is the distance between base location of the tracker i

and desired location of tracker j (from the GDC solution), and tL is the Lead Time

= |t1 − t0| (difference between tracker movement time and target movement time).

Let velocity be infinite, Vmax = ∞ so that tracker can appear at the desired GDC

16

location instantaneously.

From these values, we have obtained a GDC problem from CTPFMT problem.

Thus relaxing those values will make our problem a generalized version of GDC. Since

we know GDC is NP-complete and is also a part of CTPFMT, we have showed that

CTPFMT is also NP-complete.

17

Chapter 4

ALGORITHM FOR STATIC CASE

We solve the problem separately first allocating the trackers to the targets at the

start of the observation time (when the targets are static) and then maintain the

coverage till the end of observation time (when targets are mobile).

We also know that maximum number of trackers required is n. It may be optimal

to place one tracker for each target. Thus we set the upper bound to the total number

of targets required as the total number of targets.

We use the method that was introduced by Hochbaum and Maass (Hochbaum

and Maass (1985)). The method used deals with the problem by (i) splitting the

plane into equal size strips, (ii) solving the problem for each strip locally, and (iii)

combining the local solutions to get a global solution. We apply this method to the

observation region for our problem, where the trackers move around and have to be

covered. See figure 4.1.

We also use the Static Cover with Rectangles(SCR) algorithm presented by (Srini-

vas et al. (2009)) to cover static targets. This algorithm provides an approximation

ratio of 6 for covering of static targets using fixed size rectangles. We will use their so-

lution which gives us the desired tracker location. We have to send the trackers from

their base location to these desired locations and ensure feasibility of the solution.

The algorithm is described below.

4.1 SCR Algorithm

The Strip Cover with Rectangles(SCR) Algorithm (please see 1) takes the input

as a set of points (Targets) A = {1, 2, . . . , n} and their location in x− y coordinates

18

Figure 4.1: An Example of a Region with Target Observation Area and Tracker

Base Stations

(ax, ay)∀ax, ay ∈ A. The output is a set of disks (trackers) B = {b1, b2, . . . , bm} and

their locations such that all the points are covered.

The first step of the algorithm divides the plane in K strips of equal height H =

αD. The values of height that guarantee approximation ratio of 6 (derived in their

paper) are D
2
≤ H ≤

√
3
2
D. Each strip is denoted by Sj and the trackers in strip Sj

is denoted by BSj .

The algorithm will go through each strip and allocate targets to trackers in greedy

fashion. The position of any tracker will be x = aL + W
2

and y coordinate is middle

of the corresponding strip, where aL is the left-most target covered by the respective

tracker. The computation complexity of this algorithm is O(nlogn), because of the

sorting of points by x-coordinate.

19

Algorithm 1 Strip Cover with Rectangles (SCR)

1: let W =
√

1− α2D be width of the rectangle encapsulated in the disk (tracker)

2: divide the plane into S strips of height H = αD

3: BSj ← φ,∀j = 1, . . . , S

4: for all strips Sj, j = 1, . . . , S do

5: while there exist uncovered target in Sj do

6: let i be the leftmost uncovered target in Sj

7: place a tracker bk such that it covers all the targets in the rectangular area

with x-coordinates [ix, ix +W]

8: BSj ← BSj ∪ bk

9: return
⋃

j BSj

4.2 Algorithm for Static Targets

In this section we propose an algorithm to solve the problem for the static targets

(i.e. before the targets start moving), when the trackers have finite maximum velocity.

We will try to find the minimum number of trackers (discs with prescribed radius r)

which can cover a given set of b targets in a plane. Mathematically, given the set of

points (A) distributed in a 2-D plane, place the smallest set of disks (B) such that

for every point i ∈ A, there exists atleast one disk j ∈ B, such that dist(i, j) ≤ r.

4.2.1 Description

Let us consider that the trackers are available at time t0 and targets start moving

at time t1 where t1 > t0. There is a lead time |t1 − t0| 6= 0 available during which

the trackers can take-off from their base locations and position itself to cover the

targets before it starts moving. In order to compute the solution to this problem, we

first model the input as a bipartite graph, and then solve bipartite graph maximum

20

matching to find a feasible solution and update the trajectory of the needed trackers

required when the time is t1.

We first give the definition of maximum matching for a bipartite graph (Even

(2011)).

4.2.2 Maximum Matching in a Bipartite Graph

Given a undirected graph G = 〈V = (L ∪ R), E〉, where there is no odd cycle,

i.e G is bipartite and number of vertices are n, (|V | = n = |V |) and the number

of edges are m(|E| = m). We can divide V into two partitions, Left and Right (L

and R), such that ∀(u, v) ∈ E, where u ∈ L and v ∈ R. A matching M in G, is

a set of pairwise non-adjacent edges, i.e. no two edges share a common vertex. A

Maximum Bipartite Matching problem (also called as maximum cardinality matching

problem) is a matching with the largest possible number of edges (that is also globally

optimum).

We can find maximum matching Mmax in G, by reducing it to a maximum net-

work flow problem and solve using the Ford-Fulkerson algorithm (Ford and Fulkerson

(1962)) in O(V E) time. We will now define the maximum network flow problem.

4.2.3 Network Max Flow Problem

Given a capacitated network G = 〈V,E〉with a non-negative capacity c(i, j) asso-

ciated with each edge e = (i, j), and two special nodes source s and sink t, (s 6= t).

A flow is defined to be a function f : E → R+ satisfying the following conditions:

21

∑
j∈V

f(i, j)−
∑
j∈V

f(j, i) =

F, i = s

0, i 6= s, t

−F, i = t

0 ≤ f(i, j) ≤ c(i, j)

For some F ≥ 0, where F is the value of the flow f . The network max flow problem

is to maximize the total amount of flow from s to t subject to above conditions.

The solution to this problem can be found using Ford-Fulkerson Algorithm.

4.2.4 Ford Fulkerson Algorithm

The Ford-Fulkerson algorithm is used for solving maximum flow problem. Please

see algorithm 2. This algorithm is implemented by using a residual graph.

Algorithm 2 Ford Fulkerson Algorithm

1: Let the initial flow f=0

2: while an augmenting path exists from source s to sink t do

3: f = f + augmenting − path− flow

4: return f

In the step 3 of the algorithm 2, max flow will be reached when no augmenting

paths can be found in the graph. However, there is no certainty this case will be

reached if the flow has irrational value. If the flow is integral then runtime of Ford-

Fulkerson is O(Ef) where E is the total number of edges and f is the maximum

flow of the graph. Edmonds-Karp (Edmonds and Karp (1972)) is a variation of Ford-

Fulkerson which guarantees termination and runtime of O(V E2) (as it doesn’t depend

on flow values), where V is the total number of vertices.

For our problem we will consider integral flow and use Ford-Fulkerson algorithm.

22

4.3 Graph Construction

We construct a bipartite graph G = 〈V = (L ∪ R), E〉, where L and R are two

partitions of V . We have set of idle trackers B available at time t0 at predefined

positions p(bi, t0), ready for work.

Let L be the set of vertices that represent the idle trackers at their base stations

at time t0. The idle trackers are active trackers that are ready for work. Namely

L = {v0, v1, . . . , vl}.

Let R be the set of vertices that represent the positions where the tracker is needed

at time t1 for covering the targets. These positions are found by running the SCR

Algorithm over the given set of targets. Namely, R = {vl+1, vl+2, . . . , vn}. Each vertex

vi ∈ B.

There is an edge from a vertex in L to a vertex in R if and only if the tracker

corresponding to the vertex in L can reach the position corresponding to vertex in R

(also called as the feasibility to move to a new location). Let dist(u, v) be the distance

between tracker (position) u and tracker (position) v from L and R respectively. Then

E = {(u, v)|dist(u, v) < uvel × 4t} is a set of all edges in G; where 4t = (t1 − t0)

and uvel is the maximum velocity of tracker at vertex u in L. Please see Figure ??

for an example. Note that, number of vertices in L may or may not be equal to R.

To convert our bipartite graph to network flow problem, we add new vertices s

and d to V , such that there is an edge from s to every vertex in L and from d to every

vertex in R. We keep all the capacities c on edges as 1. Then we solve the network

flow problem on this graph. The maximum flow of this graph will correspond to the

largest possible matching in G.

Note that the solution of maximum edges is only acceptable if it is equal to number

of vertices in R. That is |Mmax| = |R|.

23

Figure 4.2: Covering of Static Targets at Time t1

The solution shows that each position in R is occupied by a tracker in L which

is incident on the corresponding edge, that is the tracker was brought from its base

station to a new position to cover the targets. This new position is added as a

waypoint to the respective tracker’s trajectory. The cardinality of the solution gives

the minimum number of trackers required. Please see Figure ??

Figure 4.3: Trackers Selected for Covering of Targets at Time t1

24

4.4 Algorithm PseudoCode

Please see Algorithm 3. In line 1, we keep track of three lists. The activlist

maintains the trackers which are currently covering atleast one target. The templist

keeps the imaginary trackers which are trackers that are assigned but not yet mapped

to a real tracker. The inactivlist maintains the trackers which are idle, meaning it is

not covering any targets. Let Pbk be the set of targets covered by tracker bk. We first

use the SCR algorithm to find the positions to place trackers for covering the targets

in each strip. Assume that imaginary trackers are placed in those locations. In lines

14-19 of our algorithm we replace the imaginary trackers with the inactive feasible

trackers, and add them to activlist and remove them from inactivlist.

4.5 Analysis

We now analyze the time complexity for our proposed algorithm. The time taken

by SCR algorithm is O(nlogn), where n is the number of targets. The max-matching

of bipartite graph G takes at the most O(V E). In bipartite-graph, the left set of

vertices have as many available trackers as base station times number of targets, that

is |L| = nL. The right set of vertices have the positions where trackers are needed,

that is the minimum trackers required when targets are static, hence in worst case

|R| = n. Thus total vertices in G are |V | = n2L. If the graph G is complete,

then total number of edges |E| = n2. Thus total complexity for our algorithm is

O(V E) = O(n4L).

Also, we show that our static algorithm will always find a set of trackers that

covers all the targets at time t1.

Observation 1 The proposed static algorithm will always find a solution

Let’s say we have n targets to be covered. Suppose there is target ai which was left

25

Algorithm 3 Covering of Targets at Time = t1

1: templist← φ, activlist← φ, inactivlist← φ

2: for all trackers bk in B do

3: Pbk ← φ . Pbk - targets in cover of tracker bk

4: divide the plane into S strips of width h where D
2
≤ h ≤

√
3D
2

. to guarantee 6

approx ration

5: for all strips Sj at time = t1 do

6: while there exists uncovered target in Sj do

7: let i be the leftmost uncovered target in Sj, located at (ix, iy) position

8: place the imaginary tracker ck such that it covers all the targets in the

rectangular region with x coordinates [ix, ix +
√

1− h2D]

9: Pck ← Pck ∪ i

10: templist← templist ∪ ck

11: for all trackers in B do

12: inactivlist← inactivlist ∪ bk

13: Graph G ← CreateBipartiteGraph(inactivlist, templist)

14: if Maximum-Matching(G) = |templist| then

15: for all e = {bk, ck} ∈ G do

16: add the location of ck as the next waypoint for bk

17: Pbk = Pck

18: activlist← activlist ∪ bk

19: inactivlist← inactivlist \ {bk

20: else

21: return 0 (error)

26

22: procedure CreateBipartiteGraph(inactivlist, templist)

23: create graph G = 〈inactivlist ∪ templist, E〉 where E = {φ}

24: for all bk in activlist and ck in templist do

25: E = E ← ∪{bk, ck} if (Vbk × |t1 − t0| ≤ d(ck, bk))

26: return G

uncovered for some reason. This can happen because of two cases, (i) there was no

edge to the rectangle that covers this target in the bipartite-graph from any tracker,

(ii) all the incident edges weren’t selected in the maximum-matching algorithm. Case

(i) cannot happen because we had assumed that all the points in the observation area

are within flying distance of trackers from atleast one base station. Suppose case (ii)

is true. Then all the trackers (equal to n, since all base stations have n trackers from

the assumption) in the base locations that could reach that rectangle are occupied by

other targets. This would mean than number of targets covered by atleast one base

station is n. But there was a target left uncovered, which would imply that there are

n+ 1 targets in the observation area. This is a contradiction.

4.6 Alternate Approaches

There are alternate algorithms for finding max matching on bipartite graph such

as Hopcroft-Karp (Hopcroft and Karp (1973)) with time complexity O(
√
V E), which

can be used instead of Ford-Fulkerson. Since practical inputs for this problem is small

and the overall complexity of complete algorithm is higher, we do not consider these

optimizations. More info on practical comparisons can be found in (Setubal et al.

(1996)).

Also, it is possible to have multiple solution that has maximum matching in our

graph. 4.4 illustrates such an example. This means that the same number of trackers

27

can be used to cover targets but with different trajectories. To save tracker’s energy,

we could choose the solution which has lowest overall travel cost in moving tracker to

it’s new destination, i.e. one with minimum
∑
dist(i, j),∀bi ∈ L,∀bj ∈ R. Note this

does not mean that the number of trackers would reduce by choosing the least cost

solution. This can be solved by putting the distance cost on the edges (replacing unit

cost) and solving for minimum cost maximum bipartite matching. There are strongly

polynomial methods for solving min cost max bipartite matching (Gabow and Tarjan

(1989); Goldberg and Tarjan (1989); Kuhn (1955)) in literature. We have added this

task to our future work.

Figure 4.4: Multiple Solutions for Covering of Targets at Time t1

28

Chapter 5

ALGORITHM FOR DYNAMIC CASE

5.1 Description

The algorithm 2 considers the case at the time t where t1 < t ≤ tf . tf is the

end of observation time. After we have allocated the trackers at t = t1, we handle

the covering when the targets are set in motion. A target movement may change the

allocation of targets to tracker along the whole strip. We develop an algorithm that

are tailored to the frequent target movements.

Before describing the algorithm we recollect some definitions. We have Pbi as

targets covered by tracker bi, for any bi ∈ B. Also, aLi is the leftmost target covered

by any tracker bi, it’s rectangle cover width W =
√

1−H2D where H is the strip’s

height and D is the sensing diameter.

We maintain the following conditions throughout the cover- (i) Each tracker always

has it’s left rectangle cover boundary incident on the leftmost target it is covering,

(ii) Tracker’s cover domain is disjoint - Pbi

⋂
Pbj = φ∀bj ∈ B, (iii) If any target ai is

within the boundaries of bj, then ai ∈ Pbi .

If a tracker set gets narrow and comes close enough to another tracker’s cover such

that all its target can be covered in another’s target rectangle, we free the tracker

and add it to the inactivList along with the L set of the bipartite graph for reuse.

All the active trackers are assigned the same velocity and movement direction as

the leftmost target in their cover. We say that an event has occurred when an target

goes out of cover of its tracker (explained in detail in next section). All the events

are added to Min-Heap and we handle them in the order of time of occurrence. We

29

will maintain a Min-Heap that stores these events to maintain partial ordering.

5.1.1 Min-Heap Data Structure

We will be using min-heap data structure for storing events(discussed in next

section). A min-heap is a specialized tree based data structure. It is a binary tree

such that (i) the value contained in each node is less that(or equal) to the value in

it’s children, and (ii) the binary tree is complete.

The heap is not necessarily sorted but is said to be partially ordered. The lowest

element is always stored at the root of this data structure. It is very efficient for

accessing min elements in constant time when the insertions and deletions happen at

random. Among the various operations of min-heap, we will use find-minimum(Θ(1)),

insert(Θ(longN)) and delete-minimum(Θ(logN)), where N is the number of elements

in the data structure.

5.2 Events

Let Pbj be the set of targets covered by tracker bj and aLbj be it’s left most target.

An event ξ(bj, ai, tk) in our algorithm is the time instance tk when a target ai is the

first target to go out of cover of it’s tracker bj. That is, the target ai is currently lying

on the boundary of the tracker’s sensing region and will go out cover at next time

instance, before any other target in Pbj does.

The velocity and direction of the tracker is assigned the value of the leftmost target

aLbj ’s speed and velocity. Thus, the time a target goes out is calculated by doing simple

mathematics. The target is checked if it touches the border of the tracker on all the

four sides (Top, Bottom, Left and Right). If Tout(ai) is the time when any target ai

gets on the border and is going out of cover of Pbj , we will find Tmin
bj

given by

30

Tmin
bj

= minimum(Tout(ai)|∀ai ∈ Pbj)

Note that for the leftmost target aLbj , because the tracker is moving at same velocity

and direction, we only consider the events when it changes the strip (that is top

and bottom border). The events are computed individually for each active tracker

(bj|Pbj 6= φ) and are stored for later processing. We break ties based on the target

ids.

Events in our algorithm are crucial to identify the sequence of changes happening

during the motion of mobile targets. We store all the events in Min-Heap data

structure (Cormen et al. (2001)) to maintain the time ordering for processing the

targets going out of cover. After we have received events for all active trackers, we

manage the event with the lowest time value first by removing the root from the

min-heap. Since the other events have not occurred yet, we can safely handle the

root event first and recalculate other events if needed. We categorize different events

scenarios in two cases (see Figures 5.1 and 5.2). This covers all the cases when a

target can go out of cover.

Figure 5.1: Case 1 for Event in Dynamic Cover

Case 1 events happen when a target in Pbj is going to go out of cover on the right

side of tracker bj (the separation between its leftmost and this target becomes greater

than cover length) or it is going to enter a different strip. We split of this target

from bj into a singleton set. We first check if there exists any tracker that can cover

31

Figure 5.2: Case 2 for Event in Dynamic Cover

this singleton target. We assign the target to the existing tracker if it falls within it’s

cover, otherwise we will bring a new imaginary tracker at that location such that it’s

leftmost border is on this target and assign it’s velocity and direction of motion to

that of this target. We keep a track of time and position when this new imaginary

tracker was added and put it in |R| of bipartite-graph (similar to one we used before,

so we can get a free tracker in it’s place after doing maximum matching). Then we

again check for new events in both new and old tracker and put them in min-heap.

Case 2 events happen when a target in Pbj is going to go out of cover on the left

side of tracker bj thus changing the leftmost target of the tracker bj. In this case,

we update the leftmost target of the tracker and match the speed and direction of bj

with this target. We then calculate new event on this tracker and put it in min-heap.

We take care of overlaps that occur due to adding new tracker by using propagation

technique described in next section.

5.3 Propagation

Whenever a new tracker is added to the strip to cover a future uncovered target,

we must check for any overlaps with the existing trackers in the same strip (see Figure

5.3).

We resolve this by adding all the overlapped targets to the new tracker. The

leftmost non overlapping target is made the left boundary of the conflicting tracker,

32

Figure 5.3: Propagation Example

and it is adjusted to move accordingly. If this movement causes overlap with another

tracker, then the whole process is repeated again.

5.4 Algorithm PseudoCode

See Algorithm 4

33

Algorithm 4 Covering of Mobile Targets Where t1 < t ≤ tf

Require: Set of all targets ai ∈ A and their waypoints.

ActivList and InactivList of trackers from Algorithm 1

Ensure: Minimum number of trackers and their waypoints

1: MinHeap← φ, templist← φ, t = t1

2: for all trackers b in ActivList do

3: vel(b) = vel(abL) . abL is the leftmost target covered by tracker b

4: FindEvent(b)

5: while Time t ≤ tf , where t ∈ < do

6: Event E = pop(MinHeap)

7: if E is case 1 then

8: if any adjacent tracker b can cover ae, that is (bL)x ≤ (ae)x ≤ (bL)x + w

then

9: Pb ← Pb ∪ {ae}

10: else

11: place the imaginary tracker ck such that it covers all the targets in the

rectangular region with x coordinates [(ae)x, (ae)x + w]

12: Pck ← Pck ∪ ae

13: templist← templist ∪ ck

14: Propagate(ck)

15: if E is case 2 then

16: aLe = ae . aLe is the leftmost target in cover of tracker be

17: V el(be) = V el(aLe)

18: t = t+ te

19: FindEvent(be)

34

20: if Pbe = φ then

21: inactivlist← inactivlist ∪ be

22: activlist← activlist \ {be}

23: Graph G ← CreateBipartiteGraph(inactivlist, templist)

24: if Maximum-Matching(G) = |templist| then

25: for all e = {bk, ck} ∈ G do

26: add the location of ck as the next waypoint for bk

27: Pbk = Pck

28: activlist← activlist ∪ bk

29: else

30: return 0 (error)

31: procedure CreateBipartiteGraph(inactivlist, templist)

32: create graph G = 〈inactivlist ∪ templist, E〉 where E = {φ}

33: for all bk in activlist and ck in templist do

34: E = E ← ∪{bk, ck} if (Vck × |t1t0| ≤ d(ck, bk))

35: return G

36: procedure FindEvent(b)

37: for every target aj ∈ Pb except aLj do

38: Tout(aj) = time aj goes out of cover

39: Tmin = minimum(Tout(aj)|∀aj ∈ Pb − {aLj }

40: MinHeap←MinHeap ∪ ξ(ai, b, Tmin

35

41: procedure Propagate(b)

42: while b ∩ bR 6= φ do . bR is tracker on immediate right of b

43: Pb ← Pb ∩ {aj|bx ≤ (aj)x ≤ bx + w}

44: PbR ← PbR − {Pb}

45: place the right tracker bR such that it covers all the targets in the rectan-

gular region with x coordinates [(aL)x, (a
L)x + w

46: b = bR

36

Chapter 6

VISUALIZATION

6.1 Visualization Software

Visual representations are important in human life. It allows us to perceive the

spatial positions of elements and their relationship quickly. In the same reasoning

with the proverb “A picture is worth a thousand words”, humans grasp the content

from pictures much faster than just text. Most of the recent studies in the covering

and connectivity problems are void of any graphical visualization. It is useful to

demonstrate the results obtained from the algorithm on a visual interface for con-

veying information to the target audience who are not well versed with the technical

background.

Though the majority of the thesis is focused on developing the algorithm (where

most of the intellectual work lie), the graphical user interface also contains some

important contributions. In this section I describe the visual simulation of the target

tracking problem.

6.1.1 Back-end

The back-end is the implementation of the algorithm defined in Chapter x. The

entire code is written using Java.

The input to the program is the targets file ”targets waypoints.txt” along with

configuration parameters. The tracker configuration parameters include the base

locations, maximum speed (Vmax), availability time(t0), sensing diameter(D), and

maximum available trackers |B|(which ideally should be equal to number of targets).

37

The target configuration parameters are speed(S) and number of targets to be tracked

(|A|). Other parameters needed are boundaries of the planar region(0, 0 to L,H),

observation area (Xmax, Xmin, Ymax, Ymin) and total observation duration(tn). The

target file consist of the trajectory of each target. For each target(one number in

entire line), there will be one or more waypoints on each consecutive line. The first

waypoint is the starting position of the target. A waypoint is written as x and y

coordinate with limits Xmin ≤ x ≤ Xmaxand Ymin ≤ y ≤ Ymax. The targets are

numbered from 0 to |A| − 1.

Sample 3 targets input file:

0

75 34

800 500

1

800 600

200 500

2

789 599

200 450

The output of the program is the trajectory of each tracker written in file ”track-

ers waypoints.txt”. It is similar to the tracker input file with one change. Each

waypoint is followed by velocity value for moving to that waypoint. The waypoint

coordinates limits are 0 ≤ x ≤ L and 0 ≤ y ≤ H. For the velocity of the tracker we

have 0 ≤ v ≤ Vmax. The trackers are numbered from 0 to |B| − 1.

Sample 3 trackers output file:

0

36 4 70.0

38

811 588 70.0

1

1001 616 70.0

97 83 70.0

2

24 15 70.0

Note that we have used constant speed for each target for simplicity reasons.

Variable speed can be easily added without the need to change the algorithm.

6.1.2 Front-end

Java swing, applet and awt libraries were used to implement the front-end for the

visualization.

The input to the front end is the targets file ”targets waypoints.txt” and trackers

file ”trackers waypoints.txt” .

The output is the java applet is a window which shows the live motion of the

trackers and the targets. The targets are red and trackers are blue in color. All the

targets covered by a tracker are shown by white lines from the target to the respective

tracker. The boxes outside of observation area are the tracker base stations.

6.1.3 Interface

In this section, I present the screen-shot and give a brief description of how to use

the software. See 6.1. On the side panel, you can change the simulation speed and

refresh rate of the visuals. You can also view the number of trackers, targets, and

radius of the tracker.

39

Figure 6.1: Software Interface Screenshot

40

Chapter 7

CONCLUDING REMARKS AND FUTURE WORK

In this thesis, I studied the problem of covering the mobile targets using mobile

trackers in continuous space and time. We considered the case where trajectory of

the target is known in advance and we came up with heuristic to find the minimum

number of trackers required to track all the targets in static and dynamic cases.

In future, we would like to find the hardness and approximation bounds for our

heuristic. Also, we would like to study the on-line version of the problem where tra-

jectories of the targets are not known in advance. One of the variation of our problem

could be to minimize the energy consumption of the trackers when tracking the tar-

gets. This can be done by replacing the maximum matching algorithm in bipartite

graph with min cost maximum cardinality algorithm for finding the trajectory of the

targets.

Also, another problem can be studied where if it is not possible to track all targets

for the entire duration of observation with the trackers provided, then we try to

minimize the periods of time when some targets were not tracked.

We made an assumption for our problem that atleast one tracker from any base

location can reach any point in the observation area. If we remove this assumption

then the problem becomes much harder. Let SR be the region reachable by a target

at the base station with given velocity and lead time. Let SC be the region coverable

by the same target depending on its sensing radius. We have SR < SC . With

the rectangle cover, we can only cover points between SL and SR as shown in the

figure 7.1 and miss the red target. However it is possible to cover the targets in

the coverable but uncovered region by using disc model and adding more trackers as

41

shown in 7.2. In that case, the minimum trackers required might increase but satisfy

our requirement. This scenario can be studied in the future work.

Figure 7.1: Covering by rectangles

42

Figure 7.2: Covering by disc

43

REFERENCES

Adamey, E. and U. Ozguner, “A decentralized approach for multi-uav multitarget
tracking and surveillance”, in “SPIE Defense, Security, and Sensing”, pp. 838915–
838915 (International Society for Optics and Photonics, 2012).

Bai, F. and A. Helmy, “A survey of mobility models”, Wireless Adhoc Networks.
University of Southern California, USA 206 (2004).

Bar-Noy, A., I. Kessler and M. Sidi, “Mobile users: To update or not to update?”,
Wireless Networks 1, 2, 175–185 (1995).

Bettstetter, C., H. Hartenstein and X. Pérez-Costa, “Stochastic properties of the
random waypoint mobility model”, Wireless Networks 10, 5, 555–567 (2004).

Broch, J., D. A. Maltz, D. B. Johnson, Y.-C. Hu and J. Jetcheva, “A performance
comparison of multi-hop wireless ad hoc network routing protocols”, in “Proceed-
ings of the 4th annual ACM/IEEE international conference on Mobile computing
and networking”, pp. 85–97 (ACM, 1998).

Camp, T., J. Boleng and V. Davies, “A survey of mobility models for ad hoc network
research”, Wireless communications and mobile computing 2, 5, 483–502 (2002).

Chen, H., X.-m. Wang and Y. Li, “A survey of autonomous control for uav”, in “Ar-
tificial Intelligence and Computational Intelligence, 2009. AICI’09. International
Conference on”, vol. 2, pp. 267–271 (IEEE, 2009).

Chiang, C.-C. and M. Gerla, “On-demand multicast in mobile wireless networks”,
in “Network Protocols, 1998. Proceedings. Sixth International Conference on”, pp.
262–270 (IEEE, 1998).

Cormen, T. H., C. E. Leiserson, R. L. Rivest, C. Stein et al., Introduction to algo-
rithms, vol. 2 (MIT press Cambridge, 2001).

Edmonds, J. and R. M. Karp, “Theoretical improvements in algorithmic efficiency
for network flow problems”, Journal of the ACM (JACM) 19, 2, 248–264 (1972).

Even, S., Graph algorithms (Cambridge University Press, 2011).

Ford, L. and D. R. Fulkerson, Flows in networks, vol. 1962 (Princeton Princeton
University Press, 1962).

Fowler, R. J., M. S. Paterson and S. L. Tanimoto, “Optimal packing and covering in
the plane are np-complete”, Information processing letters 12, 3, 133–137 (1981).

Franceschetti, M., M. Cook and J. Bruck, “A geometric theorem for approximate disk
covering algorithms”, (2001).

Fujita, M. and A. Shimada, “Takeoff and landing control using force sensor by
electrically-powered helicopters”, IEEJ Transactions on Industry Applications 127,
112–117 (2007).

44

Gabow, H. N. and R. E. Tarjan, “Faster scaling algorithms for network problems”,
SIAM Journal on Computing 18, 5, 1013–1036 (1989).

Garcia-Luna-Aceves, J. and E. L. Madruga, “A multicast routing protocol for ad-hoc
networks”, in “INFOCOM’99. Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE”, vol. 2, pp. 784–792
(IEEE, 1999).

Garcia-Luna-Aceves, J. J. and M. Spohn, “Source-tree routing in wireless networks”,
in “Network Protocols, 1999.(ICNP’99) Proceedings. Seventh International Con-
ference on”, pp. 273–282 (IEEE, 1999).

Gloss, B., M. Scharf and D. Neubauer, “A more realistic random direction mobility
model”, TD (05) 52, 13–14 (2005).

Goldberg, A. V. and R. E. Tarjan, “Finding minimum-cost circulations by canceling
negative cycles”, Journal of the ACM (JACM) 36, 4, 873–886 (1989).

Gonzalez, T. F., “Covering a set of points in multidimensional space”, Information
processing letters 40, 4, 181–188 (1991).

Hershberger, J., “Smooth kinetic maintenance of clusters”, in “Proceed-
ings of the Nineteenth Annual Symposium on Computational Geome-
try”, SCG ’03, pp. 48–57 (ACM, New York, NY, USA, 2003), URL
http://doi.acm.org/10.1145/777792.777800.

Hochbaum, D. S. and W. Maass, “Approximation schemes for covering and packing
problems in image processing and vlsi”, Journal of the ACM (JACM) 32, 1, 130–
136 (1985).

Hong, X., M. Gerla, G. Pei and C.-C. Chiang, “A group mobility model for ad
hoc wireless networks”, in “Proceedings of the 2nd ACM international workshop
on Modeling, analysis and simulation of wireless and mobile systems”, pp. 53–60
(ACM, 1999).

Hopcroft, J. E. and R. M. Karp, “An nˆ5/2 algorithm for maximum matchings in
bipartite graphs”, SIAM Journal on computing 2, 4, 225–231 (1973).

Hsia, K.-H., S.-F. Lien and J.-P. Su, “Height estimation via stereo vision system for
unmanned helicopter autonomous landing”, in “Computer Communication Control
and Automation (3CA), 2010 International Symposium on”, vol. 2, pp. 257–260
(IEEE, 2010).

Hyytia, E., P. Lassila and J. Virtamo, “Spatial node distribution of the random way-
point mobility model with applications”, Mobile Computing, IEEE Transactions
on 5, 6, 680–694 (2006).

Johansson, P., T. Larsson, N. Hedman, B. Mielczarek and M. Degermark, “Routing
protocols for mobile ad-hoc networks-a comparative performance analysis”, in “Pro-
ceedings of the 5th international conference on mobile computing and networking
(ACM MOBICOM99)”, pp. 195–206 (1999).

45

Johnson, D. B. and D. A. Maltz, “Dynamic source routing in ad hoc wireless net-
works”, in “Mobile computing”, pp. 153–181 (Springer, 1996).

Kubota, Y. and Y. Iwatani, “Dependable takeoff and landing control of a small-scale
helicopter with a wireless camera”, in “Robotics and Biomimetics (ROBIO), 201 1
IEEE International Conference on”, pp. 1279–1284 (IEEE, 2011).

Kuhn, H. W., “The hungarian method for the assignment problem”, Naval research
logistics quarterly 2, 1-2, 83–97 (1955).

Le Boudec, J.-Y. and M. Vojnovic, “Perfect simulation and stationarity of a class
of mobility models”, in “INFOCOM 2005. 24th Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings IEEE”, vol. 4, pp.
2743–2754 (IEEE, 2005).

Naderan, M., M. Dehghan and H. Pedram, “Mobile object tracking techniques in
wireless sensor networks”, in “Ultra Modern Telecommunications & Workshops,
2009. ICUMT’09. International Conference on”, pp. 1–8 (IEEE, 2009).

Nitinawarat, S., G. K. Atia and V. V. Veeravalli, “Efficient target tracking using
mobile sensors”, in “Computational Advances in Multi-Sensor Adaptive Process-
ing (CAMSAP), 2011 4th IEEE International Workshop on”, pp. 405–408 (IEEE,
2011).

Radhakrishnan, G. S. and S. Saripalli, “Target tracking with communication con-
straints: An aerial perspective”, in “Robotic and Sensors Environments (ROSE),
2010 IEEE International Workshop on”, pp. 1–6 (IEEE, 2010).

Ravikiran, G. and S. Singh, “Influence of mobility models on the performance of rout-
ing protocols in ad-hoc wireless networks”, in “Vehicular Technology Conference,
2004. VTC 2004-Spring. 2004 IEEE 59th”, vol. 4, pp. 2185–2189 (IEEE, 2004).

Rubin, I. and C. W. Choi, “Impact of the location area structure on the performance
of signaling channels in wireless cellular networks”, Communications Magazine,
IEEE 35, 2, 108–115 (1997).

Setubal, J. C. et al., “Sequential and parallel experimental results with bipartite
matching algorithms”, University of Campinas, Tech. Rep. IC-96-09 (1996).

Srinivas, A., G. Zussman and E. Modiano, “Construction and maintenance of wireless
mobile backbone networks”, IEEE/ACM Transactions on Networking (TON) 17,
1, 239–252 (2009).

Tanimoto, S. L., “Covering and indexing an image subset”, in “Proc. 1979 iEEE
Computer Society Conf. on Pattern Recognition and image Processing”, pp. 239–
245 (1979).

Tanimoto, S. L. and R. J. Fowler, “Covering image subsets with patches”, in “Pro-
ceedings of the fifty-first International Conference on Pattern Recognition”, pp.
835–839 (1980).

46

Wheeler, M., B. Schrick, W. Whitacre, M. Campbell, R. Rysdyk and R. Wise, “Coop-
erative tracking of moving targets by a team of autonomous uavs”, in “25th Digital
Avionics Systems Conference, 2006 IEEE/AIAA”, pp. 1–9 (IEEE, 2006).

Xu, E., Z. Ding and S. Dasgupta, “Target tracking and mobile sensor navigation in
wireless sensor networks”, Mobile Computing, IEEE Transactions on 12, 1, 177–186
(2013).

Yoon, J., M. Liu and B. Noble, “Random waypoint considered harmful”, in “INFO-
COM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications. IEEE Societies”, vol. 2, pp. 1312–1321 (2003a).

Yoon, J., M. Liu and B. Noble, “Sound mobility models”, in “Proceedings of the
9th annual international conference on Mobile computing and networking”, pp.
205–216 (ACM, 2003b).

Zhan, P., D. Casbeer and A. L. Swindlehurst, “A centralized control algorithm for
target tracking with uavs”, in “Conference Record of the 39th Asilomar Conference
on Signals, Systems and Computers”, pp. 1148–1152 (2005).

Zonoozi, M. M. and P. Dassanayake, “User mobility modeling and characterization
of mobility patterns”, Selected Areas in Communications, IEEE Journal on 15, 7,
1239–1252 (1997).

Zorbas, D., T. Razafindralambo, D. P. P. Luigi and F. Guerriero, “Energy efficient
mobile target tracking using flying drones”, Procedia Computer Science 19, 80–87
(2013).

Zou, Y. and K. Chakrabarty, “Distributed mobility management for target tracking in
mobile sensor networks”, Mobile Computing, IEEE Transactions on 6, 8, 872–887
(2007).

47

