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ABSTRACT  

   

This study explores the psychophysical and neural processes associated with the 

perception of sounds as either pleasant or aversive. The underlying psychophysical theory 

is based on auditory scene analysis, the process through which listeners parse auditory 

signals into individual acoustic sources. The first experiment tests and confirms that a 

self-rated pleasantness continuum reliably exists for 20 various stimuli (r = .48). In 

addition, the pleasantness continuum correlated with the physical acoustic characteristics 

of consonance/dissonance (r = .78), which can facilitate auditory parsing processes. The 

second experiment uses an fMRI block design to test blood oxygen level dependent 

(BOLD) changes elicited by a subset of 5 exemplar stimuli chosen from Experiment 1 

that are evenly distributed over the pleasantness continuum. Specifically, it tests and 

confirms that the pleasantness continuum produces systematic changes in brain activity 

for unpleasant acoustic stimuli beyond what occurs with pleasant auditory stimuli. 

Results revealed that the combination of two positively and two negatively valenced 

experimental sounds compared to one neutral baseline control elicited BOLD increases in 

the primary auditory cortex, specifically the bilateral superior temporal gyrus, and left 

dorsomedial prefrontal cortex; the latter being consistent with a frontal decision-making 

process common in identification tasks. The negatively-valenced stimuli yielded 

additional BOLD increases in the left insula, which typically indicates processing of 

visceral emotions. The positively-valenced stimuli did not yield any significant BOLD 

activation, consistent with consonant, harmonic stimuli being the prototypical acoustic 

pattern of auditory objects that is optimal for auditory scene analysis. Both the 

psychophysical findings of Experiment 1 and the neural processing findings of 
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Experiment 2 support that consonance is an important dimension of sound that is 

processed in a manner that aids auditory parsing and functional representation of acoustic 

objects and was found to be a principal feature of pleasing auditory stimuli. 
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CHAPTER 1 

INTRODUCTION 

Psychophysical Correlates of Auditory Attraction 

 The current study examines the psychophysical and neural bases for perception of sounds 

varying in experienced desirability. Past research has revealed numerous methods by which 

sounds are categorized to form hedonic judgments, ranging from the nature of the source (i.e., 

human versus nonhuman) (Guastavino, 2007) to higher-level emotions ascribed to the sound 

(e.g., rough, playful, coy) (Zentner, Grandjean, & Scherer, 2008) to characteristics of different 

dimensions of timbre (Herrera-Boyer, Peeters, & Dubnov, 2003; Tervaniemi, Winkler, & 

Naatanen, 1997). The latter method is particularly interesting as some dimensions of timbre, such 

as consonance, are highly quantifiable. Additionally, it is well known that preference and 

consonance are highly intertwined, an observation that dates back to Rameau (1722) and von 

Helmholtz (1877). In the current study, this relationship is first investigated psychophysically 

with multidimensional scaling (MDS) and then the cortical regions correlated with processing of 

these type of stimuli are investigated with functional magnetic resonance imaging (fMRI). 

Finally, the notion that this consonance/preference relationship aids in source parsing, the 

fundamental goal of the auditory system, is explored. 

 Schouten (1968) asserts that the degree of consonance in a sound is the primary 

dimension of timbre which, along with pitch and loudness, comprise the three fundamental 

aspects of sound (American Standards Association, 1960). One aim of the current study is to 

confirm this theory by investigating the perceptual space (via MDS) in which participants 

organize various environmental sounds, controlling for pitch and loudness. There have been 

debates on the nature of consonance as either a cultural or universal construct; the most famous 



 

of which being that between Stumpf and Wundt over a century ago (Plomp & Levelt, 1965), 

though the debate remains pertinent to auditory science (Cazden, 1945; Terhardt, 1977). Recent 

research, however, has focused on the more quantifiable and physiologically-grounded definition 

of sensory consonance (McDermott & Oxenham, 2008). Sensory consonance is related to the 

perception of “roughness” or beat frequencies (von Helmholtz, 1877/1930) and is defined as the 

degree of interference of one harmonic overtone with the critical bandwidth of another (Plomp & 

Levelt, 1965). This interference is optimally reduced when overtones fall in line with the 

harmonic series (Terhardt, 1977). Due to the physics of string-and-node architecture and sound, 

many natural sounds tend to have spectral envelopes that approximate the harmonic series 

(Feynman, Leighton, & Sands, 1977; Roederer, 1995). This natural regularity may be one reason 

why the perception of auditory roughness and beat frequencies are considered unpleasant 

(Bidelman & Krishnan, 2009), and may be used by the auditory scene analysis process to parse 

sounds. 

As defined by Bregman (1994, 2007), auditory scene analysis (ASA) is the process by 

which organisms use auditory regularities to parse the confluence of acoustic information 

reaching the ear into separate auditory objects. ASA is distinct from other theorized methods of 

localization and source parsing, such as using interaural time and level differences, because it is 

not tied to a single, occasionally fallible method. Instead, ASA exploits all natural regularities of 

sound sources in order to be able to localize and parse correctly even in when an acoustic signal 

is partially distorted (Darwin, 2008). The tendency for resonant sounds to adhere to the harmonic 

series, and be perceived as pleasant is one natural regularity that is likely used by ASA. 

Furthermore, if there are distinct neural patterns for hedonic sounds, those patterns may provide 

non-acoustic information that ASA can use to more efficiently parse an auditory scene. 



 

Past research indicates that hedonic judgments are linked to degree of consonance present 

in sound (Bidelman & Krishnan, 2009; McDermott & Oxenham, 2008). Interestingly, preference 

for consonant tones is not only seen in western cultures, but also in those with different – and 

sometimes dissonant – musical scales (van de Geer, Levelt, & Plomp, 1962; Hatherly, 1892; 

Lerdahl & Jackendoff, 1983). Similarly, it is not only adults who have been inundated with 

musical structure and positive musical associations who exhibit this correlation; infants also tend 

to prefer consonant sounds (Schellenberg & Trehub, 1996a; Schellenberg & Trehub, 1996b; 

Trainor & Trehub, 1993a; Trainor & Trehub, 1993b). Furthermore, even hearing infants born to 

deaf parents who live in a deaf community prefer consonant sounds to dissonant ones (Masataka, 

2006). While there is a well-documented relation between the consonant structure of sounds and 

human preference for them, the degree to which they are related has not been shown. The current 

study seeks to ascertain a measure of correlation between consonance and preference. 

Neural Correlates of Auditory Attraction 

Clearly, the behavioral responses to consonant and dissonant stimuli are well 

documented. What has been less well investigated is the neural correlates of those behavioral 

responses. Using functional magnetic resonance imaging (fMRI) and positron emission 

tomography (PET), research investigating consonant and dissonant music have found that 

negatively valenced stimuli elicit activation in, among other areas, the primary auditory cortex, 

insula, amygdala, and dorsomedial prefrontal cortex. Similarly, these studies found that 

positively valenced stimuli elicit activation in the primary auditory cortex, amygdala, and the 

anterior cingulate (Blood & Zatorre, 2001; Blood, Zatorre, Bermudez, & Evans, 1999; Koelsch, 

Fritz, & Schlaug, 2008; Koelsch, Fritz, Cramon, Maller, & Friederici, 2006; Koelsch, Rohrmeier, 

Torrecuso, & Jentschke, 2013). While the cortical activation associated with varying degrees of 



 

consonance in musical selections have been investigated more thoroughly, the presence of 

musical structure may obscure the effects of consonance alone as musical genre preferences and 

learned associations to chord progressions are potential confounds (Johansson, 2010; 

Schmuckler, 1989). Pallesen and colleagues (2005) attempted to control for these confounds by 

using single major, minor, and dissonant chords as stimuli in an fMRI study, and found BOLD 

increases in similar areas when comparing minor and dissonant chords to major chords; namely, 

the amygdala and brain stem. The authors suggest that this pattern of activation is indicative of a 

cortical alarm reflex (as in Liddell, 2005), which implies that minor and dissonant chords are 

potentially dangerous or alarming (as proposed by Vossen, 2010). 

Kumar, von Kriegstein, Friston, and Griffiths (2012) investigated neural responses to 

non-musical, environmental, aversive stimuli of varying degrees of dissonance. The authors 

propose a cognitive model of auditory processing in which stimuli are first processed in the 

primary auditory cortex and information travels from there to the amygdala for valence and 

emotional processing (see Figure 1). Using fMRI, the authors confirmed an increase in BOLD 

activation in the primary auditory cortex and amygdala, supporting their model. The authors also 

mention finding increased activation in the dorsomedial prefrontal cortex and insula, but do not 

include these areas in their model of auditory valence processing. From an auditory scene 

analysis perspective, having a neural network that assigns different valences to different auditory 

objects would aid in sound source segregation and localization simply by providing more 

information about each object. For instance, two objects near each other spatially may be 

segregated by valence. Additionally, following closely with Pallesen and colleagues’ (2005) 

finding that dissonant stimuli engage a cortical alarm reflex, assignation of valences is another 

natural regularity that can be exploited by auditory scene analysis. The present study attempts to 



 

expand this model by including the insula and illustrating a second network dedicated to stimulus 

identification, which would also aid in auditory scene analysis. 

 
Figure 1. Right: The model proposed by Kumar, von Kriegstein, Friston, and Griffiths (2012). 

This model shows that acoustic features are first processed in the primary auditory cortex, which 

then feeds directly to the amygdala. Left: A cythoarchitectural representation of the model. The 

superior temporal gyrus is shown in blue, the amygdala in red. 

Koelsch et al. (2006) noted that Heschl’s gyrus, part of the primary auditory cortex 

located within the superior temporal gyrus, exhibited increased BOLD activation during 

presentation of positive stimuli. The authors attributed that increased activation to participants 

placing more attention on the emotionally valent auditory object, which led to greater auditory 

processing. This type of activation is also common in the superior temporal gyrus as a whole 

(Samson et al., 2011), the medial part of which comprises the rest of the primary auditory cortex 

(Purves, et al., 2001). Therefore, the superior temporal gyrus should exhibit greater activation in 

both consonant and dissonant conditions relative to the control of machine noise. 

The amygdala has been implicated in processing emotional stimuli (Adolphs, Tranel, 

Damasio, & Damasio, 1994; LeDoux, 1992). Though not part of Kumar, von Kriegstein, Friston, 

and Griffiths’s (2012) valence processing network model, the insula shares connectivity with the 

amygdala (Roy, et al., 2009; Stein, et al., 2007). Some researchers hypothesize that the insula 

processes the bodily reactions to emotional stimuli before sending information to the amygdala 



 

where emotion is regulated (Craig, 2003; Paulus & Stein, 2006). The insula been identified as 

being active during the processing of disgusting stimuli (Kober et al., 2008; Vytal et al., 2010; 

Wicker et al., 2003; Wright, He, Shapira, Goodman, & Liu, 2004). Blood and Zatorre (2001) 

found the insula to also be active while participants listened to extremely positive, chill-inducing 

music. The insula is known to be active during interoceptive processes including thirst, heartbeat 

regulation, and experiencing viscerally-felt emotions (Craig, 2003; Craig, 2009; Critchley, 2005; 

Damasio, 1999). This function of the insula accounts for activation of the structure during an 

intensely pleasurable musical experience and while viewing an intensely unpleasant picture. It is 

predicted that the insula will be more active while participants hear the strongly negatively 

valenced stimuli (screech).  While the piano note is a positive stimuli, it is not expected to be 

intensely pleasurable to most participants and, thus, less likely to produce a strongly visceral 

response (i.e., not necessarily chills). Therefore the insula may not be strongly engaged in 

processing the positive stimuli. 

Another region that is heavily involved in processing emotional stimuli is the 

dorsomedial prefrontal cortex (DMPFC). The DMPFC has been shown to increase in BOLD 

activation as participants view increasingly emotional pictures (Grimm, et al., 2006), but has also 

been implicated in conscious awareness of one’s emotional state (Lane, Fink, Chua, & Dolan, 

1997; Smith, et al., 2014). Furthermore, research has shown the DMPFC to be more active 

during tasks requiring emotional regulation and decision-making processes relating to emotional 

stimuli (Phillips, Drevets, Rauch, & Lane, 2003a; Phillips, Drevets, Rauch, & Lane, 2003b; 

Phillips, Ladouceur, & Drevets, 2008; Venkatraman, Rosati, Taren, & Huettel, 2009). In the 

current research, participants were asked to focus on the presented auditory stimuli and the 



 

emotions evoked by those stimuli. As such, the DMPFC is expected to show BOLD increases in 

all conditions. 

 It is expected that participants will rate acoustic stimuli of manmade and natural origins 

as perceptually similar if they are of similar degrees of consonance. In other words, consonant 

stimuli will be rated as perceptually similar to other consonant stimuli, regardless of origin (e.g., 

a musical instrument or bird). It is also expected that musical instruments will be rated among 

the most preferential stimuli as they fall more in line with the pleasing harmonic series, and 

menacing animal vocalizations will be rated among the least preferential stimuli because they are 

dissonant in nature. Secondly, a selection of sounds ranging from very consonant to very 

dissonant will be presented to participants in order to determine if there are distinct patterns of 

activation elicited by consonant and dissonant stimuli. It is expected that all sounds will evoke 

increased BOLD activity in the right hemisphere as they are not speech sounds and can be 

differentiated mainly by pitch and timbre (Zatorre et al., 2002). Relative to baseline/control 

stimuli, consonant and dissonant stimuli combined will exhibit BOLD increases in the superior 

temporal gyrus, insula, amygdala, and dorsomedial prefrontal cortex. Relative to baseline, 

dissonant stimuli are expected to evoke BOLD increases in the insula, amygdala, and DMPFC. 

Also relative to baseline, consonant stimuli are expected to evoke increased BOLD signals in the 

superior temporal gyrus and DMPFC. If these areas are confirmed to be active relative to 

baseline, it will necessitate alteration of the model proposed by Kumar, von Kriegstein, Friston, 

and Griffiths (2012) to include the insula and DMPFC (see Figure 2). This new model, while still 

parsimonious, more fully encompasses brain regions involved in processing valenced auditory 

stimuli. 



 

 
Figure 2. The model of cortical processing of acoustic stimuli proposed by the current research. 

This model includes the typical auditory processing regions of the superior temporal gyrus 

(blue), insula (yellow), amygdala (red), and frontal areas – specifically the dorsomedial 

prefrontal cortex (green). 

 

 

Formal Hypotheses 

Experiment 1. H1: There will be enough consistency among participants in perception of 

auditory similarity to obtain an interpretable multidimensional scaling result of either one or two 

dimensions. H2: Preference ratings for each sound will be a primary dimension by which stimuli 

are organized. H3: Preference ratings for each sound will be correlated with degree of 

consonance (measured by root mean square error from the harmonic series) present in each 

sound will be significantly correlated with one another. 

Experiment 2. H4: Consistent with general activation of auditory areas; consonant and 

dissonant stimuli combined will exhibit greater blood oxygen level dependent (BOLD) activation 

than baseline/control stimuli in the superior temporal gyrus, insula, amygdala, and DMPFC. H5: 

Consistent with past findings testing negative auditory stimuli; dissonant stimuli will exhibit 



 

greater BOLD activation than baseline in the insula, amygdala, and DMPFC. H6: Consistent 

with past findings testing positive auditory stimuli: consonant stimuli will exhibit greater BOLD 

activation than baseline stimuli in the superior temporal gyrus and DMPFC. 



 

CHAPTER 2 

EXPERIMENT 1 

Method 

Participants 

Eight graduate students in a cognitive science program at Arizona State University with 

no history of neurological or psychological illness participated in this experiment. Participants 

had a mean age of 32.0 (SD = 13.94) and self-identified as non-musicians with normally 

functioning hearing. Each gave informed consent in compliance with a protocol approved by the 

Institutional Review Board of Arizona State University. 

Stimuli and Apparatus 

To accurately represent a broad variety of manmade and natural sounds, stimuli of 

several different types are used; musical instruments, animal vocalizations, human vocalization, 

man-made machine noise, and sounds produced without an active agent (e.g., water moving). To 

control for the possible confound of differing fundamental frequencies, all stimuli were either 

recorded at or digitally altered to A4 (440 Hz). For a complete list of the twenty stimuli, see 

Figure 5. All stimuli are 1500 millisecond selections of a sustained sound. In this way, even the 

musical instruments do not elicit a necessarily musical feel. Stimuli are audio sections captured 

from high fidelity sound or video recordings. Participants listened to stimuli with Sony MDR-

7506 Studio Monitor stereo headphones. All stimuli were edited with the freeware program 

Audacity and exported as wav files to avoid degradation of the sound. 

Procedure 

Stimuli are paired into dyads such that each sound is presented in conjunction with every 

other sound. Twenty stimuli, paired, for 190 total dyads. Dyads were presented randomly to 



 

control for possible order effects. Participants identified which of the sounds in the dyad they 

preferred and provided a Likert-type dissimilarity rating where 1 corresponded to “very similar” 

and 10 corresponded to “not similar at all”. 

Results 

 To obtain a preference metric, the number of times each sound was indicated as the 

preferred sound from a dyad was summed and divided by 19, the number of times each sound 

was presented. Using this transformation, each sound is assigned a preference rating that ranges 

between 0 and 1 with higher numbers corresponding to a more preferred sound. The dissimilarity 

ratings of the 190 dyads were entered into the Proxscal program in SPSS 22 to obtain a 

multidimensional scaling (MDS) solution. MDS uses a matrix of dissimilarity values to compute 

a map of rated stimuli in an n-dimensional space. To determine the appropriate dimensionality 

for a data set, Kruskal’s S-stress is assessed at a series of dimensions. In common practice, the 

dimensionality of an MDS solution is assigned to the dimension where an “elbow” is observed in 

a stress (Scree) plot (Hout et al., 2012; Kruskal and Wish, 1978). Instead of one obvious elbow, 

the data for this experiment exhibit two of what Kruskal and Wish call “weak elbows,” see 

Figure 2. In this case, dimensionality will be attributed to the benchmarks put forth by Kruskal 

and Wish (1978); an appropriate dimensionality should have a stress value below .1, but 

anything beyond .05 may be subject to variation by random error in the data. Thus, the two 

dimensional solution, with a stress of .072, is appropriate for this data. 



 

 
Figure 3. A Scree plot for the sound dyad ratings. Note the two dimensional solution exhibits a 

stress value between .1 and .05 (Kruskal and Wish, 1978). 

 

 MDS provides an axis-neutral plot that minimizes stress from the dissimilarity matrix. 

Through visual inspection, it appeared that the predominant dimension participants were using to 

judge dissimilarity was consonance or, as the two qualities are closely interrelated, preference. 

By shifting the MDS plot to align consonance along the x-axis, with the most consonant sounds 

in the positive direction, an x-coordinate value was assigned to each point. Additionally, the 

deviation of each sound’s observed harmonics from its expected harmonics (given its 

fundamental frequency) was computed in terms of root mean square error (RMSE), as can be 

seen in Figure 3. Preference ratings  

 



 

Multidimensional Scaling Solution 

       
       Dimension 2 

 

Figure 4. A visual representation of the MDS solution with the stimulus FFTs marking their 

place. Note that the flute stimulus should be located at the end of the arrow, but the FFT has 

been moved to show detail. 
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Figure 5. Top: FFTs of single piano note and wolf growl stimuli. The piano FFT is characterized 

by obvious periodic peaks of energy and a low amount of inharmonic partials, while the growl is 

characterized by muddled, less well-defined peaks with more erratic spacing and much more 

inharmonic noise. Bottom: Root mean square error calculations for the two stimuli. The 

observed harmonics of the piano are considerably more closely aligned with those expected 

given its fundamental frequency. The observed fourth harmonic of the wolf growl is much closer 

to the expected fifth than the expected fourth; however, even when this shift is made, the wolf 

growl RMSE only drops to 281.73. 

 

 

are significantly negatively correlated with consonance RMSE values, r(18) = -0.48, p < .05, and 

positively correlated with x-coordinate values of the MDS solution, r(18) = 0.48, p < .05. 

Additionally, RMSE values and x-coordinates of the MDS solution were significantly negatively 

coordinated, r(18) = -0.78, p < .001, suggesting that consonance/preference is a valid axis for the 

MDS solution (Figure 4). 

 

 



 

Discussion 

 The MDS solution shows that auditory events are primarily organized by preference or 

consonance. As previously mentioned, preference and consonance are perceptually inter-related 

to such a degree that the two are not easily or accurately estimated alone. The second dimension 

is unknown; however, the FFT data is consistent with a possible dimension of timbre, such as 

timbre color (the spectral envelope). The MDS is in a rough upside-down teardrop shape, with 

the most variance in the second dimension occurring in the more preferable sounds, suggesting 

that the second dimension may only be utilized for categorization of highly consonant stimuli. In 

this area it can be seen that sounds to the left of the midline are characterized by many high 

frequency harmonics with relatively large amplitudes, sounds near the middle have high 

frequency harmonics with lower amplitudes, and sounds to the right of the midline have one 

dominant frequency with few harmonics. A greater amount of harmonics typically corresponds 

to the sensation of a more full-bodied sound. As such, asking participants which sound they 

perceive as fuller or warmer in addition to which sound they prefer may shed light on the second 

dimension. 



 

CHAPTER 3 

EXPERIMENT 2 

Method 

Participants 

Participants were six right-handed college graduates with a mean age of 26.67 (SD = 

1.03). All participants self-identified as having normally functioning hearing and no history of 

neurological or psychological illness. Each gave informed consent in compliance with a protocol 

approved by the Institutional Review Boards of Arizona State University and Barrow 

Neurological Institute. 

Stimuli 

Stimuli consisted of several exemplars from Experiment 1 that were centrally located on 

the second dimension and spanned to preference dimension: the single piano note functioned as a 

positive valence exemplar and the red-tailed hawk screech and wolf growl as negative valence 

exemplars. In place of the rushing water sound which closely mimicked Brownian noise, actual 

Brownian noise was used to control for ambient impurities of the recorded sound that may have 

compromised the sound as a useful control. Similarly, in place of the vocal stimulus from 

Experiment 1, which was taken from a vocal solo by the artist Freddy Mercury, a similar vocal 

stimulus was performed by an amateur vocalist. This replacement was made to ensure the 

selection would not be recognized by any participants and skew their judgments due to strong 

emotional associations with the professional singer or their songs. The vocalization functioned as 

a second positive valence exemplar, while the Brownian noise and a pure tone sine wave 

functioned as control stimuli. A silent control condition was added to gauge brain function at a 

baseline level. As this experiment is conducted with the participants inside an fMRI machine, the 



 

silent condition is not silence per se, but serves as a control for the noise of the machine (grey 

noise). Stimuli were presented binaurally through MRI-compatible headphones. The presentation 

level was adjusted to each participant’s individual comfort level (between 70 and 80 dB). 

Procedure 

Imaging measures were conducted in the context of a classical block-design experiment, 

consisting of one run with a duration of 336 seconds. Each stimulus was 1500 milliseconds in 

duration. Stimuli were repeated eight times in a row to construct a twelve second block of 

constant auditory stimulation. Each twelve second block was repeated four times per stimulus in 

pseudorandom order (i. e., no two same blocks in a row) for a total of twenty-eight individual 

blocks. Participants were instructed to close their eyes to limit visual cortex activation and to 

allow better focus on the auditory stimuli. Additionally, each participant was asked to listen to 

the sounds and focus on how it made them feel, rather than sound quality, source, or other 

aspects of the stimuli. Stimuli were delivered into the scanner via a Sony Vaio laptop computer 

connected to an MR-compatible headphone system from Nordic Neurolab (Bergan, Norway). 

The software Presentation (Neurobehavioral Systems, Inc.) was used for delivering the auditory 

stimuli. Participants were also fitted with a foam head surround to reduce movement in the 

scanner. After exiting the fMRI machine, participants were instructed to rate the sounds they 

heard on a 100 point Likert-type scale, with 100 corresponding to a perfect, intensely pleasurable 

sound and 0 corresponding to a terrible sound. 

Data Acquisition and Analysis 

 Functional magnetic resonance imaging (fMRI) was performed on a GE 3-Tesla MR 

scanner. T2* weighted images were acquired with a gradient echo, echo-planar pulse sequence to 

elicit (BOLD) contrast. The scanning parameters were as follows: TE (echo time) = 20 ms; TR 



 

(repetition time) = 3.0 s; flip angle = 80̊; acquisition matrix = 64 x 64 voxels; field of view 

(FOV) = 240 mm, 4 mm slice thickness with no gap. 40 slices of the brain were acquired axially 

within the TR at each time point, with near isotropic voxel resolution of 3.75 x 3.75 x 4.0 mm. 

High resolution structural images were acquired for normalization of the results. The 

images were collected using a 3D SPGR (spoiled gradient) T1-weighted, 3D acquisition with the 

following parameters: TR = 24 ms; TE = 6 ms; flip angle = 40̊; NEX = 1; slice thickness = 1.0 

mm; 0 skip between slices; FOV = 24 cm; in-plane resolution = 0.9375 mm2 voxels. The T1 and 

T2* weighted images were co-registered using a least squares minimization routine. 

The statistical parametric mapping software package (SPM8, Wellcome Department of 

Cognitive Neurology, London, UK) implemented in Matlab was used for the preprocessing and 

statistical analyses. The time-series of images were corrected for motion, normalized into a 

standard atlas space (using the International Consortium for Brain Mapping template as 

implemented in SPM8), and then spatially smoothed using an 8 mm full-width at half-maximum 

Gaussian kernel. Individual time-series analysis was performed on each participant. 

Regions of interest (ROI) masks defined by the specific hypothesis were obtained by selecting 

relevant brain regions from the WFU Pickatlas toolbox for SPM (Version 2.4, Lancaster, 

Summerln, Rainey, Freitas, & Fox, 1997; Lancaster et al., 2000; Maldjian, Laurienti, Burdette, & 

Kraft, 2003; Maldjian Laurienti, & Burdette, 2004). Each resulting ROI was corrected for 

family-wise error (FWE). Hemodynamic data from the ROI analysis were further visualized in 

the form of peristimulus time histograms. These histograms were created with the rfxplot toolbox 

for SPM (Glascher, 2009). 

 

 



 

Results 

Baseline Stimuli 

 As previously mentioned, the “silent” control condition is not silent as the noise of the 

fMRI machine is constant throughout the experiment. Additionally, post-imaging stimulus 

ranking revealed that participants perceived the pure tone sine wave as more positive than neutral 

(rescaled M = 76.11, SD = 22.00), suggesting that it was not a useful control. Brownian noise, on 

the other hand was rated much more moderately (rescaled M = 41.39, SD = 4.71). Similarly, 

because the machine noise was present during all conditions, it was not a true baseline measure 

and was not used as such. To ensure the data obtained from the experimental contrasts was not 

spurious, we also analyzed a region not expected to show differences in activation based on the 

stimuli. As a control region, we chose to examine the calcarine cortex, which is involved in 

visual functioning and shows strong activation to visual stimuli. As expected, this region did not 

yield supratheshold activation on any of the comparisons.  

Stimulus Ratings 

 After exiting the scanner, all participants were asked to indicate the degree to which they 

preferred each stimulus on a scale from 0 to 100, with higher numbers corresponding to a greater 

preference. Interestingly, ratings from all participants were weighted more towards the negative 

spectrum; ratings ranged from 2.2 (SD = 2.71) to 72 (SD = 8.12). As the original scale was 

comprised of arbitrary units, proportionally rescaling the ratings to fit a 100 point scale within 

the 72 point range does not change the relationship between stimuli, but does make those 

relationships easier to visualize. For instance, the Brownian noise stimuli, which held a position 

between consonant and dissonant stimuli in the two dimensional scaling solution in Experiment 

1 received a rating of 29.8 (SD = 4.71) on the original scale. While this is not far from the 



 

halfway point between the lower range of the scale and the highest rated stimuli (36), rescaling 

this value to 41.39 is easier to visualize as a point near a round number midpoint (50). Figure 4 

shows the average participants ratings and standard error of each stimulus. It is also of note that, 

aside from some sine and vocal stimuli, the rank ordering of all six stimuli were the same among 

all participants. 

 

Figure 6. Ratings of experimental and control stimuli on both original and rescaled planes. The 

light blue ovals surrounding each point represent the standard error. 

Experimental Stimuli 

 Comparing all experimental stimuli to the baseline stimulus (All>Brown) yielded 

significant BOLD increases in the right superior temporal gyrus (SPM T = 14.43, 461 voxels, 

corrected p = .013), left superior temporal gyrus (SPM T = 9.43, 278 voxels, corrected p = .036), 

and left dorsomedial prefrontal cortex (SPM T = 13.21, 36 voxels, corrected p = .003). Images of 

these regions are presented in Figure 5. The coordinates of these regions can be found in Table 1. 
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Figure 7. BOLD response from the three regions significantly more active across all 

experimental stimuli compared to the Brownian noise baseline. Top left and right: bilateral 

superior temporal gyrus. Bottom: left dorsomedial prefrontal cortex (right dorsomedial 

prefrontal cortex is also pictured, but does not reach suprathreshold levels). 

 

 

 
          STG       Insula 

Figure 8. BOLD response from the two regions significantly more active when participants 

listened to the screech stimuli in comparison to the Brownian noise baseline. Left: left anterior 

portion of the superior temporal gyrus. Right: left insula. 



 

 

 
    STG               Insula 

Figure 9. Peristimulus time histograms of the two regions significantly more active when 

participants listened to the screech stimuli in comparison to the Brownian noise baseline. X-axes 

for these figures are unitless values that show percent change of the blood oxygen level 

dependent signal. Shaded regions surrounding the solid lines are standard errors. Figures have 

been scaled to zero at the stimulus onset. Left: left superior temporal gyrus. Right: left insula. 

 

 The participants varied somewhat on how they emotionally interpreted the experimental 

stimuli, although there was good agreement in rank, indicating that the screech and piano were 

universally the least and most preferred. We performed separate analyses on these two stimuli 

that also showed the greatest separation in preference; the negatively valenced hawk screech 

(rescaled M = 3.06, SD = 2.71) and the positively valenced piano note (rescaled M = 100, 

standard deviation = 8.12). Despite the reliably high rating of the piano stimulus (Piano>Brown), 

it did not elicit any significant BOLD activation above baseline. The red-tailed hawk screech 

(Screech>Brown), however, elicited significant activation above baseline in the left superior 

temporal gyrus (SPM T = 14.91, 296 voxels, FWE corrected p = .03) and activation of marginal 

significance in the left insula (SPM T = 4.48, 78 voxels, FWE corrected p = .075). Images of 

these regions are presented in Figures 6 and 7, coordinates are presented in Table 1. 

 



 

 

Discussion 

 Comparing all stimuli to the Brownian noise (All>Brown) revealed significant activation 

in several areas. Among these were the bilateral superior temporal gyri; activation of these areas 

suggests that the experimental stimuli captured auditory attention (Ahveninen et al., 2011; 

Jancke, Mirzazade, & Joni Shah, 1999) and, as such, may have been more deeply processed. 

Additionally, significant activation was also observed in the left DMPFC, an area that has been 

identified as playing a role in conscious perception of emotion, emotion regulation, and decisions 

regarding emotional content (Grimm, et al., 2006; Lane, Fink, Chua, & Dolan, 1997; Phillips, 

Ladouceur, & Drevets, 2008; Venkatraman, Rosati, Taren, & Huettel, 2009). Activation in this 

area suggests that the participants attended to the auditory stimuli and found them at least partly 

emotionally evocative. It is worth noting that, while activation was detected in this area when 

comparing all experimental stimuli to the baseline, it was not detected upon comparing the 

extremes to the baseline. This may be due to the decreased power of detection when examining 

Region k x y z BA

Right superior temporal gyrus 461 58 -18 -2 21

Left superior temporal gyrus 278 -50 10 -6 22

Left dorsomedial prefrontal cortex 36 -16 28 42 8

Left superior temporal gyrus 296 -50 -6 -8 21

Left insula 78 -44 -10 -8 21

No significant clusters of activation

Note - All clusters reached an uncorrected significance level of p = .01 and an extent threshhold of

20 voxels. For each cluster, coordinates are given for the maximally activated voxel. k , number of

voxels in cluster; BA, Brodmann's areas; x , y , z , MNI coordinates.

All>Brown

Screech>Brown

Piano>Brown

Table 1

Coordinates of Clusters of Activation Showing Significantly Different BOLD Activity for

Auditory Stimuli in Comparison to Brownian Noise Control



 

the smaller single blocks rather than collapsing the experimental stimuli together. In other words, 

this DMPFC activation may be present in each condition, but cannot be detected for single 

stimuli alone with this data set. 

 Relative to baseline, the hawk screech elicited increased BOLD activation in the left 

superior temporal gyrus and the left insula, a finding which supports the proposed model of 

cortical regions involved in processing valenced acoustic stimuli. Both the baseline brown noise 

stimulus and the negative-valence hawk screech stimulus were presented at identical intensity 

levels; thus, the increased activation detected in auditory regions is not due to a stronger acoustic 

signal in the screech stimuli. Increased activation in the superior temporal gyrus may signify 

increased processing of the hawk screech in the primary and secondary cortex associated with 

auditory processing. Previous studies have shown similar activation of auditory cortex in 

response to aversive sounds (Kumar, von Kriegstein, Friston, & Griffiths, 2012) and arousing 

pleasant sounds (Blood & Zatorre, 2001; Koelsch et al., 2006; Koelsch et al., 2013). This 

suggests that, in the current study, the screech sound was more arousing (in a negative way) than 

the piano, which aligns with the behavioral ratings. 

 The negative valence stimulus also produced activation in the insula. Blood and Zatorre 

(2001) and Koelsch et al. (2006) found the insula to be more active during positive stimulus 

presentation in relation to a neutral baseline and Kumar, von Kriegstein, Friston, and Griffiths 

(2012) found the insula to be more active during presentation of highly dissonant, negatively 

valenced stimuli. Additionally, other studies have found the insula to be active in the processing 

of fear and disgust (Calder, 2003; Schienle et al., 2005; Zeki & Romaya, 2008). These are 

emotions that are experienced viscerally and interoceptively (Adolphs, Tranel, & Damasio, 2003; 

Craig, 2009; Damasio, 1999; Damasio, 2003). The finding of the current study that the hawk 



 

screech elicits strong activity in the insula relative to baseline is in concert with these findings; 

the highly dissonant screech likely elicits a strong, visceral emotion of fear or disgust. Indeed, 

some participants related colloquially that they found it difficult to avoid flinching when the 

screech was presented. 

 Both the main effect of all sounds versus baseline, as well as the specific findings for the 

negative stimuli vs. baseline, showed a high degree of left-lateralized activity. In contrast, many 

studies that have found right-lateralized responses to stimuli (Blood & Zatorre, 2001; Blood, 

Zatorre, Bermudez, & Evans, 1999; Pallesen, et al., 2005). While past research has held that the 

right hemisphere is dominant in tone processing and the left hemisphere in speech processing 

(Belin, et al., 1998; Zatorre, Belin, & Penhune, 2002), more recent studies call that into question.  

Scheich, Brechmann, Bosch, Budinger, and Ohl (2007) noted that the auditory task given to 

participants was more indicative of hemispheric differences than the stimuli presented to them. 

This finding has been interpreted as an example of local (as opposed to global) auditory 

processing, which encompasses comparative, relational, and analytic tasks (Bever & Chiarello, 

1974; Justus & A, 2005; Rauschecker, Tian, Pons, & Mishkin, 1997; Wetzel, Ohl, & Scheich, 

2008). Moreover, categorization of auditory stimuli is also a function of local processing 

(Brechmann & Scheich, 2005; Brechmann, et al., 2007). The dorsomedial prefrontal cortex was 

observed to be more active during perception of valenced sounds than a neutral baseline, which 

is indicative of stimulus identification and categorization. As left lateralization held true for both 

all valenced stimuli and negatively valenced stimuli, it is likely that the dorsomedial prefrontal 

cortex may also be more active during perception of negatively valenced sounds compared to 

baseline, but was not able to reach significance. 



 

The stimulus rated as most positive did not elicit any significant change in BOLD activity 

relative to baseline (Piano>Brown) while the negative stimulus did. Behaviorally, the negative 

stimulus elicited a stronger negative response than did the piano elicit a positive response. This 

difference may be due to arousal levels evoked by each stimulus. While the single piano note is a 

reliably positive stimulus, it likely does not evoke as strong a positive emotion as music. Blood 

and Zatorre’s (2001) found that music that is characterized by higher levels of arousal in the 

positive valence (defined in their study as evoking a sensation of chills) produces increased 

BOLD activity in several brain regions compared to music that does not arouse participants in 

the same way. It is probable that a positively valenced stimulus that is evokes low levels of 

arousal is experienced more as a calming event than an intensely pleasurable one. The 

International Affective Digitized Sounds database contains short musical selections of several 

musical instruments (Bradley & Lang, 2007). While these sounds were rated as mostly 

pleasurable, they were not rated as arousing. In fact, Bradley and Lang’s 100 participants rated a 

harp among the most pleasurable sounds (rating = 7.44, range = 1.57 – 7.9), but as one of the 

least arousing sounds (rating = 3.36, range = 3.36 – 8.16). 

 



 

CHAPTER 4 

GENERAL DISCUSSION 

The first experiment demonstrates that sensory consonance, a universal perception, 

correlates with participants’ preference for that sound. This suggests that preference is primarily 

stable, universal, and directly correlated to consonance. Moreover, it establishes consonance, 

along with pitch and loudness, as a primary aspect of sound used in categorization and parsing. 

As one of the primary dimensions of sound categorization, degree of consonance is likely a 

natural regularity used in auditory scene analysis. The first experiment also illustrates the close 

proximity of consonant natural sounds and consonant manmade sounds, such as musical 

instruments. While it may be a natural assumption to group musical instruments in a separate 

category from other sounds (Guastavino, 2007), the results of Experiment 1 suggest that this is a 

false dichotomy; all sounds lie along the same two dimensional plane. Furthermore, the two 

dimensional scaling solution also shows that musical instruments appear to extend beyond 

consonant natural sound in the preference dimension. This could be evidence that early humans 

sought to refine, replicate, and domesticate the non-arousing and prototypical consonant stimuli 

that were hallmarks of calm, safe locations. 

The second experiment illustrates the neural regions that are involved in processing of 

emotion-evoking sounds. In accordance with other research investigating cortical processing of 

highly arousing sounds, the auditory cortices and insula were identified as exhibiting greater 

BOLD activation relative to a baseline condition. Notably, only the negatively valenced (and 

potentially highly arousing) sound elicited activation in these areas, while the positively valenced 

(and potentially soothing) sound elicited no activation compared to a neutral baseline sound. 

These findings also fall in line with an evolutionary hypothesis of music development; highly 



 

arousing sounds of both positive and negative valences would prompt humans to act, while non-

arousing, positively valenced stimuli would indicate a safe area and promote calm emotions. 

Highly negative and highly arousing stimuli, like the hawk screech, indicate danger and prime a 

sympathoadrenal, fight or flight response. Highly positive and highly arousing stimuli, such as 

erotic moans or laughter (Bradley & Lang, 2007), indicate social interaction and prime an 

appropriate social response. A stimulus that is highly positive and not arousing, like the piano 

note, indicate safety but do not necessitate any response. It may be that humans have come to 

expect non-arousing positive stimuli in their daily life (e. g., bird songs, music in parking lots, 

calm conversations in restaurants). Indeed, the physics of resonant systems, such as string and 

node or pipe and antinode, dictate that most sounds have spectral energy that closely 

approximates the harmonic series (Feynman, Leighton, & Sands, 1977; Roederer, 1995). 

Because of this, non-arousing positively valenced stimuli are treated as a type of baseline against 

which to measure arousing and/or negative stimuli. This notion is also supported by the 

multidimensional solution from Experiment 1. Positively rated consonant sounds showed a 

greater amount of variability along the second (possibly tone color) axis than the negatively rated 

dissonant sounds, which may indicate the second dimension becoming less important for 

categorization as sound becomes more dissonant. 

The results showed that consonance is highly correlated with preference and that 

preference/consonance is a primary dimension by which sound is categorized. Additionally, the 

auditory cortices, insula, and DMPFC were shown to be more active during perception of 

valenced sounds than during perception of a baseline stimulus. This suggests that the auditory 

cortex/amygdala model of emotional auditory perception proposed by Kumar, von Kriegstein, 

Friston, and Griffiths (2012) should be amended to include the insula and DMPFC. The low 



 

power obtained when comparing soothing positive sounds to baseline suggest that these sounds 

may be more ecologically valid as baseline stimuli than common stimuli like white noise or 

silence. As such, future psychophysical and imaging research may benefit by using a negligibly-

arousing, consonant stimulus as a secondary control, if not a primary. Using the correct control 

in such studies can reveal more correct and more detailed information than a flawed control. 

Finally, the reliable activation of cortical areas in response to dissonant sounds is a further 

natural regularity – beyond degree of consonance – than can aid in auditory scene analysis. In 

fact, the pattern of cortical activation in response to dissonant sounds is particularly adaptive, as 

it replaces the regularity of consonance that is removed when a sound deviates from the 

harmonic series. 
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