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ABSTRACT  
   

Hydrogen sulfide (H2S) has been identified as a potential ingredient for grain 

boundary passivation of multicrystalline silicon. Sulfur is already established as a good 

surface passivation material for crystalline silicon (c-Si). Sulfur can be used both from 

solution and hydrogen sulfide gas. For multicrystalline silicon (mc-Si) solar cells, 

increasing efficiency is a major challenge because passivation of mc-Si wafers is more 

difficult due to its randomly orientated crystal grains and the principal source of 

recombination is contributed by the defects in the bulk of the wafer and surface. 

In this work, a new technique for grain boundary passivation for multicrystalline 

silicon using hydrogen sulfide has been developed which is accompanied by a compatible 

Aluminum oxide (Al2O3) surface passivation. Minority carrier lifetime measurement of 

the passivated samples has been performed and the analysis shows that success has been 

achieved in terms of passivation and compared to already existing hydrogen passivation, 

hydrogen sulfide passivation is actually better. Also the surface passivation by Al2O3 

helps to increase the lifetime even more after post-annealing and this helps to attain 

stability for the bulk passivated samples. Minority carrier lifetime is directly related to the 

internal quantum efficiency of solar cells. Incorporation of this technique in making mc-

Si solar cells is supposed to result in higher efficiency cells. Additional research is 

required in this field for the use of this technique in commercial solar cells.  



  ii 

DEDICATION  
   

To my beloved parents 



  iii 

ACKNOWLEDGMENTS  
   

 I would like to express my deepest gratitude to my advisor, Prof. Meng Tao for 

his motivation and guidance during the research. Right from the very beginning, he tried 

to take out the best from my efforts and patiently helped me to correct any mistakes I 

made. This thesis would not be possible without his support. I would also like to thank 

Prof. Dragica Vasileska and Prof. Michael Goryll for taking out their valuable time for 

being in my thesis defense committee. I asked for their personal advice and help a 

number of times during my studies. I am grateful to them for those moments. 

 I would like to thank Dr. Haifeng Zhang for helping me with the experiments and 

always inspiring me. I would also like to thank Mr. Wen-Cheng Sung for taking out his 

time for helping with my experiments. I would also like to thank my research group 

members: Mr. Laidong Wang, Mr. Woo Shin, Mr. Bin Zhou, Mr. Wen-Hsi Huang and 

Mr. Mathew Lee for their friendship and support whenever I needed. 

 I would like to thank Saugata, Hasin and Refat, my current and previous 

roommates who were more than friends to stand all my faults and to help me in every 

possible way. Also my heartfelt thanks go to my colleagues and friends of ASU for being 

available when I needed them most.  

Finally, I would like to thank my beloved mother for her outstanding support, 

sacrifice and well wishes throughout the whole thesis work. 



  iv 

TABLE OF CONTENTS 
          Page 

LIST OF TABLES ................................................................................................................... vi  

LIST OF FIGURES ............................................................................................................... vii   

CHAPTER 

1     INTRODUCTION ................. .....................................................................................  1  

1.1 Energy: World Perspective  ................................................................. 1  

1.2 Photovoltaics as a Source of Energy ................................................... 2 

1.3 Silicon Solar Cells: Defects and Passivation....................................... 5 

1.4 Thesis Outline ...................................................................................... 7 

2     REVIEW OF BULK PASSIVATION ........................................................................  8  

2.1 Introduction .......................................................................................... 8  

2.2 Effect of Grain Size on Different Properties ....................................... 9 

2.3 Grain Boundary Passivation Methods ............................................... 13 

2.4 Conclusion .......................................................................................... 22 

3     DESIGN OF EXPERIMENTS  ................................................................................  23  

3.1 Introduction ........................................................................................ 23  

3.2 Material Selection for Bulk Passivation ............................................ 23 

3.3 Experimental Set up and Equipment ................................................. 26 

3.4 Recipe of Hydrogen Sulfide Passivation ........................................... 31 

3.5 Recipe of Bulk Passivation Using Hydrogen by FGA Annealing ... 36 

3.6 Conclusion .......................................................................................... 37  

 
 



  v 

CHAPTER                                                                                                                      Page 

4     RESULTS AND ANALYSIS  ..................................................................................  38  

4.1 Introduction ........................................................................................ 38  

4.2 Calculation of Lifetime Gain ............................................................. 38 

4.3 Analysis of Lifetime after H2S Diffusion Experiment ...................... 40  

4.4 Analysis of Lifetime after Hydrogen Passivation ............................. 43  

4.5 Analysis of Effects after Post-Annealing .......................................... 43  

4.6 Stability of Lifetime ........................................................................... 47  

4.7 Conclusion .......................................................................................... 49  

5     CONCLUSIVE REMARKS ...........  ........................................................................  50  

5.1 Summary of the Work........................................................................ 50 

5.2 Discussion .......................................................................................... 51  

5.3 Future Scope of Work ........................................................................ 52  

REFERENCES.......  ..............................................................................................................  53



  vi 

LIST OF TABLES 

Table Page 

3.1 Cleaning Steps of Multicrystalline Silicon Samples ................................................  33 

4.1 Lifetime Gain for Different Samples: As-Passivated and after ~60 Days ...............  48 



  vii 

LIST OF FIGURES 

Figure Page 

1.1 World Electricity Generation from Different Fuels ............................................  1 

1.2 Record of Best Research Cell Efficiency ............................................................  4 

1.3 World PV Cell/Module Production from 1988 To 2003 (in Mwp) ....................  5 

1.4 Grain Boundary in Multicrystalline Silicon ........................................................  6 

3.1 Flowchart Showing Diffusion of H2S in mc-Si Grain Boundaries ..................  34 

4.1 Lifetime vs. Minority Carrier Density for Passivated Sample .........................  39 

4.2 Lifetime Gain as a Function of Diffusion Temperature for H2S ......................  41 

4.3 Lifetime Gain vs. Temperature for H2S with Smaller Temperature Interval ...  42 

4.4 Lifetime Gain as a Function of Temperature for Passivation By H2 ................  43 

4.5 Lifetime Gain vs. Post-Annealing Temperature after H2S Passivation ............  45 

4.6 Lifetime Gain vs. Post-Annealing Temperature after H2 Passivation ..............  45 

      4.7 Lifetime Gain as a Function of Post-Annealing Temperature for Control  

      Samples without H2S or H2 Passivation ............................................................  46 

 



  1 

CHAPTER 1 

INTRODUCTION 

1.1 Energy: World Perspective  

Ever-increasing energy demand is a major concern in the current situations of the 

world. World energy consumption is increasing a lot in the current century and fossil fuel 

still remains the major source of energy. According to the reports of 2012 from 

International Energy Agency (IEA), among fall other fossil fuels, coal contributed to 

more than half of the increased demand of energy [1]. Use of fossil fuel energy increased 

by more than 23 % from 2000-2008. According to the reports of IEA in 2011, fossil fuel 

contributed ~ 68% for the total electricity generation in the world [2]. 

        

Figure 1.1 World Electricity Generation from Different Fuels [2] 

In figure 1.1, other sources mean solar, wind, geo-thermal, bio etc. It can be 

observed that renewable sources like hydro, solar and others are currently contributing 

~21 % of the total generation. Recent Fukushima Daiichi nuclear disaster in 2011 and 

Chernobyl disaster in 1986 have been the main cause of the end of rapid nuclear power 
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capacity growth all over the world. After these disasters a number of countries changed 

their future policy of power generation. But the major threat of global warming still 

prevails due to the excessive use of fossil fuels. Global warming refers to the increase of 

average temperature of the air and the earth’s surface mainly caused by the intensified 

greenhouse effect. This leads to the melting of the ice at the north and south poles and 

thus increasing the height of sea level. Also changes in the current ecosystem and 

increased heat content of the oceans are the direct results of global warming. Fossil fuel 

burning for energy production is the main cause of greenhouse effect which results in 

global warming. So to phase-out fossil fuel, an extensive energy plan is required. 

If alternative energy sources have to replace or at least reduce the use of fossil 

fuels, they need to meet some basic requirements. First of all, these sources must be in 

large quantities. They also need to be renewable, clean and green; emitting no carbon 

dioxide (CO2), sulfur dioxide (SO2) or nitrogen oxides (NOx). And most importantly, 

these sources need to be cheap to compete with fossil fuels. According to Hoffert et al 

[3], currently the demand is ~15 TW and is predicted to be ~46 TW in 2100. Now this 

huge demand cannot be met if renewable energy sources cannot contribute a large 

portion. And among all renewable sources, solar energy is the only source that can meet 

the requirements stated above. In the next section the prospects of conversion of solar 

energy to electrical energy have been discussed. 

1.2 Photovoltaics as a Source of Energy 

In 2006, Lewis and Nocera indicated that only solar energy has the potential to 

meet the huge future demand [4] forecasted by Hoffert et al as mentioned in the previous 

section. They argued that although solar energy till date is not even close to 1/10th 
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contributor for the current energy demand, the future of solar energy still looks 

promising. It is the only source that is long lasting (billions of years), geographically 

distributed and only it can offer even more than the requirement of 46 TW with ~600 TW 

of probable practical generation [4]. Actually, solar energy can provide more energy in 

one hour to the earth than 1 year demand of the total energy of the world. 

Solar energy can be converted to useful energy through 3 mediums: Solar to 

thermal, electricity and chemical energy. Each of these processes follows the same 

sequence- capture, conversion and storage [5]. Now solar to electricity conversion is 

known as the ‘Photovoltaic effect’. Solar cells are also called photovoltaic (PV) cells. 

The explanation of this conversion relies on the basics of quantum theory. 

Becquerel first discovered the PV effect in 1839 [6]. His experimental set up had 

a silver chloride (AgCl) electrode and a platinum (Pt) electrode in acidic solution [5]. He 

observed a voltage drop as light shone on the AgCl electrode. The first solar cell was 

invented by Charles Fritts in 1883 [7] who used selenium wafers with very thin layer of 

gold to form metal-semiconductor junction. The efficiency was <1% then. Russell Ohl 

invented the first silicon solar cell in 1941 [8] and it readily proved to be a better 

semiconductor. To-date silicon solar cells are the most widely used cells. In 1954, 

Pearson, Fuller and Chapin invented Si solar cell with ~6% efficiency [9]. They were 

able to make an array of cells and thus the first solar panel. In 1985, solar cell efficiency 

crossed ~20% efficiency [10]. Gallium Arsenide (GaAs) solar cells were also fabricated 

with higher efficiency in 1980s.  

Currently, a number of commercially available cell technologies are there which 

include wafer silicon (both crystalline and multicrystalline) solar cells, thin film cadmium 
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telluride (CdTe) cells, thin film silicon cells (amorphous or microcrystalline), thin film 

copper indium gallium selenide (CIGS) cells, III-V compound semiconductor multi-

junction tandem cells etc. Currently developing solar cell technologies include dye-

sensitized solar cells, perovskite cells, organic solar cells, quantum dot cells and thin film 

copper zinc tin selenide sulfide (CZTSS) cells. The current record of laboratory 

efficiency for different solar cell technologies has been shown in figure 1.2. 

 

Figure 1.2 Record of Best Research Cell Efficiency [11] 

 Solar cells have been in use for a number of decades now. Successful use of solar 

cells includes earth orbiting satellites, hand-held calculators and water-pumping 

applications. U.S. Department of Energy (DOE) started funding PV R&D applications 

right from its start in 1976 [5]. Solar cell manufacturing had a vital and rapid growth for 

the last 10 to 20 years. Annual production of solar module has increased ~10 times every 
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decade. In figure 1.3, annual production of PV power vs. time is shown for 1988-2003. 

Total PV cell production increased from 10 MWp/year (1980) to 1200 MWp/year (2004). 

 

Figure 1.3 World PV Cell/module Production from 1988 to 2003 (in MWp) [5] 

 Among all the cells deployed, ~85% comes from the wafer silicon (c-Si and mc-

Si) and mc-Si contributes to ~53% of the total PV market. As silicon is the second most 

earth abundant element, its availability is handy for the current and future use for PV.  

1.3 Silicon Solar Cells: Defects and Passivation 

Silicon is an indirect bandgap semiconductor. Recombination losses in it occur 

largely via defect levels. These defects could be inside the volume (at the bulk) or at the 

surface of the wafer. Also there can be extrinsic defects like the processing related 

defects. Depending on the silicon growth method, the density of extrinsic defects could 

be high or low. The surface is the most vulnerable part to disturbance of the symmetry of 

the crystal lattice. Defects exist at the surface due to the dangling bonds. These are the 

main reasons of surface recombination losses which affect the efficiency of solar cells 

[13]. 
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 In multicrystalline silicon (which is grown normally by casting process), a large 

amount of grain boundaries can be induced. These grain boundaries (shown in fig 1.4) act 

as high localized regions of recombination as they introduce extra defect levels into the 

bandgap. This results in the decrease of minority carrier lifetime. Also grain boundaries 

block carrier flows and provide shunt paths and thus decrease the efficiency of the solar 

cells [13, 14].  

 

  Figure 1.4 Grain Boundary in Multicrystalline Silicon [13] 

 From the above analysis it is clear that it is really important to find out methods 

for dealing with the defects and impurities for both c-Si and mc-Si. To take care of the 

dangling bonds and defects, ‘passivation’ is a very useful technique which can take care 

of the defects and thus keep surface recombination as low as possible. Aberle argues that 

in case of solar cells, this passivation needs to have long term stability [12]. Surface 

passivation and bulk passivation both are important research topics which lead to the rise 

of efficiency [12-15].  
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In this research work, the target was to design a reliable and stable technique of 

grain boundary passivation for mc-Si samples using hydrogen sulfide. Additionally, a 

compatible surface passivation to accompany the bulk passivation was necessary to 

achieve high lifetime gain compared to unpassivated samples. The proposed technique is 

new and therefore introduces a lot of questions regarding effectiveness, comparison to the 

existing techniques, stability etc. In the next chapters the answers to these questions have 

been described step by step. 

1.4 Thesis Outline 

This thesis has been divided into 5 chapters including this one. In chapter 2 the 

different aspects of bulk passivation has been described for achieving a thorough 

conception. The dependence of electrical and photovoltaic properties on the grain size 

has been stated in details. Currently a number of bulk passivation techniques are being 

used in the industry and research labs. This chapter also covers those along with 

significant findings which could be helpful for the design of experiment. 

In chapter 3 a new set of experimental procedures designed for grain boundary 

passivation by hydrogen sulfide have been described. A detailed explanation of the 

chosen material, equipment and components used in the lab has been mentioned with a 

step by step walkthrough of the procedure. Along with hydrogen sulfide passivation, for 

the sake of comparison and other reasons, hydrogen passivation also had to be performed 

by forming gas annealing (FGA). The procedures for that have also been described. 

In chapter 4 the results of the experiments (performed according to the procedures 

of chapter 3) have been analyzed and explained with the help of figures and tables. The 
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quality of passivation and degree of improvement through passivation and annealing has 

been examined. The stability of the passivation also has been tested. 

In chapter 5 a comprehensive summary of the work has been stated. Key points 

and achievements of this research have also been discussed. Also the future scope of 

research work in this sector has been mentioned.  
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CHAPTER 2 

REVIEW OF BULK PASSIVATION 

2.1 Introduction 

Multicrystalline Silicon (mc-Si) is considered to have a great potential for large 

scale photovoltaic application due to the very fact that it can save a lot of complex steps 

which are necessary for the growth of single crystal silicon. Meanwhile, it still has the 

positive aspects of c-Si like abundance on the earth and stability [16]. Currently, the 

efficiency of mc-Si solar cells is less than 15% in industrial solar cells and the best in the 

research labs is ~20.4% [11], which is a bit less compared to c-Si which demonstrated 

~26.4% efficiency in the research labs [11]. This difference in efficiency is mainly 

contributed by a number of factors. 

The first negative effect from grain boundaries of mc-Si is the fact that these grain 

regions possess attractive potential for photo generated minority carriers. Also the 

carriers are exposed to a very high concentration of recombination centers if they are 

trapped at right on the middle of the boundaries [14]. Another negative effect caused by 

the grain boundaries is the shunting action which overlaps p-n junctions. As a result, the 

open circuit voltage (OC voltage) and the fill factor of the device go down.  

In this chapter, an overview of the currently existing bulk passivation techniques 

has been provided. The chapter starts with the discussion on the theory of the electric and 

photovoltaic properties of mc-Si. Then a review of the current and previous techniques on 

bulk passivation has been included. The target is to pick up key points of a passivation 

procedure and the characteristics improvement expected after passivation. This 
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theoretical study sets the tomb for the design of the experimental procedures followed in 

the next chapter. 

2.2 Effect of Grain Size on Different Properties 

Photovoltaic properties vary quite a lot in mc-Si devices. Ghosh et al argues that 

this wide variation can be explained with the help of effects grain size variation in the 

devices [16]. Grain boundaries can be situated at varied number of sites a solar cell. 

There are 3 types of grain boundaries: 

- Type 1: these grain boundaries are along the columns 

- Type 2: these are deep into the bulk of the crystal 

- Type 3: these are in the p-n junction region 

Only the effects of type 1 were taken into account previously while making the 

estimation of short-circuit photocurrent and as a result, the number from theoretical 

calculations and practical experiments tended to have some difference. After considering 

the contribution from type 2 and type 3, this gap decreases a lot. Grain boundaries 

essentially are the “traps” which also act as recombination centers increasing the surface 

recombination velocity [13]. A number of properties have been described below which 

have correlation with grain size. 

(i) Carrier Concentration and Mobility 

Concentration of doping is a quintessential factor for the determination of 

performance in solar cells. For both c-Si and mc-Si, the change in the mobility and 

resistivity with respect to the doping is not same. The mobility of majority carrier varies 

with the change in doping concentration. For both p and n-type majority carriers in mc-

Si, mobility first goes down with the increase in doping. After reaching a certain point, it 
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again goes up. So there is a change in the sign of the slope for the curve. Now as the 

mobility of the majority carrier reaches its minimal value, a sharp increment in free 

carrier is obvious.  

The doping concentration at which both these happen has been formulated by [16] 

to be as follows: 

𝑁𝑑 ≈  
1012

𝑑
 

Here, 𝑁𝑑 is the doping concentration and d is the grain size in cm. The number 

1012 is due to the factor of trap sites in grains. A number of independent studies [18-20] 

found that magnitude of grain boundary traps inside ± 0.02 eV of the midgap was almost 

1012 cm-2. 

Correlation between resistivity and doping is again different in c-Si and mc-Si. 

For c-Si the resistivity decreases linearly with almost a constant slope for both n and p-

type. For n type mc-Si, the resistivity decreases very fast at lower doping but becomes 

steady after sometime and in line with n type c-Si. For p-type mc-Si the resistivity starts 

at a very high value compared to c-Si and then starts decreasing with doping. After the 

doping was more than 1018 cm-3 there was a sharp fall in the resistivity [16, 18]. 

(ii) Lifetime 

A common procedure for lifetime measurement is photoconductance 

decay technique and according to it, the effective lifetime depends both on bulk lifetime 

and surface lifetime [12]. It is given by the following formula: 

1
𝜏eff

= 1
𝜏b

  +  1
𝜏s

   …   (2.1) 
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where 𝜏b is the bulk lifetime and 𝜏s is the surface lifetime. Again 𝜏b is 

represented as a function of SRH, auger and radiative recombination [13].  

1
𝜏𝑏𝑢𝑙𝑘

= 1
𝜏SRH

 + 1
𝜏Auger

  +  1
𝜏rad

 …  (2.2) 

According to the equation, bulk lifetime is influenced by both intrinsic and 

extrinsic recombination. As silicon is not a direct bandgap material, radiative or band-to-

band recombination is minimum for it. Auger recombination dominates lifetime in case 

of very high carrier concentrations or high injection cases. With the increase in doping, 

𝜏Auger decreases sharply and the effective lifetime goes down [13]  

Surface lifetime mostly depends on the characteristics of the surface. If the 

surface has areas of defects and the lattice is disrupted, another kind of recombination 

called surface recombination comes into play. This surface recombination is generally 

high in case of solar cells if not taken care of in a proper manner. Due to the presence of 

the dangling bonds at the surface and high recombination rate, the close-by area of the 

surface depletes of minority carriers. This results in a flow of carriers from the nearby 

high concentration areas due to the diffusion effect and the recombination rate increases 

[12,13]. So it can be said that this rate of recombination can be controlled by the 

movement of minority carriers towards the surface. To take care of the dangling bonds at 

the surface and hence to reduce surface recombination rate, a layer is grown on top of the 

semiconductor surface which ties up the dangling bonds. As a result, these sites cannot 

work as surface recombination sites anymore. A number of passivation techniques have 

been in use for long time. In fact, surface passivation is one of the major research areas in 

the solar cells as the efficiency improvement due to this is quite considerable. 
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Now in equation 2.1, for a symmetrically passivated wafer, the surface 

recombination velocity is assumed to be pretty low. And 2.1 is rewritten as [12, 21] 

1
𝜏eff

= 1
𝜏bulk

  +  2𝑆eff
𝑊

 …    (2.3) 

Here, W is wafer thickness and 𝑆eff is effective surface recombination velocity. 

Normally the value of 𝑆 is on the order of 107 cms-1 for a surface which has infinite 

number of fast recombination [13]. For a well passivated surface like used in equation 

2.3, 𝑆eff is lower than 250 cms-1.  

Shockley derived equations relating 𝜏s and the cross-sectional dimensions for a 

rectangular filament [22]  

1
𝜏s

 = 1
4
𝜋2𝐷 ( 1

𝐵2
+ 1

𝐶2
)    when 𝑠 → ∞   (2.4) 

and    
1
𝜏s

 = s (1
𝐵

+ 1
𝐶

)    when 𝑠 → 0    (2.5) 

Here D = diffusivity. Lorefski went further with the calculations [16] and derived the 

following equation: 

1
𝜏s

 =  𝐷𝜋
2𝑅2

 for 𝑠 → ∞   (2.6) 

where R is the radius of the cylinder. Later Card and Yang derived another formula [23] 

where they define effective lifetime as 

𝜏eff =  2𝑑 exp(−𝑞𝑉𝑑/𝑘𝑇)
3 𝜎𝑣𝑁is  (𝐸fn − 𝐸fp )

    (2.7) 

Here, 

𝑣 = carrier thermal velocity 

𝑉𝑑  = height of the diffusion potential at the grain boundaries  
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𝑁is  = density of interface  

𝜎 = capture cross-section 

d = dimension of the assumed cube 

𝐸fn  and 𝐸fp  = quasi-fermi levels for electrons and holes.  

Ghosh et al. obtained a good estimate of the lifetime [16] even after neglecting the 

term for the diffusion potential at the grain boundary. They postulated that the following 

equation is enough for 𝜏eff calculation: 

𝜏eff ≈
1

𝜎𝑣𝑁sr 
  … (2.8) 

Here, they introduced another parameter 𝑁sr to denote effective density of 

recombination centers. The assumption was that the sites for recombination are evenly 

distributed all over the bulk of the material and as a result, 𝑁sr has a linear relationship 

with the actual number of recombination sites. For a cubic shaped crystal structure [16], 

𝑁sr = 6 𝑁ss 
𝑑

  … (2.9) 

Here, density of recombination centers is denoted by 𝑁ss . So 2.8 becomes  

𝜏eff ≈
𝑑

6𝜎𝑣𝑁ss 
  … (2.10) 

This model is acclaimed to have been able to match with the experimental results and 

also explain the observed parameters associated. 

2.3 Grain Boundary Passivation Methods 

From the previous section, the basic idea behind the grain boundary and its 

influence on device parameters should be obvious. To take care of these effects, a number 

of passivation methods have been in use for long time. In this section, different grain 
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boundary passivation technologies have been deliberated to have a strong background of 

the prevailing technology that helped to design the experimental procedures which have 

been described later. 

(i) Passivation Using Hydrogen Plasma 

This is one of the earliest methods for bulk passivation of mc-Si that was used by 

Seager and Ginley [14]. In their experiments, they successfully introduced hydrogen 

plasma in mc-Si which proved to be effective at the removal of grain boundary or “in-

gap” states in the material. In another paper, Seager and Castner measured the zero-bias 

resistance [19] of the depletion layers near the grain boundaries in “neutron 

transmutation” doped mc-Si. They established a model that describes the relationship 

between the doping dependence of zero-bias resistance with the density of electron states 

located near the boundaries.  

The zero-bias resistance evidently changed exponentially with the change in the 

barrier height. Low voltage experiment on each grain boundary is extremely sensitive for 

quantification of any effect due to any chemical change. So introduction of hydrogen in 

the boundary regions in this environment was really a challenging task.  

For the experiments of Seagar et al. the grain sizes varied from 200 to 500 µm and 

the material was “single-float-zone-pass semiconductor device grade silicon”. Annealing 

was performed to take care of the damage caused by radiation and annealing was done in 

vacuum at 750 °C for 40 minutes. Gas treatments were performed in a quartz vessel 

connected to a high vacuum system. Excitation of plasmas was performed by a metal 

band connected to a Tesla coil supplying voltage at 1 to 5 kV. The experiment is typically 

performed at 0.1 torr [14]. 
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With the obtained results they prepared a graph showing the conductance vs 1/T 

characteristics for both virgin samples and hydrogenated samples. Now from the graphs, 

it was obvious that the introduction of hydrogen increases the conductance at all the 

temperatures. As the temperature increased, the conductance went up. This happened due 

to fact that introduction of hydrogen in the bulk decreases the effective resistivity as the 

number of recombination sites goes down. 

The space-charge regions near the grain boundaries were wide enough and as a 

result it was assumed that the transport is mainly due to the thermal emission current [14, 

19]. Activation energy EA of the zero-bias resistance is associated with ΦB (conduction 

band bending): 

𝐸𝐴 = Φ𝐵 −
𝑇𝜕Φ𝐵
𝜕𝑇

     (2.11) 

According to the claims of [19], EA does not depend on temperature when the 

range is 270 to 370 K. From the observations of Seager et al, if the density of grain 

boundary states would decreases at or near the Fermi level, it would result in a decrement 

of Φ𝐵 and from the equation 2.11 it can be said that 𝐸𝐴 would also lower down. Among 

some other results, there were some significant observations made by Seager et al which 

are as follows: 

1. Although hydrogen plasmas had been proved to be useful at removal of grain 

boundary recombination centers (as observed from the conductance vs 1/T), other 

gases like oxygen, sulfur hexafluoride (SF6) and nitrogen have not been able to do 

so. For these, they actually decreased the conductance. 

2. Even hydrogen in molecule form was not good enough for this treatment. 
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3. The hydrogenated samples were stable enough and show a stable conductance 

around 300K showing that this technique was reliable. 

4. Plasma treatment did not change the other characteristics of the bulk silicon as the 

diffusion was low in these rang of temperature. 

 (ii) Passivation Using Low Energy Hydrogen Ion Implantation 

A number of papers discussed about the various aspects of this passivation 

technique [24-26]. Through these papers, it has been established that ion implantation at 

low energy can improve the electrical properties of mc-Si and thus increase the efficiency 

of solar cells. Using a Kaufman-type ion source or similar equipment was considered to 

be the best approach as the processing time reduces a lot by this. Muller et al. proposed a 

method which did not require magnet and highly stabilized power supply and hence was 

more cost effective [24]. 

A number of analysis methods like SIMS, RBS, reflectivity, ellipsometry were 

performed on p-type wafers. Also C-V, I-V characteristics, DLTS were performed before 

starting the experiment to compare the results before and after the experiment [24, 27]. 

The described ion source had extraction energy in between 0.1 to 1 keV and the source 

had a post-acceleration electrode. For generation of electrons, the ion source had a 

tungsten filament. A magnetic coil helped to raise the ionization of the used gas.  

After the experiments both macroscopic and microscopic analysis were done on 

the samples. Distribution of hydrogen for different temperature and different ion source 

energy were plotted. Also hydrogen concentration vs penetration and time of irradiation 

were plotted. Important parameters for solar cell like reflectivity and absorption 

coefficients were also measured for virgin mc-Si, hydrogenated mc-Si and single c-Si to 
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compare the quality of passivation. Muller et al showed that reflectivity increases for 

hydrogenated sample for a broad wavelength range of 250 to 800 nm [24]. Also for the 

case of absorption coefficient they report an increase for the wavelength spectrum of 0.3-

1.1 µm. This clearly helped to increase the internal quantum efficiency of the 

hydrogenated mc-Si samples compared to the virgin mc-Si samples. Microscopic analysis 

was performed to find out the defects caused by the bombardment of ions and the amount 

of damage of structure. For example, C-V curve showed irregular effects around the 

surface up to a distance proportional to the hydrogen penetration [27]. They also reported 

that annealing at 700 °C for 30 minutes was enough to retain the original curve. 

From another experiment, it was found that the dominant peak could also act like 

a trap or recombination center for majority carriers which was actually another defect that 

was caused by ion bombardment. Again this could be removed by annealing at just lower 

than 400°C. I-V characterization was done for 2 different sets of mc-Si silicon samples in 

dark and AM1 condition. Open circuit voltage (VOC) and Short circuit current (ISC) were 

characterized for hydrogenated mc-Si. The experiments showed improvement in both of 

them at a certain implant dose and temperature. For dark I-V, a small improvement of 

junction quality was reported [24]. For both kind of mc-Si samples used, the best 

conditions for achieving higher fill factor and efficiency are reported. Spectral response 

for different sample sizes were measured and internal quantum efficiency for different 

wavelengths were measured which shows improvement after hydrogenation [28]. 

Stability is the only concern that comes into the picture here. After the 

experiments were repeated over time, there were some degradation both in VOC and ISC as 
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they tend to decrease a certain amount very quickly. The change was not exponential and 

the values were almost fixed after a certain number of days. 

 (iii) Passivation with Al Treatment on Back, Forming Gas Anneal and Oxide Passivation  

This process is followed for a number of different cases including edge-defined 

film-fed grown (EFG) mc-Si. EFG Si has a high grain size with the average from a few 

mm to ~1cm [29]. Having so large grains, the samples tend to have lots of dislocations, 

twin boundaries and impurities. Sana et al proposed a process that combined the gettering 

effect of Aluminum on the back, oxide passivation on the front surface and forming gas 

annealing (FGA) [29]. They reported an efficiency change from 7.8 to 14.1%. 

p+ back surface field was formed by Al treatment by evaporating 1 µm Al on the 

back and then a drive-in at 850 °C for 35 min. surface passivation was achieved by oxide 

formation and that was performed simultaneously during the drive-in of Al. According to 

Sana et al [29, 30], this helped to make the process easier and cheaper. To differentiate 

between the processes, some samples did not undergo Al diffusion on the back and some 

did not go through FGA. For the cells without All BSF, Al back contact was used. 

FGA was performed for 2 hours at 400 °C. Forming gas contained 10% hydrogen. 

After this, 2 drive-ins were performed again at 400 °C using FGA and each of them 

lasted for 45 min. The sample set that did not go through annealing, were annealed in 

nitrogen ambient for same amount of time (2 hours) and went through similar drive in for 

45 min with nitrogen.     

After following the procedure mentioned above, the authors achieved a set of 

samples to compare and derv the effect of each and every step. Those were 

- Samples with no oxide, no Al BSF, no FGA 
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- Oxide, no Al BSF, no FGA 

- Oxide, Al BSF but no FGA 

- Oxide, Al BSF and FGA 

Now with all these samples a number of characterizations like measurement of 

internal quantum efficiency (IQE), VOC, Short circuit current density (JSC), Fill factor, 

Series resistance, shunt resistance, lifetime and diffusion length were performed. 

Even for large grain cells like EFG had an improvement of IQE which were 

visible just after oxide passivation as oxide passivation on the surface had already been 

proved to be the best among surface passivation techniques [31]. Sana et al. reported in 

their paper that Al BSF also improved the IQE further after oxide passivation which 

meant that the effects were being added to each other. Also Al BSF increased VOC, JSC, 

diffusion length. 

Hydrogen passivation of bulk was already well established and in this case FGA 

was performing as the carrier gas of monoatomic hydrogen and thus improving the IQE. 

FGA was reported to be very compatible for solar cell fabrication and used as a routine 

procedure for MOS devices for decreasing the interface density of Si-SiO2 [29, 30]. 

Another set of experiment was performed to find out any correlation between Al 

BSF and FGA. So two sets of samples were prepared- one with FGA and Al BSF 

(through diffusion) and the other set with FGA only and Al just as back contact. Both had 

oxide passivation. For the 2nd set, there was an improvement of IQE compared to oxide 

passivated sample. But when Al BSF was used with FGA, there was further improvement 

which could be only explained by the fact that Al BSF helps to generate additional 
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atomic hydrogen which in turns achieves more bulk passivation and results in higher IQE 

[29]. Thus this method stands as one of the standard methods for passivation. 

 (iv) Passivation using Hydrogen Rich Amorphous Silicon Nitride (SiNx:H) 

Amorphous SiNx:H is right now playing a very important role for the fabrication 

of mc-Si solar cells. Its significance is mainly due to 3 reasons [31-36] 

- SiNx works as the antireflection coating which is a must in a solar cell. The 

refractive index of the layer can be varied by changing the Si:N ratio over a wide 

range of 1.9 to 2.5 [34] which is required for almost every kind of cells. 

- SiNx itself is a good surface passivation material. And it has the added benefit of 

saving another layer or process cost as it is already used for the antireflection 

coating. Although nitride passivation is not as good as oxide passivation (which is 

the best for surface passivation) [12, 31], still it is the most widely used technique. 

- SiNx:H can be also used for hydrogenation of the bulk if a short thermal process is 

introduced and thus reducing the number of defects and impurities in the bulk.  

For the deposition processes of SiNx, a number of processes have been described 

in [31-35]. The most effective of them are the various chemical vapor deposition 

processes like atmospheric pressure CVD (APCVD), low pressure CVD (LPCVD), 

plasma enhanced CVD (PECVD). These processes use silane (SiH4), ammonia (NH3) or 

nitrogen as reactant gases. PECVD has some benefits compared to LPCVD and APCVD. 

Those are as follows: 

- Deposition rate is higher for PECVD [34,35]  

- Offers lower processing temperature (500 °C) compared to APCVD (700-900 °C) 

and LPCVD (750 °C) [35] 
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- Better antireflection coating as it has higher tuning range of refractive index of 

SiNx by controlling Si:N 

- Better quality surface and bulk passivation from PECVD nitride [33-35] 

J. Hanoka et al. made important contributions regarding the use of SiNx 

passivation and its application as passivation material [35,36]. Now there are 2 different 

methods of PECVD- direct and remote PECVD [35]. 

Direct PECVD 

All the gases (SiH4, NH3, N2) are injected directly among the electrodes 

and the set electromagnetic field excites them. Si substrates are placed within the plasma. 

Direct plasma excitation is performed by the generator. 3 frequency ranges can be used: 

Low (10 – 500 kHz), High (13.56 MHz) or very high (30-100 MHz). Low frequency can 

cause surface damage as a result of heavy ion bombardment and result in worse 

passivation [12]. Sometimes damages can be helpful for bulk passivation [37]. 

Remote PECVD 

Plasma excitation performed outside the chamber; usually microwaves are 

used. Normally, NH3 or N2/H2 are “excited and directed onto” a substrate. SiH4 is directly 

injected into the chamber and there it gets dissociated by the atomic hydrogen. For 

remote PECVD, rate of deposition is higher and also it comes with a surface damage free 

passivation system. Main disadvantage is that remote PECVD might not be the best 

option for bulk passivation as there was no damage done by the plasmas [35]. 

For achieving higher bulk passivation, direct PECVD also incorporated a heat 

treatment which frees up hydrogen from Si and N and diffuses into the layers of mc-Si 

and in the process bind itself with the dangling bonds and thus help to increase the quality 
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of passivation [35]. This process is called “firing through” in which the front cell contacts 

of Silver (Ag) are fired through the layer of nitride. Good contact between emitter and 

front contact is achieved in this process which helps to achieve higher fill factor. The 

passivation quality of bulk from depends on the defect states in the used material. If there 

are more defect states, the passivation is inherently better [34,35]. Duerinchx et al. 

described some more benefits of the firing through process: 

- Emitter passivation: During the ion bombardment, the surface is damaged which 

is annealed during this treatment during which nitride passivates the emitter. 

- Diffusion barrier: Nitride layer works as diffusion barrier which prevents “metal 

spikes” deep into the bulk and thus helps to decrease any shunting action 

- Al-BSF formation: Creates the necessary field for an “in-situ” Al-BSF formation 

for no extra process and cost. And the Nitride layer works as diffusion barrier 

which prevents “metal spikes” deep into the bulk and thus helps to decrease any 

shunting action 

From all these discussions, the reasons behind the popularity of amorphous 

SiNx:H is clear. If any new technique has to compete with the existing ones, it certainly 

has to go through the testing procedure before being recognized as a passivation source.  

2.4 Conclusion 

After the thorough study made in this chapter, a general idea of bulk passivation 

technique is now clear. The ideas are very important for designing a new experiment 

because a number of key points have to be taken care of for bulk passivation of mc-Si 

samples and also to compare the new technique with the existing techniques. 
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CHAPTER 3 

DESIGN OF EXPERIMENTS 

3.1 Introduction 

A number of popular and well established techniques for bulk or grain boundary 

passivation have been described in the previous chapter. From the understanding, it is 

obvious that the mc-Si solar cells are still far away even from c-Si solar cells in terms of 

efficiency. So to find out new, feasible and reliable passivation techniques is a continuous 

journey in this field. The most challenging part is to find out commercially usable one 

with higher lifetime and efficiency. Theoretical studies and practical experiments are 

being continued on alternative techniques of surface passivation and bulk passivation 

which are to be incorporated with solar cells in the near future. 

In this chapter, a new grain boundary passivation technique is proposed. The 

design of the experimental procedures has been described step by step. The equipment 

used in the lab and the set of conditions followed are also mentioned. The results and 

analysis of experiments have been detailed in the next chapter. 

3.2 Material Selection for Bulk Passivation 

Choice of a new bulk passivation technique starts with the selection of the right 

material. A number of important considerations have to be made for this. For the 

proposed grain boundary passivation technique, a novel material has been proposed and 

Hydrogen sulfide (H2S) has been chosen. To the best of the knowledge of the authors, 

hydrogen sulfide has not been used for bulk or grain boundary passivation of mc-Si. The 

initial reasons behind its choice and the ideas proposed for the passivation and then the 

details of experiment have been explained here. 
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(i) Success in Surface Passivation 

For a number of years, use of sulfur as a surface passivation of crystalline 

silicon (c-Si) was proved to be very successful by the research of M. Tao and his group 

[38-41]. Sulfur passivation using a solution as a sulfur source like ammonium sulfide 

(NH4)2S has been studied [39]. They were able to reduce the number of density states by 

more than one order of magnitude. This change was visible from the barrier height of Al 

and Si. For Al and n-type Si (100), they reported < 0.11 eV which was way less than 0.56 

eV of unpassivated samples. For Al and p-type Si (100), they reported a record of 1.10 

eV as seen from the I-V and C-V characterization whereas for unpassivated samples it 

was 0.66 eV. Also for the higher work function metal Ni, they achieved a barrier height 

of 0.75 eV with n-Si (100) and 0.51 eV with p-Si (for non passivated 0.61 eV and 0.54 

eV respectively). 

Later, H. Zhang et al under M. Tao demonstrated that sulfur could be used also 

from a gas source like hydrogen sulfide for surface passivation. They reported a reliable 

and stable surface passivation from sulfur using chemical vapor deposition based 

technique. For Al and n-Si (100) the reported barrier height was less than 0.08 eV from 

both I-V and C-V characterization [41]. For Al and p-Si, the barrier height from C-V was 

1.14 eV and ~0.77 eV from I-V curve. The difference of these values was caused by 

image force lowering of barrier and edge leakage current [41]. 

Experiments on the improvement of surface passivation of mc-Si were conducted 

in the lab with ex-situ and in-situ cleaning with a 2 step passivation recipe. But the 

success on mc-Si largely depends on the large rate of recombination that happens in the 

grain boundary regions of mc-Si. So no significant results were reported from only the 
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surface passivation of mc-Si. To minimize the recombination rate of minority carriers in 

the grain boundaries hydrogen sulfide diffusion was a choice for which the experimental 

design could be easily set up given that the lab was already prepared with necessary 

equipment for surface passivation and using hydrogen sulfide for that. Also the 

comparison between the quality of bulk passivation by hydrogen and H2S could be easily 

done as hydrogen was already being used as a cleaning step for surface passivation. 

(ii) Benefits as an Element 

For surface passivation, especially valance mending passivation (VMP), 

some guidelines were proposed by Kaxiras [43]. But for grain boundary passivation there 

are no such guidelines. One guideline for VMP mentioned that the covalent radius of the 

adsorbate and silicon should be very close. Now even for bulk passivation, if this holds 

true, then there is supposed to be a stronger bond between the foreign particle used and 

the silicon atoms in the bulk. For hydrogen, the covalent radius is 32 pm, 111 pm for Si 

and 105 pm for sulfur [44]. So sulfur should be a good match for Silicon if it can be 

diffused into the bulk. 

Another advantage of sulfur is that it is heavier as its atomic mass is higher. So 

the desorption rate of sulfur would be much lower than hydrogen. Also sulfur has valency 

of 2 meaning that one atom can make 2 covalent bonds and take care of 2 dangling bond 

whereas hydrogen has valency of 1 which means each atom of hydrogen can take care of 

one dangling bond at a time. 

(iii) Combined Effect from Hydrogen and Sulfur 

As mentioned in chapter 2, all the current and previous bulk passivation 

techniques used hydrogen to passivate the grain boundary regions. In the proposed work, 
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hydrogen sulfide use helps to take the advantage of both hydrogen and sulfur at the same 

time. As evident from the periodic table, hydrogen is much smaller in size compared to 

sulfur. If the grain boundary regions are big enough, it can be a place for sulfur item to fit 

and stay more easily than hydrogen. The covalent bond is supposed to be stronger 

between silicon and sulfur compared to silicon and hydrogen.  

(iv) A Compatible Surface Passivation with Bulk Passivation 

After studying the bulk passivation techniques thoroughly, the importance 

of the surface passivation becomes obvious. If the bulk passivation is not accompanied by 

a compatible and reliable surface passivation simultaneously, the increase of the internal 

quantum efficiency is almost always undetected. And measurement of lifetime and its 

degree of improvement can be only detected only when there is no surface 

recombination. For example, bulk hydrogen passivation is almost always incorporated 

with nitride passivation or oxide passivation. This oxide or nitride passivates the surface 

and makes any change in the improvement in the bulk detectable. For the proposed 

technique, the order of merit of passivation quality is lifetime measurement for which a 

stable surface passivation is a must. For this, Aluminum oxide (Al2O3) is used which is 

already acknowledged as one of the best surface passivation techniques in use. 

3.3 Experimental Set up and Equipment 

Before going to the details of the experiment, choice of equipment and their role 

in the experiment are very important to understand the recipe and the results. 

(i) Diffusion Furnace 

  The diffusion furnace from MTI corp. consists of a quartz tube which is 600 mm 

long, has the outer diameter (OD) of 50 mm and inner diameter (ID) of 43 mm. The 
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temperature can be set up according to the requirement for specific duration. Maximum 

temperature rating is 1100 °C. The tube can work properly in low pressure conditions. 

(ii) Quartz Rod 

Loading and unloading the sample inside the tube furnace was an issue, especially 

unloading the sample from the middle of a quite long quartz tube (as mentioned- the total 

length is 600 mm) was really tricky. For this purpose, a quartz rod is used. Now this rod 

was designed with customization specifically for this experiment. The rod is almost 1’-5” 

long and the diameter is 1/8”. The front end is divided in two branches which made it 

look like “Y” in which the tail of the Y is the length of the rod. Now the distance between 

the heads of the branches (that looked like “V”) is ¾” to make it easily movable inside 

the tube without touching the metal covers. Also this part was flattened after polishing so 

that the samples could be placed on this flat surface for loading and unloading. Also the 

thickness in that part was reduced for making it useful for unloading the sample. So 

during unloading, the rod’s V shaped branches can easily go under the samples that are 

marginally smaller than the ID of the metal outer rings of the furnace.  

(iii) Vacuum Pump, Gauge and Set of valves 

Pfeiffer Vacuum facility (Model: HiCube 80 Eco) is used in the lab to control the 

pressure in the furnace. The display and control unit is easier to operate. The system is set 

up with a number of flanges and connectors and valves to operate at the exact parameters 

and conditions. The pump is connected through flexible tubes, flanges and connectors 

with the tube furnace. 

A full range composite Pfeiffer vacuum gauge is connected with the pump which 

is supposed to give correct data in the range of 10-8 to 100 mbar with ±5 % accuaracy 
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and up to 1000 mbar with ±30 % accuracy. But the problem with the gauge is that it is 

unable to detect correct pressure after it goes above 10-1 mbar as the pirani gauge used in 

this is not reliable for high range of pressure. But for the designed experiment, at least 

atmospheric pressure is needed to be measured accurately. So an extra pressure gauge 

had to be introduced. 

(iv) Capacitance Manometer 

To measure the pressure in the high range (from 0 to 1000 torr) correctly, a 

capacitance manometer from Setra (Model 730) is used. This model is very reliable with 

fast response time, low noise and quick return to zero. And with an accuracy of ± 0.5% it 

is the best fit for the purpose. Customized connection for this was ordered to minimize 

number of connection so that no inaccuracy resulted due to pressure lost in those parts. 

(v) Pressure Display Unit 

The composite pressure gauge from Pfeiffer needed no extra display as it is 

connected to the vacuum pump directly and the pressure is displayed in the pump’s 

display unit. But for the capacitance manometer, an extra display unit was needed. 

Terranova 809 from Duniway Stockroom Corp. is used for this display. 

During the installation of the capacitance manometer and the display unit, care 

was taken to set the calibrations right. Both the zero levels were set properly and 

atmospheric pressure was tested on them. After the initial set up, no further modification 

is necessary at any step for these items during the experiment. 

(vi) Hydrogen Sulfide Gas source 

Hydrogen sulfide gas is flown into the diffusion furnace from a gas cylinder kept 

in a separate room just adjacent to the lab. The gas flow into the lab system is controlled 
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by 2 step valve control in the cylinder room along with digital control. All these are for 

safety measures in the lab to ensure proper environment for safe, sound and reliable 

operation. The exhaust pressure of the gas from the cylinder is almost 20 – 25 PSI. The 

gas flows through coaxial lines in which the jacket is always full with N2. Even the 

pressure of this N2 is always kept over a limit of 40 PSI which is another safety measure 

to prevent any disaster in case of any accidental leak in the coaxial line. 

(vii) Pressure Control Valves 

After the gas flew into the lab from the cylinder through the coaxial line, it had to 

go through 2 different control valves before the diffusion furnace. The first valve is a 

diaphragm valve from Swagelock which could isolate the cylinder from the experimental 

set up. This is a quarter turn actuation valve which is just like a switch for controlling the 

gas flow. The handle shape provided indication of ‘open’ and ‘closed’ position. 

The second valve after the isolation valve is a Bellow-sealed metering valve 

which is used to fine tune the flow rate of the gas which would go into the diffusion 

furnace. The handle of the valve could measure 0.001 inch turn and total 6 turns are 

needed to open the valve to the maximum flow rate. The flow rate (Cv) for the valve 

could be controlled even lower than 0.005 and as a result pressure fine tuning is very 

satisfactory. 

(viii) Scrubber 

The exhaust hydrogen sulfide gas after the experiment from the vacuum pump is 

flown into a scrubber. The scrubber is a set up for taking care of the toxic hydrogen 

sulfide by mixing it with water. Water is flown into the system from the utility. A 

separate control system is set up for the scrubber to operate correctly. Before running any 
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diffusion experiment, the scrubber control is turned on to make the system ready for 

receiving exhaust gas. The scrubber operation guidelines are followed. After a certain 

number of operations, the liquid from the scrubber is collected in a large tank and then 

transferred as a chemical waste to the environmental affairs facility. 

(ix) Gas Sensors 

2 types of gas sensors are used in the lab. One is installed as the part of the facility 

in the lab which monitored the level of hydrogen sulfide all the time. This is connected to 

the central alarm system for protection in case of any accident in the level. This sensor is 

a bit away from the furnace and situated near the ground. 

The other sensor is a hand held sensor which is turned on only before flowing 

hydrogen sulfide into the furnace until the end of the experiment. This sensor is always 

kept very close to the furnace or other places where the probability of leaking is high. 

Both the sensors triggered alarms at 3, 5 and 10 ppm of H2S. But as H2S has a very 

distinct smell, it is easier to detect the presence of H2S immediately in case of any leaking 

even before the sensor is triggered. 

(x) Sinton Lifetime Tester 

Minority carrier lifetime (𝜏) is an important parameter in the determination of 

performance of solar cells as mentioned in chapter 2. In the lab, Sinton lifetime tester is 

used which follows Quasi-Steady-State Photoconductance (QSSPC) method. The tester 

came with a number of reference cells which could also be used for the calibration of the 

tool. The operation of this tool is performed according to the manual provided. 
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Along with the components mentioned above there are some other equipment like 

set of beakers, stirrer, hot bath, electronic weighing machine, thermometer, specific 

tweezers for each step of operation etc.     

3.4 Recipe of Hydrogen Sulfide Passivation 

The experimental set up for bulk passivation consisted of 3 main steps: cleaning 

of wafers, diffusion of H2S gas and surface passivation by Al2O3. For another part of the 

experiment, annealing is also performed later after lifetime measurement on sulfur or 

hydrogen passivated samples. In this section, the passivation recipe steps have been 

mentioned step by step. 

(i) Preparation and Cleaning of the Samples  

The starting material or the samples came from multicrystalline silicon 

wafers ‘As-Cut by wire saw’ which were 125 mm × 125 mm in size. The wafers had the 

thickness of 300 µm for each as were Boron doped. The resistivity varied from 0.5 to 20 

Ωcm. The wafers are cut into small sizes of 2-2.5” in length and less than 1.5” in width. 

During cutting the wafers in smaller pieces, care is taken so that no extra contamination is 

caused by any metal contact with the wafers. 

For the preparation of the samples, a proper cleaning is a must to have any 

meaningful results which can be explained. Without cleaning steps, the target particles 

cannot be diffused into the grain boundaries of the samples. To ensure the reliability of 

the experiments, all the samples had to undergo 3 steps of ex-situ surface cleaning which 

has been described here: 

A. Removal of Damaged Layer by Wire Saw: 
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As all the ordered wafers are as-cut, there would be damage layer of ~6 µm due to 

the wire saw cutting which had to be removed. For this 30% sodium hydroxide 

(NaOH) solution is used. In a 1 L beaker, almost 300 to 400 mL 30% solution is 

prepared and then heated using the hot plate up to 80 °C under the safe hood. The 

magnetic stirrer is rotated at a rate of 100 to 150 per min to maintain the 

uniformity of the solution.  

The samples are first rinsed in clean deionized (DI) water to remove any dust or 

particle on the wafers. After the temperature reached 80 °C, the samples are 

soaked into the solution for 5 min. The etching rate is almost 1 µm/min. After that 

the samples are rinsed in the DI water to remove any remaining alkali solution. 

B. Metal Removal 

Normally in a mc-Si sample, metal contamination is common. Due to the use of 

wire saw or the damage removal step (where metal hydroxide is used), this metal 

removal step is a part and parcel for cleaning. For this stage, RCA-2 cleaning 

procedure is followed. RCA-2 solution is the mixture of 1 part 27 % hydrogen 

chloride (HCl), 6 parts water (H2O) and 1 part 30 % hydrogen peroxide (H2O2).  

300 ml of DI water is put in a Pyrex beaker and 27% 50 ml HCl is added very 

carefully to the solution. The solution is heated up to 70 °C using hot bath and 

magnetic stirrer is used like in the previous step. After the temperature reached 70 

°C, 50 ml H2O2 (30%) is added with it. After the bubbles in the solution, the 

samples that already went through the stage of damage removal are soaked into it 

for 10-15 minutes. When the cleaning is finished, the samples are removed and 

rinsed with clean DI water. Then the samples are dried using the nitrogen to 
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remove any remaining solution or water and then preserved in the clean wafer-

holders where they are kept till the final stage of cleaning. 

C. Native Oxide Removal 

Both c-Si and mc-Si samples grow a native silicon dioxide (SiO2) very quickly on 

them even if they are kept for a very short time in the open air. So this step of 

cleaning is done when everything else in the lab is ready for the diffusion 

experiment and all the previous cleaning steps are finished on the samples. For 

this stage, 2% hydrogen fluoride (HF) solution is prepared in a Teflon tank. The 

samples are soaked into the solution for 1-2 min and then dried with nitrogen 

properly under the hood to keep away from air or any moisture content. 

The following table 3.1 summarizes the cleaning steps mentioned here. 

Table 3.1: Cleaning Steps of Multicrystalline Silicon Samples 

Step No Step Name Solution Temperature 
(°C) 

Time 
(minutes) 

1 
Damage layer 

removal 

NaOH 

(30%) 
80  5 

2 
Metal removal- 

RCA2 

HCl/H2O2/H2O 

(1:1:6) 
70 – 80 10 – 15 

3 
Native oxide 

removal 

Dilute HF 

HF/H2O (1:50) 
25  1 – 2 

 

(ii) Diffusion of Hydrogen Sulfide in Grain Boundaries of the Samples  

Before starting the experiment, it is made sure that the isolation and metering 

valve both are closed and also the valve in the vacuum pump is closed. A flowchart of the 

procedure has been mentioned in figure 3.1 which gives the whole scenario. 
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Figure 3.1 Flowchart Showing Diffusion of H2S in mc-Si Grain Boundaries 

Samples (just after HF treatment) loaded at the 

middle of the furnace by the customized rod 

Capacitance manometer turned on, Vacuum pump is 

started, Heater preset to a temperature (Tdiff) at a 

specific ramp rate for set duration (tdiff) 

After pressure < 5 × 10
-6

 mbar, heater in the furnace 

started, Scrubber was started before gas flow 

When heater reached the set temp, vac. pump is 

stopped and the furnace tube sealed; H2S gas flow is 

started; Pressure in the diffusion chamber is set to 

700 torr, diffusion started for set duration 

After finishing diffusion, vac. started after < 200°C, 

When pressure < 10
-4

 mbar, vac. pump is stopped 

Tube is filled with N2 for purging up to 750 torr, 

Cleaning done twice by vacuum and refilling N2 

Scrubber is stopped; 

When temp. < 100°C, sample unloaded carefully 
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In the procedure, the parameters tdiff and Tdiff are changed to find out the best 

condition for passivation. 

(iii) Surface Passivation with Aluminum Oxide by Atomic Layer Deposition  

After the diffusion of H2S in mc-Si samples, they are kept in small wafer 

holders till the next step of Aluminum Oxide (Al2O3) passivation. Before surface 

passivation, another round of 2% HF treatment for 1-2 min is performed to remove native 

oxide from the samples. A 10-nm Al2O3 film is deposited on both sides of the 

polycrystalline silicon by atomic layer deposition (ALD) at a substrate temperature of 

200°C. Trimethyl Aluminum, also called TMA [Al(CH3)3] and water (H2O) are the 

precursors for Al2O3 deposition through the following chemical reactions: 

Reaction 1: Surface-OH + Al(CH3)3 → Surface-O-Al(CH3)2 + CH4 

Reaction 2:  Surface-O-Al(CH3)2 + 2H2O → Surface-O-Al-(OH)2 + 2CH4 

Pulse durations are 0.015 seconds for TMA and 0.015 seconds for H2O. The flow 

rate of N2 carrier gas is 20 sccm, and the chamber base pressure is around 150 mtorr. The 

Al2O3 thin film is utilized to passivate the surface of mc-Si samples. 

(iv) Lifetime Measurement  

The initial conditions are set in the lifetime tester and the ready samples 

are measured following the operation manual. Lifetime is measured for both sides of the 

samples and then the average is noted down for the further analysis. 

(v) Post-Annealing   

After the measurement of lifetime, the samples that gave the highest 

lifetime are used for another round of post annealing in the furnace. The annealing is 

performed in open air. The post annealing temperature varied from 250 °C to 650 °C with 
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50 °C interval. Now after every annealing, the lifetime is measured and noted down and 

the samples are again loaded back for the annealing. Thus the effect of post annealing on 

the bulk passivated samples could be analyzed. 

3.5 Recipe of Bulk Passivation Using Hydrogen by FGA Annealing 

There are 2 reasons behind the experiment for bulk passivation by hydrogen. The 

first one is the comparison of quality of passivation between hydrogen sulfide and 

hydrogen. Another reason is the fact of finding out proofs of hydrogen’s influence in H2S 

passivation because both sulfur and hydrogen could contribute towards the bulk 

passivation. This has been covered in details in chapter 4 in the analysis section. 

Now the procedures for hydrogen passivation starts with the same cleaning 

procedures followed in H2S passivation mentioned here in 3.3. And after the passivation 

the samples go under the same Al2O3 passivation and lifetime measurement and post 

annealing steps. So only the diffusion recipe has been mentioned in this part. 

For hydrogen passivation, the popular forming gas annealing (FGA) method was 

used in the lab which has already been detailed in 2.3. For conducting the FGA 

annealing, the chamber of an existing CVD system is used which has the facility for 

flowing the required gas over the samples in a very clean environment with good control 

over time, temperature and pressure. 

After cleaning the samples, they are loaded in the chamber and vacuum pump is 

started. The heater is started to the diffusion temperature. At the same level of pressure 

mentioned in the previous section and at the set temperature, vacuum pump is stopped. 

5% forming gas is then flown into the chamber for a set duration of time. After the FGA 

process, the chamber is purged with nitrogen before unloading the samples. Then the 
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samples undergo the same procedures like mentioned before. After measurement of 

lifetime and post annealing of the samples, the steps are complete and the collected data 

is ready for analysis. 

3.6 Summary 

The bulk passivation recipe using hydrogen sulfide has been described in details. 

Along with that the procedures followed for hydrogen passivation for mc-Si samples has 

been mentioned which is done for the sake of analysis and comparison. Quality of 

passivation obviously depends largely upon the procedures followed. So the results and 

analysis section are totally dependent on the design of the experiments. 
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CHAPTER 4 

RESULTS AND ANALYSIS 

4.1 Introduction 

In this chapter, the data from the measurements have been analyzed. First the 

method of lifetime gain calculation has been described which is followed for all the 

analysis. Experiments on bulk passivation seemed to improve lifetime which gives an 

idea about the quality of the passivation. Also a comparative analysis with hydrogen 

depicts a clear picture. The post-annealing experiments also provide significant results. 

Also the stability of both kinds of passivation and impact of post-annealing on stability is 

important. These topics have been presented in this chapter sequentially. 

4.2 Calculation of Lifetime Gain 

 In this part the calculation of minority carrier lifetime gain with the lifetime tester 

has been presented for the clarification of understanding the results presented in the later 

sections. The sample after Al2O3 passivation or post-annealing is ready for lifetime 

measurement. The lifetime tester is started 30 min before the measurement. Once it is 

ready, the software is turned on and the instrument is ‘zeroed’ (which records the 

conditions without any wafer). The wafer thickness, resistivity, minority carrier 

concentration at which the lifetime to be recorded are given to the system as inputs.  

After that the samples are mounted on top of the base of the lifetime tester. And 

light is flashed. After it records the values, sometimes adjustment of the graph is needed 

so light is needed to be flashed again. When the graphs are finally ready, the lifetime is 

noted down for further analysis. 
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For the experiment, the thickness of the wafers is 300 µm. The minority carrier 

concentration selected for measurement of lifetime is 5 × 1014 cm-3 which is used for all 

the measurements. Optical constant is selected to be 0.7 which is normally used for both 

p-type and n-type wafers. After the measurement information like lifetime, sheet 

resistance etc. are calculated by the tool and printed on the screen. In figure 4.1, one of 

the graphs from an experimental result has been presented here. 

 

Figure 4.1 Minority Carrier Lifetime vs. Minority Carrier Density for Passivated Sample 

The lifetime is then normalized by the base value of the control sample. For 

example, the lifetime from the above graph for the sample is 24.97 µs. The control 

sample from the same wafer showed a lifetime of 0.37 µs. So the lifetime gain for the 

current sample is (24.97/0.37) × 100% or ~6750%. 
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4.3 Analysis of Lifetime after H2S Diffusion Experiment 

(i) First Phase: 

The first set of experiment of hydrogen sulfide diffusion was done with no 

previous idea about the exact experimental conditions. In this stage, the diffusion 

temperature (Tdiff) was varied from 400 to 600 °C with a 50 °C interval. Two sets of 

experiment were performed where 2 diffusion times (tdiff) were used- 20 minutes for the 

first set and 40 minutes for the second set. So in total 10 samples were needed which 

came from a single mc-Si wafer just to make sure that all the samples had the same 

resistivity and same initial lifetime and so the results are directly comparable. And all of 

them went under same cleaning steps, HF treatment and Al2O3 surface passivation.  

To compare the lifetime from H2S passivated samples, a control sample from the 

same wafer is also prepared. This control sample also went under the cleaning steps and 

Al2O3 surface passivation, just the passivation step was skipped. Now the lifetime of the 

control sample is used as the base which indicates the lifetime of just surface passivated 

sample and all the lifetimes from both grain boundary and surface passivated samples are 

normalized on the control sample basis which gives the order of improvement through 

‘only’ bulk passivation. 

From the figure 4.2 significant improvement of lifetime of at least one order is 

distinguishable which also indicates the quality of the bulk passivation achieved by H2S. 

For 20 min highest lifetime gain is ~1017 % and for 40 min highest lifetime gain 

achieved is ~934 %. Also in the graph, two distinct peaks can be seen in the lifetime gain 

vs temperature graph. One peak is at ~450 °C and the second peak at ~550 °C. 
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Figure 4.2 Lifetime Gain as a Function of Diffusion Temperature for H2S 

(ii) Second Phase 

Now the result of the first phase of experiments directed to go through the 

second set of experiments to confirm the unique phenomenon of 2 peaks at two 

temperatures. So the experiment was repeated with another mc-Si wafer. A smaller 

temperature interval of 25 °C is chosen this time and the temperature range is unchanged. 

The diffusion is done for 40 min. So 9 samples were needed for this and like before they 

all were from the same wafer. Also for these samples, the collected data of lifetime are 

normalized on the basis of the lifetime of the control sample. In the next page the analysis 

for the second phase has been presented. 
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Figure 4.3 Lifetime Gain vs. Temperature for H2S with Smaller Temperature Interval 

From Fig 4.3, the lifetime measurement again shows two peaks roughly at the 

same regions ~450 °C and ~550 °C. The lifetime gain at ~525 °C is ~2750% and at ~550 

°C is ~2347%. At the other peak of ~450 °C the gain is ~1844 %. The minimum lifetime 

gain at ~475 °C is ~660 %. The results suggest that a significant portion of the dangling 

bonds at the grain boundaries have been terminated and proves the effectiveness of H2S 

in grain boundary passivation for mc-Si samples. These results raised two questions:  

1. Why there are 2 peaks in the lifetime gain graph? 

2. Is the effect of passivation happening due to the presence of hydrogen or 

sulfur in H2S? 

To answer these questions, the next set of experiment was developed. Grain 

boundary passivation was done by forming gas annealing (FGA) to study the effect of 

only hydrogen in the grain boundaries and eliminate any effect from sulfur. 
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4.4 Analysis of Lifetime after Hydrogen Passivation 

During the design of this experiment, it is always kept in mind that the results of 

the hydrogen passivation could only be compared if the experimental conditions are kept 

same. From the literature review of hydrogen passivation [24, 29], it seems that FGA is 

mainly done in the range of 400 to 450°C. For the sake of comparison, here the chosen 

range for FGA annealing was from 300 to 600 °C. The diffusion time is 40 min to 

compare the results from H2S passivation. Like H2S passivation, all of the samples went 

under same cleaning steps, HF treatment and Al2O3 surface passivation.  

 

Figure 4.4 Lifetime Gain vs. Temperature for Passivation by H2 

From the Figure 4.4, hydrogen passivation also shows improvement of lifetime 

compared to the control sample of the same wafer. But the quality of passivation is 

inferior to H2S indicated by the lower gain. The peak gain achieved at ~400 °C is ~359% 

which is lower compared to the gain from H2S passivation (~2750% from one and 
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~934% from another experiment). Another observation from the graph is that it has only 

one peak that appeared ~425 °C. So from the results, it can be concluded that the second 

peak in the Fig 4.2 and 4.3 happens due to passivation effect from sulfur and the first 

peak happens due to the H2 passivation. Also sulfur is more effective in passivation. 

4.5 Analysis of Effects after Post-Annealing 

(i) Post-Annealing of Passivated Samples 

Post-annealing in ambient is another effective way to improve lifetime 

further [24,27,29]. To study the effect of post-annealing, both H2S passivated and H2 

passivated samples are used for post annealing in the air. For both cases, the samples that 

provide the highest lifetime during passivation are used for post-annealing. The 

temperature was varied from 250 to 650 °C at a 50 °C interval. 

Figure 4.5 shows the lifetime gain vs. post-annealing temperature graph for H2S 

passivation performed at 450, 525 and 550 °C. 425 °C sample came from the first 

experiment (result shown in Fig 4.2) which shows the highest lifetime gain and also 

represent the peak due to hydrogen in H2S. 525 and 550 °C samples came from the 

second experiment (result shown in Fig 4.3) which show the highest lifetime gain and 

also represented peaks due to sulfur, not Hydrogen. 

From the figure 4.5, it is obvious that the lifetime gain increases first and then 

decreases for all the samples. The sulfur passivated samples show very high lifetime gain 

after post-annealing and the best gain is ~6750 % at 500 °C which is ~2.5 fold 

improvement compared to passivated samples (from fig 4.2 lifetime gain ~2750%). Even 

for the peak due to hydrogen showed high lifetime gain of ~2500% which is ~2.5 fold 

improvement (from Fig 4.1, lifetime gain ~934%) after post-annealing.  
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Figure 4.5 Lifetime Gain vs. Post-Annealing Temperature after H2S Passivation 

 
Figure 4.6 Lifetime Gain vs. Post-Annealing Temperature after H2 Passivation 

Figure 4.6 shows the lifetime gain vs. post-annealing temperature graph for H2 

passivation performed at 400 and 425 °C which show the highest lifetime gain (result 
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shown in Fig 4.4). The trend of lifetime gain graph is same as post-annealing after H2S 

passivation in figure 4.5. After post-annealing, the best gain is for the 400 °C passivated 

sample and the gain is ~1935 % at 500 °C which is almost 5 fold improvement over 

passivated sample (from fig 4.4 lifetime gain ~359%).  

(ii) Post-Annealing of Control Samples 

For the comparison, post-annealing is performed also on control samples which 

are used earlier as the basis for calculation of lifetime gain. As mentioned before, these 

control samples underwent all cleaning steps and Al2O3 surface passivation. From figure 

4.7, a lifetime gain of ~754% at 450 °C is seen. The trend of the graphs in 4.5, 4.6 and 4.7 

is also quite similar. So lifetime gain after post-annealing cannot be attributed to either 

sulfur or hydrogen, rather its contribution depends on the quality of Al2O3 passivation. 

 

Figure 4.7 Lifetime Gain as a Function of Post Annealing Temperature for Control 

Samples without H2S or H2 Passivation 
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The lifetime improvement for Al2O3 surface passivated samples after post-

annealing was also reported by [45,46] for c-Si samples. The results of their experiment 

match with the above mentioned experiment which means that the quality of surface 

passivation probably increases due to post-annealing as it takes care of a lot of damages 

in the bulk created during the experiments [27,34,35]. 

So from the above analysis, it can be said that grain boundary passivation by 

sulfur is more dominating than hydrogen. Sulfur passivation at ~550 °C contributes to 

higher gain. Post-annealing further improves lifetime gain but at this stage Al2O3 is 

mainly responsible for the improvement. 

4.6 Stability of Lifetime 

To compete with the current bulk passivation schemes, a newly proposed 

passivation scheme needs to be stable with the passage of time. That is why in this 

section, the stability of lifetime for samples of different condition has been studied.    

For this study, samples which were characterized just after Al2O3 surface 

passivation or post-annealing are kept in the lab. After ~2 months their lifetimes are 

measured again to check for any changes. In Table 4.1, the results of lifetime gain for 

samples that underwent different experimental conditions have been presented for 

understanding.  
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Table 4.1: Lifetime Gain for Different Samples: As-Passivated and after ~60 Days 

 
Number of 

Samples 

Lifetime gain 

(× 100%) 

As-passivated 

Lifetime gain 

(× 100%) 

After ~60 days 

Average 

decrease  

(in %) 

H2S passivated 3 

20.5 15.45 

26.37 23.23 16.9 

16.35 11.9 

H2 passivated 3 
2.97 2.35 

22.45 3.09 2.29 

2.38 1.89 
H2S passivated 

and post-
annealed 

3 
31.11 29.61 

5.067 28 25.59 
8.46 8.31 

H2 passivated 
and post-
annealed 

2 
11.09 10.42 

5.483 
5.89 5.6 

Control sample 
post-annealed 

2 
3.62 3.48 

4.805 
2.09 1.97 

 

Now from the table, it is observed that bulk passivated samples without post-

annealing have lost almost ~25% of the earlier recorded lifetime. This happens due to the 

instability of bulk passivation as also observed by Muller et al [27]. But even after this 

instability H2S passivated still show significant gain of as high as ~1500 % compared to 

the gain of ~230% from H2 passivated samples.  

When it comes to the post-annealed samples, all of the samples show better 

stability. For H2S passivated or H2 passivated samples, the lifetime decreased only by 

~5% or less. To find out the reason, the control samples which underwent post-annealing 



  50 

are measured. As can be seen from the table, the control samples (with Al2O3 passivation) 

with ‘no’ bulk passivation also show good stability with time. So it can be said that post-

annealing contributes to higher lifetime gain and also the stability of passivated samples 

and thus would be a very important step if this process is in use. 

The reason behind the instability of sulfur and hydrogen in grain boundaries is the 

desorption of atoms from the grain boundaries. The desorption of sulfur atoms is slower 

than hydrogen normally but over time, both of them come out of the grain boundaries and 

the device tend to retain its initial characteristics. Now when post-annealing is performed, 

there is a major change in the bulk. Some of the atoms come out of the grain boundaries 

and others are placed randomly in empty sites. After the process, the grain boundaries are 

more stable, because evidently sulfur or hydrogen atoms sit at more convenient gaps than 

usual which makes the desorption slower as it requires more energy to come out of those 

lower energy states. Thus the passivation quality increases for post-annealed samples and 

the system is more stable. 

4.6 Conclusion 

This chapter summarizes all the experimental results from the experiments 

performed in chapter 3. The results indicate the quality of passivation through 

improvement of lifetime, further improvement through post-annealing attributed to Al2O3 

passivation and also stability improved by post-annealing of the passivated and 

unpassivated samples. 
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CHAPTER 5 

CONCLUSIVE REMARKS 

In this chapter a summary of the total project has been presented. Along with 

some remarkable achievements in the project, future scopes of research work in this line 

of work has been mentioned. In spite of the challenges faced due to the novel nature of 

the experiment, the design of the experiment was good enough to achieve the results. 

5.1 Summary of the Work 

 Benefits of sulfur as element and a good compatible surface passivation (Al2O3) 

led to the design the experiment for grain boundary passivation of multicrystalline 

silicon (mc-Si) using H2S. 

 Decent quality of passivation is achieved through grain boundary passivation of 

H2S in mc-Si samples yielding high minority carrier lifetime gain (~2750%) 

around ~550 °C 

 In the minority carrier lifetime gain vs. temperature graph for H2S  passivation, 

two peaks are observed- one peak at ~450 °C and the second one at ~550 °C 

 Bulk passivation by H2 shows one peak at ~450 °C and lifetime gain is much 

lower (~359%) compared to H2S. 

 Sulfur in H2S may be dominant for improvement in lifetime and also responsible 

for the second peak whereas hydrogen is supposed to be responsible for the first 

peak consolidated by the proof from the trend of the post-annealing data. 

 Post-annealing improves the lifetime gain for all passivated samples. The highest 

lifetime gain achieved is as high as ~6750 % which is achieved at post-annealing 

temperature of ~500 °C. 
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 Same trend is observed for all samples for the post-annealing lifetime gain vs 

temperature graph. This led to the experiment of post-annealing of control 

samples and similar trend is observed in control samples. 

 Before annealing, sulfur passivation is dominant but for post-annealing 

improvement, Al2O3 surface passivation is responsible for further improvement. 

 Stability of lifetime gain for only passivated samples is not very high. After ~60 

days of experiment it decreased by ~25% of the previously recorded lifetime for 

both H2S and H2 passivated samples.  

 Post-annealing improves lifetime for all passivated and control samples because 

post-annealing of Al2O3 passivated samples evidently contributes to stability. 

5.2 Discussion 

A novel approach for grain boundary passivation in multicrystalline silicon (mc-

Si) by using hydrogen sulfide has been proposed in this research work. Benefits of sulfur 

as element and its earlier success for surface passivation in crystalline silicon (c-Si) 

motivated us in this research. A completely new set of experiment has been designed for 

passivation of mc-Si samples. Experiments were carried out under varied conditions with 

the objective to find out the best combination to achieve the highest lifetime. The 

attempts are successful since the minority carrier lifetime gain achieved through H2S 

passivation is higher compared to H2 passivation. A compatible surface passivation by 

Aluminum oxide (Al2O3) is also proposed in this work. The combined effect of Al2O3 

with grain boundary passivation not only increases lifetime gain but also contributes to 

higher gain after post-annealing and makes the samples stable, thus the total procedure 

becomes more reliable. As lifetime is related to internal quantum efficiency (IQE) of 
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solar cells, higher IQE is anticipated if the proposed technique is incorporated in mc-Si 

solar cells. In addition to this, the diffusion procedure of H2S in the lab is a cost effective 

process since it does not require any expensive equipment. Moreover, taking care of the 

chemical waste from the experiment is inexpensive and straightforward. Therefore it can 

be concluded that the proposed techniques of grain boundary passivation could be a 

feasible solution although additional research is required before it can have commercial 

implementation in solar cells.    

5.3 Future Scope of Work 

As demonstrated in the experiments, grain boundary passivation by H2S seems to 

have potential for success as a technique of passivation. The real challenge for now is to 

incorporate this technique and make solar cells out from the bulk and surface passivated 

wafers. For that the diffusion experiment would need some modification as the 

experiments done here were performed on smaller samples. Also when bigger samples 

would be used, uniformity of diffusion temperature would be tougher to achieve. So 

keeping all these in mind, it can be said that there are lots of room for work in this field if 

this bulk passivation technique has to be used for mc-Si solar cells. 
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