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ABSTRACT

Fisheye cameras are special cameras that have a much larger field of view compared to

conventional cameras. The large field of view comes at a price of non-linear distortions

introduced near the boundaries of the images captured by such cameras. Despite this

drawback, they are being used increasingly in many applications of computer vision,

robotics, reconnaissance, astrophotography, surveillance and automotive applications.

The images captured from such cameras can be corrected for their distortion if the

cameras are calibrated and the distortion function is determined. Calibration also al-

lows fisheye cameras to be used in tasks involving metric scene measurement, metric

scene reconstruction and other simultaneous localization and mapping (SLAM) algo-

rithms. The fisheye camera is considered a central omnidirectional cameras and in

recent years many different methods to calibrate central omnidirectional cameras have

been developed, based on the type of camera model. This thesis presents a calibration

toolbox that implements a collection of some of the most widely used techniques for

calibration of fisheye cameras under one package. This enables an inexperienced user

to calibrate his/her own camera without the need for a theoretical understanding

about computer vision and camera calibration. This thesis also explores some of the

applications of calibration such as distortion correction and 3D reconstruction.
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Chapter 1

INTRODUCTION

This chapter presents the motivations behind the work in this thesis and summarizes

the contributions and organization of this thesis.

1.1 Motivation

In recent decades, with significant progress in semiconductor industry, there has

been an increase in the types of camera sensors that have been introduced into the

market at very low prices. This has made cameras available for a number of new

age applications involving automation, computer vision, robotics, entertainment, and

surveillance where they are being used not just for traditional imaging but also for

other computational tasks, and for measurement and understanding applications.

Various combinations of sensors and optical elements lead to different types of

cameras. The type of lens attached to the imaging sensor defines the geometry of the

camera, which in turn determines its field of view (FOV). Based on the FOV, cam-

eras can be differentiated into directional and omnidirectional cameras. Directional

cameras typically have a narrow field of view and a perspective projection. Omnidi-

rectional cameras include dioptric (Fisheye) and catadioptric (Para, Hyperbolic and

spherical) cameras. Omnidirectional cameras generally have a large field of view and

a non-linear projection function which makes the images captured by them appear

distorted. In this thesis we are primarily interested in omnidirectional cameras and in

particular fisheye cameras as they are being widely used in several recent applications.

There are many approaches to planar camera calibration [6][7][8]. Most of these

methods use a calibration target and perform localization of control points of the
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calibration target captured in the images of the camera. Many toolboxes [9][10] are

publicly available for the calibration of planar cameras. Such toolboxes typically

determine the focal length f, principal point O and small non-linear distortions if

any. Certain toolboxes [9] also output information about camera motion in terms of

rotation and translation vectors. Most toolboxes designed for planar cameras cannot

be used with fisheye cameras because the fisheye non-linear distortion is too large to

be modeled by planar camera-specific projection functions. This is where calibration

for omnidirectional cameras comes into the picture.

In this thesis fisheye cameras are modeled as central cameras. Central cameras

have a single center of projection, so that every pixel in the sensed images measures

the irradiance of the light passing through the same viewpoint in one particular

direction. In other words, all the rays entering the camera meet at a point known as

the camera center. Moreover, this central camera model allows applying the known

theory of epipolar geometry [11] directly on unit vectors describing the directions of

the incoming rays. The large distortion function of the fisheye camera can be modeled

using various functions[12][2][1]. Knowledge of the distortion function also allows us

to correct the image for it to appear as if captured by a perspective camera. This is

specifically due to the single viewpoint property of the fisheye camera that permits

the generation of geometrically correct perspective images from the corresponding

captured fisheye images. Fisheye cameras have a single view point as they are central

cameras and the incoming rays meet at the camera center.

There are numerous methods that were proposed to calibrate a fisheye camera de-

pending on the prior knowledge of the scene, camera manufacturer specifications and

other parameters. Each of these model the fisheye camera using different parameters

which are then used to describe the properties of the camera. In this thesis, some of

the most popular fisheye calibration techniques are evaluated and incorporated into
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a user-friendly and automated fisheye camera calibration package.

Since there are such wide uses of fisheye cameras, even in fields that are not

particularly related to computer vision or photogrammetry such as the automation

industry and exploratory sciences to name a few, some practitioners and users of

calibration systems might not have in-depth knowledge about camera models and

parameters. Even for users and researchers familiar with camera calibration methods,

evaluating and running separately calibration methods is a time consuming task. We

have designed an interactive user-friendly Fisheye camera Calibration and Distortion

Correction (FisheyeCDC) toolbox that incorporates state-of-the-art approaches with

the goal of making the process of calibration easier for practitioners and users without

having to worry about programming details and about having to become familiar

with different implementations using different platforms. The developed FisheyeCDC

toolbox also consists of a distortion-correction mode that allows users to correct for

distortions in the fisheye images and convert them to planar images.

1.2 Contributions

In this thesis a user-friendly graphical user interface based toolbox is to perform

calibration of fisheye cameras as well as distortion correction of fisheye camera im-

ages. The toolbox incorporates some the most widely used calibration techniques in

one package. The usage of the toolbox does not require any prior knowledge of cam-

era calibration techniques. The main contribution of this work is incorporating the

various existing methods for marker-based calibration and also an implementation of

an auto-calibration method that is based on estimating epipolar geometry from com-

puted putative matches obtained from two images observing the same scene. The user

has the option to use a marker-based calibration where images of a calibration pat-

tern are provided as the input for calibration[2][13][1][14], or to use an auto-calibration
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method where the input to the calibration consists of two images of the same scene

taken from different viewpoints[3]. In both cases the toolbox outputs the camera

calibration parameters including the distortion function parameters, principal point,

and the dimensions (width and height) of the images being used for calibration.

Once the calibration is done, the user has the option of saving the distortion

parameter in a file to be used at a later stage. Each of these calibration methods

typically results in different parameters defining the distortion of the camera. The

developed toolbox provides a distortion correction functionality using the camera cal-

ibration parameters. The user has the option of distortion correction immediately

after the calibration is done or, if the user already calibrated the camera at an earlier

time, he/she can just load the saved calibration parameters and perform the distortion

correction. Additionally, as a part of this thesis, using internal camera calibration pa-

rameters, we implemented and demonstrated three-D structure reconstruction (depth

estimation) directly from fisheye images.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 gives a background about the vari-

ous camera imaging models. Chapter 3 gives a detailed description of the calibration

procedure for each of the calibration techniques incorporated in the developed Fish-

eye camera Calibration and Distortion Correction( FisheyeCDC ) toolbox. Chapter 4

gives the theory behind distortion correction using the calibration parameters. Chap-

ter 5 describes the implemented FisheyeCDC toolbox and its functionalities. Chapter

6 presents an application of calibration where the fisheye camera calibration param-

eters are used for implementing structure from motion on fisheye images. Chapter

7 summarizes the contributions of this thesis and proposes possible future enhance-

ments of this work.
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Chapter 2

BACKGROUND

This chapter provides some background information about omnidirectional cameras,

including types of omnidirectional cameras and how the fisheye camera is related

to an omnidirectional camera. It also provides a brief overview of fisheye camera

representations, models and their respective distortion functions.

2.1 Omnidirectional Camera

Omnidirectional cameras are a class of cameras that have a very wide field of view.

Their projection model differs from the traditional perspective projection model of

a planar camera in the sense that projection functions for omnidirectional cameras

are usually non-linear. Their major advantage is their wide field of view compared to

planar cameras.

Omnidirectional cameras can be broadly classified as central and non-central cam-

eras. A camera can be represented by a subset of the set of lines in P3 and a central

camera in particular is defined as a subset of lines in P3 passing through a single point

called a projection center C. Examples of central cameras include fisheye cameras,

central aligned para-catadioptric[4], hyperbolic catadioptric[4] and spherical catadiop-

tric cameras[4]. A non-central camera can be defined as the camera whose incoming

rays do not intersect at a point. In other words, non-central cameras do not have

a single effective view-point. The rotating camera [15], omnivergent camera[16] and

conical-mirror catadiotpric camera[17] are examples of non-central cameras. This the-

sis is concerned with the fisheye camera. The fisheye camera is typically represented

using a spherical camera model as discussed in Section 2.2. Figure 2.1 shows a fisheye
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(a) Fisheye Lens(Fujinon FE185C086HA-1). (b) Image from fisheye camera.

Figure 2.1: Fisheye lens and Fisheye image.

lens (Fujinon FE185C086HA-1) which in combination with an image sensor forms

the fisheye camera and an image captured by the fisheye camera. From Figure 2.1b

it can be seen that the image is highly distorted at the edges due to the non-linear

projection model.

2.2 Camera Model

This section describes the perspective(planar) and fisheye camera models. A typ-

ical perspective camera can only image points in a narrow field of view in front of the

camera imaging plane. The perspective projection of a pinhole camera is described

as follows

r = f tan θ (2.1)

where θ is the angle between the principal axis and the incoming ray as shown in

Figure 2.2. O is the principal point, which is the point of intersection of the principal

axis and the imaging plane. f is the focal length and r is the distance between the

image point and the principle point. The standard perspective camera model maps

all the scene points M to one image point C called the optical center of the camera.
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Figure 2.2: Perspective camera model. C is the camera center; O is the principal

point; M is the world point being imaged; m is the projection of M on the camera

plane; Zc is the optical axis.

The line joining the optical center and the scene point intersects the imaging plane

at a 2D point m which forms the image co-ordinate of the scene point M. We can

define a matrix P such that

αm = PM (2.2)

where P∈ R3X4 is a projection matrix, M∈ R4 is a homogenized scene point, m∈ R3

represents an homogenized image point and α is a scalar number. Homogenized co-

ordinates are expressed with a 1 augmented after the co-ordinates. For example M=[

X Y Z 1] represents a point X, Y, Z in space. Similarly m=[x y 1] represents an

image co-ordinate [x y] on the imaging plane. Further, the Equation (2.2) can be

represented as[6] :

αm = K[R t]M (2.3)
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where the projection matrix is decomposed into an intrinsic parameter matrix K

called the camera matrix and a rotation R and translation t matrices corresponding

to the camera extrinsic parameters. The camera intrinsic matrix is given by

K =


fx γ u0

0 fy v0

0 0 1

 (2.4)

K is a 3×3 matrix containing the intrinsic parameters namely the focal lengths along

the x and y axes of the image (fx, fy), skew between the two image axes (γ), and the

principal point (u0, v0). In this model we can represent only the scene in front of the

camera with the edges of the image plane being the border. This restricts the field of

view of the perspective camera to about 60◦.

In the case of a fisheye camera, a more radially symmetric projection model is

assumed. Different camera types can be designed and can be approximated using

different projection models, popular examples of which follow below:

r = 2 f tan(θ/2) (2.5)

r = f θ (2.6)

r = 2 f sin(θ/2) (2.7)

r = f sin(θ) (2.8)

where r is the radial distance of the pixel from the principal point and θ is the angle

made by the incoming ray with the optical axis as shown in Figure 2.4. Equations

(2.5)-(2.8) represent, respectively, a stereograhic projection, an equidistance projec-

tion, an equisolid projection, and an orthogonal projection. Figure 2.3 shows the

corresponding projection functions (plots B to E) that can be used to model a fisheye

lens/camera. For comparison, Figure 2.3 also shows the perspective projection (Plot

A).
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Figure 2.3: Projections functions. Plots A to E correspond respectively, to projections

in Equations (2.1) and (2.5)- (2.8).

The general fisheye camera model is shown in Figure 2.4. From Figure 2.4, it can

be seen that image of the 3D point in space M = [X, Y, Z] is m = [x, y] whereas it

would be m’ in a perspective camera. The point m on the image plane is determined

by one of the projection functions in Figure 2.3. Similar to the perspective camera, θ

defines the angle of incident ray from the point M to the camera center C. O refers

to the principal point or center of the imaging plane. The distance from the principal

point O to the image point m is the radius r. For fisheye cameras, this radius r is

a function of the incident angle θ. This is a radially symmetric model similar to the

model used in [2]. In reality, the manufacturing of a fisheye lens is intricate and often

there are deviations from the ideal projection models shown in Figure 2.3. Fisheye

calibration is aimed at modeling these imperfect projection models.

2.3 Approaches to fisheye camera calibration

There are numerous approaches to calibrating the fisheye camera. They can be

broadly separated into two categories mainly marker-based calibration and auto-
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Figure 2.4: Fisheye camera model. C is the camera center; O is the principal point;

M is the world point being Imaged; m is the projection of M on the image plane;

f is the focal length; Zc is the optical axis; θ is the angle of incoming ray with the

optical axis; r is the radial distance of m from O; ψ is the angle made by the radial

line of m with x axis of the image plane; m’ is the projection of M if the camera were

following a perspective projection model and r′ is the radial distance of m′ from O.

calibration. As part of this work, the marker-based methods of [2],[1], and the auto-

calibration method of [3] have been integrated in the developed GUI-based calibration

and distortion-correction toolbox.

Marker-based calibration: These methods use a marker or a calibration pattern

to obtain a relationship between pattern points in 3D space and their projections
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(a) Checkerboard calibration pattern. (b) Circular calibration pattern.

Figure 2.5: Examples of 2D planar calibration patterns.

on the 2D camera image plane. These methods often require a few images of a

known pattern or object to be captured by the camera. Knowing this relationship,

one can obtain the distortion function and other internal parameters of the fisheye

camera. Marker-based calibration itself can be divided into a few more categories

based on the type of calibration pattern used. Broadly they can be categorized as

2D pattern calibration[2][1][18][19][20][21] and 3D point based calibration[22]. As the

name suggests, 2D pattern calibration uses a planar 2D pattern of known geometry.

There are certain points on the calibration pattern, whose position in space is known

prior to them being imaged. In [2] the calibration pattern consists of a grid of circular

patterns and the control points consist of the centroids of these circular patterns. In

[1] the calibration pattern consists of a checkerboard image and the control points

are corners of the each block in the checkerboard pattern. An example of the 2D

calibration patterns used in [2] and [1] are shown in Figure 2.5. Once the image is

captured and the control points determined in the image, the distortion is modeled

based on the relationship between positions of the control points in the captured

image and known 3D corresponding points. This allows the estimation of the camera

intrinsic parameters. Figure 2.6 shows the 3D calibration pattern used in [22]. The
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Figure 2.6: Example of 3D calibration pattern.

method [22] discrete linear Transform(DLT) based approach and requires only a single

image of the 3D calibration pattern. The control points are again corners of the

checkerboard on each of the planes. Here a homography can be estimated between

the imaged pattern and the original calibration pattern based on the control points.

The resulting homography is used to calibrate the camera and determine the intrinsic

parameters.

Auto-Calibration: These methods are also referred to as self-calibration tech-

niques as calibration is done without the support of a marker whose geometry is

known. More often than not such methods require more than a single image of the

scene or some specific requirements in the structure of the scene itself. Certain self

calibration techniques use only point correspondences in multiple views, without need-

ing to know either the 3D location of the points or the camera locations[3][4]. Here,

the camera distortion function is estimated along with the external parameters of the

camera motion between the images. Most of these methods are based on the fact that

central cameras obey epipolar geometry as will be discussed in Sections 3.3.2 and 6.1.

Other auto-calibration methods include line-based calibration methods[23] in which
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calibration is done by detecting straight lines in the scene. The detection of straight

is performed by detecting curved lines in a single captured image[23][24]. Distortion

parameters are estimated by determining the distortion function parameters that can

best transform curved lines into straight lines. Such methods require only a single

image of a scene that have a few well defined straight lines. The disadvantage of this

method is that one can obtain only the intrinsic parameters of the camera and cannot

estimate extrinsic parameters between 2 camera views.

2.4 Fisheye Distortion Functions

This section presents the functions that are typically used to model the distortion

introduced due to a fisheye lens. As indicated in Section 2.2, in practice the design

of fisheye lenses may not follow one of the projection functions given by Equations

(2.5)-(2.8). Hence, other functions need to be used to model the additional introduced

distortion. A radial distortion model for planar cameras using odd order polynomials

was proposed in [25], and the authors of [8] and [6] adopted the model of [25] for the

calibration of off-the-shelf planar cameras. The Equation is of the form

Dx = xd(k1r
2 + k2r

4 + ..) (2.9)

Dy = yd(k1r
2 + k2r

4 + ..) (2.10)

where (xd, yd) are the distorted image co-ordinates, r =
√
x2d + y2d is the radial dis-

tance from the center to the distorted image pixel, and (Dx, Dy) are the distortions

in the X and Y directions. [8] used just one coefficient k1 in Equations( 2.9) and

(2.10) to model the small distortions in the planar camera. Though this model was

reasonably accurate for planar cameras, it cannot model fisheye cameras particularly

well because of the high levels of radial displacement.

Some other distortion functions developed specifically for fisheye cameras include
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the fisheye polynomial model[1], fisheye transform[26], the FOV model[23], the poly-

nomial fisheye transform[26] and the division model[24][12]. Some distortion models

developed for catadioptric cameras[5] were shown to work well for fisheye cameras as

described in [3]. The polynomial fisheye model [1] is given by

θ =
∞∑
i=1

knr
n = k1r + k2r

2 + k3r
3 + ...+ knr

n + ... (2.11)

where r is the radial distance from the principal point(center of the image) and θ

is the angle between the incoming ray and the optical axis as shown in Figure 2.4.

It has been suggested in [27] that a fourth-order form of the model is adequate to

simulate the distortion introduced by fisheye lenses. The field of view (FOV) model

proposed in [23] is given by

rd =
1

ω
tan−1

(
2rutan

(
ω

2

))
(2.12)

where ω is the field of view of the camera in radians, rd is the radial distance from the

principal point in the distorted image and ru is the radial distance from the principal

point in the planar image. The FOV model is based on an simple optical model of

the fisheye camera[23]. The fisheye transform in [26] is described as

rd = s ln(1 + λru) (2.13)

where s is a scalar and λ controls the amount of distortion. The division model [12]

is given by

rd =
ru

1− λr2u
(2.14)

where λ controls the amount of distortion present. A variant of this model has

been adopted by [4] and [28] to solve the problem of auto-calibration converting the

epipolar constraint discussed in Section 6.1 to a Quadriatic Eigenvalue problem[12].

The model used here is

θ =
a

1 + br2d
(2.15)
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where θ is the angle between the incident ray and the optical axis of the camera as

shown in Figure 2.4, and a and b are parameters that control the amount of distortion.

The model used in [3] was developed originally for a catadioptoric case in [5]. It was

later shown that the same model can be applied for a for a fisheye camera.

rd =
(l + 1) sin θ

l + cos θ
(2.16)

where rd and θ are the same as in Equation (2.15) and l is the parameter that models

the distortion. The calibration toolbox in [13] uses a polynomial model defined by

rd = k1θ + k2θ
3 + k3θ

5 + ... (2.17)

. In this thesis, the distortion models of [1], [2] and [3] given by Equations (2.11),

(2.17) and (2.16), respectively are used as part of the developed calibration and

distortion-correction toolbox. These models and their implementations are discussed

in Chapter 3.
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Chapter 3

CALIBRATION

This chapter provides a detailed overview of the methods used for calibration of

fisheye cameras and that are implemented in our calibration toolbox. As mentioned

in Section 2.4, these methods include two marker-based calibration techniques [1][3]

and an auto-calibration technique[3].

3.1 Scaramuzza marker-based calibration

This method was proposed by Scaramuzza et al. in [1] and was implemented in

[14]. It models the distortion function as a Taylor series expansion whose coefficients

are estimated by a two-step least-squares minimization method. This method was

developed for general omnidirectional cameras but, in this thesis, its application for

central fisheye cameras is considered. The omnidirectional camera model used here is

a generalization of the spherical model used in [4]. Figure 3.1 shows spherical models

for fisheye and catadioptric cameras.

Consider a point X being observed by the omnidirectional camera with center C.

The projection of point X on the unit sphere centered around the camera center C is

given by the unit vector q” ∈ S3. Another vector p” which is in the same direction

as unit vector q” and which maps to the sensor point u”. The vectors p” and q”

are related by the functions h and g. The function h describes the mirror shape and

mirror properties in case of a catadioptric camera as we can see in Figure 3.1b and

function g is the radial distortion function. Hence, the vector p” can be represented
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(a) Spherical Model-Fisheye Lens. (b) Spherical Model-Catadioptric Camera.

Figure 3.1: The Mapping of a scene point X into a sensor plane to a point u” [4].

as

p” =

(
h(r)u”

g(r)

)
(3.1)

where u” = (u”, v”)T are the sensor point coordinates, r =
√
u”2 + v”2 is the radial

distance of u” from the optical axis and h and g are functions that depend on the

radial distance r [4][28]. The functions g and h are dependent on the internal pa-

rameters of the camera as well. For a perspective projection, both g and h are 1; so,

Equation (3.1) becomes

p” =

(
u”

1

)
(3.2)

For a fisheye camera, the function h = 1. The projection Equation (3.1) for a fisheye

camera becomes

p” =

(
u”

g(r)

)
(3.3)

Several models were proposed for function g(r). One such model proposed in [4]

expresses g(r) in terms of radial distance, r, and the angle of incidence, θ(Figure 3.2)
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as follows:

g(r, a, b) =
r

tan θ
(3.4)

Figure 3.2 shows geometric interpretation of the fisheye lens model. C is the camera

center and g(r) represents the distortion function. As shown in Figure 3.2, θ is the

angle between incident ray and the optical axis. Linear and nonlinear models for θ

were defined in [4] as follows:

θ = ar (Simple linear model) (3.5)

θ =
ar

1 + br2
(Sigma fisheye camera) (3.6)

θ =
1

b
sin−1

(
br

a

)
(Nikon fisheye camera) (3.7)

where a and b are the parameters which describe the radial distortion of the fisheye

cameras.

This model was extended by the authors of [27] to have a single model for all

omnidirectional cameras[1]. Instead of having two separate functions g and h, a

single function g/h was proposed to model the cameras. Since h = 1 for fisheye

cameras [28], the distortion function is described by g(r). Also, the linear and non-

linear models described in [4] are replaced by a single Taylor series expansion to have

a more generic form to model different cameras as shown below [1][27]:

g(r, a) = a0 + a1r + a2r
2 + a3r

3 + ...+ aNr
N (3.8)

where the coefficients a = a0, a2, a3...aN and N are the calibration parameters, also

referred to as intrinsic parameters and r again is the radial distance from the optical

axis. Hence, we can rewrite the projection function of Equation (3.3) as

p” =

(
u”

a0 + a1r + a2r2 + ...+ aNrN

)
(3.9)
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Figure 3.2: Geometric interpretation of fisheye lens projection[4]. Projection of the

vector q”− > p”− > u” into a sensor plane π through a function g(r).

It is shown in [29], [28] and [11] that for fisheye and catadioptric lenses:

dg

dr

∣∣∣∣
r=0

= 0

This makes the coefficient a1 = 0 and thus Equation (3.8) becomes

g(r, a) = a0 + a2r
2 + a3r

3 + ...+ aNr
N (3.10)

The sensor plane is expressed in metric coordinates and can be seen as the plane

of the CCD sensor on which the light ray is incident. The image plane expressed in

pixel coordinates is the image obtained by digitization process. There might exist

small misalignments of axes in the digitization process. Hence, an affine transform A

is defined which describes the relationship between the sensor plane coordinates and

image plane coordinates due to digitization process and the axis misalignments. This
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affine transformation A is of the form

u” = Au + t (3.11)

where u = (u, v)T are image coordinates, A ∈ R2×2 is the affine transform and

t ∈ R2×1 is a translation if any is present. Now, the relationship between a pixel

point u and a scene point X is

λ.p” = λ.f(u”) = λ.f(Au + t) = PX (3.12)

where P is the projection matrix and f is the imaging function and is given by

f(u”) = [u”, g(r)]T . Hence, in the final form Equation (3.12) becomes

λ.


u”

v”

z”

 = λ.f(Au + t) = λ.

 (Au + t)

g(r)

 = PX (3.13)

where the function g is defined in Equation (3.10), r =
√
u”2 + v”2 and P is the

projection matrix which relates the world coordinates to the sensor coordinates. The

projection matrix can be decomposed into the camera extrinsic parameters including

a rotation matrix R ∈ R3×3 and a translation vector T ∈ R3×1. It is important to

note that the intrinsic parameters are the same for all the views of a single camera

whereas the extrinsic parameters vary for each view captured by the fisheye camera

as they describe the poses between the views. Calibration is performed to determine

the intrinsic parameters of the camera as well as to determine poses between camera

positions which are described by the extrinsic parameters.

Calibration in the Scaramuzza method requires a few images of a 2D checkerboard

pattern of known dimensions to be imaged at different unknown positions by the

fisheye camera as shown in Figure 3.3. These positions are related to each other by the

rotation and translation parameters (R, T ) which form the extrinsic parameters. The
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Figure 3.3: Checkerboard images required for calibration.

corners in the checkerboard are detected using the method of [30]. This latter method

is based on the checkerboard detection algorithm implemented in OpenCV [31] with

a few modifications to take into account highly blurred and distorted images. Once

the checkerboard corners are detected for each of the camera views, correspondences

between the checkerboard corners in space and in image coordinates is known. An

example of the checkerboard pattern with extracted and numbered corners is shown

in Figure 3.4. Consider Imk to be the kth captured image of the calibration pattern,

i to be number of checkerboard corners detected on each of the patterns and let

Mk,i=[Xk,i,Yk,i,Zk,i]
T be the 3D coordinates of the checkerboard corners in the pattern

coordinate system and mk,i=[uk,i, vk,i]
T be the image coordinates of the corresponding
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Figure 3.4: Checkerboard images with extracted corners.

checkerboard corners. These correspondences are used to obtain the intrinsic and

extrinsic parameters for each view during the calibration process.

Calibration is done in 2 stages. In the first stage the extrinsic parameters are

estimated as explained in Section 3.1.1 with the assumption that affine transformation

matrix A which gives the relationship between the sensor plane and the image plane

is I, i.e., sensor plane and the image plane are perfectly aligned. Using the estimated

extrinsic parameters the intrinsic parameters a are estimated as described in Section

3.1.2. Next using these values of a, the affine transformation A is estimated in

an iterative minimization process. Once the intrinsic and extrinsic parameters are

obtained, the principal point is obtained on based the reprojection errors and finally

a non-linear minimization step described in Section 3.1.3 is used to refine all the

parameters[27].

3.1.1 Obtaining the external parameters

First the external parameters for each camera view are extracted. Since we con-

sider a planar pattern, the Z coordinate in the pattern coordinate system will be 0

[1]. Hence, without loss of generality, we assume Zk,i = 0. For each point i in each

22



image k, Equation (3.13) becomes

λk,i


uk,i

vk,i

g(rk,i)

 = PkX = [rk1 rk2 rk3 tk].



Xk,i

Yk,i

0

1


= [rk1 rk2 tk].


Xk,i

Yk,i

1


(3.14)

where the rkj = [rkj1 rkj2 rkj3]
T , j = 1, 2, 3 represents the first 3 columns and

tk = [tk1 tk2 tk3]T represents the last column of the projection matrix Pk of cam-

era view Imk. Premultiplying both sides of Equation (3.14) vectorially by pk,i =

[uk,i vk,i g(rk,i)]
T for the ith point of the kth camera view three homogeneous equa-

tions are obtained(ignoring the K index for simplicity)

vi (r31Xi + r32Yi + t3)− g(ri) (r21Xi + r22Yi + t2) = 0 (3.15a)

g(ri) (r11Xi + r12Yi + t1)− ui (r31Xi + r32Yi + t3) = 0 (3.15b)

ui (r21Xi + r22Yi + t2)− vi (r11Xi + r12Yi + t1) = 0 (3.15c)

Since X and u are known, only Equation (3.15c) can be solved. The unknowns in

Equation (3.15c) can be rearranged into a vector L = [r11, r12, r21, r22, t1, t2]
T such

that Equation (3.15c) can be represented as[1]:

F.L = 0 (3.16)

A linear estimate of L is obtained by minimizing ‖F.L‖2 using singular value de-

composition (SVD). Hence, using all the checkerboards corners of all the poses a

good estimate of L is obtained and the extrinsic parameters for each camera view are

obtained.
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3.1.2 Estimating the intrinsic parameters

The extrinsic parameters estimated in Section 3.1.1 are used to estimate the in-

trinsic parameters a = [a0, a2, ...aN ]. The values L = [r11, r12, r21, r22, t1, t2]
T are used

in Equations (3.15a) and (3.15b) to estimate a which describes the shape of the dis-

tortion function g [1]. The parameter t3 was not present in L as Equation (3.15c)

was independent of it. Hence, tk3 is estimated for each of the views in this step. The

parameters to be estimated in Equations (3.15a) and (3.15b) are stacked into a col-

umn vector and the equations are rewritten as a system of linear equations[1]; They

can be represented as:



A1
i A1

i ρ
12

i · · · · · · A1
i ρ

1N

i −v1i 0 · · · · · · 0

C1
i C1

i ρ
12

i · · · · · · C1
i ρ

1N

i −u1i 0 · · · · · · 0

...
...

...
...

...
...

...
...

...
...

AKi AKi ρ
K2

i · · · · · · AKi ρ
KN

i 0 0 · · · · · · −vKi

CK
i CK

i ρ
K2

i · · · · · · CK
i ρ

KN

i 0 0 · · · · · · −uKi


.



a0

a2
...

aN

t13

t23
...

tK3



=



B1
i

D1
i

...

BK
i

DK
i



(3.17)

where

Aki = rk21X
k
i + rk22Y

k
i + tk2

Bk
i = vki (rk31X

k
i + rk32Y

k
i )

Ck
i = rk11X

k
i + rk12Y

k
i + tk1

Dk
i = uki (rk31X

k
i + rk32Y

k
i )

The linear least squares solution can be obtained by SVD. Further refinement is done

on the estimated parameters in 2 steps. First, the estimated intrinsic parameters
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a are used to refine the extrinsic parameters r11, r12, r21, r22, t1, t2, t3. then these re-

fined extrinsic parameters are used to refine the intrinsic parameters. Both these

refinements are done by linear minimization using SVD.

The estimation of principal point or the center of distortion is done iteratively

using the estimated intrinsic and extrinsic parameters and minimizing the sum of

squared reprojection errors. This is the point of intersection of the image plane and

the optical axis. The radial distortion is symmetric around this point. Ideally the

principal point is the center of the image but this can vary due to misalignments of the

fisheye lens and the camera sensor plane. The 3D checkerboard corners are reprojected

back onto the image. The sum of squared distances between these reprojected points

and the original points give the reprojection error. Hence, for each iteration, a set of

points are chosen as the potential centers and reprojection error is calculated with of

these potential point assumed to be the center. The candidate center point with the

minimum reprojection error is selected as the starting point for the next iteration and

a set of candidate center points around this point are checked for the reprojection

error. This process is repeated until the reprojection error reaches a value less than

a given threshold (say 0.5 pixel). This point is taken as the center of distortion

or the principal point O of the fisheye image. Now that good estimates of all the

parameters are determined a non-linear refinement as explained in Section 3.1.3 is

applied on the whole system to obtain the affine parameter matrix A in Equation

(3.11) which encodes the digitization process of the camera and any misalignments

between the sensor plane and the image plane.

3.1.3 Non-Linear Refinement

The intrinsic and extrinsic parameters are estimated as described in Sections 3.1.2

and 3.1.1, respectively, through linear estimation. These parameters are refined along
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with the parameter A in Equation (3.11) which was assumed to be I in Section (3.1.1)

using a non-linear minimization process. Suppose there are K camera views of the

calibration pattern and each pattern has N checkerboard corners. The equation to

be minimized is [27]:

E =
K∑
i=1

N∑
j=1

∥∥uij − û(Ri,Ti,A,O, a0, a2, .., aN ,X
i
j)
∥∥ (3.18)

where ûij are the reprojected control points and uij are the detected control points.

This non-linear minimization is done using the Levenberg-Marquardt algorithm[32][33].

The initial guesses for the parameters to be refined by this algorithm is given by the

linear estimates in Sections 3.1.1 and 3.1.2. The output of non-linear minimization

of Equation (3.18) gives the final camera calibration parameters.

3.2 Kannala Marker based calibration

This section describes the camera model proposed in [2] and [34]. The same fisheye

model in Figure 2.4 applies here as well. The main difference between this method

and the method explained in Section 3.1 is the projection function.

In [34] the projection function is extended from Equations (2.5)-(2.8) to a generic

polynomial model is used to incorporate the projections of different types of fisheye

lenses. The model used here is:

r(θ) = k1θ + k2θ
3 + k3θ

5 + k4θ
7 + k5θ

9 + ... (3.19)

wheree r is the radial distance of the sensor image point m and θ is the angle of

incidence of the incoming ray with the optical axis. It is seen in [2] that the first

5 coefficients are sufficient to give a good estimate of the different projection curves

in Figure 2.3. In this thesis, we consider the camera model to consist of the five

parameters k1, k2, k3, k4, k5. From Figure 3.5 we can represent the image co-ordinate
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Figure 3.5: Fisheye camera model.

m of the as

F =

x
y

 = r(θ)

cosψ

sinψ

 (3.20)

where θ and ψ represent the direction of the incoming ray from the 3D point M. θ

is the angle made by the incoming ray with the optical axis and ψ is the angle made

by the radial line with the x axis. A forward projection function F can be defined

for mapping the 3D point M to the sensor image point m. The forward projection

function F(Φ) is defined as a function of the incoming ray direction Φ = (θ, ψ)[34].
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The computation of the forward model is important as we can derive the inverse

model from it to be used for reprojection and distortion correction.

An affine transform A is defined [2] to incorporate any misalignments between

the sensor plane and the image plane. Given the image center as [uo, vo]
T and the

number of pixels per unit length in the horizontal and vertical directions as lu and lv,

respectively, the image pixel coordinates are given byu
v

 =

lu 0

0 lv


x
y

+

uo
vo

 = A(x) (3.21)

. The total forward projection model is a combination of the projection function F

and the affine transform A. Combining Equations (3.20) and (3.21) we get the final

forward model[2] as

m = A.F = Pc(Φ) (3.22)

where m = (u, v)T are the image co-ordinates and Pc(Φ) is the forward projection

model. This model consists of 9 intrinsic parameters. k1, k2, k3, k4, k5 from Equation

(2.17) make up 5 of the parameters and lu, lv, u0, v0 from Equation (3.21) make up

the other 4 parameters.

Similar to the technique in Section 3.1, this calibration technique uses a planar

calibration pattern consisting of circular control points. The input to the calibration

system is few camera views of the circular point calibration pattern captured at

different unknown positions. A few example calibration patterns are shown in Figure

3.6

3.2.1 Determining principal point and control points

Control points refer to the points in the calibration fisheye image that correspond

to known points in the planar 2D calibration pattern. These are necessary to obtain
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Figure 3.6: Example calibration patterns.

the relationship between a 3D point in space and its projection on the fisheye image.

Here, we also include determination of the image boundary and the center of the

image or the principal point. These are essential for later stages of calibration as

we will see in Section 3.2.2. The principal point of the image is also essential for

back-projection during error minimization in Section 3.2.3 and distortion correction

in Chapter 4.

The first step is to determine the ellipse that bounds the image. In the case

of where the fisheye image fills an elliptical area on a black background, an ellipse

fitting is used to obtain the parameters of the ellipse. The calibration image similar

to the one shown in Figure 3.7a is first converted to grayscale (Figure 3.7b). It

is then histogram equalized and converted to a binary image using a appropriate

threshold. Then a connected component labeling algorithm is applied to the binary
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image in order to label all the binary 8-connected objects as shown in Figure 3.7c.

The component with the maximum number of elements is calculated. This is the part

of the image which makes up the black external boundary. A new binary image is

created with only this component set to 1 and the rest of the image is set to 0. This

is shown in Figure 3.7d where only the boundary of the image is segmented. This

boundary is further refined using a finer-connected-components method and we obtain

a binary image similar to Figure 3.7e which gives a more well defined boundary. The

perimeter to this bounding image is obtained as shown in Figure 3.7f. An ellipse is

now fit to this perimeter image to obtain the parameters of the ellipse. The equation

of the ellipse to be fit is (
u− u0
a

)2

+

(
v − v0
b

)2

= 1 (3.23)

where u0, v0, a, b are the obtained parameters from the fitting. (u0, v0) represents the

center of the ellipse and a, b represent the length of the minor and major axes of the

ellipse. The ellipse is fit by a linear minimization using singular value decomposition.

Hence, (u0, v0) is the center of distortion in the fisheye image which is used in the

proceeding stages of calibration. Ideally, for a fisheye image a = b. However, these are

unequal in the case the sensor plane and image plane are not perfectly perpendicular

to the optical axis of the fisheye camera.

Once the image boundary and the principal point of the camera are determined,

the control points are estimated by using a similar connected component approach.

A few images are captured as in Figure 3.6. Each of these images are converted

first to a grayscale image. Then an optimal value for the threshold for the grayscale

image is obtained by fitting two normal distributions to the histogram[13]. This is

done first by finding the threshold value which separates the image histogram into

2 distributions. One distribution for the blobs representing the circular points and
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(a) Example of calibration image. (b) Grayscale image.

(c) Binary connected components image. (d) Segmented bounding box.

(e) Image bounding binary image. (f) Perimeter of image to which ellipse is fit.

Figure 3.7: Ellipse fitting to image boundary.
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(a) Example of calibration image. (b) Detected blobs and their centroids.

(c) Binary connected components image. (d) Perimeters of the segmented blobs.

Figure 3.8: Control point extraction from calibration image.

the other for the background pixels. The probabilities, mean and standard deviation

for both the distributions are estimated and a Gaussian mixture model is fit to these

distributions. From this, an ideal threshold for the grayscale image is obtained which

is used to convert the image to a binary image like the one shown in Figure 3.8c. The

binary image now consists of only the circular control points.

A connected component algorithm with 4 connectivity is run on this binary image

to obtain the labels and centroids for each of the control points as shown in Figure

3.8b. The centroids are ordered based on axis directions entered by the user. These

act as the control points for the rest of the calibration procedure, and are shown with

the + symbols in the circular points of Figure 3.8b.
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Now that control points are determined from the calibration images, we can pro-

ceed to the next stage of calibration as discussed in Section 3.2.2.

3.2.2 Initializing intrinsic parameters

The intrinsic parameters consist of k1, k2, k3, k4, k5, u0, v0, lu, lv where k1, .., k5 are

the coefficients of the odd powered polynomial equation represented by Equation

(3.19). (u0, v0) represents the image center or the principal point of the fisheye camera.

They are determined using ellipse fitting of the image boundary as discussed in Section

3.2.1. Initially, only k1, k2 are estimated by fitting the model r = k1θ + k2θ
3 to one

of the models in Equations (2.5)-(2.8) with the manufacturer’s value if nominal focal

length f and the maximum angle of view θmax if available. rmax = k1θmax + k2θ
3
max

where rmax is the maximum radius of the fisheye image[2]. The parameters lu =

a/rmax and lv = b/rmax where a and b are determined as described in Section 3.2.1.

Only 2 of the 5 intrinsic parameters ki are initialized here. The other parameters are

included only at the last stage where non-linear minimization is used to minimize the

projection errors in Section 3.2.4.

3.2.3 Extrinsic parameters

Assume that M control points are observed in N views. For each view there is a

rotation matrix Rj and translation tj describing the camera position with respect to

the calibration pattern. Hence,

Xc = RjX + tj, j = 1, ...., N. (3.24)

where Xc is the position of the camera and X is the position of the calibration pattern.

The calibration pattern is assumed to be planar and to lie on the XY-plane. The ith

control point will have the coordinates Xi = (X i, Y i, 0)T . The corresponding homo-
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Figure 3.9: Reprojection onto unit sphere.

geneous coordinates in the calibration pattern[34] are denoted by xi
p = (X i, Y i, 1)T

and the corresponding coordinates in the jth fisheye image is mi
j = (uij, v

i
j)
T as shown

in Figure 3.5.

Here, for each view j, each of the i image points mi
j = (uij, v

i
j)
T is reprojected onto

the unit sphere as shown in Figure 3.9. This can be done using a backward model

which can be defined as P−1c = A−1.F−1 where A and F are defined in Equations

(3.21 )and (3.20). A−1 can be determined as
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xij
yij

 =

1/lu 0

0 1/lv


uij − u0
vij − v0

 (3.25)

From Equation (3.25) we can calculate the radius as

rij =
√

(xij)
2 + (yij)

2

ψij = tan−1

(
yij
xij

)
To obtain θij, the cubic Equation (3.26) is solved:

k2(θ
i
j)

3 + k1(θ
i
j)− rij = 0 (3.26)

The unit sphere coordinates is then given by x̃ij = (sinψij sin θij, cosψij sin θij, cos θij)
T .

The relationship between the points on the calibration pattern and on the unit sphere

is a central projection and, hence, there is a planar homography Hj[2] for each view

between the camera image and the calibration plane where sx̃i
j = Hjx

i
p. Initial

estimate of Hj is obtained by correspondences between the planar calibration pattern

coordinates(xi
p) and the coordinates of the reprojected points on unit sphere (x̃i

j)

using the discrete linear transform[35]. Normalized coordinates of the calibration

pattern with respect to the camera coordinate system is x̂i
j = Hjx

i
p/‖Hjx

i
p‖, where

Hj is the estimated homography as discussed. The homography for the jth view is

further refined by minimizing
∑M

i=1 sin2 αij, where αij is the angle between the unit

vectors x̃i
j and x̂i

j.

The external parameters for the jth view are Rj and tj and are related to its

homography Hj as follows:

sx̂i
j = Hjx

i
p = [Rj tj]



X i

Y i

Zi

1


= [r1j r2j r3j tj]



X i

Y i

0

1


= [r1j r2j tj]


X i

Y i

1

 (3.27)
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where [X i, Y i, Zi] are the coordinates of the ith control points on the calibration

pattern in space in the pattern coordinate system. Since a planar pattern is used, the

Zi component is 0. Hence, from Equation (3.27) the homography can be represented

by Hj = [r1j r2j tj]. These form the extrinsic parameters for each camera view. Now

that both intrinsic and extrinsic parameters are estimated and initialized, a non-linear

minimization step can be used to refine the parameters as discussed in Section 3.2.4

3.2.4 Minimization of the projection error

In Section 3.2.2, only the first 2 k1, k2 parameters were estimated. Here, the rest

of the parameters k3, ..., k5 are included into the model in Equation (3.26) with them

initially set to 0. Hence, Equation (3.26) becomes

k5(θ
i
j)

9 + k4(θ
i
j)

7 + k3(θ
i
j)

5 + k2(θ
i
j)

3 + k1(θ
i
j)− rij = 0 (3.28)

Both the intrinsic and extrinsic parameters are refined by a non-linear minimization

of the reprojection error. Combining the estimated parameters and using them in

Equation (3.22) we can get a projection function Pj for each camera view. Using

this estimated projection function, the control points from the calibration pattern

are projected onto the image. These reprojected points can be represented as

m̂i
j = Pj(X

i) (3.29)

where m̂i
j represents the reprojection of the ith control point in the jth view and X i

is the coordinate of the ith control point in the pattern coordinate system.

From Section 3.2.1 we already obtained the measured projection coordinates for

each of the control points in each of the views and denoted this by mi
j. If the estimated

camera projection function Pj correctly models the actual projection function of the

camera, the coordinates of the estimated control points m̂i
j and the measured control
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points mi
j will perfectly coincide for each of the j views. In practice however, since

approximated values have been used for the intrinsic and extrinsic parameters these

points will not coincide and the distance between the measured and estimated control

point is called the reprojection error. A non-linear minimization step can be applied

to this stage to minimize the sum of the reprojection error over all the control points

and all the views. This uses the estimated intrinsic and extrinsic parameters as a

starting point and refines them till a global minimum of the cost function (which is

the reporjection error in this case) is obtained. This non-linear minimization can be

represented as
N∑
j=1

M∑
i=1

d(mi
j, m̂

i
j)

2 (3.30)

This non-linear minimization step is carried out by using the Levenberg-Marquardt

algorithm[32][33]. The refined parameters after the minimization step can be used

for distortion correction and other applications which require the camera calibration

parameters.

3.3 Kannala Auto-Calibration

Sections 3.1 and 3.2 described marker-based methods where a calibration pattern

was used to help calibrate the fisheye camera. This section discusses the theory and

implementation of an auto-calibration technique developed in [3]. This method is

based on using point correspondences between 2 images captured by a fisheye camera

and estimating the camera parameters by minimizing the angular error[36]. A generic

model for the central catadioptric camera developed in [5] is extended to be used for

the fisheye cameras. The model is shown in Figure 3.10. The Z axis is the optical

axis and Z=1 is a virtual image plane.

The point X in space is mapped to x on the virtual image plane. [5] defines a

generic model where a combination of functions maps the 3D point X in space to an
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Figure 3.10: General model for central camera [5].

observed image point m as shown in Equations (3.31) to (3.33)

q = G(X) (3.31)

x = H(q) (3.32)

m = A(x) (3.33)

where X = (X, Y, Z)T is a 3D point, q is the projection of the 3D point X onto

the unit sphere, x = (x, y, 1)T is a projection of point q on the virtual image plane

when viewed from a position Q on the optical axis as shown in Figure 3.10, and

finally m = (u, v, 1)T is an image point related to the point x on the virtual image

by an affine transformation A. An interesting point about the design of this model is

that it is assumed that the point q is perspectively projected onto the virtual image

plane from the point Q which lies on the optical axis. The distance l = ‖OQ‖ is the

parameter of the camera which defines the amount of distortion.
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The model defined above and proposed in [5] has the form,

r =
(l + 1) sin θ

l + cos θ
(3.34)

This can be seen in Figure 3.10 where the corresponding sides of similar triangles have

the same ratio, i.e.,
r

sin θ
=

l + 1

l + cos θ
. It is seen in [3] that the model in Equation

(3.34) can be fit to all the models in Equations (2.5)-(2.8). The function G is used

to project the point X onto the unit sphere. This basically means obtaining the unit

direction vector in the direction of X from the camera center O (Figure 3.10). This

can be represented by G(X) = X/‖X‖ = (cosψ sin θ, sinψ sin θ, cos θ)T , where ψ and

θ are the polar angle coordinates of X as shown in Figure 3.11. The function H which

maps the point q on the unit sphere to the point x on the virtual image plane Z=1 can

be represented by x = H(q) = (r cosψ, r sinψ, 1)T where r is the radial projection

function in Equation (3.34) which is a function of θ. The affine transformation A(.)

can be defined as m = A(x) = Kx where K is the affine transformation matrix given

by

K =


f sf u0

0 γf v0

0 0 1

 (3.35)

which contains the conventional parameters of the pinhole camera as in [6]. f is the

effective focal length, (u0, v0) describe the optical center, s, γ are the skew and ratio

of size of pixels. In our implementation, we assume s = 0 and γ = 1 as modern day

image sensors have negligible skew. The initial value of f is set to 500 and (u0, v0) are

initially set to the image center. These are refined to their optimal values in during

non-linear minimization stage. Hence, the forward camera model P described by

Equations (3.31)-(3.33) and which describes the mapping of a 3D point to an image

point, can be represented as m = P(Φ) where the directions of the incoming ray is

represented by Φ = (θ, ψ) as in Figure 3.11. The backward model can be computed
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Figure 3.11: Polar coordinates of 3D point X.

easily by inverting the forward model and can be viewed as Φ = P−1(m). It is

computed in two steps by first inverting A in Equation (3.33) and then inversion of r

in Equation (3.34). The affine transformation A can be inverted just by finding the

inverse of the affine transformation matrix K. The inverse of r can be obtained by

taking squares of both sides of Equation (3.34) which gives

l2r2 + 2lr2 cos θ + r2 cos2 θ = (l + 1)2 sin2 θ (3.36)

Solving the quadriatic equation and solving for cos θ we obtain the angle θ as:

θ = cos−1

(
−lr2 +

√
l2r4 − (r2 + (l + 1)2)(l2r2 − (l + 1)2)

(r2 + (l + 1)2)

)
(3.37)

From these values of θ and K−1, the unit vectors in the direction of the 3D point

X can be calculated given its corresponding image point m. This is essential for the
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non-linear optimization stage discussed further in Section 3.3.3. The correspondences

of image points m,m’ in two images are obtained using a scale invariant feature

detector[37] as explained in Section 3.3.1.

3.3.1 Obtaining Point Correspondences

This section describes how image point correspondences are obtained when we

have two images of the same scene taken at different poses. A scale invariant feature

transform developed in [37] is used to obtain key features in the image along with

their descriptors. These descriptors are later used for matching the feature points

between images to get the correspondences. This method with a shortened acronym

SIFT is one of the most popular feature detector/descriptor used for feature detection

and matching of images as it is invariant to scale, rotation and illumination. SIFT

mainly has five steps, scale-space extrema detection, keypoint localization, orientation

assignment, keypoint descriptor and keypoint matching.

Detection of scale space extrema The first stage of keypoint detection is to

identify locations and scales that can be repeatably assigned under different viewing

conditions of the same object[37]. This is done by searching for features that are

invariant in all scales using a continuous function of scale known as scale space. The

Gaussian function represents such a scale space as shown in [38]. If I(x, y) is the

image, then scale space can be defined as a function L(x, y, σ)

L(x, y, σ) = G(x, y, σ) ? I(x, y) (3.38)

where ? is convolution operation in x, y and G is a Gaussian represented by

G(x, y, σ) =
1

2πσ2
exp

−
(x2 + y2)

2σ2
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To detect stable keypoint locations, a difference-of-Gaussian(DoG) is convolved with

the image as shown in Equation (3.38)[37]. The DoG can be represented as

D(x, y.σ) = (G(x, y, kσ)−G(x, y, σ)) ? I(x, y) (3.39)

For easy computation of this DoG function, the initial image is convolved with in-

cremental values of σ to produce images separated by a constant factor k in scale

space. The adjacent Gaussian images are subtracted for to obtain the DoG result.

An octave of the scale space is where the final value of the σ is double the initial

value. This way the scale space s is divided into different octaves. Each octave is

further divided into s intervals, where s is an integer. Hence, the constant factor k

can be defined in terms of s as k = 21/s. In each octave the scale σ goes from a value

σ0 to 2σ0, where σ0 is the beginning scale for each octave. Once a complete octave

has been processed, the Gaussian image is downsampled by a factor of two and the

above process is repeated. This has the same effect of using the σ values from 2σ0 to

4σ0 on the 2nd octave but is much faster because of fewer computations [37]. Once

the DoG images are obtained, the local extrema detection is performed where each

pixel is searched across a 3 × 3 window in three adjacent scale spaces. Hence, each

pixel in the DoG image is compared with eight pixels in its own scale, apart from

nine pixels in the next scale and nine pixels in the previous scale making a grand

total of twenty-six pixels being checked as shown in Figure 3.13. The pixel is selected

only if it is the maximum or minimum value of all these neighbors. This maximum

or minimum pixel is called a keypoint. Each octave must have at least s+3 Gaussian

blurred images so that the extremal point detection covers the complete octave. An

example of DoG pyramid for different octaves is shown in Figure 3.12.

Keypoint Localization As the value of σ increases, especially when going from a

lower octave to a higher octave, the individual discrete points of the DoG represent
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Figure 3.12: Computing Difference-of-Gaussians for different Octaves.

increasingly coarse samples of the original image. An extremum in the higher octaves

may not point directly to a pixel that should represent the keypoint. Greater precision

is achieved in the localization of the extremum with respect to the original image

by estimating a second order derivative of D(x, y, σ) at the sampling points in the

DoG pyramid. This allows the localization of the extrema with sub-pixel accuracy.

A Taylor series expansion of D(x, y, σ) in the vicinity of ~X0 = (x0, y0, σ0), which

represents an extremum found in the extrema detection stage can be represented as

D( ~X) w D( ~X0) + JT ( ~X0) ~X +
1

2
~XTH( ~X0) ~X (3.40)
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Figure 3.13: Detecting extremal points across scales.

where J is the gradient vector estimated as ~X0 =

(
∂D
∂x
, ∂D
∂y
, ∂D
∂σ

)
, and H is the

hessian at ~X0. At the true extremum, the derivative in Equation (3.40) will be

zero. Taking the derivative on both sides of Equation (3.40) with respect to variable

~X, the true extremum is given by J ~X = −H−1( ~X0).J(X0). On the edges, there

are some unstable keypoints which have large curvatures across the edge but small

curvatures in the perpendicular direction. The parameters of a 2× 2 Hessian matrix

are used to calculate the ratio of the curvature across the edge and the curvature in

the perpendicular direction. If the ratio is larger than a threshold, the keypoint is

discarded.

Orientation Assignment Each detected extremum is assigned a dominant local

orientation. This gives a notion of description with the retained extremum. To do this,

the gradient vector of the Gaussian smoothened image L at the scale σ closest to the
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scale of the detected extremum is computed. At each point in a K×K neighborhood

around the extremum, the gradient magnitude m(x, y) and the gradient orientation

θ(x, y) are calculated as

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (3.41)

θ(x, y) = tan−1((L(x, y + 1)− L(x, y − 1)))/(L(x+ 1, y)− L(x− 1, y)) (3.42)

θ(x, y) is weighted with m(x, y)[37], a histogram is constructed for θ(x, y) using 36

bins spanning the full 360 degree range. The bin in which the histogram peak occurs,

gives the dominant local orientation.

Keypoint descriptor Here a descriptor is assigned to the retained extremum. The

same gradient information as was calculated in the previous step is used, except for

the fact that the gradient directions are measured relative to the dominant local orien-

tation. For an extremum, the 16×16 surrounding area of the keypoint is divided into

4× 4 sub-regions and is used to calculate the descriptor. After Gaussian smoothing,

the gradient magnitudes and orientations of the samples in the 4× 4 sub-regions are

calculated and an 8 bin histogram for each 4 × 4 sub-region is generated. Stringing

together the sixteen 8 bin histograms yields a 128 element descriptor at each retained

extremum. Considering the 128 element descriptor as a vector in a 128 dimensional

space, its length is normalized to unity to make it invariant to changes in illumination.

Once the keypoints have been detected in both images, a modified a K-D tree

algorithm called Best-Bin-First method [39] is used for matching keypoints by finding

the descriptor of the keypoint in one view with minimum Euclidean distance from the

descriptor in the other view. We used the MATLAB implementation by [40] which is

available online.
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3.3.2 Epipolar geometry and angular error

This auto-calibration method is based on minimizing angular two-image repro-

jection error over the camera internal parameters[3]. In this section, details of the

epipolar constraints used, their meaning and the contribution of angular error are

discussed. Two central cameras with camera centers O and O′ observing a point P

as shown in Figure 3.14 are assumed. OP,O′P represent the vectors of this point in

the first and second camera, respectively. q and q’ are the unit directional vectors in

the directions of OP and O’P. Then the epipolar constraint yields

q′TEq = 0 (3.43)

Here E is the essential matrix [35]. This essential matrix encodes the relative position

of the cameras. We can represent the essential matrix E as E = [t]xR, where [t]x

represents a skew symmetric version of the translation matrix t and R is the rotation

matrix. Hence, R, t gives the position of camera 2 with respect to camera 1, which

defines the extrinsic parameters of camera 2. It is assumed that center O of camera

1 is placed at the origin of the world coordinate system. Since q and q’ are unit

vectors they can be represented on a sphere and hence can be related to the image

coordinates m as described in Equations (3.31)-(3.33). It is important to note that

since the fisheye cameras are represented with their retinas as unit spheres, they have

two epipoles as shown in Figure 3.14 compared to planar cameras which have just

one epipole for each camera. This is further discussed in Chapter 6 where we look at

structure from motion applications using fisheye cameras.

In general the values of q and q’ are obtained by back projecting noisy image

correspondences obtained by SIFT (Section 3.3.1) and by using the inverse projec-

tion model as described in Equation (3.37). These do not satisfy Equation (3.43 )

exactly which leads to corresponding rays not intersecting at a point P. The internal
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Figure 3.14: Epipolar geometery of fisheye cameras. The fisheye cameras represented

by Spherical Retinas whose Radius is 1. (e1, e
′
1) represents the epipoles of camera 1

with centre O and (e2, e
′
2) represents the epipoles of camera 2 with centre O′. The

epipolar curves are shown in orange on the two retinas and q,q’ represent the unit

vectors of OP,O’P and intersect the spherical retina at Q,Q’.

parameters need to be optimized for these rays to intersect. This means that we have

to find the ideal unit direction vectors q̂ and q̂′ which are close to q and q’. The

error criterion used as an error measure between the ideal unit direction vector q̂

and reprojected unit direction vector q is the angular error. This angular error[36] is

defined as the sum of squared sines of angles between q and q̂ and between q’ and

q̂′ and is defined as

E(q,q′,E) = min
q̂,q̂′

(‖q× q̂‖2 + ‖q′ × q̂′‖2) (3.44)

where E is the essential matrix. The geometric meaning of this error is shown in

Figure 3.15. In Figure 3.15a P denotes a 3D scene point, n is the unit normal vector
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to the epipolar plane Π, O,O’ are camera centers, q,q′ are rays corresponding to

image points, q̂, q̂′ are their optimal estimates lying in the epipolar plane, angles

φ1, φ2 are angles between image points and their optimal estimates. Figure 3.15b

shows the same image as seen from the side. We can see that the rays reprojected

from images q,q′ are not on the same plane Π and hence do not intersect. This can

be improved by minimizing the angles φ1 and φ2 . Hence by definition of angular

error and from Figure 3.15, the equation for angular error can also be expressed as

E(q,q′,E) = min
n

(sin2 φ1 + sin2 φ2) (3.45)

E(q,q′,E) = min
n

(|n.q|2 + |n.q′|2) (3.46)

where n is the normal to the epipolar plane π and n.q is the dot product between n

and q.

This error has an exact closed form solution given in [36] and is given by

E(q,q′,E) =
A

2
−
√
A2

4
−B (3.47)

where

A = qTETEq + q′ TEETq′

and

B = (q′ TEq
2
)

The main idea in this calibration technique is to minimize the sum of angular errors

of point correspondences from two images obtained using SIFT. This sum of angular

error is then used as a cost function to be minimized over the camera parameters.

This is further explained in Section 3.3.3.
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(a) Angular error shown on one epipolar plane Π .

(b) Side view of angular error shown in (a).

Figure 3.15: Angular Error.
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3.3.3 Calibration by minimization of the angular error

Calibration using point correspondences and minimization of the angular error is

divided into two non-linear minimization steps. This is done by first representing

the essential matrix E in Equation (3.43) as a function of external parameters as

discussed in Section 3.3.2[35]. Using the inverse model P−1, the unit vectors q,q’

can be defined as a function of internal camera parameters (K,l) as described by

Equations (3.31)-(3.33). Given n point correspondences (mi,m
′
i) the cost function to

be minimized can be expressed as:

C(a) =
n∑
i=1

E(qi,q
′
i,E) =

n∑
i=1

E(q(P−1(mi, ai)),q(P−1(m′i, ai)),E(ae)) (3.48)

where ae are the external camera parameters and ai are the internal camera param-

eters. This cost function is minimized using a non-linear optimization technique. A

good estimate of initial values of the parameters are required for performing this op-

timization. [3] proposes a two-phase optimization approach where the optimization

is first performed over the internal parameters using the eight point algorithm to

compute a rough essential matrix [35]. The estimated essential matrix is then used

as a starting point to minimize the cost function over all the parameters.

Given more than eight correspondences (mi,m
′
i) and a rough estimate of the in-

ternal parameters the unit directional vectors (q,q′) are calculated by using Equation

(3.37). The unit directional vectors corresponding to the image points cab be used

in the eight-point algorithm described in [35] to obtain an estimate of the essential

matrix E. The obtained essential matrix together with the calculated (q,q’) can be

used to compute the cost function (Equation ( 3.48)). This cost function is minimized

over the internal parameters using non-linear optimization. Then an estimate of ro-

tation and translation parameters are obtained by decomposing the essential matrix

as described in Section 6.1. Decomposition of the essential matrix gives four possi-
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ble values of rotation and translation matrices as shown in Table 6.1. The correct

solution is obtained by taking into account the orientation of the unit vectors (q,q′).

The correct solution is the one where the estimated unit direction vectors(q̂i, q̂
′
i) are

in the same direction. This implies that if the 3D point is triangulated, the depth

will be positive. Once the correct rotation and translation parameters are obtained,

they are used as an estimate for a final optimization stage. All the estimated pa-

rameters are then used in the minimization of the cost function given by Equation

(3.48). The robustness to outliers of image correspondence mismatches due to SIFT

is obtained by using the RANSAC algorithm[35]. A subset of point correspondences

n = 8 is chosen at random and the parameters are estimated by the above algorithm.

Using these parameters, the number of inliers according to the angular error (Equa-

tion (3.44)) are calculated. The model with the highest number of inliers is selected

and the parameters are recomputed using all the inliers. This is further optimized

using a final non-linear optimization step which optimizes all the parameters. The

output of the optimization is the estimated intrinsic and extrinsic parameters. We

have used Levenberg-Marquardt[32][33] optimization for the optimization steps in our

implementation.

An important point to be mentioned with regard to this auto-calibration method

is the presence of local minima being found in the non-linear optimization step. This

is especially the case when the intial guesses for the camera parameters are not good

enough for the minimization to find the global minimum. In order to avoid this

an iterative approach is used where estimation is done several times using different

initial conditions which are determined by a combination of reprojection errors of

reconstructed points and minimal feedback from the user. It is still advised to use

auto-calibration for high precision only if there are no other alternatives, due to the

limitations of the model parameters and problems in optimization[3].
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Chapter 4

DISTORTION CORRECTION

Distortion correction is one of the most direct applications of fisheye camera cali-

bration. Once the camera is calibrated, we obtain the calibration parameters. These

calibration parameters describe the distortion function which forms an important part

of the forward model F of the camera which maps the real world co-ordinates to the

fisheye camera plane as shown in Figure 4.1a.

The forward camera model describes the mapping of an incoming ray with direc-

tion Φ = (θ, ψ) to a pixel m(u,v) on to the camera plane, where θ is the angle made

by the incoming ray with the optical axis and ψ is the angle made by the line joining

the principle point the pixel m(u, v) to the x axis on the image plane. To perform

distortion correction the inverse model is to be calculated to determine the direction

of ray mapped to each pixel in the fisheye image. In other words, we need to obtain

F−1 which maps m(u,v) to a unit vector in the direction Φ = (θ, ψ) as illustrated

in Figure 4.1b.

Once we get the backward model by inverting the intrinsic parameters of the

camera (as discussed in Section 4.1), the distortion corrected image can be obtained

by first finding the direction of the ray mapped to a pixel of the fisheye image and then

reprojecting this ray using a planar camera (perspective) projection (ρ = f tan(θ),

where f is the focal length of the pinhole camera corresponding to the corrected image)

onto the distortion-corrected image plane. This is illustrated in Figure 4.1b where ρ

is the radial distance from the optical center in the corrected image plane. Hence,

distortion correction can be seen as a mapping of each pixel with radius r =
√
u2 + v2

in the fisheye image to a pixel with radius ρ =
√
u′2 + v′2 in the corrected image where
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(a) Forward model. F (b) Backward model. F−1

Figure 4.1: Forward and backward models for fisheye cameras.

the pixel m(u, v) in the fisheye image is mapped to m(u′, v′) in the corrected image as

shown in Figure 4.2. Hence, a look-up table can be created which maps the position

of each pixel in the input fisheye image to a pixel in the output distortion-corrected

image. More details about how the mapping is performed are presented in Section

4.1.

4.1 Inverse distortion functions

This section describes how the distortion functions can be inverted to be used in

the backward projection model that is employed in the correction of fisheye images.

The inverse functions are also used during calculation of reprojection error in the

non-linear optimization step of the calibration processes as described in Chapter 3.

As described in Section 3.1 and as given by Equation (3.10), for the Scaramuzza

marker-based method[1], the distortion function of a fisheye camera can be expressed

as follows:

g(r, a) = a0 + a2r
2 + a3r

3 + ...+ aNr
N
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(a) Fisheye image. (b) Corrected image.

Figure 4.2: Relation between a pixel in fisheye and corrected image.

where a0, a2, ..., aN are the calibration parameters and r is the radial distance from

the optical center of the fisheye camera plane. The general form of the distortion

function in terms of θ was defined in Equation (3.4) and is expressed as follows:

g(r, a, b) =
r

tan(θ)

where r is the radial distance from optical center and θ is the angle made by incoming

ray to the optical axis. The inverse distortion function can be obtained by solving for

the roots of Equation (3.10) after equating it with Equation (3.4). Hence, for each

pixel in the fisheye image, its radial distance r from the optical center is calculated.

This calculated r is used in Equations (3.10) and (3.4) to obtain a function in terms

of θ. The roots obtained by solving for the Equation (3.10) after equating it with

Equation (3.4) give us the value of θ, i.e, the angle of the incoming ray to the optical

axis as shown in Figure 4.1. The value of ψ can be calculated from the x and y

co-ordinates of the pixel in consideration as

ψ = tan−1

(
v

u

)
(4.1)
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So we can obtain Φ = (θ, ψ) the incoming ray direction corresponding to each of the

pixels in the fisheye image. This can now be used with the equation of perspective

projection ρ = f tan(θ) to obtain the radial distance of the pixel in the distortion-

corrected image. The value f in this case is the focal length of the pinhole camera

corresponding to the corrected image. This can be set to a scalar value to ensure the

required FOV in the corrected image is visible. Smaller the value of the focal length

used, lesser of the corrected image is visible. The location of the corresponding pixel

in the distortion-corrected image can be obtained as

u′ = ρ cos ψ (4.2)

v′ = ρ sin ψ (4.3)

This way we can obtain a mapping between the fisheye image and the distorted

corrected image. It is important to note that some of the pixels in the corrected image

may not be assigned to any pixel in the fisheye image. Hence, we need to perform

an interpolation on the distortion corrected image. In our implementation, bilinear

interpolation is used. Figure 4.3 shows distortion-correction results that are obtained

from a natural image (top) and synthetic image (bottom). The original fisheye images

were captured using a Fujinon fe185c086ha-1 fisheye lens attached to a Basler ace

acA1300-30uc sensor. Table 4.1 shows the corresponding distortion parameters that

were obtained using Scaramuzza calibration and used for the distortion correction.

For the Kannala plane-based calibration model in Section 3.2 the forward model

is given by Equation (3.19) i.e,

r(θ) = k1θ + k2θ
3 + k3θ

5 + k4θ
7 + k9θ

9

where r is the radius of the considered pixel in the fisheye camera plane. Similar to

the previous case, we can obtain the inverse model (i.e, θ and ψ) by solving for θ in
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(a) Fisheye Image. (b) Distortion corrected Image.

Figure 4.3: Distortion correction using fisheye camera parameters that are obtained

using Scaramuzza method[1] with the distortion coefficient Length of four.

the Equation (3.19) for the value of r corresponding to each pixel and choosing only

real, unique roots whose value lies within the field of view of the camera (usually

between −π/2 and π/2). ψ can be obtained as above using Equation (4.1) from the

pixels in the fisheye image. Hence, we can use the calculated Φ = (θ, ψ) to form

a distortion-corrected image as previously described. Figure 4.4 shows the original

fisheye image on the left and the distortion corrected image using Kannala marker-

based calibration[2] on the right. The fisheye image was captured using a Fujinon

fe185c086ha-1 fisheye lens attached to a Basler ace acA1300-30uc sensor. Table 4.2

shows the corresponding distortion parameters that were obtained using Kannala
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Table 4.1: Parameters of fisheye camera obtained by Scaramuzza calibration[1].

Parameters Value

Distortion Coefficients -3.87, 9.30e-04, -1.467e-07, 4.30e-10

Center of distortion (col,row) 395.904, 609.870

Image Size (width,height) 1250,800

Figure 4.4: Distortion correction using fisheye camera parameters that are obtained

using Kannala marker-based method[2] with the distortion coefficient length of four.

marker-based calibration and used for the distortion correction.

In the case of the Kannala auto-calibration technique discussed in Section 3.3 the

distortion function is given by Equation (3.34) as follows:

r =
(l + 1) sin θ

l + cos θ

where l is the parameter used to describe the non-linear distortion. The inverse to

this model is given in Equation (3.37), i.e.,

θ = cos−1

(
−lr2 +

√
l2r4 − (r2 + (l + 1)2)(l2r2 − (l + 1)2)

(r2 + (l + 1)2)

)
As before, ψ is calculated according to Equation (4.1). As in the previous cases, a

mapping between the fisheye and distortion-corrected image in pixels can be obtained
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Table 4.2: Internal parameters of fisheye camera obtained by Kannala marker-based

calibration[2].

Parameters Value

Distortion Coefficients 2.294, 5.754e-02, 3.045e-01, -3.484e-01

Center of distortion (col,row) 413.758, 636.544

Image Size (width,height) 1280,800

Figure 4.5: Distortion correction using fisheye camera parameters that are obtained

using Kannala Auto-Calibration method[3].

and stored in a lookup table that is used for distortion correction. Figure 4.5 shows the

original fisheye image on the left and the distortion corrected image using Kannala

auto-calibration[3] on the right. The fisheye image was captured using a Fujinon

fe185c086ha-1 fisheye lens attached to a Basler ace acA1300-30uc sensor. Table 4.3

shows the corresponding distortion parameters that were obtained using Kannala

auto-calibration and used for the distortion correction.

It is important to note that distortion correction can only be done for an angle

less then 180 deg. This is due to the fact we cannot represent a point behind the
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Table 4.3: Parameters of fisheye camera obtained by Kannala Auto-Calibration[3].

Parameters Value

Distortion Parameter (l) 3.15

Focal length of fisheye camera 461.77

Center of distortion (col,row) 394.838, 618.007

Image Size (width,height) 1250,800

camera (possible because of FOV > 180◦) on a plane in front of the camera. Hence

when we perform distortion correction we consider only the part of the image where

−70◦ < θ < 70◦.
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Chapter 5

FISHEYE CAMERA CALIBRATION AND DISTORTION CORRECTION

(FISHEYECDC) TOOLBOX

This chapter introduces the developed Fisheye Camera Calibration and Distortion-

Correction (FisheyeCDC) toolbox’s structure and usage. As mentioned earlier, the

toolbox was developed for the purpose of simplifying user interaction for the calibra-

tion of fisheye cameras. Hence, the design has a simple layout and interface to make

the process of calibration easier. This is done by keeping interaction between user

and algorithms to a minimum. The toolbox provides an easy, structured and clear

interface to help the user as he/she does not have to worry about the implementations

of the various algorithms in the toolbox.

The toolbox was developed in MATLAB due to ease of programming and designing

a graphical interface. It also advantageous to use MATLAB as it can run on a

number of platforms with little or no customization required. Also, some of the

reference calibration methods we have incorporated in our system [13][14] have been

developed in MATLAB and hence it is easier to streamline all these methods under

one application. Routines that are implemented in the C language can also be called

from MATLAB.

5.1 Toolbox Layout

The designed toolbox follows the layout shown in Figure 5.1. The toolbox performs

two functions, calibration and distortion correction. Either one of the two functions

can be selected by clicking on one of the tabs as shown in Figure 5.2. By default the

calibration tab is active. The functionalities of each of the tabs are described below.
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(a) Basic layout.

(b) Calibration Tab layout.

(c) Distortion correction Tab layout.

Figure 5.1: Layout of FisheyeCDC Toolbox.
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Figure 5.2: Toolbox with Calibration Tab active.

Calibration Tab: The Calibration tab in the GUI must be selected when the user

has to perform calibration of the fisheye camera. When the application is initially

launched or the Calibration tab is selected by the user, the GUI has the appearance

shown in Figure 5.2. The layout of the Calibration tab is shown in Figure 5.1b.

For calibration, the user has to load the calibration images into the toolbox using

the Load Calibration Images file browser, select the calibration method to be

used in the Calibration Options panel and specify the formats and the filenames

of the output parameter files to be stored. The input images for this stage are

the images of the calibration patterns as shown in Figure 2.5, if the marker-based

calibration techniques are selected, or two images of the same scene if the auto-
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calibration technique is used. If less than two images are selected at this stage a

warning message prompting the user to select more than two images is displayed

(Figure 5.4a ). The user then needs to select the type of calibration (Auto or Marker-

based calibration) he/she wants to use by clicking on one of the radial buttons in the

Calibration Options panel and then selecting the method from the list provided

under each type. The user also has to select the format he/she would like the output

parameter files to be stored in by clicking the corresponding checkboxes and needs to

provide the filepath and filename for the output files using the Output Filename

and Destination browser button in the Save Camera Parameters panel. Once

the above steps are done, the user can begin calibration by clicking on the start button

in the Status panel. The process of calibration will start only if all the inputs and

output names are set up in the calibration tab. Clicking on Start with any of the

options not set will result in an error message prompting the user to select or set up

the required options as shown in Figure 5.4b.

Distortion Correction Tab: The user must select this tab to perform distortion

correction. Once the tab is selected the toolbox appears as shown in Figure 5.3. The

user can input either a single image or can process a batch of images depending on

the selection in the Input Images panel. If single input is selected, the user can

then use the Browse button and navigate to the fisheye image that he/she wants to

undistort. If Batch Processing is selected, the Browse button now can be used to

select the folder which contains the images that need to be corrected for distortion.

It is assumed that all the images in this folder are from the same fisheye camera. If

distortion correction is being done immediately after the calibration then the user can

select the Use Computed Parameters button in the Calibration Parameters

panel. This assumes the images being undistorted are from the same fisheye camera
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Figure 5.3: Toolbox with Distortion Correction Tab active.

that was just calibrated. If the undistortion has to be performed at a later stage, the

user can select the Load Saved Parameters option and use the Load button to

navigate to and load the parameter file of the fisheye camera which was previously

calibrated. In this case, the user has to specify which method was used to calibrate

the camera from the list in the Calibration Parameters panel for the parameter

file to have the correct parameters. If the type of parameter file that was loaded

was different from the type selected in the list, the user receives a warning as in

Figure 5.4c. For example, if the loaded parameter file was for the auto-calibration

but the method selected in the list was one of the marker-based calibration methods
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(a) Insufficient images for calibration. (b) Options not selected for calibration.

(c) Incorrect parameter file loaded. (d) Options not selected for Undistortion.

Figure 5.4: Warning and error messages.

the warning in Figure 5.4c is displayed to the user. The user also has to set up the

path and the filenames for the output images. If a single image is being processed(i.e,

the Single Image button in Input Images panel is selected), then the user has to

select the output folder and enter the filename for the output image. If undistortion

is being performed in batch processing mode, the user only has to select the folder

for the output undistorted images to be saved. The filenames of the images will

be similar to the input filenames. The Display Images check box in the Output

Images panel can be checked if the user wants to display the images as they are

being undistorted. Once all the options have been set, the user has to click on the

start button in the algorithm control panel to begin the process of undistortion using

the calibrated parameters. Similar to the calibration tab, if all the options are not

set before clicking on start, the user receives a warning message as shown in Figure

5.4d.

The Status panel is common to both the Calibration and Distortion Correc-
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tion tabs. It notifies the user that the process of calibration or distortion correction

can be started once the correct options in all the panels have been selected. The

process can be halted at any time by hitting the Stop button. The Help button

leads to a detailed help document for the currently active tab.The Status panel also

contains the progress and status bar which displays the progress of the calibration or

undistortion process. It also displays status of intermediate tasks such as completion

of loading of images for calibration or undistortion and completion of corner detection

during calibration etc.

5.2 Format choices for output of calibration

The output from the calibration step are the parameters for the camera. These

parameters depend on the type of method being used for calibration. In general

the parameters output from each of the method as the coefficients or parameters for

distortion function, the principal point of the image or the center of the distortion,

the focal length and the dimensions of the images used for calibration. In some cases

a few extra parameters may be present such as affine transformation coefficients. We

have a choice of two supported formats for storing these calibration files They can be

stored as a MATLAB matrix file(.mat) and/or a text file(.txt) file. In the matrix file

the system parameters are stored as a data structure with the appropriate fields for

each of the parameters. This makes it easier to load and read the file in MATLAB

especially for our undistortion application. The data structure is checked when the

file is loaded during undistortion to make sure that the right parameter file is being

used. The text file contains a header that describes the calibration method used for

calibrating the camera along with the calibration parameters. The text file version is

human readable. The text file is also useful if the user wants to use the camera with

applications that are developed in different programming languages such as C,C++
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and Java to name a few.

5.3 Calibration Procedure

This section describes how to perform calibration using the developed FisheyeCDC

toolbox. First the toolbox has to be set up for calibration, as described in Section 5.1,

with the appropriate options and parameters such as output file formats, file names

and destination folders. To calibrate the camera the following steps can be followed:

1. Click on the Calibration tab at the top of the toolbox.

2. Click on Browse in the Input Calibration panel to open the file browser and

select the required calibration images.The user will be notified once the images

have been loaded.

3. In the Calibration Options panel, select the type of calibration method (Auto

or Marker-based calibration). Based on the selection, the list containing the

appropriate methods will be displayed. Select the desired calibration method

from the list.

4. In Save Camera Parameters panel, select the desired format of the output

parameter file required. Click on the Output Filename and Destination

button to select the output folder and enter the name of the output file.

5. Click on Start to begin the process of calibration.

Some aspects of the calibration depend on the calibration algorithm being used and in

some cases may require some user interaction to provide some of the initial parameters

to perform calibration. In the auto-calibration technique, once the ellipse fitting is

completed and the center is calculated, the user is prompted to check if the ellipse

and camera centers look visually correct as these values will be used in the algorithms
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as initial conditions for the non-linear minimization steps. The user is also prompted

after calibration is done to check if the undistorted image is visually correct. If the

user is not satisfied with the result, the calibration is repeated with different initial

parameters. In the case of using the Scaramuzza technique, the user is asked to enter

some details about the calibration pattern (number of checkerboards, approximate

centers, size of checkerboards etc). Here the user also has the option of selecting

the checkerboard corners manually if he/she does not prefer using automatic corner

detection. In the Kannala plane/marker-based technique, the user is prompted to

enter some basic information about the camera if it is available ( e.g., manufacturer

focal length, type of projection etc) and also some details about the calibration pattern

(e.g., number of blobs in the x and y directions). The user also has to select the

bounding box of the calibration pattern inside which the blobs or circular control

points are detected. This is done by an interactive procedure where the user is

prompted to select the polygon that encloses the imaged calibration pattern.

The user is informed once the calibration procedure is complete and the results are

saved in the appropriate locations and in the required formats. These parameters are

also retained in the memory in case the user wants to perform distortion correction.

5.4 Distortion Correction procedure

This section describes how to perform distortion correction of fisheye images using

the FisheyeCDC toolbox. the procedure consists of the following steps.

1. Click on the Distortion Correction tab at the top of the toolbox.

2. Select the desired processing mode in the Input Images panel

• If the single image mode is selected, click on the Browse button and

navigate to the image to undistort and load the image.
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• If the batch processing mode is selected, click on Browse and select the

folder containing the fisheye images to be corrected. It is important to note

that all the images in this folder must be from the same fisheye camera.

3. Calibration parameters

• If performing distortion correction immediately after calibration, select the

use Computed Parameters option in the Calibration Parameters

panel.

• If performing the operation at a different time, then select Load Saved

Parameters, choose the type of calibration method that was used to

calibrate the camera and click on Load and navigate to the parameter

file.

4. Select the Output Filename and Destination folder from the Output Im-

ages panel in case of undistorting in single image mode. In batch processing

mode, select the output folder where the undistorted images need to be stored.

5. Click on the Start button in the Status panel to start the distortion correction

process. The user is notified once the process is complete.

The process of undistortion requires no interaction from the user after the start button

is pressed. The status of the process is displayed on the status bar in the Status

panel.

5.5 Results

This section presents the results of calibration using the different techniques that

are available in the FisheyeCDC toolbox. A good method to check the accuracy of

calibration is to use the root mean square (RMS) error also known as the reprojection
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error which can be defined as the distance between modeled and measured control

points. We know the positions of modeled control points as the pixel coordinates of

either checkerboard corners in the case of Scaramuzza technique or the centroids of

the circular points in the Kannala marker-based technique. These are obtained in

the keypoint localization stages of each of the algorithms and can be represented as

mij. We also know 3D coordinates Mij of the control points (from the calibration

patterns). These are reprojected onto the image using the estimated camera internal

and external parameters to form the measured control point coordinates which can

be represented by m′ij. The reprojection error can now be defined as follows:

Err =

√
N∑
i=1

K∑
j=1

(mi,j −m′i,j)
2

NK
(5.1)

where N is the number of calibration patterns and K is the number of control points

in each pattern. In case of auto-calibration, two images of checkerboards were used

and point correspondences were manually picked. These correspondences act as the

modeled points. These corresponding points were also reconstructed to obtain their

3D coordinates which were then reprojected onto the image using calibration param-

eters to the form the measured control points. The lower the value of the reprojection

error, the better is the calibration result.

A coefficient length of 4 was used during calibration for the Scaramuzza and

Kannala marker-based calibration methods. The reprojection errors for each method

used is shown in Table 5.1. As expected it can be observed that the marker-based

methods give comparable results while the auto-calibration technique performs worse

than the marker-based methods.

We also test the effect of the number of calibration images on the RMS reprojection

errors for the marker-based calibration techniques. The results in Table 5.2 show that
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Table 5.1: Performance of fisheye camera calibration in terms of RMS reprojection

error.

Method RMS reprojection error (Pixels)

Scaramuzza marker-based technique[1] 1.1662

Kannala marker-based technique[2] 1.1831

Kannala auto-calibration technique[3] 2.682

Table 5.2: Effect of number of calibration patterns on RMS error.

No. of calibration images Error(Kannala method) Error(Scaramuzza method)

2 1.3798 1.4599

3 1.3056 1.3466

4 1.2287 1.2059

7 1.1831 1.1662

the error exhibits a decreasing tendency with the increase in number of calibration

pattern images. The plot of RMS reprojection error in function of the calibration

images is shown in Figure 5.5 for the marker-based calibration techniques. The error

in the x and y direction was computed for each control point as the difference between

the x and y coordinates of each of the measured and modeled control point. They

show the error for each of the reprojected points compared to the modeled point.

Figure 5.6 shows these error plots for the marker-based techniques when using three

and four calibration pattern images.

For auto-calibration two images of checkerboards were used and point correspon-

dences between them were picked manually. Using the computed calibration parame-

ters the 3D points were reconstructed and then reprojected back onto the images. The

resulting reprojection error is shown in Table 5.1 and Figure 5.7 shows the error plot
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(a) Kannala marker-based method

(b) Scaramuzza marker-based method.

Figure 5.5: Effect of number of calibration images on RMS reprojection error.

in the x and y directions as the difference of measured and modeled control points.

Compared to marker-based techniques (Figure 5.6), the auto-calibration method re-

sults in more scattered plots (Figure 5.7), which indicates lower accuracy. This is

because we are estimating the distortion of the fisheye camera using just one param-

eter (l in Equation (3.34) compared to the marker-based techniques in [2] and [1]

which use more parameters to model the distortion.
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(a) (b)

(c) (d)

Figure 5.6: Error plot of reprojected points in x and y directions. (a) and (b) show

the error plots in x and y directions of Kannala marker-based technique[2] for three

and four calibration images respectively;(c) and (d) show the error plots in x and y

directions of Scaramuzza technique[1] for three and four calibrations images respec-

tively.

Figure 5.7: Error plot of reprojected points in x and y directions for Kannala Auto-

Calibration[3].
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Chapter 6

RECONSTRUCTION ON FISHEYE IMAGES

A major application of computer vision is 3D reconstruction of a scene using captured

images. Reconstruction mainly consists of obtaining a sparse or dense depth map

of a scene using images. It is important for many applications such as robotics

for vision based SLAM (simultaneous localization and mapping), visual odometry,

rendering in graphics, augmented reality, geographical photo-tagging, defect detection

in manufacturing, driver assist systems in automobiles, to name a few. There are

many methods to perform 3D reconstruction using different camera types. Stereo

cameras, RGB-depth cameras, structured light cameras are some examples of cameras

that are used for this purpose. Determining the camera parameters is an important

component of 3D reconstruction. This can be achieved through off-line or on-the-fly

camera calibration. One method for 3D reconstruction is structure from motion(SFM)

which has been a widely studied topic over the last few decades especially for planar

cameras[41] [42]. This chapter discusses how we can perform 3D reconstruction using

images of a scene captured by the same fisheye camera from unknown positions using

the concept of structure from motion.

6.1 3D SFM-based Reconstruction for Planar Cameras

Structure from motion (SFM) is based on the concept of epipolar geometry of

multiview images of the same scene[35]. The geometry between two views of the

same scene can be represented by epipolar geometry. Consider two cameras with

centers O1, O2 viewing the same scene. Let C1 and C2 be their corresponding camera

planes. In what follows, these two cameras will be referred to as C1 and C2 for short.
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Figure 6.1: Epipolar geometery between two cameras viewing the same point. O1

and O2 are the camera centers with camera planes C1 and C2 respectively; x1 and x2

are the Projections of scene point X on C1 and C2 respectively; e1 and e2 denote the

epipoles of the 2 cameras; l1 and l2 are the respective epipolar lines.

A scene point X is projected onto camera image planes C1 and C2 as x1 and x2

respectively(Figure 6.1). The plane π formed by the lines joining X,O1 and X,O2 is

called the epipolar plane. The points e1 and e2 at which the line joining the camera

centers O1, O2 meets the camera planes are called the epipoles. The lines l1, l2 that

are formed, respectively, by joining e1 to x1 and e2 to x2 are called the epipolar lines.

From Figure 6.1, it can be seen that the projection of ray O1X on the camera image

plane C2 is the epipolar line l2 and similarly projection of ray O2X on camera image

plane C1 is the epipolar line l1. Any point x1 on camera image plane C1 that matches a
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point x2 in camera image plane C2 must lie on the epipolar line l1. Hence, we see that

there is mapping between a point on the first camera image plane to an epipolar line

on the second plane and vice versa. This mapping is given by fundamental matrix[35]

and can be represented as

l2 = F12x1 (6.1)

l1 = F21x2 (6.2)

where F12 represents the fundamental matrix that relates the point x1 to the line l2

and F21 relates x2 to l1. From basic geometry, the equation of a point x lying on a

line l is lTx = 0 or xT l = 0. Since the point x2 lies on line l2 and using Equation

(6.1) we have

xT2 l2 = 0

or

xT2 F12x1 = 0 (6.3)

Equation (6.3) is known as the epipolar constraint equation [35]. The fundamental

matrix F12 is represented in this thesis as F and is a matrix of rank 2 which encodes

the information about the camera locations with respect to a scene. The fundamen-

tal matrix between two cameras can be estimated using the eight point algorithm

[35]. This requires at least eight points of correspondences between the images cap-

tured by the two cameras or two different views of the same camera. In practice,

the RANSAC[43] method is used to obtain good inliers. In this method, eight point

correspondences are selected at random from the set of correspondences and the fun-

damental matrix is estimated using the discrete linear transform (DLT)[35]. This

estimated fundamental matrix is used in Equation (6.3) with all the point correspon-

dences. The points which are correctly matched will have very low value of error

whereas mismatches will have an higher value of error. The matches whose error
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is less than a certain threshold are considered inliers and the others are considered

outliers. The fundamental matrix which has the most inliers in the set is selected and

it is re-estimated using all the inliers in the set using singular value decomposition

which is a linear least-squares minimization.

The calibration matrix K of a camera gives the relationship between the image

co-ordinates and the image sensor co-ordinates for a camera[35]. If the cameras C1

and C2 are calibrated and their camera intrinsic matrices are known to be K1 and

K2, respectively, these matrices give us the relation between the camera image plane

and the camera CCD sensor. Hence, we can rewrite the fundamental matrix as:

F = K−T2 EK−11 (6.4)

where E is known as the essential matrix and the epipolar constraint equation (Equa-

tion (6.3)) can be rewritten as

x
′T
2 Ex′1 = 0 (6.5)

where x′1 and x′2 represent the normalized coordinates corresponding to points x1

and x2 respectively. Normalized co-ordinates are obtained as x′1 = K−11 x1 and x′2 =

K−12 x2. Normalized co-ordinate x′ can be thought of as the image of 3D point X on

a camera having the identity matrix I as calibration matrix[35].

The projection matrix P in Equation (2.2) can be written as a combination of R

and t as

P = [R|t]

where R is a 3× 3 rotation matrix and t is a 3× 1 translation vector:

R =


r11 r12 r13

r12 r22 r23

r13 r23 r33

 (6.6)
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and

t =


tx

ty

tz

 (6.7)

Camera 1 is assumed to be at the origin and hence its projection matrix is P1 =

[I3×3|0]. Consequently, if camera 2 is rotated and translated by R and t, its projection

matrix is P2 = [R|t]. The essential matrix can also be represented as E = [t]xR where

[t]x represents a skew symmetric form of the translation matrix t and R represents

the rotation matrix between the two poses of the camera[35]. The essential matrix can

be decomposed into rotation and translation matrices which relate the positions of

the cameras with respect to each other. Decomposition of the essential matrix can be

performed using singular value decomposition. Suppose SVD of E is Udiag(1, 1, 0)V T .

The possible rotation and translation matrices are R = UWV T or R = UW TV T

where

W =


0 −1 0

1 0 0

0 0 1

 (6.8)

and t = u3 or t = −u3 where u3 = U(0, 0, 1)T . This gives us 4 different possible

projection matrices for camera 2 with respect to camera 1 as shown in Table 6.1.The

correct projection matrix is chosen after triangulating all the points correspondences

to obtain their respective 3D coordinates and choosing the projection matrix which

gives all the z components (depths) of the 3D points to be positive[35]. It is important

to note that the fundamental matrix has 5 degrees of freedom and hence the term tz

in Equation (6.7) is estimated only up to a scale.

The triangulation is based on the linear triangulation method for noiseless corre-

spondences as described in [35]. For every point mi in the image Equation (2.2) can
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Table 6.1: Possible projection matrices obtained from decomposition of essential ma-

trix.

Number Possible Projection Matrix (P2)

1 [UWV T |−u3 ]

2 [UWV T |+u3 ]

3 [UW TV T |−u3 ]

4 [UW TV T |+u3 ]

be written as

mi × PMi = 0 (6.9)

where Mi = [Xi, Yi, Zi, 1]T is the homogeneous 3D point corresponding to the 2D

point mi = [xi, yi, 1]T . Hence, each image point gives three equations of which two

are linearly independent. This can be represented as AM = 0 where M is a column

vector obtained by stacking all the 3D points Mi, and the matrix A is m× P for all

the point correspondences mi that are stacked to form a column vector m. A can be

represented as

A =



x1P
3
1 − P 1

1

y1P
3
1 − P 2

1

x2P
3
2 − P 1

2

y2P
3
2 − P 2

2


(6.10)

where P j
1 is the jth row of the projection matrix P1 of camera C1 and P j

2 is the jth

row of the projection matrix P2 of camera C2. The 3D points M corresponding to

the 2D points m are estimated by performing a singular value decomposition on the

matrix A which solves the system of equations in a least squares sense. In this way

a sparse depth map can be obtained using structure from motion.
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6.2 Extension of SFM to fisheye cameras

In this section the concept of structure from motion for planar cameras is extended

to be applied to fisheye cameras. Fisheye cameras are central cameras as discussed in

Section 2.1. The epipolar geometry is applicable to all central cameras and hence is

applicable to fisheye cameras too albeit with certain modifications. We consider the

camera to be calibrated and its distortion function and intrinsic parameters known.

Hence, we know the direction vector related to each of the pixels of the fisheye camera.

Since the direction vectors are known, the unit direction vectors for each of them can

be calculated.

The fisheye camera’s retina is assumed to be similar to a unit sphere (Figure 3.14)

as compared to a planar retina of a perspective camera (Figure 6.1). One major

difference between the planar and fisheye camera is that instead of epipolar lines we

have the presence of epipolar curves as shown in Figure 3.14. Hence, a point Q′ on

the unit sphere retina corresponding to a unit directional vector q′ in the camera with

center O′ that matches a point Q on the unit sphere retina corresponding to a unit

directional vector q in the camera with center O lies on the epipolar curve e2e
′
2(Figure

3.14). q and q′ are unit directional vectors corresponding to a point correspondence

in the fisheye image. These unit directional vectors are obtained using the camera

calibration parameters. Once the camera is calibrated, the backward model for the

camera is used to reproject points on the image plane onto a unit circle as shown in

Figure 3.9. We use two images of a scene captured by the camera at unknown locations

with unknown rotation and translation. The point correspondences between these two

images can be obtained using the scale invariant feature transform[37] as explained

in Section 3.3.1. These point correspondences are further refined using the RANSAC

method which is extended to use unit directional vectors for matches instead of just
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Figure 6.2: Image correspondences after the RANSAC Stage.

image coordinates[4]. The error criteria for obtaining inliers is the angular error as

described in Section 3.3.2. The inliers obtained after the RANSAC stage are shown

in Figure 6.2. Once the vectors corresponding to image matches are obtained they

are used in the epipolar constraint given by Equation (6.3) to obtain the fundamental

matrix using the calibrated eight point algorithm [35]. These act like the normalized

coordinates described in Section 6.1 and the estimated fundamental matrix turns

out to be the essential matrix[28]. The best estimate for the essential matrix is

obtained using all inliers of the point correspondences resulting from RANSAC and

which lie within an angular error criteria. Once the essential matrix is obtained, it is

decomposed into rotation and translation matrices as discussed in Section 6.1. The

rotation and translation matrices can be combined to form the four possible projection

matrices as shown in Table 6.1, and the best one is chosen using the direction vectors.

For the projection matrix to be valid, the direction of the reprojected unit directional

vector and the ray joining the center of the camera to the triangulated 3D point

should be the same and hence their dot product must be zero. This ensures that

the triangulated 3D point has a positive depth. Triangulation is done similar to the

linear triangulation method as described in Section 6.1.
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Suppose we have a calibrated fisheye camera, we can obtain the unit directional

vectors p1 and p2 corresponding to image points u1 and u2 as described in Section 4.1

In our application, each view is considered to correspond to a camera even if these

were taken by the same camera. As described in Section 6.1, we can also obtain the

projection matrices P1 and P2 for view 1(camera 1) and view 2(camera 2). We assume

camera 1 to be at world origin and hence P1 = [I3×3|0] and P2 = [R|T ] is obtained

by the decomposition of the essential matrix.

αp1 = P1X (6.11)

αp2 = P2X (6.12)

Consequently, from Equation (6.11)

αx1 = P 1
1X

αy1 = P 2
1X

αz1 = P 3
1X

where P j
i is the jth row of the ith projection matrix. Similarly, from Equation 6.12,

we obtain for second view:

αx2 = P 1
2X

αy2 = P 2
2X

αz2 = P 3
2X

Using Equation (6.9) and extending Equation (6.10) to include pi = (xi, yi, zi) as

we are using the unit vector to triangulate instead of the normalized coordinates
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mi = (xi, yi, 1) in the planar camera case we get

A =



x1P
3
1 − z1P 1

1

x1P
2
1 − y1P 1

1

y1P
3
1 − z1P 2

1

x2P
3
2 − z2P 1

2

x2P
2
2 − y2P 1

2

y2P
3
2 − z2P 2

2


(6.13)

and solving for X in AX = 0 in the least squares sense using SVD we can obtain an

estimate of the 3D point up to a scale. Once the 3D points for all the point corre-

spondences are estimated they are reprojected back onto the fisheye image and the

reprojection error is calculated as sum of squares of the errors between the reprojected

points and the original fisheye points. We accept the estimate of the reconstructed

points if the reprojection error is less than 1 pixel.

The flowchart for the process of 3D reconstruction is shown in Figure 6.3

The algorithm for 3D reconstruction is as follows[4]:

1. Calibrate the fisheye camera to be used for the reconstruction using one of the

methods described in chapters 3 and 5 and obtain the camera parameters. Here

we use the Scaramuzza method for calibration.

2. Capture two images of the scene to be reconstructed using the calibrated fisheye

camera.

3. Obtain feature correspondences between the 2 image frames using a feature

point detector and matching procedure(e.g., SIFT [37]).

4. Use the calibration parameters to obtain the unit direction vectors for each of

the point correspondences in both the images as described in Section 4.1. In
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Figure 6.3: Flowchart for 3D Reconstruction using fisheye cameras.

other words, project the points from both images onto their respective unit

spheres.

5. Remove outliers using the RANSAC framework and obtain the best estimate of

the essential matrix that minimizes the angular error over all the inliers.

6. Compute the possible projection matrices P as shown in Table 6.1.

7. Triangulate all the inliers using the projection matrix and linear triangulation.

8. Choose the projection matrix which gives a positive depth to all the triangulated

points. If none of the projection matrices give this result, the estimated essential

matrix is wrong and hence, the process is repeated from step 4.

9. Reproject all the triangulated points back onto the images and calcualte the

reprojection error between the original points and the reprojected points.
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10. If reprojection error is less then the given threshold then we choose the set of

3D points used as the final results else we repeat the process from step 4.

11. If the true depth to any one of the points is known then scale the points using the

true depth to obtain a depth map that reflects true depth of the reconstructed

points. If not we obtain the depth map up to a multiplicative scale.

As part of this work, reconstruction from views taken using a fisheye camera was

imlpemented and tested. We did not include in our implementation any non-linear

optimization stages that can further fine tune the results to give more stable 3D

points. A bundle adjustment stage could be added at the end of the process. Bundle

adjustment is a non-linear optimization step which jointly optimizes the reconstructed

3D points along with the camera poses, i.e, the camera projection matrices.

6.3 Results

This section describes some results of reconstruction carried out using calibrated

fisheye cameras. We captured some images of a scene with known distances from the

camera and implemented the algorithm described in Section 6.2. The original fisheye

images were captured using a Fujinon FE185C086HA-1 fisheye lens attached to a

Basler ACE acA1920-25uc image sensor. Some captured images are shown in Figure

6.4. The cameras were calibrated using the Scaramuzza calibration technique; the

resulting camera parameters as shown in Table 4.1. Point correspondences between

2 images were obtained using SIFT as described in Section 3.3.1 and refined using

RANSAC. A subset of correspondences that were used for essential matrix estimation

are shown in Figure 6.5. These are the final inliers on whom the epipolar constraint

is applied. Figure 6.6 shows the regions whose distance from the camera is known

for the purpose of performance evaluation. The distances in inches for each of the
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Figure 6.4: Original fisheye images.

Figure 6.5: Image matches after RANSAC Stage.

regions from the camera are shown in Figure 6.7. Figure 6.8 shows the depths of

the scaled reconstructed points plotted against ground truths for the corresponding

regions. The scaling was performed using the known depth of region 3. The calculated

relative depth for region 3 is divided by the known ground truth depth of region 3 to

obtain a scale factor. The relative depths of all the other regions are multiplied by

this scale factor to obtain the true depth. We can see that there are few errors in the

depth estimation compared to ground the truth especially in region 2 and region 4.

This is due to the lack of a sufficient number of feature points in those regions. Also,

as discussed previously, the current implementation does not include any non-linear

optimization bundle adjustment stage which could reduce the depth estimation error.
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Figure 6.6: Regions of known depth enclosed by white rectangles and their corre-

sponding feature points.

Figure 6.7: Top view of scene setup showing distances of regions from the camera.

The resulting average mean-squared depth estimation error is 2.86 inches.
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Figure 6.8: Calculated depth versus ground truth comparison for the regions of in-

terest.
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Chapter 7

CONCLUSION

This thesis implements a toolbox to perform the calibration of fisheye cameras and

distortion correction. It contributes to the field of camera calibration with widespread

applications in different domains. This chapter summarizes the contributions of this

thesis and discusses the future scope.

7.1 Contributions

The contributions of this thesis can be summarized as follows:

• A user-friendly toolbox with a graphical user interface to perform fisheye camera

calibration is implemented for users and practitioners who maybe unfamiliar

with calibration procedures.The toolbox can also be used by researchers who

are familiar with camera calibration as a tool to compare various methods.

• The toolbox incorporates some of the most widely used algorithms for fisheye

camera calibration under one easy-to-use package.

• The implemented toolbox has options of auto-calibration and marker-based

calibration techniques for the user. One can use either of the methods depending

on required accuracy, flexibility and prior knowledge about the fisheye camera.

• The camera parameters can be stored in different formats giving the user the

freedom to use the calibration parameters in other applications.

• Distortion correction of images for fisheye images using the internal calibra-

tion parameters is implemented as part of the toolbox which gives the user a
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perspectively corrected image similar to the one captured by a planar camera.

• The distortion correction maybe done immediately after the calibration proce-

dure or at a later time by loading the saved parameters into the toolbox.

• The distortion correction can be done on single images or in batches in the

batch processing mode.

• The calibration accuracy for the different calibration methods is compared.

• Depth reconstruction using structure-from-motion directly on fisheye images

was implemented as an application of fisheye camera calibration.

7.2 Future Work

This section lists out the possible future improvements that can be carried out for

the toolbox :

• Incorporate more fisheye calibration methods into the toolbox to have a one

stop tool for all calibrations.

• Better feature matching and robust estimation techniques specific to fisheye and

omni-directional cameras, especially when considering auto-calibration.

• More flexibility for a user to incorporate his/her own method into the toolbox.

• Further extend to provide the robust external parameters for camera motion

which could help with visual simultaneous localization and mapping and other

robotic vision applications.

• Incorporate 3D reconstruction as part of the toolbox to provide sparse/dense

depth map given a set of multi-view images.
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• Incorporate bundle adjustment and other non-linear global optimizations to

further refine the 3D reconstructed results.

• Make the fisheye 3D reconstruction real time for using in mobile and other

real-time applications.

• Speed up implementation by developing more algorithms in C/C++ and inter-

facing with current toolbox.

• Further automate calibration procedures for user to have minimum interaction

with the system.

• Develop web-based version of the toolbox for easier use and wider reach of the

toolbox software.

• Extend to make a toolbox for calibration of any type of camera under one

application.
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