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ABSTRACT  

 

In this paper, a literature review is presented on the application of Bayesian 

networks applied in system reliability analysis. It is shown that Bayesian networks have 

become a popular modeling framework for system reliability analysis due to the benefits 

that Bayesian networks have the capability and flexibility to model complex systems, 

update the probability according to evidences and give a straightforward and compact 

graphical representation. Research on approaches for Bayesian network learning and 

inference are summarized. Two groups of models with multistate nodes were developed 

for scenarios from constant to continuous time to apply and contrast Bayesian networks 

with classical fault tree method. The expanded model discretized the continuous variables 

and provided failure related probability distribution over time. 
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CHAPTER 1 INTRODUCTION 

1.1 Background  

Reliability is an important quality characteristic that customers require from the 

manufacturer of products. Different from quality control, reliability is more about the 

quality in the future, while quality control is concerned more about the current quality of 

the product. In general, reliability is the ability that a product will operate or a service will 

be provided properly for a specific time under some specific conditions without failure. It 

can be measured as a probability [1]. Systems reliability plays a significant role in many 

areas, especially for some industries requiring high quality and safety assurance. For 

example, aerospace exploration, nuclear and chemical plants, and military systems must 

have extraordinary reliability. 21st century is the century for aerospace. Some manned or 

unmanned aerospace projects, such as communications satellite, manned space orbiting 

laboratory and spacecraft, are all high-tech products involving costly investments. They 

have an increasing requirement for good system reliability. One of the painful lesson about 

system reliability is the Chernobyl nuclear power plant accident in the Soviet Union in 

1986. This accident has caused great damage to people’s lives and badly influenced the 

environment for a very long time [2]. Also, failures for complex military systems may lead 

to a disastrous war. In just a six month period between 1979 and 1980, there were three 

false alarms given by the US army’s malfunctioning early warning system that almost 

caused a war. Even though reliability originated from the military field, it has been widely 

applied in many industries and yields enormous economic benefits. 
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Traditional approaches for system reliability analysis, for example, fault tree analysis, 

usually does not consider the frequency of failures and the correlation for different system 

components. The analysis and calculation under the assumption that the failures for 

components or subsystems are independent can be subject to large errors.    

1.2 Thesis Structure 

The structure of the paper is as follows.  

In this paper, a brief introduction of Bayesian networks methodology is given in the 

beginning of Chapter 2. Also, a literature review and a salute to some pioneers in this area 

are summarized in the second part of Chapter 2. In the very end of Chapter 2, some current 

research concerns and remaining problems are also stated. A case study is presented in 

Chapter 3. This case study will show how the Bayesian networks method is applied in 

system reliability inference and assessment. At first, a water filter system model is built in 

the introduction of Chapter 3, then two scenarios regarding discrete and continuous failure 

probability distribution are introduced, and two fault tree based Bayesian networks are 

constructed for each scenario. Also, the states of events are expanded from binary to 

multiply in the Bayesian networks. Some meaningful conclusions for each scenario are 

drawn during the system reliability analysis from the result of the calculation. Chapter 3 

finishes with BNs models that are coded in Matlab, and the widely used BNs Toolbox for 

Matlab is introduced. Conclusion for the thesis and recommendations for future research 

are summarized in Chapter 4.  
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CHAPTER 2 LITERATURE REVIEW 

2.1 Bayesian Networks Introduction  

Bayes' theorem is the fundamental of Bayesian inference and Bayesian networks. Bayes’ 

theorem was initially developed in the 1760s, which updates probabilities based on new 

information. Some statisticians, including Pierre-Simon LaPlace, developed Bayes’ 

formula as a systematic statistical inference and decision-making method [3]. Pearl 

proposed the Bayesian networks in 1988, which is the current methodology [4]. The so-

called Bayesian Analysis has a distinctive method that uses the prior statistics 

information in the statistics and succeeds in many practical applications. 

Bayes’ Theorem: 

P(B|A) =
𝑃(𝐴|𝐵)𝑃(𝐵)

𝑃(𝐴)
 

Where 𝑃(𝐴) is the probability of event A happening, 𝑃(𝐵) is the probability of event B 

happening,  P(B|A) is the conditional probability of event B, given the probability of a 

given event A, and 𝑃(𝐴|𝐵) is the conditional probability of event A happening given 

event B happening. For event B, 𝑃(𝐵) is the prior probability and P(B|A) is the posterior 

probability, which are in terms of some evidences. In conclusion, Bayesian Analysis 

describes the relationship between the prior probability and posterior probability by using 

Bayes’ Theorem. 

Bolstad suggest a general form as:    
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𝑃(𝐵𝑖|𝐴) =
𝑃(𝐴 ∩ 𝐵𝑖)

𝑃(𝐴)
=

𝑃(𝐴|𝐵𝑖)𝑃(𝐵𝑖)

∑ 𝑃(𝐴|𝐵𝑗)𝑃(𝐵𝑗)𝑛
𝑗=1

 

where P(A) and P(B) ≥ 0 and 𝑃(𝐵𝑖) consists of mutually exclusive events within the 

universe S [5].  

Bayesian Network (BN) is a probabilistic graphical model that represents the 

relationships among a set of random variables and their conditional dependencies via a 

directed acyclic graph (DAG) [6]. BNs contain two parts. The first part is the directed 

acyclic graph (DAG). In the DAG, every node represents a random variable. Edges 

represent conditional dependencies. For example, if an edge is from node A to node B, 

then A is B’s parent variable. The second part is the Conditional Probability Distribution 

(CPD) at each node. If the variables are discrete, this can be represented as a table (CPT), 

which lists the probability that the child node takes on each of its different values for each 

combination of values of its parents.  

In order to define a Bayesian network, both the graph structure and the probability 

parameters must be defined. The following is a widely used example adapted from 

Russell and Norvig’s article [7]. In this example, all the nodes have only two states, T 

and F. The Bayesian network structure and CPDs are shown in Figure 2.1. 
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Figure 2.1 Bayesian Network Example 

This structure represents the relationship between Cloudy, Sprinkler, Rain and Wet 

Grass. According to the conditional probability distributions in Figure 2.1, when the 

weather is cloudy, the probability of raining is 0.8. Also, given the evidence that there is 

no sprinkler but it is raining, then the probability of glass is wet is 0.9.  

It is important to point out that there are strong conditional independences within the 

Bayesian network. According to the chain rule, when conditional independence is not 

considered, the joint probability of all the nodes in the graph above is: 

P(C, S, R, W) = P(C)P(S|C)P(R|S, C)P(W|C, S, R) 
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By using conditional independence relationships [8], the above equation can be 

simplified as: 

P(C, S, R, W) = P(C)P(S|C)P(R|C)P(W|S, R) 

For a generalized model with n components 𝑋1, 𝑋2, … , 𝑋𝑖, … , 𝑋𝑛, when the parent node 

pa(𝑋𝑖) of the node 𝑋𝑖is given, 𝑋𝑖 is conditionally independent from other nodes except 

the child nodes of 𝑋𝑖. According to the conditional independence, the joint probability is  

P(𝑋1, 𝑋2, … , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|𝑝𝑎(𝑋𝑖))

𝑛

𝑖=1

 

In this equation, 𝑝𝑎(𝑋𝑖) is the set of all the parent nodes of 𝑋𝑖. 

While if there is no conditional independence between the nodes, the joint probability can 

be presented as  

P(𝑋1, 𝑋2, … , 𝑋𝑛) = P(𝑋1)P(𝑋2|𝑋1)𝑃(𝑋3|𝑋1, 𝑋2) … 𝑃(𝑋𝑛|𝑋1, 𝑋2, … , 𝑋𝑛−1)

= ∏ 𝑃(𝑋𝑖|𝑋1, 𝑋2, … , 𝑋𝑖−1)

𝑛

𝑖=1

 

The number of independent parameters needed in the above chain rule is 2𝑛 − 1; when 

assuming that there are m parameters in the parent set 𝑝𝑎(𝑋𝑖), the maximum number of 

independent parameters for Bayesian networks joint probability is n2𝑚. In most normal 

systems, m is far smaller than n, hence the computing complexity of Bayesian networks 

is dramatically reduced.  
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2.2 Relevant Research  

Bayesian networks are widely used in many fields. There are a lot of practical 

applications of Bayesian networks. Along with the speedy development of the computer 

science, especially in machine learning and data mining fields, the Bayesian network has 

been a hot topic for many years [9].  

Regarding the system reliability reassessment and inference, Mahadevan used Bayesian 

network concept to structure system reliability assessment, incorporated multiple failure 

sequences and correlations between component failures in the Bayesian network model 

and validated the reliability assessment approach [10]. Doguc applied a K2 algorithm 

which constructs the Bayesian network model based on historical data [11]. Langseth 

published several articles about the application of Bayesian networks in system reliability 

[9], the advantage and limitations of BNs [12], and some approximate inference for 

continuous time hybrid BNs [13]. Neil presented an iterative algorithm that efficiently 

combines dynamic discretization with robust propagation algorithms on junction trees, 

but it is still hard to choose the discrete time intervals [14].  

BNs can be used to build decision-theoretic troubleshooting models. It is always applied 

as an extension of the fault tree. As it has the capability to include multiple failure 

sequences and components, and combine both forward and backward information, some 

multilevel system reliability problems can be better solved in the BNs. The conditional 

probability for any interested nodes or node sets provides a targeted analysis on system 
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reliability and gives suggestions for system failure detection and maintenance. Also, 

Bayesian networks are good for dealing with missing data and uncertainty. 

Current research on Bayesian networks are mainly concerned about two aspects: 

Bayesian networks learning and Bayesian networks inference.  

2.2.1 Bayesian Networks Learning 

When we want to build a BN, we rely on two sources of information: input from domain 

experts and statistical data [9]. Both the graph structure and the probability parameters 

are necessary to define a Bayesian network model. Even though some experts can help to 

define the objectives and variables for a BN, the subjective suggestions may not be 

accurate in some times. Expert’s experience combined with historical data will make a 

model with better analytical and predicting ability.  

Bayesian networks learning can be defined as two parts: Bayesian network structure 

learning and BNs parameters learning. Most of the learning related research articles are 

related to machine learning and data mining fields. For example, in 2009, Doguc used a 

K2 Bayesian network construction algorithm to build a Bayesian networks model [11]. 

K2 algorithm is a popular and efficient data mining association rule method. It develops 

the Bayesian networks structure by a search-and-score approach. Some other search-and 

score approaches included are [8]:  

 Exhaustive search, which enumerates all the possible DAGs. It is not efficient and 

limited to the size of Bayesian networks. It is not realistic to enumerate all possible 

DAGs when the number of nodes is larger than 5; 
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 K2 algorithm proposed by Cooper and Herskovits [15] is a greedy search algorithm 

used to score Bayesian networks structures. The basic idea is at the beginning, each 

of the nodes has no parents, and then it searches for the parents set which has the 

maximum association with it. It stops adding parent when no addition single parent 

can increase the score, resulting in a full Bayesian network is constructed; 

 Markov Chain Monte Carlo (MCMC). This algorithm is used to search the space of 

all DAGs. The idea is to create statistical distributions computationally by suitable 

random sampling methods. It will consider all nearest neighbors. Monte Carlo 

generally refers to methods based on random number generation, so the distribution 

of sampling data need to be defined. In practice, the  MCMC has been found to take 

a long time to generate if the graph has more than 10 nodes; 

 Hill-Climbing algorithm starts from a specific node, then scoring for all the nearest 

neighbors of this node and move to the nearest neighbor with highest score [16].  

There are also constraint-based methods introduced by Pearl (1991) [17], Spirtes, 

Glymour, and Scheines (1993) [18]. They are not as popular as the search-and-score 

approaches, but can still represent the whole Markov equivalence class and construct the 

Bayesian networks. 

The parameter learning for Bayesian networks is primarily about the learning of the 

Conditional Probability Table (CPT). It still focus on the traditional statistics and 

Bayesian statistics [19]. The maximum likelihood estimates of the parameters are easily 

leaned when the dataset is complete. When there are missing values in the dataset, 
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usually an EM (Expectation Maximization) algorithm is used to find the maximum 

likelihood [20]. 

2.2.2 Bayesian Networks Inference 

Over the last decade, several commercially available tools have been developed for 

calculating with BNs, such as HUGIN, WinBUGS, and BayesiaLab. These tools are able 

to use variable elimination [21], junction tree algorithm [22] and Gibbs sampling 

inference [23] to do Bayesian network inference. Understanding and describing the 

algorithms is beyond the scope of this paper. However, it is important to understand that 

the limitations of the current research on Bayesian network inference is the computational 

complexity of the inference.  

From most of the applications of Bayesian networks, the variables in the BNs are all 

discrete. The application of Bayesian networks is limited when only consider discrete 

nodes. For system with continuous variables, the main approach is to discretize them. 

Some recent researches about the dynamic BNs and hybrid BNs are helpful to solve this 

problem. For example, Langseth explored four approaches to inference in hybrid BNs: 

discretization, mixtures of truncated exponentials (MTEs), variational methods, and 

Markov chain Monte Carlo (MCMC) for some specific types of inferences [13]. David 

M. and Martin N combined the modeling capabilities of BNs with the dynamic 

discretization inference algorithm. It provides a general technique for dynamic system 

reliability analysis [24].  
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The Bayesian networks inference on continuous, hybrid and multi-level systems is still a 

topic under development.  

2.3 Advantage and Limitation  

Compared with traditional system reliability analysis methods, Bayesian networks can 

present the uncertainty and correlation of variables, and make up some shortages of the 

traditional methods when doing system reliability reasoning under uncertainties. 

For example, fault tree analysis is a widely used method to analyze safety and reliability 

of complex systems. Fault tree analysis is directly related with the classical probability 

theory. To perform a fault tree analysis, simple Boolean relationships among various 

events are built with a tree structure, where the ends of its branches represent components 

with known failure rates. Fault tree analysis is usually applied to systems with certain 

fault causes and clear fault logic relationships. All of the events in a fault tree have only 

binary states such as failed and operating. Relationships among events fall mostly into 

two groups: AND and OR, which are the gates in the fault tree [25]. But in reality, many 

events have more than two states. The traditional fault tree cannot represents events other 

than two states. Also, a fault tree requires certain causal relationship between upper 

events and lower events. In a real case, offen the causality among events is not certain 

and correlativity must be learned. Conditional probability is a more proper way to 

describe the relationship.  

Bayesian network can make up these shortage very well. BNs can be easily transformed 

from a fault tree model. The nodes in Bayesian networks which correspond to the events 
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and gates in a fault tree can have more than two states, or the failure can even be 

continuously distributed. With conditional probabilities, there is no need to be certain of 

the causality between upper nodes and lower nodes; uncertainty is allowed in Bayesian 

networks. It is easy to represent the relationships which are not simply AND or OR in 

BNs with a conditional probability table. Correlation and dependence between 

components can be handled in BNs [9]. Also, traditional reliability analysis methods 

cannot update failure rates with new information added in, while Bayesian networks can 

update the system reliability when evidence is added during the analysis. Any joint 

conditional probability can be calculated and bidirectional reasoning can be used for 

further system reliability inference and assessment. 

While there’re still some limitations for Bayesian networks, in engineering practice, it is 

difficult to acquire all conditional probabilities 𝑃(𝑋𝑖|𝑝𝑎(𝑋𝑖)) to get the CPT even if 

domain experts’ experience is involved. Building Bayesian network for a large complex 

system is still not easy. Also, for some hybrid Bayesian networks, the nodes are not 

discrete, nor do then correspond to some particular continuous distribution such as the 

Gauss distribution. It is difficult to make Bayesian network inference if the model is 

hybrid even though some approximate approaches like Markov Chain Monte Carlo can 

be applied. 

2.4 Summary 

After Pearl proposed the Bayesian networks in 1988 [4], Bayesian networks have become 

a popular modeling framework to build decision-theoretic troubleshooting models in 

system reliability analysis, many scholars tried to combine Bayesian networks 
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methodology with traditional system reliability methods such as fault tree analysis and 

Monte Carlo simulation. The intuitive representation and the modeling flexibility of BNs 

make it a well-suited tool for reliability analysis.  

The advantages of BNs can be concluded as follows. Firstly, BBN is an indeterminate 

causality model. Different from other decision models; it can be viewed as a knowledge 

presentation and inference model that visualizes the multivariate knowledge. It shows the 

conditional probability between the variables, which can represent some fuzzy causality 

and correlativity. It performs very well when dealing with the problems having 

uncertainty. As it presents the relationship between each node with conditional 

probabilities, it can learn and predict with limited, incomplete and uncertain information. 

Some complex relationships can be easily represented by a conditional probability table. 

Secondly, it can contain some decision-making related information in the network. It is 

easy to use in interaction with domain experts. The network structure can help present 

and organize the information, and manage the information as nodes, which is very 

efficient. Finally, the computing complexity of BNs is smaller than some traditional 

approach like Markov Chain analysis. It has relatively good performance regarding 

speed, accuracy, complexity and generality. 

The limitations of Bayesian networks mainly concentrate on the capability for inference 

continuous system reliability. Some discretization approaches should be conducted when 

doing Bayesian inference. 
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CHAPTER 3 CASE STUDY 

In order to better demonstrate and validate the property of Bayesian networks, a case 

study about a water filter system is designed and introduced in this chapter. Two 

scenarios with different failure probability distributions are discussed. A brief 

methodology used in fault tree analysis is used to do an essential analysis about the 

system. Bayesian networks with multistate nodes are applied for the further system 

reliability analysis and assessment. Also, to meet the real case, an advanced model with 

continuous failure time is presented. An additional research on the application of 

Bayesian networks in the continuous reliability system is tackled. The advantages of 

Bayesian networks in system reliability inference are then discussed and conclusion are 

drawn. 

3.1 System Introduction 

With the rapid development of modern industry, the degree of water pollution is also 

increasing rapidly. Drinking healthy water is more and more difficult. Even though water 

pollution is well controlled in the US, some other issues like the aging of water pipes and 

the residual water disinfectant still cause unreliable water supply. People now have a 

higher awareness about water purification and its effect on the quality of live. The 

household water filter has been an essential appliance in many areas in the US. Not only 

for home use, but also more and more industries are manufacturing the water filter 

system to ensure people’s life and health. For example, a filter based on a reverse 

osmosis (RO) membrane was used during the Iraq War. This system is developed by US-

based Hydration Technologies Inc. (HTI), and has been proved to be essential in 
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preserving the lives of stranded US soldiers in Iraq [26]. According to the research of 

WHO, there are 780 million people do not have access to an improved water source in 

the world [27]. While worldwide, water sanitation and hygiene has the potential to 

prevent at least 9.1% of the global disease burden and 6.3% of all deaths [28]. 

Water filter system is important to improve the water quality and prevent potential 

diseases. The reliability of water filter system is closely related to people’s health, but the 

general failures of water filters are not easy to be observed. Hence, effective approaches 

to detect system failure and conduct system reliability inference and prediction are of 

vital importance. 

The ultimate purpose of the water filter system can be outlined as follows: 

 Remove floating impurity in the water; 

 Remove microorganism, virus and spore; 

 Remove heavy metal like Pb and Cd; 

 Remove the rust, residual chlorine and organic pollutants, enhance the taste of water; 

 Keep beneficial minerals in the purified water; 

 Ensure healthy water delivery. 

A flow chart of the water filter system is introduced in Figure 3.1. Water comes from 

normal water supplier, then flows into a sediment filter. Usually it is a PP fibril 

membrane to filter some visible impurities, including sediment, worms and rust. After 

that is an active carbon filter cartridge, which is used to remove fine particulate, organic 

matter and undesirable odor caused by pesticides and chlorine. Following is the most 

important part, a reverse osmosis (RO) filter. The RO process uses polymeric membranes 

to purify water and allow only selective mass to transport through. It is the simplest and 
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most efficient technique to reduce salt in the seawater and brackish water [29]. The RO 

filter will remove the majority of pollutants, microorganisms and some injurious heavy 

metal. After these three filters, purified water will either directly flow through the last 

polish filter, which is a carbon filter to capture those chemicals not removed by the 

reverse osmosis membrane and enrich the taste of water, or run into a water storage first 

before the last process. The storage is helpful to have a larger water volume when 

drinking water is needed.  

 

Figure 3.1 Water Filter System Work Flow Chart 

Most fresh water applications like drinking water purification, military use water 

purification unit and wastewater purification system have the similar process as this 

simplified water filter system. This kind of filter plays a key role in people’s daily life 

and has great influence on our society. It is necessary to analyze and evaluate the system 

reliability of the water filter system to ensure its high reliability, and consequently assure 

people’s health. 

In this case study, a Bayesian networks methodology combined with fault tree analysis is 

used in two scenarios for system reliability analysis and assessment. The first scenario 
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considers a constant discrete failure rate for all the components in this water filter system; 

the second scenario introduces a continuous failure distribution for the four water filters.  

It is important to declare that it is a reduced model and some components and variables 

were removed, but it can still present the deployment and exemplification of the Bayesian 

networks methodology. 

3.2 Scenario I – Discrete Failure Distribution 

In this scenario, all the failure rate of the components in the water filter system are 

assigned constantly. A reduced fault tree model and Bayesian network model with 

multiply states are built to better facilitate the implementation and understanding. A more 

complex model will be discussed in scenario II. 

3.2.1 Fault Tree Analysis Approach 

Taking the water filter system failure as the top event T, analyzing from the top to down 

and step by step, we can get the following fault tree shown in Figure 3.2.  
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Figure 3.2 Fault Tree Structure for the Water Filter System 

In which,  and  are OR gates;  is a priority AND gate. 

The top event T with an OR gate connects with event W, which presents the water supply 

failure, and event E, which presents water purification failure. It is important to notice 

that event E has a priority AND gate (PAND), which connect E with event F (Filters 
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Down) and event S (Water Storage Fails). It means that event E will happen only when 

event F happens. If water storage fails but all the filters are still functional, event E won’t 

happen as water can directly flow through the last filter and come out as drinking water. 

Event F has an OR gate which means all the filters should be functional to ensure the 

system availability. Any one of the four filters down can lead to event F happen. 

Parameter definition for this fault tree and component failure rate λ is shown in the 

following Table 3.1. 

Event Symbol Event Description Failure Rate λ 

A Sediment filter fails 0.5 

B Carbon pre-filter fails 0.25 

C RO filter fails 0.15 

D Polish filter fails 0.1 

S Water storage fails 0.15 

W No water supply 0.002 

Table 3.1 Parameter Definition and Failure Rate 

Some assumptions are made for this fault tree model. The failures of each components 

are independent. There is no correlation between the paralleled events, hence all the 

probabilities of upper level event failure can be calculated very directly according to the 

function of the gates. Also, as we are not considering a scheduled maintenance plan for 

the water filter system at this time, all the components are not replaced or repaired during 

the analysis. The failure rates keeps unchanged as we assumed. 

With the above assumptions, determining the unavailability of complex events is very 

straightforward.  
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Firstly, we need to know how to inference the probability of event E happens. As event E 

has a priority AND gate which means only when event F happens, event E will happen, 

then P(E) = 𝑃(𝐹) = 1 − P(𝐴 ⋂ 𝐵 ⋂ 𝐶 ⋂ 𝐷). Hence, 

P(T) = 1 − P (𝑊 ⋂ 𝐸) = 1 − P(𝑊)P(𝐸)                                                 

= 1 − (1 − P(W))(1 − P(E))                                

= 1 − (1 − P(W)) (1 − (1 − P (𝐴 ⋂ 𝐵 ⋂ 𝐶 ⋂ 𝐷)))

= 1 − (1 − P(W))P(𝐴)P(𝐵)P(𝐶)P(𝐷)

= 1 − (1 − P(W))(1 − P(A))(1 − P(B))(1 − P(C))(1 − P(D))

= 1 − (1 − 𝜆𝑊)(1 − 𝜆𝐴)(1 − 𝜆𝐵)(1 − 𝜆𝐶)(1 − 𝜆𝐷)                           

Then the failure rate of the water filter system is 0.7137 according the above equation. 

3.2.2 Bayesian Network Approach 

With the fault tree analysis, not much information can be inferred. Even though the 

failure rate of the top event can be calculated and some events with more critical 

influence on the system reliability can be identified from minimum cut sets and the 

calculation of structural importance, probability importance and pivotal importance 

degrees, it is still not good enough for make better failure detection and prediction. 

Bayesian networks can make a bidirectional inference by given relational information, 

and generate the conditional probabilities between the input nodes and output nodes. 

Also, system with multistate nodes are very common in the real case. Binary failure 

distribution limits the analysis of system reliability. Bayesian network can perform the 

functions of fault tree analysis and avoid the limitation of FTA.  
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According to the fault tree structure, we can transform the topological structure of the 

fault tree to the network structure of Bayesian networks. The transformed Bayesian 

networks model is shown in Figure 3.3. 

 

Figure 3.3 Bayesian Network Structure 

There are four layers in this Bayesian network structure. The relationship between each 

node and its corresponding failure event are described as below: 

 First layer: nodes 1, 2, 3, 4 correspond to bottom events A, B, C, D, respectively; 

 Second layer: nodes 5 and 6 correspond respectively to event F and bottom event S; 

 Third layer: node 7 and 8 correspond respectively with event E and bottom event W; 

 Forth layer: node 9 correspond to top event T. 

One of the limitation of fault tree analysis is that all the events can only have binary 

states. By using Bayesian networks, we can assume that components have more than two 
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states. To expand the water filter system more close to real case, we assume that the 

system failure has three states: {failed, operating, slow}. For each root nodes, there is a 

Marginal Probability Distribution (MPD). This will present all the possible states of the 

node and their probabilities. For every other node in the Bayesian network, a Conditional 

Probability Distribution (CPD) is used to describe its probability distribution given the 

states of the parent nodes. Then the MPDs and CPDs for the nodes in the water filter 

system Bayesian network model are inferred from the fault tree as in the following Table 

3.2. 

A P(A) 

1 0.5 

2 0.5 
 

B P(B) 

1 0.25 

2 0.75 
 

C P(C) 

1 0.15 

2 0.85 
 

D P(D) 

1 0.1 

2 0.9 
 

S P(S) 

1 0.15 

2 0.85 
 

W P(W) 

1 0.002 

0 0.998 
 

F S P(E=1|F,S) P(E=2|F,S) P(E=3|F,S) 

1 1 1 0 0 

2 1 0 0 1 

1 2 1 0 0 

2 2 0 0 0 

 

E W P(T=1|E,W) P(T=2|E,W) P(T=0|E,W) 

1 1 1 0 0 

2 1 1 0 0 

3 1 1 0 0 

1 0 1 0 0 

2 0 0 1 0 

3 0 0 0 1 
 

A B C D P(F=1|A,B,C,D) 

1 1 1 1 1 

1 1 1 2 1 

1 1 2 1 1 

1 2 1 1 1 

1 1 2 2 1 

1 2 1 2 1 

1 2 2 1 1 

1 2 2 2 1 

2 1 1 1 1 

2 1 1 2 1 

2 1 2 1 1 

2 2 1 1 1 

2 1 2 2 1 

2 2 1 2 1 

2 2 2 1 1 

2 2 2 2 0 
 

Table 3.2 MPDs and CPDs for the nodes in BN 

When a node is equal to 1, then it means this node fails; when it is equal to 2, then this 

part of the system is still functional; when it is equal to 3, then it means water flows 
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slowly in the system. It is necessary to mention that the CPDs for node 5, 7, and 9 

represent the relationships between components. It is a better approach to explain some 

complex relationships which are not easily described with fault tree gates. 

To build the water filter system Bayesian network model, a Bayes Net Toolbox for 

Matlab is introduced in this paper. The Bayes Net Toolbox for Matlab was written by 

Kevin Murphy, 1997—2002, when he was pursuing his PhD degree in University of 

California, Berkeley [30]. This Matlab toolkit allows users to create Bayesian networks, 

either manually or by learning; do some BNs inference like computing marginal 

distribution and joint distribution; conduct structure learning and parameter learning for 

the BNs by estimating from given dataset or simulation, and applying some algorithms 

like K2 and structural EM; it can also use some inference engines like junction tree and 

Monte Carlo for further research purpose. His PhD dissertation introduced some 

algorithms and examples which have been implemented in the Bayes Net Toolbox [31]. 

In this case study, the main functions used from the toolkit are manually creating the 

Bayesian network graph shell and imputing conditional probability distribution, and BNs 

inference computing. Some Matlab code was programed and can be found in the 

Appendix I and II. 

The graph structure from Matlab is shown in Figure 3.4, which is the same as what we 

designed in Figure 3.3. 
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Figure 3.4 Generated Matlab Bayesian Networks Structure 

Given the same failure rate as in the fault tree analysis, without additional evidence, the 

probability distribution of the leaf node 9 is different from what we inferred from the 

fault tree analysis as the system failure is no longer binary. While the probability of 

system failed is still the same as the fault tree result. This indicates that without evidence, 

using Bayesian networks can still calculate the probability distribution of leaf node, 

which is the top event in the fault tree analysis, and also can handle cases with multistate 

failure. 

P(T = 1) = 0.7137, P(T = 2) = 0.2434, P(T = 3) = 0.0429 

We can see without any evidence, the probability of system failed is 0.7139; the 

probability of system operating normally is 0.2434; the probability of system working 

with water flowing slowly is 0.0429. 

While one of the most important advantages of Bayesian networks is when given any 

additional evidence, it can calculate the conditional probability between the input nodes 
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and the output nodes, and conduct a more accurate probability inference. The conditional 

probability will give valuable suggestions for the system reliability analysis, failure 

diagnosis and system maintenance plan. Besides, the capability of analyzing multistate 

failure distribution avoids a significant limitation of fault tree approach, which gives a 

better representation of the real system. 

Now given the evidence that the water filter system fails, operates normally or works 

slowly, which means T=1, T=2 or T=3, the conditional probability for each component is 

calculated by using Matlab and shows in the following Table 3.3. The inference engine 

used in the case study is junction tree engine. 

Node(Xi) A B C D S W 

P(Xi=1|T=1) 0.7006 0.3503 0.2102 0.1401 0.15 0.0028 

P(Xi=1|T=2) 0 0 0 0 0 0 

P(Xi=1|T=3) 0 0 0 0 1 0 

Table 3.3 Conditional Probability Distribution for Each Component 

It is important to know how a component will influence the whole system. Now a 

conditional probability distribution of the leaf node T by given the evidence that each 

component of the water filter system is failed. The CPDs are shown in the Table 3.4 

below. 

Node(Xi) A B C D S W 

P(T=1|Xi=1) 1 1 1 1 0.7137 1 

P(T=2|Xi=1) 0 0 0 0 0 0 

P(T=3|Xi=1) 0 0 0 0 0.2863 0 

Table 3.4 Conditional Probability Distributions of Leaf Node T 

As shown in the fault tree analysis, most gates in this water filter system are OR gate; the 

priority AND gate indicates that the water storage part does not have great influence on 
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the system. The conditional probability distributions represent the facts in this system, as 

given the evidence that T=1, the CPD of node S keeps unchanged, also, given any filter 

node equal to 1, this water filter system will fail as filters A, B, C, D are connected in 

series in this system. 

The following Figure 3.5 compares the influences of each component failure on the 

system failure. This indicates that node A, the sediment filter, has a significate influence 

on the system failure. Considering that filter A has the highest failure rate among all the 

components in this water filter system, and any failure of the filters will lead to the 

system failure, it is reasonable that node A has a significant CPD. To strengthen the 

system reliability, more reliable filters should be used to ensure a low failure rate for the 

filter system. Especially for filter A, a backup sediment filter need to be considered. 

 

(a) 
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(b) 

Figure 3.5 Result of the Bidirectional Inference 

In addition, the Bayesian network inference can calculate the conditional probability with 

any joint evidence. For example, given that filter A works but water storage fails in the 

water filter system, the conditional probability distribution for leaf node T is 

𝑃(𝑇 = 1|𝐴 = 2, 𝑆 = 1) = 0.4274; 

𝑃(𝑇 = 2|𝐴 = 2, 𝑆 = 1) = 0;  

𝑃(𝑇 = 3|𝐴 = 2, 𝑆 = 1) = 0.5726  

3.2.3 Conclusion for Scenario I 

In this scenario, a fault tree based Bayesian network model is built for constant failure 

system reliability modeling and analysis. Some advantages of Bayesian networks are 

presented, such as the capability to analyze nodes with multiply states; representing some 

complex relationship between nodes by using conditional probability table; making use 

1 1 1 1
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of addition evidence and conduct bidirectional inferences; driving a more flexible and 

obvious calculation for system reliability analysis; detecting the weak link of the system 

and helping make targeted maintenance suggestions. To further reflect actual 

circumstances accurately, an advanced model with continuous failure time is introduced 

in scenario II. 

3.3 Scenario II – Continuous Failure Time 

In the real case, a lot of systems contain components have a continuous failure time, 

especially for those products which will fatigue over time. In the water filter system 

introduced in scenario I, the failure probabilities of the filters will increase over time in 

the real case. It is necessary to evaluate the system with continuous failure time for all the 

water filters. Also, the system reliability along with time will be obviously influenced by 

the changing of failure probabilities for the four filters. This scenario will present the 

implement of Bayesian networks and show how BNs can be applied in some real cases 

like scenario II.  

3.3.1 Continuous Time Fault Tree Analysis Approach 

There are some approaches for continuous time system reliability assessment. Most of the 

recent researches are focus on the discretization of continuous features. One of the 

majority methodologies is Markov Chain analysis. While using the Markov model, the 

complexity of calculation increases dramatically when the number of nodes, the states for 

each node and the relationship complexity between each node increase. To reduce the 
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computing complexity and reassess the system reliability more straightforwardly, a 

continuous time fault tree analysis is applied in this scenario.  

The system process flow chart is still the same as in Figure 3.1. The structure of fault tree 

analysis is also the same as in Figure 3.2 in scenario I. In this scenario, failure 

probabilities for the four filters are all functions related to the working time t. In the real 

case, as time goes by, there will be more and more impurities in the water filters. It is 

more likely to fail after working for a longer time. Assumption is made that the failure 

probabilities of filter A, B, C, D all have the function  

𝑃(𝑋𝑖) = 1 − 𝑒−𝜆𝑖𝑡 

In which λi is failures per hour, t is the system running time in hours. 

The failure parameter for each component in this water filter system can be found in 

Table 3.5. 

Event Symbol Event Description Failure Parameter  𝜆𝑖(/hour) or Failure Rate 

A Sediment filter fails 0.00025 

B Carbon pre-filter fails 0.00015 

C RO filter fails 0.0001 

D Polish filter fails 0.00005 

S Water storage fails 0.15 

W No water supply 0.002 

Table 3.5 Failure Parameters and Rates for each component in the System 

In order to make the system reliability inference, discretization of time and failure 

functions for filters is necessary. A time interval Δ𝑡= 336 hours, which is two weeks, is 
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set. Also, system running time is set to 50 weeks, which means there are 25 iterations in 

the fault tree analysis and there are 25 different failure probabilities for each continuous 

node. The Matlab code to calculate the component failure rate and system failure rate for 

each iteration can be found in Appendix II part I. 

As the failure probabilities for water supply W and water storage S remain constantly, 

while failure probabilities for filter A, B, C, D increase over time. A graph of the 

component failures for the four filters is shown in Figure 3.6. 

 

Figure 3.6 Water Filter Component Failure Probability 

Failure probability for the water filter system changes over time is shown in Figure 3.7. 

System running time is still 50 weeks. 
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Figure 3.7 System Failure Rate over Time 

The continuous time fault tree can present the change of component failures and system 

failures over time. It is a very good way to solve the computing complexity problem 

involved in traditional Markov Chain analysis model. A fault tree based Bayesian 

network model can make a better inference about the system reliability and give more 

useful facts for reliability related purposes. A dynamic Bayesian network model is 

conducted in the following sub-section 3.3.2.  

3.3.2 Dynamic Bayesian Network Approach 

According to the hybrid model introduced in section 3.3.1, the structure of the dynamic 

Bayesian network model keeps unchanged.  It still has the same structure as shown in 

Figure 3.3. By using the Bayes Net Toolbox for Matlab, a Matlab program is coded for 

the BN in scenario II. This can be found in Appendix II part II. 
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The CPDs for node E, F, T and MPDs for node S and W remain the same as shown in 

Table 3.2. The MPDs for node A, B, C, D are updated in the following Table 3.6.  

A P(A) 

1 1 − 𝑒−𝜆𝐴𝑡 
0 𝑒−𝜆𝐴𝑡 

 

B P(B) 

1 1 − 𝑒−𝜆𝐵𝑡 
0 𝑒−𝜆𝐵𝑡 

 

C P(C) 

1 1 − 𝑒−𝜆𝐶𝑡 
0 𝑒−𝜆𝐶𝑡 

 

D P(D) 

1 1 − 𝑒−𝜆𝐷𝑡 
0 𝑒−𝜆𝐷𝑡 

 

Table 3.6 Updated CPDs for Filter A, B, C, D 

In which 𝜆𝐴 = 0.00025; 𝜆𝐵 = 0.00015;  𝜆𝐶 = 0.0001;  𝜆𝐷 = 0.00005. 

Without any additional evidence, the failure rate distributions for the four filters are still 

the same as shown in Figure 3.6. As we expanded node T to three states, the failure 

probability distribution of the system is shown in Figure 3.8. Some further inference is 

made by adding evidence to this model. A bidirectional inference will be introduced for 

this dynamic Bayesian network model. 

 

Figure 3.8 System Failure Probabilities Distribution 
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Figure 3.9 is the conditional failure probability distribution over time given that system is 

failed. In this figure, when system is failed, the failure probabilities of filter A, B, C, D 

are increasing with time increasing; the failure rate of water supply slightly decreases 

over the system running time; the failure rate of storage reminds the same. It shows that 

for the water filter system, the reliabilities of four filters have a significant weight 

contributing to the reliability of the whole system. 

 

Figure 3.9 Conditional Failure Probabilities with T=1 

Another inference from the root nodes to leaf node T is also conducted in the Bayesian 

network model. The conditional probabilities for the system failure given each node’s 

failure is shown in Figure 3.10. The conditional failure probability 𝑃(𝑇 = 1|𝑋𝑖 = 1) 

shows that any failure of component A, B, C, D, W will cause the system failure, while 

𝑃(𝑇 = 1|𝑆 = 1) is exactly the same as 𝑃(T = 1) which without any evidence. This 
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result is corresponding to the fault tree structure as the OR gate determines a low failure 

tolerance capacity, and the priority AND gate indicates that water storage will not 

influence the probability that system fails. 

 

Figure 3.10 Conditional Failure Probabilities with Xi=1 

While as there are three states for node T and water storage is an influential component to 

system working slowly, the conditional probability system working with slow water flow 

given that water storage is failed, 𝑃(𝑇 = 3|𝑆 = 1), is shown in Figure 3.11. It indicates 

that as time goes by, this water filter system is more unlikely to work with slow water 

flow. Combined with Figure 3.10, it can be explained that the system is more likely to 

fail with time other than work slowly. 
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Figure 3.11 Conditional Probability: System Works Slowly Given Water Storage Failed 

Also, the system failure rate given a joint evidence can be calculated from the dynamic 

Bayesian network. For the same example in scenario I, given water filer A operating but 

water storage failed in the system, the conditional probability 𝑃(𝑇 = 1|𝐴 = 2, 𝑆 = 1) is 

shown in Figure 3.12. 

 

Figure 3.12 Conditional System Failure Rate given A=1 and W=1 
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3.3.3 Conclusion for Scenario II 

In this scenario, a fault tree based dynamic Bayesian network is applied for the water 

filter system modeling and assessment. Bayesian networks is not only a powerful 

methodology for reasoning under uncertainty and making better inference by taking the 

advantage of using more information, but also, by discretizing some variables, Bayesian 

networks can be very straightforward to reassess continuous and dynamic system 

reliability. Besides, the result of bidirectional inference is of great importance for system 

failure detection and prediction, also useful for guiding a targeted maintenance plan. By 

using Bayesian networks, system reliability can be improved when the weak link of 

system is identified and improved.  
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CHAPTER 4 CONCLUSION AND RECOMMENDATION 

4.1 Conclusion 

This research is placed on the application of Bayesian networks in system reliability 

inference and assessment. An introduction of the Bayesian networks methodology, its 

development and application in system reliability field are reviewed. Some advantages 

and limitations of Bayesian network and available improving areas are marked during the 

literature review. The case study in this thesis developed a water filter system, which 

considers both discrete and continuous scenarios and system with multiply states. Two 

fault tree based Bayesian networks were applied in the case study to better present the 

application of Bayesian networks in system reliability analysis. 

Some highlights in this thesis: 

 Reviewed the development of Bayesian networks. Approaches for Bayesian 

networks structure learning, parameters learning were concluded. Problems and 

limitation associated with Bayesian network inference were summarized. Research 

Status of Bayesian networks was introduced. Compared Bayesian networks with 

traditional system reliability analysis methods and concluded its advantages and 

limitations. 

 Designed a water filter system with both discrete and continuous failure probability 

distribution. A fault tree analysis and a further Bayesian network approach were 

presented. Scenario I expanded the system with binary states to a multistate system. 

In addition, by discretizing the continuous failure probability distribution in scenario 

II, a more proper model which mirrors more reality was introduced and satisfying 

results were generated from this model. The bidirectional inference for conditional 
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probabilities with given evidence presents the advantage of Bayesian. By adding 

evidence in Bayesian network model, the failure rate of components or the system 

can be updated. A more accurate and targeted analysis can be conducted to ensure 

the reliability of system and give suggestions for failure detection and system 

maintenance.  

 A BNs Toolbox for Matlab was applied in the case study. In order to analyze the 

system with continuous failure distribution, a Matlab program was coded to deal with 

multistate nodes and discretize the continuous variables. Similar systems with 

continuous time associated components can be easily assessed by adjusting the 

model in the case study. 

4.2 Limitations   

In this thesis, the review of Bayesian networks and the case study which BNs applied 

indicate that Bayesian networks still have some limitations. Even though building the 

structure of Bayesian networks is not a very complex work, the quantitative part of BNs 

is difficult to define. BNs need the support of many prior probabilities and conditional 

probabilities. To collect these probabilities is a huge work and easy to be influenced by 

subjective opinions. Also, it is hard to get the prior knowledge and transform the 

information to probabilities. Sometimes, domain experts are needed when building BNs 

and the work is hard to quantify.  

Also, learning BN structure and model parameters can be NP-hard (non-deterministic 

polynomial). The Bayesian networks learning is enormously limited by the size and 

complexity of systems. It can take a lot of time to complete the inference, especially 

when there are many undirected loops in the BNs.  

Except that, BNs cannot deal with the continuous variables very well, especially for 

systems having continuous failure mode. BNs are efficient for calculating the distribution 

with discrete variables. When using the BNs, scholars always need to do some 

discretization of continuous variables. Even though those systems can be discretized to 
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multistate dynamic systems, it may not get a good estimation. Bayesian network 

inference for large, safety critical and complex hybrid system is still under development. 

Regarding the case study, even though there are some expanded research in Scenario I 

and Scenario II, it is still a very simplified model. The real-world system reliability 

problems cannot be fitted as the model is narrowly defined.  

4.3 Recommendation   

A lot of research about the Bayesian networks combined with fault tree analysis, Markov 

Chain Monte Carlo, K2 algorithm and EM algorithm has been done. As the Bayesian 

network learning is highly related to some machine learning and data mining techniques, 

while those techniques are not widely applied for Bayesian networks with system 

reliability assessment purpose, there is a potential possibility that some other algorithms, 

such as neural networks and support vector machine, are helpful for Bayesian networks 

structure and parameters learning. Further research on continuous Bayesian network 

reliability modeling is necessary to build more realistic models and make more accurate 

and approximative inference. 

A more complete model regarding the system in the case study need to be considered. An 

additional research issue to be tackled is the number of states for components in a real 

system can be more than just several. As the number of states increases, the complexity 

of conditional probability table will increase dramatically. It is getting difficult to use 

Bayesian Networks in system reliability analysis. Also, only consider discrete states is 

not appropriate. A continuous failure state combined with gradually degenerative failure 

mode is a possible research direction to integrate the model. 
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APPENDIX I 

MATLAB CODE AND RESULTS FOR SCENARIO I 
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Matlab Code for the Bayesian Network in Scenario I 

N = 9;                                                % nine notes 

dag = false(N,N);                                % N-by-N matrix of logical zeros 

% assign number for nodes, parent nodes should be prior  

A = 1; B = 2; C = 3; D = 4; F = 5; S = 6; E = 7; W = 8; T = 9;    

dag([A,B,C,D],F)=true;   %connect A-F, B-F, C-F, D-F 

dag([F,S],E)=true;    %connect F-E, S-E  

dag([E,W],T)=true;    %connect E-T, W-T 

discrete_notes = 1:N;  %all nodes are discrete 

node_sizes = [2 2 2 2 2 2 3 2 3];  %number of values node i can take on; all nodes are binary 

bnet = mk_bnet(dag, node_sizes);    %make a Bayesian network 

%Make a multinomial conditional prob. distrib. for each node 

prob=[0.5 0.25 0.15 0.1 0.15 0.002]; % failure probabilities for A, B, C, D, S, W 

bnet.CPD{A} = tabular_CPD(bnet, A, [prob(1) (1-prob(1))]); 

bnet.CPD{B} = tabular_CPD(bnet, B, [prob(2) (1-prob(2))]); 

bnet.CPD{C} = tabular_CPD(bnet, C, [prob(3) (1-prob(3))]); 

bnet.CPD{D} = tabular_CPD(bnet, D, [prob(4) (1-prob(4))]); 

bnet.CPD{F} = tabular_CPD(bnet, F, [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1]); 

bnet.CPD{S} = tabular_CPD(bnet, S, [prob(5) (1-prob(5))]); 

bnet.CPD{E} = tabular_CPD(bnet, E, [1 0 1 0 0 0 0 1 0 1 0 0]); 

bnet.CPD{W} = tabular_CPD(bnet, W, [prob(6) (1-prob(6))]); 

bnet.CPD{T} = tabular_CPD(bnet, T, [1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1]); 

G=bnet.dag; 

draw_graph(G); %Draw the BN 

prob_sys_1=1-(1-prob(1))*(1-prob(2))*(1-prob(3))*(1-prob(4))*(1-prob(6)); 

prob_sys_2=(1-prob(1))*(1-prob(2))*(1-prob(3))*(1-prob(4))*(1-prob(5))*(1-prob(6)); 

prob_sys_3=(1-prob(1))*(1-prob(2))*(1-prob(3))*(1-prob(4))*prob(5)*(1-prob(6)); 

%select the inference engine 

engine = jtree_inf_engine(bnet); 

for i=[A B C D S W] 

    %add evidence T=1, calculate p(i=1|T=1) 

    evidence = cell(1,N); 

    evidence{T} = 1; 

    [engine, loglike] = enter_evidence(engine, evidence); 

    marg1=marginal_nodes(engine, i); 

    marg_T1(i,:)=marg1.T; 

    %add evidence T=2, calculate p(i=1|T=2) 

    evidence = cell(1,N); 

    evidence{T} = 2; 

    [engine, loglike] = enter_evidence(engine, evidence); 

    marg2=marginal_nodes(engine, i); 

    marg_T2(i,:)=marg2.T; 

    %add evidence T=3, calculate p(i=1|T=3) 

    evidence = cell(1,N); 

    evidence{T} = 3; 

    [engine, loglike] = enter_evidence(engine, evidence); 

    marg3=marginal_nodes(engine, i); 
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    marg_T3(i,:)=marg3.T; 

    %add evidence i=1, calculate p(T=1|i=1) 

    evidence = cell(1,N); 

    evidence{i} = 1; 

    [engine, loglike] = enter_evidence(engine, evidence); 

    marg3= marginal_nodes(engine, T); 

    marg_T(i,:)=marg3.T; 

end 

 

%given A good S failed, p(T=1|A=2,W=1) 

evidence = cell(1,N); 

evidence{A} = 2; 

evidence{S} = 1; 

[engine, loglike3] = enter_evidence(engine, evidence); 

m = marginal_nodes(engine, T); 

 

prob_sys_1   % system failed 

prob_sys_2   % system operating 

prob_sys_3   % system slow 

 

marg_T1 %CPD given T=1 

marg_T2 %CPD given T=2 

marg_T3 %CPD given T=3 

 

marg_T %CPD given each node=1 

m.T %%CPD for node T given A functional and S failed 
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Matlab Results for Scenario I 

prob_sys_1 = 

    0.7137 

 

prob_sys_2 = 

    0.2434 

 

prob_sys_3 = 

    0.0429 

 

marg_T1 = 

    0.7006    0.2994 

    0.3503    0.6497 

    0.2102    0.7898 

    0.1401    0.8599 

         0         0 

    0.1500    0.8500 

         0         0 

    0.0028    0.9972 

 

marg_T2 = 

     0     1 

     0     1 

     0     1 

     0     1 

     0     0 

     0     1 

     0     0 

     0     1 

 

marg_T3 = 

     0     1 

     0     1 

     0     1 

     0     1 

     0     0 

     1     0 

     0     0 

     0     1 

 

marg_T = 

    1.0000         0         0 

    1.0000         0         0 

    1.0000         0         0 
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    1.0000         0         0 

         0         0         0 

    0.7137         0    0.2863 

         0         0         0 

    1.0000         0         0 

 

ans = 

    0.4274 

         0 

    0.5726 

 

>> 
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APPENDIX II  

MATLAB CODE AND RESULTS FOR SCENARIO II 
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Matlab Code for the Dynamic Fault Tree Inference 

%make the expression for the failure prob. for node A, B, C, D 

lambda=[0.00025 0.00015 0.0001 0.00005]; 

prob_w=0.002;  

for m=1:25 %count 1 for every 2 weeks 

    h=336; %Time interval, 336 hours per 2 weeks 

    t(m)=m*h; 

    for i=1:4 

        prob(i,m)=1-exp((-1)*lambda(i)*t(m)); 

    end; 

    prob_sys(m)=1-(1-prob(1,m))*(1-prob(2,m))*(1-prob(3,m))*(1-prob(4,m))*(1-prob_w); 

end; 

prob   %failure rate for node A, B, C, D 

prob_sys    %system failures for each iteration 
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Matlab Results for the Dynamic Fault Tree Inference 

prob = 

 

  Columns 1 through 9 

 

    0.0806    0.1546    0.2228    0.2854    0.3430    0.3959    0.4446    0.4893    0.5305 

    0.0492    0.0959    0.1403    0.1826    0.2228    0.2610    0.2973    0.3318    0.3647 

    0.0330    0.0650    0.0959    0.1258    0.1546    0.1826    0.2096    0.2357    0.2610 

    0.0167    0.0330    0.0492    0.0650    0.0806    0.0959    0.1109    0.1258    0.1403 

 

  Columns 10 through 18 

 

    0.5683    0.6031    0.6351    0.6645    0.6915    0.7163    0.7392    0.7602    0.7795 

    0.3959    0.4256    0.4538    0.4807    0.5062    0.5305    0.5535    0.5755    0.5963 

    0.2854    0.3090    0.3318    0.3539    0.3752    0.3959    0.4159    0.4352    0.4538 

    0.1546    0.1687    0.1826    0.1962    0.2096    0.2228    0.2357    0.2484    0.2610 

 

  Columns 19 through 25 

 

    0.7973    0.8136    0.8286    0.8424    0.8551    0.8668    0.8775 

    0.6162    0.6351    0.6530    0.6700    0.6863    0.7017    0.7163 

    0.4719    0.4893    0.5062    0.5225    0.5383    0.5535    0.5683 

    0.2733    0.2854    0.2973    0.3090    0.3205    0.3318    0.3430 

 

prob_sys = 

 

  Columns 1 through 9 

 

    0.1704    0.3104    0.4267    0.5235    0.6039    0.6707    0.7263    0.7725    0.8108 

 

  Columns 10 through 18 

 

    0.8428    0.8693    0.8913    0.9097    0.9249    0.9376    0.9481    0.9569    0.9641 

 

  Columns 19 through 25 

 

    0.9702    0.9752    0.9794    0.9829    0.9858    0.9882    0.9902 

 

>> 
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Matlab Code for the Dynamic Bayesian Network Inference 

N = 9;                                                % nine notes 

dag = false(N,N);                                % N-by-N matrix of logical zeros 

% assign number for nodes, parent nodes should be prior  

A= 1; B = 2; C = 3; D = 4; F = 5; S = 6; E = 7; W = 8; T = 9;    

dag([A,B,C,D],F)=true;   %connect A-F, B-F, C-F, D-F 

dag([F,S],E)=true;    %connect F-E, S-E  

dag([E,W],T)=true;    %connect E-T, W-T 

discrete_notes = 1:N;  %all nodes are discrete 

node_sizes = [2 2 2 2 2 2 3 2 3];  %number of values node i can take on; all nodes are binary 

bnet = mk_bnet(dag, node_sizes);    %make a Bayesian network 

%make the expression for the failure prob. for node A, B, C, D 

lambda=[0.00025 0.00015 0.0001 0.00005]; 

for m=1:25 %count 1 for every 2 weeks 

    h=336; %Time interval, 336 hours per 2 weeks 

    t(m)=m*h; 

    for i=1:4 

        prob(i,m)=1-exp((-1)*lambda(i)*t(m)); 

        prob_S=0.15; 

        prob_W=0.002; 

    end; 

    bnet.CPD{A} = tabular_CPD(bnet, A, [prob(1,m) (1-prob(1,m))]); 

    bnet.CPD{B} = tabular_CPD(bnet, B, [prob(2,m) (1-prob(2,m))]); 

    bnet.CPD{C} = tabular_CPD(bnet, C, [prob(3,m) (1-prob(3,m))]); 

    bnet.CPD{D} = tabular_CPD(bnet, D, [prob(4,m) (1-prob(4,m))]); 

    bnet.CPD{F} = tabular_CPD(bnet, F, [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1]); 

    bnet.CPD{S} = tabular_CPD(bnet, S, [prob_S (1-prob_S)]); 

    bnet.CPD{E} = tabular_CPD(bnet, E, [1 0 1 0 0 0 0 1 0 1 0 0]); 

    bnet.CPD{W} = tabular_CPD(bnet, S, [prob_W (1-prob_W)]); 

    bnet.CPD{T} = tabular_CPD(bnet, T, [1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1]); 

    G=bnet.dag; 

    draw_graph(G); %Draw the BN 

    prob_sys_1(m)=1-(1-prob(1,m))*(1-prob(2,m))*(1-prob(3,m))*(1-prob(4,m))*(1-prob_W); 

    prob_sys_2(m)=(1-prob(1,m))*(1-prob(2,m))*(1-prob(3,m))*(1-prob(4,m))*(1-prob_S)*(1-

prob_W); 

    prob_sys_3(m)=(1-prob(1,m))*(1-prob(2,m))*(1-prob(3,m))*(1-prob(4,m))*prob_S*(1-

prob_W); 

    engine = jtree_inf_engine(bnet); 

    %add evidence T=1 

    evidence = cell(1,N); 

    evidence{T} = 1; 

    [engine, loglike] = enter_evidence(engine, evidence); 

    margA1 = marginal_nodes(engine, A); 

    margB1 = marginal_nodes(engine, B); 

    margC1 = marginal_nodes(engine, C); 

    margD1 = marginal_nodes(engine, D); 

    margF1 = marginal_nodes(engine, F); 
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    margS1 = marginal_nodes(engine, S); 

    margE1 = marginal_nodes(engine, E); 

    margW1 = marginal_nodes(engine, W); 

    marg_A1(:,m)=margA1.T; 

    marg_B1(:,m)=margB1.T; 

    marg_C1(:,m)=margC1.T; 

    marg_D1(:,m)=margD1.T; 

    marg_F1(:,m)=margF1.T; 

    marg_S1(:,m)=margS1.T; 

    marg_E1(:,m)=margE1.T; 

    marg_W1(:,m)=margW1.T; 

    %add evidence T=2 

    evidence = cell(1,N); 

    evidence{T} = 2; 

    [engine, loglike] = enter_evidence(engine, evidence); 

    margA2 = marginal_nodes(engine, A); 

    margB2 = marginal_nodes(engine, B); 

    margC2 = marginal_nodes(engine, C); 

    margD2 = marginal_nodes(engine, D); 

    margF2 = marginal_nodes(engine, F); 

    margS2 = marginal_nodes(engine, S); 

    margE2 = marginal_nodes(engine, E); 

    margW2 = marginal_nodes(engine, W); 

    marg_A2(:,m)=margA2.T; 

    marg_B2(:,m)=margB2.T; 

    marg_C2(:,m)=margC2.T; 

    marg_D2(:,m)=margD2.T; 

    marg_F2(:,m)=margF2.T; 

    marg_S2(:,m)=margS2.T; 

    marg_E2(:,m)=margE2.T; 

    marg_W2(:,m)=margW2.T;   

    %add evidence T=3 

    evidence = cell(1,N); 

    evidence{T} = 3; 

    [engine, loglike] = enter_evidence(engine, evidence); 

    margA3 = marginal_nodes(engine, A); 

    margB3 = marginal_nodes(engine, B); 

    margC3 = marginal_nodes(engine, C); 

    margD3 = marginal_nodes(engine, D); 

    margF3 = marginal_nodes(engine, F); 

    margS3 = marginal_nodes(engine, S); 

    margE3 = marginal_nodes(engine, E); 

    margW3 = marginal_nodes(engine, W); 

    marg_A3(:,m)=margA3.T; 

    marg_B3(:,m)=margB3.T; 

    marg_C3(:,m)=margC3.T; 

    marg_D3(:,m)=margD3.T; 

    marg_F3(:,m)=margF3.T; 

    marg_S3(:,m)=margS3.T; 
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    marg_E3(:,m)=margE3.T; 

    marg_W3(:,m)=margW3.T; 

 for j=[A B C D F S E W] 

    evidence = cell(1,N); 

    evidence{j} = 1; 

    [engine, loglike] = enter_evidence(engine, evidence); 

    marg_T = marginal_nodes(engine, T); 

    marg_T_j(:,m,j)=marg_T.T; 

 end; 

     evidence = cell(1,N); 

     evidence{A} = 2; 

     evidence{S} = 1; 

     [engine, loglike] = enter_evidence(engine, evidence); 

     marg_as = marginal_nodes(engine, T); 

     marg_A_S(:,m)=marg_as.T; 

end; 

prob_sys_1   % system failed 

prob_sys_2   % system operating 

prob_sys_3   % system slow 

prob       %failure probs for filter A, B, C, D 

%CPD for each node for each iteration with T=1 

marg_A1    

marg_B1      

marg_C1      

marg_D1    

marg_F1      

marg_S1      

marg_E1      

marg_W1      

%CPD for each node for each iteration with T=2 

marg_A2  

marg_B2      

marg_C2      

marg_D2    

marg_F2      

marg_S2      

marg_E2      

marg_W2 

%CPD for each node for each iteration with T=3 

marg_A3    

marg_B3      

marg_C3      

marg_D3    

marg_F3      

marg_S3      

marg_E3      

marg_W3 

marg_T_j   %CPD for node T for each iteration given each node i=1 

marg_A_S   %CPD for node T for each iteration given A functional and S failed 
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Matlab Results for the Dynamic Bayesian Network Inference 

prob_sys_1 = 

  Columns 1 through 9 

    0.1704    0.3104    0.4267    0.5235    0.6039    0.6707    0.7263    0.7725    0.8108 

  Columns 10 through 18 

    0.8428    0.8693    0.8913    0.9097    0.9249    0.9376    0.9481    0.9569    0.9641 

  Columns 19 through 25 

    0.9702    0.9752    0.9794    0.9829    0.9858    0.9882    0.9902 

 

prob_sys_2 = 

  Columns 1 through 9 

    0.7052    0.5862    0.4873    0.4051    0.3367    0.2799    0.2327    0.1934    0.1608 

  Columns 10 through 18 

    0.1337    0.1111    0.0924    0.0768    0.0638    0.0530    0.0441    0.0367    0.0305 

  Columns 19 through 25 

    0.0253    0.0211    0.0175    0.0146    0.0121    0.0101    0.0084 

 

prob_sys_3 = 

  Columns 1 through 9 

    0.1244    0.1034    0.0860    0.0715    0.0594    0.0494    0.0411    0.0341    0.0284 

  Columns 10 through 18 

    0.0236    0.0196    0.0163    0.0135    0.0113    0.0094    0.0078    0.0065    0.0054 

  Columns 19 through 25 

0.0045    0.0037    0.0031    0.0026    0.0021    0.0018    0.0015 

 

prob = 

  Columns 1 through 9 

    0.0806    0.1546    0.2228    0.2854    0.3430    0.3959    0.4446    0.4893    0.5305 

    0.0492    0.0959    0.1403    0.1826    0.2228    0.2610    0.2973    0.3318    0.3647 

    0.0330    0.0650    0.0959    0.1258    0.1546    0.1826    0.2096    0.2357    0.2610 

    0.0167    0.0330    0.0492    0.0650    0.0806    0.0959    0.1109    0.1258    0.1403 

  Columns 10 through 18 

    0.5683    0.6031    0.6351    0.6645    0.6915    0.7163    0.7392    0.7602    0.7795 

    0.3959    0.4256    0.4538    0.4807    0.5062    0.5305    0.5535    0.5755    0.5963 

    0.2854    0.3090    0.3318    0.3539    0.3752    0.3959    0.4159    0.4352    0.4538 

    0.1546    0.1687    0.1826    0.1962    0.2096    0.2228    0.2357    0.2484    0.2610 

  Columns 19 through 25 

    0.7973    0.8136    0.8286    0.8424    0.8551    0.8668    0.8775 

    0.6162    0.6351    0.6530    0.6700    0.6863    0.7017    0.7163 

    0.4719    0.4893    0.5062    0.5225    0.5383    0.5535    0.5683 

    0.2733    0.2854    0.2973    0.3090    0.3205    0.3318    0.3430 

 

marg_A1 = 

  Columns 1 through 9 
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    0.4728    0.4983    0.5220    0.5452    0.5679    0.5903    0.6121    0.6335    0.6542 

    0.5272    0.5017    0.4780    0.4548    0.4321    0.4097    0.3879    0.3665    0.3458 

  Columns 10 through 18 

    0.6743    0.6937    0.7125    0.7304    0.7476    0.7640    0.7796    0.7945    0.8085 

    0.3257    0.3063    0.2875    0.2696    0.2524    0.2360    0.2204    0.2055    0.1915 

  Columns 19 through 25 

    0.8218    0.8343    0.8461    0.8571    0.8675    0.8772    0.8863 

    0.1782    0.1657    0.1539    0.1429    0.1325    0.1228    0.1137 

 

marg_B1 = 

  Columns 1 through 9 

    0.2885    0.3089    0.3288    0.3488    0.3689    0.3891    0.4093    0.4296    0.4497 

    0.7115    0.6911    0.6712    0.6512    0.6311    0.6109    0.5907    0.5704    0.5503 

  Columns 10 through 18 

    0.4698    0.4896    0.5091    0.5284    0.5473    0.5658    0.5838    0.6014    0.6185 

    0.5302    0.5104    0.4909    0.4716    0.4527    0.4342    0.4162    0.3986    0.3815 

  Columns 19 through 25 

    0.6351    0.6512    0.6667    0.6817    0.6962    0.7101    0.7235 

    0.3649    0.3488    0.3333    0.3183    0.3038    0.2899    0.2765 

 

marg_C1 = 

  Columns 1 through 9 

    0.1939    0.2094    0.2247    0.2402    0.2561    0.2722    0.2886    0.3051    0.3218 

    0.8061    0.7906    0.7753    0.7598    0.7439    0.7278    0.7114    0.6949    0.6782 

  Columns 10 through 18 

    0.3386    0.3554    0.3723    0.3890    0.4057    0.4222    0.4386    0.4548    0.4707 

    0.6614    0.6446    0.6277    0.6110    0.5943    0.5778    0.5614    0.5452    0.5293 

  Columns 19 through 25 

    0.4864    0.5017    0.5168    0.5316    0.5461    0.5602    0.5739 

    0.5136    0.4983    0.4832    0.4684    0.4539    0.4398    0.4261 

 

marg_D1 = 

  Columns 1 through 9 

    0.0978    0.1065    0.1152    0.1242    0.1334    0.1430    0.1528    0.1628    0.1731 

    0.9022    0.8935    0.8848    0.8758    0.8666    0.8570    0.8472    0.8372    0.8269 

  Columns 10 through 18 

    0.1835    0.1941    0.2048    0.2157    0.2266    0.2376    0.2486    0.2596    0.2707 

    0.8165    0.8059    0.7952    0.7843    0.7734    0.7624    0.7514    0.7404    0.7293 

  Columns 19 through 25 

    0.2817    0.2926    0.3035    0.3144    0.3251    0.3358    0.3464 

    0.7183    0.7074    0.6965    0.6856    0.6749    0.6642    0.6536 

 

marg_F1 = 

  Columns 1 through 9 

    0.9902    0.9955    0.9973    0.9982    0.9987    0.9990    0.9992    0.9994    0.9995 
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    0.0098    0.0045    0.0027    0.0018    0.0013    0.0010    0.0008    0.0006    0.0005 

  Columns 10 through 18 

    0.9996    0.9997    0.9998    0.9998    0.9998    0.9999    0.9999    0.9999    0.9999 

    0.0004    0.0003    0.0002    0.0002    0.0002    0.0001    0.0001    0.0001    0.0001 

  Columns 19 through 25 

    0.9999    0.9999    1.0000    1.0000    1.0000    1.0000    1.0000 

    0.0001    0.0001    0.0000    0.0000    0.0000    0.0000    0.0000 

 

marg_S1 = 

  Columns 1 through 9 

    0.1500    0.1500    0.1500    0.1500    0.1500    0.1500    0.1500    0.1500    0.1500 

    0.8500    0.8500    0.8500    0.8500    0.8500    0.8500    0.8500    0.8500    0.8500 

  Columns 10 through 18 

    0.1500    0.1500    0.1500    0.1500    0.1500    0.1500    0.1500    0.1500    0.1500 

    0.8500    0.8500    0.8500    0.8500    0.8500    0.8500    0.8500    0.8500    0.8500 

  Columns 19 through 25 

    0.1500    0.1500    0.1500    0.1500    0.1500    0.1500    0.1500 

    0.8500    0.8500    0.8500    0.8500    0.8500    0.8500    0.8500 

 

marg_E1 = 

  Columns 1 through 9 

    0.9902    0.9955    0.9973    0.9982    0.9987    0.9990    0.9992    0.9994    0.9995 

    0.0083    0.0038    0.0023    0.0016    0.0011    0.0008    0.0006    0.0005    0.0004 

    0.0015    0.0007    0.0004    0.0003    0.0002    0.0001    0.0001    0.0001    0.0001 

  Columns 10 through 18 

    0.9996    0.9997    0.9998    0.9998    0.9998    0.9999    0.9999    0.9999    0.9999 

    0.0003    0.0003    0.0002    0.0002    0.0001    0.0001    0.0001    0.0001    0.0001 

    0.0001    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 

  Columns 19 through 25 

    0.9999    0.9999    1.0000    1.0000    1.0000    1.0000    1.0000 

    0.0001    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 

    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 

 

marg_W1 = 

  Columns 1 through 9 

    0.0117    0.0064    0.0047    0.0038    0.0033    0.0030    0.0028    0.0026    0.0025 

    0.9883    0.9936    0.9953    0.9962    0.9967    0.9970    0.9972    0.9974    0.9975 

  Columns 10 through 18 

    0.0024    0.0023    0.0022    0.0022    0.0022    0.0021    0.0021    0.0021    0.0021 

    0.9976    0.9977    0.9978    0.9978    0.9978    0.9979    0.9979    0.9979    0.9979 

  Columns 19 through 25 

    0.0021    0.0021    0.0020    0.0020    0.0020    0.0020    0.0020 

    0.9979    0.9979    0.9980    0.9980    0.9980    0.9980    0.9980 

 

marg_A2 = 
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  Columns 1 through 16 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 17 through 25 

     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1 

 

marg_B2 = 

  Columns 1 through 16 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 17 through 25 

     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1 

 

marg_C2 = 

  Columns 1 through 16 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 17 through 25 

     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1 

 

marg_D2 = 

  Columns 1 through 16 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 17 through 25 

     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1 

 

marg_F2 = 

  Columns 1 through 16 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 17 through 25 

     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1 

 

marg_S2 = 

  Columns 1 through 16 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 17 through 25 

     0     0     0     0     0     0     0     0     0 
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     1     1     1     1     1     1     1     1     1 

 

marg_E2 = 

  Columns 1 through 16 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

  Columns 17 through 25 

     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1 

     0     0     0     0     0     0     0     0     0 

 

marg_W2 = 

  Columns 1 through 16 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 17 through 25 

     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1 

 

marg_A3 = 

  Columns 1 through 16 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 17 through 25 

     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1 

 

marg_B3 = 

  Columns 1 through 16 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 17 through 25 

     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1 

 

marg_C3 = 

  Columns 1 through 16 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 17 through 25 

     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1 

 

marg_D3 = 
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  Columns 1 through 16 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 17 through 25 

     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1 

 

marg_F3 = 

  Columns 1 through 16 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 17 through 25 

     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1 

 

marg_S3 = 

  Columns 1 through 16 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

  Columns 17 through 25 

     1     1     1     1     1     1     1     1     1 

     0     0     0     0     0     0     0     0     0 

 

marg_E3 = 

  Columns 1 through 16 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 17 through 25 

     0     0     0     0     0     0     0     0     0 

     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1 

 

marg_W3 = 

  Columns 1 through 16 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 17 through 25 

     0     0     0     0     0     0     0     0     0 

     1     1     1     1     1     1     1     1     1 

 

marg_T_j(:,:,1) = 

  Columns 1 through 9 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

         0         0         0         0         0         0         0         0         0 
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         0         0         0         0         0         0         0         0         0 

  Columns 10 through 18 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

         0         0         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0         0         0 

  Columns 19 through 25 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0 

 

marg_T_j(:,:,2) = 

  Columns 1 through 9 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

         0         0         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0         0         0 

  Columns 10 through 18 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

         0         0         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0         0         0 

  Columns 19 through 25 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0 

 

marg_T_j(:,:,3) = 

  Columns 1 through 9 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

         0         0         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0         0         0 

  Columns 10 through 18 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

         0         0         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0         0         0 

  Columns 19 through 25 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0 

 

marg_T_j(:,:,4) = 

  Columns 1 through 9 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

         0         0         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0         0         0 

  Columns 10 through 18 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 
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         0         0         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0         0         0 

  Columns 19 through 25 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0 

 

marg_T_j(:,:,5) = 

  Columns 1 through 9 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

         0         0         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0         0         0 

  Columns 10 through 18 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

         0         0         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0         0         0 

  Columns 19 through 25 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0 

 

marg_T_j(:,:,6) = 

  Columns 1 through 9 

    0.1704    0.3104    0.4267    0.5235    0.6039    0.6707    0.7263    0.7725    0.8108 

         0         0         0         0         0         0         0         0         0 

    0.8296    0.6896    0.5733    0.4765    0.3961    0.3293    0.2737    0.2275    0.1892 

  Columns 10 through 18 

    0.8428    0.8693    0.8913    0.9097    0.9249    0.9376    0.9481    0.9569    0.9641 

         0         0         0         0         0         0         0         0         0 

    0.1572    0.1307    0.1087    0.0903    0.0751    0.0624    0.0519    0.0431    0.0359 

  Columns 19 through 25 

    0.9702    0.9752    0.9794    0.9829    0.9858    0.9882    0.9902 

         0         0         0         0         0         0         0 

    0.0298    0.0248    0.0206    0.0171    0.0142    0.0118    0.0098 

 

marg_T_j(:,:,7) = 

  Columns 1 through 9 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

         0         0         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0         0         0 

  Columns 10 through 18 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

         0         0         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0         0         0 

  Columns 19 through 25 
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    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0 

 

marg_T_j(:,:,8) = 

  Columns 1 through 9 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

         0         0         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0         0         0 

  Columns 10 through 18 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

         0         0         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0         0         0 

  Columns 19 through 25 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

         0         0         0         0         0         0         0 

         0         0         0         0         0         0         0 

 

marg_A_S = 

  Columns 1 through 9 

    0.0977    0.1842    0.2624    0.3332    0.3971    0.4549    0.5072    0.5544    0.5972 

         0         0         0         0         0         0         0         0         0 

    0.9023    0.8158    0.7376    0.6668    0.6029    0.5451    0.4928    0.4456    0.4028 

  Columns 10 through 18 

    0.6358    0.6707    0.7023    0.7308    0.7566    0.7800    0.8011    0.8201    0.8374 

         0         0         0         0         0         0         0         0         0 

    0.3642    0.3293    0.2977    0.2692    0.2434    0.2200    0.1989    0.1799    0.1626 

  Columns 19 through 25 

    0.8530    0.8671    0.8798    0.8913    0.9018    0.9112    0.9197 

         0         0         0         0         0         0         0 

    0.1470    0.1329    0.1202    0.1087    0.0982    0.0888    0.0803 

 

>> 

 


