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ABSTRACT

In 1968, phycologist M.R. Droop published his famous discovery on the functional

relationship between growth rate and internal nutrient status of algae in chemostat

culture. The simple notion that growth is directly dependent on intracellular nutrient

concentration is useful for understanding the dynamics in many ecological systems.

The cell quota in particular lends itself to ecological stoichiometry, which is a powerful

framework for mathematical ecology. Three models are developed based on the cell

quota principal in order to demonstrate its applications beyond chemostat culture.

First, a data-driven model is derived for neutral lipid synthesis in green microal-

gae with respect to nitrogen limitation. This model synthesizes several established

frameworks in phycology and ecological stoichiometry. The model demonstrates how

the cell quota is a useful abstraction for understanding the metabolic shift to neutral

lipid production that is observed in certain oleaginous species.

Next a producer-grazer model is developed based on the cell quota model and

nutrient recycling. The model incorporates a novel feedback loop to account for

animal toxicity due to accumulation of nitrogen waste. The model exhibits rich,

complex dynamics which leave several open mathematical questions.

Lastly, disease dynamics in vivo are in many ways analogous to those of an ecosys-

tem, giving natural extensions of the cell quota concept to disease modeling. Prostate

cancer can be modeled within this framework, with androgen the limiting nutrient

and the prostate and cancer cells as competing species. Here the cell quota model

provides a useful abstraction for the dependence of cellular proliferation and apoptosis

on androgen and the androgen receptor. Androgen ablation therapy is often used for

patients in biochemical recurrence or late-stage disease progression and is in general

initially effective. However, for many patients the cancer eventually develops resis-

tance months to years after treatment begins. Understanding how and predicting
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when hormone therapy facilitates evolution of resistant phenotypes has immediate

implications for treatment. Cell quota models for prostate cancer can be useful tools

for this purpose and motivate applications to other diseases.
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Chapter 1

DROOP (CELL QUOTA) MODEL

1.1 Introduction

In 1968, phycologist M.R. Droop published his famous discovery on the functional

relationship between growth rate and internal nutrient status of algae in chemostat

culture (Droop, 1968). The cell quota is a basic but important concept. This simple

notion that growth depends directly on the intracellular level of the limiting nutrient

can be a powerful tool for population ecology and ecosystem dynamics.

The experiments in Droop (1968) involved chemostats with varying concentrations

of vitamin B12 in the growth media. Droop discovered that there was an empirical

relationship between algal specific growth rate and the intracellular concentration of

vitamin B12 in chemostat culture. This growth model, commonly referred to as the

Cell Quota (or Droop) model (Droop, 1983) is a two-parameter curve which maps

specific growth rate to intracellular nutrient of a cell,

µ (Q) = µm

(
1− q

Q

)
, (1.1)

where the cell quota Q is often expressed as units per cell, e.g. the relative mass of

some nutrient per unit of biomass. The subsistence quota q can be interpreted as the

minimum Q required for life. Similarly, it can be interpreted as the conversion ratio

for biomass, whereby Q > q implies there is a nutrient pool available for reproduction

(Droop, 1983; Leadbeater, 2006).

The Cell Quota model departs from the traditional Monod growth model where

1



specific growth rate is a function of the extracellular limiting nutrient (Droop, 1983),

µ (S) =
1

γ

mS

KS + S
, (1.2)

where S is the nutrient concentration, m is the maximum specific uptake rate of

S, KS is the half-saturation constant, and γ is the yield constant. γ represents the

conversion efficiency of nutrient to net biomass production.

The cell quota model has become commonplace in the ecology literature, with a

recent and untraditional application by Portz, Kuang and Nagy (2012) to prostate

cancer. Q is especially important in the context of ecological stoichiometry because

it explicitly quantifies the stoichiometric ratio of an entity, translating the quantity

to important processes such as growth.

1.2 Derivation of dQ
dt

The derivation for dQ
dt

is identical for any population model because it follows

directly from conservation of mass. Suppose we have a system with three interdepen-

dent state variables. Let X denote a population and X(t) (mass/volume) its density.

Denote by µ and δ (1/time) the specific growth and death rates, respectively. The

specific rate of net change in X is thus µ(·) − δ(·). These rates would generally be

nonconstant functions dependent on any number of variables including X and/or

some external or internal (limiting) factor(s), indicated by the notation (·).

Let N represent some “nutrient” that is taken up by and assimilated into X.

Define N(t) (mass/volume) as the available external concentration of N. Further let

Nx(t) be the internal concentration of N uniformly distributed in the population X.

Q(t) (mass N/mass X), the cell quota for N, is now calculated by

Q(t) = Nx(t)/X(t), X(t) 6= 0

=⇒ Nx(t) = Q(t)X(t).

2



For the sake of argument, suppose X(t) and N(t) have units of (g/L). Then Q(t) is a

scalar. Assume that X is in isolation from any other biological species and can only

change from proliferation and death. Denote by v the X-specific uptake rate of N

and by w the Nx-specific loss rate of Nx. Similarly, these rates would generally be

nonconstant functions dependent on X, N , and/or any other factors. Whether or not

µ and δ are nonconstant functions (and regardless of what variables), we have from

conservation of mass that

X ′ = µX − δX, (1.3)

N ′x = vX − wNx − δNx, (1.4)

N ′ = −vX + wNx + δNx. (1.5)

Since Nx = QX, it follows from the product rule that

Q′ =
1

X
N ′x −

Q

X
X ′

= v − wNx

X
− δNx

X
− (µQ− δQ)

= v − wQ− µQ. (1.6)

Note that in this generalized model, the nutrient N need not be a limiting factor.

To generalize further, µ and δ may represent the specific rates of overall “gain” and

“loss” of the population X, whose units are not necessarily density. µ encompasses

any process that, in the absence of δ, results in a net increase of X: birth, some

exogenous input flux, etc. Similarly, δ encompasses any process that, in the absence

of µ, results in a net decrease of X: death, harvesting, predation, etc.

Conservation of mass has an important implication for the Cell Quota Model and

the mathematical expression of Q′. Suppose a model is such that X ′ has the term

µm

(
1− q

Q

)
X and it is possible that Q < q. Unlike the generalized formulation,

“gain” and “loss” of X are no longer separated into two distinct functions. While

3



nothing changes for Then in order for the model to respect conservation of mass, Q′

(and N ′x) must have the piecewise form (1.7) for µ:

µ =

 µm

(
1− q

Q

)
if q ≤ Q

0 if q > Q
(1.7)

If a model without the property Q ≥ q does not distinguish between µ < 0 and µ ≥ 0

in Q′ then it violates conservation of mass. While this fact does not preclude using the

Cell Quota Model for both proliferation and death, it reinforces the inherent problems

with extending Droop’s relationship beyond microalgae. This observation does not

imply it is incorrect to use the Cell Quota Model for death. It simply illustrates that

doing so requires careful derivation of Q′ and increases the mathematical complexity

with regards to analysis.

1.3 Ecological Stoichiometry

The concept of the cell quota lends itself in particular to ecological stoichiometry

(Sterner and Elser, 2002), which is a powerful framework for mathematical ecology.

Ecological stoichiometry is concerned with the underlying elemental balance in or-

ganisms and their interactions. By abstracting organisms as collection of elements,

ecosystem dynamics can be conceptualized as the flow of elements between species

and their environment.

Ecological stoichiometry is applicable to important industrial questions. Biofuels

are important for a number of obvious reasons, ranging from scientific to environ-

mental to industrial. Algal-derived biofuels are a byproduct of neutral lipids (NL)

which some species upregulate in nitrogen limiting settings. Understanding why these

species upregulate NL synthesis is fundamental to improving the feasibility of indus-

trial scale production (Hu et al., 2008). For certain species of green microalgae,

nitrogen (N) limitation stimulates NL synthesis. In Chapter 2 models are used to

4



demonstrate how the mass ratio of nitrogen to carbon (N:C quota) of algal biomass

can be used as an underlying mechanism which drives NL synthesis in N-limiting

settings. Combining ecological stoichiometry with the cell quota provides a simple

formulation for complicated biological processes.

Ecological stoichiometry is equally effective for multi-species systems. The ele-

mental imbalance between an organism and its food is a fundamental observation in

ecological stoichiometry. Animals generally maintain a relatively fixed elemental com-

position whereas photoautotrophs such as phytoplankton and plants exhibit a highly

variable elemental composition (Sterner and Elser, 2002). In a simple plant-herbivore

system, this imbalance produces rich and biologically meaningful dynamics (Kuang,

Huisman and Elser, 2004).

In Chapter 3 a stoichiometric producer-consumer model is used to investigate the

effects of N-based toxicity on producer health. In ecological terms, the recycling of N

is an important mechanism in driving dynamics for a producer-consumer system. The

model was motivated in part by aquaculture ponds, where accumulation of inorganic

N, specifically ammonia, inhibits animal growth and survival.

1.4 Cell Quota Model Versus the Cell Quota

It is proposed here that a distinction should be made between the Cell Quota

(Droop) Model and the cell quota. Henceforth the Cell Quota Model refers to the

functional relationship µm

(
1− q

Q

)
discovered by Droop whereas cell quota refers to

Q. More generally, the cell quota is the ratio of the total amount of an intracellular

entity and the population. In the context of cell populations such as microalgae or

human epithelial cells, it is the per-cell measure of an entity. From this understand-

ing, the cell quota is simply a quantitative tool for relating intracellular biochemical

processes to population dynamics.

5



The notion of a subsistence quota should also be decoupled from the concept of

the cell quota. The distinction is needed when attempting to extend the “cell quota”

concept to models beyond algae. In the Droop Model, the minimum (or subsistence)

quota q is the amount of nutrient (N) required for a single unit of biomass production.

If Q > q then there is material available for growth. Conversely, Q < q is open to

interpretation. It could represent a form of “starvation” which causes loss of biomass.

It could also be argued that Q < q is impossible because the proportion of biomass

constituted by N is no less than q. Indeed, typical models with the Droop Model

for phytoplankton growth should have the mathematical property that if Q(0) ≥ q

then Q(t) ≥ q for all forward time. This conforms to the idea that q represents the

minimum N needed in a building block of biomass.

In other words, there are subtle intricacies that complicate how exactly the cell

quota can or should be applied to different problems. As will be shown in Chapter 4,

relaxation of the cell quota’s definition gives rise to natural applications for prostate

cancer modeling. Since (cancerous) prostate epithelial cells depend on androgen sig-

naling for proliferation and survival, the “cell quota” is defined as the intracellular

androgen content. Strictly speaking, in this case the “traditional” cell quota would

be a misnomer: the androgens are not “building blocks” that become assimilated

into biomass per se. The minimum quota q is instead interpreted as a theoretical,

homoeostatic intraprostatic androgen concentration at which natural cell turnover

and proliferation are balanced on the population level.

6



Chapter 2

NEUTRAL LIPID SYNTHESIS IN GREEN MICROALGAE

2.1 Introduction

Algal-derived biofuels show potential as alternative sources of fuel. However,

industrial-scale biodiesel production from microalgae still has many open problems

and as such is an active research area (Rawat et al., 2013; Mata, Martins and Caetano,

2010). The successful realization of algal biofuel in large, commercial settings is

undoubtedly tied to scientific progress in many areas of biology and engineering.

The work in this chapter is grounded in both theoretical and applied phycology and

explores several pertinent questions concerning algal biofuel.

Many species of microalgae have propensity for synthesizing high levels of neu-

tral lipids (NL), which can then be harvested and used for biofuel production (Hu

et al., 2008). It has been observed that many of these “oligeneous” species upregu-

late lipid synthesis under stressed conditions, particularly during nitrogen limitation.

Greater light intensity is also observed to increase NL synthesis. Under conditions

low nitrogen and high light, there is an inherent danger for photo-oxidative stress

caused by excessive buildup of reducing energy in the photosystems. As algae and

higher plants deploy many strategies to protect against photoinhibition and oxida-

tive stress, the phenomenon of extreme NL accumulation is suggested to be one such

adaptive response (Hu et al., 2008; Mata, Martins and Caetano, 2010). The synthesis

of high-energy NL compensates for the decrease in growth, sustaining an energy sink.

The mathematical model presented in Packer et al. (2011) was the first known

model in the literature for lipid production in algae with respect to both light and nu-
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trient (nitrogen) limitation. The brief paper stemmed from a much larger, multi-year

research effort that began with research interests in mathematical ecology, ecological

stoichiometry, and phycology. The original work, elaborated here in greater detail, is

independent research.

2.2 Data Insights

While the model employs a careful mechanistic derivation, it is also highly data-

driven. It is built on underlying biological processes general to oleaginous green

microalgae but is formulated specifically for microalgae grown in batch culture. This

allowed it to be adapted to and empirically tested against a controlled experiment.

The research experiment, outlined in Li et al. (2011), is briefly summarized and

discussed here because its data give useful insight into growth and lipid dynamics

with respect to nitrogen limitation.

Li et al. (2011) cultivated oleaginous species (Hu, Han and Summerfeld, 2010) of

the genus Pseudochlorococcum (Archibald, 1970) in rectangular cuboid photobiore-

actors with constant irradiance on a single side. Reactors contained 1.5 L of the

standard BG-11 growth medium (Stanier et al., 1971) prepared with varying NaNO3

concentrations in order to achieve three different nitrogen treatments (0.24, 0.06,

and 0 g N L-1 corresponding to 100%, 25%, and 0% of the full 1.5 g L-1 NaNO3

concentration). Algal dry weight, neutral lipid content, and extracellular nitrogen

concentration were measured over the course of 12 days and subsequently used to

find best-fit parameters for the model.

The data, illustrated in Figs. 2.1 and 2.2, help give a visual overview of the rela-

tionship between growth, NL synthesis, and nitrogen availability. Figure 2.2(a)-(b)

demonstrates that neutral lipid synthesis accounted for nearly all biomass productiv-

ity after nitrogen was depleted from the media. Figure 2.2(c)-(d) shows the non-NL
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Figure 2.1: Data from Li et al. (2011). The three lines distinguish cultures with
100%, 25%, and 0% of the 1.5 g L-1 NaNO3 concentration of standard BG11 growth
medium (0.24, 0.06, and 0 g N L-1, respectively).

biomass, calculated by subtracting the measured dryweight densities from the mea-

sured NL densities. The negative productivity values for non-NL biomass (Fig. 2.2(c))

are due to net decreases in non-NL mass (e.g. from respiration). Since NL produc-

tivity is positive, the decrease in non-NL biomass occurred simultaneously with an

increase in NLs. The new NLs could have been synthesized from newly fixed carbon

and/or have been converted from existing assimilated carbon. The latter is suggested

by Li et al. (2011), as externally induced inhibition of starch synthesis and degradation
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(b) NL productivity

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

g/
L/

da
y

days

 

 

100%
25%
0%

(c) Non-NL productivity
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Figure 2.2: (a)-(c) Productivity (g L-1 d-1) calculated from the data using the
backward difference. (d) The non-NL biomass density, calculated as the difference of
the dry weight and neutral lipid densities.

correlated to decreases in NL production.

2.2.1 Cell Quota Implications

Quantitatively describing a mechanism for this switch from non-NL production

to NL production is important for optimizing lipid yield. The cell quota for nitrogen

(N-quota) may drive this metabolic transition. As such, it is important to link the

data with the N-quota. Although the intracellular N was not directly measured, it
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can be estimated using the fact that the system is closed under N. Let T be the total

N in the system and N(t) be the extracellular N concentration at time t. Then the

intracellular N concentration at any time t is given by T −N(t).

Next define A(t) as the non-NL biomass density and L(t) as the lipid density.

Thus the total dry weight density is the sum of A(t) and L(t). Also define Q(t) as

the N-quota with respect to of A(t). So Q is the ratio of intracellular N to non-NL

biomass and Q(t)A(t) is the intracellular N concentration. Therefore,

T = Q(t)A(t) +N(t) = Q(0)A(0) +N(0),

and Q(t) can be expressed in terms of the unknown initial value Q(0),

Q(t) =
Q(0)A(0) +N(0)−N(t)

A(t)
. (2.1)

Finally, let Q̃ be the N-quota with respect to total biomass. Then

Q̃(t) =
Q(t)A(t)

A(t) + L(t)
=
Q(0)A(0) +N(0)−N(t)

A(t) + L(t)
. (2.2)

The rationale for considering both Q(t) and Q̃(t) stems from the following ob-

servations. First, consider the “normal” state when N is not limiting. Algal growth

is due to non-NL biomass production, and NL synthesis is insignificant. Second,

consider the state where N is depleted. NL synthesis greatly increases while the pro-

duction of non-NL biomass is essentially zero. The third and final observation is that

the empirical growth rate function discovered by Droop (1968) was the cell-specific

growth rate. The cell quota measured and used by Droop (1968) in the function was

the N:cell ratio.

It stands to reason that the NL synthesis rate and cell-specific growth rate of

Pseudochlorococcum sp. were inversely correlated across the two states considered

above. Given the experimental observations of A and L, it is not unfeasible to assume
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(b) Q(0) = 0.053

Figure 2.3: Calculated Q and Q̃ from the data assuming different values of Q(0).
(a) This case would suggest that NL synthesis was upregulated around Q = 0.07 and
that the 25% culture maintained cell growth at values of Q significantly smaller than
0.07. (b) This case would suggest that q ≈ 0.028 but that the 100% culture was not
N-limited.

that the non-NL biomass density is positively correlated to the cellular density. (This

is equivalent to assuming that large variations in an alga’s mass are largely due to

variations in its NL content.)

It follows that the transition to extreme NL accumulation during N-deprivation is

also the transition from positive to extremely low cellular growth. The classic Droop

model describes cell-specific growth, and so the switch to complete NL synthesis and

zero cellular growth occurs when the N:cell ratio is equal to the minimum quota.

Therefore Q is more indicative than Q̃(t) of the metabolic switch to NL production.

Modeling A-specific growth using the Q and the Droop model is consistent with

observation.

Figure 2.3 shows the calculated values for Q and Q̃ using the data with different

values for Q(0). If a relatively large Q(0) > 0.09 is assumed, the data show that Q̃ of

the 100% and 0% cultures are close in value whereas Q̃ of the 25% culture decreases

to significantly smaller values. This behavior would be consistent with the similar

12



relationship between the NL content of the three cultures. It would also suggest

that NL synthesis in the 0% culture is inhibited despite rapid N-depletion, while NL

synthesis in the 100% culture is inhibited due to N-replete conditions. There would

be some mechanism by which the 25% culture upregulates NL production during

N-depletion, beyond the limit of the 0% culture. A possible explanation would be

greater sustained photosynthesis due to the N-availability during the first two days

in juxtaposition to the extreme N-starvation of the 0% culture. The problem with

this case is that it would suggest q ≈ 0.06 but that in the 25% culture Q < q. If

instead q ≈ 0.03 then both the 0% and 100% cultures would have arrested growth

for Q ≈ 2q. Although it is very likely that the 100% culture is not N-limited, the 0%

culture has more extreme N-limitation than that of the 25% culture.

If Q(0) is smaller, e.g. 0.053, then Q̃ of the 0% and 25% cultures are closely

linked whereas Q̃ of the 100% culture remains significantly greater. In this case the

data are fully consistent with the hypothesis that the NL transition occurs as Q de-

creases towards q, and that for Q = q net primary production is almost entirely due

to NL synthesis. The data imply that q ≈ 0.027. While the 0% and 25% data align

with this theoretical model, the 100% culture is entirely inconsistent. NL production

would have began between days 2 and 3 when Q > 0.068 > 2.5q. However, measured

NL productivity would have been 0 for Q > 0.05 in both the 25% and 100% cultures

prior to day 1 and day 2, respectively. If the 100% was indeed N-limited then one

could argue that the “premature” decoupling of growth and carbon fixation would

have been due to photoacclimation-induced increases in photosynthesis. This could

occur if the stock culture was acclimated to low light conditions and/or the initial

N-availability facilitated photoacclimation to increase in the rate of photosynthesis.

But since the cultures were stocked from the same control suspension, such “prema-

ture” decoupling of photosynthesis and growth would have been expected in the 25%
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culture, too—especially since its growth was more N-limited.

In the more likely case that the 100% culture was not N-limited, the data support

the model. Indeed, with four times the available extracellular nitrogen the 100%

culture (non-NL) biomass averaged only (1.70) 1.36 times that of the 25% culture

by day 12. Algal uptake fully depleted nitrogen from the growth medium before day

4 (Fig. 2.1). In contrast, the 25% culture (non-NL) biomass averaged (7.97) 10.55

times that of the 0% culture. Coincidentally, if it is assumed that the ratio of T

for the two treatments is 7.97 then Q(0) = 0.057. In this case the calculated Q and

Q̃ are fully consistent with the discussed example Q(0) = 0.053 (Fig. 2.3). If the

100% culture was not N-limited its observed dynamics are still consistent with the

theoretical model of NL production by Pseudochlorococcum sp. When the limiting

nutrient is depleted, cellular growth becomes uncoupled from photosynthesis and the

excess carbon influx is devoted to NL synthesis. More experimental work would be

required to identify the limiting nutrient and test the model.

2.3 Model derivation

A system of 4 ODEs is developed to described the biomass, neutral lipid, and

nitrogen dynamics as observed in Li et al. (2011) in addition to chlorophyll a. Denote

by the following,

A(t): algal dry weight density, excluding neutral lipids (g dw m-3)

L(t): neutral lipid density (g C m-3)

H(t): Chl a quota (g Chl a g-1 dw)

Q(t): nitrogen quota of A (g N g-1 dw)

N(t): extracellular nitrogen concentration (g N m-3)

14



Algal biomass is split into two pools: NLs and non-NLs, namely L(t) and A(t).

Thus the total biomass concentration is the sum A(t) +L(t). The NL pool is consid-

ered a transient, C-rich form of biomass that accumulates under stressed conditions.

The non-NL pool is assumed to be coupled with the cell-based population, and cell

mass changes due to changes in L(t). For consistency with the experimental data and

much of the other existing, relevant data, A is defined in terms of dry weight.

Model (2.3) below has similar structure to a generic model of algae suspended in

batch culture, but adds two new state variables, H(t) and L(t), for the cellular quota

of chlorophyll a and the NL concentration, respectively. The cellular growth rate is

a function of both Q and irradiance I0. The rate of neutral lipid synthesis is also a

function of Q and I0, as is the rate of Chl a synthesis. The minimum quota q serves

as the metabolic switch from cellular proliferation to lipid accumulation.

A′ = µ(Q, I0)A,

L′ = f(µ)A,

Q′ = vm
qm −Q
qm − q

N

N + vh
− µ(Q, I0)Q,

H ′ = h(Q, I0)− µ(Q, I0)H,

N ′ = −vm
qm −Q
qm − q

N

N + vh
A

(2.3)

Note that AH gives the chlorophyll a concentration just as QA gives the intracellular

nitrogen concentration. As before, define by T the total nitrogen in the system. Since

the system is closed under nitrogen, only one of N or Q is needed, since T is a constant

and for all t:

(Q · A) (t) +N(t) = T. (2.4)

The exact expressions for the functions µ, f , and h are systematically derived

from both theoretical biology and existing, empirically-driven phytoplankton models
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in the literature. Ecological stoichiometry (Sterner and Elser, 2002) then provides

the overarching framework for linking the biology, data, and mathematics.

Assumption 1. The cell-specific growth rate, µ, is either N-limited or light-limited.

Following Liebig’s Law of the Minimum, growth can only be limited by a single

resource at any given time. If biomass production requires two resources, A and

B, then it is limited to the minimum of the two production capacities afforded by

A and B. Therefore if µN and µL are the nitrogen- and light-limited growth rates,

respectively, then

µ = min {µN , µL} . (2.5)

When nitrogen is the only limiting nutrient for growth, µ is simply the well-established

and empirically-supported Droop (Cell Quota) model (Leadbeater, 2006),

µN = µm

(
1− q

Q

)
. (2.6)

Assumption 2. The rate of C fixation is determined by the rate of photosynthesis,

expressed as g C g-1 Chl a, and the Chl a content of biomass, H(t).

Commonly used phytoplankton models of photosynthesis can be mechanistically

derived from first order principles. The following formulation from Sakshaug, An-

dresen and Kiefer (1989) as reviewed in Cullen (1990), relates the quantum yield

(mol C mol-1 photons) to the mean photon absorption and turnover rates of the

photosynthetic unit (PSU). While a PSU is processing an absorbed photon, any

subsequently absorbed photons by the PSU are not used. This excess absorption

decreases the effective quantum yield. If σ (m2 mol-1 PSU) is the mean absorption

cross-section of the PSU and I0 is the irradiance (mol photons m-2 s-1) then σI0 is

the mean PSU specific absorption rate. Suppose τ (s) is the turnover time for the

PSU (i.e. the time required to process an absorbed photon). Then on average, στI0
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photons are absorbed by a PSU while processing a photon. Using a Poisson distri-

bution with mean στI0, the probability of absorbing at least one photon during this

period is 1 − e−στI0 . Since only the first photon is used, the proportion of photons

absorbed during a period of length τ that contribute to the net photosynthesis rate

is (1− e−στI0)/(στI0).

The theoretical quantum yield Φ (mol C mol-1 photons) is a measure of how much

C is fixed relative to absorbed photons if every photon is utilized. Multiplying by the

mean proportion of absorbed photons that are used for C fixation gives the effective

quantum yield,

Φ
1− e−στI0
στI0

. (2.7)

Phytoplankton models of photosynthesis are often formulated in terms of primary

production (e.g. g C m-2 d-1 or g C m−3 d-1) and chlorophyll (e.g. g Chl m−2

and g Chl m−3), as these data are measured in the field (Behrenfeld and Falkowski,

1997b,a; Friedrichs et al., 2009). The result is a function which gives the rate of

C fixation relative to chlorophyll (g C g-1 Chl d-1). If the absorption coefficient

of chlorophyll is a (m2 g-1 Chl) then the Chl-specific rate of photon absorption is

aI0 (mol photons g-1 Chl d-1). Together with the quantum yield (Eq. (2.7)), the

chlorophyll-specific photosynthesis rate pH can be modeled (Cullen, 1990; Sakshaug,

Andresen and Kiefer, 1989) as

pH = aI0Φ
1− e−στI0
στI0

=
aΦ

στ

(
1− e−στI0

)
. (2.8)

As a function of I0, Eq. (2.8) is monotonically increasing towards the upper bound

aΦ
στ

. Define pm = aΦ
στ

. Then Eq. (2.8) can be expressed as

pH = pm
(
1− e−στI0

)
.

For I0 < 1/στ, pH is approximated by the linear function pH(I0) ≈ pmστI0. This

approximation is evident by expanding the Taylor series of pH about 0. Define Ik :=
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pm/aΦ = 1/στ. Then Eq. (2.8) can be re-expressed again in the equivalent form(s),

pH = pm
(
1− e−aΦI0/pm

)
= pm

(
1− e−I0/Ik

)
. (2.9)

Field data and models of photosynthesis are often parameterized in terms of pm

and Ik (Cullen, 1990; MacIntyre et al., 2002; Geider, MacIntyre and Kana, 1998;

Behrenfeld et al., 2004). The rate pm (d-1) is commonly called the light-saturated

rate of photosynthesis, and the value Ik (mol photons m-2 d-1) the “light saturation

parameter” (Platt, Gallegos and Harrison, 1980). For I0 < Ik, the linear approxima-

tion above can be written as

pH(I) ≈ aΦI
∣∣
I<Ik

, Ik =
pm
aΦ

, (2.10)

which is the numerator in the exponent in Eq. (2.9). For I = Ik, Eq. (2.10) gives

pH(Ik) ≈ pm, at which point pH is considered light saturated. As such, aΦI0 is

referred to as the light-limited rate and aΦ the light-limited initial slope (MacIntyre

et al., 2002; Geider, MacIntyre and Kana, 1996).

With the new formulation in Eq. (2.9), the parameter pm—while mechanistically

derived in Eq. (2.8)—represents the adapted maximum photosynthesis rate. Based on

observations under nutrient-replete growth conditions, pm is generally considered to be

limited downstream of PSII by the dark reactions (Sukenik, Bennett and Falkowski,

1987; MacIntyre et al., 2002; Behrenfeld et al., 2004) and largely independent of

growth irradiance. When different cultures from the same species were photoaccli-

mated to varying levels of irradiance, the corresponding values of pmH (h-1) were not

correlated to growth irradiance (MacIntyre et al., 2002). Since H depends largely on

growth irradiance (i.e. light history), pm (g C g-1 Chl a) may correlate more strongly

with growth irradiance.

In Geider, MacIntyre and Kana (1998) pm is a linear function of Q with pm = 0

when Q = q whereas it is nonlinear in the photoinhibition model of Marshall, Geider

18



and Flynn (2000). Here pm is modeled as an increasing nonlinear function of algal

N:C with properties given in Eq. (2.11). Since the total biomass X = A+L, the N:C

is given by the proportion of intracellular N concentration and X.

pm (Q = q) > 0, pm (0) = 0, p′m

(
Q̃
)
≥ 0,

p′′m

(
Q̃ < q

)
> 0, p′′m

(
Q̃ > q

)
< 0, Q̃ =

AQ

A+ L
.

(2.11)

The reason for the formulation in Eq. (2.11) is that Q(t) ≥ q for all t > 0 and

lim
t→∞

Q(t) = q. As the data reveal, Q reaches q in finite time. If pm were a function of Q

then it would remain constant (pm(q)) for all forward time. However, Q = q indicates

N-depletion during which pm should decrease with respect to time. The reason is that

during N-stress, down-regulation of the Calvin Cycle coupled with accumulation of

inactive/damaged PSII has an inhibitory effect on pm. In addition, the data suggest

that after a certain time nearly all increases in biomass can be attributed to the

increases in neutral lipids. If pm(q) = 0 then the model would not agree with the

observed behavior of lipid production during N-stress. Instead, pm should rapidly

decrease with respect to decreases in Q̃ when Q = q. These properties are adequately

described by Eq. (2.12):

pm(Q̃) = p0
Q̃2

Q̃2 + q2
(2.12)

Using I0 for I is problematic because it neglects light attenuation and self shading

which may limit photosynthesis. It is also important to consider the photobioreac-

tor because light dynamics are fundamentally linked to its design. Technically, the

irradiance is a spatial function I : <3 → [0, I0] such that the irradiance available

for photosynthesis at one position in the reactor may be different than that of an-

other position. In this particular application, the photobioreactor design gives rise

to a simple formulation for I. With constant irradiance through a single side of the
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cuboid-shaped and flat-panel reactor, only one spatial dimension is considered. Fur-

ther, it is assumed that algal density is spatially homogeneous due to mixing. At a

depth x from the light-facing side of the reactor, the Lambert-Beer law is used to

estimate I(x) = I0e
−aHAx. If the total depth of the reactor is z then the average

irradiance is

I =
1

z

z∫
0

I(x)dx

=
1

z

z∫
0

I0e
−aHAxdx

=
I0

aHAz

(
1− e−aHAz

)
.

(2.13)

This simplification does not consider light attenuation due to non-algal chemical

species and assumes that light attenuation from algae is due only to chlorophyll a.

Since the parameter a is decoupled from pm, it can account for the attenuation due

to non-chlorophyll a biomass with a coordinated decrease of the quantum yield Φ.

With I, the full expression for the photosynthesis rate can be written. Since pH

is the rate of carbon fixation normalized to Chl a (g C g-1 Chl a d-1), multiplication

by H gives the rate specific to A and the full photosynthesis model is given by,

p = Hpm
(
1− e−aΦI/pm

)
,

pm = p0
Q̃2

Q̃2 + q2
, Q̃ =

AQ

A+ L

I =
I0

aHAz

(
1− e−aHAz

)
.

(2.14)

Armed with Eq. (2.14), the remaining model equations can be found.

Assumption 3. The amount of carbon that is required per unit of non-lipid biomass

production, c, is constant.

From this assumption the expression for µL can be derived. c serves as a conversion

factor between carbon and A, similar to Q and intracellular nitrogen— cA is the
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intracellular C concentration (excluding neutral lipids) while QA is the intracellular

N concentration. Multiplying the rate of C fixation by c−1 is the maximum possible

growth rate specific to A, or

µL = p (A,L,Q,H) /c.

Assumption 4. When C intake exceeds that needed for cellular growth and mainte-

nance, neutral lipids are synthesized at a rate proportional to that of excess C intake.

The decoupling of cellular growth and photosynthesis results in an increased car-

bon flux that cannot be used for cell growth. There are many mechanisms by which

algae deal with the excess photosynthetic activity including excretion of photosyn-

thetically derived dissolved organic compounds and increased synthesis of carotenoids

(Berman-Frank and Dubinsky, 1999).

The utilization rate of C for cell growth is cµ because c is the carbon required per

unit of A and µ is the A-specific growth rate. p is the rate of C fixation normalized

to A. Excess carbon assimilation is therefore quantified as the difference of these

two rates: p − cmin {µN , c−1p}. When growth is not N-limited, µ = c−1p and the

difference is zero—neutral lipids are only synthesized when µm

(
1− q

Q

)
< c−1p. It is

assumed that all excess carbon is used for de novo neutral lipid synthesis and that it

occurs on the same time scale as µ and p. The full equation for L′(t) simply follows

as

L′ = (p− cµ)A

= (p−min {cµN , p})A

= max {p− cµN , 0}A.

(2.15)

Assumption 5. Nitrogen uptake and assimilation is a function of the extracellular

nitrogen concentration and is regulated by Q.
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The standard MichaelisMenten kinetics (Monod) model for nitrogen uptake is

used. However, the uptake rate function is multiplied by the function (qm−Q)/(qm−q)

which is linear and decreasing in Q (Geider, MacIntyre and Kana, 1998). Doing so

adds regulation of Q and imposes the mathematical property Q < qm. Although

luxury uptake of limiting nutrients is a common strategy amongst green algae, there

are significant metabolic costs associated with nitrate uptake and assimilation.

Assumption 6. A variable chlorophyll a content of biomass is used to incorporate

photoacclimation. A portion of nitrogen uptake and assimilation is partitioned to

chlorophyll a synthesis in order to regulate photosynthesis with respect to the internal

cellular state and the environment.

Photoacclimation is a fundamental process of algal photosynthesis and growth.

The chlorophyll a content of green microalgae varies within and across species (Behren-

feld et al., 2004; MacIntyre et al., 2002). The Chl a:dw ratio in batch culture has

been observed to increase from less than 0.01 to over 0.03 during the course of several

days (Li et al., 2008; Geider, MacIntyre and Kana, 1998) which suggests chlorophyll a

may play an important role in the transient dynamics modeled here.

Since H = Chl a : A, the chlorophyll a content of A, the H ′ equation follows from

the same method used to derive Q′. Note that HA is the phytoplankton chlorophyll a

concentration: (HA)′ is easily derived then used to find H ′. Namely, (HA)′ is the

difference of the synthesis and loss rates of chlorophyll a.

The synthesis rate of HA is directly tied to nitrogen uptake and assimilation in

that a proportion of nitrogen intake is partitioned to chlorophyll a synthesis (Geider,

MacIntyre and Kana, 1998). This proportion is given by the function ρ, which is

dependent on the effectiveness of photosynthesis relative to the energy (C) demands

of cellular growth and maintenance. ρ also directly regulates H in the model and thus
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its image [0, ρm] (g Chl a g-1 N), where the parameter constant ρm is the maximum

observed Chl a:N ratio for a specific species of green algae. Although such data

were not measured for Pseudochlorococcum, the model values were derived from those

presented in the literature for other species.

It is assumed that net chlorophyll a degradation can be omitted due to the short

duration of the experiments and model (10-12 days). In Geider, MacIntyre and Kana

(1998), chlorophyll a degradation was set to 0 for three of the four species data used

to validate the model. Further, in Li et al. (2008) the chlorophyll content was mea-

sured for an oleaginous species, and such data did not suggest a significant loss of

chlorophyll due to degradation. This contrasts the authors’ conclusions that chloro-

phyll a degradation not only was significant but also provided an intracellular nitrogen

pool during N-depletion. However, the observed decreases in the algal chlorophyll a

content instead could be explained by the observed increases in biomass. The data

presented was for the equivalent of H, the relative Chl a proportion of biomass. Since

H = Chl a : A, any net increases in A relative to net changes in Chl a subsequently

decrease H. The data instead suggested that chlorophyll a synthesis is arrested dur-

ing N-depletion, and that continued biomass productivity (due to non-NL or NL

production) dilutes the chlorophyll a content (Li et al., 2008).

The derivative for AH, the Chl a concentration, is simply the rate of N uptake

multiplied by the ratio controlling how much Chl a is produced per unit N. The

equation for H ′ then follows from the product rule, as shown in Eq. (2.16). v is the

N-uptake rate function (g N g-1 dw d-1) and ρ is the proportion of N-assimilation

directed to chlorophyll a synthesis.

(AH)′ = ρvA,

⇒ H ′ = ρv − µH.
(2.16)

It remains to define ρ, which serves as the regulation mechanism for H. The
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model assumes that regulation of chlorophyll a synthesis, and thus photoacclimation,

is inextricably linked to the interplay of carbon fixation and cell growth. (The model

does not consider non-chlorophyll a pigments such as those used for photoprotection.)

Under low irradiance and N-replete conditions, cells upregulate pigment synthesis in

order to meet the demands of growth. Under high irradiance phytoplankton down-

regulate chlorophyll a synthesis in order to protect from photoinhibition and reduce

excess C-fixation relative to growth. Similarly, in N-limited conditions the downreg-

ulation of chlorophyll a synthesis reflects unavailability of N.

This regulatory feedback is modeled using a function which is based on the aptly-

named “regulatory ratio” presented in Geider, MacIntyre and Kana (1997). This

ratio, which drives photoacclimation in the model, quantifies the relative degree of

light limitation or light saturation of photosynthesis. It is the ratio of the actual rate

to the maximum potential rate of photosynthesis, or

ρ = ρm
p

aΦIH
. (2.17)

The parameter ρm is the maximum Chl a:N observed for a particular species and

the equation aΦIH is the light-dependent photosynthesis rate, as described in the

derivation of p(I) Eq. (2.14). For non-saturating irradiance, the chlorophyll-specific

photosynthesis rate is approximately a linear function of I with slope aΦ (Eq. (2.10)).

Hence aΦIH also represents the light harvesting capacity of the algae. For saturating

I, p(I) is bounded above by the maximum rate pm, which is necessarily less than

aΦIH (2.14). In this case, light absorption potentially exceeds what an alga can

handle downstream of the light reactions. Since pm is N-dependent but not light-

dependent, increasing the light harvesting capacity aΦIH would not prove strategic

for increasing p. To increase aΦIH without a relatively equal increase in pm would

worsen the state of excess energy influx.

24



The parameterization of ρ used for the neutral lipid model (2.3) differs slightly

from Eq. (2.17). As originally defined (Geider, MacIntyre and Kana, 1997), the

regulatory ratio is the utilization rate of energy relative to the intake rate of energy.

However, here utilization is not carbon fixation but instead cell growth, i.e. cµ.

Energy refers to organic carbon (or more abstractly light energy) from photosynthesis.

ρ now quantifies the degree of the decoupling of growth and photosynthesis, instead

of the decoupling of light harvesting capacity and photosynthesis:

ρ = ρm
cµ

p
, (2.18)

where ρ declines when photosynthesis p is uncoupled from cell growth µ. Since µ =

min {µN , p/c}, p ≥ cµ and ρ ≤ ρm.

Both approaches in Eq. (2.17) and Eq. (2.18) are similar because of the relation

between µ, p (more specifically pm), and Q. Decreases in Q cause parallel changes in

µ and pm for both models, and when p > cµ, photosynthesis is in excess of growth

demands. This would also be indicative of excess light harvesting relative to uti-

lization. Another difference in the model presented here is that pm is normalized to

chlorophyll a rather than algal carbon Geider, MacIntyre and Kana (1997, 1998).

In Geider, MacIntyre and Kana (1997) and Geider, MacIntyre and Kana (1998), in-

creasing H decreases ρ (2.17). Here, p is the product of H with the chlorophyll a

specific photosynthesis rate. Thus if the same ρ were used for the neutral lipids

model (2.20), changes in H would be negated due to it appearing on the numerator

and denominator (2.17).

With the new ρ in Eq. (2.18), H ′ can be fully expressed:

H ′ = ρv − µH = ρm
cµ

p
v − µH

= µ

= min

{
cµN
p
, 1

}(
ρmv − c−1pH

) (2.19)
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2.4 Model

Parameter Description Units

A(t) non-NL biomass g dw L-1

L(t) NL concentration g NL L-1

N(t) extracellular N concentration g N L-1

Q(t) A-specific N-quota g N g-1 dw

Q̃(t) N-quota g N g-1 dw

H(t) chlorophyll a quota g Chl a g-1 dw

I0 irradiance µmol photons m−2 d-1

z light path m

a optical cross section of chl a m2 g-1 Chl a

Φ quantum efficiency g C mol-1 photons

q minimum/subsistence N quota g N g−1 dw

qm maximum N quota g N g−1 dw

c C subsistence quota g C g−1 dw

vm maximum uptake rate of nitrogen g N g dw−1 d−1

vh half-saturation coefficient g N m−3

ρm maximum chl:N g Chl a g-1 N

µm maximum N-limited growth rate d−1

p0 maximum photosynthesis rate g C g-1 Chl a d-1

Table 2.1: Parameter and variable descriptions.

Combining Model (2.3) with Eqs. (2.14), (2.19), (2.15), (2.12), and (2.5) yields
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the complete model,

A′ = min {µN , µL}A,

L′ = max {(µL − µN) cA, 0} ,

H ′ =

(
ρmv

µL
−H

)
min {µN , µL} ,

Q′ = vm
qm −Q
qm − q

N

N + vh
−min {µN , µL}Q,

(2.20)

where

µN(Q) = µm

(
1− q

Q

)
, µL(A,L,Q,H) = p(A,H, Q̃)/c,

p(A,H, Q̃) = Hpm(Q̃)

[
1− exp

(
−aΦI(A,H)

pm(Q̃)

)]
,

I(A,H) =
I0

aHAz
[1− exp (−aHAz)] ,

pm(Q̃) = p0
Q̃2

Q̃2 + q2
, Q̃ =

AQ

A+ L
,

v(Q,A) = vm
qm −Q
qm − q

N

N + vh
, N = T −QA.

(2.21)

2.4.1 Properties

System (2.20) was formulated for short-term batch cultures. However, mathemat-

ical properties are presented then used to discuss and justify the model’s strengths

and shortcomings. These results also justify otherwise speculative reasoning based

on the data and simulations. Define T = Q(t)A(t) + N(t). Note that T ′ = 0 and T

is constant, as expected for the closed system. The set

Ω =

{
(A,L,Q,H) : 0 < A < T/q, 0 < L, q < Q < qM , 0 < H < ρmQ

}
(2.22)

consists of biologically reasonable solutions and is positively invariant. First, however,

it needs to be checked that System (2.20) is well defined on the boundary ∂Ω. In
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particular, that I (A,H) and H ′(t) are well defined as H → 0 and as A→ 0.

Lemma 1. System (2.20) is well defined on both Ω and Ω as H → 0 or A→ 0.

Proof. It is readily apparent that if p is well defined then so are A′(t), L′(t), Q′(t),

and N ′(t). To confirm that p is well defined on Ω, it suffices to show that I(A,H) is

well defined as A ·H → 0. It follows from l’Hôpital’s rule that

lim
A·H→0

I(A,H) = lim
S→0

I0

azS

(
1− e−azS

)
= I0.

Thus p = Hpm
(
1− e−aΦI/pm

)
→ 0 as H → 0 or as A → 0, with the latter because

pm → 0 as A→ 0. So p is well defined on Ω.

To show that H ′ is well defined as p→ 0, rewrite

dH

dt
=

µ

µL
ρmv(Q)− µH = min

{
µN
µL

, 1

}
(ρv − µLH) .

Then the result follows from lim
p→0

min

{
µN
µL

, 1

}
= 1.

Next, the minimum function that appears in the growth rate function µ may raise

questions whether or not the system is Lipschitz and hence guaranteed to have unique

solutions via an application of the Picard-Lindelof theorem. The following theorem,

while simple, is useful for such assurance.

Theorem 1. Let F1 : A → <, F2 : A → < where A ⊆ <n and F1 ∈ C1, F2 ∈ C1 and

H(x) = min {F1(x), F2(x)}. Then H is Lipschitz continuous.

Proof. Since F1 ∈ C1, F2 ∈ C1, there are L1 > 0, L2 > 0 such that for all x1, x2 ∈ A,

‖F1(x2) − F1(x1)‖ ≤ L1‖x2 − x1‖ and ‖F2(x2) − F2(x1)‖ ≤ L2‖x2 − x1‖. There are

four cases that need consideration:

I. H(x2)−H(x1) = F1(x2)− F1(x1). Then ‖H(x2)−H(x1)‖ ≤ L1‖x2 − x1‖.
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II. H(x2)−H(x1) = F2(x2)−F2(x1). Similarly, ‖H(x2)−H(x1)‖ ≤ L2‖x2− x1‖.

III. H(x2) − H(x1) = F1(x2) − F2(x1). Let x(t) : [0, 1] → [x1, x2] be defined

as x(t) = x1 + t(x2 − x1). Since F1, F2 are continuous and F2(x(0)) < F1(x(0)) but

F2(x(1)) > F1(x(1)), there is a t∗ ∈ (0, 1) such that F2(x∗) = F1(x∗) where x∗ = x(t∗).

Then

‖F1(x2)− F2(x1)‖ = ‖F1(x2)− F1(x∗) + F2(x∗)− F2(x1)‖

≤ ‖F1(x2)− F1(x∗)‖+ ‖F2(x∗)− F2(x1)‖

≤ L1‖x2 − x∗‖+ L2‖x∗ − x1‖

= (1− t)L1‖x2 − x1‖+ tL2‖x2 − x1‖

≤ L1‖x2 − x1‖+ L2‖x2 − x1‖.

IV. H(x2)−H(x1) = F2(x2)− F1(x1). Similarly, we have that F2(x2)− F1(x1) ≤

(L1 + L2)‖x2 − x1‖.

Thus H is Lipschitz continuous with Lipschitz constant L1 + L2.

Theorem 2. System (2.20) has unique solutions with respect to initial conditions in

Ω.

Proof. Applying Theorem 1 to each component’s derivative in System (2.20), we see

that each is Lipschitz continuous. The Picard-Lindelof theorem for existence and

uniqueness can be applied for the result.

Theorem 3. Ω (2.22) is positively invariant for the semi-flow generated by sys-

tem (2.20).

Proof. Let x0 ∈ Ω and define x(t) = [A(t), L(t), Q(t), H(t)]> as the solution x(t) =

φ(t,x0) to System (2.20). Suppose that Ω is not invariant; that is, there exists t1 > 0

such that

{x[t < t1]} ⊆ Ω, x(t1) /∈ Ω.
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Note that since Ω is open,

Ω = Ω◦, x(t1) ∈ ∂Ω,

which means x(t1) must be on a hyperplane generated by fixing a coordinate to one

of its boundary values; for example, {H = 0} ∩ Ω. Therefore it suffices to consider

the following seven cases. Unless specified otherwise, assume that 0 ≤ t ≤ t1.

Case I. H(t1) = 0. Let µ̂ = max{µ (x(t)) : t ∈ [0, t1]} < ∞, which exists since

x(t) is continuous on [0, t1]. Also note that
µ

µL
ρmv ≥ 0 on Ω. Thus for t ∈ [0, t1],

H ′ =
µ

µL
ρmv − µH

= min

{
µN
µL

, 1

}
(ρmv − µLH)

≥ −µ̄H,

and from Gronwall’s inequality H(t) ≥ H(0)e−µ̄t > 0, contradicting H(t1) = 0. So

H(t) > 0∀t ≥ 0, and the semi-flow through x0 ∈ Ω cannot leave Ω through the

hyperplane {H = 0} ∩ Ω.

Case II. A(t1) = 0. But A′ > 0, contradicting A(0) > 0.

Case III. L(t1) = 0. Similarly, L′ > 0 arriving at a contradiction.

Case IV. Q(t1) = q. By property of the minimum function, µ ≤ µN = µm(1−q/Q).

Then

Q′ ≥ vm
qm −Q
qm − q

N

N + vh
− µm(1− q

Q
)Q

> −µm(Q− q).

Gronwall’s inequality gives Q(t) ≥ q + (Q(0)− q)e−µmt > q, contradicting Q(t1) = q.

Case V. Q(t1) = qM . Then continuity of Q implies Q′(t1) ≥ 0. But,

Q′(t1) = −min {µL, µN}Q < 0,
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contradicting Q′(t1) ≥ 0. Thus any semi-flow through Ω cannot leave Ω through the

hyperplane Q = qm. Note that the strict inequalities µL(t1) > 0 and µN(t1) > 0

are possible here since the previous cases have shown that Q(t) > q, A(t) > 0, and

H(t) > 0 for all t.

Case VI. A(t1) = T/q. It suffices to show that A(t1)Q(t1) < T since q < Q implies

T/Q(t1) < T/q. Indeed,

(QA)′ = vm
qm −Q
qm − q

N

N + vh
A,

≤ vm
vh
NA =

vm
vh
A(T −QA),

≤ vm
vh

T

q
(T −QA) := k(T −QA).

Then it follows fromQ(0)A(0) < T and Gronwall’s inequality that T > T+(Q(0)A(0)−

T )e−kt ≥ Q(t)A(t), a contradiction.

Case VII. H(t1) = ρmQ(t1). Define the function

w(t) = A(t)H(t)− ρmA(t)Q(t).

Recall that, by assumption, H(t)−ρmQ(t) < 0 and A(t) > 0 for t < t1 with x(t) ∈ Ω.

Then w(t1) = 0 implies w′(t1) ≥ 0. By definition µL ≤ µ, and from Case II A(t1) > 0.

It follows that

dw

dt
=

µ

µL
ρmvA− ρmvA < 0,

contradicting w′(t1) ≥ 0 and H(t1) = ρmQ(t1).

It has been shown that for any x0 ∈ Ω, the semi-flow Φ(t, x0) through x0 is cannot

leave Ω.

Remark 1. Observe that I(A,H) = I0
aHAz

[1− exp (−aHAz)] is a strictly decreasing,

non-negative function and that on Ω, H < ρmQ implies H < ρmqm. Thus

inf
Ω
{I(A,H)} ≥ I(T/q, ρmqm) > 0.
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Further, pm(Q̃) = p0
Q̃2

Q̃2+q2
> 0 and so

p(A,H, Q̃) = Hpm(Q̃)

[
1− exp

(
−aΦI(A,H)

pm(Q̃)

)]
> 0.

Though the extracellular nitrogen N(t) is decoupled from System (2.20), the fol-

lowing results are useful when proving later results.

Remark 2. The bounds 0 < N < T for the uncoupled variable N now follow from

A > 0, Q > q > 0, and QA < T :

QA < T =⇒ 0 < T −QA = N,

0 < QA =⇒ T > T −QA = N.

Lemma 2. For solutions to System (3.1) with initial conditions in Ω,

lim
t→∞

N(t) = 0,

where the limit is approached monotonically.

Proof. Recall from Theorem 3 and Remark 2 that A(t) > 0, Q(t) < qm, and 0 < N(t).

Thus

N ′ = −
[
vm
qm −Q
qm − q

A

N + vh

]
N < 0.

Corollary 1. It follows from Lemma 2 and N = T −QA that

lim
t→∞

Q(t)A(t) = T.

Corollary 1 is unsurprising given the model’s formulation and conservation of

mass. It is similarly easy to conjecture the asymptotic behavior of A and Q: once

N is depleted from the growth medium, non-lipid biomass production will continue
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until Q = q, at which point the growth rate given by the cell quota model is zero.

At this point, A will reach T/q, the theoretical maximum non-lipid biomass density

supported by the available N in the bioreactor. Although it is not proven here that

A→ T/q, the following Lemma, combined with the facts that N → 0 and Q′ is only

positive when N > 0, suggest Q→ q. If so A→ T/q would immediately follow.

Lemma 3. Suppose there is a t0 ≥ 0 such that Q′(t0) > 0. Then there exists t1 > t0

such that Q′(t) > 0 on [t0, t1) and Q′(t1) = 0.

Proof. Let t0 > 0 with Q′(t0) > 0. Suppose instead that such a t1 does not exist; in

other words, Q′(t) > 0 for all t ≥ t0 and so Q is monotonically increasing on [t0,∞).

Since sup{Q} = qm, it must follow that lim
t→∞

Q(t) = qm.

Q′′ is bounded, and so it follows from Barbalat’s Lemma that lim
t→∞

Q′(t) = 0. Then

lim
t→∞

Q′(t) = lim
t→∞

vm
qm −Q
qm − q

N

N + vh
−min {µN , µL}Q

= 0,

⇐⇒ lim
t→∞

min {µN , µL} = 0 (since lim
t→∞

qm −Q
qm − q

N

N + vh
= 0)

⇐⇒ lim
t→∞

µL = 0 (since µN(qm) > 0)

⇐⇒ lim
t→∞

I(A,H) = 0 or lim
t→∞

pm(Q̃) = 0.

However, as shown in Remark 1, I(A,H) is bounded below by a strictly positive

value. Therefore,

lim
t→∞

µL = 02

⇐⇒ lim
t→∞

pm(Q̃) = 0

⇐⇒ lim
t→∞

Q̃ = lim
t→∞

QA

QA+ L

= 0,

⇐⇒ lim
t→∞

A = 0 or lim
t→∞

L =∞.
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But from Corollary 1, lim
t→∞

QA = T means lim
t→∞

A 6= 0. This leaves lim
t→∞

L =∞ which

implies L′(t) > 0 for all t > tn. But

L′ = max {(µL − µN) cA, 0}

> 0

⇐⇒ µL > µN ,

contradicting µL → 0. Hence Q can only be increasing on finite intervals of t. Conti-

nuity therefore implies that there must exist a t1 > t0 such that Q′(t1) = 0.

2.5 Parameter values

Parameter Value

kTa 600 µmol photon m−2 d−1

z 0.03 m

a 4.82 m2 g−1 chl

c 0.610 g C g−1 dw

q 0.0277 g N g−1 dw

qm 0.0935 g N g−1 dw

vm 5.96× 10−1 g N g−1 dw d−1

vh 1.03× 10−5 g N m−3

ρ 0.283 g chl g−1 N

µm 3.26 d−1

p0 90.1 g C g−1 chl d−1

Φ 9.84× 10−3 mol C mol−1 photon

Table 2.2: Parameter values.

All parameter values are consistent with those established in the literature. Best-

fit parameters were found by minimizing the mean square error. Table 2.2 lists
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parameter values and initial conditions.

Observed values for q vary considerably across and within species of microalgae.

For example, single studies have found q to range from 0.02 to 0.07 g N g-1 C (Ho et al.,

2003). It is important to consider the units for q when comparing and using measured

values. Originally the cell quota was expressed as intracellular nutrient normalized

to cell count (e.g. pg nutrient 10-6 cells) but it is often expressed as the N:C ratio of

biomass with units of g N g-1 C or mol N mol-1 C (Droop, 1973, 2003; Ho et al., 2003).

Using the cell quota as a stoichiometric ratio is useful in the context of Ecological

Stoichiometry or measuring biomass in terms of carbon dry weight in the field. Since

Pseudochlorococcum sp. biomass was measured by its dry weight, Q and Q̃ have units

of g N g-1 dw. These units are technically equal to the common formulation g N g-1 C

but data measured with respect to dry weight are not equal to data measured with

respect to carbon. Further, as illustrated by the data (Fig. 2.1), Pseudochlorococcum

sp. exhibit extreme plasticity, with NL content of biomass that ranges from below

measurable to over 50% on the order of days. Since NLs mostly consist of carbon,

it is assumed that cellular mass varies with respect to NL content. As such, the C-

content of biomass dry weight should also vary with respect to NL content. The data

support this assumption: when N was replete, biomass-specific growth was not due

to NL synthesis. When N was depleted, NL synthesis constituted nearly all biomass-

specific growth. Coupled with arrested cellular reproduction, cellular mass should

have simultaneously increased primarily due to carbon assimilation and storage.

For purposes of the model, it is assumed that there is a constant conversion factor

ĉ (g C g-1 dw) for dry weight of non-NL biomass and dry weight in carbon. That is,

ĉA(t) is the intracellular carbon not associated with neutral lipids. The parameter

c is the sum of ĉ and the additional metabolic costs in carbon per unit of non-NL

growth. Therefore ĉ/c represents the efficiency of cell growth with respect to carbon.

35



The photosynthesis model as formulated in Eq. (2.14) has three parameters (ex-

cluding q): p0, a, and Φ. Measured values of p0 vary depending on units and measure-

ment methods. Here p0 is parameterized as the net carbon fixation rate normalized

to chlorophyll a. Maximum photosynthesis rates may also be measured in terms of

net oxygen evolution and/or normalized to algal C or cells. An example range of

reported p0 values is 0.5 to 29.3 g C g-1 Chl a h-1 (Behrenfeld et al., 2004; MacIntyre

et al., 2002). Measured values of the absorption coefficient a (m2 g-1 Chl) similarly

vary across a wide range of values. When absorption is normalized to chlorophyll a,

as done in this model, the absorption due to other pigments is only implicitly con-

sidered. If the relative proportion of chlorophyll a to other pigments changes then a

(m2 g-1 Chl a) may also change. Measured values of a are reported as low as under

1 m2 g-1 Chl a and as high as 40 m2 g-1 Chl a (Falkowski, Dubinsky and Wyman,

1985; Behrenfeld et al., 2004).

The theoretical quantum yield for fully efficient photosynthesis can be mechanisti-

cally derived. Each molecule of O2 evolved requires 8 photons, so Φ has the theoretical

maximum value of 0.125 mol O2 mol-1 photons. Of course, the realized efficiency is

typically lower. For example, light absorption by photoprotective pigments and non-

photochemical quenching direct photons from oxygen evolution. Actual values of Φ

have been measured between 0.077 mol O2 mol-1 photons and 0.12 mol O2 mol-1 pho-

tons (MacIntyre et al., 2002). When Φ is parameterized as the quantum efficiency

of net carbon fixation (mol C mol-1 photons), it decreases further from its theoret-

ical maximum as there are multiple electron sinks downstream of PSII. Observed

values have been reported to vary by as much as two orders of magnitude, from

0.001 mol C mol-1 photons to 0.1 mol C mol-1 photons (Sakshaug et al., 1997; Mac-

Intyre et al., 2002; Behrenfeld et al., 2004). Converted to units consistent with the

model gives the range 1.2×10−8 g C µmol-1 photons to 1.2×10−6 g C µmol-1 photons.
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N Uptake and θ Synthesis

Nitrogen uptake and chlorophyll-related parameters are readily available in the lit-

erature (Droop, 2003; Geider, MacIntyre and Kana, 1998; Li et al., 2008; Sakshaug,

Andresen and Kiefer, 1989). Since N-uptake rates are often normalized to algal car-

bon (for example, g N g-1 C d-1), values for vm from the literature were converted

to g N g-1 dw d-1 using ĉ. Chlorophyll a content was not measured for Pseudochlorococ-

cum; however, by finding best-fit parameters, variations in H(t) from observed values

for Pseudochlorococcum can be compensated for with parameters a and Φ. Initial

values for H(t) were taken from the range 0.005 g dw g-1 Chl a to 0.03 g dw g-1 Chl a

(Li et al., 2008; Geider, MacIntyre and Kana, 1998). Initial guesses for ρ chosen from

the range 0.2 g Chl a g-1 N to 0.4 g Chl a g-1 N, consistent those reviewed in Geider,

MacIntyre and Kana (1998).

2.6 Results

Optimized parameters were found by minimizing the residual sum of squares for

extracellular nitrogen, biomass dry weight, and neutral lipid content. The model was

unable to accurately fit data from the 100% culture while also fitting data from the N-

limited 0% and 25% cultures. Therefore the residual sum of squares was subsequently

minimized with respect to data for the N-limited cultures only, and those results

are presented here. Parameter values and MSE values are presented in Table 2.2.

Simulation results for available data are presented in Fig. 2.4), while results for Q

and H are presented in Fig. 2.5).

The model greatly agrees with the 12-day observations for 0% and 25%. As ex-

pected, the model overestimates biomass for the 100% cultures due to the assumption

that growth is only N- or light-limited. Since the average maximum non-NL biomass
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Figure 2.4: Model results. (a) Biomass dryweight. (b) NL content of biomass. (c)
NL concentration. Note the overestimation for the %25 cultures. (d) Extracellular
nitrogen concentration. The model was not fitted to the 100% culture data—it is
displayed here for illustrative purposes.

in the 100% cultures was only 1.7 times greater than that in the 25% cultures, but

the 100% cultures had four times as much nitrate, it is likely that growth in the 100%

cultures was limited by another nutrient.

An inherent property of the model is that it does not accommodate long-term

dynamics; it is formulated for batch cultures up until stationary phase. For example,

there is no mechanism for cell death or explicit consideration for respiration and

cellular upkeep. As such, biomass and neutral lipids are overestimated after stationary

38



0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

g 
N

/g
 d

w

d

 

 

25% Q
0% Q

(a) Q and Q̃

0 2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

g 
C

hl
/g

 d
w

d

 

 

100%
25%
0%

(b) Chlorophyll a content

Figure 2.5: (a) Simulation results for Q and Q̃ are shown along with calculated Q̃
from data. The dashed lines are Q. (b) Results for H. The 100% culture results are
shown to demonstrate the interrelated dynamics of N assimilation and chlorophyll a
synthesis.

phase. Theorem 3 and Remark 1 reveal the causes for this behavior.

2.7 Conclusion and Future Work

A novel model of neutral lipid synthesis in green microalgae was carefully derived

and validated against parallel experiments. Existing, empirically-driven mathemat-

ical formulations for modeling in phycology were combined with very specific and

relevant concepts in theoretical biology. Model (2.20) provides a framework in and of

itself for modeling neutral lipid production in green microalgae. This work demon-

strates how ecological stoichiometry may be used as an effective model for describing

neutral lipid production in green oleaginous algae. In particular, the N:C of al-

gal biomass quantifies the metabolic transition from “normal” carbon assimilation

and storage to the extreme upregulation of biosynthesis of neural lipids. Splitting

biomass into separate compartments for functional biomass and neutral lipids is a

useful conceptualization for stoichiometric models. Assumption 4, which posits that

lipid synthesis is an energy sink under nutrient stress, combined with the decoupling
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of carbon fixation from growth, form the basis for improved and more sophisticated

models. Klok et al. (2013), for example, further distinguishes biomass in terms of

both starch and neutral lipid content and models how nutrient availability affects the

degree to which each is used as an energy sink for excess carbon.
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Chapter 3

PRODUCER-GRAZER SYSTEMS IN AQUACULTURE

3.1 Introduction

Chapter 2 saw the cell quota applied to a very specific problem motivated by both

data and theory. While the model may not necessarily be interesting from a dynam-

ical systems perspective, its direct applications and influence on later research are

significant. This chapter adopts a more theoretical approach to modeling, one which

relies more on mathematics to explore and answer questions. The model exhibits

rich, complex dynamics which leave several open mathematical questions.

A producer-grazer model with nutrient recycling is developed based on ecology

stoichiometry and the cell quota model. It incorporates a novel feedback loop to

account for animal toxicity due to accumulation of nitrogen waste. While this model

design has many applications, it was conceived within the context of aquaculture.

Aquaculture systems are microcosms for larger ecosystems and present a number

of interesting applications for mathematical ecologists, particularly ecological stoi-

chiometry. Aquaculture is an international industry that is responsible for a large

proportion of all consumed fish and shrimp. It can also have detrimental effects on

the environment. There are ongoing efforts for sustainable implementations (Naylor,

Williams and Strong, 2001).

Increasing feed in order to try to increase yield in aquaculture systems can have

an inhibitory effect on the animals due to the accumulation of excessive waste con-

centrations. Ammonia has been found to decrease animal survival and growth at

both high (Jamu and Piedrahita, 1998; Tomasso, 1994) and even low levels (Lemarie

41



et al., 2004). As such, there has been significant attention in the literature towards

modeling the nitrogen cycle in various aquaculture systems (Burford and Lorenzen,

2004; Lorenzen, Struve and Cowan, 1997; Jamu and Piedrahita, 2002a,b).

3.2 “Toxicity” Model

The following model considers systems in which nitrogen (N) is the limiting nutri-

ent. It is based on that of Loladze, Kuang and Elser (2000) and its later extensions,

e.g. Wang, Kuang and Loladze (2008). These models developed a simple structure

for incorporating nutrient recycling in the context of ecological stoichiometry, one

which has a natural extension to simple aquaculture systems.

y(t): grazer C concentration (g C L-1)

x(t): algal (producer) C concentration (g C L-1)

Q(t): producer N:C (g N g-1 C)

N(t): free nitrogen concentration (g N L-1)

x′ = m

(
1− q

Q

)
x− f(x)y

y′ = rmin

{
1,
Q

θ

}
f(x)y − dy − h (T −Qx− θy) y

Q′ = v(T −Qx− θy)−m (Q− q)[
N ′ = −v(N)x+

(
Q− rmin {θ,Q}

)
f(x)y + dθy + h (N) θy

]
(3.1)

Rather than explicitly model the nitrogen cycle, it is assumed that the free N is

constituted of ammonia, nitrate, and other N-containing compounds (e.g. nitrite).
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Parameter Description Units

T total system nitrogen g N L-1

m producer maximum growth rate d-1

q producer minimum N:C quota g N g-1 C

θ grazer homeostatic N:C g N g-1 C

r grazing/digestion efficiency scalar

d grazer natural death rate d-1

Function Description Units

f(x) functional response g C g-1 C d-1

v(N) producer-specific N uptake rate g N g-1 C d-1

v(N) grazer toxicity death rate d-1

A A = min

{
1,
Q

θ

}
(notational convenience) scalar

Table 3.1: Model parameters and generalized functions

The free N concentration thus represents the potential for toxicity of the grazer. The

system is also closed under N, so the total N in the system is a constant value.

Since the system is closed with constant T , the free nitrogen N(t) = T−Q(t)x(t)−

θy(t) is decoupled and so N ′ is not needed. The equation for N ′, however, is useful

for emphasizing how nitrogen flows throughout the system.

3.2.1 Derivation

Ecological stoichiometry. The model’s derivation is based on ecological stoichiom-

etry and its existing applications to producer-grazer systems which consider both nu-

trient recycling and food quality (Kuang, Huisman and Elser, 2004; Loladze, Kuang

and Elser, 2000). The grazer N:C is assumed to be constant over the time scale of
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the model. The parameter θ represents this homeostatic N:C of the animals. The

producers (phytoplankton) have a variable N:C which is modeled using the cell quota

model. The minimum cell quota q is assumed to satisfy q < θ.

Closed system. The system is closed with respect to nitrogen and its total nutrient

concentration, denoted by T , is constant. Nitrogen can be in one of three pools:

producer, grazer, and free. The producer pool is given by Qx, the grazer pool by θy,

and the free pool by T −Qx− θy (using conservation of mass).

Producer growth dynamics. The model is applied to theoretical ecosystems or

aquaculture implementations in which phytoplankton are the producers. Producer

growth is nitrogen limited and modeled using the cell quota model.

Producer nutrient uptake. The algal-specific uptake rate function, v(N), is left

as a general function with the properties v(0) = 0, v′ > 0, and v′′ ≤ 0.

Functional response. The functional response f(x) is any (continuous) function

which satisfies f(0) = 0, f ′ > 0, and f ′′ ≤ 0. The ingestion rate is assumed to

be a constant proportion of f , denoted by the parameter r < 1. r represents the

feeding/ingesting efficiency of the animals.

Grazer biomass production. The grazer growth rate is proportional to the rate

of ingestion. However, it is also limited by the homeostatic N:C value of θ. Each

unit of grazer C requires θ units of N. Thus the feeding rate f(x) does not directly

translate to the growth rate in case of an imbalance between the food’s N:C and the

grazer’s homeostatic N:C. Animal growth is dependent on both the feeding rate and

the actual nutrient content of the food. (Note that regardless of the producer N:C, a

constant proportion of ingested food is always assumed to be lost/wasted due to the

imperfect efficiency r < 1.)

44



To derive the grazer growth rate, there are three cases to consider with respect to

the difference between the food N:C and grazer N:C (Q and θ, respectively). This

mechanistic derivation, originated in Loladze, Kuang and Elser (2000), is significant

because it encapsulates both food quantity and food quality. Both are essential to

processes governing not only growth dynamics but also nutrient recycling–and thus

waste accumulation. The model 3.1 proposed here extends these processes to the

toxicity potential of such waste accumulation.

In each case, a portion of ingested food is excreted as waste. Since the model only

considers N-limited growth and N-induced toxicity, the total N excreted is important

to model explicitly. The N excretion from the grazer’s feeding can be calculated as

N waste = total N of ingested food

− N actually assimilated from food,

where the exact values vary based on whether the food has excessively high N:C or

excessively low N:C, the details of which follow below.

Q = θ. In this case every unit C of food that is consumed can sustain a unit C

of animal growth (less the constant proportion lost due to r). Instantaneous growth

therefore equals rf(x)y, since f(x)y is the total instantaneous ingested C, all of which

can support animal growth.

net growth = rf(x)y,

N waste = (1− r)Qf(x)y.

(optimal quality food, Q = θ)

Q < θ. In this case each unit C of food cannot sustain a unit C of grazer growth.

The animals ingest excess C which lacks the required N for growth. This excess C

is assumed to be excreted instantaneously. Therefore the growth rate is the feeding
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rate decreased by the proportion Q/θ (and the feeding efficiency r). More precisely,

net growth = r
Q

θ
f(x)y,

N waste = (1− r)Qf(x)y.

(low quality food, Q < θ)

θ < Q. Here the food is too nutrient rich–the grazer cannot utilize all of the ingest

N for biomass production. Since it can utilize all of the C, the growth rate is the

same as the case when Q = θ. However, now there is excess N from the ingested food

which must be excreted. It is assumed that the excess N is recycled instantaneously

back into the free nutrient pool.

net growth = rf(x)y,

N waste = (Q− rθ) f(x)y.

(low quality food, Q < θ)

Combining these three cases yields the simple yet powerful numerical response for-

mulation used in the model. If Q < θ then the net instantaneous growth is rQ
θ
f(x)y.

If θ ≤ Q, then it is rf(x)y. The result immediately follows:

net instantaneous growth = rmin

{
1,
Q

θ

}
f(x)y. (3.2)

With this function, it is simple to derive the instantaneous rate of N waste by the

grazer. First, note that the functional response f(x) gives the intake rate in terms of

C. The total N of ingested food is therefore Qf(x)y since Q is the N:C of the food

x being eaten. The total N of ingested food that was actually used for growth is

similarly calculated. The net instantaneous growth function (3.2) is in terms of C.

Since grazer biomass is assumed to be fixed at θ, their product yields

N used for instantaneous growth = rmin {θ,Q} f(x)y. (3.3)

Subtracting (3.3) from the total ingested N gives the N waste,

N waste by grazer =
(
Q− rmin {θ,Q}

)
f(x)y. (3.4)
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Nutrient recycling. In addition to waste from feeding and growth, grazer death

also recycles N back into the environment. It is assumed that N from dead grazer

biomass is instantaneously released back into the free-N pool. Multiplying the grazer

death rate (which is in terms of C) by θ gives the rate of N recycled via death.

Toxicity To account for the toxic effect of ammonia and nitrate, the grazer death

rate increases with the free N concentration. The function h in Model (3.1) represents

the functional relationship between accumulated N in the environment and grazer

toxicity. The only assumption on h is that it satisfies h(0) = 0, h′ > 0, and h′′ ≤ 0.

3.3 Model Properties

Remark 3. Applying Theorem 1 from Chapter 2, we see that System (3.1) has unique

solutions on the set Ω, given below.

Theorem 4. Let Ω ⊂ R3 be the open set given by

Ω = {(x, y,Q) : 0 < x < T/q, 0 < θy +Qx < T, q < Q < q + v(T )/m} . (3.5)

Then Ω is positively invariant for the semi-flow generated by system (3.1).

Proof. Let x0 ∈ Ω and denote by x(t) = [x(t), y(t), q(t)]> the solution x(t) = φ(t,x0)

to System (3.1). Suppose that Ω is not invariant; that is, there exists t1 > 0 such

that

{x[t < t1]} ⊆ Ω, x(t1) /∈ Ω.

Note that since Ω is open,

Ω = Ω◦, x(t1) ∈ ∂Ω,

which means x(t1) must be on a hyperplane generated by fixing a coordinate to one of

its boundary values on ∂Ω; for example, {(x, y,Q) ∈ R3 : x = 0}∩Ω. Therefore there

are six cases to consider. For the following, 0 ≤ t ≤ t1 unless specified otherwise.
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I. y(t1) = 0

Since q ≤ Q and y ≤ T/θ, x′(t) ≥ −f ′(0)T/θx. From Gromwall’s Inequality,

x(t) ≥ x(0)e−f
′(0)T/θt > 0, a contradiction.

II. y(t1) = 0

T −Qx− θy ≤ T and monotonicity of g yield y′(t) ≥ −(d+ h(T ))y. Applying

Gromwall’s Inequality gives y(t) > 0, a contradiction

III. y(t1) = 0

From Cases I and II, x > 0 and y > 0 which yields the strict inequality x′(t) <

m (1− q/Q). Since Qx ≤ T , x′(t) < m (1− qx/T ). Thus x(t) < T/q, a

contradiction.

IV. Q(t1)x(t1) + θy(t1) = T

Recall that N = T −Qx− θy and that

N ′ = −v(N)x+ (Q− rmin {Q, θ}) f(x)y + dθy + h(N)θy.

Thus N(t1) = 0. But N ′(t) > −v′(0)xN , so Gromwall’s Inequality gives N(t) >

0, a contradiction.

V. Q(t1) = q

Q′(t) ≥ −m(Q− q) and so Q(t) ≥ q + (Q(0)− q)e−mt, a contradiction.

VI. Q(t1) = q + v(T )/m

Let U = 1/Q. Then

U ′ = mU [1− (v(T −Qx− θy)/m+ q)U ] .

From Cases I and II, x > 0 and y > 0 which yields the strict inequality T >

T −Qx− θy. Strict monotonicity of v gives U ′ > mU [1− (v(T )/m+ q)U ] and

so U(t) > (v(T )/m+ q)−1. Therefore Q(t) < v(T )/m+ q, a contradiction.
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It has been shown that solutions starting in the open set Ω remain so for all forward

time and cannot reach ∂Ω in finite time.

3.3.1 Equilibria

System (3.1) has two distinct boundary equilibria on ∂Ω,

E0 = (0, 0, q + v(T )/m) (Extinction) (3.6)

E1 = (T/q, 0, q) (Grazer extinction) (3.7)

and the internal equilibrium

E2 = (x, y,Q) ∈ Ω◦ (Coexistence) (3.8)

When discussing a particular equilibrium, the notation (x, y,Q) should be understood

to denote the fixed point in question. It is worthwhile to reiterate here that N is a

function defined on the phase space as N(x, y,Q) = T −Qx− θy. This is important

when calculating partial derivatives for the Jacobian, e.g. ∂xv(N). N is written in

place of T −Qx− θy (and vice versa) for readability or when interpreting results and

thus ∂xN = −Q, etc. Define

A = min

{
1,
Q

θ

}
,

N := N(x(t), y(t), Q(t)) = T −Q(t)x(t)− θy(t).

The Jacobian of system (3.1) is given by

J =



m
(

1− q
Q

)
− f ′(x)y −f(x)

mqx

Q2

rAf ′(x)y + h′(N)Qy
rAf(x) + h′(N)θy

− h(N)− d h′(N)xy +
r

θ
f(x)y︸ ︷︷ ︸
Q<θ

−v′(N)Q −v′(N)θ −v′(N)x−m


(3.9)

Calculating explicit conditions for stability of the boundary equilibria is straight-

forward. Such is not the case for E2.
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Theorem 5. The extinction equilibrium E0 =
(

0, 0, q + v(T )
m

)
is an unstable saddle

whose unstable manifold is the plane

y = 0, x =
m+ v(T )

q+v(T )/m

v′(T )(q + v(T )/m)

(
Q− q − v(T )

m

)
and whose stable manifold consists of the Q-axis and the plane

x = 0, y =
m− d− h(T )

v′(T )θ

(
Q− q − v(T )

m

)
.

Proof. From Eq. (3.9) it follows that

J(E0) =


m
(

1− q
q+v(T )/m

)
0 0

0 −d− h(T ) 0

−v′(T )(q + v(T )
m

) −v′(T )θ −m

 (3.10)

which has eigenvalues

λ1 = m

(
1− q

q + v(T )/m

)
, λ2 = −d− h(T ), λ3 = −m

and corresponding eigenvectors

v1 =


mq+2v(T )

v′(T )(q+v(T )/m)2

0

1

, v2 =


0

m−d−h(T )
v′(T )θ

1

, v3 =


0

0

1

 .

Theorem 6. Grazer extinction E1 = (T/q, 0, q) is locally asymptotically stable if and

only if

rf

(
T

q

)
<
dθ

q
(3.11)

Proof. From Eq. (3.9) it follows that

J(E1) =


0 −f(T/q) mT/q2

0 r
q

θ
f(T/q)− d 0

−v′(0)q −v′(0)θ −v′(0)T/q −m

 (3.12)
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which has characteristic equation

λ3 − tr(J)λ2 +

[
3∑
i=1

Mi

]
λ− det(J) = 0, (3.13)

where Mi denotes the ith principal minor of order two of J . From the Routh-Hurwitz

stability criterion, all three roots of Eq. (3.13) have strictly negative real part if and

only if

tr(J) < 0, det(J) < 0, tr(J)

[
3∑
i=1

Mi

]
< det(J).

It is readily apparent that

det(J) = v′(0)mT/q
(
r
q

θ
f(T/q)− d

)
< 0

if and only if Eq. (3.11) is satisfied. Then

tr(J) = r
q

θ
f(T/q)− d− v′(0)T/q −m < 0

immediately follows. The third relation then similarly follows since

0 < M1 =
(
d− r q

θ
f(T/q)

)
(v′(0)T/q +m) ,

0 < M2 = v′(0)mT/q,

0 = M3,

and so

tr(J)

[
3∑
i=1

Mi

]
< tr(J)M2 = det(J)− (v′(0)T/q +m) v′(0)mT/q

< det(J).
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3.3.2 Coexistence

While the coexistence equilibrium E2 cannot be explicitly calculated, general con-

ditions for its existence and stability may be deduced. From the nullclines of sys-

tem (3.1), a fixed point E2 = (x, y,Q) ∈ Ω◦ is the solution to the nonlinear system

f(x)

x
y = m

(
1− q

Q

)
,

rmin

{
1,
Q

θ

}
f(x) = d+ h(T −Qx− θy),

v(T −Qx− θy) = m(Q− q).

(3.14)

Define

A = min

{
1,
Q

θ

}
, Ã =

θ

Q
A = min

{
θ

Q
, 1

}
.

The Q-value of solutions to (3.14) may be calculated from

T = N(Q) +

[
Q+

rÃm(Q− q)
d+ h (N(Q))

]
f−1

(
d+ h (N(Q))

rA

)
, (3.15)

N(Q) = v−1(m (Q− q)) (3.16)

or equivalently,

T = N +

[
v(N)/m+ q +

rÃv(N)

d+ h(N)

]
f−1

(
d+ h(N)

rA

)
, (3.17)

Q = v(N)/m+ q. (3.18)

Then x and y are given in terms of Q (or, equivalently, N) by the expressions

x = f−1

(
d+ h(N(Q))

rA

)
, (3.19)

y =
rAm(Q− q)/Q
d+ h(N(Q))

x (3.20)

Therefore, existence of E2 is depends on the existence of some Q ∈ (q, q + v(T )/m)

such that both

0 <
d+ h (N(Q))

rA
< f

(
T

q

)
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and Eq. (3.15) are satisfied. Finding analytical conditions for such Q to exist is

not possible in general; however, given explicit functions f , v, and h and parameter

values, any Q that satisfies these conditions can be found numerically.

3.3.3 Global Stability of E1

In (Liu, Packer and Kuang, 2014) it was shown that
rf(T/q)

d
< 1 is sufficient for

global asymptotic stability of the grazer-only extinction equilibrium E1. It is also

possible to show that
rTf ′(0)

dθ
< 1 is sufficient for global stability. Which condition

is stronger depends on the function f ; later it will be seen that
rTf ′(0)

dθ
< 1 is

particularly useful for the case when f is a linear. It is important to note that both

conditions are weaker than that of local stability.

Theorem 7. If
rf(T/q)

d
< 1 or

rTf ′(0)

dθ
< 1 then the grazer-only extinction equilib-

rium E1 = (T/q, 0, q) is globally asymptotically stable.

Proof. It is first shown that when either condition is satisfied, y(t) decreases mono-

tonically toward 0. Observe that f(x) ≤ f ′(0)x and Qx < T gives

rmin {1, Q/θ} f(x) ≤ rmin {1, Q/θ} f ′(0)x

≤ r
T

θ
f ′(0),

while f(x) < f(T/q) gives

rmin {1, Q/θ} f(x) ≤ rf(T/q).

Therefore if rTf ′(0) < dθ then

y′ < r
T

θ
f ′(0)y − dy

< 0,
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while if rf(T/q) < d then

y′ < rf(T/q)y − dy

< 0,

where in both cases the strict inequality comes from −h(T−Qx−θy)y < 0. Therefore

y(t) is strictly monotonically decreasing and

lim
t→∞

y(t) = 0.

Consider now the system given by

x′ = m

(
1− q

Q

)
x

Q′ = v(T −Qx)−m(Q− q)
(3.21)

defined on {(x,Q)|0 < x < T/q, q < Q < q + v(T )/m}. Showing that solutions

to this system (3.21) converge to (T/q, q) is straightforward thanks to monotonicity.

Observe that system (3.21) can be rewritten as

x′ = m

(
1− qx

T −N

)
x

N ′ = (T −Qx)′ = −v(T −Qx)x.

Then N ′ < 0 and so lim
t→∞

N(t) = 0. Let ε > 0. Then there is a t1 such that N(t) < ε

for all t > t1. Further,

x′ > m

(
1− qx

T − ε

)
x,

which by a simple comparison argument gives lim
t→∞

x(t) > (T − ε)/q. Combined with

the upper bound x < T/q and taking ε → 0, it follows that lim
t→∞

x = T/q. Thus

lim
t→∞

Q(t) = q and solutions to system (3.21) converge to the point (T/q, q).

Applying Markus (1956) and Thieme (1992), the original model (3.1) is an asymp-

totically autonomous system with system (3.21) its limit system. For the asymptot-

ically autonomous system (3.1), let ω be the ω-limit set for an orbit through some
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point in Ω. Then ω is nonempty and attracts the orbit (Thieme, 1992). Since y(t)→ 0

and E0 = (0, 0, q+ v(T )/m) is unstable, ω ⊆ Ω \ {(0, 0, q+ v(T )/m)}. Let (x0, 0, Q0)

be any point in ω. Then the solution of the limit system (3.21) through (x0, Q0)

converges to (T/q, q), which implies ω = {(T/q, 0, q)} (Thieme, 1992).

Naturally one would ask whether or not the necessary and sufficient condition for

LAS, Eq. (3.11) from Theorem 6, is also necessary and sufficient for GAS. Previously

this was proposed as a Conjecture and left as an open question (Liu, Packer and

Kuang, 2014). However, such is not the case unless additional assumptions are made

on f . The next section examines such a case where local and global stability are

equivalent, followed by a counter-example that disproves the conjecture.

3.4 f(x) = ax

First, the less-complex case is explored in which f is explicitly defined as the

linear function f(x) = ax. The functions v and h are still defined as any continuous

functions which satisfy v(0) = 0, v′ > 0, and v′′ ≤ 0 (similarly for h).

dx

dt
= m

(
1− q

Q

)
x− axy

dy

dt
= min

{
1,
Q

θ

}
axy − dy − h (T −Qx− θy) y

dQ

dt
= v(T −Qx− θy)−m (Q− q)

(3.22)

3.4.1 Properties

A linear functional response affords several properties to the model that are either

untrue or unknown in the general case. As mentioned previously, it remained an open

question whether or not local and global asymptotic stability of grazer-only extinction
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were equivalent. As a corollary to theorems 6 and 7, it is trivial to show they are

indeed the same for f(x) = ax.

Corollary 2. If f(x) = ax then the grazer-only extinction equilibrium E1 is globally

asymptotically stable if and only if rqf(T/q) > dθ. In other words, local and global

stability of E1 are equivalent.

Proof. From theorem 7, rTf ′(0) < dθ is sufficient for global stability. Since rTf ′(0) =

rqf(T/q), this condition is identical to rqf(T/q) < dθ, the necessary and sufficient

condition for local asymptotic stability.

Another open problem is under what conditions a coexistence equilibrium exists

and is asymptotically stable. In the general case, answering these questions analyt-

ically remains to be accomplished. The problem is compounded by the fact that it

can not be assumed only one internal equilibrium exists for a single parameter set.

Numerical simulations can be deceiving unless extra care is taken to account for pos-

sible nonuniqueness and dependence on initial conditions. Here these questions are

explored for f(x) = ax. Doing so provides insight into not only the linear case but

also the general and nonlinear cases.

Remark 4. f−1(z)/z = 1/a greatly simplifies the system of equations for E2 generated

by the nullclines. Equation (3.15) for finding Q becomes

T = N(Q) +
Q

armin {1, Q/θ}
(d+ h(N)) + θm

(
1− q

Q

)
= N(Q) + max {Q, θ}

d+ h
(
N(Q)

)
ar

+
θm

a

(
1− q

Q

)
(3.23)

where as before N(Q) = v−1
(
m(Q− q)

)
. Also

x = max

{
θ

Q
, 1

}
d+ h

(
N(Q)

)
ar

y =
m

a

(
1− q

Q

) (3.24)
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Theorem 8. For system (3.22), the coexistence equilibrium E2 exists if and only if

dθ < rqf(T/q). Furthermore, if E2 exists then it is unique.

Proof. Recall that any Q-value at an E2 equilibrium must satisfy Eq. (3.23). Let F (Q)

be the function given by the right hand side of Eq. (3.23) with domain [q, q+v(T )/m].

In other words, E2 exists if there is some Q on (q, q + v(T )/m) such that F (Q) = T :

F (Q) = N(Q) + max {Q, θ}
d+ h

(
N(Q)

)
ar

+
θm

a

(
1− q

Q

)
,

with N(Q) = v−1
(
m(Q− q)

)
.

First observe that the derivative F ′(Q) exists and is positive. It follows from the

positivity of v and c and the inverse function theorem. Namely,

d

dQ

[
v−1
(
m (Q− q)

)]
=

m

v′
(
v−1
(
m(Q− q)

))
and

d

dQ
h
[
v−1
(
m (Q− q)

)]
=

m

v′
(
v−1
(
m(Q− q)

))h′(v−1
(
m(Q− q)

))

are well-defined and strictly positive on [q, q + v(T )/m]. So F (Q) is strictly in-

creasing and if the solution to F (Q) = T exists then it must be unique. Further, it

exists if and only if F (q) < T and T < F (q + v(T )/m).

Denote Qm = q + v(T )/m for convenience. At Q = Qm,

N(Qm) = v−1
(
m(Qm − q)

)
= v−1

(
v(T )

)
= T

and so

F (Qm) = T + max {Qm, θ}
d+ h

(
T
)

ar
+
θm

a

(
1− q

Qm

)
> T
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is always true. For Q = q, noting that N(q) = v−1(0) = 0,

F (q) =
dq

armin {q/θ, 1}

=
dθ

ar

=
dθ

rqf(T/q)
T

< T

⇐⇒ dθ < rqf(T/q).

If Q∗ = F−1(T ) exists then so does E2 = (y∗, x∗, Q∗), where x∗ and y∗ are given by

Eq. (3.24). x∗ and y∗ are guaranteed to satisfy Q∗x∗ + θy∗ < T because F (Q∗) =

N(Q∗) +Q∗x∗ + θy∗ and N(Q∗) > 0.

Theorem 8 is significant because it proves that the model’s overall asymptotic

behavior is governed by the same ratio rqf(T/q)/(dθ) which determines both LAS

and GAS of E1. If E2 does not exist then E1 is globally asymptotically stable. If E1

is not stable then E2 exists and is unique. However, as observed from simulations and

confirmed analytically below, existence of E2 does not guarantee asymptotic stability

of E2.

Theorem 9. For system (3.21) with f(x) = ax, let dθ < rqf(T/q) and denote

E2 = (x∗, y∗, Q∗) the unique interior equilibrium per Theorem 8. If Q∗ < θ and

mh′(N∗)θy < rf ′(x∗)yv′(N∗)x

with N∗ = T − θy∗ −Q∗x∗, then E2 is locally asymptotically stable.

Proof. For notational convenience, let (x, y,Q) ≡ (x∗, y∗, Q∗) and N = T −Qx− θy.

At E2 the Jacobian simplifies to
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J =



0 −ax mqx

Q2

rAay + h′(N)Qy h′(N)θy h′(N)xy +
r

θ
axy︸ ︷︷ ︸
Q<θ

−v′(N)Q −v′(N)θ −v′(N)x−m


(3.25)

The characteristic equation can be written

λ3 − tr(J)λ2 +

[
3∑
i=1

Mi

]
λ− det(J) = 0 (3.26)

where Mi denotes the ith principal minor of order two of J :

M1 = −mh′(N)θy + rayv′(N)x︸ ︷︷ ︸
Q<θ

,

M2 = v′(N)x
mq

Q
,

M3 =
(
raA+ h′ (N)Q

)
axy,

and

tr(J) = h′(N)θy − v′(N)x−m. (3.27)

Computing and simplifying det(J) gives the explicit and mathematically tractable

expression

det(J) = ax

[
− (v′(N)x+m) (rAay + h′(N)Qy) + v′(N)Q

(
h′(N)xy +

r

θ
axy︸ ︷︷ ︸
Q<θ

)]

+
mqx

Q2

[
− v′(N)θ (rAay + h′(N)Qy) + v′(N)h′(N)Qθy

]

= −
(
v′(N)x+m

)
M3 + v′(N)Qax

(
h′(N)xy +

r

θ
axy︸ ︷︷ ︸
Q<θ

)

− r θ
Q
AayM2.

(3.28)
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From the Routh-Hurwitz stability criterion, all three roots of the characteristic

equation. (3.26) have strictly negative real part if and only if

I. tr(J) < 0, II. det(J) < 0, III. tr(J)

[
3∑
i=1

Mi

]
< det(J).

I. tr(J) < 0 is satisfied if and only if

h′(N)θy < v′(N)x+m, (3.29)

which is satisfied since

mh′(N)θy < rayv′(N)x, ray < m

=⇒ h′(N)θy < v′(N)x

=⇒ h′(N)θy < v′(N)x+m

(3.30)

II. det(J) < 0 is readily apparent after substituting M3 into Eq. (3.28) then

simplifying. Recall that A = Q
θ

when Q < θ and so strict negativity of det(J) is

always satisfied, as seen below:

det(J) = −
(
v′(N)x+m

)
M3 + v′(N)Qax

(
h′(N)xy +

r

θ
axy︸ ︷︷ ︸
Q<θ

)
− r θ

Q
AayM2

= −
(
v′(N)x+m

)(
raA+ h′ (N)Q

)
axy + v′(N)Qax

(
h′(N)xy +

r

θ
axy︸ ︷︷ ︸
Q<θ

)

− r θ
Q
AayM2

= −m
(
raA+ h′ (N)Q

)
axy − v′(N)axy

(
raAx+ ra

Q

θ
x︸ ︷︷ ︸

Q<θ

)
− r θ

Q
AayM2

< 0.

III. tr(J)
[∑3

i=1Mi

]
< det(J).
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Assume now that Q < θ. Then

det(J) = −
(
v′(N)x+m

)
M3 + v′(N)xM3 − rayM2

= −mM3 − r
θ

Q
AayM2,

and so

tr(J)

[
3∑
i=1

Mi

]
− det(J) = tr(J)M1 +

(
tr(J) + ray

)
M2 +

(
h′(N)θy − v′(N)x

)
M3.

M2,M3 > 0 is always true, while M1 > 0 by assumptions mh′(N)θy < rayv′(N)x

and Q < θ. Also, as shown in Eqs. (3.30), tr(J) < 0 and h′(N)θy < v′(N)x. Lastly,

tr(J) + ray < 0 because ray < m. Therefore,

tr(J)

[
3∑
i=1

Mi

]
− det(J) < 0.

3.4.2 Results

As shown in Corollary 2, the asymptotic behavior of the linear model is divided

into two regions by the threshold value qrf(T/q)/(dθ) = 1. In the parameter space

qrf(T/q)/(dθ) < 1, only the boundary equilibria exist. Grazer-only extinction E1

is globally asymptotically stable and total extinction E0 is unstable. In the space

qrf(T/q)/(dθ) > 1, only E0 and the unique internal equilibrium E2 exist. E0 is

unstable, and solutions either converge to E2 or stable periodic orbits depending on

the stability of E2. Figure 3.1 illustrates this behavior using the bifurcation parameter

d.

3.4.3 Discussion

The model’s asymptotic behavior has been explored in more detail for the sim-

ple functional response f(x) = ax. There are three possible outcomes for global
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Figure 3.1: Bifurcation on d with linear functional response f(x) = ax. For
d > qrf(T/q)/θ, the grazer-only extinction equilibrium E1 is globally asymptoti-
cally stable. Otherwise, E1 is unstable and the coexistence equilibrium E2 is either
asymptotically stable or unstable, with the latter giving rise to stable periodic or-
bits. In this example both v and h are Holling type II with v(N) = vm

N
N+vk

and

h(N) = hm
N

N+hk
. T = 1.5, q = 0.1, θ = 0.3, m = 0.8, r = 0.8, a = 0.32, vm = 0.5,

vk = 0.8, hm = 0.5, hk = 0.5.
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asymptotic behavior. If rqf(T/q) > dθ then the producer and grazer coexist in ei-

ther a stable limit cycle or a stable equilibrium. The boundary equilibria E0 and

E1 exist and are unstable. There is also a single internal equilibrium whose stability

varies. If rqf(T/q) < dθ then only the boundary equilibria exist, with E1 globally

asymptotically and E0 unstable.

It is important to note that while f was set to this explicit form, the functions v

and h were kept in the generalized form without any additional assumptions made.

By setting f as linear, the model becomes substantially more tractable. In particular,

f−1(z) = z/a, f(x)/x = f ′(x), and constant derivative f ′ facilitate straightforward

analytical results. It was shown that the coexistence equilibrium exists and is unique

when the grazer-only extinction equilibrium, E1, is not stable. In fact, the local

and global asymptotic stability of E1 coincide. When f(x) = ax, the necessary and

sufficient condition for LAS of E1 is the same as the weaker, sufficient condition for

global stability of E1. This is a direct consequence of f(x)/x = f ′(x).

Such is not the case for general or nonlinear f , explored in the following sections.

As expected, nonlinear f gives rise to much more interesting and complex dynamics,

and results from this section are not applicable to nonlinear or generalized f .

As a final segue into the next section, a quick look at the system’s Jacobian

provides a handwaving summary of why the linear functional response is special. For

the general model (3.9),

∂

∂x
[x′(x, y,Q)] = m

(
1− q

Q

)
− f ′(x)y.

Also recall that steady states with non-zero x must satisfy

m

(
1− q

Q

)
x− f(x)y = 0, x > 0.

In this special case where f(x)/x = f ′(x), ∂xx
′ = 0 at the internal equilibrium, which

is unique, too—neither of which can be proven for the generalized function.
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3.5 Nonlinear Functional Response

When f is nonlinear the dynamics are more expectedly more complex. While

deriving explicit conditions for stability may not be possible, insights can be drawn

through comparisons with the case of linear f . In Theorem 8, proving existence and

uniqueness of a coexistence equilibrium was possible because f(x) = ax guaranteed

the derivative of Eq. (3.15) with respect to Q is positive (Eq. (3.23)). However, in

general it is not necessarily true; for example, the derivatives

d

dQ

[
min

{
θ

Q
, 1

}
rm(Q− q)
d+ h

(
N(Q)

)] , d

dQ

[
f−1

(
d+ h(N(Q))

rmin {Q/θ, 1}

)]
are not necessarily positive. The possibility for multiple internal equilibria to exist

suggests more bifurcations and possible regions of bistability as compared to the

case when f is linear. For the general case, it was proven that rqf(T/q) < dθ is

necessary and sufficient for local stability and that either of the weaker conditions

rf(T/q) < d or rTf ′(0) < dθ is sufficient for global stability. If f(x) = ax then

rTf ′(0) < d = rqf(T/q) < d. Now it will be shown that for different (nonlinear) f ,

grazer-only extinction can be locally but not globally stable.

Model (3.1) with nonlinear f , v, and h (3.31) was explored numerically. Besides

simulations of solutions, the coexistence equilibria and their local stability were com-

puted numerically. In this section, the model discussed in System (3.1) with the

following Holling type II equations (3.31) for f , v, and h:

f(x) = a
x

x+ ak
,

v(N) = vm
N

N + vk
,

h(N) = hm
N

N + hk
.

(3.31)
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Figure 3.2: Bifurcation on d with Holling type II functional response f(x) = ax/(x+
ak). For dθ < qrf(T/q), E1 is unstable. Only one E2 exists and is either LAS or
unstable, the latter giving rise to stable periodic orbits. For dθ > qrf(T/q), E1 is
LAS. There is a region of bistability where one of the E2 is also LAS. In this example,
v(N) = vm

N
N+vk

, h(N) = hm
N

N+hk
, T = 0.1, q = 0.05, θ = 0.15, m = 1.2, r = 0.9,

a = 0.8, ak = 0.25, vm = 1.6, vk = 0.8, hm = 0.03, hk = 0.1.
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Figure 3.2 shows bifurcations on d for y and x. For d < qrf(T/q)/θ, the behavior

is nondifferent from the linear case: the coexistence equilibrium is unique and either

stable or unstable, with the latter giving rise to stable periodic orbits. However, as

d increases past qrf(T/q)/θ, another coexistence equilibrium forms that is unstable,

while the other coexistence equilibrium remains locally asymptotically stable. Mean-

while, E1 is also locally asymptotically stable. Thus this region is bistable, with

solutions tending towards either E1 or one of the E2 depending on initial conditions.

To demonstrate the bistability, solutions to the model were computed at differ-

ent initial conditions using fixed parameter values. Q(0) was held fixed while x(0)

and y(0) varied across Ω. The computed solutions were projected into the xy-plane

along with all existing equilibrium points. The internal equilibria E2 were computed

numerically, with their local stabilities determined by computing the eigenvalues of

the corresponding Jacobian matrices. Figures 3.3 1and 3.4 contain the results for

several different parameter sets. In Figure 3.3(a), E1 and one of the two E2 are lo-

cally asymptotically stable, and solutions can tend to either one depending on initial

conditions. With respect to the xy-plane, it appears as though the stable manifold

of the unstable E2 separates the space of initial conditions into two distinct regions

where either E1 or the LAS E2 are globally attractive. Figure 3.3(b) demonstrates

the case where solutions can either converge to E1 or a stable periodic orbit about

one of the internal E2 equilibria. Similarly, the other E2 divides the space of initial

conditions into two regions.

Figure 3.4 uses the same values as those of Figure 3.3(b) except d is increased.

In Figure 3.3(b), dθ/[qrf(T/q)] = 1.05. In Figure 3.4(a), d is increased such that

this value is 1.15. While the system still has the stable equilibrium E1 and a stable

periodic orbit about an E2, the two internal E2 equilibria are nearer to one another.

Finally, in Figure 3.4(b), where dθ/[qrf(T/q)] = 1.5, the E2 have already crossed
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Figure 3.3: Orbits projected into the xy-plane, including all equilibria and their
local stability. Solution curves are shown for various initial conditions. Red indicates
convergence to E1; blue indicates convergence to an E2 or to a periodic orbit about an
E2. (a) dθ/[qrf(T/q)] = 1.03, vm = 1.6; (b) dθ/[qrf(T/q)] = 1.05, vm = 6. In both
panels, f(x) = ax/(x + ak), v(N) = vm

N
N+vk

, h(N) = hm
N

N+hk
; T = 0.1, q = 0.05,

θ = 0.15, m = 1.2, r = 0.9, a = 0.8, ak = 0.25, hm = 0.03, hk = 0.1, vk = 0.8,
Q(0) = 0.055.

67



0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

X

Y

 

 

 ←T=qX+θY

E
2
 (unstable)

E
1
 (LAS)

E
0
 (unstable)

(a) E1 is LAS; a stable periodic orbit also exists about one of the E2

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

X

Y

 

 

 ←T=qX+θY

E
1
 (LAS)

E
0
 (unstable)

(b) No E2 exist; E1 is globally asymptotically stable

Figure 3.4: A continuation of Figure 3.3(b). Orbits projected into the xy-plane,
including all equilibria and their local stability. (a) dθ/[qrf(T/q)] = 1.15;
(b) dθ/[qrf(T/q)] = 1.5. In both panels, all parameters except for d are fixed to
the same values as those in Figure 3.3(b).
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paths and annihilated one another, leaving E1 as the only stable equilibrium point.

This behavior is as to be expected from what is observed in the bifurcation diagrams of

Figure 3.2. Namely, in the d-interval where both of the E2 exist, the distance between

these two interal equilibria decreases as d increases. They eventually intersecting,

after which there are no internal equilibria and E1 is globally asymptotically stable.

3.6 Conclusion

Here a new feedback term was added to the grazer, one which introduces a cost

to recycling nitrogen. Increased grazing and/or food quality creates positive feedback

for grazer biomass production. However, it also increases N recycling, which in turn

creates negative feedback on biomass production. Lastly, the producer assimilation

rate of nutrient not only affects food quality and abundance but also plays a protective

role for the grazer. As expected, this behavior is observed in the model; for example,

even with the linear functional response the stability of the coexistence equilibrium

requires a balance between feeding, producer uptake/cleaning, and sensitivity to N

accumulation.

While the original motivation was to explore toxicity in closed aquaculture systems

and the important knife edge phenomenon (Boersma and Elser, 2006; Peace et al.,

2013), working on this project has also brought attention to more general problems in

mathematical biology. For example, using the linear functional response f(x) = ax to

explore the dynamical behavior obfuscates the model’s potential for richer and more

interesting dynamics. It is important to be cognizant of how the choice of functions

may affect qualitative behavior. If one were trying to validate the model with data,

deriving ”correct” functions for f , v, and h is important. Here, these functions are

considered more generally without a data-driven derivation. This approach is in direct

contrast to the derivation of the lipid model in Chapter 2, which makes heavy usage
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of empirically validated functions specific to the problem.

3.6.1 Future work

The model assumes that the concentration of free N is directly correlated to the

concentration of ammonia and nitrate. It also assumes instantaneous recycling of N

from the grazer pool into the free-N pool. These assumptions neglect the intricacies

of the nitrogen cycle, something which could be incorporated into a more complex

model. Incorporating the relative concentrations of ammonia, nitrate, nitrite, etc.,

would allow for a more realistic derivation of a toxicity function h. Alternatively, one

could derive a nitrification model and then apply quasi-steady states to the ammonia

and nitrate concentrations, eliminating two differential equations. This would reduce

the complexity while facilitating a more mechanistic construction of h.
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Chapter 4

PROSTATE CANCER

4.1 Introduction

Prostate cancer has the highest incidence rate of non-skin cancers in men in the

United States and the second highest mortality rate. It is projected that in 2013

there will be 238,590 newly diagnosed cases of prostate cancer in the United States,

accounting for 28% of all newly diagnosed cases of cancer in men. Prostate can-

cer is projected to account for 29,720 deaths in the United States for 2013 (Siegel,

Naishadham and Jemal, 2013).

In serious cases with aggressive or malignant tumors, hormonal therapy is a com-

mon option for treatment. The prostate cells’ dependency on androgens for prolifera-

tion and apoptosis inhibition is exploited by blocking the patient’s androgen produc-

tion. Unfortunately, tumors can adapt to the low androgen environment, rendering

androgen treatment ineffective.

Understanding the mechanisms responsible for the progression of prostate cancer

to a recurrent, hormone-refractory stage has immediate clinical implications. Al-

though hormonal ablation therapy significantly reduces tumor mass, many tumors

recur in a more aggressive form and with a poorer prognosis. One theory is that

androgen-deprivation aids in the development of these so-called androgen indepen-

dent (AI) tumors by exhibiting strong selective pressure for AI phenotypes. As a

result, it has been suggested and demonstrated experimentally that intermittent an-

drogen suppression (IAS) therapy, as compared to continuous androgen suppression

(CAS), may delay relapse (Sato et al., 1996; Bruchovsky et al., 1996, 2000, 2006).
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Mathematical models have been proposed as possible tools to help determine opti-

mal timing for androgen treatment. Given the fundamental role of androgen and an-

drogen receptor (AR) in prostate cancer development and progression, it is important

to have a clear understanding of their similarly important role in the healthy prostate.

Quantitatively investigating how androgen and AR affect the healthy prostate may

provide clues for developing a useful treatment model.

4.2 Background

Androgen regulates both proliferation and apoptosis of prostate cells through in-

tracellular action of the AR (Gelmann, 2002; Feldman and Feldman, 2001; Heinlein

and Chang, 2004). Testosterone enters prostate cells where it can bind to AR but

is mostly converted to 5α-dihydrotestosterone (DHT) by the enzyme 5α-reductase.

DHT instead more actively binds to AR, with a greater binding affinity. AR activated

by DHT is more stable than when activated by testosterone and has a greater effect

on prostate maintenance (Wright et al., 1996; Lee and Chang, 2003).

Androgen:AR complexes translocate to the nucleus where they play an active role

in the regulation of gene transcription including genes involved in proliferation and

apoptosis. The intracellular concentration of the androgen:AR complex is therefore

reasonable for a quantitative predictor of cell death and proliferation rates. Indeed,

this relationship has been demonstrated empirically () and used for mathematical

models of the prostate (Eikenberry, Nagy and Kuang, 2010; Jain et al., 2011).

4.2.1 Treatment

Treatment strategies depend on a number of factors such as disease stage and

patient age. Radical prostatectomy is used as a curative therapy for cancer local-

ized to the prostate through resection of the prostate gland and surrounding tissue
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(Walsh, Lepor and Eggleston, 1983). Radical prostatectomy and radiation therapy

are generally used for initial treatment of prostate cancer which is still localized to

the prostate. However, a significant number of patients experience biochemical re-

currence, as indicated by a rise in PSA levels. Alternative treatment methods are

needed for these patients in addition to those diagnosed with metastatic cancer.

Huggins, Stevens and Hodges (1941) discovered that advanced prostate cancer re-

sponded to castration, and that injection of androgens exacerbated symptoms. Like

healthy prostate cells, both local and metastatic prostate cancer cells depend on

androgen for growth and survival. Androgen ablation therapy can effectively re-

duce tumor mass and PSA levels for some time by inducing castrate levels of andro-

gen. Luteinizing hormone-releasing hormone (LHRH) agonists, which blocks release

of luteinizing hormone (LH), and anti-androgens can achieve what is essentially re-

versible castration (Denmeade and Isaacs, 2002).

Although most prostate cancers are initially dependent on androgen, hormone

treatment becomes ineffective as cancer cells develop resistance to the therapy (Den-

meade and Isaacs, 2002; Taplin et al., 1995; Tran et al., 2009). Resistance has been

observed to develop within months to years after treatment begins (Feldman and

Feldman, 2001; Mcleod, 2003; Scher et al., 2004; Edwards and Bartlett, 2005a).

Identifying the exact mechanisms behind AI is still an open research area. Given

the role of AR in cell proliferation and apoptosis, it is natural to suspect that modifica-

tion related to AR or AR function plays a role in the evolution of hormone refractory

cancer. AR is expressed in prostate cancer including the majority of treatment resis-

tant cancers (Heinlein and Chang, 2004). There are indeed a number of known and

proposed ways by which the cancer cells develop resistance; however, it is unknown

exactly which pathway or combination thereof is the key step to AI (Taplin et al.,

1995; Heinlein and Chang, 2004; Feldman and Feldman, 2001; Edwards and Bartlett,
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2005b). Future treatment improvements may require classification of a specific pa-

tient’s cancer, identifying then targeting whichever AI pathways are present.

It has been suggested and measured that AI cancer cells express higher levels

of AR than AD cells (Taplin et al., 1995; Edwards and Bartlett, 2005a). Studies

have found upwards of 30% of treatment resistant cancers have amplification of the

AR gene which was not detected prior to therapy (Visakorpi et al., 1995; Heinlein

and Chang, 2004; Koivisto et al., 1997). Increased expression of AR would increase

sensitivity to androgen, an advantage in low androgen environments. However, AR

gene amplification has been found not always to result in increased AR expression

(Edwards and Bartlett, 2005a).

4.3 Modeling Androgen Deprivation Therapy

Modeling androgen deprivation therapy is an active research area. In general,

these models consider tumors as consisting of two distinct subpopulations charac-

terized by their responses to androgen. Before treatment, a tumor would consist

(almost entirely) of cells that are completely dependent on androgen for survival

and proliferation. These “androgen dependent” (AD) cells are responsible for the

disease regression often observed during initial treatments. These sustained periods

of androgen depletion create strong selective pressure for cells that are resistant to

treatment by means of decreased androgen dependence. Expansion of this so-called

androgen independent (AI) population reduces overall treatment effectiveness for the

tumor; eventually, relapse occurs when a threshold is reached and the AI population

outcompetes the AD population. In a basic model, expansion of the AI population

is generally driven by two mechanisms. First, AD cells can mutate to become AI.

Second, the AI population has a selective advantage during treatment. Models may

also assume that AI cells mutate back to AD.
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This model framework largely originate from a PDE-based model for continuous

androgen suppression (Jackson, 2004b,a). Jackson considered a radially-symmetric

tumor spheroid consisting of AD and AI cell subpopulations as well as the androgen

levels in the prostate. Tumor volume and the relative fraction of AD and AI cells

were used to investigate relapse under two modes of CAS corresponding to total

and partial androgen blockade. Androgen levels were modeled depending on the

simulated treatment type. There were no transitions between the AD and AI states,

a fundamental difference from later adaptations. Instead, the AI population was

initialized to 0.05% of the total cell population. Further, PSA levels were not deduced.

Ideta et al. (2008) later adapted the model from Jackson (2004b) as an ODE

system for investigating intermittent androgen suppression. There have since been

more ODE models based on the Jackson; Ideta et al. framework (Tanaka et al., 2008;

Hirata, Bruchovsky and Aihara, 2010; Jain et al., 2011; Jain and Friedman, 2013;

Portz, Kuang and Nagy, 2012; Suzuki, Bruchovsky and Aihara, 2010; Shimada and

Aihara, 2008) in addition to PDE (Guo, Tao and Aihara, 2008; Tao, Guo and Aihara,

2010) and stochastic (Veestraeten, 2006; Dayananda, Kemper and Shvartsman, 2004;

Tanaka et al., 2010) models.

4.4 Cell Quota Application - PKN Model

Portz, Kuang and Nagy (2012) proposed the first prostate cancer in the literature

that adapts the Cell Quota framework. Interestingly, the model was in part motivated

by the lipid model from Chapter 2, including its implementation of androgen “uptake”

by the cancer cells. This model, henceforth referred to as the PKN model, is significant

for numerous reasons. It demonstrated that existing, data-driven modeling methods

from ecological stoichiometry may be applied to prostate cancer, both theoretically

and qualitatively. The PKN model is rewritten here for reference and discussed in
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detail because it is important for the original work presented later in this chapter.

X1: androgen dependent prostate cancer cells (cells×109)

X2: androgen “independent” prostate cancer cells (cells×109)

Qi: intracellular androgen concentration of Xi (nM)

P : serum PSA concentration (ng/mL)

Ts: serum testosterone concentration (nM)

X ′1 = µm

(
1− q1

Q1

)
︸ ︷︷ ︸
proliferation

X1 − c1
Kn

1

Qn
1 +Kn

1

X1︸ ︷︷ ︸
X1→X2 mutations

+ c2
Qn

2

Qn
2 +Kn

2

X2︸ ︷︷ ︸
X2→X1 mutations

X ′2 = µm

(
1− q2

Q2

)
︸ ︷︷ ︸
proliferation

X2 + c1
Kn

1

Qn
1 +Kn

1

X1︸ ︷︷ ︸
X1→X2 mutations

− c2
Qn

2

Qn
2 +Kn

2

X2︸ ︷︷ ︸
X2→X1 mutations

Q′i = vm
qm −Qi

qm − qi
Ts

Ts + vh︸ ︷︷ ︸
“uptake”

− µm (Qi − qi)︸ ︷︷ ︸
growth dilution

− bQi︸︷︷︸
androgen loss

i = 1, 2

P ′ = σ0 (X1 +X2)︸ ︷︷ ︸
baseline secretion

+σ1X1
Qm

1

Qm
1 + ρm1

+ σ2X2
Qm

2

Qm
2 + ρm2︸ ︷︷ ︸

androgen dependent secretion

− δP︸︷︷︸
degredation

(4.1)

The underlying assumption of Model (4.1) is that the so-called AI cells can survive

and proliferate with lower androgen levels. The property q2 < q1 is used to reflect

this trait. Indeed, it has been empirically established that CR disease survives when

serum testosterone is depleted. However, while serum testosterone may be essentially

zero post (chemical) castration, rat and human data have revealed that intraprostatic

androgen levels can remain relatively high, particularly those of DHT which is less

likely than testosterone to leak from cells. In fact, it has been shown that during

treatment intraprostatic DHT remains at 50% of pre-treatment levels while serum

76



testosterone levels decrease by over 90% (Heinlein and Chang, 2004). DHT constitutes

the majority of intracellular androgen, with 90% of testosterone converted to DHT

(Feldman and Feldman, 2001). While free intraprostatic androgens leak from the

prostate, those which are bound to AR should remain in the cells. The T:AR and

DHT:AR complexes are also highly stable and less susceptible to degradation. In

conclusion, the relationship between serum and prostatic androgen concentrations

during ablation is an important detail.

From this context we see that the use of Qi in this model is problematic. Qi is

intracellular androgen but with no distinction between free cytoplasmic androgen and

androgen bound to nuclear AR. In the model results, Q2(t) < Q1(t) during homoeo-

static conditions—both on and off treatment. It therefore predicts that tumors do

not develop resistance by means of AR overexpression or amplification. The problem

is that these very mechanisms have been implicated in a significant number of CR tu-

mors, with one review concluding 30% all CR tumors exhibit increased AR expression

post-treatment (Feldman and Feldman, 2001). Instead, the model formulation is such

that tumors develop resistance only through pathways less dependent on androgen.

That the model accurately fits data under the constraint q2 < q1 is not a criticism.

Rather, it leaves open the question whether or not an ecological framework based on

the cell-quota can fit data and provide biologically meaningful insight.

The model’s uptake function of serum testosterone uses Michaelis–Menten kinet-

ics but assumes there are maximum Qi that prevent excessive testosterone influx.

This formulation stems from phytoplankton models (Geider, MacIntyre and Kana,

1998) and coincidentally is also in the neutral lipid model described earlier (2.20).

While this model of nutrient uptake is widely used and empirically validated for phy-

toplankton models, its application here (4.1) may be problematic. It combines a first

order chemical kinetics model with a higher level model, namely the cell quota. For
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green algae it makes sense because observed phenomena such as “luxury uptake”

and species-specific maximum N:C are consistent with using Q to quantify regulation

of N-uptake. That nitrate uptake is due to active transport, as opposed to simple

diffusion, has long been known for algae (Halterman and Toetz, 1984). An impor-

tant observation has been the uptake of nitrate and other nutrients against their

concentration gradients.

This uptake process directly contrasts with that of prostate epithelial cells. Testos-

terone and DHT are exchanged across serum and cells via diffusion, in a two-way

process dependent on the concentration gradient. A more mechanistic approach to

modeling androgen uptake by prostate epithelium was described by Potter, Zager and

Barton (2006). The functions for influx of testosterone and DHT followed from the

blood flow rates to the prostate and the differences in the intracellular and extracel-

lular concentrations of testosterone and DHT. For PCa models this formulation may

prove difficult to parametrize when considering metastatic tumors. For Model (4.1)

in particular the Potter, Zager and Barton (2006) uptake functions are not directly

applicable. The reason is that Model (4.1) does not differentiate between androgens

bound to nuclear AR and free cytoplasmic androgens.

Despite the problems with the implementation of the cell quota, the models and

analysis by Portz, Kuang and Nagy (2012) remain an important step in empirically-

driven, theoretical models of prostate cancer. Inherent to systems biology is the

trade-off between detailed complexity and abstract simplification. The cell quota

provided a simple link between complex biology and mathematics. It stands to reason,

however, that the model can be improved with closer attention to the underlying

AR dynamics which play an unprecedented role in prostate cancer progression and

treatment. Along with the unresolved questions surrounding the uptake function,

there are many opportunities for improvement upon the original PKN cell quota
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model.

4.5 In Search of a Mechanistic Basis

In the PKN model (4.1), defining Q too broadly leaves gaps with the underlying

biology. These gaps include the interrelated dynamics of bound and free androgens,

the retention or loss of intracellular androgens during ablation, and the capacity to

predict known mechanisms of treatment resistance. Increasing the complexity of the

model to include intracellular AR kinetics may provide a more descriptive model that

is based on established biochemical principles and testable parameter ranges. The

goal here is to connect these intracellular AR kinetics to a cell quota based population

model akin to the PKN model.

This is accomplished by first “taking a step back” and considering a mechanistic

model of intraprostatic AR-androgen kinetics. The AR-androgen model is then used

as a building block to derive a simpler cell quota based model. The following steps

are taken to derive a

4.5.1 Intracellular AR Kinetics

The following AR model (4.2) is based on the system developed in Potter, Zager

and Barton (2006) as part of a larger prostate model. Using basic biochemistry and

experimentally supported parameterizations, Potter, Zager and Barton (2006) mech-

anistically derived a model for androgen-mediated proliferation and apoptosis in the

prostate. The intracellular androgen and AR dynamical equations follow from first or-

der principles in chemical kinetics. Eikenberry, Nagy and Kuang (2010) later adapted

this system to derive a simpler, more tractable model of the prostate epithelium that

translates intracellular androgen-AR activity to per-capita growth and death rates.

The model combined theory with experiment to investigate how AR and androgen
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parameters could shape the pre-malignant environment. In particular, it considered

androgen-driven evolution of prostate AR with implications for the progression and

severity of prostate cancer. This focus on AR and prostate cancer progression has

provided a useful foundation for modeling the interplay of AR dynamics and ADT

treatment for prostate cancer.

To derive a prostate cancer model for ADT that includes AR, begin with the fol-

lowing adaptation from Potter, Zager and Barton (2006), including its later extension

in Eikenberry, Nagy and Kuang (2010). The notation used here is generally consis-

tent with these existing works (more so with the latter) but also includes notation

that is new or different. Unless explicitly stated or otherwise implied, discussions of

cellular processes or intracellular chemical species are specific to prostatic epithelial

cells. Define:

CT (t): T:AR complex concentration (nM)

CD(t): DHT:AR complex concentration (nM)

R(t): intracellular free AR concentration (nM)

D(t): intracellular free DHT concentration (nM)

T (t): intracellular free T concentration (nM)

Ts(t): total serum T concentration (nM)

C ′T = kTa TR− kTd CT ,

C ′D = kDa DR− kDd CD,

R′ = λ− kTa TR + kTd CT − kDa DR + kDd CD − βRR,

D′ = αkcat
T

T + αk
− kDa DR + kDd CD − βDD,

T ′ = K(Ts − T )− kTa TR + kTd CT − αkcat
T

T + αk
− βTT.

(4.2)

The AR kinetics model (4.2) mathematically describes the following system:
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1. Testosterone exchange between serum and prostate is proportional to the blood
flow rate to the prostate and the concentration gradient. Prostatic testosterone
is uniformly distributed amongst the prostate cells.

2. Free testosterone is enzymatically converted to DHT by 5α-reductase.

3. Free testosterone and DHT bind to free AR in the cytoplasm by second order
reaction kinetics.

4. Free AR, T, and DHT degrade by first order kinetics.

5. A fixed total AR concentration, Rt, is maintained at homeostasis.

Refer to Table 4.1 for a list of parameter descriptions and units. The uptake

function K(Ts − T ) is based on the serum transport model in Potter, Zager and

Barton (2006); its derivation is found in the following section. It is assumed DHT

does not to leak from the prostate into serum. The AR production rate function λ

can be derived based on the assumed homeostatic total AR concentration, defined as

Rt. Since the total AR concentration is R(t) + CD(t) + CT (t), taking the derivative

R′(t) + C ′D(t) + C ′T (t) it readily follows that

λ = βR (Rt − CD(t)− CT ) (4.3)

is sufficient for the steady state value Rt = R+CD+CT of the total AR concentration.

The enzymatic conversion of T to DHT by 5α-reductase is modeled with Michaelis–

Menten kinetics. In absence of androgens, AR is unstable (Gregory et al., 2001).

However the T:AR and DHT:AR complexes, which are highly stable, are assumed

not to degrade. It has been suggested that disassociation from its ligand—rather than

degradation of the bound protein—regulates AR activity (Tyagi et al., 2000; Lee and

Chang, 2003). Along with the 5α-reductase enzyme rate constants, the on/off rate

constants kT,Da,d and degradation rates βR,D,T can be determined from existing data

and models (Potter, Zager and Barton, 2006; Eikenberry, Nagy and Kuang, 2010).

The Potter, Zager and Barton model also included state variables and second

order reaction equations for dimerization of the T:AR and DHT:AR complexes in
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Parameter Description Units

Rt homeostatic total AR concentration nM

kTa T:AR association rate constant nM-1 h-1

kTd T:AR disassociation rate constant h-1

kDa DHT:AR association rate constant nM-1 h-1

kDd DHT:AR disassociation rate constant h-1

βR free AR degradation rate h-1

βT free T degradation rate h-1

βD free D degradation rate h-1

kcat 5α-reductase turnover number nmol mg-1 h-1

α 5α-reductase concentration mg L-1

αk 5α-reductase Michaelis constant nM

K flow rate constant h-1

V prostate volume L

Table 4.1: Parameters for AR kinetics model (4.2). These parameters also apply to
the population level AR Quota Model (4.23)

addition to their subsequent binding to hormone response elements. Although not

included here, these dimer-DNA dynamics are relevant to forthcoming discussions in

this chapter. Similarly relevant is that prostate volume was nonconstant because the

complete model was used to predict changes in volume and mass post-castration.

Uptake

Testosterone and DHT diffuse past the cell membrane and are exchanged between

serum and prostate (cancer) cells. The exchange rate should therefore depend on the

concentration gradient and prostate volume, which Potter, Zager and Barton (2006)

expresses as KV (Ts − T ) (variables renamed here for consistency). The volumetric
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flow rate KV (L h-1) consists of a flow rate constant, K (h−1), and the prostate volume

V (L). K can be considered as a combination of the volumetric flux (L m-2 h-1) and

surface area per unit volume of prostate/tumor (e.g. m2 L-1). Therefore KV (Ts−T )

has units nmol h-1, and

(V T )′ = KV (Ts − A)− kTa V TR + kTd V CT − V αkcat
T

T +KM

− βTV T

= V T ′ + TV ′.

If the volume V is constant then V ′ = 0 and T ′ = (V T )′/V gives the equation for T ′

in Model (4.2).

4.6 A Closer Look at Uptake

On an abstract level, using a maximum Q as in the PKN Model (4.1) is under-

standable, as the maximum free-androgen concentrations in the prostate would be

limited by serum concentrations. Yet Q may represent AR-bound androgen or total

intracellular androgen, and so the meaning of qm is not straightforward. A novel

derivation is provided here which links the uptake model to the underlying biochem-

istry. Testosterone that enters a prostate cell is mostly converted to DHT by the

enzyme 5α-reductase. It would be straightforward to use Michaelis–Menten kinetics

to describe this process. This DHT and (to a lesser extent) testosterone in the cy-

tosol may bind to AR, which ultimately results in a stable androgen:AR dimer that

translocates to the nucleus and binds to DNA. It is here that the now-bound androgen

would be involved in regulating transcription of genes for proliferation, survival, and

PSA production, among other processes (Gelmann, 2002). Therefore androgen taken

up by a cell must go through many intermediate steps before it (indirectly via AR

signaling) regulates cellular processes.

While testosterone entering a cell can either convert enzymatically to DHT or
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bind to AR, it can also leak out of the cell into serum. The same is true for DHT

but at a decreased rate and not accounted for here. Hence a certain proportion of

the testosterone taken into the cell ultimately leads to stable androgen:AR complexes

localized to the nucleus. This proportion should vary based on the concentration of

testosterone entering the cell, the concentration of free AR in the cytosol, and the

concentration of 5α-reductase. Consider the cell-specific uptake rate function

vm
qm −Q
qm − q

Ts
Ts + vh

(4.4)

as implemented in Model (4.1). If Q is the androgen:AR complex concentration, then

qm could represent the parameter Rt defined for Model (4.2). If the total AR (bound

and free) concentration is assumed constant, then the free AR concentration is given

by Rt −Q. This interpretation is consistent with mass action for the binding of AR

and androgen, where Ts/(Ts + vh) is somehow the association rate multiplied with the

available androgen concentration. Indeed, for fixed Ts the quantity vmTs/(Ts + vh) is the

rate of androgen:AR complex formation when Q = q. This rate decreases linearly with

Rt−Q, similar to a mass action process. At any given time, the cell nucleus has at least

q concentration of androgen:AR and free AR concentration in the range [0, qm − q].

The fraction (Rt −Q)/(Rt − q) is therefore the free AR concentration scaled to [0, 1].

Under this interpretation of Model (4.1), the uptake function represents the following

processes:

1. Uptake of serum testosterone,

2. Conversion of testosterone to DHT,

3. Leaking of free testosterone from the cytoplasm,

4. Binding of free AR to testosterone and DHT.

It remains to derive Ts/(Ts + vh). Assume that the total AR concentration is in
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quasi-steady state and denote R(t) = R(t) + CT (t) + CD(t). Then

R
′
= βR (Rt − CT − CD)− βRR = 0 (4.5)

⇔R + CT + CD = Rt. (4.6)

Denote by T (t) and D(t) the total concentrations of testosterone and DHT, respec-

tively. Namely, T (t) = T (t) +CT (t) and D(t) = D(t) +CD(t). Similarly assume that

total testosterone and DHT are in quasi-steady state. Setting T
′
= D

′
= 0 yields the

expressions (4.7)-(4.8),

0 = K(Ts − T )− αkcat
T

T + αk
− βTT, (4.7)

D =
αkcat
βD

T

T + αk
. (4.8)

Thus both T and D can be expressed in terms of Ts once Eq. (4.7) is solved for T .

To simplify notation, define the following parameters,

h := K + βT (h-1),

v :=
K

h
(dimensionless),

αm := αkcat (nM h-1).

h is sum of the specific loss rates of testosterone excluding conversion to DHT (blood

flow and degradation). v is the fraction of this flux due to testosterone exchange with

serum. Also note that vTs is the steady state concentration of intracellular testos-

terone in absence of any conversion to DHT. αm is simply a notational convenience

for the maximum reaction rate for 5α-reductase. (This maximum rate is expressed as

the product of the 5α-reductase concentration and turnover rate in order to maintain

the Eikenberry, Nagy and Kuang model’s connection to data.) Solving Eq. (4.7) for

T yields a quadratic with unique positive solution,

T =
1

2
(vTs − αm/h− αk) +

1

2

[
(vTs − αm/h− αk)2 + 4vTsαk

]1/2
. (4.9)
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Eq. (4.9) is a nonegative and strictly increasing function of Ts with T = 0 when Ts = 0

and T ≥ vTs − αm/h− s for all Ts. After rewritting the expression in the radical,

T =
1

2
(vTs − αm/h− αk) +

1

2

[
(vTs + αm/h+ αk)

2 − 4vTsαm/h
]1/2

, (4.10)

=
1

2

[
(vTs − αm/h− αk) + (vTs + αm/h+ αk)

(
1− 4vTsαm/h

(vTs + αm/h+ αk)
2

)1/2
]
,

(4.11)

and a simple approximating function can be found with a Taylor Series expansion that

converges for all Ts ≥ 0. The relation
4vTsαm/h

(vTs + αm/h+ αk)2
< 1 is already established

by the fact that the expression under the radical in Eq. (4.9) is nonnegative. Thus(
1− 4vTsαm/h

(vTs + αm/h+ αk)
2

)1/2

=
∞∑
n=0

(−1)n(2n)!

(1− 2n)(n!)24n
(−4vTsαm/h)n

[vTs + αm/h+ αk]
2n

=
∞∑
n=0

(2n)!

(1− 2n)(n!)2

(vTsαm/h)n

[vTs + αm/h+ αk]
2n (4.12)

The quasi-steady state approximation T (n) for T can now be written as

T (n) = vTs −
vTsαm/h

vTs + αm/h+ αk
− (vTsαm/h)2

[vTs + αm/h+ αk]
3−

. . .− (2n)!

2(1− 2n)(n!)2

(vTsαm/h)n

[vTs + αm/h+ αk]
2n−1 . (4.13)

The error for T (n) is 0 if Ts = 0 and is an increasing function of Ts. For the nth ap-

proximation, error is approximated by the usual Taylor Series remainder and bounded

by Eq. (4.14) since
4vTsαm/h

(vTs + αm/h+ αk)2
< 1 and

‖T − T (n)‖ ≈ (vTs + αm/h+ αk)

2

(2n+ 2)!

(1 + 2n)((n+ 1)!)24n+1

(4vTsαm/h)n+1

[vTs + αm/h+ αk]
2n+2

≤ 2vTsαm/h

vTs + αm/h+ αk

[
4vTsαm/h

(vTs + αm/h+ αk)
2

]n
<

2vTsαm/h

vTs + αm/h+ αk
4−n

<
max {αm/h, vTs}

αk
4−n. (4.14)
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Therefore T (1) and T (2) are good approximations for T if max {αm/h, vTs} is suffi-

ciently small or αk is sufficiently large. Since v < 1 and Ts < αk for applications to

rat and human, the value αm/h is more pertinent.

The quasi-steady state value for D is also computed in terms of Ts, K, βT , α, αk,

and βD using Eq. (4.8) and the approximation (4.13) for T . Explicit consideration is

given to T (n) for n = 1, 2 and the exact form in Eq. (4.9). With T and D explicitly

defined in terms of Ts, the extracellular testosterone, uptake can be modeled as a

direct process from serum to AR binding. Specifically, “uptake” now constitutes

binding of T and DHT with free AR. The reason the reaction rate constants for

AR binding do not appear is that the total prostatic testosterone concentration was

assumed to be in quasi-steady state. This detail made possible the straightforward

equations (4.7)-(4.8) without the parameters kT,Da , kT,Dd or the variables R(t), CD(t),

CT (t). The only other quasi-steady state assumption has similarly been for total AR

concentration but not free AR or androgen:AR complexes. The implications of this

approach, including the associated problems, are discussed later.

T (1) = vTs D
(1)
I =

αm
βD

vTs
vTs + αk

(4.15a)

T (2) = vTs
vTs + αk

vTs + αk + αm/h
D

(2)
I =

αm
βD

vTs
vTs + αk

(vTs + αk)
2

(vTs + αk)
2 + αkαm/h

. (4.15b)

The new uptake models follow from the same second-order reaction kinetics and

parameters of model (4.2). From Assumption (4.5) the free AR concentration may

be written Rt−Q, and Eqs. (4.15) gives free DHT and T concentrations. Use V and
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V (1,2) to denote the uptake rate function and its first two approximations, respectively.

V (Ts) = (Rt −Q)
(
kTa T (Ts) + kDa D(Ts)

)
(4.16)

V (1)(Ts) = vTs

[
kTa + kDa

αm
βD

1

vTs + αk

]
(4.17)

V (2)(Ts) = vTs
vTs + αk

vTs + αk + αm/h

[
kTa + kDa

αm
βD

vTs + αk + αm/h

(vTs + αk)
2 + αkαm/h

]
(4.18)

Remark 5. The steady state concentrations of bound AR (T:AR, DHT:AR) and free

AR can be written as functions (4.19) of Ts.

CT + CD = Rt
θ

1 + θ
, R = Rt

1

1 + θ
, θ =

kTa
kTd
T +

kDa
kDd

D. (4.19)

Proof. At steady state, C ′T = 0 and C ′D = 0 yield the respective identities CT =

kTa
kTd
TR and CD = kDa

kDd
DR. Set θ = kTa

kTd
T + kDa

kDd
D. Substituting them into the identity

CT + CD = Rt −R gives

CT + CD =

(
kTa
kTd
T +

kDa
kDd

D

)
R = Rt −R. (4.20)

The results quickly follow by solving for R with the middle equation and RHS, or by

substituting Rt −CT −CD for R in the middle equation then using the LHS to solve

CT + CD.

In Figure 4.1 the steady states in Eq. (4.19) are calculated using the quasi-steady

state approximations for T and D. Compared with the “actual” values, the differ-

ence is negligible for the 2nd-order approximation as expected from the error bound in

Eq. (4.14). Although the steady state expressions suggest that asymptotically (with

respect to serum T) activated AR is mostly comprised of T:AR (and intracellular

androgen of T). However, such behavior is predicted for unreasonably high serum T

concentrations. Figure 4.1 shows the steady state behavior for physiologically feasible

concentrations of serum T in humans (and rats) using experimentally-derived param-

eters which were assembled for modeling AR in Potter, Zager and Barton (2006);
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Eikenberry, Nagy and Kuang (2010). The general behavior as Ts →∞ is also shown

but does not represent behavior that would occur in modeling applications.

It remains to connect the new uptake function (4.16) with the phytoplankton

nutrient-uptake model as adapted by the PKN model. In doing so, the reasons for

focusing so closely on the uptake function will become more apparent. Thus far

the only relationship is qM = Rt. Observe from Eqs. (4.15) and Figure 4.1 that

for physiological ranges of Ts, the (approximate) intracellular concentration of free

DHT is either equal to or approximated by a Michaelis–Menten function of serum T.

Since DHT has an order of magnitude greater binding affinity than T, around 90%

of bound AR is comprised of DHT:AR. AR binding with DHT also induces greater

physiological response (Wright et al., 1996) than with testosterone. Recall that, while

Q was defined originally in Portz, Kuang and Nagy (2012) as the androgen quota, it is

defined here instead as the intracellular DHT:AR and T:AR complex concentrations.

Hence the Michaelis–Menten function used for uptake in the Portz, Kuang and Nagy

model may now be explained as a simplified approximation to Eqs. (4.16).

In summary, the mechanistically derived uptake function (4.16), together with

established molecular biology, provides a much greater phenomenological basis for

deriving a “cell quota” model of prostate cancer and ADT. Further reasons for giving

special attention to uptake are severalfold. First, it provides a degree of clarity on

how the mathematics connects with (or were intended to have connected with) the

biology. Although it follows from the simple process of assuming quasi-steady states,

deriving functions through this approach makes better interpretation of results. It has

explicit consideration of mechanisms which would, for example, affect the T→DHT

rate or relative binding activity. In fact, the major pathways to treatment resistance

can all be separately expressed by the AR quota Q and “uptake” function provide.
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Figure 4.1: Steady states of Model (4.2) calculated with the quasi-steady state
approximations of T and D and Rt = 80, α = 5, kcat = 8.276, αk = 70, kDa = 0.053,
kDd = 0.018, kTa = 0.14, kTd = 0.069, βD = 0.077, βT = 0.231, K = 2. (a)-(c)
Steady state dynamics over a physiological range of Ts for humans. (d) Snapshot
over an unrealistic range of Ts. As Ts →∞, the proportion of bound AR constituted
by T:AR approaches 100% while free T increases indefinitely. The free and bound
DHT concentrations are bounded above due to finite 5α-reductase and its saturating
reaction rate.
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4.7 AR Quota Model for ADT

Now the intracellular AR system (4.2) is used to establish a simple but descriptive

prostate cancer model suitable for interpreting numerical results within a biological

context. The goal is to derive a simple “cell quota” model such as (Portz, Kuang

and Nagy, 2012) but in such a way that the functions and parameters are explicitly

connected to the underlying biology. For example, in the Portz, Kuang and Nagy

model, free intracellular T and DHT are combined into a single variable represented

as a function of the serum testosterone concentration. Similarly the intracellular

T:AR and D:AR complexes are combined to represent the cell quota. If one were to

model a single cell population, it would take the form

X ′ = µX − δm
(qδ)

n

Qn + (qδ)n
X − δ0X,

Q′ = (Rt −Q)(kTa T + kDa D)−
(
(1− fD)kTd − fDkDd

)
Q− µQ,

P ′ = σ
Qp

Qp + (qσ)p
X − βPP,

(4.21)

where

T = vTs
vTs + αk

vTs + αk + αm/h
,

D =
αm
βD

vTs
vTs + αk

(vTs + αk)
2

(vTs + αk)
2 + αkαm/h

.

µ(Q) = µm
Qm

Qm + (qµ)m
.

(4.22)

Of course, to model the development of treatment resistance during androgen

deprivation therapy, model (4.21) is extended to a two-population system. Doing so

creates a system of 5 ODEs, as defined below. Let
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Xi(t): CS (i = 1) and CR (i = 2) cancer cells (1Ö106 cells)

Qi(t): “AR Quotas” (nM)

P (t): serum PSA concentration (ng mL-1)

Ts: serum testosterone concentration (nM)

X ′1 = µ1X1 − δ1X1 − ΛX1 + λX2

X ′2 = µ2X2 − δ2X2 + ΛX1 − λX2

Q′i = (Ri
t −Qi)(k

Ti
a Ti + kDi

a Di)− βiQi − µiQi,

P ′ = σ1
Qp

1

Qp
1 + qpσ1

X1 + σ2
Qp

2

Qp
2 + qpσ2

X2 + σ1
0X1 + σ2

0X2 − βPP,

(4.23)

where

µi = µim
(Qi)

m

(Qi)m + (qiµ)m
, δi = δim

(qiδ)
n

(Qi)n + (qiδ)
n

+ δi0,

Λ = c1
(s1)b

(Q1)b + (s1)b
, λ = c2

(Q2)b

(Q2)b + (s2)b
,

Ti = viTs
viTs + αik

viTs + αik + αim/hi
, Di =

αim
βiD

viTs (viTs + αik)

(viTs + αik)
2

+ αikα
i
m/hi

.

(4.24)

Model (4.23) has the same structure and number of equations as the PKN model (4.1).

However, there are many differences in its implementation. First, the proliferation

rates µi are no longer given by the Droop model for phytoplankton growth. The

reason is that the concepts of Q and the minimum quota in the PKN model are prob-

lematic (as discussed in section 4.4). Next, the model has androgen-dependent death

rate functions in addition to the constant baseline death rates.

Finally, the equation for Q′ includes the mechanistically derived “uptake” equa-

tion. While this adds more parameters and slightly increased computational com-

plexity, it may be simplified by rewriting αi
m

βi
D

and αim/hi as two separate parameters,

reducing the model’s total parameters by 4 (2 for each cell subpopulation). The
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Parameter Description Units

µim maximum specific proliferation rate h-1

µiq proliferation function constant nM

δim maximum specific death rate h-1

δiq apoptosis function constant nM

δi0 baseline specific death rate h-1

σi maximum specific PSA secretion rate ng mL-1 1Ö106 cell-1 h-1

σiq PSA production function constant nM

σi0 baseline PSA secretion rate ng mL-1 1Ö106 cell-1 h-1

c1 maximum X1 → X2 mutation rate h-1

c2 maximum X2 → X1 mutation rate h-1

s1 X1 → X2 mutation function constant nM

s2 X2 → X1 mutation function constant nM

µiq proliferation function constant nM

m and n proliferation and death rate coefficients dimensionless

p and b PSA secretion and mutation rate coefficients dimensionless

βi T and DHT loss rate* nM-1 h-1

Table 4.2: Parameters for the AR quota model (4.23). *βi is equal to the value
(1− f iD)kTid − f iDk

Di
d , where f iD is the steady state fraction of intracellular androgens

in the form of DHT.
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Case PKN model AR Quota model AR Quota model

(one population)

1 2.96 1.74 (1.81)* 4.67*

2 2.79 2.77 (3.18)* 6.85*

3 46.42 35.5 67.4

4 3.924 3.38 25.5

5 41.81 0.62 0.579

6 0.40 0.98 1.17

7 3.71 1.92 (1.62)* 1.73*

Table 4.3: MSE values from fitting the AR Quota Model (4.23) and PKN Model (4.1)
to the seven-patient clinical data from Akakura et al. (1993). Values with * are the
corrected MSEs which disregard serum PSA assays below the 2 ng mL-1 detection level
during the initial part of the study. All other serum PSA assays were made with a
lower limit of 0.2 ng mL-1 (Akakura et al., 1993).

parameter βi is actually equal to (1 − f iD)kTid − f iDk
Di
d where f iD is the steady state

fraction of intracellular androgens that are DHT. This reason is that Qi = Ci
T + CD

and so Q′ has the term −kTid Ci
T−k

Di
d Ci

D. The AR quota model (4.23) therefore gives a

strong basis for including the loss term for Q′, including what biochemical parameters

it represents.

4.7.1 Results

The seven-patient clinical data from Akakura et al. (1993) were used to validate

the AR Quota model and to provide a means for comparison with the PKN quota

model (4.1). Results for each patient are found in Figures 4.2 and 4.3. The mean

squared error (MSE) values, including those reported for the PKN model, are listed in

Table 4.3. Overall the new model provided better fits to the data. Besides achieving

improved or (marginally) different MSE values, the mechanistic derivation
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(b) Case 2
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(c) Case 3
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(d) Case 3 (1.5 treatment cycles)

Figure 4.2: Fitting the AR Quota Model (4.23) to the seven patient clinical data
from Akakura et al. (1993). Data points marked with “x” indicate serum PSA values
below the 2 ng mL-1 detection level which existed during the beginning of the study.
(a) Case 1: localized stage C, 3.5 cycles. (b) Case 2: localized stage C, 2.5 cycles.
(c) Case 3: stage C, 2.5 cycles. As with the PKN model (Portz, Kuang and Nagy,
2012), it was difficult to fit case 3 data. (d) Case 3, first 1.5 cycles.

It was found that the model with a single cell population is sufficient for describing

the observed dynamics for several cases. During the numerical tests there were a

number of interesting results that are worth noting. If the initial parameter guesses

are set so that expansion of the CR population is not possible then only the CS

population is used to fit the data. Figure 4.4 contains selected results of fitting with
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(a) Case 4
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(b) Case 5
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(c) Case 6
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(d) Case 7

Figure 4.3: Fitting the AR Quota Model (4.23) to Akakura et al. (1993), continued.
(a) Case 4: stage D1 with metastases, 2.5 cycles. (b) Case 5: stage C, 1.5 cycles. (c)
Case 6: stage D2, 1.5 cycles. (d) Case 7: stage D2 with bone metastases, 1.5 cycles.

one cell population. The results were obtained while testing various initial parameter

values for optimization and reflect “quick” tests. The single population is able to fit

the data from Case 1 relatively well.

4.8 Conclusion

Starting from the AR chemical kinetics models established in Potter, Zager and

Barton (2006); Eikenberry, Nagy and Kuang (2010), a relatively simple PCa model
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(b) Case 3
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(c) Case 4
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(d) Case 5
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(e) Case 6
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(f) Case 7

Figure 4.4: One population model. (a)-(b) Case 1. The model appears to fit the
PSA data well. Note the cell population size more than doubles and halves each cycle.
Further, the total androgen:AR complex concentration is upwards of 800 nM. (c) Case
3. An extreme example of changes in PSA levels due to changes in AR signaling but
not tumor size. (d)-(e). Case 4. Indications are that CR was developing. These
particular data suggest the need for a second population in the model.

has been derived. In particular, a mechanistic basis has been established for the

higher-level “cell quota” framework from Portz, Kuang and Nagy (2012). This new

model maintains the PKN model’s ability to fit clinical data (Akakura et al., 1993)

while providing a stronger link to the underlying biology. It can also fit the same data

using only one cell population, raising many interesting questions for future modeling

work.

A problem with ADT models is that only the PSA output is readily verifiable. A

model’s predictions for the two (or more) cancer cell subpopulations is largely based on

theoretical assumptions and parameterizations. These model outputs certainly may

be verified experimentally; however, regularly profiling tumors to determine, e.g., X1
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Figure 4.5: One problem with the two-subpopulation approach is that two solu-
tions can fit the same clinical data but with significantly different predictions. An
illustrative example is Model (4.23) fit to clinical case 1 from Akakura et al. (1993).
(a) predicts a disease state that remains largely sensitive to treatment for prolifer-
ation, PSA secretion, and survival. However, (b) predicts that the disease escapes
dependence on androgen for survival. While both solutions explain the observed
PSA dynamics, they have vastly different implications for effectiveness of continued
treatment.

and X2 is not plausible for practical or clinical purposes. Thus for clinical applica-

tions and in vivo data in general, the classification and relative sizes of the different

subpopulations is theoretical. Consequently it is a problem that these theoretical out-

puts add many degrees of freedom to the models. These model constructions enable

many different explanations for a single set of data.

How inter-subpopulation transitions are modeled may also exacerbate these prob-

lems. Androgen-dependent “mutation” rates are essentially ad-hoc enforcements of

observed behavior into models. Treatment resistance is treated as a binary phe-

nomenon: cancer cells either are completely sensitive to or have a fixed degree of

resistance to ADT. The transition to resistance is more likely a multi-step process

with many different mechanisms of resistance expressed in a single tumor (Edwards

and Bartlett, 2005b).

Figures 4.5 and 4.4 illustrate these points for the AR Quota Model (4.23). Fig-
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ure 4.5 shows two different solutions of the same model for a single clinical case.

Although both solutions provide relatively good fits of the PSA data, their theoret-

ical outputs have vastly different implications. In figure 4.5(a), responsiveness to

treatment is maintained but with a decreased apoptotic response. In figure 4.5(a),

apoptotic potential of the tumor is completely lost due to the CR population’s in-

dependence from Q for survival. Akakura et al. (1993) measured a 56% decrease in

prostate volume during the final treatment cycle. Assuming that the prostate size

is correlated to local tumor volume, then the first solution in figure 4.5(a) is more

reasonable. Nonetheless, the general pattern of tumor growth and regression in both

figures 4.5(a)–4.5(b) are consistent with observation.

In general, a good fit can be found for any single cycle. For multiple cycles,

finding a good fit becomes increasingly difficult. This problem may be due to the

aforementioned problems with the models. Figure 4.5 presents a comparison of the

two- and one- subpopulation models for two clinical cases. It should be noted that

these particular data represent only one and a half cycles of treatment. Hence the

one-population model sufficient for predicting the observed PSA dynamics—a second

cancer cell subpopulation is not necessary to fit the data. In fact, the two-population

model is arguably worse when considering the cost of additional parameters and

complexity.

4.8.1 Future Work

In a separate project, both the PKN and new AR quota models were used to

analyze clinical data from 86 patients treated with IAS for late-stage or biochemically

recurrent prostate cancer (see Bruchovsky et al. (2006) for an overview of the study).

The goal was to establish a feasible set or distribution of parameter ranges based

on these data. A question was if the fitted parameters for an individual patient’s
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data can be an indicator of prognosis via comparison with the others’ parameters and

outcomes. Then, as a next step, to investigate whether or not fitting only partial data

from a patient can predict the actual outcome. This ambitious project, not included

here, led to the realization that more work is needed before a simple ODE model can

aid in predicting clinical outcomes. While the model can fit these larger sets of data,

no conclusive answers to these questions were found.

Hirata, Bruchovsky and Aihara (2010); Hirata et al. (2012a,b) investigated these

questions with the same data but with a system of linear ODEs that are not readily

linked to the underlying physical biology. The authors made an important first step

in exploring the potential for PCa models to aid clinicians in treating patients with

ADT. Similar questions were also discussed in (Morken et al., 2014; Everett, Packer

and Kuang, 2014) but on a much smaller scale (using the 7 patient data in Akakura

et al. (1993)) and with models that share the same underlying issues as the PKN

model. It remains to be discovered how mathematical models of PCa can effect

improvements in ADT for advanced or metastatic prostate cancer. Thus far, it has

been demonstrated that models can successfully fit clinical data, albeit retroactively.

Much work remains to be done in this interdisciplinary research area in order to

realize the full potential of dynamical models of prostate cancer.
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