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ABSTRACT  

   

In this thesis we consider the problem of facial expression recognition (FER) from 

video sequences. Our method is based on subspace representations and Grassmann 

manifold based learning. We use Local Binary Pattern (LBP) at the frame level for 

representing the facial features. Next we develop a model to represent the video sequence 

in a lower dimensional expression subspace and also as a linear dynamical system using 

Autoregressive Moving Average (ARMA) model. As these subspaces lie on Grassmann 

space, we use Grassmann manifold based learning techniques such as kernel Fisher 

Discriminant Analysis with Grassmann kernels for classification. We consider six 

expressions namely, Angry (AN), Disgust (Di), Fear (Fe), Happy (Ha), Sadness (Sa) and 

Surprise (Su) for classification. We perform experiments on extended Cohn-Kanade (CK+) 

facial expression database to evaluate the expression recognition performance. Our method 

demonstrates good expression recognition performance outperforming other state of the art 

FER algorithms. We achieve an average recognition accuracy of 97.41% using a method 

based on expression subspace, kernel-FDA and Support Vector Machines (SVM) 

classifier. By using a simpler classifier, 1-Nearest Neighbor (1-NN) along with kernel-

FDA, we achieve a recognition accuracy of 97.09%. We find that to process a group of 19 

frames in a video sequence, LBP feature extraction requires majority of computation time 

(97 %) which is about 1.662 seconds on the Intel Core i3, dual core platform. However 

when only 3 frames (onset, middle and peak) of a video sequence are used, the 

computational complexity is reduced by about 83.75 % to 260 milliseconds at the expense 

of drop in the recognition accuracy to 92.88 %. 
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CHAPTER 1 

INTRODUCTION 

 

Human expressions are very important cues for understanding various forms of non-verbal 

communication. They convey the information about a person’s emotional state and so play 

a vital role in human computer interaction (HCI) based applications. Human expressions 

are primarily characterized through: 

 Emotion recognition based on speech 

 Expression recognition using visual information from facial images. 

Facial expression recognition has received a lot of attention in recent times. In this work 

we focus on extracting spatio-temporal information from facial images in order to 

recognize facial expression from video sequences. 

 

1.1 Related work in facial expression recognition 

For facial expression recognition (FER) there are two key steps: 1) image 

registration, and 2) feature extraction. Image registration is a preprocessing step that 

includes face detection, image alignment and normalization. In the feature extraction step, 

either only appearance based features are extracted (static techniques) or temporal 

information (dynamic technique) in addition to static features is extracted. Most of the 

static techniques extract the shape features such as landmark points or combination of 

various facial action units (AU). The static algorithms use appearance based features that 

represent the textural information in facial images using Local Binary Patterns (LBP), 

Histogram of Oriented Gradients (HOG) feature descriptors etc.  
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Although these methods perform very well in FER [10], they do not consider the 

temporal behavior of expressions. Facial expressions are very dynamic in nature and evolve 

with time. So it is more appropriate to use the temporal information for real time scenarios 

as in video based FER. In this work we focus on developing a framework for FER that 

extracts spatio-temporal features from video sequences. 

One of the earliest frameworks for video based expression recognition was 

proposed by Cohen et al. [7] using Hidden Markov Models (HMM) and Support Vector 

Machines (SVM) classifier. Cohn et al. [25] used active appearance model (AAM) based 

similarity normalized shape (SPTS) and canonical appearance (CAPP) features with SVM 

as the classifier. A popular algorithm with good recognition performance was proposed by 

Zhao et al. [11] using volume local binary patterns (VLBP) and LBP from three orthogonal 

planes (LBP-TOP/3D LBP, a simplified version of VLBP) to model the dynamic textures 

found in video sequences. Jain et al. [27] proposed a method for temporal modelling of 

shapes using latent-dynamic conditional random fields (LDCRF).  

Liu et al. proposed a method for video based human emotion recognition using 

partial least squares (PLS) regression on Grassmannian manifold [32]. Similar to our 

approach, all the frames in a video sequence are represented as a linear subspace. Shan et 

al. recently proposed a framework for dynamic FER using expressionlet features [33]. Each 

video sequence is modeled as a spatio-temporal manifold (STM) and each STM is 

statistically modelled on a universal manifold model (UMM).  

Although the algorithms presented so far achieve a good recognition performance, 

there are still some challenges in the current approaches that we try to address in this work. 

Within class variation for some expressions is very high and at the same time inter class 
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variations is minimal. This leads to poor discrimination between visually similar looking 

expressions such as fear, sad and angry. The nonlinear structure of the features representing 

the video sequence and subsequently, the underlying geometry of the feature space is not 

used for choosing the classifier with appropriate metrics. To overcome these problems we 

propose to use subspace representations and Grassmann manifold based learning 

techniques. 

1.2 Motivation for using subspace and Grassmann manifold based algorithms 

Subspace structures are used in many applications of computer vision and video processing 

especially for face recognition. In one of the very early instances it was proved empirically 

that different variations in facial images can be modelled by a low dimensional subspace 

under certain physical constraints [18, 20]. Another very popular use of subspace 

representation is in the use of Eigen faces for face recognition [19, 29].  

The main reason for the popularity of subspace based modelling of data especially 

in face recognition is that it provides a way to encapsulate the physical variations (such as 

different viewpoints of the subject or images with varying illumination) to a good degree 

of approximation in a single representation. Another advantage of using subspace based 

representation of a set of images characterized by a common property is that, it is 

computationally very efficient to just store a low dimensional subspace for an entire set of 

images or a video sequence and capturing the within class variations in a single subspace 

while removing the redundancy in the data. 

Although subspace based representations have been in use for a while now, only 

recently has there been a surge in understanding and using the underlying geometry of the 

subspace structures. If we use the traditional Euclidean based distance or similarity metrics 
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for classification, it would not be effective as the space of subspaces has non-trivial 

geometrical properties. So it is very important to characterize the geometrical property of 

these subspaces while devising recognition algorithms. Several works have shown that 

linear subspaces can be formally defined as points on Grassmann manifolds and 

subsequently developed frameworks for subspace based learning. Hamm et al. [1] 

presented a robust methodology for subspace based learning on Grassmann manifolds and 

proposed Grassmann kernels which can be used in conjunction with discriminant analysis 

techniques such as kernel FDA or linear classifiers such as k-Nearest Neighbors (k-NN) 

and SVM. Various subspace distance and similarity metrics have been defined on 

manifolds using the concept of principal angles and canonical correlation analysis.  

 

1.3 Thesis contribution 

In this thesis we develop a framework for facial expression recognition from video 

sequences. Our method is based on subspace based representations for data involving facial 

expression video sequences using local binary patterns and performing the classification 

using Grassmann manifold based learning techniques. We consider six expressions 

namely, Angry (AN), Disgust (Di), Fear (Fe), Happy (Ha), Sadness (Sa) and Surprise (Su) for 

classification. We compare the performance of our approach with several other algorithms 

and show that overall our method outperforms these current state of the art methods for 

expression recognition from video sequences. Our specific contributions are as follows: 

1) We present a framework for facial expression recognition from video sequences 

using Grassmann manifold based subspace learning techniques. We develop a 
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model to represent the video sequence in a lower dimensional expression subspace 

and also as a linear dynamical system using ARMA models.  

2) We successfully show good expression recognition performance from video 

sequences using Grassmann kernel based classifiers such as kernel-SVM, kernel 

Fisher Discriminant Analysis (KFDA) and achieve an accuracy of 97.41 % on the 

extended Cohn-Kanade (CK+) database [25]. 

3) We show that our method has good recognition accuracy (92.88%) even when only 

3 frames are used. Such an approach helps in significantly reducing the computation 

complexity; the runtime reduces by 83.75% on an Intel Core i3, dual core platform. 

 

1.4 Thesis organization 

The thesis is presented in five chapters and organized as follows: 

In chapter 2, we discuss feature extraction using local binary patterns (LBP) from facial 

images, present the examples of subspace structures found in video sequences of time 

varying patterns and geometrical interpretation of these subspaces as points on Grassmann 

manifolds. We also describe kernel functions on Grassmann manifolds, also known as 

Grassmann kernels and how these kernel functions can be used in kernel Fisher 

discriminant analysis of data points on Grassmann manifolds (Grassmann discriminant 

analysis, GDA) and demonstrate their use in linear classifiers such as k-NN, SVM. 

In chapter 3, we present the proposed framework for facial expression recognition from 

video sequences using subspace based representations and Grassmann manifold based 

learning techniques. 



  6 

In chapter 4, the results obtained in various experiments using various Grassmann manifold 

based learning algorithms such as subspace modelling, ARMA linear dynamical system 

models, Grassmann discriminant analysis are presented. 

In chapter 5, we conclude our work and present possible future directions of this research. 
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CHAPTER 2 

BACKGROUND 

 

In this chapter we present a brief overview of the subspace based representations and 

Grassmann manifold based learning techniques. The theory and mathematical concepts 

discussed in this chapter have been referred from well-known papers [1, 2, 4, 7, 10, 12, 15 

and 31]. In section 2.1 we provide a background of local binary pattern (LBP) and discuss 

its applications. In sections 2.2, 2.3, we present an overview of subspace/ARMA models, 

methodology for computing expression subspace and estimating the parameters of ARMA 

model. In section 2.4 we introduce Grassmann manifolds and subsequently in section 2.5 

we discuss various distance metrics that are used for similarity measurement on Grassmann 

manifolds. Sections 2.6 and 2.7 present an overview of kernel functions and discriminant 

analysis techniques. In sections 2.8 and 2.9 we discuss Grassmann kernels and Grassmann 

discriminant analysis (GDA). 

 

2.1 Local Binary Patterns as facial feature descriptors 

Local Binary Pattern (LBP) is a very popular technique for extracting texture and shape 

features from an image that has been primarily used for texture analysis [13]. It has also 

gained popularity in extracting facial features due its capability to encapsulate the texture 

information and hence has been used successfully for facial recognition tasks [12]. The 

major advantage of LBP is that it is invariant to illumination changes of the image and thus 

negates the effect of illumination variation. Also, LBP is computationally very simple, 

probably one of the simplest feature extraction methods in computer vision.  
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The original LBP operator was proposed by Ojala et al. in 1996. Since then different 

extensions to LBP have been proposed with better texture characterization. We use uniform 

pattern based LBP operator as our main facial feature extractor and refer the readers to the 

works presented in [11, 12] for more information on other variants of LBP. 

 

 

 

 

 

 

 

Figure 2.1: Illustration showing LBP computation. Picture is taken from scholarpedia 

introductory article on local binary patterns [8]. 

 

The uniform pattern based LBP operator basically labels each pixel of the image 

using a circular neighborhood (like a circular image kernel) as summarized in Figure 2.1. 

This circular neighborhood or kernel is parameterized by a) P, the number of sampling 

points on the circle and b) R, the radius of the circle. Generally for P sampling points, each 

pixel can take one of 2𝑃 possible LBP codes. Ojala et al. observed that for facial images, 

90% of the LBP codes are uniform patterns i.e. there are at most 2 transitions in a LBP 

pattern. For uniform pattern LBP with P=8, the total possible number of LBP codes is 59 

(58 for uniform and 1 code for the rest of the non-uniform patterns). Uniform pattern LBP 

operator is denoted by 𝐿𝐵𝑃𝑃,𝑅
𝑢2 . 
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Once LBP codes of an image are computed, the 59 bin histogram (for 𝐿𝐵𝑃𝑃,𝑅
𝑢2 ) 

forms the final feature vector which characterizes the facial image. However it has been 

observed in various psycho-visual experiments that to extract features characterizing facial 

expressions like various action units (action units are fundamental action individual 

muscles or group of muscles), it is more useful to divide the image into smaller blocks and 

compute LBP histogram of each block and concatenate all the histograms in a particular 

order to create the global feature vector. The main advantage of dividing the face into 

smaller blocks is that the global feature vector represents the local texture and the global 

shape of the face image. The process is summarized in Figure 2.2. 

 

 

 

 

 

Figure 2.2: Illustration showing LBP histogram generation. Picture is taken from 

scholarpedia introductory article on local binary patterns [8]. 

 

2.2 Subspace structure in images and video sequences 

In the field of facial recognition, historically, the images were modelled in high 

dimensional vector space (also called image space) where an image with 𝑛 pixels was 

considered as a data point in ℝ𝑛, a very high dimensional vector space. For example in case 

of hand written digit recognition (consider MNIST database, where each image is of 

size 𝑁 × 𝑁 pixels), the raw image pixels are arranged in row scan order to form the feature 
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vector in ℝ𝑁2
 vector space. Using a similar approach in facial recognition poses a 

challenge since variations in lighting, expression, viewpoint result in lower recognition 

accuracy. Also it has been proved that for objects that exhibit approximately Lambertian 

reflectance properties such as faces, the set of all reflectance functions obtained under a 

wide variety of lighting conditions can be approximated with a low-dimensional linear 

subspace. 

In the field of facial recognition, the data points lie on a very high dimensional 

space and hence pose a lot of challenges in organizing and modelling the data. Techniques 

that are robust against variations in pose, illumination and expression are based on 

dimensionality reduction of these data points. Note that the dimensionality of these images 

can vary from 2 to 9 depending upon the application. 

Use of subspace representations of facial data improves the accuracy because, 

subspaces minimize the within class variations and maximize the inter class variation. It 

also results in significant reduction in complexity for performing learning and classification 

tasks. In section 2.5 we describe how the geometry of the subspace structures is used to 

choose appropriate distance metrics for classification.  

In various approaches that involve learning of subspace structures, Hamm et al. [1] 

highlight a common problem. Feature extraction is done in non-Euclidean space using 

Euclidean distance metrics for similarity measurement. Hamm et al. [1] propose an 

alternative framework (which they refer to as Grassmann discriminant analysis), where the 

feature extraction and classification is performed in Grassmann manifolds. The advantage 

of such an approach is that appropriate distance metrics can be used for measuring the 

similarity between data points. The relationship between these low dimensional subspaces 
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and the underlying geometry of the data with Grassmann manifolds is very well studied 

[31, 3, and 4]. So Grassmann manifold based learning algorithms can be efficiently used 

on data containing linear subspace structures, especially to tackle variations in illumination, 

expression, facial features alignment and pose. 

Next we describe different subspace based modelling techniques for facial 

expression recognition from video sequences.  

 

2.3 Computing subspaces 

We present two techniques for modelling the data in low dimensional subspaces. 

1) Computing the expression subspaces for each video sequence of a subject exhibiting a 

particular emotion under a constant pose, 2) Modelling the spatio-temporal dynamics of 

facial expression video sequences using linear dynamical system models such as Auto-

Regressive Moving Average (ARMA). 

2.3.1 Computing expression subspaces from video sequences 

Consider any database which contains video sequences of different emotions expressed by 

various subjects. As a pre-processing step, each image is first converted into grayscale 

format and then is cropped and aligned using facial feature points such as eyebrows, mouth 

or landmark points so that only the facial region is used for further analysis.  For every 

frame in the sequence, a LBP histogram (computed from user specified LBP parameters) 

is generated and used as a feature descriptor encapsulating the properties of facial texture 

as explained in earlier sections. Let us assume that this feature vector is of length 𝐷 and 

that there are 𝑁 number of frames in a particular sequence. The number of frames can vary 
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from subject to subject, but there needs to be at least 2 frames (neutral and peak frame) per 

sequence.  

The ensemble of all image data is organized into a data matrix 𝑋 of size 𝐷 × 𝑁, 

where each column vector is the LBP feature vector of the corresponding frame. Using 

Singular Value Decomposition (SVD), the 𝑚 − dimensional orthonormal basis vectors 

(obtained from 𝑚 largest singular values) of 𝑋 matrix are computed. The corresponding 

orthonormal basis vector matrix 𝑈 is of dimension 𝐷 × 𝑚 which represents the 𝑚 −

 dimensional subspace of the video sequence.  

2.3.2 Estimating the parameters of ARMA model representation of a video sequence 

Time varying patterns or textures such as video sequences of human expressions can be 

modelled as a linear dynamical system (LDS). LDS models are very useful to embed both 

the spatial and temporal information from the data and are hence used for a variety of tasks 

such as changing actions/gestures etc. There are several LDS based models such as Auto-

Regressive (AR) model, Auto-Regressive Moving Average (ARMA) model etc. We 

consider ARMA model for our work. For more details about ARMA model readers can 

refer to [3]. 

The generalized continuous time domain ARMA model can be represented 

mathematically as: 

𝑌(𝑡 + 1) = 𝐴𝑡𝑋(𝑡) + 𝑉(𝑡) (2.1) 

𝑌(𝑡) = 𝐶𝑡𝑋(𝑡) + 𝑊(𝑡) (2.2) 

where t is the time instant,  𝑉(𝑡) and 𝑊(𝑡) are noise components modelled as zero mean 

white Gaussian noise. As we are not synthesizing the data, we ignore the noise components 

in our model. The time instant can be used as an indexing parameter for the frames in the 
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sequence starting from the neutral frame to the peak frame. 𝑌(𝑡) is the 𝐷 × 1 observation 

vector, 𝑋(𝑡) is the hidden state vector, 𝐴𝑡 is the transition matrix, 𝐶𝑡 is measurement 

matrix. The closed form procedure for building an ARMA model can be described as 

below: 

For a given sequence the feature vectors extracted from each 

frame 𝑓(1), 𝑓(2), …  , 𝑓(𝑡) can be organized as a data matrix Z with size D x N where 𝑁 is 

number of frames,  𝐷 is the length of the feature vector and 𝑡 is the time instant. First we 

compute the closest rank 𝑚 approximation to 𝑍 using SVD, where 𝑚 is the number of 

dimensions in the subspace. Let [𝑈, 𝑆, 𝑉] be the SVD of the data matrix 𝑍. Then the model 

parameters 𝐴, 𝐶 in closed form for each sequence is given by: 

𝐶 = 𝑈, 𝐴 = 𝑆𝑉𝐷1𝑉′(𝑉𝐷2𝑉′)−1𝑆−1, where 𝐷1 = [0 0 ; 𝐼𝑁−1 0] 𝑎𝑛𝑑 𝐷2 = [𝐼𝑁−1 0; 0 0], 

and 𝐼𝑁 is an identity matrix of size 𝑁 × 𝑁. 

The observability matrix is given by: 

𝑂 = [𝐶; 𝐶𝐴; 𝐶𝐴2; … ; 𝐶𝐴𝑚−1] (2.3) 

  

2.4 Stiefel and Grassmann manifolds 

In this section we briefly introduce the Stiefel and Grassmann manifolds followed by the 

required tools for enabling recognition algorithms. 

2.4.1  Stiefel manifold 

Let 𝑌 be a 𝐷 × 𝑘 matrix whose elements are real numbers and 𝑌 is an orthonormal matrix 

i.e. 𝑌′𝑌 = 𝐼𝑘 . The Stiefel manifold is defined as follows: 
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Stiefel manifold 𝑆(𝑘, 𝐷) is the set of 𝑘 − frames in ℝ𝐷, where a 𝑘 − frame is a set 

of 𝑘 orthonormal vectors in ℝ𝐷.  Each element of 𝑆(𝑘, 𝐷) provides an orthonormal basis 

for a 𝑘 − dimensional subspace of ℝ𝐷. 

2.4.2 Grassmann manifold 

Let 𝐼 be a feature vector extracted from an image (which belongs to a set of 𝑘 images) with 

a resolution of 𝐷, i.e. 𝐼 ∈ ℝ𝐷 where 𝐼 is represented as a column vector of size 𝐷. A 

Grassmann manifold denoted by 𝐺𝑘,𝐷 or 𝐺(𝑘, 𝐷) is defined as the set of all 𝑘 −

 dimensional linear subspaces of ℝ𝐷 . A linear subspace formed from a set (𝑘) of images 

in ℝ𝐷 represented by orthonormal column matrix 𝑌 of dimension 𝐷 by 𝑘 can be identified 

as a point on Grassmann manifold. Two elements 𝑌1, 𝑌2 ∈ 𝐺𝑘,𝐷 are equivalent 

iff 𝑠𝑝𝑎𝑛(𝑌1) = 𝑠𝑝𝑎𝑛(𝑌2). 

Since we encode the sets of images characterized by a common property as points 

on the Grassmann manifold, in the next section we will explore the distance metrics on 

Grassmann manifolds which can be used from similarity measurement of different 

subspaces. 

 

2.5 Subspace distances metrics for similarity measurement on Grassmann 

manifolds 

Consider a Grassmann manifold 𝐺(𝑘, 𝐷) representing 𝑘 − dimensional linear subspace of 

ℝ𝐷 obtained by SVD of data matrix 𝑋 of size 𝐷 by 𝑚 ( 𝑚 distinct points or set of images 

organized as a data matrix 𝑋 where each column is a data vector). As mentioned earlier, by 

representing the set of images as linear subspaces, a group of images or a video sequence 
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represented as points on Grassmann manifolds and hence distance measures specific to 

Grassmann manifold can be used. 

It is very popular to use principal angles to measure the similarity (closeness) or 

variation between the subspaces. This method of analysis is also known as canonical 

correlation analysis. Using principal angles, various distance measures have been defined. 

Before discussing the subspace distance metrics, let us understand the mathematical 

representation of points on Grassmann manifold. 

Consider a set of images characterized by a common property such as a video 

sequence with 𝑚 image frames, where the subject’s expression changes from neutral to 

peak emotion. Let the size of feature vector representing each frame be 𝐷 and hence each 

image can be seen as a data point in ℝ𝐷 . The collection of feature vectors corresponding 

to 𝑚 images is organized as a 𝐷 × 𝑚 matrix 𝑋. The 𝑚 − dimensional linear subspace 

spanned by these 𝑚 images is obtained by computing the 𝑘 -dimensional orthonormal basis 

vectors (using Eigen value decomposition or SVD of 𝑋). Let 𝑌 be the matrix that contains 

these orthonormal vectors as its columns. 

Let  𝑌𝑖 and 𝑌𝑗  be two such orthonormal matrices of size 𝐷 × 𝑚 representing 2 video 

sequences or 2 sets of images. The principal angles between these two subspaces 

span(𝑌𝑖) and span(𝑌𝑗) can be computed from the SVD of the product of the two matrices 

i.e. the covariance matrix 𝑌𝑖
′𝑌𝑗. From the SVD of 𝑌𝑖

′𝑌𝑗  principal angles 𝜃 = [𝜃1, 𝜃2, … , 𝜃𝑚]  

can be computed as: 

𝑌𝑖
′𝑌𝑗 = 𝑈𝑆𝑉′, 𝑤ℎ𝑒𝑟𝑒 𝑈 = [𝑢𝑖 … 𝑢𝑚], 𝑉 = [𝑣𝑖 … 𝑣𝑚], 𝑆 = 𝑑𝑖𝑎𝑔(cos 𝜃𝑖 … cos 𝜃𝑚 ),     (2.1)      

0 ≤ 𝜃1 ≤ ⋯ ≤ 𝜃𝑚 ≤
𝜋

2
 ,  
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1 ≥ cos 𝜃𝑖 ≥ ⋯ ≥ cos 𝜃𝑚 ≥ 0 

As it can be observed the 1st principal angle 𝜃1 is the smallest and the corresponding cosine 

i.e. the 1st canonical correlation is the largest. The Riemannian distance between the two 

subspaces 𝑠𝑝𝑎𝑛(𝑌𝑖) 𝑎𝑛𝑑 𝑠𝑝𝑎𝑛(𝑌𝑗), i.e. geodesic or arc length distance between two points 

on the Grassmann manifold is given by  

𝑑(𝑌𝑖, 𝑌𝑗) = ∑ 𝜃𝑘
2

∀ 𝑘

= ‖𝜃‖2 (2.4) 

 

Figure 2.3: Subspaces spanned by 𝑌𝑖, 𝑌𝑗  in input space ℝ𝐷 can be visualized as points on 

Grassmann manifold 𝐺(𝑚, 𝐷). The picture is taken from [1]. 

 

For further details about various other valid distance metrics and the relevant proofs, 

readers can refer to [1]. Different types of distances on Grassmann manifold are 

summarized in Table 2.1. The projection kernel which satisfies the properties of 

Grassmann kernel and discussed in later sections is derived using projection distance 

metric. 
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Distance metric Expression in terms of principal angles 

Projection 

𝑑𝑝𝑟𝑜𝑗 = (∑(sin2 𝜃𝑖)

𝑚

𝑖=1

)

1
2

 

Binet-Cauchy 

𝑑𝐵𝐶 = (1 − ∏ cos2 𝜃𝑖

𝑚

𝑖=1

 )

1
2

 

 

Procrustes 1 
𝑑𝑃1 = 2 (∑(sin2( 𝜃𝑖 /2))

𝑚

𝑖=1

)

1
2

 

Procrustes 2 
𝑑𝑃2 = 2 sin(

𝜃𝑚

2
) 

Max correlation √2 sin 𝜃1 

Min correlation sin ( 𝜃𝑚) 

Table 2.1: Subspace distance metrics in terms of principal angles 

 

For Grassmann manifolds or for any geometrical structure in general, using only 

distance based metrics for similarity measurement between the data points in that data 

space limits the amount of statistical analysis that can be performed with the data. An 

alternative approach can be adopted using positive definite kernel functions on the 

manifold. Using the kernel functions we can transform the existing nonlinear space of the 

data to higher dimension linear spaces such as Hilbert space. More about kernel functions, 

kernels on manifolds which are called as Grassmann kernels and the associated subspace 

based learning techniques are explored and discussed in the next few sections. 
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2.6  Kernel functions 

Kernel functions are generally used whenever the original space on which the data points 

lie is complex or if the decision boundary for separation of the data points belonging to 

different classes is nonlinear. As an example, if the original data points lie on a low 

dimensional vector space but is complex in structure, we can do a nonlinear transformation 

of the data into a higher dimensional vector space. Such a transformation make it easy for 

the learning algorithms to classify or automatically assign the data points to a particular 

cluster in the higher dimensional feature space.  

For instance, in Figure 2.4 in the original data space [𝑥1, 𝑥2], the decision boundary 

is nonlinear and hence it is not possible to classify the data using a linear classifier. 

However if we use the feature map 𝜙, we can transform the data into a 3 dimensional 

feature space where the decision boundary is now a 2 dimensional hyperplane and the 

classification in this transformed space is a much easier task. 

 

Figure 2.4: An example to illustrate feature maps. Image captured from [15] 
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For most of the linear classifiers such as SVM, Linear Discriminant Analysis 

(LDA), k-nearest neighbors (k-NN) etc., the important aspect is to find the decision 

boundary either in input space or some higher dimensional feature space. However it is 

computationally very inefficient to transform each point in the input space to the 

corresponding data point in a higher dimensional feature space. Since a hyperplane can be 

defined using inner products of the data points in the new feature space we can just compute 

the inner products in the new feature space. These inner products in the feature space can 

be mathematically expressed as a function of the data points in the original input space and 

is called a kernel function. A kernel function can also be thought as a nonlinear similarity 

measure of data in the original space that corresponds to a linear similarity measure in 

feature space. Every kernel function needs to satisfy certain properties that are briefly 

discussed in the subsequent sections. 

2.6.1 Symmetric positive definite kernel property: A function 𝑘 ∶ 𝑋 ×  𝑋 →  ℝ is a 

positive definite kernel iff it is symmetric, i.e. 𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑘(𝑥𝑗 , 𝑥𝑖) for any 2 data points 

𝑥𝑖 , 𝑥𝑗 ∈ 𝑋 and positive definite, i.e. 

∑ ∑ 𝑎𝑖𝑎𝑗𝑘(𝑥𝑖 , 𝑥𝑗) ≥ 0

𝑛

𝑗=1

𝑛

𝑖=1

 (2.5) 

For any 𝑛 > 0, any 𝑛 objects 𝑥𝑖 , … , 𝑥𝑛 ∈ 𝑋, and any real numbers 𝑐𝑖, … , 𝑐𝑛 ∈ ℝ. 

2.6.2 Mercer’s theorem: 

Mercer’s theorem is a fundamental theorem which every kernel function has to satisfy.  

A kernel function 𝐾(𝑥, 𝑦) is a symmetric function that can be expressed as inner product 

in the feature space i.e. 
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𝐾(𝑥, 𝑦) = 〈 𝜙(𝑥), 𝜙(𝑦) 〉 (2.6) 

for some 𝜙 if 𝐾(𝑥, 𝑦) is positive semi definite, i.e. 

∫ 𝐾(𝑥, 𝑦)𝑔(𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦 ≥ 0      ∀𝑔 (2.7) 

Or, equivalently the kernel matrix, 

[
𝐾(𝑥1, 𝑥1) 𝐾(𝑥1, 𝑥2) ⋯

𝐾(𝑥2, 𝑥1) ⋱  
⋮   

 ] , is positive semi-definite for any collection {𝑥1, 𝑥2, … 𝑥𝑛}. 

Mercer theorem is a simple extension of the above discussed kernel properties to a compact 

subspace 𝒳 in ℝ𝐷. A kernel function can be expressed in terms of Eigen values 𝜆𝑖 and 

Eigen functions 𝜓𝑖  as: 

𝑘(𝑥, 𝑦) = ∑ 𝜆𝑖𝜓𝑖(𝑥)𝜓𝑖(𝑦)

∞

𝑖=1

 (2.8) 

The above condition is true if the kernel function 𝑘: 𝒳 × 𝒳 → ℝ is a positive definite 

symmetric and continuous kernel function of the integral operator 𝑇𝑘 ∶ ℒ2(𝒳) →

ℒ2(𝒳),    (𝑇𝑘𝑓) = ∫ 𝑘(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦
𝒳

, and it satisfies the following property: 

∫ 𝑘(𝑥, 𝑦)𝑓(𝑥)𝑓(𝑦)𝑑𝑥𝑑𝑦 ≥ 0     ∀𝑓 ∈ ℒ(𝒳)
𝒳2

 
(2.9) 

As a corollary, if a kernel function satisfies Mercer’s theorem, then there is always a feature 

map 𝜙: 𝒳 → ℋ , such that 𝑘 becomes an inner product in the feature space. Here 𝒳 is the 

input space and ℋ is the feature space (Hilbert space). 

 

2.7 Kernel discriminant analysis 

Linear discriminant analysis (LDA) is a technique for computing a low dimensional 

subspace of the input space while preserving the discriminant features of multi-class data. 
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It can be also visualized as a projection where the class separation is maximized and in-

class variation minimized. LDA and different extensions of LDA like non parametric 

discriminant analysis (NDA) find a subspace that maximizes the ratio of between class 

scatter SB and within class scatter SW after the data is projected onto the subspace.  

Consider a data set of vectors {𝑥1, … , 𝑥𝑁} each with a dimension of D, with a 

corresponding labels vector {𝑦1, … , 𝑦𝑁}.The labels take values ranging from 1 to C 

corresponding to each class. The assumption is that each class denoted by c has 𝑁𝑐 number 

of samples. 

𝜇𝑐 =
1

𝑁𝑐
 ∑ 𝑥𝑖{𝑖|𝑦𝑖 = 𝑐} , is then mean of the class c. 

𝜇 =
1

𝑁 
 ∑ 𝑥𝑖𝑖 , is the global mean of all the data vectors. 

With such a distribution of data vectors and labels, the between-class and within 

class scatter matrices of linear discriminant analysis (or Fisher discriminant analysis, FDA) 

can be mathematically expressed as follows: 

𝑆𝐵 =
1

𝑁
 ∑ 𝑁𝑐(𝜇𝑐 − 𝜇)(𝜇𝑐 − 𝜇)′

𝐶

𝑐=1

 (2.10) 

𝑆𝑊 =
1

𝑁
 ∑ ∑ (𝑥𝑖 − 𝜇𝑐)(𝑥𝑖 − 𝜇𝑐)′

{𝑖|𝑦𝑖 = 𝑐}
 

𝐶

𝑐=1

 (2.11) 

Generally the objective function for multi-class data is given by multi-class Rayleigh 

quotient 

𝐽(𝑊) = 𝑡𝑟[(𝑊′𝑆𝑊𝑊)−1(𝑊′𝑆𝐵𝑊)] (2.12) 

W is called as the projection matrix of size D × d, d is the subspace dimension to which 

we are projecting the data. The optimal W can be found by Eigen value decomposition 
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of 𝑆𝑊
−1𝑆𝐵. The maximum number dimension that we can project to is limited to C-1 as the 

rank of the  𝑆𝑊
−1𝑆𝐵 matrix is C -1. So, effectively we have achieved the dimensionality 

reduction by projecting the data onto the subspace spanned by column vectors of 𝑊.  

2.7.1 Kernel Fisher Discriminant Analysis  

Kernels discussed earlier can be used with LDA to perform classification on nonlinear data. 

A nonlinear extension to LDA is called as Kernel Fisher Discriminant Analysis or also 

known as Nonlinear Discriminant Analysis. 

𝜙 ∶ ℱ → ℋ is a feature map from the input space to a higher dimensional Hilbert 

space. Let K be the kernel matrix representing this matrix of size 𝑁 × 𝑁 i.e. there are N 

data points in the input space. The projection matrix for the new feature space can be 

written as a function of K i.e. 𝑊 = 𝐾𝛼 and the transformed objective function described 

earlier (i.e. Rayleigh quotient) is given by: 

𝐽(𝑊) = 𝐽(𝐾𝛼) = 𝐽(𝛼) =
𝛼′𝐾′𝑆𝐵𝐾𝛼

𝛼′𝐾′𝑆𝑤𝐾𝛼

=
𝛼′𝐾 (𝑉 −

1
𝑁 1𝑁1𝑁

′ ) 𝐾𝛼

𝛼′(𝐾(𝐼𝑁 − 𝑉)𝐾 + 𝜎2𝐼𝑁)𝛼
 

(2.13) 

In the above equation, 1𝑁 is a uniform unit vector of length N, V is a block diagonal matrix 

whose Cth element is the uniform matrix 
1

𝑁𝐶
1𝑁𝐶

1𝑁𝐶
 ′  .Similar to the procedure of computing 

the optimal W for LDA from the eigen value decomposition of 𝑆𝑊
−1𝑆𝐵 , the optimal value 

of 𝛼 is computed from the eigen vectors of  𝐾𝑊
−1𝐾𝐵 ,where 𝐾𝑊 and 𝐾𝐵 are given by: 

𝐾𝐵 = 𝐾 (𝑉 −
1

𝑁
1𝑁1𝑁

′ ) 𝐾 (2.14) 

𝐾𝑊 = (𝐾(𝐼𝑁 − 𝑉)𝐾 + 𝜎2𝐼𝑁) (2.15) 
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2.8 Grassmann Kernels 

We discussed about the subspace distances in Grassmann manifold for similarity 

measurement in earlier sections. But it can be very useful to use kernel functions for 

similarity measurement as we can effectively use linear classifiers. Even for nonlinear 

structures such as Grassmann manifold, valid kernel functions have been defined, using 

which we can transform the nonlinear manifold structure to linear Hilbert space. 

Projection and Binet-Cauchy distances discussed in the earlier sections satisfy the 

condition of positive definite kernels. It has been shown that these subspace based distance 

metrics discussed earlier can be extended to define positive definite kernel functions on the 

manifold and subsequently transform the manifold structure to Hilbert space by using the 

RKHS (Reproducing kernel Hilbert space) theory [15]. Also it has been successfully shown 

that Binet-Cauchy kernel and projection kernel can be used as a similarity measure for 

various applications such as facial recognition [1].  

A Grassmann kernel has to satisfy the following properties:  

Let 𝑘 : ℝD x m x ℝD x m → ℝ be a real valued symmetric function 𝑘(𝑌1, 𝑌2) i.e. 𝑘(𝑌1, 𝑌2) =

𝑘(𝑌2, 𝑌1). The function 𝑘 is a Grassmann kernel if  

1) 𝑘 is positive definite i.e.  

If ∑ ∑ 𝑎𝑖𝑎𝑗𝑘(𝑥𝑖, 𝑥𝑗) ≥ 0𝑛
𝑗=1

𝑛
𝑖=1 ,     ∀ 𝑥𝑖|𝑥𝑗 ∈ 𝑅𝐷×𝑚 & ∀ 𝑎𝑖| 𝑎𝑗 ∈ ℝ 

2) 𝑘 is invariant to different representations such as: 

𝑘(𝑌1, 𝑌2) = 𝑘(𝑌1𝑅1, 𝑌2𝑅2), ∀ 𝑅1𝑅2 ∈ 𝑂(𝑚) 

Projection and Binet-Cauchy kernels have been proved to satisfy the above mentioned 

fundamental kernel properties. 
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2.8.1  Projection Kernel 

The Projection kernel is defined as the Frobenius norm  

𝑘𝑝𝑟𝑜𝑗(𝑌1, 𝑌2) = ‖𝑌1
′𝑌2‖𝐹

2  (2.16) 

2.8.2 Binet-Cauchy Kernel 

The Binet-Cauchy kernel is defined as: 

𝑘𝐵𝐶(𝑌1, 𝑌2) = (det 𝑌1
′𝑌2)2 =  (det(𝑌1

′𝑌2𝑌2
′𝑌1))  (2.17) 

 

2.9 Grassmann Discriminant Analysis (Projection kernel + kernel FDA) 

The Grassmann discriminant analysis (GDA) was proposed by Hamm et.al [1]. They have 

shown that the traditional kernel based techniques can be extended to Grassmann manifolds 

by using positive definite Grassmann kernels such as Projection kernel, Binet-Cauchy 

kernel. Grassmann Discriminant analysis is basically Kernel Fisher Discriminant Analysis 

using one of the Grassmann kernels as the kernel function.  

GDA in conjunction with  linear classifiers such as k-NN, SVM for subspace based 

data models have been used successfully in various applications such as illumination/pose 

invariant face recognition, activity and gesture recognition etc. [1, 2, and 3]. In this thesis 

we use GDA technique for learning the expression subspaces and ARMA linear dynamical 

system models from video sequences. Out approach achieves very good expression 

recognition accuracy as will be shown in chapter 4.  
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CHAPTER 3 

PROPOSED FRAMEWORK 

 

In this chapter we present the proposed framework for facial expression recognition using 

subspace representations and Grassmann manifold based learning algorithms for 

classification. The six classes of expressions are Angry (AN), Disgust (Di), Fear (Fe), 

Happy (Ha), Sadness (Sa) and Surprise (Su). We describe our framework from LBP feature 

extraction of each frame to subspace/ARMA modelling followed by GDA (along with k-

NN / SVM classifier) based classification. We also specify the choice of parameters used 

for different algorithms along with the criterion for selecting them. The steps of this 

framework are summarized in Figure 3.1 and described in detail in section 3.1. 

Proposed framework for facial expression recognition (FER) from video sequences 

Input: M frames of a video sequence 

Step 1: Image preprocessing, alignment and normalization. 

Step 2: Frame level feature extraction (LBP) and subspace computation (SVD). 

Step 3: Kernel trick (Grassmann kernel) and feature space transformation (LDA). 

Step 4: Classification (1-NN, SVM, kernel-SVM). 

Output: The video sequence is classified into one of six expressions. 

Figure 3.1: Summary of the proposed framework 

 

3.1 Framework description 

Input: Images of a video sequence where M is the number of images/frames in a sequence. 
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Step 1 - Image pre-processing and alignment: Since the images can be of any resolution, 

the images in the sequences have to be preprocessed before feature extraction. This can be 

done using several ways. We use the ground truth information about the images such as 

landmark points provided in the database. We use these landmark points as a bounding box 

and then normalize the image with respect to fixed eye distance and finally resize the 

normalized image to a fixed resolution of 150 × 102. The process has been summarized 

in Figure 3.2. Although we have used landmark points for image registration, we have also 

tested our framework on facial images which were detected and aligned automatically. 

 

 

 

 

 

 

a) Original image b) Landmark points 

 

 

 

 

 

c) Cropped image d) Normalized image wrt eye distance 

Figure 3.2: Image preprocessing: image cropping, alignment and normalization 
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Step 2 - Feature extraction and subspace computation: We use local binary patterns 

(LBP) as facial feature descriptors. As discussed in Chapter 2 [10], each image is first 

divided into smaller blocks and LBP histogram is computed for each block. We 

performed a sweep analysis to arrive at a block size of 5 × 6 for best recognition 

performance. The concatenated histogram feature vectors of each frame in a video 

sequence are organized as the row vectors of global feature matrix 𝑋 of size 𝐷 × 𝑀, 

where D is the size of uniform local binary pattern based histogram feature vector which 

is extracted for each frame of the video sequence and 𝑀 is number of frames in the video 

sequence. 

The expression subspace spanned by images of the video sequence is then 

computed by computing the k-dimensional orthonormal basis vectors by singular value 

decomposition (SVD) of the feature matrix Y. The dimension of this matrix is of 

size 𝐷 × 𝑘 and effectively this matrix projects the subspace spanned by this video 

sequence as a point on the Grassmann manifold. 

We also model the video sequence as a linear-dynamical system such as an 

ARMA model [3] by following the procedure mentioned in Chapter 2. Let 𝑂 be the 

observability matrix of size  𝑘𝐷 × 𝑘 representing the ARMA model. Then a video 

sequence can be represented by either an expression subspace (matrix 𝑌 ) or as an 

ARMA model (matrix 𝑂 ). The next few steps are same irrespective of these two 

approaches. For simplicity, we represent the video sequence by the orthonormal 

matrix 𝑌 which can be seen as a point on Grassmann manifold. 𝑌 is of size 𝐷 × 𝑘 , 

where 𝐷 is the feature vector length of each frame and 𝑘 is subspace dimension.  
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Step 3 - Kernel trick and feature space transformation: The subspace or the column 

space spanned by the observability matrix (from ARMA model) lies on the Grassmann 

manifold which is a nonlinear space. To transform this feature space into a higher 

dimensional linear space we use kernel trick for optimal performance of the linear 

classifiers (SVM, k-NN). We use the Projection kernel (Grassmann kernel) discussed in 

Chapter 2 for this transformation. The kernel trick can be used with a variety of statistical 

techniques and classifiers. After using the kernel trick, a nonlinear classifier such as kernel-

SVM can be directly used for classifying the data points.  

Another approach is to use discriminant analysis techniques like kernel LDA 

followed by a linear classifier such as k-NN and SVM. Kernel LDA is a combination of 

kernel trick and LDA algorithm, where LDA is a supervised dimensionality reduction 

technique which projects the data onto a lower dimension Euclidean space such that within 

class variation is minimized and inter class variation is maximized. The kernel LDA 

algorithm when used with Grassmann kernels like projection kernel is called as Grassmann 

discriminant analysis (GDA). So from here on we refer the kernel LDA in our framework 

as GDA. We implemented our framework using both the approaches i.e. kernel SVM and 

GDA. 

Step 4 - Classification: After the training and test sample feature vector 

matrices 𝐹𝑡𝑟𝑎𝑖𝑛, 𝐹𝑡𝑒𝑠𝑡 are computed (described in Section 3.2), any linear classifier like k-

nearest neighbor (k-NN) or Support vector machines (SVM) can be used. We use 1-NN 

classifier (Euclidean distance) and SVM kernel with parameters: polynomial kernel, 

degree-1, cost-0.035 and gamma-0.2. We also use pre-computed kernel with SVM i.e. 

projection kernels computed on training and test samples i.e. 𝐾𝑡𝑟𝑎𝑖𝑛, 𝐾𝑡𝑒𝑠𝑡. 
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3.2 Training and testing 

First the kernel matrix needs to be computed from the training samples. Assume training 

set contains 𝑁𝑡𝑟𝑎𝑖𝑛 samples, then the training kernel matrix 𝐾𝑡𝑟𝑎𝑖𝑛 is computed using 

projection kernel between each pair of matrices {𝑌𝑖} in the training set i.e. 

[𝐾𝑡𝑟𝑎𝑖𝑛]𝑖,𝑗 = 𝑘𝑝𝑟𝑜𝑗(𝑌𝑖 , 𝑌𝑗) = ‖𝑌𝑖
′𝑌𝑗‖

𝐹
    ∀ 𝑌𝑖, 𝑌𝑗  𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡. 

From equation 2.11, the optimal value of 𝛼 is computed using 𝑁𝑐 − 1 largest eigen 

values and corresponding eigen vectors of 𝐾𝑤
−1𝐾𝐵, where 𝑁𝑐 is number of classes. The 

local optima 𝛼 can be represented as a matrix i.e. 𝛼 = {𝛼1, 𝛼2, … , 𝛼𝐶−1}, where each 

column of matrix 𝛼 is a eigen vector of 𝐾𝑤
−1𝐾𝐵. So size of matrix 𝛼 is 𝑁𝑡𝑟𝑎𝑖𝑛 × (𝑁𝑐 − 1). 

For Grassmann discriminant analysis, 𝛼 and training kernel matrix 𝐾𝑡𝑟𝑎𝑖𝑛 are used 

such that each training sample (𝑌𝑖 matrix, which is a point on Grassmann manifold) can be 

projected on a 𝑁𝑐 − 1 dimensional subspace spanned by 𝛼. So effectively each sample is 

now represented as a vector of length 𝑁𝑐 − 1 , all the training samples can now be 

represented by a new matrix 𝐹𝑡𝑟𝑎𝑖𝑛 of size 𝑁𝑡𝑟𝑎𝑖𝑛 × 𝑁𝑐 − 1 using the relation 𝐹𝑡𝑟𝑎𝑖𝑛 =

𝐾𝑡𝑟𝑎𝑖𝑛 ∗ 𝛼. 

For testing, we use the same set of optimal eigen vectors 𝛼 obtained from training 

set. Assume test set contains 𝑁𝑡𝑒𝑠𝑡 samples. Each test sample is projected on a 𝑁𝑐 −

1 dimensional vector space. All the test samples are represented by the matrix 𝐹𝑡𝑒𝑠𝑡 of size 

𝑁𝑡𝑒𝑠𝑡 × 𝑁𝑐 − 1 using the relation 𝐹𝑡𝑒𝑠𝑡 = 𝐾𝑡𝑒𝑠𝑡 ∗ 𝛼. 

The testing set kernel matrix 𝐾𝑡𝑒𝑠𝑡 is computed (using projection kernel) between 

each matrix {𝑌𝑖} in the test set with each matrix {𝑌𝑗} in training set i.e. 

[𝐾𝑡𝑒𝑠𝑡]𝑖,𝑗 = 𝑘𝑝𝑟𝑜𝑗(𝑌𝑖, 𝑌𝑗) = ‖𝑌𝑖
′𝑌𝑗‖

𝐹
    ∀ 𝑌𝑖, 𝑌𝑗  𝑖𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑠𝑒𝑡. 
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The parameters that we use in various stages of the framework are summarized in Table 

3.1. 

Stage Algorithm Parameter 

Image pre-

processing 

 Crop the images using the landmark points. Normalize 

all images wrt eye distance to a resolution of 150 ×

102 

Facial features LBP Block size = 5 × 6, 59 bin uniform patterns, radius R = 

2, sampling points P = 8 

Subspace SVD Subspace dimension = 2 

Discriminant GDA Kernel = Projection 

Classifiers k-NN 

SVM 

1-nearest neighbor with Euclidean distance metric 

SVM → polynomial kernel, with g = 0.2, c = 0.035, d = 

1 

Table 3.1: Parameters used in different stages of the framework 

 

3.3 Experimental evaluation 

We consider six methods based on the choice of classifier and the steps in feature 

transformation stage depend upon the feature space in which the data is modelled. 

1) Three methods using expression subspace for temporal modelling and using 

different classifiers such as kernel LDA + 1-NN, kernel SVM, kernel LDA + SVM. 

2) Three methods using ARMA model for temporal modelling and using classifiers 

kernel LDA + 1NN, kernel SVM, kernel LDA + SVM. 

We evaluate our framework primarily in terms of classification performance demonstrated 

using metrics like recognition accuracy and confusion matrix. The evaluation results are 

included in the next chapter. 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

In this chapter, we describe the experimental framework followed by the performance 

results. We also present the complexity results. 

4.1 Dataset  

We have performed the experiments on Cohn-Kanade (CK+) facial expression 

database [25] which is quite popular for facial expression recognition. The dataset includes 

593 sequences from 123 subjects with varying number of frames (6 to 60) per sequence. 

The video sequence contains images from neutral (first frame) to peak expression of the 

subject (last frame). All the images are of frontal pose. Each image is of resolution 640x490 

(8 bit grayscale) or 640x480 (24 bit RGB) pixels. Out of 593 sequences only 309 sequences 

are validated by FACS coders, so we used only 309 sequences for training and testing of 

our algorithm. 

The 309 sequences are from 106 subjects with 6 classes of expression i.e. Angry 

(AN), Disgust (Di), Fear (Fe), Happy (Ha), Sadness (Sa) and Surprise (Su). We randomly 

partition the dataset into 10 equal training (roughly 279 sequences) and testing sets 

(roughly 30 sequences) sampled uniformly across all the classes. We use 10 fold cross 

validation protocol, where we divide the entire dataset (i.e. set of all 𝑌𝑖  matrices) into 10 

sets uniformly across all the classes. For each iteration of testing the algorithm, the training 

is performed using 9 sets and validation is done on 1 set, the process is repeated 10 times. 

The recognition accuracy is then measured as the average of accuracies in each iteration. 

Before evaluating the recognition accuracy for every run, the random number generator in 

MATLAB is reset, so that the sequences that are used for testing are randomized. For every 
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trial, the same set of sequences are chosen for testing and training so that the results 

reported for various algorithms are consistent. In the rest of the chapter we report the 

recognition accuracy as a ratio of total number of sequences classified correctly with 

respect to total number of sequences available. The distribution of various classes is 

presented in Table 4.1. 

Expression class Number of sequences 

Angry (AN) 45 

Disgust (Di) 59 

Fear (Fe) 25 

Happy (Ha) 69 

Sadness (Sa) 28 

Surprise (Su) 83 

Total 309 

Table 4.1: Distribution of samples in CK+ database [25] 

 

4.2 Performance Results 

4.2.1 Results on original video sequences 

The following algorithms were implemented and tested for facial expression recognition 

(FER) in terms of recognition accuracy on CK+ database [25]: 

Method 1.1: Subspace modelling from entire video sequence + Grassmann discriminant 

analysis (GDA with Projection kernel) + 1-NN. 

Method 1.2: Subspace modelling from entire video sequence + Grassmann discriminant 

analysis (GDA with Projection kernel) + SVM. 

Method 1.3: Subspace modelling from entire video sequence + Kernel-SVM. 

Method 2.1: ARMA model from entire video sequence + Grassmann discriminant analysis 

(GDA with Projection kernel) + 1-NN. 
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Method 2.2: ARMA model from entire video sequence + Grassmann discriminant analysis 

(GDA with Projection kernel) + SVM. 

Method 2.3: ARMA model from entire video sequence + Kernel-SVM. 

The confusion matrices of all the methods are presented in Tables 4.2-4.7. 

 Angry Disgust Fear Happy Sad Surprise Class Accuracy 

Angry 45 0 0 0 0 0 100 % 

Disgust 0 58 0 0 1 0 98.31 % 

Fear 0 0 21 1 2 1 84 % 

Happy 0 0 0 69 0 0 100 % 

Sad 2 0 0 0 25 1 89.29 % 

Surprise 0 0 0 1 0 82 98.80 % 

Total Accuracy 97.09 % 

 

Table 4.2: Confusion matrix for FER using Method 1.1 

 Angry Disgust Fear Happy Sad Surprise Class Accuracy 

Angry 45 0 0 0 0 0 100 % 

Disgust 0 58 0 0 1 0 98.31 % 

Fear 0 0 21 1 2 1 84 % 

Happy 0 0 0 69 0 0 100 % 

Sad 2 0 0 0 26 0 92.86 % 

Surprise 0 0 0 1 0 82 98.80 % 

Total Accuracy 97.41 % 

 

Table 4.3: Confusion matrix for FER using Method 1.2 

 

 Angry Disgust Fear Happy Sad Surprise Class Accuracy 

Angry 45 0 0 0 0 0 100 % 

Disgust 0 58 0 0 1 0 98.31 % 

Fear 0 0 17 4 2 2 68 % 

Happy 0 0 0 69 0 0 100 % 

Sad 4 0 1 0 21 2 75 % 

Surprise 0 0 0 1 0 82 98.80 % 

Total Accuracy 94.50 % 

 

Table 4.4: Confusion matrix for FER using Method 1.3 
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 Angry Disgust Fear Happy Sad Surprise Class Accuracy 

Angry 45 0 0 0 0 0 100 % 

Disgust 0 58 0 0 1 0 98.31 % 

Fear 0 0 21 1 2 1 84 % 

Happy 0 0 0 69 0 0 100 % 

Sad 2 0 0 0 25 1 89.29 % 

Surprise 0 0 0 1 0 82 98.80 % 

Total Accuracy 97.09 % 

 

Table 4.5: Confusion matrix for FER using Method 2.1 

 

 

 

 Angry Disgust Fear Happy Sad Surprise Class Accuracy 

Angry 45 0 0 0 0 0 100 % 

Disgust 0 58 0 0 1 0 98.31 % 

Fear 0 0 21 1 2 1 84 % 

Happy 0 0 0 69 0 0 100 % 

Sad 2 0 0 0 25 1 89.29 % 

Surprise 0 0 0 1 0 82 98.80 % 

Total Accuracy 97.09 % 

 

Table 4.6: Confusion matrix for FER using Method 2.2 

 

 

 

 Angry Disgust Fear Happy Sad Surprise Class Accuracy 

Angry 45 0 0 0 0 0 100 % 

Disgust 0 58 0 0 1 0 98.31 % 

Fear 0 0 18 4 2 1 72 % 

Happy 0 0 0 69 0 0 100 % 

Sad 4 0 1 0 21 2 75 % 

Surprise 0 0 0 1 0 82 98.80 % 

Total Accuracy 94.82 % 

 

Table 4.7: Confusion matrix for FER using Method 2.3 
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Figure 4.1: Recognition performance of different algorithms for original set. 

 

The comparison of different methods in terms of recognition accuracy is presented 

in Figure 4.1. Methods 1.1, 1.1, 2.1 and 2.2 give the best results in terms of recognition 

performance with an accuracy of 97.09 %, 97.41%, 97.09 % and 97.09 %, respectively. A 

maximum recognition accuracy of 97.41% was achieved when Method 1.2 (SVM 

classifier) was used. However even with a simple 1-NN classifier, Method 1.1 achieves a 

recognition accuracy of 97.09 %. We also implemented the static technique for FER using 

LBP patterns of peak frame in each video sequence [10]. The static technique achieves an 

accuracy of 57.6% with a 1-NN classifier and increases to 90.29 % when SVM classifier 

is used. However in our approach there is not much difference in the recognition 

performance between the nearest neighbor classifier and SVM, which clearly shows that 

the features obtained by subspace/ARMA model of the video sequence are very good.  
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Another trend that is observed across all the approaches is that the recognition 

accuracy is 100 % for Angry and Happy emotions and is the least for Fear and Sad 

emotions. This matches the trend in most of the current state of the art approaches.  A 

comparison of all the methods in terms of overall FER accuracy and individual class 

recognition performance is presented in Table 4.8. 

 Method 

1.1 

Method 

1.2 

Method 

1.3 

Method 

2.1 

Method 

2.2 

Method 

2.3 

Angry 100 % 100 % 100 % 100 % 100 % 100 % 

Disgust 98.31 % 98.31 % 98.31 % 98.31 % 98.31 % 98.31 % 

Fear 84 % 84 % 68 % 84 % 84 % 72 % 

Happy 100 % 100 % 100 % 100 % 100 % 100 % 

Sad 89.29 % 92.86 % 75 % 89.29 % 89.29 % 75 % 

Surprise 98.80 % 98.80 % 98.80 % 98.80 % 98.80 % 98.80 % 

Avg. 

Accuracy 

97.09 % 97.46 % 94.50 % 97.09 % 97.09 % 94.82 % 

 

Table 4.8: Overall FER performance comparison of various methods on original set along 

with individual class accuracies. 

 

4.2.2 Results on different video sequence organizations 

In a video sequence, there is not much change in the facial expression between 

adjacent frames and so fewer frames could be used to reduce the computational complexity. 

We show that even with fewer frames, the recognition accuracy is decent.  

To test the recognition performance for different organizations, we have 

restructured the video sequences of CK+ database into 4 categories. These are 1) Original 

set, which contains the images in the same order as provided in the CK+ database 2) 

Extended set, in which the original sequence is extended such that, the new sequence 

contains all the images from neutral to peak emotion followed by peak to neutral emotions, 

3) Apex set, in which the first frame (neutral) and all the frames after the middle frame are 
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used and 4) 3-frame set, in which only 3 frames (neutral, middle and peak) are used as 

shown in Figure 4.3. We observe that, when the lesser number of frames are processed in 

a video sequence, there is a dip in the recognition performance by about 3-6%. However 

there is also reduction in complexity as fewer frames are processed with reasonable 

performance. Overall the performance of our algorithm is good for these different 

organizations of the video sequences. The recognition performance of Method 1.1 for 

various dataset organizations is presented in Figure 4.2. Recognition accuracy is highest 

for original set with 97.09 % followed by 96.76% for the extended set and 94.17 % for the 

apex set. The performance for 3-frame set drops, but still the accuracy is about 92.88 %, 

which is decent. 

It can also be noted that as the subspace model inherently tracks the emotion of the 

subject in a video sequence, the direction of the sequence has no impact over the 

recognition performance i.e. if the sequence begins with peak emotion and changes to 

neutral emotion or vice-versa there is no change in the recognition performance. 

 

Figure 4.2: Recognition performance of method 1.1 for different dataset organizations. 
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1) Original set: All the images in a video sequence are as is in the CK+ database. Images 

start from neutral to peak and contains all the images between peak frames. Number of 

frames, N = 13. 

2) Extended set: All the images in a video sequence are arranged such that a video sequence 

which originally ended in the peak frame (peak emotion) is now extended so that 

sequence contains all the frames from neutral to onset to peak and again back to neutral 

frame in reverse order. N = 25 

3) Apex set: The video sequence is reorganized such that it starts with the neutral frame 

followed by only apex frames, i.e. middle frame to peak frame. N = 8 

4) 3-frame set: 3 frames are used for the entire video sequence, i.e. the first, middle and 

neutral frame. N=3 

Figure 4.3: Different organizations of video sequences used for testing the performance 
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4.3 Performance with respect to other state-of-the-art approaches 

Different algorithms have been proposed for facial expression recognition using video 

sequences. One of the earliest and better performing algorithms was proposed by Zhao et 

al. [11] using VLBP (an extension to LBP in temporal domain) and LBP-TOP feature 

extractors. Although the performance is very good for this approach, it requires accurate 

alignment of images in a video sequence. Also the complexity of this algorithm is very 

high. 

Jain et al. proposed a method for temporal modelling of shapes using latent-

dynamic conditional random fields (LDCRF) [27]. They use uniform LBP operator for 

feature extraction for each frame. So this approach is similar to our approach in frame level 

feature extraction but the temporal modelling is based on LDCRF. 

Liu et al. proposed a method for video based human emotion recognition using 

partial least squares (PLS) regression on Grassmann manifold [32]. The frame level 

features are extracted using action unit aware deep networks (AUDN). Similar to our 

approach, all the frames in a video sequence are represented as a linear subspace and 

Grassmann kernels are used for discriminant analysis. Partial least squares (PLS) is used 

for the classification of the expressions. They achieve a recognition accuracy of 32.07 % 

on Emotion Recognition in the Wild Challenge (EmotiW 2013) dataset [34]. As they 

evaluate the recognition performance on a different dataset, we do not compare the 

performance of our approach with their method.  

Shan et al. recently proposed a framework for dynamic FER using expressionlet 

features [33]. Each video sequence is modeled as a spatio-temporal manifold (STM) and 
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each STM is statistically modelled on a universal manifold model (UMM). Discriminant 

analysis followed by SVM is used for classification. 

Most of the facial expression recognition algorithms extract either appearance 

based features (LBP, HAAR, SIFT, HOG, Gabor filters) or shape based features such as 

landmark points, active appearance models, FACS based action units etc. The recognition 

accuracy of these methods is presented in Table 4.9. Note that our approach performs better 

than all these algorithms. 

Group Algorithm Number of 

sequences 

Dynamic Protocol Recognition 

accuracy (%) 

[11] LBP-TOP+VLBP 374 Yes 10-fold 96.26 

[27] LDCRF, PCA +SVM 309 Yes 4-fold 95.79 

[28] PHOG 309 Yes 10-fold 95.30 

[33] STM-ExpLet 309 Yes 10-fold 94.19 

Ours LBP+subspace model 

+ SVM 

309 Yes 10-fold 97.46 

Ours LBP + ARMA model + 

1-NN 

309 Yes 10-fold 97.09 

Table 4.9: Recognition performance comparison with other algorithms 

 

4.4 Complexity analysis 

We perform experiments to study the execution times of different stages in our framework 

to process a group of 18 frames. All the measurements were done on Intel Core i3 (dual 

core, 2.13 GHz) processor using MATLAB profiler. Method 1.2 is chosen to demonstrate 

the complexity.  It is observed that LBP feature extraction takes majority of the 

computation time (97 %), the subspace and kernel computations require about 3 % of the 

total computation time.  
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The complexity of our methods is presented in Table 4.10. It can be observed that 

feature extraction followed by subspace/ARMA model and feature space transformation 

(kernel computations and/or LDA) majorly contribute to the execution time. When 

compared to subspace modelling, ARMA model computations require 15 % more time. 

The complexity of the best competing method for FER from video sequences using 

LBP-TOP features [11] in comparison with our methods is presented in Table 4.11.  

 Method 

1.1 

Method 

1.2 

Method 

1.3 

Method 

2.1 

Method 

2.2 

Method 

2.3 

LBP Feature extraction 

(entire sequence of 

about 18 frames) 

1.662 s 1.662 s 1.662 s 1.662 s 1.662 s 1.662 s 

Subspace/ARMA 

model computation 

32.1 ms 32.1 ms 32.1 ms 48.2 ms 48.2 ms 48.2 ms 

Kernel computation 13.3 ms 13.3 ms 13.3 ms 19.17 

ms 

19.17 

ms 

19.17 

ms 

Classification 3.3 ms 1 ms 0.5 ms 5.15 ms 0.1 ms 0.4 ms 

Total execution time 1.710 s 1.708 s 1.707 s 1.734 s 1.729 s 1.729 s 

Recognition accuracy 97.09 % 97.41 % 94.5 % 97.09 % 97.09 % 94.82 % 

Table 4.10: Execution times of different methods  

 

LBP-TOP algorithm [11] encapsulates the temporal information in the feature extraction 

stage itself. Since it processes a volume of blocks at a time and then repeats across all the 

blocks of a frame, the complexity is very high. 

 The method proposed by Jain et al. [27] is similar to our approach in frame level 

feature extraction (LBP). However the temporal modelling is performed using latent-

dynamic conditional random fields (LDCRF). As we could not get an optimized 

implementation of LDCRF, we did not measure the complexity of this approach. However 
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we think that the complexity of their approach would be similar to ours as LBP features 

are extracted for each frame. 

 Method 1.1 Method 1.2 Competing method [11] 

LBP Feature extraction  1.662 s 1.662 s 38.32 s 

Subspace/ARMA computation 32.1 ms 32.1 ms 

Kernel computation 13.3 ms 13.3 ms - 

Classification 3.3 ms 1 ms 8 ms 

Total execution time 1.710 s 1.708 s 38.328 s 

Table 4.11: Complexity comparison with the best competing method 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

In this thesis we present a framework for facial expression recognition (FER) from video 

sequences that achieves high recognition accuracy. 

First, we develop a model to represent a video sequence of facial expressions as a 

lower dimensional expression subspace and also as a linear dynamical system using 

ARMA model. We consider six expressions namely, Angry (AN), Disgust (Di), Fear (Fe), 

Happy (Ha), Sadness (Sa) and Surprise (Su) for classification. We use Grassmann kernels in 

kernel based classifiers such as kernel-SVM, kernel-FDA. Our method achieves an average 

recognition accuracy of 97.41% when expression subspace and kernel-FDA with SVM 

classifier is used.  

One of the advantages of the proposed framework is that the order of the sequence 

is not important as the expression subspace efficiently captures temporal information. Also 

by using this framework the within class variance is minimized and inter class variation is 

maximized due to which similarly looking expressions are classified with greater accuracy. 

We find that frame level LBP feature extraction and kernel computations require majority 

of the computation time (99%). On average this takes about 1.662 seconds for extracting 

these features from a group of 19 frames, on a dual core Intel Core i3 machine.We also 

show good recognition performance when lesser number of frames (atleast 3) per sequence 

are used for extracting facial features. Such a method significantly reduces the 

computational complexity by about 83.75 % (260 milliseconds). Overall using this 
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framework we show good recognition performance outperforming the state of the art FER 

algorithms. 

Some of the potential future directions of this research are as follows: 

1) Long term expression modelling of video sequences contatining a combination of 

expressions: Such time varying actions can be modeled as a collection of time 

invariant linear dynamical systems. The sequence can be divided into small 

temporal neighborhoods (10-15 frames), and in each neighborhood, the sequence 

can be modeled by time invariant dynamical systems. So a long sequence can now 

be seen as a sequence of subspaces, which can be represented as trajectory on a 

Grassmann manifolds. Trajectories on Grassmann manifold can be compared using 

techniques like dynamic time warping, switching linear dynamical systems etc. 

2) Optimizing the implementation of LBP feature extraction, Riemanninan and kernel 

computations: From our complexity analysis, we see that feature extraction at frame 

level using LBP and temporal modelling using subspace/ARMA techniques require 

99 % of the total computation time. So techniques to optimize these computations 

or map them onto custom hardware implementations or through multi-core 

implementations will help in reducing the computation time and make such a 

system be used in real-time scenarios. 
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