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ABSTRACT

Thousands of high-resolution images are generated each day. Detecting and analyzing variations

in these images are key steps in image understanding. This work focuses on spatial and multi-

temporal visual change detection and its applications in multi-temporal synthetic aperture radar

(SAR) images.

The Canny edge detector is one of the most widely-used edge detection algorithms due to its

superior performance in terms of SNR and edge localization and only one response to a single

edge. In this work, we propose a mechanism to implement the Canny algorithm at the block level

without any loss in edge detection performance as compared to the original frame-level Canny

algorithm. The resulting block-based algorithm has significantly reduced memory requirements

and can achieve a significantly reduced latency. Furthermore, the proposed algorithm can be easily

integrated with other block-based image processing systems. In addition, quantitative evaluations

and subjective tests show that the edge detection performance of the proposed algorithm is better

than the original frame-based algorithm, especially when noise is present in the images.

In the context of multi-temporal SAR images for earth monitoring applications, one critical

issue is the detection of changes occurring after a natural or anthropic disaster. In this work, we

propose a novel similarity measure for automatic change detection using a pair of SAR images

acquired at different times and apply it in both the spatial and wavelet domains. This measure is

based on the evolution of the local statistics of the image between two dates. The local statistics are

modeled as a Gaussian Mixture Model (GMM), which is more suitable and flexible to approximate

the local distribution of the SAR image with distinct land-cover typologies. Tests on real datasets

show that the proposed detectors outperform existing methods in terms of the quality of the sim-

ilarity maps, which are assessed using the receiver operating characteristic (ROC) curves, and in

terms of the total error rates of the final change detection maps. Furthermore, we proposed a new

similarity measure for automatic change detection based on a divisive normalization transform in

order to reduce the computation complexity. Tests show that our proposed DNT-based change de-

tector exhibits competitive detection performance while achieving lower computational complexity

as compared to previously suggested methods.
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Chapter 1

INTRODUCTION

Detecting visual changes in an image or between images has become a vital and fundamental sub-

ject in computer vision. The typical tasks of computer vision include but are not limited to: 1)

recognition, where the objective is to determine whether or not the image data contains some spe-

cific object, feature, scene or activity; 2) motion analysis, where an image sequence is processed

to track an object or to detect the occurrence of an event/activity or estimate the velocity at vari-

ous locations in the image; 3) 3D scene reconstruction, where the aim is to compute a 3D model

of the scene from a number of images of that scene. Nevertheless, most of these tasks require

detecting and understanding the variations in an image or between images. For example, in an im-

age, different objects are delineated by strong boundaries, which correspond to significant changes

in intensities, colors, texture, or other features. Thus, successfully detecting these changes could

greatly help in detecting and recognizing objects. Or, for an image sequence, each image contains

different content and it is important to detect the changes between each image in order to perform

further analysis, such as motion estimation or event detection. In summary, change detection plays

a very significant role in computer vision and image understanding.

Strong boundaries within an image are referred to as edges in the image processing and com-

puter vision fields. These edges can occur along different spatial features (luminance, texture or

color). Methods used to detect these strong boundaries are referred to as edge detection methods.

On the other hand, variations between images are referred to as inter-view changes if the images

correspond to views taken at the same time, or temporal changes if the views are taken at differ-

ent times. In the latter case, methods that detect these changes are referred to as temporal change

detection methods or change detection methods for short.

Edge detection finds a wide variety of applications including image segmentation, image en-

hancement, image fusion, compression, object detection and recognition, medical imaging and

3D reconstruction [1–5]. Edge-based image segmentation algorithms use edge cues to accurately

determine region boundaries. For example, segmentation methods such as geometric active con-

tours, gradient vector flow, and snakes use edge information to dictate their curve evolution [6–8].
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The correct indication of boundaries between overlapping objects allows for accurate object iden-

tification and precise motion analysis for several machine vision applications [9, 10]. This initial

procedure can often lead to further calculations such as area, perimeters, and shape classification

of scene elements once they have been isolated from the image background [11]. As the human

eye is very sensitive to edges, image enhancement algorithms, such as the Edge Detection-based

Image Enhancement (EDIE) algorithm [12, 13] process the edge information of images differently

than more homogenous information regions upon obtaining the raw output from an edge detector.

Edge detection has arguably been used most extensively for object detection and recognition, as

the features extracted by an edge detector can be used to form feature vectors for computer-aided

classification systems [14–16]. Therefore, edge detection is a field of constant research in image

processing and computer vision, and has received a lot of attention. A lot of research was conduct-

ed to design more robust edge detectors with improved performance in terms of accuracy, speed,

and resource usage (such as memory and power consumption).

Detecting regions of change in images of a scene taken at different times is of widespread in-

terest due to a large number of applications in diverse disciplines. Important applications of change

detection include video surveillance [17–19], remote sensing [20–22], medical diagnosis and treat-

ment [23–25], civil infrastructure [26, 27], underwater sensing [28–30], and driver assistance sys-

tems [31, 32]. Recently, with the availability of high-resolution remote sensing images, a lot of

research focused on designing good change detection algorithms for remote sensing images be-

cause of the great benefit these bring in monitoring the Earth’s surface. Usually, changes occurring

after a natural or anthropoid disaster are abrupt and seldom predictable. As a result, the knowledge

of the dynamics of either natural resources or man-made structures is a valuable source of informa-

tion in decision making to fight the disaster. In this context, satellite and air-borne remote sensing

sensors have proved particulary useful in addressing change-detection applications that are related

to environmental monitoring, agricultural surveys, urban studies and flooding monitoring [33]. In

recent years, especially after the availability of high-resolution synthetic aperture radar (SAR) im-

ages acquired by high-resolution space-borne systems, such as the European Space Agency (ESA)

first Earth Remote Sensing Satellite (ERS-1), TerraSAR-X and TanDEM-X, multi-temporal change

detection using high-resolution SAR images has received a lot of interest [34]. This is also due to
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the fact that the SAR imagery system can be operated under all-weather conditions. However, this

new generation of SAR sensors enabled a significant increase in data volume and date rates. As

a consequence, the large number of acquired images makes manual analysis very time consuming

and impractical, and thus this increased the need for reliable automatic change detection algorithms

for SAR images.

1.1 Problem Statement

Edge detection, as the one of the key stages of image processing and computer vision, has received a

lot of attention. A wide range of algorithms were proposed and implemented to tackle the problems

posed by edge detection. They include the Roberts [35], Prewitt [36], Sobel [37], Frei-Chen [38],

Canny [39,40], and Laplacian of Gaussian (LoG)/Marr-Hildreth methods [41] [42], to name a few.

Also, there have been few attempts to map some of the existing edge detection algorithms onto

silicon [43–52]. Among all existing edge detectors, the Canny edge detector has best edge detection

performance in terms of signal-to-noise ratio, edge localization and only one response to a single

edge and as a result, it is generally considered to be the edge detection standard [50]. Its superior

performance is due to the fact that the Canny algorithm performs hysteresis thresholding which

requires computing high and low thresholds based on the entire image statistics. Unfortunately,

this feature makes the Canny edge detection algorithm not only more computationally complex as

compared to other aforementioned edge detection algorithms, but also necessitates additional pre-

processing computations to be done on the entire image. This renders the Canny edge algorithm

not practical especially for large-size images and when the memory resources are constrained.

Also, a lot of popular computer vision and image processing algorithms are block-based in nature

and the original Canny algorithm cannot be easily combined with block-based algorithms as it

necessitates computing thresholds based on the entire image. Furthemore, a direct implementation

of the Canny algorithm has high latency, which is not suitable for real-time applications. This

problem is discussed and tackled in detail in Chapter 3.

Change information of the earth’s surface is becoming more and more important in monitoring

the local, regional and global resources and environment [53]. Especially, due to the all-weather

operating ability and the availability of high-resolution SAR imagery, the large collection of SAR

imagery makes it possible to analyze spatio-temporal patterns of environmental elements and the
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impact of human activities on the environment. Although plenty of successful application cases

have been reported for SAR image change detection, there are enormous challenges in analyzing

SAR imagery to derive useful and timely change information in relation to the earth’s environment

and human activities. Firstly, it has been generally agreed that change detection is a complicated

and challenging process [53]. Since the SAR images are taken at different times, radiometric

conditions can be quite different and thus can affect the accuracy of change detection algorithms.

Radiometric conditions can be influenced by many factors such as different imaging seasons or

dates, different solar altitudes, different acquisition angles, different meteorologic conditions and

different cover areas of cloud, rain or snow etc. No existing approach is optimal and applicable to

all cases. Secondly, one critical issue in multi-temporal SAR images is the detection of changes

occurring after a natural or anthropic disaster. Since the changes produced by these events are

abrupt and seldom predictable, they are often difficult to model, even for the same kind of change.

For example, an earthquake can have different features depending on when or where it happens.

Also, the changes of interest are all mixed up with normal changes if the time gap between the

two acquisitions is too long [54]. Finally, at present, for most change detection algorithms, the

degree of automation is low while the computational complexity is high, which prevents real-time

applications. In Chapter 4 to Chapter 6 of this report, some of these challenges are discussed and

novel solutions are proposed for improved multi-temporal SAR change detection.

1.2 Contributions

In Chapter 3 , we present a novel distributed Canny edge detection algorithm which has the abil-

ity to compute edges of multiple blocks at the same time. To support this, an adaptive threshold

selection method that predicts the high and low thresholds of the entire image while only process-

ing the pixels of an individual block, is proposed. This results in three benefits: 1) a significant

reduction in the latency; 2) better edge detection performance; 3) the possibility of pipelining the

Canny edge detector with other block-based image codecs; 4) significantly reduced memory re-

source requirements for large-size images. In addition, a low complexity non-uniform quantized

histogram calculation method is proposed to compute the block hysteresis thresholds. The pro-

posed algorithm is scalable and has very high detection performance. We show that our algorithm

can detect all psycho-visually important edges in the image for various block sizes. We also show
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that the proposed algorithm results in superior edge detection performance as compared to the o-

riginal Canny detector, especially in the presence of noise. Finally, the algorithm is mapped onto

a Xilinx Virtex-5 FPGA platform and tested using ModelSim. The FPGA implementation takes

only 0.721ms (including the SRAM read/write time and the computation time) to detect edges of

512× 512 images in the USC SIPI database when clocked at 100 MHz.The proposed distributed

Canny edge detector enables parallel implementations supporting fast real-time edge detection of

images and videos including those with full-HD content.

After a review of the exiting state-of-art multi-temporal change detection methods in Chapter 4,

novel statistical similarity measures for automatic change detection using multi-temporal SAR im-

ages are presented in Chapter 5 and 6. A similarity measure based on an analysis of the local

distribution of SAR images using a Gaussian Mixture Model and the KL distance is presented in

Chapter 5. The locally adaptive Gaussian Mixture Model is more suitable and flexible than the sin-

gle parametric mathematical distribution models to approximate the distribution of the actual SAR

image, which shows a varied scene presenting several distinct land-cover typologies. Also, novel

spatial-domain and wavelet-domain change detection methods are presented in Chapter 5 based on

the proposed similarity measure. Compared to existing detectors with higher order statistics both

in the spatial and wavelet domains, the proposed change detection methods are shown to exhibit

a better change detection performance in terms of the quality of the similarity maps, which are

assessed using the receiver operating characteristic (ROC) curves, and in terms of the total error

rates of the final change detection maps.

In Chapter 6, we propose a new image comparison method that is inspired by the recent success

of the divisive normalization transform (DNT) as a statistically and perceptually motivated image

representation. This DNT-based change detection algorithm exploits desirable properties of the

DNT, namely that the DNT was empirically shown to produce approximately Gaussian marginal

distributions and to reduce the statistical dependencies of the original linear wavelet representation.

This results in a one-parameter Gaussian statistical model, which allows efficient change detection.

Tests on real data show that our proposed DNT-based change detector exhibits competitive de-

tection performance while achieving lower computational complexity as compared to previously

suggested methods.
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1.3 Organization

This thesis is organized as follows. Chapter 2 presents background material about edge detec-

tion. This chapter covers basic concepts related to edge, edge detection and existing edge detection

algorithms. Chapter 3 presents a novel distributed Canny edge detection algorithm and correspond-

ing performance analysis for clean and noisy images. Chapter 4 gives an overview of the general

change detection system and existing methods for multi-temporal SAR images. Chapter 5 presents

a new GMM-based similarity measure for automatic change detection using multi-temporal SAR

images. Novel spatial-domain and wavelet-domain change detection methods are also presented

in Chapter 5 based on the proposed similarity measure. In Chapter 6, we propose a new reduced-

complexity similarity measure for automatic change detection based on the divisive normalization

transform (DNT). Finally, Chapter 7 summarizes the contributions of this work and discusses pos-

sible future research directions.

6



Chapter 2

EDGE DETECTION BASICS

2.1 Edge and Edge detection definition

Edges are a class of singularities which commonly appear in image processing [55] and locations

in an image at which intensity values change abruptly [56]. The process of determining edge pixels

within an image is known as edge detection [57]. In practical, an edge detector is usually defined

as a mathematical operator of small spatial extent that responds in some way to edges, usually

classifying every pixel in an image as either corresponding to an edge pixel or not [58]. This binary

decision output of an edge detector is usually referred to as an edge map. Edge detection is an

important step in several applications, especially when dealing with feature-based image processing

and scene analysis systems [59]. This is because edges determine the structure of objects in images

[11]. Edge detection is a useful, low-level form of image processing for obtaining a simplified

image [60]. Consequently, edge detection has been used as a preprocessing for many computer

vision and image processing tasks, such as image enhancement, image segmentation, image fusion,

information hiding, compression, and object detection and recognition, etc. The qualify of the edge

detection output often dictates the results of further processing [30]. Thus, accurately locating

edge pixel location in an image is of importance and the development of accurate edge detection in

both clean and noisy environments is a must. For many years, researchers have been dedicated in

designing good detectors. In this chapter, we will discuss the classical edge detection algorithms.

2.2 Existing Edge Detection Methods

Since edges are defined as points in an image at which intensity values vary sharply, most com-

mon edge detectors are derived from computing the directional derivative of the image. There

are two approaches. The one involves calculating the first partial derivative, also called gradient,

in the horizontal and vertical directions of the image [61], including the Roberts, Prewitt, Sobel,

Frei-Chen and Canny algorithms. Typically, these first derivative-based methods detect edges by

locating the maxima of the magnitude of the gradient of the image. In essence, they attempt to

match local image neighborhoods with predetermined edge patterns to determine edge points [62].

The other approach involves calculating the second derivative information ,also called Laplacian,
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of the image [61], including the Laplacian of Gaussian/Marr-Hildreth algorithm. These second

derivative-based methods detect edges by locating zero crossings of the Laplacian of the image.

All the aforementioned edge detectors are largely based on discrete convolution operations using

specifically designed directional kernels, noted as Fx and Fy, to traverse the image and thus detect

edges [61].

2.2.1 First Derivative-Based Edge Detector

The first derivative-based edge detectors are commonly derived form computing the gradient of the

image. The gradient G of an image I is defined as a directional change in the intensity or color in

an image and is given by the formula:

G = ∇I =
∂ I
∂x

x̂+
∂ I
∂y

ŷ (2.1)

Gx =
∂ I
∂x

x̂ = Fx∗I (2.2)

Gy =
∂ I
∂y

ŷ = Fy∗I (2.3)

where Gx and Gy are the horizontal and vertical gradient, respectively; and Fx and Fy are the first

directional derivative kernels. The gradient magnitude image |G|, which corresponds to the likeli-

hood of edge information, can be calculated by |G|=
√

(Gx)2 +(Gy)2 Also, the gradient direction

can be computed by θG = tan(−1)(
Gy
Gx
). Typically, the kernels used in gradient-based edge detection

algorithms do not measure the true gradient but rather an approximation of the gradient, as they

contain some embedded smoothing to combat noise. The kernels are, however, closely related to

discrete differentiators, and in many cases can be separated into two 1-D filters [61].

• Roberts Edge Detector

The directional kernels used by the Roberts edge detector [41] [35] are given by:

Fx =

1 0

0 −1

 ,Fy =

 0 1

−1 0

 (2.4)

From the equation, it is clear that these kernels are simple 2D discrete differentiators and oriented

diagonally. More specifically, the Fx kernel oriented at +45◦ while the Fy kernel in this case detects

edges oriented at −45◦. For the Robert edge detector, there is no embedded smoothing stage. This
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feature makes the Robert detector be capable to locate the accurate edge position but very sensitive

to noise. Beside, it is worthwhile to notice that the kernels have even length dimensions; and

this yields offset, where filter output is not being centered on a central pixel. The output binary

edge map is produced by calculating the gradient using the Roberts edge detection kernels and

thresholding its magnitude by some predetermined constant [41].

• Prewitt Edge Detector

The directional kernels used by the Prewitt edge detector [36] are as follows:

Fx =


1 0 −1

1 0 −1

1 0 −1

=


1

1

1


[

1 0 −1

]
,Fy =


1 1 1

0 0 0

−1 −1 −1

=


1

0

−1


[

1 1 1

]
(2.5)

As show in the equation, the Prewitt edge detection kernels can be separated into two 1D filters,

an arithmetic mean filter and a central difference filter. The Fx kernel averages along columns to

smooth noise and differentiates along rows, while the Fy kernel averages along rows and differ-

entiates along columns. As a result, Fx detects vertical edges while Fy detects horizontal edges.

Similarly withe the Roberts detector, the final binary edge map is obtained by thresholding the

gradient magnitude, which are calculated by using the Prewitt edge detection kernels.

• Sobel Edge Detector

Similarly, the directional kernels used by the Sobel edge detector [37] are given by:

Fx =


1 0 −1

2 0 −2

1 0 −1

=


1

2

1


[

1 0 −1

]
,Fy =


1 2 1

0 0 0

−1 −2 −1

=


1

0

−1


[

1 2 1

]
(2.6)

Similarly with the Prewitt edge detector, the Fx and Fx kernels of Soble edge detector detect

vertical and horizontal edges, respectively, and also can be separated into an mean and central

difference filter pair. The only difference between the Prewitt and Sobel edge detection kernels is

the choice of the 1D smoothing filter. The smoothing filter used by Sobel is a weighted mean filter

which resembles a Gaussian function, as its filter coefficients are the binomial coefficients for n =

3. Again, the final binary edge map is obtained by thresholding the gradient magnitude.
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• Canny Edge Detector

Compared to the edge aforementioned edge detectors (Roberts, Prewitt and Sobel), Canny edge

detection algorithm have more pre-processing and post-processing steps; and thus its performance

is superior to others. First, these edge detectors mentioned before are sensitive to noise since the

image is not smoothed first. However, the Canny edge detector first smoothes the input image

with a Gaussian filter and then computes the gradient of the smoothed image. Secondly, the non-

maximum suppression step is employed by the Canny algorithm in order to remove pixels that are

not considered to be part of an edge. Hence, only thin lines (candidate edges) will remain. Final-

ly, instead of performing simply manual thresholding, Canny edge detection algorithms performs

hysteresis thresholding which requires computing high and low thresholds based on the entire im-

age statistics. As a result, the Canny edge detector is optimal for isolated step edges with white

Gaussian noise and generally considered to be the edge detection standard [61].

Canny developed an approach to derive an optimal edge detector to deal with step edges cor-

rupted by a white Gaussian noise. It was based on three criteria that are related to the detection

performance. These criteria can be summarized as follows [39]:

1. Good detection. Ideally, this is accomplished by choosing the filter A which maximizes the

signal-to-noise ratio (SNR), given as

SNR( f (x)) =
A
σn

·
|
∫ 0
−∞ f (x)dx|∫ ∞
−∞ f (x)2 dx

(2.7)

where A is the amplitude of the step edge and σ2
n is the mean-squared noise variance.

2. Good localization. The points marked as edge points by the filter should be as close as

possible to the center of the true edge. This is achieved by maximizing

Localization( f (x)) =
A
σn

· | f ′(0)|∫ ∞
−∞ f ′2(x)dx

(2.8)

where f ′(x) is the first derivative of the filter f (x), and f ′(0) is the first derivative at location

x = 0.
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3. Only one response to a single edge. This is achieved by maximizing the mean distance xmax

between two adjacent peaks in the noise response, given by

xmax( f (x)) = 2π

√ ∫ ∞
−∞ f ′2(x)dx∫ ∞
−∞ f ′′2(x)dx

(2.9)

where f ′′(x) is the second derivative of the filter f (x).

Unfortunately, there is a tradeoff between the detection performance (SNR) and localization;

this tradeoff can be achieved through the spatial scaling of f (x). So, the optimal filter is determined

by maximizing the product of the detection term SNR( f (x)) and localization term localization( f (x))

under the constraint of the single response term xmax( f (x)). Numerically, the optimal detector for

step edges in the presence of white Gaussian noise can be approximated by the first derivative of a

Gaussian function as follows:

f (x) =− x
σ 2 e−

x2

2σ2 (2.10)

The original Canny algorithm [39] consists of the following steps:

1. Calculating the horizontal gradient Gx and vertical gradient Gy at each pixel location by

convolving with gradient masks.

2. Computing the gradient magnitude |G| and direction θG at each pixel location.

3. Applying Non-Maximal Suppression (NMS) to thin edges. This step involves computing the

gradient direction at each pixel. If the pixel’s gradient direction is one of 8 possible main

directions (0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦), the gradient magnitude of this pixel is

compared with two of its immediate neighbors along the gradient direction and the gradient

magnitude is set to zero if it does not correspond to a local maximum. For the gradient

directions that do not coincide with one of the 8 possible main directions, an interpolation is

done to compute the neighboring gradients.

4. Computing high and low thresholds based on the histogram of the gradient magnitude for

the entire image. The high threshold is computed such that a percentage P1 of the total

pixels in the image would be classified as strong edges. In other words, the high threshold
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Figure 2.1: Block Diagram of the Canny Edge Detection Algorithm.

corresponds to the point at which the value of the gradient magnitude cumulative distribution

function (CDF) equals to 1-P1. The low threshold is computed as a percentage P2 of the high

threshold. The values of P1 and P2 are typically set as 20% and 40%, respectively [39, 61].

5. Performing hysteresis thresholding to determine the edge map. If the gradient magnitude of

a pixel is greater than the high threshold, this pixel is considered as a strong edge. If the

gradient magnitude of a pixel is between the low threshold and high threshold, the pixel is

labeled as a weak edge. Strong edges are interpreted as ”certain edges”, and can be imme-

diately included in the final edge images. Weak edges are included if and only if they are

connected to strong edges.

A block diagram of the Canny edge detection algorithm [39] is shown in Fig. 2.1. In this

original Canny edge detection algorithm [39], the gradient calculation (Step 1) is performed by

using Finite-Inpulse Response (FIR) gradient masks designed to approximate the following 2D

sampled versions of the partial derivatives of a Gaussian function:

Fx(x,y) =− x
σ 2 e−

x2+y2

2σ2 = (−xe−
x2

σ2 )(
1

σ2 e−
y2

σ2 ) (2.11)

Fy(x,y) =− y
σ 2 e−

x2+y2

2σ2 = (−ye−
y2

σ2 )(
1

σ2 e−
x2

σ2 ) (2.12)

where σ is the standard deviation of the Gaussian function. The size of the gradient masks used by

the Canny edge detector is usually implemented as a function of the chosen σ , with larger values

of σ yielding larger masks. However, the best choice of σ is image-dependent and can be selected

by the user based on knowledge of the present noise characteristics or the size of desired objects

in the image [40]. The parameter σ can also be set by a separate application that estimates the
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noise and/or scale of objects in the image. The effect of the gradient mask size is illustrated in

Section 3.3.1.

2.2.2 Second Derivative-Based Edge Detector

As described before, the second derivative information can also be used for edge detection since

maxima in the first derivative of a signal is equivalent to zero crossing in the second derivative of

the signal. For the 2D case, the Laplacian operator is defined as

L = ∇2I =
∂ 2I
∂x2 +

∂ 2I
∂y2 (2.13)

There are many ways to generate a discrete Laplacian kernel and the general implementation of the

n×n Laplacian is given as

Laplacian(i, j) =


n2 −1, i=j=ceil(n/2)

−1, otherwise
(2.14)

Compared to the first derivative operator, the second derivative of a function is even more sensitive

to noise [63]. Therefore, the typical Laplacian-based edge detection algorithms measure the Lapla-

cian of a smoothed version of the image rather than the original image to increase the robustness to

noise. The Laplacian of Gaussian (LoG)/Marr-Hilldreth [41,42] edge detector algorithm is the one

of the most famous Laplacian-based edge detection algorithms. It consists of the following steps:

1. Convolute the image with a 2-D Gaussian function in order to smooth the image.

2. Laplacian filtering step. Calculate the Laplacian of the smoothed image. The LoG kernel can

also be calculated directly for a Gaussian function with standard deviation σ by sampling the

function

LoG(x,y) =− 1
πσ 4

[
1− x2 + y2

2σ 2

]
e

x2+y2

2σ2 (2.15)

3. The output binary edge map is produced by determining the location of zero crossing of the

Laplacian of the smoothed image, and thresholding the difference between pixels on either

side of the zero crossings by some manual set constant.
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: (a) Original Image, Obtained Edge Maps by Using (b) Roberts, (c) Prewitt, (d)Sobel,
(e) LoG, (f) Canny Edges Detection Algorithms.

2.3 Experimental Results

Fig. 2.2 shows an example of results using the discussed edge detectors. This experiment shows

that Roberts, Sobel and Prewitt detector outputs provide many disconnected, false and disconnected

edge responses. They also fail to detect some coarser scale edges because of their relatively small-

er kernels. The LoG edge detector also can’t detect many important edges and produces many

spurious edges. The Canny edge detector produces continuous, thin and correct edges. We can

conclude that Canny edge detector produces the best output for this image. However, the Canny

edge detector output still suffers from localization errors due to standard deviation and some edge

losses due to smoothing.
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Chapter 3

DISTRIBUTED CANNY EDGE DETECTION ALGORITHM

3.1 Introduction

Edge detection is the most common preprocessing step in many image processing algorithms such

as image enhancement, image segmentation, tracking and image/video coding. Among the existing

edge detection algorithms, the Canny edge detector has remained a standard for many years and

has best performance [39]. Its superior performance is due to the fact that the Canny algorithm

performs hysteresis thresholding which requires computing high and low thresholds based on the

entire image statistics. Unfortunately, this feature makes the Canny edge detection algorithm not

only more computationally complex as compared to other edge detection algorithms, such as the

Roberts, Prewitt and Sobel algorithms, but also necessitates additional pre-processing computations

to be done on the entire image. As a result, a direct implementation of the Canny algorithm has

high latency and cannot be employed in real-time applications.

Many implementations of the Canny algorithm have been proposed on a wide list of hardware

platforms. There is a set of work [43,45,46] on Deriche filters that have been derived using Canny

criteria and implemented on ASIC-based platforms. The Canny-Deriche filter [45] is a network

with four transputers that detect edges in a 256×256 image in 6s, far from the requirement for real-

time applications. Although the design in [43] improved the Canny-Deriche filter implementation

of [45] and was able to process 25 frames/s at 33 MHz, the used off-chip SRAM memories consist

of Last-In First-Out (LIFO) stacks, which increased the area overhead compared to [45]. Demigny

proposed a new organization of the Canny-Deriche filter in [46], which reduces the memory size

and the computation cost by a factor of two. However, the number of clock cycles per pixel of

the implementation [46] varies with the size of the processed image, resulting in variable clock-

cycles/pixel from one image size to another with increasing processing time as the image size

increases.

There is another set of work [47–49] on mapping the Canny edge detection algorithm onto

FPGA-based platforms. The two FPGA implementations in [47] and [48] translate the software

design directly into VHDL or Verilog using system-level hardware design tools, which results in

a decreased timing performance as shown later in Section 3.4.3 of this work. The parallel imple-
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mentation in [49] operates on only 4 pixels in parallel, resulting in an increase in the number of

memory accesses and in the processing time as compared to the proposed algorithm. Furthermore,

in order to reduce the computational complexity, all of these implementations compute the high

and low thresholds off-line and use the same fixed threshold values for all the images, which re-

sult in a decreased edge detection performance. In [64], a self-adapt threshold Canny algorithm is

proposed for a mobile robot system where a low and high threshold values are computed for each

input image and an implementation for an Altera Cyclone FPGA is presented.

Recently, the General Purpose Graphic Processing Unit (GPGPU) has emerged as a powerful

and accessible parallel computing platform for image processing applications [65, 66]. Studies of

GPGPU accelerated Canny edge detection have been presented [50–52]. All of these implemen-

tations are frame-based and do not have good edge detection performance since they use the same

fixed pair of high and low threshold values for all images. Furthermore, as shown later in the paper,

their timing performance is inferior compared to the proposed algorithm in spite of being operated

at a very high clock frequency.

In the original Canny method, the computation of the high and low threshold values depends

on the statistics of the whole input image. However, most of the above existing implementations

(e.g., [47–49], [50–52]) use the same fixed pair of high and low threshold values for all input

images. This results in a decreased edge detection performance as discussed later in this report.

The non-parallel implementation [64] computes the low and high threshold values for each input

image. This results in increased latency as compared to the existing implementations (e.g., [47–

49, 64], [50–52]). Furthermore, the non-parallel implementations ( [47–49]) result in a decreased

throughput as compared to the parallel implementations ( [49], [50–52]). The issue of increased

latency and decreased throughput is becoming more significant with the increasing demand for

large-size high-spatial resolution visual content (e.g., High-Definition and Ultra High-Definition).

Our focus is on reducing the latency and increasing the throughput of the Canny edge detection

algorithm so that it can be used in real-time processing applications. As a first step, the image can

be partitioned into blocks and the Canny algorithm can be applied to each of the blocks in parallel.

Unfortunately, directly applying the original Canny at a block-level would fail since it leads to ex-

cessive edges in smooth regions and loss of significant edges in high-detailed regions. In this report,
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we propose an adaptive threshold selection algorithm which computes the high and low threshold

for each block based on the type of block and the local distribution of pixel gradients in the block.

Each block can be processed simultaneously, thus reducing the latency significantly. Furthermore,

this allows the block-based Canny edge detector to be pipelined very easily with existing block-

based codecs, thereby improving the timing performance of image/video processing systems. Most

importantly, conducted conformance evaluations and subjective tests show that, compared with the

frame-based Canny edge detector, the proposed algorithm yields better edge detection results for

both clean and noisy images. The block-based Canny edge detection algorithm is mapped onto an

FPGA-based hardware architecture. The architecture is flexible enough to handle different image

sizes, block sizes and gradient mask sizes. It consists of 32 computing engines configured into 8

groups with 4 engines per group. All 32 computing engines work in parallel lending to a 32-fold

decrease in running time without any change in performance when compared with the frame-based

algorithm. The architecture has been synthesized on the Xilinx Virtex-5 FPGA. It occupies 64% of

the total number of slices and 87% of the local memory, and takes 0.721ms (including the SRAM

read/write time and the computation time) to detect edges of 512× 512 images in the USC SIPI

database when clocked at 100MHz.

The rest of this chapter is organized as follows. Section 3.2 presents the proposed distributed

Canny edge detection algorithm which includes the adaptive threshold selection algorithm and a

non-uniform quantization method to compute the gradient magnitude histogram. The effects of

the gradient mask size and the block size on the performance of the proposed distributed Canny

edge detection scheme are discussed and illustrated in Section 3.3. In Addison, quantitative con-

formance as well as subjective testing results are presented in Section 3.4 in order to illustrate the

edge detection performance of the proposed distributed Canny algorithm as compared to the orig-

inal Canny algorithm for clean as well as noisy images. The FPGA synthesis and performance

evaluation are presented in Section 3.4.3.

3.2 Distributed Canny Edge Detection Algorithm

As discussed in Section 2.2.1, the classical Canny edge detection algorithm sets the high and

low thresholds based on the distribution of the gradients at all the pixel locations of an image.

Thus, directly applying the original Canny algorithm to a block of the image would fail to detect
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(a)

(b)

(c)

(d) (e)

(f)

(g)

(h)

(i) (j)

Figure 3.1: (a), (f) Original 512× 512 Lena And Houses Images; (b), (g) Zoomed-In Blocks of
the Lena And Houses Images; (d), (i) Edge Maps of Block Images in (b) And (g) Obtained by
Applying the Classical Canny Edge Detector to Blocks Separately; (c), (h) Edge Maps Using the
Canny Edge Detector Applied to the Entire Lena Image And Houses Image; (e), (j) Zoomed-In
Blocks of the Edge Maps (b) & (j).

the desired edges since the statistics of a block may differ significantly from the statistics of the

entire natural image. For example, Fig. 3.1 shows two types of blocks, namely smooth block and

edge block, extracted from the Lena image and Houses image, respectively. Despite the fact that

the smooth block (Fig. 3.1 (b)) does not contain any significant edges, applying the original Canny

algorithm to this block results in the detection of an excessive number of edges as shown in Fig. 3.1

(d). This is due to the fact that the Canny algorithm assumes that a percentage P1 of the total pixels

in the block are strong edges. On the other hand, for an edge block (Fig. 3.1 (g)), the majority of

pixels are edges. Since P1 is much smaller than the actual percentage of edge pixels in the edge

block, it results in missing edges as shown in Fig. 3.1 (i). For comparison, Fig. 3.1 (c), (e), (h) & (j)

show the performance of the Canny edge detector when applied to the entire image. In latter case,

the Canny edge detector is able to achieve the expected edge detection performance in the smooth
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Figure 3.2: Proposed Distributed Canny Edge Detection Algorithm.

Figure 3.3: An Example of the Structure of An m×m Overlapping Block, Where m = n+L+ 1
for An L× L(L = 3) Gradient Mask And When the Image Is Initially Divided into n× n Non-
Overlapping Blocks.

regions (Fig. 3.1 (e)) and in the edge regions (Fig. 3.1 (j)).

In order to improve the performance of the edge detection at the block level and achieve the

same performance as the original frame-based Canny edge detector when this latter one is applied

to the entire image, a distributed Canny edge detection algorithm is proposed. A diagram of the pro-

posed algorithm is shown in Fig. 3.2. In the proposed distributed version of the Canny algorithm,

the input image is divided into m×m overlapping blocks and the blocks are processed independent

of each other. For an L×L gradient mask, the m×m overlapping blocks are obtained by first divid-

ing the input image into n×n non-overlapping blocks and then extending each block by (L+1)/2

pixels along the left, right, top, and bottom boundaries, respectively. This results in m×m over-

lapping blocks, with m = n+ L+ 1. The non-overlapping n× n blocks need to be extended in

order to prevent edge artifacts and loss of edges at block boundaries while computing the gradi-
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: (a) Original 512× 512 Lena Image;
b) Uniform Block; (c) Uniform /Texture Block;
(d) Texture Block; (e) Edge/Texture Block; (f)
Medium Edge Block of the Lena Image Shown
Blocks Are of Size 64×64.
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Figure 3.5: Normalized Gradient Magnitude
CDFs for the 512 × 512 Lena Image And
CDFs for the 64× 64 Uniform Block, Unifor-
m/Texture Block, Texture Block, Edge/Texture
Block, Medium/Edge Block Shown in Fig. 3.4.

ents and due to the fact that the NMS operation at boundary pixels requires the gradient values of

the neighboring pixels of the considered boundary pixels in a block. Fig. 3.3 shows an example of

non-overlapping block and its extended overlapping block version in the case when a 3×3 gradient

mask. In order to perform NMS for the border pixel (i, j), the gradient information of the adjacent

pixels (i−1, j−1), (i−1, j), (i−1, j+1), (i, j−1), (i+1, j−1) are needed. In order to compute

the gradient of the adjacent pixels (i−1, j−1), (i−1, j), (i−1, j+1), (i, j−1), (i+1, j−1) for

the 3×3 gradient mask, the block has to be extended by 2 ( where (L−1)/2+1 = 2) pixels on all

sides in order to generate a block of size (n+4)×(n+4). Thus, m equals to n+4 for this example.

Note that, for each block, only edges in the central n×n non-overlapping region are included in the

final edge map, where n = m−L− 1. Steps 1 to 3 and Step 5 of the distributed Canny algorithm

are the same as in the original Canny algorithm except that these are now applied at the block level.

Step 4, which is the hysteresis high and low thresholds calculation, is modified to enable parallel

block-level processing without degrading the edge detection performance.

As discussed above, exploiting the local block statistics can significantly improve the edge

detection performance for the distributed Canny edge detector. For this purpose, in order to learn

the statistics of local blocks, we use a training database consisting of natural images. For each

image in the database, we first divide the image into n× n non-overlapping blocks and classify

20



the blocks into six types, uniform, uniform/texture, texture, edge/texture, medium edge, and strong

edge block, by adopting the block classification method of [67]. This classification method utilized

the local variance of each pixel using a 3×3 window that is centered around the considered pixel

in order to label it as of type edge, texture, or uniform pixel. Then, each block is classified based

on the total number of edge, texture, and uniform pixels in the considered block. Fig. 3.4 shows

an example where the 512× 512 Lena image is divided into blocks, and each block is classified

according to this classification technique. Fig. 3.4 (b), (c), (d), (e) and (f) provide, respectively,

examples of uniform, uniform/texture, texture, edge/texture, medium edge block for the 512×512

Lena image with a block size of 64× 64. Note that there are no strong edge blocks for the Lena

image.

In order not to degrade the performance of the original frame-based Canny algorithm when it

is applied to a block, the high and low thresholds when computed at the block level should match

thresholds that would have been obtained for the entire image. The gradient magnitude CDFs of

each block in Fig. 3.4 are shown in Fig. 3.5 , along with the gradient-magnitude CDF of the entire

Lena image. According to the CDF of the entire Lena image, the high threshold should be selected

as 1.8 corresponding to a P1 value (percentage of pixels that should be classified as strong edges)

of 0.2. However, if P1 is still set to 0.2 for the medium edge block, the local high threshold for

that block would be about 5.2, which is significantly different from the high threshold, 1.8, that

is obtained for the entire image. Such a setting will result in a loss of significant edges in the

considered strong edge block. On the other hand, the local high thresholds for the uniform and

uniform/texture block would be about 0.7, if P1 is set to 0.2. Such a setting will lead to excessive

edges in the uniform and uniform/texture blocks. From this analysis, it can be seen that, in order to

keep a similar threshold for all block types, P1 should be selected differently for different types of

blocks by adapting its value to the local block content.

In order to determine, for each block type, the appropriate percentage value P1 that would result

in high and low threshold values similar to the ones that are obtained for the entire image, a training

set of 200 images is formed from the Berkeley Segmentation Image Database [68]. For each image

in the training database, the high threshold of the entire image is first calculated. Then, the image is

divided into blocks and the blocks are classified into six block types as discussed previously. Then,
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Figure 3.6: P1 Values for Each Block Type.

Table 3.1: Standard Deviations of P1 Values for Each Block Type When Block Size Is 64×64.

Block type Uniform
Uniform/
Texture

Texture
Edge/

Texture
Medium

Edge
Strong
Edge

Variance of
P1 value

0 0 9.37E−4 0.0138 0.0071 0.0132

for each block type, the gradient magnitude CDF is computed and the corresponding CDF used

to compute the P1 value such that the local high threshold of the blocks in this class is the same

as the one for the entire image. Fig. 3.6 shows the P1 values that are obtained for different block

types, each of size 64×64, for 200 512×512 images with varied content. It illustrates that the P1

values of each block type are highly different from each other, except for the uniform block and

uniform/texture block types. Also, for a given block type, the P1 values across all 200 images are

quite similar for different block sizes. The final P1 value for a considered block type is computed as

the average value of its corresponding set over all images and over all block sizes. For illustration,

the standard deviations of the obtained P1 values for each block type are shown in Table 3.1 for

64×64 blocks.

To evaluate the robustness of the obtained P1 values with respect to the block size, the 512×512

images are divided into fixed-size blocks, with the block size varying from 8×8 to 256×256. Table
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Table 3.2: P1 Values for Each Block Type with Different Block Sizes.

Block Size
Block Type

Uniform
Uniform/
Texture

Texture
Edge/

Texture
Medium

Edge
Strong
Edge

8×8 0 0 0.0312 0.1022 0.2183 0.4820
16×16 0 0 0.0307 0.1016 0.2616 0.4830
32×32 0 0 0.0305 0.1117 0.2079 0.4852
64×64 0 0 0.0318 0.1060 0.2218 0.4670

128×128 0 0 0.0302 0.0933 0.2375 0.4842
256×256 0 0 0.0299 0.0911 0.2304 0.4893
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Figure 3.7: (a)-(c) Different Types of 64× 64 Blocks ((a) Edge/Texture, (b) Medium Edge, (c)
Strong Edge) And (d) Corresponding Gradient Magnitude Histograms.

3.2 shows the P1 values that are obtained for each block type and for each block size. It should be

noted that the P1 values for uniform and uniform/texture blocks are equal to 0 for all block sizes,

which indicates that the uniform and uniform/texture blocks can be combined into one block type,

which we refer to as smooth block type. Also, this implies that there are no pixels that should be

classified as edges in a smooth block. Therefore, there is no need to perform edge detection on

smooth blocks, and this results in reduced computations, a feature that is exploited in the FPGA

implementation.

In order to compute the high and low hysteresis thresholds, a finely quantized gradient mag-

nitude histogram is usually needed. Here, we employ the non-uniform quantizer, which has been

proposed by us in [69], to obtain the gradient magnitude histogram for each block such that the

high threshold can be precisely calculated. As in [64, 69], for the edge/texture, medium edge and
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Figure 3.8: Reconstruction Values And Quantization Levels.

strong edge block, it was observed that the largest peak in the gradient magnitude histograms of

the Gaussian-smoothed images occurs near the origin and corresponds to low-frequency content,

while edge pixels form a series of smaller peaks, where each peak corresponds to a class of edges

having similar gradient magnitudes. Consequently, the high threshold should be selected between

the largest peak and the second largest edge peak. Examples of gradient magnitude histograms

for an edge/texture, medium edge and strong edge block are shown in Fig. 3.7. Based on the

above observation, we proposed a non-uniform quantizer to discretize the gradient-magnitude his-

togram in [69]. Specifically, the quantizer needs to have more quantization levels in the region

between the largest peak A and the second largest peak B and few quantization levels in other

parts. Fig. 3.8 shows the schematic diagram of the proposed non-uniform quantizer. The first

reconstruction level (R1) is computed as the average of the maximum value and minimum value

of the gradient magnitude in the considered block, and the second reconstruction level (R2) is the

average of the minimum value of the gradient magnitude and the first reconstruction level. Ac-

cordingly, n reconstruction levels can be computed as shown in [69], R1 = (min+max)/2 and

Ri+1 = (min+ Ri)/2(i = 2,3, . . .n), where min and max represent the minimum and maximum

values of the gradient magnitude, respectively, and Ri is the reconstruction level.
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(a)

(b)

Figure 3.9: Pseudo-codes for the Proposed (a) Block Classification And (b) Adaptive Threshold
Selection.

The pseudo-code of the block classification technique in [67] and the proposed adaptive thresh-

old selection algorithm is shown in Fig. 3.9a and 3.9b, respectively.
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3.3 Parametrical Analysis

The performance of the proposed algorithm is affected by two parameters, the mask size and the

block size. We discuss what is the best choice for the mask size for different types of images,

and what is the smallest block size that can be used by our proposed distributed Canny algorithm

without sacrificing performance.

3.3.1 The Effect of Mask Size

As indicated in Section 2.2.1, the size of the gradient mask is a function of the standard deviation

σ of the Gaussian filter, and the best choice of σ is based on the image characteristics. Canny has

shown in [39] that the optimal operator for detecting step edges in the presence of noise is the first

derivative of the Gaussian operator. As stated in Section 2.2.1, for the original Canny algorithm as

well as the proposed algorithm, this standard deviation is a parameter that is typically set by the user

based on the knowledge of sensor noise characteristics. It can also be set by a separate application

that estimates the noise and/or blur in the image. A large value of σ results in smoothing and

improves the edge detector’s resilience to noise, but it undermines the detector’s ability to detect

the location of true edges. In contrast, a smaller mask size (corresponding to a lower σ ) is better

for detecting detailed textures and fine edges but it decreases the edge detector’s resilience to noise.

An L−point even-symmetric FIR Gaussian pulse-shaping filter design can be obtained by trun-

cating a sampled version of the continuous-domain Gaussian filter of standard deviation σ . The

size L of the FIR Gaussian filter depends on the standard deviation σ and can be determined as

follows:

L = 2 ·Lside +1 (3.1)

Lside = ⌊2σ
√

(−1)log(CT )⌋ (3.2)

where CT represents the cut-off value in the spatial domain of the continuous-domain Gaussian

function and determines the cut-off error. A smaller CT corresponds to a smaller cut-off error. In

our implementation, in order to make the cut-off error small for all σ , CT is chosen to be a small

value (e.g., CT = 10−3). Fig. 3.10 shows that the relatively smaller size 3× 3 filter (σ from 0.3

to 0.4) can detect the edges of a detailed texture image, while Fig. 3.11 shows that the larger
26



(a) (b) (c)

Figure 3.10: (a) Original ”Houses” Image; Edge Map Using the Original Canny Algorithm (b) with
A 9×9 (σ = 1.4) Gradient Mask And (c) with A 3×3 (σ = 0.4) Gradient Mask.

(a) (b) (c)

Figure 3.11: (a) ”Houses” Image with Gaussian White Noise (σn = 0.01); Edge Map Using the
Original Canny Algorithm (b) with A 9×9 (σ = 1.4) Gradient Mask And (c) with A 3×3 (σ =
0.4) Gradient Mask.

(a) (b) (c)

Figure 3.12: (a) Gaussian Blurred ”Houses” Image (σblur = 2); Edge Map Using The Original
Canny Algorithm (b) with A 9× 9 (σ = 1.4) Gradient Mask And (c) with A 3× 3 (σ = 0.4)
Gradient Mask.

9×9 filter (σ from 1.2 to 1.4) suppresses noise more effectively. In addition, Fig. 3.12 shows that

the 3× 3 filter is exhibits a better performance in generating the edge maps of blurred images as
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compared to the 9×9 filter.

3.3.2 Block Size

To find out the smallest block size for which the proposed Canny algorithm can detect all the

psycho-visually important edges, the perceptual visual quality of the obtained edge maps was as-

sessed using visual quality metrics. More specifically, the quality of edge maps obtained by using

different block sizes was analyzed by evaluating their corresponding Pearson’s correlation coeffi-

cient (PCC), which was used to measure how well state-of-the-art edge-based sharpness metrics

commensurate with the actual perceived sharpness. For this purpose, the psycho-visual sharpness

metric of [70] is used, which primarily depends on the edge map to estimate the cumulative prob-

ability of detecting blur (CPBD) in an image. This metric was shown in [70] to achieve the best

performance among existing sharpness/blur metrics. It calculates the probability of detecting blur

at each edge in an image and then obtains a final quality score over the entire image by evaluating

the cumulative probability of blur detection. Four images with varying image characteristics were

chosen. These were blurred using Gaussian masks with six different σ values (0.5, 1, 1.5, 2, 2.5,

and 3) to generate a set of 24 images. The images were displayed one after another in a random

order and subjects were asked to rate them on a 5-point scale of 1 (poor) to 5 (excellent) to form a

Mean Opinion Score (MOS) by averaging the subjective scores for each image. Fig. 3.13 depicts

the effect of replacing the frame-based Canny edge detection with the proposed distributed Canny

edge detection on the sharpness metric of [70], for masks of different sizes and for different block

sizes. Note that a 512× 512 block corresponds to the original frame-based Canny edge detector.

Fig. 3.13 shows that PCC has a maximal value when the block size is 64× 64. It also illustrates

that, for the various block sizes, the increase or decrease in the PCC is insignificant. In other words,

the PCC is robust to changes in block size. In conclusion, the proposed distributed Canny algo-

rithm can detect all the psycho-visually important edges for images with moderate noise and blur

levels, similar to the original frame-based Canny algorithm.

3.4 Distributed Edge Detection Performance Analysis

The edge detection performance of the proposed distributed approach is analyzed by comparing the

perceptual significance of its resulting edge map with the one produced by the original frame based
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Figure 3.13: Pearson’s Correlation Coefficient Reflecting the Correlation between the CPBD
Sharpness Metric [70] And MOS as A Function of Block Size And Mask Size.

Canny edge detector. Fig. 3.14−Fig. 3.17 show the edge maps that are obtained by the original

frame-based Canny edge detector and the proposed distributed Canny edge detection algorithm

with 3× 3 gradient masks and a non-overlapping block size of 64× 64 (n = 64;m = 68) for the

512×512 ”Salesman,” ”Fruit,” ”Houses,” and ”Lena” images, respectively. As shown in Fig. 3.14

and Fig. 3.15, the proposed distributed Canny edge detection algorithm yields comparable edge

detection results as compared with the original frame-based Canny edge detector. From Fig. 3.16

and Fig. 3.17, it can be seen that, in contrast to the original frame-based Canny, the proposed

distributed Canny algorithm can detect edges in low contrast regions since it is able to adapt to

the local statistical distribution of gradient values in a block. Furthermore, Fig. 3.18 shows the

edge maps of images with white Gaussian noise generated by the original frame-based Canny edge

detector and the proposed distributed Canny edge detection algorithm with 33 gradient masks and

a non-overlapping block size of 64×64. Comparing the edge maps in Fig. 3.18 (b) and (c) with the

clean edge maps in Fig. 3.14 to Fig. 3.17, it can be seen that, the proposed Canny edge detection

algorithm is more robust to noise than the original frame-based Canny.

To further assess the performance of the proposed distributed Canny algorithm, quantitative

conformance evaluations and subjective tests are performed. The conformance evaluations aim to

evaluate the similarity between edges detected by the original frame-based Canny algorithm and

the proposed distributed Canny edge detection algorithm, while the subjective tests aim to validate
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(a) (b) (c)

Figure 3.14: (a) 512×512 ”Salesman” Image; Edge-Maps of (b) the Original Canny Edge Detector,
And (c) the Proposed Algorithm with A Non-Overlapping Block Size of 64× 64, Using A 3× 3
Gradient Mask.

(a) (b) (c)

Figure 3.15: (a) 512× 512 ”Fruit” Image; Edge-Maps of (b) the Original Canny Edge Detector,
And (c) the Proposed Algorithm with A Non-Overlapping Block Size of 64× 64, Using A 3× 3
Gradient Mask.

(a) (b) (c)

Figure 3.16: (a) 512×512 ”Houses” Image; Edge-Maps of (b) the Original Canny Edge Detector,
And (c) the Proposed Algorithm with A Non-Overlapping Block Size of 64× 64, Using A 3× 3
Gradient Mask.
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(a) (b) (c)

Figure 3.17: (a) 512× 512 ”Lena” Image; Edge-Maps of (b) the Original Canny Edge Detector,
And (c) the Proposed Algorithm with A Non-Overlapping Block Size of 64× 64, Using A 3× 3
Gradient Mask.

whether the edge detection performance of the proposed distributed Canny is better, worse, or

similar to the original frame-based Canny as perceived by subjects.

3.4.1 Conformance Evaluation

In order to quantify the similarity of two edge maps, three metrics, Pco (percentage of edge pixels

detected by both implementations) Pnd (percentage of edge pixels detected by the original Canny

edge detection algorithm that were not detected by the proposed distributed Canny edge detection

algorithm also referred to as false negatives) and Pf a (percentage of edge pixels detected by the pro-

posed Canny edge detection algorithm that were not detected by the original Canny edge detection

algorithm, also referred to as false positives), as proposed in [52], are used for the conformance

test. Here, the edge map generated by the original frame-based Canny for the clean image is con-

sidered as the reference for both the clean and noisy cases. This is compared with the edge map

generated by the proposed algorithm for the same clean image, as well as the edge maps generated

by these two algorithms (original Canny and proposed) for the noisy version of the same image.

Experiments were conducted using the USC SIPI Image Database [71] and the Standard Test Image

Database [72]. The results are shown in Table 3.3.

For clean images, the detected edge pixel percentage (Pco) was higher than 94.8%. This further

validates our claim that the proposed distributed algorithm detects almost all edges that are detected

by the original Canny edge detection algorithm.

For noisy images, as shown in Table 3.3, the Pco of the proposed distributed Canny algorithm
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(a) (b) (c)

Figure 3.18: Comparison of the Edge Maps of Noisy Images by Using the Original Canny Edge
Detector And the Proposed Method: (a) Images with Gaussian White Noise (σn = 0.01); Edge-
Maps of (b) the Original Canny Edge Detector, And (c) the Proposed Algorithm with A Non-
Overlapping Block Size of 64×64, Using A 9×9 Gradient Mask.

is higher than that of the original Canny algorithm, and the error (the sum of Pnd and Pf a) of the

proposed distributed Canny algorithm is much lower than the original Canny detector. This vali-

dates our earlier observation that, for noisy image, the edge detection performance of the proposed
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Table 3.3: Conformance Evaluation.

Clean Image Noisy Image
Proposed Canny detector Original Canny detector Proposed Canny detector

Pco 94.8% 56.2% 64.9%
Pnd 1.2% 13.7% 16.6%
Pf a 4% 30.1% 18.5%

Figure 3.19: Snapshot of the Performed Subjective Test Comparing the Edge Maps Generated by
the Original Canny Algorithm And the Proposed Algorithm.

Figure 3.20: Subjective Scale Where Scores 1, 2, 3, 4, & 5 Correspond to ”Worse,” ”Slightly
Worse,” ”Same,” ”Slightly Better,” And ”Better,” with Respect to the Original Canny Algorithm.

distributed Canny algorithm is better than the original frame-based Canny algorithm.

3.4.2 Subjective Testing

Subjective tests were conducted by having human subjects evaluate the quality of the detected edge

maps that are generated by the proposed algorithm and the original Canny for both clean and noisy

images, without the subjects knowing which algorithm produced which edge maps, using images

from the SIPI Database [71] and the Standard Test Image Database [72].

The edge maps of clean images obtained by the original Canny algorithm and the proposed
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algorithm were displayed simultaneously for comparison together with the original image, which

was displayed in the middle. Fig. 3.19 shows a snapshot of the subjective test interface. This

was done for both clean and noisy images. Experiments were conducted using a 19-inch DELL

LCD monitor having a resolution of 1024×1280. The average room luminance is measured to be

30cd/m2. The subjects were asked to rate the quality of the displayed edge maps using a five-point

scale with scores 1 to 5 corresponding, respectively, to the rightmost edge map is ”worse,” ”slightly

worse,” ”same,” ”slightly better,” and ”better” compared to the edge map shown on the left. These

scores were then automatically converted internally by the interface into five-point scale scores

from 1 to 5 corresponding, respectively, to the edge map produced by the proposed distributed

Canny algorithm is ”worse,” ”slightly worse,” ”same,” ”slightly better,” and ”better” compared

to the original Canny algorithm (see Fig. 3.20). Thus, a score higher than 3 indicates that the

generated edge map by the proposed algorithm is better than the one obtained using the original

Canny algorithm and vice versa. The images are randomly displayed. Each case is randomly

repeated four times, with the left and right images swapped in a random fashion, to obtain better

subjective response statistics [73]. Ten subjects with normal to corrected-to-normal vision took the

test. Two Mean Opinion Scores (MOS) were computed by averaging the subjective scores over

the set of clean images and over the set of noisy images, respectively. The obtained MOS values

were 3.69 (slightly better than the original Canny) for the clean image set and 4.6 (better than the

original Canny) for the noisy image set. Results from the subjective tests show clear preference

of the subjects for the edge maps that are generated by the proposed algorithm for both clean and

noisy images. These results indicate that the proposed algorithm results in a superior performance

as compared to the original frame-based Canny algorithm. This is partly due to the capability of

the proposed algorithm to adapt to the local image characteristics since the P1 value is selected

differently for different types of blocks by adapting its value to the local block content.

3.4.3 FPGA-Based Performance Results

In order to demonstrate the parallel efficiency of the proposed distributed Canny edge detection

algorithm, we describe an FPGA-based hardware implementation of the proposed algorithm in this

chapter. Fig. 3.21 gives a bird’s eye view of the embedded system for implementing the distributed

Canny edge detection algorithm based on an FPGA platform. It is composed of several compo-
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Figure 3.21: Block Diagram of the Embedded System for the Proposed Algorithm.

nents, including an embedded micro-controller, a system bus, peripherals & peripheral controllers,

external Static RAMs (SRAM) & memory controllers, and an intellectual property (IP) design for

the proposed distributed Canny detection algorithm. The embedded micro-controller coordinates

the transfer of the image data from the host computer (through the PCIe (or USB) controller, sys-

tem local bus, and memory controller) to the SRAM; then from the SRAM to the local memory in

the FGPA for processing and finally storing back to the SRAM. Xilinx and Altera offer extensive

libraries of intellectual property (IP) in the form of embedded micro-controllers and peripherals

controller [74, 75]. Therefore, in our design, we focused only on the implementation of the pro-

posed algorithm on the Xilinx Virtex-5 FPGA and the data communication with external SRAMs.

These components have been highlighted in Fig. 3.21.

The proposed architecture, shown in Fig. 3.22, consists of q processing units (PU) and external

dual-port Static RAMs (SRAMs) to store image data. As shown in Fig. 3.22, each PU consists

of p computing engines (CE), where each CE processes an m×m overlapping image block and

generates the edges of an n× n block, where m = n+ L + 1 for an L × L gradient mask. The

dataflow through this architecture is as follows. For each PU, the SRAM controller fetches the

input data from SRAM and stores them into the input local memory in the PU. The CEs read this

data, process them and store the edges into the output local memory. Finally, the edges are written
35



Figure 3.22: The Architecture of the Proposed Distributed Canny Algorithm.

back to the SRAM one output value at a time from the output local memory.

In order to increase the throughput, the SRAM external memory is organized into q memory

banks, one bank per PU. Since only one b-bit data, corresponding to one pixel value, can be read

from a SRAM at a time, such an organization helps multiple PUs to fetch data at the same time and

facilitates parallel processing by the PUs. For an image of size N ×N, each SRAM bank stores a

tile of size N2/q image data,where the term ”tile” refers to an image partition containing several

non-overlapping blocks. The SRAM bank is dual-port so that the PUs can read and write at the

same time.

In order to maximize the overlap between data read/write and data processing, the local mem-

ory in each PU is implemented using dual port block RAM (BRAM) based ping-pong buffers.

Furthermore, in order that all the p CEs can access data at the same time, the local memory is or-

ganized into p banks. In this way, a total of p ·q overlapping blocks can be processed by q groups

of p CEs at the same time. The processing time for an N ×N image is thus reduced approximately

by a factor of p ·q. If there are enough hardware resources to support more CEs and more PUs, the

throughput would increase proportionally.

However, FPGAs are constrained by the size of on-chip BRAM memory, number of slices,
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Figure 3.23: High Throughput Memory Interface.

number of I/O pins; and the maximum throughput achievable is a function of these parameters.

Since each CE processes an m×m overlapping image block, for a b-bit implementation, this would

require 3×m×m×b bits to store the vertical and horizontal gradient components and the gradient

magnitude. To enable parallel access of these blocks, there are three BRAMs of size m×m×b in

each CE. In addition, 2p×m×m×b bits are needed for each of the ping-pong buffers. Therefore,

for each PU, 3p×m×m× b bits are need for p CEs and 4p×m×m× b bits are needed for the

input and output ping-pong buffers. This results in a total of 7p×m×m×b×q = 7pqm2b bits for

the FPGA memory. Thus, if there are more CEs and/or larger sized block, more FPGA memory

is required. Similarly, if there are more PUs, more I/O pins are required to communicate with

the external SRAM memory banks. Thus, the choice of p and q depends on the FPGA memory

resources and numbers of I/O pins. We do not consider the numbers of slices as a constraint since

the number of available slices is much larger than required by the proposed algorithm.

The customized memory interface, shown in Fig. 3.23, has a 2b-bit wide internal data-bus. In

our application, the dual-port SRAM, the memory interface and the local memories, which connect

with the SRAM interface, operate at the same frequency, which is fSRAM MHz.

Each CE processes an m×m overlapping image block and generates the edges of an n×n non-

overlapping block. The computations that take place in CE can be broken down into the following

five units: 1) block classification, 2) vertical and horizontal gradient calculation as well as magni-

tude calculation, 3) directional non-maximum suppression, 4) high and low threshold calculation,

and 5) thresholding with hysteresis. Each of these units is mapped onto a hardware unit as shown

in Fig. 3.24 and described in the following subsections. The communication between each com-

ponent is also illustrated in Fig. 3.24. More details of the architecture for each component can be
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Figure 3.24: Block Diagram of CE (Computing Engine for Edge Detection).

found in [?].

The proposed FPGA-based architecture can support multiple image sizes and block sizes. To

demonstrate the performance of the proposed system, a Xilinx Virtex-5 FPGA [76] was used to

process grayscale images with a block size of 64×64. The data width is 16 bits (Q8.7) with 8 bits

to represent the integer part since the maximum gray value of the image data is 255, and 7 bits to

represent the fractional part since the Gaussian filter parameters are decimals. Our analysis shows

that 7 bits are sufficient to meet the accuracy requirement of the Gaussian filter parameters, which

is typically in the order of 0.001.

To store grayscale images, we used the SRAM (CY7C0832BV) [77]. This is a dual ported

SRAM with 110 pins. The Xilinx Virtex-5 FPGA (XC5VSX240T) has 960 I/O pins and so, to

satisfy the I/O pin constraint, the maximum number of PUs is 8 (q = 8). The local memory on the

FPGA for a block size of 64×64, which is needed to support 8 PUs, is equal to 7pqm2b = 4046p

Kbits, for q = 8, m = 68 (for a 64×64 block size and a 3× gradient mask size), and b = 16.

Since the available memory resource on the FPGA is 18,576 Kbits, the p value using the memory

constraint is determined to be 4. The p value could have also been constrained by the number

of available slices. Since the number of slices for the considered FPGA is very large (37,440)

and since each CE only utilizes a small slice percentage, the local memory resource in each PU

constrains p, the number of CEs in each PU, and not the numbers of slices. Taking all this into

consideration, our design has q= 8 PUs and each PU has p= 4 CEs. This design is coded in Verilog

and synthesized on a Xilinx Virtex-5 device (XC5VSX240T) using the Xilinx’s ISE software and
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Table 3.4: Resource Utilization On XC5VSX240T for 1 CE.

Block
Size

Number
of CE

Occupied
slices

Slice
Reg.

Slice
LUTs

DSP48Es
Total used

Memory (KB)

64×64 1 747 (2%)
1,270
(1%)

2,578
(1%)

7 (1%) 217 (1%)

Table 3.5: Resource Utilization on XC5VSX240T for 1 PU (4 CEs and 2 Ping-Pong Buffers).

Block
Size

Number
of CE

Occupied
slices

Slice
Reg.

Slice
LUTs

DSP48Es
Total used

Memory (KB)

64×64 4
2,988
(8%)

5,080
(4%)

10,312
(4%)

28 (3%) 2023 (10%)

Table 3.6: Resource Utilization on XC5VSX240T for An 8-PU Architecture.

Block
Size

Number
of CE

Occupied
slices

Slice
Reg.

Slice
LUTs

DSP48Es
Total used

Memory (KB)

64×64 32
23,904
(64%)

40,640
(32%)

82,496
(34%)

224
(25%)

16,184 (87%)

verified using Modelsim. According to the ”Place and Route” synthesis report, our implementation

can achieve an operating frequency of 250 MHz. But we choose 100 MHz to support a pipelined

implementation of SRAM read/write and CE processing as described later in this section.

The FPGA resource utilization in each CE is listed in Table 3.4, followed by the resource

utilization for each PU in Table 3.5. The FIR IP core and the arithmetic functions are implemented

using DSP48Es. The on-chip memory is implemented using BRAMs. Table 3.6 summarizes the

resource utilization of the 8-PU architecture. It shows that the 8-PU architecture occupies 64% of

the slices and 87% of the BRAM memory.

Fig. 3.25 shows the pipeline implementation of SRAM read/write with the CE computation,

where each SRAM bank stores a tile of size N2/q image data and each ping or pong buffer stores a

group of blocks (GOB) of size p×m×m image data. Since our design has q = 8 PUs, one SRAM

can hold a tile of size 32,768 (64×64×8) image data for a 512×512 image. In addition, for p = 4

CEs and for a 64× 64 block size (n = 64; m = 68), the image data stored in the SRAM result in

two GOBs. These GOBs can be pipelined. As shown in Fig. 3.25, while GOB 2 is loaded to the

ping-pong buffers, the CEs process GOB 1. Also, while GOB 1 is written back into SRAM, the

CEs process GOB 2 at the same time. Such a pipelined design can increase throughput.
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Figure 3.25: Execution Time of the 512×512 Image.

Table 3.7: Clock Cycles for Each Unit.

TGRAD TFIR TNMS TTC TT H

Clock Cycles 9248 16 20 4630 4634

Fig. 3.25 also shows the computation time of each stage in a CE during the processing of

an m×m overlapping block (m = 68 for a 64×64 block and a 3×3 gradient mask). As shown in

Fig. 3.25, TBC, the time to classify the block type, is less than TGRAD, the time for Gradient and

Magnitude calculation, which equals to 9248 clock cycles. TFIR, the FIR filter computation latency

equals to 8 clock cycles for a 3×3 FIR separable filter. The high and low thresholds calculation unit

is pipelined with the directional NMS unit and the latency of the NMS unit is 20 clock cycles. This

is referred to as TNMS in Fig. 3.25. TTC represents the latency of the thresholds calculation stage

and is equal to 4630 cycles, while TT H represents the latency of the thresholding with hysteresis

stage and is equal to 4634 cycles. Table 3.7 shows the latency for each unit. Therefore, one CE

takes TCE = TGRAD +TFIR +TNMS +TTC +TT H = 18,548cycles.

Each PU takes 18,496 cycles to load 4 68×68 overlapping blocks from the SRAM into the

local memory. It also takes 16,384 (4 64×64 non-overlapping blocks) cycles to write final edge

maps into SRAM. If SRAM operates at fSRAM , the SRAM read time is 18,496/ fSRAM . The CE

processing time equals to 18,548/ fCE when CE is clocked at fCE . In order to completely overlap

communication with computation and avoid any loss of performance due to communication with
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SRAM, given a fixed fSRAM , fCE should be selected such that the processing time is approximately

equal to the SRAM read time (since the SRAM write time is less than the read time). Thus,

18,496/ fSRAM = 18,548/ fCE , and the fCE can be set to be 1.003 times higher than fSRAM .

The maximum speed of the employed SRAM device (CY7C0832BV) is 133MHz. Howev-

er, we choose the SRAM clock rate as fSRAM = 100MHz to allow for sufficient design margin.

Thus, fCE ≈ 100MHz, which is lower than the maximum operating frequency (250 MHz) of the

used FPGA according to the synthesis report. The total computation period for one CE is TCE =

18,548/105 ≈ 0.186ms when clocked at 100 MHz. Thus, for a 512×512 image, the total compu-

tation period is Tcom = 0.186×2 = 0.372ms; while the total execution time, including the SRAM

read/write time and the computation time, is Ttotal =(18,496+16,384)/105+0.186×2= 0.721ms.

The simulation results also show that, at a clock frequency of 100MHz, the execution time for pro-

cessing 512×512 images is 0.721ms for the images in the USC SIPI database.

In order to validate the FPGA generated results, two conformance tests are performed. One

aims to evaluate the similarity between edges detected by the fixed-point FPGA and Matlab imple-

mentation of the distributed Canny edge detection algorithm. The other is to measure the similarity

between edges detected by the fixed-point FPGA and the 64-bit floating-point Matlab implementa-

tion of the distributed Canny edge detection algorithm. Our results for both tests were performed

on the USC SIPI image database.

For the first test, the difference between the edges detected by the fixed-point FPGA and Matlab

implementations is calculated. Fig. 3.26 shows an example of the obtained fixed-point Matlab and

FPGA results for the Houses image using the proposed algorithm with a 64×64 block size and

3×3 gradient masks. The FPGA simulation result is obtained using Modelsim and assumes the

original image data has been stored in SRAMs. It can be seen that the two edge maps are the same.

Furthermore, the quantitative difference between the FPGA simulation result and the fixed-point

Matlab simulation result is zero. The same results were obtained for all 26 images in dataset.

In order to verify similarity of the edges generated by the fixed-point FPGA and 64-bit floating-

point Matlab implementation of our proposed algorithm, the Pco, Pnd and Pf a, metrics as described

in Section 3.4.1, were used. For all images, the correctly detected edge pixel percentage (Pco) was

higher than 98.2%. Furthermore, less than 1.8% of all edge pixels were detected by only one of

41



(a) (b)

Figure 3.26: Comparison between the Fixed-Point Matlab Software Simulation Result And FPGA
Hardware Simulation Result For Detecting Edges of the 512×512 Houses Image Using A Block
Size of 64×64 And A 3×3 Gradient Mask: (a) Edge Map Generated by the Fixed-Point MATLAB
Implementation; (b) Edge Map Generated by the FPGA Implementation.

the detectors (Pnd and Pf a). This leads to the conclusion that the hardware implementation of our

proposed algorithm can successfully detect significant edges.

Furthermore, to show the efficiency of the FPGA-based system, we compared the FPGA im-

plementation of the original frame-based Canny edge detector with an assembly optimized CPU

implementation of the original Canny edge detector available in Intel’s OpenCV library, which

makes good use of thread parallelization and SSE instructions. Also, to show the efficiency of the

FPGA implementation of our proposed distributed Canny algorithm, the proposed FPGA distribut-

ed Canny implementation is compared with the FPGA and CPU implementations of the original

frame-based Canny edge detector. The two candidate hardware platforms were:

• CPU: Intel Core i7-975, four 3.33G cores, 8192KB cache and 12GB RAM;

• FPGA: Xilinx SXT Virtex-5, 37,440 slices, 1,056 DSP48E slices and 18,576 Kbits BRAM

Runtime results are shown in Table 3.8 for the standard ”Lena” image. The absolute runtimes of

the two algorithms were recorded and averaged over 100 times. Since the FPGA runtime does

not include the image loading time from the host to the external SRAMs, for fair comparison, the

loading time from the HDD to the RAM for the CPU implementation is also not included in the

reported runtime. In general, the CPU loading time is shorter than the FPGA loading time since

the speed of the internal CPU bus is faster than when using an external bus such as PCI or PCI

external.
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Table 3.8: Runtime Comparison On Various Platforms for the ”Lena” Image at Different Sizes.

Image Size Frame-based Canny
Proposed distributed

Canny (64×64
non-overlapping block)

OpenCV (ms)
@3.33 GHz

FPGA (ms)
@100 MHz

FPGA (ms) @ 100 MHz

256×256 2.206 0.67 0.535
512×512 5.97 2.74 0.721

1024×1024 20.852 12.02 1.837
2048×2048 76.102 56.30 6.301

From Table 3.8, it can be seen that the speed of the FPGA implementation for the original

frame-based Canny edge detection is faster than the frame-based CPU implementation even though,

for the CPU implementation, the CPU is clocked 33 times faster. Furthermore, the FPGA imple-

mentation for the proposed distributed Canny edge detection is much faster than the frame-based

FPGA and CPU implementations. This illustrates the efficiency of the proposed distributed Canny

edge detector.

A long standing challenge for the use of the Canny edge detection algorithm for real-time appli-

cations is its high computational complexity. Several FPGA and GPU implementations have been

proposed to meet the requirements of real-time applications. Comparisons between our proposed

FPGA implementation and other existing FPGA and GPU implementations are discussed below.

As far as we know, the existing FPGA-based approaches implemented the frame-based Can-

ny algorithm and only the computation time for detecting edges are presented in papers [47–49].

The computation time and resource utilization results of these frame-based Canny FPGA imple-

mentations and our distributed Canny FPGA implementation are shown in Table 3.9. Since these

approaches are implemented for different image sizes and operated at different clock frequencies,

their results have to be normalized for a fair comparison. The rightmost column of Table 3.9

gives the normalized computing time, where the normalization is done with respect to an image

of size 512×512 and an FPGA clock frequency of 100 MHz. From Table 3.9, it can be seen that

the computation time of the proposed distributed implementation is much faster than the existing

implementations. Furthermore, the implementations [48, 49, 64] result in degraded performance

compared to our implementation since the thresholds are fixed to predetermined values, while our
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Table 3.9: Computation Time of the Proposed Distributed Canny FPGA Implementation Using A
64× 64 Non-Overlaping Block Size And A 3× 3 Gradient Mask And of Existing Frame-Based
Canny FPGA Implementations.

Image
Size

FPGA
Device

Occupied
Slices

Total used
Memory

(KB)

Highest
Freq.

(MHz)

Time
(ms)

Norm.
Time
(ms)

[47] 256×256
Xilinx

Vertex-E
- - 16 4.2 2.688

[48] 256×256
Altera

Stratix II
1,530

/48,352
1,116
/2,044

264 0.25 2.64

[64] 360×280
Altera

Cyclone
- - 27 2.5 0.72

[49] 512×512
Xilinx

Virtex-5
4,553

/71,680
192 /5,328 292.8 0.57 1.669

Our 512×512
Xilinx

Virtex-5
23,904
/37,440

16,184
/18,576

250 0.15 0.372

Table 3.10: Runtimes of the GPGPU Implementations And Our 32-CE FPGA Implementation.

GTX
80 [50]

GT 80 [52] GT 200 [52] Fermi [52]
32-CE
FPGA

Image Size 512×512 321×481 321×481 321×481 512×512
Freq (MHz) 768 1500 1300 1150 100
Time (ms) 3.4 5.47 2.95 2.3 0.721

Norm. Time
(ms)

26.112 139.31 65.11 44.91 0.721

implementation computes the hysteresis thresholds adaptively based on the input image character-

istics. In addition, compared to other frame-based FPGA implementations, the proposed imple-

mentation enables a higher throughput due to its distributed nature, at the expense of more memory

and slice usage.

Also, the GPU-based Canny implementations in [50] and [52] are compared to our 32-CE

FPGA Canny implementation. One NVidia GPGPU was used in [50] and three NVidia GPGPUs

were used in the recent GPU Canny implementation [52]. The GPU configuration details are given

below:

• GTX 80 [50]: NVidia GeForce 8800 GTX with 128 575-MHz cores and 768MB RAM;

• GT 80 [52]: NVidia GeForce 8800 GT with 112 1.5-GHz cores and 512MB RAM;
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• GT 200 [52]: NVidia Tesla C1060 with 240 1.3-GHz cores and 4GB RAM;

• Fermi [52]: NVidia Tesla C2050 with 448 1.15-GHz cores and 3GB RAM.

Since the FPGA runtime does not include the image loading time from the host to the external

SRAMs, the loading time for GPU implementations was removed from the total runtime for a fair

comparison. Table 3.10 shows the runtimes of the GPGPU implementations and our 32-CE FPGA

implementation (with a 64×64 block size and a 3×3 gradient mask) for processing a 512×512

image. Even though all these existing GPGPU implementations do not have an adaptive thresh-

old calculation stage and the FPGA is operated at a much slower frequency, our 32-CE FPGA

implementation is faster than the GPGPU implementations.

3.5 Summary

The original Canny algorithm relies on frame-level statistics to predict the high and low thresholds

and thus has latency proportional to the frame size. In order to reduce the large latency and meet

real-time requirements, we presented a novel distributed Canny edge detection algorithm which

has the ability to compute edges of multiple blocks at the same time. To support this, an adap-

tive threshold selection method is proposed that predicts the high and low thresholds of the entire

image while only processing the pixels of an individual block. This results in three benefits: 1)

a significant reduction in the latency; 2) better edge detection performance; 3) the possibility of

pipelining the Canny edge detector with other block-based image codecs; 4) no memory resources

constraint for large-size images. In addition, a low complexity non-uniform quantized histogram

calculation method is proposed to compute the block hysteresis thresholds. The proposed algo-

rithm is scalable and has very high detection performance. We show that our algorithm can detect

all psycho-visually important edges in the image for various block sizes. Finally, the algorithm

is mapped onto a Xilinx Virtex-5 FPGA platform and tested using ModelSim. The synthesized

results show 64% slice utilization and 87% BRAM memory utilization. The proposed FPGA im-

plementation takes only 0.721ms (including the SRAM read/write time and the computation time)

to detect edges of 512× 512 images in the USC SIPI database when clocked at 100 MHz. Thus

the proposed implementation is capable of supporting fast real-time edge detection of images and

videos including those with full-HD content.
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Chapter 4

OVERVIEW OF CHANGE DETECTION IN MULTI-TEMPORAL SAR IMAGES

4.1 Introduction

Detecting temporal changes occurring on the earth surface by observing them at different times

constitutes one of the most important use of remote sensing technology. Especially, due to the all-

weather operating ability of synthetic aperture radar (SAR) imagery, multi-temporal SAR image

change detection has many applications, such as environmental monitoring, agricultural surveys,

urban studies, and forest monitoring [78]. One critical issue in multi-temporal SAR images is the

detection of changes occurring after a natural or anthropic disaster.

This change-detection procedure is made difficult due to three reasons. The first one is the

time constraints imposed by the emergency context. Indeed, the first available acquisition after the

event has to be used, whatever is the modality, which is more likely to be a radar image, due to

weather and daylight constraints. Secondly, it is hard to model the type of changes produced by

the event of interest. For example, an earthquake can have different signature depending on when

or where it happens,(e.g., high-density built-up areas, agricultural area, etc.). Finally, the changes

of interest are all mixed up with normal changes if the time gap between the two acquisitions is too

long [54]. All these issues present us with a tough problem: detecting abrupt unmoulded changes

in a temporal series.

Over the years, a variety of methods have been proposed to solve this problem in the literature.

According to the data sources, the existing methods fall into two categories: bi-temporal change

detection and image time series change detection [79, 80]. Furthermore, most bi-temporal change

detection techniques can be classified into supervised and unsupervised change detection methods.

In supervised change detection, reliable training samples based on the prior knowledge of the

research scenario are selected to train a classifier, which will be used after training to classify each

pixel as changed or unchanged pixel. Recently, support vector machines have been widely applied

for supervised change detection [81–83]. On the contrary, in unsupervised change detection, the

first step is to compare directly image features or even the original two images by some similarity

metrics resulting in a similarity image, and then threshold or label the similarity image to derive

a binary change map consisting of two classes associated with changed and unchanged pixels. As
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a result, unsupervised approaches are preferable to supervised approaches in practice as training

samples are not always available and since training is expensive in terms of both time and cost in

order to obtain reliable training data.

Supervised change detection can be performed as a binary classification including post classi-

fication comparison [84], [85], direct multi-data classification [84], [86] and compound classifica-

tion [87–89]. Post classification comparison performs change detection by comparing the change

map derived from the independent classification of the two images, while the direct multi-data

classification achieves the change map by classifying the concatenated features of the two images.

Compound classification performs the change detection by maximizing the posterior joint prob-

abilities of classes. Recently, support vector machines have been widely applied for supervised

change detection. In [81], inductive SVM was initially used for classifying features characterizing

changes at object-level and then the classification was refined by an iterative transductive SVM.

SVM using a stochastic kernel [90] was applied for change detection based on similarity measures

of the local statistics. An approach for unsupervised change detection was proposed in [82] using

a selective Bayesian thresholding for deriving a training set that is used for initializing a binary

semi-supervised support vector machine (S3VM) classifier. In [83], change detection was formu-

lated as a minimum enclosing ball (MEB) problem which was approached by a Support Vector

Domain Description (SVDD) classifier. One advantage of these methods is their ability to capture

various changes denoted by a transition map. However, in practice, training samples are not always

available for forming a reliable set of training data.

In general, most unsupervised change detection methods include three steps as shown in Fig.

4.1: 1) preprocessing, 2) image comparison to generate a similarity image, and 3) thresholding the

similarity image to compute the final binary change detection map associated with changed and

unchanged classes. The overall performance of the detection system will depend on both the qual-

ity of the similarity image and the quality of the thresholding method. Usually, there are two aims

that the preprocessing step attempt to achieve. One aim is to make two images as similar as pos-

sible. Typically radiometric corrections and image registration techniques are involved. The other

aim of preprocessing is to increase the SNR of the considered images (by reducing noisy speckle

components), while preserving sufficient spatial details. Many adaptive filters for speckle reduc-
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Figure 4.1: General Block Diagram of the Change Detection.

tion have been proposed, e.g., the Frost [91], Lee [92], Kuan [93], Gamma Map [94, 95], and the

Gamma WMAP [96] (i.e., the Gamma MAP filter applied in the wavelet domain) filters. Note that

the requirements on the pre-processing may vary among different change detection methods. For

image comparison, several detectors have been proposed. The classical detectors include differ-

encing and ratioing techniques [78], which are carried out through pixel-by-pixel comparison. The

image comparison method in [97] is based on analyzing the higher order statistics of SAR images.

It is concluded that mean ratio detector was useful for step changes and the second- and third-order

log-cumulant were usful for progressive changes appearing in consecutive images. Since higher

order statistics seem to be helpful, some recent image comparison methods [34, 54] compare the

local probability density functions (pdfs) of the neighborhood of the homologous pixels of the pair

of SAR images for change detection. In the field of unsupervised change image thresholding, many

approaches [22, 33, 98–101] have been proposed to analyze the similarity image in both the spatial

and wavelet domains. Most approaches in the literature concentrate on the third step (threshold-

ing), the focus of this work is on the second step (image comparison), where the objective is to find

a good detector to measure the degree of similarly between two image data. The existing image

comparison methods will be described in detail in the following subsections.

48



4.2 Existing Multi-temporal SAR Image Comparison Methods in the Spatial Domain

The existing image comparison methodologies for change detection on in bi-temporal SAR images

can be classified into two categories: pixel-based comparison methods, and local statistics com-

parison methods based on information similarity measures. The pixel-based image comparison

techniques usually compute the similarity by performing some specific arithmetic operation on the

intensity values of two SAR images, pixel by pixel, while the local statistics image comparison

techniques are based on the idea that the images acquired over the same area at two different times

are two different measurements of the same information source if that area did not significantly

change. The experiment results in [34, 54, 97] concluded that the local-statistics based methods

exhibit a better performance in terms of the classification accuracy than the pixel-based methods.

4.2.1 Pixel-Based Image Comparison Techniques

Differencing and ratioing are well-known techniques for change detection. In differencing, changes

in radar backscatter are measured by subtracting the intensity values, pixel by pixel, between two

dates; while in ratioing, the changes are measured by dividing the intensity values, pixel by pixel.

In [78], it was concluded that the ratioing method is superior to the differencing method due to

the following reasons. Firstly, in contrast to the difference method, the ratio method only depends

on the relative change in average intensity between two dates, and detecting changes in the SAR

imagery does not depend on the intensity level of the pixels. Another important reason is that

the ratio method is very robust to calibration errors whereas the difference method is not [78].

Both errors are multiplicative factors to the total radar intensity. These factors are eliminated

when computing the ratio image because calibration errors are exactly reproduced in repeat-pass

imagery. In contrast, in the difference method, radiometric errors directly modulate the difference

of the radar intensities, typically yielding higher changes in very hilly terrain (e.g., slopes facing

the radar) than in rather flat areas for the same type of surface, which is not a desired effect. The

ratioing techniques is also called Mean Ratio Detector (MRD) and is usually computed as the

following normalized quantity:

DMRD = 1−min{µX

µY
,

µY

µX
}. (4.1)
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where µX and µY stand for the local mean values of the images before and after the event of interest,

respectively. The logarithm of Equation 4.1 is conveniently used.

4.2.2 Local Statistics Comparison Techniques Based on Information Similarity Measures

Recently, many change detection algorithms were proposed based on the evolution of the local

statistics of the image between two dates. More specifically, the modification of the statistics of

each pixel’s neighborhood between the two acquisition dates is analyzed, and a pixel is considered

as having changed if its statistical distribution changes from one image to the other. In order to

quantify the distance between probability densities of the two acquisition dates, a measure, which

maps the two estimated statistical distributions (one for each date at a colocated area) into a scalar

change index is required. Several information theoretical similarity measures were proposed in

the literature including the cluster reward algorithm [102], Woods criterion [102], the correlation

ratio [102], mutual information [103], mixed information [104], and the Kullback-Leibler (KL)

divergence [34, 54]. Among all these similarity measurement, the KL divergence is widely used

as a measure to quantify the change since the KL divergence appears to be an appropriate tool to

detect changes when we consider that changes on the ground induce different shapes on the local

pdf [54].

Let fX and gY be two probability density functions (pdf) of the random variables X and Y ,

respectively. The KL-divergence from Y to X , also known as the relative entropy, is given by [105]:

KL( fX∥gY ) =
∫

fX(x) log
fX(x)
gY (y)

dx.

The measure log( fX(x)/gY (y)) can be thought of as the information contained in x for the discrim-

ination between the hypothesis HX and HY , if hypothesis HX is associated with the pdf fX(x) and

HY with gY (y). Therefore, the KL divergence can be understood as the mean information for the

discrimination between HX and HY per observation. This divergence appears to be an appropriate

tool to detect changes when we consider that changes on the ground induce different shapes on the

local pdf. It can be easily proved that KL( fx∥gy) ̸= KL(gy∥ fx), but a symmetric version called the

KL distance (KLD) [54] is wildly used and is defined as:

D( fx,gy) = D(gy, fx) = KL( fx∥gy)+KL(gy∥ fx).
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In order to estimate the KL distance, the pdfs of the two variables to be compared have to be

known. We will introduce below several popular approaches to estimate the pdfs and compute the

corresponding KLD for SAR imagery.

• Gaussian KL Detector (GKLD)

In this case, the local statistics of the local random variables X and Y are assumed to be normally

distributed and the pdf fX can be written as

fX(x) = G (x; µX ,σX) =
1√

2πσ 2
X

e
− (x−µX )2

2σ2
X . (4.2)

An analogous expression holds for gY . This Gaussian model yields the GKLD [54]

DGKLD =
σ 4

X +σ4
Y +(µX −µY )

2(σ 2
X +σ 2

Y )

2σ 2
X σ 2

Y
−1. (4.3)

It can be seen that, even in the case of identical mean values, the GKLD detector is able to underline

the shading of textures, which is linked to the local variance evolution. Nevertheless, SAR-intensity

values are not normally distributed, and the use of a bad model can induce bad performance of the

detector. However, this example has been given as a simple case of a parametric model, which

takes into account second-order statistics. Since some Gaussianity may be introduced into the data

when resampling and filtering the images during the preprocessing step, the Gaussian model may

nevertheless be justified.

• KLD Using the Pearson System (PKLD)

In [106],the statistics of SAR images are modeled by the family of probability distributes

known as the Pearson system [107]. The Pearson system is composed of eight types of distribu-

tions, among which the Gaussian and the Gamma distributions may be found. The Pearson system

is very easy to use since the type of distribution can be inferred from the following parameters:

βX ;1 =
µ2

X ;3

µ3
X ;2

βX ;2 =
µX ;4

µ2
X ;2

where µX ;i is the centered moment of the order i of variable X . That means that any distribution

from the Pearson system can be assessed from a given set of samples by computing the first four
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statistical moments. Any distribution, therefore, can be reprosented by a point on the (βX ;1,βX ;2)

plane. For instance, the Gaussian distribution is located at (βX ;1,βX ;2) = (0,3), and the Gamma

distribution lie on the βX ;2 = (3/2)βX ;1 + 3 line. Details about the theory of the Pearson system

can be found in [108].

The Person-based KLD (PKLD) dose not have a unique analytic expression since eight differ-

ent types of distributions may be held [106]. Therefore, 64 different possibilities for the pairs of

pdf exist. Once a pair of pdfs is identified, the corresponding KLD can be computed by numerical

intergration

DPKLD =
∫ [

fX(x;βX ;1,βX ;2)log
fX(x;βX ;1,βX ;2)

fY (y;βY ;1,βY ;2)
dx

+ fY (y;βY ;1,βY ;2)log
fY (y;βY ;1,βY ;2)

fX(x;βX ;1,βX ;2)
dy
]
. (4.4)

The correct way in proceeding to use the Pearson system is to choose a pdf using the estimated

moments and then estimate the parameters of the distribution by maximum likelihood [106]. The

readers should notice that although this procedure can improve the results of the pdf estimation,

the effect is not noticeable in terms of the estimation of the change indicator; and the computation

cost is very expensive [54].

• Cumulant-Based KL Approximation (CKLD)

Instead of considering a parameterizations of a given density or set of densities, the authors

of [54] proposed the use of the Edgeworth series expansion to describe the local statistics. The

basic idea is to describe the shape of the distribution and assume that the quantitative terms of the

shape can approximate the pdf itself. More specifically, the cumulants are used to describe the

pdf’s shape; and then the density is estimated through the Edgeworth series expansion [54]. For

the case of the four first-order cumulants, the following expressions hold [54]:

κX ;1 = µX ;1

κX ;2 = µX ;2 −µ2
X ;1

κX ;3 = µX ;3 −3µX ;2µX ;1 +2µ3
X ;1

κX ;4 = µX ;4 −4µX ;3µX ;1 −3µ2
X ;2 +12µX ;2µ2

X ;1 −6µ4
X ;1.

(4.5)
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Let us assume that the density to be approximated (denoted as fX(x)) is not too far from a Guassian

pdf (the Gaussian pdf is denoted as GX to underline the fact that the GX has the same mean and

variance as fX(x)), that is, with a shape similar to the Gaussian distribution. When choosing a

Gaussian law (the density to be approximated is with a shape similar to the Gaussian distribution),

the Edgeworth series expansion is obtained. Its expression, when truncated to an order of six, is

the following [54]:

fX(x) =
(

1+
κX ′;3

6
H3(x)+

κX ′;4

24
H4(x)+

κX ′;5

120
H5(x)

+
κX ′;6 +10κ2

X ′;3

720
H3(x)

)
GX(x). (4.6)

where Hr(x) is known as the Chebyshev-Hermite polynomial of order r [109]. This equation can

be thought of as a model of the form X = XG +X ′ where XG is a random variable with Gaussian

density with the same mean and variance as X , and X ′ is a standardized version of X [110] with

X ′ = (X −κX ;1)κ
−1/2
X ;1 .

The approximation of the KL divergence by the Edgeworth series, truncated at the order of

four, is given by [111]:

KLEdgeworth(X ,Y ) =
1

12
κ2

X ′;3

κ2
X ;2

+
1
2

(
log

κY ;2

κX ;2
−1+

1
κY ;2

(κX ;1 −κY ;1 +κ1/2
X ;2 )

2
)

−
(

κY ′;3
a1

6
+κY ′;4

a2

24
+κ2

Y ′;3
a3

72

)
− 1

2
κ2

Y ′;3

36

(
c6 −6

c4

κX ;2
+9

c2

κ2
Y ;2

)

−10
κX ′;3κY ′;3(κX ;1 −κY ;1)(κX ;2 −κY ;2)

κ6
Y ;2

.

(4.7)

where

a1 = c3 −3
α

κY ;2
a2 = c4 −6

c2

κY ;2
+

3
κ2

Y ;2

a3 = c6 −15
c4

κY ;2
+45

c2

κ2
Y ;2

− 15
κ3

Y ;2

c2 = α2 +β 2; c3 = α3 +3αβ 2

c4 = α4 +6α2β 2 +3β 4

c6 = α6 +15α4β 2 +45α2β 4 +15β 6

α =
κX ;1 −κY ;1

κY ;2
β =

κ1/2
X ;2

κY ;2
.

(4.8)
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Finally, the cumulant-based KLD (CKLD) between two oberservations X and Y is writen as

DCKLD = KLEdgeworth(X ,Y )+KLEdgeworth(Y,X). (4.9)

4.3 Existing Multi-temporal SAR Image Comparison Methods in the Wavelet Domain

In [34], an unsupervised change detection method was proposed in the wavelet domain based on s-

tatistical wavelet subband modeling. The motivation is to capture textures efficiently in the wavelet

domain. The wavelet transform is applied to decompose the image into multiple scales and the

probability density function of the coefficient magnitudes of each subband is assumed to be a

Generalized Gaussian Distribution (GGD) or a Generalized Gamma Distribution (GΓD) and is es-

timated by parameter estimation through fitting. A closed-form expression of the Kullback-Leibler

divergence between two corresponding subbands (belonging to the two images being compared) of

the same scale is computed and used to generate the change map.

• Generalized Gaussian KL Detector (GGKLD)

It is well-known that the distribution of wavelet subbands can be modeled using the Generalized

Gaussian distribution (GGD) [112, 113], which is given as follows:

fX(x,α,β ) =
β

2αΓ
(

1
β

) exp
(
−
∣∣∣ x
α

∣∣∣β) . (4.10)

where α > 0 is a scale parameter, β > 0 is a shape parameter, and Γ detnotes the Gamma function.

Compared to the Gaussian distribution, the GGD distribution model is more flexible and general

while the estimation of its parameters is more complex and difficult. A common method for param-

eter estimation is maximum likelihood estimation [113]. Recently, an alternative and fast method

for estimating the shape parameter based on the convex shape equation was proposed in [114]. For-

tunately, an analytic expression of the KL divergence of the GGD is available for the fast evaluation

of the the similarity between two corresponding windows from the two images being compared.

The closed-form symmetric KL divergence between two GGDs ( fX(x : α1,β1) and fY (y : α2,β2))

is given as follows [34]:

DGGKLD( fX∥ fY ) = log

β1α2Γ
(

1
β2

)
β2α1Γ

(
1
β1

)
+

(
α1

α2

)β2 Γ
(

β2+1
β2

)
Γ
(

1
β1

) − 1
β1

. (4.11)
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To exploit the multiscale property of the wavelet transform, the authors of [34] assume that

the subbands are independent such that the total similarity of two blocks are defined as the sum of

similarity measures of each subband. The final similarity map SMAPGGKLD is give by:

SMAPGGKLD =
3S

∑
i=1

DGGKLD( fX ;i∥ fY ;i) (4.12)

where S is the number of scales; fX ;i and fY ;i are the estimated distributions of the wavelet coeffi-

cients in subband i.

• Generalized Gamma KL Detector (GΓKLD)

Recently, it has been observed that the GGD can not characterize fully the coefficients’ distri-

bution of complex scenes with high variations [115–117]. A promising distribution model, called

the Generalized Gamma distribution (GΓD), has been proposed for modeling the distribution of

the wavelet coefficients. The one-side GΓD version (x > 0) is defined as

fX(x,α,β ) =
βxβλ−1

αβλ Γ(λ )
exp
(
−
( x

α

)β
)

x > 0. (4.13)

where α is the scale parameter, β is the shape parameter and λ is the index shape parameter. The

two-side GΓD is given as f ′X(x) = fX(|x|)/2 (x∈R). The advantage of GΓD over GGD is that it

introduces another index shape parameter such that the model is more general and flexible. Usually,

the parameters of a one-sided GΓD are estimated first. The one-sided GΓD can be easily extended

to a two-sided version by the symmetric property. Two promising estimation methods have been

discussed in [34]. One is the Method of Log-Cumulants (MoLC) [118] based on second kind

statistics, which was demonstrated to be efficient for the parameter estimation of a positive random

variable. The other method is based on scale-independent shape estimation (SISE) and allows the

efficient estimation of the parameters [116], and for which the uniqueness and consistency of the

solution were proved mathematically [116].

The close-form expression of the KL divergence between two GΓDs is available. The closed-

form symmetric KL divergence between two GΓDs ( fX(x : α1, β1, λ1) and fY (y : α2, β2, λ2)) is
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given as follows [34]:

DGΓKLD( fX∥ fY ) =−λ1 −λ2 +(β1λ1 −β2λ2)

(
log

α1

α2
+

Ψ(0,λ1)

β1
− Ψ(0,λ2)

β2

)
(

α1

α2

)β2 Γ(λ1 +β2/β1)

Γλ1
+

(
α2

α1

)β1 Γ(λ2 +β1/β2)

Γλ1
.

(4.14)

where Γ() is the Gamma function and Ψ() is the polygamma function.

Similar to SMAPGGKLD, the final similarity map SMAPGΓKLD is obtained by summing all simi-

larity measures across subbands as follows:

SMAPGΓKLD =
3S

∑
i=1

DGΓKLD( fX ;i∥ fY ;i) (4.15)
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Chapter 5

CHANGE DETECTION ON SAR IMAGES USING LOCAL STATISTICS AND GAUSSIAN

MIXTURE MODELS

5.1 Introduction

For image comparison, several change detectors have been proposed. The classical detectors in-

clude differencing and ratioing techniques [78], which are carried out through pixel-by-pixel com-

parison. Compared to the difference operator, the ratio operator is more robust to illumination

variations, speckle noise and calibration errors. However, the ratio operator, also known as the

mean ratio detector [119], assumes that the texture is a zero-mean multiplicative contribution. As

a result, it cannot detect changes taking place at the texture level.

In recent years, promising methods based on information theory have been developed for

change detection of multi-temporal SAR images, where the basic idea is that the images acquired

over the same area at two different times are two different measurements of the same information

source. Several information similarity measures were proposed to assess the similarity of the two

SAR images of the same source. Generally, most of those measures utilize the local probability

density functions (PDFs) of the neighborhood of pixels to perform the comparison, instead of a

pixel-by-pixel comparison. Consequently, the quality of the resulting difference image depends on

how well the statistical models fit the local statistics of the images. In [91], the Gaussian mod-

el was used to approximate the local image statistics. However, SAR-intensity statistics are not

typically normally distributed. In [54], the Pearson system, which is composed of eight types of

distributions, and one-dimensional Edgeworth series expansion techniques were proposed to model

the local distributions in the neighborhood of each pixel. Then, the Kullback-Leibler divergence

was used to measure the degree of evolution of the local statistics. However, the computational

complexity of these two methods proposed in [54] is very high since they have to use fourth order

statistics to estimate the parameters of the local PDF. The method proposed in [54] was extended to

object-based change detection by computing the Kullback-Leibler divergence of two corresponding

objects resulting from image segmentation [120]. The method proposed in [34] extends the infor-

mation similarity measure-based method to the wavelet domain by using generalized Gaussian and

Gamma distributions to model the magnitude of the subband coefficients, and the Kullback-Leibler
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divergence is used to compute the similarity between the statistical models corresponding to the

same subbands at the same scale.

However, all these image comparison methodologies were developed under the assumption that

the local neighborhood of each pixel corresponds to a land-cover typology whose local statistics

can be approximated using a single parametric mathematical distribution model. However, the lo-

cal neighborhoods typically contain different regions with different characteristics, especially for

lager window sizes. Typically, the window size ranges from 3×3 pixels to 51×51 pixels [54].

In addition, a SAR image generally contains a scene with several distinct land-cover typologies.

Therefore, a locally adaptive model is needed to approximate the distribution of each window

block. Gaussian Mixture Models (GMM) have been widely used to model natural image statis-

tics [121] since they can approximate a variety of distributions, and only second-order statistical

parameters are needed to be estimated to obtain the GMM.

In this work, the GMM is used to adaptively approximate the local statistical distribution of

the SAR image both in the spatial and wavelet domains. The proposed adaptive GMM estimation

method is capable of selecting the optimal number of components and parameters of each Gaus-

sian component according to the characteristics of each local distribution. The degree of similarity

between the local statistics of two SAR images is measured using the Kullback-Leibler (KL) di-

vergence. Results from experiments that are conducted with real SAR data are shown to illustrate

that the proposed change detection method outperforms other change detection algorithms both in

the spatial and wavelet domains. One analytical expression for approximating the KL divergence

between GMMs is given and is compared with the Monte Carlo sampling method.

This chapter is organized as follows. Section 5.2 begins with a review of existing statistical

models for SAR images and then presents the proposed GMM model and its adaptive parameter

estimation method to approximate the local statistics of SAR images. The proposed GMM model is

also compared with two popular statistical distributions. Section 5.3 presents the proposed spatial-

domain and wavelet-domain change detection methods based on the KL-divergence of the GMM.

Section 5.4 describes the data sets used for evaluations and the experimental setup, and shows the

experimental results. Finally, conclusions and remarks are given in Section 5.5.
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5.2 Statistical Modeling for SAR Image

This section begins with the review of existing popular statistical distributions that are used for

modeling the statistics of SAR images. Then, the proposed Gaussian mixture model and corre-

sponding adaptive parameter estimation method are presented. Finally, the proposed GMM model

is compared with existing statistical distributions in order to evaluate their ability to approximate

the PDF of actual SAR images.

5.2.1 Problem Formulation and Related Work

The precise modeling of local statistics is crucial in the context of SAR image processing and

applications, especially for change detection. Many techniques have been developed to characterize

the statistics of SAR images. Both non-parametric and parametric approaches can be employed

for this task [122]. Non-parametric estimation approaches do not assume any specific analytical

model for the unknown PDF but directly estimate the PDF using training data. These include,

for example, the Parzen window estimator [123], artificial neural networks [124], or support vector

machines [125]. Although non-parametric approaches can achieve more flexibility and adaptability,

they require a large amount of training samples and usually present internal architecture parameters

to be set by the user [126].

In contrast, the parametric estimation approaches postulate a mathematical model for the statis-

tical modeling of SAR images and they do not require a large number of training data. Therefore,

the parametric statistical methods have received more attention. Many mathematical distribution

models have been proposed to characterize SAR amplitude images or intensity images. These para-

metric estimation approaches are generally based on three SAR image formation models, namely,

the multiplicative, empirical and SAR scattering model.

The multiplicative model states that the backscattered return is the product of the speckle noise

and the terrain backscatter. More specifically, the multiplicative model combines an underlying

radar cross-section (RCS) component σ with an uncorrelated multiplicative speckle component

nnoise. Thus, in this model, the observed intensity I in a SAR image is expressed as the product

I = σ · nnoise. The K distribution in [127] and G distribution in [128] are such examples. Their

difference lies in the adopted distribution of RCS. For the K distribution case, the Gamma distri-
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bution is used to approximate the distribution of RCS, while the generalized inverse Gaussian law

is used for the G distribution case.

In the empirical model case, the corresponding models are obtained through experimental anal-

ysis of actual SAR images rather than SAR physical image formation mechanisms [129]. Examples

reported in the literature include the log-normal [130], Weibull [130], and Fisher [131] distribution-

s. Recently, more flexible and generalized models were proposed to model the SAR images with

different characteristics. In [54], the Pearson system and one-dimensional Edgeworth series expan-

sion were proposed to model the local statistics of SAR images. The generalized Gamma distribu-

tion (GΓD) was proposed in [132] for the empirical modeling of SAR images. The GΓD supports

a large variety of distributions, including Weibull, log-normal, Rayleigh, exponential, Nakagami,

and Gamma distributions. The experimental results in [132] demonstrate that the GΓD can achieve

a better goodness of fit than existing state-of-the-art PDFs (e.g., Fisher and K distributions).

The SAR scattering model is based on the following assumptions in relation to the SAR image

formation process: 1) the scatterers are statistically independent; 2) the number of scatterers is

large; 3) the scattering amplitude and the instantaneous phase are independent random variables;

4) the phase is uniformly distributed over the range [0, 2π]; 5) no individual scatterer dominates

the whole scene; and 6) the reflection surface is large when compared to the size of individual

reflections. The SAR scattering model describes the complex signal of backscattered fields for

a given ground area under illumination by a single-look SAR sensor [122]. Let Z refers to the

complex signal received by the SAR sensor from the ground area corresponding to a given pixel.

Z is given by:

Z =X + jY = r exp( jθ) =
√

I exp( jθ)

=
Nwaves

∑
i=1

rie jθi =
Nwaves

∑
i=1

(ri cos(θi)+ jri sin(θi))
(5.1)

where X, Y, r, I, and θ are the real part, imaginary part, amplitude, intensity, and phase of the

complex SAR backscattered signal Z, respectively. In addition, ri and θi are, respectively, the

amplitude and phase of the ith scattered complex wave. Nwaves is the number of reflected waves

at the receiver. The problem here is to achieve parametric statistical modeling of the amplitude

SAR image (r) from the PDFs of X and Y. Several well-known statistical distributions for the SAR
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amplitude image (r) were derived based on distributions for the real part X and imaginary part Y.

In [133], invoking the central limit theorem and under the assumptions described above, the real

and imaginary parts (X and Y) of the complex backscattered signal were modeled as i.i.d. Gaussian

random variables. In this case, the signal amplitude Z can be approximated by the Rayleigh PDF

and the intensity I can be modeled by the exponential distribution. Based on a generalized version

of the central limit theorem, which states that the sum of a large number of i.i.d. processes ap-

proach the α-stable law, the authors of [134] adopt the zero-mean symmetric α-stable distribution

for the real and imaginary parts of the complex backscattered signal, and they proposed the gen-

eralized heavy-tailed Rayleigh amplitude distribution (denoted by SαSGR). The authors of [122]

extended the Rayleigh-distributed amplitude model by assuming that the real and imaginary parts

of the complex backscattered signal are distributed following a generalized Gaussian PDF. Based

on this assumption, they showed that the statistics of the amplitude follow the generalized Gaussian

Rayleigh (GGR) distribution [122]. More recently, by assuming a two-sided generalized Gamma

distribution for the real and imaginary parts of the complex SAR backscattered signal, the gener-

alized Gamma Rayleigh distribution (GΓR) was proposed in [129] to model the amplitude SAR

images. The experimental results in [129] showed that the GΓR distribution is a very efficient and

flexible model since the GΓR distribution is the general form of many other models, including the

heavy-tailed Rayleigh distribution and the GGR model.

The GΓD and GΓR based models were found to outperform the majority of other aforemen-

tioned models which correspond to special cases of the GΓD or GΓR models. Therefore, in this

paper, these two models are adopted as the competitive models for comparison in order to evaluate

the performance of the proposed model. In addition, several strategies were proposed to esti-

mate the parameters of GΓD and GΓR models. The three most frequently used methods include

the maximum-likelihood (ML) method [135, 136], the method of moments (MoM) [137], and the

method of log-cumulants (MoLC) [129,132]. Table 5.1 shows the analytic expression of the PDFs

and the MoLC nonlinear equations for the parametric estimation corresponding to the GΓD and

GΓR models.
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Table 5.1: PDFs And MoLC Equations for GΓD And GΓR Models. Here kr(·) Is the rth-order
Modified Bessel Function of the Second Kind; ψ(·) Is the Digamma Function; And ψ(r, ·) Is the
rth-order Polygamma Function [138]. Gr(·, ·) Is the Specific Integral Functions for GΓR [129].

Model Distribution Function MoLC Equation

GΓD p(r) = |ν |κκ

σΓ(κ)(
r
σ )

κν−1exp{−κ( r
σ )

ν} k1 = log(σ)+ ψ(κ)−log(κ)
ν

ki =
ψ(i−1,κ)

νi
, i = 2,3

GΓR
p(r) = [ υ

ηκν Γ(κ) ]
2r2κυ−1 ∫ |cosθ sinθ |κν−1

·exp{−[ r
η ]

ν(|cosθ |ν + |sinθ |ν)}dθ ,
with υ = 1/ϖ

k1 = logη +ϖψ(2κ)−ϖ G1(κ,ω)
G0(κ,ω)

k2 = ϖ2[ψ(1,2κ)+ G2(κ ,ω)
G0(κ ,ω) −

G2
1(κ ,ω)

G2
0(κ ,ω)

]

k3 = ϖ3[ψ(2,2κ)− G3(κ ,ω)
G0(κ ,ω)

+3 G2(κ,ω)G1(κ ,ω)

G2
0(κ ,ω)

−2 G3
1(κ,ω)

G3
0(κ,ω)

]

5.2.2 Proposed Gaussian Mixture Model(GMM) for PDF Estimation of SAR Image in the

Spatial and Wavelet Domains

Note that all of the aforementioned distributions are mainly suitable for SAR images containing

homogenous regions, even though each homogenous region shows different land-cover typologies.

However, in general, actual SAR images correspond to a varied scene presenting several different

regions with different characteristics. In this paper, the Gaussian mixture model is proposed to ad-

dress this problem by postulating that the local neighborhood around each pixel in the SAR image

can be modeled as a combination of parametric Gaussian components, each one corresponding to

a specific land-cover typology. The PDF of a SAR image patch is therefore viewed as an instance

of a generative mixture of Gaussian model. Consequently, at each pixel, we adaptively model the

surrounding local neighborhood, consisting of N pixels p j, j = 1 . . .N, according to a Gaussian

mixture model (GMM). The GMM is a weighted sum of K component Gaussian distributions as

given below:

p(R) =
K

∑
i=1

wiN (R; µ i,Σi), (5.2)

where R is the measurement or feature vector for the considered local neighborhood, wi, i = 1 . . .K,

are called mixing coefficients which must fulfill ∑K
i=1 wi = 1, and N (R; µ i,Σi) is a Gaussian den-

sity with mean vector µ i and covariance matrix Σi. As a result, a GMM is parameterized by

{K,wi,µ i,Σi}. Estimating the GMM parameters requires: 1) optimizing the number K of mixture
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components; and 2) estimating the parameters of each Gaussian component.

Several methods have been proposed to estimate K, the number of components of a mixture

[139–141]. Most of these methods are model-class selection criteria: they select a model-class

based on its ”best” representative. The main idea is to first obtain a set of candidate models for a

range of values of K, e.g., from Kmin to Kmax. Then, find the optimal K̂ according to

K̂ = argmin
K

{C (θ̂(K),K),K = Kmin, ...,Kmax}, (5.3)

where θ is the set of parameters needed to be estimated. For Gaussian model, θ = {µ,Σ}.

C (θ̂(K),K) is the cost function and it has the form

C (θ̂(K),K) =−logp(R|θ̂(K))+P(K), (5.4)

where R is a set of measurements or feature vectors and P(K) is an increasing function with K.

Traditionally, the expectation maximization (EM) algorithm is used to obtain the candidate models

for certain number of components (fixed K). However, in mixture models, the distinction between

model-class selection and model estimation is unclear, e.g. a 3-component mixture in which one

of the mixing probabilities is zero is undistinguishable form a 2-component mixture. Also, the

traditional EM algorithm surfers from two main drawbacks: it is sensitive to initialization and it

may converge to the boundary of the parameter space [142, 143].

To address these problems, the authors in [144] proposed an unsupervised method for learn-

ing a finite mixture model, which seamlessly integrates estimation and model selection in a sin-

gle algorithm and utilized a variant of EM algorithm (component-wise EM for mixture algorithm

(CEM2) [145]) to directly implement the the minimum message length (MML) criterion. More

specifically, Let k be some arbitrary large value and infer the structure of the mixture probabilities

by letting the estimatesof some of the mixing probabilism be zero. This approach coincides with

the MML philosophy, which dose not adopt the ”model-class/model” hierarchy, but directly aims

at finding the ”best” overall model in the entire set of available models. This MML based CEM2

algorithm is less sensitive to initialization and avoid the boundary of the parameters space.

The estimation function of the MML based CEM2 algorithm is shown as follow [144]

θ̂ = argmin
θ

L (θ ,R), (5.5)
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Algorithm 1 Minimum Message Length (MML) Algorithm [144]

Inputs: Kmax, initial parameters θ̂(0) = {θ̂1, ..., θ̂Kmax , ŵ1, ..., ŵKmax}
Outputs: Optimal parameter θ̂best

Set t = 0, Knz = Kmax, Lmin =+∞, u(i)m = ϕ(r(i)|θ̂m),for m = 1, ...,Kmax, and i = 1, ...,N
while Knz ≥ 1 do

t = t +1
for m = 1 : Kmax do

ϕ (i)
m = ŵmu(i)m (∑Kmax

i=1 ŵ ju
(i)
j )−1,for i = 1, ...,N

ŵm = max{0,(∑n
i=1 ϕ (i)

m )− H
2 }(∑

K
j=1 max{0,(∑n

i=1 ϕ (i)
j )− H

2 })
−1

{ŵ1, ..., ŵKmax}= {ŵ1, ..., ŵKmax}(∑
Kmax
m=1 ŵm)

−1

if ŵ > 0 then
θ̂m = argmax

θm

logp(r,W |θ)

u(i)m = p(r(i)|θ̂m), for i = 1, ...,N
else

Knz = Knz −1
end if

end for
θ̂(t) = {θ̂1, ..., θ̂Kmax , ŵ1, ..., ŵKmax},
L [θ̂(t),r] = H

2 ∑m:wm>0 log nŵm
12 + Knz

2 log n
12 +

KnzH+Knz
2 −∑n

i=1 log∑K
m=1 ŵmu(i)m

until L [θ̂(t −1),r]−L [θ̂(t),r]< ε |L [θ̂(t −1),r]|
if L [θ̂(t),r]≤ Lmin then

Lmin = L [θ̂(t),r]
θ̂best = θ̂(t)

end if
m∗ = argminm{ŵm > 0}, ŵm∗ = 0,Knz = Knz −1

end while

where θ is the set of parameters that need to be estimated and L (θ ,R) is a cost function given by:

L (θ ,R) =
H
2 ∑

m:wm>0
log
(

Nwm

12

)
+

Knz

2
log

N
12

+
Knz(H +1)

2
− logp(R|θ).

(5.6)

In (5.6), H is the number of parameters in each component, (i.e., for Gaussian components H =

2), N is the number of independent and identically distributed (iid) samples, wm is the probability of

the mth component, and Knz denote the number of non-zero-probability components. Equation (5.6)

is the final cost function under the MML criterion, whose minimization with respect to θ will

constitute mixture estimate. This equation has the following intuitively interpretation: 1) as usual,

−logp(R|θ) is the code-length of the data; 2) the expected number of data points generated by the

mth component of the mixture is Nwm; this can be seen as an effective sample size from which wm

64



(a)

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Intensity

H
is

to
gr

am
 o

f t
he

 Im
ag

e

 

 

True
GMM
GTD
GTR

(b)

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

Intensity

H
is

to
gr

am
 o

f t
he

 Im
ag

e

 

 

True
GMM
GTD
GTR

(c)

(d)

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Intensity

H
is

to
gr

am
 o

f t
he

 Im
ag

e

 

 

True
GMM
GTD
GTR

(e)

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

0.06

Intensity

H
is

to
gr

am
 o

f t
he

 Im
ag

e

 

 

True
GMM
GTD
GTR

(f)

Figure 5.1: Approximation of the Histograms of SAR Images And of Local Extracted 51× 51
Windows Using the GΓD (Green, Dashed), GΓR (Purple, Dotted) And Proposed GMM (Red,
Dash-Dotted) Models:(a) Original SAR Image And Extracted Window before Abrupt Change; (b)
PDF Fitting of the Histogram of the SAR Image (a); (c) PDF Fitting of the Histogram of the
Extracted Window from SAR Image (a); (d) Original SAR Image And Extracted Window after
Abrupt Change; (e) PDF Fitting of the Histogram of the SAR Image (d); (f) PDF Fitting of the
Histogram of the Extracted Window from SAR Image (d).

is estimated; this the ”optimal” (in the minimum description length sense) code length for each θm

is (H/2)log(Nwm); 3) the wms are estimated from all the N observations, giving rise to the Knz
2 log N

12

term. Rather than using EM algorithm, the recent component-wise EM for mixtures (CEM2) [145]

algorithm was employed to minimize the cost function in Equation (5.6) in [144].

The implementation of Equations (5.5 and 5.6) can be achieved using Algorithm (1) [144].

Here ϕ (i)
m is the a posteriori probability and W is the conditional expectation. From Algorithm

(1), we can see that it is an iterative algorithm. The computation is repeated until Knz = 1. After

several iterations, if the relative decrease in L (θ̂(t),R) falls below a threshold ε (e.g., ε = 10−5),

the algorithm converges. In the end, we choose the number of components K̂ and the estimated

parameters θ̂ which led to the minimum value of L (θ ,R).

In this work, we propose the use of the GMM to model the SAR image in a locally adaptive
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Figure 5.2: Approximation of the Histograms of Subband Coefficients of Extracted SAR Window
Image (Shown in Fig. 5.1 (d)) with the GGD (Green, Dashed), GΓD (Purple, Dotted) And Proposed
GMM (Red, Dash-Dotted) Models: (a)LL Subband at Level 1; (b) PDF Fitting of the Histogram of
Subband Coefficients (a); (c)LH Subband at Level 3; (d) PDF Fitting of the Histogram of Subband
Coefficients (c).

manner, and adopt the unsupervised learning algorithm of [144] to estimate the number of mixture

components and the parameters of each Gaussian component. In Fig. 5.1, we compare the fitting

performance of the GΓD, GΓR and the proposed GGM models in approximating the local pdfs of

SAR images. The top three figures (Figs. 5.1 (a), (b), (c)), respectively, show the SAR image as

well as the extracted window, the fitting results for the image and the fitting results for the extracted

window before abrupt change. In this case, although the GΓD and GΓR approximations give fairly

good fitting performance, the proposed GMM approximation fits the data much better. The bottom

three figures (Figs. 5.1 (d), (e), (f)) show the results for the SAR image and the extracted window

after abrupt change. In this case, there are more than one peak in the histogram, and the GΓD and

GΓR approximations fail to fit the data. However, the proposed GMM approximation still provides

a good fitting performance as shown in Figure 5.1 (f). A similar conclusion is obtained for other

SAR images and extracted windows.
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Since textures can be easily represented and discriminated in the wavelet domain [34], we al-

so investigate the suitability of the GMM model to approximate the local distribution of wavelet

coefficients of SAR images. The generalized Gaussian distribution (GGD) and generalized Gam-

ma distribution (GΓD) were used previously to model the distributions of the subbands coefficient

magnitude [34]. In this paper, these two models are adopted as the competitive models for compari-

son when evaluating the performance of the proposed GMM model in the wavelet domain. Fig. 5.2

shows the fitting performance of the GGD, GΓD, and proposed GGM models in approximating the

distributions of wavelet coefficients at different levels. From Figs. 5.2 (c) and (d), it can be clearly

seen that the GMM model is superior to the GGD and GΓD models.

5.3 Proposed Change Detection Algorithm Applied to the Spatial and Wavelet Domains

Let us consider two co-registered SAR intensity images IX and IY acquired over the same geograph-

ical area at two different times tX and tY, respectively. Our aim is to generate a change detection

map that represents changes that occurred on the ground between the acquisition dates. This change

detection problem can be modeled as a binary classification problem where 1 represents changed

pixels and 0 represents unchanged pixels.

The proposed change detection algorithm analyzes the difference of the local statistics of each

pixel’s neighborhood between the two acquired image data in both the spatial and wavelet domains.

A pixel will be considered as a changed pixel if its local statistical distribution changes from one

acquired image to the other. In order to quantify this change, the Kullback-Leiber (KL) divergence

[105] between two probability density functions is used. In this paper, as discussed before, the

local PDFs are approximated by the Gaussian Mixture Model. More details about the proposed

algorithm are given below.

5.3.1 Change Detection in the Spatial Domain

The block diagram of the proposed change detection method in the spatial domain is shown in

Fig. 5.3. For two pixels at the same location in the two acquired images, the local statistics of their

respective neighborhoods are modeled using the GMM distribution. Then, for each location, the

KL divergence is computed using the estimated GMM distributions. This process is performed for

each pair of pixels from the two acquired image resulting in a similarity map. The final binary
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Figure 5.3: Block Diagram of the Proposed Spatial-Domain Change Detection Method.

Figure 5.4: Block Diagram of the Proposed Wavelet-Domain Change Detection Method.

change detection map is obtained by thresholding the similarity map.

5.3.2 Change Detection in the Wavelet Domain

Since textures can be easily represented and discriminated in the wavelet domain, the proposed

change detection algorithm is also extended to the wavelet domain. The framework of the proposed

method in the wavelet domain is shown in Fig. 5.4. The first step is to decompose a sliding window

at each pixel into multiple subbands using the wavelet transform. The second step is to estimate,

for each subband, the GMM parameters governing the distribution of subband coefficients. Then,

the KL divergence between the estimated GMM PDFs of two subbands, one from each of the two

acquired images, at the same level and orientation is computed; thus the similarity map for each pair

of subbands at the same level and orientation is obtained. Finally, all the subband-specific similarity

maps are combined to obtain a final change map SMAP(n1,n2) by summing the similarity maps

over all subbands as follows:

SMAP(n1,n2) =
S

∑
i=1

M

∑
j=1

D(px;i, j∥py;i, j) (5.7)
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where (n1,n2) is the location of the pixel where the sliding window is centered, S and M are the

number of the scales and orientations, respectively, and px;i, j and py;i, j are the estimated distribu-

tions of wavelet coefficients at scale i and orientation j for the considered local windows being

compared. D is the symmetric KL distance and will be discussed in the following section. The

final binary change detection map is obtained by thresholding the similarity map SMAP(n1,n2).

5.3.3 Kullback-Leibler Divergence of GMM

As described in the previous section, the GMM is used to characterize the local statistics of

SAR images and thus the normalized histogram of SAR images can be represented as follows:

fx(x) = ∑i αiN (x; µi,Σi); gy(y) = ∑ j β jN (y; µ j,Σ j), where fx(x) is the normalized histogram be-

fore abrupt change and gy(y) is the normalized histogram after abrupt change. As a result, our

objective is to find the similarity of these two GMM densities. For two Gaussian densities f̂x and

ĝy, the KL divergence has a closed form expression [146] given by:

KL( fx∥gy) =
1
2
[

log
|Σĝ|
|Σ f̂ |

+Tr[Σ−1
ĝ Σ f̂ ] (5.8)

+(µ f̂ −µ ĝ)
T Σ−1

ĝ (µ f̂ −µ ĝ)
]

However, there is no closed form expression for the KL divergence between two GMMs. Monte

Carlo simulation can estimate the KL divergence with arbitrary accuracy [146]. Using Monte Carlo

simulation, the KL divergence of two GMM distributions f and g can be approximated as

KLMC( fx∥gy) =
1
N

N

∑
i=1

log fx(xi)/gy(xi), (5.9)

KLMC(gy∥ fx) =
1
N

N

∑
i=1

log gy(yi)/ fx(yi), (5.10)

where {xi}N
i=1 and {yi}N

i=1 are i.i.d samples drawn from the GMM fx(x) and gy(y), respectively

[146]. As the number of samples N → ∞, the KL divergence obtained by Monte Carlo simulation

tends to the true KL divergence. The Monte Carlo KL distance is then given by

DMC( fx,gy) = KLMC( fx∥gy)+KLMC(gy∥ fx). (5.11)

The Monte Carlo (MC) method is a convergent method. However, the number of samples

required for high accuracy approximation is very large which may cause a significant increase in
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Table 5.2: Comparison of KL Approximation Methods.

Algorithms MC(100) MC(1K) MC(10K) MKL
RMSE 0.21 0.13 0.06 0.25

computational complexity. The matching based approximation [121] can be used to reduce the

computational complexity. The matching KL divergence (MKL) approximation algorithm can be

briefly described as follows:

1. Components matching: Define the matching function π which matches each components of

fx(x) to the components of gy(x) as:

π(i) = argmin j (KL( fi∥g j)− logβ j). (5.12)

where KL( fi∥g j) is the closed form KL-divergence between the ith Gaussian component of

fx and jth Gaussian component of gy which can be calculated using (5.8). In (5.12), β j is the

weight of the jth component of gy.

2. GMM KL Approximation: Based on π , approximate the KL divergence between two GMMs

fx and gy as:

KLmat( fx∥gy) = ∑
i

αi
(
KL( fi∥gπ(i))+ log

αi

βπ(i)

)
. (5.13)

As a result, the closed form expression of the KL distance for the matching based method is given

by

Dmat( fx,gy) = KLmat( fx∥gy)+KLmat(gy∥ fx). (5.14)

In our experiments, both the MC and MKL methods are applied to approximate the KL di-

vergence between two SAR subimages. In order to compare the approximation performance, we

use the Monte Carlo method with one million samples as the ”ground truth”. Table 5.2 shows

the approximation results in terms of root mean square error (RMSE) which can be calculated as:

RMSE =
√

∑Ntotal
n=1 (K̂L−KLtrue)2, where Ntotal is the total number of pixels in the SAR image.

From Table 5.2, it can be seen that, as the number of samples increases, the approximation

performance of MC improves. However, this will also increase the computational complexity. The

MKL approximation can reduce the computation complexity with minor performance decrease.
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Figure 5.5: Multi-Temporal SAR Images of Switzerland: (a) Image Acquired before the Flooding;
(b) Image Acquired after the Flooding; (c) the Ground Truth Change Map Used as Reference in
the Experiments.

(a) (b) (c)

Figure 5.6: Multi-Temporal SAR Images of Bangladesh: (a) Image Acquired Before the Flooding;
(b) Image Acquired after the Flooding; (c) the Ground Truth Change Map Used as Reference in
the Experiments.

5.4 Experimental Results
5.4.1 Dataset Description and Experiment Design

In order to assess the effectiveness of the proposed approach, two datasets with different character-

istics were considered in the experiments. The first dataset represents a section (301×301 pixels)

of two SAR images acquired by the European Remote Sensing 2 (ERS2) satellite SAR sensor over

an area near the city of Bern, Switzerland, in April and May 1999, respectively [33]. Between the

two acquisition dates, the river flooded parts of the cities of Thun and Bern. Therefore, the valley

between Bern and Thun was selected as a test site for detecting flooded areas. The Bern data set

images and the available ground truth change between these two images are shown in Fig. 5.5.

The second dataset used in the experiments consists of a section (300× 300 pixels) of two SAR

images acquired over a region in Bangladesh. From the two images of Bangladesh, it is possible

to analyze which parts of the area were affected by the flooding that occurred just before the first

acquisition data. The images and the ground truth are shown in Fig. 5.6. As shown in Figs. 5.5 and

5.6, the change area in the Bern dataset is relatively small while the change area in the Bangladesh

dataset is large. Accordingly, these are proper datasets for assessing the robustness of the proposed

71



algorithm to the variability in the change area and the scalability of the proposed algorithm.

For performing the evaluation, both qualitative and quantitative measurements are conducted.

For the qualitative measurement, the final binary change detection map generated by using the

automatic change detection method was visually compared with the ground truth change detection

map. The quantitative measures are computed for comparing the computed change detection map

against the ground truth change detection map as follows:

1) False Alarm (FA): This measure is given by the number of ground-truth unchanged pixels

that were incorrectly classified as changed ones. The false alarm rate PFA is computed in percentage

as PFA = NFA/Nunchange ×100%, where NFA is the total number of detected false alarm pixels and

Nunchange is the total number of unchanged pixels in the ground truth change detection map.

2) Miss Detection (MD): This measure is given by the number of ground-truth changed pixels

that were mistakenly determined as unchanged ones. The missed detection rate PMD =NMD/Nchange×

100%, where NMD is the total number of miss-detected pixels and Nchange is the total number of

change pixels in the ground truth change detection map.

3) Total Error (TE): This measure is based on the total number of incorrect detections made,

which is the sum of the false alarms and the missed detections. Thus, the total error rate PT E =

(NFA +NMD)/(Nunchange +Nchange)×100%.

The similarity map can also be useful by itself [54]. Usually, the users of a similarity map

investigate not only the final binary map but also use the similarity map as an indicator of the

intensity of the change. In order to evaluate the quality of a similarity map independently of the

choice of the thresholding algorithm, the receiver operating characteristic (ROC) is used. The ROC

curve can be considered as the evolution of the true positive rate (TPR) as a function of the false

alarm rate (FPR), where the TPR is defined as the fraction of correctly detected changes. The area

under the ROC curve is a good change performance measure. The larger the area under the ROC

curve, the better the performance is. Note that the focus of this work is to generate an accurate

similarity map rather than to obtain a binary change map. Therefore, in order to generate a binary

change map from the computed similarity map, an optimal threshold corresponding to the point

nearest to (0.0, 1.0) and lying on the ROC curve, is selected to obtain the best tradeoff between

detection and false alarm.
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In order to assess the effectiveness of the proposed change detection approach, three main

experiments have been carried out aimed at analyzing: 1) the effects of the size of the local neigh-

borhood support (window size) in the spatial domain; 2) the effects of the scales and window sizes

in the wavelet domain; 3) the change detection performance as compared to other existing change

detection algorithms.

The first experiment is intended to assess the effect of the size of the local neighborhood support

on the performance of our proposed algorithm in the spatial domain. To this end, a set of similarity

maps and corresponding binary change maps is generated by using our proposed method with

different window sizes ranging from 3×3 to 33×33. Finally, the FA, MD, and TE are computed

for each binary change map corresponding to each window size.

In the second experiment, the aim is to evaluate the effect of the wavelet scales and window

sizes on the performance of our proposed algorithm in the wavelet domain. For this purpose,

different scales and window sizes are used to compute the final binary change map. In particular,

each sliding window, with size ranging form 3× 3 to 33× 33, is decomposed into L = (1, 2, 3)

scales using an undecimated wavelet transform with a Daubechies filter bank (db2). Also, the FA,

MD, and TE measures are used to quantitatively access the effect of scales and window sizes on

the resulting change detection map.

In the third experiment, the effectiveness of the proposed change detection algorithm is assessed

by comparing it with other methods in terms of the resulting similarity maps and the binary change

detection maps. In the spatial domain, the classical mean ratio detector (MRD) [78], and the

recently proposed Pearson-based KL detector (PKLD) and cumulant-based KL detector (CKLD) of

[54] are selected for comparison. It is stated in [54] that the CKLD outperforms other model-based

methods such as PKLD. In the wavelet domain, the recent methods proposed in [34] are selected

for comparison. In [34], the generalized Gaussian and Gamma distributions are used to model the

subbands coefficient magnitudes in the wavelet domain and the Kullback-Leibler divergence is used

to compute the similarity maps. These two wavelet-based methods are abbreviated as GGDKLD

and GΓDKLD, respectively. The qualities of the similarity maps obtained by these methods and

our proposed algorithm are assessed in terms of the ROC curves. Finally, the FA, MD, TE measures

are computed for the computed change detection maps.
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(a) 3×3 (b) 5×5 (c) 7×7 (d) 9×9

(e) 11×11 (f) 15×15 (g) 19×19 (h) 21×21

(i) 23×23 (j) 25×25 (k) 29×29 (l) 33×33

Figure 5.7: Final Change Detection Maps Obtained by the Proposed Algorithm on the Bern SAR
Image Dataset in the Spatial Domain with Different Window Sizes.

5.4.2 The Effects of Window Size in the Spatial Domain

The proposed GMM change detection algorithm in the spatial domain utilizes a local neighbor-

hood support in calculating the similarity of the two images. In order to show the effect of the

size of the local neighborhood support on the performance of the proposed spatial-domain GMM

change detection algorithm, change detection experiments on two different SAR image datasets

are conducted for different local neighborhood sizes. The final binary change detection maps that

are obtained using the proposed spatial-domain GGM algorithm for the Bern and Bangladesh SAR

image datasets with different window sizes, are shown in Fig. 5.7 and Fig. 5.8, respectively. Note

that the optimal threshold is selected by using the ROC curve of the similarity map to obtain the

final binary map. As shown in Figs. 5.7 and 5.8, the change detection results obtained for differ-

ent window sizes illustrate the trade-off between spatial detail preservation and noise reduction.
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(a) 3×3 (b) 5×5 (c) 7×7 (d) 9×9

(e) 11×11 (f) 15×15 (g) 19×19 (h) 21×21

(i) 23×23 (j) 25×25 (k) 29×29 (l) 33×33

Figure 5.8: Final Change Detection Maps Obtained by the Proposed Algorithm on the Bangladesh
SAR Image Dataset in the Spatial Domain with Different Window Sizes.

Table 5.3: Performance Results for the Ob-
tained Change Detection Maps Using the Pro-
posed Change Detection Algorithm on the Bern
SAR Image Dataset in the Spatial Domain with
Different Window Sizes (WS).

FA MD TE
3×3 0.06% 42% 0.6%
5×5 0.14% 21.04% 0.41%
7×7 0.26% 20.26% 0.51%
9×9 0.43% 47.19% 1.02%

11×11 0.45% 30.57% 0.83%
15×15 0.20% 48.83% 0.81%
19×19 0.35% 41.21% 0.86%
21×21 0.34% 44.76% 0.91%
23×23 0.17% 61.21% 0.95%
25×25 0.24% 56.88% 0.96%
29×29 0.32% 56.53% 1.04%
33×33 0.6% 41.99% 1.17%

Table 5.4: Performance Results for the Ob-
tained Change Detection Maps Using the Pro-
posed Change Detection Algorithm on the
Bangladesh SAR Image Dataset in the Spatial
Domain With Different Window Sizes (WS).

FA MD TE
3×3 5.34% 17.71% 6.85%
5×5 0.22% 13.11% 1.79%
7×7 0.32% 21.85% 2.94%
9×9 2.55% 5.54% 2.92%

11×11 2.18% 6.42% 2.7%
15×15 1.6% 9.26% 2.53%
19×19 1.67% 10.42% 2.74%
21×21 1.87% 10.53% 2.93%
23×23 2.24% 10.2% 3.21%
25×25 2.67% 9.91% 3.55%
29×29 3.61% 8.86% 4.25%
33×33 4.72% 7.54% 5.06%
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In particular, change detection results with a smaller window size are more sensitive to noise in-

terference while preserving more details of image content. In contrast, change detection results

with a larger window size are less subject to noise interference, but show loss of image details.

Tables 5.3 and 5.4 show the performance results of the proposed spatial-domain method in terms

of FA, MD, and TE for the Bern and Bangladesh datasets, respectively. From these tables, it can

be seen that the lowest total error rate (TE) is obtained for a window size of 5×5.

5.4.3 The Effects of Scale and Window Size in the Wavelet Domain

Various scales and window sizes are used for evaluating the performance of the proposed GMM

change detection algorithm in the wavelet domain. Figs. 5.9 to 5.12 show the obtained change

detection maps using the Bern (Figs. 5.9 & 5.10) and the Bangladesh (Figs. 5.11 & 5.12) dataset-

s for different scales and window sizes. From Figs. 5.9 and 5.11, it can be seen that, for the

fixed window size (5×5), the change detection maps obtained at scale 3 are more similar to the

ground-truth change detection maps (Figs. 5.5 (c) & 5.6 (c)) than those obtained at scale 1 and 2.

Figs. 5.10 and 5.12 show that, at the same scale (scale = 3), the proposed wavelet-domain change

detector with window size 5×5 yields better change detection results than with other window sizes

(15×15 and 33×33).

Tables 5.5 and 5.6 show FA, MD, and TE values of the change detection results obtained by our

proposed wavelet-domain change detection algorithm for different scales (1 to 3) and window sizes

(ranging from 3×3 to 33×33) using the Bern and Bangladesh SAR image datasets, respectively.

As shown in Tables 5.5 and 5.6, for the fixed window size, the total error rate (TE) decreases as

the number of scales increases. The wavelet subband at a higher scale includes more geometrical

details and less speckle noise than the subbands at lower scales, and thus yields better performance.

In addition, from Tables 5.5 and 5.6, it can be seen that, at each scale, the lowest TE is obtained for

a window size of 5×5.

5.4.4 Comparison with Other Existing Change Detectors in the Spatial Domain

As indicated before, the similarity map can also be useful by itself and the ROC can be used to as-

sess the quality of the similarity map. Fig. 5.13 shows the ROC plots corresponding to the similarity

maps obtained using the proposed spatial-domain GMM-based KL detector (SGMMKLD) method
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Table 5.5: Performance Results of the Proposed Change Detection Algorithm Using the Bern SAR
Image Dataset in the Wavelet Domain for Different Scales and Window Sizes.

Scale 1 Scale 2 Scale 3
FA MD TA FA MD TA FA MD TA

3×3 0.11% 95.56% 1.7% 0.12% 92.42% 1.3% 0.06% 92.98% 1.25%
5×5 0.31% 51.08% 0.68% 0.2% 38.44% 0.56% 0.15% 25.02% 0.49%
7×7 0.33% 47.22% 0.93% 0.31% 27.12% 0.65% 0.17% 30.91% 0.56%
9×9 0.34% 52.51% 1.01% 0.21% 42.05% 0.74% 0.27% 30.48% 0.65%

11×11 0.17% 68.37% 1.04% 0.37% 37.2% 0.84% 0.26% 33.68% 0.69%
15×15 0.51% 49.5% 1.13% 0.31% 45.42% 0.89% 0.18% 47.53% 0.79%
19×19 0.49% 51.3% 1.14% 0.39% 43.24% 0.94% 0.3% 41.3% 0.82%
21×21 0.52% 52.63% 1.18% 0.32% 49.77% 0.95% 0.26% 45.97% 0.84%
23×23 0.4% 66.8% 1.25% 0.35% 51.85% 1.01% 0.4% 38.53% 0.89%
25×25 0.54% 58.03% 1.28% 0.36% 53.14% 1.03% 0.21% 57.66% 0.95%
29×29 0.45% 71.79% 1.36% 0.42% 52.94% 1.09% 0.41% 47.88% 1.02%
33×33 0.67% 66.32% 1.51% 0.55% 54.22% 1.23% 0.57% 42.86% 1.11%

(a) scale=1 (b) scale=2 (c) scale=3

Figure 5.9: Change Detection Results Obtained by the Proposed Algorithm on the Bern SAR Image
Dataset in the Wavelet Domain at Different Scales with A Window Size of 5×5.

(a) 5×5 (b) 15×15 (c) 33×33

Figure 5.10: Change Detection Results Obtained by the Proposed Algorithm on the Bern SAR
Image Dataset in the Wavelet Domain at the Same Scale (Scale = 3) But with Different Window
Sizes.

using the Bern dataset for different window sizes. For comparison, Fig. 5.13 also shows the ROC

plots corresponding to similarity maps obtained using the classical pixel-based mean ratio detector
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Table 5.6: Performance Results of the Proposed Change Detection Algorithm Using the
Bangladesh SAR Image Dataset in the Wavelet Domain for Different Scales and Window Sizes.

Scale 1 Scale 2 Scale 3
FA MD TA FA MD TA FA MD TA

3×3 0.9% 19.1% 3.12% 0.73% 14.6% 2.42% 0.34% 17% 2.37%
5×5 0.73% 13.3% 2.26% 0.44% 10.66% 1.69% 0.5% 8.61% 1.49%
7×7 0.93% 12.62% 2.35% 0.57% 10.81% 1.82% 0.51% 9.37% 1.59%
9×9 0.91% 14.12% 2.52% 0.94% 9.68% 2.0% 0.64% 9.58% 1.73%

11×11 1.14% 14.21% 2.74% 1.04% 10.55% 2.2% 0.84% 9.76% 1.93%
15×15 1.25% 16.9% 3.15% 1.12% 13.45% 2.63% 0.94% 11.92% 2.28%
19×19 1.64% 18.12% 3.65% 1.12% 16.34% 2.98% 1.24% 12.36% 2.6%
21×21 1.22% 22.58% 3.82% 1.32% 16.25% 3.14% 1.18% 13.99% 2.74%
23×23 1.4% 22.44% 3.97% 1.11% 18.71% 3.25% 1.05% 15.85% 2.85%
25×25 1.48% 22.83% 4.08% 1.46% 16.93% 3.34% 1.06% 16.5% 2.94%
29×29 1.66% 23.54% 4.33% 1.24% 20.42% 3.58% 1.25% 16.63% 3.12%
33×33 1.68% 26.14% 4.67% 1.49% 20.93% 3.87% 1.31% 18.16% 3.37%

(a) scale=1 (b) scale=2 (c) scale=3

Figure 5.11: Change Detection Results Obtained by the Proposed Algorithm on the Bangladesh
SAR Image Dataset in the Wavelet Domain at Different Scales with A Window Size of 5×5.

(a) 5×5 (b) 15×15 (c) 25×25

Figure 5.12: Change Detection Results Obtained by the Proposed Algorithm on the Bangladesh
SAR Image Dataset in the Wavelet Domain at the Same Scale (Scale = 3) But with Different
Window Sizes.

(MRD) [78], the Pearson-based KL detector (PKLD) [54], and the cumulant-based KL detector

(CKLD) [54] for the Bern dataset. The corresponding area under the ROC curve (AUC) for each
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(c) 33×33

Figure 5.13: ROC Plots Comparison between MRD [78], PKLD [54], CKLD [54], And the Pro-
posed SGMMKLD with Different Window Sizes Using the Bern SAR Image Dataset.
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Figure 5.14: ROC Plots Comparison between MRD [78], PKLD [54], CKLD [54], And the Pro-
posed SGMMKLD with Different Window Sizes Using the Bangladesh SAR Image Dataset.

(a) MRD [78] (b) PKLD [54] (c) CKLD [54] (d) SGMMKLD

Figure 5.15: Change Detection Results from Different Spatial-Domain Algorithms for the Bern
SAR Image Dataset with A Window Size of 5×5.

Table 5.7: FD, MD, And TE of The Binary Change Maps (as Shown in Fig. 5.15) Resulting From
Different Spatial-Domain Methods for the Bern SAR Image Dataset.

Detector False detections Missed detections Total errors
MRD [78] 3% 2.68% 3%
PKLD [54] 0.36% 31.69% 0.76%
CKLD [54] 0.21% 33.25% 0.63%
SGMMKLD 0.14% 21.04% 0.41%
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(a) MRD [78] (b) PKLD [54] (c) CKLD [54] (d) SGMMKLD

Figure 5.16: Change Detection Results from Different Spatial-Domain Algorithms for the
Bangladesh SAR Image Dataset with A Window Size of 5×5.

Table 5.8: FD, MD, And TE of the Binary Change Maps (as Shown in Fig. 5.16) Resulting from
Different Spatial-Domain Methods for the Bangladesh SAR Image Dataset.

Detector False detections Missed detections Total errors
MRD [78] 3.55% 4.32% 3.64%
PKLD [54] 0.01% 29.85% 3.65%
CKLD [54] 0.32% 22.56% 2.95%
SGMMKLD 0.22% 13.11% 1.79%

change detector is also computed and shown in Fig. 5.13. The results in Fig. 5.13 clearly shows

that the proposed SGMMKLD outperforms existing spatial-domain change detectors for all win-

dow sizes from small to large. This is due to the fact that the locally adaptive mixture model (GM-

M) is more suitable and flexible than the single parametric mathematical distribution models (e.g.,

CKLD and PKLD) to approximate the local distribution of the actual SAR image. It is interesting

to also note that the ratio criterion is not always worse than the pdf-based detectors. As shown

in Figs. 5.13 (a) and (b), it can be observed that, even though the performance of the pixel-based

MRD is not so good as our proposed SGMMKLD, the MRD exhibits a competitive performance

as compared to the existing pdf-based detectors (PKLD and CKLD) for small and medium window

sizes. To further demonstrate the detection capability of the proposed SGMMKLD as compared

to other change detectors when the change area is relatively large, the detectors were applied to

the Bangladesh SAR image dataset. From Fig. 5.14, it can be clearly seen that the change detec-

tion performance of our proposed SGMMKLD is superior to other existing spatial-domain change

detectors for all window sizes.

From Figs. 5.13 and 5.14, it can be seen that the small window size 5×5 achieves better per-

formance as compared to larger window sizes while achieving lower computational complexity.
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For this purpose, the change similarity maps that were obtained using a window size of 5× 5,

are used to compute the final binary maps. The change detection maps obtained using different

change detectors are shown in Figs.5.15 and 5.16 for the Bern and Bangladesh datasets, respective-

ly. Tables 5.7 and 5.8 show the corresponding FA, MD and TE performance measures for the Bern

and Bangladesh datasets, respectively. From Tables 5.7 and 5.8, it can be seen that the proposed

SGMMKLD detector produces the lowest total error rate of 0.41% and 1.79% for the Bern and

Bangladesh datasets, respectively.

5.4.5 Comparison with Other Existing Change Detectors in the Wavelet Domain

The performance of the proposed wavelet-domain GMM-based KL detector (WGMMKLD) is

compared with the existing wavelet-based GGDKLD and GΓDKLD change detectors of [34].

Figs. 5.17 and 5.18 show, for the Bern and Bangladesh datasets, respectively, the ROC plots cor-

responding to the similarity maps obtained using the GGDKLD, the GΓDKLD and our proposed

WGMMKLD for different window sizes at scale 3. As shown in Fig. 5.17, the performance of the

proposed WGMMKLD is superior as compared to existing wavelet-domain change detectors for all

window sizes since it is able to adapt to the local statistical distribution of the wavelet coefficients

of the SAR images. The results shown in Fig. 5.18 further validate that the proposed WGMMKLD

outperforms existing wavelet-domain change detectors for all window sizes when the change area

is relatively large.

From Figs. 5.17 and 5.18, it can be seen that the small window size 5×5 achieves better per-

formance and lower computational complexity as compared to larger window sizes. Consequently,

the change similarity maps that were obtained using a window size of 5×5 are used to compute

the final binary maps. Figs. 5.19 and 5.20 show the change detection maps obtained using different

wavelet-domain change detectors for the Bern and Bangladesh datasets, respectively. As shown

in Figs. 5.19 and 5.20, the proposed WGMMKLD yields better change detection results as com-

pared to the GGDKLD and GΓDKLD. Tables 5.9 and 5.10 show the corresponding FA, MD and

TE performance measures for the Bern and Bangladesh datasets, respectively. It can be seen from

Tables 5.9 and 5.10 that the total error rates corresponding to the change maps that are obtained

using the proposed WGMMKLD are the lowest among all wavelet-domain change detectors for

both the Bern (0.49%) and Bangladesh (1.60%) image datasets, respectively.
81



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

WGMMKLD (AUC: 0.9909)
GTDKLD (AUC: 0.745)
GGDKLD (AUC: 0.7372)

(a) 5×5

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

WGMMKLD (AUC: 0.9893)
GTDKLD (AUC: 0.9744)
GGDKLD (AUC: 0.9721)

(b) 15×15
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Figure 5.17: ROC Plots Comparison between GGDKLD [34], GΓDKLD [34], And the Proposed
WGMMKLD with Different Window Sizes And Scale=3 for the Bern Sar Image Dataset.
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Figure 5.18: ROC Plots Comparison between GGDKLD [34], GΓDKLD [34], And the Proposed
WGMMKLD with Different Window Sizes And Scale=3 for the Bangladesh Sar Image Dataset.

(a) GGDKLD [34] (b) GΓDKLD [34] (c) WGMMKLD

Figure 5.19: Change Detection Results from Different Wavelet-Domain Algorithms on the Bern
SAR Image Dataset With A Window Size Of 5×5 And Scale=3.

Table 5.9: FD, MD, And TE of the Binary Change Maps (as Shown in Fig. 5.19) Resulting from
Different Wavelet-Domain Methods on the Bern SAR Image Dataset.

Detector False detections Missed detections Total errors
GGDKLD [34] 2.01% 3.2% 2.03%
GΓDKLD [34] 1.14% 23.72% 1.43%
WGMMKLD 0.15% 25.02% 0.49%
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(a) GGDKLD [34] (b) GΓDKLD [34] (c) WGMMKLD

Figure 5.20: Change Detection Results from Different Wavelet-Domain Algorithms on the
Bangladesh SAR Image Dataset With A Window Size Of 5×5 And Scale=3.

Table 5.10: FD, MD, And TE of the Binary Change Maps (as Shown in Fig. 5.20) Resulting from
Wavelet-Domain Different Methods on the Bangladesh SAR Image Dataset.

Detector False detections Missed detections Total errors
GGDKLD [34] 0% 50.35% 6.14%
GΓDKLD [34] 0% 49.98% 6.09%
WGMMKLD 0.5% 8.61% 1.49%

5.5 Summary

In this chapter, a novel change detector for multitemporal SAR images is proposed and applied in

both the spatial and wavelet domains. This detector is based on an analysis of the local distribution

of SAR images using a Gaussian Mixture Model (GMM) and the KL distance. The locally adaptive

Gaussian Mixture Model is more suitable and flexible than the single parametric mathematical

distribution models to approximate the distribution of the actual SAR image, which shows a varied

scene presenting several distinct land-cover typologies. Compared to existing detectors with higher

order statistics both in the spatial and wavelet domains, the proposed GMM-based change detector

exhibits a superior change detection performance.
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Chapter 6

CHANGE DETECTION BASED ON THE DIVISIVE NORMALIZATION TRANSFORM

6.1 Introduction

Although the change detection algorithms introduced in Chapter 5 achieved notable success, they

have some important limitations. In the spatial domain, the change detection algorithms usually

require preprocessing to despeckle the multi-temporal images, these preprocessing techniques can

achieve different tradeoffs between detail preservation and noise reduction. But these are contrast-

ing properties; in other words, high accuracy in homogeneous areas usually requires an intensive

despeckling phase, which in turn can degrade the details in the SAR image [147]. The proposed

wavelet-domain GMM-based change detector can relieve this problem since the wavelet image

representation can achieve different scales (levels) of representation of the change signal. Each

scale is characterized by a different tradeoff between speckle reduction and preservation of de-

tails [147]. However, there exists strong high-order statistical dependencies between neighboring

wavelet coefficients, which are not accounted for by the proposed wavelet-domain GMM-based

method. Furthermore, the wavelet decomposition is restrictive due to its linear nature and cannot

represent possible nonlinear effects. Finally, the computation cost of the proposed GMM algorithm

is expensive as compared to a single-parameter Guassian model.

In this work, we propose a new image comparison method that is inspired by the recent success

of the divisive normalization transform (DNT) as a statistically and perceptually motivated image

representation [148, 149]. This local gain-control divisive normalization model is well-matched to

the statistical prosperities of optical images, as well as the perceptual sensitivity of the human vi-

sual system [150, 151]. The DNT is built upon linear transform models, where each coefficient (or

neuronal response) is normalized (divided) by the energy of a cluster of neighboring coefficients

(neighboring neuronal response) [152]. This procedure can explain nonlinearities in the responses

of mammalian cortical neurons, and nonlinear masking phenoma in human visual perception, and

was also empirically shown to produce approximately Gaussian marginal distributions and to re-

duce the statistical dependencies of the original linear representation [153]. Therefore, this thesis

proposes a change detection method for SAR images in the DNT domain rather than in the wavelet

domain due to the superior properties of the DNT as mentioned above.
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This chapter is organized as follows. The divisive normalization transform for SAR images

is described in Section 6.2. Section 6.3 presents the proposed image comparison algorithm based

on the DNT image representation. Section 6.4 presents the results on real data using the proposed

detector. Conclusions are drawn in Section 6.5.

6.2 Divisive Normalization-based Image Representation

6.2.1 Computation of the Divisive Normalization Transformation

The computation of the DNT involves two stages [151]:

x T−→ w R−→ y (6.1)

where the image x is first analyzed by a linear image decomposition T and then followed by a

non-linear transform (the divisive normalization) R. Here, the wavelet image decomposition is

employed as the linear image decomposition model since it provides a convenient framework of

localized representation of images simultaneously in space, frequency (scale) and orientation [154].

Let w and y represent the wavelet and DNT coefficients, respectively, and y = w/z, where z is the

positive divisive normalization factor that is calculated as the energy of a cluster of coefficients that

are neighbors of the coefficient y in space, scale, and orientation.

In the literature, several approaches [149,153,155] were proposed to compute the normalization

factor z. Among these approaches, the convenient estimation method in [156] is adopted. This

method derives the factor z through the Gaussian scale mixtures (GSM) model. A random vector

W is a GSM if it can be expressed as the product of two independent components: W = zU , where

the mixing multiplier z is a positive scalar random variable; U∼N(0,Q) is a zero-mean Gaussian

random vector with covariance matrix Q, and z and U are independent. As a consequence, any

GSM variable has a density given by an integral [156]:

pW (W ) =
∫ 1

[2π]N/2|z2Q|1/2 exp(−W T Q−1W
2z2 )ϕz(z)dz (6.2)

where N is the length of the GSM random vector W, and ϕz(z) is the probability density of the

mixing variable z. The GSM model expresses the density of a random vector as a mixture of

Gaussians with the same covariance structure Q but scaled differently by z [152]. A special case of

a GSM is a finite mixture of Gaussians, where z is a discrete random variable. This GSM model
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was shown to represent well the statistics of the wavelet coefficients of images, where the vector

W is formed by clustering a set of neighboring wavelet coefficients within a subband, or across

neighboring subbands in scale and orientation [156]. The GSM model has also found successful

applications in image coding [155], image denoising [157], image restoration [158], and image

quality assessment [154].

For our application, the wavelet coefficients of SAR images are modeled as a GSM random

vector W that is formed by clustering a set of neighboring wavelet coefficients within a subband

and that is normalized by the mixing multiplier. The general form of the GSM model allows for the

mixing multiplier z to be a continuous random variable at each location of the wavelet subbands. To

simplify the model, we assume that z only takes a fixed value at each location (but varies over space

and subbands). The benefit of this simplification is that when z is fixed, WDNT is simply a zero-

mean Gaussian vector with covariance z2Q. Thus, it becomes simple to estimate the normalization

factor z in the DNT representation from the neighboring coefficients. The coefficient cluster WDNT

moves step by step as a sliding window across a wavelet subband, resulting in a spatially varying

normalization factor z [152]. In our implementation, the normalization factor computed at each

step is only applied to the center coefficient wc of the vector WDNT , and the normalized coefficient

becomes yc =wc/ẑ, where ẑ is the estimation of z. An efficient method to obtain ẑ is by a maximum-

likelihood estimation [156] given by

ẑ = argmax
z

{log p(z|WDNT )}

=
√

W T
DNT Q−1WDNT/NDNT

(6.3)

where Q = E[UUT ] is the positive definite covariance matrix of the underlying Gaussian vector U

and is estimated from the entire wavelet subband before estimating local z, and NDNT is the length

of vector WDNT , or the size of the sliding window of the neighboring wavelet coefficients [152]. In

our implementation, Q is an NDNT ×NDNT diagonal matrix, where the main diagonal is identical to

the variance of the entire wavelet subband.

6.2.2 Image Statistics in Divisive Normalization Transform Domain

As will shown in the next section, the proposed DNT-based change detection algorithm is essential-

ly based on the statistics of the transform coefficients in the DNT domain. Before the development
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Figure 6.1: (a),(f): Original SAR Images; (b),(g): Wavelet Coefficients; (c),(h): PDFs of Wavelet
Coefficients (Solid Curves) Fitted with A Gaussian Model (Dashed Curves); (d),(i): DNT Coeffi-
cients; (e),(j): PDFs of DNT Coefficients (Solid Curves) Fitted with A Gaussian Model (Dashed
Curves).

of the specific change detection algorithm, it is useful to observe variations of image statistics be-

fore and after the DNT. In Fig. 6.1, we compare the distributions of the original wavelet subbands

and the same subbands after DNT, for a pair of SAR images. In Figs. 6.1 (c) & (h), the original

wavelet coefficient distributions (solid curves) of the SAR images are fitted using a Gaussian mod-

el (dashed curve). The noticeable difference between the two curves (the actual pdf and the fitted

Gaussian model) shows that the original wavelet coefficients are highly non-Gaussian. In contrast,

as shown in Figs.6.1 (e) & (j), the distribution of the coefficients after DNT can be well fitted with

a Gaussian. A similar conclusion is obtained for other SAR images.

6.3 Change Detection in the DNT Domain

6.3.1 Proposed Change Detector Algorithm in the DNT Domain

Let us consider two co-registered SAR intensity images IX1 and IX2 acquired over the same ge-

ographical area at two different times tX1 and tX2, respectively [54]. Our aim is to generate a

change detection map that represents changes that occurred on the ground between the acquisition

dates [54]. This change detection problem can be modeled as a binary classification problem where

1 represents changed pixels and 0 represents unchanged pixels.

We propose a change detection algorithm by analyzing the difference in the local statistics of
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Figure 6.2: The Block Diagram Of the Proposed DNT-Based Change-Detection Algorithm.

the DNT coefficients of two acquired SAR images. A pixel will be considered as a changed pixel

if the local statistical distribution of the DNT coefficients significantly changes from one image to

the other. In order to quantify this change, the Kullback-Leibler (KL) divergence [105] between

two probability density functions is used. The framework of the proposed DNT-based method is

shown in Fig. 6.2. The first step is to decompose a nWS×nWS sliding window at each pixel into

multiple subbands by using the wavelet transform. Then, the DNT is performed for each subband.

The third step is to estimate for each subband the parameters (mean and variance of the Gaussian

distribution) governing the distribution of DNT coefficients. The fourth step is to compute the

symmetric KL divergence between the estimated Gausssian PDFs of two subbands at the same

level and orientation. Thus, the similarity map for each pair of subbands at the same level and

orientation is obtained. Finally, all the subband-specific similarity maps are combined to obtain a

final similarity map SMAP(n1,n2) by summing the similarity maps over all subbands as follows:

SMAP(n1,n2) =
L

∑
i=1

M

∑
j=1

D(py1;i, j(n1,n2)∥py2;i, j(n1,n2)) (6.4)

where (n1,n2) is the location of the pixel where the sliding window is centered; L and M are the

numbers of the scales and orientations, respectively; and py1;i, j(n1,n2) and py2;i, j(n1,n2) are the

estimated distributions of DNT coefficients at scale i and orientation j for the considered local

windows being compared. In (6.4), D is the symmetric KL distance as described in Chapter 4.

As described earlier in Section 6.2.2, since the divisive normalization transform produces approxi-
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mately Gaussian distributions, by using the Gaussian model, the symmetric KL divergence can be

computed as:

D(py1 , py2) =
σ 4

y1
+σ4

y2
+(µy1 −µy2)

2(σ 2
y1
+σ 2

y2
)

2σ 2
y1

σ 2
y2

−1 (6.5)

where µy1 and µy2 are, respectively, the mean and standard deviation of y. In our application, µy

and σy are always equal to zero because of the DNT produces approximately zero-mean Gaussian

distributions. Consequently, Equation (6.5) reduced to:

D(py1 , py2) =
σ4

y1
+σ4

y2

2σ 2
y1

σ 2
y2

−1 (6.6)

The final binary change detection map is obtained by thresholding the similarity map SMAP(n1,n2).

6.3.2 Computational Complexity Analysis

The proposed DNT-domain change detection algorithm saves a significant number of computa-

tions with minimal overhead of operations per pixel for the divisive normalization transform. In

this section, the computational complexity of the classical mean ratio detector (MRD) [78] and

the more recent cumulant-based KL detector (CKLD) [54], and generalized Gamma KL detectors

(GΓKLD) [34] are compared with our proposed spatial- and wavelet- domain GMM-based KL de-

tectors (SGMMKLD and WGMMKLD) described in Chapter 5, and our proposed DNT-domain

KL detector (DNTKLD). The computational complexity is quantified in terms of Operations Per

Pixel (OPP). These operations include the operations for for-loop counters, arithmetic, conditional,

logical, relational and bitwise operations. More specifically, the arithmetic operations consist of

the addition, multiplication, division, square root, exponent and logarithm operation. Here, the

computational complexity analysis mainly focuses on comparing the implementation speed of dif-

ferent algorithms rather than the power consumption. The processing time of the aforementioned

operations are the same in terms of CPU clock cycle [159]. Thus, all those operations are treated

equally in our analysis. Note that the focus of this work is to generate the similarity map and thus

the computational complexity of the thresholding step is not considered.
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• Computational complexity analysis of the proposed DNT-domain change detector

As shown in Fig. 6.2, the proposed DNT-domain change detector involves five steps not in-

cluding the thresholding step. First, in our implementation, each nWS×nWS sliding window at

each pixel is decomposed into L scales and 4 orientations using an undecimated wavelet trans-

form with a Daubechies filter bank (db2), where both the 1D low-pass and high-pass filters have

4 coefficients. As a result, the 1D convolution requires 7 OPP including 4 multiplications and

3 additions. The wavelet decomposition at each scale employs 3 1D high-pass filters and 3 1D

low pass filters in order to obtain 4 subbands corresponding to 4 orientations. Consequently, the

wavelet transform requires L · 6 · 7 · n2
WS = 42L · n2

WS OPP for calculating all subbands. Second-

ly, the divisive transform is performed on each computed nWS×nWS wavelet subband (W ). In

our implementation, the normalization factor computed at each step is only applied to the center

coefficient wc of the vector WDNT , where the coefficient cluster WDNT moves step by step as a s-

liding window across a wavelet subband W . The normalized coefficient is computed as yc = wc/ẑ,

where ẑ is the normalization factor and can be estimated by using Equation (6.3). From Equa-

tion (6.3), it can be seen that the number of arithmetic operations that are required for divisive

normalization for one coefficient within a subband is 2NDNT + 2 OPP, where NDNT is the size of

the sliding window of the neighboring wavelet coefficients to compute the DNT. Thus, the num-

ber of arithmetic operations that are needed to compute the DNT for an entire nWS×nWS wavelet

subband W is n2
WS·(2NDNT + 2) OPP, which results in 4L·n2

WS·(2NDNT +2) OPP to perform the

DNT for all coefficients over all subbands. The next step is to compute the similarity between two

pixels for each nWS×nWS subband at the same level and orientation according to Equation (6.6).

From Equation (6.6), it can be seen that this calculation requires 7 OPP. In addition, the estima-

tion of σy1 (or σy2) in the nWS×nWS DNT subband requires 3 ·n2
WS OPP. Therefore, the total OPP

of similarity calculation between two pixels for each subband is 7+ 2 · 3 · n2
WS, which results in

4L · (7+6n2
WS) for computing similarity maps for all subbands. The final step is to sum up the sim-

ilarity maps over all subbands to obtain a final similarity map according to Equation (6.4), which

requires 4L OPP. Consequently, the total complexity of the proposed DNTKLD for a pixel equals

to 2 · [42L ·n2
WS+4L·n2

WS·(2NDNT +2)]+4L ·(7+6n2
WS)+4L= 124L ·n2

WS+16L ·NDNT ·n2
WS+32L

OPP.
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• Computational complexity analysis of proposed SGMMKLD and WGMMKLD

The spatial-domain GMMKLD (SGMMKLD) change detector mainly involves two steps as shown

in Fig 5.3, including the GMM estimation for each local window of two SAR images and the

computation of KL divergence between two GMMs for each location. Algorithm 1 as shown in

Chapter 5 illustrates the pseudo-code for estimating the parameters of GMM. From Algorithm 1,

it can be seen that the estimation of one Gaussian mixture model requires Nloop · [(K2
max +4Kmax) ·

n2
WS +3K2

max+10Kmax+15]OPP, where Nloop is the number of iterations to obtain an accurate con-

vergence and Kmax is the initial value of the number of the Gaussian components. Section 5.3.3

describes the procedure to compute the KL divergence between two GMMs. According to Equa-

tions (5.12), (5.13), and (5.14), it can be seen that the calculation KL divergence for two GMMs

requires 31 ·Ky1 + 31 ·Ky2 − 4 OPP, where Ky1 and Ky2 are the number of components for each

GMM, respectively. In our implementation, usually, Ky1 and Ky2 are equal to 2 for most of time

(31 ·Ky1 + 31 ·Ky2 − 4 = 120). Therefore, the total computational complexity of SGMMKLD is

equal to 2Nloop · [(K2
max +4Kmax) ·n2

WS +3K2
max +10Kmax +15]+120 OPP.

The wavelet-domain GMMKLD (WGMMMKLD) change detector mainly consists of four

steps as shown in Fig 5.4. The first step is the wavelet transform and, as discussed before for

the proposed DNTKLD, the computation of the wavelet transform for one sliding window requires

42L · n2
WS OPP. Next, each subband is modeled using a GMM, which requires Nloop · [(K2

max +

4Kmax) ·n2
WS +3K2

max +10Kmax +15]OPP as described for the SGMMKLD. Thirdly, the similarity

of two subbands, one from each of the two acquired images, at the same level and orientation is

computed. As described earlier, the similarity calculation of two GMMs requires 120 OPP; and

thus the total computation for calculating all similarity measures for all subbands at each level and

orientation is equal to 120 · 4 · L = 480L OPP. The final step is to sum up the subband-specific

similarity maps over all subbands to obtain a final similarity map according to Equation (5.7),

which requires 4L OPP. Consequently, the total complexity of the proposed WGMMKLD per

pixel is 2 · {42L · n2
WS + 4L ·Nloop · [(K2

max + 4Kmax) · n2
WS + 3K2

max + 10Kmax + 15]}+ 480L+ 4L =

84L ·n2
WS +8L ·Nloop · [(K2

max +4Kmax) ·n2
WS +3K2

max +10Kmax +15]+484L OPP.
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Table 6.1: Operations Per Pixel (OPP) of the Proposed DNTKLD, SGMMKLD, and WGMMKLD
Change Detectors and Comparison with Other Existing Change Detectors for an nWs × nWs Win-
dow.

OPP

Spatial-domain
MRD [78] 2n2

WS +4
CKLD [54] 16n2

WS +259

SGMMKLD
2Nloop · [(K2

max +4Kmax) ·n2
WS+

3K2
max +10Kmax +15]+120

Wavelet-domain
GΓDKLD [34] 244L ·n2

WS +648L

WGMMKLD
84L ·n2

WS +8L ·Nloop · [(K2
max +4Kmax) ·n2

WS
+3K2

max +10Kmax +15]+484L
DNT-domain DNTKLD 124L ·n2

WS +16L ·NDNT ·n2
WS +32L

• Computational complexity analysis of existing change detectors

The computational complexity of existing change detectors is also roughly calculated, includ-

ing the pixel-based MRD, spatial-domain CKLD, and wavelet-domain GΓKLD.

As shown in Section 4.2.1, the MRD is computed according to Equation (4.1). From this equa-

tion, it can be seen that, for each pixel, the calculation of MRD requires 4 OPP and the estimation

for the local mean values of the images before and after the event of interest requires 2 ·n2
WS OPP,

where nWS ×nWS is the size of the local window. Consequently, the total computation complexity

of MRD equals to 2n2
WS +4 OPP.

The framework to calculate the spatial-domain CKLD change detector was described in Sec-

tion 4.2.2. First, the method of log-cumulants (MoLC), is used to estimate the parameters of

two Edgeworth series expansions corresponding to two input nWS × nWS sliding windows, one

from each of the two acquired images. The OPP for calculating the cumulants (up to the or-

der of four) based on Equation (4.5) for one sliding window is 8n2
WS + 21 OPP, which results in

2× (8n2
WS +21) = 16n2

WS +22 OPP for estimating parameters for two sliding windows. Then, the

one-side KL divergence for the Edgeworth series is calculated by using Equations (4.7) and (4.8),

which requires 48 + 70 = 118 OPP; it follows that computation of the symmetric KL requires

118× 2+ 1 = 237 OPP. As a result, the total OPP for CKLD is equal to 16n2
WS + 22+ 237 =

16n2
WS +259 OPP.
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The procedure to compute the wavelet-domain GΓKLD change detector was discussed in Sec-

tion 4.3. First, each nWS×nWS sliding window at each pixel is decomposed in L scales and 4

orientations using an undecimated wavelet transform with a Daubechies filter bank (db2). As dis-

cussed earlier for the proposed DNTKLD, the computation of the wavelet transform for one sliding

window requires 42L · n2
WS OPP. Secondly, for each subband, the parameters of GΓKLD are esti-

mated using the Method of Log-Cumulants (MoLC), which requires 20n2
WS +65 OPP. Thirdly, the

KL divergence of two subbands, one from each of the two acquired images, at the same level and

orientation is computed based on Equation (4.14). From Equation (4.14), it can be seen that the KL

calculation for two subbands requires 31 OPP; thus, the total computation for calculating all simi-

larity measures for all subbands at each level and orientation is equal to 31 ·4 ·L = 124L OPP. The

final step is to sum up the subband-specific similarity maps over all subbands to obtain a final simi-

larity map accoridng to Equation (5.7), which requires 4L OPP. Consequently, the total complexity

of GΓKLD for a pixel is equal to 2 · [42L ·n2
WS+4L ·(20n2

WS+65)]+124L+4L= 244L ·n2
WS+648L

OPP.

In summary, Table 6.1 tabulates the OPP for all the aforementioned change detectors.

6.4 Experimental Results

In order to assess the effectiveness of the proposed approach based on the DNT image represen-

tation, experiments were performed on the real multi-temporal SAR datasets described in Sec-

tion 5.4.1. Two main experiments were carried out aimed at analyzing: 1) the effects of the sliding

window sizes and the decomposition scales in the DNT domain; 2) the performance comparison

with other existing change detectors. More details about experimental results are given below.

For performing the evaluation, both qualitative and quantitative measurements are used. For

the qualitative measurement, the final binary change map generated was subjectively compared

with the ground-truth image. For the quantitative measurement, the quality of the similarity map

is evaluated using the receiver operating characteristic (ROC), while the quality of the final binary

change detection map is assessed using the false alarm (FA), miss detection (MD), and total error

(TE) as defined in Section 5.4.1 for comparing the computed change detection map against the

ground-truth change detection. In addition, the computational complexity of the proposed algo-

rithm is also analyzed. Note that the focus of this work is to generate accurate similarity maps
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Figure 6.3: Illustration of Undecimated Decomposition And the Selection of DNT Neighbors.
The Neighboring Coefficients Include the 3×3 Spatial Neighbors within the Same Subband, One
Parent Neighboring Coefficient and Three Orientation Neighboring Coefficients.

rather than obtain binary change maps. Therefore, an optimal threshold corresponding to the point

nearest to (0.0, 1.0) and lying on the ROC curve, is selected in order to obtain the best tradeoff

between correct detection and false alarm.

In our implementation, to compute the DNT representation, each sliding window is decom-

posed into three scales (L = (1,2,3) ) and four orientations using undecimated wavelet transform

with a Daubechies filter bank (db2), as shown in Fig. 6.3. For each center coefficient of each sub-

band, we define a DNT neighboring vector W that contains 13 coefficients, including nine from

the same subband (including the center coefficient itself), one from the parent band, and three from

the same spatial location in the other orientation bands at the same scale [152]. An illustration

for center coefficient at scale 3 is given in Fig. 6.3. Similarly, for each center coefficient of each

subband at scale 1 and 2, the DNT neighboring vector also contains 13 coefficients. Note that the

parent band for subands at scale 1 is the original sliding window in the spatial image domain.

6.4.1 The Effects of Scale and Window Size in the DNT Domain

The proposed DNT-domain change detection algorithm decomposes a local neighborhood at differ-

ent scales to calculate the similarity of the two images. In order to show the effect of the size of the
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(a) scale=1 (b) scale=2 (c) scale=3

Figure 6.4: Change Detection Results Obtained by the Proposed DNT-Domain Algorithm on the
Bern SAR Image Dataset at Different Scales with A Window Size of 5×5.

(a) 5×5 (b) 15×15 (c) 33×33

Figure 6.5: Change Detection Results Obtained by the Proposed DNT-Domain Algorithm on the
Bern SAR Image Dataset at the Same Scale (Scale = 3) But with Different Window Sizes.

(a) scale=1 (b) scale=2 (c) scale=3

Figure 6.6: Change Detection Results Obtained by the Proposed DNT-Domain Algorithm on the
Bangladesh SAR Image Dataset at Different Scales with A Window Size of 5×5.

(a) 5×5 (b) 15×15 (c) 33×33

Figure 6.7: Change Detection Results Obtained by the Proposed DNT-Domain Algorithm on the
Bangladesh SAR Image Dataset at the Same Scale (Scale = 3) But with Different Window Sizes.

local neighborhood and the decomposition scales on the performance of the proposed DNT-domain

change detection algorithm, different scales (L = (1,2,3)) and window sizes (ranging from 3× 3
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to 33×33) were used to compute the similarity map and the final binary change map. To obtain a

binary change map, the optimal threshold is selected by using the ROC curve of the similarity map.

Figs. 6.4 to 6.7 show the obtained change detection maps using the Bern (Figs. 6.4 & 6.5) and

the Bangladesh (Figs. 6.6 & 6.7) datasets for different scales and window sizes. From Figs. 6.4 and 6.6,

it can be seen that, for the same window size (5×5), the change detection maps obtained at scale 3

has slightly better performance than those obtained at scale 1 and 2. Besides, Figs. 6.5 and 6.7 show

that, at the same scale (scale = 3), the proposed wavelet-domain change detector with window size

5×5 yields better change detection results than with other window sizes (15×15 and 33×33).

Tables 6.2 and 6.3 show the obtained false alarm rate (FA), miss detection rate (MD), and total

error (TE) values of the change detection results at different scales and for different window sizes,

for the Bern and Bangladesh SAR image datasets, respectively. As illustrated in Tables 6.2 and 6.3,

for a given window size, the performance in terms of FA, MD, and TE, dose not vary significantly

with a change of scale. This is in contrast to the previously proposed wavelet-domain GMM-based

change detection algorithm (Chapter 5), for which it is observed that the total error rate decreases

as the number of scales increases for a given window size. In addition, from Tables 6.2 and 6.3, it

can be seen that, at each scale, the lowest TE is obtained at a window size of 5×5.

6.4.2 Comparison with Other Existing Change Detectors in the Spatial and Wavelet Domains

In this experiment, the effectiveness of the proposed change detection algorithm is assessed by

comparing its performance with other methods in terms of the similarity map, the binary change

detection map and the computational complexity. Existing methods in both the spatial and wavelet

domains are selected for comparison. In the spatial domain, the classical mean ratio detector in

(MRD) [78], the recently proposed cumulant-based KL detector (CKLD) in [54] and the proposed

spatial-domain GMM-based KL detectors (SGMMKLD) in Chapter 5 are selected for comparison.

In the wavelet domain, the recent generalized Gamma KL detectors (GΓKLD) in [34] and the

proposed wavelet-domain GMM-based KL detectors (WGMMKLD) in Chapter 5 are selected for

comparison.

The qualities of the similarity maps obtained by those existing methods and the proposed

DNT-domain algorithm (abbreviated as DNTKLD) are accessed in terms of the ROC curves.

The corresponding area under the ROC curve (AUC) for each change detector is alos comput-
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Table 6.2: Performance Results of the Proposed Change Detection Algorithm on Bern SAR Image
Dataset in the DNT Domain with Different Scales And Window Sizes.

Scale 1 Scale 2 Scale 3
FA MD TE FA MD TE FA MD TE

3×3 0% 56.88% 0.73% 0% 59.74% 0.76% 0% 63.38% 0.81%
5×5 0.19% 33.59% 0.62% 0.03% 45.63% 0.62% 0.01% 38.35% 0.59%
7×7 0.57% 26.67% 0.90% 1.11% 9.96% 1.22% 0.29% 48.23% 0.77%
9×9 0.63% 34.46% 1.06% 0.37% 42.6% 0.91% 0.21% 40.26% 0.72%

11×11 0.69% 33.85% 1.11% 0.54% 38.7% 1.03% 0.36% 39.31% 0.86%
15×15 1.33% 15.76% 1.51% 1.1% 18.35% 1.32% 0.8% 22.25% 1.07%
19×19 0.54% 49.52% 1.17% 0.63% 43.46% 1.18% 0.68% 39.39% 1.17%
21×21 0.46% 61.56% 1.24% 0.44% 60.78% 1.21% 0.82% 40.09% 1.32%
23×23 0.80% 45.71% 1.37% 1.66% 11.86% 1.79% 1.0% 38.61% 1.48%
25×25 0.28% 84.42% 1.35% 0.64% 53.85% 1.32% 1.21% 28.92% 1.56%
29×29 0.43% 78.10% 1.42% 1.31% 29% 1.66% 1.13% 29.78% 1.49%
33×33 0.86% 53.07% 1.53% 1.78% 10.48% 1.89% 0.1% 40.87% 1.50%

Table 6.3: Performance Results of the Proposed Change Detection Algorithm on the Bangladesh
SAR Image Dataset in the DNT Domain with Different Scale And Window Size.

Scale 1 Scale 2 Scale 3
FA MD TE FA MD TE FA MD TE

3×3 0% 38.28% 4.66% 0% 38.56% 4.70% 0% 39.69% 4.84%
5×5 0% 24.41% 2.97% 0% 23.52% 2.87% 0% 22.55% 2.75%
7×7 0% 27.27% 3.32% 0% 28.67% 3.49% 0% 27.93% 3.4%
9×9 0% 31.08% 3.79% 0% 30.46% 3.71% 0% 28.36% 3.45%

11×11 0% 33.81% 4.12% 0% 33.5% 4.08% 0% 31.46% 3.83%
15×15 0% 33.37% 4.08% 0% 34.27% 4.17% 0% 34.59% 4.22%
19×19 0.04% 32.79% 4.32% 0.07% 47.81% 5.90% 0.08% 36.11% 4.91%
21×21 0.5% 31.82% 4.31% 2.02% 18.56% 4.04% 0.25% 34.91% 4.47%
23×23 0.56% 32.15% 4.41% 0.54% 32.07% 4.39% 2.01% 15.64% 3.67%
25×25 1.19% 26.84% 4.32% 0.73% 30.45% 4.35% 2.22% 20.02% 4.39%
29×29 2.06% 22.33% 4.53% 1.36% 27.08% 4.50% 3.75% 14.67% 5.08%
33×33 1.45% 31.93% 5.17% 2.07% 25.89% 4.98% 4.18% 16.66% 5.7%

ed. Figs. 6.8 and 6.9, for the Bern and Bangladesh image datasets, respectively, show the ROC

plots corresponding to the similarity maps obtained using the proposed DNTKLD change detector

and the aforementioned existing change detector for different window sizes (small, medium, and

large). In particular, for the wavelet-domain change detectors (GΓKLD, WGMMKLD), the results

in Figs. 6.8 and 6.9 are obtained at decomposition level 3 (scale = 3); while the results obtained by

the proposed DNTKLD change detector are obtained at decomposition level 1 (scale = 1).
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Figure 6.8: ROC Plots Comparison between G-
MMKLD [160], CKLD [54], GΓDKLD [34],
MRD [78], And the Proposed DNTKLD with
Different Window Sizes for the Bern SAR Im-
age Dataset.
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Figure 6.9: ROC Plots Comparison between G-
MMKLD [160], CKLD [54], GΓDKLD [34],
MRD [78], And the Proposed DNTKLD with
Different Window Sizes for the Bangladesh
SAR Image Dataset.

For the Bern dataset, which corresponds to a small change detection area, Fig. 6.8 shows that

the proposed DNTKLD outperforms MRD, GΓKLD and has a comparable performance to SG-

MMKLD and CKLD for all considered window sizes. From Fig. 6.8, it can also be seen that our

previously proposed WGMMKLD performs slightly better than the proposed DNTKLD but this
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(a) MRD [78] (b) CKLD [54] (c) GΓDKLD [34]

(d) SGMMKLD (e) WGMMKLD (f) DNTKLD

Figure 6.10: Change Detection Results from Existing Algorithms And Our Proposed DNTKLD
for the Bern SAR Image Dataset with A Window Size of 5×5.

Table 6.4: FD, MD, and TE of the Binary Change Maps (as Shown in Fig. 6.10) Resulting from
Different Change Detection Methods on the Bern SAR Image Dataset.

False detections Missed detections Total errors
MRD [78] 3% 2.68% 3%
CKLD [54] 0.21% 33.25% 0.63%

GΓDKLD [34] 1.14% 23.72% 1.43%
SGMMKLD 0.14% 21.04% 0.41%
WGMMKLD 0.15% 25.02% 0.49%

DNTKLD 0.01% 38.35% 0.59%

comes at the expense of higher computational complexity as discussed later in this section. For

the Bangadesh SAR image dataset, which corresponds to a relatively large change area, Fig. 6.9

shows that the proposed DNTKLD achieves a better performance as compared to CKLD, MRD

and GΓKLD and exhibits a performance similar to SGMMKLD. Furthermore, form Fig. 6.9, it

can be seen that, as in the Bern case, the WGMMKLD proposed in Chapter 5 slightly outperforms

the proposed DNTKLD. This is due to the fact that the divisive normalization transform removes

high-order statistical dependencies between neighboring wavelet coefficients and result in the loss

of small variation.

From Figs. 6.8 and 6.9, it can be seen that the small window size 5×5 achieves better perfor-

mance as compared to larger window sizes while achieving lower computational complexity. For
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(a) MRD [78] (b) CKLD [54] (c) GΓDKLD [34]

(d) SGMMKLD (e) WGMMKLD (f) DNTKLD

Figure 6.11: Change Detection Results from Existing Algorithms And Our Proposed DNTKLD
for the Bangladesh SAR Image Dataset with A Window Size of 5×5.

Table 6.5: FD, MD, and TE of the Binary Change Maps (as Shown in Fig. 6.11) Resulting from
Different Change Detection Methods on the Bangladesh SAR Image Dataset.

False detections Missed detections Total errors
MRD [78] 3.55% 4.32% 3.64%
CKLD [54] 0.32% 22.56% 2.95%

GΓDKLD [34] 0% 49.98% 6.09%
SGMMKLD 0.22% 13.11% 1.79%
WGMMKLD 0.5% 8.61% 1.49%

DNTKLD 0% 22.55% 2.75%

this purpose, the change similarity maps that were using a window size of 5×5 are used to compute

the final binary maps. The change detection maps obtained using different change detectors are

shown in Figs.6.10 and 6.11 for the Bern and Bangladesh datasets, respectively. Tables 6.4 and 6.5

show the corresponding FA, MD and TE performance measures for Bern and Bangladesh datasets,

respectively. Tables 6.4 and 6.5 show that the proposed DNTKLD detector produces the relatively

low total error rate of 0.59% and 2.75%, respectively.

However, the computation of the proposed DNTKLD is much less expensive than most of

the existing change detectors. The computational complexity of each change detector is shown

in Table 6.6 according to the analysis in Section 6.3.2. In our implementation, the DNTKLD

change detector is computed at scale 1 (L = 1 and M = 4) and NDNT = 1 while the WGMMKLD
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Table 6.6: Operations Per Pixel (OPP) and Runtime of Proposed DNTKLD, SGMMKLD, and
WGMMKLD Change Detectors and Other Existing Change Detectors for An nWs ×nWs Window.

OPP Time (s)

Spatial-domain
MRD [78] 2n2

WS +4 0.024
CKLD [54] 16n2

WS +259 205
SGMMKLD 640n2

WS +2180 1430

Wavelet-domain
GΓDKLD [34] 732n2

WS +1944 1865
WGMMKLD 7932n2

WS +26172 20160
DNT-domain DNTKLD 332n2

WS +32 323

and GΓKLD are computed at scale 3 (L = 3 and M = 4). To estimate the GMM parameters,

the initial mixture is set to 4 and the number of iterations is typically around 10 (Nloop = 10 and

Kmax = 4). In addition, Table 6.6 also shows the runtime of each change detector. Note that all the

algorithms are implemented on a Pentium IV 2.4 GHz CPU computer with Matlab 2012b without

any optimization. As shown in Table 6.6, the first-order MRD is a very simple change detector and

thus its computational complexity is the lowest among all change detectors. In contrast, the change

detectors based on the higher order statistics, which we refer to as high-order change detectors,

such as CKLD, GΓKLD, SGMMKLD and WGMMKLD have significantly higher computational

complexity since the estimation of their parameters involves a large number of iterations in order to

obtain an accurate convergence. It is also shown in Table 6.6 that the proposed DNTKLD change

detector results in significantly less computations than the high-order change detectors with the

exception of CKLD due to the fact that the distribution of the coefficients after DNT can be well

fitted using a single-parameter Gaussian model, which is easy to estimate and which results in a

simple closed-form expression for the KL-divergence between two Gaussian models. The proposed

wavelet-domain DNTKLD exhibits similar computational complexity as the spatial-domain CKLD

but results in lower FA and TE as compared to CKLD.

In summary, the high-order change detectors exhibit relatively good detection performance

at the expense of high computation cost, while the low-computation first-order MRD detector

achieves a significantly lower detection performance. The proposed DNTKLD detector has lower

computational complexity as compared to the high-order change detectors without sacrificing the

detection performance. In fact, the proposed DNTKLD was shown to outperform or achieve a
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comparable performance to the higher-complexity change detectors, except for the WGMMKLD

which slightly outperforms the DNTKLD but at the expense of significantly higher computational

complexity.

6.5 Summary

In this chapter, we proposed a novel change detection algorithm using statistical features of the

divisive normalization-based image representation. Compared to existing detectors with higher-

order statistics, the proposed method exhibits lower computational complexity with comparable

change detection performance to the high-complexity change detectors.
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Chapter 7

CONCLUSION

This research work contributes to the area of image analysis with a focus on spatial change de-

tection for natural images and multi-temporal change detection for SAR imagery. This chapter

summarizes the major contributions of this work and presents possible future extensions.

7.1 Contributions

This work presents a robust and noise resilient distributed Canny edge detection algorithm. In ad-

dition, this work also proposes new spatial-domain and wavelet-domain statistical similarity mea-

sures with applications in multi-temporal SAR change detection. The main contributions of the

presented work can be summarized as follows:

• Distributed Canny edge detection algorithm

The original Canny algorithm relies on frame-level statistics to predict the high and low

thresholds for hysterisis thresholding. This puts large constraints on memory requirements

and is not suitable for popular systems that perform block-based image processing. Fur-

thermore, the frame-level Canny results in a large latency that is proportional to the image

size. In order to resolve these issues, a novel distributed Canny edge detection algorithm

that can compute the high and low thresholds for each block based on the block type and

the local distribution of pixel gradients in the block, is presented. Each block can be pro-

cessed independently, which decreases the required memory resources and enables efficient

pipelining with block-based image processing methods. Alternatively, the new distributed

Canny edge detector enables the blocks to be processed simultaneously, thus reducing the

latency significantly, which is important for meeting real-time requirements. More impor-

tantly, conducted conformance evaluations and subjective tests show that, compared with the

frame-based Canny edge detector, the proposed algorithm yields better edge detection results

for both clean and noisy images. The distributed Canny detection algorithm is mapped onto

a Xilinx Virtex-5 FPGA platform. The synthesized results show 64% slice utilization and

87% BRAM memory utilization. The FPGA implementation of the proposed Canny edge

detector takes only 0.721ms (including the SRAM read/write time and the computation time)
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to detect edges of 512× 512 images in the USC SIPI database when clocked at 100 MHz.

Thus the FPGA-based implementation shows that the proposed distributed Canny edge de-

tector is capable of supporting fast real-time edge detection of images and videos including

those with full-HD content.

• Modeling the local statistics of SAR images by using a Gaussian Mixture Model

Existing methods for modeling SAR images are mainly suitable for SAR images containing

homogenous regions, even though each homogenous region shows different land-cover ty-

pologies. However, in general, actual SAR images correspond to a varied scene presenting

several different regions with different characteristics. To address this problem, the locally

adaptive Gaussian Mixture Model is shown as part of this work to be more suitable and flex-

ible than the single parametric mathematical distribution models to approximate the local

distribution of the SAR image. Experiments on real SAR image data shows that the GMM

model fits the local distribution of the SAR image better than the existing sophisticated single

parametric mathematical distribution models.

• Change detection in multi-temporal SAR images based on a proposed GMM-based similar-

ity measure in the spatial domain

A novel change detector for the analysis of multi-temporal SAR images is proposed in the

spatial domain. This change detector is based on the analysis of the similarity of local distri-

butions of SAR images using a Gaussian Mixture Model and the KL distance. The effect of

the size of the local neighborhood window on the performance of the proposed algorithm in

the spatial domain is evaluated based on the analysis of real SAR image datasets. Compared

with existing change detectors with higher order statistics in the spatial domain, the pro-

posed spatial-domain GMM-based change detector has better change detection performance

in terms of the quality of the similarity maps, which are assessed using the receiver operating

characteristic (ROC) curves, and in terms of the total error rates of the final change detection

maps.

• Change detection in multi-temporal SAR images based on the proposed GMM-based simi-

larity measure in the wavelet domain
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A novel change detection algorithm for multi-temporal SAR images is proposed in the

wavelet domain based on the aforementioned proposed GMM-based image similarity mea-

sure. There are two benefits to extend our framework to the wavelet domain. First, each

wavelet scale is characterized by a different tradeoff between speckle reduction and preser-

vation of geometrical details. Thus, the geometrical details can be preserved well while the

speckle noise can be largely reduced in the wavelet domain. Secondly, texture can be eas-

ily represented and discriminated in the wavelet domain. The effect of the wavelet scales

and window sizes on the performance of the proposed algorithm in the wavelet domain is

analyzed. Tests on real SAR image datasets show that the proposed wavelet-domain change

detector outperforms existing wavelet-domain change detectors in terms of the quality of the

similarity maps, which are assessed using the receiver operating characteristic (ROC) curves,

and in terms of the total error rates of the final change detection maps.

• Change detection based on the divisive normalization transform

A novel change detection algorithm based on a divisive normalization image representation

is presented, which reduces the computational complexity compared to existing wavelet-

domain model-based change detectors. The DNT was empirically shown to produce ap-

proximately Gaussian marginal distributions and to reduce the statistical dependencies of the

original wavelet-domain representation, and results in a one-parameter function that allows

efficient change detection. Tests on real data show that the proposed DNT-based detector has

competitive detection performance with the proposed GMM-based change detectors while

achieving lower computational complexity as compared to previously suggested methods.

7.2 Future Work

The work presented herein can be extended and optimized for different applications. Future possi-

ble directions of the presented work include the following:

• Possible improvements to the proposed distributed Canny edge detection algorithm include

the use of alternative block classification methods to improve the performance, and develop-

ing an automatic filter size selection scheme to adaptively choose the optimal gradient filter

size according to the image characteristics.
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• Hardware implementation of the distributed Canny edge detector

Future directions in the hardware implementation of the distributed Canny edge detector

include mapping the block-based algorithm to GPU-based hardware platforms or other multi-

core hardware platforms.

• Not limited to the application of the change detection in multi-temporal SAR images, the

proposed GMM-based image similarity can be extended to other applications, such as image

quality assessment, texture retrieval, etc.

• Possible future directions in the area of change detection in multi-temporal SAR images

include extensions of the current Gaussian mixture model to other types of mixture models

such as Rayleigh mixture model, generalized Gaussian mixture model and generalized Gam-

ma mixture model. Other further work include considering other similarity metrics besides

the KL divergence.
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