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ABSTRACT  

   
Real-time information systems are being used widely around the world to mitigate 

the adverse impacts of congestion and events that contribute to network delay. It is 

important that transportation modeling tools be able to accurately model the impacts of 

real-time information provision. Such planning tools allow the simulation of the impacts 

of various real-time information systems, and the design of traveler information systems 

that can minimize impacts of congestion and network disruptions. Such modeling tools 

would also be helpful in planning emergency response services as well as evacuation 

scenarios in the event of a natural disaster. Transportation modeling tools currently in use 

are quite limited in their ability to model the impacts of real-time information provision 

on travel demand and route choices. This dissertation research focuses on enhancing a 

previously developed integrated transportation modeling system dubbed SimTRAVEL 

(Simulator of Transport, Routes, Activities, Vehicles, Emissions, and Land) to 

incorporate capabilities that allow the simulation of the impacts of real-time traveler 

information systems on activity-travel demand.   The first enhancement made to the 

SimTRAVEL framework involves the ability to reflect the effects of providing 

information on prevailing (as opposed to historical) network conditions on activity-travel 

behavior choices.  In addition, the model system is enhanced to accommodate multiple 

user information classes (pre-trip and enroute) simultaneously. The second major 

contribution involves advancing the methodological framework to model enroute 

decision making processes where a traveler may alter his or her travel choices (such as 

destination choice) while enroute to an intended destination. Travelers who are provided 

up-to-date network information may choose to alter their destination in response to 
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congested conditions, or completely abandon and reschedule an activity that offers some 

degree of flexibility.  In this dissertation research, the model framework is developed and 

an illustrative demonstration of the capabilities of the enhanced model system is provided 

using a subregion of the Greater Phoenix metropolitan area in Arizona.  The results show 

that the model is able to simulate adjustments in travel choices that may result from the 

introduction of real-time traveler information.  The efficacy of the integrated travel model 

system is also demonstrated through the application of the enhanced model system to 

evaluate transportation policy scenarios.   
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CHAPTER 1 

Introduction 

Ever increasing energy consumption and greenhouse gas emission (GHG) have 

been an issue of major concern on a global scale for the past few decades. In the Unites 

States transportation sector accounts for 28% of GHG emissions in 2012 (EPA, 2013) 

and 70% of all petroleum consumption in the 2012 (EIA, 2013).  One line of effort taken 

up by the researchers in the field is to develop tools and techniques to efficiently handle 

network disruptions so that emissions from idling of vehicles can be reduced.  This also 

saves a precious commodity that everyone has but is still scarce – ‘time’.  Network 

disruptions can be defined as a class of events that change usual flow conditions of traffic 

on roadway networks (Konduri et al., 2013).  Network disruptions may be classified into 

two types: planned events and unplanned events.  Full or partial roadway closures to 

accommodate work zones along a freeway segment or bridge section are some examples 

of planned events.  Traffic crashes or roadway/bridge failures are examples of unplanned 

events.  Network disruptions reduce the capacity of roadways, increasing queues which in 

turn increase the emissions due to idling of vehicles.  Another adverse impact of network 

disruptions is the loss of traveler’s productive time due to delays caused by congestion.   

Various traveler information systems have been introduced by jurisdictions and 

Metropolitan planning organizations (MPOs) to mitigate the negative impacts of network 

disruptions.  Advanced Travelers Information System (ATIS) such as Intelligent 

Vehicle/Highway Systems (IVHS), Variable Message Signs (VMS), and Highway 

Advisory Radio (HAR) (Adler and McNally, 1994; Adler and Blue, 1998) are a few 

examples of traveler information systems.  The goal of these technologies is to create a 
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communication link between drivers and traffic control centers.  In addition, in-vehicle 

navigation, real-time traffic conditions (Google Maps) and Global Positioning System 

(GPS) are capable of providing information not only for shortest path from origin to 

destination but also alternate route suggestions to the activity destination in light of traffic 

congestion.  All of the technologies mentioned above are being used widely in the current 

day.  These technologies are significantly impacting activity-travel behavior, network 

performance, and travel safety by improving drivers’ perception of current network 

conditions and assisting drivers with pre-trip and en-route travel decisions (Mouskos and 

GreenFeld, 1999; Zhang et al., 2008; Yang and Luk, 2008).   

Benefits from Modeling Impacts of Real-Time Traveler Information Provision 

Impacts of real-time traveler information provision should be understood and 

modeled for a number of reasons (Konduri et al., 2013).  First, understanding the impacts 

of user information provision in the event of planned or unplanned network disruptions 

(e.g. the collapse of the I-35W bridge in Minneapolis) will help plan for emergency 

response services (Zhu et al., 2010).  Crisis teams may can be informed of delays in real-

time which can prevent loss of life.  Second, if a transportation modeling tool is capable 

of accurately simulating the impacts caused by real-time information provision on 

activity-travel patterns along the time and space dimensions, it would provide 

transportation professionals with a powerful tool to devise/test better real-time 

information systems and reduce the adverse effects of network disruptions.  Third, 

transportation planners or policy makers will be able to carry out an array of policy 

analyses (before their actual implantation) in that require real-time information provision 

without having to spend a lot of time and money.   
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Considerations for Modeling Effects of Real-Time Information Provision 

Recent research efforts have developed transportation modeling tools (comprising 

of travel demand and traffic assignment models) capable of simulating the impacts of 

user information provision in the context of network disruptions (see Konduri et al., 2013 

for a detailed explanation of one such tool).  However, most of the modeling tools in 

research as well as practice are not fully competent to allow for modeling the wide array 

of uses of real-time information provision.  The following key considerations are partially 

or fully ignored by the current model systems in this context. 

 The transportation modeling tools should be able to reflect the impacts of user 

information provision (Konduri et al., 2013).  Real-time network conditions are 

available for travelers through various technologies such as Google maps, radio 

traffic reports, in-vehicle GPS, and variable message signs.  These technologies 

would impact activity-travel engagement decisions and route choice decisions.  In 

addition, the model system should be capable of accurately modeling the spatial 

and temporal variance of information provision based on the individual’s current 

location, departure time, and what type of real-time information system they seek 

to use.  For example, if a traveler is driving on an arterial corridor, the traveler 

might not obtain network condition information through variable message signs 

that are only placed at select locations on freeways.  Google Maps provide real-

time network conditions for major freeways and arterial corridors.  Travelers who 

drive on local roads might not able to use Google Maps.  Hence, transport model 

systems should be able to accurately capture different spatio-temporal scales of 

user information systems while simulating activity-travel engagement patterns.  
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 The same level of information access should not be applied to all travelers while 

modeling impacts of real-time information provision (Konduri et al., 2013).  

Level of access to current network conditions can be classified into three levels 

namely: no information, pre-trip, and en-route information.  Travelers will make 

different activity-travel engagement and route decisions depending the level of 

information available to them.  For example, if a traveler checks current network 

conditions before embarking on a trip, he or she may alter activity, destination, 

and/or mode based on prevailing network conditions.  Travelers who have access 

to en-route traveler information might not change the mode (as they are already 

on the network) but alter their route, destination, or skip an activity on their 

agenda in light of current network conditions.  The transportation model system 

should be able to model different user information classes accurately. 

 Modeling tools should also consider the cascading effects among trips while 

modeling the impacts of network disruptions under user information provision 

(Konduri et al., 2013).  A network condition may lead an individual to alter 

destination, mode, or activity for the subsequent trip or cancel the next activity on 

his/her agenda and stay at home in light of the delay encumbered on the current 

trip.  For example, if an individual arrives late at a destination due to a network 

delay, he or she would adjust the duration of the activity, or keep the planned 

duration of the activity, but alter the plan for the subsequent activity and travel.  

In another context, individuals might delay departure time for an activity to avoid 

traffic congestion provided they have information regarding prevailing network 

condition.  The model system should be able to account for different types of 
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individuals, their travel behavior and interactions among trips in the daily activity 

agenda etc.    

 In order to model the impacts of real-time traveler information provision, 

experienced and prevailing network conditions should be used simultaneously to 

simulate activity-travel engagement patterns.  As individuals make decisions to 

engage in activities, they might have some historical knowledge (from a previous 

journey) of network conditions.  Alternately, an individual might utilize 

technologies to realize prevailing network conditions, provided he or she has 

access to the technology.  The transportation modeling tool should therefore use 

both experienced and prevailing network conditions simultaneously while 

simulating activity-travel patterns and route choices.   

Integrated Model System for Modeling the Impacts of Network Disruptions 

To model real-time traveler information provision, an integrated model system 

that comprises of land-use, activity-travel engagement, and dynamic traffic assignment 

sub-models named SimTRAVEL (Pendyala et al., 2012) is used in this research.  The 

development and implementation of integrated models of urban continuum has been a 

topic of significant interest in the profession for a couple of decades.  Number of studies 

combined activity-based travel micro-simulation models and dynamic traffic assignment 

models (e.g., Pendyala et al., 2012; Lin et al., 2008; Kitamura et al., 2005) in the recent 

past.  The objective of such model integration is to capture behavioral dynamics in time-

dependent networks at the level of the individual traveler, which is not possible using a 

traditional four step models.  With advances in the development and implementation of 

integrated modeling systems, several studies in the recent past have undertaken the task 
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of forecasting the impacts of pricing strategies and their impacts on activity-travel 

schedules in time-dependent networks (e.g., Zhang et al., 2011; Konduri et al., 2013).  

However, most of integrated modeling systems available today are not capable to fully 

address policy analyses that require real-time communication between travel demand and 

network supply models.  In spite of several technological and computational 

advancements, the communication between the demand and supply in integrated 

modeling frameworks is mostly sequential in nature.  This shortcoming makes it difficult 

to capture behavioral dynamics impacted by real-time information systems in time-

sensitive networks at the level of the individual traveler.  Pendyala et al. (2012) 

developed an integrated model system (called SimTRAVEL: Simulator of Transport, 

Routes, Activities, Vehicles, Emissions, and Land) that is capable of handling real-time 

communication between the two key components (activity-travel demand model and 

network supply model).  Konduri et al. (2013) presented an upgraded version of 

SimTRAVEL and analyzed the impacts of network disruptions under user information 

provision.  However, the framework of SimTRAVEL still falls short of fully accounting 

for all design components that should be considered to accurately model impacts of real-

time traveler information provision on activity-travel engagement behaviors.   

Objectives of the Research 

This dissertation aims at enhancing an established integrated modeling framework 

of travel demand and supply to reflect the effects of real-time information provision in a 

time-space prism constrained behavioral paradigm.  In this research, the SimTRAVEL 

(Pandyala et al., 2012) is updated on the following grounds:  
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 A new dynamic network model flexible enough to reflect real-time information 

systems is integrated into the framework of SimTRAVEL.  One of the main goals 

of this research is to enhance SimTRAVEL to accurately model the impacts of 

real-time traveler information provision.  The previous traffic assignment model 

employed in SimTRAVEL is not flexible to capture pre-trip and en-route 

decisions in traffic flow simulation.  So, this project employs a new dynamic 

network assignment model (called DTALite) capable of simulating traffic flows 

taking into account pre-trip and en-route information.   

 This research aims to enhance SimTRAVEL to utilize both previous network 

conditions (experienced network conditions) and prevailing network conditions in 

determining activity-travel engagement decisions and route choice decisions.  In 

order to accurately capture activity-travel behavior of individuals who use ATIS 

to make activity, destination, or/and mode choice decisions before embarking on a 

trip, prevailing network conditions should be available to both travel demand and 

dynamic network models. 

 This research intends enhance SimTRAVEL to handle different levels of access to 

information provision in synthetic population in the activity-travel demand model.  

The activity-travel demand model sends information regarding level of access to 

real-time network conditions of the traveler to the dynamic traffic assignment 

model in addition to general travel information (e.g. origin, destination, departure 

time, vehicle type, etc.).  This ensures that different levels of traveler information 

provision in spatio-temporal dimensions is accurately depicted in simulation of 
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activity-travel engagement and route choice decisions in response to network 

delay events.  

 Travel behavior choices in response to real-time information provision are added 

to the framework of the activity-travel demand model in order to reflect decision 

making process of travelers in light if network delay events.  Once the activity-

travel demand model receives trips that are in the congested state network from 

dynamic network model, the model is made capable of responding to the traffic 

delay event by altering activity, destination, or mode of the individual.  In 

summary, this research upgrades the modeling framework of SimTRAVEL to 

make it capable of simulating activity-travel patterns in response to network delay 

events under real-time user information provision. 

The enhanced framework of SimTRAVEL is tested on a sub region (City of 

Chandler, Town of Gilbert and Town of Queen Creek) in the Phoenix Metropolitan Area 

to analyze the impacts of network disruptions under real time information provision.  An 

unplanned network disruption event is simulated on a major freeway corridor (Loop 202) 

in the sub region.  This study conducts a comprehensive analysis to estimate the effect of 

real-time information provision on activity-travel engagement behaviors using various 

traveler information provision scenarios.  Another case study analyzes the impacts of a 

Low Emission Zone (LEZ) policy on energy and emission reductions in a selected 

geographical area.  

The remainder of this paper is organized as follows.  The next chapter presents 

existing literature on activity-based travel demand models, dynamic traffic assignment 

models, integrated modeling frameworks followed by research regarding network 
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disruption with ATISs.  Chapter 3 describes the previous version of the integrated model 

of the urban continuum called SimTRAVEL developed by Pendyala et al. (2012).  Fourth 

chapter describes in detail, the enhancements made to the integrated model system for 

modeling impacts of real-time traveler information provision.  The fifth chapter presents 

a case study conducted on a Low Emission Zone (LEZ) policy using the enhanced 

SimTRAVEL.  The sixth and seventh chapters provide the results of case studies for pre-

trip and en-route decision making processes respectively in response to a network delay 

event.  The final chapter summarizes and lists the contributions of this research work to 

empirical knowledge in the area of integrated travel demand model systems. 
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CHAPTER 2 

Literature Review 

There has been a significant amount of progress made in micro-simulation 

approaches of travel demand in the recent past.  Several researchers recognized the need 

of integrating various components (e.g. land-use, travel demand, and traffic assignment) 

to supplement shortcomings of traditional four step approach.  In the last two decades, 

tremendous progress has been also made in the area of integrated modeling of urban 

systems.  The rich body of literature in integrated model systems is a testament to the 

progress that had been made.  In addition, many researchers have actively researched 

advanced traveler information systems (ATIS) and real-time communication systems to 

alleviate the impacts of network disruptions.  This chapter provides a review of the 

literature on the impacts of network disruptions and advanced traveler information 

systems, activity-travel demand, and traffic assignment.  In the next section, a detailed 

review of literature on integrated modeling of urban systems is described. 

Network Disruptions and Traveler Information Provision 

Network disruption may occur anywhere and anytime on traffic networks 

(accidentally or on purpose).  Disruptions can be separated into two types: planned and 

unplanned (Konduri et al., 2013).  A network disruption is an incident that occurs in a 

specific area, which might impact traffic condition (congestion) on the roads in and 

around the area from several hours to a few of months (sometimes, even a year).  Vehicle 

crash (unplanned) is a short term example of network disruption.  Longer term examples 

of network disruptions are work zones on roads, rebuilding a collapsed bridge, and 

reconstruction projects (Yun et al., 2011; Zhu et al., 2010) which are usually planned.  
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Traffic congestion arising from network disruption has significant implications on energy 

consumption (wasted fuel), greenhouse gas emissions and traveler’s (wasted) time (Adler 

and Blue, 1998; Kim et al., 2009).  There are two main directions in the transportation 

literature focusing on alleviating the impacts of network delay events.  First, there is the 

analysis of measuring activity-travel behavior changes in response to network 

perturbation and user information provision.  Zhu et al. (2010) investigated commuter 

travel pattern after the collapse of I-35W bridge on August 1, 2007 by collecting traffic 

data from loop-detectors and bus ridership and conducting a survey.  Yun et al. (2011) 

explored non-worker traveler behavior changes in response to a planned network 

disruption (a reconstruction project of Interstate 5 for 9 weeks in Sacramento, California).  

They conducted two contemporaneous internet surveys to measure changes in travel 

behavior caused from the planned network disruption events.  The results show that 

respondents are more likely to change non-mandatory (non-work) travel in response to 

the worsened network conditions.  Clegg (2007) presented the behavioral changes down 

to the individual vehicle level in response to a planned reduction of road capacity.  Chang 

and Nojima (2001), and Kamga et al. (2011) focus on the impacts of unplanned network 

disruptions to understand traveler behavior changes.  Although these studies are helpful 

to understand the impacts of network disruptions on traveler behavior, their scope is still 

limited in examining specific dimensions of activity-travel engagement pattern, or 

exploring specific demographic segments.   

Utilizing the lessons learnt from study of network disruptions, various techniques 

for traveler information provision have been developed to provide accurate information 

of prevailing network conditions to travelers and thereby offer them a chance to avoid 
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congestion.  In the late 1960s and early 1970s, metropolitan areas such as Los Angeles, 

Detroit, and Chicago started to research, develop and test for traffic surveillance and real-

time information dissemination.  The research work focused on using visual displays to 

inform travelers with prevailing traffic condition and diversion information (Weinberg et 

al., 1966).  In the 1970s, the Federal Highway Administration sponsored a project that 

developed ERGS (Electronic Route Guidance System).  ERGS system focused on 

providing travelers with in-vehicle route guidance based on their origin-destination 

information (Rosen et al., 1970).  In addition to this, in-vehicle route guidance systems 

(IVRGS) were developed and tested in Japan (Shibano et al., 1989), Europe (Jeffery et al., 

1987) and the United States (Rillings and Krage, 1992) in the 1980s.  Variable message 

signs (VMS) and highway advisory radios (HAR) were designed to mitigate traffic 

congestion in areas impacted by network disruptions (planned or unplanned) such as 

special events or incidents (Alder, 1994; 1998).  In the late 1990s and early 2000s, 

geographical information system (GIS) and global positioning system (GPS) were 

applied into the advanced or real-time traveler information system to calculate the 

shortest path and provide drivers with prevailing network conditions (Mouskos and 

Greenfeld, 1999; Zhang et al., 2008).  Real-time traffic data are available through various 

applications such as Google Maps and SmartTrek (Swedlund, 2013) and smart phones 

(Konduri et al., 2013). 

To mitigate traffic congestion caused by a network disruption, various 

technologies that provide real-time traveler information are employed.  Several studies 

attempted to understand the impact of traveler information provision on traveler 

behaviors under network disruptions.  Levinson (2003) uses a simulation approach, 
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which considers "informed" and "uninformed" drivers under recurring and non-recurring 

congestion scenarios, to explore the benefits from traveler information provision in travel 

time.  The results of the simulation suggest that in-vehicle real-time traveler information 

systems provide travel time benefits to users and reduce the variance in the travel time.  

Kraan et al. (2000) investigate the impacts of advanced traveler information system on 

shopping activity-travel engagement by conducting an interactive stated preference 

survey.  Pre-trip and en-route traffic information were considered for trips to shopping in 

the survey of the study.  From the results of the survey it was found that 25% of the 

respondents would change their route or shopping mall as they obtain delay information 

caused by network disruptions.  Liu and Mahmassani (1998) estimate a multinomial 

probit model to understand traveler responses to real-time traffic information.  From the 

results of the model, travelers would make departure time adjustments and route 

switching at various decision nodes along the trip based on the reliability of real-time 

information and supplied schedule delay (relative to the commuters’ preferred arrival 

time).   

Another steam of research focused on modeling the impacts of traveler 

information systems on network performance under various network disruption scenarios.  

Al-Deek et al. (1998) develop a framework that combines a route diversion model and a 

queuing model for evaluating the effect of advanced traveler information systems.  The 

framework focuses on three different types of travelers because different people may 

respond differently to traveler information systems along with the level of access to 

information.  The three types of travelers are follows: no traveler information, delayed 

traveler information, and real-time traveler information.  That is, their study 
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disaggregates the level of technologies of ATIS and analyzes the traveler and system 

benefits that come from various technology penetrations.  Yang and Luk (2008) 

developed a dynamic model to evaluate the impacts of ATIS on network performance. 

The dynamic model consists of traffic information provider, route choice module, traffic 

simulation module, and evaluation module. The traffic information system provides 

different level of traffic information access to drivers.  This can lead to different route 

choice behaviors among different types of drivers in the route choice module. The traffic 

simulation module then simulates dynamic network conditions in response to traffic 

information. The last step evaluates network performance such as network delay, link 

specific delay, and flow rate. Their study aimed to study the impacts of ATIS on 

traveler’s route decision and analyze the benefit of reducing total network delay with 

different levels of access to traffic information.  Paz and Peeta (2009) propose a paradigm 

for generating traffic routing strategies by explicitly accounting for traveler’s likely 

behavior in response to recommended routes informed by a user traveler information 

system.  The objective of their approach is to evaluate the impact of technology on 

network route selections and performance.   

Activity-Travel Engagement Pattern Micro-simulator 

Kitamura et al. (2000) presents the development and validation results of a micro-

simulator for simulating individual daily activity-travel patterns. A sequential simulation 

approach was adopted to generate daily activity-travel patterns. In this approach, daily 

activity-travel pattern is separated into components that correspond to certain aspects of 

observed activity-travel behavior. Thus, the approach establishes a link between 

mathematical models (i.e. discrete choice models) and observational data. Monte Carlo 
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simulation was used to generate daily activity-travel patterns.  The model system of the 

micro-simulator consists of activity type choice, activity duration choice, activity location 

choice, and travel mode choice. In addition, the components include work/school location 

models, initial departure timing models, and initial location models.  

Bowman and Akiva (2000) present a disaggregate discrete choice activity 

schedule model system for forecasting urban passenger travel demand. A tour-based 

concept was incorporated into this activity-based model system to explicitly model an 

individual’s choice of an entire day’s schedule. The authors estimated models using 24 

hour household travel diary survey data collected from the Boston metropolitan area in 

1991 along with zonal and time-of-day-specific transportation system attributes from the 

same time period. In the activity scheduling model system proposed by the authors, 

household interaction was not considered for forecasting activity decision in an 

individual’s entire day’s schedule.  Therefore, though the predicted activity-travel 

patterns may be consistent at the individual level, daily activity schedules of household 

members may not match which seems counter intuitive knowing the fact that household 

members depend on each other to make travel decisions.     

Jonnalagadda et al. (2001) introduced a framework for implementation of the 

micro-simulation activity-based model for San Francisco. The model system was applied 

in the nine-county San Francisco Bay Area, which is represented by the Metropolitan 

Transportation Commission regional travel demand forecasting model. The activity-

based model in this framework consists of destination choice and mode choice models. 

Two different destination choice models were estimated at tour-level and trip-level.  

Tour-level destination choice model is to determine the primary destination while the 
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trip-level model captures the choice of intermediate stops on a tour. A separate model 

was estimated for each tour purpose such as work, school, other, and work-based. Mode 

choice models were also separated into tour- and trip-levels. A mode choice model at 

tour-level is to determine the mode for the tour, whereas the model at trip-level 

determines the mode for each individual trip on that tour on the basis of the mode chosen 

by the mode choice model at the tour-level.   

Kato et al. (2002) developed an activity-based travel demand model system 

designed as a series of hierarchical submodels for commuters' work-tour mode and their 

discretionary activities and travels before and after work by using neural networks. The 

model system at the highest level is constrained by primary travel pattern of employees, 

affecting their behavior of whether/not and how to make discretionary tours. The lower 

level of the system is the choice of discretionary travel generation before and after work 

and then followed by the choice of their destination, mode and activity duration. The 

study used the person-trip survey data for the metropolitan area of Nagaoka, Niigata 

collected by the national government of Japan in November 1999. Their micro-simulation 

was able to simulate an individual discretionary travel pattern based on a number of 

conditions that assume the introduction of Travel Demand Management (TDM) measures 

such as flexible work times or staggered work hours.  

A micro-simulation demand-modeling system was developed by Vovsha et al. 

(2002) for the New York Metropolitan Transportation Council to apply the New York–

New Jersey–Connecticut metropolitan models. The objective of developing a micro-

simulation model system is to overcome drawbacks of conventional demand models such 

as a) inefficient computation and storage of large multidimensional probability arrays, b) 
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lesser behavioral intuition, and c) no variability of travel demand. A Monte Carlo 

approach is used to simulate discrete choices at the individual level. Model system in the 

micro-simulation consists of journey-frequency choice, destination choice, and model 

choice models. In order to improve behavioral realism of travel demand models, it allows 

for the exploration of a chained or hierarchical structure of travel decisions and the 

consideration of objective time-space constraints on an individual’s daily travel-activity 

pattern. Modeling the variability of transportation flows is possible in micro-simulation 

approaches to make a decision on the capacity of a planned transportation facility based 

on the probability of achieving critical maximum volumes. Micro-simulation also allows 

constraints into the modeling framework at the destination choice stage so that it has the 

potential to handle the competition over work attractions and other travel activities in a 

meaningful fashion.  

Vovsha et al. (2007) developed a micro-simulation technique which is capable of 

simulating daily activity-travel behavior by using activity-based models at the full-

disaggregate level of persons and households. This technique was developed in JAVA 

programming language as a package which can be imported and used in any model 

development project. An activity-based platform and a tour-based structure are base for 

the development of this technique.  In an activity-based platform, modeled travels are 

generated within a general framework of the daily activities undertaken by persons and 

households. The concept of the activity-based modeling structure adopted in this research 

is proposed by Bowman and Ben-Akiva (1999; 2000). Since this structure does not 

consider intra-household interactions, the authors transformed it with a cascade of 

conditional choices, with alternating decision making units (household or person), 
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following a set of preference rules. However, activity-travel pattern in this activity-based 

model system may not be consistent between children and adults in a households because 

activities undertaken by children who depend on an adult can affect activity-travel pattern 

of the adult who needs to take care of the children.    

Yagi and Mohammadian (2008) developed an activity-based micro-simulation 

modeling system to estimate travel demand to be used for evaluation of different 

transportation policy scenarios such as area pricing, parking pricing, and license plate 

restriction. This modeling system consists of three types of models: daily activity pattern 

choices, time of day, and mode and destination in the hierarchy. All models in this 

modeling system were developed using the available activity diary survey and household 

travel data conducted in 2002 for the Jakarta metropolitan area. The micro-simulation 

process in their study incorporates activity scheduling decision rules to modify generated 

activities by controlling for activity rescheduling, joint activity-tour generation, and 

household maintenance tour restriction.  The model system simulates daily activity-travel 

patterns undertaken by persons or households at tour level for preserving consistency in 

destination, mode, and time of day across trips. This study assumes that a tour is a home-

based tour in which one starts travel from home and ends the travel at home.   

Dynamic Traffic Assignment Simulators 

Dynamic traffic assignment consists of two main steps: i) route selection and ii) 

traffic movement simulation.  In an integrated model system, travel demand model sends 

trip information to the dynamic traffic assignment with origin and destination information.  

Using information of vehicle trips, traffic assignment model assigns routes to all vehicle 

trips based on an optimization criterion of network link impedances before simulating 
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vehicle movement from origin to destination through the network.  There are several 

methods used for route selection.  Wardrop (1952) presented the classic user equilibrium 

technique in which individual chooses a route that minimizes travel time from a 

particular origin-destination pair.  The user equilibrium method does not allow user to 

improve travel time by shifting alternative paths.  The system equilibrium model aims to 

minimize travel times across all vehicle trips based on system optimum principles.  This 

technique may not be able to give minimum travel time to all vehicle trips because 

system optimum may be reached only by minimizing travel time for all individuals 

together.  Similar techniques that are commonly are all-or-nothing assignment, 

incremental-load assignment, incremental-reload assignment, and Frank-Wolfe 

assignment (Oppenheim, 1995).  

Instead of using user and system equilibrium techniques, simulation-based 

dynamic traffic assignment models employ discrete choice analysis for route selection 

(Ben-Akiva et al., 2014).  Discrete choice analysis asks disaggregate data to be used to 

estimate variables that cause the behavior of route selection for a particular origin and 

destination pair.  The disaggregate data can be collected from survey by mail, telephone, 

and the internet (Ben-Akiva et al., 1984; Prato et al., 2004) or GPS trajectories (Frejinger, 

2008; Hou, 2010).  Discrete choice models for route selection predict the decision of 

travelers regarding which route they choose to reach their destination using the choice set 

and the attributes pertaining alternative routes.  The Multinomial Logit model that 

computes the probability of selecting a route in the given choice set is one of the most 

popular methods to estimate parameters because its assumption is simplified with 

identical and independently distributed error terms (Ben-Akiva et al., 2014).  Wen et al. 
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(2006) developed a route choice model using the Multinomial Logit model.  However, 

the Multinomial Logit model is deemed inappropriate to be used in networks with 

commonly overlapping paths (Ben-Akiva et al., 2014).  To overcome limitations of the 

Multinomial Logit, C-Logit model (Cascetta et al., 1996), Path Size Logit model (Ben-

Akiva and Bierlaire, 1999), Multinomial Probit model (Yai et al., 1997) have been 

developed for route selection in simulation-based dynamic traffic assignment models.   

In the subsequent step after route selection, dynamic traffic assignment models 

simulate vehicle movements for the particular origin destination pair on the simulation 

region on a continuous time axis.  Its model system generates the link volumes and link 

impedances at the end of simulation run to provide input data to another model system 

such as land use model, travel demand model, and routing selection model.  The traffic 

movement models can be separated into three groups: macroscopic, microscopic, and 

mesoscopic models.  The macroscopic traffic simulation adopts theories in physics to 

simulate vehicular traffic and generate transport accessibility measures.  In macroscopic 

approach, traffic flow had been explained by the models developed by Lighthill and 

Witham (1955), and Richards (1956).  The macroscopic models were continuously 

developed by researchers in a quest to better explain the observed non-equilibrium phase 

transitions, various non-linear dynamic phenomena (traffic jams), and stop-and-go traffic 

(Kerner and Rehborn, 1997; Helbing and Huberman, 1998; Kühne, 1984).  Helbing et al. 

(2001) presented the non-local, gas-kinetic-based traffic model to predict consistent 

traffic flow in the macroscopic approach.  The macroscopic approach is not flexible 

enough to permit the analysis of different dynamic traffic reactions such as gap 

acceptance, car following, and lane changing behavior.  To overcome the shortcomings 
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of macroscopic models, microscopic approach for traffic simulation is proposed by 

several transportation researchers.  Microscopic traffic models simulate movement at the 

level of individual vehicle on the network.  Microscopic models provide the much needed 

flexibility to analyze dynamic traffic behaviors such as gap acceptance, car following, 

lane changing, shockwaves, and weaving (Mahut et al., 2008; Chandler et al., 1958; 

Gazis et al., 1959; Kometani and Sasaki, 1961; Gipps, 1981; Van Aerde et al., 1996).  

With the advancements in computer software, hardware and mathematical techniques 

(Liu and Ma, 2009), some transportation researchers made efforts to simulate individual 

traffic movements (including dynamic traffic behaviors) on microscopically real world 

networks. For example, Nagel et al. (1999) used the Transportation Analysis and 

SIMulation System (TRANSIMS) for the Dallas/Fort Worth case study.  AIMSUN was 

adopted with a heuristic approach (Barcelo et al., 1999) and a stochastic heuristic 

dynamic assignment (Barcelo and Casas, 2006) to dynamic traffic assignment.  

Mirchandani et al. (2003) proposed CORSIM simulation model that is based on an 

iterated route.  VISSIM (Beaulieu et al., 2007) and INTEGRATION (Van Aerde et al., 

1996) were also developed as microscopic traffic simulation models.  However, it is still 

difficult to apply microscopic traffic simulation to large scale networks.  So, these models 

are used on rather small networks because of the heavy computational burden involved 

(Liu et al., 2005; Konduri, 2012).   

There is another class of traffic simulation models which are termed mesoscopic 

models.  The objectives of the mesoscopic traffic approach is to reduce high 

computational burden and memory usage, which is a common problem in microscopic 

models enabling their application to large scale network for simulating individual vehicle 
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movement.  Therefore, the mesoscopic approach would selectively omit certain car-

following behavior and decrease a simulation temporal resolution for balancing 

computational burden and keeping realism of macroscopic simulation properties (Tian 

and Chiu, 2011).  The earlier mesoscopic traffic approach in literature includes the 

headway distribution model (Buckley, 1968; Branston, 1976), the cluster model (Botma, 

1981) and gas-kinetic continuum model (Nelson and Sopasakis, 1998).  Another model 

group in the mesoscopic approach is the simulation-oriented models that simulate 

individual vehicle movements following link, segment, or cell structure in a simulation 

area at every second by commonly employing the Queue model (Gawron, 1998; Cetin et 

al., 2002).  The simulation-oriented models estimate traffic flow characteristics on the 

network and then use it as input to simulate vehicular movements at the individual level 

(Cetin et al., 2002; Balakrishna et al., 2008).  Chiu et al. (2010) presented the anisotropic 

mesoscopic simulation (AMS) model that determines each vehicle’s prevailing speed at 

current simulation time by taking an average density in the front of the following vehicle.  

CONTRAM (Taylor, 2003), DYNASMART-P (Mahmassani et al., 2001), DynaMIT 

(Ben-Akiva et al., 1998), and DTALite (Zhou and Taylor, 2011) are some other dynamic 

traffic assignment models that have been developed based on the properties of 

mesoscopic traffic simulation approach.  

Integrated Model System of the Urban Continuum 

Kitamura et al. (1996) proposed an integrated urban model system called as the 

Sequenced Activity-Mobility Simulator (SAMS) to overcome shortcomings of traditional 

four-step models that have not been able to serve as an effective planning and policy 

tools. The framework of SAMS comprises of an urban system, a socio-
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economic/demographic, vehicle transactions, an activity-mobility, a dynamic network, 

and air quality emissions simulators. The urban system simulator is a dynamic, market-

based micro-simulator of the urban evolution. It simulates household residence and job 

location choice, firms’ location decisions, and developers’ development decisions at 

microscopic levels. The socio-economic/demographic simulator is a stochastic micro-

simulator of the socio-economic/demographic evolution of households and firms that 

generates synthetic population. Location decisions are generated with feedback between 

the urban system and the socio-economic/demographic simulators. The outputs of both 

simulators are fed into the vehicle transaction simulator as endogenous variables. The 

vehicle transactions simulator is a dynamic stochastic micro-simulator that models 

acquisition, disposal and replacement of vehicles in a household. SAMS includes an 

activity-based model (called as AMOS – the activity-mobility simulator) of travel 

decisions. AMOS simulates activity engagement, scheduling and travel behavior along a 

continuous time axis at the level of an individual using endogenous variables from other 

simulators in the system (urban system, socio-economic/demographic, and vehicle 

transactions simulators). The trips generated from AMOS are then fed into the dynamic 

network simulator which simulates network assignment and reports network conditions 

on a continuous time-of-day basis. An air quality emissions module takes the output of 

dynamic network simulator and evaluates emission footprint from personal travel.  

Ben-Akiva et al. (1996) proposed a framework of an integrated model system of 

the urban continuum. The framework is based on a tour-based approach for modeling the 

activity-travel engagement patterns and houses an urban development, mobility and 

lifestyle decisions, activity-travel pattern choices, and transportation system performance 
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modules. The model of activity-travel pattern choices focuses on individual or household 

decisions. First, the urban development module simulates industrial development, firm 

location decisions, and residential development decisions. Mobility and life style module 

then simulates employment, housing, activity program, auto ownership, and information 

technology options. The results of mobility and life style module are fed into a model of 

activity-travel pattern choices which generates activity-travel patterns with activity 

schedule, activity type, destination, departure time, travel model and route at the tour 

level. These activities can be rescheduled for an individual in light of transport network 

conditions. The modeling process evaluates transportation system performance using the 

rescheduled activity-travel patterns. The transportation system performance is used in the 

urban development module as a feedback because there are interactions between the 

decisions of individual’s activity-travel patterns and the transportation system 

characteristics. The integrated urban model system iteratively runs the simulation until 

convergence.  

Strauch et al. (2003) presented ILUMASS (Integrated Land-Use Modelling and 

Transportation System Simulation), an integrated model of urban system.  The objective 

of ILUMASS is to simulate the interaction between urban land-use development, 

activity-travel demand, traffic flow and environment.  In the framework of ILUMASS, 

changes in land use patterns impact activity behavior and hence transportation demand.  

The impacts of activity-travel engagement patterns and land-use also effect the 

environment.  The results of transportation demand, traffic flow, and environment are fed 

into land-use model to simulate location choice such as residences, workplaces, shops, or 
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leisure facilities.  ILUMASS iteratively runs micro-simulation from land-use model to 

environmental impact model until convergence is achieved. 

Salvini and Miller (2005) present the development of an operational prototype for 

a comprehensive micro-simulation model of urban systems called as the Integrated Land-

use, Transportation, and Environment (ILUTE). The objective of ILUTE is to analyze 

transportation, housing and other urban policies by simulating the evolution of an 

integrated urban system over an extended period of time.  The ILUTE model system 

consists of four inter-related components: land-use, location choice, auto ownership, and 

activity-travel.  An integrated full-feedback model is employed to reflect the 

dependencies between travel choices and auto ownership, travel choices and location 

choices, location choices and land use patterns, and location choices and auto ownership. 

Demographics, regional economics, government policies, transport system, flows, times, 

and external impacts are used as input data to simulate market interaction (purchase of a 

home or automobile, selection of a spouse, decision to choose a job, etc.) and activity 

scheduling at the level of person, household, and families.  Miller et al. (2011) presents 

an update on ILUTE by integrating the agent-based Travel and Activity Scheduler for 

Household Agents (TASHA) with a network assignment model (MATSim).  Synthetic 

population, labor market, housing market, and auto ownership are fed into TASHA to 

simulate activity and travel patterns for each person.  MATSim assigns trips that come 

from TASHA on the networks.  ILUTE also includes a model of transportation emissions 

and dispersed pollution concentrations (called as CALPUFF) to compute pollutant 

concentrations over time and space.  However, ILUTE still adopts sequential integration 
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between TASHA and MATSim through feedback processes and data exchange 

mechanisms. 

Lin et al. (2008) discuss efforts at designing and developing a comprehensive 

econometric micro-simulator for urban systems (CEMUS) which is a model system to 

predict socioeconomic characteristics and activity-travel environment. CEMUS 

comprises of a synthetic population generator (SPG), a land-use simulator called as 

CEMSELTS (socioeconomics, land-use and transportation system characteristics 

simulator), an activity-travel simulator (CEMDAP), and a dynamic traffic micro-

assignment (DTA) module. CEMUS employs a sequential framework. Before starting 

process of CEMUS, SPG prepares a subset of socioeconomic characteristics (Guo and 

Bhat, 2007). First, CEMSELTS produces socioeconomic characteristics and activity-

travel environment.  Eluru et al. (2008) developed a population evolution method within 

the CEMSELTS module of the CEMUS.  It consists of the migration model system and 

the socioeconomic evolution model system.  CEMDAP takes this as input and then 

produces individual-level activity-travel patterns. DTA uses the travel patterns from 

CEMDAP, assigns the traffic on networks and calculates level of service in the study 

region. The results from DTA are fed back into CEMSELTS as input data. The sequential 

process in this framework continues until consistency and equilibrium are achieved.  Lin 

et al. (2009) applied an integrated urban model system to evacuation planning.  The 

integrated model system consists of activity-based model (CEMDAP) and dynamic 

traffic assignment (Visual Interactive System for Transport Algorithms: VISTA) model.  

VISTA is a comprehensive dynamic traffic assignment system that is comprised of traffic 

simulation, time-dependent routing algorithms, and path assignment (Waller and 
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Ziliaskopoulos, 1998).  The integrated model system offers the required spatial, temporal 

and human behavior information capable of modeling evacuation planning. 

Another notable effort at developing an integrated urban model system is 

Transportation Analysis Simulation Systems (TRANSIMS) (Barrett et al., 1999).  

TRANSIMS is comprises of a population synthesizer, activity generator, route planner, 

and traffic micro-simulator.  First, the population synthesizer generates a synthetic 

population of households and individuals using census data and population demographic 

projections.  TRANSIMS also simulates activity location (households, work locations, 

schools, stores, and shops) along the transportation network.  The activity generator 

builds an activity list for each individual.  Each activity list includes activity type, start 

time, end time, travel mode, and travel duration to the activity.  Using shortest (travel 

time, travel distance, or minimal cost) path algorithms, the route planner assigns each 

activity on the network during a simulation day.  The traffic micro-simulator simulates 

each travel movement on the transportation network using information of the activity list 

on at the resolution of a second.  TRANSIMS is capable of simulating various travel 

modes such as walk, car, and transit. After completing the traffic simulation, the emission 

estimator calculates vehicle emissions using results from the micro-simulation to predict 

tailpipe emissions for light and heavy-duty vehicles. 

Rieser et al. (2007) proposed to use activity chain in addition to time-dependent 

origin-destination (O-D) matrices to pass more detailed travel information of each 

individual from activity-based demand generation (ABDG) to dynamic traffic assignment 

(DTA).  Using activity chain that includes activity locations, activity types, and number 

of activities in a tour, it is possible to simulate cascading impacts between prior activity 
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and next activity for each individual.  If the current activity for an individual is delayed, 

there is a cascading impact on participation in the next activity.  Rieser et al. (2007) 

employed the Kutter model that is a disaggregated activity and behavior-oriented traffic 

demand generation model and modified it to generate activity chain.  MATSim was 

employed to simulate agent movements on the network after converting activity chain 

data to one hierarchical (XML) file and reading it as input data.  MATSim is able to 

simulate only individual car traffic and hence, simulation of their integrated model 

concerns only individual car trips.  Berlin urban area in Germany, with a population of 

about 6 million inhabitants was chosen to test their integrated urban model system and 

then compare the results with real-world traffic counts.   Hao et al. (2010) developed an 

integrated model system between agent-based travel demand model called TASHA and 

MATSim.  TASHA, which comprises of the scheduling and mode choice models, was 

developed to improve traditional four-stage models for forecasting travel demand.  In 

addition to the integration, an emission model is also added to be sensitive to the effect of 

congestion.  Bekhor et al. (2011) also used MATSim with Tel Aviv activity-based model 

to develop an integrated model system.  Their model system eliminates the use of 

aggregated origin-destination (O-D) matrices.  Instead, Tel Aviv activity-based model 

passes each individual’s daily travel that includes the types and number of daily tours, the 

number of intermediate stops, the destination for each activity, and the mode used in the 

tour to MATSim agent-based traffic assignment model.  Using activity-travel schedule 

for each individual, MATSim runs the mobility simulation in an iterative fashion until 

convergence in agents schedule score (plan evaluation) is achieved.   
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In the first part of literature review, efforts from many researchers aimed at 

alleviating the impacts of network disruptions by developing technologies of advanced 

(real-time) traveler information systems (ATIS) are discussed.  The technologies such as 

511 systems, radio, and real-time traffic data like Google Maps are able to send 

information regarding real-time network conditions to travelers although availability or 

accessibility of real-time traveler information is different according to where the traveler 

is, what time he or she is driving, and which ATIS technology the user has access to.  

Literature shows that these technologies are able to effect on traveler’s activity-travel 

behavior and route choice decisions to reduce network congestion and enhance traffic 

flow.  Modeling the impacts of network disruptions under user information provision is 

also important in the context of planning emergency response services and various policy 

analyses regarding the impacts of network delay events (Konduri et al., 2013).   

Model systems of travel demand and network flow have been developed 

individually to generate trips and simulate traffic flows, respectively.  These model 

systems may simulate the effects of network disruptions incorporating simplified 

assumptions.  Independent model system may not be able to simulate realistic activity-

travel decisions and traffic flows as travel demand is affected by network conditions and 

network condition in turn is impacted by travel demand.  Especially, modeling the effects 

of network delay under user information system calls for communication between 

demand and supply models to accurately simulate activity-travel engagement patterns and 

traffic movements.  For this reason, integrated model systems are a better choice for 

accurately modeling the impacts of network disruptions under user information provision.  

Most of the extant integrated models employ loose coupling of travel demand and traffic 
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assignment models through data exchange protocols and feedback processes.  In order to 

capture activity-travel patterns with network disruptions under various user information 

systems, the integrated model systems in which the two model components are 

sequentially connected are not adequate as the model systems are not able to accurately 

represent the interaction between trips in a traveler’s schedule and prevailing network 

conditions. It is essential to have a tight coupling between travel demand and network 

model systems to realistically simulate activity-travel engagement decision under 

network disruption and user information provision using.  

An integrated model system called Simulator of Transport, Routes, Activities, 

Vehicles, Emissions, and Land (SimTRAVEL) developed by Pendyala et al. (2012) 

adopts a framework that ensures tight coupling between the two model components.  This 

research work proposes to enhance SimTRAVEL with an intent to capture the impacts of 

network disruptions under different levels of user information provision.  In order to 

reflect real-time communication between travel demand and network flow, prevailing 

network conditions should be available for both model systems.  The previous version of 

SimTRAVEL does not consider exchange of prevailing network condition information 

between two model components.  This study proposes to upgrade SimTRAVEL by 

enhancing the communication schematic that includes information of prevailing network 

conditions.  The activity-travel demand model (called as openAMOS) in SimTRAVEL 

should be enhanced to properly capture the impacts of network delay events with due 

consideration for user information provision on activity-travel behavior.  The next 

chapter will describe in detail, the framework used in the previous version of the 

SimTRAVEL.    
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CHAPTER 3 

Integrated Urban Model System with a Tight Coupling: SimTRAVEL 

The objective of this research effort is to enhance the integrated urban model 

system (SimTRAVEL) developed by Pendyala et al. (2012) to allow for modeling the 

impacts of real-time traveler information provision on activity-travel engagement 

decisions and route choices.  This study learns and builds on the existing version of 

SimTRAVEL with an intent to provide the flexibility to conduct various policy analysis 

exercises.  This chapter describes functionalities of previous version of SimTRAVEL.   

In many previous research efforts concerning integrated urban model systems, a 

sequential paradigm had been used to tie activity-based travel demand models with 

dynamic traffic assignment micro-simulation models (e.g., Lin et al., 2008; Kitamura et 

al., 2005).  In a sequential integration framework, an activity-travel demand model and 

dynamic traffic assignment model are run independently and outputs from each model 

feed into the other iteratively.  This looping mechanism between travel demand and 

network supply models continues iteratively until convergence is achieved.   

Though the sequential integration of travel demand and network supply models is 

more convenient, two major limitations hold down such an implementation from realistic 

representation of travel behavior.  First, the activity-travel demand model will not be able 

to accurately depict the current network conditions in simulating activity choice, 

destination choice, activity start time, and activity duration.  For example, if an individual 

arrives at the desired destination later than his or her expected arrival time, this delay 

could potentially affect the next activity-travel engagement decision for the individual.  

That is, the individual may choose a different location (within a shorter distance) to 
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pursue the next activity, reduce the duration of engagement in the current activity, or 

cancel a subsequent activity to recover the delay.  Activity-travel demand models in the 

context of sequential integration paradigm are not capable of reflecting a number of time-

space and household constraints that travelers encounter in real world.   

Second, the sequentially integrated model systems cannot accurately simulate 

activity-travel patterns, network assignment, and movement of each trip in the occurrence 

of network delay events.  There are two types of network disruptions: planned (auto 

crashes) and unplanned (road works).  Various type of information such as highway 

advisory radio, real-time traveler information, and signs on highways are utilized to 

evenly distribute trips around area of network disruptions in order to minimize delays.  

Within a sequential integration framework where the activity-based model and network, 

assignment model are run in isolation, it is impossible to depict such real-time 

information provision. To overcome these limitations, activity-based demand models 

have to be integrated closely with dynamic traffic assignment models accommodating for 

constant communication between the two models and thus allowing for exchange of 

prevailing network condition information at each time step of the simulation.   

Kitamura et al. (2008) proposed a dynamic event-based integrated modeling 

framework to solve the limitations of sequential integrated modeling systems.  Pendyala 

et al. (2012) operationalized this method by developing a model framework dubbed 

SimTRAVEL.  This chapter describes the modeling framework and operational details of 

previous version of SimTRAVEL.  The first section describes overall framework of 

SimTRAVEL that allows for a tight coupling between the synthetic population generator, 

land-use, activity-based demand, and network supply models.  In the second section, 
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issues encountered in the design and development of SimTRAVEL along with 

approaches address those issues are discussed.  The third section presents details 

regarding different model components in SimTRAVEL.  The fourth section presents the 

framework of the dynamic time-dependent activity-travel simulation adopted in 

SimTRAVEL to allow micro-simulation in a tight coupling schematic.  The last section 

describes the framework of modeling effects of network disruptions under user 

information provision employed in the previous version of SimTRAVEL.  

Overall Framework of SimTRAVEL 

Figure 1 presents the overall design of the integrated urban model system, 

SimTRAVEL (Pendyala et al., 2012).  Micro-simulation run of the integrated model 

starts with base-year bootstrapping procedure to set up real world network conditions 

before launching the integrated model system simulation for the base year.  Initial origin-

destination trip tables from a traditional four step model are used as input data in base-

year bootstrapping procedure.  The activity-travel demand model generates trips and 

passes this information to a traffic assignment model.  The network model simulates each 

trip’s movement between origin and destination and then generates O-D travel times that 

are fed back to the activity-travel model.  The bootstrapping procedure iteratively 

continues between the two model components until convergence is achieved.  

For the base year simulation, first, a synthetic population generator generates 

synthetic population in the region based on sample and marginal data from American 

Community Survey (U.S. Census Bureau, 2014).  The O-D travel times from the 

bootstrapping procedure are fed into a land use model which simulates the longer-term 

location choices of households, persons, firms, retail, and real estate developers based on 
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the current network conditions by time of day.  Using results from land use model and 

network model (O-D travel times), an activity travel model micro simulates the activity-

travel engagement decisions at the level of each individual in the synthetic population 

(activity type choice, activity duration, and activity destination models are run).  The 

generated activity-travel information (travel start time, activity duration, activity type, 

mode type used to pursue the activity, and destination of the activity) from the activity-

travel demand model at the individual level is fed into a dynamic traffic assignment 

model. The network model routes travelers and simulates the trip movement every six 

seconds until the traveler reaches his/her destination.  The dynamic traffic assignment 

model passes arrival information back to activity-travel demand model.  This process 

continues from start of the day (minute ‘0’) to end of the day (minute ‘1440’), where the 

information exchange between the model systems occurs at a temporal resolution defined 

by the user (say every minute). One run from 0-1440 minutes constitutes a complete 

iteration of the integrated model system. This iterative process continues until 

convergences is achieved both on the demand and supply sides of the model system.  The 

activity-travel demand model is integrated with the dynamic traffic assignment model 

using a tight coupling framework.  This framework is discussed in detail in the following 

sections.     

For a future year, the synthetic population generator provides the future year 

synthetic population to simulate activity-travel patterns and traffic flows in the region.  

The land use model uses the converged base-year network conditions (O-D travel times) 

from the previous iteration to simulate the location choices of households, persons, land 

use development patterns, and other real-estate market processes (rents, prices) for the 
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future year.  The converged base-year network conditions are fed into the activity-travel 

demand model to simulate activity-travel engagement process (for the first iteration).  

The iterative process between activity-travel demand and the dynamic traffic assignment 

models is run in a similar fashion as described above. 

 

 

 



 

Figure 1. Framework of the integrated model of the urban system developed by Pendyala et al. (2012). 
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Design Considerations in SimTRAVEL 

In the development and implementation of the integrated model system 

(SimTRAVEL), some important issues were identified. Some of these issues were 

addressed by previous research efforts in the area and some others were handled during 

development of SimTRAVEL.  The SimTRAVEL framework addresses some of these 

issues by either simplifying assumptions or ignoring some instances.  Table 1 presents the 

specific model design issues with the corresponding treatments implemented in 

SimTRAVEL (Konduri, 2012).  

Table 1. The Model Design Issues and the Treatments Employed in SimTRAVEL 

(Konduri, 2012) 

Challenges Treatment 

Choice of Behavioral Unit The basic units of analysis is at the level of individuals; 

the study simulates the activity-travel patterns of 

individuals while considering the various interactions 

(child dependency and allocation, joint activity 

engagement)  

Identification of Choice 

Dimensions and Representation 

of Decision Hierarchies  

 

The previous openAMOS identifies choice dimensions for 

various attributes of activity-travel engagement and 

establishes decision hierarchies.  Konduri in 2012 

describes the travel demand model system and 

enhancements over the implementation of AMOS that was 

developed by Kitamura et al. (2000) 

Representation of Space  Traffic Analysis Zone (TAZ) is employed as the basic unit 

of space  

Representation of Time  The temporal scales have been identified across choice 

dimensions.  Feedback processes are used to accurately 

reflect the dependencies through all choice dimensions.  

The temporal resolution of 1 minute and 6 seconds are 

used to generate activity-travel patterns and to simulate 

traffic movements, respectively 

Representation of Time-

Dependent Networks  

Network level-of-service (origin-destination pair travel 

times) conditions by time of day are used as skim matrices 

for 24 hourly periods in a day  
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Table1. The Model Design Issues and the Treatments Employed in SimTRAVEL (Konduri, 

2012) (continued) 

Challenges Treatment 

Representation of Stochasticity  Random utility based frameworks account for 

stochasticity and appropriate modeling methodologies are 

used to model various choice dimensions 

Representation of Activity Types  SimTRAVEL considers for even in-home activity 

engagement patterns as well as a series of out-of-home 

activity types (including work, school, personal business, 

shopping, eat meal, social, sports and recreation, other, 

pickup, drop-off) to simulate the full range of activities 

that people engage through a day 

Feedback Processes: Behavioral 

and Computational  

Feedback processes are used to consider for behavioral 

and computational household interaction across 

components of the urban system 

Model Calibration, Validation 

and Sensitivity Analysis  

5% synthetic population sample was used to perform 

model calibration by taking to replicate weighted survey 

distributions (NHTS in 2009).  Validation was checked by 

how much the results obtained from full population runs 

replicate observed activity-travel characteristics from the 

survey sample.  Replication was executed by comparing a 

series of activity-travel engagement attributes obtained 

from full population runs with observed weighted survey 

distributions, although it was limited to travel demand 

characteristics. 

Software Architecture  Python for openAMOS and UrbanSim, and C/C++ 

programming language for MALTA are employed in 

component model system implementations 

Data Structures  OpenAMOS uses PostgreSQL that is Relational Database 

Management System (RDBMS) for data storage, 

UrbanSim utilizes a native data format and MALTA 

employs flat file formats to manage data 

Computational Issues  The activity-travel demand model in SimTRAVEL uses a 

hybrid approach in which a matrix concept is employed 

wherein each individual row corresponds to an agent and 

the computations proceed by using matrix capabilities.  

The hybrid approach do not involve rules/heuristics for 

choice dimensions but generating the choice for one agent 

at a time  
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Model Components Used in SimTRAVEL 

This section describes the implementation of component model systems that are 

employed in SimTRAVEL.  It is composed of synthetic population generator, land-use 

micro-simulator, activity-based demand model, and dynamic traffic assignment simulator.  

Synthetic population generator dubbed PopGen (Population Generator) was 

employed to generate synthetic population for the target region which goes in as input to 

SimTRAVEL (Ye et al., 2009).  SimTRAVEL adopts a land use micro-simulator named 

UrbanSim (Wadell, 2002) to simulate the location choices of households, persons, 

businesses and real-estate agents.  Activity-travel demand model (openAMOS) simulates 

activity-travel patterns and generates trip information.  PopGen is described at a greater 

detail in the next chapter.  The next section presents a detailed description of the land use 

micro-simulator used in SimTRAVEL. 

Land use model.  Residential, work, business, and/or employment location 

significantly impact activity-travel decisions (Waddell et al., 2003). The integrated model 

system includes a land-use model to accurately predict activity-travel patterns for each 

individual.  Land use choices are provided by running the land use micro-simulation 

model (UrbanSim) which simulates the long term location choices of households, persons, 

firms and real estate developers (Waddell, 2002; Waddell et al., 2003).  The land use 

micro-simulation model employed in SimTRAVEL uses network level of service and 

accessibility measures to predict the location choice decision of individuals, businesses 

and developers.  Since the general assumption in land use model systems is that current 

network level of service and accessibility measures affect next year’s location choice 

decisions, this model system uses the information of the previous year’s network 
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conditions to simulate the long term location choice decisions.  These location choices 

then effect the activity-travel pattern decisions and route choices on network in the same 

year.  Converged network level of service and accessibility measures from integrated 

activity-travel demand and supply model system are used again for subsequent year’s 

land use simulation.  This routine continues until the system reaches a preset horizon year.   

In the integrated model system, there are no feedbacks from the traffic assignment 

model system to the land use micro-simulation model system because activity-travel and 

traffic assignment decisions are regarded as shorter term decisions but land use choices 

considered as longer term choices.  Land use model simulation for a base year employs 

network level of service and accessibility measures provided by a traditional four-step 

model. 

Dynamic traffic assignment simulator.  Multi-Resolution Assignment and 

Loading of Traffic Activities (MALTA) was used in SimTRAVEL as a dynamic traffic 

assignment (DTA) model to assign trips generated from activity-travel demand model on 

networks and simulate movement of each trip through assigned links until the trip reaches 

its destination.  MALTA, comprises of Anisotropic Mesoscopic Simulation (AMS), 

partitioning scheme and auto load balance, time-dependent hierarchical shortest path, and 

relative-gap based assignment algorithm (Chiu and Hickman, 2010).  The two key 

concepts underlying the AMS framework are: (1) a vehicle’s prevailing speed is affected 

only by the vehicles before it at any time and (2) the influence of traffic downstream on a 

vehicle decreases with increased distance (Tian and Chiu, 2011).  MALTA employs a 

new Hierarchical Time Dependent Shortest Path (HTDSP) algorithm for the traffic 

assignment process (Gao and Chiu, 2011).  The relative-gap based assignment algorithm 
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is used to assign paths to the vehicles for each iteration.  Figure 2 shows the framework 

implemented in MALTA.  C++ is primarily used to develop MALTA.  PostgreSQL 

database is used to store project and network information.  The Model system is open-

source and is available to everyone under the GNU GPL license agreement.  

Network Partitioning

and Load Balance

Demand

HTDSP AMSPostgreSQL

Relative-Gap

Assignment

GUI

 
 

Figure 2. Framework of the multi-resolution assignment and loading of traffic activities 

(MALTA). 

Open activity mobility simulator (openAMOS).  This section presents an 

activity-based travel demand model system called as Open Activity Mobility Simulator 

(openAMOS).  Kitamura et al. (2000) pioneered the development of an activity-based 
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travel demand model system called Activity Mobility Simulator (AMOS).  Pendyala et al. 

(2005) enhanced AMOS to simulate activity-travel patterns for each individual along the 

time-of-day axis.  openAMOS was further upgraded by Pendyala et al. (2012) following 

legacy implementation of AMOS with several functionalities capable of handling a 

variety of activity-travel engagement behaviors and constraints.  As openAMOS is a key 

component in the current study, the following two sub-sections describe AMOS and 

openAMOS in detail.  In the first sub-section describes the implementation of AMOS.  

The second sub-section illustrates the functionalities added in the open-source travel 

demand model system (openAMOS) over and above AMOS.   

Activity Mobility Simulator: AMOS.  There are two primary components in 

AMOS: Household Attributes Generation System (HAGS) and Prism-Constrained 

Activity Travel Simulator (PCATS).  Figure 3 shows the entire framework of AMOS.  

HAGS is tasked with generating synthetic population and constructing fixed activity 

skeletons. At the beginning of simulation, AMOS generates synthetic population with 

household and person level attributes by using a regional travel survey to match known 

distributions for variables of interest.  In the next step, morning and evening sojourns at 

home, work episodes for workers and school episodes for students are generated using 

synthetic population, zonal socio-economic data, and network level-of-service data for all 

individuals (as fixed activity skeletons).  The HAGS includes work and school location 

models that identify the spatial locations of the mandatory activities simulated for all 

workers and students.  In the final step, non-mandatory activities such as maintenance 

and discretionary activities will be identified in open time-space prisms (periods when 

individuals are not pursuing any fixed activities).  The Prism-Constrained Activity-Travel 
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Simulator (PCATS) is employed to simulate the activity-travel engagement decisions 

within any open time-space prism.  Figure 4 describes an overview of the PCATS that 

simulates non-mandatory activity engagement decisions for the synthetic population 

using information regarding zonal socio-economic data and network level-of-service data.  

PCATS contains activity type choice model, a joint destination-mode choice model and 

activity duration model to simulate the activity-travel engagement patterns.  Before 

generating any activity-travel decision, a check is made to see if there is enough time in 

the individual’s open time-space prism to pursue a non-mandatory activity.  If an 

individual has enough time in the open prism, a series of models in PCATS simulate the 

activity-travel engagement decisions that include trip mode assignment and activity 

duration.  PCATS then returns to a check to see whether there is enough time to pursue a 

second flexible activity or not.  These two sub steps continue until there is no more time 

to engage in any more activities in the open prism.  If there is no time in time-space prism, 

the individual is assigned into the next fixed activity location with a choice of trip mode.  

After completing simulation of activity-travel demand choices for the synthetic 

population, the output processor generates origin-destination (OD) matrices by mode, trip 

purpose, and time of day by aggregating the activity-travel records from PCATS.  These 

matrices are presented in two ways: output reports and GIS visualization (Figure 3).  

However, PCATS might violate time-space prism constraints as it does not house a 

comprehensive reconciliation module to make adjustments either to the flexible activity 

or the fixed activity skeleton. 

While PCATS provides a behaviorally intuitive framework to determine activity-

travel engagement decisions, it is not able to reflect household interaction and constraints 



  44 

to which individuals are subjected while they are making these decisions.  For example, if 

a dependent child is present in a household and the child has to attend after-school 

activities, the child needs an adult to chauffer him (pick-up and drop-off).  Intra-

household interactions should be considered while making such activity-travel 

engagement decisions.  In addition, individuals may be subjected to vehicular constraints.  

For example, a household may have a vehicle that should be shared across multiple 

household members. If a member in the household that has multiple drivers but only one 

vehicle makes activity-travel demand decisions, the individual is subjected to a constraint 

as to whether the household vehicle is available or not before making the mode choice. 

Therefore, interactions and constraints must be considered during the process of 

simulating activity-travel engagement decisions in order to lead to provide accurate 

inferences in response to policy measures. 
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Figure 3. Framework of activity mobility simulator (Pendyala et al., 2005). 
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Figure 4. Framework of prism-constrained activity-travel simulator (Pendyala et al., 

2005). 

 



  47 

Previous Version of the Open-Source Activity Mobility Simulator.  The structure 

of openAMOS is similar to the framework of AMOS.  This section describes the 

framework incorporated in openAMOS to simulate activity-travel engagement patterns 

and enhancements made over AMOS.  First, synthetic population is generated for the 

desired simulation region using PopGen (Ye et al., 2009).  The synthetic population is 

given as an input to openAMOS to first generate fixed activities (work and school 

activities) for all individuals.  In the next step, non-mandatory activities (such as 

discretionary and maintenance activities) are assigned in open time-space prisms around 

fixed activity episodes.  Two major enhancements are made in openAMOS over AMOS: 

(1) travel demand model system and (2) software infrastructure.  The following 

subsections describe these improvements over the legacy version of AMOS.     

The first enhancement in openAMOS is consideration of intra-household 

interactions in generating activity-travel patterns.  The fact that activity-travel 

engagement decisions simulated by AMOS might potentially violate the time-space prism 

constraints is one of the primary motivations to develop an open-source activity mobility 

simulator (openAMOS) (Pendyala et al., 2012; Konduri, 2012).  In order to model 

consistent activity-travel behavior on spatial and temporal scales, an activity-travel 

demand model should account for interactions among household members.  Literature in 

the recent past had described the importance of intra-household interactions in shaping 

activity-travel engagement patterns (Zhang and Fujiwara, 2006; Bhat and Pendyala, 

2005).  openAMOS includes child dependency and allocation models to simulate child 

related intra-household interactions. 
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Child dependency and allocation models simulate the status of child dependency 

for activity-travel engagement decisions and allocate activities to both the child and the 

adult assigned to take care of the child.  The models can be applied to mandatory 

activities like going-to-school as well as non-mandatory activities such as after-school 

activities.  Children can independently engage in activities by taking school bus, public 

transportation, bike, or walk to go to activity destination.  On the other hand, children 

may involve in activities with an assigned adult’s care.  In this case, child dependency 

and allocation models simulate either the assignment of an adult to a child and child’s 

activity based on spatio-temporal availability of adults, or allocation of a child to the 

assigned adult’s activities. openAMOS first simulates the child dependency process 

before proceeding to the dynamic activity-travel generation process.  That is, joint 

activities are treated similar to fixed activities such as work or school episodes. If a 

dependent child could not to be assigned to any adult in the household, openAMOS 

assumes that a non-household member supervises the child.   

The constraints created by child dependency are translated and accurately 

depicted in adult’s activity-travel patterns.  Children are separated in two types: pre-

school students (age less than or equal to 4-years-old) and students (age between 5 and 

17). Pre-school students must be assigned to an adult whereas students can make either 

independent or dependent activity-travel decisions. Figure 5 presents the framework of 

activity-travel engagement decisions for pre-school students implemented in openAMOS.  

Figure 6 describes the procedure of generating activity-travel patterns using a series of 

models for children whose age is between 5 and 17.  More detailed explanation of child 
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dependency and allocation models employed in openAMOS is available in Konduri et al. 

(2012). 

 
Figure 5. Framework for generating activity-travel patterns of children who are younger 

than 5 years old (Sana, 2010). 
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Figure 6. Framework for generating activity-travel patterns of children who are between 

5 and 17 years old (Sana, 2010). 
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The second enhancement in openAMOS is on the side of software infrastructure 

to make the model system robust and flexible.  openAMOS, developed using Python 

programming language, a database system, and XML (Extensible Markup Language) 

scripts.  A number of Python libraries (e.g. Numpy, Scipy, PyTables, ArgParse, etc.) are 

used in building openAMOS.  openAMOS is available online to general public under 

open-source licensing.  Python language and additional libraries are also available to the 

public free of cost.  A Relational Database Management System (RDBMS) called 

PostgreSQL is used to store and retrieve socio-economic and demographic data regarding 

household’s and person’s activity-travel records.  In openAMOS, an XML based 

schematic is adopted for including the submodels (e.g. destination choice, mode choice, 

activity duration, etc.) that describe choice dimensions and for specifying the decision 

hierarchies.  The model simulation engine parses the XML document to store the choice 

dimensions, decision hierarchies, specifications, and formulations in memory.  This 

information is used to generate activity-travel demand by simulating the various choice 

dimensions.  openAMOS users can easily modify the model specifications and decision 

hierarchies in the XML configuration files per their requirements.   

However, previous version of openAMOS (Pendyala et al., 2012) is not flexible 

enough to consider multiple origin-destination travel times to simulate activity-travel 

engagement decisions.  It only allows for using experienced network conditions (O-D 

travel time matrices by time-of-day) provided by a traffic assignment model from a 

previous iteration.  In the real world, all travelers do not necessarily use experienced 

network conditions (travel times from their most recent travel to same place) as they 

make a destination choice and route choice to pursue their activities.  For example, a 
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traveler, who checks network conditions using radio or internet before leaving from the 

current place to next place, uses prevailing network conditions to make a choice 

regarding destination, activity, or route rather than his experienced network condition 

from a previous journey to the same place.  Similarly, HOV lane travelers may also use 

different network conditions because travelers who drive through HOV lane tend to reach 

their destinations faster than the travelers who drive on regular lanes during peak hours.  

openAMOS cannot accurately simulate activity-travel engagement decisions without 

considering multiple network travel times (applicable to different types of travelers).  

Framework of Dynamic Time-Dependent Activity-Travel Simulation 

This section describes in detail, linkage between the activity-travel demand and 

dynamic traffic assignment models in SimTRAVEL.  Figure 7 describes the framework 

of dynamic time-dependent simulation between two key components in SimTRAVEL.  

Experienced network conditions (Origin-destination travel times) by time of day from 

previous iteration or bootstrapping run are fed into the activity-travel demand model.  

Activity-travel engagement decisions including activity type choice, destination choice, 

mode choice, and activity duration is simulated by the activity-travel demand model for 

all individuals using the experienced network conditions in the simulation region.  Trip 

information (origin, destination, activity to pursue, and trip mode) is exchanged at the 

temporal resolution of a minute between activity-based model and network assignment 

model. Each minute, information regarding all individuals who made the choice to pursue 

an activity in that minute (and start their journey at that specific minute), is passed to the 

dynamic traffic assignment model. The dynamic traffic assignment model in return sends 

back the trip information of all individuals who reached their destination in that minute. 



  53 

This process continues from 0 to 1,440 minutes (A day is 1,440 minutes).  The temporal 

resolution of the integrated model system is set as one minute in SimTRAVEL to 

simulate travel demand and network supply.  This can be changed in a straightforward 

manner (to every 5 or 10 minutes) by the user.  The activity-based demand model runs 

simulation at the person level.  As trips from the activity-based demand model are loaded, 

the dynamic traffic assignment model assigns vehicles on routes from origin to 

destination using a time-dependent shortest path algorithm and then simulates vehicle 

movements every 6 seconds until each vehicle arrives at its designated destination.  Each 

individual vehicle is simulated using trip information from the demand model.  Once 

vehicles are arrived at their destinations in a simulation minute, trip arrival times are fed 

back to the activity-based demand model.  If a trip is arrives at the planned destination a 

few seconds before the minute, the trip information is saved until that exact minute and 

then trip arrival times are sent to the travel demand model.   

After arriving at the planned destination, the individual stays at that place for a set 

duration (performing the activity) as determined by the activity-duration model.  After 

completing the activity, individuals who have open time-space prism, plan for the next 

activity. The trips starting in the next minute are again sent to the DTA model.  This 

iterative information exchange process continues between two components every minute 

until the end of the simulation day (1,440 minutes).  After completing the micro-

simulation run for a day, the dynamic traffic assignment model provides O-D travel time 

matrices by time of day and updates time-dependent shortest paths between origin-

destination pairs.  The O-D travel time matrices are then fed back to the activity-travel 

demand model to use as experienced network conditions for the next iteration.  The 



  54 

updated time-dependent shortest paths are used in the traffic assignment model in the 

next iteration, as well.  

Figure 7 shows the framework of the integrated urban model system with a tight 

coupling paradigm wherein two models communicate with each other by exchanging 

input-output data every minute.  The following steps describe implementation of the 

integrated model system presented in Figure 7:   

1. An individual, who is at origin O1, decides to go to destination D1 to engage in 

activity A1 using transportation mode M1 at time t=1 (minute). 

2. Activity-travel demand model sends trip information of all trips starting at t=1. 

The trip information (origin, destination, mode, and vehicle attributes) is fed into 

dynamic traffic assignment model to assign routes and simulate vehicle 

movements until the trips reach their respective destinations. 

3. Once trip information for all trips starting at time t=1 is received by the dynamic 

traffic assignment model, it searches time-dependent shortest path for the given 

O-D pairs based on link travel times from the previous iteration.  In the current 

example, dynamic traffic assignment model assigns a route from O1 to D1 based 

on time-dependent shortest path and simulates individual’s vehicle until the trip 

reaches its destination D1. 

4. For the trips which start from the same origin at the same minute, the trip start 

times are evenly distributed across interval (between 1 and 2 minutes) to prevent 

lumpy loading.  The individual in the example starts moving on the network at 

t=1 minute and 36 seconds although the trip information for the person is received 

at time t =1 minute (see Figure 7). 
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5. The dynamic traffic assignment model simulates movement of the trip on the 

network. 

6. The simulation of the trip is finished at time t=8 minutes 48 seconds and the 

individual arrived at the destination D1.  However, the arrival information will not 

be sent to the travel demand model until t=9 minutes (trips are accumulated by the 

DTA model at one minute resolution).  Arrival information for all trips reaching 

their destination between t=8 and t=9 minutes are sent to the travel demand model 

(at t=9). 

7. The travel demand model receives arrival information.  Travelers stay at the given 

destination for the simulated activity duration.  In the current example, the 

individual stays for 4 minutes at the destination D1 performing activity A1.   

8. Steps (1-7) are repeated to simulate activity-travel engagement decisions and 

vehicle movements on the network until the end of simulation day (1,440 

minutes). 

The approach described for integrating the activity-travel demand model with the 

dynamic traffic assignment model includes three behaviorally appealing features.  First, 

the process of activity-travel engagement along a continuous time axis is more realistic 

than that of the integrated model system in a sequential paradigm.  The subsequent 

activity is determined only after the previous trip and corresponding activity are 

completed.  In SimTRAVEL, real-time conditions on the network are able to impact the 

individual’s decision for scheduling the next activity.  Second, using network conditions 

from a previous iteration in the activity-travel demand system mimics a day-to-day 

learning behavior exhibited by travelers in the real world.  After completing the 



  56 

simulation run, the dynamic traffic assignment provides average network conditions by 

time of day that are fed back into the activity-based model to be used for the next 

iteration (see Figure 7).  Third, the dynamic traffic assignment system computes travel 

times based on time-dependent shortest paths.  It considers the notion of dynamic traffic 

assignment and changing network conditions for obtaining more realistic travel times for 

all vehicle trips.  That is, the traffic assignment model is able to estimate more realistic 

travel times for each link with due consideration given to time of day (peak and off-peak 

hours), and current network conditions (road works or traffic crashes).        



 

Figure 7. Framework for integrating activity-travel demand and dynamic traffic assignment models with dynamic time-dependent 

activity travel simulation (Konduri, 2012). 
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Modeling Impacts of Traveler Information Provision in SimTRAVEL 

The integrated model system comprising the activity-based travel demand model 

and dynamic traffic assignment model (SimTRAVEL) has been revised by Konduri et al. 

(2013) to support the modeling of user information provision in the event of a network 

disruption.  Integrated urban model systems developed in a sequential paradigm are not 

capable of modeling impacts of network disruptions considering user information 

provision as they lack least two key features to support such an effort.  First, the actual 

arrival information should be fed into the activity-based demand system to simulate 

activity-travel engagement decisions along a continuous time axis.  For example, if an 

individual arrives late at the destination as a result of an unplanned network delay event, 

this delay may impact the individual’s subsequent activity-travel patterns.  Without 

knowing actual arrival time, the activity-based model system cannot accurately capture 

interactions between subsequent activities and the corresponding travel for each 

individual.  Second, the integrated model system should be able to use not only 

experience network conditions from the previous iteration but also prevailing network 

conditions (real-time network conditions).  The integrated model system presented by 

Pendyala et al. (2012) lacks this key feature thereby limiting its capability to model the 

impacts of user information provision during network disruptions.   

Konduri et al. (2013) present a revised integrated urban model system to this 

effect.  The dynamic traffic assignment simulator (MALTA) is capable of providing 

prevailing network conditions to the activity-based demand system from the onset of 

network disruptions till the end of the disruption (in addition to experienced network 

conditions from the previous iteration).  The traffic assignment model should use both 
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prevailing and experienced network conditions to simulate trip movements on the 

network based on the time-dependent shortest path algorithm.  The traffic assignment 

model should use prevailing network conditions for the travelers who have access to user 

information systems and could potentially avoid the congestion area, in light of current 

network conditions.  The experienced network conditions (from a previous iteration) 

should be used for the travelers who do not have access to information regarding current 

network conditions.  The activity-based travel demand model is also modified to 

accommodate the capability of utilizing prevailing network conditions to model the 

activity-travel engagement decisions for the individuals who have access to user 

information systems such as 511 systems, radio, or real-time traffic data such as Google 

Maps.  O-D travel times from the previous iteration are used by the activity-based 

demand model before the onset of network disruptions and after the network disruption is 

cleared.  On the other hand, prevailing network conditions are utilized to simulate 

activity-travel engagement patterns during a network disruption event.  That is, the 

activity-based demand is made capable of reflecting the impact of user information 

provision in light of a network disruption event. The process followed by the revised 

integrated urban model system for modeling user information provision in the event of 

network disruptions is described below: 

1. Before the onset of an incident (unplanned network delay) at the simulation 

interval (t), the activity-based demand model uses the expected origin-destination 

travel times, which are converged for base year, for making activity-travel 

engagement decisions. 
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2. As the simulation time (t) reaches the incident time (a ≤ t ≤ b), the dynamic traffic 

assignment model employs the existing travel times (Lt) on the network for the 

current and subsequent time interval instead of the expected link travel times 

(Lbase).  The existing travel times are estimated using link travel times simulated 

in the current iteration so that they are the best estimate for being used as 

prevailing network conditions after the onset of an incident.   

3. The dynamic traffic assignment model generates the current network conditions 

as O-D matrices (ODt) using the current travel times (Lt). 

4. The O-D travel time matrices (ODt) reflecting prevailing network conditions are 

passed to the activity-based demand model.  The activity-based model uses 

prevailing travel times to simulate activity-travel engagement decisions for the 

subsequent time interval.   

5. The activity-based demand model passes trips to the dynamic traffic assignment 

model.  The trips are generated reflecting the current network conditions so that 

travelers may choose alternative destination to avoid the network delay or may 

leave early to their mandatory activity (e.g., work or school) as they expect longer 

travel times to arrive at their destinations. 

6. The dynamic traffic assignment model uses prevailing network conditions (Lt) as 

the condition of the network for all subsequent time intervals to identify routes for 

the trips and then simulates vehicular movements through the network until they 

reach their destination.  
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7. The simulation time step is increased by 1 (t = t+1) and the process goes to step 2 

if the simulation time is still before the incident is cleared (t <= b). Otherwise, it 

goes to step 8. 

8. Once the incident is cleared (t > b), the dynamic traffic assignment model turns 

back to using the expected link travel times (Lbase) to identify routes in the 

network and the activity-based demand model adopts corresponding O-D travel 

times (ODbase) from the previous iteration for simulating activity-travel 

engagement decisions.  

The modified SimTRAVEL framework is shown in Figure 8 to allow modeling 

the impacts of user information provision in the event of network disruptions.  In normal 

network conditions, the framework described in Figure 7 is applied to simulate activity-

travel engagement patterns and route assignments.  During network disruption conditions, 

the framework in Figure 8 is used to capture the effects of network delay under user 

information provision on activity-travel decision behaviors.  

The modified SimTRAVEL framework with a tight coupling between two major 

components (activity-travel demand and dynamic traffic assignment models) is only 

capable of modeling the impacts of user information provision during network 

disruptions.  User information provision may be classified into two types: pre-trip 

information and en-route choice.  Pre-trip information may be defined as the (prevailing) 

network information received by travelers before embarking on a trip. This is akin to 

travelers checking the prevailing travel times on Google Maps before starting a trip in 

order to decide the (best) destination, transportation mode, or activity type to avoid 

potential delays before they leave to pursue their desired activities.  In addition to pre-trip 
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information, individuals who use real-time traveler information systems (e.g., radio, in-

vehicle navigation, or Google Maps for real-time traffic data using a smart phone) as they 

are making trip (en-route), can alter their destination/activity/route choice in response to 

prevailing network conditions.  Transportation models should be able to capture the 

impacts from both pre-trip and en-route information provision particularly in case of 

network delay events as the available information can significantly alter activity-travel 

engagement patterns and route choices. The previous version of SimTRAVEL updated by 

Konduri et al. (2013) is not quite capable of handling both experienced and prevailing 

network conditions (and for different user information classes simultaneously).  The 

integrated model system is not capable of exchanging real-time traveler information 

between two major components (openAMOS and MALTA).  The current research 

enhances the integrated urban model system and imparts the flexibility to handle multiple 

network conditions (previous iteration and prevailing network conditions) as well as 

different user information classes (no information, pre-trip, en-route etc.).  The next 

chapter discusses the enhancements made and the challenges encountered in attaining this 

research objective. 

 

 

 

 



 

Figure 8. Modified framework in SimTRAVEL for modeling impacts of network disruptions under user information provision 

(Konduri, 2012). 

6
3
 



  64 

CHAPTER 4 

Enhancements in the Tightly Integrated Model System 

In order to model the impacts of real-time traveler information provision, a tightly 

coupled integrated urban model system such as SimTRAVEL is relevant. This is because 

activity-travel demand models should be able to reflect prevailing network conditions 

while simulating activity-travel engagement patterns.  In addition, a prototype of an 

integrated model system should be enhanced to fluently communicate between the travel 

demand model and the dynamic traffic assignment model to allow analysis about network 

delay events that concern advanced or real-time traveler information systems.  For this 

reason, this research is motivated to enhance the existed SimTRAVEL to allow modeling 

of the impacts of real-time information provisions on activity-travel patterns and traffic 

flows on network.   

This chapter describes how to enhance the integrated model system called 

SimTRAVEL.  The first section provides an overview of the framework and 

enhancements of SimTRAVEL which are updated in this study.  In the second section, 

components (synthetic population generator, activity-travel demand model, and dynamic 

traffic assignment model) of the enhanced integrated model system are described.  This 

section is followed by an explanation of the linkage between activity-travel demand and 

dynamic traffic assignment models.  The fourth section presents three incremental steps 

for integration between two key components in the enhanced SimTRAVEL for modeling 

real-time traveler information provision.  The last section describes the bootstrapping 

procedure employed in this study to provide converged level of service on the network 

for main simulation runs.  
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Overview of Framework and Enhancements in SimTRAVEL 

Figure 9 presents an overview of the integrated models of the urban system 

proposed by this study.  Since this research is to upgrade the model system in 

SimTRAVEL developed by Pendyala et al. (2012) and Konduri et al. (2013), the 

framework of the integrated model system is very similar to that of the previous work.  

The framework of this integrated model system is separated into three terms: long, 

medium, and short.  In long term simulation, a synthetic population, land-use, and 

household level vehicle ownership are provided.  In the base year simulation, the first 

step is to generate a synthetic population for the simulation region using a synthetic 

population generator (PopGen 1.1).  The location choice model (UrbanSim) then 

simulates the long term location choices of households, persons, firms and real estate 

developers.  Using information from PopGen and UrbanSim, the activity-travel demand 

model simulation provides predicted vehicle ownership at the level of household.  The 

demand model (openAMOS) also includes a model (probability distribution) of status of 

user information provisions for the entire synthetic population in the long term simulation.  

That is, each individual is assigned a traveler information status along with traveler 

information access levels. 

In the medium term simulation, openAMOS constructs the skeletons of fixed 

activities along a continuous time axis for a simulation day.  Fixed activities are work 

episodes for workers and school episodes for students.  The module of child daily status 

and allocation in openAMOS identifies all children who are not able to independently 

pursue any activity episodes and allocates them to household/non-household members 
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based on spatial and temporal availability.  All child-related activities are generated and 

constructed in the skeletons of fixed activities.   

In the short term simulation, activity-travel demand and dynamic traffic 

assignment models communicate at every minute.  At each minute, openAMOS generates 

trips for each individual if he or she arrived at his or her destination and completed an 

activity and there is enough time for a new activity in the open time-space prism.  

DTALite sends arrival information to openAMOS at every minute.  In addition to trip 

and arrival information, DTALite sends prevailing network conditions (origin-destination 

travel time matrices) at every n minute.  Then, openAMOS adopts prevailing traffic 

conditions (O-D pair travel time matrix) to simulate activity-travel engagement decisions 

with respect to the impacts of network disruptions under user information provisions.  

The activity-travel demand model should inform the level of traveler information access 

to the dynamic traffic model in addition to trip information.  Therefore, the DTA is able 

to simulate en-route choices for the traveler who uses a real-time traveler information 

system to avoid network disruptions.  The activity-travel demand model produces 

activity-travel schedules for each individual at the end of the simulation.     

Enhancements in this research are summarized below: 

 User information status: A series of models in openAMOS includes a model that 

predicts status of user information provision in three levels: no traveler 

information, pre-trip traveler information, and real-time traveler information 

 Prevailing network conditions: The activity-travel demand model is able to use 

multiple types of skim data (Origin-Destination travel times) such as experienced, 

prevailing, and HOV network conditions. 
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 Communication between openAMOS and DTALite: Trip information that is sent 

to DTA includes traveler information status in addition to origin, destination, 

transportation mode, and activity type.  DTALite sends arrival time information 

with current network conditions to openAMOS. 

 Generalized travel time measure by zone: The activity-travel demand model 

(openAMOS) is enhanced to measure generalized travel time by link and zone. 

Before the base year simulation, the process of the integrated urban model system 

begins with a base year bootstrapping procedure.  Synthetic population generated by 

PopGen and land-use choice simulated by UrbanSim feed into the bootstrapping 

procedure as input data (Figure 1).  A base year bootstrapping procedure generates the 

link travel times which vary by time of day and are used as input data for starting a 

simulation run of the integrated model system for the base year.  Since it would require 

realistic network conditions in a main simulation run, the bootstrapping procedure is 

essential to set closed real world network conditions for the network before running an 

integrated model for the base year. 
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Figure 9. Flowchart that shows overview of SimTRAVEL enhanced in this research. 
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Components of the Enhanced SimTRAVEL 

The integrated model system in this study consists of a synthetic population 

generator, land-use choice model, activity-based demand model, and traffic assignment 

model (see Figure 9).  This section describes the synthetic population generator, activity-

travel demand model, and traffic assignment model.  The land-use model (UrbanSim) is 

adopted from the previous version of SimTRAVEL without change so that this section 

omits the description of UrbanSim. 

Synthetic population generator.  As micro-simulation model systems operate at 

the level of the individual travelers, synthetic population must be prepared for forecasting 

travel demand in a target region.  Significant attributes of household and person 

characteristics are usually not available for entire population to calibrate, validate, and 

apply urban system modeling for an entire region.  For this reason, a synthetic population 

instead of an actual population can be used to forecast travel demand at the level of the 

individuals.  In the current research effort, Population Generator (PopGen) developed by 

the Transportation System Engineering group at Arizona State University is adopted to 

generate a synthetic population.  PopGen uses disaggregate household and person 

information for a random sample of households, which are available from U.S. Census 

Bureau (e.g. Census 2000, or Public Use Microdata Sample), to create a synthetic 

population for an entire target region.  Beckman et al. (1996) generated synthetic 

populations using the Iterative Proportional Fitting (IPF) from the PUMS.  Arentze et al. 

(2007) introduced an improved method that uses relation matrices to convert distributions 

of persons to distributions of households to match both household-level and person-level 

distributions for all attributes of interest.  However, neither of these methods can solve 
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the problem about mismatching person-level distribution when one creates a synthetic 

population.  PopGen is capable of creating a synthetic population matching both 

household-level and person-level distributions of attributes of interest by using a heuristic 

iterative approach (Ye et al., 2009).  Therefore, PopGen is adopted to generate a synthetic 

population with critical attributes at both the household level and person level for this 

research. 

Activity-based demand model: openAMOS.  The activity-based demand model 

simulates activity-travel patterns including activity choice, destination choice, and 

activity duration for all individuals for a whole day (1,440 minutes).  The study adopts 

openAMOS (an open-source activity-based travel demand model system), which is 

developed by Pendyala et al. (2012), to generate activity-travel patterns.  The openAMOS 

system is developed on the basis of AMOS (Activity-Mobility Simulator), which is 

developed by Kitamura et al. (2000) and implemented for the state of Florida (called 

FAMOS – Florida Activity-Mobility Simulator).  However, AMOS may not reflect 

household interactions into activity-travel patterns and capture some activity-travel 

engagement constraints (Chapter 3 describes the shortcoming of AMOS).  Pendyala et al. 

(2012) presented openAMOS to improve the various activity-travel engagement 

behaviors and constraints through the addition of a series of models: child dependency 

and allocation, intra-household activity-travel engagement interactions, and multi-modal 

trip generation.  The activity-based demand model system is developed using Python and 

is available to the public online (Google Code) with the GNU GPL agreement. 

Still, openAMOS has limitations for modeling the effects of both unplanned and 

planned network delay events under user information provision.  First, a model for 
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predicting status of user information provision for all synthetic persons is omitted in 

openAMOS.  Second, openAMOS is not able to handle multiple different types of skim 

data.  Only experience from the previous iteration or prevailing network conditions from 

the current iteration could be used in openAMOS.  Third, only one type of generalized 

travel time measure is available in the activity-based model. This research is motivated to 

address the limitations by improving openAMOS.  It should be improved in both 

software (Python codes) and choice model systems (XML configuration documents) to 

simulate user information provisions under network disruptions on activity-travel 

engagement patterns.  The following three sub-sections describe how to enhance 

openAMOS to allow various policy analyses.  

Status of user information provision.  The process of activity-travel engagement 

decisions may be different among travelers according to what information they are 

accustomed to use, what technology they use to obtain network condition information, 

where travelers are, and what traveler information they are able to obtain as happening 

network disruptions happen.  Transportation modeling systems should be able to capture 

different processes of activity-travel engagement decisions within the synthetic 

population for realistically modeling the impacts of network disruptions under user 

information provisions.  In this research, a model that predicts the status of user 

information provision for each individual is added into the activity-based model 

(openAMOS) to capture different processes of activity-travel engagement decisions 

according to level of access to network condition information.  This study assumes there 

are three different levels of access to traveler information.  First, there are individuals 

who only use their network condition experiences to make activity-travel engagement 
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decisions.  In this case, individuals would determine their activity, destination, activity 

duration, and transportation mode based on their experience about network conditions.  

Second, individuals may use current network conditions to make decisions of travel 

before they embark on a trip (pre-trip).  That is, the current network conditions before 

travelers leave the origin location are used for decisions of activity-travel behaviors.  

Third, individuals, who are able to reach to real-time traveler information through radio, 

in-vehicle navigation, or Google Maps via smart phone may change their route, 

destination, or skip the activity altogether.  For this reason, openAMOS separates 

synthetic populations into three groups: no traveler information, pre-trip traveler 

information, and en-route traveler information provisions (see Table 2).   

There is a configuration document (Extensible Markup Language) used in 

openAMOS to simulate activity-travel patterns.  The configuration document that 

represents choice dimensions and specifies the decision hierarchies is updated by adding 

a choice model of traveler information provision status.  User information status for the 

entire synthetic population is determined at the level of household using a probability 

distribution analysis.  The same status of user information provision is assigned to all 

individuals in a household.  After all, the enhanced openAMOS shines a light on the 

potential to capture the different decision process for activity-travel patterns while 

reflecting the impacts of real-time traveler information as network delay events because it 

is capable of specifying levels of access to user information provision for each individual.   
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Table 2. Type of User Information Provision Used in openAMOS 

Types of Traveler Information 

Provision 
Description 

No traveler information provision Travelers are assumed to only use their 

historical experience about network 

conditions to make activity-travel 

engagement decisions  

Pre-trip traveler information provision 

 

Travelers are assumed to check prevailing 

network conditions before leaving their 

current place to pursue their next activity at 

different place 

En-route traveler information provision  Travelers are able to check prevailing 

network conditions in their vehicle during 

driving and switch to an alternative route to 

escape network congestions  

 

Various skim data in openAMOS.  In the previous framework of SimTRAVEL 

for integrating models with dynamic time-dependent activity travel simulation, origin-

destination travel times (experience of network conditions) from the traffic assignment 

model were fed into the travel demand model from iteration to iteration (see Figure 7).  

As individuals make activity-travel engagement decisions and adjustments based on their 

travel experience, the travel demand model captures the learning behavior using network 

conditions from the O-D travel times of the previous iteration.  However, in the real 

transportation world, individuals may recognize different experienced network conditions.  

For example, highway systems in metropolitan areas includes High Occupancy Vehicle 

(HOV) lanes during at least peak hours.  During peak hours, the travelers with 

passenger(s) may drive their vehicle through HOV lanes faster than the travelers who are 

with no passengers in general purpose lanes.  The experienced network conditions of 

travelers with HOV will therefore be different from that of drivers who use general 
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purpose lanes.  For this reason, integrated model system may need to support various 

network conditions to realistically simulate activity-travel engagement decisions along 

with various travelers’ characteristics.  However, the previous openAMOS is able to feed 

only one type of O-D travel times (network conditions) as the learning behavior to 

simulate activity-travel patterns.  

In this research, openAMOS is improved to use various network conditions for 

realistic simulation of activity-travel engagement decisions by including more than a 

single type of network conditions in addition to experienced network conditions from the 

previous iteration.  First, the updated openAMOS is capable of using HOV network 

conditions. The dynamic traffic assignment model (called DTALite) employed in this 

integrated model system is capable of producing results of network conditions by HOV 

and SOV lanes at the end of each iteration.  The two types of O-D travel times are fed 

into openAMOS.  It then uses HOV lane network conditions for trips with passenger(s) 

and network conditions of SOV for trips with no passengers for simulating activity-travel 

engagement patterns.  Second, prevailing network conditions are used to simulate 

activity-travel engagement decision for the individuals who are able to reach pre-trip 

information through communication technologies (e.g., 511 systems, radio, and real-time 

traffic data like Google Maps).  Many individuals are able to reach prevailing network 

conditions using real-time communication technologies.  In order to model more realistic 

simulation activity-travel patterns, openAMOS was enhanced to reflect prevailing 

network conditions on activity-travel engagement decisions in this study.  Figure 10 

describes the flow of different types of O-D travel times from a dynamic traffic 

assignment model to travel demand model (openAMOS) adopted in the enhanced 
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activity-based model.  A dynamic traffic assignment model (DTALite) sends information 

of real-time network conditions to the travel demand model (openAMOS) at every 15 

minute time interval until the end of the simulation day (1,440 minutes).  Thus, the 

enhanced openAMOS is able to use prevailing network conditions for individuals who 

are able to check travel information prior to embarking on a trip as well as to learn 

network conditions from the previous iteration for individuals who use past experience 

only (see Figure 10).  Therefore, policy analysis for advanced or real-time traveler 

information is possible through the improved openAMOS in this study by running the 

integrated model with DTALite.   

 

Figure 10. Feedback of various types of O-D travel times from a dynamic traffic 

assignment. 
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Enhancement for generalized travel time measure in openAMOS.  With rising 

concerns about traffic congestion, energy sustainability, and greenhouse gas emissions, 

the implementation of pricing policies and strategies is employed in many different 

places around world to manage travel demand and better distribute traffic over time and 

space, thus mitigating congestion on the network (Konduri et al., 2013).  Pricing policies 

are also adopted with a view toward revenue generation mechanisms that generally raise 

financial resources to invest in the transport infrastructure (Hensher and Puckett, 2007; 

Kockelman and Kalmanje, 2005).  The rising interest in implementation of pricing 

policies and strategies leads researchers to focus on modeling the impact of pricing 

policies on travel demand and network dynamics in a behaviorally realistic way.  For 

example, Zhang et al. (2011) develop frameworks and operational model systems to 

forecast the impacts of pricing strategies.  Vovsha and Bradley (2006) also developed a 

tour-based travel demand model that is capable of reflecting the impacts of pricing 

policies through the use of logsum terms.    

The activity-based model (openAMOS) uses a concept of generalized travel time 

to reflect the impacts of pricing policy on activity-travel pattern choices.  Both actual and 

generalized travel time can be used in openAMOS to simulate activity-travel engagement 

patterns.  As no pricing policy is considered, the actual travel time measure is used to 

simulate the feasible destination choice set if there is enough time to pursue an additional 

activity in open time-space prism (between fixed activities).  In a pricing policy analysis, 

the generalized travel time that includes the time equivalent of cost (based on value of 

time) is used to simulate the actual destination choice set for an activity.  Under the 

influence of the generalized travel time to activity-travel choice, individuals may choose 
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different activity-travel behaviors although they are given the same activity with the same 

open prism.  This is because individuals may have different values of time.  On the 

network side, the actual arrival time to the destination is determined by not generalized 

travel time but actual network travel time that accurately reflects vehicular movements on 

the network.   

To obtain the generalized travel time measure, the first step is to derive values of 

time that are based on household income (household wage rate, 𝜔ℎ, in dollars per minute) 

in openAMOS.  Because household income exists not at the person level but at the 

household level, openAMOS assumes that persons in the household share the same 

values of time.  The household wage rate, 𝜔ℎ, for household h is: 

𝜔ℎ($ 𝑚𝑖𝑛⁄ ) = 𝐴𝑛𝑛𝑢𝑎𝑙 𝐼𝑛𝑐𝑜𝑚𝑒ℎ ($) ×
1

250(𝑑𝑎𝑦𝑠)
×

1

6(ℎ𝑟/𝑑𝑎𝑦)
×

1

60(𝑚𝑖𝑛/ℎ𝑟)
 (1) 

The value of time is calculated in two ways: zero workers in the household and greater 

than zero workers in the household.  In the case of greater than zero workers in the 

household, the value of time, 𝜏𝑖
ℎ, for an individual i in a household h with number of 

workers (𝑛𝑤
ℎ > 0) is:   

𝜏𝑖
ℎ($ 𝑚𝑖𝑛⁄ ) =

1

3
× 𝜔ℎ ×

1

𝑛𝑤
ℎ

 (2) 

In the case of zero workers in the household, the value of time, 𝜏𝑖
ℎ, for an individual i in a 

household h with number of adults (𝑛𝑎
ℎ > 0) is: 

𝜏𝑖
ℎ($ 𝑚𝑖𝑛⁄ ) =

1

2
× 𝜔ℎ ×

1

𝑛𝑎
ℎ (3) 
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The second step is to compute the time equivalent of cost, 𝑣𝑖
ℎ, for an individual i in a 

household h with a pricing policy equivalent to a fee (q dollars per mile of travel) as 

following:  

𝑣𝑖
ℎ(𝑚𝑖𝑛 𝑚𝑖𝑙𝑒⁄ ) =

1

𝜏𝑖
ℎ($/𝑚𝑖𝑛)

× 𝑞($/𝑚𝑖𝑙𝑒) (4) 

Finally, the generalized travel time measure, 𝛾𝑖
ℎ, for an individual i in a household h with 

a distance (𝛿) between origin and destination is calculated as following: 

𝛾𝑖
ℎ(𝑚𝑖𝑛) = 𝑡(𝑚𝑖𝑛) + 𝑣𝑖

ℎ(𝑚𝑖𝑛 𝑚𝑖𝑙𝑒⁄ ) × 𝛿(𝑚𝑖𝑙𝑒) (5) 

The previous version of openAMOS is capable of reflecting pricing effects only 

based on travel distance of activity-travel choice decisions.  However, travelers may 

consider pricing effects by particular regions as they choose a destination to pursue an 

activity.  For example, drivers should generally pay for parking in downtown areas if they 

are pursuing an activity in the region where drivers are forced to pay.  In this case, a 

parking penalty should be calculated not by travel distance but by region in which drivers 

engage in activities, because parking prices are equally applied to all drivers who park 

their vehicle in parking payment areas.  Thus, openAMOS additionally employs pricing 

effects by zones in the calculation of a generalized travel time measure.  As an individual 

i in a household h chooses a destination (q dollars to travel to the destination) to pursue 

their desired activity, this time equivalent of cost may be derived as:   

𝑣𝑖
ℎ(𝑚𝑖𝑛) =

1

𝜏𝑖
ℎ($/𝑚𝑖𝑛)

× 𝑞($) (6) 
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The value of time, 𝜏𝑖
ℎ, in the equation (6) is computed by either the equation (2) or (3) 

based on the number of workers in the household.  The generalized travel time for an 

individual i in a household h at the zonal level is:   

𝛾𝑖
ℎ(𝑚𝑖𝑛) = 𝑡(𝑚𝑖𝑛) + 𝑣𝑖

ℎ(𝑚𝑖𝑛) (7) 

After all, a generalized travel time can be computed using equation (6) and (7) at the 

zonal level, as well.  If an individual i in a household h chooses a destination where there 

is no penalty to travel, the generalized travel time is equal to actual network travel time to 

the destination because 𝑣𝑖
ℎ(𝑚𝑖𝑛) from the equation (7) is zero for the individual.  In this 

research, openAMOS is enhanced to be capable of conducting various pricing policy 

analyses, both travel distance base and zone base.   

Dynamic traffic assignment model: DTALite.  To assign trips from the activity-

based demand model and simulate trip movement from origin to destination, a traffic 

assignment model is essential in an integrated model system.  The updated SimTRAVEL 

in this study adopts Light-weight Dynamic Traffic Assignment Engine (DTALite) 

developed by Zhou et al. (2010).  DTALite uses time-dependent origin-destination 

demand matrices to assign vehicles to different paths on the basis of dynamic link travel 

time.  The time-dependent shortest path model in DTALite uses link travel times for path 

selection through a certain route choice.  The previous version of the integrated model 

system called SimTRAVEL employed MALTA (Multi-Resolution Assignment and 

Loading of Traffic Activities) as a dynamic traffic assignment model.  However, 

MALTA is limited in its ability to accurately simulate trip assignments on networks and 

vehicle movements through links before arriving under conditions of different types of 

traveler information strategies (i.e. historical information, pre-trip, and en-route choice).  
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The current version of DTALite is already capable of analysis affecting agents’ route 

choices or activity-travel decision making behaviors with different types of traveler 

information strategies.  Therefore, DTALite is used in the enhanced SimTRAVEL as a 

key component.  DTALite is developed by Visual C++ and is open-source to be available 

to the public under the GNU GPL agreement.  

Linkage between openAMOS and DTALite 

This integrated model system is made up of two key components: a travel demand 

model (openAMOS) and a dynamic traffic assignment model (DTALite).  The previous 

SimTRAVEL adopted an additional C++ library to call Python code as an object in the 

dynamic traffic assignment simulator (MALTA).  Thus, MALTA calls Python objects of 

openAMOS to run an activity-travel demand simulation after finishing simulation of 

traffic assignments and movements at every simulation interval (SimTRAVEL uses a 1-

minute time interval as temporal resolution of micro-simulation).  However, two 

simulators should be independently treated to maintain or update software.  There are at 

least three reasons.  First, developers may find it difficult to check codes of computer 

languages that are developed by other developers because the developers of the traffic 

assignment model are different from the developers of travel demand model.  Second, 

communication between developers is needed more often and it is difficult for the 

developers to understand one another’s needs for the integration of the two simulators.  In 

the development of the previous SimTRAVEL, the developers of the dynamic traffic 

assignment simulator needed to understand the activity-based model to enter Python code 

as objects into C++ project.  That is, developers should explain every detail about their 

own codes to other programmers.  Their communications continue until both sides 
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understand thoroughly.  Third, it needs an additional library so that codes become larger 

and are more complicated.  For these reasons, the activity-travel demand model is 

separately processed from the dynamic traffic assignment model in simulation runs. 

In order to independently run simulations of the travel demand model and traffic 

assignment model, a data hub concept is employed in this research.  Two key model 

components in the new integrated model system are only able to exchange information 

through a data hub.  Therefore, if the activity-travel demand model needs arrival 

information from a dynamic network model, it should check the data hub because the 

network model exports outputs into the data hub.  At every n minute (a 1-minute is time 

resolution in this study), openAMOS should check the data hub to obtain arrival 

information.  DTALite also needs to continuously check trip information in data hub at 

every simulation time interval.  The data hub includes a control file (comma delimited 

file: CSV).  This control file stores input and output information from both openAMOS 

and DTALite.  Figure 11 shows an example control file that is placed on the data hub.  

This control file should include at least four columns: time interval, output file name 

from openAMOS, output file name from DTALite, and filename of prevailing O-D travel 

times from DTALite.  The two components load the information from the control file 

before running the micro-simulation so that each component knows what file name 

should be used to generate output and what input data should be checked at each 

simulation time interval.  The activity-based model generates trip data using information 

(output file names) from the control file and then saves trip data on this data hub.  After 

creating an output file at a time interval, openAMOS waits for input data that contains 
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arrival information at this time interval from DTALite.  Once input data is found from the 

data hub, it reads arrival information from the input data.   

The same process is applied for DTALite.  After loading information settings 

from the CSV file on the data hub, DTALite waits for trip data based on the given data 

file name at every time interval.  Once receiving trip data from openAMOS at a particular 

time interval, DTALite loads trips on the network and simulates trip movements through 

assigned routes.  DTALite then generates arrival information if there are some trips that 

reach the desired destination at the next time interval.  In the enhanced integrated model 

system, this wait-and-simulation process is repeated on both openAMOS and DTALite at 

every time interval until the time interval reaches 1,440 minutes.  For example, according 

to Figure 11, which shows an example format in the control file, openAMOS generates a 

trip data called trip_infor_450.csv at the time interval (t = 450 minutes) and waits for a 

file that is arrival_infor_450.csv by checking on the data hub.  On the other hand, 

DTALite waits for trip_infor_450.csv to load new trips generated at 450 minutes.  It also 

creates arrival_infor_450.csv to inform trips that arrived at this time interval at the 

simulated destinations. 

There is another link between openAMOS and DTALite: information of 

prevailing network conditions (O-D pair travel time matrices by time of day) are sent 

from DTALite to openAMOS at every N minute (N >= 15 minutes) during simulation of 

the integrated model system on a minute-by-minute basis (In the analysis of this study, N 

is 30 minutes for efficient simulation run time).  Information of prevailing network 

conditions is essential for openAMOS in order to simulate activity-travel engagement 

patterns while reflecting the impacts of network disruptions under real-time user 
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information provisions.  The control file also stores information (matrix file name) of 

prevailing O-D pair travel times that are generated by DTALite.  Thus, as the activity-

travel demand model (openAMOS) loads information from this control file, it knows the 

file names of both the O-D travel time matrix and a time interval when the matrix is 

generated by DTALite.  For example, at time interval 450 minutes, DTALite generates 

od_current_tt_450.csv on the data hub (see Figure 11).  The activity-based model loads 

prevailing travel times (stored in od_current_tt_450.csv) into its memory and then 

simulates activity-travel engagement patterns for individuals who are able to reach pre-

trip information.  Simply, the activity-travel demand simulator (openAMOS) was updated 

to use both historical and prevailing O-D travel times to simulate activity-travel 

engagement decisions along with each individual’s user information provision status.   

Time 

Interval 
openAMOS DTALite 

Prevailing Network 

Conditions 

⁞ ⁞ ⁞ ⁞ 

449 trip_infor_449.csv arrival_infor_449.csv None 

450 trip_infor_450.csv arrival_infor_450.csv od_current_tt_450.csv 

451 trip_infor_451.csv arrival_infor_451.csv None 

⁞ ⁞ ⁞ ⁞ 

Figure 11. Example of the control file employed in the enhanced SimTRAVEL. 

Integration for Modeling Real-Time Traveler Information  

 The integration between an activity-based model and a dynamic traffic model in 

this study was processed in three incremental steps.  First, pre-trip information provision 

is considered in the integration to allow analysis of impacts on activity-travel engagement 

patterns.  Second, route change is modeled in this step of the integration to allow 
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simulation of route switching to avoid network disruptions in response to real-time 

information.  In the third step, change of activity and/or destination in addition to route 

change is modeled to simulate activity-travel engagement behaviors under real-time 

information provision.  The integration between an ABM and a DTA is described in the 

following three sub-sections.   

Level 1 – Pre-trip information provision.  Figure 12 shows a flowchart that 

represents the framework of modeling pre-trip information provision by employing the 

integrated model system (SimTRAVEL) between an activity-based model (ABM) and a 

dynamic traffic assignment (DTA) model.  An ABM generates trips at time t=0 minute.  

Trip information (activity duration, activity type, activity destination, trip mode, and 

indicator of pre-trip information for each individual) are sent to a DTA.  The DTA loads 

trips on the network and simulates each individual vehicle movement from origin to 

destination at every 6 seconds.  The DTA sends trips that arrive at the activity destination 

at time t=0 with arrival information.  Feedback of trip and arrival information between 

the ABM and DTA repeats until t=1,440 minutes.  From the start of an integrated model 

system run, the dynamic traffic model (DTALite) continuously generates prevailing 

network conditions at the end of every Nth minute (It can be changed by the user as long 

as it is greater than 15 minutes).  It should be noted that a prevailing network condition 

(O-D travel time matrix) at t = 0 is generated based on free-flow speed.  Otherwise, each 

O-D travel time matrix includes average travel times for all O-D pairs for previous N 

minutes.  Thus, a DTA repeats sending prevailing network conditions to an ABM at 

every Nth minute until t=1,440 minutes.  In this study, N is set at 30 minutes to use 
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prevailing O-D travel time matrices that are fed into the side of the ABM for pre-trip 

information provision.       

Figure 13 describes an example of a particular individual to present the 

framework of modeling pre-trip information in the integrated model system as the 

flowchart shows in Figure 12.  The steps of this framework are summarized below: 

1. Start simulation run at time t=0 (0 minute represents 4 am in the integrated 

modeling system).  First, DTA generates an O-D travel time matrix based on free-

flow speed as prevailing network conditions and sends it to an ABM 

2. At t = 30 minutes, a DTA calculates average O-D travel times (an O-D travel time 

matrix) between t=0 and t=30 minutes and then sends the prevailing travel time 

matrix to the ABM.  In the example, the prevailing network conditions reflect the 

network disruptions that occurred at t=28 minutes (see Figure 13) 

3. At t=31 minutes, an individual (I1), who is accustomed to using pre-trip 

information and is currently at home, makes the decision to engage in activity A1 

at destination D1 for 12 minutes.  Since prevailing network conditions that arrived 

at t=30 minutes from the DTA were used to determine an activity-travel 

engagement pattern for the individual I1, D1 may not be on the affected area by 

the network delay event at t=28 minutes     

4. ABM sends all trips generated at t=31 minutes to DTA.  Trip information that is 

sent to DTA would include activity type, activity duration, departure place, 

activity destination, and indicator for whether the individual would use pre-trip 

information or not 
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5. DTA loads trips on the network and assigns routes based on the indicator of pre-

trip information.  That is, routes for the trips with pre-trip information provision 

are determined using prevailing link travel times.  Otherwise, link travel times 

from the previous iteration are used to assign routes.  After choosing a route for 

each trip, DTA simulates traffic flow for each vehicle at every 6 seconds 

6. DTA finishes simulation of traffic flow for the trip of the individual (I1).  The trip 

arrives at the destination (D1) to pursue activity (A1) at time t = 39 minutes, 42 

seconds.  DTA waits until t = 40 minutes to send trip information with arrival 

time because the integrated model system adopts time resolution as 1 minute.  

7. At t = 40 minutes, DTA sends all trips, which arrive to each desired destination at 

that time, with arrival time to ABM.  ABM considers all individuals who arrive 

their destination at this minute (t = 42 minutes) and engages their activities for the 

simulated activity duration.  That is, the individual (I1) engages in the activity 

(A1) for 12 minutes at the destination (D1)   

8. At t = 52 minutes, ABM simulates the activity-travel engagement decision for the 

individual (I1) because the activity A1 is done at this time.  ABM uses the 

prevailing network conditions that arrive at time t = 30 minutes from DTA to 

simulate activity-travel engagement patterns for the individual (I1) 

9. Repeat steps 2 through 8 until t = 1,440 minutes  
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(t=1)

Run ABM
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(skims from previous iteration)
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(current network condition)
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Run DTA
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destination at 

time t = t+1

t < 1440 EndNo

t = t+1

Yes

 

Figure 12. Flowchart of the integrated model system between ABM and DTA for 

reflecting pre-trip information into activity-travel engagement patterns. 

 

  



 

Figure 13. Framework for integrating ABM and DTA with dynamic time-dependent activity travel simulation in terms of pre-trip 

information provision. 
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Level 2 – Route change affected by real-time information provision.  Figure 

14 represents the overview of the algorithm of the integrated model system for modeling 

impacts of real-time traveler information on route change as a network disruption event is 

happening on a minute by minute basis.  The algorithm in Figure 14 is similar to the 

framework introduced in the previous section except for part of the dynamic traffic 

assignment model (see Figure 12).  On the DTA side, it checks the status of trips every 

Nth minute whether trips are under network delay events or normal network conditions.  

If trips are placed under a network delay event and travelers are able to obtain real-time 

network conditions, DTA assigns new routes through which travelers are able to avoid 

the network congestion and arrive early to the activity destination.  In this prototype of 

the integrated model system, ABM should send an attribute that indicates whether a trip 

can access real-time traveler information or not.  Sending trip information and receiving 

arrival information on the ABM side, and loading trips and sending arrival information 

on the DTA side are repeated until the end of the simulation – that is 1,440 minutes.  

However, a DTA simulates traffic movements on networks with respect to real-time 

information provision under current network conditions.  
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Figure 14. Flowchart of the integrated model system for reflecting route change by 

impacts of real-time information provisions. 

The framework of the integrated model system, which reflects the impacts of real-

time traveler information as travelers are en-route to activity destinations, is described 

using an example trip on a continuous time axis in Figure 15.  The steps of this 

framework are summarized as follows:   

1. Start simulation run at time t=0 (0 minute means 4 am in the integrated modeling 

system).  First, a DTA generates an O-D travel time matrix based on free-flow 

speed as the prevailing network conditions and sends it to ABM 

2. At t=2 minutes, an individual (I1), who is able to reach real-time information 

about current network conditions and currently located at home, makes the 
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decision to engage activity A1 at destination D1 for 4 minutes. (Note that 

prevailing network conditions are not used to simulate activity-travel engagement 

decisions for the individual)    

3.  ABM sends all trips generated at t=2 minutes to DTA.  Trip information includes 

activity type, activity duration, departure place, activity destination, and an 

attribute for information type.  Information type of the individual (I1) would 

indicate whether the individual uses a real-time information system or not  

4. DTA loads trips on the network and assigns routes based on the attribute of 

information type.  That is, routes for travelers that use pre-trip information or en-

route choice are assigned on the basis of prevailing link travel times.  Otherwise, 

link travel times from the previous iteration are used to assign routes for trips 

without real-time information.  After choosing a route for each trip, DTA 

simulates traffic flow for each vehicle at every 6 seconds 

5. At t=6 minutes 30 seconds, DTA recognizes there is an unplanned network delay 

event happening (see Figure 15).  DTA assigns new routes for all trips that are 

with real-time traveler information system and in the region affected by the delay.  

It simulates traffic flow for the trips from their current location to the activity 

destination through the re-assigned routes.  Thus, the individual (I1) is also 

assigned to a new route to avoid the region of the network delay event 

6. DTA finishes simulation of traffic flow for the trip of the individual (I1).  The 

traveler arrives at the destination (D1) to pursue activity (A1) at time t = 10 

minutes 48 seconds.  DTA waits until t=11 minutes to send trip information with 
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arrival time because the integrated model system adopts a 1-minute simulation 

time resolution.  

7. At t=11 minutes, DTA sends all trips, which arrive to their activity destination at 

this time, with arrival time to ABM.  ABM regards all individuals who arrive at 

their destination at this minute (t=11minutes) as engaging in their activity for the 

estimated duration.  That is, the individual (I1) engages the activity (A1) for 4 

minutes at the destination (D1)   

8. At t=15 minutes, ABM simulates activity-travel engagement decisions for the 

individual (I1).  ABM sends trip information about trips that are generated at t=15 

minutes to the DTA with the trip’s attributes for individual (I1)  

9. Repeat step 2 through 8 until t = 1,440 minutes 

 

 



 

Figure 15. Framework for integrating travel demand and traffic assignment models with dynamic time-dependent activity travel 

simulation in terms of switching route on real-time information provision. 
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Level 3 – Change in activity-travel patterns caused by real-time information 

provision.  The enhancement of the integrated model system to allow modeling of the 

impacts of real-time traveler information into activity-travel demand patterns means that 

travelers are able to alter not only routes but also activity-travel behaviors.  For example, 

if an individual, who is able to use a real-time information system to check current 

network condition en-route, is traveling to go to a grocery market to buy goods, the 

individual may alter the destination to some other grocery market if there is severe 

network delay caused by an auto crash near the original grocery.  Or, the individual may 

make a decision to abandon the current trip for the grocery shopping altogether because a 

real-time traveler information system shows there is a long delay time from the auto crash.  

The individual may then choose a new activity at a different location where there is no 

traffic distress.  This section describes how to implement this case of the impacts of real-

time information provision on change of activity-travel engagement patterns.  

In order to capture the travel behaviors, the integrated model system should be 

enhanced in both a dynamic traffic system and activity-based demand model.  The 

activity-travel demand model should be enhanced to allow processes of activity-travel 

choices in response to real-time information provision by altering activity, mode, and/or 

destination.  In the first enhancement, the ABM should be able to send the DTA a 

maximum delay time (minutes) that each individual may be willing to accept from the 

network delay event.  From now on, this maximum affordable delay time is referred to as 

the ‘threshold minute’.  For example, an individual may alter the activity currently being 

pursued as there is no better alternative route and traffic is delay too long to be patient.  

That is, an individual may allow a 5 minute delay caused by a network disruption.  On 
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the other hand, the individual may not wait through a 30 minute delay.  Therefore, the 

AMB sends an attribute of threshold minute for all trips to a DTA in addition to trip 

information.  The threshold minute should not be applied as one fixed minute to all 

synthetic persons in the population because individuals have different perceptions about 

delay time.  For this reason, the activity-travel demand model (openAMOS) uses an 

approach of probability distribution.  This approach is able to give various threshold 

minutes among individuals.  DTA uses this time to decide to send trip information back 

to ABM whether trips are in a network delay event or not.   

In the second enhancement, once trip information without arrival times arrives 

from the traffic assignment model with a flag of “Trips in Distress” (see Figure 16), the 

travel demand model considers three choices in response to network disruptions.  First, 

travelers may alter destinations or change activities altogether.  In this case, the activity-

based model should simulate activity, destination, or activity duration to reflect impacts 

of real-time information systems on change of activity-travel patterns.  Second, travelers 

may choose to stay the current route to pursue the activity on the unchanged destination.  

Otherwise, the trip is canceled and then proceeds to the next fixed activity such as school 

or work activity episode.  For the first two choices, it should be asked whether there is 

enough time to pursue an activity in the open time-space prism before sending new trip 

information to a DTA.  If there is not enough time to pursue the activity in the open time-

space prism, the trip will be canceled and then will proceed to the next fixed activity.  

Figure 16 describes the framework of modeling real-time information provisions that 

allows changes of activity-travel patterns caused by network disruptions.  
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A dynamic traffic assignment model should be able to pass information for trips 

that are in network disruptions (delay) to an activity-travel demand model whenever there 

are trips in the regions affected by network delay events.  Because activity choice, mode 

choice, and destination choice models are part of the activity-travel demand model, traffic 

supply models are not capable of modeling activity-travel engagement patterns.  For this 

reason, a traffic assignment model should send trip information for those trips which are 

experiencing delay because of network congestions to the activity-travel demand model 

(openAMOS) to re-simulate activity, activity duration, and/or destination choice.  DTAs 

should first find an alternative route and then compare a threshold minute to actual delay 

time through the alternative route.  If travel time through the alternative route is greater 

than the threshold minute, the trip information should be sent back to AMB for re-

simulating activity-travel patterns for the trip.  Otherwise, DTA switches to a better route 

and then simulates traffic flow for the trip until arriving at the activity destination.  

The flowchart shown in Figure 17 provides an overview of the algorithm of the 

integrated model system for modeling the impacts of real-time traveler information on a 

traveler’s overturning decision of activity-travel patterns in addition to en-route choice.  

This framework is very similar to the algorithm in the previous section (see Figure 12 and 

Figure 14).  ABM and DTA communicate every minute by switching trip and arrival 

information until 1,440 minutes (one simulation day).  That is, a loop in this algorithm 

continues from 0 to 1439 minutes.  In order to simulate the impacts of real-time traveler 

information provision, two main keys are enhanced in this research efforts.  First, at 

every Nth minute, the dynamic traffic assignment model checks the status of all trips on 

the network.  If trips are in distress (network disruptions) and expected delay time is 
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greater than a threshold minute for a trip, DTA sends that trip information back to the 

travel demand model.  Second, the activity-travel demand model re-simulates activity-

travel engagement patterns for the trips in distress.  It then returns re-generated trip 

information to DTA for simulating traffic flow to obtain trip arrival information.   

Using an example trip on a continuous time axis, Figure 18 describes the 

framework of the integrated modeling system that is to capture travel behaviors of 

altering activity-travel engagement decisions based on impacts of network disruptions 

under real-time information provision.  The steps of this framework are summarized 

below:   

1. Start a simulation run at time t=0 (0 minute means 4 am in the integrated 

modeling system).  First, a DTA generates an O-D travel time matrix based on 

free-flow speed as prevailing network conditions and sends it to an ABM 

2. At t=1 minute, an individual (I1), who is able to reach real-time information to 

obtain current network conditions and is currently at home, makes the decision to 

engage in activity A1 at destination D1 for 12 minutes.    

3.  ABM send all trips generated at t=1 minute to DTA.  Trip information sent from 

ABM to DTA includes activity type, activity duration, origin, destination, and 

variables of information type.  Information type of the individual (I1) is the 

indicator for real-time traveler information.  In addition, ABM sends a threshold 

minute to DTA.  For example, ABM sends a threshold minute of 20 minutes for 

the individual (I1) 

4. DTA loads trips on the network and assigns routes based on the variable of 

information type.  That is, routes for trips that are with real-time information 
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systems are determined using prevailing link travel times.  Otherwise, link travel 

times from the previous iteration are used to assign routes.  After choosing a route 

for each trip, DTA simulates traffic flow for each vehicle at every 6 seconds 

5. At t=4 minutes 30 seconds, there is an auto accident.  DTA recognizes there is an 

unplanned network delay event happening at t=6 minutes (see Figure 18).  DTA 

finds an alternative route for each trip that is using real-time traveler information 

systems in the region affected by the delay.  It compares a threshold minute from 

ABM with travel times through the alternative route from the current location to 

the activity destination.  If the travel time is smaller than the threshold minute for 

the trip, DTA simulates traffic flow for the trips from their current location to the 

destination through the re-assigned route.  Otherwise, DTA sends the trip flagged 

with “Trips in Distress” back to ABM.  For example, the trip for the individual (I1) 

is sent back to ABM because travel time of 30 minutes is greater than the 

maximum affordable delay time of 20 minutes  

6. ABM receives trip information which is flagged as “Trips in Distress” at t=6 

minutes and then re-simulates activity-travel engagement decisions in response to 

real-time information systems under the network disruption.  It then sends re-

generated trip information to DTA with new trip information.  In the example, the 

individual (I1) makes the decision to switch to activity A2 at destination D2 with 

4 minutes as activity duration 

7. At t=7 minutes, DTA loads the re-generated trip on the network, assigns a route 

from the current location to the re-simulated destination, and simulates traffic 
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flow every 6 seconds.  The individual (I1) starts to move from the current location 

C1at t=7 minutes 

8. At t = 60 minutes, DTA sends prevailing network conditions (an O-D travel time 

matrix) to ABM 

9. DTA finishes simulation of traffic flow for the trip of the individual (I1).  The trip 

arrives at the destination (D2) to pursue activity (A2) at time t = 10 minutes 48 

seconds.  DTA waits until t = 11 minutes to send arrival information because the 

integrated model system adopts 1 minute as the simulation time resolution  

10. At t = 11 minutes, DTA sends all trips which arrive to activity at their destinations, 

with arrival time, to ABM.  ABM regards as all individuals who arrive at their 

destinations at this minute (t=11 minutes) as starting to engage in their respective 

activities.  That is, the individual (I1) engages the activity (A2) for 4 minutes at 

the destination (D2)   

11. At t=15 minutes, ABM simulates the activity-travel engagement decision for the 

individual (I1) because the activity A2 is done at this time  

Repeat step 2 through 11 until t=1,440 minutes 
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Figure 16. Flowchart to show an activity-travel decision flow against network delay 

events under real-time traveler information provision. 



 
Figure 17. Flowchart of the integrated model system to capture activity-travel pattern changes in respond to network delay events 

under real-time information provision.  
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Figure 18. Framework of the integrated model system with dynamic time-dependent activity travel simulation in terms of altering 

activity-travel patterns on real-time information provision. 
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Bootstrapping Procedure 

This section describes the bootstrapping procedures that are used to obtain values 

of link travel times (network level of service conditions) by time of day prior to running a 

simulation of an integrated model system.  A calibrated four-step travel demand model 

could be used to get origin-destination and link travel times.  However, the traditional 

approach may not be a good way to obtain consistent travel times for two reasons as 

follows (Konduri, 2012).  First, the traditional approach calculates travel times based on 

coarse aggregations of time because the whole day is divided by four or five time periods.  

Second, trip-based modeling approaches are used to obtain the origin-destination 

matrices.  The result of the origin-destination travel times may not be consistent to be 

employed in the context of activity-based travel demand and dynamic traffic assignment 

models.  For these reasons, this study does not use traditional four-step procedures to 

obtain origin-destination travel time matrices by time of day to start simulation runs of 

the integrated model system called SimTRAVEL.    

There are several methods for processing a bootstrapping procedure.  This section 

describes three different bootstrapping procedures.  First, an integrated model system 

could be applied iteratively between the activity-based demand model and the dynamic 

traffic assignment model in sequence. The two models are run sequentially with feedback 

loops until some convergence is achieved on the network conditions to obtain the 

consistent O-D travel times.  The second bootstrapping procedure option is to generate 

the travel demand only one time from a four step model and the dynamic traffic 

assignment model is only run repeatedly with the same travel demand until some 

convergence is achieved.  Third, another bootstrapping procedure is a tightly coupled 



  104 

integrated simulation run between travel demand model and traffic assignment model 

(see Figure 1 and Figure 7).  In this procedure, the travel demand model generates trip 

information based on free flow network conditions at the start of a bootstrapping process.  

Both simulators continue to switch trip and arrival information every time (every one 

minute in SimTRAVEL because time resolution is a minute) until the end of an iteration 

(1,440 minutes in SimTRAVEL).  The outputs of network conditions are then fed into the 

next iteration of the bootstrapping run.  Thus, the two simulators (travel demand and 

traffic assignment simulators) use the outputs of network conditions from the previous 

iteration.  Tightly coupled integrated simulation runs will be repeated until some 

convergence is achieved on the network.    

The bootstrapping procedure used in this study is very similar to the 

implementation of the integrated model system in sequence with a feedback loop that is 

suggested by earlier researchers.  The travel demand model (openAMOS) is run 

sequentially with the dynamic traffic assignment model (DTALite) until some 

convergences in the network conditions are achieved.  As oscillation in network 

convergence measures across iterations is less than a predefined threshold, we assume 

that convergence (stability) in network conditions is achieved.  At the start of a 

bootstrapping run, the network conditions are assumed free flow on all links for a whole 

simulation day.  The travel demand model uses O-D travel times obtained based on free 

flow conditions to simulate activity-travel engagement decisions.  The dynamic traffic 

assignment model routes trips based on time-dependent shortest path in free flow network 

conditions.   
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Figure 19 presents the bootstrapping procedure used in this study.  The steps 

involved in the bootstrapping procedure are also described below: 

1. First, the bootstrapping procedure requires initial (free flow) O-D travel time 

matrices by time of day for the travel demand model  

2. The travel demand model generates trips for a whole simulation day based on O-

D travel time matrices (in the first iteration, free flow O-D travel time matrices 

are used. Otherwise, the O-D travel time matrices generated by the traffic 

assignment model in the previous iteration are used)  

3. Travel information (origin, destination, transportation mode, and activity duration) 

is fed into the traffic assignment model.  It assigns routes to trips and simulates 

travel movements until each trip arrives at its destination 

4. The traffic assignment model produces time-varying travel time matrices for use 

in the travel demand model and time-dependent link travel times for its own use 

5. Steps (2-4) are repeated until some convergences in the network conditions are 

achieved  

6. The converged O-D travel time matrices are used in the main run of the integrated 

model system    
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Figure 19. Bootstrapping procedure employed in this research. 
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Results of bootstrapping procedure.  A bootstrapping procedure is essential to 

obtain the stable time-varying network conditions that are relevant to be fed into 

simulation of the integrated model system on a base year.  The bootstrapping procedure 

introduced in the previous section is used to obtain stable origin-destination time-

dependent travel time matrices for travel demand model (openAMOS) and time-

dependent link travel times for traffic assignment model (DTALite).  The bootstrapping 

procedure consists of 5 outer iterations with 5 inner iterations.  An outer iteration requires 

sequential simulation runs from travel demand simulator to traffic assignment model.  

The travel demand model (openAMOS) sends trip information to traffic assignment 

model (DTALite).  DTALite loads the vehicle trips to simulate trip assignment and 

movement and then prepares outputs of O-D pair travel time matrices and link travel 

times for the next outer iteration at the end of an outer iteration.  An outer iteration is 

composed of 5 inner iterations.  The dynamic traffic assignment model (DTALite) offers 

one additional function to choose multiple inner simulation runs.  Once DTALite loads 

trip information from the travel demand model, it simulates trip assignments and 

movements for the entirety of the loaded vehicle trips.  This simulation run is iteratively 

continued until the number of iterations (users should set the number of inner simulations) 

is reached.  DTALite in a subsequent inner iteration randomly chooses 50 percent of 

loaded trips and then reassign the chosen trips on better routes based on time-dependent 

shortest path algorithm.  In the bootstrapping procedure, DTALite is set with 5 inner 

simulation runs to find consistent user equilibrium network conditions that are used in the 

next outer iteration.  This study provides four different types of results to check whether 
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convergence on network conditions is achieved: average user equilibrium gap, relative 

user equilibrium gap, average travel times in time of day, and skim deviation.  

Relative user equilibrium gap.  The dynamic traffic assignment model (DTALite) 

computes values of relative user equilibrium (UE) gap.  To check the level of 

convergence on network conditions, relative UE gap is one approach.  If relative UE gap 

(percent %) does not fluctuate from iteration to iteration and the percent of gap is small 

enough to accept, traffic flows (network conditions) would be regarded as stable for the 

purpose of comparison of several scenarios.  DTALite uses two sequential inner 

iterations to compute relative UE gap percent.  Since this study sets 5 inner iterations for 

an outer iteration in traffic assignment simulation run, four different relative UE gaps are 

generated at the end of an outer iteration in the dynamic traffic assignment model 

(DTALite).  Figure 20 presents changes of relative UE gap from iteration to iteration.  

Figure 20 sequentially shows all relative UE gaps from iteration 1 to iteration 5 including 

results of inner iterations.  The first two relative UE gaps in outer iteration 1 are of 15.8% 

and 10%, respectively.  It means that network conditions are not converged, yet.  From 

outer iteration 3, the relative UE gap has not fluctuated and does not gradually decrease 

and increase from iteration to iteration.  Every first relative UE gap in outer iterations is 

gradually decreased until the fourth outer iteration.  After the third outer iteration, the 

first relative UE gap is below 5%.  It explains that the previous network conditions are 

used in the subsequent outer iteration to simulate traffic flows in DTALite.  Trip 

information from the travel demand model is different from iteration to iteration because 

of a stochasticity effect.  For this reason, the dynamic traffic assignment model may be 

not able to perfectly reflect previous network conditions to simulate trip assignments and 
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vehicle movements on the network.  The last relative UE gaps from outer iteration 2 are 

very small and lower than 1.4%.  This small percentage of relative UE gap is acceptable 

to assume stable network conditions.   

Average user equilibrium gap.  In addition to relative UE gap percent, the 

dynamic traffic assignment model calculates average user equilibrium gap (minutes) 

capable of checking convergence and stability of network conditions.  Figure 21 presents 

the results of average UE gap of all outer and inner iterations.  In outer iteration 1, the 

average UE gap is 49.86 minutes.  Gap minutes decline steeply down to below 9 minutes 

from outer iteration 2.  Average UE gap gradually decreases across outer iterations.  After 

outer iteration 3, the change in average UE gap is very stable around 2.9 minutes.  

Average UE gaps for the fifth inner iterations from outer iteration 2 barely fluctuate 

between 0.2 and 0.4 minutes.  The trend of average UE gap is very similar to that of 

relative UE gaps (see Figure 20).   

Average speed and travel time.  Figure 22 represents the results of average speed 

and average travel time of the fifth inner iterations for all outer iterations.  Both average 

speed (MPH) and travel time (minutes) become stable after the third outer iteration.  

Average speed and average travel time barely fluctuate around 36 MPH and 8.3 minutes, 

respectively.   

Vehicle Trip Count.  This study employed sequential runs between travel demand 

and traffic assignment models by feeding input each other to obtain converged network 

conditions.  Figure 23 shows the results of vehicle trip count by outer iterations.  The first 

iteration generated the highest vehicle trip count because free-flow network conditions 

were applied to generate trips in the demand model.  In the second iteration, vehicle trip 
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count is steeply down to 1,602,000 from 1,605,000.  The reason trip count is decreased is 

that average travel times by time of day were increased because the traffic assignment 

model estimated travel times using the highest trip count that is generated by free-flow 

network conditions.  The change of vehicle trip count becomes stable after iteration 2.  

The fluctuation is almost negligible between iterations 4 and 5.      

Average travel time by time of day.  A convergence check is carried out by 

reviewing average travel time by time of day.  Figure 24 presents average travel time in 

every hour for 5 outer iterations.  In Figure 24, the line that represents the average travel 

time of iteration 1 is not overlaid on the other lines throughout the entire day except for in 

the first two hours from 4 am to 6 am.  The gap between iteration 1 and the other four 

iterations is always huge in all hours after 6 am.  However, the gap between iteration 2 

and iteration 5 is decreased.  The line of iteration 4 is almost overlaid on the line of 

iteration 5.  It means that average travel time in time of day is successfully converged 

after iteration 4.  

Skim deviation.  At the end of each iteration, the dynamic traffic assignment 

simulator (DTALite) generates O-D pair travel time matrices (skim data).  The smallest 

time resolution to generate skim data is 15 minutes in DTALite.  If DTALite is set to 

generate skim data every 15 minutes, there are 96 O-D travel time matrices generated for 

a simulation day.  The skim data are imported to a travel demand model for destination, 

mode, and activity choice.  In order to check convergence on network conditions using 

skim data, this study adopted scatter plots to compare O-D pair travel times between 

iteration 4 and iteration 5.  In this paper, results of skim data between iteration 4 and 5 for 

only two hours are shown.   
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Figure 25 and Figure 26 includes four different scatter plots because DTALite 

generates O-D pair travel time matrix every 15 minutes.  In each scatter plot in the 

figures, the X-axis and Y-axis in the plots represent each O-D pair travel time from 

iteration 5 and iteration 4, respectively.  Each dot represents the same origin and 

destination pair in both iteration 4 and 5.  Skim data are compared in two different time 

ranges: morning peak hour (7 am – 8 am), and evening peak hour (4 pm – 5 pm).   

Figure 25 and Figure 26 show 7 am through 8 am and 4 pm through 5 pm, 

respectively.  In the context of convergence on link flows and network conditions, a 

narrow line with a 45 degree angle should be expected in all scatter plots, because travel 

times for O-D pairs should be very consistent from iteration to iteration.   

Figure 25 presents the comparison of two iterations in morning-peak time ranges.  

The figure shows almost a 45 degree line.  It means every O-D pair travel time is almost 

the same between iteration 4 and iteration 5.  Figure 26 shows comparison of iteration 4 

with iteration 5 in evening peak ranges.  The scatter plots in Figure 26 show that dots are 

very narrowly scattered on the 45 degree line, as well.  Therefore, convergence on the 

network conditions is achieved for employing the O-D pair travel times to simulate 

different scenarios for analysis of impacts of user information provision using the 

integrated model system (SimTRAVEL). 

  



 

Figure 20. Change of relative user equilibrium gap values across bootstrapping iterations. 
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Figure 21. Change of average user equilibrium gap across bootstrapping iterations. 
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Figure 22. Change of average speed and average travel time across bootstrapping 

iterations. 

 

Figure 23. Change of vehicle trip count across bootstrapping iterations. 
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Figure 24. Average travel time profile in time of day across bootstrapping outer iterations.
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Figure 25. Scatter plot for average travel time comparison between iteration 4 and 5 

during peak hour (7 am – 8 am). 
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Figure 26. Scatter plot for average travel time comparison between iteration 4 and 5 

during peak hour (4 PM – 5 PM). 
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CHAPTER 5 

Modeling Low Emission Zone 

Introduction 

Greenhouse gas emissions and increasing fuel consumption have been issues of 

major concern in the United States (U.S) owing to the fact that gasoline and diesel 

vehicles are the major means of transportation.  Transportation accounts for 28% of 

greenhouse gas emissions in the United States (EPA, 2013) and 70% of the U.S. 

petroleum in 2012 was consumed in the transportation sector (EIA, 2013).  Several 

research efforts in the transportation arena are motivated by this fact and aim to reduce 

the adverse effect of increasing travel through better modeling techniques.  Parallel 

efforts to reduce emissions on the industry front propelled the development of 

hybrid/electric vehicles (eco-vehicle) by several auto manufacturing companies and are 

slowly penetrating the auto-market.  While these technologies undoubtedly help in 

reducing the emission footprint, they also come with a steep price tag.  The government 

offers rebates and tax incentives intended to encourage the households to purchase and 

use eco/clean vehicles.  In addition to this, several policies aimed at improving mode 

share of public transit are being introduced. Mixed use development (zones in which 

residences, schools, stores, and businesses are developed together) is an effort aimed to 

reduce travel and thus the emissions associated with it.    

To change household vehicle composition to eco/clean vehicles or reduce 

greenhouse gas emissions in most congested areas, Transport for London started 

implementing the Low Emission Zone (LEZ) policy in London, United Kingdom in the 

year 2008.  LEZs are geographically defined areas that seek to incentivize “green 
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transportation choices” or prevent high-polluting vehicles from entering the zone to 

improve air quality within the geographic area (Schneeberger et al., 2013).  The LEZ 

policy implemented in London uses a penalty-based scheme to restrict heavily polluting 

vehicles from entering the busiest parts of London.  In order to enter the LEZs, drivers 

should either use vehicles that comply with the LEZ emissions standards or pay a (hefty) 

daily charge.   

The objective of this study is to model the effects of various LEZ policies on 

activity-travel patterns and traffic flows using the updated integrated model system 

(SimTRAVEL) framework.  The framework is updated to be flexible enough to devise 

and test various policies (such as the LEZ policy) that could potentially provide solutions 

to critical issues in the transportation industry (e.g. greenhouse gas emissions and energy 

consumptions).  This provides policy makers with a powerful tool to test a wide range of 

policy scenarios before they are actually implemented and this in turn saves a lot of time 

and money.  In London, the penalty-based LEZ policy has been employed to restrict 

regular vehicles that do not meet the LEZ emission standards.  However, penalizing a 

specific segment of vehicles might bring about an anti-sentiment toward such policies 

and there is a potential possibility that such policies might do more harm than good. An 

alternate way to pitch an eco-friendly idea (such as the LEZ policy) to the public is using 

an incentive-based policy where cleaner (eco) vehicles are rewarded. Enhancing public 

transit services to LEZs might also bring about a positive shift toward the lesser polluting 

transit option.  A lot of infrastructure and effort are required to test all possible 

combinations of LEZ policies in the real world.  Instead, advanced transportation 

modeling tools can be utilized to understand the effects of various LEZ policies on 
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activity-travel patterns, household vehicle fleet composition, and link flows etc. before 

their actual implementation.   

This scenario analysis developed in this case study adopts the updated integrated 

model system (SimTRAVEL) for modeling the impacts of various LEZ policies on 

energy consumption and emissions.  For modeling the impacts of LEZ policies on 

activity-travel/emission patterns, previous version of SimTRAVEL (Konduri et al., 2013) 

was updated to allow analysis of different pricing scenarios.  There are two approaches 

being tested as a part of LEZ policy in this study: i) incentives to eco travelers and ii) 

enhanced transit service to LEZs.  The incentive-based LEZ policy is to offer incentives 

(monetary/non-monetary) to eco travelers who drive eco/clean vehicles to LEZs.  The 

travelers using non-eco vehicles are not penalized in any way. For the purpose of this 

study an eco-vehicle is defined as a hybrid (such as Prius), plugin-hybrid (such as 

Chevrolet Volt) or an electric (such as a Tesla) vehicle.  Enhanced transit service to LEZs 

means offering improved transit services both in terms of frequency (increasing 

frequency of transit service can decrease waiting time at station) and discounted fare for 

transit services to LEZs.  The enhanced transit services are provided to eco and non-eco 

travelers alike.  To estimate the effects of these two different approaches, this study uses 

five different scenarios using the updated SimTRAVEL framework on the three city (City 

of Chandler, Town of Gilbert, and Town of Queen Creek) sub-region in the southeast part 

of the Great Phoenix Metropolitan Region. 

Methodology for Modeling Impacts of Low Emission Zones 

Modeling the impacts of low emission zones requires transportation modeling 

tools to be capable of simulating activity-travel patterns including mode choice (auto vs. 
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transit) using a generalized travel time measure.  The following two sub-sections describe 

how generalized travel time measure and mode choice model are handled in the updated 

integrated model system.   

Generalized travel time at the zone based.  In the previous version of 

SimTRAVEL, the activity-travel demand model (openAMOS) uses a travel time measure 

to determine a feasible destination set for all synthetic population.  That is, if sufficient 

time is available in the open time-space prism to engage in an additional activity (prior to 

the onset of the next fixed activity), openAMOS simulates destination choice for each 

individual for engagement of an activity using a feasible destination choice set.  Konduri 

et al., (2013) enhanced openAMOS to use a generalized travel time measure that includes 

the time equivalent of cost.  The generalized travel time measure is used to simulate a 

destination choice so that any general pricing policy can be converted to an equivalent 

generalized cost on the demand side.  The traffic assignment model however, uses actual 

travel times to simulate vehicular movements on the network from origin to destination.  

Thus, actual arrival time at destination is used to determine the time-space prism 

constraints.  Since activity generation and destination choice will change based on 

generalized travel time, it is imperative that activity-travel/traffic patterns on the network 

also change in a scenario where an incentive is provided (in comparison to the network 

conditions from the baseline scenario where no incentive is provided). 

The integrated model system should be able to reflect the monetary benefit for 

eco travelers (who drive eco/clean vehicles such as hybrid or electric vehicle) or an 

equivalent toll for non-eco travelers (who drive regular vehicle) respectively in the 

context of travel to/from LEZs.  The monetary incentive to LEZs is converted to 
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generalized travel time (in minutes) using a personalized value of time based on 

household income.  The activity-travel demand model obtains the generalized travel time 

using the procedure described in Chapter 4.  Generalized travel time is the sum of actual 

travel time between an origin-destination pair and time equivalent of any other costs 

associated with the travel.  The value of time in the equation (6) is computed by either 

using equation (2) or (3) based on the number of workers in the household (all the 

equations mentioned are from Chapter 4).  Incentive/penalty is reflected in the 

generalized travel time computation as travelers choose an LEZ to pursue a activity so 

that time equivalent of cost need not be divided by travel miles.  The time equivalent of 

cost can be applied to the generalized travel time either negatively or positively 

(depending on whether the person is getting an incentive or a penalty).  For example, if 

an eco-traveler chooses to pursue an activity in a LEZ, an incentive would be given to the 

traveler.  In this case, the generalized travel time is computed as actual travel time minus 

the incentive (converted to equivalent travel time).  On the other hand, if a non-eco 

traveler decides to engage an activity in LEZs, a penalty is applied to the traveler to get 

into the zone.  In this case, the generalized travel time is computed as the sum of actual 

travel time plus penalty (converted to equivalent travel time).  This study uses an 

incentive-based LEZ policy to study the impacts of such a policy on activity-travel 

engagement patterns and travel flows on the network.  

Mode choice model.  The second component to LEZ policy considered in this 

study is offering enhanced transit services to LEZs.  The transit enhancement is done on 

two grounds: i) increasing the transit service frequency to LEZs and ii) reducing the fares 

on transit services to LEZs.  To reflect the impact of transit enhancements on travel to 
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LEZs, the integrated model system (SimTRAVEL) should include a mode choice model 

in the series of activity-travel demand choice models to account for traveler’s mode 

choice behavior.  This study considers two transportation modes (auto and transit) for 

modeling the impacts of LEZ on emissions and energy consumptions. A simple binary 

logit model is employed to model the choice dimension (auto vs. transit).  Utility function 

of the binary logit model includes a variable (generalized travel time) and an asserted 

alternative specific constant.  The asserted coefficients for auto and transit are obtained 

after calibrating the constants to match observed mode shares in the survey data.  

American Community Survey (ACS) data shows that population of 4% in the Great 

Phoenix area use transit service and the same is reflected by the model after minor 

calibration effort.    

Study Area 

The study area used for this modeling effort is the southeast region of Greater 

Phoenix Metropolitan Area (Maricopa County).  The sub-region comprises of three cities: 

City of Chandler, Town of Gilbert, and Town of Queen Creek.  The sub-region is 

separated from the Maricopa region for testing/implementation of the updated version of 

SIMTRAVEL.  There are about half a million people from 150,000 households residing 

in the study area.  The population used for this analysis is generated using a synthetic 

population generator (PopGen).  In order to gain efficiencies in model implementation, 

50% of population i.e., about 250,000 people from 85,000 households are considered to 

conduct LEZ analysis.  The spatial resolution of analysis for used for the current study is 

a Traffic Analysis Zone (TAZ).  The three city sub-region consists of 175 TAZs.     
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In this case study, two zone-clusters are selected to test an LEZ policy using the 

integrated model system.  Figure 27 shows the three city sub-region from the Greater 

Phoenix Metropolitan Region (LEZs are identified with a highlighted boundary).  One of 

the LEZ areas (designated with number 1 in the figure) comprises of 5 TAZs and the 

other (designated with number 2 in the figure) has a total of 7 TZAs.  In total 12 (~7%) 

out of 175 TAZs are selected as LEZs.  The factors considered in selecting LEZs are: i) 

heavy retail employment and ii) high residential population.  Since both these 

characteristics attract a lot of traffic to the TAZ, it was felt prudent to select zone that had 

high ‘activity’ w.r.t both these dimensions.  One of the LEZs has a big shopping mall 

called the Chandler Fashion Center which is a major attraction for discretionary travel. 

The other LEZ houses more of a mixed development with a fair share of retail 

employment as well as residential population. 

 

Figure 27. Map of study area and LEZs that are shown in highlighted boundary. 
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One of the main goals of analysis of Low Emission Zones (LEZ) is to encourage 

mode shift toward eco/clean vehicles such as hybrid, plug-in hybrid or electric vehicles 

and thereby reduce air pollution in areas with heavy traffic.  The second goal of this study 

is to encourage non-eco travelers to shift to transit in the context of travel to LEZs.  The 

updated integrated model system (SimTRAVEL) framework is flexible enough to test a 

wide array of policy measures, LEZ policy being one of them. The two levels in LEZ 

policy implementation are described below. 

 Incentive only LEZ policy:  Travelers who drive an eco-vehicle are given a 

monetary (cash) or non-monetary (free parking/priority parking, eco-credit, 

restaurant coupons, retailer discounts, grocery market coupon, etc.) incentive to 

travel to LEZs.  The intent of an incentive only LEZ policy is to encourage 

acquisition and use eco-vehicles.    

 Enhanced transit services to LEZs:  Transit service to LEZs is made twice as 

frequent with respect to the baseline scenario.  With enhanced transit frequency, 

people could potentially access LEZs faster as the wait time at transit station is 

decreased in light of increased frequency.  Transit fare is reduced to half of 

current fare to induce a mode shift.      

The activity-travel demand model (openAMOS) converts the incentive and 

discounted transit fare to generalized travel time which is the sum of actual travel time 

(auto/transit) and time equivalent of incentive (or transit fare).  The generalized travel 

time would impact the activity-travel/mode choices of individuals in the context of their 

travel to/from LEZs. 
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Design considerations observed in the LEZ modeling effort for LEZ policy 

analysis, are as follows: i) Eco-travelers (who drive an eco-vehicle) would receive a 

monetary incentive if they choose to travel to LEZs; ii) It is assumed that transit service 

to LEZs is enhanced in such a fashion that there is 30% reduction in travel times.  In 

addition to this transit fares to LEZs are reduce to half from the baseline scenario and  iii) 

Different levels of market penetrations of eco-vehicles are applied to each simulation run 

according to level of LEZ incentive.  Five different scenarios are designed conduct an 

incremental analysis of LEZ policies. Each of the scenarios is described below 

 Baseline: In this scenario, no incentive is given to eco-travelers.  Transit services 

operate at regular frequencies and normal fares.  This scenario is intended to serve 

as a benchmark against all the other scenarios.  Two percent eco-vehicle 

penetration is observed in baseline. The baseline market penetration of eco-

vehicles was determined after a careful analysis if the National Household Travel 

Survey from the year 2008-2009 for the Phoenix Metropolitan Region. From the 

survey results, it was found that 2% of households residing in the Great Phoenix 

Metropolitan Region own eco-vehicles (hybrid, hybrid-electric, or electric 

vehicle). 

 $0.5 incentive with regular transit service ($0.5, RT): In this scenario a $0.5 

incentive is given to eco-travelers for each trip they make to a LEZ.  However, 

enhanced transit service is not introduced to LEZs.  This scenario assumes a 3% 

eco-vehicle penetration in the synthetic population.  

 $1.5 incentive with regular transit service ($1.5, RT): In this scenario, a $1.50 

incentive is given to eco-travelers for each trip they make to a LEZ.  Enhanced 
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transit service is not introduced to LEZs.  Five percent eco-vehicle penetration is 

assumed in this scenario.  

 $0.5 incentive with enhanced transit service ($0.5, ET): In this scenario a $0.5 

incentive is given to eco-travelers for each trip they make to a LEZ.  Enhanced 

transit service is introduced to LEZs as described in the previous section.  The 

enhanced transit services are intended to bring about a modal change in non-eco 

travelers by providing a transit alternative that competes with an auto mode.  This 

scenario assumes 3% eco-vehicle penetration in synthetic population. 

 $1.5 incentive with enhanced transit service ($1.5, ET): In this scenario a $1.5 

incentive is given to eco-travelers for each trip they make to a LEZ.  Enhanced 

transit service is introduced to LEZs.  5% eco-vehicle penetration is assumed in 

this scenario. 

Impacts of the LEZ policies described above are expected to manifest themselves 

in different ways.  An incentive only LEZ policy might increase travel to LEZs as eco-

travelers are encouraged (incentivized) to travel to LEZs.  However, non-eco travelers 

might not be impacted in anyway as they are neither getting incentivized nor getting 

penalized.  The activity-travel patterns of non-eco travelers are therefore not expected to 

change.  Eco-travelers may travel farther distances to travel to LEZs in order to realize 

the incentives provided.  Enhanced transit service to LEZs may might encourage a mode 

shift for non-eco travelers more than eco-travelers (who already receive an incentive to 

travel to LEZs). 
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Results 

 This section presents results of five scenario runs in the context of analyzing the 

impacts of a Low Emission Zones (LEZ) policy on activity-travel patterns, emissions and 

energy consumptions.  The section divided in to the following three subsections for ease 

of presentation 

(1) Changes in activity-travel patterns 

(2) Changes in mode choice patterns 

(3) Change in energy consumption and emissions 

Results pertaining to each of these subsections is discussed below.      

Change in activity-travel engagement patterns.  Table 3 represents results of 

aggregate travel characteristics from the five different scenario runs using the enhanced 

SimTRAVEL framework for 50% of synthetic population in the three city sub-region. 

From the table, it can be observed that total number of trips is slightly lower in the two 

scenarios that observe enhanced transit services (30% lesser travel time and 50% fare 

reduction) to LEZs.  Average trip rate of the enhanced transit service scenarios is also 

slightly lower than that of the other scenarios.  This is understandable as taking the transit 

might limit the flexibility in activity engagement patterns for individuals. The results of 

aggregate travel characteristics for synthetic population of 50% in the sub-region show 

that the updated integrated model system is able to accurately capture the impacts of 

enhanced transit services to LEZs.  The activity-travel demand model is also able to 

depict the cascading effects among trips along continuous time axis.  For example, if a 

trip is delayed on network, subsequent trips for that individual might be impacted causing 

them to reduce activity duration or skip the next activity.  Transit travel times are usually 
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longer than auto travel times.  Travelers who use transit modes to access LEZs should 

adjust their activity-travel behaviors in light of their mode shift.  Average trip length 

observed across all scenarios is about 7 miles which is acceptable given the small size of 

the sub-region network used for this case study.  Average travel speed across all 

scenarios is also observed to be fairly stable.  Consistent network conditions across 

different scenarios facilitate the comparison of activity-travel engagement patterns 

between them.  

Table 4 presents the results of aggregate travel characteristics from the five 

scenario runs for eco-travelers.  From the table it can be observed that total trips made by 

eco-travelers gradually increases as incentives to LEZs are increase.  This is a direct 

manifestation of increasing eco-vehicle penetration with increasing incentive levels.  The 

fluctuation of total transit trips for eco-travelers across the five scenarios runs is not much.  

This is also expected behavior as eco-travelers who are already receiving an incentive to 

use their eco-vehicle to travel to LEZ would be reluctant to shift to transit even when 

there is an enhanced transit service. Enhanced transit service are offered to all travelers 

who travel to LEZs but is expected to have a greater impact on non-eco-travelers than eco 

travelers.  The results in Table 4 show that average trip length for eco-travelers gradually 

increases with increasing incentive levels.  This is expected, as eco-travelers might be 

travelling from farther distances to LEZs in order to realize the incentives.  In other 

words, there is ‘higher but cleaner’ vehicle miles traveled in response to the incentive 

only policy.    

The result of aggregated travel characteristics for non-eco travelers is shown in 

Table 5.  Average trip rate for this segment is very stable across three scenarios that do 
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not have enhanced transit service to LEZs.  On the other hand, average trip rate is slightly 

decreased in the two scenarios that do offer enhanced transit service to LEZs.  While the 

generalized cost structure might make transit a competing alternative on par with the 

generalized cost of auto, actual transit travel times are longer in comparison to auto trips 

(between the same O-D pair).  Hence, transit travelers might be slightly impacted by the 

longer travel times and subsequent activity-travel engagement after their trip to the LEZs 

prompting them to reduce their activity participation duration or skip the activity 

altogether.  Thus, average trip rate for non-eco travelers sees a downturn as transit 

rideshare increases.      

In Table 6 and Table 7, change of auto and transit trips to LEZs across the 

scenarios is presented.  These two tables also show information regarding trips to all 

other (regular) zones to which LEZ policy does not apply.  From Table 6, it can be 

observed that there is a slight increase in auto trips to LEZs in the ‘incentive only’ 

scenarios.  This increase is expected as eco-travelers might be accessing LEZs more to 

realize the benefits of the incentive provided.  On the other hand, for scenarios in which 

enhanced transit is introduced to LEZs, a 30% reduction is observed in auto-share 

(coupled with a corresponding increase in transit-share).  This phenomenon is mainly 

propelled by the decision of non-eco travelers to switch transit in the context of their 

travel to LEZs.  Both Table 6 and Table 7 show no fluctuation in auto and transit trips to 

all regular zones.  This is an intuitive finding as regular zones are not impacted by the 

LEZ policy and the model is able to aptly depict the distinction in activity-engagement 

patterns between LEZs and regular zones.   
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Figure 28 depicts the change in vehicle mix and mode shares in LEZs across the 

five scenarios.  Mode shares for eco vehicles, non-eco vehicles and transit are show to 

explain the impacts of the LEZ policies considered in this study.  It can be seen that eco- 

vehicle share for trips to LEZs gradually increases as the level of incentive increases, 

which is consistent with expectation.  While the non-eco vehicle share in trip to LEZs is a 

little over 90% in baseline, this share decreases to as low as 65% in the scenario with 

maximum incentives coupled with enhanced transit services to LEZs.  The major 

contributor for the change observed in vehicle mix is enhanced transit service to LEZs 

targeted at the major mode segment (non-eco vehicles).  Energy and emission benefits 

might be expected as a direct manifestation of mode shift away from non-eco vehicles.     

Figure 29 presents thematic geographical maps showing the total number of trips 

made by eco-travelers to LEZs for the baseline and two incentive only scenarios.  The 

maps are color coded where a dark blue color indicates lesser number of eco-trips and 

dark red color signifies a high eco-trip count to LEZs (note that dark red color in maps 

does not mean traffic congestion).  The comparison bin ranges are kept constant across 

the maps to show an accurate depiction of changes in trip making patterns.  Low emission 

zones are identified with a highlighted boundary in the map.  The color (depicting 

number of trips) in the LEZs is gradually changes from blue to red as incentives given to 

eco-travelers to LEZs are increased from $0 (baseline) to $1.5.  This shows that the 

incentive policy introduced in LEZs is impacting activity-travel patterns (destination 

choice) of eco-travelers and the integrated model system is able to model this 

phenomenon in an intuitive way.  An ‘incentive only’ policy might attract eco-travelers to 
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LEZs neglecting the consequence of greater travel distances.  So, it was felt prudent to 

couple incentive only policy with enhances transit service to LEZs.      

Count of transit-trips to LEZs across the five scenarios is presented using thematic 

geographical maps shown in Figure 30.  It can be observed from the figure that as transit 

services are enhanced to LEZs transit (bus) trips to LEZs show a commensurate increase.  

This means that the transit policy is attracting more transit trips to LEZs (thereby 

reducing emissions) and also impacting the activity-travel engagement behaviors 

(transportation mode and destination). The model is able to depict these finer nuances in 

travel behavior quite well. Upon further analysis, it was observed that the mode shift is 

observed mostly in the non-eco traveler segment. This is understood as eco-travelers 

might be disinclined to shift to transit in light of an incentive for using their eco-vehicle. 

 Figure 31 and Figure 32 show daily activity itinerary for a female worker 

generated from the results of the activity-based model (openAMOS).  The synthetic 

female worker uses a regular vehicle in the base scenario whereas the same individual 

supposedly acquired an eco-vehicle in light of the incentive ($1.5) provided.  Figure 31 

shows the person’s daily activity itinerary before changing to eco vehicle.  Figure 32 

shows her itinerary after changing to eco vehicle.  Before changing to eco vehicle, the 

individual engaged in three out-of-home activities (personal business, work, and 

shopping), none of them ending up in LEZs.  She pursued a personal business activity 

and came back home on her first tour.  She then went to work, stopped for a shopping 

activity on her evening commute and came back home in her second tour.  In both the 

tours, destination zones for all activities that she engaged in were not in LEZs identified 

for this analysis.  After changing to eco vehicle (Figure 32), the individual’s activity-
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travel engagement pattern was changed.  Although she engaged in the same activities 

(personal business, work, and shopping) in her daily activity itinerary, she pursued the 

non-mandatory activities (shopping and personal business) in LEZs in order to realize the 

incentive given to eco-travelers.  This is a phenomenal finding as to how such a policy 

might have direct impacts on the activity/destination choices at the level of each synthetic 

individual.  Having the capability to predict and depict such subtle changes in activity 

travel patterns provides a huge advantage to planners/modelers to test the sensitivity of 

various policies before actually implementing them in the real world.   

 

 

 

 



Table 3. Aggregated Travel Characteristics for Both Eco and Non-eco Travelers 

Indicator Baseline $0.50, RT $1.50, RT $0.50, ET $1.50, ET 

Population 252,999 252,999 252,999 252,999 252,999 

Total Trips 1,135,899 1,136,401 1,135,487 1,126,034 1,129,877 

Total Auto Trips 1,086,515 1,086,702 1,086,544 1,050,424 1,055,352 

Total Transit Trips 49,384 (4.3%) 49,699 (4.4%) 48,943 (4.3%) 75,610 (6.7%) 74,525 (6.6%) 

Total Travel Distance (mile) 7,781,422 7,792,089 7,790,525 7,756,704 7,800,878 

Average Trip Rate 4.49 4.49 4.49 4.45 4.47 

Average Trip Length (mile) 6.85 6.86 6.86 6.89 6.90 

Average Travel Speed (mph) 29.40 29.31 29.25 29.74 29.59 
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Table 4. Aggregated Travel Characteristics for Eco-travelers   

Indicator Baseline $0.50, RT $1.50, RT $0.50, ET $1.50, ET 

Population  5,137 7,681 12,735 7,681 12,735 

Total Trips 23,327 34,873 57,772 34,651 57,790 

Total Auto Trips 22,293 33,502 55,565 32,868 55,327 

Total Transit Trips 1,034 (4.43%) 1,371 (3.93%) 2,207 (3.82%) 1,783 (5.15%) 2,463 (4.26%) 

Total Travel Distance (mile) 160,315 567,634 405,594 580,791 404,618 

Average Trip Rate 4.54 4.54 4.54 4.51 4.54 

Average Trip Length (mile) 6.87 6.88 7.02 6.90 7.00 
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Table 5. Aggregated Travel Characteristics for Non-eco Travelers 

Indicator Baseline $0.50, RT $1.50, RT $0.50, ET $1.50, ET 

Population 247,862 245,318 240,264 245,318 240,264 

Total Trips 1,112,572 1,101,528 1,077,715 1,091,383 1,072,087 

Total Auto Trips 1,064,222 1,053,200 1,030,979 1,017,556 1,000,025 

Total Transit Trips 48,350 (4.35%) 48,328 (4.39%) 46,736 (4.34%) 73,827 (6.76%) 72,062 (6.72%) 

Total Travel Distance (mile) 7,621,107 7,552,072 7,384,930 7,517,444 7,396,260 

Average Trip Rate 4.49 4.49 4.49 4.45 4.46 

Average Trip Length (mile) 6.85 6.86 6.85 6.89 6.90 
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Figure 28. Vehicle mix for low emissions zone trips. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Eco Vehicles Non-Eco Vehicles Transit (Bus)

Baseline $0.5, RT $1.5, RT $0.5, ET $1.5, ET

1
3
7
 



 

Figure 29. Change of eco-traveler’s trip count by TAZs across two LEZ incentive-based scenarios from baseline. 
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Figure 30. Change of transit trip count across two scenarios about enhanced transit service from baseline. 
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Table 6. Count of Auto Trips – LEZs vs Regular Zones 

 
All LEZs All RZs All Zones 

Baseline 109,712 (93.43%) 976,803 (95.91%) 1,086,515 (95.65%) 

$0.50, RT 110,838 (93.53%) 975,864 (95.87%) 1,086,702 (95.63%) 

$1.50, RT 112,508 (93.92%) 974,036 (95.90%) 1,086,544 (95.69%) 

$0.50, ET 82,064 (70.69%) 968,360 (95.88%) 1,050,424 (93.29%) 

$1.50, ET 85,119 (72.05%) 970,233 (95.90%) 1,055,352 (93.40%) 

 

Table 7. Count of Transit Trips – LEZs vs Regular Zones 

 
All LEZs All RZs All Zones 

Baseline 7,718 (6.57%) 41,666 (4.09%) 49,384 (4.35%) 

$0.50, RT 7,664 (6.47%) 42,035 (4.13%) 49,699 (4.37%) 

$1.50, RT 7,282 (6.08%) 41,661 (4.10%) 48,943 (4.31%) 

$0.50, ET 34,018 (29.31%) 41,592 (4.12%) 75,610 (6.71%) 

$1.50, ET 33,025 (27.95%) 41,500 (4.10%) 74,525 (6.60%) 

 

 

 



 

Figure 31. Daily activity itinerary for an individual before changing to eco-vehicle. 

 

 

 

1
4
1
 



 

Figure 32. Daily activity itinerary for an individual after changing to eco-vehicle. 
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Change in energy consumptions and emissions.  In the two scenarios that offer 

only incentives ($0.5 or $1.5) to eco travelers to travel to LEZs, a slight increase is 

observed in total vehicle miles traveled (VMT) from 7.233 to 7.250 million miles from 

baseline scenario (see Figure 33).  This finding is consistent with expectation as eco-

travelers would drive their eco-vehicles to LEZs (to get the incentives) even if it means 

that the trip is a little farther than usual.  VMT is decreased in the other two scenarios that 

offer enhanced transit service in addition to incentives.  Mode switch to transit is directly 

driving this reduction in VMT (see Figure 33).  Although total VMT is slightly higher in 

‘incentive only’ scenarios, emission and energy consumptions patterns see a downward 

trend owing to the fact that these are ‘higher but cleaner VMT’ (see Figure 34 and Figure 

35).  The incentive policies encourage households to acquire and use eco-vehicles.  The 

change in fleet mix is expected (and observed) to subdue the dis-benefits of increased 

travel bring greater savings in energy and emission footprint of the region. 

Enhanced transit service to LEZs has a major impact in reduction of VMT, energy 

consumptions, and emissions (Figure 34 and Figure 35).  This is another intuitive finding 

exhibited by the model output as transit in general is purported to be the ‘cleaner way to 

travel’.  The results indicate that a 4% of reduction of energy consumption can be 

expected from baseline to the scenario in which the LEZ policies are implemented at full 

scale ($1.5 incentive and enhanced transit service) (see Figure 34). Figure 35 shows the 

percent reduction in CO2, NOX, CO and HC emissions from the baseline scenario.  The 

scenarios that introduce enhanced transit services to LEZs experience greater reduction in 

energy and emissions.  The results of this policy analysis corroborate the belief that 

reduction in greenhouse gas emissions and petroleum energy consumptions can be 
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realized with a combination of policies that encourage eco-vehicle acquisition as well as 

transit ridership.  LEZ policy introduction is an ideal way reduce the emission footprint 

within selected geographical boundaries as well as the entire region.    

 

Figure 33. Change of vehicle miles traveled (VMT) across the five scenarios. 
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Figure 34. Reduction in total energy consumption. 

 

 

Figure 35. Reduction in energy and emissions from baseline. 
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Conclusions and Discussion 

The goal of this case study is to model effects of Low Emission Zones (LEZ) on 

activity-travel engagement patterns, energy consumption and emissions using the 

integrated model system (SimTRAVEL) that was enhanced as a part of this research 

effort.  Ever increasing energy (gasoline) consumptions and alarming greenhouse gas 

emission levels from personal travel are a topic of major concern in the field of 

transportation.  To solve this issue, many auto manufacturers are beginning to show 

interest in developing/producing hybrid as well as electric vehicles to save energy and 

reduce emissions.  However, the ‘cleaner vehicle (eco-vehicle)’ market is still in its 

incipient stages and as a result, eco-vehicles are usually costlier thereby making them out 

of reach for general public.  The government is beginning to intervene and encourage the 

purchase and use of ‘greener vehicles’ by introducing rebates, tax incentives etc. To help 

device such policies transportation engineers and policy makers need to explore a wide 

array of options and their repercussions before finalizing a specific policy (or set of 

policies).  One such approach that is beginning to pique the interest of policy makers and 

researchers alike is the LEZ policy. At its heart, and LEZ policy is intended to reduce the 

emission footprint of a specific geographical region (city, two, county or a state). One 

such policy that has seen great success is the penalty-based LEZ policy implemented in 

London, United Kingdom.  According to the London LEZ policy eco-vehicles (vehicle 

complying with the emission standards set by authorities) are only allowed to enter 

specified areas called low emission zones.  Vehicles that do not meet the set emission 

criteria should pay a (heavy) penalty to enter LEZs.   
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Another LEZ policy that is gaining much interest on the United States is that of an 

incentive-based scheme where people are incentivized to acquire and use eco-vehicles to 

travel to LEZs. This policy is a win-win proposal as the public is receiving an incentive 

to purchase state of the art technology and this also reduces pollution. Enhanced transit 

services are introduced to LEZs to increase the transit ridership to LEZs (targeting the 

market segment that do not acquire eco-vehicles).  This study conducts an analysis to 

study the impacts of LEZ policies on the change in vehicle fleet mix and corresponding 

emissions.   

The framework in SimTRAVEL is enhanced to allow for testing of LEZ (and 

many other) policies. A total of five scenarios are considered and the results show 

promise in terms of change in fleet mix and usage patterns as well as emission reductions.  

An incremental approach was adopted where an incentive only policy is tested first and a 

transit enhancement to LEZs is introduced in the subsequent scenarios.  In the incentive 

only policy eco-travelers are given an incentive for each trip they make to a LEZ in their 

eco-vehicle. An un-intended consequence of this policy that was identified from the 

modeling effort was increase in VMT as eco-travelers drove to LEZ from farther 

distances (than usual) to realize the benefits of the incentive.  The increased VMT 

however should not be viewed in isolation as these are ‘higher but cleaner’ VMT.  The 

broader goal of this policy is to reduce emission in specific geographical regions by 

encouraging the purchase and use of eco-vehicles. 

Enhanced transit service to LEZs was found to be a key contributor in reducing 

energy consumption and bringing emission reductions by encouraging travelers to switch 

to transit.  The transit mode share of trips to LEZs increased from 6% (in the baseline 
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scenario) to over 27% (see Table 7) in the enhanced transit service scenario bringing 

significant emission reduction benefits.  The result also show notable decreases in energy 

consumption from the baseline scenario (1,000 ton reduction in the scenario that offers 

$0.5 incentive + enhanced transit service and 1,200 ton decrease in the scenario that 

offers $1.5 incentive + enhanced transit service).  The results suggest a 4.2% decrease in 

Co2 emissions (from the baseline) in the full scale scenario ($1.5 incentive and enhanced 

transit service) (see Figure 35).   

The modeling framework used (enhanced SimTRAVEL) is sensitive to activity-

travel pattern changes.  The model system is capable of handling different types of users 

simultaneously (eco or non-eco travelers) and accurately depict each classes’ activity-

travel engagement decisions.  Eco-travelers are shown to be impacted by incentive-based 

LEZ policies on a generalized travel time measure, while non-eco travelers remain inert 

to the policy as they are neither incentivized nor penalized.   On the other hand non-eco 

travelers are impacted by the enhanced transit service policy as it influences all the 

population alike.  The model system is able to accurately reflect the effect of different 

level of incentives ($0, $0.5, or $1.5) on activity-travel patterns of individuals.  The 

enhanced modeling framework is capable of simulating mode choice decision for each 

individual.  This is reflected by the changes in transit mode shares in response to 

enhanced transit services.  

Future efforts in the context of LEZ modeling using the integrated model system 

should focus on enhancing the mode choice model to include more variables and 

incorporate more modes.  The current mode choice model uses only two significant 

variables to determine mode choice: travel time by mode and cost (transit fare, vehicle 
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operating cost, parking penalty, or incentive).  These two factors are converted to a 

generalized travel time measure and each individual choses a mode that maximizes 

his/her utility based on the computed generalized travel time.  Therefore, the mode choice 

model uses only generalized travel time to simulate mode choice decisions.  However, 

mode choice could potentially be impacted by other factors such as activity type, 

employment status, gender, household income, number of children in the household or 

individual age.  For example, a woman who is assigned to take care of her children might 

not want to take transit (even if it has a better generalized travel time) to pick up or drop 

off her children at school.  In this case, gender and number of children in the household 

are major factors that decide mode choice.  The mode choice model in SimTRAVEL 

should be enhanced to include various household, person and trip characteristics to be 

able to accurately simulate mode choice decisions at the individual level. 

This case study is conducted on the three city sub-region to gain computational 

efficiencies.  The comparative analysis carried out on such a small sub-region might not 

be able to provide policy makers with an accurate depiction of the effects of such a policy 

if it were to be implemented for a larger region.  Future efforts should focus on 

expanding the geographical resolution of this study to entire Greater Phoenix 

Metropolitan Region so that magnitude of results can provide an accurate picture of 

benefit to cost ratio for different incentive scenarios.  A busy zonal-cluster such as the 

Phoenix downtown should be tagged as a LEZ for such an effort.  This study does not 

consider the financial ramifications of implementing a LEZ policy, i.e., the cost of 

providing incentives/infrastructure for enhanced transit services. Future efforts should 

include this as an integral component of the LEZ modeling effort.  One way to finance 
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the implementation of LEZ policy is adopting the penalty based LEZ implementation 

followed in London.  A toll only LEZ policy might not garner the support of the public. 

So, a combination and incentive and toll (penalty for most polluting vehicles to enter 

LEZs) schematic should be tested in future efforts to make this policy a revenue neutral 

one. 
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CHAPTER 6 

Case Study 1– Pre-Trip Information 

Introduction 

This chapter demonstrates the capability of the enhanced SimTRAVEL 

framework discussed in the previous chapter in the context of a network disruption 

scenario with pre-trip information provision.  If current network condition information is 

made available to individuals prior to embarking on a trip, they may alter their 

destination or mode, or completely forego participating in an activity in light of current 

network conditions.  On the other hand, individuals who do not have such information 

before embarking on a trip, may keep their original plans and in turn be impacted by the 

network disruption.  A key consideration in modeling the effects of pre-trip information 

provision is that the integrated model system should be able to capture the activity-travel 

scheduling and rescheduling behavior based on current network conditions and 

availability of pre-trip traveler information.  For evaluating the applicability of the 

framework and prototype of the enhanced integrated model system, this case study 

models four different scenarios with varying penetration of pre-trip traveler information 

in synthetic population.  The first scenario is baseline conditions in which no information 

is available for entire synthetic population and no disruption is assumed.  This scenario is 

run to provide a datum against which rest of the scenarios can be compared and 

contrasted.  In Scenario 1, a network disruption is simulated but the synthetic population 

does not have access to pre-trip information.  Scenarios 2 and 3 assume that 25% and 50% 

of synthetic population have access to pre-trip information, respectively.    
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The next section describes how to adopt the framework used in the enhanced 

SimTRAVEL for modeling pre-trip information provision.  In the third section, a brief 

description of the study area used for this analysis is presented.  The fourth section 

presents results of scenario runs with different levels of penetration of pre-trip 

information.  The last section presents the conclusion and scope for future research.    

Implementing the Model of Pre-Trip Information Provision 

Framework discussed in the previous Chapter 4 was adopted to implement this 

case study that conducts an analysis of impacts of pre-trip information provision on 

activity-travel engagement patterns (see Figure 12), in the event of a network disruption.  

Pre-trip information is defined as information regarding current network conditions 

provided to individuals before they embark on a journey.  Prevailing network conditions 

could greatly influence individual’s activity-travel engagement decision such as activity 

type, duration, destination, and/or travel mode (if the individuals have access to pre-trip 

information).  For example, checking the current network conditions on Google Maps 

before embarking on a trip is synonymous to pre-trip information.   

To implement the framework for modeling pre-trip information provision, both 

activity-based model and dynamic traffic model need some functions.  On the side of 

activity-based model, two essential inputs are required.  First, openAMOS should include 

an attribute that indicates whether individuals have access to pre-trip information or they 

use their past experience of the network conditions to make activity-travel engagement 

decisions.  This study assumes the attribute of pre-trip information flag as a household 

level variable so that persons in a household have the same characteristics regarding 

access to information.  However, individuals in a household may exhibit different 
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behaviors in the context of using the information available.  For example, the husband 

might always check traffic conditions before leaving to work to avoid peak hour 

congestion.  Whereas, the wife may depend on her own experience regarding network 

conditions to go shopping because traffic is usually not much between morning and 

evening peak hours.  Therefore, she might be more inclined to decide her departure time 

and destination without using pre-trip information.  As a simplifying assumption, this 

research models the information provision as a household level characteristics. Modeling 

user information provision at the person level is complicated as interaction of household 

member’s activity-travel engagement patterns need to be taken into consideration.  For 

example, if two household members made a trip together and the two individuals have 

different levels of user information provision, which individuals characteristics should be 

attributed to the trip under consideration? The activity-travel demand simulator should 

compare the characteristics of all individuals engaging in a joint activity to determine 

appropriate network conditions (prevailing or experienced network conditions).  In order 

to avoid the complication, this research treats characteristics of user information 

provision at the level of households so this issue does arise not in joint travel.  Future 

efforts in this area should focus on accurately representing household interactions in the 

context of joint-travel, thereby facilitating modeling of user information provision at the 

person level.   

Second, the activity-travel demand model should be able to handle both 

experienced and prevailing network conditions while simulating the activity-travel 

engagement patterns for all individuals.  Experienced network conditions (which are 

available from the previous iteration as origin-destination travel time matrices) are used 
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for individuals who do not have access to pre-trip information.  Prevailing network 

conditions are used for individuals who are able to access pre-trip information before 

making an activity-travel engagement decision.  The enhanced SimTRAVEL framework 

developed in this dissertation is capable of handling multiple skim data simultaneously, 

which greatly facilitates the analysis of impacts of pre-trip information provision. 

On the side of the dynamic traffic assignment model, prevailing network (link) 

conditions should be used to assign trips (on the network), which are generated for 

individuals who use pre-trip traveler information.  The dynamic traffic assignment model 

has to provide not only expected travel times but also current network conditions.  

Therefore, the activity-based model is able to utilize both historic and current network 

conditions to model activity-travel engagement decisions such as activity type, duration 

and destination choices.  Expected travel times are provided by bootstrapping run using 

only the dynamic traffic assignment model.  The dynamic traffic assignment model needs 

to provide prevailing network conditions as O-D travel time matrices at every Nth minute 

from the beginning to the end (1,440 minutes) of simulation.  In the current exercise, the 

DTA model sends current network conditions at the end of every 30 minutes to the ABM.   

Study Area and Scenarios 

In this study, the enhanced SimTRAVEL is used to capture the impacts of user 

information provision on travel in three cities (City of Chandler, Town of Gilbert and 

Town of Queen Creek) of the Maricopa (Greater Phoenix) region in the United States 

(see Figure 36).  This research separates the three cities from the Greater Phoenix Region 

for the implementation of the integrated model system and to conduct subsequent 

comparative analysis.  The three cities are regarded as an island in this study so that trips 
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are only generated inside these cities.  That is, trip origin and destinations for all 

individuals are inside the sub-region.  In the sub-region, the total number of households is 

167,738 and the total population is 505,350.  However, this study uses a quarter sample 

of the synthetic population (125,861 persons) residing in 41,675 households.  Traffic 

Analysis Zone (TAZ) is chosen as the spatial resolution of analysis for the 

implementation of this case study.    

In the subarea, there are two major highway systems (Loop 101 and 202).  Loop 

202 passes through the middle of the sub-region from one end to the other (east to west).  

Loop 101 is crosses the sub-region in the direction of north and south.  A big shopping 

center (Chandler Fashion Center) is located near the intersection of Loop 101 and 202 on 

the west of the sub-region.  Large retail areas are present in the north of city of Chandler.  

A large scale industry (Intel) is located south of Chandler.  Residential communities are 

built around Intel premises to cater to the company’s employees.  These factors 

contribute to a sizeable amount of work, school and discretionary travel in the sub-region.   

Dynamic traffic assignment model is not used in this study to model the impacts 

of pre-trip information provision as the study focuses primarily on the on change in 

activity-travel ‘demand’ patterns in light of information provision.  However, this study 

needs arrival information and prevailing network conditions to model the impacts of pre-

trip information provision.  For arrival information, this study assumes that all O-D travel 

times under normal network conditions without network disruption are same as the O-D 

travel times provided by the bootstrapping procedure detailed in Chapter 4.  The arrival 

information under normal network conditions is used to simulate activity-travel patterns 

for the individuals with no pre-trip information provision. 
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Figure 36. Map of study area located on southeast of the Great Phoenix region. 

In addition, prevailing network conditions should be provided to the activity-

based model to be used for individuals with pre-trip traveler information.  Since a 

planned network disruption is assumed in this study, prevailing network conditions 

should reflect traffic congestion so that the traffic delays can emulate an impact on 

individual activity-travel schedules.  This study simulates a planned network disruption 

(work zone) in the middle of 202 Loop freeway for 4 hours from 8 am to 12 pm (see 

Figure 36 and Figure 37).  Because this study uses only an activity-based model, 

prevailing network conditions are not readily available for the activity-based model to 

simulate activity-travel patterns for individuals who have access to pre-trip information.  

Work Zone 
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To overcome this issue, prevailing network conditions are artificially generated using the 

following steps: 

1.  In ArcGIS, highway link feature data is overlaid on zone (polygon) feature 

system that represents the study area 

2. Segments from the highway link feature data (that represents Loop 202) on which 

work zone is set are selected 

3. 1.0 mile and 2.5 miles (radius) buffers are drawn from the selected segments (see 

Figure 37) 

4. All zones falling within 1.0 mile, > 1.0 and ≤ 2.5 miles buffers are segregated into 

sets 

5. To generate prevailing network conditions that reflect the planned network 

disruption, penalty factors (Table 8) are applied to the O-D travel times obtained 

from the bootstrapping procedure.  Between 8 am and 12 pm, different penalty 

factors are utilized to obtain prevailing O-D travel time matrices for different 

buffer segments.  For example, if origin zone is in the 1 mile buffer and 

destination zone is on outside 2.5 miles buffer, penalty factor of 2.3 is multiplied 

to the travel time from the previous iteration for the O-D pair to get prevailing 

travel time.  Before 8 am and after 12 pm, the O-D travel times for prevailing 

network conditions are assumed to be same as the expected O-D travel times from 

the previous iteration. 

The prevailing network conditions are generated for every 30 minutes for a simulation 

day (48 O-D pair matrices in total).  All O-D travel time matrices are same as the O-D 

travel time matrices from the bootstrapping procedure before 8 am and after 12 pm 
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(noon).  Between 8 am and 12 pm, the O-D travel times from the previous iteration are 

multiplied by the factors shown in Table 8 if either origin or destination, or both origin 

and destination are within the selected buffer areas.  The activity-based model uses 

expected O-D travel time matrices from the previous iteration for simulating activity-

travel engagement patterns of the individuals without pre-trip information.  The 

artificially generated prevailing network conditions are used to simulate activity-travel 

engagement patterns for individuals who have access to pre-trip information. 

Table 8. Penalty Factors Used to Obtain Prevailing Travel Time Matrices in Time of Day 

 Place of Origin and Destination for Each Trip 
Penalty 

Factor 

1. Both origin and destination are inside 1 mile 3.0 

2. 
One zone is inside 1 mile buffer and the other zone between 1 

mile and 2.5 miles 
2.7 

3. One zone is inside 1 mile and the other zone outside 2.5 miles 2.3 

4. Both origin and destination are between 1 mile and 2.5 miles 2.5 

5. 
One zone is between 1 and 2.5 miles and the other zone outside 

2.5 miles buffer 
2.0 

6. Both origin and destination are outside 2.5 miles buffer  1.0 

 

 



 

Figure 37. Penalty factors by buffer size to generate prevailing O-D travel time matrices. 

1
5
9
 



  160 

To evaluate the capability of the prototype of enhanced SimTRAVEL to model 

impacts of pre-trip information provision, four different scenarios are run in this case 

study.  The scenarios consider two types of travelers: with and without pre-trip 

information provision.  The four scenarios simulated in this study are summarized as 

follows: 

 Baseline (No network delay event): In this scenario, network conditions are 

assumed to be normal.  It means that neither planned nor unplanned network 

disruptions occur on the network.  This scenario serves as the ‘datum’ to compare 

other scenarios.  

 No pre-trip information:  A planned network disruption is assumed on 202 Loop 

freeway in the study area (see Figure 37).  None of the travelers have access to 

pre-trip information. 

 25% pre-trip information: A quarter of population has access to pre-trip 

information.  A network disruption is assumed on 202 Loop freeway in the study 

area. 

 50% pre-trip information: 50% of population used in this case study is assumed to 

have access to pre-trip information.  The same network disruption is assumed on 

202 Loop freeway in the study area. 

Results 

This section presents the results from all four scenario runs using the enhanced 

SimTRAVEL for level 1 integration (Chapter 4).  From this point forward, the scenario 

with no disruption is referred to as the base scenario, the scenario with 0% population 

with information provision under network disruption is referred to as 0% information, the 
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scenario with 25% population with information provision under the disruption is referred 

to as 25% information, and the scenario with 50% population with information provision 

under the disruption is referred to as 50% information.  Table 9 presents the aggregate 

travel characteristics for the four scenarios under consideration.  Total trips and average 

trip rate are seen to decrease in the scenarios in which work zone disruption is assumed to 

occur on the 202 freeway (see Figure 36) compared to the base scenario.  As persons with 

pre-trip information provision increases, trip count and trip rate are observed to increase.  

Trip rate changed from 4.46 to 4.50 and trip count increased by 5,500 trips from 0% 

information provision to 50% information scenario.  On the other hand, total trip duration 

and average trip duration decrease as the percent of population with pre-trip information 

provision increases.  The network incident is found to impact participation in subsequent 

activities and associated travel for individuals who have no information.  Therefore, 

travelers may not have enough time to engage in as many activities because they spent 

longer time stuck in the traffic due to the network disruption.  As the percentage of 

individuals who have access to pre-trip information increases, adverse impacts of 

network disruption are seen to decrease.  From Table 9 it can be observed that the total 

adult work trips are very stable across all scenarios. Workers may not have the flexibility 

to cancel work episodes because of a network delay event.  The travel demand model 

system built in SimTRAVEL is able to reflect the fact that work trips would not be 

impacted by network disruptions.   

Trip counts by destination during hours of the network disruption were measured 

to study how pre-trip information provision impacts the activity-travel engagement 

patterns, specifically destination choice.  Destinations were aggregated into three 
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segments dictated by buffer sizes: 1 mile buffer zones (within 1 mile from the work zone), 

2.5 miles buffer zones (between 1 and 2.5 miles from the work zone), and outside the 

affected areas (outside 2.5 miles buffer zones from the work zone).  Total trips were 

counted in all the scenarios in each of these segments.  Figure 38 shows percent 

difference in trip counts for three scenarios in which a network disruption is assumed 

from the no disruption (baseline) scenario.  From the figure, a clear trend can be observed 

in the destination choice where choosing zones in 1 mile and 2.5 miles buffer zones for 

engaging activities was gradually decreasing with increasing penetration of pre-tri 

information provision.  Zones outside the affected areas were chosen more as level of 

information provision increased from 0% to 50% population.  This trend is consistent 

with expectation as persons who have access to pre-trip information would prefer 

choosing un-affected locations to avoid the disruption in the context of non-mandatory 

activity engagement (e.g. discretionary or maintenance activities).    

Figure 39 presents the percent difference in trip duration distributions for the three 

disruption scenarios from baseline (that assumes no network disruption).  The trends 

observed from the comparison are intuitive and consistent with expectation.  Shorter trips 

that are less than 15 minutes decreased for all disruption scenarios compared to baseline 

scenario.  On the other hand, longer trips (≥15 minutes) increased for all disruption 

scenarios compared to baseline scenario.  Therefore, the planned network disruption 

(work zone) between 8 am and 12 pm impacted the travel in the region in a manner that is 

consistent with expectation.  As persons who use pre-trip information increase, the 

magnitude of decrease in shorter trips (< 15 minutes) from baseline scenario is lower than 

the scenario with zero percent population for information provision.  In the two scenarios 
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with 25% and 50% pre-trip information provision, longer trips (≥ 15 minutes) decreased 

from the scenario where 0% population have pre-trip information under a network 

disruption. 

Matrices of daily time allocation to travel and activities are used to analyze the 

results of all scenario runs.  Table 10 shows the output produced by the activity-travel 

demand model.  Individuals should allocate their time budget in a day (24 hours ~ 1,440 

minutes) to travel and activity episodes.  Table 11 houses a different column for each 

scenario and each type of information provision.  Results are presented in this table as 

difference from the baseline scenario after normalizing time spent for activities and travel 

to 1,440 minutes.  As expected, Table 10 and Table 11 show that individuals spent 

slightly higher time on travel than on activities in all of the network disruption scenarios.  

Although total activity time decreased by 3.4 minutes for the first disruption scenario 

with no information provision against baseline scenario, the lost time is seen to recover 

with increasing information provision.  Complementing this finding, total travel time 

shows a spike in the no information provision scenario and slowly comes down as the 

penetration of pre-trip information increases.  This result is consistent with the trip 

duration distributions shown in Figure 39.  The bottom line from this analysis is that 

people make better activity-travel decisions with pre-trip information than without. 

The activity time drops of 2.3 and 2.4 minutes (and the corresponding travel time 

increases) for travelers with pre-trip information between 25% and 50% scenarios are 

almost similar.  This is a rather interesting observation that might warrant further 

investigation. One would expect that as more travelers have pre-trip information, the 

average travel time should follow a downward trend than plateau out.  A possible reason 
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for this phenomenon might be the optimal penetration of pre-trip information provision. 

If everyone individual has pre-trip information and is altering his/her activity-travel 

engagement patterns, this might not lead to a system optimal solution.  More disaggregate 

levels of penetration pre-trip information provision should be studied to identify the 

information provision threshold, in case one exists.  

From all of the results presented, we can clearly observe that the network 

disruption indeed impacts activity-travel engagement patterns and pre-trip information 

provision is an effective counter-measure to alleviate the adverse impacts of network 

disruptions.  Though the network conditions under the disruption assumption are not 

estimated by a dynamic traffic assignment model, the trends presented in the results are 

consistent with expectation.  Also, the trends in this study are very consistent to the 

results of a similar study (Konduri, 2012) that presents results of two cases: i) no 

information provision or ii) full information provision.  Therefore, the integrated model 

system enhanced in this research is able to model the impacts of network disruptions 

under different levels of pre-trip information provision in a behaviorally realistic fashion. 



Table 9. Aggregated Travel Characteristics for the Impacts of Pre-Trip Information Provision 

 
No Disruption 

No Information 

Provision 

25% Information 

Provision 

50% Information 

Provision 

Population 125,861 125,861 125,861 125,861 

Total persons with information provision 0 0 31,947 (25%) 63,095 (50%) 

Total trips 574,795 561,055 562,857 566,565 

Total trips with information provision 0 0 145,146 287,529 

Total adult work trips 46,546 46,548 46,532 46,544 

Total travel time (minutes) 5,512,943 5,798,556 5,759,397 5,746,306 

Average trip rate 4.57 4.46 4.47 4.50 

Average travel time (minutes) 9.59 10.34 10.23 10.14 
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Figure 38. Percentage difference in trip count from baseline from 8 AM to noon for pre-

trip information provision. 

 

Figure 39. Percentage difference in the distribution of trip duration from baseline for pre-

trip information provision. 
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Table 10. Daily Time Allocation to Travels and Activities Per-capita in Pre-trip Information Provision 

 Baseline No Pre-trip 25% Pre-trip 50% Pre-trip 

 
No Disruption 

No 

Information 

No 

Information 
Information 

No 

Information 
Information 

Time Spent on Activities       

Home 1072.8 1069.5 1070.0 1072.9 1070.1 1071.1 

Work 196.6 196.0 196.0 196.4 195.6 197.0 

School 0.6 0.6 0.6 0.6 0.6 0.5 

Maintenance 73.8 71.9 71.4 73.0 72.2 73.3 

Discretionary 29.1 28.2 28.4 28.2 28.2 28.5 

Pick Up 0.4 2.3 2.3 0.6 2.4 0.4 

Drop Off 2.2 2.1 2.1 2.3 2.1 2.2 

OH-Other 12.0 11.8 11.9 11.4 11.7 12.1 

Total Activity Duration 1387.6 1382.3 1382.8 1385.3 1383.0 1385.1 

Time Spent on Travels       

Home 19.7 20.7 20.6 20.6 20.6 20.6 

Work 6.5 7.2 7.2 6.9 7.2 6.9 

School 0.1 0.1 0.1 0.1 0.1 0.1 

Maintenance 13.8 14.8 14.7 14.3 14.7 14.4 

Discretionary 3.9 4.1 4.1 4.0 4.0 4.0 

Pick Up 1.9 2.0 2.0 2.0 2.0 2.0 

Drop Off 1.9 1.9 1.9 2.0 1.9 1.9 

OH-Other 1.4 1.6 1.6 1.5 1.6 1.5 

Total Travel Duration 49.1 52.4 52.2 51.4 52.0 51.5 

Total Daily Accounting 1436.7 1434.7 1435.0 1436.8 1434.9 1436.6 
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Table 11. Difference of Daily Time Allocation to Travels and Activities from Baseline in Pre-trip Information Provision 

 Baseline No Pre-trip 25% Pre-trip 50% Pre-trip 

  No Disruption 
No 

Information 

No 

Information 
Information 

No 

Information 
Information 

Time Spent on Activities       

Home 0.0 -1.9 -1.5 0.0 -1.4 -1.7 

Work 0.0 -0.4 -0.4 -0.3 -0.8 0.3 

School 0.0 0.0 0.0 0.0 0.0 -0.1 

Maintenance 0.0 -1.8 -2.3 -0.8 -1.5 -0.5 

Discretionary 0.0 -0.9 -0.6 -0.9 -0.9 -0.5 

Pick Up 0.0 1.9 1.9 0.2 2.0 0.0 

Drop Off 0.0 -0.1 -0.1 0.1 -0.1 0.0 

OH-Other 0.0 -0.3 -0.1 -0.6 -0.3 0.0 

Total Activity Duration 0.0 -3.4 -3.1 -2.3 -3.0 -2.4 

Time Spent on Travels         

Home 0.0 1.0 0.9 0.9 0.9 0.9 

Work 0.0 0.8 0.8 0.4 0.7 0.5 

School 0.0 0.0 0.0 0.0 0.0 0.0 

Maintenance 0.0 1.0 0.9 0.6 0.9 0.6 

Discretionary 0.0 0.2 0.2 0.1 0.1 0.1 

Pick Up 0.0 0.1 0.1 0.1 0.1 0.1 

Drop Off 0.0 0.0 0.0 0.1 0.0 0.0 

OH-Other 0.0 0.2 0.2 0.1 0.2 0.1 

Total Travel Duration 0.0 3.4 3.1 2.3 3.0 2.4 
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Conclusions and Discussion 

The enhanced SimTRAVEL framework was employed for modeling impacts of 

pre-trip information provision under a planned network disruption event.  The 

microsimulation-based integrated model system used in this research observes a tight 

coupling with constant feedback between an activity-based demand model and dynamic 

traffic simulation model.  Konduri (2012) illustrates why a tightly integrated model 

system should be used to conduct analysis of network disruptions under different levels 

of information provision.  Network delay events effect individual’s activity-travel 

engagement patterns and the affected activity-travel engagement behaviors in turn impact 

the network conditions.  Using traditional integrated model systems that employ a 

sequential connection between a travel demand model and traffic simulation model, it is 

difficult to accurately capture interactions between activity-travel engagement patterns 

and network conditions in a behaviorally realistic way.  The previous version of 

SimTRAVEL developed by Konduri (2012) identifies and addresses this issue, but it is 

not capable of modeling network disruptions under various levels of information 

provision.   

The framework of the integrated model system enhanced in this study is able to 

capture interactions among activities that form activity-travel agenda for each individual 

in the event of network disruptions under varying levels of information provision.  If 

individuals spent longer time on trips because of a network disruption, they may reduce 

activity duration or skip subsequent activities.  The results obtained from the runs of four 

different scenarios clearly show that the model system is able to simulate activity-travel 

patterns with due consideration to interactions among activities and trips for each 
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individual.  First, total number of trips in the three disruption scenarios is observed to 

decrease from the base scenario.  This means that a portion of individuals who engaged in 

activities in or near the areas affected by the network disruption had to skip their 

subsequent activities in light of the network delay.  Hence, the result presents a decrease 

of trip count in all the three scenarios where a network disruption is assumed.  Second, 

the comparison of daily time allocation to travel and activities per-capita show that 

individuals spent a little more time on travel and a little less time on activities under three 

network disruption scenarios.  The integrated model system employed in this study is 

capable of capturing impacts of network disruption on activity-travel engagement process 

in a behaviorally consistent way.   

In addition, the integrated model system accurately depicted the varying 

magnitudes of network disruptions under different levels of information provision.  The 

percent of population with access to pre-trip information provision can be changed in 

accordance with transportation policies to be tested.  In the three disruption scenarios, 

various levels (0%, 25%, and 50%) of information provision penetration were introduced 

to analyze the impacts of pre-trip information provision on activity-travel engagement 

processes.  The results across the three disruption scenarios show that the framework 

used in the enhanced model system is capable of modeling varying levels of information 

provision in the event of a network disruption.  The enhanced SimTRAVEL model 

system is robust and can be extended to conduct policy analyses for evaluating, planning, 

and implementing various types of traveler information technologies. 

The results from different scenario runs show intuitive trends and corroborate the 

capability of enhanced SimTRAVEL in capturing the impacts of pre-trip information 
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provision on activity-travel engagement patterns.  First, travelers with access to pre-trip 

information would most likely avoid choosing an activity destination in the areas affected 

by a network disruption (see Figure 38).  Second, the percentage of longer trips (over 20 

minutes) was observed to decrease for travelers with pre-trip information, which is a 

direct manifestation of the decision making process in light of availability of current 

network conditions (see Figure 39). 

However, it is to be noted that only activity-travel demand model was used in this 

case study to simulate the impact of network disruptions under varying levels of pre-trip 

information.  Current (prevailing) network conditions were obtained by multiplying 

asserted delay factors to the expected O-D travel times from the bootstrapping procedure 

as this case study primarily concerns with analysis of activity-travel engagement patterns 

(demand side decisions) in light of a network disruption with information provision.  

However, real-time network conditions are needed to conduct a more accurate analysis of 

activity-travel behavior and future efforts should focus on testing the framework in the 

context of an integrated model system where an activity-based model and a dynamic 

traffic assignment model are in continuous communication with each other.  
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CHAPTER 7 

CASE STUDY 2 – En-route Decision Process 

Introduction 

This chapter demonstrates the applicability of the enhanced SimTRAVEL 

framework in accurately capturing en-route decision making processes. This effort is 

detailed as level 3 enhancement in Chapter 4.  En-route decision paradigms that 

characterize how individuals’ process information while they are en-route (on the way) to 

a destination are different from decision processes made with pre-trip information (before 

starting a journey).  With respect to decision process in the context of pre-trip 

information, individuals make decisions regarding activity-travel engagement prior to 

embarking on a trip based on network conditions.  On the other hand, individuals who 

have real-time information may alter their route, destination, or skip the activity 

altogether in response to network delays.  The integrated model system (SimTRAVEL) is 

enhanced to model not only pre-trip but also en-route decisions in response to network 

delay events. 

This chapter comprises of four sections detailing the case study for modeling en-

route activity-travel engagement decisions.  The next section presents the case study 

implementation details.  The third section describes study area and scenarios.  In the 

fourth section, results of micro-simulation runs for different scenarios, with different 

levels of en-route traveler information penetration (0% or 50% of synthetic population) 

are presented.  The last section presents concluding thoughts and discusses avenues for 

future research in this domain.  
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Implementing En-route Decision Process in the Enhanced SimTRAVEL 

The enhanced SimTRAVEL framework (level 3) described in Chapter 4 was used 

to perform a case study to estimate impacts of real-time information provision on 

activity-travel engagement behaviors in the event of a network disruption.  Similar to the 

previous case study that estimated impacts of pre-trip information provision, only the 

activity-based model system (openAMOS) was used to implement this case study for 

conducting simulation runs for different scenarios with real-time traveler information 

provision under a network disruption.  In the model framework, some information is 

delivered by a simplified dynamic traffic assignment model to an activity-based model 

system to mimic real-time information provision.  To establish behavioral realism in the 

framework, a few key pieces of information need to be exchanged between the demand 

and supply model systems.  First, information regarding trips that are in distress is sent to 

an activity-based model to identify which trips are experiencing heavy delays 

(determined by a user set threshold value).  Second, information regarding the time at a 

trip should be checked for distress status is exchanged.  Third, current location for all 

trips in distress should be known to the activity-based model.  Therefore, a simplified 

network model was created to provide the essential input data required by the activity-

based model system.  The following paragraph describes the process involved in 

generating this input data.    

As soon as a trip is realized to be in distress, a dynamic traffic assignment model 

sends the trip back to the activity-based model.  Activity-travel engagement patterns are 

simulated in response to the network congestion.  A critical judgment to be made here is 

when should the trips that are in distress be sent back to the demand model? When should 
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a trip be checked for determining whether it is in distress or not?  The current study 

chooses this time as 1 minute after trips depart from their origin.  It assumes all travelers 

with real-time information access current network conditions as soon as they get in their 

vehicle.  That is, after a traveler embarks on a trip, the trip is sent back to the demand 

model in 1 minute, if the trip is tagged to be in ‘distress’.  For example, if a traveler 

departed at 3:30 pm, the trip is checked for its status at 3:31 pm and if the trip is 

determined to be in distress, it is sent back to the activity demand model for further action.  

All travelers may not change their route, activity, destination, or trip mode as they 

receive real-time information regarding a network disruption.  Some travelers would 

incur minor delays and stick to their current route.  Hence, all trips that are in traffic 

distress are not required to change activity-travel pattern.  To model this concept of travel 

behavior, this study employs a ‘threshold value’ schema.  If the delay caused by network 

disruption is greater than the threshold determined (threshold is a user set parameter) for 

a traveler using real-time information system, the enhanced model system regards this 

trip as a ‘trip in distress’ and is considered for change of activity-travel engagement to 

avoid the distress.  Different individuals may perceive delay at different degrees.  So, a 

fixed value is not ideal for defining a threshold for all of the synthetic population.  

Instead, this study employs a varying threshold minutes between 5 and 15 minutes, 

randomly determined for each individual.  For example, if an individual who is assigned 

a threshold value of 10 minutes, experiences a 20 minute network delay on a specific trip, 

the activity-based model regards that the trip under consideration is in ‘distress’ and 

hence the individual would change his/her activity-travel decision in order to reduce 

adverse impacts of the network delay. 
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The current location for each traveler who is en-route to an activity destination 

should be known to the activity-based model to accurately simulate the change in 

activity-travel engagement.  The current location of each individual is critical in 

simulating the activity-travel choices as destination preferences for travelers are heavily 

influenced by their current location.  Usually, a dynamic traffic assignment model sends 

information regarding the current location of trips that are on network, but the 

implementation for this case study does not use a dynamic traffic assignment model.  In 

order to overcome this issue, a novel approach is employed to identify each individual’s 

current location.  Figure 40 shows an example that describes how to determine the 

current location while travelers are en-route to their destination.  The approach is 

summarized below:   

1. Use an O-D travel time matrix from the previous iteration to determine the 

distance between origin and destination.  As the travel demand model knows 

origin as well as destination (from a destination choice model) location 

information for each trip , it is easy to get the O-D distance from the matrix 

2. Draw radial buffers around origin and destination using the O-D distance as 

radius.  There will be two circles drawn for each O-D pair, one for origin and one 

for destination (see Figure 40).   

3. Select all zones (Traffic Analysis Zones) that fall inside the circles.  Since there 

are two circles drawn, there will be two lists.  One list stores all TAZs within the 

radial buffer for the origin and the other list stores all TAZs within the radial 

buffer for destination. 
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4. Determine the intersection of these two lists.  That is, select the zones that exist in 

both lists  

5. Randomly select a zone from the intersection list, which will be regarded as the 

current location for the trip  

 

Figure 40. Example of selecting a current location for en-route decision process.  

Study Area and Scenarios 

The same study area used in the previous case study is employed for modeling the 

impacts of real-time information provision on change of activity-travel patterns en-route.  

This study uses the same synthetic population that comprises of 125,861 people residing 

in 41,675 households in three cities (Chandler, Gilbert, and Queen Creek) in the southeast 
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of Great Phoenix region.  This study regards the three cities as an island so that there are 

no out-going trips and in-coming trips to the study area.  Enhanced SimTRAVEL is used 

to generate the travel demand for the three city region.  In this case study, prevailing 

network conditions be available to the activity-based model (similar to the previous case 

study) to model changes in activity-travel patterns in response to real-time information.  

The same prevailing O-D pair travel matrices described in Chapter 6 are used in this 

study to model en-route decision making process in light of a planned network delay 

event in the middle of Loop 202 freeway from 8 AM to 12 PM (see Figure 37).  

Prevailing network conditions are used to simulate activity-travel engagement patterns of 

individuals who have access to real-time information en-route to their destination.  

Before embarking on a trip, experienced network conditions (from the previous iteration) 

are used for determining activity type, destination, duration and mode although travelers 

have access to real-time information system.  Real-time information is used only for en-

route decision making process.  For travelers without access to real-time information, 

experienced network conditions are always used to simulate activity-travel engagement 

patterns.   

To evaluate the applicability of the prototype of the enhanced SimTRAVEL to 

modeling impacts of en-route decision processes, three different scenarios are tested in 

this case study.  The scenarios accommodate two classes of travelers: i) travelers with no 

en-route information and ii) travelers with en-route information.  The three scenarios 

evaluated in this study are summarized as follows: 

 Baseline (No network delay events): In this scenario, network conditions are 

assumed to be normal.  It means that neither planned nor unplanned network 
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disruptions occur on the network.  This scenario provides a datum for comparing 

other scenarios.  

 No real-time information: In this scenario, none of the travelers have access to 

real-time information in the event of a network disruption.  

 50% real-time information: 50% of the synthetic population are assumed to have 

real-time information en-route to their destination. 

Results 

In order to estimate impacts of real-time traveler information system on change in 

activity-travel patterns, full-scale simulation runs are carried out using the enhanced 

SimTRAVEL.  This section presents the results from the different scenario runs.  Figure 

41 shows percent difference in trip count from baseline scenario from 8 am to 12pm 

(noon) across three different type zones defined by buffer size.  Percent differences for no 

information travelers in all disruption scenarios are less than 1% on the three zonal 

segments.  This means that the destination choice patterns for travelers with no real-time 

information do not change across different scenarios as they make activity-travel 

decisions based on experienced travel times (from previous iteration) oblivious of the 

network disruption in the current iteration.  However, travelers with real-time information 

provision will try to avoid travelling to the zones affected by the network disruption.  

Trip count for the travelers with real-time information is decreased by 1.9% and 2.1% in 

1 and 2.5 mile buffer zones, respectively.  Trip counts increased by a commensurate 

amount (4.1%) outside the area affected by the network disruption.  Therefore, if the 

travelers have information regarding current network conditions en-route and their 
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activities are flexible, they are more likely to alter their destinations to avoid the network 

disruption. 

 

Figure 41. Percentage difference in trip count from baseline from 8 am to noon for real-

time information provision. 

Figure 42 presents percentage difference in trip duration distribution for all 

disruption scenarios from the baseline.  The trend observed from the results of this case 

study is similar to the results of pre-trip information case study from Chapter 6.  Number 

of trips that are shorter than 15 minutes are observed to decrease in light of network 

disruption.  On the other hand, longer duration trips (≥ 15 minutes) increased due to the 

network disruption.  The percent difference for travelers who have access to real-time 

information in the 50% information scenario is less than that of travelers with no 

information.   
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Figure 42. Percentage difference in trip length from baseline for real-time information 

provision. 

Table 12 shows time allocation to activities and travel per-capita for adults (≥ 18 

years old) across all scenarios in this case study.  Since this chart pertains only to adults, 

time allocated on school episodes is negligible.  Decrease of total activity duration in the 

two disruption scenarios can be observed from Table 12.  On the other hand, total travel 

duration increased commensurately from baseline in the two disruption scenarios.  This 

trend is similar to the results of the previous case study that estimated impacts of pre-trip 

information provision on activity-travel decision patterns.  The sum of time spent on 

activities and travel is very close to 1,440 minutes in all scenarios employed in this case 

study.  

Table 13 presents difference of time allocation to activities and travel per-capita 

from the baseline scenario.  Before computing the difference of time allocation on 
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activities and travel, the result shown in Table 12 was normalized to 1,440 minutes for 

each column of the table.  It can be observed form the table that activity time for in-home 

episodes and maintenance activity is decreased from the baseline scenario.  The decrease 

of total activity duration from the baseline is -3.4 in the scenario with no information 

provision, -2.9, and -2.5 minutes for individuals without and with information in the final 

scenario.  From the result, it can be seen that each traveler with real-time traveler 

information can potentially save up to 1 minute of travel in the event of network 

disruption.  Bottom half of Table 13 shows difference of time spent on travel per-capita 

from the baseline scenario.  Time spent for travel is increased in all activity types under 

network disruption scenarios.  The smallest increase (2.5 minutes) of travel duration is 

observed for travelers with real-time information in the scenario that assumes 50% 

population with real-time information provision.  The reason for this is that as travelers 

with real-time information are able to access current network conditions, they could 

potentially change their destination to avoid congested areas (if activities that they pursue 

are not mandatory). 

 



Table 12. Daily Time Allocation to Travels and Activities Per-capita in Real-Time Information Provision 

  
Baseline 

No Real-time 

Information 
50% Real-time Information 

No Information No Information No Information Information 

Time Spent on Activities 
    

Home 1072.82 1069.50 1070.55 1069.64 

Work 196.65 195.99 195.67 196.26 

School 0.61 0.57 0.54 0.50 

Maintenance 73.80 71.94 71.84 71.73 

Discretionary 29.05 28.16 28.05 28.88 

Pick Up 0.41 2.28 2.44 2.10 

Drop Off 2.20 2.10 2.00 2.15 

OH-Other 12.04 11.76 12.08 11.94 

Total Activity Duration 1387.58 1382.29 1383.17 1383.21 

Time Spent on Travels 
    

Home 19.74 20.73 20.55 20.42 

Work 6.47 7.22 7.20 7.17 

School 0.08 0.08 0.08 0.07 

Maintenance 13.76 14.76 14.63 14.32 

Discretionary 3.90 4.12 4.08 4.04 

Pick Up 1.91 2.04 2.01 2.04 

Drop Off 1.87 1.90 1.86 1.95 

OH-Other 1.40 1.59 1.58 1.54 

Total Travel Duration 49.11 52.44 51.98 51.54 

Total Daily Accounting 1436.69 1434.72 1435.16 1434.74 
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Table 13. Difference of Daily Time Allocation to Travels and Activities from Baseline in Real-time Information Provision 

   
Baseline 

No Real-time 

Information 
50% Real-time Information 

No Information No Information No Information Information 

Time Spent on Activities         

Home 0.0 -1.9 -1.1 -1.7 

Work 0.0 -0.4 -0.8 -0.1 

School 0.0 0.0 -0.1 -0.1 

Maintenance 0.0 -1.8 -1.9 -2.0 

Discretionary 0.0 -0.9 -1.0 -0.1 

Pick Up 0.0 1.9 2.0 1.7 

Drop Off 0.0 -0.1 -0.2 -0.1 

OH-Other 0.0 -0.3 0.1 -0.1 

Total Activity Duration 0.0 -3.4 -2.9 -2.5 

Time Spent on Travels 
   

 Home 0.0 1.0 0.8 0.7 

Work 0.0 0.8 0.7 0.7 

School 0.0 0.0 0.0 0.0 

Maintenance 0.0 1.0 0.9 0.6 

Discretionary 0.0 0.2 0.2 0.1 

Pick Up 0.0 0.1 0.1 0.1 

Drop Off 0.0 0.0 0.0 0.1 

OH-Other 0.0 0.2 0.2 0.1 

Total Travel Duration 0.0 3.4 2.9 2.5 

 

1
8
3
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Conclusions and Discussion 

In conclusion, the enhanced framework of the integrated model system is capable 

of evaluating the impacts of real-time information provision on activity-travel behavior in 

a behaviorally realistic way.  The SimTRAVEL model system was enhanced in this 

research effort to allow modeling of travel demand decision en-route to activity 

destination. The framework assumes continuous exchange of information between two 

key components, the activity-based model and dynamic traffic assignment model system.  

Hence, the activity-based model has information whether travelers are in distress or in 

normal network condition.  The activity-based model (openAMOS) is able to use the 

current travel status to adjust activity-travel engagement patterns in response to real-time 

traveler information in the event of a network disruption.  The adjusted trips with new 

travel information are sent back to the dynamic traffic assignment model to be re-routed 

on the network.  

This case study offers intuitive results that demonstrate the capability of the 

enhanced SimTRAVEL to evaluate impacts of real-time traveler information provision 

on activity-travel engagement patterns in the event of a network disruption.  This study 

employed three different scenarios (Baseline, No real-time information, and 50% real-

time information) and conducted comparative analysis among the results from the three 

micro-simulation runs to test the impact of real-time traveler information on activity-

travel patterns.  A couple of interesting trends are observed from the results.  First, 

travelers who have access to current network conditions en-route to their destinations 

would choose destinations in such a fashion that they avoid congested areas on the 

network.  Second, total travel duration for the travelers with real-time information 
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decreased from the scenario that assumes no information provision.  This finding is 

consistent with expectation as travelers with real-time information were found to choose 

destinations outside the areas affected by a network delay event, they are able to reduce 

time spent on travel.  The results corroborate the fidelity of the enhanced integrated 

model system in simulating the impacts of real-time traveler information provision under 

varying levels of user information provision.    

Future research should focus on enhancing the integrated model system along the 

following lines of inquiry.  First, the activity-based demand model (openAMOS) should 

be made capable of accurately predicting the array of changes in activity-travel 

engagement patterns impacted by real-time information provision under network 

disruption events.  Travelers who have access to real-time information and are en-route to 

an activity destination could alter their route, destination, or skip the activity altogether.  

The enhanced model system only models altering route and destination for travelers who 

are en-route and impacted my network congestion.  A series of models in SimTRAVEL 

should be enhanced to make the model system capable of predicting change of activity or 

skipping the activity altogether in the case the traveler is en-route and experiences severe 

congestion.  Second, the activity-based model should use accurate current location 

information for each traveler, who is en-route to the destination.  In this study, the current 

locations of trips in distress were not provided by a dynamic traffic assignment model but 

are simulated using an approximation method.  This approximation can be overcome in a 

straightforward way if a dynamic traffic assignment model is employed in the integrated 

model system.  Third, the integrated model system should be made capable of modeling 

travel behavior of individuals with pre-trip and en-route information simultaneously.  In 
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the real world, some travelers decide activity-travel engagements using pre-trip 

information before embarking on a trip and some others use real-time information en-

route to their destination.  The integrated model system (SimTRAVEL) should be 

enhanced to handle these different types of travelers simultaneously.   
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CHAPTER 8 

Summary and Contributions 

The impetus for this research stems from the necessity to develop an integrated 

urban model system that is flexible enough for testing an array of policy scenarios based 

on real-time information provision.  With ever increasing air pollution and greenhouse 

gas emissions from the transportation sector, such a model is needed now more than ever 

to devise/test policies of the new age that make use of the technology available at hand.  

To simulate the activity-travel patterns/ traffic flows in response to real-time information 

provision, transportation modeling tools should be enhanced with state-of-the art 

capabilities that ‘mimic’ the real-world decision making process of individuals.  In a 

sequentially operated travel demand model system, the travel demand of a region is 

generated for an entire day (or for a few time periods such as peak, off-peak etc.) and 

then the traffic assignment model routes these trips on the network to identify critical 

bottlenecks.  While such a framework is sufficient to test the infrastructural necessities of 

a city for a given travel demand, it is not much useful to simulate network disruption 

events such as an accident or the closing of a highway lane etc.  To be able to accurately 

reflect travel behavior in real-time, there needs to a tight coupling between the travel 

demand model system and the traffic assignment model.  Many research efforts in the 

recent past have developed integrated urban model systems that combine an activity-

based micro-simulation model with a dynamic traffic assignment model.  One such 

model is SimTRAVEL proposed by Pendyala et al. (2012).  The authors not only propose 

a methodological framework but also demonstrate the capabilities of an operational 

prototype of model system.  However, the previous version of SimTRAVEL (Simulator 
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of Travel, Routes, Activities, Vehicles, Emissions, and Land use) is not fully capable of 

handling scenarios that involve modeling the impact of real-time information dynamics 

on activity-travel engagement behavior.  Although a case study was presented in the 

context of pre-trip information provision using the SimTRAVEL (Konduri et al., 2013), 

the scenarios presented used only extreme cases where either none (0%) or all (100%) of 

the population have access to pre-trip information.  This assumption is made for 

operational convenience owing to the limitations of the model system in handling 

multiple network conditions and user classes simultaneously.  In the current research 

effort, SimTRAVEL is enhanced in three incremental steps to allow more realistic micro-

simulation of activity-travel engagement patterns particularly in light of availability of 

real-time information.  In the first step, the model system was enhanced by incorporating 

the ability to handle multiple network conditions i.e., in addition to experienced network 

conditions, the model system is also made capable of handling prevailing network 

conditions so that different network skims (origin-destination travel time matrices) can be 

used for people with different levels of access to information in the activity-travel 

demand model.  Prevailing network conditions are very helpful to conduct analysis 

regarding the impacts of pre-trip information provision on activity-travel patterns.  This 

enhancement enables the integrated model system to conduct policy analyses that require 

simultaneous use of multiple network conditions.  One such policy called the Low 

Emission Zone (LEZ) policy is tested using a case study in the Phoenix region.  LEZs are 

geographically defined areas that seek to incentivize “green transportation choices” or 

prevent high-polluting vehicles from entering the zone to improve air quality within the 

geographic area (Schneeberger et al., 2013).  In the case study, an LEZ policy that 
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incentivizes green transportation modes and also provides enhanced transit services to 

LEZs is studied to understand the impacts of LEZs on activity-travel engagement patterns, 

energy consumption and emissions.  Network conditions for different modes (auto vs. 

transit) and different types of travelers (eco vs. non-eco) are simultaneously used in the 

enhanced model system to conduct this case study. 

The second enhancement made to the model is incorporating the capability to 

allow for a route change in light of real-time information.  This enhancement is made 

entirely on the side of dynamic traffic model (for switching route).  Case study to 

demonstrate the second enhancement was not presented as this research mainly focuses 

on the demand choices.  Third, a series of choice models were incorporated into the 

activity-based model (openAMOS) in SimTRAVEL framework for modeling the change 

in activity-travel engagement patterns in light of a network disruption event and 

availability of real-time traveler information.  In the enhanced prototype of the integrated 

model system, the dynamic traffic assignment model identifies trips that experiencing 

severe congestion (and have access to real-time traveler information), and sends those 

trips back to the activity-based model.  The demand model evaluates and re-simulates 

activity-travel engagement patterns for trips that are in distress and sends back the 

changed activity-travel information (destination) to the dynamic traffic assignment model.  

The two key components in the tightly integrated model system are enhanced to allow 

modeling the change of activity-travel engagement patterns en-route in light of real-time 

information.   

This research makes important contributions to empirical literature on activity-

based travel demand models, develops state-of-the art knowledge for use in research and 
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practice in the area of integrated model systems. The capabilities incorporated in the 

integrated model system provide transportation policy makers with an abundance of 

options to test policies that hinge on provision of real-time information (dynamic tolls, 

time-of-day based lane closures etc.).  The contributions made by this research effort are 

summarized below: 

1. The enhanced integrated model system (SimTRAVEL) is capable of modeling the 

impacts of real-time information provision while accurately representing the 

effects of different levels of access to information for different travelers.  The 

level of access to information greatly influences the activity-travel engagement 

patterns of individuals.  For example, in the event of a network disruption a 

person who does not have access to information regarding prevailing network 

conditions might start a journey and get stuck in traffic inordinately.  In the same 

situation, if the individual has access to current network conditions, he/she might 

alter the destination/departure time or cancel activity altogether if need be so. The 

enhanced integrated model system is able to accurately capture different decision 

paradigms across cohorts with varying levels of information.    

2. Transportation policy makers can use the enhanced integrated model system, to 

conduct a wide range of policy analyses.  For example, this paper presents the 

results of a case study in the context of introducing Low Emission Zones (LEZ) in 

a three city sub region of the Greater Phoenix Metropolitan Area.  In this case 

study, LEZ policies are tested by incentivizing ‘greener’ transportation modes and 

also enhancing the transit service to LEZs.  The case study provided intuitive 

results and proved that the enhanced model system is flexible enough to be 
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applied to a tailor made policy.  In addition, the enhanced model system was also 

tested on an eco-lane (Eco-lane could be defined as a dedicated lane, similar to a 

HOV lane on which only eco-vehicles are allowed to travel) policy analysis. 

Results of the eco-lane analysis are not provided in the interest of brevity. 

3. The research contributes to technical advancement in operational implementation 

of integrated models of urban continuum.  This research builds on a state-of-the 

art integrated model system SimTRAVEL and enhances the system with several 

operational capabilities.  This research enhances linkages between the activity-

based travel demand model and the dynamic traffic assignment model and 

provides a behaviorally consistent approach to simulate activity-travel patterns in 

light of availability of real-time network information.   

4. This research contributes to the empirical literature in transportation planning 

arena.  The integrated model of the urban continuum used in this study observes a 

tight coupling between the activity-travel model and the dynamic traffic 

assignment model.  The key components are linked in an efficient fashion with an 

intent to overcome the shortcomings of the previous implementations that employ 

input-output protocols and feedback processes sequentially.  

5. This research integrates a dynamic traffic assignment model to the activity-based 

travel demand model using the concept of classes in object-oriented programming.  

This concept in SimTRAVEL can open possibilities for researchers to switch to 

any dynamic traffic assignment model of their choice by adding a class to 

integrate it to openAMOS.  This feature is built into the model software so that 

the model can be seamlessly transferred to cutting edge dynamic traffic 
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assignment models as and when they become available.  Users will always be able 

to resort to the older versions of SimTRAVEL by using the built-in classes.  For 

example, the previous version of SimTRAVEL employed the framework of 

UrbanSim-openAMOS-MALTA.  In this iteration of the model, MALTA is 

replaced with another dynamic traffic assignment model called DTALite.  If a 

user wants to switch back to MALTA in light of future advancements, 

SimTRAVEL is capable of easily invoking the built-in class to integrate MALTA 

to openAMOS.  

For future works, the updated model system in this study should be enhanced in a 

couple of points to accurately model activity-travel engagement patterns and traffic flows 

under real-time traveler information provision.  First, the integration between an activity-

based demand model and dynamic traffic system at the second level presented in Chapter 

4 should be tested using the integrated model system (SimTRAVEL).  Since this study 

focus on analyses of activity-travel engagement decision processes under real-time 

traveler information provision, the test for the integration at the second level is skipped.  

In real world, travelers who have access to real-time traveler information systems are able 

to switch their route to avoid network delay events and quickly arrive their activity 

destinations.  Transport model tools should be able to capture impacts of route switching 

using real-time information provision to accurately predict traffic flows and activity-

travel decision patterns.  Second, the activity-based model (openAMOS) should be able 

to accurately simulate en-route choice processes under various levels of real-time 

information provision in the latest version of SimTRAVEL that was enhanced in this 

study.  In addition to choice of a destination change during travelers are en-route, they 
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may abandon their current pursuing activities and skip the activity altogether.  Although 

the integrated model system in this study is able to capture a destination change, it should 

be enhanced to reflect various activity-travel decision behaviors in en-route decision 

processes under real-time information provision in future researches.  While an integrated 

model system is enhanced in order to capture various en-route decisions, the activity-

based demand model should consider for reconciliation among activities and travels for 

each individual’s daily activity-travel agenda.  For example, if a traveler would skip the 

current pursuing activity and alter activity and destination altogether, the new activity 

should not conflict to the subsequent activities and travels in the traveler’s activity-travel 

schedules.  That is, an activity-based demand model should include a process to reconcile 

among activities and travels to be consistent across an entire schedule for a simulation 

day for all synthetic persons.    
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