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ABSTRACT

Feature representations for raw data is one of the most important component in a

machine learning system. Traditionally, features are hand crafted by domain experts

which can often be a time consuming process. Furthermore, they do not general-

ize well to unseen data and novel tasks. Recently, there have been many efforts to

generate data-driven representations using clustering and sparse models. This disser-

tation focuses on building data-driven unsupervised models for analyzing raw data

and developing efficient feature representations.

Simultaneous segmentation and feature extraction approaches for silicon-pores

sensor data are considered. Aggregating data into a matrix and performing low

rank and sparse matrix decompositions with additional smoothness constraints are

proposed to solve this problem. Comparison of several variants of the approaches

and results for signal de-noising and translocation/trapping event extraction are pre-

sented. Algorithms to improve transform-domain features for ion-channel time-series

signals based on matrix completion are presented. The improved features achieve

better performance in classification tasks and in reducing the false alarm rates when

applied to analyte detection.

Developing representations for multimedia is an important and challenging prob-

lem with applications ranging from scene recognition, multi-media retrieval and per-

sonal life-logging systems to field robot navigation. In this dissertation, we present

a new framework for feature extraction for challenging natural environment sounds.

Proposed features outperform traditional spectral features on challenging environ-

mental sound datasets. Several algorithms are proposed that perform supervised

tasks such as recognition and tag annotation. Ensemble methods are proposed to

improve the tag annotation process.

To facilitate the use of large datasets, fast implementations are developed for
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sparse coding, the key component in our algorithms. Several strategies to speed-up

Orthogonal Matching Pursuit algorithm using CUDA kernel on a GPU are proposed.

Implementations are also developed for a large scale image retrieval system. Image-

based exact search and visually similar search using the image patch sparse codes are

performed. Results demonstrate large speed-up over CPU implementations and good

retrieval performance is also achieved.

ii



To my family and friends ...

iii



ACKNOWLEDGEMENTS

This dissertation would not have seen the light of the day without the unending

support and guidance from my mentors, family and friends.

I am grateful to my advisor Dr. Andreas Spanias for providing inspiration and

assistance throughout my PhD. Along with excellent guidance he provided me a

great atmosphere for pursuing my research interests. I am also thankful to all the

members of my thesis committee Dr. Trevor Thornton, Dr. Michael Goryll and Dr.

Konstantinos Tsakalis for providing inputs and their valuable feedback.

I would like to extend my sincere thanks to Jayaraman Thiagarajan and Karthikeyan

Ramamurthy. I have had several successful collaborations with them. Our collabora-

tions have taught me a great deal. My sincere thanks to all the other collaborators

I have worked with. I would like to express my deep sense of gratitude towards Dr.

Jieping Ye for teaching the wonderful Machine Learning course at ASU. I would like

to thank Dr. Gil Speyer for inspiring through his teaching at ASU and his guidance

during my internship.

I would also like to thank Sherin Muckatira for always cheering me up and pro-

viding me unending support. The study sessions in Nobel library and Biodesign were

a great source of motivation and certainly accelerated my progress.

I would like to extend my gratitude to Mohit Shah for being a great friend, room-

mate, lab-mate and always ready to discuss my ideas. Special thanks to my friends

Ramesh Thulisraman, Hitesh Khunti, Vijay Sarvepalli, and Pushkar Kulkarni for

their unconditional support. This acknowledgement would not be complete without

mentioning Dutch Bros and Altitude Coffee Lab for serving wonderful coffee and an

atmosphere to recharge my batteries.

Finally, I would like to thank my parents and my brother for always wishing me

well and encouraging me in my endeavours.

iv



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Importance of Features in ML Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Learning Feature Transformation Functions . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Improving Transform Domain Features for Ion-Channel Sig-

nals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Representations for Environment Sound Analysis . . . . . . . . . . . 4

1.3.3 Feature Learning at Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.4 Subspace Based Methods for Silicon-Pore Data . . . . . . . . . . . . . 5

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Transform Domain Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Fourier Domain Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Wavelet Domain Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Walsh-Hadamard Domain Features . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Learning Subspace Based Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Sparse Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Matrix Decomposition Based Methods . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Topic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.4 Manifold Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Deep Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



CHAPTER Page

2.3.1 Receptive Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Pooling Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 FEATURES FOR ION-CHANNEL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Analyte Sensing Using Stochastic Ion-channel Signal Modulation . . . 37

3.2 Setup for Outer Membrane Protein (OmpF) Experiments . . . . . . . . . . 38

3.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Preprocessing the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Generating Robust PSD Features Using

Matrix Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 LRSP Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 Estimation of Number of Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.8.1 Support Vector Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.9 Detection Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.9.1 Normalized PSD Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.9.2 Analyte Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 DEEP REPRESENTATIONS FOR ENVIRONMENT SOUND ANAL-

YSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Learning Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Feature Space Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Predicting Semantic Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Ensemble Tag Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.2 Tag Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vi



CHAPTER Page

4.4 Datasets and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 SPARSE FEATURE LEARNING AT SCALE . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Dictionary Based Coding for Signals on GPU . . . . . . . . . . . . . . . . . . . . . 80

5.3 Image Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Performing an Exact Match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.2 Obtaining Visually Similar Images . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Image Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 Computing Low-Dimensional Embeddings . . . . . . . . . . . . . . . . . . . . . . . . 89

5.7 Tag Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.7.1 Improving Tag Prediction Performance . . . . . . . . . . . . . . . . . . . . 94

5.8 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 SUBSPACE BASED METHODS FOR ANALYSIS OF SILICON-PORE

SENSOR DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.2 Wavelet Transform Based Signal Denoising . . . . . . . . . . . . . . . . 100

6.1.3 Features: Baseline Current, Drop Height and Drop Width . . 101

6.1.4 Event and Non-Event Classification . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Dirichlet Process Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Minimum Description Length (MDL) Principle . . . . . . . . . . . . . . . . . . . 107

vii



CHAPTER Page

6.4 De-noising and Event Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.1 NpRPCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.2 NpGoDec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5 Event Classification and Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 SUMMARY AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

viii



LIST OF TABLES

Table Page

2.1 Normalized Spectral Clustering Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Classification Performance Using the Original and Stabilized PSD Fea-

tures for QUB Signals(Linear Kernel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 False Hits Percentage in Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Classification Accuracies in Percentage for Three Classes of Very Sim-

ilar Ion-Channel Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Classification Accuracies in Percentage for Four Classes of Ion-Channel

Signals which are Distant in the Feature Space. . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Classification Accuracies in Percentage for Twelve Classes Comprised

of Close and Distant Ion-channel Signals in the Feature Space. . . . . . . . 58

3.6 Errors in the Number of Channel Estimation. . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Average Energy of PSD Features Before and After Normalization. . . . . 63

4.1 Mini-batch Damped K-hyperline Clustering for Inferring Filters in Each

Layer of the Hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Confusion Matrix for the AASP Scene Classification Dataset Averaged

Over 100 Runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Recognition Performance of the Proposed Approach on the Publicly

Available AASP Development Dataset in Comparison to a Few Rele-

vant Entries in the AASP Scene Classification Challenge [1]. . . . . . . . . . . 77

4.4 Illustration of Tag Prediction Behavior in the Subspaces Found. Table

Shows the Top Predicted Tags in a Few Subspaces for a Particular

Clip. Related Concepts are Clustered in a Subspace. . . . . . . . . . . . . . . . . . 78

5.1 Precision-Recall Rates for the Corel-5k Dataset. . . . . . . . . . . . . . . . . . . . . . . 93

ix



LIST OF FIGURES

Figure Page

1.1 A Few Examples Showing Hand Engineered Features for Image and

Audio [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Categorization of the Hand-Designed Features for Audio [3]. . . . . . . . . . . 3

2.1 Short-time Fourier Transform. The Plot Shows the Variation in Spec-

tral Content Over Time of an Audio Clip Recorded in a Kitchen En-

vironment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Ion-channel Signal From (a) Analyte 1 (b) Analyte 2. (c) and (d) -

Corresponding Fourier Domain Features. (e) and (f) - Wavelet Domain

Features. (g) and (h) - Walsh-Hadamard Domain Features. . . . . . . . . . . . 13

2.3 lp norms. The Behaviour of the Norm Functions With Different p

Values are Shown. p ≤ 1 Lead to Sparse Solutions Among Which

p = 1 is Convex. p = 2 Leads to Standard Convex Squared Euclidean

Norm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Matrix Completion. The Problem Involves Filling the Missing Entries

Under Low Rank Assumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Lenet Architecture Used for Hand-writing Recognition [4]. . . . . . . . . . . . 31

2.6 Coates Deep Architecture for Image Classification Task [5]. . . . . . . . . . . . 31

2.7 Combination of Multiple Pooling Functions Improves Performance as

Shown in [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Average of Feature Vectors for Two Different Simulated Ion-Channel

Signals in Fourier Domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Average of Feature Vectors for Two Different Simulated Ion-Channel

Signals in Wavelet Domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

x



Figure Page

3.3 Average of Feature Vectors for Two Different Simulated Ion-Channel

Signals in Walsh Domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Ion-channel Signal Classification Results Using Linear SVM Kernel and

Fourier Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Classification Results Using Wavelet Features. . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Classification Results Using Walsh Features. . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Robust PSD Features. (a)-(c) are the Original PSD Features for Three

Segments of the Data, While (d)-(f) are the Corresponding Stabilized

PSD Features. The X-axis Denotes the Frequency Bins and Y-axis

Shows the Average Power Spectral Density. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.8 The Plots Show the Low Rank and Sparse Components of the PSD

Features of Two Similar Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 (Left) An Overview of the Proposed System. Each Layer in the Deep

Feature Learning Architecture Involves a Mapper Function that Infers

Filters and Evaluates Responses, and a Pooling Function that Parti-

tions the Feature Space and Aggregates the Responses. By Construct-

ing an Ensemble of Semantic Embeddings, the Underlying Tags can be

Effectively Estimated. (Right) A Subset of Layer-1 Filters (Dictionary

Atoms) Learned From the Dyadic Binned Spectrograms of the AASP

Challenge Dataset, Where the X- and Y-axes Correspond to Time and

Dyadic Frequency Bins, Respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xi



Figure Page

4.2 Effect of Using An Ensemble of Semantic Embeddings on the Clas-

sification Performance for a Particular Run on the AASP Challenge

Dataset. A Majority Vote Classifier Outperforms the Individual Clas-

sifiers Learned Using the Corresponding RSM Topic Models. . . . . . . . . . . 74

4.3 Prediction Performance (Accuracy and F1-score) of the Proposed Ap-

proach on a Subset of the Freefield1010 Dataset. This Subset was

Chosen Such That It Contained a Sufficient Number of Examples for

Each Tag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 The NVIDIA GPU Architecture (NVIDIA and CUDA Are Registered

Trademarks of NVIDIA Corporation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 OMP Running Times - Total Execution Time to Perform OMP on

Different Number of 64 Length Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 The NVIDIA GeForce GTX 460 GPU (NVIDIA is a Registered Trade-

mark of NVIDIA Corporation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Image Retrieval: In Each Case, the First Row Shows The First 5 Re-

sults Obtained Using Tag-Based Search in Flickr and the Second Row

Shows the Top 5 Results Obtained by Performing an Additional Level

of Search by Providing a Target Image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Figure Shows the Features and Tags of: (Left) Query Image, (Right)

Image With Closest Visual Feature and (Right) Image With Closest

Tag Vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1 Teflon Chambers With the Device in the Center and the Analyte

Within the Device (Micropore). The Electrodes Can Be Seen on Either

Side of the Chambers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xii



Figure Page

6.2 The Original Signal Showing Drops in Current Due to the Transloca-

tion Of Biotin-Coated Silica Beads Through a 5µM Diameter Pore and

the Signal Denoised Using DWT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 DPMM Based Clustering With Concentration Parameter α = 2. . . . . . . . 107

6.4 (Top) GMM Based Clustering and (Middle) Spectral Clustering on the

Feature Set. (Bottom) K-means Clustering on the Outlying Cluster

Based Only on the Variations in the Current Drop Amplitude. The

Time Duration is Uniformly Set to 1ms for Plotting Purposes. . . . . . . . . 116

6.5 Stacking a Clean Signal c Into a Matrix C. (a) Noise Free Step Signal.

(b) Scaled Image of Matrix C. (c) Singular Values of Matrix C. Figure

Shows that the Rank of Matrix C is 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.6 Stacking Noisy Signal d into a Matrix D. (a) Noisy Step Signal. (b)

Scaled Image of Matrix D. (c) Singular Values of Matrix D. Figure

Shows that the Rank of Matrix D is Approximately 2. . . . . . . . . . . . . . . . . 117

6.7 Signal Decompositions Using Original Formulations of RPCA. (a) Orig-

inal Signal Containing Trapping and Translocation Events. (b) Base-

line Signal Containing Only Trapping Events Obtained From Low

Rank Component. (c) Candidate Translocation Events (With Posi-

tive and Negative Amplitudes) Obtained From Sparse Component. . . . . 117

xiii



Figure Page

6.8 Signal Decompositions Using Original Formulations of GoDec. (a)

Original Signal Containing Trapping and Translocation Events. (b)

De-Noised Baseline Signal Containing Only Trapping Events Obtained

From Low Rank Component. (c) Candidate Translocation Events

(With Positive and Negative Amplitudes) Obtained From Sparse Com-

ponent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.9 Signal Decompositions Using DWT and NpRPCA. (a) Original Sig-

nal Containing Trapping and Translocation Events. (b) De-Noised

Baseline Signal Containing Only Trapping Events Obtained From Low

Rank Component. (c) Candidate Translocation Events (With Only

Negative Amplitudes) Obtained From Sparse Component. . . . . . . . . . . . . 118

6.10 Signal Decompositions Using NpGodec. (a) Original Signal Contain-

ing Trapping and Translocation Events. (b) De-Noised Baseline Signal

Containing Only Trapping Events Obtained From Low Rank Compo-

nent. (c) Candidate Translocation Events (With Only Negative Am-

plitudes) Obtained From Sparse Component. . . . . . . . . . . . . . . . . . . . . . . . . . 118

xiv



Chapter 1

INTRODUCTION

1.1 Importance of Features in ML Systems

A typical machine learning (ML) system takes low level sensor data as input and

produces decisions ranging from label prediction to estimation of continuous value

variables. Internally, this is a two step process, firstly, the low-level sensor data

are transformed into efficient representations called features, and secondly, the built

features are passed through a prediction algorithm to produce decisions. Prediction

algorithms have been a subject of great interest to the research community and several

efficient algorithms with strong theoretical guarantees have been developed [7]. These

algorithms can be broadly described as classifiers for predicting categorical variables

and regression functions for continuous value prediction.

Linear classifiers are one of the earliest pattern recognition algorithm. Input data

x is first transformed to f = Φ(x). This process is called feature extraction and f

is called feature representation of the data x. The sign of the linear discriminant

function y(x) = wT f + b is used as the prediction for the class. The learning process

involves finding w and b which are optimal for the training data and also have the

generalization power to perform well on unseen test data. These parameters define

the optimal hyperplane which divides the classes. Support Vector Machines (SVM)

with their maximum margin properties and the ability to use kernel tricks have en-

joyed great success and have become the de-facto choice for a classification algorithm.

Support Vector Regression (SVR) are their continuous value prediction counterparts.
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Figure 1.1: A Few Examples Showing Hand Engineered Features for Image and
Audio [2].

1.2 Learning Feature Transformation Functions

The performance of an ML system often hinges on the quality of the feature

representations. Thus, most efforts are usually directed towards this step. The trans-

formation function Φ(x) to obtain the features are usually designed using years of

domain-specific knowledge. This process is expensive and time consuming. Another,

downside of hand-crafted feature transformations are that they are not scalable, while

we know that, more the data we can utilize for training, we can do better at our task.

Figure 1.1 and 1.2 show the different sets of feature fund to work well for images and

audio. These are highly task specific and do not generalize well to unseen data and

thus are not reusable in novel but related tasks.

In light of these problems with hand-designed features, the focus is shifting to data-

driven approaches to learn the transformation function Φ(.) directly from the data.

This has been made possible by availability of large scale databases and powerful

hardware to process them. Features learned from large-scale data can effectively

capture the multitudes of variation in the data and can provide large improvements
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Figure 1.2: Categorization of the Hand-Designed Features for Audio [3].

in performance. These approaches have lead to breakthroughs in speech and vision

domain and provide state of the art in several object detection tasks [8]. Winners in

competitions such as ImageNet Large Scale Visual Recognition Challenge and several

Kaggle competitions have used feature learning approaches. They are now part of

many commercial systems and are deployed in Speech recognition and image analysis

systems used by millions of people on daily basis.

In this dissertation, the focus will be on strategies to handle prior information

to learn efficient features representations. Latent structure is explored using sparsity

and low rank constraints. Deep architecture are proposed to exploit the hierarchical

structure in data. Efficient algorithm designs to use parallelization and to tackle
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hardware/ software limitations are proposed.

1.3 Problem Statement

1.3.1 Improving Transform Domain Features for Ion-Channel Signals

Ion-channel sensors which mimic naturally occurring pore-forming proteins can be

used to detect small metal ions and organic molecules. A chamber with a lipid bilayer

hosting ion-channels produced by protein insertion constitutes such a sensor. Each

analyte produces a characteristic signal pattern during its migration from one section

of the chamber to another through the ion-channels. We propose the use of power

distribution information in the transform domain as discriminatory features for the

signal. Several subspace based algorithms are proposed to improve the discriminative

power of the features.

1.3.2 Representations for Environment Sound Analysis

The growing interest in wearable computing, automatic life logging, and predic-

tive inferences in robotics presents a huge potential for algorithms that characterize

environmental sounds. A commonly adopted pipeline for processing such data in-

volves extracting features to succinctly describe them, modeling the statistics of the

features, and deriving predictors that reveal the underlying semantics. The quality

of the extracted features is intimately tied to the subsequent stages for obtaining

inferences. In this dissertation, we propose a new approach for extracting hierarchi-

cal/deep features that can be very effective in characterizing natural environmental

sounds. Furthermore, we present an approach based on sparse representations to

predict tags for novel test samples using the proposed features.
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1.3.3 Feature Learning at Scale

Sparse coding is a key component in feature learning but computationally expen-

sive method. Processing data segments in parallel can result in tremendous speed-ups.

Performing fine-grain parallelization of the algorithms can also reduce computation

times. The inexpensive Graphical Processing Units (GPUs) are a popular option

for parallel processing. We propose GPU friendly strategies to save memory and to

achieve maximum speed-up and show their performance in large-scale sparse-coding

and image-retrieval tasks.

1.3.4 Subspace Based Methods for Silicon-Pore Data

Silicon pores with diameters in the range of micro/nano-meters can be used to

detect a range of analytes. Silica beads are used as carriers of biomolecules through

the pores. Passage of beads through the pores are termed as translocation events.

In the presence of certain pairs of biomolecules, the pores exhibit trapping behaviour

where the pores gets partially blocked. Such behaviour is termed as a trapping event.

In this dissertation, procedures for simultaneously de-noising the signal and extracting

the sparse translocation/trapping events using subspace methods have been proposed.

1.4 Contributions

In Chapter 3, building and improving transform domain features for ion-channel

time-series signals are considered. Power distribution features, extracted from the

frequency/sequency domains, are proposed that can effectively discriminate different

ion-channel signals. Improvement of power spectral density (PSD) features for ion-

channel signals is posed and solved as matrix completion problem. Improved features

achieve better performance in classification and in reducing the false alarm rates when
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applied to analyte detection. Algorithms are proposed to decompose the features

into low-rank and sparse components to capture the group behaviour and also give

importance to intra-group variation. The work discussed in this chapter has been

reported in [9] [10].

In Chapter 4, deep learning based models are considered to learn richer repre-

sentations for challenging tasks in environment sound analysis. A new framework is

developed for feature extraction and obtaining semantic inferences from such data.

In particular, a new pooling strategy for deep architectures is proposed, that can

effectively preserve the temporal dynamics in the resulting representation. Further-

more, algorithms are presented to perform partitioning of the feature space based

on the temporal dynamics of the corresponding filters. In addition to making filter

learning computationally tractable in the subsequent layers, the partitioning provides

a multi-view representation of the data. By constructing an ensemble of semantic

embeddings using the multiple partitions, an l1-reconstruction based prediction al-

gorithm for estimating the relevant tags is proposed. Proposed features outperform

traditional spectral features on challenging environmental sound recognition datasets.

Architecture, algorithms and results provided in this chapter have been published in

[11].

In Chapter 5, scalability issues with sparse coding as a feature learning algorithm

are considered. Several strategies to speed-up Orthogonal Matching Pursuit algorithm

using CUDA kernel on a GPU are proposed. Implementations are developed as part

of a large scale image retrieval system. Image-based exact search and visually similar

search using the image patch sparse codes are performed. Results demonstrate large

speed-up over CPU implementations and good retrieval performance is also achieved.

The work discussed in this chapter has been reported in [12].

In Chapter 6, simultaneous segmentation and feature extraction approaches for
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silicon-pores sensor data are considered. This problem is posed as a low rank and

sparse matrix decomposition in the presence of dense noise with additional smooth-

ness constraints on the low rank and sparse components. Several variants of RPCA

and GoDec suitable for this data are proposed. Comparison of both approaches

and results for signal de-noising and translocation/trapping event extraction are pre-

sented. Analysis of the shape and duration of these events enables us to estimate

the properties of analytes. The proposed approach uses spectral clustering to cluster

the events in the feature domain as the shape of the clusters is unknown. Spectral

clustering accurately finds the natural clusters and the outlying cluster. The outlying

cluster is further clustered to find the categories of the events within it. Methods and

results discussed in this chapter has been reported in [13].
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Chapter 2

BACKGROUND

2.1 Transform Domain Features

Transform-domain approaches suited for characterizing signals have been devel-

oped. In this approach, the signals are transformed to new co-ordinate system using

hand-designed basis functions, with the hope that the data dimensions are uncorre-

lated in the new space. Feature vectors are then generated either by picking largest

coefficients from the transformed representation of the signals or alternatively vari-

ous statistical operations can be performed to generate the feature representations.

As a generative process, the data is assumed to be obtained as the linear combina-

tion of the fixed basis functions or vectors. For unitary transformations, the forward

operation is given as

a = Ψ∗x (2.1)

where the columns of Ψ are the basis vectors. x is the data vector and a is the

representation of the data in the transformed domain. The inverse transform reduces

to

x = (Ψ∗)−1a = Ψa (2.2)

after using the property of the unitary matrices. These transformations preserve the

vector length or energies in the new space and can be understood as rotation of the

co-ordinate system around the origin with possible sign flips.
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Figure 2.1: Short-time Fourier Transform. The Plot Shows the Variation in Spectral
Content Over Time of an Audio Clip Recorded in a Kitchen Environment.

The Discrete Fourier Transform (DFT) is one of the most well known fixed basis

transformation method. In this transform, the basis are set as complex exponentials

with Ψk,n = ej2πkn/N . The forward and inverse transforms are given as below.

a[k] =
N−1∑
n=0

x[n]e−j2πkn/N , 0 ≤ k ≤ N − 1 (2.3)

x[n] =
1

N

N−1∑
k=0

a[k]ej2πkn/N , 0 ≤ n ≤ N − 1 (2.4)

x[n] = p0 +

N/2−1∑
k=0

p[k]cos

(
2πkt[n]

Ndt

)
+ q[k]sin

(
2πkt[n]

Ndt

)
, 0 ≤ n ≤ N − 1

(2.5)

p0 = a[0]/N

p[k] = 2 · real(a[k + 1])/N

q[k] = −imag(a[k + 1])/N

(2.6)

The Discrete Cosine Transform (DCT) uses cosines and real numbers only to

reconstruct the signals and is valid only for real signals. This representation leads to

better compression compared to DFT. The coefficients for DFT are computed as
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a[k] =
N−1∑
n=1

x[n] cos

(
π

N
(n+

1

2
)k

)
(2.7)

DCT and DFT use infinite length sinusoids as basis and lack localization property.

This short-coming is highlighted when the signal is non-stationary in nature. One of

the remedy is to perform DFT over short windows. Figure 2.1 shows the energy of the

DFT transform when computed over small windows. The Discrete Wavelet Transform

(DWT) is a linear transformation that can be used to analyze the temporal and

spectral properties of non-stationary signals. The DWT of a sequence x[n] is defined

by the following equation:

a[k] =
∑
j

∑
k

x[n]2−j/2ψ(2−jn− k) (2.8)

where ψ(.) is the transforming function called the mother wavelet. DWT decomposes

the signal into coarse and fine information coefficients providing a multi-resolution

representation. DWT is computed by successively applying pairs of analysis filters to

the input signal. The advantage of the wavelet representation is that it can provide

both time and frequency parameters for specific dynamic signal events, i.e. time-

frequency localization [14]. In contrast, the Fourier transform based filtering methods

assume that the signal is stationary and thus cannot provide any information on the

variations in the spectrum with respect to time.

The distribution of power over frequency bins for Fourier and Wavelet transforms

contain key statistical characteristics of the signals, although the coefficients of the

representations themselves are random. A similar argument can be applied to the

distribution of power over sequency bins for the Walsh-Hadamard transforms as well.

This is because the Walsh functions are similar to the Haar wavelet, albeit lacking the

localization property. Consider a signal represented by x. The problem is to extract

relevant features from the Fourier, Wavelet and Walsh-Hadamard domain represen-

10



tations of x, that are sufficiently close to each other for signals within a single class.

In addition, the features across multiple classes should have sufficient discriminatory

information. We can use the distribution of power over a number of pre-specified bins

in the frequency or sequency domain as the feature vector. The power in each bin

specifies the relative dominance of the frequencies in the bin and is a robust statisti-

cal representative of the signal than the coefficients of the representation, which are

themselves random in nature.

2.1.1 Fourier Domain Features

The Fourier domain features are computed by taking the PSD of the signal x

using the Welch procedure given in [14]. Estimating the PSD involves windowing of

the signal and averaging the modified periodograms computed over the windows to

reduce the variance of the estimate. We denote fs as the sampling frequency and fc

as the frequency where the flat and sloping portions of the PSD intersect.

The feature to be used is derived from the PSD. The DC value of the PSD is

neglected and the PSD is divided into bins spaced in powers of two. The PSD values

in each bin are summed and finally normalized by the total signal power, which results

in the feature vector. The lower frequencies are thus represented by more points in

the feature vector and the higher frequencies are represented by lesser number of

points. This is expected to better capture the signal power concentrated in the lower

frequencies. Each bin represents the frequency range from fs/2
l+1 to fs/2

l and the

center frequency of the bin is given by 3fs/2
l+2, where l = {1, ..., L} is the index of

the bin
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2.1.2 Wavelet Domain Features

For computing the wavelet domain features we use the PDF described in [15].

We use the Haar wavelet, as it has a shape that correlates well with the general

switching state structure of the ion-channel signal. The signal x is divided into M

non-overlapping windows, and the PDF is averaged across the windows to reduce the

variance, similar to the case of estimating PSD. Denoting cl,k,m as the kth wavelet

coefficient in scale l for the mth frame, the average PDF at scale l is

xW (l) =

∑M
m=1

∑Kl
k=1 c

2
l,k,m

‖x− x‖2
2

, (2.9)

where Kl is the number of coefficients at scale l, x is the vector containing the average

of the elements in x.

As in the case of PDF, the center frequency of the scale l is given by 3fs/2
l+2 and

this feature also gives more importance to the lower frequencies (coarser scales) of

the wavelet decomposition, which predominantly captures the signal characteristics.

2.1.3 Walsh-Hadamard Domain Features

The Walsh-Hadamard transform uses the Walsh basis functions to decompose a

signal. The representation does not have an interpretation in terms of frequency, but

the variation in the basis function is defined in terms of sequency. Similar to the case

of Fourier and Wavelets, the the signal x is divided into M non-overlapping windows.

The Walsh-Hadamard transform is computed for each windowed signal and the power

distribution is calculated over L linear bins of sequencies. The average power distri-

bution is calculated by averaging the power distributions of the M windowed signals

and they are the representative features for the signal.

As an example, these transform domain methods can be used to develop represen-

tations for ion-channels. Ion-channels are the pores across engineered membranes and
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Figure 2.2: Ion-channel Signal From (a) Analyte 1 (b) Analyte 2. (c) and (d) -
Corresponding Fourier Domain Features. (e) and (f) - Wavelet Domain Features. (g)
and (h) - Walsh-Hadamard Domain Features.

the opening and closing of pores can be characterized by stochastic process [16]. In

the simplest situation, the ion-channels produce a fluctuating current characterized

by binary states and the identity of the analyte can be inferred from the magnitude

and duration of the fluctuations. The frequency of the fluctuations often reveal the

concentration of the analytes [17]. Simulated ion-channel signals for two different

analytes are shown in Figures 2.2 (a) and (b) and their corresponding Fourier domain

feature vectors are shown in Figures 2.2 (c) and (d) respectively. Figures 2.2 (e) and

(f) show the feature vectors from the wavelet representation corresponding to the

signals in Figures 2.2 (a) and (b).Figures 2.2 (g) and (h) show the features derived
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from the Walsh-Hadamard representation for the ion-channel signals shown in Fig-

ures 2.2 (a) and (b). The Walsh functions are similar to the Haar wavelet except that

they lack the time localization properties of Haar wavelet. Hence, this feature also

captures the key statistical properties of the ion-channel signals though it could be

slightly inferior to the wavelet domain features.

Under zero-noise conditions, a state-switching signal is the realization of a con-

tinuous time Markov random process, with states denoted by i ∈ S, where S is the

state space. The continuous time random process at any instant τ is denoted by

the random variable x̃τ which can take the values g(i), where i ∈ S and g(.) is an

invertible map. The continuous time Markov process is defined by the rate transition

matrix Q, whose rows sum to 0 [18]. The total number of states is given by |S|.

Sampling the process at time intervals ∆τ gives rise to a discrete time Markov

process denoted by the random variable x̃t such that τ = ∆τ t. The state transition

matrix of the discrete time Markov process is obtained as A = exp(Q∆τ ). This

implies that A =
∑|S|

k=1 Ak exp(λk∆τ ), where Ak is the product of the kth right

and left eigenvectors of Q [18]. It can be observed that the eigenvectors of A are

the same as the eigenvectors of Q and the eigenvalues of A are always positive. A

always has 1 as the maximum eigenvalue. The state transition probabilities of the

Markov chain are given by, pij = Pr(x̃t+1 = g(j)|x̃t = g(i)), where i ∈ S and j ∈ S.

pij is the (i, j)th element of A. The stationary distribution of the Markov chain is

given by πi = Pr(x̃ = g(i)). The mean of the random process denoted by x̃t is

µ = E[x̃t] =
∑

i∈S πig(i) and the autocorrelation function is given by,

R(n) = E[x̃tx̃t+n] =
∑
i∈S

∑
j∈S

g(i)g(j)pn,0ij , (2.10)

where pn,0ij = Pr(x̃t+n = g(j)|x̃t = g(i)).

The one-sided Power Spectral Density (PSD) of the Markov chain can be computed
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using the z-transform as F+(z) =
∑∞

n=0R(n)z−n [19]. Therefore,

F+(z) =
∞∑
n=0

∑
i∈S

∑
j∈S

g(i)g(j)pn,0ij z
−n,

=
∑
i∈S

∑
j∈S

g(i)g(j)πiP
+
ij (z), (2.11)

where z = rejω, p
n|0
ij = Pr(x̃t+n = j|x̃t = i) and P+

ij (z) =
∑∞

n=0 p
n|0
ij z

−n. Using the

Chapman-Kolmogorov equation,

p
n+1|0
ij =

∑
r∈S

pirp
n|0
rj , (2.12)

P+
ij (z) = z−1

∑
r∈S

pirP
+
rj(z) + p

0|0
ij , (2.13)

where p
0|0
ij = 1 when i = j, p

0|0
ij = 0 when i 6= j. Define P+(z) as the z-transform

matrix with the (i, j)th entry being P+
ij (z). Now P+(z) = z−1AP+(z) + I, and hence

P+(z) = (I− z−1A)
−1

. Therefore, from (2.11), F+(z) = sTPπP
+(z)s, where s is

a vector with elements g(i) and Pπ is a diagonal matrix with πi as the diagonal

elements. The two sided PSD can be obtained as F (z) = F+(z) +F+(z−1)−F+(∞).

Since R(0) = F+(∞),

F (z) = sTPπP
+(z)s + sTPπP

+(z−1)s− sTPπs,

= sTPπ

(
I−A2

) (
I− 2rA cosω + A2

)
s. (2.14)

Indicating the eigen decomposition of A as UΓU−1, such that the eigenvalues are

{γk}|S|k=1, we obtain,

F (z) = sTPπU(I− Γ2)(zI− Γ)−1(z−1I− Γ)−1U−1s,

= sTPπUΓ̂(z)U−1s, (2.15)

where Γ̂(z) is a diagonal matrix with the (i, i)th entry as (1− γ2
i )/[(z− γi)(z−1− γi)].

This means that the poles of the PSD lie on the positive real axis in the z-plane
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because 0 < γi ≤ 1. Therefore, the PSD of the Markov chain, which characterizes an

ion-channel signal will always have low-pass characteristics.

The wavelet power spectrum at scale l and location m of the Markov random

process x̃t is given by [20],

Wlm =
∞∑

n=−∞

R(n)Ψlm(n), (2.16)

where l ∈ Z, m ∈ Z and Z is the set of integers. Note that in this case, we do not

assume the random process to be zero mean, but it is easy to remove the contribution

of mean from R(n). Ψlm(n) is the two-sided autocorrelation function of the wavelet

function ψlm(ξ) at scale l and location m given by,

Ψlm(n) =
∞∑
ξ=0

ψlm(ξ)ψlm(ξ + |n|). (2.17)

When the parameters of the random process are not available and we only have the

realization {xt}T−1
t=0 , we can use the Discrete Wavelet Transform (DWT) to compute

the distribution of energy across multiple scales. The scalogram at scale l is defined

as,

W s(l) =
∑
m

c2
lm, (2.18)

where clm is the wavelet coefficient of {xt}T−1
t=0 at scale l and location m. It has been

shown that under certain conditions [20], E[W s(l)] =
∑

mWlm+O(T−1). We use the

scalogram in order to classify ion-channel signals.

Similar to the Fourier power spectrum, the Walsh power spectrum of a ran-

dom process is defined to be the Walsh-Hadamard transform of the logical auto-

covariance function. When the realization {xt}T−1
t=0 of the random process is avail-

able and T = 2n, for some positive integer n, the Walsh transform is defined as

H(m) = T−1
∑T−1

t=0 Hmtxt for m = 0, 1, · · · , T − 1 [21]. Half the number of zero

crossings of the Walsh function Hmt is referred to as sequency. The expected value
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E[H(m)] has been proven to be equal to the Walsh power spectrum Hp(m) and this

is known as the logical Wiener-Khintchine theorem [21, 22]. Therefore, for practical

purposes, the Walsh power spectrum can be computed by dividing the realization of

the random process into equal length windows, calculating and squaring the Walsh

transform coefficients point by point and averaging all the coefficients to find the

Walsh power spectral estimate.

2.2 Learning Subspace Based Features

Recently there has been great interest in learning basis from the data directly in-

stead of using fixed transformations. This is advantageous in terms of the efficiently

and the quality of representations obtained. Intuitively, we can say that the span

of the basis vectors learned helps us discover the natural structure in the data. The

criterion used to learn the basis lead to different methods. Minimum reconstruction

error in representations lead to Karhunen Love Transform (KLT). Statistically inde-

pendent coefficients requirement leads to the method called Independent Component

Analysis (ICA). And one of the most well algorithm Principal Component Analysis

(PCA) retains coefficients whch preserve the maximum variance in the data. PCA

algorithm can be summarized as follows

1. Let the data be represented as X. Subtract the mean to centralize the data.

2. Compute the covariance matrix C = 1
N−1

XTX.

3. Compute the eigenvectors of the covariance matrix.

4. The learned basis V are the S eigenvectors that correspond to the largest S

eigenvalues.

5. Also using SVD, the right singular vectors of X can form V.

17



6. Features are the projection F = VX of the data onto the space spanned by V.

2.2.1 Sparse Models

Sparse models assume that instead of a global subspace the data lies on the union

of multiple subspaces. A sparse linear combination of elementary features [23] can

capture statistical structure in data and allows for their efficient representation. The

linear model used for sparse coding is given by

y = Ψa + n, (2.19)

where y ∈ RM is the data vector, Ψ = [ψ1ψ2 . . .ψK ] ∈ RM×K is the dictionary, that

contains the set of representative patterns, whose columns are normalized to unit

`2 norm. a ∈ RK is the coefficient vector and n is a noise vector whose elements

are independent realizations from N (0, σ2). Sparse representation problems require a

good approximation with a constraint on coefficient sparsity. Adapting dictionaries to

the data allows the extraction of key patterns specific to the data, thereby providing

a better representation than using predefined dictionaries. Learned dictionaries are

useful in many signal/image processing applications [24], [25].

Sparse Coding Algorithms

Some of the widely used methods for computing sparse representations [26] include the

Matching Pursuit (MP), the Orthogonal Matching Pursuit (OMP), the Basis Pursuit

(BP) and iterated shrinkage approaches. When structured as an overcomplete set of

vectors adapted to the training data [27], dictionaries achieve improved performances

in several applications.

For an orthonormal dictionary, Ψ, we can compute an S−sparse representation by

choosing S atoms that provide the largest inner products with the target signal. This
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Figure 2.3: lp norms. The Behaviour of the Norm Functions With Different p Values
are Shown. p ≤ 1 Lead to Sparse Solutions Among Which p = 1 is Convex. p = 2
Leads to Standard Convex Squared Euclidean Norm.

can be performed greedily by choosing the most strongly correlated atom, removing

its contribution from the signal and iterating. The greedy methods such as MP and

OMP generalize this idea to the case of any arbitrary dictionary. Hence, greedy

methods make a sequence of locally optimal choices in an effort to obtain a global

optimal solution [28]. The OMP algorithm performs a least squares minimization in

each step to ensure that the approximation is obtained over all the atoms that have

been chosen until that step. This implies that the greedy selection always picks an

atom that is linearly independent from the atoms already chosen.

Dictionary Learning Algorithms

Dictionary learning problem can be written mathematically as the minimization of

g(Ψ) = Ex[l(x,Ψ)] (2.20)

where l(x,Ψ) denotes the representation error associated with x when using Ψ as

the dictionary. The optimal dictionary Ψ is obtained by minimizing the expected

representation error for all data points. This is hard problem as we usually do not

know the underlying data distribution. We resort to empirical minimization using

the available training data points and assigning equal probabilities to each of them.

g(Ψ) =
1

T

T∑
i=1

l(xi,Ψ) (2.21)
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When we know the sparse codes, squared l2− norm of the approximation error

ei = xi −Ψai is used as the loss function l(.).

minimizeΨ

T∑
i=1

‖xi −Ψai‖2
2

subject to ‖Ψj‖2 ≤ 1 for all j = 1, .., K (2.22)

In the method of optimal directions, alternating minimization scheme is used.

Using l0-minimization constraint the sparse codes are obtained in one iteration.

minimizeai

T∑
i=1

‖xi −Ψai‖2
2

subject to ‖ai‖0 ≤ s for all i = 1, .., T (2.23)

In the next iteration, all dictionary is updated such it minimizes

MSE =
1

T
‖X−ΨA‖FF (2.24)

where X = [x1x2 . . .xT ] is the data matrix and A = [a1a2 . . . aT ] is the matrix

containing the sparse coefficients of all the data samples.

The minimization leads to a closed form solution and the dictionary update at

time t+ 1 is given as

Ψt+1 = XAT
t (AT

t At)
−1 (2.25)

The columns of the dictionary are normalized after each update.

To speed up the process the K-SVD algorithm proposes to update one dictionary

column or atom at a time and recompute the sparse codes for all the samples. The

dictionary update step can therefore be simplified as

‖X−ΨA‖FF = ‖X−
K∑
j=1

Ψja
T
j ‖FF = ‖X−

K∑
j 6=k

Ψja
T
j −Ψka

T
k ‖FF = ‖Ek−Ψka

T
k ‖FF (2.26)
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This reduces to computing rank-1 SVD of Ek and using it to update the kth atom.

This can lead to dense representations and is therefore modified by using only those

samples which use the kth atom to construct E
′

k and a
′

k.

K-means algorithm is a special case of the joint optimization problem of learning

the dictionary and the sparse codes. The sparse codes are restricted to have one

non-zero component out of the possible K and also that value has to be 1. This

essentially leads to clustering of the data and the centroids of each cluster can be

used as dictionary atoms. This has enjoyed great success in general ML systems due

to its low computational complexity compared to other algorithms. After simplifying

for this special case, the joint optimization problem reduces to

minimizeS,Ψ

K∑
j=1

∑
i∈Sj

‖xi −Ψj‖2
2

where Sj is a set containing the indices of data samples that pick the atom j. This is

solved by iterating over the following two steps. In the assignment step, the 1-sparse

codes are obtained for the data samples using the current dictionary atoms (centroids)

and S is updated after solving for all data samples.

minimizej‖xi −Ψj‖2
2

In the update step, each dictionary atom is updated as the average of the data samples

which picked it.

Ψj =
1

|Sj|
∑
i∈Sj

xi

Recently, this has been used as fast dictionary learning algorithm in sparse code

based systems with state-of-the-art results in several recognition tasks.

K-lines based dictionaries are based on k-hyperline clustering of the data. Unlike

k-means, which minimizes intra-cluster distances, k-lines tries to fit 1-D subspaces
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(hypelines) to the data. The sparse codes are still 1-sparse but now can also attain

values other than 1. The assignment step changes to

j =arg min
j
‖xi −Ψj(x

T
i Ψj)‖2

2

In the update step, the atoms are updated by solving the following using SVD algo-

rithm.

Ψj =arg min
Ψ

∑
i∈Sj

‖xi −Ψ(xTi Ψ)‖2
2

All the data samples which picked jth atom are accumulated in a matrix Xj and the

top-most left singular vector of that matrix is used as update the atom. Compared

to k-means, this algorithm has better generalization properties and is invariant to

scaling of the data samples. The multilevel dictionary (MLD) learning algorithm is

a hierarchical procedure where the dictionary atoms in each level are obtained using

this k-lines clustering. Multilevel dictionaries have been shown to generalize well to

novel test data, and have resulted in high performance in compressive recovery.

Instead of learning dictionaries using sophisticated learning algorithms, it is possi-

ble to use the training examples themselves as the dictionary. This gives tremendous

speed advantage when a small number of random data samples are used as dictionary

atoms as the learning step is completely eliminated. This approach has been applied

in image recovery problems such as super-resolution and compressive sensing.

This approach has also been used to built robust graphs called l1-graph by finding

a sparse linear combination for a data sample using the rest of the data samples. Low

dimensional representations for the data using this graph have been shown to work

well in image recognition tasks. In a classification framework based on examples as
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dictionaries, the training data from all the classes are stacked into a matrix Ψ =

[Ψ1...ΨC ], where C is the number of classes. For a test data y, a sparse code a is

obtained using Ψ as the dictionary. Let Ωc be the operator to select the indices of

the class c examples. The predicted class label p is obtained by solving,

p =arg min
c
‖y −ΨcΩca‖2

2 (2.27)

This harnesses the subspace structure in the data and is robust to noise in the data.

Completely opposite approach to the joint learning of dictionary and sparse codes

in the use of random vectors as dictionary atoms. This can work well in scenarios when

are interested in learning discriminatory models as compared to recovery models. The

structure in the data is encodes through the sparse coding step only. This approach

can be really fast and is used in the context of hierarchical and deep representations,

where structure and coding help us encode structure in the data.

2.2.2 Matrix Decomposition Based Methods

Learning a data model can be be posed as matrix completion problem under low

rank conditions, where unreliable entries are eliminated. This allows to exploit the

structure in data at the global scale.

Consider a matrix M ∈ Rn1xn2 with missing entries. The indices of the observed

entries (i, j) ∈ Ω where Ω is a subset of the cross-product set {1, . . . , n1}×{1, . . . , n2}.

The sampling operator PΩ applied to a matrix Y ∈ Rn1×n2 is given by

[PΩ(Y)]i,j =

 Yi,j (i, j) ∈ Ω

0 otherwise

 (2.28)

A unique low rank matrix Y consistent with the observed entries of M exists when

the singular vectors of the latter matrix obeys certain conditions. Such a matrix Y
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can be obtained by solving the following optimization problem.

minimize rank(Y)

subject to PΩ(Y) = PΩ(M) (2.29)

The conditions on the singular vectors of M are expressed as

‖uk‖l∞ ≤
√
µB/n1, ‖vk‖l∞ ≤

√
µB/n2 (2.30)

where k ∈ [r], r is the rank of the matrix M, uk and vk are singular vectors of matrix

M obtained using singular value decomposition (SVD). When µB is small the singular

values are well spread and are not spiky.

The rank minimization problem in (2.29) is non-convex and NP-hard. The rank

can be replaced by the nuclear norm defined as the sum of the singular values of

the matrix. It has been shown that this is the tightest convex relaxation to the rank

minimization problem [29]. The relaxed problem is given by

minimize ‖X‖∗

subject to PΩ(X) = PΩ(M) (2.31)

where ‖X‖∗ =
∑

k σk is the nuclear norm of the matrix X.

We can also decompose the matrix D directly as D = L + S + G, where S is a

non-positive sparse error matrix and G is a dense noise matrix. In order to extract

the baseline components in the signals, we impose a low rank constraint on L . As a

result, we obtain the following joint optimization problem:

arg min
L,S
‖D− L− S‖2

F ,

subject to rank(L) < r, card(S) < s. (2.32)
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Figure 2.4: Matrix Completion. The Problem Involves Filling the Missing Entries
Under Low Rank Assumption.

2.2.3 Topic Models

Topic models can be viewed as discrete analog of the PCA for dimensionality

reduction of the data. In these models, a particular data vector is interpreted as

a document made of multiple words. The inference step involves associating the

document with a topic or a mixture of topics in the probabilistic setting. In the later

case, each topic provides a distribution over the discrete words. Consider a corpus

of D documents d1, ..., dD. Each document di contains N words v1, ..., vN . Each

word comes from vocabulary comprising of K words. The training process involves

inferring J latent topics h1, ...hJ by maximizing the joint probability p(v, h).

In Latent Dirichlet Allocation (LDA) approach of topic modeling, each word is

assumed to be generated from a single topic. The topic mixture for each document

is drawn from a Dirichlet distribution. Exact Inference is intractable and therefore

variational methods are employed.

RSM topic models belongs to the family of undirected, energy-based models known

as restricted Boltzmann machines (RBM). Compared to LDA RSM allows a dis-

tributed representation for the topics and alternatively, each words can be assumed

to be generated from multiple topics. Boltzmann machines (BM) are Energy Based

Models (EBMs) where each configuration of variables is mapped to a scalar energy

function. BMs are a special form of log linear Markov Random Fields (MRFs) whose
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energy function is linear in its free parameters. The modelling capacity of a BM is

improved by incorporating variables which are never observed. The energy function

of a BM is denoted as E(v,h), where v denotes the visible or observable variables

and v are hidden or unobserved variables. Each configuration of a visible variable v

is assigned the probability based on the energy value.

RBMs are a special form of BMs with no connections among the visible variables

or among the hidden variables. Connections exist only between a pair consisting of

one visible variable and one hidden variable. In the case of RBM, the energy of a

configuration is given by, E(v,h) = −bTv− cTh−hTWv where, b, c are the biases

and W is the matrix of weights between the visible and hidden units. The hidden

variables are conditionally independent given the visible variables and vice-versa. We

use with RBM with binary units in which inputs and outputs attain value between 0

and 1. The Contrastive Divergence (CD) method [30] is used to learn the parameters.

The gradients are updated as ∆W = 〈v′h〉data−〈v′h〉recon, ∆b = 〈v〉data−〈v〉recon and

∆c = 〈h〉data− 〈h〉recon where, 〈.〉 is the expectation operator computed with respect

to the distribution of the data or the reconstructed data. The output of the hidden

variables, called activations, can be used as features in any learning framework.

2.2.4 Manifold Based Methods

Manifold learning refers to discovering low-dimensional surfaces in high dimen-

sional spaces which can be used to describe the data efficiently. Unlike sparse coding,

where we assume data lies on the union of subspaces, here we are interested in low-

dimensional surfaces which can be triangulated. PCA algorithm described above

assumes a global linear model and finds subspaces which maximize the variance in

the resulting representation. In this section, we will describe some of the more general

approaches which help us perform non-linear dimensionality reduction.
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Construction of Neighborhood Graph

For a given a set of data points, the similarity matrix S represents a measure of

similarity between all the points. There are several constructions to transform a

given set {x1, ...xN} of data points with pairwise similarities sij into a graph [31].

The local neighborhood relationships between the data points should be preserved

while constructing similarity graphs. Some of the well-known constructions are: a)

ε-neighborhood graph, b) k-neighborhood graph and c) fully connected graph. In our

framework, we want to construct a fully connected graph. In this case, we use the

Gaussian similarity function sij = exp(−‖xi−xj‖2
σ2 ). Here the parameter σ controls the

width of the neighborhoods, similarly to the parameter ε in case of the ε-neighborhood

graph.

Let G = (V,E) be an undirected graph with vertex set V = {v1, ..., vN}. The

vertices vi in the graph represent the data xi. Two vertices are connected if the

similarity sij is larger than a certain threshold. We assume that the graph G is

weighted, that is each edge between two vertices vi and vj carries a non-negative

weight wij = sij. If the vertices vi and vj are not connected wij is set equal to 0. As

G is undirected we require wij = wji. The weighted adjacency matrix of the graph is

the matrix W = {wij}i,j=1,...,n. The degree of a vertex vi is defined as

di =
n∑
j=1

wij (2.33)

Note that this sum only runs over all vertices adjacent to vi, as for all other vertices

vj the weight wij is 0. The degree matrix D is defined as the diagonal matrix with

the degrees d1, ..., dN on the diagonal.

The unnormalized Laplacian matrix is defined as L = D−W. There are two ma-

trices which are called normalized graph Laplacians in the literature. Both matrices
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are closely related to each other and are defined as

Lsym = D−1/2LD−1/2 = I−D−1/2WD−1/2 (2.34)

Lrw = D−1L = I−D−1W (2.35)

We denote the first matrix by Lsym as it is a symmetric matrix, and the second one by

Lrw as it is closely connected to a random walk [32]. It is important to note that both

these matrices are positive semi-definite (i.e.) they have N non-negative real-valued

eigenvalues 0 = λ1 ≤ ... ≤ λN .

Locality Preserving Projections

Low-dimensional projections can be obtained from the sparse coding graphs using the

locality preserving projections (LPP) approach. Given the affinity matrix W ∈ RT×T ,

we compute the degree matrix D with each diagonal element containing the sum of

the corresponding row or column of W. The d projection directions for LPP are then

computed by optimizing

min
V

T∑
i,j=1

‖VTxi −VTxj‖2
2wij s.t.

T∑
i=1

‖VTxi‖2
2δii = 1. (2.36)

where wij and dii are the corresponding elements of the affinity and the degree ma-

trices. This optimization ensures that the embedding preserves the structure defined

by the sparse coding based graph. Defining the graph Laplacian L = D−W, (2.36)

can be rewritten as

min
trace(VTXDXTV)=I

trace(VTXLXTV). (2.37)

and this can be solved using eigen decomposition.
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Spectral Clustering

Spectral clustering methods make use of the eigen decomposition of the similarity

matrix, also referred to the spectrum of the matrix, in order to perform clustering.

Given a set of data points x1, ...,xN and the similarity sij ≥ 0 between the pairs of

data points xi and xj, the goal of clustering is to divide the data points into several

groups such that points in the same group are similar and points in different groups

are dissimilar to each other.

Spectral clustering requires computation of the graph Laplacian matrices. We

achieve clustering by finding a partition of the graph such that the edges between

different classes have a very low weight and the edges within a class have high weight.

In our algorithm, we use a normalized spectral clustering approach proposed in [33].

The algorithm is presented in Table 2.1.

2.3 Deep Architectures

Along with sparsity depth is also an important paradigm that can be used to

develop efficient and informative representations for the data. This can be used to

uncover the latent hierarchical structure found naturally in data such as image and

audio and may other data modalities. Human brain is believed to process sensor

inputs in a multi-level hierarchical fashion. Visual information is processed in the

visual cortex where the V1 cells behave as Gabor functions and perform edge detec-

tion. The information from these cells are passed on to complex cells and further

to sophisticated regions built for higher cognition [34] [35]. These layers build on

abstractions and lead to efficiency in representation. Similar observations were made

in the case of auditory input where the auditory cortex consists of simple to complex

cells and form a hierarchical information flow path [36]. This has been the inspiration
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Table 2.1: Normalized Spectral Clustering Algorithm.

Input

- Similarity matrix, S ∈ RN×N

- Number of clusters, K

Algorithm

- Construct a fully connected similarity graph using the input

similarity matrix S.

- Compute the weighted adjacency matrix, W.

- Compute the degree matrix, D.

- Construct the normalized Laplacian matrix, Lsym as given in (2.34)

- Find the K largest eigenvectors v1, ...,vK of Lsym and

construct the matrix V ∈ RN×K with the eigenvectors

as the columns.

- Form the matrix U from V by renormalizing each of V’s

rows to have unit length.

- Treating each row of U as a point in RK , cluster them into K

clusters using any algorithm that minimizes distortion (k-means).

- Finally assign the point xi to cluster k if the row k of the

matrix U was assigned to cluster k.

of many ML models especially for vision and audio recognition systems. Experiments

have also shown that after rewiring the auditory nerves to the visual cortex, the later

can process audio information leading to the conclusion that after the initial trans-

formation of the sensor data, similar learning process unfolds irrespective of the data

type [37].
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Figure 2.5: Lenet Architecture Used for Hand-writing Recognition [4].

Figure 2.6: Coates Deep Architecture for Image Classification Task [5].

Artifical Neural Networks (ANNs) with layers of nodes called neurons are loosely

modeled on the brain neurons. Layers with hidden nodes are used in supervised

learning problems. Issues with training these models slowed down the progress in

this area albeit Convolutional Neural Networks (CNN) have enjoyed early success [4].

With the availability of vast amount of data coupled with better training algorithms,

the field is seeing lot of success. Advent of affordable computing resources such as

Graphical Processing Unit (GPU) and cloud infrastructure such as Amazon Web

Services (AWS), it is now possible to train the traditional NN models much faster

and obtain state-of-the-art results.
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2.3.1 Receptive Fields

CNNs were able to mitigate the problem of vanishing gradients during the back-

propagation by having sparse and local connection between two layers. A neuron

is thus sensitive only few neurons in the previous layer. Similar behavior has been

found in the brain where a particular neuron has a fixed region of influence called the

receptive field. Computationally, this reduces the number of parameters and keeps

the learning tractable.

The receptive field in a CNN is purely in terms of spatial locality and is a fixed

parameter. In [38], authors propose auto-pooling for image sequences to automatically

group the filters to determine the pooling region. This region is found while balancing

the invariance desired and the information loss due to pooling. The main idea guiding

their approach is that consecutive images should have similar pooled features.

In [5], the authors propose a scalable approach to cluster the filters and hence

obtain the receptive fields. The methods uses the correlations between the filter re-

sponses to compute the relationship between them. The input feature responses were

pre-processed using ZCA whitening to obtain uncorrelated responses. The similar-

ity between each pair of features j and k was then computed using all the feature

responses X = [x1...xN ] as

Sj,k =

∑
i(x

i
j)

2(xik)
2 − 1√

(
∑

i(x
i
j)

4 − 1)(
∑

i(x
i
k)

4 − 1)
(2.38)

2.3.2 Pooling Operations

Once the receptive field or the pooling region is obtained, the next operation is to

generate a aggregated response in that region. In the case of binary features it can

be shown [39] that, the pooling operations specifically max-pooling and square pool-
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Figure 2.7: Combination of Multiple Pooling Functions Improves Performance as
Shown in [6].

ing increase the separability of the resulting features class conditional distribution.

Assuming K independent filters and P locations in the pooling region, the un-pooled

data is in the form of a PxK matrix V. Let the pooled features be represented by f

and the two classes be represented as C1 and C2. The class conditional distribution

of the features can then be denoted as p(f |C1) and p(f |C2). Response to a filter j

(column i in the matrix V) at the locations can be represented as vj. The average

pooling operation is given as

fa(v) =
1

P

P∑
i=1

vi (2.39)

This is in fact the sum over i.i.d Bernoulli variables of mean α resulting into a

binomial distribution. Thus fa ∼ Binomial(µa, σ
2
a) with

µa = α (2.40)
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σ2
a =

α(1− α)

P
(2.41)

The separation can increase when there is shift in the means of the class conditional

distribution of the pooled features or the variance decreases. In the case of square

pooling or average pooling the variance decreases as P increases leading to good

performance when the α is reasonably high. Max-pool operation fm turns out to be

better when the feature activations are sparse and thus alpha is low. This operation

is given as

fm(v) = maxivi (2.42)

fm ∼ Bernoulli(µm, σ
2
m) (2.43)

µa = 1− (1− α)P (2.44)

σ2
a = (1− (1− α)P )(1− α)P (2.45)

Assuming that the mean activation rate for C1 and C2 are α1 and α2, respectively,

the distance between the means of the class conditional distribution is given as

Φ = |(1− α2)P − (1− α1)P | (2.46)

Φ increases between (0, PM) and decreases between (PM , inf), where PM is given

as

PM = |
log( log(1−α2)

log(1−α1)
)

log( (1−α1)
(1−α2)

)
| (2.47)

Also the variance attains its peak value 0.5 when P is

P =
log2

|log(1− α)|
(2.48)
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The above results tell us that there is an optimal pooling cardinality value P

which gives us best performance, deviating from it can decrease the separability and

hence decrease the performance of the resultant pooled features. The optimal pooling

cardinality increases with number of filters used.

In [40], the authors show that the square pooling operation on convolutional filter

responses is inherently frequency selective. The near optimal input for a pooling unit

was found to be a sinusoid at the maximal frequency present in the corresponding

filter. More specifically, in the case of circular convolutions, they show that near

optimal input xopt[m, s] can be given as

xopt[m, s] =

√
2

n
cos(

2πmv

n
+

2πsh

n
+ Φ) (2.49)

where v and h and the maximum frequency present in the filter. This hold true even

when the filters are randomly chosen. Thus, a well chosen architecture and encoding

process can make a considerable difference in the performance of a feature learning

or recognition system.
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Chapter 3

FEATURES FOR ION-CHANNEL SIGNALS

The interest in analyte classification based on a deterministic change in the stochas-

tic switching behavior of ion-channels was raised by the results published in [17].

Different classes of analytes can be distinguished by ion-channel proteins that have

been modified to allow for a significant change in gating behavior upon presence of a

respective analyte [41]. Such modifications can be accomplished using genetic engi-

neering. Signal processing techniques for analyzing the ion-channel signals have been

proposed in [42].

Dwell time analysis of ion-channel signals involve statistical characterization of the

times of open and closed states. The traditional way of analyzing the single channel

kinetics is fitting lifetime histograms to the dwell times [43]. Continuous-time Markov

processes are used as more sophisticated models for the dwell times [18] and an

approach has been proposed to estimate the kinetic parameters from data containing

missing events [44]. For extracting the idealized data from the noisy patch clamp

record, an approach based on Hidden Markov Models (HMMs) and segmental k-means

has been proposed [45]. Since idealizing the data to obtain dwell times produces

unreliable results during low signal-to-noise ratio conditions, approaches based on

direct modeling of the raw data using HMMs have gained prominence. Metastate

or vector HMMs have been proposed to deal with the colored noise in the raw ion-

channel data. Alternative transform domain approaches suited for characterizing the

ion-channel signals have also been developed. A method for classifying ion-channel

signals using neural networks has been developed in [46]. The stationarity of the ion-

channel signals and the changes in the kinetics of ion-channels have been analyzed
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using the wavelet transform [47]. Chen et. al. have used the Power Distribution

Fraction (PDF) in the wavelet domain and the Power Spectral Density (PSD) in the

Fourier domain to infer the average opening time of the ion-channel [15].

We demonstrate mathematically that the Fourier power spectrum of an ion-

channel signal captures the key statistical characteristics of the channel. Results

obtained with the Support Vector Machine (SVM) classifier, using the proposed fea-

tures, show high classification, specificity and sensitivity rates for both simulated and

real ion-channel data. We observe that the classifier achieves improved performance

when highly noisy signals are denoised prior to feature extraction. Furthermore, we

compare the classifier’s performance to that obtained using an ideal HMM classifier

with known parameters. Although we have not used an analyte in our experiments,

the proposed setup is suited for stability analysis and baseline calibration of ion-

channels.

3.1 Analyte Sensing Using Stochastic Ion-channel Signal Modulation

For the purpose of analyte detection, the ion-channel α−Haemolysin pore of S.

aureus has been studied in detail. However, ion-channels such as the outer mem-

brane proteins of E. coli change their stochastic switching behavior in the presence

of antibiotics such as ampicillin [48]. To exactly determine the concentration of the

analyte, it is necessary that the switching behavior of the ion-channel itself is well

known.

In order to obtain recordings of the ion-channel current signals, the channels them-

selves have to be embedded in a lipid bilayer membrane. This membrane itself does

not allow ions to penetrate, thus it exhibits a high electrical resistance on the order

of tens of Gigaohms. Isolating and accessing ion-channels of interest is accomplished

using the patch-clamp technique in which a glass pipette with an orifice diameter of
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about 1 µm is brought in close contact to the outer membrane of a cell so that a

Gigaseal forms. However, it is not guaranteed that the membrane patch will con-

tain the channel of interest, in particular if the rate of expression of this channel in

the outer membrane of a cell is low. To circumvent this problem, ion-channels of

interest can be extracted from cells, purified and reconstituted into artificial lipid

bilayer membranes. Ion-channel reconstitution offers the advantage of working with

purified proteins, thus limiting the probability of observing current switching that is

characteristic of other ion-channels that might be mistaken for analyte signatures.

However, even in case of a known ion-channel, its stochastic signal might vary over

time, even with no analyte present. Since lipid bilayers are fluidic entities, the spatial

position of a single ion-channel within the membrane might not be constant and the

baseline signature of the particular channel might be affected. Thus, it is necessary

to establish a sound baseline for the stochastic signature before any analyte is added.

3.2 Setup for Outer Membrane Protein (OmpF) Experiments

To demonstrate the capabilities of the classification algorithms for assessing the

baseline of an OmpF ion-channel, lipid bilayers were formed across apertures in silicon

chips. These apertures were formed using dry reactive ion etching. To reduce the ca-

pacitance of the structure, photo-polymerizable epoxy resin (SU-8 2025) was applied

and patterned on the back side of the samples. The surface of the chip was coated with

a layer of plasma-polymerized polytetrafluorethylene (PTFE), rendering the surface

hydrophobic for lipid bilayer attachment. Details of the microfabrication process have

been described in [49, 50]. Samples were mounted in polystyrene holders that allow

access to both sides of the silicon chip. Both compartments hold 1ml of 1M KCl so-

lution, buffered with 20mM N-(2-hydroxyethyl) piperazine-N’-(2-ethanesulfonic acid)

(HEPES) at a pH of 7.4. Electrical access to the solution wells was provided us-
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ing As/AgCl wire electrodes. Lipid bilayers were formed using the bubble collapse

(painting) method from a mixture of (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine

and 1,2-dioleoyl-sn-glycero-3-phosphocholine) (DOPE:DOPC, 4:1) lipids, dissolved in

n-decane (10 mg/ml). OmpF ion-channels were reconstituted into these membranes

by adding 0.5µl of OmpF stock solution to the cis compartment.

We used two identical chips in neighboring wells. The transimpedance amplifier

used to record the ion-channel currents was constructed based on the circuit published

by Sigworth [51], using off-the-shelf surface-mount components. The amplifier did

not employ any analog filtering, resulting in a colored noise spectrum. The amplified

signal was digitized using a National Instruments PCI-E 6021 DAQ card at a sample

rate of 1 kHz. WinEDR [52] was used to acquire the signal as well as apply the

stimulus voltage of 200 mV to the membrane containing the ion-channels.

3.3 Feature Extraction

Consider an ion-channel signal represented by the vector x = {xt}T−1
t=0 . The prob-

lem is to extract relevant features from the Fourier, wavelet and Walsh power spectra

of x. The power spectra are computed directly using the signal x, without assuming

any knowledge about the statistical characteristics of the ion-channel.

3.3.1 Preprocessing the Data

Ion-channel signals obtained from patch clamp technique often have low Signal-

to-Noise Ratio (SNR). It has been observed that the background noise is colored

with spectral density that increases over frequency [53]. This can mask the state

transition events and change the signal characteristics drastically. Hence signal de-

noising is essential to improve the accuracy of the statistical model and feature space

representation of the signal.
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Figure 3.1: Average of Feature Vectors for Two Different Simulated Ion-Channel
Signals in Fourier Domain.

The data preprocessing step involves using the DWT to perform denoising of the

signal. The advantage of wavelet representation is that it can provide time and fre-

quency parameters for specific dynamic signal events, i.e., time-frequency localization.

We used the biorthogonal wavelet (bior3.7) with 4 levels of decomposition for prepro-

cessing the data. Different wavelets and number of levels were tested and the ones that

provided the best classification performance, as reported in Section 3.4, were chosen.

Soft thresholding was used as it provides better performance than hard thresholding

and the limit was chosen using the simple and effective universal threshold [54].

The Fourier domain features are obtained by computing the PSD of the ion-

channel signal x using the Welch procedure given in [14]. Estimating the PSD involves

windowing of the signal into Mf windows and averaging the modified periodograms

computed over the windows to reduce the variance of the estimate. It is also known
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Figure 3.2: Average of Feature Vectors for Two Different Simulated Ion-Channel
Signals in Wavelet Domain.

that the PSD obtained using the Welch procedure approximates the Blackman-Tukey

type spectral density obtained in (2.15) [14]. The PSD is dependent only on the

eigen decomposition of the state transition matrix and it will always exhibit low-

pass characteristics. Furthermore, if we denote fs as the sampling frequency and

fc as the frequency where the flat and sloping portions of the PSD intersect, 1/fc

represents the average opening time of the channel [15]. This shows that the Fourier

power spectrum contains sufficient discriminatory information to distinguish between

different ion-channel signals.

The PSD is divided into bins spaced in powers of two (dyadic bins), ignoring the

DC component. The PSD values in each bin are summed to generate the feature

vector. The dyadic binning scheme provides more weighting to the lower frequencies

and hence better captures the signal power concentrated in the lower frequencies.
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Figure 3.3: Average of Feature Vectors for Two Different Simulated Ion-Channel
Signals in Walsh Domain.

Two ion-channel signals are simulated as 2-state discrete Markov processes using the

QuB software [55] with rate parameters for the first ion-channel as q12 = 1000 and

q21 = 1000 and the rate parameters for the second ion-channel as q12 = 900 and

q21 = 750. States 1 and 2 have conductance levels of 0 pA and 1 pA respectively. A

total of 60 signals were generated per ion-channel, each with 16384 samples at 10 KHz

frequency. The average of Fourier domain features obtained from the estimated PSDs

corresponding to the two ion-channels are shown in fig. 3.1. Each bin represents the

frequency range from fs/2
l+1 to fs/2

l and the center frequency of the bin is given by

3fs/2
l+2, where l = {1, ..., L} is the index of the bin.

The scalogram defined in (2.18) is used as the wavelet domain feature and it is just

a scaled version of the PDF described in [15]. We use the Haar wavelet, as it has a

shape that correlates well with the general switching state structure of an ion-channel

42



signal. The signal x is divided into Mψ non-overlapping windows, and the scalogram

is averaged across the windows to reduce the variance, similar to the case of estimating

the PSD. The center frequency of the scale l in the scalogram is given by 3fs/2
l+2 and

this feature also gives more importance to the lower frequencies (coarser scales) of the

wavelet decomposition, which predominantly captures the signal characteristics. The

average of wavelet domain features corresponding to the two simulated ion-channels

given in Section 2.1.1 are illustrated in fig. 3.2.

The feature vector is generated by dividing the power spectrum into L dyadic

bins of sequencies, ignoring the DC component, and summing the spectral estimates

in each bin. Fig. 3.3 shows the average of the Walsh domain features corresponding

to the two simulated ion-channels given in Section 2.1.1. The Walsh functions are

similar to the Haar wavelet except that they lack the time localization properties of

Haar wavelet. Hence, this feature also captures the key statistical properties of the

ion-channel signals.

The different features described in Section 3.3 are extracted from the ion-channel

signals and classified using Support Vector Machines (SVMs) [56]. The performance

of the proposed features is evaluated using a set of signals from two simulated channels

that are highly similar and also using experimental ion-channel data.

3.4 Simulated Data

The conductance level for the states 1 and 2 was 1 pA and that of states 3 and

4 was 0 pA. A total of 106 samples was generated per channel at a sampling rate of

10KHz and i.i.d. Gaussian noise with standard deviation σ was added to the channels.

Using non-overlapping frames of size 16384, a dataset with 60 vectors was created

for each ion-channel. Each dataset was randomly permuted to obtain a training

set with 30 vectors and a test set with 30 vectors. To extract the feature vectors
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we used overlapping windows of 4096 samples for the cases of Fourier and Walsh

while non-overlapping windows of 2048 samples were used for the wavelet domain.

The 11-dimensional feature vectors obtained were used to train the SVM classifier

and the performance was evaluated using the feature vectors of the test set. We

also evaluated the classification performance of ideal HMMs, with a-priori knowledge

of all parameters of the ion-channels, on the simulated dataset. Classification was

performed for all the 120 vectors from both the datasets using a maximum likelihood

approach. The performance of the ideal HMM is the maximum that can be achieved,

as we assume knowledge of all the parameters that were used to obtain the simulated

dataset. Note that we use ideal HMMs only as a baseline to compare our results,

and this performance is not realizable in practice. In practical scenarios parameter

estimation needs to be performed for HMMs and the performance will be much lesser.

The parameters used for evaluating the performance are classification accuracy,

sensitivity and specificity. The accuracy of classification is the ratio of correctly

associated samples to the total number of test samples. Sensitivity and specificity

measure the proportion of the correctly identified positives and negatives respectively.

The performance of the SVM and HMM classifiers were evaluated under various noise

conditions with σ = {0, 0.1, ..., 0.7}. For the SVM classifier, we performed 1000 trial

runs for each σ, with different realizations of noise and permutations of training and

test sets in each trial. The experiments were repeated with features obtained after

denoising. The performance reported represent the average values from multiple

trials. The performance of the ideal HMM classifier was evaluated as an average of

10 trial runs.

The performance of all the three proposed features are similar and is not too far

from the maximum performance achievable with the ideal HMMs. Except in the case

of Walsh features, denoising lowers the performance at low noise variances since some
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Figure 3.4: Ion-channel Signal Classification Results Using Linear SVM Kernel and
Fourier Features.

information in the ion-channel signal is lost due to thresholding.

3.5 Experimental Data

We test the classifier with experimental data from two ion-channels obtained using

the setup described in Section 3.2. The sampling rate was 1 KHz and a total of 31882

samples were collected for each channel. The data from each channel was divided

into 14 segments each of length 4096, with a 50% overlap.

Classification was repeated for 100 trials with 7 randomly chosen segments from

each channel for training and the remaining segments for testing. All the three

features achieved more than 99% classification, sensitivity and specificity rates on an

average. Using the proposed features, we determined that the ion-channel signals are

stable over time and differentiated stochastically dissimilar channels. Note that we
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Figure 3.5: Classification Results Using Wavelet Features.

used the limited data available here and in order to characterize the performance of the

features more accurately with real data, we need more experimental data. We now

describe ways to exploit the structure in power spectral density (PSD) features for ion-

channel signals to generate a more robust and discriminative global representations.

We will show that the feature enhancing process can be framed as rank minimization

problem with global and local regularizations. Exact and noisy matrix completion

algorithms under low rank conditions have been proposed in [29]. The feature vectors

of the noisy signal segments are extracted and stacked into a matrix. Under noiseless

conditions this matrix is typically low rank, since the feature vectors of consecutive

segments are similar. However, the presence of noise in the acquired data does not

guarantee the low rank behavior of the feature matrix. Hence, the entries of the matrix

with high variances are removed to build an incomplete matrix. We now perform
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Figure 3.6: Classification Results Using Walsh Features.

matrix completion under a low rank condition and the columns of the completed

matrix contain the robust PSD feature vectors. Simulation results obtained with

synthetic single ion-channel data show that the stabilized features achieve improved

classification performance in comparison to using the features extracted from the

denoised signals. Furthermore, we demonstrate the effectiveness of the proposed

robust features in reducing the false alarm rates when applied to analyte detection.

3.6 Generating Robust PSD Features Using

Matrix Completion

In the problem of matrix completion, the missing entries of a matrix are inferred

using a few observed entries, under some constraints. Assuming the matrix to be

completed is of low rank and the observed entries are sampled from uniformly ran-
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Figure 3.7: Robust PSD Features. (a)-(c) are the Original PSD Features for Three
Segments of the Data, While (d)-(f) are the Corresponding Stabilized PSD Fea-
tures. The X-axis Denotes the Frequency Bins and Y-axis Shows the Average Power
Spectral Density.

dom locations in the matrix, exact recovery of the matrix is possible [29]. We pose

the problem of stabilization of PSD features as a matrix completion problem. Sta-

bilization here means that we eliminate the outliers in the PSD features make them

robust.

Consider a matrix M ∈ Rn1xn2 with missing entries. The indices of the observed

entries (i, j) ∈ Ω where Ω is a subset of the cross-product set {1, . . . , n1}×{1, . . . , n2}.

The sampling operator PΩ applied to a matrix Y ∈ Rn1×n2 is given by

[PΩ(Y)]i,j =

 Yi,j (i, j) ∈ Ω

0 otherwise

 (3.1)

A unique low rank matrix Y consistent with the observed entries of M exists when

the singular vectors of the latter matrix obeys certain conditions. Such a matrix Y
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can be obtained by solving the following optimization problem.

minimize rank(Y)

subject to PΩ(Y) = PΩ(M) (3.2)

The conditions on the singular vectors of M are expressed as

‖uk‖l∞ ≤
√
µB/n1, ‖vk‖l∞ ≤

√
µB/n2 (3.3)

where k ∈ [r], r is the rank of the matrix M, uk and vk are singular vectors of matrix

M obtained using singular value decomposition (SVD). When µB is small the singular

values are well spread and are not spiky.

The rank minimization problem in (3.2) is non-convex and NP-hard. The rank

can be replaced by the nuclear norm defined as the sum of the singular values of

the matrix. It has been shown that this is the tightest convex relaxation to the rank

minimization problem [29]. The relaxed problem is given by

minimize ‖X‖∗

subject to PΩ(X) = PΩ(M) (3.4)

where ‖X‖∗ =
∑

k σk is the nuclear norm of the matrix X.

Let assume the vectors b1,. . . , bN are PSD features of N consecutive frames of

an ion-channel signal. Note that each element in the feature vector corresponds to

average PSD over a certain bin. These vectors are stacked column wise into a matrix

B. Ideally, this matrix should be low rank as consecutive frames are realization of the

same Markov process and should have similar feature vectors. In order to identify the

outlier feature samples and correct them, we assume every bin of the feature vector is

a realization of an independent Gaussian random variable. In other words, each row

of the matrix B contains realizations of a Gaussian random variable. Due to various
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types of noise, we may get some outliers in each bin. The outliers are identified

by computing the variance of the entries in each column of B and identifying the

samples whose values are more than an empirically decided threshold. We denote

this incomplete matrix by M. In cases where the entire column corresponding to

frame has high variance, the column is removed altogether as this feature vector

is not useful for classification. Furthermore, matrix completion algorithms cannot

handle such scenarios.

Several algorithms have been proposed to solve the matrix completion problem

efficiently. Few of the well known methods are Singular Value Thresholding (SVT)

[57], Augmented Lagrange Multiplier (ALM) Method [58] and OptSpace [59]. We will

now briefly describe the SVT algorithm which we use in this work. SVT algorithm

iterates the following steps till stopping criterion is achieved.

Yk = Dτ (G
k−1)

Gk = Gk−1 + δPΩ(M−Yk) (3.5)

where Dτ (.) is the shrinkage operator which retains the singular values greater than

τ of the argument matrix. Thus, the rank of Dτ (G) is considerably lower than that

of matrix G if many of the singular values of G fall below τ . Further algorithmic

and implementation details of SVT are given in [57]. The parameters τ and δ were

experimentally set to 26 and 1.4 respectively. The stopping criterion was set to 1e−04.

In order to evaluate the performance of the proposed robust features in ion-channel

signal classification, we use the setup described in [60]. The dataset was randomly

permuted to obtain a training set with 30 vectors and a test set with 30 vectors for each

ion-channel. The Fourier domain PSD features and the proposed robust features are

extracted and presented to a linear SVM for classification. Note that, the signals are

denoised [60] prior to extracting the features. Table 3.1 shows the classification rates

50



obtained with the original PSD features and the robust PSD features. Sensitivity and

specificity measure the proportion of the correctly identified positives and negatives

respectively. It can be clearly observed that the post processing of the PSD features

leads to improved classification rates.

The classification setup described in the previous section cannot be directly used

for analyte detection. The number of channels inserted in the lipid bilayer varies

between experiments and training a classifier for all the possible cases is not possible.

To overcome this problem, we proposed to use an array of ion-channel sensors [61]

and detect the analyte (Ampicillin) by tracking the relative changes in PSD features

among the sensors.

In the four chamber ion-channel sensor array, each chamber holds an ion-channel

sensor. Three of the chambers act as the base signals and the other chamber is used as

the test signal in which the analyte is introduced. The change in the signal generated

in the test chamber can be attributed to: (a) the change in the number of channels

inserted in the lipid bilayer and (b) the change in the driving state model due to

the presence of an analyte. Support Vector Regression (SVR) is used to estimate the

number of channels inserted. Similar to the procedure in [61], the robust PSD features

are normalized using the estimate of the number of channels. The PSD features are

compared across all chambers using a weighted Euclidean distance (WED) measure.

A larger distance measure indicates the presence of the analyte.

Similar to the classification setup, we extract both PSD features and the robust

features from each of the signal segments. A detection hit is defined as the case when

the WED goes above an empirically obtained threshold. A signal segment corrupted

with noise can produce a high WED even when the analyte is absent. Such cases are

referred to as false hits. Table 3.2 shows the percentage of false hits obtained using

the original PSD features and the stabilized features.
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Table 3.1: Classification Performance Using the Original and Stabilized PSD Fea-
tures for QUB Signals(Linear Kernel).

Transform % % %

Domain Classification Sensitivity Specificity

Original 92.1 91.4 92.8

Stabilized 96.6 98.2 95.1

Table 3.2: False Hits Percentage in Detection.

Features Percentage

Original 13.33

Stabilized 1.67

3.7 LRSP Features

In the previous section, we described the Matrix completion method to obtain

Robust PSD features. We used a heuristic method to build an incomplete matrix

of stacked features and used low rank constraint to complete it. The features thus

generated are closer in Euclidean sense for similar channels. This works well when

the ion-channels in question are well distinct.

We now consider the case when two classes of ion-channels are quite close to

each other in terms of their rate parameters and hence have close PSD features.

This situation arises when the analyte is small in size and has minute effect of the

closing and opening rate of the channel.We build database consisting of 12 ion-channel

classes which form form 4 distinct groups based on their rate parameters. Each group

contains 3 classes with similar rate parameters. The first two rows of Table 3.5 show

the classification performance using PSD features and Matrix completed PSD when

all the 12 classes are considered. It can be observed that the performance drops
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Figure 3.8: The Plots Show the Low Rank and Sparse Components of the PSD
Features of Two Similar Classes.

considerably as the similar ion-channels are assigned similar features using low rank

approximation and not discriminatory. We propose to decompose the features into

two components to capture the group behaviour and also give importance to intra-

group variation.

Consider the the features [f1, f2, ..., fM ] obtained from M signals obtained from 12

classes of ion-channels. These are stacked in to matrix F. We would like to decompose

the matrix F as following,

F = D ∗ A+ S +G (3.6)

where, D is a pre-learned dictionary, S is a sparse error matrix and G is dense noise

matrix. Further, we place a low rank constraint on D ∗ A so that features in same

class have similar D ∗ α or low rank or base component. We can form the joint

53



optimization problem as below

arg min ‖A‖1 + ‖S‖1 + ‖L‖∗ + γ‖F − L− S‖2
F

A, S, L +λ‖L−D ∗ A‖2
F (3.7)

where L is an extra variable added which is low rank and sparse in dictionary D.

The optimization problem can be broken down into following sub-problems:

Fix A and S,

Lt = arg min‖L‖∗ + γ‖F − L− St−1‖2
F + λ‖L−D ∗ At−1‖2

F

L (3.8)

Fix A and L,

St = arg min‖S‖1 + γ‖F − Lt − S‖2
F

S (3.9)

Fix L and S,

At = arg min‖A‖1 + λ‖Lt −D ∗ A‖2
F

A (3.10)

The dictionary D is formed by stacking the normalized PSD features into a matrix.

Each of the sub problems are convex and can be solved by different methods. One

iteration of the joint problem involves solving each of the sub problems once with

arguments as shown in the equations. We will now show the convergence of the joint

problem which is similar to the approach described in GODec paper.

Let the objective value after solving the sub-problems be E1
t , E

2
t and E3

t .

E1
t = γ‖F − Lt − St−1‖2

F + λ‖Lt −D ∗ At−1‖2
F

(3.11)
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E2
t = γ‖F − Lt − St‖2

F

(3.12)

E3
t = λ‖Lt −D ∗ At‖2

F

(3.13)

Without affecting the optimization problem, we can modify the objective values

as:

E1
t = γ‖F − Lt − St−1‖2

F + λ‖Lt −D ∗ At−1‖2
F

(3.14)

E2
t = γ‖F − Lt − St‖2

F + λ‖Lt −D ∗ At−1‖2
F

(3.15)

E3
t = γ‖F − Lt − St‖2

F + λ‖Lt −D ∗ At‖2
F

(3.16)

Global optimality of St leads to E1
t > E2

t and global optimality of At leads to E2
t >

E3
t . Similarly, global optimality of Lt+1 leads to E3

t > E1
t+1. Thus, the objective values

of the sub-problems monotonically decrease and hence the joint objective converges

to local optimum point. After convergence, the matrices S, L and A give the sparse,

low rank and sparse coded low rank version of the PSD features.
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The classification performance is tested for PSD features, features obtained after

matrix completion and features generated from low rank part and sparse part. We

concatenate the low rank and sparse part and call it LS feature. Our proposed

feature is the combination of sparse coded low rank part A and the sparse part S.

We call the combined feature as LRSP code and is sparse. Table 3.4 shows the

performance of all the feature variants when only the 4 distinct classes are used for

training and testing. It can be observed that all the features perform well in this

case and LRSP code gives equivalent performance with linear kernel SVM. Table 3.5

shows the classification rates when all the 12 classes are taken into consideration. The

performance drops considerably as some channels are very close and are misclassified.

The LS and LRSP perform better than others as the discriminative sparse part and

representative low rank part are both given importance in these features. Table 3.3

shows the classification rates for one specific group. It can be seen that in this case the

sparse part gives best performance and LRSP code gives close to best performance.

Thus, to achieve best performance, we employ SVMs at two levels. First, we train

an SVM to identify the group of the test ion-channel. The LRSP code is used at this

stage. Group specific SVMs are trained to identify the exact ion-channel type.

3.8 Estimation of Number of Channels

In this section, we discuss the Support Vector Regression (SVR) method for func-

tion regression. We use SVR with auto-correlation wavelet kernel to estimate the

number of channels inserted in each chamber. The signals obtained across the mem-

brane using the patch clamp technique are corrupted with high noise and often have

low signal-to-noise ratio (SNR). Thus, the state transition events can be masked

and the parameters extracted can be erroneous. Discrete Wavelet Transform (DWT)

based de-noising is performed as a preprocessing step. The advantage of a wavelet
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Feature Type
Noise level

0 0.1 0.3

PSD Features 58.2 55.7 53.1

Matrix Completion on PSD 55.4 54.2 53.8

Sparse Component 84.7 81.1 72.5

Low Rank Component 55.8 55.1 54.8

Low Rank+Sparse Component 83.2 82.8 82.0

Proposed LRSP code 82.5 81.9 80.9

Table 3.3: Classification Accuracies in Percentage for Three Classes of Very Similar
Ion-Channel Signals.

Feature Type
Noise Level

0 0.1 0.3

PSD Features 94.5 91.2 89.2

Matrix Completion on PSD 96.4 96.0 95.5

Sparse Component 53.0 53.8 48.3

Low Rank Component 98.6 97.7 97.3

Low Rank+Sparse Component 98.2 97.4 96.9

Proposed LRSP code 98.0 97.5 97.1

Table 3.4: Classification Accuracies in Percentage for Four Classes of Ion-Channel
Signals which are Distant in the Feature Space.

representation is that it can provide time-frequency localization and help recover the

signals. We used the biorthogonal wavelet (bior3.7) with 3 levels of decomposition for

preprocessing the data. These parameters were obtained using the cross-validation

method as described in [62]. Soft thresholding was used and the limit was chosen

using the universal threshold [63].

The PSD of the signal is computed in Fourier domain using Welch procedure.
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Feature Type
Noise Level

0 0.1 0.3

PSD Features 58.2 55.7 53.1

Matrix Completion on PSD 55.4 54.2 53.8

Sparse Component 48.6 45.9 43.6

Low Rank Component 55.8 55.1 54.8

Low Rank+Sparse Component 70.5 68.2 67.3

Proposed LRSP code 70.8 69.0 68.4

Table 3.5: Classification Accuracies in Percentage for Twelve Classes Comprised of
Close and Distant Ion-channel Signals in the Feature Space.

This involves windowing the signal and averaging the periodograms obtained from

each window. The PSD feature vector is generated by summing the PSD values in

each of the dyadic frequency bins. Dyadic bins are bins spaced in powers of two.

Therefore, dyadic binning gives importance to the signal power concentrated in the

lower frequencies. The PSD feature values and the average energy are used to estimate

the number of operational ion-channels.

3.8.1 Support Vector Regression

Let us suppose that, {f 1,...,fN} are the feature vectors of the signal segments and

{y1,...,yN} are the number of channels operational in each of them. We want to find

a function

y = wTf + b, (3.17)

by minimizing
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1

2
‖w‖2 +

γ

l

N∑
i=1

(|yi −wTf i − b| − ε)+ (3.18)

where γ > 0 is the regularization parameter controlling the bias-variance trade-off

and ε > 0 is a small number. The optimization problem can be solved by maximizing

the following function,

−1

2

N∑
i=1

N∑
j=1

(αi∗ − αi)(αj∗ − αj)k(f i, f j) +
N∑
i=1

(αi∗ − αi)yi

subject to

N∑
i=1

(αi∗ − αi) = 0,

N∑
i=1

(αi∗ + αi) ≤ γε (3.19)

αi, αi∗ ∈ [0, γ].

The estimated function is given by

y(f) =
N∑
i=1

(αi∗ − αi)k(f, f i) + b (3.20)

where k(f i, f j) is the kernel and b is a constant dependent on the support vectors

obtained during the training of SVR.

The auto-correlation wavelet kernel is shown to work well for the regression de-

scribed in [64]. The kernel is given by the following equation,

k(f i, f j) = ψ(
f i − f j

a
)

ψ(u) = cos(1.75)e−u
2/2. (3.21)

59



Table 3.6 shows the average error in the estimation of number of channels for the

4 simulated chamber signals. The signals have an identical state transition matrix.

The PSD feature values, the energy of PSD feature values and their combination

were tested as features for SVR. The SVR was trained for signals with 1, 4 and 6

ion-channels operational. The estimates of the number of channels obtained can be

rounded off to the nearest integer values. Signals with 2, 3, 5 and 10 ion-channels

were tested. Each of the four signals were split into 160 frames forming the 640 test

signals. The difference between the rounded estimate and the true value of number

of channels form the error for each frame. The energy of PSD features produced

least error compared to the others. The three types of features produced maximum

error for the signal when 10 ion-channels were operational. We observe that the

average energy of the PSD features varies quasi-linearly with the number of channels

operational. The same cannot be said about the PSD feature values where we consider

the distribution of power among bins. Thus, least square fitting can be used instead

of SVR while using the average energy of PSD features to estimate the cardinality of

channels in a signal segment.

3.9 Detection Framework

The number of ion-channels inserted in each chamber is different, but the kinetic

model driving the ion-channels is the same before any analyte is introduced. Assum-

ing, each chamber has only one channel inserted, all the chamber signals will have

similar feature vectors.

The matching of signals across chambers and detecting relative changes forms the

detection framework for an analyte. The two main reasons for change in a chamber

signal are: (a), the change in the number of ion-channels inserted in the lipid bilayer

of the chamber; (b), the change in the model driving the ion-channel due to the
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presence of an analyte.

3.9.1 Normalized PSD Features

In our previous work [60], we used the PSD features to classify signals with single

ion-channel operational but with different state transition matrices. In our present

setting, we initially have four signals with different number of ion-channels operational

all having identical state transition matrices. Fig. 3.7 shows the features of the four

simulated signals. The average energy of the features 1
L
‖f‖2

2 was observed to be

varying with number of ion-channels inserted.

To match the signals across chambers, we use normalized feature vectors. The

feature values are divided by the number of channels inserted. The normalization is

in terms of the energy of the feature values. The normalized feature vector of signal

with N number of channels have same energy as the signal with one channel. Table

3.7 shows the average energy of the feature values before and after normalization. The

chamber signals with same model but different ion-channels have normalized features

vectors which are similar in their energy and distribution.

3.9.2 Analyte Detection

We adopt a two step procedure for detection of analyte. The chamber signal

containing the analyte is called the test signal and the other chamber signals are base

signals. The unnormalized feature vectors are used to detect a change in the test

signal. Once a change is detected, the normalized feature vectors are compared to

the baseline signal. The distance between the feature vectors are measured using the

weighted Euclidean distance,

d(fi, fj) = ‖diag(σ1, , σL)−1(fi − fj)‖. (3.22)
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Chamber Feature Feature Feature

Signal Values Energy Values+Energy

A (N=2) 0.050 0.033 0.043

B (N=3) 0.069 0.045 0.063

C (N=5) 0.034 0.029 0.037

D (N=10) 0.087 0.071 0.092

Table 3.6: Errors in the Number of Channel Estimation.

where ‖.‖ is the euclidean norm and σi is the variance of the ith entry in L dimensional

feature vector.

The small distance between the normalized feature vectors of the test and base

signals indicate channel insertion and no change in the driving model of ion channels.

Thus, it shows the absence of an analyte. And conversely, large distances indicate

change in the kinetic model of ion-channels and show the presence of the analyte.

This method was used on the synthetic data to detect simulated analyte and on the

experimental data to detect Ampicillin. It was observed that the distance of test

signal from the base signals in all the cases, was less than 1 before the introduction

of analyte and greater than 10 after the introduction of analyte. Thus, we achieve a

sufficient difference in distance between features for detection of analyte. Empirically,

it can be said that if there is a tenfold increase in distance increases by 10 times, the

ion-channels behavior has changed and an analyte is present.
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Chamber Before After

Signal Normalization Normalization

A (N=1) 407 407

B (N=2) 1533 383

C (N=3) 3776 419

D (N=10) 55850 496

Table 3.7: Average Energy of PSD Features Before and After Normalization.
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Chapter 4

DEEP REPRESENTATIONS FOR ENVIRONMENT SOUND ANALYSIS

Building concise representations for multimedia is crucial for applications ranging

from scene recognition, retrieval and personal life-logging systems to field robot nav-

igation. A convenient approach to representing the content of multimedia data is

to associate textual tags that can describe the underlying semantics. However, the

effectiveness of semantic inference completely relies on the richness of the data, and

there is an increasing need to utilize multiple data modalities to understand a phys-

ical process. For example, short time events such as an explosion can be effectively

captured in the audio data, while the visual data from this event may be incomplete

or unavailable due to the limited view or slow response of the camera. Consequently,

research efforts have been focused on building tools that are specifically adapted for

obtaining inferences from each data modality.

The growing interest in technologies for wearable computing, automatic life log-

ging, and predictive inferences in robotics presents a huge potential for algorithms

that characterize environmental sounds. A commonly adopted pipeline for process-

ing such data involves extracting features to succinctly describe them, modeling the

statistics of the features, and deriving predictors that reveal the underlying semantics.

The quality of the extracted features is intimately tied to the subsequent stages for

obtaining inferences.

A common modus operandi for audio feature extraction is to divide the signal into

frames, and extract appropriate features from each frame. Features that reveal the

Fourier domain characteristics, and those built on psycho-acoustic principles are typ-

ically adopted for representing audio data. However, these features do not often work
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well for environment sounds. This is evident from the unsatisfactory performance

of features such as MFCCs (Mel-frequency cepstral coefficients) and psycho-acoustic

features such as pitch, loudness, timbre, etc. in environmental sound recognition [3].

This can be attributed to the differences in the characteristics of natural sounds when

compared to conventional speech and audio data. For example, unlike speech signals,

which can be modeled as a sequence of phonemes, environmental sounds cannot be

atomized into a small set of structures. Similarly, environmental sounds often lack

any rhythmic patterns found in music data. On the other hand, methods such as

Spectral Dynamic Features (SDF) which attempt to model the temporal behavior of

the signals have been shown to provide an improved performance [65]. Alternately,

learning features directly from data has been a recent and exciting approach when

dealing with large-scale data [66]. For example, deep learning techniques, that can

infer a hierarchy of features with increasing complexity, have been successful in mod-

eling natural images [67]. This data-driven approach can be particularly suitable to

our case since it can effectively capture the multitudes of variation in the data.

We develop a new approach for extracting hierarchical features that can be very

effective in characterizing natural environmental sounds. Furthermore, we present

an approach based on sparse representations to predict tags for novel test samples

using the proposed features. In general, data-driven feature learning methods at-

tempt to build meaningful representations by transforming data to a new domain

in which the factors relevant to the task in hand are emphasized. This process of

adapting features is computationally intensive for large-scale data, and can be severe

when learning is carried out in multiple layers. Furthermore, these methods ensure

that the representations are invariant to transformations that are not relevant to the

desired application. For example, the spatial location of objects in images might

not significantly affect the behavior of an object recognition system, and hence it is
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Figure 4.1: (Left) An Overview of the Proposed System. Each Layer in the Deep
Feature Learning Architecture Involves a Mapper Function that Infers Filters and
Evaluates Responses, and a Pooling Function that Partitions the Feature Space and
Aggregates the Responses. By Constructing an Ensemble of Semantic Embeddings,
the Underlying Tags can be Effectively Estimated. (Right) A Subset of Layer-1
Filters (Dictionary Atoms) Learned From the Dyadic Binned Spectrograms of the
AASP Challenge Dataset, Where the X- and Y-axes Correspond to Time and Dyadic
Frequency Bins, Respectively.

common to perform spatial aggregation (pooling) of local features using histograms,

spatial pyramids etc. [68]. Existing strategies for pooling (e.g. max-pooling) do not

work for environmental sounds, since capturing the signal dynamics, in both time

and frequency, is crucial.

The proposed pipeline for feature extraction and semantic inference is illustrated

in Figure 4. Instead of using standard audio features, we provide spectrograms as

the input to our algorithm. In addition to being effective for modeling environmental

sounds, spectrograms enable us to build a more robust pooling strategy. In a deep

learning approach, at each layer, filters are inferred from the input, and the sparse

filter responses are evaluated [8]. We refer to this two step process as the Mapper
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in Figure 4. We propose a pooling strategy, correlation-pooling, which can preserve

the temporal dynamics in the resulting representation. To address the challenges

pertinent to scalability, we propose to employ a mini-batch, damped K-hyperline

clustering algorithm for inferring filters at each layer. The filters learned are atomic

in nature and promote distributed representation of the data-points. Furthermore, we

perform partitioning of the feature space based on their temporal similarity so that

it is computationally tractable to learn filters in the subsequent layers. Interestingly,

the partitioning provides a multi-view representation of the data and we exploit this

by building an ensemble of topic models using the pooled features.

Finally, to perform semantic predictions, we construct low-dimensional seman-

tic embeddings for the tag vectors, using graphs based on the topic models. For a

test data sample, tag prediction is performed using `1 reconstruction with the low-

dimensional embeddings corresponding to each of the topic models in the ensemble.

The final predicted tag vector is obtained as the average of the individual predictions.

Experiments with challenging datasets show that the proposed features outperform

conventional spectral features used for audio classification. Furthermore, partitioning

of the feature space to build an ensemble of representations enables the tag prediction

algorithm to capture multiple, possibly unrelated, semantics in the data, simultane-

ously.

4.1 Learning Filters

At each layer of the hierarchy, we learn a set of filters, also referred as dictionary

atoms, using which the data samples are encoded and subsequently aggregated to gen-

erate a succinct representation. We develop a modified version of the K-hyperline clus-

tering algorithm (Section 2.2.2, [69]), referred to as mini-batch damped K-hyperline,

to infer the dictionary atoms in each level. The input to the first layer of the hierarchy
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is the dyadic binned spectrograms of frames collected from all audio clips, denoted by

the matrix Y1 ∈ RM1×N1 matrix. The filter responses in a level ` are appropriately

aggregated to generate the inputs for the next level. The initial dictionary for a level,

D0
` , is obtained as K` randomly chosen input samples (normalized to unit `2 norm).

To combat the challenges with performing clustering on large datasets, we propose

to use only a random subset of the input samples for updating the cluster centers

during each iteration of the algorithm. This procedure is summarized in Table 4.1.

4.2 Feature Space Partitioning

Following the dictionary design, we encode all frames using the soft thresholding

operator, f`,i = max{0,DT
` y`,i − α}, where α is a tuned parameter. Since the filter

responses {f`,i}N`i=1 will be used to construct the input vectors for the subsequent

layer, a large K` can make dictionary learning computationally challenging in the

next layer. Consequently, it will be beneficial to partition the feature space into

multiple (possibly overlapping) subspaces, and learn an ensemble of filters in the next

layer. Though a natural choice is to perform random partitioning of the space, it can

be highly suboptimal in describing the temporal dynamics. We propose a greedy

partitioning technique that builds multiple R−dimensional (possibly overlapping)

subspaces, where each subspace is constructed using filters whose responses exhibit

similar temporal correlation structures. Let us denote the number of subspaces in

layer ` as G`. At a layer `, an audio file indexed by j contains N j
` frames. Hence,

the total number of frames at level `, in the dataset with S clips, can be obtained as

N` =
∑S

j=1N
j
` . The filter responses can now be denoted by the matrix F` ∈ RK`×N` .

In order to partition the feature space, we devise a novel similarity metric for

comparing the temporal correlation structures of the filter responses. Let us consider

the responses of all N j
` frames from sound clip j to the filter d`,p, denoted by the
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vector Fp,j
` ∈ RNj

` . We compute L−dimensional autocorrelation sequences for N j
`+1

overlapping windows of Fp,j
` . By stacking the correlation matrices Cp,j

` ∈ RL×Nj
`+1 ,

∀j = 1 · · ·S, we construct the overall correlation matrix Cp
` ∈ RL×N`+1 , where N`+1 =∑S

j=1 N
j
`+1. The affinity between the correlation structures Cp

` and Cr
` corresponding

to the filters d`,p and d`,r is measured as

A(p, r) =
Tr((Cp

`)
TCr

`)

Tr((Cp
`)
TCp

`) + Tr((Cr
`)
TCr

`)
. (4.1)

We adopt a greedy approach to partition the feature space into multiple overlap-

ping subspaces. We begin by randomly choosing a filter and picking R − 1 filters

with the highest similarity measures (from (4.1)) to form a subspace. Following this,

we randomly choose another filter, that has not been used in the earlier step, and

construct the second subspace. We repeat this process until all filters are included in

atleast one of the subspaces.

Since we consider only partially overlapping windows while computing the auto-

correlation sequences, the number of frames in a clip j is reduced from N j
` to N j

`+1.

However, each new frame is now represented by a set of G` vectors of dimensions R∗L

each, instead of a single K` dimensional response vector. Hence, we perform dimen-

sionality reduction on each of the G` vectors using Random Projections (RP), where

the resulting dimension M`+1 << R ∗ L. According to the Johnson-Lindenstrauss

lemma [70], RP can approximately preserve isometry in O(log(N)/ε2) dimensions for

N samples, where ε bounds the approximation error. The use of random projections

is applicable here as we will further cluster the aggregated representations for learn-

ing filters in layer ` + 1. The pooled responses, at level `, can now be denoted as

{Yg
`+1 ∈ RM`+1×N`+1}G`g=1, which are the inputs to the next layer.

In the ` + 1th layer, we learn filters, independently, in each of the G` subspaces

identified in the previous layer. The feature space partitioning and the pooling oper-
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ations significantly reduce the computational cost for the mini-batch clustering. Let

Kg
`+1 denote the number of filters learned in the subspace indexed by g (g = 1 · · ·G`).

The total number of filters at level `+ 1 is K`+1 =
∑G`

g=1K
g
`+1 and the filter response

matrix, F`+1 ∈ RK`+1×N`+1 , is obtained by stacking responses from all G` subspaces.

We can then repeat the process of feature partitioning and pooling exactly as the

previous layer. In our experiments, we employ a 2−layer architecture, and the out-

put of our feature extraction process are the matrices denoted by {Yg
3 ∈ RM3×N3}G2

g=1.

Long duration signals can benefit from more number of layers to further reduce the

number of frames in the signal. More depth in the architecture can also be achieved

by increasing the overlap length in the windowing operation during pooling. This

reduces the rate of decrease in the number of frames for each clip across layers.

4.3 Predicting Semantic Labels

In order to generate effective representations for audio clips that will enable se-

mantic predictions, we build an ensemble of Replicated Softmax Models (RSM) topic

models on the pooled features. Note that, we infer a topic model for each of the

subspaces from the feature partitioning. RSM belongs to the family of undirected,

energy-based models known as restricted Boltzmann machines (RBM). The visible

unit is modeled as a softmax variable instead of a Bernoulli variable as in a con-

ventional RBM. Further details on this technique and its convergence properties can

be found in [71]. Since RSM requires a histogram of words as input, we construct

a bag-of-words model based histogram for the audio clips in each of the subspaces.

Each of these models can be interpreted of as a local topic model based on a limited

set of words, and can reliably predict a subset of tags or categories. Such an ensem-

ble can provide a richer and robust information, and we show that it is particularly

suitable for environment sounds which can manifest from numerous categories in real
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scenarios.

4.3.1 Ensemble Tag Embedding

In order to explore the relationships between the inferred topic models and the

ground truth tag vectors (in training data), we compute low-dimensional semantic

embeddings for the tag vectors based on graphs constructed using the corresponding

topic models. In particular, we assume that the topic features follow a union-of-

subspaces model, wherein samples in a subspace can be effectively reconstructed using

other samples in that subspace, and construct graphs based on sparse representations.

Each of the topic models in the ensemble provides a different semantic embedding

that improves the predictability of some tags more than others. Furthermore, we

assume that the tag vector for any audio clip is sparse, and that the `1 reconstruction

of a test sample in both the topic feature space and the embedded tag space are

similar.

We begin by considering one topic model in the ensemble, and let us denote the

set of topic features using the matrix X ∈ RP×S, where P indicates number of topics.

The tag (label) vectors for all sound clips are stored in the matrix U ∈ RT×S, where T

denotes the total number of labels in the collection used to describe the training set.

For the jth clip, the entry Ui,j is set to 1 if the ith tag is associated with that clip. We

are interested in computing a linear projection matrix V ∈ RT×d, where d� T , which

will result in similar low-dimensional embeddings for tag vectors with similar topic

distributions. The projection directions are estimated using an approach similar to

Locality Preserving Projections (LPP) [72], with a sparse coding graph obtained from

the topic features. The edge weights in the graph correspond to sparse codes obtained

for each feature vector using all other features as the dictionary. This approach is

found to be more effective than Euclidean distance based neighborhood in identifying
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the semantic relationships.

Sparse coding of a topic feature xi can be performed as

min
αi
‖xi −Bαi‖+ λ‖αi‖1 (4.2)

where the dictionary B ∈ RP×S−1 is designed using all features except xi and ‖.‖1 de-

notes the `1 norm. Denoting the sparse coefficient matrix by A ∈ RS×S, we construct

the adjacency matrix for the graph as W = |A|+ |AT |.

Given the affinity matrix W ∈ RS×S, we compute the degree matrix D with each

diagonal element containing the sum of the corresponding row or column of W. The

d projection directions for LPP are then computed by optimizing

min
V

S∑
i,j=1

‖VTui −VTuj‖2
2wij s.t.

S∑
i=1

‖VTui‖2
2dii = 1.

where wij and dii are the corresponding elements of the affinity and the degree ma-

trices. This optimization ensures that the embedding preserves the structure defined

by the sparse coding based graph. Defining the graph Laplacian L = D −W, this

optimization problem can be rewritten as

min
trace(VTUDUTV)=I

trace(VTULUTV). (4.3)

and this can be solved using generalized eigen-value decomposition.

4.3.2 Tag Reconstruction

Assuming that our deep architecture for feature extraction contains h levels, for

a test audio clip, we extract the features, and construct the Gh (size of the ensemble)

topic distribution vectors {zg}Ghg=1. The goal here is to predict the tag vector for the

test data using the topic features. For a test clip, we compute the similarity with

training clips in terms of features using reconstruction coefficients as

βg = argmin
β
‖zg −Xgβ‖2

2 + λ‖β‖1. (4.4)
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Let us denote the low-dimensional embeddings of the training tags corresponding to

the gth topic model as Eg = VT
g U. We perform out-of-sample extension for the test

sample by estimating its embedding in the semantic space as, etestg = Egβg. Since

we know that the tag vector utestg is sparse, we solve the following inverse problem to

predict the tag vector:

utestg = argmin
u
‖etestg −Vgu‖2

2 + λ‖u‖1 (4.5)

Finally, we average the predictions from all models in the ensemble to estimate the

tag vector: utest = 1
Gh

∑Gh
g=1 utestg .

4.4 Datasets and Results

First dataset was created for the recently organised IEEE AASP D-CASE scene

classification challenge [1]. The dataset consists of 30 seconds long audio clips,

recorded using a Soundman binaural microphone (PCM 44.1kHz 16 bit). The publicly

available development dataset contains 100 clips with 10 samples from each of the fol-

lowing 10 classes: bus, busy street, office, open market, park, quiet street, restaurant,

supermarket, tube, tubestation. It has an equal balance of indoor and outdoor scenes.

We achieve a recognition accuracy of 71%, averaged over 100 runs, when compared

to the baseline of 56% obtained using MFCCs. Figure 4.2 shows the recognition

accuracies of each of the RSM topic models, and that of a majority vote classifier

combining all of them. Table 4.2 shows the confusion matrix summed over 100 runs.

The performance can be improved by using a larger dataset to learn filters compared

to this dataset. Table 4.3 compares our performance to a few related entries from the

challenge. The details on the methods used for comparison can be found in [1].

We will demonstrate tag prediction on the recently released large dataset con-

taining 7960 audio files (10s long) [73]. These are mostly field recordings, and the
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Figure 4.2: Effect of Using An Ensemble of Semantic Embeddings on the Classifica-
tion Performance for a Particular Run on the AASP Challenge Dataset. A Majority
Vote Classifier Outperforms the Individual Classifiers Learned Using the Correspond-
ing RSM Topic Models.

total number of tags in the dataset is 7729. The tag field-recording was used as the

search term to build the database from the freesound website. We use linear SVM for

classification, and we report the performance for a subset of tags that have sufficient

number of examples in the dataset. The accuracies and f1-scores are illustrated in in

Figure 4.3. The tag prediction behavior of our system in the total space of 7729 tags

is illustrated in Table 4.4. It can be observed that the semantically similar tags have

been clustered in subspaces.
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Figure 4.3: Prediction Performance (Accuracy and F1-score) of the Proposed Ap-
proach on a Subset of the Freefield1010 Dataset. This Subset was Chosen Such That
It Contained a Sufficient Number of Examples for Each Tag.
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Table 4.1: Mini-batch Damped K-hyperline Clustering for Inferring Filters in Each
Layer of the Hierarchy.

Input:

Y` - Input matrix of size M` ×N`

K` - Desired number of clusters

T - Number of iterations

B - Size of the mini-batch

Algorithm:

For t = 1 to T

Draw a random subset Yt
` = [yti]

B
i=1 from the input matrix Y`.

Loop for G iterations

For i = 1 to B

- Compute hi = (Dt−1
` )Tyti.

- Compute j = argmaxj(hij), where j = 1 · · ·K`.

- Set uj = hijyi + uj.

- Set vj = (hij)
2 + vj.

end

For i = 1 to K`

- Set dt`,j =
uj
vj

+ dt−1
`,j .

- Normalize dt`,j to unit `2 norm.

end

end

end
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Table 4.2: Confusion Matrix for the AASP Scene Classification Dataset Averaged
Over 100 Runs.

Estimated: A B C D E F G H I J

A (bus) 82 0 11 2 0 0 2 0 2 0

B (busy-street) 0 100 0 0 0 0 0 0 0 0

C (office) 5 0 91 0 0 1 1 2 0 0

D (open-market) 0 2 0 87 0 0 8 2 0 2

E (park) 10 10 36 0 24 12 6 0 0 1

F (quiet-street) 2 3 4 8 4 72 2 1 2 1

G (restaurant) 6 2 0 17 1 0 66 5 0 2

H (supermarket) 18 13 3 5 2 3 15 20 1 20

I (tube) 16 12 0 1 0 6 2 1 56 8

J (tube-station) 0 12 0 4 1 0 4 9 1 68

Table 4.3: Recognition Performance of the Proposed Approach on the Publicly
Available AASP Development Dataset in Comparison to a Few Relevant Entries in
the AASP Scene Classification Challenge [1].

Method Average Accuracy (%)

Baseline MFCC + GMM 52

Cochleogram + Tonelikeness 55

Spectral and Temporal and Spatial Features 69

SparseRBM + Uniform Max-pooling 68

SparseRBM + Selective Max-pooling 75

i-vector analysis of MFCC + pLDA 65

Spectral and Temporal features + HMM 72

RQA features + MFCC 71

Our Method 71
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Table 4.4: Illustration of Tag Prediction Behavior in the Subspaces Found. Table
Shows the Top Predicted Tags in a Few Subspaces for a Particular Clip. Related
Concepts are Clustered in a Subspace.

Ground Truth street-sounds, traffic-noise, sidewalk-conversations, city-streets

SubSpace 1 male, voice, female, vocal, speech

SubSpace 2 traffic, driving, cars, roar, motorbike

SubSpace 3 city, voices, wind, male, station

SubSpace 4 voices, children, screeching, steps, child

SubSpace 5 racing, radio, accelerating, motor, car
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Chapter 5

SPARSE FEATURE LEARNING AT SCALE

Performing fine-grain parallelization of the algorithms [74] can also reduce compu-

tation times. The inexpensive Graphical Processing Units (GPUs) [75] are a pop-

ular option for parallel processing.We implement the Orthogonal Matching Pursuit

(OMP) algorithm to evaluate the sparse codes of thousands of signals in parallel us-

ing a learned dictionary. This implementation can be directly adapted to wavelet

based de-noising using fixed dictionary. We present strategies to save memory and

to achieve maximum speed-up. We present results that compare our implementation

(GPU-OMP) to other CPU implementations.

5.1 Architecture

Using Graphic Processing Units (GPUs) as Stream Processors has enabled GPUs

to perform parallel computations. Typically, a system comprises both a CPU and a

GPU. On receiving the control and data from the CPU, GPU performs the compu-

tations and returns the processed data back to the CPU. Figure 5.1 illustrates the

architecture of a GPU. A typical GPU has a series of Multiprocessors (MP), and

each multiprocessor contains 8 Scalar Processors (SP). The memory bank of a MP

can be accessed by all its SPs and a large global memory is shared across all the MPs.

The scalar processor in turn has its own registers. Access to the registers and the

shared bank in a MP is the fastest, while accessing the global memory is fast when

the memory is coalesced. The slowest is the transfer between the CPU-RAM and the

GPU-global memory.

CUDA (Compute Unified Device Architecture) is a parallel computing architec-
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Figure 5.1: The NVIDIA GPU Architecture (NVIDIA and CUDA Are Registered
Trademarks of NVIDIA Corporation).

ture developed by NVIDIA to implement algorithms in their GPUs. We use the C

interface for CUDA and employ nvmex to generate mex files that can be invoked

in MATLAB. A typical CUDA program consists of a host code and a device code,

where CPU and GPU are the host and the device respectively. The host performs

the non-parallel computations and passes data to the global memory in the GPU and

launches a kernel. The kernel executes the computations using parallel threads on the

SPs. The threads are grouped into blocks and blocks are grouped further into grids.

The host code receives the processed data and returns to the MATLAB environment.

5.2 Dictionary Based Coding for Signals on GPU

The general problem of sparse coding can be stated as

â = argmin
a
‖a‖0 s.t. ‖y −Ψa‖2

2 ≤ ε, (5.1)

where y ∈ RM is the data to be represented, Ψ ∈ RM×K is the dictionary, a ∈ RK

is the sparse coefficient vector, ‖.‖0 indicates the `0 norm, ‖.‖2 denotes the `2 norm

and ε is the error goal for the representation.
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Figure 5.2: OMP Running Times - Total Execution Time to Perform OMP on
Different Number of 64 Length Signal.

We use the NVIDIA GTX 460X GPU with 336 cores, installed on an AMD quad

core machine. Since the transfer rate between CPU memory and global memory

of a GPU is very slow, we transfer the signals to the GPU global memory in large

chunks, limited by the GPU global memory size. The primary goal of our GPU

implementation is to perform OMP on each signal in parallel using only a single

CUDA kernel. The data transfer between the global memory of the GPU and the

shared memory bank of a block causes additional overhead. We can minimize this

transfer by reducing the number of kernel launches. Each signal and the dictionary

are passed to a thread at the kernel launch. The sparse code is obtained from each

thread and stored in the global memory of the GPU which is then finally transferred

back to MATLAB.

The bottleneck in performing OMP using a single kernel is the limited availability

of fast memory access (16 KB of shared memory bank) to each thread to compute

the sparse code. Hence, there is a need to reduce the computational complexity and

storage requirements of the OMP implementation. It can be observed that the com-

putational overhead is in evaluation of the coefficients using a least square procedure.

In the lth step of the OMP algorithm, let Ψl ∈ RM×l denote the set of l dictionary
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atoms chosen for the representation. To compute the sparse code, we need to solve

mina ‖yn − Ψla‖2
2. This can be simplified by performing Gram-Schmidt orthogo-

nalization of Ψl to compute Q. The least squares problem can now be solved as

‖ŷn− Ψ̂la‖2
2, where Ψ̂l = QTΨl and ŷn = QTyn. Thus, the size of the matrix whose

inverse needs to be found at each step of OMP reduces from M × l (Ψl) to l× l (Ψ̂l).

Finally, we use the iterative Newton’s method to obtain the least squares solution

[76]. The convergence to the true inverse is guaranteed when the initial estimate of

the inverse of Ψ̂l is αΨ̂T
l , where α is positive and sufficiently small. A commonly used

initial estimate is

Λ0 =
Ψ̂T
l

‖Ψ̂l‖1‖Ψ̂l‖∞
(5.2)

where ‖Ψ̂l‖1 and ‖Ψ̂l‖∞ are the maximum absolute row and column sum norms

respectively. Figure 5.2 shows the comparison of the time taken by the Plain-OMP,

Cholesky decomposition based OMP, Batch-OMP [77] and the GPU-OMP on different

number of signals. The first three algorithms are implemented on the CPU. The 5-

sparse representation of each 64 length signal is found using a dictionary of size

64 × 1024 . As it can be seen, when the number of signals is very less, the CPU

performs better than then GPU. This is because, the number of signals is much lower

than the total number of cores and computational overhead of data transfer between

the CPU memory and the GPU is higher. With the increase in the number of signals,

using a GPU achieves a significant speed-up in sparse code computations. Further

speed-up can be achieved by using multiple GPUs.

5.3 Image Retrieval

We demonstrate the use of the proposed implementation in building features based

on the sparse codes to (a) perform exact image search, which has been used in image

monitoring for broadcast media and photo industry [78], [79], and (b) retrieve visually
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Figure 5.3: The NVIDIA GeForce GTX 460 GPU (NVIDIA is a Registered Trade-
mark of NVIDIA Corporation).

similar images from the database. In order to facilitate exact image search, we can

generate compact representations for images that can be easily stored and compared.

We propose to perform exact search using a binary feature vector for each image

generated from the sparse coefficients of its patches. In order to extract visually

similar images we use local descriptors, invariant to commonly occurring transfor-

mations, that are coded using a dictionary and aggregated to generate image-level

features. Retrieval results using images from the online Flickr database indicate that

aggregated features yields better performance when compared to just using user tags.

5.3.1 Performing an Exact Match

Employing a nearest neighbor approach to perform an exact match in a large

database and retrieving the associated information poses two important challenges.

It is imperative for the algorithm to access all images to run the comparison. However
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the sizes of these databases are often overwhelming and hence modern image storage

systems resort to using multiple servers. However, it is computationally expensive to

retrieve images from several servers. This can be addressed by generating simple and

unique image-level codes that allow for efficient representation and storage. The other

challenge is to perform a fast comparison based on a distance metric. We simplify this

by designing binary feature vectors for the images and using the Hamming distance

for comparison.

The image-level feature is generated by first computing an S−sparse representa-

tion for the image patches using the GPU-OMP implementation. We then create an

intermediate feature vector of length K from the matrix A, using the absolute maxi-

mum of each row. This operation, referred to as max pooling, provides discriminative

image information disregarding the spatial locality of the patches. In order to create

binary feature vectors for images, we need to estimate the quantization threshold for

the intermediate feature vectors. This is computed using a histogram of intermediate

feature values for a subset of images from the database. The threshold is the value

at which the histogram can be divided into approximately two equal regions. Finally,

for each image we generate a K × 1 binary feature vector by setting all the interme-

diate feature vector values greater than the threshold to 1 and the rest to 0. During

retrieval, all the binary feature vectors from the image database are loaded into the

GPU global memory. The GPU-OMP kernel and the GPU-Hamming-distance kernel

are used to compute the binary feature vector for the test image and identify the

exact match image from the database.

5.3.2 Obtaining Visually Similar Images

The standard online databases such as Flickr retrieve images based on user-defined

tags. Since, user tags do not always hold relevance to the underlying content, user

84



experience in image search is often compromised. Hence, there has been lot of in-

terest in designing efficient content based search systems. Several image-specific fea-

tures/descriptors have been used in order to retrieve similar images given a desired

target image. However, performing feature based image retrieval is extremely chal-

lenging on large datasets.

We demonstrate a simple setup which initially runs a search based on user tags

followed by an additional level of search based on content. Each image is divided

into patches of size 24 × 24 with a grid spacing of 8 and one SIFT descriptor is

extracted per patch. Global dictionaries are learned using a subset of the descriptors

and we compute a S-sparse code for each SIFT descriptor using the GPU OMP

implementation. The image-level feature is generated by counting the number of

non-zero coefficients corresponding to each dictionary atom and normalizing it using

the total number of non-zero coefficients, at different spatial scales. Finally, a nearest

neighbor approach is used to retrieve the relevant images. Figure 5.4 shows results

obtained with the proposed scheme in comparison to using a tag-based search. In

each case, we use the first 250 results obtained with tag-based search [80] to perform

feature based search. As it can be observed, the proposed scheme retrieves images

that are very similar to the target image.

5.4 Image Annotation

Textual information or tags can be a useful meta-data for images. Large scale

image retrieval becomes feasible by associating images with tags. Many a time users

submit a textual query for image retrieval and hence tagging plays an important role

in identifying images most relevant to the query. Furthermore, categorizing images

and videos semantically can benefit from tag information. Human annotation is

highly subjective and imprecise. Based on individual perception, the same image can
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Figure 5.4: Image Retrieval: In Each Case, the First Row Shows The First 5 Results
Obtained Using Tag-Based Search in Flickr and the Second Row Shows the Top 5
Results Obtained by Performing an Additional Level of Search by Providing a Target
Image.

be associated with different tags. Hence, this tag annotation is variable and may not

often convey the true semantic meaning of the image. It becomes a herculean task

for humans to annotate images if the image database is large. The goal of automated

image annotation is to assign suitable tags (or labels) to a given image, based on its

content.

5.4.1 Related Work

The choice of suitable image descriptor is crucial for a variety of visual recognition

problems. The use of multiple visual descriptors can lead to improved performance

in image classification and tag annotation tasks. Since, combining a diverse set of

descriptors is not straighforward, kernel methods have been successfully used for ob-

ject classification based on multiple features [81]. The performance is sensitive to the
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dataset used for training and cannot be directly extended to image annotation. Un-

derstanding the contribution of each feature to image annotation is important, while

combining the features. Furthermore, with image descriptors such as histograms,

exploiting both the high-level correlations (comparing the whole histograms) and

low-level correlations (comparing the individual bins in the histogram) might lead to

improved annotation systems. Based on this intuition, the authors in [82] place a

sparsity prior on the features and exploit their group clustering characteristics for ef-

fective feature selection. As a result, each bin in the histogram is assigned a different

weight based on its contribution to the combined representation. We investigate the

use of energy based Restricted Boltzman Machines (RBMs) to exploit the correla-

tion among features at low-level bins and high level histograms. RBMs can learn the

probability distribution of the input data and have been employed in a deep learning

framework for dimensionality reduction [83].

It has been shown that meaningful low-dimensional representations can be ob-

tained for the image features, particularly beneficial for complexity reduction in im-

age retrieval applications [84]. The correlations between the tag and the features is

highly non-linear and thus an RBM cannot be directly used on the raw tag data and

features. There has been several attempts to obtain semantically meaningful embed-

dings for features, by directly incorporating the ground-truth tags. In [85], authors

compute an embedding for tags and features in a latent semantic space using canoni-

cal correlation analysis (CCA). In [86] the embedding is estimated using sparse coding

based graphs obtained from the tags. The semantically meaningful low-dimensional

embedding can then be used to effectively predict tags for a test image, with suitable

visual features.
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Figure 5.5: Figure Shows the Features and Tags of: (Left) Query Image, (Right)
Image With Closest Visual Feature and (Right) Image With Closest Tag Vector.

5.4.2 Our Approach

We propose to perform automatic image annotation using sparse coding and near-

est neighbour based methods in a semantic space. The semantic space is a low-

dimensional linear subspace obtained from a sparse coding based similarity graph of

training examples. The feature vector for each training example is obtained by fusing

multiple descriptors using deep belief networks (DBNs) and the graph is computed

from the unified feature-tag data obtained from training images. Practical image

annotation algorithms have trade-off in their precision-recall characteristics. There-

fore, we propose two different modifications to the proposed algorithm using random

ensembles of tags or training data, in order to achieve higher precision or higher re-

call, without significantly compromising the other measure. Results show that sparse

coding based tag prediction performs better in comparison to nearest-neighbour ap-

proach. Furthermore, the effectiveness of the randomized extensions to the algorithm

in improving precision or recall is demonstrated.
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5.5 Feature Extraction

We can extract hierarchical features by stacking layers of RBMs, known as a Deep

Belief Network (DBN), where, output of one layer acts as input to the another. Each

layer progressively captures higher order correlation between the data.

In our set-up, the 37, 000 dimensional input feature is obtained by stacking 15

different visual descriptors as described in [87]. Learning a network with these many

visible units is computationally intractable, and would also require a large training

set. Therefore, we use a greedy sequential method to generate features while using

all the 15 descriptors. The input feature vector for each image is divided into 1000

dimensional chunks, and DBNs (number of nodes in each layer: 1000-1200-500-100)

are learned sequentially. The DBN from the previous round is used to initialize the

DBN in the current round. and the activations from from all DBNs are stacked to

form a low dimension feature. The process is repeated for multiple passes over the

whole 37, 000 dimensions to further refine the feature. Figure 5.5 shows the activations

for the last round of the DBN for a sample query image. It can be observed from

the plot that the features capture the visual correlations between images (leftmost

and middle plots). But the images with similar tags (leftmost and rightmost) have

degree of a dissimilarity in their visual features. This motivates us to develop a joint

low-dimensional embedding of the visual features and tags to create a representation

which directly capture correlations among the visual features as well as tags.

5.6 Computing Low-Dimensional Embeddings

Using the DBN features, we propose a procedure to compute a low-dimensional

linear embedding for each image that incorporate the supervisory tag information.

These reduced dimensional embeddings make it computationally feasible to perform
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image annotation using sparse coding on a large image database. The semantic

information in the images is also encoded in the embedding since it is computed

using both features and tags. The appropriate tags for a test image can then be

predicted based on its relation to semantically similar images. As noted earlier, we

assume that each image is described using more than one label, and we are provided

with a training set with relevant ground truth labels.

Let us denote the set of image-level DBN features using the matrix X ∈ RM×T ,

where T indicates the total number of training images. The tag (label) matrix is

denoted by U ∈ RP×T , where P denotes the total number of labels in the collection

used to describe the training set. For the ith image, the entry Uj,i is set to 1 if the

jth appropriately describes that image. We are interested in computing a projection

matrix V ∈ RM×d, where d�M , which will result in highly similar low-dimensional

embeddings for images with similar tags. The multi label sparse coding (MLSC)

technique described in [86] is one such method for creating a semantically meaningful

embedding. In the MLSC approach, the embedding is estimated using the sparse

coding graph obtained with the tags. The edge weights in the graph correspond to

sparse codes obtained for each tag vector using all other tag vectors as the dictio-

nary. These sparse coefficients are found to be more effective than Euclidean distance

based neighbourhood in identifying the semantic relationships. Sparse coding based

graphs are also more robust to noisy tags and adapt well to non-uniform sampling

of the tag space. Based on the intuition that the similar images in the feature space

will have similar tags, the authors in [86] create an embedding for the features such

that the relations between the tag vectors are preserved. Such an approach has two

main disadvantages: (a) its performance will be affected when there are insufficient

number of tags or when there is severe noise in the tags, and (b) the computational

complexity of obtaining the sparse coding graph is very high. In order to make the
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embedding even more robust to partial or noisy tags, we propose to explicitly model

the correlation between the features and the tags. This is achieved by obtaining a

sparse coding graph for the features and tag vectors together, using a learned dictio-

nary with K elements. By fixing K � T , we can also avoid the high computational

complexity usually associated with obtaining sparse coding graphs.

The proposed sparse coding and dictionary learning approach for the unified

feature-tag space is denoted as

min
B,A

∥∥∥∥∥∥∥
X

U

−BA

∥∥∥∥∥∥∥
F

+ λ
∑
i

‖ai‖1 s.t. ∀k, ‖bk‖2
2 ≤ 1, (5.3)

where the dictionary B ∈ R(M+P )×K models both the features and tag vectors of each

training example using the same set of coefficients. ai is the coefficient vector and

the collection of T coefficients is denoted by the matrix A ∈ RK×T . Sparse codes of

two images obtained from this model will be correlated only if their features and tag

vectors are similar. The dictionary B can be obtained using sophisticated techniques,

but we observed from our experiments that a simple K-means approach provided

a sufficiently good dictionary for this application. Following this, we construct the

weighted graph adjacency matrix, using the sparse codes obtained from (5.3), as

W = |ATA|.

Low-dimensional projections can be obtained from the sparse coding graphs using

the locality preserving projections (LPP) approach. Since the final goal is to predict

tags using features obtained from test data, we compute the embedding only for

the features in the training data, and not for the tags. Given the affinity matrix

W ∈ RT×T , we compute the degree matrix D with each diagonal element containing

the sum of the corresponding row or column of W. The d projection directions for
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LPP are then computed by optimizing

min
V

T∑
i,j=1

‖VTxi −VTxj‖2
2wij s.t.

T∑
i=1

‖VTxi‖2
2δii = 1. (5.4)

where wij and dii are the corresponding elements of the affinity and the degree ma-

trices. This optimization ensures that the embedding preserves the structure defined

by the sparse coding based graph. Defining the graph Laplacian L = D −W, (5.4)

can be rewritten as

min
trace(VTXDXTV)=I

trace(VTXLXTV). (5.5)

and this can be solved using eigen decomposition.

5.7 Tag Prediction

Let us denote the low-dimensional projection of the training features as Y = VTX.

For a test image, we extract the feature xt and compute the projection yt = VTxt.

The goal here is to predict the tag vector for the test feature in the embedded space.

From (5.4), it is clear that the sparse coding graph relations directly correspond to

the Euclidean distances between the low-dimensional features. Hence, we can employ

a simple local neighbourhood based least squares reconstruction for yt in terms of

the training samples {yi}Ti=1. The reconstruction coefficients are given as

αt = argmin
αt

‖yt −
T∑
i=1

αtiyi‖2
2

s.t. αti = 0, if i /∈ Ωk(y
t) and 1Tαt = 1. (5.6)

Here Ωk(y
t) indicates the set of k nearest neighbours of yt. However, this approach

requires global similarities between the test feature and the training features for iden-

tifying the suitable tags. In other words, the k nearest neighbours for the test sample

might not include other semantically related images because of the lack of global
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Table 5.1: Precision-Recall Rates for the Corel-5k Dataset.

Least Squares Sparse Coding

Algorithm Basic Ext. 1 Ext. 2 Basic Ext. 1 Ext. 2

Rec. > 0 124 122 129 122 121 130

Results on All 260 Words

Mean Prec. 0.22 0.24 0.2 0.23 0.26 0.22

Mean Rec. 0.27 0.26 0.29 0.27 0.27 0.3

Results on Best 50 Words (Precision)

Mean Prec. 0.71 0.79 0.68 0.77 0.83 0.74

Mean Rec. 0.69 0.69 0.74 0.71 0.72 0.78

similarity. This can be addressed by computing the sparse code for the test feature

with the training features as the dictionary.

Although the least squares approach may result in a reasonable performance,

computing the reconstruction weights using a sparse coding approach may result in

identifying training images that have higher semantic similarity to the test image.

Therefore, we recast the problem in (5.6) as

αt = argmin
αt

‖yt −Yαt‖2
2 + λ‖αt‖1 (5.7)

to identify the reconstruction coefficients. Similar to the approach described in [86],

we obtain the predicted tag vector for the test image using the tags of the training

set and the reconstruction coefficients, ut = Uαt.

93



5.7.1 Improving Tag Prediction Performance

Typically, automated image annotation performance is evaluated by comparing

the predicted labels with the human-labelled ground truth. The metrics commonly

used for evaluating the performance are the precision and recall for every label. Pre-

cision of a label is measured as the ratio between correctly annotated images and

the total number of images annotated with that label. Recall is defined as the ratio

between the number of correctly annotated images and the number of images that

have the said label in the ground truth annotation. An effective image annotation

system is characterized by high precision and recall. However in practical algorithms

there is always a trade-off between precision and recall characteristics. Therefore it

will be useful to incorporate suitable modifications to our algorithm to obtain higher

precision or higher recall, depending of the requirements of the application, without

significantly affecting the other. To achieve this, we propose extensions to the algo-

rithm using randomized strategies either when the embedding is computed or when

the tags are predicted. Note that these methods can be applied to both sparse coding

based prediction and least squares based prediction.

Improving Precision

The effectiveness of the embedding step in preserving semantic relationships directly

impacts the precision of the image annotation algorithm. The proposed approach

in Section 5.6 can be improved by building multiple embeddings tuned for differ-

ent random subsets of the tags. Each random subset indexed by s, contains only

R randomly chosen tags out of the total P tags. The tag matrix thus obtained is

denoted by Us. Note that it contains a random selection if R rows from U. The

resulting embedding retains only partial semantic relations, but since R is small, it
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can provide a high precision for those tags. We obtain one projection matrix per

round, i.e., for one particular random choice of R tags. For a test image, we obtain

a low-dimensional embedding for each projection and perform sparse coding or least

squares reconstruction as described in Section 5.7. The labels of the test image are

estimated using the final average coefficient vector obtained as the mean of coefficient

vectors from multiple rounds. Furthermore, in order to simplify the dictionary learn-

ing procedure, we used dictionaries obtained as randomly chosen columns from

Y

Us


instead of K-means dictionaries in each round. Note that, although we allow overlap

between random subsets of tags, when computing the embeddings, some labels might

participate in very few rounds and this could lead to a reduced recall rate for that

label.

Improving Recall

The tag prediction approaches described in the earlier part of this section require the

choice of a global parameter, such as sparsity penalty λ or the number of nearest

neighbours k. These determine the number of training vectors that will participate

in the representation. Relaxing this penalty will result in increased recall with a

reduction in precision. To mitigate this effect to some extent, we propose to construct

multiple dictionaries using random subsets of training features. When the size of

this subset is reasonably high, the prediction algorithm can result in improved recall

without affecting the precision significantly. Similar to the previous case, we compute

the final average coefficient vector as the mean of coefficient vectors obtained from

the multiple dictionaries. This final coefficient vector is used to estimate the tags of

the test image.

95



5.8 Simulations

In order to test our proposed set-up, we use the Corel-5k dataset [88], which

is typically used to benchmark image annotation tasks. The dataset contains 4500

images for training and 499 test images. Each image is annotated with a maximum

of 5 tags. The dataset has a vocabulary size of 260 words. We derive image-level

features using the procedure described in Section 5.5.

For the training data, we compute sparse codes using a dictionary of size K =

512, compute the sparse coding graph and obtain d = 150 dimensional embeddings.

Sparse codes were obtained using the open-source SPAMS package [89]. In table 5.1,

the tag prediction procedures mentioned as Regular are the basic least squares and

sparse coding algorithms described in Section 5.7. Randomized 1 is the variation of

the basic algorithms for improving precision (Section 5.7.1), and in this case we fix

R = 40, and use 30 random subsets. In order to improve recall (Section 5.7.1), we

use the Randomized 2 method in which during each round 3000 training examples

are randomly chosen and this is repeated for 30 rounds.

Mean precision and recall are computed for all the 260 tags and a subset of best

50 tags (highest precision). The number of tags with non-zero recall is also a good

indicator of the sensitivity of the algorithm to a wide range of tags. It can be observed

that the sparse coding method performs better than least squares approach. As

expected, the randomized methods are useful in improving the precision and recall

respectively, while leading to a small reduction in the other measure in most of the

cases. Hence the least squares method can be used if we need a fast and simple

implementation, whereas further improvements in performance can be obtained with

sparse coding for increased computational complexity.
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Chapter 6

SUBSPACE BASED METHODS FOR ANALYSIS OF SILICON-PORE SENSOR

DATA

The use of semiconductor nanostructures and novel nanomaterials such as conducting

polymers for building biosensors is gaining popularity, since they can enable single

molecule detection [90]. A silicon nanopore, for example, behaves like a protein chan-

nel and allows selective analyte transport [91, 92]. The ability to fabricate structures

ranging from micrometers down to a few nanometers has led to the re-discovery of

the Coulter counting principle. In Coulter counting experiments, the drop in ionic

current through a micron-sized aperture is recorded upon passage of a particle, such

as a blood cell. The shape and amplitude of the current signal then enables a dis-

crimination between different cells, allowing for example a complete blood cell count

to be generated. For a Coulter counter to be most efficient in discriminating between

different particle sizes, the aperture through which the particles flow has to be on

the same order of magnitude as the particles themselves. Thus, nanoscale particles

are best detected using a nanopore. Using nanopores, however, restricts the range of

particle sizes significantly. Moreover nanopores tend to become irreversibly blocked

by larger particles or molecules, rendering them useless. Thus, in our experiments,

we decided to use a micron-sized silicon pore, since it offers the best trade-off between

sensitivity and detection range and is significantly easier to fabricate compared to a

silicon nanopore.

The silicon micropore is setup to act as a Coulter counting device [93] with the

silicon micropore chip itself being sandwiched between two chambers containing elec-

trolyte solution, typically physiologically buffered saline (PBS). A constant voltage
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is applied across the silicon micropore using reversible Ag/AgCl reference electrodes.

Since the current flowing through the aperture at the applied bias is on the order

of a few nA, no separate counter and working electrodes are necessary to pass the

current. To observe Coulter translocation events, silica microbeads were added to the

electrolyte solution. Since the silica beads carry a surface charge, the applied bias

causes the silica microbeads to enter the pore resulting in a drop in the value of the

baseline current. By functionalizing the silica beads with biotin using amine linker

chemistry, an immunoassay can be performed using the beads. By adding avidin to

the solution, the beads will agglomerate and cause a drop in Coulter current that

is proportional to that of a single silica bead passing through the micropore. The

amount of drop in current and the corresponding increase in resistance can be used

to detect and identify the presence of bead agglomeration, which can be extended

to provide a direct biomolecule detection capability [42]. Previous experiments with

signals originating from nanopore Coulter counting [94] and electromigration of beads

through silicon nanopores [95] show the wide range of applicability of particle classifi-

cation using ionic current drop measurements. The ability to employ signal processing

to discriminate between different biochemical entities has been reported in prior work

by the authors, including extracting features for ion-channel devices [96], classifying

ion-channel signals using HMMs [42] as well as using neural networks [46] and SVM

[97] to characterize and detect the presence of analytes in ion-channel signals.

We explore two features of the current drop to classify the object that is passing

through the micropore: the amplitude of the drop and the time duration of the

event. We discriminate between an event and a non-event based on the amplitude of

the drop. The problem we are facing in the experiments when basing the event/non-

event classification on the amplitude is that the signals obtained from the setup are

inherently noisy. This is due to the noise sources being present, which is primarily
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the thermal noise of the aperture resistance itself. Since a lower resistance creates

a higher thermal current noise, this limits the minimal achievable noise level of the

system. Since the spectrum of the thermal noise is white, the only way to reduce

the root-mean-square (rms) value of the noise is to limit the recording bandwidth.

In a purely analog signal chain, this can be accomplished using higher order analog

filters. These analog filters, however, lead to a modification of a step response in the

signal. The analog filters that are typically employed in the analog signal processing

chain are 8th order Bessel filters, which provide the best trade-off between signal

integrity and steepness of the filter curve. However, aggressive setting of the corner

frequency to achieve the lowest rms noise will have an effect on both the amplitude

and the duration of the current drop in a Coulter signal, thereby affecting the ability

to classify the particle or molecule passing through the micropore.

Wavelet based denoising is employed which preserves the amplitude, width and

shape of the current drop [98]. After denoising, we obtain a series of current drops,

with each one being a probable event caused by a bead passing through the micropore

or a non-event caused by a bead bouncing off the walls. We develop the denoising

protocol as a supervised learning problem, since we have knowledge of the anticipated

amplitude of the drops for these two cases. After the wavelet-based denoising, we

employ Support Vector Machines to classify drops as events and non-events.

Once we extract the events from the signal, the next step is to classify them

and identify which biomolecule caused the event. Depending on the biomolecule size

and shape, the amplitude and the time duration of the drop will change. In our

experiments, we consider two or more silica beads coagulating as a representation

of different biomolecules. Contrary to the denoising problem, where we know the

amplitude of the current drop based on the geometry and size of a single silica bead,

we do not know the current drop in case of bead agglomerates. Thus, we approached
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this problem as an unsupervised learning problem and we performed clustering in the

feature domain.

6.1 Data Processing

6.1.1 Data Acquisition

Micropore data was generated using a Coulter counting element constructed us-

ing a Teflon chamber with two baths surrounding the micropore chip. The two baths

were filled with 0.01M PBS electrolyte solution as shown in Figure 6.1. The Ag/AgCl

electrodes are dipped into each bath of 0.01M PBS and the measurements are taken

using a HEKA EPC-8 current amplifier, using a gain of 0.1mV/pA and analog fil-

tering with a corner frequency of 1kHz. The analog current data was digitized using

a National Instruments PCIe-6221 DAQ board, controlled by the WinEDR software

[99]. Measurements of the current with only the 0.01M PBS solution on either side

of the Teflon chamber provided the value of the baseline current for the PBS solu-

tion. This value was used to calculate the current drop due to the passing of silica

microbeads of known size and geometry through the device. During the experiment,

a bias of 400mV was applied across the silicon micropore and the baseline current

was recorded. The sampling rate was set at 10kHz in all experiments.

6.1.2 Wavelet Transform Based Signal Denoising

The Discrete Wavelet Transform (DWT) is a linear transformation that can be

used to analyze the temporal and spectral properties of non-stationary signals. The

DWT decomposes a signal into the coarse approximation and the detail information

coefficients. DWT is computed by successively applying pairs of analysis filters to

the input signal. The advantage of the wavelet representation is that it can provide
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Figure 6.1: Teflon Chambers With the Device in the Center and the Analyte Within
the Device (Micropore). The Electrodes Can Be Seen on Either Side of the Chambers.

both time and frequency parameters for specific dynamic signal events, i.e. time-

frequency localization [62]. In contrast, the Fourier transform based filtering methods

assume that the signal is stationary and thus cannot provide any information on the

variations in the spectrum with respect to time. Denoising using the Discrete Wavelet

Transform (DWT) is a nonlinear operation that involves appropriate thresholding of

wavelet coefficients depending on the noise variance.

6.1.3 Features: Baseline Current, Drop Height and Drop Width

The useful features to be extracted from the micropore signals are the baseline

current, peak height and peak width. The combination of the baseline current and the

peak height indicates whether a bead has passed through the micropore completely

or not. The peak amplitude is proportional to the baseline current, i.e., greater the

baseline current I, greater will be the drop in current ∆I for the beads of the same

diameter. The width of the peak is proportional to the diameter of the bead.
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6.1.4 Event and Non-Event Classification

Experimental data of duration 30 minutes with a sampling rate of 10 kHz are

available. A rectangular window of size 10, 000 samples with no overlap was used to

segment the data. In each segment, drops were extracted using a gradient method.

Each drop was labeled either as an event or a non-event. An event indicates that a

bead passed through the micropore completely whereas a non-event indicates a bead

bounced off the walls instead of passing through the micropore.

We use SVM to classify events and non-events as we have theoretical estimates

of the drop values for events and non-events [91]. SVMs have been widely used for

solving binary classification problems [56]. SVMs are decision machines that rely on

transforming lower dimensional data into higher dimensional patterns, so that data

from two categories can always be separated by a hyperplane, in accordance with

Cover’s theorem [100]. The SVM uses the concept of the margin, which is defined to

be the smallest distance between the decision boundary and any of the samples. The

support vectors are the training samples that are closest to the decision boundary

and thus define the optimal separating hyperplane. In SVM, the decision boundary

is chosen to be the one for which the margin is maximized. It can be shown that

the largest margin minimizes the total generalization error [7]. The choice of the

nonlinear function that maps the input into a higher dimensional space is usually

dependent on the problem. Usually polynomial or radial basis functions are used to

perform the mapping.

6.2 Dirichlet Process Mixture Model

The final step of the algorithm is to cluster the events. The overall number of

clusters, NC, is an input parameter for most of the algorithms. Estimating this
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quantity from the data itself is known as model order selection. Approaches such as

Akaike’s information criterion (AIC), Bayesian information criterion (BIC) and the

minimum description length (MDL) are based on information theoretic principles.

They identify the ”true” number of clusters by setting a balance between the model

complexity and the models capability to describe the given data, measured by the

likelihood. In contrast, Bayesian Dirichlet Process (DP) based methods represent the

number of clusters as a random variable [101]. An estimate of this random variable

is obtained by sampling the model posterior under the observed data.

In the finite parametric mixture given in (6.1), different components of the mixture

are defined by different values of the parameter vector θk [102]. If the mixture is

estimated from the data, the mixture weights are chosen in proportion to the size

of the classes, i.e. ck = nk

n
, where nk out of n total data points are assigned to the

component k.

p(x|Θ) =
Nc∑
k=1

ckF (x|θk). (6.1)

The finite mixture model (FMM) can be regarded as the result of integrating the

distribution function F against

GFMM(θ) :=

NC∑
k=1

ckδθk . (6.2)

Here δθk denotes the Dirac function on Ωθ, the parameter space, centered at θk. DPM

models augment the expression in (6.2) by an extra term,

GDP(θ) :=

NC∑
k=1

ckδθk + αG0(θ). (6.3)

The function G0 is a probability distribution on the domain Ωθ of mixture parameters,

and α ∈ R+ is a positive scalar parameter [103]. The difference between the models

become clear when we consider a data generating process. In the case of FMM in

(6.2), a new data x is always drawn from from one of the NC parametric mixture
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components. In the case of FMM being a Gaussian mixture model, we sample θ ∼

GFMM and then x ∼ F (.|θ). In the case of DPM (6.3), x can be drawn either

from the NC components or from the new component F (.|θ∗NC+1
), with a probability

proportional to α. The new parameter value θ∗NC+1
is sampled from G0. This describes

the ability of DPM models to generate as many clusters as required by the observed

data.

The standard Gibbs sampling algorithm for DPM models, such as the EM algo-

rithm, also make use of latent variables to assign data points to the mixture com-

ponents [104]. For each xi, the discrete index variable Si specifies the index of the

mixture component to which xi is assigned [105]. Within the algorithm, a value of

Si = 0 indicates the generation of a new mixture component from G0 as a model for

xi. The Si are determined by computing the mixture proportions q̃ik as

q̃i0 :=

∫
Ωθ

F (xi|θ)G0(θ)dθ, (6.4)

q̃ik := n-i
kF (xi|θk) k = 1, ..., NC. (6.5)

Here n-i
k is the number of data points assigned to the component k with xi removed

from the data set. The proportions are normalized to obtain the mixture probabilities

qik :=
q̃ik∑NC

t=0 q̃it

, for k = 0, ..., NC. (6.6)

For every xi, qi0, ..., qiNC are computed and Si are sampled from these mixture proba-

bilities. If Si = 0, we create a new component and sample θNC+1
∼ F (xi|θNC+1

). And

then for each k = 1, ..., NC, we sample θk := G0(θk)
∏

i|Si=k
F (xi|θk).

The integral in (6.4) has a closed form solution if the likelihood function F (xi|θ)

and the prior distribution G0 are conjugate pairs. Consider F (xi|θ) = N(xi;µ,Σ),

where the mean value µ and covariance Σ are independent. In this implementation,

the prior probability distribution function of the mean value, µ, is a normal distri-

bution µ ∼ N(µ0,Σ0); the prior probability distribution function of the covariance
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follows the inverse gamma distribution σ2 ∼ Γ-1(a, b).

Σ = Imσ
2. (6.7)

Here, Im is unit diagonal matrix. The probability of generating a new class parameter

q0 is given by

q0 ∝ α

∫
F (xi|θ)G0dθ.

q0 = α
1

(2π)m(det(ΣΣ0)0.5)
×

exp

(
−(xi − µ0)T(ΣΣ0)-1(xi − µ0)T

2

)
. (6.8)

Here m is the dimension of the signal vector.

In our simulations, we determined using cross validation, that the biorthogonal

wavelet gave the best performance for denoising the signals. Figure 6.2 shows the

original and denoised version of one signal record. The signal was divided into parts

to speed up computations, each part containing 10,000 samples at a sampling rate

of 10kHz. To capture most of the features in the signal, the number of levels of

wavelet decomposition was chosen to be 5. Two types of thresholding operations

can be performed: hard and soft. In hard thresholding, the wavelet coefficients

whose absolute value is less than the specified threshold limit T are set to zero. Soft

thresholding is an extension of hard thresholding; it first performs hard thresholding,

and then it shrinks the nonzero coefficients towards 0 by an amount T [63]. The value

of the threshold T is dependent on the type of noise and the noise variance. In our

case, soft thresholding was used and the threshold was set to be 17.9.

In one of the datasets, 1523 drops were extracted from the signal, out of which 43

drops were indicated as events by the SVM classifier. In another dataset, 241 events

were detected. The Dirichlet Process Mixture Model (DPMM) was used on the above

mentioned two sets of events with different number of types of events in them. One
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Figure 6.2: The Original Signal Showing Drops in Current Due to the Transloca-
tion Of Biotin-Coated Silica Beads Through a 5µM Diameter Pore and the Signal
Denoised Using DWT.

such clustered events are shown in Figure 6.3. The concentration parameter α was

chosen to be 2. The mean drop amplitudes obtained for the three clusters are -

213.4 pA, -433.0pA and -1086.7 pA respectively. The mean of the three clusters can

be interpreted as the current drop values for one bead passing, two bead passing

together and three bead passing together. The objective of mixture distributions is

to form a probabilistic model composed of a number of component clusters. Each

cluster is characterized by a set of parameters describing the mean and variance of

106



Figure 6.3: DPMM Based Clustering With Concentration Parameter α = 2.

the component data. In order to robustly estimate the parameters, we need to first

determine the number of clusters. This can be done by using a representative sample

of training data and estimating the number of clusters and their parameters from

this data. We have made the assumption that each clusters follows a multivariate

Gaussian distribution.

The number of clusters K cannot be computed using maximum likelihood (ML).

This is because the likelihood may always be made better by choosing a large number

of clusters. Intuitively, the log likelihood may always be increased by adding more

clusters since more clusters may be used to more accurately fit the data. However, a

large model order makes the model complex and restricts its ability to generalize to

new set of data. This problem of estimating the order of a model is known as order

identification and numerous approaches to address this problem exist in literature.

6.3 Minimum Description Length (MDL) Principle

The MDL principle is a formalization of the Occam’s Razor in which the best

hypothesis for a given set of data is the one that leads to the best compression of the

data. This estimator works by attempting to find the model order which minimizes
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the number of bits that would be required to code both the data samples and the

parameter vector [106]. While a direct implementation of the MDL estimator may

depend on the particular coding method used, Rissanen developed an approximate

expression for the estimate based on assumptions given in [107] and the minimization

of the expression,

MDL(K, θ) = − log p(x|k, θ) + 0.5L log(NM), (6.9)

where θ is the representation for all the parameters and L is is the number of contin-

uously valued real numbers required to specify the parameter, given by

L = K

(
1 +M +

M(M + 1)

2

)
− 1. (6.10)

and M is the number of dimensions of the data. It can be observed that the expression

in (6.9) contains a penalty term that depends on the total number of data values

NM . In practice, this is important since otherwise more data will tend to result in

overfitting of the model. In the proposed approach, we combine the MDL principle

with the GMM and estimate the number of clusters.

In our dataset described in Section 2.1.2, 7891 drops were extracted from the

signal, out of which 241 drops were indicated as events by the SVM classifier. The

next step involves choosing K (number of clusters) for categorizing events and finding

outlying clusters.

We use the MDL method described above to estimate the number of clusters which

was found to be 4 in our dataset. Figure 6.4 shows the GMM based clustering using

the EM algorithm and spectral clustering on the feature set. GMM based clustering

attempts to fit multiple Gaussian distributions to the data. However, they clearly

are not able to capture the natural shape of clusters in feature space. The main

advantage of spectral clustering is that it can form arbitrary cluster shapes, thus is

108



able to capture the natural cluster shape in our dataset and the outliers are clustered

separately.

One of the goals of the analysis is to study the effect of time duration of events

on categorization or clustering. Figure 6.4 shows the spectral clustering and GMM

based clustering results on our dataset. The three bottom clusters obtained in the

spectral clustering are the three categories of events and can be seen as the outcome

of the variation in current drop. The category of any new event can be determined

by comparing it with the three clusters. The top cluster can be seen as an outlying

cluster formed of events with high time duration. It can be observed that current drop

amplitude is the dominant feature responsible for the formation of the natural clusters

in the spectral clustering. In order to perform robust identification of translocation

and trapping events, we need to: (a) remove dense noise from the signal, (b) separate

the baseline signal into trapping and sparse translocation events and (c) extract event

statistics and cluster them into groups. Considering the example signal in figure

6.5(a), and denoting it as d ∈ Rp, we first divide it into non-overlapping frames and

stack them column-wise into a matrix D ∈ Rmxn such that p = mn. If d is noise-free

with only trapping events, the matrix D will be of low rank. This is because most

of the columns in this matrix are scaled versions of each other. Figure 6.5(b) shows

the matrix as a scaled image of its entries. It can be observed that only two windows

and hence two columns of matrix contain the step signals. All other columns have

constant entries. Thus, the rank of the matrix is 2 which is also reflected in figure

6.5(c) with only 2 significant singular values. Figure 6.6 shows plots for the noisy

version of signal. A noisy version of the matrix D can be expressed as

D = L + G, (6.11)

where the matrix L is of low rank and the matrix G represents dense Gaussian noise.
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When sparse translocation events are present in the signal, the data matrix D can be

expressed as

D = L + S + G, (6.12)

where the matrix S is sparse and represents the translocation events.

6.4 De-noising and Event Extraction

We propose two approaches for de-noising and event extraction. In the first ap-

proach, we use the Discrete Wavelet based de-noising (DWT) [108] as a preprocessing

step. The resulting signal matrix C is then decomposed into low rank (L) and sparse

components (S) using the RPCA algorithm [109]. In the second approach, we de-

compose the noisy signal matrix D as L + S + G, using an algorithm similar to that

described in [110]. In this approach, de-noising is a part of the decomposition itself

and not a separate preprocessing step. Note that the sparse translocation events in

our case cannot be positive, as the current always drops during the passage of beads.

Therefore, we force the matrix S to contain only non-positive values. We also ex-

plicitly add a piece-wise smoothness constraint using the Total Variation (TV) [111]

regularization to the sparse component of the signals in order to obtain smooth drop

events. The extracted events are grouped using multi-level clustering as described in

our previous work [112], to identify long duration and short duration events and their

internal clustering.

6.4.1 NpRPCA

We formulate the optimization problem of NpRPCA as,

minimize rank(L) + ‖S‖0,

subject to C = L + S, (6.13)
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where the `0 norm, ‖.‖0, counts the number of non-zero elements in the argument

matrix. The problem is non-convex and NP-hard because of the rank and the `0 norm

constraints. Therefore, it can be made convex by replacing rank using its convex

surrogate, the nuclear norm, which is defined as the sum of the singular values of

the matrix. Similarly the `0 norm can be replaced by the convex `1 norm, which

corresponds to the sum of absolute values of the entries of the matrix. The relaxed

problem is given by

minimize‖L‖∗ + ‖S‖1,

subject to C = L + S, (6.14)

where ‖L‖∗ is the nuclear norm defined as
∑

k σk, the sum of singular values of the

matrix L.

We use the Singular Value Thresholding (SVT) method described in [57] in order

to solve (6.14). The SVT algorithm iteratively updates the low rank Lt = Dτ (Pt−1)

and sparse component St = Tλ(Pt−1) where Pt is the matrix obtained after correction

based on the constraint C = L+S, updated as Pt = Pt−1+δ(C−Lt−St). Dτ (.) is the

shrinkage operator which retains the singular values greater than τ of the argument

matrix. Tλ(.) is the thresholding operator which retains values less than λ and sets

the rest to 0. In our simulations, the value of τ was set to 1e4, δ as 0.9 and λ as 0.1.

6.4.2 NpGoDec

We would like to decompose the matrix D as D = L + S + G, where S is a

non-positive sparse error matrix and G is a dense noise matrix. In order to extract

the baseline components in the signals, we impose a low rank constraint on L . As a
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result, we obtain the following joint optimization problem:

arg min
L,S
‖D− L− S‖2

F ,

subject to rank(L) < r, card(S) < s,TV(S) < v. (6.15)

The solution for the optimization problem in (6.15) can be efficiently obtained by

solving the following sub-problems:

Lt = arg min
L
‖D− L− St−1‖2

F ,

subject to rank(L) < r. (6.16)

St = arg min
S
‖D− Lt − S‖2

F ,

subject to card(S) < s,TV(S) < v. (6.17)

Each of the sub-problems are convex and can be solved using different methods.

We employ the singular value hard thresholding method to solve the first sub-problem

for obtaining Lt. In the second sub-problem, we need to iteratively solve for the two

constraints. First, entry-wise hard thresholding is used to obtain a sparse matrix St,

followed by Total Variation (TV) based de-noising [111] to incorporate both the con-

straints. One iteration of the joint problem involves solving each of the sub-problems

once with arguments as shown in the (6.16) and (6.17). We will now discuss conver-

gence of the joint optimization problem in (6.15) without the smoothness constraint

(TV) as described in [110]. Let the optimal objective values of the two sub-problems,

in iteration t, be E
(1)
t and E

(2)
t respectively, where E1

t = ‖D − Lt − St−1‖2
F , and

E2
t = ‖D − Lt − St‖2

F . Global optimality of St leads to E
(1)
t > E

(2)
t . Similarly,

global optimality of Lt+1 leads to E
(2)
t > E

(1)
t+1. Hence, the objective values of the

sub-problems monotonically decrease, and the joint objective converges to a local

optimum. After convergence, the matrices S, L provide the sparse, and low rank
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baseline components of the signals respectively. We empirically observe that the de-

composition error ‖D − L − S‖2
F converges in the case of the approximate problem

formulation satisfying additionally a TV based smoothness constraint.

Figures 6.7 and 6.8 illustrate the signal decomposition obtained using the orig-

inal formulations of RPCA and GoDec, similarly figures 6.9 and 6.10 the proposed

DWT+NpRPCA and NpGoDec methods, respectively. As it can be observed, though

RPCA identifies the sparse events, the Gaussian noise is absorbed in the low rank

component. As a result, RPCA results in a higher rank than expected due to the

presence of noise. However, NpRPCA retains only non-positive events, denoting the

drop caused by the passage of biomolecules. The GoDec method requires the user

to provide the expected rank and cardinality information. We provide overestimated

values as inputs to the algorithm. Choosing a higher rank allows lesser noise in the

baseline signal, and choosing a higher cardinality overestimates the sparse events,

which can be easily detected in the classification step. As a result, GoDec de-noises

the baseline signal in addition to identifying the sparse translocation events. How-

ever, it also produces spurious positive peaks at the trapping event locations. By

imposing non-positive constraints, these spurious peaks were eliminated in the pro-

posed NpGoDec. Furthermore, the constraint on total variation leads to smooth drop

events as expected.

6.5 Event Classification and Clustering

The candidate events extracted from a signal need to be further classified as

passage events, reflected events and noise-artefacts. Passage events are the events in

which a single bead or agglomerated beads completely go through the pore. Reflected

events are the cases where the beads get reflected by the pore walls and cause only

partial drop in current. Since, we have knowledge about the drop in current, and time
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duration in the case of one bead passing through completely, we use this information to

hand label events into two classes as passage events and reflection events, respectively.

The reflection class can contain noise induced events, and passage class contains

events belonging to single/agglomerated beads passing through the pore. A two class

Support Vector Machine (SVM) is used to perform the classification. The various

measurements (pore length, diameter etc.) used in hand calculations of single bead

drop features can have slight variations and lead to noisy classification threshold

estimates and thus we erroneously label a few events. Such events were misclassified

by the SVM or were close to the decision boundary. We reject such events and learn

an SVM classifier using only trusted events.

The simulated noisy data contained 200 sparse translocation events, and 50 reflec-

tion events belonging to passage class. Linear SVM was trained using 50 hand-labeled

examples with equal ratio of passage and reflection events. We relearn a SVM after re-

jecting 6 hand-labelled examples. In case of events extracted from DWT+NpRPCA,

we achieved a classification accuracy of about 91 percent, after cross-validation, in

correctly classifying the remaining 200 events. In the case of NpGoDec, we had an

improved classification rate of 96 percent. This demonstrates that NpGoDec better

preserves the drop shape characteristics compared to DWT+NpRPCA.

We are interested to group the passage events based on the number of agglom-

erated beads associated with each of these events using clustering methods. The

number of such groups in a dataset and their shape are not known beforehand. We

use Minimum Description Length (MDL) [113], an information theoretic based al-

gorithm to estimate the number of groups in a given dataset. We use a two-fold

clustering approach as described in our previous work [112]. Spectral clustering [33]

is used at the first level which forms four groups as predicted by MDL. Three of the

groups have similar drop durations and the dominating factor is the drop amplitudes.
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The fourth group is of events which have high drop duration. We run a simple k-

means clustering on this group using only drop amplitudes to get an estimate of the

cardinality of agglomerated beads. In the simulated noisy data, clustering accura-

cies obtained using the DWT+NpRPCA and NpGoDec methods were comparable at

92.8% and 94.6% respectively. Furthermore, we observed that most errors, in both

methods, occurred in labelling high duration events.
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Figure 6.4: (Top) GMM Based Clustering and (Middle) Spectral Clustering on the
Feature Set. (Bottom) K-means Clustering on the Outlying Cluster Based Only on
the Variations in the Current Drop Amplitude. The Time Duration is Uniformly Set
to 1ms for Plotting Purposes.
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Figure 6.5: Stacking a Clean Signal c Into a Matrix C. (a) Noise Free Step Signal.
(b) Scaled Image of Matrix C. (c) Singular Values of Matrix C. Figure Shows that
the Rank of Matrix C is 2.
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Figure 6.6: Stacking Noisy Signal d into a Matrix D. (a) Noisy Step Signal. (b)
Scaled Image of Matrix D. (c) Singular Values of Matrix D. Figure Shows that the
Rank of Matrix D is Approximately 2.
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Figure 6.7: Signal Decompositions Using Original Formulations of RPCA. (a) Orig-
inal Signal Containing Trapping and Translocation Events. (b) Baseline Signal Con-
taining Only Trapping Events Obtained From Low Rank Component. (c) Candi-
date Translocation Events (With Positive and Negative Amplitudes) Obtained From
Sparse Component.
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Figure 6.8: Signal Decompositions Using Original Formulations of GoDec. (a) Orig-
inal Signal Containing Trapping and Translocation Events. (b) De-Noised Baseline
Signal Containing Only Trapping Events Obtained From Low Rank Component. (c)
Candidate Translocation Events (With Positive and Negative Amplitudes) Obtained
From Sparse Component.
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Figure 6.9: Signal Decompositions Using DWT and NpRPCA. (a) Original Sig-
nal Containing Trapping and Translocation Events. (b) De-Noised Baseline Signal
Containing Only Trapping Events Obtained From Low Rank Component. (c) Candi-
date Translocation Events (With Only Negative Amplitudes) Obtained From Sparse
Component.
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Figure 6.10: Signal Decompositions Using NpGodec. (a) Original Signal Containing
Trapping and Translocation Events. (b) De-Noised Baseline Signal Containing Only
Trapping Events Obtained From Low Rank Component. (c) Candidate Translocation
Events (With Only Negative Amplitudes) Obtained From Sparse Component.
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Chapter 7

SUMMARY AND FUTURE WORK

7.1 Summary

In this dissertation, different models to discover and improve feature representa-

tions for data were explored. Hand engineering features using domain knowledge is

time-consuming and does not scale well to novel data and tasks. Recently, there have

been many efforts to generate data-driven representations using clustering and sparse

models. We explored some of the data-driven and unsupervised models for analyzing

data. We propose methods to exploit the structure in the raw data and transformed

data for supervised tasks such as recognition, detection and estimation. We began

with the use of transform domain methods which find parsimonious representations

for time-series data using fixed basis functions. We show that the transform domain

based features contains discriminatory information and works well for simple two-

state noise-free signal. Subspace based models such as sparse models and low-rank

models can be used to improve the features which exploit the structure in the avail-

able data. We presented several models and algorithms using these paradigms and

demonstrated improved performance in various inference tasks. Moving from sim-

ple time-series signals to complex audio signals a deep-learning based architecture

was developed tuned to work for natural environment sounds. Sparse coding is an

important and computationally expensive component in the models developed. To

utilize larger datasets for learning and inference, there is a need to speed this step.

A fast GPU optimized OMP algorithm was designed and implemented to this end.

A detailed summary of the findings in this dissertation and possible future directions
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are presented below.

We built and improved transform domain features for ion-channel time-series sig-

nals. We proposed a classification setup to discriminate between different ion-channels

using novel transform domain features obtained from their signals. Power distribution

features, extracted from the frequency/sequency domains, are proposed that can ef-

fectively discriminate different ion-channel signals. We showed that the Fourier power

spectra of an ideal ion-channel signal is directly dependent on the eigen decomposition

of the state transition matrix characterizing the ion-channel. The features proposed

based on the Fourier, wavelet and Walsh power spectra are suitable even for noisy

data. Denoising the signals before extracting the features lead to an improved perfor-

mance under high noise conditions. The best achievable performance obtained using

HMMs with known ion-channel parameters is also presented as a baseline result for

comparison.

We proposed a method to stabilize the PSD features for ion-channels using matrix

completion. The performance of the robust PSD features were tested in a classifica-

tion setup and a regression based analyte detection framework. The proposed features

achieved better classification rates on the synthetic two class QUB data. These fea-

tures were also used to analyze the signals obtained from the four chamber ion-channel

sensor array device and detect Amplicillin. The features were decomposed into low-

rank and sparse components to capture the group behaviour and also give importance

to intra-group variation. Lower false detection rates were observed in the case of the

improved features.

Simultaneous segmentation and feature extraction approaches for silicon-pores

sensor data were considered. Low rank plus sparse matrix decomposition methods

provide an efficient way for extracting sparse events and signal de-noising in silicon

sensor signals. The redundancy across the segments of signals are exploited for anal-
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ysis. Several variants of RPCA and GoDec suitable for this data were proposed. The

proposed NpGoDec and NpRPCA method performs better than NpRPCA, coupled

with DWT de-noising, in classification and clustering of events from silicon-pore sig-

nals. Furthermore, the shape of the drop events are well preserved in the former

method. Analysis of the shape and duration of these current events enables us to

estimate the properties of analytes. Spectral clustering was used to cluster the events

in the feature domain as the shape of the clusters is unknown.

To generate features suitable for environment sound recognition we developed a

feature learning architecture which preserves information about their highly dynamic

nature. Environment sounds can pack complex semantics in a short time duration.

For example, a short clip can comprise of a bird chirping, moving traffic, and peo-

ple talking. We showed that, it is beneficial to partition the filters into groups,

and learn topic models for each group. This ensemble representation provides more

flexibility and robustness to the feature extraction algorithm. By incorporating this

novel pooling strategy into a deep architecture, we obtained features that outperform

other commonly adopted audio features. Algorithms were presented to perform par-

titioning of the feature space based on the temporal dynamics of the corresponding

filters. The partitioning provides a multi-view representation of the data and makes

learning computationally tractable in the subsequent layers. Ensemble of semantic

embeddings using the multiple partitions improved tag prediction performance and

helped in discovering semantics and clusters of tags. Proposed features outperformed

traditional spectral features on challenging environmental sound recognition datasets

namely Freefield1010 and IEEE AASP D-CASE.

With sparse coding as a key components in many of our algorithms we consid-

ered speeding up the OMP algorithm with GPUs. Specifically, several strategies were

proposed to speed-up Orthogonal Matching Pursuit algorithm using CUDA kernel on
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a GPU are proposed. We demonstrated the use of sparse code from image patches

to perform content based image retrieval. Implementations are developed as part

of a large scale image retrieval system. Image-based exact search and visually sim-

ilar search using the image patch sparse codes are performed. Results demonstrate

large speed-up over CPU implementations and good retrieval performance was also

achieved.

7.2 Future Directions

Exploring structure in data leads to developing representations which can encode

this structure. Efficient representations can lead to disentanglement of factors of

variation and thus improve the performance of the inference mechanisms. This can

be done by using only labelled examples using supervised algorithms. The inherent

generic structure can be discovered using unsupervised algorithms. These are bene-

ficial when the label data is scarce and we intend to use the models learned to new

datasets and novel tasks.

The unsupervised algorithms often encode the prior information in their structure,

either explicitly or implicitly. Sparse coding assumes a union of subspaces model while

manifold models assume that the data lies close to low-dimensional subspace. It will

be useful to isolate these prior so that we can develop guarantees on performance

and further tune them for different applications. Similarity, deep architectures en-

code the hierarchy information through depth and build invariances through pooling

operations. The effect of various different pooling methods needs to be investigated

from a theoretical point of view. It will be useful to devise schemes and metrics to

measure the effect of the architectural changes such as pooling size and the pooling

function as well as the depth of the network.

Textual information or tags can be a useful meta-data for multi-media data. Large
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scale retrieval becomes feasible by associating data with tags. Many a time users

submit a textual query for image retrieval and hence tagging plays an important

role in identifying images most relevant to the query. Furthermore, categorizing

audio and video semantically can benefit from tag information. Human annotation

is highly subjective and imprecise. Based on individual perception, the same image

can be associated with different tags. Hence, this tag annotation is variable and may

not often convey the true semantic meaning of the image. It becomes a herculean

task for humans to annotate images if the image database is large. The research

presented in this dissertation can be extended with efficient algorithm and software

implementations to build a real-time automatic tag annotation framework. It will

be useful to incorporate suitable modifications to the algorithms to obtain higher

precision or higher recall, depending on the requirements of the application, without

significantly affecting the other.

The prediction of tags for a test point was posed as an reconstruction problem.

The sparse vectors were embedded into a low-dimensional space such that the map-

ping between this space and the feature space is smooth. The predictions are first

performed in this embedded space and knowing that the full tag vector will be sparse

we can pose the tag prediction as a sparse coding problem. This mapping of tags

performed using only the features at the final layer. It will be be worthwhile to build

and investigate a system which can learn the embeddings at multiple layers and find

semantic relationships at different levels of hierarchy in the data representations.

The analysis of the the embedded tag vectors will be beneficial. It can be useful

to understand the complex relationships between feature components and the appro-

priate semantic concepts. As an extension, the embeddings can be explicitly designed

to attain algebraic or compositional properties to facilitate complex keyword based

searches.
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