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ABSTRACT  

 

This dissertation research contributes to the advancement of activity-based travel 

forecasting models along two lines of inquiry. First, the dissertation aims to introduce a 

continuous-time representation of activity participation in tour-based model systems in 

practice. Activity-based travel demand forecasting model systems in practice today are 

largely tour-based model systems that simulate individual daily activity-travel patterns 

through the prediction of day-level and tour-level activity agendas. These tour level 

activity-based models adopt a discrete time representation of activities and sequence the 

activities within tours using rule-based heuristics. An alternate stream of activity-based 

model systems mostly confined to the research arena are activity scheduling systems that 

adopt an evolutionary continuous-time approach to model activity participation subject to 

time-space prism constraints. In this research, a tour characterization framework capable 

of simulating and sequencing activities in tours along the continuous time dimension is 

developed and implemented using readily available travel survey data.  The proposed 

framework includes components for modeling the multitude of secondary activities (stops) 

undertaken as part of the tour, the time allocated to various activities in a tour, and the 

sequence in which the activities are pursued. 

Second, the dissertation focuses on the implementation of a vehicle fleet 

composition model component that can be used not only to simulate the mix of vehicle 

types owned by households but also to identify the specific vehicle that will be used for a 

specific tour. Virtually all of the activity-based models in practice only model the choice 

of mode without due consideration of the type of vehicle used on a tour. In this research 
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effort, a comprehensive vehicle fleet composition model system is developed and 

implemented. In addition, a primary driver allocation model and a tour-level vehicle type 

choice model are developed and estimated with a view to advancing the ability to track 

household vehicle usage through the course of a day within activity-based travel model 

systems. It is envisioned that these advances will enhance the fidelity of activity-based 

travel model systems in practice. 
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CHAPTER 1 

INTRODUCTION 

 

Background 

Travel is an integral part of our day-to-day life. We travel for a variety of reasons (work, 

leisure, chauffeuring a kid etc.) and use an array of modes. Until a few decades ago, the 

need to model/ forecast travel demand was mainly motivated by the necessity to evaluate 

the sufficiency of current infrastructure (roads, bridges etc.) for future travel demand. The 

assessment would provide policy makers with information regarding the infrastructural 

needs of a region in light of changing traffic patterns. The genesis of travel demand 

modeling began with trip-based methods which would predict the number of trips 

(vehicles) between a given set of origin-destination pairs. While the trip-based methods 

sufficed the need for evaluation of infrastructural needs back in the day, they were held 

down by a fundamental flaw in the way in which they viewed travel. Trip-based models 

view travel as trips going from one zone to another and fail to recognize the underlying 

reason behind travel – the necessity/want to participate in activities. Increasing 

infrastructure indefinitely is not the ideal solution to ever increasing congestion problems. 

The tip-based travel demand models were rather constrained to explore new avenues and 

test alternate congestion mitigation strategies (Kitamura 1988; Jones et al., 1990; Axhausen 

and Gärling, 1992). Thus came a paradigm shift in analyzing travel demand, from trip-

based to activity-based methods. Jones et al. (1990) provide a comprehensive definition of 

activity-based travel analysis as:  
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“A framework in which travel is analyzed as daily or multi-day patterns of behavior, 

related to and derived from differences in life styles and activity participation among the 

population.” 

Activity-based microsimulation models have gained much attention in travel 

demand modeling field in the past few decades because of the sound behavioral 

background on which they are based. Activity-based models quantify travel as a derived 

demand that arises from the necessity of individuals to participate in various activities 

throughout the day (Kitamura and Fujii, 1998). Trip-based models fail to recognize this 

fundamental behavioral principle influencing travel decisions and model travel as trips 

going from one zone to another, thereby ignoring behavior of the travelers making these 

trips. Typically when one has to pursue an activity, he/she thinks about ‘where’ to go from 

a set of possible destinations and then decide on ‘how’ to reach there. In case of individuals 

who own a personal vehicle, that vehicle might be the most preferred mode, but for people 

who do not own a personal vehicle, the decision is whether to take transit or walk or so on. 

Activity-based models consider such nuances in travel decisions made by individuals and 

offer many distinct advantages in demand modeling in addition to realistic representation 

of personal travel. The behavioral realism incorporated in the foundations of activity-based 

modeling methods opened up a plethora of avenues to accurately represent travel demand, 

test a variety of policies and their impacts on the travel patterns in a region. For example, 

how would toll pricing impact the destination/route choices between a specific origin-

destination pair (and across different social-demographic segments) or how the option of 

telecommuting would impact the work travel behavior of individuals? Instead of just 

increasing the infrastructure to meet the needs of growing demand, activity-based methods 
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provided the flexibility to test demand management strategies such as congestion pricing, 

transit-oriented developments etc. in an intuitive and behaviorally realistic fashion. 

The advent of activity-based modeling/activity-scheduling methods dates back to 

the 80’s (Recker et al., 1986a; 1986b) and this area has seen tremendous progress since. 

Activity-based approaches provide the flexibility to test travel demand models under a 

wide variety of transportation and land-use policies to determine the extent of their 

effectiveness even before they are implemented. While activity-based models have proved 

quite effective in handling the finer nuances in modeling activity-travel behavior, this field 

like any other needs to be updated with state-of-the art techniques that are capable of 

handling the changes in travel behavior of people with time. In just the past decade, the 

world has seen major technological breakthroughs that have significant impacts in the way 

we view travel. Advancements such as self-driving cars, electric vehicles, connected 

vehicle technologies and autonomous taxi services show a promise of mitigating the 

constraints (physical, temporal and environmental) related to travel decisions. On the other 

hand, travel demand models are being utilized now more than ever to test the new-age 

demand modeling strategies such as dynamic tolling, eco-lanes, low emission zones etc. 

The broader scope of this dissertation is to learn from existing activity based models and 

develop frameworks to enhance them so that travel behavior modeling can be advanced 

one step closer to reality and provide activity-based models with the capability to handle 

challenges of the future. In a more specific sense, the research identifies some limitations 

in the extant activity-based model systems (in both research and practice), proposes 

frameworks to help fill these gaps and contribute to empirical literature in the field of 
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activity-based modeling. The specific topical areas covered by this research are discussed 

next. 

 

Tour-Based Representation of Activity-Travel Patterns 

Trip chaining and tour formation is a topic of much interest in the activity-based modeling 

arena. Travel patterns of individuals consist of a set of activities bundled together into a 

tour. Within each tour, individuals participate in a multitude of activities and allocate 

different amounts of time to each of these activities. There have been extensive studies that 

emphasize on trip chaining/ tour formation patterns (Goulias et al., 1990; Hamed and 

Mannering, 1993; Bhat and Singh, 2000). Tour based models that are widely in practice 

today, form day level activity agendas for each individual and then simulate various tours 

and intermediate stops as governed by the individual’s agenda. Most of the tour based 

models use simple/complex discrete choice models such as the multinomial/nested logit 

models to predict intermediate stops on the tours. The intermediate stops are then inserted 

into an individual’s tour using time-of-day choice models. The temporal detail used in such 

models is limited to one-hour or half-hour time slots.  

Despite significant advancements in the activity based modeling methods, most of 

the tour level activity-based models still operate in a discrete time representation paradigm, 

where each of the activities undertaken by an individual in a day are modeled disjointly 

and are sequenced using rule based heuristics. Recent advancements in econometric 

modeling theory (Bhat, 2005; 2008) allow for simultaneous prediction of the mix of 

activities undertaken by an individual in a tour along with the time allocated to each of 

these activities. Adopting this research, enhancements can be made to existing activity-
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based models in practice to follow a continuous time representation of activities. The 

current research effort utilizes state-of-the-art research in the profession and proposes a 

tour characterization framework capable of predicting the mix of activities pursued on a 

tour, time allocated each of the activities and the sequence in which these activities are 

undertaken. The framework provides a platform for tour level activity-based models to 

adopt an evolutionary continuous-time approach in modeling activity engagement that is 

at the heart of many activity scheduling model systems. 

 

Vehicle Fleet Composition Modeling 

Activity-based models provide an accurate account of travel which can then be assigned 

using network assignment models to quantify vehicle miles travelled (VMT) by all the 

households in a region. The calculated VMT is used as a determinant of greenhouse gas 

(GHG) emissions and fuel consumption. Emission calculations for region wide travel are 

usually carried out in emission modeling softwares such as EMFAC (2014) and MOVES 

(2014) that take the output of network assignment models as input. These emission 

modeling softwares have default distributions that represent the vehicle mix of a region. 

While these default values provide a quick and simple way to compute emissions, they are 

often not responsive to policy measures that might influence the vehicle fleet mix. For 

travel demand models to accurately predict emission footprint of a region, it is necessary 

to model the vehicle fleet composition at household level, which would help forecast the 

fleet mix (and corresponding emissions) accurately at the regional level.  

Interest in modeling household vehicle fleet composition has been growing for 

several decades. The necessity to implement such models as an integral part of the activity 
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based modeling framework in order to accurately quantify the emission footprint of a 

region has become all the more important today with increasing pollution levels, GHG 

emissions and global warming. While there has been tremendous amount of research in 

simulating activity-travel patterns of households using activity-based models, simulation 

of vehicle fleet and vehicle type choice at the trip/tour level has only seen light in the recent 

years in a handful of activity-based models. Such model systems are still in the research 

phase and have not yet fully made their way to be included in activity-based models in 

practice. The proposed research effort aims at developing a robust framework to predict 

the fleet mix of a household using a Multiple Discrete Continuous Extreme Value 

(MDCEV) model in conjunction with several other models that control and constrain the 

prediction of fleet mix such that it is representative of the observed fleet mix in the base 

year. This will impart much confidence in prediction of fleet mix made for any future year 

using the developed model system. The model system being proposed is designed as a self-

contained package that can be integrated as a plugin to any activity-based model. 

 

Beyond the Modeling of ‘Mode’ at the Tour Level 

Most of the tour-based microsimulation model systems model different attributes of a tour 

such as the primary activity of the tour, stop frequency, tour accompaniment etc., but ignore 

modeling vehicle type choice at the tour level. The level at which an auto mode is 

represented in activity-travel decisions in most of the tour level activity-based models is 

either an SOV (single occupant vehicle) or a high occupancy vehicle (HOV). While this 

representation does provide some flexibility in terms of testing policies such as HOV or 

high occupancy toll (HOT) lanes, planners seek more disaggregate level of information in 
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order to accurately represent complex activity-travel patterns. For example, in a household 

that owns a car and a Sports Utility Vehicle (SUV), which vehicle would be used more to 

make a work tour and which one would be utilized more to make a shopping tour. It is apt 

to model car as the SOV mode in the family and SUV as a HOV mode? Questions such as 

these cannot be answered with information regarding auto ownership information that most 

activity-based models simulate. A limiting reason to not identify the specific vehicle type 

used on a tour is unavailability of information about household vehicle fleet discussed in 

the previous section. Information regarding the type of vehicle utilized to undertake a 

tour/trip is critical for policy planners to accurately evaluate emission footprint of 

personal/regional travel. As a part of the current research effort, a framework is being 

proposed to predict the vehicle type choice for each tour undertaken by a household along 

the day. This model can include various tour level attributes as determined by the tour 

characterization framework and can span different body type x vintage classifications that 

are modeled using the fleet composition model system.  

 

Objectives of the Dissertation 

This dissertation aims to enhance the empirical literature in activity-based microsimulation 

modeling approaches along the following lines of enquiry. 

 

 Objective: Propose a framework and develop all model components required to 

enhance tour level activity-based microsimulation model systems to adopt 

evolutionary continuous time representation of activities. 
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Research Contribution: In this research effort, a novel tour characterization 

framework is proposed that models tours in a continuous time domain. The 

proposed framework consists of an activity type mix model system that predicts the 

array of activities undertaken by an individual in a tour. Unit of analysis for this 

effort is considered in such a way that it facilitates representation of time in a 

continuous rather than discrete fashion. A stop sequencing model system takes the 

activities predicted and orders them using utility maximization methods that take 

into account the history of activity participation as well as anticipatory activity 

engagement decisions of individuals into consideration. At the end of application 

of this framework, one would be able to successfully simulate the mix of activities 

performed by an individual on a tour, the time allocated to each of the activities and 

the order in which the activities were undertaken. Results of the model components 

are presented for home-based work tours made by working individuals and home-

based other tours undertaken by non-workers.  

 

 Objective: Develop an open source vehicle fleet composition simulator capable of 

predicting vehicle fleet mix owned by households classified by vehicle body type 

and age. The intent for development of this component is to provide a precise input 

of fleet mix at the household level to help in prediction of specific vehicle type 

choice at the tour level. The utility of such a module can be extended to a wide a 

variety of applications in activity-based model systems. 

Research Contribution: A framework is proposed to simulate the vehicle fleet 

mix at the level of every household in a region. Adopting the framework proposed 
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a vehicle fleet composition simulator is developed on open source coding platform 

‘R’, which can be easily integrated into any of the extant activity-based 

microsimulation model systems. Estimation and validation results for all of the 

components of the model system are presented. The proposed framework takes the 

socio-demographic characteristics of a household as input (for any horizon year), 

simulates the array of vehicles owned by a household and annual mileage allocated 

to each of the vehicles. The information is simulated at the disaggregate 

classification defined by a cross between 4 vehicle body types (car, van, SUV and 

pick-up truck) and 3 vintage categories (new: 0-5 years, middle aged: 6-11 years, 

and old: ≥ 12 years). The vehicle fleet composition simulator developed as a part 

of this effort shows great promise in predicting the mix of vehicles at the household 

level. 

 

 Objective: Present a joint modeling framework capable of modeling the vehicle 

fleet mix (type of vehicles) and count (number of vehicles) dimensions together. 

Research Contribution: This research effort builds on the previous objective, 

where a fleet composition simulator is developed to predict the fleet mix and count 

of vehicles in a household. In the previous effort, fleet mix and count components 

are estimated and applied separately using a novel approach to be able to predict 

the occurrence of multiple vehicles of similar body type and age classifications (for 

example, a household might own two cars, both belonging to age category 0-5 years 

old). Though the framework proposed in the previous effort has proved to be quite 

effective, it was felt prudent to model the fleet mix and count components in a joint 
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framework as these dimensions are inextricably linked in a household’s fleet. The 

models developed as a part of this effort will replace the fleet mix and count 

components with a joint model system in future incarnations of the vehicle fleet 

composition simulator. 

 

 Objective: Develop a tour level vehicle type choice modeling framework 

constrained by the vehicle fleet owned by a household for an accurate depiction of 

the activity-travel patterns of individuals in a household. 

Research Contribution: This effort ties together the tour characterization and fleet 

composition frameworks to allocate the resources (vehicles owned by a household) 

to the activity-travel needs (tours undertaken by various members of the household) 

of individuals in a household. Unlike existing microsimulation models which only 

consider an aggregate auto mode (SOV/HOV) for modeling vehicle type choice at 

the tour level, the current effort attempts to model the choice dimension at the 

disaggregate level of body type and age classification of vehicles owned by a 

household. The vehicle choices available to an individual are constrained to the 

fleet of vehicles owned by the household to which the individual belongs to. This 

framework intends to propose a behaviorally consistent way of representing 

activity-travel decisions as observed in the real world. The proposed framework 

utilizes information provided by both the previous components to model the vehicle 

usage decisions of the household.  
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Objective: Propose a conceptual framework for real-time vehicle allocation and 

tracking capable of accounting for temporal vehicular constraints.  

Research Contribution: While the tour level vehicle type choice modeling 

framework is a good starting point to introduce vehicular constraints in activity-

travel decisions of individuals, it does not to take into consideration, the real-time 

availability of each of the vehicles owned by the household. A framework is 

proposed to mimic the real-time vehicle availability in the context of an integrated 

model system where an activity-based model and a dynamic traffic assignment 

model are tightly coupled. This framework assumes that the network status (active 

– meaning that the vehicle is currently on the network, inactive – meaning the 

vehicle is available) is provided to the activity based model by a dynamic traffic 

assignment model on a regular basis (say, every 5 minutes). Using the proposed 

framework, all household vehicles can be accounted at all times of the day, thus 

allowing for the flexibility to carry out a real-time vehicle allocation to activity-

travel needs of the household. Separate frameworks are proposed for adults and 

children in a household so that the activity engagement patterns of the entire 

household are represented. 

 

Dissertation Outline 

The rest of the dissertation document is organized as follows. Chapter 2 presents a brief 

literature review on various activity-based modeling systems in research as well as practice, 

followed by a review of vehicle fleet composition and tour level vehicle type choice 

literature. In Chapter 3, frameworks for all the components developed as a part of this 
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research are presented. Chapter 4 discusses the model estimation results of tour 

characterization framework followed by an assessment of the model performance in 

replicating observed activity-travel patterns. Chapter 5 is devoted to the model 

estimation/application results of the vehicle fleet composition framework followed by a 

proposed extension to the framework presented in Chapter 6. Chapter 7 covers the model 

components of tour level vehicle type choice framework and Chapter 8 discusses a 

conceptual framework for real-time vehicle allocation and tracking. Conclusions and 

directions of future research are presented in Chapter 9. 



  13 

CHAPTER 2 

LITERATURE REVIEW 

 

In the past few decades, astounding progress has been made in the development of 

aggregate travel demand models, followed by increasing interest in activity-based (or agent 

based) modeling systems. The ultimate goal of these developments is to model travel 

behavior as closely as possible to get realistic estimates of outcomes in response to various 

policy measures. This will help planners/authorities weigh and choose policies that pave 

way for a sustainable future. In this section, a literature review on activity-based modeling 

systems is provided. A contrast is made between advancements in activity-based models 

in research and practice. This is followed by a brief account of existing literature on vehicle 

fleet characterization and tour level vehicle type choice. The chapter concludes with a brief 

overview of vehicle allocation literature. 

 

Activity-Based Modeling Systems 

Activity-based travel analysis traces its roots back to the works of Chapin (1974) who 

studied human activity patterns in an urban space and Hägerstraand (1970) whose work 

emphasized on constraints which limit an individual’s activity and travel choices. 

Hägerstrand’s constraints include coupling, authority and capability constraints. Coupling 

constraints refer to participation in joint household activities, while authority constraints 

are imposed by institutional measures such as work hours, store hours etc. Capability 

constraints are enforced by nature and technological limitations. Activity travel scheduling 

has been an area of considerable interest in the field of transportation including modeling 



  14 

activity participation and destination choice (Kitamura and Kermanshah, 1984), trip 

chaining (Adler and Ben-Akiva, 1979; Goulias and Kitamura, 1989; Shiftan, 1998; 

McGuckin et al., 2005) and choice of activity patterns (Hamed and Mannering, 1993; Bhat 

and Singh, 2000) 

Based on these sound behavioral foundations, many activity based models were 

developed to estimate travel demand. There are different schools of thought followed in 

these models which can be broadly classified into: i) utility maximization principles 

(Recker et al., 1986a; 1986b; Kitamura and Fujii, 1998; Bhat et al., 2004), ii) heuristic or 

rule-based approaches (Gärling et al., 1989, 1994; Ettema et al., 1993; Kwan, 1997; 

Pendyala et al., 1998; Arentze and Timmermans, 2004), and iii) sampling from observed 

activity patterns in surveys (McNally, 1995; Barrett et al., 1999). In addition to the 

theoretical classification, activity-based models are separated by operational classification 

as i) activity scheduling modeling systems with continuous time evolutionary approach and 

ii) tour based model systems with tour/day level activity agenda approach. The activity 

scheduling systems provide a behaviorally intuitive representation of travel patterns using 

continuous time representation, but such models are in the development phase and are yet 

to find their way to be widely adopted in practice. On the other hand, tour level activity-

based models that are widely in practice in the industry follow a discrete time 

representation of activities. 

One of the earliest activity-based model systems is proposed by Recker et al. 

(1986a; 1986b) termed as STARCHILD. This modeling system simulates all possible sets 

of activity patterns in a given situation and then assumes that an individual will choose a 

pattern that maximizes his/her utility. STARCHILD however lacked the behavioral 
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representation of travel in the sense that decision makers do not usually enumerate all 

possible patterns of activities before they make a choice. More often than not, individuals 

might make sub-optimal choices, which fit their needs. Also the enumeration of all possible 

travel patterns might become quite cumbersome and is an unnecessary computational 

burden. 

Prism Constrained Activity Travel Simulator (PCATS) is an activity scheduling 

system that models the daily-activity travel patterns of individuals using the concept of 

Hägerstrand’s time-space prisms (Kitamura et al., 1996; Kitamura and Fujii, 1998). For 

example, an individual might have access to a wide range of destinations to perform an 

activity early on in the morning, while the same individual might not have as many 

destination choices to perform the same activity late in the night. PCATS assumes that 

activity-travel patterns choices are sequential in nature, where each choice is conditional 

on a decision previously made (the choice of an activity influences the choice of 

destination, which might in turn influence the choice of mode). 

Activity Mobility Simulator (AMOS) combines utility maximization and rule based 

heuristics into one microsimulation model that mimics an individual’s decision making 

process (Kitamura et al., 1993; Kitamura and Fujii, 1998; Pendyala et al., 1998). AMOS 

consists of a host of submodels including a Household Activity Generation System 

(HAGS) and PCATS that is described above. HAGS generates synthetic population at 

household and person levels. It also generates the location choice of synthetic population 

(home and work locations) and mandatory activities (work/school) for all persons within 

in a household. PCATS then simulates non-mandatory activity-travel choices within a 

time-space prism corresponding to each open/free period for an individual. Recently, an 
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updated version of AMOS named openAMOS was integrated with a dynamic traffic 

assignment model and a land use microsimulation model to form an integrated model of 

urban continuum dubbed SimTRAVEL (Simulator of Transport, Routes, Activities, 

Vehicles, Emissions, and Land). In addition to providing the conceptual framework, the 

authors successfully implemented an operational prototype of this system (Pendyala et al., 

2012b).  

The Comprehensive Econometric Micro-simulator for Daily Activity-travel 

Patterns (CEMDAP) institutes a suite of econometric models, coupled with several 

deterministic rules that help simulate the activity-travel patterns of individuals or 

households (Bhat et al., 2004; Pinjari et al., 2008b). The implementation schematic of 

CEMDAP is similar to that of openAMOS in the sense that it focuses on modeling the 

decisions of individuals/households to pursue different activities in a day and allocation of 

responsibilities (school escorting, other escorting etc.,) among household members. The 

scheduling model system determines how the generated activities are sequenced while 

accounting for time-space constraints imposed by mandatory activities such as school and 

work. Bhat et al. (2004) provide a detailed account of the mathematical structures of 

various econometric models involved. CEMDAP considers activity travel pattern of an 

individual as a three level structure: activity, stop and tour. Many of the activity scheduling 

model systems that are gaining popularity in the research arena follow an evolutionary 

continuous-time approach to model activity engagement. 

Travel Activity Scheduling Model with Household Agents (TASHA) is prototype 

of a tour level microsimulation model of travel (Miller and Roorda, 2003) that is based on 

the concept of projects. Axhausen (1998) defines a project as “a set of activities tied 
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together by a common goal”. A common example for a project might be cooking dinner 

that involves shopping for the ingredients, preparing the food and the actual dinner itself. 

A project can encompass several sub-projects and a sub-project has its own unique 

objective. TASHA uses the concept of project in terms of travel, as different activity 

episodes are organized to form schedules. TASHA uses the concept of tours as the building 

block to model travel and proposes a rigorous framework to model household vehicle 

allocation and joint travel. Validation of a few model components in TASHA are presented 

recently (Roorda et al., 2008). The scheduling model system in TASHA follows a rule 

based method in which activities are added to ‘project-agendas’ based on a common 

purpose. 

Another stream of activity based modeling systems are based on heuristics, which 

emphasize that individuals make a sub-optimal (yet satisfactory) decisions from a set of 

feasible solutions. Wilson (1998) introduced sequence alignment method (SAM) for 

analyzing activity patterns, which is based on a set of re-ordering rules. SAM however, is 

not sensitive to the position of an activity in a sequence. Joh et al. (2001) proposed a 

position sensitive sequence alignment method to address this shortcoming. A Learning-

based Transportation Oriented Simulation System (Albatross) is a system that predicts 

various dimensions of activity-travel such as which activities are pursued, where, for how 

long, using what mode and accompaniment choice.  

Albatross uses a decision tree mechanism that enumerates an exhaustive set of 

mutually exclusive rules for each of the decision dimensions mentioned (Arentze and 

Timmermans, 2004). Albatross assumes that choice behavior is based on rules that are 

formed and continuously adapted through learning while the individual is interacting with 
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the environment (reinforcement learning) or communicating with others (social learning). 

Albatross builds the schedule of each individual’s activities in a priority based approach, 

given an activity skeleton that consists of fixed activities (e.g., work or school). Sequence 

of activity stops are considered in order of activity priority. Janssens et al. (2003) explored 

the performance of Bayesian networks to extract decision rules from activity dairy data 

that can be used in rule-based transportation models (such as Albatross). SCHEDULER, 

developed by Gärling et al. (1989) models activity travel behavior on similar lines. Kwan 

(1997) developed a GIS based activity scheduling model termed as GIS-Interfaced 

Computational-process-model for Activity Scheduling (GISCAS) that combines rule based 

methods and spatial information to form activity schedules. 

While the activity-based models in research arena continue to excel in depicting 

human activity-travel patterns as realistically as possible, they are often not very easy to be 

implemented on large scale networks in practice due to the heavy computational burden 

incurred. This lead to the development of another stream of activity-based models that are 

easy enough to implement on large networks while not compromising on the behavioral 

representation of travel. Most of the activity-based model systems in practice today operate 

at the tour level. Each tour may be characterized by a primary destination, where the 

primary destination may be defined based on an activity priority hierarchy, activity 

duration, travel duration, or any combination of these attributes. A tour may consist of 

multiple stops in which individuals devote varying levels of time to different activities. In 

addition to activity type choice and time allocation, there are a variety of characteristics 

that define a tour such as the tour mode, number of intermediate stops, sequence of the 

intermediate stops, and tour accompaniment. Most of the tour level activity-based models 
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in practice resort to time-of-day choice models to sequence various activities undertaken 

by an individual.  

First, a daily activity agenda is formed for every individual. Then, tours are 

generated for the individual along the day and the timing (start/end times) of the tour is 

determined using time-of-day choice models. Within each tour, a secondary stop frequency 

informs how many stops (other than the primary destination) are made on the tour. 

Activities from already generated agendas for the individual are then ‘inserted’ into the 

tours using time-of-day choice models. In the time-of-day choice models at both tour and 

stop level, time is represented as discrete bins to facilitate the estimation of discrete choice 

models. The temporal detail followed in most of these models is either one hour or half 

hour periods at the maximum, as more disaggregation poses dimensionality issues for 

model estimation/application. The discrete time representation in these models is followed 

for operational convenience and is not behaviorally realistic. 

There is growing interest in enhancing tour level activity-based models in practice 

to continuous-time domain. Activity scheduling model systems in the research circles such 

as CEMDAP (Bhat et al., 2004) and openAMOS (Pendyala et al., 2012b) are well founded 

on evolutionary continuous time approaches. The proposed research effort learns and 

builds on the existing activity-based models in the research community, as well as recent 

advancements in econometric modeling literature and proposes a framework to bring the 

continuous-time evolutionary activity-based model systems and discrete-time tour-based 

model systems closer together in their representation of activity-travel schedules.  
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Vehicle Fleet Composition Modeling  

Vehicle fleet composition modeling and its impacts on personal travel has been an area of 

significant interest in the travel demand modeling arena for the past couple of decades. In 

the recent years, there have been significant advancements in the field of activity-based 

modeling in generating various attributes of synthetic population and how characteristics 

of the individuals/households impact activity-travel patterns. Another important dimension 

that controls and constrains the travel of a household is the vehicle fleet composition. 

Without this information it is impossible to predict what ‘type’ of a vehicle will an 

individual choose to make a particular tour/trip. Modeling vehicle fleet mix has only seen 

light in the recent years and is making its way to being implemented in activity-based 

models in practice. Knowing the exact type of vehicle used for personal travel will help 

accurately quantify emissions at the household as well as regional level. Accurately 

quantifying emissions would provide planners/authorities with a powerful tool to evaluate 

pollution abatement strategies aimed at specific vehicle categories. Also, studying the 

sensitivity of fleet mix to changing land use dynamics will help build more compact and 

sustainable communities. 

There has been considerable progress in the modeling of vehicle fleet composition 

and utilization in the recent past. This progress is motivated mainly by the increasing 

necessity to curb pollution arising from personal travel. United States accounts for 16% of 

all GHG emissions in the world (World Research Institute, 2014). In the US, transportation 

accounted for 28% of greenhouse gas emissions in 2011 (EPA, 2014) and 70% of all 

petroleum consumption (EIA, 2013). There is an alarming need to curtail the usage of 

polluting modes and shift to greener transportation. The problem however is that it is 
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difficult to predict the outcomes of pollution abatement strategies aimed at specific vehicle 

types because such disaggregate level of information is usually not available at the 

household/regional level. This shortcoming gained the attention of several researchers in 

the profession to develop comprehensive fleet composition simulators that accurately 

predict the household fleet of a region for a given set of inputs, thereby helping to test a 

variety of pollution reduction strategies. 

Several earlier studies examined auto ownership, in terms of the number of vehicles 

owned (Lerman and Ben-Akiva, 1976; Kain and Fauth, 1978; Golob and Burns, 1978; Bhat 

and Pulugurta, 1998), the type of vehicle (Lave and Train, 1979; Hocherman et al., 1983; 

Brownstone et al., 2000; Choo and Mokhtarian, 2004) or vehicle holdings of a household 

(Kitamura et al., 2000). A parallel stream of research efforts focused on joint modeling of 

different dimensions of auto ownership, such as household fleet size and composition 

(Hensher and Plastrier, 1985), vehicle body type and vintage (Berkovec and Rust, 1985; 

Mohammadian and Miller, 2003), vehicle make/model and vintage (Manski and Sherman, 

1980; Mannering and Winston, 1985). Emphasis on estimating the annual miles travelled 

using vehicles owned by a household lead to studies that included usage of household fleet 

in addition to the dimensions mentioned above (Train, 1986; Golob and Wissen, 1989; de 

Jong, 1996; Golob et al., 1997). Predicting the annual mileage would not only help predict 

the annual emissions of the household disaggregated by vehicle type, but also help in 

evaluating policies that reduce the usage of specific type of vehicles. 

Many of these studies provided invaluable insights into understanding the vehicle 

ownership and usage patterns of households, but a common constraint to most of these 

studies is that they were confined to modeling a few dimensions of vehicle ownership. This 
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can be attributed heavily to the type of models (multinomial (MNL), nested logit (NL)) 

used in these studies. Traditional discrete choice models such as the MNL and NL models 

deal with situations where a single choice is made from a set of mutually exclusive 

alternatives. Also, the utility function of these models is linear in nature and is not flexible 

to capture the effect of diminishing marginal utility in the consumption of an alternative. 

The household fleet mix problem is not a single discrete choice problem as a household 

may own multiple vehicles and use them to varying degrees (because of the variety seeking 

nature) simultaneously. Using these models to address the fleet composition of a household 

limits the dimensionality of the modeling problem and restricts the analyst from modeling 

variety seeking behavior. 

It should be identified here that modeling multiple discreetness using single discrete 

choice models is not impossible but computationally inefficient. For example, to model a 

discrete choice model of fleet mix encompassing 5 vehicle alternatives, a total of 31 (2n-1) 

combinations of the 5 alternatives should be identified for each individual in the dataset. 

This number increases exorbitantly as the number of elemental alternatives increase. Bhat 

(2005; 2008) formulated the Multiple Discrete Continuous Extreme Value (MDCEV) 

model to overcome the limitations of single discrete choice models in such situations. The 

MDCEV model has since then been tested to model various multiple discrete choice 

situations such as decision to participate in different types of maintenance and leisure 

activities in a given time period (Bhat, 2005) and household vehicle fleet composition 

(Bhat and Sen, 2006). Paleti et al. (2011a) developed a comprehensive vehicle fleet 

composition, utilization, and evolution framework for integration in activity-based 

microsimulation models of travel demand. The framework consists of a vehicle selection 
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module in which a joint discrete-continuous copula-based model predicts vehicle fleet 

composition and utilization.  

Musti and Kockelman (2011) estimated a stated preference vehicle choice (MNL) 

model from a survey conducted in Austin, Texas that examines opinions of people on 

vehicle policy. They also developed a micro-simulator of vehicle transactions to simulate 

change of vehicle fleet composition in the household using the estimated models. The base 

year fleet characteristics of the data are considered as ‘given’ to the simulator, which will 

then evolve the fleet based on transaction and vehicle choice models. Pendyala et al. 

(2012a) apply a socio-economic model system for activity-based modeling to the region of 

Southern California. A component of the socio-economic model system is CEMSELTS, 

which includes a fleet composition module that simulates the vehicle fleet owned by a 

household and assigns a primary driver to each of the vehicles owned. Vyas et al. (2012) 

proposed a framework to model vehicle type holdings, usage and allocation of primary 

driver simultaneously at the household level. Such a model would be quite sensitive to 

transport policies that are aimed at bringing changes in the fleet mix at household as well 

as regional levels. The study considers a total of 54 vehicle body type – age categories to 

make sure that no household in the dataset owns multiple vehicles of same body type and 

age. While such disaggregation of choice dimensions is laudable, it is exhaustive and might 

make the estimation dataset sparse.  

Despite significant advancements in the fleet composition modeling research in the 

past decade, none of the models developed have fully made their way to be included as an 

integral part of the activity-based microsimulation model systems in practice. Much of the 

fleet composition integration into activity-based modeling systems is still in the testing 
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phases and it is safe to assume that none of the activity-based models in practice today 

house a comprehensive fleet composition model system. The current effort builds on the 

existing literature and develops an operational prototype of a robust vehicle fleet 

composition model system that predicts the fleet mix of households classified by body type 

and age. The model system is built on an open source platform and in a modular fashion 

such that it can be easily integrated into any activity-based microsimulation model.  

 

Tour Level Vehicle Type Choice Models 

Tour level activity-based models simulate a variety of attributes that are of interest to travel 

demand modelers such as number of stops, tour complexity, tour accompaniment etc. Many 

tour based modeling systems have been successfully implemented in the United States and 

elsewhere (Algers et al., 1996; Bowman and Ben-Akiva, 2001; Vovsha et al., 2001; Vovsha 

and Bradley, 2006). While these tour based model systems predict key dimensions that 

characterize a tour such as number of stops on the tour, their location, mode choice, 

sequencing and scheduling of stops, almost none of these model systems account for 

vehicle type choice at the tour level. Identifying vehicle type at the tour level has important 

use in policy evaluation. One example is testing low emission zone strategies where heavily 

polluting vehicle types are restricted from entering select few zones for certain times of the 

day.  

A limiting reason for the tour based modeling systems to be constrained to 

modeling the ‘mode’ but not ‘vehicle type’ at the tour level is lack of information regarding 

the fleet mix of the household. Vehicle fleet composition and utilization patterns at the 

household level have been a topic of considerable interest in the travel demand modeling 
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arena (Mohammadian and Miller, 2003; Bhat and Sen, 2006). Most of the existing 

literature aims at modeling the vehicle fleet and utilization patterns at the household level. 

While this information can be used as a good starting point to compute energy and emission 

footprint of travel in a region, it does not provide disaggregate detail at the level of 

individual tours that planners seek to quantify travel. Two important dimensions that need 

to be considered when modeling vehicle type choice at the tour level are: i) Fleet of vehicles 

owned by the household and ii) Inter-personal household constraints on vehicle usage.  

Miller et al. (2005) present a microsimulation modeling framework that handles the 

household’s allocation of resources (vehicles to drivers) based on maximizing the overall 

household utility. A key assumption made by Miller et al. (2005) is that if a vehicle is to 

be used on a particular tour, it would be used for the entire chain of activities comprising 

the tour and would be available to any other member in the household only after the vehicle 

returns home at the end of the tour. This is a behaviorally intuitive assumption in terms of 

the general vehicle usage patterns observed in day-to-day life. The authors of the study 

present a conceptual model and an operational prototype designed to be integrated with 

TASHA (Miller and Roorda, 2003). They also identify that the model could be used with 

any activity-based model that generates home-based tours. The authors provide an 

excellent account of vehicle allocation and joint household travel decision making, but the 

framework proposed still operates at the level of mode (such as auto, walk, transit), but not 

at the individual vehicle level (such as a car, van, pick-up truck etc.).  

It is intuitive that different types of tours call for usage of different types of vehicles 

(subject to their availability in the household’s vehicle fleet). For example, a tour consisting 

of only work activity, might be carried out using a small vehicle such as a car, but a tour 
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involving all the members of a household might call for a much larger vehicle (such as a 

van), provided the household owns one. The vehicle type choice comes a sub-decision 

provided an individual in the household decides to use an auto mode on the tour.  

More recently, Konduri et al. (2011) presented a framework that focuses on 

examining two dimensions of tours, the type of vehicle (in households that own multiple 

vehicles) chosen to undertake a tour and the tour length as these dimensions might have 

common unobserved factors, that drive the decision making process. The study examined 

the relationship between these two dimensions both ways i.e., does tour length affect 

vehicle type choice or vehicle type choice affect tour length and concluded that the latter 

specification performed better. The authors justify this finding with the fact that vehicle 

type choice is a longer-term choice that influences shorter-term tour length choices, than 

the other way around. The study is restricted to four body types (car, van, SUV and pick-

up truck) for modeling vehicle type choice at the tour level and does not consider any 

vintage (old vs. new vehicles) classification. Wherein reality, tour length might also dictate 

the type of vehicle to be used. For example, when making long distance travel one would 

generally prefer to use newer (supposedly more fuel efficient) than older vehicles of the 

same body type, provided both vehicles are available in a household’s vehicle fleet.  

Paleti et al. (2011b) reports similar findings for a model that considers tour 

complexity, passenger accompaniment, vehicle type choice and tour length together. The 

authors use an integrated modeling framework to study a mixture of dependent variables 

within a single model system. While the methodological framework proposed by the 

authors is absolutely state-of-the-art, it is quite cumbersome from a model deployment and 

application standpoint to simulate choices using such a complex model system. In light of 
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the multiple dimensions that need to be estimated using a single integrated modeling 

framework, the authors restrict the vehicle type choice to a similar level of aggregation as 

Konduri et al. (2011), thereby leaving out the vintage classification which is an intrinsic 

part of a household’s vehicle fleet. The model estimation results provided by the authors 

are quite intuitive and are mostly in line with similar studies in the domain (Konduri et al., 

2011).  

While joint modeling systems discussed above bear great significance in 

understanding the inter-relationship between multiple endogenous variables, they are often 

not easy to apply from a practical standpoint. The current effort proposes a framework 

capable of simulating vehicle type choice at the tour level, which can fully leverage the 

information provided by the tour characterization framework with regard to types of 

activities on the tour, tour accompaniment and tour duration. The framework is designed 

with a view for it to be easily integrated into any existing activity-based microsimulation 

model systems. In application mode, the vehicle type choice model will be constrained to 

only include vehicles owned by the household. This information is available from the 

proposed vehicle fleet composition modeling framework at the level of body-type x age 

categorization. 

 

Vehicle Allocation and Tracking 

Household vehicle usage characteristics have an overbearing significance in quantifying 

the emission foot print of a household/region and also in accurately depicting activity-

travel patterns of the household. Take the example of a two vehicle (a car and a van) 

household, with three licensed drivers (two workers, one non-worker). On an ‘average 
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day’, if both the workers in the household have to go to work, how would the non-worker 

fulfill his travel needs? Between the workers in the household, which worker gets which 

type of vehicle? Do the workers carry out a joint commute to work and leave one of the 

vehicles for travel necessities of the non-worker? All of these are behaviorally valid 

questions and encountered by households with number of vehicles less than workers on a 

regular basis. To understand and accurately depict the activity-travel patterns of households 

in a region, it is therefore very important to  

i. Have information regarding the entire range of activities carried out by all the 

members of the household 

ii. Have knowledge regarding the different types of vehicles owned by a household 

iii. Know the whereabouts (availability) of different vehicles in the household 

along various time periods in a day 

Study of vehicle usage patterns in a quest to accurately quantify emission has been 

topic of significant interest in the travel behavior research community. This question 

becomes all the more important in the context of auto-deficient households (household with 

less number of vehicles than drivers). Early studies in this domain tried to model aggregate 

vehicle usage patterns of the household (relative preference of one vehicle over another) 

using household, person and vehicle attributes as explanatory variables (Hensher, 1985; 

Golob et al., 1996; 1997). For example, findings of these studies report that young people 

and males are likely to drive more (Mannering, 1983; Mannering and Winston, 1985; 

Hensher, 1985; Train, 1986). These studies are in part motivated by the necessity to 

forecast demand for alternative fuel vehicles. All of these studies assume household’s 

vehicle fleet as a given and attempt to model the usage patterns of different vehicles based 
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on the household as well as vehicle characteristics. Advancements in the profession now 

allow us to predict the vehicle fleet at the disaggregate level of body-type and age of the 

vehicle. Also, progress in the activity-based modeling arena led to modeling of household’s 

travel decisions at the level of individual tours – thereby necessitating the modeling of 

vehicle type choice at the same level. 

Despite significant advancements in the activity-based modeling arena, most of the 

tour level activity-based models in practice still operate at the level of a mode (auto vs. 

non-auto), but do not simulate the exact type of vehicle being used to undertake a particular 

tour. While the tour level vehicle type choice framework discussed in the previous section 

handles this issue partly, it is still static in nature meaning that it assumes continuous 

availability of the household’s fleet to all drivers in the household. There is much necessity 

to handle the vehicle allocation and tracking problem as a dynamic one where the 

availability/unavailability of vehicles in a household are continuously updated at regular 

time intervals. This would require a tightly integrated model system where an activity-

based model and a dynamic traffic assignment model communicate on a continuous basis 

(say every minute). Such models are not futuristic, but fully operational in the current day. 

An example of such a system is SimTRAVEL (Simulator of Transport, Routes, Activities, 

Vehicles, Emissions, and Land) where an activity-based model is tightly coupled with a 

dynamic traffic assignment model (Pendyala et al., 2012b) and information exchange 

between both model systems happens on a minute-by-minute basis. The current effort 

proposes a dynamic vehicle allocation and tracking framework that models vehicle type 

choice at the tour level subject to temporal – vehicular constraints of the household’s fleet. 

The proposed framework can be implemented in any of the activity-based modeling 



  30 

systems. Some of the limitations of existing activity-based models (in both research and 

practice) that the research effort in this dissertation intends to address are: 

 Virtually all of the tour level activity-based models in practice use a discrete time 

representation of activity-travel patterns.  

 The sequence of activities undertaken by individuals along the day is determined 

using rule based heuristics in the most of the existing activity-based models in 

practice. In reality the sequence of activity participation is determined by an 

individual before he/she embarks on the journey.  

 Most of the activity-based models (both in practice and the research community) 

only model auto-ownership and do not account for household vehicle fleet 

composition. This is a topic of growing interest in the profession. 

 Almost none of the activity-based models in practice incorporate a vehicle type 

choice component in the modeling process which is of tremendous importance in 

calculating emission footprint of both personal as well as region wide travel. There 

are a few activity-based models in the research arena that are staring to implement 

fleet composition and vehicle type choice, but these efforts are still in the 

developmental stages. 

 Dynamic vehicle allocation and tracking is garnering much interest in the research 

arena, which is indented to ‘fine-tune’ the behavioral representation of activity-

travel patterns in extant microsimulation modeling systems.  

The current research effort aims at addressing each of these issues by developing 

frameworks that explicitly model tour based travel in a continuous time domain and predict 

vehicle type choice at the tour level. 



  31 

CHAPTER 3 

METHODLOGICAL FRAMEWORKS 

 

This chapter discusses in detail, the methodological frameworks proposed as a part of this 

dissertation research. Estimation and validation of components involved in each of these 

frameworks is presented in subsequent chapters. The proposed research effort focuses on 

three main themes aimed at enhancing the modeling methodology in activity-based models 

in practice as well as research domains.  

 Tour Characterization Framework: This framework provides a methodology to 

enhance the current tour level activity-based models in practice to a continuous-

time domain. Using this methodology, all the secondary activities undertaken by an 

individual in a tour could be predicted along with the sequence in which these 

activities are performed and time allocated to each of the stops. 

 Vehicle Fleet Composition Modeling Framework: The proposed framework 

simultaneously predicts the fleet of vehicles owned by a household and the extent 

to which these vehicles are driven annually. This provides rich information to 

calculate emission footprint of a region. Information about fleet composition of a 

household will also help in modeling the tour level vehicle type choice.  

 Tour Level Vehicle Type Choice Modeling Framework: This line of effort aims at 

building the model components required to allocate vehicles owned by a household 

to their activity-travel needs. This effort joins the tour characterization framework 

with the fleet composition modeling methodology to identify which vehicle 

amongst a household’s fleet will be utilized to undertake a specific tour. 
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The schematic of each of these frameworks is explained in the following sections, 

along with an explanation of the components involved and the modeling process. 

 

Tour Characterization Framework 

A tour is defined as sequence of trips starting and ending at the same anchor point. If the 

anchor point is home, the tour will be called a ‘Home-based Tour’. If it is any other location 

than home, then the tour will be called a ‘Non-Home-based Tour’. Within a tour, a primary 

purpose is always identified which completes the definition of a tour. For example, if the 

primary purpose of a home based tour is work activity, then the tour is termed a Home-

based Work (HBW) tour. If the primary purpose is any other activity than work, then the 

tour is termed as a Home-based Other (HBO) tour for the purposes of this research effort. 

Modeling a person’s daily/tour schedule is behaviorally intuitive as people usually plan a 

set of tasks to be accomplished before embarking on a journey. For example, an individual 

might plan to drop the kids at school, go to work and on the way back home, he/she might 

plan on stopping at the grocery store and then head back home. All of these activities 

together constitute a tour. The concept of a tour or trip chain mimics the real world travel 

behavior of individuals.  

The notion that an individual might pursue ‘multiple’ activities in a single tour is 

intuitive and this choice context is referred to as multiple discrete choice. Tour based travel 

demand modeling systems that are in practice do not consider multiple discreteness in 

predicting activity-travel patterns in a tour, but identify various dimensions of a an 

individual’s tour such as primary destination, tour accompaniment and stop frequency 

using single discrete choice modeling methods. The tours are then ‘filled’ with activities 
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that are in the individual’s daily activity agenda. Multiple discrete choice situations such 

as participating in multiple activities as a part of the tour can be modeled using traditional 

single discrete choice modeling frameworks by building a choice set that encompasses all 

possible combinations of the elemental alternatives considered. The problem with this 

approach is that as the number of elemental alternatives increase, the bundle of composite 

alternatives to be considered explodes. Recent advancements in econometric modeling 

methodologies help us model such multiple discrete choice situations in a parsimonious 

yet efficient manner. In particular, the multiple discrete continuous extreme value 

(MDCEV) model structure proposed by Bhat (2005; 2008) is attracting much attention in 

modeling choice situations where individuals choose more than one alternative from a set 

of available alternatives. 

The choice context of simultaneously modeling multiple activities in a tour lends 

itself aptly to the application of MDCEV modeling methodology. This also provides an 

elegant way to model tours in continuous-time domain. In addition to modeling the 

multiple discrete choice behavior, the MDCEV model also considers the effect of 

diminishing marginal utility (i.e., satiation effect) with increasing consumption of an 

alternative, which the traditional random utility maximization methods fail to 

accommodate for. The consideration of satiation coupled with flexibility to accommodate 

multiple discreteness allows us to model the different activities performed by an individual 

on a tour and the amount of time a person allocates to each of the activities chosen. The 

proposed framework is capable of characterizing tours in terms of the mix of activities 

pursued, the time allocated to various activities, and the timing and sequence in which 

activities chained in a tour will be pursued. 
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Figure 3.1 shows the structure of a HBW work tour, which has four stops on the 

outbound half tour (Home  Work) and four stops on the inbound half tour (Work  

Home). In the context of HBW tours, home and work locations of an individual are known 

and the times at which the individual starts at home to go to work and the arrival/departure 

times of work are ‘fixed’. The tour characterization framework predicts all the secondary 

stops on the tour. Whereas in the case of HBO tours, only the home location (or activity) 

of the individual is fixed and the framework predicts all activities performed on a tour 

including the primary activity. 

 

 

Figure 3.1. Sample composition of a home-based work tour. 

 

The tour characterization framework considers the following information as exogenous 

input.  

 Tour start and end times: The activity-based model system pegs start and end times 

of each tour undertaken by the individual. Knowledge about start and end times of 

the tour help to compute a ‘time budget’ for the tour which will then be allocated 

to different secondary activities on the tour. 
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 Tour primary purpose: The framework assumes that the activity-based model has 

already identified the primary purpose of the tour. If the primary purpose is work, 

the tour will be labeled as a HBW tour, else it will be labeled as a HBO tour. It is 

quite common for activity-based model systems in practice to simulate a primary 

activity for the tour as a part of the tour formation component. 

 Household tour plan: The model system also has knowledge of joint tours made by 

individual in a household. While this component is not that critical to predicting 

secondary activities on the tour, this information can be utilized in allocating 

vehicles owned by a household to meet the travel needs of the household. 

The overall tour characterization framework is depicted in Figure 3.2. The proposed 

methodology provides an elegant framework for moving tour-based model systems into 

continuous-time domain while also facilitating the characterization of tours in the daily 

activity-travel pattern. With the information discussed above as input, the framework 

identifies 

 The multitude of secondary activities performed on a tour 

 Time allocated to each of the secondary activities on the tour 

 Placement of secondary activities with respect to primary activity on the tour 

(inbound or outbound half tours )  

 If any half-tour that consists of multiple activities, the framework simulates the 

sequence (order) of activities before or after the primary activity along a continuous 

time axis 

The tour characterization framework starts with computing a time budget for each 

tour from the exogenously provided tour start and end times. An MDCEV model takes the 
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tour budget as input and simulates all the secondary stops that will be pursued as a part of 

the tour under consideration. The unit of analysis that is modeled for each secondary 

activity on the tour is termed as an ‘epoch’ (Figure 3.1), which is the summation of travel 

time and dwell time for an activity. This helps us allocate tour budget to various activities 

in continuous time. 

 

 

Figure 3.2. Tour characterization modeling framework. 

 

Following the MDCEV model component, sequencing component of the 

framework is invoked. The first part of this component involves application of a binary 

logit model on all the secondary stops predicted by the MDCEV model to determine the 

placement of each of the stops relative to primary activity (inbound/outbound half tour). If 

the inbound/outbound half tour consist of only one secondary stop, no sequencing is 
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required. In the event that multiple stops occur before or after the primary activity, a 

sequential activity type choice (SATC) model is invoked.  The SATC model predicts the 

sequence of activities on a half tour subject to the constraints of the choice set.  

The choice set for SATC model includes only those activities that are pursued on 

the half-tour under consideration (i.e., inbound/outbound half tour). Separate SATC 

models are estimated for inbound and outbound half tours as the impetus for organizing 

stops on the way from home and returning back home is varied. As the application of 

MDCEV model provides information about all the activities pursued, the SATC model can 

utilize information about activities that have been completed (earlier in the day/tour) as 

well as information about activities that are yet to be pursued. The SATC model is applied 

in sequence, starting from home location until the half tour is completed. The SATC model 

is applied ‘m-1’ times, where m is the total number of secondary stops on tour, as knowing 

the order of ‘m-1’ stops automatically positions the mth stop on the tour. The tour 

characterization framework thus simulates a full tour schedule, with information about the 

secondary stops, time allocated to them and the order in which they are pursued.  

 

 

Figure 3.3. Segmentation for tour characterization framework. 
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Figure 3.3 shows the market segmentation considered for estimating model 

components in the tour characterization framework. At the top level, all adult tours are 

separated into tours made by workers and non-workers. For workers, separate models are 

estimated for HBW and HBO tours. For non-workers model components are estimated for 

HBO tours. For each of the market segments an MDCEV model is estimated that considers 

all of the secondary stops made by the individual on the tour. The models includes a host 

of socio-demographic attributes, zonal characteristics and accessibility measures. The 

estimated model components will be validated to see how well they predict the observed 

tour patterns. Checks are made to see how well the model can predict observed activity 

type frequency and duration.  

The next section describes the fleet composition model framework that predicts 

household fleet composition and utilization classified by body-type and age categories. 

 

Vehicle Fleet Composition Model Framework 

Most of the activity-based model systems (both in practice and research) only model auto 

ownership at the household level without any consideration of the types of vehicles that 

the household owns. Very few activity-based models that are still in the research phase are 

beginning to incorporate fleet composition models as a part of their modeling framework. 

Generalizing the household vehicle ownership has important consequences in quantifying 

energy and emissions footprint at the household/regional level.  

To overcome this issue, a fleet composition model framework is proposed in this 

research effort to simultaneously predict the number of vehicles owned by a household, 

body type of each of these vehicles, their vintage and the annual mileage put on each of 
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these vehicles by the household. The system also predicts if the household owns multiple 

vehicles of the same body type–age category (for example a household might own two 

cars, both in the age category 0-5 years). The proposed framework is shown in Figure 3.4. 

Each of the models in the proposed fleet composition modeling framework are explained 

below. 

 

 

Figure 3.4. Proposed vehicle fleet composition model framework. 
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1. Household Mileage Prediction Model: The first element in the model system is a 

household mileage prediction model that predicts the annual motorized mileage 

consumption of households. This step is necessary as the subsequent component in the 

model system, the MDCEV model of fleet mix requires a mileage budget to allocate to 

the fleet owned by a household. The motorized mileage can be estimated using a simple 

linear regression model or some variation of it. Once the motorized mileage for each 

household is predicted, non-motorized mileage is computed using a preset formula (0.5 

x household size x 365) as every household will inevitably have at least some amount 

of non-zero mileage consumption (walking from the parking lot, jogging etc.). The 

combined annual mileage is given as input to the MDCEV model, which will then 

predict the fleet mix owned by the household and allocate the household’s mileage 

budget to all the vehicles owned by the household. 

 

2. Vehicle Fleet Mix Model: The MDCEV model of fleet mix predicts the fleet 

composition of the households. Fleet mix for the MDCEV model is defined as a cross 

classification between 4 body types (car, van, SUV and pick-up truck) and 3 vintage 

categories (0-5 years old, 6-11 years old and ≥ 12years old). Motorbike is added as an 

alternative with no vintage categories. An additional alternative called the ‘non-

motorized vehicle’ is added to which non-motorized mileage of a household is 

allocated. MDCEV model is estimated and applied in such a fashion that every 

household in the dataset will consume at least some non-motorized mileage. Such an 

alternative is termed as an ‘outside good’ in econometric modeling jargon. The 

MDCEV model produces a different output each time a simulation is run. Which of the 
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simulations should be considered final? To answer this problem, the MDCEV model is 

applied on the data multiple times and mileage consumptions from each simulation are 

stored. After ‘n’ simulations of the MDCEV model are completed, an average mileage 

consumption is computed for each alternative, which will then be re-allocated using a 

mileage re-allocation algorithm.  

Table 3.1  

Average MDCEV Model Output After ‘n’ Iterations 

Vehicle Alternative Mileage 

Car (Age > 0 & ≤ 5 Years) 5000 

Car (Age > 6 & ≤ 11 Years) 8000 

Car (Age ≥ 12 Years) 400 

Van (Age > 0 & ≤ 5 Years) 2000 

Van (Age > 6 & ≤ 11 Years) 7000 

Van (Age ≥ 12 Years) 550 

SUV (Age > 0 & ≤ 5 Years) 1100 

SUV (Age > 6 & ≤ 11 Years) 1000 

SUV (Age ≥ 12 Years) 300 

Pick-up (Age > 0 & ≤ 5 Years) 200 

Pick-up (Age > 6 & ≤ 11 Years) 500 

Pick-up (Age ≥ 12 Years) 100 

Motorbike 50 

Total 26200 

 

3. Number of Vehicle Alternatives Model: A sample output for a household from 50 

simulations of the MDCEV model is shown in Table 3.1. Since each simulation gives 

a slightly different result, the average mileage consumption result from 50 runs show 

that the household owns almost all of the vehicle categories, whereas in reality this 

household might own only a couple of vehicles. The heuristic mileage reallocation 

algorithm does the job of reallocating this mileage distribution in such a fashion that it 

reflects the household vehicle fleet composition. But mileage reallocation algorithm 
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requires information about how many categories of vehicles does the household own. 

A multinomial logit model of number of alternatives predicts this information and 

provides it as an input to the mileage reallocation algorithm. Suppose, the household 

owns a car 0-5 years old and a SUV 0-5 years old, and a Van 6-11 years old, the number 

of alternatives model predicts the number of alternatives owned by this household as 

three.  

 

4. Number of Vehicle Body-types Model: The structure of number of vehicle body types 

model is quite similar to that of the number of alternatives model, except this model 

predicts the number of different vehicle body types owned by a household, which 

provides marginal control totals for the mileage re-allocation model. While the vehicle 

body type distribution for the population is known in the base year (from survey data), 

this distribution is unknown for future years. The MNL model of vehicle body types 

predicts this distribution based on the projected synthetic population characteristics. 

This goes in as a control distribution that should be matched by the mileage re-

allocation algorithm. 

 

5. Heuristic Mileage Re-allocation Algorithm: The heuristic mileage re-allocation 

algorithm (HMR) takes outputs of MDCEV model and MNL model of number of 

alternatives as input, to re-distributes the mileage to number of alternatives owned by 

the household. The logic followed by the HMR algorithm is shown in Figure 3.5. The 

algorithm operates at the level of each household, where it reallocates the mileage using 

a choice occasion based approach. The output from MNL model of number of 
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alternatives provides information regarding how many body-type x age categories does 

the household own.  

 

 

Figure 3.5. Heuristic mileage reallocation algorithm. 



  44 

From the output of MDCEV model, cumulative mileage distribution of the 

household is computed. A random number is generated and based on location of the 

random number in the cumulative mileage distribution of the household, a vehicle is 

selected as owned by the household. The selected alternative is removed from the 

dataset thereby eliminating the possibility of choosing the same alternative multiple 

times. This process is carried out in a loop as dictated by the number of alternatives 

model. At the end of the loop, the HMR algorithm would select all the alternatives 

owned by the household. The mileage consumed by these alternatives is scaled up 

proportionally to account for the annual motorized mileage consumption of the 

household. Once, the HMR algorithm reallocates the mileages for all households 

according to the input provided by number of alternatives model, the predicted body 

type distribution of the entire population is compared against the body type distribution 

predicted by the MNL model of number of vehicle body types. The absolute percent 

difference is computed between both the distributions and checked against a pre-set 

tolerance limit. If the HMR algorithm passes the tolerance check, the output of HMR 

algorithm goes in as input to the count models. If not, the entire application is repeated 

after calibrating the model components as warranted. 

This process is carried out repeatedly until the percent difference between the two 

distributions is within a set tolerance limit. The output of HMR algorithm provides the 

final fleet composition of every household in the dataset. The output of this algorithm 

would have successfully predicted the vehicle ownership of the household, body type 

and vintage composition of the vehicles owned. Sample output of the HMR algorithm 
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for a household who owns 3 vehicle alternatives is shown in Table 3.2. This output 

goes as input to the count models. 

Table 3.2 

Output after HMR Algorithm 

Vehicle Alternative Mileage 

Car (Age > 0 & ≤ 5 Years) 10000 

Car (Age > 6 & ≤ 11 Years) 0 

Car (Age ≥ 12 Years) 0 

Van (Age > 0 & ≤ 5 Years) 0 

Van (Age > 6 & ≤ 11 Years) 14000 

Van (Age ≥ 12 Years) 0 

SUV (Age > 0 & ≤ 5 Years) 2200 

SUV (Age > 6 & ≤ 11 Years) 0 

SUV (Age ≥ 12 Years) 0 

Pick-up (Age > 0 & ≤ 5 Years) 0 

Pick-up (Age > 6 & ≤ 11 Years) 0 

Pick-up (Age ≥ 12 Years) 0 

Motorbike 0 

Total 26200 

 

6. Count Models: Once the HMR algorithm re-distributes the mileage consumptions for 

all households such that they satisfy the marginal distributions provided by the body 

the distribution model, count models are applied for each household. The count models 

determine if all the mileage consumed by a household with a particular alternative 

belongs to one or multiple vehicles. Suppose, the output of HMR algorithm determines 

that a household uses a car 0-5 years old to travel 25000 miles annually, the count 

model determines if all of this mileage is put on just one car 0-5 years old or if the 

household owns multiple cars of 0-5 years of age. Ideally, a count model should be 

estimated for each of the 13 different vehicle categories defined for the MDCEV model, 



  46 

but this might make the model system vulnerable because of too many components. 

So, it was felt prudent to estimate one count model for each of the vehicle body types, 

with vintage serving as an explanatory variable in the models. If the household has non-

zero mileage consumption in any of the vintages of a vehicle body type, count model 

of that particular body type is applied for that household.  

At the end of application of the entire model system, fleet composition of the 

household including body type, age and count of vehicles of each vehicle body type-age 

category is known along with their annual usage. Knowing the exact fleet composition is 

the first step toward accurate perdition of emissions. Each of the model components in the 

vehicle fleet composition model system are validated to test their predictive capability. 

Once each of the models are validated/calibrated to replicate observed distributions well, 

the model system is applied in its entirety to the data to see how well the model system as 

a whole would predict the observed fleet mix for the base year.  

The MDCEV model of vehicle fleet mix is a comprehensive model that includes 

attributes at the household and zonal level. In addition to this, accessibility measures will 

computed for each zone to conduct sensitivity analysis to test changes in fleet mix with 

varying zonal accessibility. The hypothesis is that increasing zonal accessibility will propel 

lower auto-ownership levels and decrease pollution. With information about the tour 

composition for various types of tours undertaken by households (provided by the tour 

characterization framework) and information about the fleet composition of the household 

(as predicted by the fleet composition model system), the current effort proposes a 

framework that ties these two components together using a tour level vehicle type choice 

modeling framework described in the next section. 
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Tour Level Vehicle Type Choice Modeling Framework  

Despite significant advancements in the activity-based modeling arena in the past decade 

or so, almost none of the existing models in practice house an extensive vehicle type choice 

model component that determines the particular household vehicle used by an individual 

to undertake a specific tour. Almost all of the activity-based microsimulation model 

systems only model the mode utilized (auto, transit, walk/bike) to make a trip/tour. It is 

important to identify the specific type of vehicle (among the vehicles owned by the 

household) used to make a specific trip/tour as this information has overbearing 

consequences in computing the emission footprint from person travel in a region.  

A limiting reason for the activity-based models for not including vehicle type 

choice is lack of information regarding the fleet mix owned by a household. Without 

knowing ‘what types’ of vehicles are owned by a household, it is impossible to model 

‘which’ vehicle (among the ones owned by household) would a person use to embark on a 

trip/tour. The vehicle fleet composition methodology discussed in the previous section 

provides a solution to this problem by predicting the fleet mix owned by a household 

classified by body-type and age. This information coupled with information regarding 

characteristics of a tour (solo/joint tour, tour accompaniment etc.) can be used to model the 

vehicle type choice of individuals at the tour level. The vehicle type choice models can be 

implemented as sub-models to a mode choice model, where a vehicle type choice model is 

applied to predict the type of vehicle use on a tour if and only if the mode choice model 

predicts the mode for the tour under consideration as auto. 

Prior to entering this framework, but after the fleet composition framework, a 

primary driver allocation module identifies and allocates each vehicle in the household to 
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a ‘primary driver’. This can be determined by allocating vehicle fleet to individuals in a 

household such that they maximize their utility. This behavior can be modeled using 

traditional discrete choice modeling methods or decided based on simple/complex 

heuristics involving one or more person level attributes (gender, income, age etc.). Once a 

vehicle is allocated to a primary driver, it is assumed that the vehicle is available to that 

driver throughout the day to travel to any activity.  

With full information about all the stops on a tour from the tour characterization 

framework, and knowledge about fleet mix from the fleet composition module, the 

proposed tour level vehicle type choice framework is developed with an intent to allocate 

vehicles owned by the household to tours undertaken by them. The overall framework for 

tour level vehicle type choice modeling is shown in Figure 3.6. For each tour undertaken 

by the household, an exogenous joint tour formation component determines if the tour can 

be undertaken as a joint tour, depending on the travel dynamics of the household. For 

example, if a child needs chauffeuring, an adult in the household could perform a joint tour 

with the child. This can be a fully/partially joint tour depending on the activity agenda of 

the child. Similar joint tours can be formed between adults in a household. The joint tour 

formation component is an extensive component in itself and is left out in the current 

research effort. For the purposes of the proposed framework, it is assumed that the type of 

tour (single/partially joint/fully joint) is provided exogenously. The framework assumes 

that all household vehicles are available to drivers in the household at all times. This 

assumption is made for ease of model estimation and can be dealt with in a straight forward 

manner in application step, if real time vehicle availability information is known. A 
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conceptual framework to this effect is proposed and discussed in a separate chapter 

(Chapter 8). 

 

 

Figure 3.6. Tour level vehicle type choice framework. 

 

Once the tour composition is identified, the proposed framework first checks if the 

tour is a solo/joint tour. For joint tours, a check is made to see if at least one individual on 

the tour is a primary driver that already has a vehicle allocated to him/her. If exactly one 

person on the tour is a primary driver, then vehicle allocated to the primary driver is 

assigned to the joint tour. If number of primary drivers on the tour is greater than one, rule 
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based heuristics can be employed to see which primary driver’s vehicle will be used for 

the joint tour under consideration. 

In the case where there are no primary drivers on the joint tour, the vehicle type 

choice model determines which of the household vehicles will be utilized to carry out the 

tour under consideration. For solo tours, it is first checked whether the person undertaking 

the tour is a primary driver. If yes, the vehicle allocated to that particular person will be 

used to make the tour. If not, a vehicle type choice model including all the vehicles owned 

by the household is used to determine the vehicle type that would be used in the tour. The 

vehicle type choice model operates under the assumption that individual undertaking the 

journey has already chosen ‘auto’ mode to participate in the tour. This can be easily 

determined using mode choice models, which are well equipped in existing activity-based 

modeling systems. 

The tour level vehicle type choice can be defined as a function of tour complexity 

as this information is made available by the tour characterization framework. Attributes 

such as number of stops on the tour, what activities are undertaken as the part of the tour 

as well as tour accompaniment can drive vehicle type choice in addition to individual 

attributes such as age income and gender to name a few. Tour composition is assumed to 

heavily influence the vehicle type choice. For example, a work tour with an escort stop will 

probably be undertaken using a ‘bigger’ vehicle in the household, whereas a tour that 

consists of only one shopping stop has the potential possibility to be undertaken by a car 

or an SUV. The tour level vehicle type choice model will be an MNL/NL model which 

will have the same vehicle classification as the MDCEV model of vehicle fleet mix. For 
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each household, the dataset will be constrained to include only the fleet mix owned by them 

so that household tour level vehicle type choice can be depicted accurately. 

The proposed model frameworks are aimed at enhancing tour level activity-based 

models in practice to a continuous-time domain with full representation of household fleet 

mix and tour level vehicle type choice. The research effort has a few important limitations 

identified below: 

1. The research effort leaves out prediction of tour start and end times to an exogenous 

model component. This is not an operational shortcoming as activity-based modeling 

systems in practice are equipped to predict and provide tour start and end times 

(Parsons Brinckerhoff, 2010) to the tour characterization framework. The start and end 

times provided by such model systems will form the tour budget that MDCEV model 

allocates to various activities in the tour. The activity scheduling systems on the other 

hand might not be able to predict the tour start/end times. This is left for future research. 

2. The current research effort does not include the joint tour formation component at the 

household level. This is an area of research that requires considerable exploration to 

come up with econometric modeling methods and rule based heuristics to develop joint 

tour formation at the household level. 

3. This effort does not consider instantaneous vehicle availability where movements of 

vehicles in a household’s fleet are tracked continuously through the course of a day. 

This is not so much of a modeling issue, but an implementation issue. The real-time 

vehicle accountancy framework would require constant exchange of information 

between the activity-based model and the dynamic traffic assignment model regarding 
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the usage of household vehicle fleet. The current effort proposes a conceptual 

framework that could potentially be implemented in such an integrated model system. 

In summary, the proposed research effort aims to develop modeling frameworks 

that accurately depict the travel as well as fleet composition of households. This effort 

intends to enhance tour level activity-based model systems in practice with evolutionary 

continuous-time approaches followed by the activity scheduling models in research so that 

activity engagement patterns can be modeled as realistically as possible. A framework is 

proposed that ties the travel undertaken by household to vehicles owned by them. All of 

the model components in the proposed frameworks are estimated and validated for the 

2009 NHTS add-on dataset for the Phoenix metropolitan region. 
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CHAPTER 4 

TOUR CHARACTERIZATION FRAMEWORK 

 

Tour level activity-based models that are widely adopted in practice follow a discrete 

representation of time (one hour or half hour time bins). In these models, activities 

performed by individuals in a day are modeled disjointly and are sequenced using rule 

based heuristics or discrete time-of-day choice models. Recent progress in econometric 

modeling arena (Bhat, 2005; 2008) allows for simultaneous prediction of the mix of 

activities undertaken by an individual in a tour. Adopting these advancements, a 

methodology is developed to enhance activity-based models in practice to follow a 

continuous time representation of activities. The proposed tour characterization framework 

is capable of predicting the mix of secondary activities pursued on a tour, time allocated to 

each activity and the order in which these activities are pursued. The proposed framework 

is discussed in detail in Chapter 3. This chapter presents the model estimation and 

validation results of various components in the tour characterization framework.  

First, a brief account of the data preparation exercise is provided along with a 

discussion of the characteristics of different types of tours modeled. Model estimation 

results are presented for each of the components followed by the model’s performance in 

replicating observed activity-travel patterns.  

 

Data  

The data used for estimating the model components of the tour characterization framework 

is from the latest wave of the National Household Travel Survey (NHTS) conducted in the 
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year 2008-2009. NHTS data provides a wealth of information regarding travel patterns of 

individuals across the nation. A random sample of individuals representative of the 

population in each state are interviewed and data is collected regarding household/person 

level socio-demographics as well as travel characteristics of the individuals. Data collected 

from NHTS is organized into household, person, vehicle and trip files. Data collected at 

the household level includes details such as number of people/drivers/workers, household 

income etc. At the person level, information regarding the respondent’s individual 

characteristics such as age, sex, driver status etc. are collected. A comprehensive travel 

diary is filled out by each respondent answering the survey that has detailed information 

regarding each trip (NHTS User’s Guide, 2009) such as: 

 Trip purpose (work, shopping etc.) 

 Mode of transportation (e.g., car, bus, walk, light rail) 

 Travel time  

 Time of the day 

 Travel day 

 Trip composition 

o Occupancy 

o Driver characteristics 

o Vehicle attributes 

This data can be used to understand the travel behavior at household as well as trip 

level (trip chaining patterns, modal usage etc.). Since the unit of analysis in the current 

research effort is a ‘tour’, but not an individual trip, data from NHTS is processed to convert 

trips reported by individuals into tours. A tour consists of a sequence of stops made by an 
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individual that start and end the same anchor point. If a tour starts and ends at a home 

location, then the tour is called a home-based tour. If the anchor is not home, then the tour 

is called a non-home-based tour. Every tour is tagged with a primary purpose, which is the 

main motivation behind that particular journey. Tours that have work as primary purpose 

are called home-based work (HBW) tours, while tour that have other purposes (such as 

shopping, recreation etc.) are named accordingly. For the purposes of this effort, all the 

tours that have a primary purpose other than work are grouped together and labeled as 

home-based other (HBO) tours. 

 

 

Figure 4.1. Structure of a tour. 
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Tours are constructed from trip level data by chronologically arranging all the trips 

made by an individual in a day. Travelers may undertake a variety of tours over the course 

of a day, and each tour may include a multitude of stops where individuals participate in 

various activities. The structure of home-based work and home-based other tours 

considered for this research effort is shown in Figure 4.1. Panel A presents the structure of 

home-based work tour and Panel B presents the structure of a home-based other tour. As 

mentioned earlier, each tour starts and ends at the same anchor point and is defined by a 

primary purpose. All the stops on the outbound journey from home to the primary 

destination constitute the outbound half tour and all the stops that are made on the return 

back home are together called as inbound half tour.  

From preliminary analysis of the data, it was observed that maximum number of 

stops made on any half tour made by an individual is four. So, up to four stops on each half 

tour are taken into consideration for developing the tour characterization framework. All 

the stops other than the anchor points (home, primary destination) are called as ‘secondary 

stops’ made on the tour and are the main focus of this research effort. The intent of this 

research is to develop a framework to accurately predict the secondary stops made on a 

tour, time allocated to each of these stops and the sequence in which these stops are made 

in a continuous time domain. The framework proposed accounts for multiple stops of the 

same activity type made on a tour as dictated by the observations in the data.  

Table 4.1 shows a brief sketch of the description of different types of tours 

considered for modeling. Statistics shown represent how many half tours in a specific tour 

type have 2, 3 and 4 stops on the outbound and inbound legs of the journey. Each panel 

represents a specific type of tour considered for modeling.  
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Table 4.1 

Stop Making Patterns on Different Types of Tours 

Panel A. Workers, HBW Tours 

 Outbound Inbound 

Number of Stops 

on the Half Tour 

Number of Half 

Tours 

Percent 

(%) 

Number of Half 

Tours 

Percent 

(%) 

2 42 63.60 162 72.60 

3 16 24.20 40 17.90 

4 8 12.10 21 9.40 

Total 66 100 223 100.00 

     

Panel B. Workers, HBO Tours 

 Outbound Inbound 

Number of Stops 

on the Half Tour 

Number of Half 

Tours 

Percent 

(%) 

Number of Half 

Tours 

Percent 

(%) 

2 77 69.40 76 65.50 

3 21 18.90 30 25.90 

4 13 11.70 10 8.60 

Total 111 100.00 116 100.00 

     

Panel C. Non-Workers, HBO Tours 

 Outbound Inbound 

Number of Stops 

on the Half Tour 

Number of Half 

Tours 

Percent 

(%) 

Number of Half 

Tours 

Percent 

(%) 

2 206 65.00 181 67.50 

3 75 23.70 61 22.80 

4 36 11.40 26 9.70 

Total 317 100 268 100.00 

 

From the table, it can be observed that among HBW tours, multiple stops are made 

predominantly on the inbound half tours, which is explained by the flexibility in activity 

participation for workers after their ‘regular’ work day. Whereas, HBO tours made by 

workers (tours made after or before work, which have a primary destination other than 

work), have more of an even spread of tours with multiple stops on both outbound and 

inbound half tours. For similar type of tours (HBO) made by non-workers, it was observed 
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that a majority of outbound half tours have multiple stops. All these findings are intuitive 

and confirm to the usual activity-travel patterns expected from the respective market 

segments. Moreover, these patterns identify significant differences in stop making behavior 

among different types of tours and call for the necessity to develop separate model 

components for each tour type. 

Further analysis was carried out to study the activity type distributions of secondary 

stops made on all the tours considered for analysis. Table 4.2 presents the activity type 

distributions observed on different types of tours. The total number of stops made on 

outbound and inbound half tours for all the tour types considered follow similar patterns 

observed in Table 4.1, as expected. There are some interesting similarities and differences 

in these different tour segments. Among all types of tours considered, outbound half tours 

have a greater proportion of maintenance stops, whereas inbound half tours tended to have 

more shopping stops, regardless of the segment under consideration. Other escort stops are 

more or less evenly distributed across outbound and inbound half tours across all segments. 

Within the worker segment, HBW tours have more maintenance stops on the outbound half 

tours, whereas HBO tours have an equal proportion of shopping and maintenance stops on 

the outbound half tours. Workers seem to push the shopping activity towards the return 

home journey of their HBW tour, which is intuitive. On HBO tours, which do not usually 

have a rigid temporal/spatial constraint, a more even placement of shopping stops is 

observed across outbound and inbound half tours. Another intuitive finding from this table 

is that HBW–outbound half tours have absolutely no social visit stops. This is finding is 

consistent with expectation, as individuals do not usually make a social visit stop on their 

way to work. 
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Table 4.2  

Activity Type Distributions on Different Types of Tours 

Activity 

Type 

Workers,  

HBW Tours  

Workers,  

HBO Tours 

Non-Workers,  

HBO Tours 

Outbound 

Half 

Tours 

(%) 

Inbound 

Half 

Tours 

(%) 

Outbound 

Half 

Tours 

(%) 

Inbound 

Half 

Tours 

(%) 

Outbound 

Half 

Tours 

(%) 

Inbound 

Half 

Tours 

(%) 

Other Escort 15.2 15.8 7.4 7.8 6.8 10.6 

Shopping 26.2 34.4 33.8 34.8 31.9 45.8 

Maintenance 32.9 25.1 33.8 27.0 35.9 23.1 

Meal 17.1 11.2 13.4 19.1 14.0 12.8 

Social Visit 0.0 4.2 3.0 4.3 2.7 3.2 

Other 

Discretionary 
8.5 9.3 8.6 7.1 8.8 4.5 

Total No. of 

Stops 
164 526 269 282 781 649 

 

From observations in the data, it was felt prudent to estimate separate model 

components for worker and non-worker segments. Within tours made by workers, a 

classification is made between HBW tours and HBO tours as the stop making patterns on 

these tours are found to be significantly different.  

 

 

Figure 4.2. Segmentation considered for estimating components of 

tour characterization framework. 
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Segmentation considered for modeling exercise is depicted in Figure 4.2. In this 

chapter, results are presented here for HBW tours made by workers and HBO tours made 

by non-workers. Note that the model structure for HBO tours made by workers is similar 

to that of non-workers. 

 

TCF Model Components for HBW tours made by Workers 

Tours made by workers are classified as HBW tours and HBO tours depending on the 

primary destination and separate models components are estimated for each of the tour 

categories. Model components pertaining to HBW tours made by workers are presented in 

this section. All of the trips made by a worker (including secondary stops on the way to 

work and on the way back home) are synthesized to form HBW tours. Up to four secondary 

stops are considered on the inbound and outbound half tours. So, the total number of 

secondary stops that are considered on any HBW tour is eight. A total of 6 activity types 

are considered for classifying secondary stops made on a tour. A brief description of each 

of these activities is provided below. 

 Other Escort: Activities such as dropping-off/picking up or chauffeuring an other 

household member. A different type of escort called as the school escort purpose is 

not considered in this modeling effort. 

 Shopping: Includes activities such as shopping for apparel/electronics/gear etc. as 

we all as a quick grocery stop. 
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 Maintenance: Activities such as going to the bank, doctor or a beauty salon come 

under this category. This purpose is synonymous to personal business activity type 

seen in a lot of ABMs. 

 Meal: Stop made to eat meal (lunch/dinner). A quick stop on the way to work to 

grab a cup of coffee also comes under this category. 

 Social visit: Visiting friends, relatives etc. constitutes this purpose. 

 Other Discretionary: A category defined to classify activities that do not belong to 

any of the purposes defined above. Examples of activities that fall under this 

category are jogging, going to the gym, recreational activities such as going to 

movie etc. 

Multiple stops of the same activity are allowed on a tour. Table 4.3 presents the 

composition of HBW tours used for analysis. The last column of the table shows the 

percentage of tours that have at least ‘n’ number of stops of the activity under consideration. 

It can be observed that number of HBW tours that have secondary stops are quite few. 

Among, the tours that do have secondary stops, majority of them consist of shopping, 

maintenance and meal activities. This is expected behavior on HBW tours as workers are 

usually constrained by their work schedules and do not have a lot of flexibility to make 

secondary stops on the way to work. Further analysis of these tours revealed that most of 

the stops made on HBW tours are on the inbound half tours (work to home), corroborating 

the stated hypothesis. To model multiple stops of the same activity type, a criteria was set 

to consider activity types that have at least a 2% percent representation in the data set. 

According to this criteria, multiple stops of other escort and shopping are considered for 

estimating the MDCEV model of activity type mix, but the final model included 2 other 
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escort stops. This model covers 93.3% of the tours considered for model estimation. 

Estimation and validation results of the activity type mix model are presented next. 

Table 4.3 

Composition of HBW Tours 

Activity Type Number of Episodes Number of Tours % of Total 

Other Escort  

1 165 5.62 

2 71 2.42 

3 14 0.48 

4 3 0.10 

Shopping 

1 369 12.56 

2 74 2.52 

3 12 0.41 

4 2 0.07 

Maintenance 

1 297 10.11 

2 51 1.74 

3 9 0.31 

4 2 0.07 

Meal 

1 208 7.08 

2 14 0.48 

3 1 0.03 

4 1 0.03 

Social Visit 
1 54 1.84 

2 2 0.07 

Other 

Discretionary 

1 143 4.87 

2 9 0.31 

3 1 0.03 

Total number of tours in the data set 2938 

 

HBW tours – MDCEV model of activity type mix. On any tour, an individual 

can participate in a multitude of activities and allocate different levels of time to each 

activity. This behavioral choice problem comprises of simultaneously modeling activity 

type mix (multiple discrete component) and the time allocated (continuous component) to 

each activity and lends itself nicely to the application of a Multiple Discrete Choice 
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Extreme Value (MDCEV) model. The MDCEV model has been successfully applied in the 

context of activity participation and time use process, and is proven to be quite effective in 

this context (e.g., Bhat, 2005; Bhat et al., 2006). In the proposed tour characterization 

framework, MDCEV model is utilized to identify stops (activity types) and durations of 

activity epochs within the tour. An epoch is defined as the sum of the activity episode 

duration and the travel time leading to the activity episode.  

The MDCEV modeling methodology is presented in detail elsewhere (Bhat, 2008) 

and hence only a brief overview is presented here. The MDCEV model allows modeling 

of decision processes in which the choice makers are able to choose a mix of alternatives 

among the available alternatives, to maximize the utility of their consumption patterns. 

Individuals are allowed to select ‘𝑚’ out of ‘𝑘’ available alternatives and allocate varying 

levels of consumption to each of these alternatives. The functional form of utility proposed 

by Bhat (2008) is based on a generalized variant of the constant elasticity of substitution 

(CES) function: 
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 where )(xU  is a quasi-concave and continuously differentiable function with 

respect to consumption quantity vector 𝑥 )0( kxk  . 
k  represents the baseline marginal 

utility or the marginal utility at the point of zero consumption. 
k  is the satiation parameter 

which governs the decrease in marginal utility with increasing consumption for good k . 

The translation parameter 
k  not only governs the level of satiation but also enables corner 
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solutions (i.e., zero consumption of some goods). The baseline marginal utility 
k may be 

written in the following functional form: 

)exp( kkk z    (4.2) 

 where 
kz  is an M-dimensional column vector of attributes that characterize 

good k,    is a corresponding vector of coefficients (of dimension M×1), and 
k  captures 

the effect of unobserved attributes. As both 
k  and 

k  are parameters that incorporate the 

effects of satiation, it is difficult to uniquely identify and distinguish between them.  For 

this reason, one of the two parameters is fixed and the other parameter is free to be 

estimated in most empirical model estimation efforts and the best model is chosen. In the 

current modeling context,  -profile gave the best fit to the data. 

The empirical context considered in this research effort is that of modeling activity 

engagement in the context of home-based work tours for workers who report going to work 

on the survey day.  Home-based work tours will always include two activities – a work 

activity episode and a home activity episode. Any alternative that is always consumed by 

all decision-makers is considered an “outside good” in econometric modeling jargon and 

in the case of the home-based work tour characterization context, there are two outside 

goods – work and home. Thus, the MDCEV model is configured to accommodate two 

outside goods. With the presence of two outside goods, the specification of  -profile of 

MDCEV model becomes:  
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 An individual maximizes his/her utility by optimally allocating consumptions 

to the k  available goods, while always choosing the outside goods. Thus the constraint for 

the utility maximization problem is:  

Tt
K

k

k 
1

 
 (4.4) 

where 
kt is the budget allocated to good k  and T  is the total tour budget. Model 

estimation codes provided by Bhat (2008) were translated into open source coding 

language ‘R’ to estimate the MDCEV model and optimization algorithms within ‘R’ were 

used to search for parameter estimates that maximize the likelihood function. The MDCEV 

model estimation results for home-based work tour are presented in Tables 4.4-4.6. Table 

4.4 presents the significant parameters in baseline utility equation of the MDCEV model. 

The model is found to offer intuitive results and reinforces the confidence for its use in 

estimating a model of activity type choice and time allocation. Among household 

attributes, it was found that individuals from households with more number of retirees are 

more likely to make other escort stops on their home-based work tours. Such individuals 

might usually drop-off/pick-up the retired household on the way to work or the way back 

home. Persons from households with high income tend to participate in maintenance and 

other discretionary activities on the HBW commute. 
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Table 4.4 

HBW Tours, MDCEV Model of Activity Type Mix:  

Significant Parameters in Baseline Utility 

Activity Type Explanatory Variable Estimate t-statistic 

Other Escort 

Episode 1 

Number of retirees in the household 0.31 1.27 

Number of vehicles per working 

individual in the household 
-0.38 -2.63 

Multi-person tour made by a male person 0.35 2.06 

Tour mode is HOV 4.57 8.87 

Other Escort 

Episode 2 

Auto deficient household 0.97 3.27 

Count of total people on trip 0.21 2.08 

Tour mode is HOV 4.50 4.96 

Shopping 

Episode 1  

Respondent is a female person 0.41 3.78 

Number of household members between 

0-5 years 
-0.23 -2.04 

Maintenance 

Episode 1 

Age of the person ≥ 65 0.68 3.68 

Respondent is a male person -0.61 -4.96 

Very high income household (> $100,000) 0.22 1.73 

Person is the driver on a multi-person tour 0.31 2.39 

Tour mode is any mode other than HOV 

and SOV 
-0.72 -1.59 

Meal Episode 1 

Household size -0.14 -2.53 

Respondent is a female person 0.28 1.85 

Tour mode is HOV 0.79 5.18 

Social Visit 

Episode 1 

End time of the tour 5pm - 7pm -0.54 -1.72 

Number of vehicles in the household -0.26 -1.71 

Respondent is a female person 0.82 2.74 

Other 

Discretionary 

Episode 1 

Very high income household (> $100,000) 0.67 3.84 

Auto deficient household  -0.50 -1.43 

 

Workers from auto deficient households, tend to make other escort stops more, 

which is an intuitive finding as such households are more likely to engage in joint travel. 

Auto deficiency is also found to negatively influence other discretionary activity 

participation. Among person level variables, it was found that females tend to engage in 

more stop-making than males in the context of home-based work tours, which is consistent 
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with findings reported in the literature (Mensah, 1995; Bhat, 1999). It was also found that 

older individuals tend to engage in more maintenance stops. Tour level attributes used in 

the model offer findings consistent with expectation. Other escort stops are found to be 

made using HOV mode and such stops are usually found to occur on multi-person tours. 

Tours made by non-auto modes are less likely to have maintenance stops (or any stops for 

that matter), as it might be inconvenient to make more stops when not using a faster and 

convenient mode (read auto). Meal stops tend to occur more on tours made using HOV 

mode. This is an intuitive finding as meal activity usually tends to be a joint activity. Table 

4.5 presents the baseline constants and translation parameter values of the MDCEV model 

estimation result. 

Table 4.5 

HBW Tours, MDCEV Model of Activity Type Mix: 

Baseline Constants and Translation Parameters 

Activity Type 
Baseline Constant Translation Parameter 

Coefficient t-statistic Coefficient t-statistic 

Work Episode (Outside Good 1) - - 0 NA 

Home Episode (Outside Good 2) - - 0 NA 

Other Escort Episode 1 -11.32 -21.1 18.31 3.95 

Other Escort Episode 2 -13.33 -14.01 23.76 2.66 

Shopping Episode 1 -8.03 -94.37 33.52 6.12 

Maintenance Episode 1 -8.02 -81.67 39.08 6.73 

Meal Episode 1 -8.46 -42.81 40.17 5.92 

Social Visit Episode 1 -9.57 -21.06 87.94 2.19 

Other Discretionary Episode 1 -9.07 -76.14 106.38 3.51 

 

Baseline constants provide an indication of the inherent preferences for various 

alternatives and the marginal utility at zero consumption. These may be viewed as the 
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preference for pursuing an activity relative to the outside goods (work/home in this case). 

From the results it was found that shopping and maintenance and activities have higher 

baseline preference while other escort activity has the lowest baseline preference. These 

findings line up nicely with trends observed in the estimation dataset and exhibit the 

capability of the model to accurately depict the observed activity-travel patterns. 

Translation parameters give an indication of the time allocated to an activity, once it is 

chosen. It is found that social visit and other discretionary activities have relatively larger 

translation parameters, suggesting that more time is allocated to these activities before 

satiation occurs. This finding is consistent with expectations and behaviorally intuitive.  

It is interesting to see that the 2nd other escort activity episode has a higher 

translation parameter value that the first stop of the same activity. Upon further analysis, it 

was found that second episode of the other escort activity is more likely to happen on the 

inbound half tour (work to home journey), thereby revealing the reason behind this finding. 

Individuals usually have flexibility to spend a little more time to pursue any activity post 

work than on the way to work.  

Table 4.6  

HBW Tours, MDCEV Model of Activity Type Mix: 

Goodness of Fit Measures 

Statistic  Value 

Log-likelihood of final model at convergence -30728.4 

Degrees of freedom of final model  36 

Log-likelihood of base model at convergence -31124.8 

Degrees of freedom of base model  14 

Likelihood ratio  792.7 

𝜒22,0.001
2  48.27 
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The goodness of fit statistics of the MDCEV model are presented in Table 4.6. The model 

is found to offer an acceptable goodness of fit with a likelihood ratio of 729.7, which is 

substantially greater than the critical 𝜒2 value with 22 degrees of freedom at any level of 

significance. The estimated MDCEV model is applied on the entire dataset to see how well 

it can replicate the observed tour composition patterns. Procedures developed by Pinjari 

and Bhat (2011) are translated to open source coding language ‘R’ to apply the MDCEV 

model in forecasting mode. It should be noted that results presented do not constitute a true 

validation process. In a traditional validation process, a hold out sample (20-30% of the 

data) is kept aside and the model is estimated on the rest of the data. The estimated model 

is applied on the holdout sample to see how well it can replicate the observed patterns. 

However, in the current context, it was necessary to use the entire dataset for model 

estimation process to have adequate sample size for all the activity types considered. The 

estimated model is applied on the entire sample to see how well it can replicate the observed 

activity-travel patterns. This is more of a replication process than a validation. 

Comparisons are made across two distributions to test the predictive capability of the 

model. 

 Activity Frequency Distribution: This represents the percent of home-based 

work tours that have each of the different stop types. 

 Average Epoch Duration (excluding zero epoch durations): Average epoch 

duration is computed as the summation of all epoch durations of the stop type 

under consideration divided by total number of stops that have non-zero epoch 

durations. 
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Figure 4.3 presents the comparison of observed and predicted activity-travel 

patterns of uncalibrated version of the MDCEV model of activity type mix. It can be 

observed that the model is able to replicate the overall activity frequency distribution 

patterns quite well (from a qualitative standpoint). Both work and home epochs are 

observed and predicted as 100% as these are considered as outside goods in the current 

empirical context and hence have to be chosen on every tour considered for model 

estimation. Slight calibration is warranted to exactly match the observed distributions. It 

can be observed that the model represents the relative abundance of some activity types 

(shopping and maintenance) and paucity of others (other escort, social visit) quite well.  

 

 

Figure 4.3. HBW tours, MDCEV model: 

observed vs. predicted activity frequency distributions. 
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Figure 4.4 shows the comparisons of observed vs. predicted average epoch 

durations. From an initial glance it feels like the model is heavily overestimating the 

average epoch durations of all activity types. But, careful investigation revealed that it is 

not a systematic deficiency in predictions of the model but rather a problem with small 

sample size of stops for most activity types considered. For example, among all tours 

considered for estimation, there were a total of 200 meal stops made and the total duration 

of all of the meal epochs is 9000 minutes. This means that the average observed duration 

of meal epoch is 45 minutes. If the MDCEV model predicted that the total number of meal 

stops is only 150, with total meal epoch duration of 9000 minutes, the average predicted 

meal epoch duration will be close to 60 minutes for each meal epoch. The discrepancy of 

15 minutes per an average meal epoch is more a manifestation of the small sample size 

than a systematic deficiency in model predictions. As mentioned before, any estimated 

model will require some amount of calibration to exactly match the observed patterns. The 

intent of this effort is to exhibit the ability of the proposed tour characterization framework 

to accurately represent the ‘trends’ observed in the data. Calibration of the model 

parameters is not undertaken as a part of the current research effort. It can be observed that 

the model qualitatively represents the observed epoch duration patterns quite well. 
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Figure 4.4. HBW tours, MDCEV model: observed vs. predicted average epoch durations. 

 

Next component in the tour characterization framework is the stop sequencing 

model system that predicts the location of each stop on a tour with respect to the primary 

destination and then determines the relative position of each stop on a both inbound and 

outbound half tours. 

HBW tours – Binary logit model of stop placement. The binary logit model of 

stop placement determines the location of each stop with respect to primary destination 

(i.e., either the inbound or the outbound half tour). To estimate this model, each stop in the 

dataset is categorized using a binary indicator where the stop gets a value of ‘1’ if the stop 

is on the inbound half tour, ‘0’ otherwise. Estimation results of binary logit model for HBW 

tours is presented in Table 4.7. A positive value for a coefficient in the model estimation 
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result increases the chances of the stop occurring in the inbound half tour than on the 

outbound one. 

Table 4.7 

HBW Tours, Binary Logit Model of Stop Placement 

Explanatory Variable Coefficient t-statistic 

Constant 0.31 2.70 

Respondent is a female person 0.28 2.41 

Start time of the tour (7am - 9am) 0.43 3.41 

Start time of the tour (9am - 11am) -0.56 -3.19 

Duration of Other Escort1 epoch on the tour 0.01 1.88 

Duration of Other Escort2 epoch on the tour -0.01 -2.61 

Duration of Shopping1 epoch on the tour 0.01 4.08 

Duration of Eat Meal1 epoch on the tour 0.003 1.87 

Duration of Social Visit1 epoch on the tour 0.01 2.88 

Goodness of Fit 

Log-likelihood at convergence for the full model  -876.61 

Log-likelihood at convergence for the restricted model  -914.22 

Likelihood ratio 75.21 

𝜒8,0.001
2  26.13 

 

From the results it was found that tours starting earlier in the day are more likely to 

have stops on the inbound half tours than tours starting later in the day. This is a very 

intuitive finding and refers to the schedules of different types of individuals. The early 

birds, who go to work quite early in the day, tend to make more subsistence stops (grocery 

shopping, going to the bank etc.) on the way back to home i.e., inbound half tour, While 

those starting their travel later in the day might take care of such activities before the start 

of a ‘work day’. Activities with longer durations have a greater proclivity to happen on the 

inbound half tour. This result is consistent with expectation as individuals usually tend to 

schedule activities with longer duration on the way back home as they have a greater time 
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flexibility on the home to work commute. Tours undertaken by female respondents are 

found be more likely to have stops on the inbound half tour than the outbound half tour. 

The likelihood ratio of the model is greater than the critical 𝜒2 value at the 99% confidence 

level.  

The estimated model is applied on the entire dataset to see how well it can replicate 

observed stop making patterns. Results of the comparison are depicted in Figure 4.5. First 

litmus test for the efficiency of the model is to predict the correct proportion of stops on 

the outbound and inbound half tours. From the figure it can be seen that model predicted 

the proportion of stops quite close to the observed data. An interesting observation here is 

that number of stops made on the inbound half tours is twice as many as on the outbound 

half tour. This finding is in line with observations from extant literature (Bhat, 1997) and 

it was encouraging to observe that the model predicts this pattern quite accurately. In 

addition to identifying the location of stops with resepct to primary destination, it was 

found that the model is able to predict the profile of activities on outbound and inbound 

half tours quite well. The statistic depicted in this graph is the percent of stops on each half 

tour that pertain to a specific activity. Panel A presents the result of observed and predicted 

activity type distributions on the outbound half tours and Panel B presents the results for 

inbound half tours. It can be seen from the comparison charts that the model is able to 

predict activity distribution patterns quite nicely on both legs of a HBW tour. The next 

section presents results of sequential activity type choice (SATC) model of outbound half 

tours. 
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Figure 4.5. HBW tours, binary logit model:  

observed vs. predicted activity type distributions. 

 

HBW tours – SATC model for outbound half tours. Sequential activity type 

choice models are estimated with an intent to determine the ‘impending activity’ on a half 
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tour. If there is only one stop other than the primary destination on any half tour, no 

sequencing is required as that stop is automatically positioned between home and primary 

destinations. If there are multiple stops on a half tour, then the sequence of is simulated 

using the SATC model. The SATC model is an MNL model for which every stop on a tour 

had a separate entry in the estimation data set. Information about all the activities pursued 

by the individual prior to the stop under consideration (both on the current tour as well as 

any other tours made earlier in the day) are included in the data set. This information 

entered the models in the form of binary variables indicating whether the individual did or 

did not perform an activity earlier in the day or on the tour under consideration.  

For outbound half tours, prospective information about activities planned on 

subsequent portions of the tour (i.e., activities that are not yet scheduled) was included. 

Choice set for estimating the SATC model is constrained to only stops made on the 

outbound half tour. In application mode, the MDCEV would predict all the secondary stops 

on a tour and binary logit model would place all of these stops on either the outbound or 

the inbound half tours. Analysis of the estimation dataset revealed that only one social visit 

stop was made among all the stops considered for model estimation on the outbound half 

tour. As making a social visit stop on the outbound half tour is not a phenomenon observed 

often, this activity was not considered in the set of feasible activities that can be performed 

on an outbound half tour. Other discretionary activity was considered as the base 

alternative. The dataset used for estimating SATC models for outbound half tours consisted 

of a total of 164 stops. Model estimation results are furnished in Table 4.8. 
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Table 4.8  

HBW Tours, SATC Model for Outbound Half Tours 

Activity 

Type Explanatory Variable Coefficient t-statistic 

Other Escort 
Constant 0.63 0.76 

History of other escort activity 

participation in the day  -3.74 -2.59 

Shopping 

Constant 1.32 1.45 

History of shopping activity participation 

in the day  -1.81 -1.89 

Anticipated shopping activity participation 

on the tour -1.46 -1.46 

Maintenance 

Constant 1.38 1.44 

History of maintenance activity 

participation in the day  -4.25 -3.67 

Anticipated maintenance activity 

participation on the tour -4.12 -3.65 

Anticipated shopping activity participation 

on the tour 2.78 2.70 

Meal 

Constant 1.83 2.03 

History of meal activity participation  

in the day  -4.36 -3.57 

Anticipated meal activity participation on 

the tour -2.95 -3.14 

Goodness of Fit Statistics 

Sample size (number of stops) 164 

Adjusted 𝜌2 0.80 

Likelihood ratio 399.46 

𝜒2
 (8,0.001) 26.13 

 

From the model results, it was found that history of activity participation earlier in 

the day, in general has a negative effect on the immediate occurrence of a similar activity 

on the outbound half tour. The behavioral interpretation of this result is that if an individual 

has already performed a specific type of activity earlier in the day (on the current tour or 

any other tour made earlier in the day), it is less likely that the individual will schedule a 

similar activity on the outbound half tour. Anticipatory activity participation has a similar 
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impact on stop making patterns. In tours with both shopping and maintenance stops, an 

anticipated shopping activity on the tour positively influences the propensity to execute a 

maintenance stop as the next stop (on the outbound half tour). This finding is consistent 

with generally expected activity-travel patterns in that individuals usually take care of 

maintenance activities (such as going to the doctor/bank etc.) early on the tour, while taking 

care of shopping activities on the return home journey.  

The estimated model was applied on the entire dataset to see how well it can predict 

the observed stop making patterns and the comparison is presented in Figure 4.6. Panel A 

presents the activity type distribution as observed in the data compared to the predicted 

distribution. The graph shows what percent of stops made on outbound half tours belong 

to each of the activity types considered in the SATC model. The model is able to replicate 

the observed activity type distribution very well. The performance of uncalibrated version 

of the model is quite appealing both from a qualitative and a quantitative standpoint.  

The SATC model is aimed at predicting the ‘next activity’ on the half tour. So, in 

addition to accurately depicting the overall activity type distributions, it is important that 

the model also represent the activity type distributions at different stop levels on a half tour. 

This translates to the models ability to forecast the activity sequences observed in the data. 

Panel B of Figure 4.6 presents the comparison of observed and predicted activity type 

distributions at the stop level. Up to four stops were considered on each half tour, but the 

figure shows comparisons only until stop 3, as only 8 out of the 164 stops considered for 

model estimation were made as the 4th stop on the outbound half tour. For this reason, it 

was felt prudent not compare observed vs. predicted distributions on such meager sample 

sizes. The observed and predicted distributions at each stop level are presented side-by-
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side for easier comparison. Similar color coding scheme was maintained between observed 

and predicted activities. The legend at the bottom of the graph identifies observed activities 

categories with a suffix ‘_O’ and predicted ones with a suffix ‘_P’. From the figure, it can 

be observed that the model is able to replicate activity type distributions at the stop level 

reasonably well.  

 

 

Figure 4.6. HBW tours, SATC model for outbound half tours: 

observed vs. predicted activity type distributions. 
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HBW tours – SATC model for inbound half tours. The structure of SATC model 

for inbound half tours is similar to that of the outbound half tours. To model the sequence 

of stops on the inbound half tours, information regarding history of activity participation 

earlier in the day as well anticipatory activity participation on the current half tour are taken 

into consideration. From the data used for model estimation, it was observed that a total of 

526 stops were made on the inbound half tours as opposed to a mere 164 stops made on 

the outbound half tours. This is an intuitive observation, consistent with the notion that 

individuals usually have greater flexibility on the inbound journey (evening commute) of 

a HBW tour than that of the morning commute. Model estimation result of SATC model 

for inbound half tours is presented in Table 4.9.  

From the results it was found that pursuit of ‘other escort activity’ as the next 

activity is positively influenced by the presence of a planned meal or social visit activity 

on the inbound half tour. This finding has an intuitive behavioral interpretation as meal and 

social visit activities usually tend to be joint activities, thereby necessitating the occurrence 

of an other escort activity (where the worker is probably picking up a family member), 

before meal or shopping activities. Similar pattern is observed for placement of meal and 

shopping activities, where occurrence of a shopping activity is found to precede the 

occurrence of a meal activity. This behavior is consistent with expectation as individuals 

often participate in a meal activity after a shopping activity. This is finding is nicely 

complemented by observation that history of shopping activity participation positively 

influences the occurrence of a meal stop as the impending activity.  
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Table 4.9  

HBW Tours, SATC Model for Inbound Half Tours 

Activity Type Explanatory Variable Coefficient t-statistic 

Other Escort 

Constant -0.16 -0.19 

History of other escort activity participation in the 

day  
-0.83 -1.4 

Anticipated other escort activity participation on the 

inbound half tour 
-1.64 -2.82 

Anticipated meal activity participation on the 

inbound half tour 
2.92 2.91 

Anticipated social visit activity participation on the 

inbound half tour 
4.19 2.73 

Shopping 

Constant 1.18 1.44 

History of shopping activity participation in the day  -2.27 -3.71 

Anticipated shopping activity participation on the 

inbound half tour 
-2.68 -4.18 

Anticipated meal activity participation on the 

inbound half tour 
3.38 4.07 

Anticipated social visit activity participation on the 

inbound half tour 
3.22 2.72 

End time of the tour (3pm - 5 pm) -0.94 -1.72 

Maintenance 

Constant 1.25 1.64 

History of maintenance activity participation in the 

day  
-3.7 -5.7 

Anticipated maintenance activity participation on the 

inbound half tour 
-3.12 -4.62 

Anticipated shopping activity participation on the 

inbound half tour 
1.28 2.09 

Anticipated meal activity participation on the 

inbound half tour 
3.33 3.33 

Meal 

Constant 0.38 0.58 

History of meal activity participation in the day -3.13 -4.81 

History of shopping activity participation in the day  1.03 1.48 

Social Visit 

History of social visit activity participation in the 

day  
-3.21 -2.26 

Anticipated meal activity participation on the 

inbound half tour 
3.39 1.93 

End time of the tour (5pm - 7 pm) 1.93 1.42 

Other 

Discretionary 

Constant -0.23 -0.35 

History of other discretionary activity participation 

in the day  
-2.26 -3.1 

History of maintenance activity participation in the 

day 
-1.22 -1.75 

Goodness of Fit Statistics 

Sample size (number of stops) 526 

Adjusted 𝜌2 0.83 

Likelihood ratio 1381.85 

𝜒2
 (20,0.001) 45.32 
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Tours ending later in the day (5-7 p.m.) had a greater propensity for occurrence of 

a social visit stop as the next activity in the inbound half tour, which is expected behavior 

as people usually tend to participate in social visit activities after completing all other 

activities in their agenda (duration of social visit activities in general is observed to be 

longer, which would logically place them after the completion of all other activities on a 

tour). Similar to outbound half tours, history of activity participation of an activity (earlier 

in the day) had a negative impact on pursuing a similar activity as the ‘next’ activity. The 

likelihood ratio statistic of the model is substantially greater than the critical 𝜒2value at 

99% level of significance, reinforcing the confidence in statistical validity of the model. 

The estimated model is applied on the entire dataset to see how well it can replicate 

the observed stop sequencing patterns on inbound half tours and results of the comparison 

are presented in Figure 4.7. From the figure, it can be observed that majority of the stops 

made on inbound half tours are for shopping and maintenance activities. Panel A presents 

the comparison of observed and predicted overall activity type distribution of stops made 

on the inbound half tours. The uncalibrated model performed exceedingly well in 

replicating the observed activity type distributions. Panel B presents a similar comparison, 

but at the disaggregate stop level, which tests the efficacy of the model to accurately depict 

the stops sequencing patterns observed in the data. The observed and predicted 

distributions at each stop level are presented side-by-side for easier comparison. A total of 

four stops are considered for modeling on the inbound half tour. 
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Figure 4.7. HBW tours, SATC model for inbound half tours: 

observed vs. predicted activity type distributions. 

 

From the figure it can be observed that shopping stops are usually kept until the end 

of the tour (final stops before heading home), whereas maintenance stops are usually 

completed early on in the inbound half tour. This finding makes intuitive sense as 

maintenance activities such as visiting a doctor or going to a bank, salon etc. are more time 
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constrained than shopping activities which can be carried out at a person’s own 

convenience. The proportion of social visit activity is quite small across all stops and this 

is expected behavior, as one would not usually prefer to make a social visit stop after a 

tiring workday (as a part of the HBW tour). From pairwise comparisons, it can be seen that 

the model is able to replicate the observed stop making patterns very well, giving the 

necessary confidence to use it to determine the sequence of stops in multi-stop half tours. 

Next section presents the estimation results of model components of the tour 

characterization framework estimated for HBO tours made by non-workers. As discussed 

before, significant differences were observed in tour compositions between worker and 

non-worker segments. A readily apparent reason for this is the daily schedules of both these 

segments. While workers on the one hand are constrained by work start/end times and tend 

to plan their day around the ‘work’ activity, non-workers on the other hand have more 

flexible schedules to participate in different types of activities throughout the day. It was 

observed that HBW tours had majority of the stops made on inbound half tours (the return 

home journey), whereas HBO tours made by non-workers have a greater proportion of 

stops on the outbound half tours. HBO tours made by workers are more or less similar to 

HBO tours made by non-workers. To be able to identify the difference in tour compositions 

across different types of tours, the next section presents the model estimation and validation 

results of tour characterization framework for HBO tours made by non-workers. 

 

TCF Model Components for HBO Tours made by Non-Workers 

This section presents the estimation and replication results of HBO tours made by non-

workers. The major difference in model structure between HBW tours and HBO tours is 
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that while HBW tours have two outside goods (work and home epochs), HBO tours have 

only one outside good or one alternative that is consumed by every individual in the dataset, 

which is home epoch (travel home + home sojourn). For HBW tours, the MDCEV model 

of activity type mix simulates all secondary stops (other than work and home), while for 

HBO tours, the model simulates all activities including the primary destination. The 

distribution of primary purpose for HBO tours is taken as an exogenously provided 

information and the MDCEV model is run multiple times until it matches the observed 

primary purpose distribution. If the MDCEV model simulates multiple epochs for the 

activity tagged as primary purpose, the epoch with longer duration is considered the 

primary purpose, thereby making all the other epochs of that activity, secondary stops on 

the tour. The stop sequencing system however works exactly in the same way for HBW 

and HBO tours, where a binary logit model first simulates the half tour to which each 

secondary stop on the tour belongs to and then the sequential activity type choice model 

simulates the sequence of activities on each half tour.  

Table 4.10 presents the composition of HBO tours made by non-workers. HBO 

tours made by non-workers had more stops on them relative to the previous tour type 

(HBW tours made by workers), which is explained by the flexibility in daily schedules for 

this segment. Representation of multiple episodes of same activity type on a tour gradually 

decreases, which is an intuitive observation. It is rare to find a tour with 4 separate shopping 

stops (or any other stops for that matter), as individuals usually bunch activities together, 

than make multiple stops for the same activity. Following the criteria set before, any stop 

that has at least a 2% representation in the dataset is included in model estimation for 

MDCEV model of activity type mix. According to this criteria up to 2 episodes of other 
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escort and maintenance, 3 shopping episodes and one stop of all other activities is 

considered for model estimation. In addition to these, a second stop of other discretionary 

activity is also included in the final model. This model configuration accounts for 95% of 

HBO tours in the dataset. Model estimation results for HBO tours made by non-workers is 

presented next. 

Table 4.10  

Composition of HBO Tours (Non-Workers) 

Activity Type Episode Number Number of Tours % of Total 

Other Escort 

1 528 10.89 

2 100 2.06 

3 24 0.50 

4 7 0.14 

Shopping 

1 1771 36.54 

2 405 8.36 

3 125 2.58 

4 33 0.68 

5 7 0.14 

6 3 0.06 

Maintenance 

1 1561 32.21 

2 241 4.97 

3 59 1.22 

4 12 0.25 

5 2 0.04 

Meal 
1 739 15.25 

2 22 0.45 

Social Visit 
1 311 6.42 

2 12 0.25 

Other Discretionary 

1 1236 25.50 

2 49 1.01 

3 3 0.06 

4 2 0.04 

Total Number of Tours 4847 
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HBO tours (non-workers) – MDCEV model of activity type mix. As discussed 

before, the MDCEV model of activity type mix for HBO tours consists of only one outside 

good i.e., only one activity that is consumed by everyone in the dataset, the home epoch. 

Start and end times of all tours made by an individual in a day are assumed as exogenous 

inputs to the tour characterization framework. From this information tour budget can be 

computed (start time – end time of the tour) which goes as input to the MDCEV model. 

Home sojourn is computed as the difference between end time of the tour and end of day 

if the individual made only one tour in a day. For individuals who made multiple tours in 

a day, home sojourn is computed as end time of the current tour minus start time of the 

next tour. Unit of analysis considered foe MDCEV model of activity type mix is an ‘epoch’ 

which is the summation of travel time to an activity and the duration of activity 

participation. Choosing epoch as the unit of analysis facilitates the modeling of tours in 

continuous time domain. For MDCEV model with a single outside good, the utility 

function is given in equation 4.5. Model estimation results are provided in Table 4.11. 
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The model offered intuitive and behaviorally consistent results. Among household 

attributes, it was found that individuals from households with more young adults (6 – 17 

years) are more likely to make other escort stops on their HBO tours. This might point to 

the chauffeuring necessities of children in such households. Lowest income households are 

found to have lesser proclivity to make meal stops, as such households might usually return 

home for meal activity. Larger households are also found to have a lesser probability to 

make meal stops.  
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Table 4.11 

HBO Tours (Non-Workers), MDCEV Model of Activity Type Mix: 

Significant Parameters in Baseline Utility 

Activity Type Explanatory Variable Coefficient t-statistic 

Other Escort 

Episode1 

Number of retirees in the household -0.47 -7.45 

Number of household members  

between 6-17 years 
0.31 6.07 

Tour modes is HOV 1.84 13.86 

Other Escort 

Episode 2 

If person is driver on the multi-person tour 2.71 7.75 

Respondent is a female person 0.79 3.29 

Count of total people on tour 0.36 3.99 

Shopping 

Episode 1 

Start time of the tour 1pm - 3pm 0.47 6.90 

Respondent is a female person 0.15 2.68 

History of shopping activity  -0.35 -4.52 

Tour modes is SOV 0.41 7.07 

Shopping 

Episode 2 

Respondent is a female person 0.42 3.14 

History of shopping activity  -1.05 -4.83 

Tour modes is HOV 0.25 2.25 

Shopping 

Episode 3 
Respondent is a female person 0.52 2.20 

Maintenance 

Episode 1 

Person is the driver on a multi-person tour -0.13 -1.72 

Count of total people on tour  -0.18 -3.31 

Age of the person ≥ 65 0.09 1.71 

Tour modes is SOV 0.13 1.63 

Maintenance 

Episode 2 

History of maintenance activity  -0.40 -1.91 

Very high income household (> $100,000) -0.52 -2.16 

Tour modes is SOV 0.56 4.04 

Meal Episode 

1 

Respondent is a female person -0.19 -2.38 

Household size -0.25 -5.94 

Lowest income household (< $25,000) -0.35 -3.35 

Count of total people on tour  0.40 9.64 

Tour mode is any mode other than auto -0.66 -3.28 

Social Visit 

Episode 1 

Start time of the tour 5pm - 7pm 0.31 1.77 

Respondent is a female person 0.37 2.93 

Number of vehicles per person 

in the household 
0.28 2.30 

Other 

Discretionary 

Episode 1  

Household size -0.05 -1.67 

Number of vehicles per person  

in the household 
0.30 5.49 

Tour mode is any mode other than auto 1.42 17.54 
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Auto sufficient households (households with more number of vehicles per person) 

are found to make more other discretionary stops on the tour, as such households do not 

have vehicular constraints and are free to undertake discretionary travel. Among person 

level attributes, older individuals (≥ 65 years) tended to make more maintenance stops, 

while female individuals had a greater probability to make shopping stops on HBO tours. 

Tour level attributes used in the model show intuitive signs. It was found that higher the 

number of people on the tour, greater is the propensity to have an other escort and meal 

stops on the tour, consistent with expectation as these activities usually tend to be joint 

activities. Having more number of people on the tour had a negative influence on the 

occurrence of a maintenance activity on the tour, meaning that such activities are usually 

performed on solo tours, rather than joint tours. It was found from the model results, that 

most of the activities undertaken as a part of the HBO tour had SOV as the tour mode, 

which indirectly points to the fact that HBO tours are predominantly solo tours. Other 

escort activities however had a greater probability of happening on tour with mode as HOV. 

History of shopping activity participation earlier in the day had a negative impact on 

shopping activity participation in the current tour, which is another finding consistent with 

expectation. Other discretionary activities are found to have high probability of occurring 

on tours which are made using non-auto modes. This might point to recreational activities 

such a walking/jogging/biking etc. Table 4.12 presents the baseline constants and 

translation parameter values of the MDCEV model estimation result. 

Baseline constants may be viewed as the preference for pursuing an activity relative 

to the outside good (home epoch in this case). Since majority of the time on HBO tours is 

allocated to home epoch (travel home + home sojourn), all of the coefficients are negative 
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meaning they are less preferred relative to the home epoch. From the model results, it was 

found that shopping and maintenance activities are the most pursued activities on HBO 

tours (values of baseline constants for these activities are then that of others). This finding 

represents the models ability to depict inherent preferences observed in the data as 

shopping and maintenance are indeed the most chosen stops on HBO tours with 36% and 

32% representation in the data (see Table 4.10) respectively. The least preferred activity 

undertaken on HBO tours is other escort activity, again a finding that lines up with the 

observations from estimation data. Among activity types for which multiple stops are 

considered, the preference for making ‘another’ stop of the same activity type gradually 

decreases (for example, baseline preference for shopping episode 1 > shopping episode 2 

> shopping episode 3), which is consistent with expectation.  

Table 4.12 

HBO Tours (Non-Workers), MDCEV Model of Activity Type Mix: 

Baseline Constants and Translation Parameters 

Stop Type 
Baseline Constant Translation Parameter 

Coefficient t-statistic Coefficient t-statistic 

Home Episode (Outside Good) - - 0 NA 

Other Escort Episode 1 -8.95 -65.14 26.04 9.27 

Other Escort Episode 2 -12.74 -25.97 24.99 3.47 

Shopping Episode 1 -6.76 -115.65 33.22 14.44 

Shopping Episode 2 -8.48 -65.17 38.88 5.62 

Shopping Episode 3 -9.76 -49.09 36.97 3.41 

Maintenance Episode 1 -6.47 -52.29 39.49 16.42 

Maintenance Episode 2 -8.89 -85.30 32.47 5.87 

Meal Episode 1 -7.52 -65.17 60.84 9.13 

Social Visit Episode 1 -9.03 -54.89 177.79 6.41 

Other Discretionary Episode 1 -7.48 -74.10 96.70 12.91 

Other Discretionary Episode 2 -10.38 -70.00 123.70 2.38 
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Translation parameters give an indication of the time allocated to an activity, once 

it is chosen. In other words, greater the value of the translation parameter, higher is the 

time allocated to the activity. Though social visit is not the most preferred activity, it has 

the highest translation parameter value, which means that individuals who do participate 

in a social visit activity, pursue it for longer durations, which is generally observed 

behavior. Other escort activity has the least translation parameter value, as escort activities 

(such as drop-off/pick-up) usually do not last very long. Table 4.13 presents the goodness 

of fit statistics of the estimated model. The estimated model has a likelihood ratio of 

1547.36, substantially greater than the critical 𝜒2 at any level of significance which 

indicates a good model fit.  

Table 4.13  

HBO Tours (Non-Workers), MDCEV Model of Activity Type Mix:  

Goodness of Fit Measures 

Statistic  Value 

Log-likelihood of final model at convergence -54939.25 

Degrees of freedom of final model  54 

Log-likelihood of base model at convergence -55712.93 

Degrees of freedom of base model  22 

Likelihood ratio  1547.36 

𝜒32,0.001
2  62.49 

 

The estimated model is applied on the entire estimation dataset to see how well it 

can replicate the observed activity type and duration distributions. Figure 4.8 shows the 

comparison of observed and predicted activity-travel patterns of uncalibrated version of 

the MDCEV model of activity type mix. The patterns shown in the graph depict what 

percent of tours in the dataset have at least one stop of the activity episode under 
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consideration. From the figure it can be observed that tours with multiple stops of the same 

activity type are fewer than those with only one stop of that activity.  

 

 

Figure 4.8. HBO tours (non-workers), MDCEV model: 

observed vs. predicted activity frequency distributions. 

 

The model accurately predicts this pattern within each activity type and also 

predicts the overall distribution of activity types quite well. Slight calibration of the model 

is warranted to match the observed distributions better. In the figure it can be seen that 

home episode is predicted on each and every tour as this activity is considered as an outside 

good in this model specification. Majority of the HBO tours made by non-workers have 

shopping, maintenance and other discretionary activity stops (in that order) in them and the 

model captures this nuance in the observed data very well. Overall, the predictions of the 

uncalibrated version of the model line up well with the observed patterns in the data. 
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Figure 4.9. HBO tours (non-workers), MDCEV model: 

observed vs. predicted average epoch durations. 

 

Figure 4.9 presents the comparisons of observed vs. predicted average epoch 

durations. As it was observed in the case of HBW tours, the model seems to over predict 

the average epoch durations but it should be kept in mind that comparisons shown only 

consider stops with non-zero durations. So the over prediction of epoch durations is 

actually a manifestation of under prediction of stops on the tours (see Figure 4.8) coupled 

with small sample size issues. But, more importantly, it is to be observed that the model is 

able to predict the duration distribution trends quite accurately. For example, among all the 

activity types considered social visit stops have the longest epoch durations which is 

consistent with expectation. The model is able to predict this pattern quite well. The 
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decreasing epoch durations for second stop of the same activity type (across all activities) 

are also captured by the model.  

HBO tours (non-workers) – Binary logit model of stop placement. The binary 

logit model of stop placement determines the location of each stop with respect to primary 

destination (i.e., either the inbound or the outbound half tour). To estimate this model, 

every stop in the dataset is identified using a binary indicator where the stop gets a value 

of ‘1’ if the stop is on the inbound half tour, ‘0’ otherwise. Estimation results of binary 

logit model for HBO tours made by non-workers is presented in Table 4.14. Since the 

primary purpose of HBO tours is varied (and is known beforehand), a primary purpose 

dummy is used in the model to explain the stop placement. 

An interesting deduction is made from the value of constants in the binary logit 

models of stop placement for HBW tours (workers) and HBO tours (non-workers). The 

value of the constant signifies the probability of a stop occurring on the inbound half tour, 

ceteris paribus. While the sign of the constant for HBW tour model is positive which means 

that all else being equal, a stop has a higher probability of occurring on the inbound half 

tour, the sign on the constant for HBO tour (non-worker) model is negative which means 

that the probability of stop occurring on the inbound half tour of HBO tours is lesser. This 

is a pertinent finding in that it explains the difference in activity-travel patterns on different 

types of tours under consideration and hence the necessity for separate models. Workers 

on the one hand are more constrained by work schedules in the morning time and tend to 

make more stops on the evening commute which can be loosely dubbed as the inbound half 

tour (explained by the +ve sign of the constant in binary logit model for this segment, see 

Table 4.7). Non-workers on the other hand have flexible schedules and tend to front load 
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the activities on a tour and get as much as done on the outbound half tour (explained by the 

-ve sign of the constant in binary logit model for this segment).  

Table 4.14 

HBO Tours (Non-Workers), Binary Logit Model of Stop Placement 

Explanatory Variable Coefficient t-statistic 

Constant -0.50 -7.41 

Number of children in the household 0.17 3.69 

Primary purpose of the tour is Other Escort 0.60 4.05 

Primary purpose of the tour is Maintenance 1.35 11.37 

Primary purpose of the tour is Meal 0.49 2.04 

Primary purpose of the tour is Social Visit -0.53 -2.30 

Primary purpose of the tour is Other Discretionary 0.99 5.36 

Duration of Maintenance2 epoch on the tour -0.01 -4.27 

Duration of Other Discretionary1 epoch on the tour -0.002 -1.95 

Start time of the tour (7am - 9am) 0.25 2.35 

Start time of the tour (1pm - 3pm) -0.26 -2.24 

End time of the tour (5pm - 7pm) 0.37 2.89 

Goodness of Fit 

Log-likelihood at convergence for the full model  -1749.07 

Degrees of freedom for the full model 12 

Log-likelihood at convergence for the restricted model  -1850.7 

Degrees of freedom for the restricted model 1 

Likelihood ratio 203.26 

𝜒11,0.001
2  31.26 

 

Activities with higher durations have lesser probability of occurring on the inbound 

half tour, which means that individuals might undertake ‘exerting’ activities early on in the 

tour (the outbound half tour). Tours with most purposes as primary activity are likely (to 

varying degrees) to have a stop on the inbound half tour. Tours with social visit as primary 

activity however have are less likely to have a stop on the inbound half tour. This finding 

complements quite nicely with observations from the MDCEV model, where social visit 
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activity had a greater probability of occurring on tours starting late in the evening (see 

Table 4.11) and also the fact that social visit activities usually tend to be longer (from the 

translation parameter values in Table 4.12). Putting these observations together, tours with 

social visit activities tend to run late into the night thereby making the probability of stop 

occurrence on the inbound half tours bleak. Likelihood ratio statistic of the model is 203, 

which is significantly greater than the critical 𝜒2value at 99% level of confidence.  

 

 

Figure 4.10. HBO tours (non-workers), binary logit model: 

observed vs. predicted activity type distributions. 



  97 

Figure 4.10 shows the comparison between observed activity type distributions, vs. 

the ones predicted by the binary logit model of stop placement. The model accurately 

predicted ‘number of stops’ on the outbound and inbound half tours, which is the first test 

for the effectiveness of the model. But the intent of this model is to simulate which types 

of activities are more likely to happen on the outbound and the inbound half tours. To check 

this, activity type distributions from observed data are compared against the distributions 

predicted by the model. Panel A of the figure shows this comparison for outbound half 

tours. The uncalibrated version of the model performed quite well in predicting the activity 

distribution patterns in the outbound half tours. Shopping stops on outbound half tours are 

slightly over predicted, but the percent difference is not significant. Some calibration effort 

is warranted to take care of such finer details dictated by patterns observed in the data. 

Panel B shows similar comparison for inbound half tours. It can be observed that 

shopping stops are slightly under predicted in this segment which is a direct manifestation 

of over prediction of the same activity in the outbound half tours. Again, it is important for 

the model to capture the activity-travel patterns observed in the data and it is quite difficult 

to match exactly match the observed distribution without some calibration effort. Majority 

of the stops made on HBO tours by non-workers are for shopping, maintenance and meal 

activities. This phenomenon is depicted accurately by the MDCEV model of activity type 

(from baseline constant values in Table 4.12) as well as from the results of the binary logit 

model of stop placement. This reinforces the confidence in effectives of the model system 

to accurately simulate the activity-travel patterns observed in the data. 

HBO tours (non-workers) – SATC model for outbound half tours. Sequential 

activity type choice models are estimated to determine the ‘impending activity’ on any half 
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tour. If a half tour has only one stop other than the primary activity, it is automatically 

positioned between the anchor points (home and primary destination). For tours with 

multiple stops on either the outbound or the inbound half tours, the SATC model simulates 

the sequence of activity participation. Inputs to the SATC model come from the binary 

logit model of stop placement which tags each stop on a tour as occurring on either the 

outbound of the inbound half tour. The STAC model estimates the impending activity as a 

function of history of activity participation (in the day/on the tour), anticipated activity 

participation on the tour and tour attributes. Model estimation results of SATC model for 

HBO tours made by non-workers is presented in Table 4.15. 

History of activity participation earlier in the day or anticipated activity 

participation on the tour had a negative influence on the same type of activity to be the 

‘next stop’ on the outbound half tour. For example, if an individual has already participated 

in a shopping activity early on in the day (on the a different tour) or plans to participate in 

a shopping activity later on in the tour, then it is less likely that the next stop on the tour is 

also a shopping activity. A planned meal activity (or an already finished meal activity) 

positively influences the next stop on the tour to be shopping activity. This finding is 

consistent with expectation as shopping and meal activities are often coupled together. 

Moreover, this finding is complemented by the observation that completion of a shopping 

activity early on in the day positively influences the occurrence if a meal stop as the next 

stop on an outbound half tour. Tours ending mid-day (1-3 p.m.) are more likely to have 

meal activity as the next stop on the outbound half tour.  
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Table 4.15 

HBO Tours (Non-Workers), SATC Model for Outbound Half Tours 

Activity Type Explanatory Variable Coefficient t-statistic 

Other Escort 

Constant 4.96 3.53 

History of other escort activity participation  

in the day  
-5.65 -4.17 

Anticipated other escort activity participation  

on the tour 
-4.87 -3.60 

Anticipated meal activity participation  

on the tour 
2.61 2.74 

Shopping 

Constant 0.18 0.39 

Anticipated shopping activity participation  

on the tour 
-1.55 -4.94 

History of meal activity participation in the day  0.86 1.46 

Anticipated meal activity participation  

on the tour 
4.44 8.51 

Start time of the tour (1pm - 3pm) -0.77 -1.76 

Maintenance 

Constant 2.24 3.62 

History of maintenance activity participation  

in the day  
-4.65 -9.44 

Anticipated maintenance activity participation  

on the tour 
-3.71 -7.78 

Anticipated meal activity participation  

on the tour 
3.99 7.33 

Primary purpose of the tour is shopping 0.54 1.54 

Meal 

Constant 0.96 1.80 

History of meal activity participation in the day  -4.27 -5.66 

History of shopping activity participation  

in the day  
1.39 2.72 

End time of the tour (1pm - 3pm) 1.29 2.02 

End time of the tour (5pm - 7pm) -1.04 -1.59 

Social Visit Start time of the tour (5pm - 7pm) 2.35 1.53 

Other 

Discretionary 

Constant 2.00 3.61 

History of other discretionary activity 

participation in the day  
-4.90 -6.61 

History of maintenance activity participation  

in the day  
-1.35 -1.99 

Anticipated social visit activity participation  

on the tour 
2.00 2.22 

Primary purpose of the tour is other escort 4.12 3.05 

Goodness of Fit 

Sample size (number of stops) 781 

Adjusted 𝜌2 0.83 

Likelihood ratio 1900.85 

𝜒2
 (23,0.001) 45.32 
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Tours starting later in the evening ( 5-7 p.m.) are more likely to  have a social visit 

stop as the next stop on the tour, which is consistent with the times during which social 

visit activities usually occur. In tours involving both maintenance and meal stops, an 

anticipated meal activity on the tour positively influences the propensity to execute a 

maintenance stop as the next stop (on the outbound half tour). This is logically intuitive 

behavior as people may take care of maintenance activities (such as going to the doctor or 

bank) earlier in the day while participating in meal activities later. The model has a robust 

likelihood ratio which is much greater than critical 𝜒2 value at any reasonable level of 

significance. Replication results from the model are compared against observed activity 

type distribution and the results are presented in Figure 4.11. As expected, the activity type 

distribution on outbound half tours is not very different from the activity type distributions 

observed/predicted on the outbound half tours from the previous (binary logit) model.  

The model performs exceedingly well in predicting the observed patterns on the 

outbound half tours. Though the activity type distributions depicted by these two models 

are the same, the purpose of these two models is entirely different. While the binary logit 

model of stop placement determines to which half tour does each stop predicted by the 

MDCEV model belong to, the SATC model takes all stops on the outbound half tour and 

sequences them with respect to each other. The functional utility of the SATC model of 

outbound half tours is to predict the ‘impending activity’ on the half tour, using information 

regarding activity participation of the individual earlier in the day or planned activity 

participation later on in the tour. Thus the true test for the model’s efficacy is to see how 

well it would be able to predict the activity duration distributions at the stop level.  
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Figure 4.11. HBO tours (non-workers), SATC model for outbound half tours: 

observed vs. predicted activity type distributions. 

 

Panel B of Figure 4.11 shows this comparison between observed and predicted 

distributions. Each stacked bar in the chart represents the activity type distribution at that 

stop level. The observed and predicted distributions are juxtaposed side-by-side for each 

stop level on the half tour for easier comparison. The pairwise comparison of these stacked 

bars reveals that, in addition to performing well at the aggregate level, the SATC model is 

able to replicate the activity type distributions exceedingly well at the disaggregate stop 
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level. Interesting travel patterns are revealed from observing the distributions in this figure. 

While the share of other escort and maintenance activities is relatively higher in the first 

two stops of the half tour, shopping activity is predominant on later stops.  

Meal activity is safely located mostly on the middle stops (stop no’s 2 and 3) on the 

half tour. These findings depict how people usually organize their activities once they start 

their journey from home. Individuals usually take care of other escort activities (dropping 

off/ picking up someone) first, followed by meal activities and keep the shopping activity 

till the later part of the half tour. Social visit stops are more sporadically distributed 

amongst various stops (in very meager proportions) on the half tour, while other 

discretionary stops are evenly distributed across different stops. It is quite heartening to see 

the model almost mirror the patterns observed in the data, which speaks to the statistical as 

well as behavioral fidelity of the model. 

HBO tours (non-workers) – SATC model for inbound half tours. The structure 

of SATC models for inbound half tours is same as that of the outbound half tours, except 

that the choice set for this model is constrained to stops made on the inbound half tours. 

While the HBW tours had a higher representation of stops in the inbound half tours (76 % 

of the stops), the HBO tours made by non-workers are more evenly distributed among 

outbound (55%) and (45%) inbound half tours. This finding identifies the differences in 

stop making patterns between these segments and corroborates the necessity to model them 

separately. The explanatory variables in the SATC model for inbound half tours include 

history as well as anticipatory activity participation dummies, household/person level 

attributes and tour characteristics. Table 4.16 presents the estimation results for this 

segment. 
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Table 4.16 

HBO Tours (Non-Workers), SATC Model for Inbound Half Tours 

Activity Type Explanatory Variable Coefficient t-statistic 

Other Escort 

Constant 3.45 4.13 

History of other escort activity participation  

in the day  
-2.46 -3.23 

Anticipated other escort activity participation  

on the inbound half tour 
-3.64 -5.23 

Anticipated meal activity participation  

on the inbound half tour 
3.93 3.01 

Start time of the tour (7am - 9am) 2.17 2.97 

Shopping 

Constant 0.95 2.55 

Anticipated shopping activity participation  

on the inbound half tour 
-2.35 -0.70 

Anticipated meal activity participation  

on the inbound half tour 
3.58 5.13 

History of meal activity participation in the day  0.71 1.97 

Respondent's age between 18 and 25 -2.88 -2.6 

Maintenance 

Constant 3.08 5.01 

History of maintenance activity participation  

in the day  
-2.08 -4.32 

Anticipated maintenance activity participation  

on the inbound half tour 
-2.68 -5.62 

End time of the tour (1pm - 3pm) -1.25 -2.65 

Presence of children in the household -1.34 -2.70 

Meal 

Constant 1.05 1.99 

History of meal activity participation in the day  -3.26 -5.57 

History of shopping activity participation  

in the day  
1.07 2.08 

Anticipated social visit activity participation  

on the inbound half tour 
1.92 1.62 

Other 

Discretionary 

Constant 2.81 2.45 

History of other discretionary activity 

participation in the day  
-3.44 -2.82 

Anticipated other discretionary activity 

participation on the inbound half tour 
-4.9 -3.52 

Start time of the tour (9am - 11 am) 1.50 1.79 

End time of the tour (3pm - 5pm) 2.83 1.99 

Goodness of Fit 

Sample size (number of stops) 649 

Adjusted 𝜌2 0.81 

Likelihood ratio 1460.53 

𝜒2
 (19,0.001) 43.82 
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The model offers intuitive results and has a robust likelihood ratio that is 

significantly greater than the critical 𝜒2value at any level of significance. The findings 

from this model are in line with results of similar models estimated for other segments. It 

was found that history as well as anticipatory activity participation of particular negatively 

influences the probability of a similar activity being the ‘next’ stop on an inbound half tour. 

This finding is behaviorally consistent as individuals usually bunch activities together and 

hence presence of multiple stops of same activity is not frequently observed in a person’s 

daily schedule. History/anticipatory meal activity participation increases the propensity of 

occurrence of next stop to be a shopping stop. 

HBO tours starting earlier in the day tended to have a greater probability of having 

an other escort stop as the immediate stop on the tour. Anticipated meal activity 

participation had a positive influence on the impending stop being an other escort stop. 

This translates to logical ordering of stops in the real world where individuals pick up a 

family member (kids/spouse) before proceeding to a meal activity. Tours starting just after 

usual work start times (9am in the morning) and ending just before the usual work day’s 

end ( before 5 pm in the evening) have a greater probability of having an other discretionary 

stop as next stop on the inbound half tour. As the name of the activity aptly suggests, people 

engaging in other discretionary activities have greater flexibility in their schedule and 

would organize their activities in a way that would avoid the morning or evening traffic 

rush. The model is able to identify and depict this interesting nuance in travel behavior of 

non-workers.  
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Figure 4.12. HBO tours (non-workers), SATC model for inbound half tours: 

observed vs. predicted activity type distributions. 

 

Comparison of observed and predicted patterns from the model replication result 

are shown in Figure 4.12. Shopping activity dominates the stops made on inbound half 

tours, and this observation complements well with a similar finding from the outbound half 

tours where individuals are found in general to postpone the shopping activity until later 

part of the half tour which might spill over onto to the return home journey (read inbound 

half tours). Maintenance and meal activities have a fair share of stops on inbound half tours, 
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which is a similar finding as the one found on outbound half tours. Overall, stops on HBO 

tours made by non-workers are majorly for shopping, maintenance and meal activities, a 

finding that is in line with the results of the MDCEV model of activity type mix that 

consider all stops made on the entire tour. Panel A of Figure 4.12 presents the results of 

observed and predicted activity type distributions. Without any calibration, the model 

performs astoundingly well in replicating the patterns observed in the estimation dataset.  

Panel B of the figure presents similar distributions at the stop level. From visual 

inspection, it can be seen that the activity distributions patterns on inbound half tours are 

different from the patterns observed on outbound half tours (see Figure 4.11), necessitating 

separate SATC models for outbound and inbound half tours. While shopping stops tended 

to be more in proportion toward the end of outbound half tours, they have a more even 

presence across different stops on the inbound half tours. In the overall tour composition, 

this would mean that individuals are taking care of other activities before engaging in a 

shopping activity. Other escort stops gradually decreased with increasing stop number on 

the outbound half tours and the exact opposite pattern is seen on the inbound half tours, 

where the proportion of other escort stops increases with the stop number on the tours. This 

directly correlates to the two types of escort activities, where individuals are dropping of a 

household member at the beginning of the tour and picking them up toward the end of the 

tour. The presence of social visit stops is higher toward the later portion of the inbound 

half tour, an observation consistent with expectation. Other discretionary stops are evenly 

distributed across different stops on the inbound half tour similar to outbound half tours. 

All these observations are behaviorally consistent with the activity-travel patterns observed 

in the real world.  The uncalibrated SATC model for inbound half tours is able to replicate 
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these patterns quite well. Some calibration is warranted for exactly matching the observed 

patterns.  

Model components of the tour characterization framework estimated for HBO tours 

made by non-workers are significantly different from those estimated for HBW tours made 

by workers corroborating the necessity of a separate model system for this segment. Similar 

model components are estimated for HBO tours made by workers. 

 

Summary and Conclusions 

This chapter presented the estimation results for components of the tour characterization 

framework for HBW tours (made by workers) and HBO tours (made by non-workers). All 

of the components developed show great promise in depicting the stop making patterns 

observed in the data. The MDCEV model of activity type mix takes tour budget as the input 

and simulates all secondary stops made on a tour. The binary logit model determines the 

half tour (outbound/inbound) to which each stop simulated by the MDCEV model belongs 

to. The SATC models developed for each half tour, take half tours that have more than one 

secondary stop and order the stops by predicting the next stop on the half tour under 

consideration. The unit of analysis considered for the modeling effort is the summation of 

travel time to an activity and duration of engagement in the activity, termed as an ‘epoch’. 

The reason for choosing an epoch as the unit of analysis is to develop a framework capable 

of modeling tours in a continuous time domain. The motivation behind this effort is to 

enhance the discrete time representation adopted in tour based models currently in practice 

with an evolutionary continuous-time approach that is capable of leveraging both history 
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of activity participation as well as anticipatory activity engagement details and determine 

the sequence of stops undertaken on a tour. 

The MDCEV model of activity type mix utilizes a variety of household, person and 

tour level attributes (mode, tour accompaniment etc.) to simulate the array of secondary of 

activities performed on a tour. For HBW tours, the MDCEV model simulates all secondary 

activities except home and work (primary purpose) activities, whereas for HBO tours it 

simulates all activities including the primary purpose of the tour. Estimated models are 

applied to replicate the observed activity-travel patterns. Comparisons are made between 

observed and predicted i) Activity frequency distributions and ii) Average epoch durations. 

The estimated models are found to offer intuitive findings and perform quite well (without 

calibration) in replicating the observed activity frequency distributions. The average epoch 

durations predicted by the model seemed to be higher than the observed durations, but on 

further analysis it was found that this a manifestation of slight under prediction of activity 

frequencies as well as the small sample sizes of secondary stops made on the tours. Slight 

calibration of the model parameters should be able to accommodate these differences 

without compromising the behavioral integrity of the model. 

Binary logit model of stop placement is developed to determine the location of a 

stop on a tour relative to the primary purpose (inbound/outbound half tours). The models 

presented for HBW tours and HBO tours have simple yet elegant specifications. The 

estimated models are able to accurately predict the proportion of stops on outbound and 

inbound half tours. In addition to this, the models are also able to represent the activity type 

distributions on outbound and inbound half tours quite effectively with no necessity for 

calibration. Sequential activity type choice (SATC) models of stop placement are 
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developed to determine the placement of stops relative to each other on multi-stop tours. 

Separate models are developed for outbound and inbound half tours as the stop making 

patterns on these different halves of the journey were observed to be significantly different. 

SATC models take information regarding history of activity participation (on the tour/in 

the day) as well as anticipatory activity engagement decisions (on the tour) and determine 

the ‘next stop’ on the tour. Suppose there are 3 stops on a half tour, the SATC model is 

applied twice to determine the first and second stops on a tour, automatically positioning 

the third stop. The SATC models estimated for different tour segments (HBW/HBO) and 

different half tours, were successful in replicating the activity type distributions at the 

aggregate as well as stop level.  

The tour characterization framework developed as a part of this effort is tested for 

potential application in the Maricopa Association of Governments CT-RAMP activity-

based travel demand model system. With very minor calibration efforts, the proposed 

model system could improve the activity agenda-based approach (with discrete time 

representation) in the current tour-based models in practice with the evolutionary 

continuous-time activity type choice modeling process embedded in scheduling-oriented 

models. 
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CHAPTER 5 

VEHICLE FLEET COMPOSITION MODEL SYSTEM 

 

This chapter presents the estimation and validation results of an open source vehicle fleet 

composition simulator that can be integrated into any existing activity-based 

microsimulation model systems. First, description of the data used for model estimation is 

provided. This is followed by model estimation results coupled with a sample replication 

result from a sequential application process of the model system. The process is continuous, 

in the sense that output of each component serves as input to the subsequent component in 

the model system. The logic followed by the fleet composition model system is discussed 

in detail in Chapter 3. 

 

Data 

Data used for estimating various components of the vehicle fleet composition model 

system is from the latest wave of National Household Travel Survey (NHTS) conducted in 

the year 2008-2009. NHTS collects data regarding socio-economic, demographic, vehicle 

ownership and personal travel characteristics of a random sample of households across the 

nation. Data collected from the survey is organized into four different files namely 

 Household File: Contains information regarding the household level socio-

demographic characteristics such as household size, income, vehicle ownership, 

presence of children etc. 
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 Person File: Contains information regarding person level characteristics such as 

age, gender, worker status, driver status, etc. Each respondent from the household 

has a separate entry in this file. All the respondents in a household are grouped by 

the same household id. 

 Trip File: This file has information regarding all trips made by a person in the day. 

Each trip made by the person gets a separate line entry grouped by the same person 

id. Trip level characteristics such a trip purpose, length, duration etc. are stored in 

this file.  

 Vehicle File: This file has information regarding each vehicle owned by a 

household. Information regarding year, make, model etc. are collected. 

In addition to data collected for each state at the national level, metropolitan 

planning organizations (MPOs) have the opportunity to purchase add-on samples for model 

development purposes. Maricopa Association of Governments (MAG), the MPO of 

Greater Phoenix Metropolitan Region purchased an add-on sample for development of 

travel demand models for the region. This research effort uses the MAG add-on sample 

from 2008-09 NHTS for model estimation purposes. The vehicle fleet composition model 

system operates at the household level. Hence, the household and vehicle files are 

predominantly used for estimating components of the model system. A brief sketch of the 

household level socio-demographics of the data set is provided in Table 5.1.  

From the table, it can be observed that the average number of vehicles owned by a 

household is about the same as average number of drivers in a households. This tells us 

that the data set under consideration is quite mobile and that households indeed own 

multiple vehicles. The intent of this research effort is to explicitly identify the body type, 



  112 

age and annual mileage consumption of each of the vehicles owned by a household in the 

dataset. Majority of households in the dataset reside in urban areas and in single family 

dwelling units. The income distribution of the dataset is uniform, with slightly higher 

representation of medium income households. This lines up with the income profile of the 

data collected for the entire nation (National Household Travel Survey, 2009).  

Table 5.1 

Data Description: Household Level 

Characteristic Mean Standard Deviation 

Number of vehicles in the household 1.95 1.054 

Number of persons in the household 2.43 1.333 

Number of adults in the household 1.90 0.708 

Number of children in the household 0.53 1.016 

Number of workers in the household 0.97 0.889 

Number of drivers in the household 1.83 0.771 

Population density (sq miles) 4401.23 2557.65 

Employment density (sq miles) 1164.92 1548.96 

% of Households residing in urban area 83.80% 0.369 

% Single family housing units 95.80% 0.201 

% Households with income < $25,000 17.80% 0.383 

% Households with income ≥ $25,000 & < $50,000 28.40% 0.451 

% Households with income ≥ $50,000 & < $75,000 18.80% 0.391 

% Households with income ≥ $75,000 & < 

$100,000 15.00% 0.357 

% Households with income > $100,000 20.00% 0.4 

Sample Size, N 4,262 Households 

 

For the purposes of this research effort, vehicles from the NHTS data are 

categorized by a cross classification between four body types (car, van, sports utility 

vehicle (SUV), pick-up truck) and three vintages (0-5 years old, 6-11 years old, ≥ 12 years). 

A motorbike category is also considered (with no vintage classification) bringing the total 
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number of motorized alternatives to thirteen. In addition to the motorized alternatives, a 

non-motorized vehicle alternative was considered to capture the walk/bike travel 

undertaken by each household in the dataset. This will allow for modeling the total annual 

mileage consumption for a household irrespective of the type of mode used for travel. 

While the NHTS data has information regarding the estimated annual mileage of each 

vehicle owned by a household, non-motorized mileage is not readily available. Annual 

non-motorized mileage is computed from the walk and bike trips reported by all individuals 

in a household.  

The non-motorized alternative is the one that is consumed by every household in 

the dataset and is considered as an outside good. An outside good is an alternative that is 

chosen by every choice maker in the dataset in the econometric modeling perspective. In 

the current context, every household invariably undertakes some amount of non-motorized 

travel such as walking from the parking lot, walking to the bus station or jogging etc. and 

hence this alternative is considered as an outside good. To compute the annual non-

motorized mileage of a household, (weighted) walk/bike trips reported by all of the 

household members are aggregated. If none of the household members reported walk/bike 

trips, annual non-motorized mileage for that household is computed as ‘0.5 

(miles/person/day) x 365 (days/year) x number of persons in the household’. Previous 

studies have successfully incorporated this formulation in a similar context (Vyas et al., 

2012). In total the model system consists of 14 alternatives (4 body types x 3 vintage 

categories + motorbike + non-motorized mileage). 

An alternate vintage classification was also tested (0-3 years old, 4-9 years old, ≥ 

10 years) and it was found that the fleet composition model system is robust to the vintage 
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classification considered. The vintage classification (0-5 years old, 6-11 years old, ≥ 12 

years) was finalized based on the observation that most car manufactures offer a five year 

power train warranty (My Car Stats, 2010). Also, this classification provided a healthy 

sample size for all the 13 motorized alternatives considered for model estimation. The 

vintage classification can be further disaggregated to include an alternative for each year 

for a vehicle body type (bringing the total number of vehicle alternatives to 50), but this 

level disaggregation would make the dataset sparse for model estimation and also increase 

the computation burden in model application process. Table 5.2 provides a description of 

vehicle fleet characteristics of the NHTS dataset considered for this research effort.  

Table 5.2 

Data Description: Vehicle Level 

Panel A. Vehicle Body Type 

 Car Van SUV Pick-up Motor Bike 

Average Age 8.55 7.46 6.52 9.52 9.21 

Average Mileage 10204.4 11317.7 11296.6 10723.0 3838.9 

Number of Vehicles 3,997 635 1,537 1,376 240 

Panel B. Vehicle Body Type vs. Annual mileage 

Annual Mileage      

0 - 4,999 27.5% 18.4% 21.1% 24.9% 71.3% 

5,000 - 9,999 30.6% 31.3% 28.6% 29.4% 15.8% 

10,000 - 14,999 21.4% 26.9% 26.2% 22.8% 7.9% 

15,000 - 19,999 11.3% 13.9% 12.8% 12.5% 2.9% 

≥ 20,000 9.1% 9.4% 11.3% 10.5% 2.1% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 

 

From Panel A of the table, it can be observed that households prefer relatively 

newer SUVs and older pick-up trucks consistent with expectation. This finding is 

corroborated by the body type and age distribution shown in Figure 5.1, where it can be 
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observed that more than half of the SUVs are in the ‘newer’ vehicle category, whereas 

pick-ups have relatively lower representation in this category.  

 

 

Figure 5.1. Vehicle body type and age distribution. 

 

Table 5.3 provides the distribution of vehicle body types for each household income 

category. It can be observed that, while lowest (< $25,000) and low income ($25,000 - 

$49,999) households tend to own more cars, medium and high income household tend to 

own a mix of vehicles. It can also be observed that with increasing household income, the 

ownership of SUVs gradually increases. One possible reason for this might that high 

income households can afford sports utility vehicles more. Another reason could be that 

while low income households usually own fewer vehicles and utilize them for all travel 

needs, households with high income might own a mix of vehicles and use them to varying 

degrees for specific purposes (refers to a combination of affordability and variety seeking 
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nature of the segment). The total number of vehicles owned by individuals from each 

income category is shown in parenthesis in the first column of the table.  

Table 5.3 

Vehicle Body Type Distribution by Household Income 

Vehicle Body Type 

Household Income 

Car 

(%) 

Van 

(%) 

SUV 

(%) 

Pick-up 

(%) 

Motor 

Bike 

(%) 

Total 

(%) 

< $25,000 (852) 61.30 9.50 11.60 16.70 0.90 100 

$25,000 - $49,999 (1,898) 54.90 9.00 14.60 19.00 2.50 100 

$50,000 - $74,999 (1,547) 48.80 7.60 21.40 18.30 3.90 100 

$75,000 - $99,999 (1,418) 48.00 8.50 20.10 19.50 3.90 100 

≥ $100,000 (2,070) 48.20 7.10 26.30 15.20 3.30 100 

 

Model Estimation and Application Results 

This section provides the estimation results of all the components in the vehicle fleet 

composition model system coupled with comparisons between observed and predicted 

patterns from a sample replication exercise. It should be identified that the process adopted 

here does not constitute a true validation exercise. In the traditional validation process, the 

data would be split (say in the proportion of 80:20) and the larger sample is used for model 

estimation. The estimated models are applied on the holdout sample to test the predictive 

capability of the model. In the current context, the number of different components 

included in the model system and level of disaggregation of vehicle alternatives warranted 

the use of entire survey sample (4,262 households/7,785 vehicles) for model estimation. 

The estimated models are applied to the entire survey sample to compare predicted patterns 

against the observed patterns in the data. In order to ensure the efficacy of the model 

system, the model was tested on specific market segments (different income categories, 
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urban/rural residents) and the predictive performance of different model components was 

tested against observed data. A detailed sensitivity analysis exercise was carried out to 

predict the effect of changes in land use dynamics on vehicle fleet composition patterns. 

Each of the model components was estimated and validated separately to ensure 

the predictive capability of the models in replicating observed vehicle ownership patterns. 

The model system is then applied in its entirety to the estimation dataset to test its efficacy. 

Estimation results as well as results of the sequential model application process are 

provided here. 

Motorized mileage prediction model. The first element in the vehicle fleet 

composition model system is the household mileage prediction model that predicts the 

annual motorized mileage consumption of households. The motorized mileage is estimated 

using a power transformed linear regression model. Once the motorized mileage for each 

household is predicted, non-motorized mileage is computed using a preset formula (0.5 x 

household size x 365) as every household will inevitably have at least some amount of non-

zero mileage consumption. The combined annual mileage is provided as input to the 

MDCEV model, which will then predict the fleet mix owned by the household and allocate 

the mileage budget to all the vehicles owned by the household. 

To fit the observed annual motorized mileage distribution, several model structures 

were explored and the power transformed linear regression model fit the data best. In 

practice, the activity-based model to which the vehicle fleet composition simulator is 

integrated will provide the annual mileage budget as an input. Since this is a standalone 

model application process, a separate mileage prediction model is estimated. Use of a 

power transformed linear regression model avoids the possibility of negative mileage 
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predictions that a regular linear regression model may provide. The model structure of 

mileage prediction model is shown in equation 5.1. 

𝑀𝑜𝑡𝑜𝑟𝑖𝑧𝑒𝑑 𝑀𝑖𝑙𝑒𝑎𝑔𝑒0.3 =  𝛽0 + 𝛽𝑖
′𝑥𝑖 +  𝜀 (5.1) 

Where, 𝛽0is a constant, 𝛽𝑖 is the array of coefficients to be estimated and 𝑥𝑖is the 

array of socio-demographic characteristics included in the model. The error term ‘𝜀’ is 

normally distributed with mean zero and standard deviation of the dependent variable. 

Estimation results of the mileage prediction model are presented in Table 5.4. Various 

socio-demographic characteristics, lifestyle variables and TAZ characteristics of the 

household’s residential location were used to estimate the motorized mileage consumption 

patterns. Household income was observed to be a significant variable in explaining the 

annual motorized mileage consumption. Households in the lowest income category are 

likely to have low motorized mileage consumptions, while households in the highest 

income category are likely to have higher motorized mileage consumptions. This finding 

is directly related to the number of vehicles owned by respective income categories 

(presented in Table 5.3) where it was seen that lowest income category households own 

approximately 10% (852 vehicles) of the vehicles in the dataset, while highest income 

households own about 26% (2,070) of the vehicles. This relates to the proportional higher 

mileage consumption of highest income households. 

Households with more number of drivers were observed to consume higher 

mileages, an observation consistent with expectation. Similarly, household with more 

number of children had higher mileage consumptions. Possible reason for this might be 

due to chauffeuring associated with children’s activities in such households. Retired 

households with no children tended to have lesser mileage consumption. This observation 
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is behaviorally intuitive as such household might not engage in a lot of activity. Households 

residing in TAZs that had higher proportion of affluent households tended to have higher 

motorized mileage consumptions. This finding couples nicely with the higher mileage 

consumptions for the highest income (≥ $100,000) category. Households residing TAZs 

that have a lot of employment accessibility within 10 minutes of auto travel have lesser 

motorized mileage consumptions. These TAZs probably refer to locations in the urban 

core, with mixed-use development where discretionary travel can be easily undertaken by 

non-motorized modes (walk/bike).  Residential self-selection also has a possible role to 

play in this finding as people residing the urban core might be more environment friendly 

and are willing to opt out of motorized modes of travel. 

Table 5.4 

Motorized Mileage Prediction Model: Estimation Results 

Explanatory Variable Coefficient t-statistic 

Constant 13.03 35.00 

Number of drivers in household 2.01 12.80 

Count of adult household members at least 18 years old 0.37 2.28 

Household resides in rural area  0.87 5.30 

Lowest income household (< $25,000) -1.05 -6.03 

Highest income household (≥ $100,000) 1.33 7.13 

Number of children in the household 0.52 5.04 

Zero worker household -1.51 -8.78 

Two worker household 0.83 5.52 

Household size = 4 or more -0.67 -2.48 

Single family housing unit (owned) 0.57 3.14 

Retired household (one/two person) with no children -0.88 -5.15 

Proportion of households in the highest income quintile  1.36 2.95 

Proportion of single family housing units in the TAZ 0.69 1.99 

TAZ with high regional employment accessible within 10 minutes 

by auto (1st Quartile) -0.29 -2.20 

𝑅2 0.404 

 

The model is applied on the estimation dataset to see how well it could replicate 

the observed mileage consumption patterns. Results of this comparison are presented in 
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Figure 5.2. The model is able to replicate the observed patterns quite well. Results shown 

are for the calibrated model where the constant in the regression equation was slightly 

adjusted to better match the observed patterns. Each bar in the chart represents the 

percentage of households in the data set that pertain to the mileage bin under consideration. 

 

 

Figure 5.2. Observed vs. predicted mileage distributions. 

 

MDCEV model of vehicle fleet mix. The next component in the model is system 

is the MDCEV model of vehicle fleet mix which takes the mileage predicted by the 

previous component as input, predicts the vehicle fleet mix owned by the household and 

allocates the mileage budget to different vehicles owned by the household. The fleet mix 

model system is an MDCEV model which is capable of simultaneously predicting the array 

of vehicles owned by a household. The MDCEV model is ideally suited to model the 
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vehicle fleet mix and utilization patterns due to the multiple discrete (ownership of multiple 

vehicles) and continuous (mileage allocation to vehicles owned) nature of the problem. The 

MDCEV model was proposed by Bhat (2005; 2008) to efficiently model multiple discrete 

choice behavior, addressing the short shortcomings of single discrete choice models. A 

number of recent studies used the MDCEV model to estimate vehicle fleet mix at the 

household level (Bhat and Sen, 2006; Eluru et al., 2010; Vyas et al., 2012). Notable features 

of the MDCEV model include consideration of diminishing marginal utility with 

increasing consumption of an alternative and its capability to collapse to the standard MNL 

model structure, given every behavioral unit in the dataset chooses only one out of ‘k’ 

available alternatives.  

As discussed earlier, the vehicle classification for the fleet mix model system 

consists of a total of 14 alternatives (4 vehicle body types x 3 vintage categories + 

motorbike + non-motorized alternative). In order to account for household with no vehicles 

at all, the MDCEV model specification with presence of an outside good is adopted in the 

current empirical context. An outside good is an alternative that is chosen by every 

household in the data set, which in this case would be the non-motorized alternative. After 

the mileage prediction model predicts the motorized mileage consumption of the 

household, non-motorized mileage is computed using a preset formula (0.5 x household 

size x 365) and added to the motorized mileage to determine the ‘total’ mileage 

consumption of the household. The MDCEV model takes the total mileage consumption 

of the household as input and distributes it to different vehicles owned (as predicted by the 

model) by the household. The formulation of the MDCEV model allows for selection of 

‘m’ alternatives out of ‘k’ available alternatives, while definitely choosing the outside good 
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(non-motorized alternative) for each and every household in the dataset. The functional 

form of the utility expression of the MDCEV model proposed by Bhat (2008) for a case 

with the presence of an outside good is: 

𝑈(𝑥) =  
1

𝛼𝑜𝑢𝑡
𝜓𝑜𝑢𝑡𝑥𝑜𝑢𝑡

𝛼𝑜𝑢𝑡 + ∑
𝛾𝑘

𝛼𝑘

𝐾

𝑘=2

𝜓𝑘 {(
𝑥𝑘

𝛾𝑘
+ 1)

𝛼𝑘

− 1} (5.2) 

Where baseline marginal utility for the outside good, 𝜓𝑜𝑢𝑡 = exp (𝜀𝑜𝑢𝑡) and 

baseline marginal utility for the rest of the alternatives 𝜓𝑘 = exp (𝛽′𝑧𝑘 + 𝜀𝑘 ), is a function 

of various parameters that capture the observed and unobserved attributes of the alternative. 

𝑧𝑘 is a set of attributes that define and alternative ‘𝑘’ and 𝜖𝑘 captures the effect of 

unobserved attributes. 𝑈(𝑥) is a quasi-concave and continuously differentiable function 

with respect to consumption quantity vector 𝑥 (𝑥𝑘 ≥ 0 ∀ 𝑘). 𝜓𝑘 represents the baseline 

marginal utility or the marginal utility at the point of zero consumption. 𝛼𝑘 is the satiation 

parameter which governs the decrease in marginal utility with increasing consumption for 

good 𝑘.. The translation parameter 𝛾𝑘 not only governs the level of satiation but also 

enables corner solutions (i.e., zero consumption of some goods).  

As both 𝛾𝑘 and 𝛼𝑘 are parameters that incorporate the effects of satiation, it is 

difficult to uniquely identify and distinguish between them.  For this reason, one of the two 

parameters is fixed and the other parameter is free to be estimated in most empirical model 

estimation efforts and the best model is chosen. In the current modeling context  -profile 

gave the best fit to the data. A household maximizes its utility by optimally allocating 

consumptions to the 𝑘 available goods (vehicles), while always choosing the outside good 

(non-motorized alternative). Thus the constraint for the utility maximization problem is:  
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∑ 𝑡𝑘 = 𝑇

𝐾

𝑘=1

 
 

(5.3) 

The MDCEV model is estimated with 14 alternatives and the estimation results of 

the MDCEV model system are presented in Tables 5.5-5.7. Table 5.5 presents the 

significant parameters in the baseline marginal utility equation of the MDCEV model. 

From the model estimation result, it was found that high income households are more likely 

to own newer vehicles and also tend to prefer cars and SUVs over other types of vehicles. 

Households with children tend to own vans more than cars. It can be observed that number 

of children in the household has a negative impact on owing cars, meaning such households 

would rather prefer a vehicle that would help them attend to the child’s necessities (such 

as a van).  

Households with more number of workers tend to prefer newer cars and SUV 

vehicles, which is intuitive as the number of workers in a household could probably act as 

a proxy characteristic for affluence of the household. While the impetus for owing vans is 

explained best by the presence/number of children in the household, the ownership patterns 

for car, van and SUV body types are explained very well by the income categorization. 

Within the car body type, high income households prefer to own newer cars (0-5 years), 

low income households tend to own medium aged cars (6-11 years) while the lowest 

income households are more likely to own older cars (≥ 12 years). Similar patterns are 

observed in the van and SUV categories as well. Thus the model is able to represent the 

vehicle ownership patterns of different income categories, where high income households 

usually change their vehicle fleet more often but less affluent households do not have such 

flexibility. Lager households prefer to own vans as they offer the flexibility of 
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accommodating greater number people, which facilitates joint travel in such households. 

Households living in rural areas are more likely to own pick-up trucks, another finding 

consistent with expectation. 

Table 5.5  

MDCEV Model Estimation Results:  

Significant Parameters in Baseline Utility: Cars and Vans 

Vehicle Type Explanatory Variable Coefficient t-statistic 

Car 

0-5 years old 

High income household ($75,000 - $99,999) 0.16 2.16 

Number of children in the household -0.19 -5.91 

Three or more worker household 0.17 1.38 

Proportion of households in the  

lowest income quintile  
-1.01 -3.61 

Percent of regional employment within 10 

minutes of auto accessibility from the TAZ 
-13.83 -3.24 

Car  

6-11 years old 

Two worker household -0.16 -2.21 

Low income household ($25,000 - $49,999) 0.13 1.9 

Car  

12 years or 

older 

Lowest income household (< $25,000) 0.57 5.84 

Household has one/two retired adults and 

no children 
0.2 2.59 

Proportion of households in the  

lowest income quintile  
0.57 1.74 

Van  

0-5 years old 

Number of children in the household 0.38 8.23 

Two worker household -0.39 -2.53 

TAZ with high density (1st Quartile) -0.31 -1.89 

Percent of regional employment within 30 

minutes of auto accessibility from the TAZ 
-1.72 -1.78 

Van  

6-11 years old 

Number of children in the household 0.33 7.15 

TAZ with high density  (1st Quartile) -0.26 -1.87 

Low income household ($25,000 - $49,999) 0.27 1.87 

Van  

12 years or 

older 

Count of HH members 0.14 1.98 

TAZ with high density  (1st Quartile) 0.68 3.1 

Lowest income household (< $25,000) 0.66 2.57 
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Table 5.5 (Continued) 

MDCEV Model Estimation Results:  

Significant Parameters in Baseline Utility: SUVs, Pick-ups and Motorbikes 

Vehicle Type Explanatory Variable Coefficient t-statistic 

SUV  

0-5 years old 

Lowest income household (< $25,000) -1.01 -5.59 

Two worker household 0.17 1.92 

Household has one/two retired adults and 

no children  
-0.17 -1.78 

Proportion of households in the lowest 

income quintile  
-1.48 -3.85 

Percent of regional employment within 10 minutes 

of auto accessibility from the TAZ 
-17.83 -2.82 

TAZ with low density (3rd Quartile) 0.27 2.48 

SUV  

6-11 years old 

Medium income household ($50,000 - $74,999) 0.26 2.41 

Household size = 4 or more 0.33 3.3 

Single family housing unit (owned) 0.86 4.37 

TAZ with high regional employment accessible 

within 30 minutes by auto (1st Quartile) 
-0.30 -2.85 

SUV  

12 years or older 

High income household ($75,000 - $99,999) 0.36 1.89 

Presence of children in the household 0.31 1.99 

Household in a single family housing unit -0.74 -2.38 

TAZ with medium density (2nd Quartile) -0.36 -2.28 

Pick-up  

0-5 years old 

Highest income household (≥ $100,000) 0.24 2.28 

Household size = 1 -0.98 -4.64 

Household resides in rural area (from variable 

URBRUR) 
0.24 1.95 

Proportion of single family housing units in the 

TAZ 
0.74 2.44 

Pick-up  

6-11 years old 

Household resides in rural area 0.15 1.3 

Household has one/two retired adults and  

no children 
-0.35 -3.41 

High income household ($75,000 - $99,999) 0.16 1.44 

TAZ with high regional employment accessible 

within 10 minutes by auto (1st Quartile) 
-0.23 -2.17 

Pick-up  

12 years or older 

Proportion of households in the lowest  

income quintile  
1.28 2.95 

Low income household ($25,000 - $49,999) 0.35 2.86 

Presence of children in the household -0.25 -1.95 

TAZ with high regional employment accessible 

within 10 minutes by auto (1st Quartile)  -0.34 -2.6 

 

Motorbike 

Household resides in rural area  0.71 4.41 

Single family housing unit (owned) 0.75 2.36 

Household size = 1 -0.57 -2.11 
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Among TAZ characteristics, it was found that households living in TAZs with high 

proportion of households in the lowest income quintile are not likely to own newer cars. 

This finding is corroborated by another observation from the model that households in such 

TAZs are more likely to own older cars. Households in TAZs with high density were less 

likely to own vans. It is possible that spatial and social dependency effects play a role in 

vehicle ownership and this finding is consistent with such a notion (Paleti et al., 2013). 

Households in TAZs with high density are less likely to own newer vehicles. Households 

in such TAZs might have accessibility to alternative modes of transportation and also use 

walk/bike to satisfy their mobility needs, which might in turn prompt them to just keep 

their older vehicles in the fleet mix. This finding is nicely coupled by the observation that 

households in lower density TAZs tend to own newer vehicles and are more likely to have 

larger vehicles in the fleet mix such as SUVs. 

Table 5.6 presents the model estimation results of baseline constants and translation 

parameters in the MDCEV model. A baseline constant provides an indication of the 

inherent preferences for various alternatives and the marginal utility at zero consumption. 

The values of the baseline constant reveals the preference for a particular type of vehicle 

for an ‘average’ user in the dataset. For cars and vans, it was found that newer vehicles 

have a greater baseline utility than older ones, suggesting that households would rather 

own newer cars, all other things being equal. In general baseline utility decreases with age 

of the vehicle, although this trend is not seen consistently for SUVs and pick-up trucks. 

For SUVs , there is lower baseline utility for middle aged SUVs suggesting that households 

tend to acquire newer SUVs and hold on to their SUV for a long time, which is fairly 

expected behavior. For pick-up trucks, there is a lower baseline utility for newer pick-up 
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trucks, suggesting that households hold on their middle aged and older pick-up trucks more 

and do not see a necessity to own the ‘newest’ pick-up truck. This finding is consistent 

with general behavior, where pick-up trucks have a very slow turnover rate. All of the 

findings from model estimation results line up well with actual vehicle ownership patterns 

observed in the dataset. 

Table 5.6  

MDCEV Model Estimation Results: Baseline Constants and Translation Parameters 

Vehicle Type 
Baseline Constants   Translation Parameters 

Coefficient t-statistic   Coefficient t-statistic 

Non-motorized vehicle 

(Outside Good) NA NA  0 NA 

Car 0-5 years old -5.98 -83.27  23668 10.07 

Car 6-11 years old -6.51 -140.27  18621 10.37 

Car 12 years or older -7.29 -93.28  12164 9.46 

Van 0-5 years old -8.13 -61.11  29431 3.41 

Van 6-11 years old -8.43 -82.8  22248 4.21 

Van 12 years or older -10.04 -41.51  12691 3.22 

SUV 0-5 years old -6.65 -64  25172 6.7 

SUV 6-11 years old -8.32 -42.25  16717 6.71 

SUV 12 years or older -7.88 -25.94  8397 5.1 

Pick-up 0-5 years old -8.29 -30.87  20610 5.69 

Pick-up 6-11 years old -7.35 -95.28  14758 6.92 

Pick-up 12 years or older -8.06 -70.37  9542 6.7 

Motorbike -9.24 -29.1   2223 7.67 

 

Translation parameters in the MDCEV model represent the diminishing marginal 

returns with increasing consumption of an alternative. A higher value for the translation 

parameter pertaining to a specific vehicle means that households are less satiated with the 

use of that vehicle and are likely to drive that vehicle alternative more. For all of the vehicle 

body types, the translation parameters show a consistent pattern where newer vehicles have 
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a higher translation parameter than an older vehicle in the same body type. This finding is 

behaviorally intuitive as households usually tend to drive newer vehicles more than the 

older ones. Amongst all the alternatives, new vans have the highest translation parameter. 

A detailed exploration of the data revealed that households owning vans use these as 

multipurpose vehicles to meet the regular household travel necessities as well as the 

chauffeuring needs of the children. Motorbikes have the lowest translation parameter, 

which is expected as motorbikes are used mostly for pleasure/hobby travel but not as a 

primary vehicle in the household. Table 5.7 shows the goodness of fit statistics of the 

estimated model. The likelihood ratio of the estimated model is 645.36 which is 

substantially greater than the critical 𝜒2 value with 50 degrees of freedom at 99% level of 

confidence.  

Table 5.7 

MDCEV Model Estimation Results: Goodness of Fit Measures 

Statistic Value 

Log-likelihood of final model at convergence -77020.49 

Degrees of freedom of final model  75 

Log-likelihood of base model at convergence -77343.17 

Degrees of freedom of base model  25 

Likelihood ratio  645.36 

𝜒50,0.001
2  86.66 

 

The estimated MDCEV model is applied on the entire data see how well the model can 

predict observed fleet composition patterns. Gauss codes made available by Pinjari and 

Bhat (2011), were translated to open source coding language ‘R’ to implement the MDCEV 
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forecasting procedure. The model results were compared to match the following observed 

patterns 

 Average annual mileage excluding zero mileage households: Average mileage 

is computed as the total mileage of each alternative divided by total number of 

households that have non-zero mileage consumption for the alternative 

 Vehicle type distribution: Frequency of vehicle ownership for each vehicle 

alternative is computed as the total number of households who own a particular 

type of vehicle, divided by the total number of households in the dataset 

 Body type distribution: Vehicle body type distribution of the observed data is 

compared against the body type distribution derived from the output of 

MDCEV model. This is an important check that should be passed by the 

MDCEV model, in order to impart necessary confidence in the model 

specification to be used for predicting fleet composition for a given (future) 

horizon year data. The body type distribution is not a factor that is inherently 

modeled in the MDCEV model specification. If the model is able to accurately 

predict this uncontrolled distribution, it would instill required confidence in the 

forecasts done using this model for any future year. 

Figure 5.3 shows the comparison of observed and predicted average annual mileage 

consumption patterns across different alternatives for the dataset. The uncalibrated 

MDCEV model performed quite well in replicating the observed mileage consumption 

patterns. The model slightly over predicts the average mileage distributions for car body 

type. Some calibration of the model coefficients is warranted to exactly match the observed 
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patterns. Figure 5.4 presents the observed versus predicted vehicle type distribution of the 

dataset. 

 

Figure 5.3. Observed vs. predicted average annual mileage consumption patterns:  

Uncalibrated MDCEV model. 

 

 

Figure 5.4. Observed vs. predicted vehicle type distribution:  

Uncalibrated MDCEV model. 
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The uncalibrated MDCEV model predicts the vehicle type distribution reasonably 

well, except it was observed that the model is slightly under predicting ownership across 

almost all body types. The reason for this behavior of the model is not readily apparent. In 

order to investigate this at a greater detail, the body type distribution of the observed data 

is compared against the body type distribution derived from the predictions of the MDCEV 

model. The results of this comparison (see Figure 5.5) elucidate the under predictions of 

vehicle ownership across the board by MDCEV model. The figure shows percentage of 

households in the dataset who own vehicles from distinct body type categories. Suppose a 

household owns a car 0-5 years old and a van 6-11 years, the household would be 

categorized as owing 2 vehicle body types. If a household owns a car 0-5 years old and a 

car 6-11 years, the household would be categorized owning only 1 vehicle body type. The 

comparison of observed and predicted categories of this ‘implied’ distribution, that is not 

directly controlled or modeled by the MDCEV specification sheds more light on the 

predictive capability of the model. 

The MDCEV model is estimated and applied in such a fashion that every household 

in the dataset will consume at least some non-motorized mileage. The MDCEV model 

gives a different output each time a simulation is run. Which of the simulations should be 

considered final? It was observed that a single simulation of the MDCEV model predicts 

fleet mix quite well, but the implied body type distribution from the MDCEV model result 

almost always over predicts the proportion of households owning a single body type and 

under predicts all of the other categories. This finding answers the observation form Figure 

5.4 where the MDCEV model is found to under predict the ownership of vehicles across 

all categories. A plausible explanation for this phenomenon is that as soon as a vehicle is 
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selected as owned by the household, the MDCEV model apportions almost all of the 

mileage consumption for that household to the selected vehicle instead of choosing another 

vehicle alternative and apportioning a portion of the mileage to it. A calibration exercise 

was carried out to see if this behavior can be controlled by adjusting a few model 

coefficients, but the adjustments provided little improvements to the model predictions. To 

address the issue, and aid in the vehicle fleet composition modeling process, a framework 

is proposed (discussed in details in Chapter 3) which involves components that abet 

MDCEV model and provide better fleet composition predictions. 

 

 

Figure 5.5. Observed vs. predicted vehicle body type distribution:  

Uncalibrated MDCEV model. 
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In the proposed framework, MDCEV model simulation is carried out multiple times 

and mileage consumptions from each simulation are stored. After ‘n’ (say 100) simulations 

of the MDCEV model are completed, an average mileage consumption is computed for 

each alternative, which is then redistributed using a mileage reallocation algorithm. Since 

each simulation of the MDCEV model gives a slightly different result, the average mileage 

consumption result from ‘n’ MDCEV model runs show that a household owns almost all 

of the vehicle categories, whereas in reality the household might own only a subset of the 

vehicle categories considered by the MDCEV model of vehicle fleet mix. The heuristic 

mileage reallocation algorithm does the job of reallocating this mileage distribution in such 

a fashion that it reflects the household’s vehicle fleet composition. The mileage reallocation 

algorithm requires information about how many distinct categories of vehicles does the 

household own. MNL model of number of vehicle alternatives predicts this information 

and provides it as an input to the mileage reallocation algorithm. Suppose, a household 

owns a car 0-5 years old and a car 6-11 years old, and a van 6-11 years old, the number of 

alternatives model is supposed predict the number of alternatives owned by this household 

as three.  

MNL model of number of vehicle alternatives. The purpose of this model is to 

provide input to the heuristic mileage reallocation algorithm regarding the number of 

distinct vehicle alternatives owned by a household. Since the choice phenomenon at hand 

is a single discrete choice case (every household owns a unique number of vehicle 

alternatives), an MNL model structure is opted. Ideally, this model should have a total of 

14 alternatives in accordance with the number of motorized alternatives in the MDCEV 

model structure. It is not required to consider the non-motorized alternative for this model 



  134 

or any subsequent models after the MDCEV model, as this is an outside good that ‘should’ 

be consumed by every household and hence need not be modeled separately. Observations 

from the estimation dataset revealed that the maximum number of distinct alternatives that 

any household in the dataset own is five. So, an MNL model is estimated with six categories 

(0-4, ≥ 5 vehicle alternatives). The final category (≥ 5 vehicle alternatives) served as the 

base alternative. Model estimation results are presented in Table 5.8. 

From the model results, it was observed that lowest income households are likely 

to own fewer vehicle alternatives, while medium and high income households tended to 

own multiple vehicle alternatives which is consistent with expectation. Higher income 

households in general have the financial flexibility to own a mix of vehicles to cater for 

specific purposes. Single person households are more likely to own fewer vehicles 

(zero/one) which is an intuitive finding. Households living in TAZs with high population 

density tended to own zero vehicles. This might represent the category of households, who 

self-select themselves into mixed urban use TAZs (environmentally proactive households). 

Larger households are found to own multiple vehicle alternatives, another finding 

consistent with expectation as such households usually sport a vehicle (such as van) for 

family travel in addition to a vehicle to cater for regular travel necessities. Similar behavior 

was found in households with children. Highest income (≥ $100,000) households were 

found to own 4 vehicle alternatives, which is an intuitive observation. The likelihood ratio 

of the model is substantially higher than the critical 𝜒2 value at any reasonable level of 

significance. 
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Table 5.8 

MNL Model of Number of Vehicle Alternatives 

Number of  

Vehicle 

Alternatives 

Explanatory Variable Coefficient t-statistic 

Zero 

Constant 1.73 4.20 

Lowest income household (< $25,000) 2.37 9.70 

Low income household ($25,000 - $49,999) 0.82 3.23 

Housing unit owned  -1.65 -9.95 

Household size = 1 2.12 10.83 

Zero worker household 1.21 6.42 

Population density of the TAZ that  

the household resides 
0.00011 4.16 

One 

Constant 4.27 13.72 

Lowest income household (< $25,000) 1.43 11.59 

Low income household ($25,000 - $49,999) 0.96 10.39 

Household size = 1 2.22 18.38 

Proportion of multi-family housing units  

in the TAZ 
0.4 2.05 

Two worker household -0.86 -6.37 

Two 

Constant 5.31 17.14 

Household with 2+ adults, youngest child 0-5 0.42 3.76 

Medium income household ($50,000 - $74,999) -0.21 -2.29 

Two worker household -0.34 -2.95 

Households in lowest income quintile  -0.00034 -2.03 

Three 

Constant 1.69 3.36 

Housing unit owned  1 3.01 

Count of adult HH members at least 18 years 

old 
0.48 5.4 

Three or more worker household 1.02 4.52 

Population density of the TAZ that the 

household resides 
-0.000088 -3.49 

Presence of children in the household 0.38 3.25 

Household with 2+ adults, youngest child 16-21 0.50 2.50 

Four 

Constant 1.18 3.19 

Highest income household (≥ $100,000) 0.72 3.00 

Household with 2+ adults, youngest child 16-21 1.63 5.47 

Household size = 4 or more 1.51 6.25 

Two worker household -0.70 -2.59 

Goodness of fit 

Sample Size (Number of Households) 4,262 

Likelihood ratio 2099.1 

𝜒25,0.001
2  52.62 
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Figure 5.6 shows the comparison of observed and predicted vehicle alternative 

distributions. The results shown are for the uncalibrated version of the model and it can be 

observed that the model replicates the observed patterns exceedingly well with no necessity 

for calibration. 

 

 

Figure 5.6. Observed vs. predicted vehicle alternative distribution: Uncalibrated model. 
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segments are juxtaposed within each vehicle alternative category. For example, in the 0 

vehicle alternative category, the (pairs of) bars from left to right correspond to income 

categories starting from lowest to highest income. Similar presentation is followed for other 

vehicle alternative categories. The height of y-axis was kept the same across all panels for 

easier comparison. The blue bars always represent the observed patterns and the orange 

ones show predicted distributions. From the comparison charts, it can be observed that the 

model estimated on aggregate data performs quite well in predicting distributions across 

different income categories. This signifies that the model specification is robust enough to 

represent the difference in vehicle ownership patterns across different income segments. A 

high proportion of lowest income households (≤ $25,000) correspond to the zero vehicle 

alternative category and with increase in income segment the proportion of households in 

this category slowly decreases with almost no households in the zero alternative category 

for highest income household segment. This finding is behaviorally intuitive, in the sense 

that as the household’s income level increases, so does the financial flexibility to own more 

number of vehicles. It is quite heartening to see the model predict the same phenomenon.  
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Figure 5.7. Observed vs. predicted vehicle alternative distributions by income category: 

Uncalibrated model. 
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Low income households majorly own one vehicle alternative (about 90%). Lower 

representation of medium through high income households in this category is 

supplemented their stronger presence in the higher vehicle alternative categories. For 

vehicle alternative categories 3 and 4, a gradually increasing representation can be 

observed from lowest to highest income households. This exceedingly good performance 

of the model to predict subtle nuances in the dataset imparts necessary confidence to use 

the output of this model as a governing distribution in the heuristic mileage reallocation 

algorithm.  

MNL model of number of body types. For every household in the dataset, the 

heuristic mileage reallocation algorithm takes the output of the MDCEV model and 

redistributes the mileage as governed by the number of vehicle alternatives model. After 

this process is carried out for every household in the dataset, comparisons are made across 

observed and predicted distributions of average annual mileage, vehicle type and body 

type. While the data to calibrate the model on these three grounds is readily available for 

base year, how can one be sure that the predicted vehicle fleet composition distributions 

are representation of the actual fleet composition for a future year input data? To ensure 

this consistency, a vehicle body type MNL model is estimated and calibrated for the base 

year. The model predicts this distribution based on the projected synthetic population 

characteristics for any horizon year. This goes in as a control distribution that should be 

matched by the heuristic mileage reallocation algorithm. 

The structure of the MNL model of number of body types is very similar to that of 

the previous model, except in this case the number of distinct vehicle body types owned by 

a household are modeled instead of the number of distinct vehicle alternatives. Going of 
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the example from previous section, if a households owns a car 0-5 years old and a car 6-11 

years old, and a van 6-11 year old, the household is said to own a total of 2 vehicle body 

types (car and van). There are a total of 6 body types considered in the context of the current 

research effort namely car, van, SUV, pick-up, motorbike and non-motorized alternative. 

The MNL model should ideally include 6 alternatives, but observations from the estimation 

dataset revealed that the maximum number of body types owned by any household in the 

dataset is 5, with very few households owning 4 or more vehicle body types. So, the vehicle 

body type count is truncated at 4, thereby providing a total of 5 alternatives (0-3, ≥ 4 vehicle 

body types). The final category (≥ 4 vehicle body types) served as the base alternative. 

Model estimation results are presented in Table 5.9. 

From the model results, it was found that lowest and low income households are 

most likely to own zero or one vehicle body type. This finding traces back to the question 

of affordability of multiple vehicle types for this segment. Also, this finding couples nicely 

with the result of the MNL model of number of vehicle alternatives where households in 

this segment appeared in the zero and one vehicle alternative category, which automatically 

positions them in the same category in the vehicle body type model. Single person 

households are found to own none or one vehicle body types at the most, which is 

consistent with expectation as such household do not need more than one vehicle for their 

travel needs in general. Larger households as well as households with more number of 

drivers are likely to own more vehicle body types. This translates to the variety seeking 

nature of different individuals in such households. 
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Table 5.9 

MNL Model of Number of Vehicle Body Types 

Number of Vehicle 

Body Types 
Explanatory Variable Coefficient t-statistic 

Zero  

Constant 0.68 2.09 

Lowest income household (< $25,000) 2.09 8.42 

Low income household  

($25,000 - $49,999) 
0.61 2.38 

Housing unit owned  -1.43 -8.58 

Household size = 1 2.11 10.45 

Zero worker household 1.14 6.15 

Population density of the TAZ in 

which the household resides 
0.00011 4.08 

One  

Constant 3.67 19.69 

Lowest income household (< $25,000) 1.02 7.95 

Low income household ($25,000 - 

$49,999) 
0.65 6.86 

Household size = 1 1.99 15.62 

Proportion of multi-family housing 

units in the TAZ 
0.26 1.39 

Presence of children in the household -0.33 -3.2 

Two  

Constant 2.96 13.01 

Household resides in rural area  0.19 2.01 

High income household ($75,000 - 

$99,999) 
0.35 3.34 

Highest income household (≥ 

$100,000) 
0.23 2.37 

Household size = 4 or more 0.3 2.73 

Housing unit owned 0.98 6.47 

Three  

Housing unit owned  1.42 5.9 

Count of adult HH members at least 

18 years old 
0.55 6.4 

Three or more worker household 0.46 1.96 

Population density of the TAZ in 

which the household resides 
-0.00008 -2.82 

Presence of children in the household 0.36 2.55 

Goodness of fit 

Sample Size (Number of Households) 4,262 

Likelihood ratio 1658.30 

𝜒21,0.001
2  46.80 
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Presence of children is found to negatively influence owning a single vehicle body 

type. Chauffeuring needs of children require owning a bigger vehicle (such as a van) in 

addition to owning another vehicle body type for usual travel in such households. This 

finding is corroborated by the significance of same variable in the three vehicle body type 

category. The likelihood ratio test statistic for the model is 1658.30 which is substantially 

higher than the critical 𝜒2 value with 21 degrees of freedom and 99% level of signifance. 

This confirms the presence of exogenous variable effects in the model specification.  

 

 

Figure 5.8. Observed vs. predicted vehicle body type distribution: Uncalibrated model. 
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body type distributions quite well. As expected the households owning more vehicle body 

types (3, ≥ 4) are very few in the dataset and the model predictions line up quite well with 

the observed distributions. Majority of the households in the dataset are found to own one 

vehicle body type, which doesn’t necessarily mean that these households own a single 

vehicle. Even households owning multiple vehicles might fall under this category, if all of 

their vehicles happen to be the same body type (multiple cars, vans etc.). The results 

presented are for uncalibrated version of the MNL model. 

In addition to the comparison of aggregate distributions, the model was tested for 

its efficiency in replicating the body type distributions at disaggregate income level 

classification. Results of the comparison are presented in Figure 5.9. The comparisons are 

made pairwise, where each set of bars (observed and predicted) corresponding to a 

particular income category are juxtaposed side-by-side. The pairwise comparison of 

different income segments reveal that the model performs quite well in replicating the 

vehicle body type distribution of different income segments. A more interesting 

observation comes from looking at the vehicle body type distribution of different income 

segments together (left to right in the figure). The percentage of households owning zero 

vehicle body types (or no vehicles at all) is higher in the lowest income category and this 

percentage slowly reduces as we move across the higher income segments. Similarly, the 

percent of households owning one vehicle body type is high in lowest and low income 

categories and this percentage gradually decreases as the household income increases. This 

observation speaks to the affordability combined with variety seeking nature of households 

in respective income segments. Though the observed and predicted distributions are 

presented side-by-side, the propagation of vehicle type distribution across different 
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household income segments seems rather continuous because the model is able to predict 

the vehicle body type distributions across all the market segments quite well. This imparts 

much confidence to use the model prediction as control distribution that should be match 

by the heuristic mileage reallocation algorithm. 

 

 

Figure 5.9. Observed vs. predicted vehicle body type distributions by income category: 

Uncalibrated model. 
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mileage reallocation algorithm operates at the level of each household, where it reallocates 

the mileage output of the MDCEV model. The output from MNL model of number of 

vehicle alternatives gives information about how many distinct vehicle body-type x age 

categories does the household own. From the output of MDCEV model, cumulative 

mileage distribution of the household is computed for the household. A random number is 

generated and based on location of the random number in the cumulative mileage 

distribution of the household, a vehicle is selected as ‘owned’ by the household. The 

alternative chosen (and the corresponding mileage) is removed from the dataset thereby 

eliminating choice of the same alternative multiple times. This process is carried out ‘k’ 

times, where k (number of vehicle alternatives) is predicted by the number of alternatives 

model.  

At the end of the iteration for a particular household, the HMR algorithm selects all 

the alternatives owned by the household. Now, the mileage consumed by these alternatives 

is scaled up proportionally to account for the annual motorized mileage consumption of 

the household. Once, the HMR algorithm reallocates the mileages for all households 

according to the input provided by number of alternatives model, the predicted body type 

distribution of the entire sample is compared against the body type distribution predicted 

by the MNL model of number of body types. Absolute percent difference is computed 

between both the distributions and this is checked against a pre-set tolerance limit selected 

by the user (say 5%).  

If the HMR algorithm passes the tolerance check, the output of HMR algorithm 

goes in as input to the count models. If not, the entire application process is repeated after 

calibrating the model components as necessary. This process is carried out repeatedly until 
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the percent difference between the two distributions (from MNL model of number of body 

types and the output of HMR algorithm) satisfies the tolerance criteria. In the context of 

the current modeling effort, a few coefficients in the MDCEV model specification are 

calibrated/asserted to match the observed vehicle fleet composition patterns better. The 

calibration/assertion exercise was carried out with due caution regarding any unexpected 

consequences such changes might bring about. The output of HMR algorithm gives us the 

final fleet composition of every household in the dataset.  The output of this algorithm 

would have successfully predicted the vehicle ownership of the household, body type 

composition and vintage composition of the vehicles owned. As discussed before, 

comparisons between observed and predicted distributions are made for  

 Average annual mileage  

 Vehicle fleet mix distribution 

 Aggregate vehicle body type distribution 

Comparison of observed and predicted fleet composition patterns from the output 

of the HMR algorithm are presented in Figure 5.10. Average annual mileage distribution 

comparisons are presented on the bottom axis whereas the top axis presents the vehicle 

type distributions (the axis is inverted for ease of presentation).  

It can be observed from the figure that the model replicated the observed fleet 

composition as well as mileage consumption patterns very well. It should be noted that an 

exact match between observed and predicted distributions is quite difficult to achieve and 

might require extensive calibration of the model system. It was felt prudent to rather 

capture the fleet composition patterns with slight calibration of the model system, than 
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exactly match both of these distributions. It can be observed from the figure that within 

each body type, households prefer to drive newer vehicles more than that of older ones.  

 

 

Figure 5.10. Observed vs. predicted distributions: Output from HMR algorithm. 

 

Another distribution that the output of the HMR algorithm is expected to match is 

the aggregate vehicle body type distribution. This comparison is presented in Figure 5.11. 
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composition model system should predict the fleet mix. Keeping this in mind, comparisons 

are made against predicted data and not the observed, as this is how the model would be 

used for any horizon year prediction. Compared to the vehicle body type distribution 

without the HMR algorithm (see Figure 5.5), the predicted distribution replicates the 

observed vehicle body type distribution quite closely. The output from HMR algorithm 

matches the observed patterns across all the comparisons made. 

 

 

Figure 5.11. Observed vs. predicted vehicle body type distribution: 

Output from HMR algorithm. 
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5.12 for households residing in urban vs rural areas as these households might have 

significantly different mileage consumption as well as fleet mix patterns. 

 

 

Figure 5.12. Observed vs. predicted distributions for urban and rural residents: 

Output from HMR algorithm. 

 

The representation of households living in urban areas is slightly higher in the 

dataset (84%) than the national average of about 70%. This finding is consistent with the 
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geography of Greater Phoenix Metropolitan Region which is predominantly urban. An 

important observation from the comparison chart shown in Figure 5.12 is that rural 

residents have greater average annual mileage consumptions across almost all vehicle 

types. This finding is behaviorally intuitive as rural residents indeed tend to have greater 

annual mileages as a result of travel to/from the adjacent city to engage in various activities. 

It is also observed that households residing in rural areas have a higher proportion of pick-

ups in their vehicle fleet (across all vintage categories), than their urban counterparts. 

Similar comparison is shown for a low and high income households in Figure 5.13. 

The main takeaway from the comparison of vehicle fleet composition patterns of 

low income households is the representation of number of vehicles in the ‘newest’ vintage 

category (0-5 years old) across all vehicle body types. High income households are found 

to own and use newer vehicles more. This is generally expected behavior as such 

households usually have a faster turnover of vehicles in their fleet. The vehicle fleet 

composition model system is able to replicate the ownership and utilization patterns of both 

these market segments reasonably well. The model does not ‘exactly’ match the observed 

distributions, but in general captures the patterns in observed data quite well.  
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Figure 5.13. Observed vs. predicted distributions for low and high income households: 

Output from HMR algorithm. 

 

The output of HMR algorithm replicated the observed vehicle fleet composition 

patterns quite well. The output of HMR algorithm goes as input to the count models. The 

count models determine if all the mileage consumed by a household within a particular 

vehicle alternative belongs to one or multiple vehicles. The count models are necessary 

because vintage classifications are aggregated into 3 categories for ease of estimation and 

application of the fleet composition model system. Suppose, the output of HMR algorithm 

determines that a household uses a car 0-5 years old to travel 25000 miles annually, the 
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count model determines if all of this mileage is consumed using just one car 0-5 years old 

or if the household owns multiple cars of 0-5years of age. Ideally, a count model should be 

estimated for each of the 13 different vehicle categories defined for the MDCEV model, 

but this will heavily increase the number of individual components in the model system 

while decreasing the data available to estimate each of the individual count models. So, it 

was felt prudent to estimate one count model for each of the body types, with vintage 

serving as an explanatory variable in the models. If the household has non-zero mileage 

consumption in any of the vintages of a particular body type, count model of that body type 

is applied for the household. The output of count models is a test to the efficacy of the 

entire model system as this is a sequential application process. Each of the count models 

and their performance in replicating observed patterns is presented next. 

Count models. Count models take the mileage output from HMR algorithm and 

determine if all of that mileage is consumed by a single vehicle or multiple vehicles in the 

alternative under consideration. Ideally, 13 different count models should be estimated (one 

for each of the body type – age classification), but this would heavily increase the number 

of individual components in the model system. It was felt prudent to estimate one count 

model for each body type with vintage categories serving as explanatory variables in the 

models. The effectiveness of this simplification is tested and the results were satisfactory 

across all the vehicle body types. Ordered probit count models are estimated for car, van, 

SUV and pick-up body types. Model estimation results of car count model are presented in 

Table 5.10. 

From the model estimation results, it was observed that highest income households 

usually sport multiple cars in their fleet while low income households on the other hand 
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are not likely to multiple cars. It was also observed that three or more worker households 

tend to own multiple cars. This finding is behaviorally consistent as such households might 

usually require more than one car for daily commute travel for multiple workers in the 

households. Households living in an owned housing unit have a greater propensity of 

owning multiple cars. This variable might act as a proxy for the income of the household. 

The likelihood ratio statistic of the model (830.75) is significantly greater than critical 𝜒2 

value at 99% confidence level.  

Table 5.10 

Car Count Model Estimation Results 

Explanatory Variable Coefficient t-statistic 

Constant -2.74 -17.09 

Indicator for car 0-5 years old 0.95 14.44 

Indicator for car 6-11 years old 1.05 16.21 

Low income household ($25,000 - $49,999) -0.10 -1.63 

Highest income household (≥ $100,000) 0.19 3.10 

Three or more worker household 0.41 3.44 

Count of adult HH members at least 18 years old 0.47 9.15 

Household size = 1 -0.42 -3.93 

Household size = 4 or more -0.26 -3.64 

Housing unit owned  0.28 2.62 

Threshold parameters for index   

µ(1) 1.45 28.22 

Goodness of Fit   

Likelihood ratio 830.75 

𝜒9,0.001
2  27.88 

 

The car count models are applied on only those households for whom the HMR 

algorithm allocates at least some non-zero mileage in any of the car vintage categories. 

Suppose the HMR algorithm allocated a mileage of 10000 miles for car 0-5 years old 

category and 5000 miles for car 6-11 years old category, car count model is applied on 
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each of these categories to identify if the households own multiple cars in the category 0-

5 years old and/or car 6-11 years old. If the car count model predicts multiple cars for any 

of the categories, mileage for that alternative is evenly distributed among the number of 

predicted alternatives. In the above example, if the model predicts that the households owns 

two cars in vintage category 0-5 years, each vehicle is assigned a mileage of 5000.  

 

 

Figure 5.14. Observed vs. predicted distributions for car count. 
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The comparison of observed and predicted car counts is presented in Figure 5.14. 

Panel A presents the comparison between car count distributions of the entire dataset. The 

results presented are for the uncalibrated version of the count model. It can be observed 

that model replicates the car count distribution quite well with slight under prediction in 

the 2 car category. Some calibration of the model is warranted to better match the observed 

distributions. Panel B of the Figure 5.14 presents the car count distribution comparisons by 

income level. The model performs reasonably well in replicating the observed car count 

distributions for most of the income levels. The only segment which might require some 

further investigation is the highest income segment where the count model seems to under 

predict multiple car households.  

Table 5.11 

Van Count Model Estimation Results 

Explanatory Variable Coefficient t-statistic 

Constant -4.62 -7.75 

Indicator for Van 6-11 years old 1.95 3.92 

Indicator for Van 12 years or older 2.57 4.97 

Low income household ($25,000 - $49,999) -0.59 -1.82 

Annual mileage of Van trips 6*10-5 5.46 

TAZ with low density (3rd Quartile) 0.60 1.76 

TAZ with high regional employment accessible 

within 10 minutes by auto (1st Quartile) 
0.87 2.99 

Employment density of the TAZ that the 

household resides 
-2*10-4 -1.47 

Goodness of Fit   

Likelihood ratio 103.14 

𝜒7,0.001
2  24.32 

 

Table 5.11 presents the estimation results for van count model. From the model 

result, it was found that households tend to own multiple vans of older vintages than new 
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ones. Also, the mileage consumption variable is positive and significant. If the HMR 

algorithm allocates a high mileage to any of the van categories the count model will be able 

to identify and allocate that mileage to multiple vehicles of the same category. Low income 

households had a lower propensity to own multiple vans (or multiple vehicles of any 

category for that matter), which is intuitive. Households residing in TAZs with high 

employment density (mixed use zones) tended not to own multiple vans.  

 

 

Figure 5.15. Observed vs. predicted distributions for van count. 
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Figure 5.15 presents the comparison between observed and predicted van count 

distributions. Panel A presents the results for the entire data and van count distributions for 

various income segments is shown in Panel B. It can be observed that the model performs 

consistently well overall, as well for specific income segments. Form the figure it can be 

observed that the van count distributions are not very different across the income 

categories. Possible reason for this might be that the impetus for owning a van is not solely 

based on the affluence of the household but rather on the composition of the household 

(such as presence of a child or more number of people in the household) and the 

corresponding travel dynamics.  

Table 5.12 presents the model estimation results for SUV count model. Unlike the 

van count model, SUV count model has a positive and significant coefficient for the newer 

vintage category (0-5 years), which specifies that household who own and drive SUVs, 

like them rather new than old. Income categories used in the SUV count model show very 

intuitive findings. From model results, low income households in general have a lower 

probability of owning multiple SUVs, whereas high income households on the other hand 

have a greater propensity to multiple vehicles of this type. Usage of annual mileage variable 

in the model ensures distribution of high mileage predictions for any alternative to multiple 

vehicles in this category.  

An interesting observation with respect to the SUV count model is the magnitude 

of the coefficient on annual mileage. For SUV count model the value of this coefficient is 

4*10-5, where as in the van and pick-up count models, the value same coefficient is greater 

(6*10-5). This finding translates to the fact that households who own multiple SUVs drive 
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them for relatively lower annual mileage than that of vans and pick-up truck. This finding 

is behaviorally consistent in that SUVs are generally used for leisure travel.  

Table 5.12 

SUV Count Model Estimation Results 

Explanatory Variable Coefficient t-statistic 

Constant -3.64 -14.06 

Indicator for SUV 0-5 years old 0.90 6.16 

Indicator for SUV 12 years or older 1.50 8.61 

Count of adult HH members at least 18 years old 0.46 5.23 

Low income household ($25,000 - $49,999) -0.53 -2.84 

Highest income household (≥ $100,000) 0.40 3.57 

Annual mileage of SUV trips 4*10-5 9.92 

Three or more worker household -0.46 -1.93 

Percent of regional employment within 30 

minutes of transit accessibility from the TAZ 
-34.16 -2.07 

Goodness of Fit   

Likelihood ratio 309.57 

𝜒8,0.001
2  26.13 

 

Figure 5.16 presents comparison of observed and predicted distributions for SUV 

count model. Panel A depicts the comparison of SUV count distributions for the entire 

dataset and Panel B presents the results by income level. The model predicts presence of 

multiple SUVs across different income categories. As the category of household income 

increases, it can be observed that the presence SUVs in the household (1, ≥ 2) slowly 

increases and the model is able to predict this pattern quite well. It should be noted that the 

results presented are for uncalibrated version of the count model. Slight calibration is 

warranted to match the observed distributions better.  

 



  159 

 

Figure 5.16. Observed vs. predicted distributions for SUV count. 

 

Model estimation results for pick-up count models are presented in Table 5.13. 

Annual mileage variable is positive and significant in the model specification which avoids 

allocation of greater mileages to a single pick-up truck category. Households residing in 



  160 

TAZs with low density are found to own multiple pick-up trucks. These might refer to 

households residing in rural areas.  

Table 5.13 

Pick-up Count Model Estimation Results 

Explanatory Variable Coefficient t-statistic 

Constant -3.95 -8.40 

Indicator for pickup truck 0-5 years old 0.87 5.16 

Indicator for pickup truck 6-11 years old 1.02 6.21 

Annual mileage of pickup truck trips 0.00006 9.88 

Highest income household (≥ $100,000) -0.29 -2.08 

Three or more worker household 0.46 2.32 

Housing unit owned  0.81 1.96 

Employment density per 10 square miles 0.01 1.58 

TAZ with low density (3rd Quartile) 0.30 1.88 

TAZ with high regional employment accessible 

within 30 minutes by auto (1st Quartile) 
0.27 2.09 

Goodness of Fit   

Likelihood ratio 240.62 

𝜒9,0.001
2  27.88 

 

Highest income households (≥ $100,000) had a lower propensity to own multiple 

pick-up trucks. Figure 5.17 shows the comparison of observed and predicted distributions 

of pick-up counts. Percentage of households who own multiple pick-trucks are quite low 

in the dataset (only 3 % households own ≥ 2 pick-up trucks). The model is able to replicate 

observed patterns quite well across different income categories as well as the overall 

distribution. On the whole, results of the fleet composition model system are quite 

encouraging. Some calibration of the model system is warranted to better match the 

observed patterns. Information at such disaggregate level regarding the fleet composition 

patterns of households in a region help in accurate emission predictions. 
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Figure 5.17. Observed vs. predicted distributions for pick-up count. 

 

Sensitivity Analysis Exercise 

Once the model was found to replicate the observed vehicle ownership patterns 

satisfactorily, a sensitivity analysis exercise was carried out to examine the ability of the 

model system to respond in a meaningful way to changes in input test conditions. First, a 
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baseline scenario was established by applying the model system on the entire sample 

(4,262) households. Five scenarios were created by varying the percent of regional 

employment accessible from a households TAZ location by auto mode. The regional 

employment accessible was increased incrementally by 10%, 20%, 30%, 50% and 100% 

from the baseline. To build these scenarios, auto skims were used to select the percent 

regional employment accessible within a set travel time (10 minutes and 30 minutes) in the 

baseline and this employment was increased by respective percentages for each of the 

scenarios. This translates to increasing the accessibility of a household’s TAZ location by 

enhancing the percentage of regional employment accessible from it.  

It was observed in the modeling exercise that accessibility has a negative impact on 

vehicle ownership patterns i.e., households living in denser developments usually tended 

to own fewer vehicles. The reason for this behavior is twofold. First, households who are 

more environmentally proactive and already own fewer vehicles might self-select 

themselves into dense mixed-use urban locations. This phenomenon is called as residential 

self-selection and plays in an important role in auto ownership as well as travel demand in 

general. This topic has been the focus of many earlier studies (Cao et al., 2006; Bhat and 

Guo, 2007; Pinjari et al., 2008a; Bhat et al., 2013) and is not dealt with in the current 

research effort. The second reason is the fundamental causality between built environment 

and travel-behavior, which explains why dense urban developments tend to be more 

walk/bike/transit friendly than sparse suburban neighborhoods (Frank and Pivo, 1994; 

Cervero and Seskin, 1995; Cervero and Kockelman, 1997; Ewing, 2008). Results of the 

sensitivity analysis test are presented in Figure 5.18. The figure depicts the changes in 
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vehicle ownership patterns with varying accessibility measures. The results are aggregated 

by vehicle body type for easier understanding.  

 

 

Figure 5.18. Change in vehicle ownership patterns in response to accessibility 

enhancement. 

 

In general, the model system provides intuitive predictions for changes in vehicle 

ownership and utilization patterns in response to increasing accessibility measures. It was 

found that increasing accessibility positively influences ownership of smaller vehicles 

(such as cars) while the percent of households owning larger vehicle types (such as SUVs) 

gradually decreases. The percentage of households owning vans drops as well, but the 

changes are not as large in magnitude as that of SUVs, suggesting that households are more 

inclined to hold onto multipurpose vehicles in their fleet than the ones that are used mostly 

for luxury travel. Percent of households owning pick-up trucks remains largely unchanged. 
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The reason for this might be the type of TAZs in which households owning pick-up trucks 

usually reside in. It was observed from the results of the vehicle fleet mix model that 

households residing in rural localities usually tend to own pick-up trucks more. Such TAZs 

do not have a lot of regional employment accessible within 10 minutes of auto travel to 

begin with. And for this reason, even doubling the percent of regional employment does 

not have a significant effect on the ownership of this specific vehicle body type.  

The changes in the vehicle ownership patterns with increasing accessibility are 

largely consistent with the notion that with increasing accessibility, households need to 

drive smaller distances to fulfill their daily travel needs (going to a grocery store, a mover 

etc.). Similar studies have found that larger vehicles are preferred for long distance travel 

(Konduri et al., 2011) and are less preferred in light of increased accessibility. The percent 

of households owning motorbikes heavily increases with increasing accessibility. While 

this is an intuitive finding in the sense that such vehicles are more convenient to make short 

trips, the magnitude of this change should be interpreted with caution. The changes are 

amplified owing to a lower level of motorbike ownership in the baseline conditions (only 

190 households owned a motorbike). Even an increase of this category by 6% from the 

baseline only translates to 12 more motorbikes. 

The average annual mileage patterns in the dataset with varying accessibility levels 

is shown in Figure 5.19. The average annual mileage is computed by summing up the 

mileage attributed to a vehicle type and dividing it by the total number of vehicles in the 

fleet (for each scenario). As expected, the average annual mileage value for all motorized 

body types decreases as accessibility increases. Car mileage gradually decreases with 

increasing accessibility. This is an interesting finding in that, though the market share of 



  165 

this body type has seen an increase with increasing accessibility, there is an associated 

decrease in the usage of cars. This translates to the convenience of owning smaller vehicles 

and driving them to lower degrees with increasing accessibility.  

Vans and SUV categories also show a decreasing trend in annual mileage patterns 

though the pattern is not as consistent as in the case of cars. One plausible reason for this 

might be that as the number of vehicles in the fleet drops, even a slight change in the 

denominator in the calculation of average annual mileage might contribute to a more 

modest increase/decrease in per vehicle mileage. A closer look at both the market share 

and average mileage graphs for the van and SUV categories reveals that decrease in market 

share for these categories is more pronounced than the decrease in average annual mileage. 

It is possible that while fewer households own these vehicles in light of increased 

accessibility, the households who own such vehicles continue to drive these vehicles (on a 

per vehicle basis) for about the same number of miles. This points to the households who 

own and use larger vehicle type for long distance travel; such usage is therefore not 

impacted by changes in local accessibility. The non-motorized vehicle on the other hand 

shows a consistent increase in average annual mileage with increasing accessibility. This 

change is readily explained by the fact the decreased mileage consumption of the motorized 

alternatives translates to a corresponding increase in non-motorized mileage. Again, the 

percent increase in non-motorized mileage seems amplified due the smaller magnitude of 

non-motorized mileage in the baseline scenario. The increase in non-motorized mileage in 

the extreme accessibility scenario is about 25 miles per household per year (6% increase). 

While this may not seem all that significant, it should be noted that this is complemented 

by a corresponding decrease in motorized mileage. For the dataset under consideration this 
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comes out to about 100,000 lesser vehicle miles driven per year. An increase in 

accessibility is in general associated with increased levels of walking and bicycling (Ewing 

and Cervero, 2001; Krizek, 2003) synonymous to the travel characteristics of mixed use 

urban neighborhoods. 

 

 

Figure 5.19. Change in annual mileage consumption patterns in response to  

accessibility enhancement. 

 

In addition to replicating the observed fleet composition patterns quite well in the 

base year, the model system is found to respond in a behaviorally intuitive way to changes 

in inputs provided. This reinforces the confidence in using the developed model system as 

a plug-in fleet composition module to any of the existing activity-based models in practice. 

For ease of integration, the model system is completely coded on open source coding 
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platform ‘R’. A brief description of the fleet composition package developed as a part of 

this effort is provided in the next section. 

 

Vehicle Fleet Composition Package 

The vehicle fleet composition package is developed on open source coding platform ‘R’ 

for ease of integration to any exciting activity-based model systems. The system takes 

socio-economic data as input and outputs the fleet composition for every household in the 

dataset that meets set tolerance criteria. There a two parts to the fleet composition model 

package 

i. Model Estimation: This part consists of all the codes required for estimating various 

components of the vehicle fleet composition model system. This includes codes for 

estimating MNL, OP, MDCEV and transformed linear regression models. The 

intent for providing estimation codes is so that the modelers are provided with the 

ability to readily update the models with newly available data in the future. 

ii. Model Application: This part consists of the codes required to apply the fleet 

composition model system for any given dataset. The application of each of the 

model components is coded following the logic explained earlier in this section. 

Figure 5.20 presents a screenshot of a sample application (in an add-on package 

called R-studio) of the model system. The top left window houses the code for 

estimation/application of the model system while the bottom left window prints the 

results for each of the components so that the analyst can perform intermediate 

checks as necessary. Any graphical results for comparing observed and predicted 
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fleet composition patterns is outputted to the bottom right window. The application 

file has two main components that control and run the code. 

 

Figure 5.20. Vehicle fleet composition model system in ‘R’. 

 

 Control file: This file contains the coefficients of all the estimated model 

components of the vehicle fleet composition package. If any of the models are 

re-estimated with new data, The new coefficients need to be updated in this 

control file for them to take effect and impact the fleet composition patterns. 

 Main file: This files reads the socio-economic data provided and applies all of 

the model components in sequence. An output file is written with fleet 

composition as well as mileage allocation for each of the households in the 

dataset. 
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Summary and Conclusions 

The vehicle fleet composition simulator developed as part of this research effort is quite 

comprehensive and shows promise in depicting the snapshot of vehicle fleet composition 

in the observed data along multiple dimensions. The model system developed is 

parsimonious in the sense that number of model components are kept to a minimum, yet 

quite effective in predicting vehicle ownership patterns accurately. The model system takes 

any horizon year data comprising of the socio-demographic characteristics of the 

households as well as built environment characteristics of household’s residential location 

and predicts the vehicle owned by a household classified by body type, age and count. The 

model system is tested for its sensitivity to changing land use characteristics and it provided 

logically intuitive results.  

A shortcoming of the model system that future research should focus on is including 

a vehicle turnover module in addition to a fleet composition module that can determine the 

vehicular transactions (adding a new vehicle, selling a vehicle, scrapping etc.) at the 

household level over a period of time. Another enhancement to the model system is joint 

estimation of the body type and count components in the proposed framework. These two 

dimensions in a household’s vehicle fleet are inextricably linked and hence arises the 

necessity to tie a count model to the multiple discrete-continuous model so that counts of 

vehicles within each type may be accurately predicted in a joint modeling framework. Next 

section discusses the model estimation results of a joint household vehicle fleet 

composition and count model system intended to enhance the fleet composition simulator 

proposed in this chapter. 
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CHAPTER 6 

INTEGRATED MODEL OF FLEET COMPOSITION AND COUNT 

 

The material in this chapter is drawn substantially from the following paper, accepted for 

publication: 

Garikapati, V. M., R. Sidharthan, R. M. Pendyala, and C. R. Bhat, "Characterizing 

Household Vehicle Fleet Composition and Count by Type in an Integrated Modeling 

Framework," forthcoming, Transportation Research Record. 

 

This chapter presents the results of a proposed model system that could potentially replace 

several components of the vehicle fleet composition model system with an integrated 

model design framework. Previous chapter presented the model estimation results of a 

vehicle fleet composition model system proposed as a part of this research effort. One of 

the key components in the model system is an MDCEV model of vehicle fleet mix, which 

predicts the array of vehicles owned by a household. Although the MDCEV modeling 

methodology constitutes a promising development in the modeling of vehicle fleet 

composition and utilization, it is not without its limitations. One of the key limitations of 

MDCEV model is that the model does not return the exact count of vehicles that a 

household owns within each vehicle type category. Suppose a vehicle type category is 

defined by a combination of body type and age group as “cars 0-5 years old”. While the 

MDCEV model is able to indicate whether a household consumes (owns) cars 0-5 years 

old and the total miles that vehicle(s) in that category are driven (utilized), the model is not 

able to return the exact count of vehicles within the category. For this reason, separate 
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count models are estimated and tied to the MDCEV model system to predict the exact count 

of vehicles for each vehicle alternative predicted by the MDCEV model.  

Though this methodology seems to work reasonably well in the context of the 

current study, it was felt prudent to enhance the framework to overcome this problem. One 

way is to define the vehicle type categories in such fine disaggregation that it is virtually 

impossible for a household to own multiple vehicles in any of the categories. However, 

this may lead to the definition of a prohibitively large number of discrete alternatives in 

the MDCEV model. There is, essentially, a critical need for the ability to tie a count model 

to the multiple discrete-continuous framework so that counts of vehicles within each type 

may be accurately predicted. In addition to this key limitation, the MDCEV model has 

drawbacks similar to those of the traditional single discrete choice multinomial logit model 

including violations of the IIA property in the presence of correlated alternatives and the 

inability to reflect random taste variations in the behavioral choice phenomenon under 

investigation. 

To overcome these limitations of the MDCEV model, Bhat et al. (2013) recently 

formulated and developed a multiple discrete-continuous probit (MDCP) model that can 

be tied together with a multivariate count model in an integrated modeling framework. Just 

as the multinomial probit (MNP) model offers a methodology to overcome the limitations 

of the logit model, the MDCP model offers a methodology to overcome the limitations of 

the MDCEV model. The joint MDCP-multivariate count modeling methodology (Bhat et 

al., 2013) is applied in this research effort to model vehicle fleet composition and 

utilization, and the number of vehicles (vehicle count) within each vehicle type alternative, 

so that the fleet mix of a household can be characterized in its entirety. This methodology 
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is proposed to replace the MDCEV and count components with a joint modeling framework 

in future incarnations of vehicle fleet composition model system. The joint model system 

is estimated on the same data used in previous chapter, the 2008-2009 National Household 

Travel Survey sample drawn from the Greater Phoenix metropolitan area in Arizona.  

 

Modeling Methodology 

This section presents a brief overview of the multiple discrete-continuous probit (MDCP) 

– multivariate count (MC) modeling methodology employed in this effort. The complete 

details of the model formulation and methodology are provided in Bhat et al. (2013) and 

hence only a brief synopsis is provided here.   

 The use of the MDCP model in the current effort, rather than the multiple discrete-

continuous extreme value (MDCEV) model (Bhat, 2005; 2008), is motivated by the need 

to tie the multiple discrete-continuous (MDC) model component (which caters to modeling 

the fleet composition dimension) with the multivariate count (MC) model (which handles 

the number of vehicles within each vehicle class dimension). For the MC model, a latent 

variable representation with normal error terms is used, and this facilitates the linkage with 

the MDCP model which is also based on a multivariate normal characterization of the error 

distribution. The model components are described further in this section.  

The multiple discrete-continuous probit (MDCP) model. The utility equation 

proposed by Bhat (2008), where a consumer maximizes his/her utility subject to a binding 

budget constraint is: 
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where 0x  is the consumption quantity (vector of dimension K×1 with elements 

kx ), and k , k , and k  are parameters associated with good k. In the linear budget 

constraint, E  is the total expenditure (or income) of the consumer )0( E , and kp  is the 

unit price of good k as experienced by the consumer. The utility function form in Equation 

(6.1) assumes that there is an essential outside good consumed by all behavioral units. k

)1( k  
and k  capture satiation effects and hence it is difficult to disentangle and 

uniquely identify the effects of both parameter vectors. Bhat (2008) suggests estimating 

both a  -profile and   -profile model specification (i.e., specifications in which only one 

of the parameter vector is free to be estimated, and the other vector is restricted) and choose 

the one that fits the data best. In addition to explaining satiation effects, k  also enables 

corner solutions (zero consumption) for alternatives, and hence is often preferred in 

empirical application contexts. k )0( k  represents the stochastic baseline marginal 

utility; it is the marginal utility at the point of zero consumption. To complete the model 

structure, stochasticity is added by parameterizing the baseline utility as follows (see Bhat, 

2008 for a detailed discussion):  

 

),exp( kkk ξz    (6.2) 
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where kz  is a D-dimensional column vector of attributes that characterize good k,   is a 

corresponding vector of coefficients (of dimension D×1), and k  captures the idiosyncratic 

(unobserved) characteristics that impact the baseline utility of good k. Bhat et al. (2013) 

assumes that the error terms k  are multivariate normally distributed across goods k: 

),(~),...,,( 21 Λ0KKK MVN  , where ),( Λ0KKMVN  indicates a K-variate normal 

distribution with a mean vector of zeros denoted by 
K0  and a covariance matrix .Λ  

The multivariate count (MC) model. Let ky  be the index for the count (say, of 

vehicles) for discrete alternative k, and let kl  be the actual count value observed for the 

alternative. Castro et al. (2012) recast the count model for each discrete alternative using a 

special case of the generalized ordered-response probit (GORP) model structure as follows: 

kky *
, kk ly   

kk lkklk yif ,
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1,    , ......},2 ,1,0{kl  ,   (6.3) 

     






















 




k

k

kk

l

r

r

k
lklk

r
esf

0

1

,,
!

)(


 
, where kk sς

ek .  

In the above equation, 
*

ky  is a latent continuous stochastic propensity variable 

associated with alternative k that maps into the observed count kl  
through the k vector, 

which is itself a vertically stacked column vector of thresholds ) ,..., ,,( 2,1,0,


kkk  . This 

variable, which is equated to k  in the GORP formulation above, is a standard normal 

random error term. 
kς  is a vector of parameters (of dimension 1

~
C ) corresponding to the 

conformable vector of observables ks (including a constant).  
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The 
k  terms may be correlated across different alternatives because of unobserved 

factors. Formally, define )'.,,,,( 321 K   Then   is assumed to be multivariate 

standard normally distributed: ),0(~ kKMVN , where   is a correlation matrix.  

Joint model system and estimation approach. An important feature of the 

proposed joint model system is that ky  (the count corresponding to discrete k) is observed 

only if there is some positive consumption of the alternative k as determined in the MDC 

model. That is, ky  is observed only if 0* kx , and 0ky  in this case ( ky  is not observed if 

0* kx ). Thus, the proposed model resembles the hurdle model used in the count literature, 

albeit with the flexibility that the error components of the MDC model ( ) and the MC 

model ( ) can be correlated. As a result, the estimation approach involves the joint 

estimation of the MDC and MC model components. For details on the derivation of the 

likelihood expression, and the estimation procedures, please see Bhat et al. (2014). 

 

Data  

The data set used in this study is derived from the 2008-2009 National Household Travel 

Survey (NHTS), which is a survey of the nation’s travel behavior conducted by the US 

Department of Transportation on a periodic basis. In the 2008-2009 version of the survey, 

individual jurisdictions were provided the option to purchase additional samples for their 

region to aid in model development and travel behavior analysis at the local and regional 

level. The Maricopa Association of Governments (MAG), the planning agency for the 

Greater Phoenix metropolitan area, purchased more than 4,400 such add-on sample 
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households, thus obtaining a large sample household travel survey data set that could be 

used for model development and estimation purposes.  

Each respondent household was geolocated within a traffic analysis zone. Using 

secondary traffic analysis zone (TAZ) and network skim data provided by MAG, the data 

set is augmented with an extensive set of built environment and accessibility variables. The 

built environment variables characterized the density and development patterns within the 

residential location TAZ of each household. The accessibility variables served as measures 

of the amount of employment in the region that could be accessed from the household’s 

residential TAZ within certain travel time bands by auto (10 and 30 minute bands) and 

transit modes (30 and 60 minute bands). As built environment and accessibility variables 

are likely to be important predictors of vehicle fleet composition and utilization, it was 

considered important to augment the travel survey data set with such secondary variables. 

Vehicle type choice was characterized by five distinct body type alternatives, 

namely, car, van, sport utility vehicle (SUV), pick-up truck, and motorbike. Further 

disaggregation of vehicle type alternatives can be done. For example, it is possible to 

consider a disaggregation of vehicle body types by age category and fuel type category. 

While such a disaggregation of vehicle type classification is appealing, the number of 

households with non-zero consumption in the various categories could easily become too 

thin to support model estimation of such a joint model system. Moreover, with the inclusion 

of a multivariate count model within the modeling framework, it is not necessary to try and 

create a disaggregate categorization where households consume (choose to own) only one 

vehicle. An annual mileage value (continuous dimension) is associated with each vehicle 

in the estimation data file. Future work in this area should focus on enhancing the model 
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specification to include a couple of vintage categories (perhaps classifying old and new 

vehicles) within each bod type. 

In addition to the five vehicle choices, an outside good that is consumed by all 

households is introduced in the choice set to account for zero-vehicle households. This 

outside good is the non-motorized vehicle mileage. All households have to walk (and/or 

bike) for at least some non-zero distance over the course of an entire year. For households 

that report walk and bicycle trips in the survey, the reported non-motorized distance is 

scaled up to compute an annual non-motorized vehicle mileage. For households that report 

absolutely no walk and bicycle trips in the survey, a value for this consumption is estimated 

as 0.5 miles/person/day x 365 days/year x household size. This approximation is found to 

be reasonable and model parameter estimates are robust to alternative mileage computation 

schemes for the outside good (Vyas et al., 2012). The result of the exercise is creation of a 

data set where every household has six alternatives, one of which is consumed by each and 

every household. 

The data set was subjected to an extensive quality check and cleaning process to 

ensure that the data would be able to support the model estimation effort. The final cleaned 

data set includes 4,262 households owning 7,785 vehicles. The socio-economic and 

demographic characteristics of the sample are same as the ones provided in the last chapter 

(see Table 5.1) and are hence not repeated here. On average, households owned 1.95 

vehicles per household. Average household size is 2.43 persons per household. There are 

1.9 adults per household, and just about one worker per household (on average). There are 

1.83 drivers and 0.53 children per household. A vast majority (95.8 percent) live in single 

family dwelling units and just about 85 percent of the respondent sample owns the home 
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in which they live. An examination of the income distribution shows that 47 percent of the 

households have incomes that fall within the band of $25,000 to $75,000 per year. About 

one-fifth of the households have incomes greater than $100,000.    

 Table 6.1 presents the vehicle ownership profile in the survey sample. The average 

age of pick-up trucks is larger than other vehicles in the fleet. Sport utility vehicles tend to 

be newer relative to the other vehicle types. A majority of the vehicles (3,997 of 7,785) are 

cars. The number of vans is less than 10 percent of all vehicles at just 635. Pick-up trucks 

and sport utility vehicles are prevalent in larger numbers than vans. The number of 

motorbikes is rather modest at 240. Panel B shows the age distribution for the vehicles in 

each body class. An examination of the age distribution suggests that SUVs tend to be 

newer vehicles, while cars and pick-up trucks tend to be older vehicles in the fleet.   

Table 6.1 

Vehicle Fleet Mix and Mileage Characteristics 

Panel A. Vehicle Body Type 

  Car Van SUV Pick-up Motorbike 

Average Age 8.55 7.46 6.52 9.52 9.21 

Average Mileage 10204.41 11317.66 11296.57 10722.98 3838.92 

Number of Vehicles 3,997 635 1,537 1,376 240 

Panel B. Vehicle Type vs Age 

Age      

0 - 5 Years 42.00% 40.90% 52.40% 34.20% 43.30% 

6 - 11 Years 35.20% 44.30% 35.30% 39.50% 35.40% 

≥ 12 Years 22.80% 14.80% 12.20% 26.30% 21.30% 

Total 100.00% 100.00% 99.90% 100.00% 100.00% 

 

Model Estimation Results 

This section provides a summary of the model estimation results. The model estimation 

effort involved a systematic attempt at including explanatory variables such that the model 
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offered behaviorally intuitive and statistically significant interpretations. Some variables 

were retained in the model specification even if they were statistically insignificant for 

considerations of behavioral sensitivity and intuitiveness.  

MDCP component. Estimation results for the MDCP component are furnished in 

Tables 6.2 and 6.3. A -profile of MDCP model was estimated with one outside good. A 

baseline utility equation is estimated for each vehicle type. The values of the coefficient 

estimates indicate whether a certain characteristic or variable positively or negatively 

contributes towards ownership (consumption) of that vehicle type. Cars tend to be owned 

by smaller households evidenced by the negative coefficients on child presence and 

household size. It is to be expected that larger households, and households with children, 

have a higher baseline preference to own SUVs and vans – this is indeed supported by the 

model estimation results as single person households show a negative propensity to own 

larger vehicle types. 

Households at all income levels show a proclivity towards owning SUVs 

(presumably at different vintage levels), with the highest positive coefficient exhibited by 

the high income household category. Retired households with no children and those renting 

their single family housing unit have a lower preference to own SUVs. Home ownership, 

on the other hand, is positively associated with SUV ownership. It is found that high 

income households shy away from owning vans, a finding that is consistent with 

expectations. Higher income household are more likely to prefer luxury vehicles and vans 

generally do not come in luxury models. 

It is found that multi-worker households are less likely to own vans, a finding that 

merits further investigation. Again, it is likely that these households are higher income 
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households who prefer to own luxury vehicles. In the case of pick-up trucks, high income 

households tend to show a lower inclination to own trucks. Retired households, single 

person households, very large households, and households in single family dwelling units 

all have a low preference to own pick-up trucks. As pick-up trucks tend to be more 

specialized and likely to be used as utility and work-related vehicles to haul cargo, it is not 

surprising that there is a general disinclination to own pick-up trucks across the board. 

Households that own their residence and households with two workers show a positive 

inclination to own trucks.  

Single person households and large households are less likely to own motorbikes 

(similar to pick-up trucks). It is likely that motorbikes and pick-up trucks are owned by two 

or three person households (not single person and not too large). Households in all come 

income categories show an inclination to own motorbikes with those in the middle range 

exhibiting larger coefficients. Retired households, as expected, are less likely to own 

motorbikes. Households in rural area, households that own their single family dwelling 

unit, and two worker households are more likely to own motorbikes (again similar to pick-

up trucks). As both pick-up trucks and motorbikes tend to be rather specialized vehicles, 

they appear to exhibit common traits.  
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Table 6.2. 

MDC Component Estimation Results: Significant Parameters in Baseline Utility 

Vehicle 

Body Type 
Explanatory Variables Coefficient t-statistic 

Car 

Constant 1.20 9.29 

Child presence -0.13 -2.82 

Household size -0.19 -12.67 

High income household ($75,000 - $99,999) 0.06 1.50 

Retired household (one/two person) with no children -0.14 -3.81 

Single family housing unit (owned) 0.29 7.03 

Household residing in TAZ with low density  0.60 4.88 

Household residing in TAZ with medium density  0.63 5.18 

Household residing in TAZ with high density  0.61 4.97 

Van 

Constant 0.31 2.53 

Household size = 1 -0.11 -1.74 

Highest income household (≥ $100,000) -0.16 -2.97 

Single family housing unit -0.26 -1.84 

Single family housing unit (owned) 0.39 5.33 

Two worker household -0.12 -2.45 

Three worker household -0.34 -3.58 

Household residing in TAZ with medium density  0.08 2.05 

SUV 

Constant 0.93 8.94 

Household size = 1 -0.16 -13.71 

Lowest income household (< $25,000) 0.12 2.11 

Low income household ($25,000 - $49,999) 0.36 6.26 

Medium income household ($50,000 - $74,999) 0.29 4.59 

High income household ($75,000 - $99,999) 0.43 7.17 

Retired household (one/two person) with no children -0.22 -5.59 

Single family housing unit -0.21 -2.05 

Single family housing unit (owned) 0.51 8.20 

Three worker household -0.10 -1.12 

Proportion of households in the lowest income quintile -0.39 -3.38 

PickUp 

Constant 1.24 12.10 

Child presence -0.17 -3.04 

Household size -0.14 -7.14 

Household size = 1 -0.24 -4.33 

Highest income household (≥ $100,000) -0.13 -3.38 

Retired household (one/two person) with no children -0.30 -6.96 

Single family housing unit -0.42 -4.05 

Single family housing unit (owned) 0.58 9.12 

Two worker household 0.13 3.52 

Motorbike 

Constant -0.04 -0.21 

Household size -0.27 -8.93 

Household size = 1 -0.24 -2.15 

Low income household ($25,000 - $49,999) 0.24 1.83 

Medium income household ($50,000 - $74,999) 0.42 3.04 

High income household ($75,000 - $99,999) 0.39 2.78 

Highest income household (≥ $100,000) 0.24 1.68 

Retired household (one/two person) with no children -0.38 -4.83 

Household in rural area 0.24 3.80 

Single family housing unit (owned) 0.49 4.28 

Two worker household 0.11 1.62 



  182 

The translation parameters from the model estimation result are furnished in the 

Table 6.3. Translation parameters represent the diminishing marginal returns with 

increasing consumption of an alternative. Van has the highest translation parameter, 

suggesting that it tends to be driven most. Vans tend to be multipurpose family vehicles, 

and are used for long distance family vacation trips. Thus this finding is consistent with 

expectations. SUV has the next highest translation parameter, once again consistent with 

expectations. These vehicles are more likely to be driven longer distances. Cars and 

motorbikes show lower translation parameters, presumably because these vehicles are 

driven shorter distances. 

Table 6.3 

MDC Component Model Estimation Results: Translation Parameters 

Vehicle Body Type Coefficient t-statistic 

Non-motorized vehicle 0 0 

Car 22.75 74.8 

Van 73.11 27.89 

SUV 36.54 53.41 

Pick-Up 29.14 52.43 

Motor 10.9 26.66 

 

Multivariate count component. Estimation results for the multivariate count 

model component are furnished in Table 6.4. The parameters in table refer to the elements 

of the 
kς vector (k=1,2,3,4) embedded in the threshold functions.  

  



  183 

Table 6.4 

Multivariate Count Component Model Estimation Results 

Vehicle 

Body Type 
Explanatory Variables Coefficient t-statistic 

Car 

Constant -0.12 -0.66 

Child presence -0.4 -5.88 

Household size = 1 -1.26 -12.37 

Household size = 2 -0.29 -4.75 

Zero worker household -0.23 -3.38 

Three or more worker household 0.43 6.08 

Lowest income household (< $25,000) -0.14 -1.65 

High income household ($75,000 - $99,999) 0.18 2.85 

Highest income household (≥ $100,000) 0.27 5.11 

Proportion of single family housing units in the TAZ 0.28 2.31 

Retired household (one/two person) with no children 0.07 1.14 

Household in rural area -0.07 -1.29 

Single family housing unit -0.51 -3 

Single family housing unit (owned) 0.36 3.13 

Van 
Constant -2.49 -12.94 

Three or more worker Household 0.74 1.45 

SUV 

Constant -2.25 -6.47 

Household size = 1 -2.02 -3.73 

Three or more worker household 0.47 3.82 

Lowest income household (< $25,000) -0.44 -1.95 

Low income household ($25,000 - $49,999) -0.66 -3.81 

Highest income household (≥ $100,000) 0.51 5.74 

Proportion of single family housing units in the TAZ 0.72 2.91 

Retired household (one/two person) with no children -0.34 -3.16 

Household in rural area -0.13 -1.47 

Single family housing unit (owned) 0.56 2.2 

Pick-up 

Constant 0.23 1.25 

Child presence -0.51 -3.99 

Household size = 1 -1.24 -5.06 

Household size = 2 -0.58 -4.64 

Zero worker Household -0.19 -1.15 

One worker household -0.29 -3.01 

Lowest income household (< $25,000) -0.45 -2.36 

Retired household (one/two person) with no children -0.41 -2.85 

Household in rural area 0.14 1.52 

Single family housing unit -1.46 -4.52 

Single family housing unit (owned) 0.71 2.53 

 

The constant coefficient in the 
kς  vector does not have any substantive 

interpretation. For the other variables, a positive coefficient in the 
kς  vector for a specific 

vehicle type k shifts all the thresholds toward the left of the count propensity scale for that 
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vehicle type, which has the effect of reducing the probability of one vehicle of type k if the 

household decides to own vehicles (which is determined by the MDC component). That is, 

the household has a higher probability of owning multiple vehicles of type k, should it hold 

any vehicles at all of that type. On the other hand, a negative coefficient shifts all the 

thresholds toward the right of the count propensity scale, which has the effect of increasing 

the probability of one vehicle of type k (or decreasing the probability of multiple vehicles 

of type k), conditional on owning a vehicle of type k . 

It is found that households with children are less likely to own multiple cars or pick-

up trucks. This is consistent with expectations as such households are likely to own larger 

SUV and van type vehicles, thus resulting in a lower propensity to own cars and pick-up 

trucks. Single person households are less likely to own more than one vehicle of any type. 

This is behaviorally intuitive as single person households would not generally own more 

than one vehicle. Households with three or more workers are more likely to own multiple 

cars, presumably because these households need multiple cars to meet their commuting 

needs. These household may also have a higher income, making it possible for them to own 

multiple cars. They appear to choose multiple cars or multiple vans, presumably because 

these vehicles offer better fuel economy.  

An examination of the income dummy variables shows that lowest income 

households are less likely to own multiple cars, pick-up trucks, or SUVs, while high income 

households are more likely to own multiple vehicles – particularly in the car and SUV 

categories. These findings are consistent with expectations. Households in rural areas are 

more likely to own pick-up trucks and less likely to own multiple cars or SUVs. As these 

households tend to own a pick-up truck, they are likely to own just one (if any) of the other 
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vehicle types. Retired households are less likely to own multiple SUVs, a finding that is 

consistent with expectations. These households would not have the need for multiple large 

vehicles; likewise, these households are less likely to own multiple pick-up trucks. On the 

other hand, retired households are more likely to own multiple cars. Households that own 

their single family dwelling unit are more likely to own SUVs. Households of small size 

(one or two person) are less likely to own multiple pick-up trucks; as these tend to be 

specialized vehicles, it is unlikely that small households would need to own multiple 

vehicles of this category. The negative coefficients on these variables are indicative of this. 

Table 6.5 

Joint Model System: Error Correlation Matrix 

  Panel A   Panel B 

  Car Van SUV PickUp Motor NM Car Van SUV PickUp Motor 

Car 1 0.5 0.5 0.5 0.5 0 0.454 -0.257 -0.311 -0.231 0 

Van 0.5 1 0.5 0.5 0.5 0 -0.202 0.296 -0.192 -0.198 0 

SUV 0.5 0.5 1 0.5 0.5 0 -0.314 -0.092 0.468 -0.165 0 

PickUp 0.5 0.5 0.5 1 0.5 0 -0.216 -0.144 -0.203 0.506 0 

Motor 0.5 0.5 0.5 0.5 1 0 0.055 -0.305 0.074 0.057 0 

  Panel C   Panel D 
NM 0 0 0 0 0 1 0 0 0 0 0 

Car 0.454 -0.202 -0.314 -0.216 0.055 0 1 -0.394 -0.34 -0.182 0 

Van -0.257 0.296 -0.092 -0.144 -0.305 0 -0.394 1 -0.066 -0.131 0 

SUV -0.311 -0.192 0.468 -0.203 0.074 0 -0.34 -0.066 1 -0.083 0 

PickUp -0.231 -0.198 -0.165 0.506 0.057 0 -0.182 -0.131 -0.083 1 0 

Motor 0 0 0 0 0 0 0 0 0 0 1 

 

Table 6.5 presents the error correlation matrix for the joint model system. The top 

left matrix (Panel A) refers to the MNP error differences in the MDC component of the 

joint model and the bottom right matrix (Panel D) corresponds to the error correlation 

matrix for the count propensities. The off diagonal block of (Panels B and C) the matrix is 

the covariance matrix between MNP errors and count propensities, which is the main focus 
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of this effort. All of the error correlations presented in the table are found to statistically 

significant. 

In general, it is found that within body type correlations are positive while cross 

body type correlations are negative. For example, the error correlation for car across the 

two model components is positive. This suggests that unobserved factors that contribute to 

car consumption in the MDCP component also contribute to owning more cars in the MC 

component. Such positive correlations are seen for all vehicle body types. This is consistent 

with expectations; it is very likely that unobserved attributes that contribute to greater 

mileage of a certain vehicle type will also contribute to a higher vehicle count for this class. 

A household whose members appreciate and desire comfortable and roomy vehicles are 

likely to choose and drive larger vehicles (such as vans and SUVs), and the same 

unobserved factors (desire for comfortable and roomy vehicles) will also contribute to such 

households owning multiple large vehicles. Across vehicle categories, error correlations 

are generally found to be negative, suggesting that there is an inherent inverse effect across 

body types. In the above example, the unobserved factors (desire for comfortable and 

roomy vehicles) are the very same factors that will negatively impact the choice of smaller 

vehicles such as cars or vehicles with harsher rides such as pick-up trucks. Thus, the 

correlation between cars and vans (or SUVS and pickup trucks) is negative, both within 

the model component and across model components.  

A rather interesting finding from the table is correlation between the model 

components for motorbike category. It can be observed from the table that error terms for 

motorbike have a positive correlation across all body types except vans. The behavioral 

interpretation of this finding is that ownership and usage of motorbikes (which is a 
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specialized vehicle category, thereby marking its presence across all type of households) 

is in general positively correlated to ownership and usage of any other body type. Only 

households owning vans have unobserved factors that portray a disinclination towards 

owning motorbikes (negative correlation of error terms). Observations in the data as well 

as significant variables in the model specification suggest that ownership of vans is 

positively influenced by presence as well as number of children in the household. The 

indisposition of such households to own and use motorbikes is intuitive. It should however 

be noted that error correlations for motorbike category are quite modest compared to other 

vehicle body types. 

 

Model Goodness of Fit and Assessment 

Goodness of fit measures of the joint model are furnished in Table 6.6. The model system 

is found to offer a good fit with the log-likelihood of the final model at convergence equal 

to -20989.96.  

Table 6.6 

Joint Model System: Goodness of Fit Measures 

Statistic Value 

Log-likelihood of final model at convergence -20989.97 

Degrees of freedom of final model 112 

Log-likelihood of base model at convergence -22191.08 

Degrees of freedom of base model 14 

Likelihood ratio 2402.23 

𝜒98,0.001
2  146.99 

 

The log-likelihood of the base model with only constants in the baseline utility, 

translation parameters, and constants in the count models is -22191.08. The likelihood ratio 
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for the estimated model is 2402.23, which is significantly larger than the critical
2 value 

with 98 degrees of freedom at any level of significance. In addition to examining model 

goodness-of-fit statistics, an assessment of the efficacy of estimating a joint model system 

(MDCP-MC) was performed. A simple assessment can be made by comparing the fit and 

indications offered by the joint model against those offered by an independent MDCP-MC 

model system where error correlations across the discrete-continuous and count 

components of the model system are ignored. The latter is akin to estimating two model 

components separately and then applying them in forecast mode in a sequential fashion – 

first, apply the MDCP model to predict the vehicle fleet mix by body type, and second, 

given the predictions of this model component, apply the count model for each body type 

consumed by a household to estimate the number of vehicles owned in each class. An 

independent MDCP-MC model system was estimated by setting all error correlations equal 

to zero. The coefficient estimates and goodness of fit statistics were compared between the 

two models. It was found that the independent model system offered coefficient estimates 

that were considerably different from those provided by the joint model and the goodness 

of fit was inferior to the joint model. This comparison offered the first indication that the 

joint modeling approach is critical to modeling vehicle fleet composition, utilization, and 

count in a holistic framework.  

An examination of the error covariance matrix (Table 6.5) shows that there are a 

number of significant error correlations across the alternatives in the MDCP model 

component and the MC (count) model component. The large number of significant error 

correlations lead to two noteworthy considerations. First, the joint model is capable of 

accounting for error correlations that may exist across choice dimensions. Ignoring such 
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error correlations, when in fact they exist, will lead to inconsistent parameter estimates 

unsuitable for forecasting applications. Second, it points to the presence of unobserved 

factors that affect behavior and yet remain accounted in the model specifications. 

Qualitative research methods should be employed to identify these factors, and survey 

designs should be enhanced to measure these variables so that they may be included as 

observed covariates in the model specifications. 

Table 6.7 

Comparison of Measures of Fit - Per Household: Log-likelihood by Subsample 

Sample details 
Number of 

households 
Joint Model 

Independent 

Model 

Full Sample 4262 -4.9249 -5.0585 

Household Size    

Household size = 1 992 -1.8513 -1.8384 

Household size = 2 1830 -4.9422 -5.0938 

Household size greater than 2 1440 -7.0204 -7.2320 

Household income     

Lowest income household (< $25,000) 759 -2.6603 -2.6880 

Low income household ($25,000 - $49,999) 1210 -3.9486 -4.0106 

Low income household ($50,000 - $74,999) 800 -5.3207 -5.4750 

High income household ($75,000 - $99,999) 640 -6.4789 -6.6743 

Highest income household (≥ $100,000) 853 -6.7878 -7.0514 

Number of workers in household    

Zero worker Household 1496 -5.8713 -6.0516 

One worker household 1597 -4.9777 -5.0945 

Two worker household 1011 -6.7623 -7.0083 

Three or more worker household 158 -9.2027 -9.6031 

Household TAZ density    

Lowest density 16 -8.5189 -8.6719 

Household in TAZ with low density  620 -5.4100 -5.5464 

Household in TAZ with medium density  2158 -5.1054 -5.2616 

Household in TAZ with high density  1468 -4.4155 -4.5146 

Single family housing unit    

No 179 -3.4535 -3.5164 

Yes 4083 -4.9894 -5.1261 

Single family housing unit (owned)    

No 642 -3.0915 -3.1396 

Yes 3620 -5.2501 -5.3988 

Retired household (one/two person) with no children   

No 2504 -5.7956 -5.9667 

Yes 1758 -3.6848 -3.7650 

Household in rural area    

No 3570 -4.6936 -4.8194 

Yes 692 -6.1182 -6.2921 
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In addition to an examination of the error correlations, a comparison of the joint 

and independent model systems was performed by computing the log-likelihood value on 

a per household basis for a number of subsamples in the survey data set. If the log-

likelihood in one model is higher than that in the other model, then the model with the 

higher log-likelihood may be considered superior from a statistical perspective. If the 

improvement in log-likelihood per household is seen across all (or nearly all) subsamples, 

then it indicates that such a model is likely better able to predict vehicle ownership, fleet 

composition, count, and utilization patterns for all socio-economic and demographic 

market segments. This comparison is presented in Table 6.7. 

The comparison in Table 6.7 suggests that the joint model is consistently 

performing better than the independent model across all socio-economic and demographic 

market segments. The log-likelihood value per household is consistently higher (and 

therefore better) in the joint model relative to the independent model. There is only one 

subsample for which this does not hold true – household size=1. For single person 

household subsample, it is found that the independent model system is very marginally 

better. For every other market segment depicted in the table, the joint model offers a 

stronger fit as evidenced by the higher likelihood value.  

 

Summary and Conclusions 

The motivation for this effort stems from the growing interest in modeling household 

vehicle fleet composition and utilization behavior so that richer predictions of vehicle fleet 

mix and miles of travel by vehicle type can inform energy and environmental analysis. 

Recent work in this domain has focused on the development and application of techniques 
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that recognize the multiple discrete-continuous nature of the vehicle fleet composition and 

utilization modeling problem. Recent work involving the use of the multiple discrete 

continuous extreme value (MDCEV) model has provided a promising approach to model 

vehicle fleet composition and utilization behavior. However, the MDCEV model is not 

able to offer predictions of the count of vehicles within each vehicle class, thus 

necessitating the statistically inefficient and behaviorally counter-intuitive stitching of a 

separate count model system (to the MDCEV model) capable of predicting vehicle counts. 

Such an approach ignores the presence of possible common unobserved factors affecting 

both the consumption of alternative vehicle types and the number of vehicles owned within 

each vehicle type.  In order to overcome this limitation and account for such presence of 

common unobserved factors, this research effort employs a joint model that incorporates a 

multiple discrete-continuous probit (MDCP) model component and a multivariate count 

(MC) model that takes the form of the generalized ordered probit model structure. The use 

of the probits in the two model components allows the use of multivariate normal 

distribution to characterize the error covariance structure accommodating correlations 

between the MDCP component (that models vehicle type choice and mileage) and the MC 

component (that models the number of vehicles or vehicle count within each chosen vehicle 

class).  

The model is estimated on a household travel survey data set of 4,262 households 

drawn from the Greater Phoenix region of Arizona in the United States. The model system 

is found to offer plausible parameter estimates with a host of socio-economic, 

demographic, and built environment variables affecting both the MDCP model of vehicle 

type choice and mileage, and the MC model of vehicle counts. The model is found to fit 
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the data well, and a comparison of the goodness of fits between the joint model presented 

and an independent model that ignores error correlations across the choice dimensions 

shows that the joint model consistently outperforms the independent model system. The 

comparison involved an examination of the per-household log-likelihood value between 

the two model systems; the model with the larger log-likelihood value offers the better fit 

to the data. The joint model is found to offer a better fit for all socio-economic and 

demographic market segments of interest. In addition, it was found that there were a 

number of significant error correlations across the two choice dimensions in the joint 

model. The presence of significant error correlations implies that there are common 

unobserved factors that affect both the MDC dimension (vehicle type choice and mileage) 

and the count of vehicles. For example, a person who is fun-seeking and gregarious in 

nature may like to own and drive sports cars. The unobserved attitudinal trait (being fun-

seeking and gregarious) is likely to influence both the mileage (this person will likely drive 

more miles, thus representing a higher level of vehicle consumption/utilization), and the 

count of cars (as this individual might purchase additional sports cars that are fun to drive). 

There are likely to be a number of such attitudinal and contextual factors that are 

unobserved and yet influence both the multiple discrete continuous and multivariate count 

components of the model system.  

The modeling of vehicle fleet composition, utilization, and counts by vehicle type 

is critical to performing energy and environmental impact analysis for a variety of policy, 

market, and technology scenarios. The introduction of vehicle fleet composition and 

utilization model systems is particularly made possible by the implementation of 

microsimulation-based activity-based travel demand model systems in practice. By 
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accurately modeling vehicle fleet composition and usage patterns, planning agencies will 

be able to address energy sustainability and environmental concerns and implement policy 

actions that promote a more sustainable and energy friendly fleet mix and vehicle 

utilization pattern in the region. The MDCP-MC model system presented can be used to 

fill this modeling need. Future work in this domain should focus on including additional 

explanatory variables to make the model sensitive to policy, pricing, and 

market/technology changes. The data set used in this study did not support the inclusion of 

such variables. Household travel survey should be designed to collect such data so that 

model systems capable of responding to a wide variety of scenarios can be estimated and 

deployed in practice. Future research efforts also should be aimed at reporting results of 

model validation and sensitivity analysis to demonstrate the ability of the model system to 

replicate base year conditions and respond in behaviorally intuitive ways when subjected 

to changes in input variables. Also, the model system can be enhanced by classifying the 

vehicle body types into different vintage categories. 
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CHAPTER 7 

TOUR LEVEL VEHICLE TYPE CHOICE 

 

There has been remarkable progress made in the past few decades in the field of activity-

based modeling in depicting activity-travel patterns of individuals in a behaviorally 

realistic way. The traditional trip-based methods model travel as trips going from one zone 

to another, whereas activity-based models are founded on the behavioral paradigm that 

travel is ‘derived demand’ which arises from the necessity of individuals to participate in 

various activities along the day. This behavioral representation of travel in activity-based 

models is not only intuitive but also helps in providing accurate outcomes in response to 

various policy measures. While the cause for travel (activity participation) is depicted quite 

well in these models, the means (mode) of travel is still represented at the aggregate level. 

Most of the activity-based modeling systems in research as well as practice still operate at 

the level of ‘mode’ to represent personal travel (auto, transit, walk, bike etc.). There is 

much need for progress in this domain to model ‘vehicle type’ instead of just the mode 

used to travel so that emission foot print from personal travel can be estimated accurately. 

The tour level vehicle type choice modeling framework proposed in this effort aims at 

developing a practical methodology that can be implemented in an activity-based modeling 

system to predict the exact type of vehicle (from the fleet of vehicles that the household 

owns) that a person would choose to make a tour. 

The tour level vehicle type choice modeling framework is discussed in detail in 

Chapter 3. The framework begins with a primary driver allocation model that assigns all 

the vehicles owned by a household to the drivers in the household. It is assumed that all 
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primary drivers in the household will adhere to the vehicle assigned to them to travel along 

the day. In case a person in the household who is not a primary driver (has no household 

vehicle assigned to him/her) needs to embark on a journey, a tour level vehicle type choice 

model determines which vehicle amongst the household’s fleet will be used to make the 

journey. Tour level vehicle type choice is modeled as a function of tour attributes such as 

primary purpose of the tour, tour composition, type of tour (solo/joint) etc. Both the 

primary driver allocation model and the tour level vehicle type choice model are discussed 

in detail this chapter. For each model, first the data preparation method is discussed along 

with a description of the data. This is followed by model estimation and validation results 

for each of the components. 

 

Primary Driver Allocation Model 

Data. The data used for estimating primary driver allocation model is from the 

2008-09 National Household Travel Survey (NHTS) add-on data for the Greater Phoenix 

Metropolitan Region. In the NHTS, a random sample of individuals are selected and data 

is obtained regarding their socio-demographic and travel characteristics. The NHTS 

provides data segmented into four types of files (NHTS Codebook Browser, 2014). 

 Household file: This file contains data regarding the characteristics of the 

households responding to the survey. Data such as household size, income, number 

of workers in the household, number of drivers in the household etc. is available 

from this file. 
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 Person file: This file contains information regarding the characteristics of all 

individuals in a household responding to the survey. Data such as age, gender, 

employment status, education level etc. is available from this file. 

 Trip file: This file has data regarding each and every trip made by a person 

responding to the survey on the most recent travel day. Information such as purpose 

and duration of the trip, vehicle used, number of people participating in the trip etc. 

are collected in this file. 

 Vehicle file: This file contains data regarding characteristics of all vehicles owned 

by households responding to the survey. Each vehicle owned by a household is 

assigned a unique identifier and data regarding the make/model, fuel economy 

average annual miles put on the vehicle etc. are available from this file. Each 

vehicle reported in this file has a primary driver assigned to it among the drivers in 

the household. The person number (unique id) assigned to a vehicle in this file is 

same as the person id from the person file. 

To estimate the primary driver allocation model, person characteristics (from the 

person file) of the primary driver are added to each vehicle reported in the vehicle file. All 

the vehicles owned by the household are then added as available choices to the person 

record. This choice context translates to a situation where a vehicle amongst the household 

fleet is being assigned to a person based on his/her characteristics (such as age, gender, 

educational level etc.). The vehicle fleet composition of the household is constructed from 

the vehicle file for the fleet composition modeling effort described in Chapter 5. In 

application mode, the vehicle fleet composition model system predicts the array of vehicles 
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owned by the household and provides them as an input to the primary driver allocation 

model.  

After extensive cleaning and analysis of the data, the estimation sample included 

6,842 vehicles allocated to 5,992 primary drivers from 3,870 households. An immediate 

observation from these statistics is that there might be situations where multiple vehicles 

are assigned to one primary driver in the household, but such occurrences are very less in 

the data. The tour level vehicle type choice modeling framework assumes that each person 

in the household is assigned a unique vehicle from the household’s fleet. Any unassigned 

vehicles in the household are assumed to be equally accessible to all the drivers in the 

household. A brief sketch of the household level socio-demographics of the data set is 

provided in Table 7.1.  

Table 7.1 

Primary Driver Allocation Model: Data Description 

Characteristic Mean Standard Deviation 

Households (N = 3870)   

Number of vehicles in the household 2.05 1.013 

Number of adults in the household 1.91 0.699 

Number of drivers in the household 1.87 0.729 

Number of workers in the household 1.02 0.887 

Number of children in the household 0.55 1.023 

% Households with income < $25,000 15.14% 0.358 

% Households with income ≥ $75,000 37.31% 0.483 

Person (N = 5992)   

Age of the respondents 54.07 16.113 

% of Male respondents 46.50% 0.499 

% of Respondents that are workers 60.10% 0.490 

% of Respondents with an associate's degree 33.44% 0.472 

% of Respondents with an bachelor's degree 25.58% 0.436 

% of Respondents with a graduate or professional 

degree 
17.36% 0.378 
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The characteristics of the dataset used for estimating primary driver allocation 

model are found to be similar to the characteristics of the dataset used for estimating 

components of the vehicle fleet composition model system. This ensures consistency 

between components estimated across different model systems. From the table, it can be 

observed that number of vehicles to number of drivers ratio of the dataset is just above one 

which is corroborated by the earlier observation that some individuals are assigned as 

primary drivers to multiple vehicles in a few household. The vehicle fleet composition 

module does the job of identifying the body type and age of each vehicle owned by a 

household. The primary driver allocation model determines which driver in the household 

will be assigned as a primary driver to each of the vehicles owned by the household. 

Average age of the primary driver is about 54 years. Though this number appears to be on 

the higher side, it should be kept in mind that the dataset comprises only of driving age 

individuals (≥ 16 years). The data set has almost an equal proportion of male and female 

respondents. About 60% of primary drivers are workers which is an intuitive finding as 

workers in the household would need a vehicle for commute purpose on a daily basis and 

hence have a greater proclivity of getting assigned as primary drivers. 76% of the primary 

drivers have an educational attainment of at least an associate’s degree.  

Table 7.2 presents fleet composition profile of the dataset used for model estimation 

which is in line with the fleet composition observed in the estimation of components for 

vehicle fleet composition model system (see Figure 5.1). The body type and age 

classification used in vehicle fleet composition framework is carried through to this 

component to ensure consistency between different frameworks proposed in this research 

work. It can be observed that majority of vehicles in the dataset are cars, which is consistent 
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with expectation. Within car and SUV body types a consistent ownership pattern was 

observed where households preferred to own a greater percentage of newer vehicles than 

older ones. This speaks to the greater turnover rates of these body types. For van and pick-

up truck categories however, it was observed that there are a greater proportion of middle 

aged vehicles (6-11 years) than newer (0-5 years) or older (≥ 12 years) vehicles. All of 

these patterns are consistent with observations from the fleet composition model dataset 

(Chapter 5). 

Table 7.2 

Primary Driver Allocation Model: Vehicle Profile 

  Body Type 

Age 
Car 

(%) 

Van 

(%) 

SUV 

(%) 

Pick-Up 

(%) 

Motorbike 

(%) 

0-5 years 41.9 39.9 53.7 33.9 

100.0 6-11 years 35.5 45.4 34.6 39.6 

≥ 12 years 22.6 14.7 11.7 26.5 

Total No. of 

Vehicles 
3518 557 1338 1185 244 

 

Figure 7.1 depicts the cross classification between different vehicle alternatives and 

gender of the primary driver assigned to the vehicle. A few interesting observations can be 

made from this figure regarding the primary driver allocation characteristics. Across all 

body types, females tend to be primary drivers for newer vintages than older ones. The 

reason for this might be the household’s decision to allocate safer vehicles to females in 

the household or that males are relatively less particular about the vintage classification 

(old vs. a new vehicle) than females. It can also be observed that the van body type is 

predominantly allocated to female primary drivers, while males are predominantly 

assigned as primary drivers to pick-up truck body type. These are intuitive findings and 
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consistent with general expectation. Females often take up the duty to chauffer children to 

various activities thereby inherently preferring a roomier vehicle such as a van. Pick-up 

trucks whose build is considered masculine tend to be preferred more by male individuals 

in the household.  

 

 

Figure 7.1. Vehicle type by primary driver's gender. 

 

Figure 7.2 presents a similar comparison between workers and non-workers. It was 

observed that the primary driver profile for worker’s and non-workers is consistent with 

the person characteristics seen in the data. At the person level, it was found that about 60% 

of the respondents are workers and from the model estimation dataset also it was observed 

that 60% on vehicles are assigned to workers, while 40% of the vehicles are assigned to 

non-workers. From the figure it can be noticed that except for van body type, workers are 

assigned more as primary drivers to newer vehicle categories. This is understandable, as 

workers need to use their vehicle for daily commute and hence prefer a newer (reliable) 
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vehicle over an older one. For van body type however, a higher proportion of vehicles have 

non-workers as primary drivers. This might point to stay-at-home moms/dads who utilize 

the van primarily to chauffer their kids. Motorbikes, which are usually considered as 

‘recreational/hobby’ vehicles are also predominantly assigned to workers. Affordability 

might a factor driving this observation. 

 

 

Figure 7.2. Vehicle type by primary driver's work status. 

 

Figure 7.3 presents the results of a cross tabulation between vehicle type and 

education level of the primary driver. As observed from the descriptive statistics, majority 

of the primary drivers have an educational level of associates degree or higher. Educational 

attainment could act as a proxy variable for the occupation level of the individual. It is 

observed that pick-up truck body type has a majority of primary drivers with an associate’s 
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degree or less, while other body types have an equal proportion of primary drivers with 

less than a bachelor’s degree and primary drivers with a bachelor’s degree or more. 

Individuals with a higher educational level (bachelor’s degree or more) tended to be 

assigned to newer vintages than older ones across all body types. Following the analysis of 

data, an attempt was made to translate the empirical findings into a utility maximization 

model where a primary driver is maximizing his/her utility by choosing the vehicle that 

best fits his needs from a fleet of vehicles available in the household.  

 

 

Figure 7.3. Vehicle type by primary driver's educational attainment. 

 

Since the decision being modeled here is that of assigning a unique vehicle to a 

driver in the household, traditional single discrete choice models such as a multinomial 

logit or a nested logit model would perfectly fit the choice context. However, if an MNL 

0%

25%

50%

75%

100%

P
E

R
C

E
N

T

VEHICLE ALTERNATIVE

Less than high school High school graduate Associate's degree

Bachelor's degree Professional degree



  203 

model is chosen, there is the risk of modeling highly correlated alternatives together which 

violates the independence of irrelevant alternatives assumption observed by the MNL 

model. For example, in a household that owns 2 cars and 1 SUV, if one has to assign a 

vehicle to one of the drivers in the household, the choice context does not involve 

independent and irrelevant choices (choice between two cars). A straightforward way to 

handle this issue is considering a nested logit structure. A nested logit model retains the 

computational feasibility offered by an MNL model, and relaxes the independence 

assumption using a hierarchical structure. 

 

 

Figure 7.4. Cross classification between number of vehicles and number of body types 

owned by households. 

 

Before deciding on a specific model structure, it was felt prudent to examine the 

data to find out how many households own multiple vehicles pertaining to the same body 

type (making the estimation of an MNL model infeasible). Figure 7.4 presents the results 
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of the analysis of a cross classification between number of vehicle alternatives and the 

number of body types owned by households in the dataset. The green line in the figure 

identifies the market share of each vehicle ownership category. The number of vehicle 

alternatives in this figure points to the number of distinct motorized alternatives owned by 

each household from the 13 alternatives considered for vehicle fleet composition model 

system. From the figure, it can be observed that households owning zero and one vehicle 

alternatives own exactly zero and one vehicle body types, as expected. Amongst 

households owning 2 vehicles, 80% of the households own distinct body types and 20% 

(~360) households own both vehicles of the same body type. Amongst households who 

own three vehicles, only 5% of the households own all the three vehicles of the same body 

type, 53% of the households own vehicles belonging to 2 distinct body types and about 

42% of the households own all three vehicles belonging to different body types. It should 

also be kept in mind that households owning 3 or more vehicle comprise only 11% of the 

dataset.  

Further analysis was carried to observe the vehicle body type distribution in 

multivehicle households (2 or more vehicles). Results of the analysis are presented in 

Figure 7.5. The results depict what percent of such households own multiple vehicles of 

the same body type. From the figure, it can be observed that among multivehicle 

households, a majority (~23%) have multiple cars in their vehicle fleet. Number of 

households that own multiple SUVs and pick-up trucks are less than 5% and number of 

households that own multiple vans are almost negligible. Two important observations can 

be made from this analysis. One, the number of households that own multiple vehicles of 

the same body type are quite few in the data set. Two, even amongst the households that 
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do own multiple vehicles, there is a dominance of households who own multiple cars 

compared to other body types.  

 

 

Figure 7.5. Vehicle body type distribution of multivehicle households. 

 

From the findings in the data, it was felt prudent not to use a nested logit structure 

as the data at hand would not support the estimation of a robust model. An MNL model 

structure with a variable choice set was chosen for the primary driver allocation model. 

Future efforts should consider estimation of a nested logit model with body type 

classification as the upper nest and vintage classification as a subnest within each body 

type provided sufficient data is available. The estimation and validation results of primary 

driver allocation model are discussed in the next section. 
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Model estimation results. The primary driver allocation model is developed as an 

MNL model where an individual in the household is choosing a vehicle from the fleet 

owned by the household such that they maximize their utility. The individual is thus 

‘assigned’ as the primary driver to the vehicle that he/she chooses. Previous studies 

successfully estimated primary driver assignment models in conjunction with a fleet 

composition component (Vyas et al., 2012), but such integrated models are difficult to 

implement in an application context. This research learns from the existing literature and 

develops a standalone primary driver assignment model for implementation in a tour level 

vehicle type choice framework. In application mode, the primary driver allocation model 

is run in an iterative fashion for every driver in the household starting with the head of the 

household. Once a person is assigned as primary driver to a vehicle, that vehicle is excluded 

from the choice set for primary driver assignment for rest of the individuals in the 

household. In cases where there are more household vehicles than drivers in the household, 

every driver is assigned as primary driver to a unique vehicle and the vehicles remaining 

after the allocation step are assumed to available to all the drivers in the household equally. 

An MNL model is estimated with motorbike as the base alternative. Estimation results of 

the primary driver allocation model are presented in Table 7.3. 
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Table 7.3 

MNL Model of Primary Driver Allocation 

Vehicle Type Explanatory Variable Coefficient t-statistic 

Car 

0 -5 years old 

Constant -0.96 -7.82 

Female 1.82 14.88 

Age (> 16 and ≤ 24) 0.86 3.61 

Age (≥ 65) -0.28 -2.17 

Respondent holds a graduate or professional degree  0.19 1.50 

Respondent  is a high school graduate -0.31 -2.42 

Worker from a highest income (≥ $100,000) 

household 
0.15 1.35 

Car  

6-11 years old 

Constant -1.15 -8.61 

Female 1.74 14.03 

Age (> 16 and ≤ 24) 1.26 5.50 

Worker 0.19 1.72 

Car 12 years or 

older 

Constant -0.25 -2.43 

Age (> 16 and ≤ 24) 1.15 4.06 

Van  

0-5 years old 

Constant -1.91 -8.81 

Female 3.60 13.71 

Respondent holds a graduate or professional degree  -0.45 -1.48 

Van  

6-11 years old 

Constant -1.32 -7.39 

Female 2.48 11.05 

Van 12 years or 

older 
Constant -0.22 -1.15 

SUV  

0-5 years old 

Constant -1.16 -8.27 

Female 2.21 15.01 

Age (≥ 65) -0.21 -1.16 

Worker from a highest income (≥ $100,000) 

household 
0.22 1.57 

SUV  

6-11 years old 

Constant -1.03 -7.74 

Female 1.75 10.90 

SUV 12 years or 

older 
Constant -0.33 -2.32 

Pick-up  

0-5 years old 

Constant 0.16 1.30 

Female -1.02 -5.37 

Pick-up  

6-11 years old 

Constant 0.01 0.12 

Female -0.67 -3.89 

Pick-up 12 

years or older 
Constant -0.28 -2.43 

Goodness of fit statistics 

Sample Size (N) 6,842 

Likelihood ratio (df = 19) 23577.52 

𝜌2 Adjusted 0.78 
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From the model results, it was observed that females tend to prefer newer vintages 

than older ones across car, van and SUV body types. Among these three categories females 

tended to prefer vans more than car and SUV body types. Females also had a negative 

proclivity to be allocated as primary drivers to pick-up trucks in the household. All these 

findings are in line with the observations from the descriptive statistics (see Figure 7.1). 

Younger individuals (>16 and ≤ 24 years old) had a greater preference for cars. Within the 

car body type, this cohort had a greater propensity to be allocated as primary drivers to 

older than newer vehicles. This finding is behaviorally consistent as majority of this 

category is college going students who might prefer cars over vans or SUVs which are 

purported as ‘family’ vehicles. 

Older individuals (≥ 65 years old) are less likely to be assigned as primary drivers 

to newer vehicles in the household, a finding consistent with expectation. Individuals with 

educational attainment of a high school degree are less likely to be assigned as primary 

drivers to newer cars, while respondents with a graduate or professional degree are more 

likely to be assigned as primary drivers to newer cars. One reason for this might be the 

affordability factor where individuals with a greater educational attainment have a higher 

level of financial flexibility to own and use newer vehicles more than the individuals with 

lesser educational attainment. It was also observed that workers in general tend to choose 

cars over other body types. It is generally expected that work tours are undertaken as solo 

tours and hence workers tend to choose smaller (possibly more fuel efficient) vehicles to 

carry out their daily commute, leaving the larger vehicles (such as vans and SUVs) for 

household activities. Workers from highest income (≥ $100,000) households tended choose 

to newer cars and SUVs. It is intuitive that highest income households tend to own newer 
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vehicles and hence workers in such households tend to get assigned as primary drivers to 

newer cars and SUVs. The likelihood ratio of the model is 23577.52 which is substantially 

greater than the critical 𝜒2 value at any reasonable level of significance.  

Replication of observed patterns. In a traditional estimation/validation exercise, 

a model is estimated on 70% of the data and validated on the 30% hold out sample. In the 

current effort, 100% of the sample is used for estimation to ensure a reasonable sample size 

in each of 13 vehicle alternatives considered for model estimation. So, the model is applied 

on the entire estimation dataset to see how well it can replicate the observed primary driver 

allocation patterns.  

 

 

Figure 7.6. Observed vs. predicted vehicle allocation profile from  

primary driver allocation model. 
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driver allocation model. The model performance observed from this figure indicates that 

the overall primary driver allocation patterns were replicated accurately by the model. But 

the true litmus test to the primary driver allocation model is how well it can predict the 

vehicle allocation patterns of specific market segments in the data.  

 

 

Figure 7.7. Observed vs. predicted vehicle allocation profiles for male and female 

respondents from primary driver allocation model. 
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Figure 7.7 shows the profiles for vehicles allocated to male and female market 

segments. Panel A presents the profile of vehicles chosen by male respondents in the 

dataset and Panel B depicts a similar comparison for female respondents. From the figure, 

it can be observed that male primary drivers have more or less an even vehicle allocation 

across different vintages in each body type while female primary drivers have a 

consistently higher representation in newer vintages than older ones across all body types 

except pick-up trucks. A comparison between male and female market segments also 

reveals that higher proportion of pick-up trucks are allocated to male primary drivers 

compared to females. Similarly, a higher proportion of vans are allocated to female primary 

drivers in comparison to males. The model is able to accurately depict the finer nuances 

observed in the data with respect to vehicle allocation characteristics between male and 

female respondents.  

Figure 7.8 presents a comparison of vehicle allocation profile for workers and non-

workers. From the figure it can be observed that for the most part the allocation profiles 

are similar for workers and non-workers. A higher proportion of newer vehicles (0-5 years) 

are allocated workers than non-workers in car and SUV body types. The behavioral reason 

behind this finding might be that workers prefer newer and more reliable vehicles for their 

daily commute. Non-workers have a slightly higher allocation of vans (all vintages) than 

workers. This might refer to stay-at-home moms/dads who tend to prefer larger vehicles to 

fulfill the chauffeuring needs of children in the family. The primary driver allocation model 

is able to replicate the vehicle allocation patterns at the aggregate level as well as for 

specific markets segments. With this information at hand, the next component in the 
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framework, a tour level vehicle type choice model determines which vehicle amongst the 

household’s fleet will be used to undertake a specific tour. 

 

 

Figure 7.8. Observed vs. predicted vehicle allocation profiles for workers and non-

workers from primary driver allocation model. 
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Tour Level Vehicle Type Choice Model 

Data. The primary driver allocation model is a precursor to the tour level vehicle 

type choice model. In the primary driver allocation module, every vehicle in the household 

is assigned to a unique primary driver. This is a person level model where each person in 

the household chooses a vehicle for which he/she will be the primary driver. Once the 

assignment is done, vehicles assigned to respective primary drivers are assumed to be 

available to them throughout the day to travel to any activity. For non-primary drivers 

however (who do not have a vehicle assigned to them), a tour level vehicle type choice 

model determines which among the household vehicles will be utilized to undertake the 

tour under consideration. The idea behind the tour level vehicle type choice model is that 

individuals will choose a vehicle among the household’s fleet to undertake a specific tour 

such that they maximize their utility. The tour level vehicle type choice model is an MNL 

model with variable choice-set. The choice-set is known in the estimation phase from the 

reported vehicle fleet characteristics of the household. In application mode, the vehicle 

fleet owned by each household will be predicted by the vehicle fleet composition module 

and provided as input to this component.  

To estimate the tour level vehicle type choice model, trip level NHTS data is 

converted to tour level. In the NHTS trip level data, the respondent identifies which among 

the household vehicles was used to make a specific trip. Form the trip level data, the vehicle 

used for making each tour is imputed. First, all tours made by individuals greater than or 

equal to 16 years of age are selected. From these tours a sub-selection was made for home-

based tours (tours that start and end at home). From the home-based tours, only tours made 

by auto modes (SOV or HOV) are selected for this analysis. Attributes such as vehicle used 



  214 

on the tour, primary purpose, tour accompaniment, travel party composition etc. are 

determined for the tour. From the activity schedules of different members in the household, 

each tour was also given a tag of joint/solo tour. Once the household vehicle used on each 

tour is identified, the next step is to generate a feasible choice set of vehicles available to 

make a specific tour. This is nothing but the vehicle fleet mix owned by the household. The 

vehicle fleet composition of the household is constructed from the vehicle file for the fleet 

composition modeling effort described in Chapter 5.  The final data set used for model 

estimation consists of 5,165 home-based tours made by 3,385 persons from 2,365 

households. Aggregate checks were made at household and person level to ensure that the 

dataset used for model estimation is representative of the regional level data (~4,700 

households and ~10,400 persons). Table 7.4 presents the descriptive statistics of the data 

at household and person level. 

Table 7.4 

Tour Level Vehicle Type Choice Model: Data Description 

Characteristic Mean Standard Deviation 

Household (N = 2365)   

Number of vehicles in the household 2.08 1.013 

Number of adults in the household 1.93 0.685 

Number of drivers in the household 1.90 0.717 

Number of workers in the household 1.09 0.881 

Number of children in the household 0.57 1.007 

% Households with income < $25,000 12.60% 0.490 

% Households with income ≥ $75,000 39.79% 0.332 

Person (N = 3385)   

Age of the respondents 53.35 16.054 

% of Male respondents 46.26% 0.499 

% of Respondents that are workers 62.90% 0.483 

% of Respondents with an associate's degree 33.44% 0.472 

% of Respondents with an bachelor's degree 25.58% 0.436 

% of Respondents with a graduate or professional 

degree 
17.90% 0.383 
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A comparison of household and person level characteristics between this data and 

the data prepared from primary driver allocation model (Table 7.1) reveals that both 

datasets have very similar characteristics assuring consistency between different model 

components in the framework. In addition to this, it was observed that the household level 

characteristics from both these tables are very similar to the characteristics of the dataset 

used in vehicle fleet composition modeling framework (Table 5.1). Table 7.5 presents the 

profile of vehicles used on home-based tours. An immediate observation from the table is 

that most of the home-based tours are made by car and SUV body types which is in line 

with the fleet composition patterns observed in the region (see Figure 5.1). It is however 

found that utilization of pick-up trucks (about 13% of all tours) is slightly less than their 

representation in the region’s fleet (17%, from Figure 5.1) whereas the exact opposite 

pattern was observed for vans. Vans represent about 8% percent of the vehicle fleet in the 

region, but are used in about 10% of the home-based tours. These are intuitive observations 

in that pick-up trucks are not used as frequently for daily travel whereas households who 

own vans tend to use them to a higher degree (from results in Table 5.6 and entailing 

discussion). 

Table 7.5 

Tour Level Vehicle Type Choice Model: Vehicle Profile 

  Body Type 

Age 
Car 

(%) 

Van 

(%) 

SUV 

(%) 

Pick-Up 

(%) 

Motorbike 

(%) 

0-5 years 46.9 46.2 55.0 40.4 

100.0 6-11 years 36.0 45.0 37.3 45.2 

≥ 12 years 17.1 8.8 7.8 14.4 

Total No. of 

Tours 
2777 520 1146 688 34 
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The intent of tour level vehicle type choice model is to advance the current practice 

in existing activity-based modeling systems to represent ‘vehicle type’ rather than just 

‘mode’ (auto) at the tour level. The level of disaggregation at which current activity-based 

models represent an auto mode is an SOV or a HOV. When this data is sent to the network 

assignment module and subsequent emission computation models, an assumption has to be 

made regarding the emission profile of an ‘average’ SOV/HOV mode. To see if SOV and 

HOV modes are used for making specific types of tours, an exploratory analysis was 

carried out on the dataset and vehicle profile was constructed using a cross classification 

between the aggregate travel modes (SOV and HOV) and primary purpose of the tour. 

Figure 7.9 presents the aggregate vehicle profile by primary purpose of the tour. 

 

 

Figure 7.9. Aggregate vehicle profile by primary purpose of the tour. 
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From the figure, it can be observed that tours with work and maintenance activities 

as primary purpose tend to be undertaken predominantly using SOV mode while home-

based shopping and home-based discretionary tours have a mix of SOV and HOV modes. 

Tours with some form of escorting are undertaken using HOV modes, which is intuitive. 

The question now is how the emission profile of an SOV/ HOV mode should be decided. 

Is there a representative body type that represents an SOV and/or a HOV mode? Is it safe 

to assume that SOV trips are made using smaller vehicles such as cars and HOV trips using 

larger body types such as vans? To answer these questions the same analysis as above was 

carried out except at the disaggregate level of body type of the vehicle. Results of the 

analysis are presented in Figure 7.10 and reveal some interesting findings. From the figure, 

it can be observed that there are noticeable differences in vehicle body type composition 

profiles for different types of tours. Home-based escort tours which were seen as only using 

HOV modes have a mix of all body types (small to large).Even within the home-based 

escort tours, the vehicle body type composition of school escort and other escort tours is 

significantly different. School escort tours which are mostly intended to drop-off/pick-up 

children below driving age at school tend to be undertaken more using ‘roomy’ vehicles 

(such as vans and SUVs) than the smaller cars. Other escort tours on the other hand have a 

significant proportion of tours made by cars.  

 



  218 

 

Figure 7.10. Vehicle body type profile by primary purpose of the tour. 

 

Different types of tours call for usage of different types of vehicles (subject to their 

availability in the household) and hence it is necessary to model vehicle type choice at the 

tour level. The body type composition of vehicles used on different types of tours can be 

further disaggregated by the vintage classification of the body type. This information is 

made available by the vehicle fleet composition model discussed in Chapter 5. The tour 

level vehicle type choice model utilizes this information to model the specific household 

vehicle used on each tour. Table 7.6 provides the results of a similar analysis as Figure 7.10 

but at the disaggregate level of body type and age. An MNL model structure was chosen 

owing to the data limitations discussed in the previous section.  
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Table 7.6 

Vehicle Profile (Body-Type x Age) by Primary Purpose of the Tour 

Vehicle Type 

Primary Purpose of the Tour 

Work 

(%/) 

Shopping 

(%) 

Maintenance 

(%) 

Other 

Discretionary 

(%) 

Other 

Escort 

(%) 

School 

Escort 

(%) 

Car 0-5 Years 25.3 25.9 26.8 24.8 25.1 19.4 

Car 6-11 Years 19.5 19.1 20.0 23.9 18.2 8.5 

Car ≥12 Years 7.9 11.5 13.1 8.3 8.1 5.2 

Van 0-5 Years 2.1 4.7 3.3 3.9 8.7 13.3 

Van 6-11 Years 3.7 4.0 3.9 3.7 5.6 10.6 

Van ≥12 Years 0.9 1.1 0.9 0.6 0.6 1.5 

SUV 0-5 Years 11.9 12.2 11.9 11.4 14.0 16.7 

SUV 6-11 Years 8.4 8.1 7.8 10.5 6.1 11.5 

SUV ≥12 Years 2.0 1.6 1.1 1.1 2.5 2.7 

Pick-up 0-5 

Years 
7.3 4.2 3.8 3.3 6.1 6.1 

Pick-up 6-11 

Years 
7.5 5.2 4.2 5.5 4.5 3.6 

SUV ≥12 Years 2.4 2.0 2.2 2.2 0.6 0.6 

Motorbike 1.0 0.3 0.9 0.9 0.0 0.3 

Total Number of 

Tours 
1742 990 639 544 358 330 

 

Model estimation results. Following the analysis of the data, a tour level vehicle 

type choice model with variable choice-set (vehicle fleet owned by the household) is 

estimated. Various tour attributes are used as explanatory variables to define vehicle type 

chosen to undertake a specific type of tour. The vehicle type classification used in the 

model is the same as primary driver allocation model as well as the vehicle fleet 

composition module (4 body types x 3 vintage categories + motorbike). Results of the tour 

level vehicle type choice model are presented in Table 7.7.  
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Table 7.7 

MNL Model of Tour Level Vehicle Type Choice 

Vehicle Type Explanatory Variable Coefficient t-statistic 

Car  

0-5 years old 
Primary purpose of the tour is work 0.45 3.83 

Car  

6-11 years old 

Constant 0.06 0.64 

Primary purpose of the tour is work 0.18 1.31 

Joint tour -0.41 -2.15 

Car  

12 years or older 

Constant -0.19 -1.87 

Joint tour -1.22 -4.28 

Van 

0-5 years old 

Constant 0.91 4.75 

Primary purpose of the tour is work -1.40 -4.64 

Primary purpose of the tour is discretionary -0.76 -1.82 

Primary purpose of the tour is school escort 0.53 1.30 

Tour party consists only of adults -1.48 -2.88 

Van  

6-11 years old 

Constant 0.06 0.39 

Primary purpose of the tour is other escort 1.01 2.02 

Primary purpose of the tour is school escort 0.47 1.20 

Joint tour 1.48 3.12 

Tour party consists only of adults -1.68 -2.82 

Van  

12 years or older 

Constant -0.09 -0.39 

Joint tour -1.35 -1.62 

SUV  

0-5 years old 

Constant 0.15 1.37 

Primary purpose of the tour is shopping 0.37 1.75 

Primary purpose of the tour is other escort 0.61 1.93 

Primary purpose of the tour is eat meal 0.49 1.28 

Primary purpose of the tour is school escort 0.48 1.74 

Number of escorting stops on the tour 0.23 2.04 

Joint tour 1.28 3.89 

Tour party consists only of adults -1.01 -2.59 

SUV  

6-11 years old 

Constant 0.08 0.73 

Primary purpose of the tour is maintenance 0.46 1.70 

Joint tour 0.64 2.06 

Tour party consists only of adults -0.69 -1.79 

SUV  

12 years or older 

Constant -0.44 -2.62 

Joint tour -1.10 -2.26 

Pick-up  

0-5 years old 

Constant -0.13 -1.03 

Primary purpose of the tour is work 0.62 3.20 

Primary purpose of the tour is discretionary -0.54 -1.63 

Number of escorting stops on the tour -0.34 -2.03 

Pick-up  

6-11 years old 

Constant -0.29 -2.46 

Primary purpose of the tour is work 0.39 2.18 

Primary purpose of the tour is school escort -0.55 -1.42 

Pick-up  

12 years or older 

Constant -0.90 -4.69 

Primary purpose of the tour is work 0.40 1.46 

Primary purpose of the tour is other escort -1.38 -1.82 

Primary purpose of the tour is school escort -1.06 -1.36 

Joint tour -1.92 -3.40 
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From the model results, it was observed that cars and pick-up trucks are most 

preferred vehicle types to undertake home-based work tours. While the use of cars to 

undertake work tours is intuitive (since most work tours tend to be solo tours, prompting 

the use of smaller household vehicles), the use of pick-up trucks for making work tours is 

intriguing and warrants further investigation. One possible reason might be that the 

occupation of individuals using pick-up trucks on their commute might require the use of 

such vehicle for their work purpose as well. Within car and pick-up truck body types, newer 

vintages are preferred to older ones, subject to their availability in the household. Van body 

type has a negative proclivity to be chosen for home-based work tours, which is consistent 

with expectation. Tours with an escorting (school/other) activity as the primary purpose 

tend to be undertaken using larger (and more comfortable) body types such as vans and 

SUVs. Within these body types, school escort tours had a greater proclivity to be 

undertaken by newer vintages. It is natural for parents to want the highest level of safety 

possible when chauffeuring their kids, which explains the choice of newer vintages for 

tours with school escort as the primary purpose.  

Tours with meal and shopping activity as primary purpose had a greater probability 

of happening using newer SUVs, while tours with maintenance activity as primary purpose 

had a greater propensity to happen using slightly older SUVs. Car and pick-up truck body 

types had a lesser probability of being used for joint tours. This is finding is nicely 

complemented by an earlier finding that these are the preferred vehicle body types for 

home-based work tours which tend to be predominantly solo tours. SUVs and vans as 

expected had a greater propensity of getting utilized for undertaking joint tours. An 

interesting finding here is, while relatively newer vans/SUVs (< 12 years) tended to be 
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chosen with a greater probability for making joint tours, older vans/SUVs had a negative 

propensity to be chosen for similar types of tours. This might translate to ‘cautionary’ 

behavior of individuals where travelers usually play it safe by not choosing unreliable 

vehicles for joint tours as any incident (such as a flat tire, engine troubles etc.) might impact 

the schedules of all the individuals involved in the joint travel. 

Tours with greater number of escort stops tend to be undertaken more by newer 

SUVs, while pick-up trucks are less likely to be chosen to participate in tours with more 

escort stops. Tour composition also has an impact on the type of vehicle chosen to make a 

tour. Van and SUV body types tend to be chosen less to participate in tours where the travel 

party consisted only of adults. This finding is nicely complemented by the fact that the 

same body types are chosen more for tours with school escort as the primary purpose. All 

the findings from model estimation results are behaviorally intuitive and consistent with 

expectations.  

Table 7.8 

Tour Level Vehicle Type Choice: Goodness of Fit Measures 

Statistic Value 

Sample size (N)  5,165 tours 

L(0)  -13247.96 

L(𝛽)  -2808.76 

Likelihood ratio 20878.41 

𝜒33,0.001
2  63.87 

𝜌2𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 0.79 

 

Goodness of fit measures of the model are presented in Table 7.8. The likelihood 

ratio of the model is substantially greater than the critical 𝜒2value at any level of 

significance. Following the model estimation, an extensive replication exercise was carried 



  223 

out to see how well the model can predict vehicle type choices at the aggregate level as 

well as at the level of tours with different primary purposes. 

Replication of observed patterns. The tour level vehicle type choice model was 

applied on the entire estimation dataset to test how well the model can replicate observed 

vehicle type choice patterns. It was necessary to use 100% of the data for model estimation 

to ensure reasonable sample sizes for all the body-type x age categories considered for 

model estimation, leaving no holdout sample for a true validation process. So, the process 

followed for testing the efficacy of the model is more of a replication than a validation 

process. In the presence of a larger dataset, this constraint can be overcome in a 

straightforward manner.  

Figure 7.11 presents the comparison between observed and predicted vehicle type 

choice profile. The results presented are for uncalibrated version of the model. It can be 

observed that the model is able to replicate the aggregate vehicle type choice profile quite 

well. The model slightly under predicts the usage of newer cars (0-5 years) and over 

predicts the usage of newer SUVs. This can be handled with very minimal calibration of 

the model. The model also slightly over predicts the usage of motorbikes. This is because 

motorbike is used as the base alternative in model estimation and has no coefficient 

whatsoever to explain the preference for motorbikes to participate in specific type of tours. 

Model coefficient assertion for motorbike category might be warranted to handle this 

anomaly in a behaviorally consistent fashion. Though the model performs exceedingly well 

at the aggregate level, it does not ensure the effectiveness of the model to predict vehicle 

type choice at the level of individual tours. To examine this, comparisons are made between 
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observed and predicted vehicle type choice profiles for specific type of tours. Figures 7.12-

7.14 present such comparison for home-based tours with different primary purposes. 

 

 

Figure 7.11. Observed vs. predicted vehicle type choice (aggregate comparison). 

 

Figure 7.12 presents the vehicle type choice profile for home-based work and 

home-based shopping tours. Comparison between observed and predicted patterns for tours 

with work as primary purpose are depicted in Panel A of the figure.  
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Figure 7.12. Vehicle type choice by primary purpose of the tour: 

Panel A: Work, Panel B: Shopping. 

 

The model is able to accurately predict the vehicle type choices observed in the 

data. Relative abundance of car and SUV body types is expected for work tours. It is 

interesting to see a significant representation of pick-up trucks in this category. Pick-up 
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trucks are usually considered less fuel efficient and hence do not make an ideal commute 

vehicle. A probable reason for choosing pick-up trucks to go to work might be that the 

occupation of the individual might require such a vehicle for work purposes anyway. It is 

heartening to see that the model is able to predict this pattern very accurately. Vans are the 

least preferred vehicle to go to work, which is consistent with expectation. This is 

corroborated by negative sign in the utility equation for van in the model estimation result 

which directly translates to negative propensity of choosing vans for work purpose as 

observed in from the figure. Panel B presents a similar comparison for tours with shopping 

as primary purpose.  SUVs have a slightly higher representation for this tour category, 

which is consistent with the observed data and findings from the model estimation results. 

Pick-up trucks on the other hand are not a popular choice to be used on tours with shopping 

as the primary purpose. 

Figure 7.13 presents vehicle type choice profiles for tours with maintenance and 

other discretionary activities as primary purpose. The model is able to accurately depict the 

‘pattern’ of vehicle type choices for both these primary purposes. Slight calibration might 

be warranted to exactly match the vehicle type choice profiles. Figure 7.14 presents the 

vehicle type choice profile for tours with escort activities as primary purpose. Panel A 

presents the comparison for home-based other escort tours and Panel B presents similar 

results for home-based school escort tours.  
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Figure 7.13. Vehicle type choice by primary purpose of the tour: 

Panel A: Maintenance, Panel B: Other Discretionary. 

 

An observation that is readily apparent from this figure is that the vehicle type 

choice profile of tours with escort activity as primary purpose is significantly different from 

other type of tours. A greater proportion of vans and SUVs are chosen for escort activities. 
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Within tours with escort activity as primary purpose, school escort tours have a greater 

proportion of vans chosen than that of other escort tours. This behavior is understood as 

vans are usually more convenient to chauffer children to school.  

 

 

Figure 7.14. Vehicle type choice by primary purpose of the tour: 

Panel A: Other escort, Panel B: School escort. 
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While the model does not exactly match the vehicle types chosen across all 13 

vehicle alternatives, it can be observed that patterns in vehicle type choice are predicted 

quite well. The only anomaly from the model predictions is the choice of motorbikes to 

undertake escort tours. This can be handled with assertion of an alternative specific 

constant for motorbike category as discussed before. Overall, the model is able to predict 

the vehicle type choice patterns exceedingly well at the aggregate level as well as at the 

level of specific types of tours and shows great promise for implementation in the context 

of the overall framework of this research effort.  

On any tour, if there are two primary drivers each with their own assigned vehicle, 

simple rule based heuristics determine the vehicle to be used on the tour. Between vehicles 

of different body types, the larger (and hence more conformable) body type is always 

chosen. Between vehicles of different vintage classifications, the newer (and hence more 

reliable) vintage is always chosen. Between vehicles of similar body type x age 

classification a random assignment is done. In case fuel efficiency of both vehicles is 

known (or predicted), the more fuel efficient (and hence more economical) vehicle is 

always chosen. While the rule based heuristics proposed are somewhat rudimentary in 

nature, they provide a decent starting point to handle the few instances in which there are 

two primary drivers engaging in a tour. An attempt was made to identify these rules based 

on trip level information collected in the NHTS, but the level of detail collected the survey 

data was not sufficient to form strong hypotheses for the rule based heuristics. Travel 

surveys should progress toward collecting information at the tour level to facilitate 

development of models that explain such finer nuances in tour characteristics at the 

household level. Information regarding the type of vehicle at the level of individual tours 
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helps in accurate emission forecasts at the region level and provides planners with a 

powerful policy analysis tool. Such disaggregate level of information will also help in 

testing policies aimed as specific vehicle categories prior to their implementation so that 

informed decisions can be made by policy makers. Examples of such policies are restricting 

the entry of old pick-up trucks into specific set of zones or cash for clunkers programs for 

older vehicles etc. 

 

Summary and Conclusions 

The tour level vehicle type choice modeling framework developed as a part of this 

dissertation aims at enhancing the modeling methodology in current activity-based 

modeling methods to predict the type of vehicle (classified by 13 body-type x age 

combinations) used to undertake a specific tour. The current level at which most of the 

activity-based modeling systems represent personal travel is at the level of mode, there by 

aggregating all vehicle types into one ‘auto’ mode. The framework takes inputs from tour 

composition modules discussed in Chapter 4 regarding the primary purpose of the tour, 

tour composition etc. and from the fleet composition module discussed in Chapter 5 

regarding the fleet of vehicle owned by the household. The framework allocates household 

resources (vehicles) to their (activity-travel) needs.  

The framework starts with identifying a primary driver for each vehicle owned by 

the household. It is assumed that primary drivers use ‘only’ the vehicle assigned to them 

to travel to any activity in the day. This assumption is corroborated by the finding that 90% 

of tours used for estimating vehicle type choice model component are undertaken by 

individuals using the vehicle ‘assigned’ to them. The primary driver allocation model is a 
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person level MNL model where an individual chooses a vehicle among the fleet owned by 

the household such that they maximize their utility. The choice set for every individual is 

constrained to include only the vehicles owned by the household. The vehicle type 

classification observed for this model is the same as the one used in the vehicle fleet 

composition modeling framework. This ensures seamless continuity between different 

model components. The model estimation results are fairly intuitive and the uncalibrated 

version of the model is found to replicate the observed primary driver allocation patterns 

quite effectively.  

Next component in the model system is a tour level vehicle type choice model that 

determines which vehicle among the household’s fleet will be chosen to undertake a 

specific type of tour by an individual who has no vehicles assigned to him/her. This 

component is intended primarily to model the travel characteristics of auto-deficient 

households who have more number of drivers in the household than vehicles, but can be 

easily extended to auto-sufficient households as well. This is a tour level model where tour 

attributes influence the type of vehicles to be used. Household level socio-demographics 

are not used as explanatory variables in this model as such characteristics are assumed to 

proliferate into the models via fleet composition characteristics of the household. The 

model assumes that all of the household vehicles are ‘available’ to the non-primary driver 

to undertake a specific tour. The underlying assumption is that the non-primary driver will 

undertake the tour if and when the vehicle becomes available. The estimated model is able 

to replicate observed patterns exceedingly well at the aggregate level as well as the level 

of tours with specific primary purposes (work, shopping etc.). Both the primary driver 

allocation model and the tour level vehicle type choice model are developed as MNL 
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models. One might argue that the alternatives in the MNL model structure for these models 

are highly correlated (different vintages across the same body type), but it should be kept 

in mind that choice set used for model estimation is constrained to include only the vehicles 

owned by the household, thereby alleviating this problem to some extent. Future efforts 

should explore nested logit structures for both these models, provided the data allows for 

estimation of a robust model.  

The tour level vehicle type choice model is held down by the assumption that all 

household vehicles are available for non-primary drivers at all times in a day. This is not 

true in the real world and to be able to accurately depict real world behavior in a simulation 

environment, a real-time vehicle allocation and tracking framework is proposed in the next 

chapter. The framework is presented in the context of an integrated model system where 

there is continuous communication between an activity-based model system and a dynamic 

traffic assignment model. Future efforts in this domain should focus on including the 

make/model information of vehicle in addition to body-type x age classification to 

represent household’s vehicle fleet. 
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CHAPTER 8 

A CONCEPTUAL FRAMEWORK FOR  

REAL-TIME VEHICLE ALLOCATION AND TRACKING 

 

This chapter presents a conceptual framework for real-time vehicle allocation and tracking 

framework that could potentially be implemented in an integrated model setting where an 

activity-based model and dynamic traffic assignment model are in close communication 

with each other. Previous chapters presented the frameworks as well as model 

estimation/validation results for 

 Tour characterization framework: Determines all of the secondary stops made on 

different types of tours undertaken by persons in a household. 

 Vehicle fleet composition framework: Predicts the vehicle fleet mix owned by a 

household, along with an estimate of the annual mileage consumed using each of 

the vehicles owned. 

 Tour level vehicle type choice: Framework to allocate vehicles owned by the 

households to tours undertaken by them.  

The tour level vehicle type choice framework utilizes the information from both 

tour characterization and fleet composition components. While this framework is a good 

starting point to introduce household vehicular constraints into vehicle allocation for 

various tours undertaken by members of the household, it is still held down by the 

assumption that all vehicles are available to household members at all times. In real world, 

in addition to auto-deficiency constraints, one often finds temporal constraints with regard 

to availability of household vehicles at different times of the day. For example, consider a 



  234 

(hypothetical) household with three licensed drivers and two cars. If two among the three 

drivers take the cars out to engage in different activities across the day, the third driver is 

constrained by unavailability of a car to undertake any activity. The third driver (and any 

other household member dependent on him for chauffeuring) will either have to wait until 

one of the household vehicles becomes available, choose an alternative mode of 

transportation or choose to engage in joint travel with one of the household members who 

is utilizing one of the household vehicles to begin with. This chapter proposes a real-time 

vehicle allocation and tracking framework, with an intent to translate this real world 

behavior into an integrated modeling framework.  

Table 8.1 

Mode Share of Work Trips in MAG Region 

Mode 
Number of Trips in 

the Survey Data 
Percent of Trips 

Auto 3356 93.95% 

Bus 52 1.46% 

Walk/Bike 120 3.36% 

Other 36 1.01% 

Airplane 8 0.22% 

Total 3572 100.00% 

 

The proposed framework assumes that all fixed activities (work trips/school trips) 

made by members of household are by auto modes. In case an auto mode is unavailable to 

make the work trip, it is assumed that individuals resort to private auto modes such as a 

taxi cab or shared ride facilities to reach work. Similarly, school trips for children are 

usually undertaken by a school bus or chauffeured by an adult. This assumption is made 

after a careful observation from the NHTS data collected for MAG region. Table 8.1 
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presents the share of different transportation modes used for work trips in MAG region. It 

can be observed from the table that number of work trips made using non-auto mode are 

very few and if walk trips are not considered, the percentage of non-auto mode share is less 

than 3%. This observation is consistent with the travel patterns observed in the region. 

Therefore the framework being proposed mainly concerns with non-mandatory activities 

and that too for households who have less number of vehicles than drivers in the household 

(auto-deficient households). 

Prior to entering this framework, but after the fleet composition framework, a 

primary driver allocation module (discussed in the previous chapter) identifies and 

allocates each vehicle in the household to a ‘primary driver’. This can be done by allocating 

vehicle fleet to individuals in a household such that they maximize their utility. Or this can 

be decided based on simple/complex heuristics involving one or more person level 

attributes (gender, income, age etc.). Once a vehicle is allocated to a primary driver, it is 

assumed that the vehicle is available to that driver throughout the day to travel to any 

activity. If the primary driver is not utilizing this vehicle in a given time period, it will 

become available to other members (licensed drivers) in the household.  

 

Vehicle Tracking Framework 

A real-time vehicle allocation and tracking framework can be realized only when the 

activity-based microsimulation model and dynamic traffic assignment (DTA) model are 

integrated with tight coupling and work in close conjunction with each other. Information 

exchange between both the systems should happen at a fine temporal resolution (every 

minute). Figure 8.1 provides a sample schematic for such a model system.  
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Figure 8.1. Integrated model design framework. 

 

The activity-based model takes socio-economic data of a synthetic population as 

input and simulates the activity travel patterns of individuals in continuous-time. Every 

minute, the activity-based model sends all the trips departing in that minute to the dynamic 

traffic assignment model (each trip is tagged with the id of the vehicle being used on the 

trip). The dynamic traffic assignment model in return sends information regarding all 

vehicles on the network back to the activity-based model. The information sent back 

includes but is not limited to:  

i. Travel time for trips that reached their destination.  

ii. Current location for trips that are enroute.  

iii. Network status for all vehicles being simulated on the network. 

At the beginning of the day (minute zero), all the vehicles in the household have a 

network status of ‘1’ meaning they are available for use by members of the household. 

Each vehicle is tagged with a home TAZ location. If any of the household members embark 

on a tour, the individual checks out a household vehicle that is assigned for the journey and 

vehicle is simulated on the network. Every minute, the dynamic traffic assignment model 
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sends a status report to the activity-based model with a list of all the vehicles that are ‘on 

the network’ as well as the ones that reached their respective destinations. All the vehicles 

that are enroute (in other words have their current TAZ location ≠ their home TAZ location) 

to their final destination (home) will be assigned a value of ‘0’. Once the vehicle finishes 

a tour (reaches home TAZ location), the dynamic traffic assignment model sets the status 

of the vehicle back to ‘1’ and sends this information to the activity-based model. At any 

given instance each and every vehicle in the fleet of the household either has a ‘0’ (meaning 

that the vehicle is unavailable) or a ‘1’ (meaning that the vehicle is available) value 

assigned to them. This way in any given minute, the sum of network status values of all 

vehicles in the household informs the activity-based model regarding the availability of 

household’s vehicles to make a tour. 

 

Vehicle Allocation Framework for Children’s After School Activities 

At the top level, the vehicle allocation framework separates children from all other 

individuals in the household. As mentioned before, school trips made by children are 

assigned an auto mode (randomly chosen from the household’s fleet) by default. 

Framework for vehicle allocation and tracking for children’s after school activities is 

presented in Figure 8.2.  

For children, it is first checked if they have any non-mandatory activities scheduled 

after school. If so, it is checked whether this activity can be performed with another 

household member. The interpretation for such activities in the activity-based modeling 

jargon is a ‘partially joint tour’, where an adult in the household has free time available and 

can chauffer the child as a part of his journey. For example, a working adult picking up 
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his/her kid after school and dropping him off at soccer practice is a partially joint tour. 

While the main purpose of this tour is work (which is a solo tour for the adult), it is still a 

partially joint tour for the portion where the adult tends to the chauffeuring needs of the 

child. The tour formation component (scheduling of fully/partially joint tours at the 

household level) is beyond the scope of this research effort and is not discussed here. The 

proposed framework considers this information as exogenously provided. 

 

 

Figure 8.2. Vehicle allocation and tracking framework for children’s afterschool activities. 
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Suppose a child has an after school activity scheduled, it is first checked if there are 

available adults in the household that are primary drivers. If yes, the child is assigned to 

that household member and the vehicle tagged to the primary driver is automatically 

assigned to the tour. Suppose a household member is available but he/she is not a primary 

driver, information gathered from the dynamic traffic assignment model regarding the 

network status of the vehicles is retrieved and summed across all the vehicles owned by 

the household. If sum of the status variable is greater than zero, it means that at least one 

of the household vehicles is available to be allocated to the non-primary driver in order to 

chauffer the child. A tour level vehicle type choice model with ‘available vehicles’ in the 

household determines the vehicle to be used on the tour. If not, the adult is still assigned 

the duty of chauffeuring the child to his after school activity, but a mode other than auto is 

assigned for the trip (determined using a mode choice model excluding the auto mode). 

Incase none of the household members are available in the time period in which the child 

needs to perform an after school activity, the child is assigned to a non-household member 

(synonymous to taking a cab to engage in the activity) 

 

Vehicle Allocation Framework for Adult’s Non-Mandatory Activities 

Figure 8.3 depicts the vehicle allocation framework for non-mandatory activities carried 

out by adults. The framework starts with identifying whether the adult has free time to 

engage in a non-mandatory activity. To do this, it is checked whether the travel time to 

next fixed activity is less than the time available in the open time-space prism for the 

individual. If so, an activity type choice model determines the activity that will be pursued 

by the individual and a subsequent activity duration model determines the amount of time 
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the person is going to spend at the chosen activity. The vehicle allocation module starts 

with checking whether the person is a primary driver or not. If the person is a primary 

driver, vehicle tagged to the person from a primary driver allocation module will be used 

to make this trip. Scope for performing this activity as a joint activity with another 

household member is checked (this information is provided exogenously to the 

framework). If yes, the activity is performed as a joint activity and based on whether there 

are one or more primary drivers on the trip, the vehicle to be used is determined based on 

the logic discussed in the vehicle type choice modeling framework. If not, then the person 

simply proceeds to the next fixed activity in his schedule.  

On the other hand, if the person is not a primary driver, then vehicle availability is 

checked. To do this, vehicle status of all household vehicles at that instance is checked to 

see if there any ‘idle’ vehicles to carry out this trip. Information gathered from the DTA 

model regarding the network status of all the vehicles is retrieved and summed across all 

the vehicles owned by the household. If the sum of the status variable is greater than one, 

it means that at least one of the household vehicles is available to be allocated to the non-

primary driver in order to carry out this trip. Destination choice for the trip is determined 

using auto travel times. Incase none of the household vehicles are available at the given 

instance to carry out a trip, auto mode will be excluded from the set of available modes in 

the mode choice step. Destinations are sampled based on the chosen mode 

(walk/bike/transit). After a viable destination is chosen for the trip, it is again checked if 

there is enough time to engage in the activity with the chosen mode. If the mode chosen 

for the trip is an auto mode, scope for joint activity participation is checked. For any other 

mode, the trip will be carried out as a solo activity.  



 

Figure 8.3. Vehicle allocation and tracking framework for adult’s non-mandatory activities. 

2
4
1
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Once the destination is chosen for a trip, it is checked whether there is enough time 

to engage in the activity using the chosen mode. If yes, that activity is pursued by the 

individual. If not, then the individual can either delay the activity to the next time-slice and 

re-check for availability of vehicles or alter the activity and search for a new set of 

destinations based on the newly chosen activity. The models that need to be estimated in 

order to apply this framework are as listed below along with a proposed form of estimation.  

i. Model of primary driver allocation: This is a model that allocates individuals in a 

given household to the vehicles such that the household’s utility is maximized. In 

application step, this model will have a variable choice set. As soon as a driver in 

the household is allocated to a vehicle as the ‘primary driver’, he/she will be 

removed from the subsequent model applications so that each person is uniquely 

allocated to a vehicle in the household. This model is discussed in detail in the 

previous chapter. 

ii. Mode choice model with variable choice set: The mode choice model being 

proposed in the framework is heavily influenced by the availability of auto mode. 

So two separate mode choice models need to be estimated, one with auto mode 

included in the choice set and another model without the auto mode. This model 

can be a simple MNL model with motorized and non-motorized modes as elemental 

alternatives or a nested logit model with modes grouped together by characteristic 

(auto vs non-auto etc.,)  

iii. Destination choice models: The destination choice models being proposed are 

dependent on the mode chosen by a traveler. If the chosen mode is auto, 

destinations need to be sampled based on auto skims. If a non-auto mode is chosen 
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destinations need to be sampled based on transit skims. In application mode, this 

model needs to be sensitive to the chosen mode and should be capable of doing 

intelligent sampling. Separate destination choice models will be estimated using 

transit and auto skims. 

iv. Activity type and duration choice models: While the activity type choice is an MNL 

model, the duration choice model is a linear regression model. 

 

Summary and Conclusions 

The proposed vehicle allocation and tracking framework can be used as a starting point to 

implement vehicle accountancy in integrated model systems where an activity-based model 

and a dynamic traffic assignment model are in continuous communication with each other 

and exchange information regarding the network ‘status’ of all vehicles on a minute-by-

minute basis. The proposed framework is comprehensive in that it covers all possible 

outcomes with respect to vehicle availability/unavailability in the household. The proposed 

frameworks ‘mimics’ the real world decision making process of auto-deficient households 

in which individuals are often constrained from engaging in activities due to unavailability 

of a vehicle. The concept of wedding a vehicle to a primary driver in the household is 

debatable as vehicle allocation might sometimes be dependent on the relative importance 

of the activity rather than which individual is assigned as a primary driver to the vehicle. 

In such a scenario, it is easy to rid the primary driver allocation module and do random 

assignment of household’s vehicle to their travel needs and still use the same framework 

for vehicle accountancy. The merits/de-merits of including a primary driver allocation 
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module and the efficacy of the model framework in application mode should be the focus 

of future work in this research area. 
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CHAPTER 9 

SUMMARY AND FUTURE WORK 

 

There has been tremendous advancement in the field of travel behavior research in the past 

few decades. Much progress has been made to enhance transportation planning process 

from the traditional four stage (trip-based) travel demand modeling to activity-based 

modeling methods. The intent of these advancements is to represent personal travel in a 

behaviorally realistic way. There have been parallel efforts on the fronts of research as well 

as practice in the profession to develop state-of-the art activity-based modeling systems 

that identify and model all the nuances in activity-travel patterns observed in day-to-day 

life. In this dissertation, frameworks are presented to enhance existing activity-based 

models on multiple fronts with the help of recent methodological progress made in the 

research arena. The primary objectives of this dissertation are threefold.  

 Develop a tour characterization framework with an intent to enhance tour based 

activity model systems in practice to accommodate the continuous treatment of 

time. 

 Develop a fleet composition modeling simulator capable of predicting the vehicle 

fleet owned by a household classified by body type and age with a goal better 

predict emission footprint of personal travel. 

 Develop a tour level vehicle type choice modeling framework to advance the 

activity-based models currently in practice to model the exact type of vehicle used 

for specific types of tours rather than just modeling the mode (SOV, HOV etc.) 
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The National Household Travel Survey data from 2008, for the Greater Phoenix 

Metropolitan region was used to estimate and validate all the components of the proposed 

frameworks. A brief summary of each of these modeling frameworks is presented here 

along with possible avenues for future research. 

 

Tour Characterization Framework 

The motivation behind development of the tour characterization framework is to enhance 

the discrete time representation adopted in tour-based models currently in practice with an 

evolutionary continuous-time approach that is capable of leveraging both history of activity 

participation as well as anticipatory activity engagement details and determine the 

mix/sequence of stops undertaken on a tour. The reason for many tour-based model 

systems to resort to a discrete time representation is the computational burden involved in 

implementing a continuous-time approach. The proposed framework develops model 

components that are behaviorally intuitive yet computationally efficient.  

The tour characterization framework consists of two components. The first 

component is an MDCEV model of activity type mix that predicts all of the secondary 

activities that an individual engages in, as a part of his/her tour. The second component is 

a stop sequencing model system that determines the sequence in which the activities are 

performed on multi-stop tours. An ‘epoch’ which is defined as the summation of travel 

time and activity duration is considered as the unit of analysis to facilitate continuous-time 

representation of activities. Model components of the tour characterization framework are 

presented for HBW tours and HBO tours made by non-workers. The model components 
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are able to accurately predict the observed activity-travel patterns and show promise for 

implementation in a regional level activity-based travel demand model. 

In the process of development and testing of the tour characterization framework, 

an important observation was made that in case of work tours, there is no constraint set in 

the modeling framework to limit the duration of activities predicted on the morning 

commute (journey to work). If a person starts at home at 8 am clock in the morning and 

reaches work at 9 am, the individual has an hour to engage in any/all activities and travel 

to work. Ideally the model system should predict activity epochs that sum to an hour minus 

the commute duration for the individual. But, this is not imposed as a hard constraint in 

either the MDCEV modeling methodology or the stop sequencing components of the 

framework. While the models developed should be able to take care of such nuances in a 

logically consistent fashion, it is felt prudent to handle this situation by incorporating a stop 

duration reconciliation module.  

Future efforts should concentrate on developing a tour reconciliation module which 

checks the total epoch durations predicted by the model system for the outbound half tour 

of a HBW tour and open time available for the individual to engage in any activities. If the 

epoch durations exceed the available time, the activity (or activities) are moved to the 

inbound half tour schedule (work to home journey) instead of the outbound half tour. This 

is a simple yet behaviorally realistic way of handing subtlety in HBW tour scheduling. The 

model components developed should be validated against secondary data from regions that 

have similar activity travel patterns.  
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Vehicle Fleet Composition Framework 

The vehicle fleet composition model system is developed with an intent to provide 

disaggregate level of information regarding the fleet composition of a region to activity-

based model systems and subsequent emission modules so that the emission footprint can 

be accurately depicted at the regional level. Despite significant advancements in depicting 

activity-travel patterns of individuals, most of the activity-based model systems are still 

constrained to modeling the auto ownership (number of vehicles owned by the household), 

which is of limited use in calculating the emission footprint that results from the travel of 

all the household members. The proposed model system is developed in a parsimonious 

yet effective way to predict the vehicle fleet owned by a household (and thus the entire 

region) classified by vehicle body type and vintage. The model system also predicts the 

average annual mileage that the household puts on each of the vehicles owned. The model 

system is developed in open source coding platform ‘R’. The system takes household and 

built environment characteristics as input and predicts the vehicle fleet mix owned by the 

household. The components of the fleet composition modeling system are able to 

successfully replicate the vehicle ownership patterns classified by body type and age 

observed in the NHTS data for the Greater Phoenix Metropolitan Region. Future efforts 

should focus on validating the model components against secondary data sources (for 

example, data from the Department of Motor Vehicles) 

Further, the fleet composition simulator presented should be enhanced to include a 

fleet evolution module. The evolution module should take the fleet predicted as input in 

the base year and evolve the vehicle acquisition, transaction and disposal of household 

vehicles over time. In the modeling framework, separate models are estimated and applied 



  249 

to predict the vehicle fleet mix and count of number of vehicles (of each type) owned by 

the household. There are might be common unobserved factors affecting both the 

consumption of alternative vehicle types and the number of vehicles owned within each 

vehicle type, which calls for modeling both these dimensions together. An integrated model 

of fleet composition and count is estimated and presented to this effect. Future research 

should concentrate on incorporating this integrated model into the fleet composition 

modeling framework. 

 

Tour Level Vehicle Type Choice Modeling Framework 

The tour level vehicle type choice framework is developed with an intent to advance the 

modeling methodology in activity-based modeling systems from predicting the ‘mode’ 

chosen to make a tour to predicting the exact type and age of the vehicle chosen. A limiting 

reason why almost none of the activity-based models in practice do not predict the type of 

vehicle used on a tour is due to the lack of information regarding the household’s vehicle 

fleet to begin with. This problem is taken care of in an efficient way using the fleet 

composition model framework proposed in this dissertation. With this information at hand 

and information regarding the tour characteristics from the tour composition framework 

(coupled with some exogenous inputs), a novel methodology is proposed to allocate the 

vehicles owned by a household to the activity-travel needs of its members. The tour level 

vehicle type choice framework begins with a primary driver allocation model that assigns 

each vehicle owned by a household to a unique driver within the household. The model is 

run in an iterative fashion until the each driver in the household is assigned a unique vehicle 
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(for auto sufficient households) or the household vehicles are exhausted (for auto deficient 

households). 

The primary driver is assumed to ‘only’ utilize the vehicle that is assigned to 

him/her. This assumption resulted from a finding in the data that 90% of the tours used for 

analysis were made by individuals using his/her assigned vehicle. This observation is also 

not far from reality where individuals are usually ‘wed’ to their vehicles and use them for 

all their travel necessities. If a primary driver (an individual who has an assigned household 

vehicle) wants to embark on a tour, he/she simply use their assigned vehicle. If a non-

primary driver wants to embark on a tour, a tour level vehicle type choice model 

(constrained by the household’s vehicle fleet) determines the type of vehicle that will be 

used to engage in the trip-chain. The tour level vehicle type choice model is an MNL model 

with variable choice set (vehicle fleet owned by the household). The proposed model 

components performed exceptionally well at the aggregate as well as disaggregate levels. 

While the tour level vehicle type choice framework is a good starting point to 

advance the activity-based models from modeling ‘mode’ to the specific ‘vehicle type’ 

owned by the household, it still assumes that all the vehicles are available to the household 

members at all times of day. This assumption can be overcome by incorporating a real-

time vehicle allocation and tracking module. A framework is proposed to this effect in 

Chapter 8. The implementation of this framework requires an integrated modeling system 

where an activity-based model and a dynamic traffic assignment model communicate with 

each other in continuous time (every minute). Future efforts should aim at incorporating 

such a module alongside the tour characterization and vehicle fleet composition 

frameworks. The rule based heuristics adopted for the case when there is more than one 
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primary driver on a tour need to be checked against observed data. This exercise could not 

be carried out as a part of the current effort as such disaggregate level of information is not 

readily available and extremely hard to construct from the trip level information in the 

NHTS data. Travel survey have the necessity to progress from trip level to tour level data 

collection as such information will facilitate development of robust models in the context 

of tour level activity-based models and provide a variety of options to validate the 

estimated models along multiple dimensions (particularly for joint tours). Both the primary 

driver allocation model and the tour level vehicle type choice model are developed as MNL 

models. Future efforts should explore nested logit structures for both these models so that 

the alternatives are not correlated across the choice dimension. It should be noted that the 

tour level vehicle type choice modeling framework proposed as a part of this dissertation 

is still in its incipient stages. Future research should focus on enhancing this framework 

from a methodological (model structures) as well as operational (real-time vehicle 

availability) standpoints. 

In summary, this dissertation contributes to enhance existing knowledge in activity-

based modeling techniques in research as well as practice. All of the proposed frameworks 

have been thoroughly tested for their efficiency in replicating the observed activity-travel 

patterns and vehicle ownership/utilization patterns. Future research should focus on 

implementing this framework (as a whole or in part) in a fully operational integrated urban 

model system at the regional scale to represent travel behavior as realistically as possible. 
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