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ABSTRACT

Energy consumption of the data centers worldwide is rapidly growing fueled by ever-

increasing demand for Cloud computing applications ranging from social network-

ing to e-commerce. Understandably, ensuring energy-efficiency and sustainability of

Cloud data centers without compromising performance is important for both eco-

nomic and environmental reasons. In order to achieve these objectives, this disserta-

tion develops a cyber-physical multi-tier server and workload management architec-

ture which operates at the local and the global (geo-distributed) data center level.

This dissertation devises optimization frameworks for each tier to optimize energy

consumption, energy cost and carbon footprint of the data centers. The proposed

solutions are aware of various energy management tradeoffs that manifest due to the

cyber-physical interactions in data centers, while providing provable guarantee on

the solutions’ computation efficiency and energy/cost efficiency. The local data cen-

ter level energy management takes into account the impact of server consolidation

on the cooling energy, avoids cooling-computing power tradeoff, and optimizes the

total energy (computing and cooling energy) considering the data centers’ technology

trends (servers’ power proportionality and the cooling power efficiency). The global

data center level cost management explores the diversity of the data centers to min-

imize the utility cost while satisfying the carbon cap requirement of the Cloud and

while dealing with the adversity of the prediction error on the data center param-

eters. Finally, the synergy of the local and the global data center energy and cost

optimization is shown to help towards achieving carbon neutrality (net-zero) in a cost

efficient manner.
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Chapter 1

INTRODUCTION

This dissertation addresses the problem of energy usage and energy cost minimization

in single (local data center level) and multiple geographically distributed Internet

data centers (global data center level) towards achieving carbon neutrality. The

dissertation designs software-based workload management schemes integrated with

server power control and energy buffering solutions for data centers. The focus is on

Internet services such as those provided publicly by Internet providers (e.g., Amazon

and Microsoft or enterprise private services provided by the clouds). This chapter

motivates the research problems, gives an overview of the research challenges, the

solutions and the contributions.

1.1 Motivation

Internet Data Centers (IDCs) are rapidly expanding with hundreds of thousands

of servers to accommodate the enormous growth of Internet and cloud services.

Large data centers require huge energy to power and cool their servers. It has been

shown that the electricity used by data centers worldwide is increased by about 56%

from 2005 to 2010 [63] (see Fig. 1.1(a)). This value is about 36% in USA [63] (see

Fig. 1.1(b)). Also a recent survey of 300 North American corporations from Digital

Reality Trust reports that the data centers’ energy consumption is increased by 24%

from 2011-2013 [68]. Further, the total electricity used in data centers is accounted

between 1.7-2.2% of the total electricity use in USA, as shown in Fig. 1.1(b) [63].

This enormous energy consumption translates into huge monthly operational en-

ergy cost (utility bill, $) and large carbon footprints (the amount of greenhouse gases

1
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Figure 1.1: Electricity Use Growth of Data Centers Over Years in (a) World, and

(b) USA (data from [62]). (c) Energy Source in World and USA in 2012 (data

from http://www.eia.gov/). According to the figures the energy consumption of data

centers is growing and so is their carbon footprint, further non-IT equipment (e.g.,

cooling systems) are significant contributors in the data center energy consumption.

produced by the utilities which is typically given in tons of CO2 per year1). The rea-

son is that most of the electricity produced in USA and in most other countries comes

from non-renewable energy sources (see Fig. 1.1(c)). According to a report by Intel

and Microsoft, the energy cost accounts for over 10% of the total cost of ownership

of a data center [64]. Further, McKinsey & Company study estimates Carbon diox-

ide emissions from data centers will quadruple to exceed emissions from the airline

industry by 2020 [114].

Therefore, there has been increasing pressures on data center operators to decrease

their data center energy consumption, cost and carbon footprints. Environmental ac-

tivists, in particular, have asked data center operators to give priority to renewable

energy as their energy sources [34]. In addition, governments and organizations

around the worlds such as European Union Emission Trading System (EU ETS) im-

pose carbon footprint capping policies and provide economic incentives for decreasing

1Greenhouse gases consists of carbon dioxide (CO2) and other gases such as water vapor (H2O),

methane (CH4), and nitrous oxide (N2O). For simplicity, however, carbon footprint is often expressed

in terms of the amount of carbon dioxide or its equivalent of other greenhouse gases emitted.
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Figure 1.2: Workload Trace from NASA 1995 Trace [1]: (a) Minute Variation of

Workload, and (b) Hourly Variation of Workload.

carbon footprints and increasing renewable energy use in data centers.

In response, this dissertation seeks software based server and workload man-

agement techniques towards achieving energy and cost sustainability in data centers

and clouds. Energy sustainability requires carbon neutrality (net-zero), whereas cost

sustainability requires reduced (affordable) energy cost. The keys to achieving these

targets are to increase the data centers’ energy efficiency and to match the energy

consumption to the available green and low-cost energy sources. To this end, this

research seeks a holistic energy management solution which accounts for (i) increas-

ing the energy efficiency of data centers through thermal aware server consolidation

(i.e., adjusting the active server set to the input workload and the cooling power de-

mand) and workload management (i.e., workload distribution among active servers

to reduce data center energy consumption), and (i) increasing the matching of the

energy consumption to the available green and low-cost energy sources through global

workload management (i.e., intelligently distributing the workload across data cen-

ters according to their electricity price ($/J) and carbon emission factor (CO2 g/J)

at a given time) and energy buffering. The effectiveness of the first method is based

on (a) low average utilization of data centers [24]; this is because of the workload

3
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Figure 1.3: (a) Idle to Peak Power Ratio versus Idle Power Magnitude of Comput-

ing Systems, color-coded by release date, based on SPECPower ssj2008’s benchmark

data (http://www. spec.org/power ssj2008/results/); idle power of recent systems

is around 20%-60% of their peak power consumption, and (b) Power Consumption

Break Down of Data Centers (Source: EPA 2007 report to congress on server and data

center energy efficiency [42]); cooling power is a significant portion of data centers

total power consumption.

intensity difference between low periods and workload peaks which is normally about

two to three times as intense (see Figs. 1.2), (b) current computing systems consume

significant amount of power when idle compared to being turned off or throttled down

as shown in Fig. 1.3(a), and (c) cooling power is a significant portion of a data center

total power consumption (see Fig. 1.3(b)) and that the total energy consumption of

data centers can be reduced when considering the impact of server consolidation on

the cooling power. The effectiveness of the second method is based on the spatio and

temporal variation of the available renewable energy sources, the electricity prices

and the carbon emission factors across different locations as shown in Figs 1.4 and

1.5, respectively.

However, the above solutions should be designed by taking into consideration sev-
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Figure 1.4: Hourly Variation of Wind and Solar Renewable Energy Traces for Two

Centers in USA [2, 112]: (a) Solar Energy Trace, and (b) Wind Energy Trace.

eral energy and cost management tradeoffs, each of which introduce complexity in the

solution in terms of modeling, computation complexity, and curse of dimensionality

(solution challenges due to the high state space of the problem) as described in the

section below.

1.2 Overview of Requirements and Challenges

This section gives an overview on the data center circumstances and the require-

ments which this dissertation takes into consideration to design energy and cost effi-

cient solutions.

Cooling and computing power tradeoff at the local data center level:

A data center power consumption consists of power to operate servers (computing

power), cooling system (cooling power) and other accessories such as lighting which

are usually insignificant. The cooling system removes the heat dissipated by the

servers and its efficiency partially depends on the data center room layout. The cool-

ing power efficiency of a data center can be evaluated using Power Usage Effectiveness

(PUE), which is defined as the total power over the computing power [99]. A large

PUE is a strong indication of large cooling power, since the cooling system is the

5



biggest consumer of the non-computing power in a data center (followed by power

conversion and other losses) as shown in Fig. 1.3(b). According to the recent Uptime

Institute report [106], the average PUE of data centers is around 1.65 which means

that 0.65/1.65 ' 40% of the power is consumed in cooling the data center.

For data centers with high PUE, server and workload consolidation may not al-

ways be effective or sufficient in reducing energy consumption because of the cooling–

computing power tradeoff : consolidating the workload on fewer servers tends to de-

crease the computing power (since servers are not energy-proportional) but also may

create hot spots which typically demand greater cooling power [44]. Moreover, in

some cases, this cooling power increase may outweigh the computing power decrease.

It is possible to design thermal aware server and workload management schemes

to avoid the cooling-computing power tradeoff [16, 44, 117]. In general, the active

server set selection affects the total power of the data center due to the non-uniform

temperature distribution in the room (because servers do not equally impact the

temperature in the room, nor are the airflow patterns symmetric) and the servers’

heterogeneity in terms of their power and computing performance. Further, It is

necessary to characterize the conditions where a non thermal aware server manage-

ment scheme causes cooling computing power tradeoff. The reason is that under such

a condition, a non thermal aware server consolidation scheme not only may yield

reduced energy savings, it may well increase the energy consumption instead.

Energy cost optimization at the global data center level: Cloud com-

puting paradigm offers a large pool of computation and network resources from geo-

distributed data centers to serve various applications. For large scale Internet appli-

cations, the cloud geo-distributed infrastructure is utilized to ensure high reliability,

scalability and low access delay. The cloud’s overall energy cost can be lowered by

leveraging the spatio and temporal variation of electricity prices and energy efficiencies
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Figure 1.5: (a) Spatio and Temporal Variation of Hourly Electricity Price across some

States in USA in August, 2012., and (b) Average Carbon Dioxide Emission versus

Average Electricity Cost across USA States in 2012, (each circle represents a state

and data are taken from http://www.eia.gov/).

of the participating data centers in the cloud. In this scenario, workload distribution

policies of the proxies and the workload distribution units (e,g, web front-ends) are

designed not only to maintain the quality of service but also to reduce the electricity

cost across the cloud. However, such a global workload management solution needs

to be aware of the data centers’ cost efficiency metrics, the live migration cost for the

stateful applications, and the applications’ performance requirements. The challenge

of this problem is twofolds: (i) modeling the live migration overhead, and (ii) finding

a computation-efficient solution given the problem’s NP-hardness. Cost aware server

and workload management is proposed in some recent work [96, 97]. However, a cost-

optimal solution to the workload and server management across data centers has not

been proposed, nor has a study on the approximation ratio of the polynomial-time

heuristics has been performed.

Joint energy cost and Carbon footprint optimization at the global data

7



center level: To commit their responsibility to the environment, and to operate

under carbon capping policies mandated by the governments, data centers seek cost

efficient solutions to achieve carbon neutrality. Examples include big players such as

Google and Microsoft who have already taken measures for achieving carbon neutral-

ity (a.k.a. net-zero) [3]. Carbon neutrality can be achieved by capping the carbon

footprint of data centers and purchasing carbon credits (e.g., Renewable Energy Cer-

tificates that data centers can purchase to contribute in the growth of renewable

energy industry) for the remaining offset. Data centers get their primary power from

the grid, and their carbon emission factor in unit of CO2 g/J mainly depends on the

grid fuel types. Various parameters such as the availability of fuel type, the market,

and the environment affect both the carbon emission factor and the electricity price

such that both vary over time and location (e.g., see Fig. 1.5(a)). However, there

is not always positive correlation between them in different locations, e.g., across

USA as shown in Fig. 1.5(b). This means that, optimizing the energy cost does not

necessarily results optimizing of the data centers’ carbon footprint. Further, due to

the intermittent nature of the available renewable energy as well as the time-varying

nature of the workload, the carbon footprint cap is typically defined for a long term

operation of a data center (e.g., a year). Therefore, a global workload management

solution that can both optimally manage the electricity cost and satisfy the carbon

footprint capping target of a cloud can only be found offline. However, it is natural

that an offline solution is impractical due to the “curse of dimensionality”, and that

it is based on the availability of the data center input information (e.g., workload)

for a long term. In partciular, the traditional approaches to construct optimal poli-

cies to manage energy cost and carbon footprint dynamics involve the use of Markov

Decision Theory and Dynamic Programming [26, 116]. It is well known that these

techniques suffer from the curse of dimensionality where the optimal strategy com-

8



puting complexity exponentially grows with the system size [105]. This is because

the problem state space depends not only on the system size (e.g., number of vari-

ables) but also on the possible values that the system parameters get depending on

the system sate. Hence, a challenging task is to design an online solution, which does

not have access to the entire future information, and yet competitively minimizes the

cost under the cloud’s carbon cap requirement with respect to the offline solution.

Some of the related work solely focus on either cost minimization or carbon footprint

capping [96, 97], and some others design heuristic solutions which manage the cloud’s

carbon cap in a best-effort manner [46, 69].

Energy buffering tradeoffs to shave peak power demand at the global

data center level: Data centers spend 10 to 25 dollars per watt in provisioning

their power infrastructure, regardless of the watts actually consumed [52]. Since peak

power needs arise rarely, provisioning power infrastructure for them can be expensive.

Further, some utilities penalize data centers for their peak power in addition to the

energy they consumed. Energy buffering management using existing UPS devices

in data centers or other types of energy storage devices (ESD) has been shown to

be promising to either shift the peak demand away from the high tariff periods, or

to shave the demand, allowing aggressive under-provisioning of the power infrastruc-

ture [22, 121]. Global workload management, can also be of significant aid to shave

the peak power draw without requiring large-scale energy storage devices. Although

energy buffering and global workload management have been throughly studied in

the literature and in this work, the solutions designed so far are piecemeal in the

sense that each of which addresses some aspects of the problem. In particular, prior

work has independently considered aspects of (i) energy cost and carbon footprint

reduction through an intelligent global workload distribution for geo-distributed data

centers, and (i) peak power cost reduction through energy storage devices. These

9



types of managements for energy cost reduction, peak power cost reduction and car-

bon capping have been investigated separately. We argue that there is a need for a

holistic approach that combines all the available leverages. Accordingly, we propose a

new holistic global workload management for large-scale Internet services running in

geo-distributed data centers. Such a holistic management, however, introduces new

challenges to the solution of the global workload management. First, peak power

cost minimization, energy buffering management and carbon capping, all introduce

time coupling in the solution of the global workload management. Prior online algo-

rithms are designed to manage each (or two) of the aforementioned coupling factors

separately, disregarding their implications on each other. Particularly, window based

predictive scheme, efficient for online management of peak power shaving [22], fails to

competitively manage carbon capping with respect to the offline solution. This is be-

cause adjusting the carbon cap for each prediction window is difficult considering the

intermittent nature of the available renewable energy. We propose to use a combina-

tion of window based predictive scheme and T-slot Lyapunov optimization to jointly

manage the cost (electricity cost and peak power cost) and the carbon footprint. The

idea is to leverage the variability of data center parameters within the time frame T

(e.g., a day) in order to smoothen the peak power draw, and utilize the technique

of Lyapunov optimization to adjust the desired carbon footprint for each time frame

over the entire budgeting period (e.g., a year).

Nevertheless, the efficiency of the previously discussed solution heavily depends on

the prediction accuracy of data center parameters over T , those being input workload,

electricity prices, the available renewables energy and the grids’ carbon footprints. In

particular, the prediction error has a very harmful impact on the peak power cost as

observed by the related work [13]. The reason is that the optimal approach is to utilize

the data centers with low electricity cost as much as possible without increasing their
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peak power in that time frame T . Under any under prediction of those data centers’

workload, for instance, their peak power most likely increases, resulting in increase

in the peak power cost. As a result, the cost efficiency of the solution decreases since

the peak power cost contributes a significant portion of the data centers’ operational

energy cost. We seek solutions to mitigate/remove such a harmful impact of the

prediction error in increasing the peak power cost. Previous prediction based schemes

of peak power minimization are performed without considering the impact of the

prediction error [43, 121].

Practical considerations: In addition to the aforementioned requirements, a

server and workload management scheme should be designed with taking into con-

sideration the quality of service requirements (e.g., response time/delay for Internet

workload) and the nature of data center parameters. Internet applications, being the

focus of this paper, are delay sensitive. In order to provide a high quality of service,

the delay of end users should not exceed a threshold. This is often challenging con-

sidering the workload variability and the spikes. Similarly, data center parameters,

e.g., electricity cost, workload, and on-site renewable energy have different charac-

teristics in terms of the predictability and the stochastic nature, where the solutions

should be designed accordingly. Further, in practice a distributed implementation

of the global workload management is desired. Accordingly, each data center and

workload distribution units (proxy or front-ends) should independently decide on the

cost and workload management with the least possible information exchange in order

to preserve the confidentiality and the scalability.

1.3 Overview of Results and Contributions

Motivated by the aforementioned requirements, this research proposes workload

and server management schemes to optimize the energy consumption, energy cost,
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and carbon footprint in a cloud. The research takes the fundamental keys to achieve

energy and cost sustainability altogether into consideration, i.e., energy efficiency,

cost efficiency, and carbon emission efficiency, manages their associated tradeoffs and

leverages their synergistic impact to achieve sustainability in a cloud.

Common themes and assumptions of the solutions: The solutions are

designed through framing optimization problems of energy and cost management at

both the local and the global data center levels. The optimization frameworks are

made up of models characterizing the power demand and the power supply of data

centers. The power demand model of data centers is derived from the workload

distribution model according to their performance requirements, and the power con-

sumption model of servers and the cooling system. The power supply model consists

of models to describe the power drawn from the grid, batteries and the on-site re-

newable power sources of data centers. The solutions periodically and dynamically

monitor data center parameters (e.g., input workload), and decide on energy and cost

management polices. Due to the management overhead, the decision time interval

are chosen to be relatively large (e.g., an hour). Then, the steady state variation of

the data center parameters are considered over the intervals (e.g., average available

renewable energy sources over an interval). The optimization frameworks at the local

and the global data center level range from linear programming, nonlinear binary

programing and complex offline stochastic programming depending on the different

aspects of energy management that they address. The appropriate solutions, there-

fore, are designed corresponding to the nature of the optimization problems at each

data center level to address their computation efficiency and their cost and energy

efficiency. The optimization problems at the global data center level, as shown in

Fig. 1.7, are incrementally extended to address various aspects of energy and cost

management across data centers. Further, the underlying assumptions of the global
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Table 1.1: Summary of Optimization Frameworks and Solutions.

level problem optimization problem solution

Local

Problem: TACOMA (Ch. 4), Thermal aware server (TASP) and workload management (TAWD):

TASP, heterogen. datacenters nonlinear binary prog. heuristic (O(n3))

TASP, homogen. datacenters linear binary prog. Greedy with proven performance (O(n3))

TAWD linear programming heuristic (O(n2))

Global

Problem: Electricity cost minimization, DAHM (Ch. 5):

zero migration cost integer linear prog. linear prog. with proven performance

non-zero migration cost offline integer linear prog. linear prog. (heuristic)

Global

Problem: Energy cost and carbon footprint optimization (Chs. 6 and 7):

zero peak power cost offline linear prog. one-slot Lyap. opt. with proven performance

non-zero peak power cost offline linear prog. T-slot Lyap. opt. and stochastic prog.

and the local data center management solutions are consistent such that they can

be integrated to optimize energy consumption, energy cost and carbon footprints

all together at the local and the global data center level as discussed in Chapter 6.

Table 1.1 gives an overview on the optimization problems and their solutions.

Application of the solutions: The flowchart in Fig. 1.6 gives an overview on

the circumstances where the aforementioned energy and cost management tradeoffs

manifest depending on the utility cost model, the spatio-temporal variation of elec-

tricity prices and carbon footprints, and the data centers’ physical layout. These

tradeoffs introduce challenges in designing server and workload management solu-

tions as depicted in the figure, which are addressed throughout this dissertation. The
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Figure 1.6: Decision Process for Energy-aware and Cost-aware Global and Local Data

Center Management.

flowchart also summarizes the developed solutions, the challenges they addressed and

their practical applications depending on the cloud and data center parameters. It

starts with the decision process for the type of global workload management solution

required depending on the cloud parameters. The flowchart, then, explores the ap-

propriate local data center management solution depending on the physical layout of

the data centers and servers’ power proportionality.

Overview of the results: As shown in Fig. 1.7, the dissertation devices thermal
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Figure 1.7: Overview of the Proposed Solutions.

aware energy management solutions at the local data center level and global work-

load management solutions at the global data center level. The synergistic outcome

of these two level cost energy and cost optimization is shown to help towards achiev-

ing carbon neutrality (net-zero) in a cost efficient way. To increase the data centers

energy efficiency, we develop TACOMA (Chapter 4), a thermal aware server consoli-

dation and workload distribution solution towards achieving power proportional data

centers. TACOMA accounts for both the cooling and the computing energy in data

centers, performs management in the local data center level and is shown (in a sim-

ulation study) to outperform the state of the art solutions by increasing the energy

efficiency of data centers (up to 20%). Next, the dissertation studies the energy cost

minimization at the global data center level which determines workload distribution

policies for a set of geo distributed data centers, i.e., workload distribution between

web front-ends and data centers as shown in Fig. 1.7. This problem is studied for

15



three cases of data center energy cost models as depicted in Fig. 1.7. First, we focus

on solely minimizing the energy cost, develop a solution namely, DAHM (Chapter 5),

and study its effectiveness for the various cases of applications requirements using

the developed greedy solutions, with analytically proven performance. The analyti-

cal results are further utilized to design linear-programming based solutions for more

complex cost models. Then, we study the workload management to jointly optimize

the energy cost and the carbon footprint of data centers. We develop an online so-

lution, OnlineCC (Chapter 6), which is proven to achieve near optimal offline energy

cost, while bounding the potential violation from the target carbon footprint cap.

Simulation results show that OnlineCC reduces cost by more than 18% compared

to a prediction-based online solution while resulting in equal or smaller carbon foot-

print. We also study the effectiveness of OnlineCC, when integrated with TACOMA.

In this case, OnlineCC, is shown to provide a holistic solution to increase the data

center energy efficiency, reduce the energy cost and the carbon footprint. Third, we

extend OnlineCC to leverage the predictability of data center parameters within a

time frame to efficiently shave the peak power demand, while optimizing the energy

cost and the carbon footprints (Chapter 7). The solution, however, is very sensitive

to the prediction error. In particular, the efficient peak power cost minimization fails

in the presence of the parameters’ prediction error. We use stochastic programming

approach to solve it, taking into account the randomness of the parameters (Sec-

tion 7.3). This solution is shown to remove up to 66% of the harmful impact of the

prediction error in increasing the cost (sum of electricity cost and the peak power

cost). Finally, we adapt the Alternating Direction Method of Multipliers (ADMM)

to design distributed algorithms with linearly convergence for OnlineCC and its vari-

ants (Chapter 7). All of the simulation results are performed using real-world traces.

Further, some small scale experiments are performed to complement the analysis.
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Overview of the related work and the novelty of this dissertation: This

research distinguishes itself from existing research as it analytically explores the en-

ergy management tradeoffs which manifest depending on the data center physical

circumstances and depending on the server and workload management polices, mod-

els optimization problems to design server and workload management solutions which

achieve the desired tradeoffs, and seeks computation-efficient solutions.

In particular, non-thermal-aware server and workload consolidation schemes may

cause cooling computing power tradeoff which is also witnessed by the related work [44].

However, the existing studies are performed for a particular setting of data centers

i.e., performing simulation or empirical studies for a given data center thermal profile

and a given servers power efficiency. Given a wide range of power efficiency for data

centers, we study the questions of under what circumstances of data centers power

efficiency, a non-thermal-aware server consolidation solution causes cooling comput-

ing power tradeoff and how to avoid such a tradeoff. We devise abstract models

to describe the power efficiency of non-thermal-aware server consolidation solutions

and provide worst-case analysis of the impact of a non-thermal-aware server con-

solidation solution on the cooling and on the computing energy. Such a technique

helps data center operators to decide on their server consolidation policy. We fur-

ther study thermal-aware server and workload consolidation solutions to optimize

the data centers’ total energy consumption and ensure avoiding cooling computing

power tradeoff. The existing thermal-aware scheduling algorithms for Internet data

centers are heuristic in the sense that they are either based on simulation studies or

do not provide guarantee on their optimality and avoiding cooling-computing power

tradeoff [44, 94, 104].

Cost-aware workload and server management solutions are also studied in the re-

lated work. Existing research addresses energy cost optimization [77, 96, 97, 125],
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and joint optimization of energy cost and carbon footprint of data centers [39, 46,

69, 78, 100, 127]. The existing cost- aware workload management solutions lack a

mathematical analysis for the optimality of the solutions. We prove that the problem

is NP-hard and derive the approximation ratio of the solution. Further, the existing

cost and carbon-aware workload management solutions adopt standard steps of Lya-

punov optimization in order to design an online algorithm for minimizing cost without

significantly violating the carbon capping requirement of data centers [78, 127]. In

this regard, the worst case carbon capping violation of the online solution and the

right adjustment of the Lyapunov control parameter depends on the estimation of

the offline optimal solution which is not easy to obtain. We leverage the structure of

the Lyapunov optimization model of the problem and derive the worst case carbon

capping violation of the solution through the cloud parameters (e.g., electricity prices

and carbon emission factors of data centers). The solution is also used to adjust

the Lyapunov control parameter, a key parameter to control the proximity of the

online solution to the optimal solution. Further, the existing work lacks a holistic

solution which addresses the cost (sum of electricity cost and peak power cost) and

carbon footprint reduction tradeoff all-together. We devise an online solution based

on T-slot Lyapunov optimization to optimize both the electricity cost, and the peak

power cost without significantly violating the carbon capping requirement of the data

centers. Finally, while the existing work on data center peak power optimization rely

on predictability of cloud parameters [47, 50, 51, 52, 61, 75, 116, 121], we show that

the prediction error of cloud parameters such as workload has a very harmful impact

on the peak power optimization, and adopt stochastic programming to remove such

an impact. The following sections give a detailed overview on the contributions.
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In increasing energy efficiency at the local data center level (Chapter 4):

We develop Two-tier Architecture for Cooling cOmputing energy Management Ar-

chitecture (TACOMA) with Thermal Aware Server Provisioning (TASP) to run at

“epochs” (∼1 hr) and Workload Distribution (TAWD) to run at “slots” (∼5 sec) that

matches the long term and the short term fluctuation of the web traffic. It runs online

algorithms to manage servers (i.e. on/off control) and distribute workloads among

active servers. In designing TACOMA we make the following contributions:

� Formalizing conditions for the existence of cooling-computing power tradeoff.

We prove some lemmata to identify the parameters that affect the cooling–

computing power tradeoff, namely energy proportionality, energy efficiency of

the data center (in terms of PUE), and the size of the active server set with

respect to the available servers (Chapter4, Section 4.1.2). The lemmata provide

an easy-to-solve analytical method to test the occurrence of cooling-computing

power tradeoff due to workload consolidation.

� Formalizing TASP and TAWD for both homogeneous and heterogeneous data

centers. In the first tier, TASP adjusts the number of active servers to the

incoming workload and chooses thermal and power efficient servers as active

servers to avoid cooling-computing power tradeoff and save energy.

� Fast heuristic solutions to TASP and TAWD problems. Due to the NP-hardness

of TASP problems (mainly because of thermal awareness and computing power

awareness), heuristic solutions, namely TASP Least Recirculated Heat (TASP-

LRH) and Computing Power LRH hybrid (TASP-CPLRH) are devised (Chapter4,

Section 4.4). TASP-LRH, an approximation solution, runs a rank-and-sort tech-

nique using the LRH metric and TASP-CPLRH, a heuristic solution, sorts the

equipment according to their computing power efficiency and then applies LRH
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ranking in each group of servers with the same efficiency. TAWD also employs

LRH and CPLRH metrics to quickly decide on the workload distribution of the

active servers.

We also perform a comprehensive simulation study to evaluate the developed schemes.

In energy cost minimization at the global data center level (Chapter 5):

To perform cost efficient computing across data centers we design Dynamic Applica-

tion Hosting Management (DAHM) which performs server and workload management

across data centers. To develop DAHM we make the following contributions:

� In formulating the DAHM problem: DAHM is formulated as a Mixed Integer

Programming (MIP), and is proven to be NP-hard (Chapter5, Lemma 5.1.1) for

both cases of stateful (non-zero migration overhead) and stateless applications

(zero migration overhead). In the case of stateless applications, DAHM is shown

to be a specific type of MIP that is Fixed-Charge Min-Cost Flow (FCMCF)

problem.

� In designing solutions to the problem: Optimal solutions for DAHM in both

stateless and stateful applications, are provided by use of branch-and-bound,

which has exponential time complexity with respect to the product of the num-

ber of front-ends into the number of data centers, in the worst case. Further,

polynomial-time greedy algorithms are developed that dynamically decide on

the number of active servers and the workload share (Chapter5, Section 5.2).

The analytical results show that the greedy solution at most increases the cost

by the cost of an active idle server per data center with respect to the optimal

solution (which is negligible considering the large number of active servers in

data centers)
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In joint optimization of electricity costs and carbon footprints at the global

data center level (Chapter 6): We make use of Lyapunov optimization to devise

OnlineCC, an online workload and server management algorithm to minimize the

electricity cost while satisfying the carbon cap requirement of a set of geo-distributed

data centers using only one hour ahead future information (Section 6.2). We show

that OnlineCC can get time averaged cost within O(1/V) of the offline op-

timal solution (see Theorem 6.2.3), where V is Lyapunov control parameter. More

importantly, we further extend the Lyapunov optimization technique to find the

maximum carbon cap violation that OnlineCC yields in the worst case,

which is within O(V ) (see Theorem 6.2.3). A salient feature of this bound is that

it gives an estimation of the worst case carbon violation of OnlineCC without the

need to solve the optimal offline solution. For data centers with non-stationary input

parameters we design OnlineCC-T that leverages the predictability of data center pa-

rameters within the time frame T (Section 6.2.2). Analytical results (Theorem 6.2.4)

show that OnlineCC and OnlineCC-T has a very similar performance compared to

Optimal solutions. The real-world trace based simulation study shows a slightly bet-

ter performance of OnlineCC-T, compared to OnlineCC, suggesting the use of this

algorithm depending on the nature of data center parameters (Section 6.4.4).

We further extend and evaluate OnlineCC when integrated with TACOMA. We

device Thermal-aware OnlineCC which uses a convex cost model to account for data

center cooling energy as a result of applying TACOMA’s active server set selection

algorithm at each individual data center. The model is evaluated when using en-

ergy consumption model of an actual data center, i.e., BlueCenter (a small testbed

data center at ASU). The results show that OnlineCC increases cost saving around

10% when using TACOMA’s thermal aware server section algorithm (TASP-LRH) as

opposed to the reference non-thermal aware server selection algorithm (Section 6.4.5).
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Finally, we perform a small scale experimental study to show the effectiveness

of OnlineCC in optimizing cost and carbon footprint with satisfactory performance

(Section 6.5).

In peak power shaving at the global data center level (Chapter 7): We

frame the holistic global workload management, energy buffering and peak power

shaving problem as a linear programming (Section 7.1). The linear programming

model, disregards the nonlinear constraint posed by physical characteristics of energy

storage devices, yet is shown to always give a feasible solution in terms of the miss-

ing nonlinear constraint (Lemma 7.1.1). We design an online solution (which is an

extension of OnlineCC), namely Cost Minimization and Carbon Footprint Capping

based on Lyapunov optimization (OnCMCCLyp) which leverages T slots ahead in-

formation to smoothen the peak power draw, and Lyapunov optimization to manage

the dynamics of the cloud’s carbon footprint (Section 7.2). OnCMCCLyp is shown

to achieve near optimal solution performance (through analytical, Theorem 7.2.1 and

simulation study), when T is sufficiently large and that the information over T is

accurately available. Prediction error, however, downgrades the performance of On-

CMCCLyp by increasing the cost (sum of electricity cost and peak power cost) up to

45% compared to the offline optimal solution. Our stochastic programming solution

(Section 7.3) is shown to remove up to 66% of such a harmful impact of the prediction

error. We also design 2-block ADMM based algorithm to solve OnCMCCLyp in a

distributed way which is shown to converge linearly (Section 7.4).

1.4 Dissertation Structure

In the next chapter, we give an overview on data centers’ power infrastructure

and applications under which we perform the study. Next, we review the related
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work and the way we contribute in the area. In the next four chapters (Chapters 4 to

7), we give a detailed description of the aforementioned solutions, and analyze their

usefulness and drawbacks. Each of the Chapters 4, 5, 6, and 7, are self-contained,

that is, they can be read in any order. In particular, Chapter 4 presents TACOMA,

an energy efficient solution at the local data center level. Chapter 5 presents our

energy cost minimization solution (DAHM) at the global data center level. Chapter

6 presents OnlineCC for joint optimization of energy cost and carbon footprint at the

global data center level. Chapter 7 further extends OnlineCC for joint optimization

of energy cost, carbon footprint, energy buffering and peak power shaving at the

global data center level. Finally, we conclude the research and discuss open research

problems in the domain of cloud sustainability in Chapter 8. Chapter 8, also accounts

for the relationships between all of the proposed solutions and the way that all of them

together result to a holistic solution toward achieving sustainability in a cloud.
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Chapter 2

BACKGROUND

This chapter gives a brief overview of data centers, their power infrastructure and

Internet applications under which we perform the study. Further, the chapter gives

an introduction of the research system model, and the problem formulation.

2.1 Data Centers

A data center is a facility built to house information technology infrastructure in-

cluding servers, storage systems and network equipment. Internet service providers,

and enterprises use this facility in order to provide secure and reliable information

technology services such as storing, processing, and managing the data as well as pro-

viding high-speed network based applications (see Fig. 2.1). Information technology

operations are a crucial aspect of most organizational operations around the world.

Therefore, data centers are designed in such a way that their long term uninterrupted

operation is guaranteed. They employ various redundant or backup techniques in

both software and hardware level to ensure their reliability. Further, they employ

several air-conditioning controls and security solutions to ensure their thermal safety

and security, respectively.

Data centers come in different sizes depending on their design objectives and

functionalities. They range from small facilities hosting a few computers without

sophisticated power and cooling system infrastructure to massive facilities hosting

hundreds of thousands of servers and offering a variety of cloud services. Small data

centers are employed locally by small enterprises such as universities, whereas large

scale data centers such as those provided by Google, Amazon, and Facebook offer
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Figure 2.1: BlueCenter, a Small Testbed Data Center at ASU, (a) Front View of

Racks, and (b) Back Side of Racks.

worldwide online and cloud services. Further, there are also some data centers in

between, i.e., medium data centers, such as those offering hosting services. This

research focuses on medium and large data centers that require sophisticated power

and cooling system infrastructure. This section gives an overview on the physical

layout, the power infrastructure and the power efficiency trend of such data centers.

2.1.1 Physical Layout

In contemporary data centers, computing servers are organized in rows of racks

of blade systems organized in chassis. The equipment is arranged so that, in each

aisle between two rows, either front panels or back panels are facing each other; this

is called the hot aisle/cold aisle arrangement. Most of data centers use air cooling

technology, where the equipment is placed on a raised floor in the hot aisle/cold

aisle layout (see Fig. 2.2). The raised floor in the cold aisles features perforations

which allow cool air to enter the room; perforations or other contraptions above the

hot aisles gather the hot air, which is passed to the computer room air conditioner

(CRAC). The supplied temperature of the cooling system (CRAC) should be low

enough so that the temperature of the computing nodes does not go beyond the red
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Figure 2.2: Hot Aisle Cold Aisle Data Center Layout with Heat Recirculation (figure

from [110]).

line temperature which is specified by the manufacturers. In the ideal case, all the

hot air should directly go back to the CRAC; but, in practice, some of the hot air

recirculates back to the computing servers (see Fig. 2.2). The heat recirculation in the

room is non-uniform as servers contribute or receive the heat recirculation depending

on their physical location. The solutions of this dissertation account for data centers

with heat recirculation.

2.1.2 Power Infrastructure

Data centers get their primary power source from grid. As shown in Fig. 2.3,

power enters the data center through a utility substation which serves as its primary

power source. Other power sources act as the power source backup. In particular, a

Diesel Generator unit (DG) is usually used as a secondary backup power source upon

a utility failure. An Automatic Transfer Switch (ATS) is employed to automatically

select/switch between these two sources. DGs have a startup time of around 10-20

26



PDU PDU 

Power Grid G 

UPS 

Diesel generator 

ATS 

rack 

Figure 2.3: A Typical Data Center Power Infrastructure.

seconds, a time duration for DGs to get activated in order to supply power. To bridge

this time gap, data centers employ Uninterrupted Power Supply (UPS) units which

store energy during power availability. UPS typically can power the data center for

about 10-15 minutes. UPSes are primarily installed centrally in data centers, where

their power is available to all the IT equipment [61]. As shown in Fig. 2.3, in this

configuration power from the UPS units is fed to several Power Distribution Units

(PDUs). The PDUs have transformers that step down the voltage and route power

to several racks.

Some modern data centers employ distributed UPSes for groups of chassis or for

each server [61]. In the first case, the UPS will deliver power to the PDU. In the

second case, the UPS directly supplies current to the server. The UPS in this case

does not need the inverter and thus have lower power loss due to distortion. However,

this calls for greater expenses in infrastructure.

The problems studied in this research focus on the centrally connected UPS con-
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figuration. The other configurations do not change the nature of the problems, their

solutions and the results’ trend, but affect the number of decision variables involved

and the numbers in the results. There are some sources of power inefficiencies when

utilizing UPSes, e.g., power loss due to AC-DC conversion and the power inefficiencies

for frequent charging and discharging of UPSes. In this study we do not contribute on

the power infrastructure design of data centers, hence we do not consider the power

inefficiencies due to the type of deployment of UPS. We study the energy cost min-

imization problems where UPSes can be used to shave the peak power demand and

reduce the electricity cost in addition to serving as the power source backup during

the power outage. Therefore, we consider the UPS power inefficiencies which come

from their charging/discharging.

2.1.3 Power Consumption

The power consumption of data centers depends on several factors including the

power consumption characteristics of computing equipment, the cooling system, and

the size of data centers in terms of number of racks, and number of servers per

rack. Many other factors, such as power loss (e.g., due to AC-DC conversion), and

lighting also contribute to the power consumption of data centers. This dissertation

only considers the power consumption of the servers and the cooling systems, as the

other contributors to the power consumption are either insignificant or irrelevant to

the designed workload management schemes. The power efficiency of thermal aware

server consolidation schemes, being the focus of this research, depend on how power-

proportional the servers are and how significant the cooling power is. Hence, this

dissertation designs the solutions considering the power proportionality trend of the

servers as well the cooling power consumption trend of data centers.
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Figure 2.4: Pictorial Definition of

Idle to Peak Power Ratio (IPR) and

Linear Deviation Ratio (LDR).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-0.4 -0.2  0  0.2  0.4

IP
R

 (
id

le
-t

o
-p

e
a

k
 p

o
w

e
r 

ra
ti
o

)

LDR (linear deviation ratio)

IPR vs LDR vs release month for various computing systems

Jan-2014

Jul-2013

Jan-2013

Jul-2012

Jan-2012

Jul-2011

Jan-2011

Jul-2010

Jan-2010

Jul-2009

Jan-2009

Jul-2008

Jan-2008

Jul-2007

Jan-2007

h
a
rd

w
a
re

 r
e
le

a
s
e
 m

o
n
th

Figure 2.5: Scatter-plot of IPR vs LDR

of over 290 Computing Systems, color-coded

by release date, based on SPEC Power

2008 public benchmark data (http://www.

spec.org/power ssj2008/results/).

Power Proportionality of Servers

Power proportionality of a server depends on how its power consumption varies with

respect to its utilization. An ideal power-proportional server has a zero idle power

and a linear power-utilization curve. Current servers are far from being ideally power-

proportional. One characteristic of computing systems, until recently, has been the

high energy consumption when they are idle. Variable performance technologies,

such as dynamic duty cycling, considerably dampen the power consumption of recent

computing systems at near-idle utilization levels [24]. However, the power-utilization

curve is not as linear. Varsamopoulos and Gupta observe this behavior and introduce

two metrics to measure how power-proportional a system is (see Fig. 2.4): (i) Idle

to Peak Ratio (IPR) measures how close to zero the idle power is (consider a server

with linear power consumption of the form: p = putilu + pidle, where 0 6 u 6 1
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denotes the utilization, p denotes the power consumption, and pidle and putil denote

the idle power and the power gradient with respect to utilization, respectively, then

IPR= pidle

pidle+putil
.), and (ii) LDR measures the linearity of the power curve (i.e., how

close the power curve is to hypothetical linear curve connecting idle power to peak

power) [118]. Ideal power-proportional servers have zero IPR and LDR.

Recent trends, as shown in Fig. 2.5, indicate that existing computing systems

cover a large area of the IPR-LDR spectrum (see Fig. 2.5). The scatter plot using

SPEC Power 2008 public benchmark data released in July 2014 shows that (i) as

systems lower their IPR, their LDR gets larger, and (ii) there are no systems, at

least among the ones tested, with an IPR less than 0.2 (see Fig. 2.5). Chapter 4 uses

IPR and LDR metrics to study how the energy proportionality of systems affect the

performance of energy aware workload and server management schemes.

Cooling Power Efficiency

To evaluate the cooling energy trend of data centers, one can use PUE (the ratio

of the total power used by a data center to the power used by its IT equipment).

PUE is a widely used metric developed by the Green Grid consortium to measure

the power efficiency of non-computing equipment in data centers [99]. Large PUE is

an indication of large cooling power. Ideally, PUE should be equal to one. However,

the PUE value of data centers range from over 2.5 down to around 1.1 according to

the 2012 survey reports by Uptime institute [107] (see Fig. 2.6). In recent years, large

data center operators, such as Google and Facebook, have improved the PUE of their

modern data centers (PUE is reported 1.18 for a Google modern data center and 1.08

for a Facebook data center). However, as shown in Fig. 2.6, only 6% of data centers

report a PUE of less than 1.3. Therefore, it is important to design and evaluate the

workload management schemes taking into account high PUE of data centers.
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Figure 2.6: PUE of Data Centers according to Uptime Institute Survey Report, 2012

. The survey reports a wide range of PUE from its 1,100 respondents; the average

PUE is around 1.8-1.89, and only six percent of respondents claim a PUE of less than

1.3 (data from Uptime Institute).

Further, “watts per square foot” is typically used to measure the power density

of data centers where the square foot is usually calculated per the room square foot

(it may also refer to the rack sqaure foot, or the production area square foot i.e.,

the actual room space used for equipment). The current typical data centers have 35

upto 100 watts per square foot depending on the server density. Modern data centers,

however, due to the technology trend towards high density computing, specifically

blade chassis environments, have higher power density e.g., 150 watt - 300 watt per

square foot. Dense deployment of servers demands high cooling power.
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2.2 Renewable Energy

Renewable energy are usually very expensive to implement, depend on the sur-

rounding weather conditions, intermittently available, and require a big land area to

implement in many cases. Despite drawbacks, data centers have already started to

deploying them in various ways, not only to make their commitments for sustain-

ability, but also to mitigate any steep raise in the electricity price in future. Google,

Apple, FaceBook and many other industry leaders already have made investments to

partially or totally power their data centers from renewable energy sources, primarily

using solar and wind energy [4, 85, 119]. The number of these data centers will likely

to grow as (i) the installation costs of the renewable energy technologies tends to

decrease [5], (ii) the on-site renewable energy helps to mitigate the electricity price

raise in future[120], and (iii) governments increasingly provide incentives to generate

and utilize green power [6].

Due to the limitations of the on-site renewable energy sources, i.e., geographical

location or land, many companies do not have opportunities to install on-site renew-

able sources or directly use renewable utility power. There are other solutions such

as Power Purchasing Agreement (PPA) and Renewable Energy Certificates (RECs)

that data centers can purchase to contribute in the growth of the renewable energy

industry.

By purchasing PPA, as done by Google, the data centers invest and sign with

several renewable energy plants such that the generated renewable energy will be

directly fed into the local electricity grid and then used to offset the brown energy

usage of the data centers [4].

By purchasing RECs, data centers support renewable energy producers by com-

mitting to buying their energy for long-term, but use brown energy on sites [4]. This
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dissertation studies how on-site renewable energy sources can be managed through

global workload management to reduce the carbon footprints, and the operational

energy cost of data centers, while accounting for their intermittent nature and pre-

dictability.

2.3 Energy Cost

We study the operational energy cost of data centers, which consists of the elec-

tricity cost, and the cost per peak power: in addition to the electricity cost, some

utility providers also penalize the excess power draw by imposing additional fee if the

peak power draw exceeds the stipulated power in a certain time window [22, 121].

We study the cost minimization problem under both of the above models as well as

the spatio-temporal variation of the electricity price as explained below.

There are typically three types of electricity plans offered through the various

providers of electricity [43]: (i) fixed pricing, (ii) time of use pricing, and (iii) dynamic

pricing. Under the fixed pricing, the electricity price is constant over time. Under

the time of use pricing, the electricity pricing has a constant daily pattern, e.g., there

might be two prices, one for day-time and the other for night-time depending on the

periods of peak and low power demands. Under the dynamic pricing, managed by

the wholesale electricity market, the electricity pricing is dynamic, significantly varies

over time and has seasonal daily, and monthly pattern. Big power consumers often

use dynamic pricing to leverage the electricity price variation by scheduling their

electricity consumption intelligently and saving money[96].

2.3.1 Wholesale Electricity Market

The price of electricity in the wholesale market depends on a number of factors

including the fuel type, the supply-demand variation, and the market.
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Electricity is produced from a variety of sources including coal, natural gas ,

nuclear power, and hydroelectric generation. Different regions use different sources

depending on the availability of sources and their expenditure. For example in USA

the total generation output in 2012 shows that coal dominates (37%), followed by

natural gas (39%), nuclear (19%), hydro (7%), and renewables (5%) generation [8].

The key limitation of the electricity comes from the fact that it currently cannot

be stored in a scalable and cost-efficient way. A sophisticated control is needed to

ensure a close match between the supply and the demand. Any mismatch between

the two can induce a high cost as power producers may need to add or remove

the generation plants or load both of which are costly. To mitigate such problems,

system operators, known as balance authority, closely monitor the system to ensure

capacity reliability. The system operators consisting of utilities, federal agencies and

Independent System Operators (ISO) or Regional Transmission Organization (RTO)s,

forecast demand in the day-ahead market, schedule power generation, reserve the

transmission, adjust schedule as hours get closer, correct imbalances in real time,

restore systems if disturbance occur, and sometimes plan for long-term capacity and

transmission upgrade.

System operators in many regions of north America are ISO/RTOs which manage

the grid and the wholesale electricity market. The pricing in the wholesale market

can be day-ahead, hourly basis or real-time.

The system price in the day-ahead market is determined by auctioning mechanism

for the producers and the customers at each node to develop a classic supply and

demand equilibrium price, usually on an hourly interval, and is calculated separately

for subregions in the grid [96, 122].

RTOs set the Locational Marginal Price (LMP) (e.g., for hourly interval or real-

time) for different nodes in the grid which consists of three components: (i) System
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Table 2.1: Carbon Emission Factor of well-known Electricity Fuels (CO2 g/kWh).

coal PL NG Nuclear energy Wind solar

986 890 440 15 22.5 18

Energy Price (SEP): system clearing price if no congestion exists (always same at all

locations), (ii) Marginal Lost Cost (MLC): Cost of marginal losses along transmission

into specific node, and (iii) Marginal Congestion Cost (MCC): If congestion is positive,

cost is incurred by expensive energy delivered to the destination. Whereas negative

congestion indicates that the electricity generated is more than its demand. The cost

is then calculated for each less MW that destination nodes consume compared to

what is generated at the source nodes in the grid [122].

In this study we assume data centers use hourly-basis dynamic pricing where an

hour ahead price can be predicted with reasonable accuracy.

2.4 Carbon Footprint Capping and Carbon Neutrality

Carbon emission factor of a power plant is the carbon emitted for a given amount

of energy consumed which is calculated in CO2 g/J. As shown in Table 2.1, brown

energy sources such as coal, Petroleum Liquids, and Natural Gas has very high carbon

intensities. Carbon neutrality, or having a net zero carbon footprint, refers to achiev-

ing net zero carbon emissions by balancing a measured amount of carbon released

with an equivalent amount of offset (e.g., planting trees), or buying enough carbon

credits to make up the difference.

A carbon neutral or net-zero data center is a data center with net-zero carbon

emissions, e.g., the total amount of energy used by the data center on an annual basis

is roughly equal to the amount of renewable energy directly (on-site) or indirectly
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(e.g., REC) generated by the data center, and purchasing carbon credits for the

remaining carbon footprint offset.

Although currently there is little financial motivation to use green or clean energy

sources (green energy sources are more expensive than the brown energy sources),

data centers will soon be required to cap their carbon footprint towards achieving

carbon neutrality. This is due to either the mandatory carbon capping policies by

governments, policies of utility companies, voluntarily purposes, or pressures from

non-profit environmental organizations [69]. First, some countries such as UK and

Australia have already developed and regulated carbon capping policies, and some

others are taking steps towards regulating those polices (e.g., USA), with cap-and-

trade and carbon-tax being the most popular ones [49]. A carbon tax imposes a tax

on each unit of greenhouse gas emissions and gives companies an incentive to reduce

pollution whenever doing so would cost less than paying the tax. A cap-and-trade

system sets a maximum level of pollution, a cap, and distributes emissions permits

among companies that produce emissions. Companies must have a permit to cover

each unit of pollution they produce, and they can obtain these permits either through

an initial allocation or auction, or through trading with other companies. Data cen-

ters, as big power consumers, should operate under the carbon capping policies. In

UK businesses consuming more than 6 GWh per year should participate, which in-

cludes relatively small data centers with 700 KW power consumption. Second, for

some utility companies, it is desired to cap the maximum power draw due its cost

efficiency. Third, some data centers desire to take volunteer steps toward achieving

carbon neutrality in order to benefit from favorable accreditation, and/or business

promotion [4]. Finally, environmental activists have started pushing data centers

towards achieving sustainability [53].

Recently, several companies such as Google, and Microsoft have set carbon neutral-
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Figure 2.7: Demonstration of the Variation and Cyclic Behavior of Web Traffic for

Three Popular Web Sites (source: www.alexa.com).

ity as their long-term strategic goals [4, 38]. Despite being desirable, achieving carbon

neutrality is challenging. In particular, it needs to cap data centers’ brown electricity

usage over a long time such that the entire future brown energy consumption can be

completely offset by the limited and intermittent available renewable energy sources

and the carbon credits. Further, the capping brown energy consumption should be

performed without compromising the quality of service and considerably increasing

the energy cost. The magnitude of the brown energy cap is decided by data centers

by taking into consideration the cost benefit analysis of the existing carbon capping

policies, carbon credits such as REC, their on-site and off-site renewable energy plan

and the electricity cost. The solution designed in this dissertation, OnlineCC, works

under such a carbon capping policies of data centers (see Chapter 6). Suppose data

centers uses carbon capping and carbon credits to achieve carbon neutrality. Denote

by Σ, the carbon cap, then the enough carbon credits to remove Σ has to be purchased

in order to achieve carbon neutrality.

2.5 Internet Services

Data centers generally host heterogeneous applications ranging from web services

to batch and highly computationally intensive jobs. This study accounts for Internet-
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type applications which are offered online using large server farms in data centers.

The solutions of this research are consistent with the performance requirement of

these applications, their workload nature, and their data requirement.

First, Internet applications are delay sensitive such that for a high Quality of

Service (QoS) the end users’ delay should not exceed a reference delay. Therefore, a

crucial aspect of the energy management solutions is managing the quality of service.

Data center and cloud providers offer their service based on a Service Level Agreement

(SLA), where any quality of service violation from SLA costs them a punishment

fee. In addition to such a punishment fee, frequent delay violation increases the

risk of losing the customers and increases the tendency of customers to leave the

provider [60]. Service providers such as Google, and Amazon, are reluctant to trade

QoS violation in any profit (e.g., energy saving). The reason is that any service

QoS degradation, may decrease their service revenue dramatically (e.g., decreasing

the number of people visiting and shopping in Amazon). This dissertation aims to

design energy management solutions without compromising the QoS requirement of

the applications.

Second, the solutions in this research is based on the variability assumptions of

the workload (e.g., daily and weekly variation). Intensity variation in the web traffic

has been witnessed by several researches [24, 31]. The variation originates from the

size variability of files communicated, users’ thinking times (e.g., the time interval

between each click) which form a short-term variation, fluctuation in time scale of a

few seconds [23] (see Fig. 1.2(a) as an example) and number of online users which

forms a long-term, i.e., hourly and daily, cyclic variation (see Fig. 2.7).

Finally, throughout most of this research, we assume that data requirements of

the applications are fully replicated such that they can run on any server at any data

center. Although data replications is prevalent especially for large-scale Internet ap-

38



plications (e.g., Google search), in practice, the applications tend to be only partially

replicated, e.g., data is replicated at multiple clusters of data centers, but not at all

clusters [96]. This means that a request may be serviced by more than one cluster of

servers, but not by any server.

The following sections give an overview on the cloud service models and cloud

infrastructure of Internet services.

2.5.1 Cloud Services

Cloud computing provides several service models including: Infrastructure as a

Service (IaaS), Software as a service (Sass), and Platform as a Service (PaaS) [83].

In IaaS, the cloud provides physical or virtual machines and other sources to run

the clients’ applications. In PaaS, in addition to the hardware and Virtual Machines

(VMs), the cloud also provides the operating system and other resources for the

clients to develop and run their applications. In SaaS, the cloud installs the software,

such that the users can access the software from the cloud (such as email service).

In addition to the above, there are other form of services, where one or both of the

computation and data of the clients’ applications can be fully or partially outsourced

to the cloud [109].

The algorithms developed in this dissertation need to access: (i) the cloud infras-

tructure parameters such as electricity price, thermal profile of the data centers and

the physical location of applications, and (ii) the web application parameters such as

workload, and the performance model. Theoretically, the algorithms can be deployed

in all of the cloud service models and the deployment can be performed either by the

cloud owner (for the case where cloud offers PaaS and IaaS) or the application owner

(for the case where the cloud IaaS is used). However, this is only true, when the cloud

infrastructure related parameters can be exposed to the algorithm. In practice, how-
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ever, the access and control permission to the cloud infrastructure related parameters

are very limited for the security and confidentiality reasons. Therefore, given that

the cloud has ability/willing to expose the infrastructure related parameters to the

PaaS and SaaS platforms, the algorithms can be deployed in a cloud that offer PaaS

and SaaS where the two aforementioned group of parameters can be exposed to the

algorithm.

2.5.2 Geo-distributed Data Centers

Current large-scale Internet services tend to be replicated over several data centers

around the world. For example in USA, Akamai, a Content Delivery Network (CDN)

provider, spreads its servers across hundreds of locations [96]. Similarly, Google

provide its service from several geographically distributed data centers as shown in

Fig. 2.8. Also a recent data center survey by Uptime Institute reports that 82% of

respondents mange more than one data center. Geographically distribution of data

centers is primarily performed for fault tolerance and quality of service purposes. Re-

cently, the research community proposes to leverage the spatio-temporal variability of

energy cost and carbon footprint across data centers’ locations using global workload

management [71, 73, 77, 96, 97, 123]. Such geographically distributed data centers are

expected to form the infrastructure of the clouds and a design model for the future

cloud infrastructure, since such a model increases the reliability and provides many

energy and quality of service management possibilities. The solutions of this disserta-

tion i.e., DAHM (Chapter 5), OnlineCC (Chapter 6), and OnCMCCLyp (Chapter 7)

account for global workload management for geo-distributed data centers.
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Figure 2.8: Locations of Google Data Centers (source:www.google.com).

2.6 Implementations Aspects of Energy Management Solutions

energy aware server and workload management solutions require the underlying

infrastructure allow dynamic workload balancing across data centers and server con-

solidation. The following sections describe the current state of the data centers to

implement energy management solutions.

2.6.1 Workload Distribution Across Data Centers

Global workload management, being a design goal of this research, is based on the

assumption that the underlying infrastructure (cloud or geographically distributed

data centers) allows request redirection mechanism in order to distribute requests

across data centers based on some policies. Request redirection solutions are already

in use to enable replication over Internet and CDNs [33, 95]. In this regard DNS based

request-routing techniques are common due to the ubiquity of the DNS system. In

DNS based request-routing techniques, a specialized DNS server is inserted in the

DNS resolution process. The server is capable of returning a different set of records
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based on user defined policies, metrics, or a combination of both. There are also

other techniques such as HTTP redirection using persistent HTTP proxies to tunnel

requests, which are currently employed for selecting data centers.

2.6.2 Server Consolidation

This dissertation designs various energy-aware and cost-aware dynamic server pro-

visioning schemes. The idea of dynamic server provisioning is to adjust the number

of active servers in a server farm to the offered workload at a given time. In addi-

tion to the modeling and algorithmic challenges which have been addressed in this

research, server provisioning has some implementation challenges. Especially sus-

pending servers costs energy as servers consume energy to be turned back on, there

is a switching delay, availability of service may be violated because of suspending

servers which are still in service, and there is an increase in wear and tear of the

server components. Our approach avoids the above repercussions by performing in-

frequent and proactive switching. Dynamic server provisioning requires to selectively

suspend individual servers; modern data centers are increasingly likely to support

this functionality. Server consolidation is currently used by data centers to overcome

increasingly growing of the demand, and to save energy [107].

2.7 System Model

In brief, we perform this research in the context of delay-sensitive and large-scale

Internet services, such as those provided from eBay, Amazon, and Google, or large

scale hosting centers (e.g., GoDaddy). As depicted in Fig. 2.9, we assume these

services are supported by multiple data centers. The data centers sit behind front-

end devices that inspect each client’s request and forward it to one of the data centers

according to a request distribution policy.
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Figure 2.9: System Model for Local and Global Data Center Workload Management.

We assume the most common cooling technology for data centers, i.e., air-cooling

technology. Further, we assume the heat created by the servers is partially distributed

in the room, a common phenomenon in contemporary data centers with air-cooling

technology. Also, the heat distribution in data centers is not uniform (i.e., servers have

different contribution on the heat recirculation depending on their physical location).

Finally, as shown in Fig. 2.9, we assume data centers power their servers and the

associated accessories from a mix of grid, energy storage devices and on-site renewable

energy sources.

In order to design dynamic server provisioning and workload management schemes,

we consider a discrete-time model by dividing the entire budgeting period (e.g., typ-

ically a year) into S time slots each of which has a duration that is short enough to
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capture the variation of data center input parameters (e.g., workload, and electric-

ity cost) yet long enough to prevent the solutions’ overhead (e.g., computation and

network overhead, server switching overhead). We frame the energy and cost man-

agement problems, as optimization problems each of which are defined to reconcile a

number of competing objectives, e.g., reducing both the cooling and the computing

energy, reducing the electricity cost, maintaining requests’ delay requirement and the

cloud carbon footprint cap in order to decide on the dynamic server provisioning and

workload distribution.

We base the management schemes at the local data center level on a system model

which consists of assumptions and modeling of data center physical layout as given

in Chapter 4.

The solutions at the global data center level all are designed based on the system

model given in Fig. 2.9. In particular, the system model assumes a cloud consisting

of N geo-distributed data centers, each containing at most Yi servers. We perform

work management at long time intervals (e.g., hourly) and control servers’ on and off

power states with zero power consumption in the off state. Other server and CPU

power state management (e.g., DVFS) which are typically performed in short intervals

(e.g., seconds) [81] can be considered as complement to the proposed solutions.

End users’ requests first arrive at one of the M front-end proxy servers. The proxy

servers then decide how to distribute the requests to data centers according to the

policies dictated by our workload management schemes. All the management schemes

are designed to optimally decide on (i) the workload division among the data centers,

denoted by λi,j(t), i.e., the workload arrival rate from front-end j to data center i,

and (ii) the number of active servers at each data center i, denoted by yi(t) (the re-

maining servers i.e., Yi−yi(t) are set to inactive to save the unnecessary idle power).

The solutions, however, are distinguished based on the specific aspect of energy cost
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Table 2.2: Symbols and Definitions.

Sym. Definition Sym. Definition

t slot index g power drawn from grid

S total # of slots ptot total power cons.

j frontend index r renewable harvesting

i data center index εg grid carbon emission

N # of data centers εr renew. carbon emission

µ service rate b total carbon emission

λ workload arrival rate Y total # of servers

dref reference delay y # of active servers

d′ref service reference delay yslack percentage of reserved active

servers

d′′ network delay α electricity price

β Peak power cost

minimization problem that they address. These aspects consist of solutions’ optimal-

ity and computation efficiency analysis, carbon capping and peak power shaving in

data centers, each of which represents practical cases and are associated with some

specific problem formulation details which is described in the corresponding chapter.

The optimization problems at both the local and the global data center levels

are made up of models characterizing the power demands and the power supply of

data centers. The power demand model of data centers is derived from the workload

distribution model according to their performance requirements, and the power con-

sumption model of servers and the cooling system. The power supply model consists

of models to describe the power draw from the grid, batteries and the on-site renew-

able power of data centers. The models are the basis of the optimization frameworks

of Chapters 4, 5, 6, 7, in order to design dynamic cloud energy/cost management
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Figure 2.10: Models for Local and Global Data Center Management.

schemes. Fig. 2.10 gives an overview on the models and the way they are derived and

fed in to the mathematical frameworks for optimization of data centers’ cost and en-

ergy consumption. The formulation and models build on some existing data centers

models which are described in the following sections. A summary of notations used

to design global data center level management schemes are given in Table 2.2.

2.7.1 Power Demand Modeling

The power demand model describes the total power consumption of data cen-

ters at a given time which depends on the input workload, the resource assignment

(e.g., number of servers) and the power consumption models of servers and the cool-

ing system. The resource assignment should be performed in such a way that the
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performance requirements are maintained.

Workload Modeling

Throughout this research we assume short, interactive, and delay sensitive Internet

workload. The workload are originated from online Internet users. Users generate

Internet requests (e.g., by clicking a URL or submitting an online bank transaction)

which need to be completed in a fraction of a second. The workload can be modeled as

the request rate, i.e., number of requests per second which can be directly calculated

from the web servers traces. We denote the workload arrival rate by λ, which is

allowed to vary over time and location, consistent with the nature of Internet workload

as explained in Section 2.5. When designing management schemes for the local data

center level, we account for the time variation of workload offered to an individual

data center. Whereas to design the management schemes for the global data center

level, we account for both the spatio and the temporal variation of workload entered

to the different geo-distributed front-ends (recall front-end refers to the entry point

of the Internet workload from which the workload is distributed across data centers).

This is natural, considering that users across different locations around the world

contribute to the cloud’s workload according to their local time zone.

Performance Modeling

Cloud performance from end users’ perspective is primarily about their response time.

The delay experienced by the end users (i.e., response time) should not exceed form

a reference value. In this context, the Service Level Agreement (SLA), an agreement

between service providers and the users, statistically bounds the response time:

Prob[ response time ¿ response thresholdSLA ] ¡ probability thresholdSLA.

As such, the delay requirement metric is often defined as the percentile of requests
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which should receive a delay within a reference delay (e.g., 99-th percentile delay).

Hence, given a workload arrival rate to a data center, the performance model of a

server provisioning scheme calculates the number of active servers needed to statically

bound the response time experienced by the end users. We adapt the following models

form the related work, some of which we independently evaluate in some experimental

studies: Performance models based on queuing theory and models based on CPU

utilization threshold. The following section first gives an overview on the models

followed by a brief overview on the way we use the models in the research.

Performance models based on queuing theory The average response time of

a server can be modeled using queuing theory. If the server happens to be modeled

by an M/M/1 processor-sharing queue, then given that all requests are queued, the

average response time, denoted by d, can be written as d = 1
µ

+ 1
µ−λ , where the

service rate of the server is µ. The first term in the equation gives the service delay

and the second term gives the queuing delay. The M/M/1 queuing model is based

on the exponential distribution for the average service time and the inter-arrival time

between requests. There exist some other queuing theory models based on different

distribution assumptions for the service time and the inter-arrival time of the requests.

In particular, G/G/1 do not assume any distribution for the service time or the inter-

arrival time of the requests.

Similarly, the average response time of a data center with n servers can be modeled

by M/M/n or G/G/n queuing models, each of which provides a mathematical model

to express the average response time of the data center. In M/M/n model given that

all requests are queued, the average response time is given as follows:

d =
1

µ
+

1

nµ− λ
. (2.1)

The average response time for aG/G/n system can be captured using the following
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approximation model [20]:

d =
1

µ
+

u′n
µ(1− u)

C2
A + C2

B

2n
, (2.2)

where CA and CB denote the Coefficient of Variation (COV), i.e., standard deviation

divided by the mean, of request inter arrival time and service time respectively, and

u′ is as follows:

u′ = u
n+1
2 for u 6 0.7 and u′n =

un + u

2
otherwise.

The parameter u denotes the average utilization of a server and can be written as λ
nµ

.

Given the average workload arrival rate to a data center and the service rate of

the servers, the above models can be used to calculate the number of required active

servers to achieve the desired average response time. However, as mentioned earlier,

the performance (QoS) of Internet data centers is typically defined as some metric on

delay, e.g., 95th -percentile delay. One widely used solution to this is to calculate the

number of active servers for the peak workload arrival rate at a given time instead of

the average workload arrival rate. Alternatively, minimum number of active servers

can be calculated as the number of required servers to maintain the average response

time plus an addition slack to deal with spikes at the peak traffic time [44, 70, 115].

Performance Model based on CPU Utilization Threshold Although web

traffic is not CPU-intensive, related research has identified that the CPU utilization

level is strongly correlated to the QoS; specifically, the SLA is violated beyond a CPU

utilization point [30].

The aforementioned correlation is observed in the following experiment as well.

We configured one computer as the web server and another computer as the client

generating TCP-based requests on files with size distribution ranging from 0.3KB to

90KB, in accordance to a study on the file size distribution of web image content [101].

49



0 500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

50

60

Throughput, Request Per Second (rps)

S
e

rv
e

r 
C

P
U

 u
ti
liz

a
ti
o

n
 (

%
)

 

 

0 500 1000 1500 2000 2500 3000 3500
400

500

600

700

800

900

1000

T
u

rn
a
ro

u
n
d

 T
im

e
 (

s
)

CPU Utilization(%)

Turn-around time(  sec)

In this region Turn around time is almost
constant, and CPU utilization increases
linearly.

When request arrival rate excceds 2000
rps, both turnaround time and CPU
utilization sharply flucuate.

Figure 2.11: Turnaround Time and CPU Utilization versus Throughput.

Both the web server and the client are dual-CPU dual-core E7520-chipset “Sossaman”

Xeon LV systems. The results as shown in Fig. 2.11 depicts the average turnaround

time and the web servers’ CPU utilization over the input workload (measured as

arrival rate). It can be seen that, the turnaround time is constant until the utilization

reaches to around 20% (or the arrival rate reaches to 2000 requests per second) and

then it goes up and even fluctuates. This experiment shows that the quality of service

of Internet requests in terms of delay can be guaranteed if a server is not utilized up to

a threshold point. The amount of threshold point depends on the hardware capacity

of servers and the type of requests. Therefore, it can be considered that by posing

a bound to the CPU utilization, (i.e. preventing overloading of a server such that

its CPU utilization does not go beyond a threshold value), one automatically pose a

bound to the SLA violation rate. This is an important observation as CPU utilization

levels are easier to track than response time.

Discussion on Performance Modeling Observe that each of the aforementioned

performance models require different input data to model the delay. Based on the

availability of the data and the monitoring tool available for the data center power
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management solution either of them can be used in practice. The models, however,

are not exactly equivalent. Each of them can be utilized in a way to provide over-

estimation number of active server, a requirement for server provisioning schemes to

deal with workload spikes.

Both M/M/n and G/G/n models are frequently used in the literature in order to

model Internet data centers’ average response time. For Internet-like workload, with

proven heavy tail workload, G/G/n (representing a n-server queuing system serving

requests with generalized arrival and service time distribution) can capture each data

centers’ service delay. We use this model to design the solutions at the local data level

(see Chapter4). Similar to the related work [77, 97] we use M/M/n model, however,

to design solutions at the global data center level. This is because, first, using M/M/n

model, one can calculate the average number of required servers as a linear function of

the workload, favoring computation efficient solutions for dynamic server provisioning.

Second, for CDN and Internet data centers, having large number of servers, M/M/n

gives an overestimation of the average delay. In particular, the average queuing delay

of G/G/n depends on the factor of
C2

A+C2
B

2n
. As long as this element is evaluated to

a number less than one, the M/M/n delay model overestimates the delay of G/G/n,

which is true for CDNs and Internet data centers with large number of n and COV of

around 4 [21, 25, 96, 101]. We evaluate this model using experiments in Section 6.5.

Both M/M/n queuing model and CPU threshold utilization based model can be

interchangeably used in all of the designed solutions without changing the nature of

the problems, because both of them model the average delay as a linear function

of the number of required servers. In practice, however, CPU threshold utilization

model gives an upper bound on the number of required active servers compared to

M/M/n model due to overlooking the stochastic aggregation of workload on the large

number of servers of a data center.

51



Total Delay The two previous delay modelings account for the data center delay.

However the delay di,j(t) experienced by a user of front-end j, receiving service from

data center i at slot t consists of the service delay d′i(t), i.e., data center delay, and

the network delay d′′i,j(t), i.e., the delay between a front-end i and a data center j;

the total delay becomes di(t) = d′i(t)+d
′′
i,j(t). Global workload management schemes

needs to account for such a total delay. Network delay between front-ends and data

centers vary over time depending on the network congestion. We denote the total

delay as di,j(t) to mark the dependence on data center i, front-end j and slot t.

The optimization frameworks of global workload management schemes (e.g., Chap-

ter 5) formulate the delay requirements as constraints. However, instead of bounding

the total delay, they are designed to bound both the service delay (to do not exceed

the reference service delay), and sum of the reference service delay and the network

delay (to do not exceed the reference delay): d′i(t)≤d′ref , and d′′i,j(t)+d
′ref ≤ dref . In

this way, we linearly model the delay requirements. Given that service delay is in the

range of 6 ms, and the network delay is in the range of 100 ms, this simplification has

a negligible effect on the performance of the solutions.

Computing Power Modeling

The power consumption model of a server specifies how its power consumption changes

with respect to its utilization, which is typically expressed as a linear model: p =

pidle+u(t)putil, where u, 0 ≤ u(t)≤1 denotes the utilization, and pidle and putil denote

the idle power and the additional power at full utilization with respect to the idle

power, respectively. The utilization, refers to the overall utilization of a server for a

given input workload. Mathematically, given workload arrival rate of λ(t) at slot t

the utilization can be expressed as follows: u(t) = λ(t)
µ

. We assume, µ, pidle, and putil

are known for the Internet workload which can be obtained by profiling. Further, we
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consider the sum of the power consumption of servers as the total computing power

of the data center.

Cooling Power Modeling

Cooling power model specifies the power consumption of the cooling system for a

given computing power of a data center over time. We use two cooling power models

based on (i) heat recirculation model of a data center, and (ii) PUE of a data center.

The first one allows to study the impact of active server set on the temperature dis-

tributing within a data center room, and on its cooling power. Heat recirculation in a

data center room refers to the amount of heat that flows from one server to another.

We base our heat circulation model on the model proposed by Tang et al. [110] which

is explained in detail in Chapter 4 and is used to design TACOMA. The second cool-

ing power model is used to estimate the cooling power for a given computing power

and a given active server set selection algorithm of a data center. In this model,

the total power consumption of a data center is calculated as multiplication of its

total computing power and PUE. The later cooling power model, when PUE is given

independent of the active server set, simplifies data centers’ total power consumption

model and is used to derive analytical results for global workload management solu-

tions. We also study the impact of the heat recirculation on PUE and on the global

workload management solution in Chapter 6.

2.7.2 Power Supply Modeling

The power supply model, describes the power type, its cost and carbon footprint.

Most of data centers get their primary power from the grid. Further, some data

centers partially or totally power their data centers from on-site renewable energy

sources. Furthermore, some data centers utilize energy storage devices to smoothen
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power draw from the grid and the on-site renewable energy sources.

Energy storage devices are associated with physical characteristics and limita-

tion in terms of maximum charging and discharging rate, total number of charg-

ing/discharging cycles and energy inefficiencies per charging and discharging which

are considered in their modeling as described in detail in Chapter 7.

Energy Cost Modeling

The energy cost model specifies the monetary fee that the data center operator should

pay to the utility provider for the total energy consumed during a time interval.

Denote by ptot(t), the total one-slot energy consumption of a data center, and by

α(t), the unit energy price at time t, then ptot(t)α(t) gives the total electricity cost

of the data center at slot t. Further, consider a time frame T consists of multiple

slots, and denote by p0 the stipulated power from which if the data center’s power

exceeds, the peak power cost is incurred. Also denote by β the violation fee, then

maxt∈T (ptot(t)−p0)+β gives the peak power cost, where the “+” indicates that only

when the difference is positive the cost is considered, otherwise there is no cost.

Renewable Energy Modeling

Solutions in Chapters 6 and 7 take into account data centers that integrate on-sire

renewable energy generation. Given rtot(t), the average one-slot renewable energy

generated at a data center, the solutions are designed to increase the available renew-

able energy utilization. Renewable energy utilization in those techniques are studied

from the following perspectives: (i) percentage of renewable energy that is actually

utilized in data centers out of the total renewable energy generated: r(t)×100
rtot(t)

, where

r is the amount of renewable energy that is actually utilized by the load, and (ii)

percentage of energy consumption in data centers that is of type renewable: r(t)×100
ptot(t)

.

54



The above metrics help to evaluate the performance of the solutions in utilizing re-

newable energy, and the renewable energy infrastructure capacity to achieve energy

sustainability.

Carbon Footprint Modeling

The carbon footprint model specifies the total CO2 generated over time. Denote by

εg(t) and εr(t), the average CO2 per unit of energy from the grid power and the

available renewable power, respectively, then b(t) the total carbon footprint of data

center i is calculated as follows:

bi(t) = gi(t)ε
g
i (t) + ri(t)ε

r
i (t), (2.3)

where gi(t) and ri(t) denote energy consumed from grid and the available renewable

energy of data center i at slot t.
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Chapter 3

RELATED WORK

This chapter gives an overview on the related work in the area of software based

workload and server management at the local and the global data center level. The

chapter first reviews the related work in each of the domains of thermal ware workload

management, cost optimization, carbon footprint capping and peak power reduction

at data centers. Then it closes by concluding and summarizing the literature review.

3.1 Thermal-aware Scheduling

Server consolidation, i.e., dynamically adjusting the number of active servers

and suspending unnecessary servers, has been proposed to reduce both computing

and cooling power for IDCs [30, 31, 55, 65, 67, 74, 81, 82], since (i) the idle power

is comparable to the maximum power for the current computing systems [24, 118],

and (ii) web servers have periods of low utilization due to the periodic nature of

the workload [24, 30, 31]. However, analytical formalizations of server consolidation

schemes focus mainly on the tradeoff between the quality of service (QoS) and the

minimum number of active servers [30, 31, 65], and the tradeoff between removing

idle power and server switching cost [74, 82]. The proposed solutions in the literature

are designed in order to reduce the computing power and, expectedly, the associated

cooling power. However, these solutions may not always be effective, due to the

cooling computing power tradeoff [44].

Thermal-aware scheduling at both the chip level and the data center level has

been proposed in some works [88, 89, 111, 126]. The idea is to decrease the heat gen-

erated by microchips and servers, respectively, through workload scheduling. Moore
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et al., and Bash and Forman showed that thermal-aware workload placement can

save energy in data centers [45, 87, 88]. Tang et al., and Mukherjee et al., modeled

the heat that, inefficiently, is recirculated among the servers; using this model, they

proposed spatio-temporal thermal-aware job scheduling algorithms for high perfor-

mance computing data centers [89, 110]. Thermal-aware scheduling for IDCs is also

studied in some papers. Sharma et al., introduced thermal load balancing and showed

that dynamic thermal management based upon asymmetric workload placement can

promote uniform temperature distribution and reduce cooling energy [104]. Parolini

et al., provided analytical formulation to manage the workload distribution among

servers which relies on the expected value of the traffic over time [94]. Thermal-aware

server provisioning for IDCs is also studied by Faraz and Vijaykumar. The authors

proposed PowerTrade-d, a dynamic thermal-aware server provisioning which trades

the idle power and the cooling power for each other [44]. They showed that reducing

the active server set size may not always reduce the total power, as it may increase the

cooling power. PowerTrade-d manages the trade-off through a dynamic refinement

process such that whenever a change in the size of active server set is required, extra

servers are activated or deactivated one by one to ensure the desired balance between

the cooling power and the idle power.

Discussion on the related work: This thesis focuses on thermal-aware schedul-

ing at the data center level which can be seen as complementary to thermal-aware

workload scheduling at the chip level. Further, the study is performed based on the

existing data center heat recirculation model proposed by [110]. Using this model, the

thesis develops new thermal-aware workload and server management solutions which

are proven for their energy and computation efficiency. Similar to PowerTrade-d [44],

the proposed solutions are aware of both the cooling and the computing power and
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are targeted to minimize the total power consumption of data centers. However, the

refinement process to minimize the total power is analytically formulated, eliminat-

ing the need for dynamic refinement. The thesis implements PowerTrade-d and uses

it as a reference algorithm to evaluate the proposed approaches. Furthermore, the

thesis performs a comprehensive analytical and simulation study to investigate un-

der what circumstances of servers’ power proportionality and data centers’ cooling

efficiency, thermal-aware server consolidation is necessary in order to save energy in

data centers. servers.

3.2 Electricity Cost Optimization

Virtualization and the spatio-temporal variation of electricity price offer lever-

aging opportunities to perform cost-efficient workload placement across data cen-

ters [12, 28, 70, 76, 77, 96, 97, 125]. The result of the current literature high-

lights that workload management across data centers can significantly reduce the

electricity bill [19, 43, 70, 96, 97], and can potentially be a significant aid in reducing

the carbon footprint of data centers without requiring large-scale energy storage de-

vices [19, 70, 70, 76, 108, 125]. The existing work address the cost efficiency of global

workload management problem in practice [96], framed the problem as an optimiza-

tion framework [70] and found computation efficient solutions for various cases (e.g.,

interactive and batch jobs) of the problem [28, 77, 97, 98].

Qureshi et al., performed the very first work in the area of cost-aware workload

management across data centers to prove the concept and show effective parameters

in the cost efficiency of the problem [96]. The authors used heuristics to quantify the

potential economic gain of considering electricity price in the location of computation.

Through simulation using historical electricity prices for twenty nine locations in the

US, and network traffic data collected on Akamai CDN, they report that judicious
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location of computation load may save millions of dollars on the total operation cost

of data centers. They also showed that the magnitude of cost savings depends on how

power-proportional the servers are and whether there is a constraint on the network

bandwidth. They found that the cost saving is the highest when servers are ideally

power-proportional and when the available network bandwidth is unconstrained.

Le et al., framed the cost-aware workload management problem as an opti-

mization problem [70]. The problem is modeled as a nonlinear optimization problem

and it is solved using Simulated Annealing. Their simulation results showed that by

leveraging the electricity price, significant cost can be saved when servers are ideally

power-proportional, and the cost saving decreases when servers have greater-than-zero

idle power.

Rao et al., designed an efficient algorithm for the problem of load distribution

across data centers with the objective of minimizing electricity cost subject to delay

constraints [97]. The energy cost considered accounted for the average energy cost

of active servers (i.e., active servers are assumed to operate at an average utilization

and frequency). The authors used linear programming techniques and min-cost flow

model to find a near optimal solution. Rao et al., fuhrer, extended their scheme

above by developing a joint optimization of server management (i.e., resizing the

active server set) and power management (i.e., CPU dynamic voltage and frequency

scaling) across data centers using General Benders Decomposition [98].

Buchbinder et al., studied the problem for stateful jobs which incur significant

migration overhead when migrated across data centers [28]. The authors designed an

algorithm to solve the problem and proved a competitive bound of log(n) for their

proposed algorithm, where n is the total number of servers across the cloud. However,

due to the complexity of the algorithm, a heuristic easy-to-implement online algorithm

is proposed which is evaluated through simulations using real electricity pricing and

59



job workload data. The assumptions, under which the analytical bound is derived,

are more suited to batch jobs.

Liu et al., tackled the management overhead of global workload management

by developing two distributed algorithms [77]. The authors developed a convex cost

model which accounts for per active server energy cost, and delay cost. The delay cost

is incurred due to overloading servers’ or network propagation delay. They designed

decentralized algorithms which allow each data center and front-ends to optimize

based on partial information. The authors also provided theories to guarantee the

convergence of algorithms solution to the optimal solution.

The related work also highlight that geographical workload management can

help to efficiently utilize renewable energy. Liu et al., proposed a convex-optimization

framework to study the economic and environmental benefits of renewable energy

when using geographical load balancing[77]. The authors, also performed a trace-

based simulation study and showed that workload management across data centers

can reduce the required size of energy storage devices to maximally utilize renew-

ables [76] . Finally, Akoush et al., proposed to maximize the use of renewable energy

by workload migration [19] .

Discussion on the Related Work: The existing solutions are based on simplifi-

cation assumptions on the power consumption model of servers (e.g., average power

consumption of an active server) or number of servers (i.e., using a continuous variable

to model number of servers in data centers) without considering their impact on the

optimality of the solution. This thesis uses the existing models (e.g. delay model),

studies the problem under non-power-proportional servers, and designs approxima-

tion solution for the problem with proven approximation ratio against the optimal

solution. Further, the thesis shows the effectiveness of cost-aware global workload
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management in reducing the electricity cost for both the stateful and the stateless

Internet applications.

3.3 Carbon Capping

Carbon capping in data centers has recently received attention both in indus-

try [3] and in literature [39, 46, 69, 78, 100, 127]. Large data center operators took

initiative to utilize renewable energy in data centers. Further related literature devised

workload scheduling mechanisms for data centers to operate under carbon capping

policies. The existing work range from “systems” work focusing on implementation

aspects in practice [37, 39, 46, 69] to “analytical” work focusing on developing algo-

rithms with provable guarantees [78, 100, 127].

Le et al., devised a heuristic online global workload management to dynami-

cally solve green and brown energy mix of data centers in a cloud in order to minimize

the electricity cost while operating under carbon cap-and-trade policy [69]. The on-

line solution divides the given carbon cap (typically for a year) into chunks, i.e. one

chunk per week, which is weighted by the service load predicted for the corresponding

week. The workload management is then solved based on the predicted service load

and the chunk for the following week. Using trace based simulation and experimental

studies, the authors showed that their solution allows a service to trade off brown

energy consumption and energy cost (e.g., reducing brown energy consumption by

24% for 10% increase in cost).

Exploiting the daily variation of the workload, Deng et al., developed a heuris-

tic scheme to dynamically adjust the carbon offset of a set of geo-distributed green

data centers to increase their total profit [37]. The authors used empirical traces to

show that how many carbon offsets a host should provide to maximize its profit. The

authors also showed that their solution utilizing the diurnal fluctuations and bursty
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surges of workload, triples the profit of certain hosts compared to a fixed approach

used in practice.

Xian et al., devised a request routing scheme for content distribution networks

to minimize the weighted sum of the energy cost, the carbon footprint, and the

service delay violation cost [46]. The weights need to be carefully adjusted in order

to achieve the desired optimization of the electricity cost and the carbon footprint,

which is typically a very difficult task. The authors, used real-world traces and showed

that carbon taxes or credits are impractical in incentivizing carbon output reduction

by providers of large-scale Internet applications (since the the carbon tax incentives

are low compared to the electricity cost). A cloud workload management solution to

handle the three-way tradeoff between latency, carbon footprint, and electricity costs,

is further studied in [39]. The authors utilized Voronoi partitions to determine how

to balance the workload across data centers based on the cloud operator’s priorities

on minimizing the network delay, the electricity cost, and the carbon footprint [39].

Their trace based simulation study suggests a cloud can be operated in such a manner

to lower carbon emissions and operational cost, which comes at the penalty in terms

of average service request time.

There are also some recent works which used Lyapunov optimization to jointly

optimize the electricity cost and the carbon footprint in data centers [78, 100, 127].

Ren et al., and Mahmud et al., focused on designing an online electricity cost-aware

workload management to achieve carbon neutrality for a single data center [78, 100].

The cost efficiency and carbon neutrality of the online solution is analytically proven

compared to the offline solution with T future lookahead information. The authors

showed that their online solution outperforms against an online predictive scheme in

minimizing cost, while yielding lower carbon footprint. Finally, Zhou et al., leveraged

Lyapunov optimization to design a carbon-aware geographical load balancing, where
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each data center in a cloud is associated with a carbon cap [127]. The proposed op-

timization framework solves for workload distribution across data centers, number of

active servers for each data center and their CPU frequency. The authors showed that

their solution, performing dynamic workload migration across data centers, achieves

carbon capping for data centers without excessively increasing the total electricity

cost.

Discussion on the related work: The solutions proposed in [37, 39, 46, 69] suc-

cessfully framed the optimization framework of carbon-aware global workload man-

agement problem and identified the efficiency of such an approach in practice. The

solutions, however, are heuristics in the sense that there is no guarantee on the total

cost and the carbon emission gap with respect to the offline optimal solution. This

thesis uses a predictive solution inspired by the solution of [69] as a reference solution.

Similar to [78, 100, 127], the solution in Chapter 6, i.e., OnlineCC, utilizes Lyapunov

optimization to dynamically and jointly optimize the electricity cost and the carbon

footprint. OnlineCC, further, extends the Lyapunov optimization and the related

work results to prove the upper bound of online solutions’ carbon capping violation

compared to the optimal offline solution with entire future information. The salient

feature of the proven bound is that it can be estimated according to the data center

parameters (e.g., carbon footprint variation over time) without the need to solve the

offline problem.

3.4 Peak Power Reduction and Energy Buffering

There are also some recent works which explored the use of ESDs to reduce

both the energy cost and the peak power cost within [47, 50, 51, 52, 61, 75, 116, 121]

and across [43] data centers. The idea is to store energy in UPS batteries during
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“valley” periods of lower demand, which can be drained during “peak” periods of

higher demand. The related work designed online algorithms for energy buffering

mnagement[116], studied the feasibility of utilizing existing UPS devices for energy

buffering management [50], addressed the data center power infrastructure design

to utilize the set of heterogeneous ESD [121], and performed a set of experimental

and simulation studies to show the cost and the power efficiency of energy buffering

management using ESDs [52, 61]. In the following we give an overview on the above

work.

Urgaonkar et al., developed an online control algorithm using Lyapunov op-

timization to exploit UPS devices for energy cost minimization [116]. Through an-

alytical studies, the authors showed that their proposed solution achieves near one

competitive ratio in optimizing the electricity cost depending on the battery capacity

and the magnitude of the Lyapunov control parameter.

Govindan et al., performed a comprehensive study on the feasibility of utilizing

UPS to store low-cost energy. The authors developed the constraints (e.g., charging

discharging periods depending on life-cycle of batteries) and a Markovian based solu-

tion for cost-aware energy buffering management at data centers [50]. Their results

showed that the existing UPSes are indeed effective to be used for cost-aware energy

buffering.

Wang et al., devised a scheme which help data centers to leverage the exist-

ing huge set of heterogeneous Energy Storage Devices (ESDs) [121]. The proposed

solution determines how heterogeneous set of ESDs can be placed in different levels

of data centers power hierarchy (i.e., data center, rack, and server levels) in a cost

efficient way i.e., energy cost saving and peak power shaving. The authors also devel-

oped useful cost models to study the cost-benefit of various ESDs for using in data

centers’ power hierarchy.
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Kontorinis et al., presented an energy buffering management policies for dis-

tributed per-server UPSs [61]. The objective of management policies is to leverage the

distributed nature of the UPS batteries, store energy during low activity periods, use

this energy during power spikes, and prolong the usage duration of UPSes. Finally,

Govardian et al., proposed aggressive data center power provisioning with batteries

at local data center level. The authors presented several heuristics to maximize use

of UPS batteries for peak power shaving while ensuring data center availability [52].

Through the experimental studies, the authors showed that such an aggressive power

provisioning is indeed effective in practice to reduce the peak power with no or little

violations of the quality of service.

Tinski et al., framed an optimization framework to leverage cost reduction

through both reducing energy consumption and strategically avoiding periods or data

centers with the highest electricity costs using batteries [43]. The authors identified

which strategies are most efficient under under a broad spectrum of design parameters

and conditions, such as battery capacity, service level requirements, and common

electricity pricing models.

Discussion on the related work: The related works showed the feasibility and

the efficiency of cost-aware energy buffering in data centers using existing UPSes or

any other type of ESDs. However, the studies are performed without considering

the carbon capping requirements of data centers. The related work, thereby, lacks a

holistic solution to jointly manage energy cost, peak power cost and carbon capping,

a requirements for today’s data centers to operate under carbon capping policies.

This is important since the joint management of carbon capping, energy and peak

power cost introduces new challenges which need to be addressed. In particular, such

a holistic management favors an offline solution, due to the time coupling to man-
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age energy storage devices, carbon capping and peak power cost minimization. Yet

the existing online algorithms are often designed to address each of the aforemen-

tioned coupling factors separately, disregarding their management implications on

each other. For instance, [116] designed an online algorithm using Lyapunov tech-

nique to exploit batteries in data centers for energy cost minimization. The solution

and its performance is based on restricting the maximum value that the Lyapunov

control parameter can get, and the minimum required energy storage capacity which

is relatively a large value. However, first, we seek a practical solution without requir-

ing large scale ESDs to avoid their space and financial overhead. Second, the proposed

solution only accounts for energy cost. However, ESDs can be best utilized to shave

the peak power draw, where its online management is shown to be effective when

using a window-based predictive approach [22]. Third, using Lyapunov optimization

for online management of both the carbon footprint and the ESD dynamics becomes

a tedious task (if possible at all) since it requires one Lyapunov control parameter

adjustment to optimally manage the two. In other words, the optimal control of each

of carbon footprint and ESD dynamics requires a particular adjustment of Lyapunov

control parameter, and it may not be possible to choose a value for Lyapunov control

parameter that optimally manages the two altogether (e.g., [116] designed a solution

that restricts the maximum value that Lyapunov control parameter can get to control

energy buffering dynamics).

Further, the existing solutions on data center peak power shaving relied on

the predictability of data centers’ parameters over a window of time [22, 43, 52, 121],

but they lack an analysis/solution to overcome the harmful impact of the prediction

error on the peak power shaving. We use stochastic programming, a well-known

solution for optimization problems with uncertainties (see Chapter 7). Stochastic

programming has been successfully applied in many applications, particularly, in grid
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power management and optimization of energy use from renewables [54, 93]. However,

we are the first (to our knowledge) to apply it for data center energy and power cost

optimization.

3.5 Conclusions from the Literature Review

Tables 3.1 and 3.2 give a big picture of the state of the art schemes along

with our contribution for energy management at local and global data center level,

respectively.

As shown in Table 3.1, the proposed solution in this thesis, TACOMA (see

Chapter 4) extends, and enhances the state of the art solutions as follows: First, ex-

isting non thermal-aware server consolidation schemes (from Table 3.1 non thermal-

aware server provisioning solutions) which disregard the impact of cooling power on

the data center energy consumption are not guaranteed to reduce the data center

energy consumption, due to the cooling-computing power tradeoff. TACOMA ad-

dresses this problem through accounting for thermal awareness and the cooling com-

puting power tradeoff. Further, the existing thermal-aware solutions (from Table 3.1

see thermal aware solutions) do not answer to the question that what circumstances

(e.g., energy proportionality trend of servers) do necessitate thermal awareness for the

server and workload management in order to save energy. TACOMA presents exhaus-

tive analytical and experimental studies to identify which strategies (thermal-aware

and non thermal-aware server management) are most effective in reducing data center

energy consumption and under what conditions. Furthermore, the proposed thermal-

aware algorithms are heuristic solutions. TACOMA solves the proven NP-hard server

management problem using a greedy solution with a known approximation ratio with

respect to the optimal solution. Finally, the existing solutions account either solely

for the long term variation of Internet workload, or solely for the short term variation
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Table 3.1: Summary of Server and Workload Management Schemes for Internet Ap-

plications at the Local Data Center Level.

Articles & Switch Cool-comp Tech. Alg. Energy Renew. Long Short

solutions cost power tradeoff trend optimal. buffering term term

Non thermal-aware

server provisioning

[30, 31] 7 7 7 3 7 7 3 7

[65, 67, 74] 3 7 7 3 7 7 3 7

[55, 65, 81, 82] 3 7 7 3 7 7 7 3

Thermal-aware

server provisioning

[94, 104] 7 7 7 7 7 7 3 3

[44] 7 3 7 7 7 7 3 3

Energy buffering

[50, 61, 92, 116, 121] 7 7 7 3 3 7 3 3

Green solutions

[47, 48, 72, 78, 100, 103] 7 7 7 7 3 3 7 3

Our solution:

TACOMA [16, 17, 117] 7 3 3 3 7 7 3 3

of the workload. TACOMA is a multi-tier energy management scheme considering

the long and short term aviation of the workload, and it is shown to reap the energy

usage benefits from the inherent variabilities of workload at both long and short term.

TACOMA performs proactive server management on hourly basis, where the server

switching cost becomes negligible.

As shown in Table 3.2, our global workload and server management solutions

contribute against the state of the art solutions as follows. First, the existing cost
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Table 3.2: Summary of Electricity Cost-aware Server and Workload Management

Schemes for Internet Applications at the Global Data Center Level.

Articles and solutions Energy Pred. Carbon Peak power Algorithm Opt. distributed

buffering error capping shaving optimality alg.

Cost optimization

[71, 73, 77, 96, 97, 123] 7 7 7 7 3 3

Cost and renewable usage

optimization

[19, 76, 77, 77, 108, 125] 3 7 7 7 3 3

Cost optimization

and carbon capping

[39, 46, 69, 127] 7 7 3 7 7 7

Cost optimization

energy buffering

[43] 3 7 7 3 7 7

Our solutions [11, 12, 14, 15],

DAHM,OnlineCC,& OnCMCCLyp 3 3 3 3 3 3

optimization solutions (from Table 3.2 see the corresponding row) simplified the prob-

lem by assuming zero migration overhead for the workload and an integer value for

the number of active servers, both of which are addressed in our DAHM solution

(see Chapter 4). Second, the existing carbon capping solutions (from Table 3.2 see

cost optimization and carbon capping solutions) are heuristics in the sense that they

manage the carbon cap in a best effort manner. Our OnlineCC solution provides

a bound on the maximum carbon capping violation that the solution yields in the

worst case (see Chapter 6). The salient feature of this bound is that it can be esti-
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mated without the need to solve the offline solution. Third, the existing solutions

are piecemeal in the sense that each of them addressed either of peak power shaving,

energy cost minimization, energy buffering and carbon capping, but not all of them

together. We argue that there is a need for a holistic approach that combines all the

available leverages. Such a holistic management, however, introduces new challenges

in terms of simultaneously handling all of the coupling factors to mange the dynamics

of batteries, carbon capping and peak power shaving. The existing online algorithms

are often designed to address each of the aforementioned coupling factors separately,

disregarding their management implications on each other and the practical consid-

erations. These problems are addressed in OnCMCCLyp solution (see Chapter 7).

Finally, there exists work on peak power shaving of data centers (from Table 3.1 see

energy buffering solutions and from Table 3.2 see cost optimization and energy buffer-

ing solution) which rely on the predictability of data center parameters over a window

of future time, disregarding the impact of the prediction error on the cost efficiency

of the solution. However, peak power cost is very sensitive to the prediction error

which is studied in this work. The thesis also proposed a stochastic programming

based solution to remove the harmful impact of the prediction error in increasing the

peak power cost (see Chapter 7).

70



Chapter 4

THERMAL-AWARE ENERGY MANAGEMENT AT LOCAL DATA CENTER

LEVEL

This chapter presents TACOMA, a two-tier Internet data center management scheme,

TACOMA, with thermal-aware server provisioning (TASP) in one tier, and thermal-

aware workload distribution (TAWD) in the other. TASP and TAWD co-ordinate

to maximize the energy savings by leveraging the workload dynamics, at coarse and

fine time scale, respectively. TACOMA is aware of the QoS constraints, the energy

proportionality of servers, and the potential tradeoff between cooling and computing

power. The obtained energy savings are a combination of suspending idle servers,

using servers at their peak efficiency, and avoiding heat recirculation.

TACOMA accounts for energy proportionality of servers by using the IPR and

LDR metrics defined in Chapter 2. This chapter first gives an overview on the ther-

mal aware scheduling and provide an analytical study on the occurrence of cooling-

computing power tradeoff due to server consolidation (Section 4.1). Then the chapter

formally describes TACOMA and gives an overview of the performance and power

consumption modeling of a data center (Section 4.2 ). The chapter then formally

defines TASP and TAWD problems in Section 4.3. Further, Section 4.4 presents the

analysis of these problems and introduces the optimal and heuristic solutions for

TASP and TAWD. Furthermore, Section 4.6 presents the simulation-based evaluation

of TASP and TAWD under different energy proportionality levels of servers and dif-

ferent PUEs of data centers and discuses the results. Finally, the chapter concludes

and summarizes the results in Section 4.7.
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Table 4.1: Symbols to Model TASP and TAWD

Symbol Definition

Y total number of computing nodes

y(t) minimum required number of active servers

L number of slots in a given epoch

i index of nodes

t index of epochs

k index of slots

f function to map utilization to power

pidlei idle power of node i

putili power gradient of node i w.r.t. utilization

hij heat dissipated from node j to node i

ci computing capacity of node i

CA coefficient of variation of workload arrival rate

CB coefficient of variation of request size

λthres
i max. affordable workload of server i

λpeak peak request arrival rate

µref reference service rate

T sup CRAC supplied temperature

T red Servers’ redline temperature

T in Servers’ inlet temperature

Symbol Definition

A set of all servers

A′(t) active server set

w vector pidlei {Y }

a vector putili {Y }

u(t) utilization vector ui(t){Y }

p(t) computing power vector pi(t){Y }

rk servers’ ranking vector

H heat recirculation matrix {hji}(Y×Y )

P comp data center total computing power

PAC data center cooling power

Etotal data center total energy consumption

EAC total cooling energy

TASP Thermal Aware Server Provisioning

TAWD Thermal Aware Workload Distribution

CPSP Computing Power aware Server Provisioning

NoSP No Server Provisioning

LRH Least Recirculated Heat

CPLRH Computing Power LRH hybrid

Notations: The data center models used in this chapter are consistent with

the aforementioned definitions and models in Chapter 2. Nevertheless, this chapter

uses some additional notations to describe the heat recirculation and the comput-

ing nodes’ heterogeneity (e.g., in terms of service rate) and the two tier server and

workload management solution which are given in Table 4.1.

4.1 Characterizing Cooling-computing Power Tradeoff

This section studies the effect of energy proportionality and thermal impact

of servers on energy (i.e., cooling and computing energy) savings of the workload

and server management in data centers. The section focuses on the systems with
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power consumption of linearly increase over utilization(i.e., zero LDR) and the power

model of the form: p = putilu + pidle, where IPR= pidle

putil+pidle
, and 0 6 u 6 1 denotes

the utilization. Using the data center heat recirculation model and the servers’ power

consumption model, the section characterizes the conditions where server provisioning

causes cooling- computing power tradeoff. We remove the index time t throughout

this section for brevity.

4.1.1 Data Center Heat Recirculation Modeling

This section describes the heat recirculation model and gives an overview on

how the cooling energy is affected by the workload and server management. The study

is performed for the physical layout of the contemporary air-cooled data centers with

non-uniform heat recirculation as described in Chapter 2. It is assumed that, the

temperature of the supplied cooled air, denoted as T sup, should be low enough so

that the inlet temperature of the computing nodes does not go beyond the red line

temperature (T red) which is specified by the manufactures. This thesis bases the

data center heat recirculation according to the model in [110]. Tang et al. model

the heat recirculation coefficients for all pairs of nodes in a data center, considering

the data center layout and thermodynamic conditions: H={hij}Y×Y , where Y is the

total number of nodes, and each hij denotes the fraction of heat that flows from node

j to node i [110]. Assume p is a vector denoting the computing power consumption

of servers, then T in, the inlet temperature vector of servers can be written as:

T in = T sup +Hp. (4.1)

Eq. 4.1 shows that the inlet temperatures of servers depend on the power consumption

of nodes, and consequently on the amount of workload they are assigned. Indeed,

workload assignment is hidden in the computing power vector (p). On the other
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hand, cooling energy depends on T sup. Cooling energy of the CRAC can be mod-

eled by its coefficient of performance (CoP), which is the ratio of the heat removed

(i.e., computing energy) over the work required to remove that heat (i.e., cooling

energy). A higher CoP means more efficient cooling, and usually the higher the re-

quired supplied temperatures (T sup), the better the CoP is. In other words, CoP is

usually monotonically increasing function of the supplied temperature, e.g., for an HP

data center a polynomial approximation of CoP for positive temperature reported as

CoP (T sup) = 0.0068T sup2 + 0.0008T sup + 0.458 [88]. However, according to Eq. 4.1,

the highest CRAC output temperature is limited by the servers’ redline temperature.

Therefore, T sup can be at most equal to:

T sup = T red −max(Hpcomp), (4.2)

where the function max ensures that the supplied temperature of CRAC does not

exceed the redline temperature of the hottest equipment. Respectively, the cooling

power, denoted by PAC , can be written as a function of the CoP of the supplied

temperature:

PAC =
P comp

CoP (T red −max(Hpcomp))
, (4.3)

where P comp denotes the total computing power. Eq. 4.3 suggests that for a given

load, the cooling power can be potentially improved by efficient workload distribution.

Intuitively, this is possible if the workload distribution is thermally balanced among

the servers, meaning that a higher portion of the workload is assigned to the servers

that have the least contribution on the heat recirculation. This section refers to those

servers as thermally efficient servers. Since, the main contributors of the total power

in a data center are the computing and the cooling power, a high PUE implies the

high heat recirculation in a data center.

Cooling power is also affected by server consolidation. The computing power,
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p, of a server is a function of the idle power and the peak power, and the server’s

utilization level, such that by using a server consolidation scheme, e.g., CPSP, the

total idle power decreases. However, due to workload consolidation effect of the

scheme, the computing power of active servers also increases, which may increase the

value of max(Hp) in Eq. 4.3, i.e., hot spots may be created which increase the required

cooling power. In other words, under a server consolidation scheme such as CPSP, a

tradeoff between cooling and computing (idle) power can occur [44]. The following

section provides analysis to illustrate the conditions for this tradeoff to occur.

4.1.2 Analytical Study of Cooling-computing Power Tradeoff

This section presents a formal definition of the cooling-computing power trade-

off and prove some lemmata to: (i) clarify the conditions when the tradeoff occurs,

and (ii) provide an easy-to-solve analytical method to examine the occurrence of the

tradeoff. The section also provides some discussion on the tradeoff’s implication on

the energy saving of the workload and server consolidation schemes. The lemmata are

given for the special case of server/workload consolidation, namely balanced workload

consolidation as defined below1.

Definition 1. In a homogeneous data center, any workload consolidation from Y

servers with balanced utilization of u down to y < Y servers with a balanced utilization

of u′ > u such that the total utilization remains unchanged, i.e., Y u = yu′, is called

Balanced Workload Consolidation, BWC(Y, u, y, u′). This definition also assumes

that the remaining Y − y servers, being relieved of the workload, are switched-off.

Definition 2. For a fixed workload if a consolidation in a data center decreases the

computing power from P comp to P comp′, and the cooling power increases from PAC to

1In this section,“′” denotes parameter values after consolidation, “′′” and “∗” denote the param-

eter values of a particular consolidation scheme.
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PAC ′, then a cooling-computing power tradeoff is said to exist.

Definition 3. In a matrix H = {hij}Y×Y , a row i in which ∃j, k : hik 6= hij, is

called a non-uniform row. A matrix with only non-uniform rows, is called a strictly

row-wise non-uniform matrix.

Definition 4. A row-wise uniform matrix has no non-uniform rows.

Lemma 4.1.1. Consider a homogeneous data center H with cooling whose power

adheres to Eq. 4.3, strictly row-wise non-uniform and positive heat recirculation ma-

trix of H = {hij}Y×Y , and a CoP that is a strictly monotonically increasing function

of the supplied temperature T sup. There exist a BWC (Y, u, y, u′) and an associated

ε > 0 for H such that BWC causes cooling-computing power tradeoff for IPR < ε.

Proof. Let P comp = Y (putilu+ pidle), and P comp′ = y(putilu′ + pidle) be the computing

power before and after the consolidation. Similarly, let PAC and PAC ′ be the cooling

power before and after the consolidation. According to Definition 1 P comp > P comp′.

Hence, according to Definition 2 to show the existence of a cooling-computing power

tradeoff for a consolidation, it is enough to show PAC < PAC ′. A constructive proof

follows.

According to Eq. 4.2 the CRAC’s supplied temperature before consolida-

tion, T sup, is as follows: T sup = T red − d(putilu + pidle), where h = ‖H‖∞ =

max
{∑Y

j=1 h1j, . . . ,
∑Y

j=1 dY j

}
2. After the consolidation BWC(Y, u, y, u′) chooses the

active server set A′ ⊆ {1, . . . , Y }, |Y ′| = y, leading to T sup′ = T red−h′(putilu′+pidle),

where h′ = ‖H\A′‖∞.

2‖H‖∞ is the infinity norm of a matrix H. Conventionally, the definition sums the absolutes

of the matrix elements, which does not affect the usage in this chapter. Also, the notations are

expanded to ‖H\A′‖∞,i.e., “infinity norm of H under A′,” which equals to the submatrix of

H that has only the columns that correspond to the servers in active set A′, i.e.,‖H\A′‖∞ =

max{
∑
j∈A′ h1j , . . . ,

∑
j∈A′ h1j}.
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Choose a BWC(Y, u, y, u′), say C, with h′ > y
Y
h and let h′ = y

Y
h + δ, where

δ > 0. Note that such a BWC exists due to the row-wise non-uniformity of the

heat recirculation matrix (Definition 3). Following shows that C satisfies the lemmas’

conditions:

� Hypothesis 1. For the given C, (∃ε1 > 0: IPR < ε1) ⇔ T sup > T sup′.

Note T sup > T sup′ is a necessary condition for the occurrence of the tradeoff.

Hypothesis 1 can be proved as follows:

T sup > T sup′ ⇔ h(putilu+ pidle) < h′(putilu′ + pidle) [from Eq. 4.2]

⇔ h(putilu′
y

Y
+ pidle) < (h

y

Y
+ δ)(putilu′ + pidle)

⇔ hpidle <
y

Y
hpidle + δ(putilu′ + pidle)

⇔ pidle

putil + pidle
h(1− y

Y
) <

δ(putilu′ + pidle)

putil + pidle

⇔ IPR <
δ(putilu′ + pidle)

d(1− y
Y

)(putil + pidle)
. (4.4)

Let ε1 ≡ δ(putilu′+pidle)
h(1− y

Y
)(putil+pidle)

. Since y > Y , it follows that ε1 > 0, establishing

Hypothesis 1.

� Hypothesis 2. For the given C, (∃ε2 > 0 : IPR < ε2) ⇔ PAC < PAC ′. Note

PAC < PAC ′ is a sufficient condition for the occurrence of the tradeoff. Due

to Y u = yu′, and the linearity of the power consumption model, it follows:
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P comp = n(putilu′ + pidle) + (Y − y)pidle. Hypothesis 2 can be proved as follows:

PAC < PAC ′ ⇔ y(putilu′ + pidle) + (Y − y)pidle

CoP (T sup)
<
y(putilu′ + pidle)

CoP (T sup′)

⇔ y(putilu′ + pidle)/(putil + pidle) + (Y − y)pidle/(putil + pidle)

CoP (T sup)

<
y(putilu′ + pidle)/(putil + pidle)

CoP (T sup′)

⇔ y(putilu′ + pidle)

putil + pidle
+ (Y − y)IPR

<
CoP (T sup)y(putilu′ + pidle)/(putil + pidle)

CoP (T sup′)

⇔ IPR < (
CoP (T sup)

CoP (T sup′)
− 1)

y(putilu′ + pidle)

(Y − y)(putil + pidle)
. (4.5)

Let ε2 ≡ ( CoP (T sup)
CoP (T sup′)

− 1) y(putilu′+pidle)
(Y−y)(putil+pidle)

. According to Eq. 4.4 and monotonicity

property of the CoP function, it follows that CoP (T sup)
CoP (T sup′)

> 1. Also Y > y, which

establishes ε2 > 0.

Let ε = min (ε1, ε2). Since ε1 > 0 and ε2 > 0, it follows that ε > 0.

The following lemma shows that a necessary condition for the occurrence of

cooling-computing power tradeoff is non-uniform and non-zero heat recirculation.

Lemma 4.1.2. In a data center with row-wise uniform heat recirculation H =

{hij = hi}Y×Y , homogeneous servers of LDR=0, cooling power of Eq. 4.3, and a

CoP of strictly monotonically increasing function of supplied temperature T sup, a

BWC(Y, u, y, u′) never causes cooling-computing power tradeoff.

Proof. According to Definition 1, the cooling-computing power tradeoff occurs if

P comp > P comp′, and:

PAC < PAC ′ ⇔ P comp

CoP (T sup)
<

P comp′

CoP (T sup′)
.

Since, P comp > P comp′, the necessary condition for the occurrence of the tradeoff

is CoP (T sup) > CoP (T sup′), which means that there must exist h > 0 such that
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T sup = T sup′ + h (due to strictly monotonically increasing of CoP as a function of

supplied temperature, h > 0). The lemma can be proved through contradiction as

follows.

According to Eq. 4.2 the CRAC’s supplied temperature before consolidation,

T sup, is as follows: T sup = T red−h(putilu+pidle), where h = ‖H‖∞. Denote h∗ ≡ h/Y

the maximum element in the matrix. After the consolidation BWC(Y, u, y, u′), the

supplied temperature becomes T sup′ = T red − d′(putilu′ + pidle). Since, Y u = yu′, it

follows that:

T sup = T sup′ + h⇔ T red − Y h∗(putilu+ pidle) = T red − yh∗(putilu′ + pidle) + h

⇔ h∗(p
utilyu′ + Y pidle) = h∗y(putilu′ + pidle)− h

⇔ h∗Y p
idle = h∗yp

idle − h⇔ h = h∗y − h∗Y.
(4.6)

Since y ≤ Y , h ≤ 0, which contradicts the fact that h > 0.

Theorem 4.1.3. Consider a homogeneous data center with cooling whose power ad-

heres to Eq. 4.3, a CoP that is a strictly monotonically increasing function of the

supplied temperature T sup, a strictly positive heat recirculation matrix H, there exist

a BWC(Y, u, y, u′) and an associated ε > 0 to cause cooling-computing power tradeoff

when IPR < ε if and only if there are y elements in one non-uniform row whose sum

is greater than y times the maximum element in the uniform rows.

Proof. Let h = ‖H‖∞ before consolidation, and h′ = ‖H\A′‖∞ after some arbitrary

BWC(Y, u, y, u′) chooses the active server set A′. The two directions of “if and only

if” are proven in separate parts:

“if” Given that there are y elements in a row whose sum is greater than y times

the maximum element in the uniform rows, it is possible to construct the

BWC(Y, u, y, u′) such that it yields h′ > y
Y
h, by setting the active server set
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A′ to contain the y servers that correspond to those y elements in that non-

uniform row. By use of the proof steps in Lemma 4.1.1, it can be easily shown

that there exists an ε > 0 such that if IPR < ε, the constructed BWC causes

cooling-computing power tradeoff.

“only if” Given that there are no y elements in any non-uniform row whose sum

is greater than y times the maximum element in the uniform rows, h′ must be

one of the uniform row sums. Therefore h′ = y
Y
h. By use of the proof steps in

Lemma 4.1.2, it can be easily shown that the arbitrary BWC(Y, u, y, u′) causes

no cooling-computing tradeoff under any IPR.

The above theorem provides a link between the IPR of servers and the structure

of the heat recirculation matrix to the existence of cooling-computing power tradeoff.

Specifically, the inequality in Eq. 4.5 provides a sufficient condition for the existence

of the cooling-computing power tradeoff. The lemma below provides a way to find a

balanced workload consolidation that is close (by a bound) to the one that minimizes

the supplied temperature. In general, the lower the T sup′ of a consolidation is at a

certain IPR, because of the tradeoff, the more likely that consolidation is to still cause

the tradeoff if the IPR is increased.

Lemma 4.1.4. Consider a homogeneous data center with zero-LDR servers A =

{1, 2, . . . , Y } and positive heat recirculation coefficient matrix H = {hij}Y×Y . The

lowest supplied temperature, T sup∗′, by any BWC(Y, u, y, u′), is bounded by the in-

equality:

T red − Y h′′(putilu′ + pidle) 6 T sup∗′ 6 T red − h′′(putilu′ + pidle),
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where h′′ = ‖H\A′′‖∞, A′′ ⊆ A, |A′′| = y, and ∀j ∈ A′′ and ∀k /∈ A′′,
∑Y

i=1 hij >∑Y
i=1 hik.

Proof. The CRAC’s supplied temperature when using workload consolidation, de-

noted by T sup′, depends on the active server set. Let A′k, for 1 6 k 6
(
Y
y

)
denote the

kth active server set of size y that can be chosen from Y servers. According to Eq. 4.2

there is a h′k associated with every A′k such that T sup,k
′

= T red − h′k(p
utilu + pidle),

where h′k = ‖H\Ak‖∞. Note that A′′ is one of the {A′k} active server sets, where

h′k = h′′. Consider a balanced workload consolidation that chooses the active server

set A∗
′ which causes the lowest supplied temperature T sup∗′, its associated h′∗ satisfies

the following:

h′∗ = max

{
h′1, . . . , h

′
k, . . . , h

′
(Y
y)

}
> h′′. (4.7)

According to definition of A′′, it follows that
∑Y

i=1

∑Y
j=1 hij <

Y
y

∑Y
i=1

∑
j∈A′′ hij.

Also according to well-known norm inequalities it follows that:

h′∗ 6
Y∑
i=1

Y∑
j=1

hij 6
Y

y

Y∑
i=1

∑
j∈A′′

hij 6
Y

y
(n ‖H\A′′‖∞) = Y h′′. (4.8)

Eqs. 4.7 and 4.8 establish the lemma.

In the above lemma A′′ can be found through calculating the summation of

columns over matrix H, sorting them in ascending order and picking y columns whose

sum is maximum. This scheme is used for implementing CPSP in the evaluation

section.

Based on the above, the following conclusion can be made:

1. The lower the yielded T sup′ of a consolidation at a certain IPR, because of the

cooling-computing power tradeoff, the higher the IPR has to increase before that

consolidation ceases to cause the tradeoff.
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2. High IPR and low PUE disfavor the occurrence of cooling-computing power

tradeoff, whereas low IPR and high PUE favor the occurrence of the tradeoff.

Assume3 PUE=1 + 1/CoP (T sup), then high PUE is indication of high heat

recirculation. High heat recirculation increases the value for CoP (T sup)
CoP (T sup′)

where

T sup and T sup′ denote the supplied temperature of without and with workload

consolidation. According to Eq. 4.5 higher ratios of CoP (T sup)
CoP (T sup′)

expands the range

of IPR values (i.e., one can find a higher ε) where the tradeoff may occur.

3. Performing a balanced workload consolidation may be detrimental in improving

the energy efficiency of a data center. According to Lemma 4.1.1, there can be

cases where a workload consolidation causes cooling-computing power tradeoff,

then it follows that if the magnitude of cooling power increase outweigh com-

puting power decrease, workload consolidation is detrimental in improving the

energy efficiency of a data center compared to no workload consolidation. This

may happen due to the high heat recirculation in data centers and low IPR of

servers.

4. A balanced workload consolidation scheme that chooses the active server set

among thermal efficient servers, will mitigate the cooling-computing power trade-

off. Such a scheme will choose servers to minimize heat recirculated to the

servers. Hence, CoP (T sup)
CoP (T sup′)

decreases, disfavoring the occurrence of cooling-

computing power tradeoff.

3Note that PUE characterizes the overall power efficiency of a data center with respect

to its computing power whereas CoP characterizes the efficiency of CRAC unit. Specifically,

PUE= Total power
computing power . However, for simplification, TACOMA ignores non-computing power other

than that of the cooling system.

82



Server 2 Server N

Load 
Dispatcher

……

λ requests/sec

power  

control

Traffic flow

Parameters

Control data

Server 1 Server 3 Server N-1

λ2 λN
∑λi= λ

Long term traffic 
fluctuation

0 100 200 300 400 500 600 700 800 900 1000
550

600

650

700

750

800

850

900

950

1000

N
u
m

b
e
r 

o
f 

re
q
u
e
s
t 

a
rr

iv
a
ls

 e
v
e
ry

 5
 s

e
c
o
n
d
s

Time index (every half an hour) over one month

 

 

Peak arrival rate

Tr
af

fi
c 

in
te

n
si

ty

{λi} 

Time

Short term 
fluctuation

TAWD Tier (Slots)

Performance of 
n servers

Performance of 
one server

CoP Heat Recirculation

active server set A′

Computing 
power

Cooling 
power

TASP Tier (Epochs) 

Find peak and 
minimum # of 
servers n

Find which n
servers minimize 
energy

y

Compute maximum 
affordable workload
λthres for each server

Find how to 
distribute λ to {λi} for 
the server set S′ 

{λthres}

Models

Data Center

TACOMA 

Figure 4.1: TACOMA a Two-tier Architecture for Thermal-aware Server and Work-

load Management of IDCs. The first tier, TASP, on each epoch determines the

minimum number of active servers and chooses the active server set A′ to minimize

the total energy, and the second tier, TAWD, on each slot decides on the workload

distribution, λis, of the active servers to minimize the energy consumption of active

servers.

4.2 TACOMA Architecture and Models

This section develops TACOMA, a two-tier, global-view, centralized control

software architecture as shown in Fig. 4.1. Tier 1 (T1), the server provisioning tier,

iteratively decides the active server set in coarse-time intervals called epochs. Let

A={si}, i=1 . . . N be the server set. The T1 controller at the beginning of each epoch t

estimates y(t) 6 Y minimum number of required active servers and chooses the active

server set A′(t), where A′(t) ⊆ A, A′(t) = {si, 1 6 i 6 Y }, and y(t) 6 |A′| 6 Y .

Due to the overhead of removing the servers from the active set, e.g., power control
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and releasing reserved computing resources, an epoch is assumed to be around half

hour. Fig. 4.1 shows an example that for a given workload in an epoch, T1 controller

determines that two servers are required to be active. Then T1 based on power

and thermal efficiency of servers specifies active servers for which the least energy

consumption is incurred and minimum server requirement is met (in this example

servers s2 and sY are selected and servers s1, s3, s4, . . . sY−1 are suspended). The

controller of Tier 2 (T2), the workload distribution tier, operates at fine-time intervals

called slots (around 1-10 seconds) and decides on the distribution (i.e., partitioning)

of the workload among the active servers. Let the average request arrival rate at the

kth slot of epoch t be λ(t, k); T2 controller determines λi(t, k), for all si ∈ A′(t) where∑
si∈A′ λi(t, k) = λ(t, k) such that the performance requirement is met and the energy

consumption is minimized. In other words, number of active servers determined by

T1 is adjusted by the peak traffic during an epoch. However, in most slots during

an epoch, traffic is much lower than the peak traffic. In these cases, T2 shifts traffic

toward energy efficient servers and tries to utilize them at near their maximum energy

efficiency level. For example consider Fig. 4.1 where T2 is going to distribute workload

of a given slot to s2 and sY where the intensity of traffic is lower than the total capacity

of servers s2 and sY . In this case, T2 gives more traffic to the energy efficient server

(sY ) and utilizes it near its maximum energy efficiency level in such a way that it is

not overloaded. We assume each epoch consists of L slots. Also for notation brevity

we assume slots length of one unit of time.

4.2.1 Energy Consumption Modeling

Energy consumption of a data center is the sum of its cooling and computing

energy:

Etotal(t) = Ecomp(t) + EAC(t). (4.9)

84



Typically, there are other sources of energy consumption in a typical data center

such as lighting that are: (i) irrelevant to computing energy and (ii) are insignificant.

Hence, they are disregarded. To calculate computing energy, each servers’ computing

power is modeled as follows:

pi(t) = pidlei + f(ui(t)),

where pidlei denotes power consumption of server i at idle state, and f is a function

that maps the utilization to the power consumption. This chapter uses two linear and

nonlinear model for the function f . The linear model is the basis of the analytical

study and is chosen for the sake of simplicity and driving optimal solutions. In this

model the total power consumption of active servers (∀si ∈ A′(t)), at epoch t, having

utilization of ui(t) can be written as:

P comp(t) =
∑

si∈A′
(pidlei + putili ui(t)), (4.10)

where putili represents extra power consumption at full utilization for each server i.

Applying Eqs. 4.3 and 4.10 to Eq. 4.9, the total energy consumption at epoch t

becomes:

Etotal(t) =

(
1+

1

CoP (T red−max (H(w+a�u(t))))

) Y∑
i=1

(pidlei +putili ui(t))L, (4.11)

where, w and a denote vector form of the scalar computing power parameters and

u(t) represents vector form of utilization of servers. Also the operator � is defined

such that a� u(t) is vector 〈putili ui(t)〉.

This chapter also uses a nonlinear model of the function f in the simulation

study (Section 4.6.2), which is based on the approximation of the power-utilization

curve of recent systems.
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4.2.2 Performance Modeling

TACOMA uses G/G/n queuing model (i.e., Eq. (2.2)) to determine how many

active servers to provision for each epoch as well as how much workload to assign for

each active server during slots to satisfy the performance requirement of requests

(i.e., response time). The model is a n-server queuing system serving requests with

generalized arrival and service time distribution and has been previously used in the

literature for QoS-cognizant server provisioning [44, 67, 115].

Given the average arrival rate, λ, and service rate, µ, the G/G/n model is used

to calculate the minimum number of required active servers to achieve the desired

response time.

Consider an epoch t where the average arrival rate of requests in its L slots is

as follows: {λ1, λ2, . . . , λL}. To ensure that the response time is met in all the slots

of e4, the number of active servers for t should be determined according to λpeak(t) =

max {λ1, λ2, . . . , λL}. Using the existing prediction mechanisms, the average arrival

rate λ(t) of epoch t over all the slots can be predicted. It represents the smooth

variation of workload over time. TACOMA uses Kalman filtering to predict λ(t).

However, the arrival rate during peak time (i.e., λpeak(t)) is not easy to predict.

Analyzing some Internet traces, it is observed that there is a strong correla-

tion between the average arrival rate λ and the peak arrival rate λpeak in an epoch

(Section 4.6). For this analysis, Minitab is used to perform a regression analysis [86]

on two weeks of the web trace of 1998 FIFA World Cup [58] and two days of a web

trace of Microsoft Hotmail [113] and build a regression linear model of the form:

λpeak = β1λ + β0. The results show that R-square predicted (i.e., R-sq(pred)) for

4Today’s data centers performance criteria focus on the worst case or 95th-percentile response

time. For that, the active server set is provisioned according to the response time at peak traffic

which is the worst case during an epoch.
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both the workloads are high, (77.45%, and 93.83% for Hotmail and FIFA traces,

respectively), and the corresponding P-value for both of the t-test and the test for

significance of regression (i.e., F0) are almost zero (it was smaller than 0.0001). These

results indicate that λpeak(t) can be linearly predicted through λ(t).

Service rate depends on servers’ physical characteristics and the size of re-

quests. To consider the heterogeneity of the servers and model the service rate of

servers, two parameters are defined: a reference computing capacity and a reference

request size. The reference computing capacity represents the computing capacity of

the server with the minimum capacity which is normalized to one. The computing

capacity ci of server i is expressed as an integer factor of the reference computing

capacity. This assumption is reasonable, since the computing capacity of modern

multi-core servers are mainly affected by their core counts. The reference request size

represents a block of data where the reference server can handle requests of that size

with the rate of µref . Therefore, the service rate for each server can be modeled as a

function of ci, µ
ref and the requests size. For server i, ci, and µref are constant, and

the statistics of requests size is updated over time, such that at the beginning of each

epoch the most recent statistics are used.

To calculate the maximum affordable workload by each server, a server is

modeled as G/G/1 whose average response time d is:

d =
1

µi

ui
1− ui

C2
Ai + C2

Bi

2
, (4.12)

where the index i ties the queuing system variable to server i. Using this model, the

maximum affordable workload arrival rate of serve i at epoch t and slot k, λthres
i (t, k),

to achieve the desired response time can be calculated by computing the uthresi (t)

corresponding to the desired response time and using λthresi (t, k) = µiu
thres
i (t, k).
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4.3 TACOMA Optimization Frameworks

The formulation of TASP and TAWD as optimization problems is based on

combining the aforementioned models to express the energy consumption as a function

of the active server set and the workload distribution. For both TASP and TAWD

there are separate formulations for homogeneous and heterogeneous data centers.

Although the homogeneous case is a sub-case of the heterogeneous one, its formulation

is presented for the following reasons: (i) it can be solved by a heuristic with a known

approximation bound, and (ii) that heuristic is used to build a heuristic for the

heterogeneous case.

4.3.1 T1: Thermal-aware Server Provisioning (TASP) Problem

This section first formalizes the general (heterogeneous data center) case and

then presents the formalization for the homogeneous data center case.

Given a data center with the server set A of Y servers, for epoch t of

length L, where L is the number of one-unit-length slots in an epoch, the

average arrival rate λ(t), the peak arrival rate λpeak(t), and the minimum

number of required servers y(t), choose the active set A′(t) ⊆ A, where

y(t) 6 |A′(t)| 6 Y , that minimizes the total energy Etotal(t).

Let the binary vector x denote the choice of the servers in the active set. TASP

can be represented in the following optimization problem of finding the vector x:
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minimize (1+
1

CoP(T red−max(H(x� (w+a�u))
)

Y∑
i=1

xi(p
idle
i +putili u)L,

subject to:

Y∑
i=1

cixi > n [performance constraint] (4.13)

u =
λpeak

µ
∑Y

i=1 cixi
[load balancing constraint]

xi ∈ {0, 1}, ∀i = 1 . . . Y.

The above problem is nonlinear and has Y+1 variables. The vector x of size Y

is binary and the variable u denoting the average utilization of servers is a continuous

variable. Note that the load balancing constraint implies that the formulation assumes

that the workload will be equally balanced among active servers. Also, note that the

problem is on minimizing the total energy and not on minimizing the active server

set size. It may happen that an optimal solution for one is not optimal for the other.

TASP Problem for Homogeneous Data Centers

In a homogeneous data center, where all nodes have the same computing efficiency

(i.e., ci = c, µi = µ ∀i), and the same computing power efficiency (i.e., putili = putil, and

pidlei = pidle ∀i), the TASP problem can be simplified as follows. Assume that |A′(t)| is

fixed, e.g., |A′(t)| = y(t), which means that the active server set size, |A′(t)|, is known

but the question is which servers should be chosen as the active server set. In this case,

the summation part in the objective function in Eq. 4.13, representing the computing

energy, becomes independent of the selection of servers and therefore a constant. The

only part that depends on the server selection is maxH(x�(w+a�u))5. Hence, the

5Note that if |A′(t)| is allowed to vary in the optimization process , then the optimization problem

can not be simplified, since utilization varies (u) computing energy is no longer a constant value and
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objective function in Eq. 4.13 can be simplified as follows:

minimize maxH(x�(w+a�u)).

Let matrix G = {gi,j}Y×Y be such that gi,j = hi,j(p
idle
j + putilj u), ∀i, j = 1 . . . Y , where

u = λpeak

|A′(t)|µ . By applying the same constraints as for the heterogeneous case, TASP

can be written as the following optimization problem:

minimize max Gx

subject to
∑

si∈A′(t) xi = |A′(t)|

xi ∈ {0, 1}.

(4.14)

Note that each element zi,j of Z represents the temperature rise of server

i from server j. Also the sum of row i is the total temperature rise of server i.

Although the form of the problem is simplified, it is not simplified computationally.

This formulation is based on the assumption that |A′(t)| is fixed, however this is

not true. Section 4.4 explains how to use this problem iteratively to solve TASP for

the homogeneous data center case. The following lemma provides a proof on the

NP-hardness of this problem.

Lemma 4.3.1. The TASP problem, i.e., Eq. 4.14, is NP-hard even if only two nodes

are affected by heat recirculation of the data center’s nodes : (i) all elements of matrix

G are positive, (ii) G is an {2× Y } matrix, and finally (iii) x is a binary vector.

Proof. The 2-partition problem is reduced to TASP (similar to the NP-hardness proof

of the min-max resource allocation problem [124]). In the 2-partition problem, a set

I containing positive integers (zi ∈ Z+) is given and the question is: is there a

subset I ′ ⊆ I such that
∑

i∈I′ zi =
∑

i∈II′ zi? 2-partition problem is known to be

NP-hard even if the set I contains even numbers and partitioning is subject to equal

both the computing and cooling energy should be involved in the minimization problem.
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cardinalities (i.e |I ′| = |I|/2). Given a 2-partition problem, a TASP problem with G

as {2× Y } matrix can be constructed as follows. let elements of A be:

g1j = zj

g2j = 2
Y

∑Y
i=1 zi − zj

Assume two partitioned subsets are restricted to have equal cardinalities. Thus ex-

actly Y/2 elements will be selected. If an optimal solution to the TASP problem, x∗,

has:

x∗i = 1 i ∈ I ′,

x∗i = 0 Otherwise,

and |I ′| = n/2, then the total heat recirculated to node 1 is: o1=
∑

i∈I′ zi, and the

total heat recirculated to node 2 is: o2 = Y/2(2/Y
∑

i∈I zi)−
∑

i∈I′ oi =
∑

i∈I/I′ oi.

By definition oTASP=max{o1, o2}. It is concluded that there exist a 2-partition with

|I ′|=|I|/2 if and only if TASP has an objective value oTASP=
∑

i∈I′ zi=
∑

i∈I zi/2.

4.3.2 T2: Thermal-aware Workload Distribution (TAWD) Problem

Given an active server set A′(t) for epoch t with length L, and the

average request arrival rate of λ(t, k) at the kth slot, determine λi(t, k),

∀si ∈ A′(t), ∀k = 1 . . . L, where
∑

si∈A′(t) λi(t, k) = λ(t, k), such that the desired

response time is achieved and the energy consumption for that slot is

minimized.

Let λthres
i (t, k) be the maximum workload arrival rate that server i at slot k

can afford such that its average response time does not exceed the reference response

time (see Eq. 4.12). TAWD can be represented as the following optimization problem

on finding the utilization vector of u:
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minimize Etotal(t, k) on A′(t) in Eq. 4.11,

subject to:

0 6 ui(t, k) 6
λthres
i (t, k)

µi
, ∀i|si ∈ A′(t) [performance constraint] (4.15)∑

si∈A′(t)

ui(t, k)µi = λ(t, k) [capacity constraint].

TAWD for the homogeneous case can be simplified as a min-max combinatorial

optimization problem, similar to Section 4.3.1, and due to continuous variables (i.e.,

ui(t, k)) it can be formulated as a linear program.

All problems in this section are NP-hard (except for TAWD for the homoge-

neous case). For this reason, some heuristics are proposed in the next section.

4.4 TASP Solutions

This section presents solutions to TASP. The solutions are devised for both

heterogeneous and homogeneous data center cases. The section presents the proposed

TASP solutions followed by a brief introduction to TASP reference solutions.

4.4.1 TASP Solution for Homogeneous Data Centers

Two methods, namely TASP using Mixed Integer Programming (TASP-MIP)

and TASP using Least Recirculated Heat (TASP-LRH), are presented to solve TASP

in the homogeneous data center case, as follows:

� TASP-MIP: The optimal active server set can be calculated by solving the mixed

integer program of TASP for the homogeneous case (see Eq. 4.14) in an iterative

fashion. As mentioned in Section 4.3.1, MIP modeling of the problem is only

true when |A′(t)| is fixed (because the variable u is then fixed, the computing

energy is constant, and hence the latter can be removed from the optimization

92



problem). Therefore, to cover all cases (|A′(t)| = y(t) . . . Y ), MIP is run in a

loop starting from |A′(t)| = y(t), i.e., the minimum number of required servers,

toward |A′(t)| = Y , until the total energy no longer reduces (this means that

increasing number of active servers no longer decrease the total energy).

� TASP-LRH: This solution is similar to TASP-MIP, except that instead of solv-

ing MIP iteratively, an Y-approximation algorithm [18] is used (to solve Eq. 4.14),

where Y is the total number of servers (the approximation bound Y can be

found similar to the proof in Lemma 4.1.4). This algorithm works as follows:

(i) calculate the sum of each column in matrix G in Eq. 4.14, (ii) sort the sums

in descending order, and (iii) pick |A′(t)| servers (as per the iteration’s num-

ber) whose corresponding sum is the lowest, and set their corresponding xi to

1. The sum of each column is the contribution of the corresponding server to

the heat recirculation. This algorithm is referred as Least Recirculated Heat

(LRH) in the rest of the chapter. According to LRH, one can define the thermal

efficiency rank of servers (i.e., the contribution of servers to the heat recircula-

tion), denoted by rkLRH, as the summation of columns of matrix G which can

be written as follows:

rkLRHi =
∑y

j=1
hji(p

util
i u+ pidlei ), (4.16)

where u is calculated according to the load balancing constraint of Eq. 4.13.

Using this metric to select the active servers is equivalent to the aforemen-

tioned method. LRH does not find the optimal solution because it minimizes

the total heat recirculated instead of minimizing the maximum per-server heat

recirculated.

Example 1: To understand how MIP and LRH work in a particular iteration,

consider a simple example. Assume there are three servers and that two active servers
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are required. Assume the matrix G in Eq. 4.14 is as follows:

G =


0.3 0 0

0.2 0.1 0.1

0 0.2 0.3

 .
The LRH metrics (i.e., summation of columns) of these three servers are: [0.5, 0.3, 0.4].

Therefore, according to TASP-LRH, servers two and three are chosen as the active

servers. Consequently the temperature rise vector is [0, 0.2, 0.5] which is calculated

from summing the rows of G after removing Column 1. However, the optimal active

server set chosen by TASP-MIP consist of servers one and three where the temper-

ature rise vector is [0.3, 0.3, 0.3]. It can be seen in this example that the maximum

temperature rise for TASP-LRH is higher than that for TASP-MIP.

According to Eq. 4.16, the computation of LRH for one server is O(Y ). Since

there are Y servers and the upper bound of iterations is O(Y ), the overall complexity

of TASP-LRH is O(Y 3).

Note both TASP-LRH and TASP-MIP are balanced workload consolidation

(Definition 1) when they employ load balancing for workload distribution scheme.

4.4.2 TASP Solutions for Heterogeneous Data Centers

This section introduces solutions for the heterogeneous data center case that

are TASP-MiniMax, a numerical solution, and TASP-CPLRH, a heuristic:

� TASP-MiniMax: The optimization problem of Eq. 4.13 is a nonlinear min-

max optimization problem. Min-max problems can be solved numerically in

MATLAB using sequential quadratic programming (SQP). SQP is polynomial

but it can only find a local optimum. Since the TASP problem is a discrete min-

max6 problem (Eq. 4.13), TASP-MiniMax computes a solution in the continuous

6The term min-max refers to the class of problems, and MiniMax refers as the name of the
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domain, and then discretizes the vector to the closest discrete feasible solution:

Algorithm TASP-MiniMax: 1. In every epoch, solve the problem in

Eq. 4.13 using a min-max solver such as SQP on the continuous domain;

obtain vector u. 2. Sort u in descending order, then chose enough of the cor-

responding highest-value servers (each element in u corresponds to a server)

as the active server set to satisfy the capacity constraint of Eq. 4.13.

The high complexity of TASP-MiniMax limits its use in the online selection of

active servers—the time complexity of quadratic programming alone isO(m3M),

where m is the number of variables and M is the size of input. However, due

to providing a good approximation, it is used for comparison in the evaluation

section.

� TASP-CPLRH: This solution is similar to TASP-LRH, except that at each

iteration, instead of LRH, Computing Power LRH hybrid (CPLRH) is used, de-

scribed as follows. Servers are ranked and grouped according to their computing

efficiency (pi/ci), where each group contains servers of the same computing ef-

ficiency. Within each group servers are ranked and sorted according to LRH

(i.e., Eq. 4.16).

Example 2: To understand how TASP-CPLRH works, consider again matrix

G in Example 1. Further, assume that server one is the most computing efficient server

and servers two and three have the same computing efficiency. Hence, if the active

server set of size two is required servers one and two are chosen.

TASP-LRH and TASP-CPLRH are of low complexity and they are recom-

mended for actual use in data centers. To evaluate the proposed TASP solutions we

use the following reference solutions.

specific algorithm defined in this chapter.
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CPSP: the baseline algorithm Most of the previous research only takes into

account the computing efficiency in the active server selection. Therefore, the power-

aware yet thermally oblivious version of CPSP is used as the baseline algorithm

to evaluate the efficiency of TASP, wherein servers are ranked solely based on their

computing power efficiency, rkCPSPi = pi/ci and y lowest-ranking servers are chosen as

A′(t). Choosing among multiple, equally ranked servers is implementation dependent.

Note that CPSP for homogeneous data centers satisfies Definition 1, i.e., it performs

a balanced workload consolidation.

PT-d+: PowerTrade-d [44] is also used as a reference algorithm. PowerTrade-d

avoids total energy increase due to the cooling-computing power tradeoff by dynami-

cally and iteratively resizing the active server set by one server at a time and checking

that the overall energy is not increased. The size of active servers is determined by

‘SurgeGuard’ which uses a G/G/n model to estimate the average size and then aug-

ments it by server-reserve. Server-reserve is the number of servers that are reserved

and added to the active server set prediction. The original PowerTrade-d uses the

“inverse-temperature” scheme, that tries to balance the servers’ inlet temperatures.

This chapter, however, implements “PT-d+” using MinHR [88] instead of the inverse-

temperature scheme, as its performance is better [111]. The MinHR scheme is similar

to LRH with the difference being that MinHR uses experimental measurements in-

stead of a model to rank the servers.

4.5 TAWD Solutions

Energy-efficient workload distribution, as described in Section 4.3.2, has to

compensate for the energy waste resulting from using peak-optimal active servers at

non peak times during each epoch. Since TAWD algorithm should run in every slot (a
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few seconds), it is not practical to use high-complexity solutions. Therefore, LRH and

CPLRH ranking are used to shift workload to the most thermally efficient servers in

the homogeneous and heterogeneous cases, respectively, and with the following goals:

(i) reducing the cooling energy by utilizing thermally efficient active servers, and (ii)

reducing the computing energy by operating the active server at high energy efficiency

utilization level.

In load balancing, the workload is distributed among servers such that their

utilization levels are equalized (i.e., balanced). In contrast, in TAWD servers with

low LRH are more likely to be utilized close to their maximum affordable workload

(while satisfying the performance constraint, Eq. 4.15) and servers with higher LRH

are likely to be utilized to a lesser degree. Consider an example of 50 homogeneous

servers with load balanced 30% average utilization. Also assume that there is no

performance-oriented threshold on the utilization level of servers, i.e., they can reach

100% utilization. Then, applying TAWD, 50×30%
100%

= 15 servers with the lowest LRH

get 100% utilization each and the rest remain idle. Note that servers are usually

more energy efficient at high utilization levels. Hence, TAWD achieves both the

aforementioned goals whereas MinHR and inverse-temperature achieve only the first

goal.

4.6 Evaluation

This section evaluate the proposed approaches through simulations to illustrate

the cooling-computing power tradeoff and to estimate the energy saving benefits of

TASP and TAWD in a typical data center. The evaluation section is organized in four

parts. First, the conditions where a workload consolidation causes cooling-computing

power tradeoff is illustrated and its implication on the performance of server pro-

visioning and workload distribution approaches (TAWD, TASP-MIP, PT-d+, and
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Table 4.2: Server Power Profiles.

Type Server model pidle putil IPR LDR

1 Ideal 0 330 0 0

2 IBM 350M2 100 200 0.33 0

3 PowerEdge1955 242 90 0.73 0

4 PowerEdge1855 182 50 0.66 0

5 IBM dx360M3 100 230 0.3 0.3

CPSP) are evaluated under constant workload rates, variable PUE and energy pro-

portionality values (Section 4.6.1). Section 4.6.2 and Section 4.6.2 evaluate the energy

efficiency of the schemes under realistic dynamic workloads using linear power model

and nonlinear power model, respectively. Finally, the possible performance violation

of the schemes is evaluated in Section 4.6.3.

Data center Profiles: The data center profile consists of the thermal profile, i.e.,

the heat recirculation matrix, and the servers’ power and performance models.

The heat recirculation matrix used in this simulation is derived from a CFD

model of the ASU HPCI data center with physical dimensions 9.6 m×8.4 m×3.6 m,

and having two rows of industry standard 42U racks arranged in a typical cold aisle

and hot aisle layout [89, 111]. The cold air is supplied by one computer room air

conditioner, with a flow rate of 8 m3/s. The cold air rises from the raised floor

plenum through vent tiles, and the exhausted hot air returns to the air conditioner

through ceiling vent tiles. There are ten racks and each rack is equipped with

five 7U (12.25 inch) 10-server chassis. The following CoP function CoP (T sup) =

0.0068T sup2 + 0.0008T sup + 0.458 [88] is used. Further, the evaluation is performed

using different power profiles of servers as listed in Table 4.2. For all data center con-

figurations, the same heat recirculation and number of servers is used. Note that, the
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heat recirculation model is irrelevant to the energy proportionality of servers. Power

profile Type 1 in Table 4.2 is an example of an ideal energy-proportional server. The

power profile characteristics of Types 2 and 5 are derived from www.spec.org/power_

ssj2008/results/. Finally, power profiles of Types 3 and 4 are derived from the

measurements for some I/O intensive jobs [89]. These profiles are appropriate for

HTTP-like Internet requests.

To model the utilization of servers, the reference service rate µref is set to

4000 requests per second (for a server with two cores) with a reference request size

on the data of 512 bytes. The reference response time is set to 6 ms [32]. The simula-

tion environment is developed using MATLAB 2009. GNU Linear Programming Kit

(GLPK ) is used to solve MIP in Eq. 4.14 and use fminimax solver provided by MAT-

LAB for solving TASP-MiniMax. To do a fair comparison for power saving, PT-d+

is configured to use the same methodology to determine the minimum active server

set size as in TASP (i.e., y(t)). SurgeGuard [44] is used to evaluate the performance

violation effect of TASP (Section 4.6.3). Algorithms CPSP, PT-d+ and No Server

Provisioning, namely NoSP, are used as baseline algorithms to evaluate TASP and

TAWD schemes. Specifically for CPSP, when it has to choose among servers of equal

power efficiency, the ones with largest LRH are chosen (i.e., using Lemma 4.1.4).

This configuration choice is made to show how badly CPSP can perform compared to

thermal aware server provisioning (note that a thermal aware CPSP would be equiv-

alent to TASP-LRH and TASP-CPLRH). This section uses various combinations of

server provisioning and workload distribution schemes. Whenever TAWD is used, it

is denoted as a subscript, e.g., NoSPTAWD and TASP-LRHTAWD, and whenever load

balancing is used the subscript is empty, e.g., NoSP.
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Workload model: Two web traces are used: (i) a synthetic trace based on e-

commerce web benchmark suite of SPECweb2009 (www.spec.org) and 1998 FIFA

World Cup web trace [58], and (ii) Microsoft Hotmail web trace [113] of one week.

To get traces from SPECweb2009, an Apache web server is set up on a Dual-core

Intel Xeon LV system and an additional system as the SPECweb traffic-generating

client and run SPECweb for 24 hours. SPECweb is apt at exhibiting short term

traffic fluctuation. To make it exhibit long term traffic fluctuation, the parameter

“SIMULTANEOUS SESSION” needs to be dynamically adjusted. For that purpose,

in the 24-hour SPECweb experiment, the long term traffic fluctuation is taken from 24

hours of FIFA’s web log and SIMULTANEOUS SESSION is adjusted accordingly in

each 30-minute epoch. The evaluation is also performed using one week of Microsoft

HotMail web trace [113] is used. In both traces, the traffic intensity (i.e., λ) is scaled

up to match the capacity of the simulated data center. The coefficient of variations of

the workload traces for SPECweb and HotMail is 1.5, and 0.95, respectively. Hence,

they are representative of high and low fluctuating workloads.

Two Kalman filters, the first for TAWD and the second for TASP, are trained

for five slots and epochs, respectively. Subsequently, they respectively predict the

average rates at each slots (λ(t, k)) and at each epoch (λ(t)). To estimate the peak

arrival rate over an epoch (i.e., λpeak(t)), this section uses λpeak(t) = β1λ(t) + β0

to estimate the peak arrival rate using the average predicted rate. β0 and β1 are

estimated using regression on the last four days of the first week for the HotMail

trace and a portion of the World Cup trace. The regressed values are: for SPECweb

λpeak(t) = 2.97λ(t) + 54973, and for HotMail λpeak(t) = 1.522λ(t) + 1000000.
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Figure 4.2: Average and Peak Arrival Rate in every Half an Hour over some Realistic

Web Traces.

4.6.1 TACOMA Performance to Avoid Cooling-computing Power Tradeoff

This section investigates under what conditions of the data center utilization,

the PUE and the servers’ energy proportionality, cooling-computing power tradeoff

occurs and what implication the tradeoff has on the energy savings of the schemes. To

this end, this section simulates nine cases of homogeneous data centers, organized into

three groups. The three groups use server Types 1, 2, and 3 respectively (Table 4.2).

In each group, a different PUE is used ( the heat recirculation matrix is scaled by half,

one, and 1.5 to get different PUEs). PUE values shown in the figures reflect no server

provisioning and when all the servers are utilized at 50%. In the simulation, the PUE

varies from 1.2 to 2.25, a range that covers both modern and old data centers. This

section runs simulations under a constant workload rate such that the utilization of

the entire data center varies from 10% to 100% in 10% increment. Results are shown

in Figs. 4.3-4.6.
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the cooling-computing power tradeoff exists when y-axis value is greater than IPR

value).

Cooling-computing Power Tradeoff

Fig. 4.3 illustrates the conditions of Lemma 4.1.1 under which there exists a balanced

workload consolidation (e.g., CPSP) that causes cooling-computing power tradeoff.

The right hand side value of Eq. 4.5 in Lemma 4.1.1 (i.e., ε2) is plotted where the

active server set is calculated using Lemma. 4.1.4. According to Lemma 4.1.1 the

tradeoff exists if IPR < ε2. The figure shows that the condition for the occurrence of

the tradeoff does not hold for high IPR servers, i.e., server Type 3 (see Fig. 4.3(a)),

holds when PUE is high and servers have low IPR, i.e., server Type 2 (see Fig. 4.3(b)),

and always holds for ideal energy-proportional servers (see Fig. 4.3(c)). The results

are compatible with arguments in Section 4.1.2 which says low IPR and high PUE fa-

vors the occurrence of cooling-computing power tradeoff. The next section shows the
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implication of the tradeoff occurrence, on the energy saving of various server provi-

sioning schemes. Figs. 4.4, 4.5, and 4.7 show the energy consumption of the schemes

under the data center energy efficiency configuration corresponding to Fig. 4.3(a),

Fig. 4.3(b), and Fig. 4.3(c), respectively.

Energy Efficiency of the Schemes

Energy efficiency of the schemes for non energy-proportional servers (server

Type 3): Fig. 4.4, demonstrating the energy consumption of schemes under the data

center energy efficiency configurations corresponding to Fig. 4.3(a), shows two trends:

(i) server provisioning schemes yield tremendous power savings compared to NoSP,

including the thermally oblivious CPSP, due to removal of idle power (compare NoSP

and NoSPTAWD to CPSP, PT-d+ and TASP-MIP); (ii) higher PUE values magnify

the savings of thermal awareness (compare NoSP to NoSPTAWD, and CPSP to PT-d+

and TASP-MIP). Note that absence of the cooling-computing power tradeoff (as il-

lustrated by Fig. 4.3(a)) is sufficient condition for CPSP to always outperform NoSP.

On the other hand, TASP-MIP yields more power savings than PT-d+ due to its

optimality. Further, under constant workload, the performance of PT-d+ and TASP-

LRH are almost the same, because both of them minimize the total heat recirculation.

For plot legibility, the plot of TASP-LRH is omitted. Also observe that power sav-

ings of TASP-MIP and PT-d+ compared to CPSP are maximized within the range

of 40-70% utilization; since in this range of utilization, there are more combination

choices of servers, and the difference between a thermally efficient and a thermally

inefficient active server set is maximized.

Energy efficiency of the schemes for modern low IPR servers (server

Type 2): Fig. 4.5, demonstrating the energy consumption of schemes under the data

center energy efficiency configurations corresponding to Fig. 4.3(b), shows that the
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power savings in this case have the same two trends of the previous case (compare

Fig. 4.4 to 4.5) albeit at lower magnitude, except that for high PUE (PUE=1.66)

and high utilization load (beyond 60%) CPSP consumes marginally more power than

NoSP (see Fig. 4.5(c)). Under this scenario, cooling-computing power tradeoff exists

as illustrated by Fig. 4.3(b). The cooling-computing power tradeoff increases the total

power consumption of CPSP compared to NoSP which is consistent with arguments

in Section 4.1.2. This behavior is shown in detail in Fig. 4.6 at 70% data center

utilization, specifically, CPSP reduces idle power and saves 11% (20 W) compared to

NoSP, however it creates hot spots which cause T sup to decrease from 9.6� for NoSP

to 7.2�; this T sup decrease causes the cooling power to increase by 17% (25 W) which

translates to a net increase of total power by 2% (5 W) compared to NoSP. Under

the same condition of data center load and PUE, TASP-MIP and PT-d+ save power

around 30% and 18%, respectively, compared to NoSP.

Energy efficiency of the schemes for ideal energy-proportional servers

(server Type 1): Fig. 4.7 shows that when servers are ideally energy proportional,

server provisioning (suspending servers) yields no power savings (compare NoSPTAWD

and PT-d+), in contrast to the trends in the previous two paragraphs. Of particular

interest is CPSP, which yields higher total power than NoSP for all three PUE cases.

Actually, for any PUE>1, CPSP would yield higher total power than NoSP, because it

does not decrease the computing power yet creates hot spots due to workload consoli-

dation (recall that CPSP is configured to select thermally inefficient servers). In other

words, according to Lemma 4.1.1, CPSP in this case causes cooling-computing power

tradeoff for all data center load and PUE conditions as illustrated by Fig. 4.3(c). In

contrast to CPSP, TASP-MIP saves power for all three PUE cases, and its saving in-

creases up to 13% with increasing PUE (Fig. 4.7(c)). The savings of TASP-MIP come

from consolidating workload to the thermally efficient servers and not from suspend-
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Figure 4.4: Power Consumption of

Schemes for Different PUEs and under a

Homogeneous Data Center with Server

Type 3.

Figure 4.5: Power Consumption of

Schemes for Different PUEs and un-

der a Homogeneous Data Center with

Server Type 2 (the box on the plot (c)

shows the data center load condition for

Fig. 4.6).

ing servers. Further, PT-d+ has marginal power savings due to its non-optimality.

4.6.2 TACOMA Energy Efficiency under Real-world Traces

To evaluate TASP and TAWD under realistic workloads, some experiments

are performed with one homogeneous and one heterogeneous data center. The servers

for heterogeneous data center are configured similar to ASU HPCI data center (20

chassis of server Type 4 and 30 chassis of server Type 3), and the servers for the

homogeneous case are configured according to the modern server Type 2. Distinct

simulations are performed for 24 hours of both SPECweb and HotMail traces. The
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Homogeneous Data Center with Server

Type 1.

results presented in this subsection reflect the summed energy consumptions from the

separate experiments on the two workload model.

Energy efficiency of TASP and TAWD for homogeneous data center

case: Fig. 4.8, showing the percentile energy saving of various server provisioning

scenarios under homogeneous data center, indicates that TASP schemes can signifi-

cantly save energy compared to no server provisioning. It can be surmised from the

figure that CPSP creates higher temperature hot spots compared to NoSP (since it

demands cooler supplied temperatures), yet it decreases both the computing and the

cooling energy compared to NoSP. Hence, it decreases the total heat produced (i.e.,

the total computing power). Also, in contrast to fixed workload scenarios where PT-

d+ always performs better than CPSP, the total energy saving of PT-d+ is lower than
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CPSP. However, PT-d+’s cooling energy saving is more than CPSP. Since, under a

fluctuating workload (as opposed to fixed workload), the tradeoff may not be ade-

quately computed by PT-d+ dynamically. Because, the variation of cooling energy

can also be attributed to variation in workload and not just to adjusting of the active

server set. Accordingly, the results show that under the same active server set size

policy, and the same workload (HotMail) the average active server set size of Pt-d+

is 37, whereas it is 31 for CPSP and other TASP algorithms.

Except for PT-d+, all other thermal aware server provisioning schemes (i.e.,

TASP-LRH, TASP-MIP and TASP-LRHTAWD) decrease the cooling demand. Inter-

estingly, the T sup of both TASPs as well as Pt-d+ are higher than T sup of even NoSP.

This means that thermal aware server consolidation not only can prevent creation of

hot spots, but also can alleviate the existing hot spots through assigning workload to

thermally efficient servers.

The optimal algorithm, i.e., TASP-MIP saves around 20% energy with respect

to CPSP, and TASP-LRH saves 14% energy compared to CPSP. This result indicates

that the performance of LRH is higher than what can be proved theoretically. As

mentioned in Section 4.4.1, LRH is a Y -approximation algorithm (see Eq. 4.14), where

Y is the number of servers. However, according to the numerical analysis, the ap-

proximation ratio of LRH is 1.18 under the aforementioned simulation setup. Notice,

all extra energy savings of TASP variants compared to CPSP comes from thermal

aware sever provisioning and decreasing the data centers’ cooling demand. It can

be seen in the figure that the supplied temperature of TASP approaches increases

up to 4� compared to CPSP, whereas their computing energy savings is same as

CPSP’s. Further, TAWD under no server provisioning yields marginal energy savings

compared to NoSP. Furthermore, incorporating TAWD to the TASP-LRH marginally

improves its energy saving benefit.
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Energy efficiency of TASP and TAWD for heterogeneous data center

case: similar to the homogeneous data center case, CPSP saves significant energy

compared to NoSP in the heterogeneous case (see Fig. 4.9). In fact, its saving is

much higher than the homogeneous case, since it chooses power efficient servers. It

also demands higher T sup than NoSP. The reason is in the simulated data center

configuration, power efficient servers accidentally were more thermal efficient. TASP

schemes save up to 22% cooling energy compared to CPSP, which translates into

7% energy savings total. The results also indicates the higher performance of TASP

schemes and even CPSP compared to PT-d+. However, PT-d+ causes a cooler

supplied temperature than TASP-LRH and even less than TASP-LRHTAWD. This

is because PT-d+ uses thermal oriented load balancing using MinHR [88], which is

more thermal efficient than TAWD. The next section shows that the performance

of TAWD increases under nonlinear power curves of systems. Another important

result in the figure is that heuristic TASP (i.e., TASP-CPLRH) competently saves

energy compared to TASP-MiniMax solution. However, the results show that the

performance of TASP schemes decrease compared to the homogeneous data center

case (see Fig. 4.9). This refers to the size of the active server set. As shown in

Section 4.6.1, the benefit of TASP schemes maximized when data center is half utilized

(see Fig. 4.5). Since the average size of the active server set in the heterogeneous case

is around 25 (out of 30 of high power efficient servers), TASP’s energy savings is lower

than the homogeneous data center case where its average active server set size is 34

(out of 50).

Discussion on results: Results indicate that heuristic TASP schemes can com-

petently save energy with respect to optimal solutions. The results also show that

the dynamic management of the cooling-computing power tradeoff ( i.e., the PT-d+
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solution) which can be successfully manged under constant workloads, can not be

adequately performed under realistic workloads. The reason is, under realistic work-

loads, the variation of cooling power can be because of variation in workload rather

than adjusting the active server set size.

Performance of TASP and TAWD under Nonlinear Power Curves

To study the effect of the nonlinearity of the power curve on the power consump-

tion, this section uses a state of the art server, server Type 5, whose power curve

exhibits nonlinearity. The power curve of the server is fit to the polynomial function

f(u) = −4301u6 + 15419u5 − 21798u4 + 15326u3 − 5490u2 + 1092u + 92.8. Some

experiments are then performed for a homogeneous data center case of fifty chassis of

this server to calculate the energy consumption of TASP and TAWD schemes under
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SPECweb and HotMail workload traces. The results shown in Fig. 4.11 interestingly

show that under no server provisioning TAWD decreases the total energy by 12%

which is much higher than the case where systems are assumed to have linear power

curve (see Fig. 4.8). This saving is the outcome of consolidating the workload on ther-

mal efficient servers and allowing them to operate at higher utilization where their

computing energy efficiency is higher. Similarly, the energy saving benefit of TASP-

LRHTAWD increases. The reason is, TAWD portion of TASP-LRHTAWD shifts the

workload toward the more energy efficient servers and less to the other active servers

compared load balancing scheme used in TASP-LRH (e.g., see Fig. 4.10 where active

servers’ average utilization is 35% by using TASP-LRH whereas average utilization

for energy efficient servers is 80% by using TASP-LRHTAWD). Since PT-d+ uses ther-

mally oriented load balancing (i.e., MinHR based workload distribution), its energy

savings is much lower than TASP-LRHTAWD which make thermally efficient servers to

operate at their high energy efficiency level. Note that consolidation workload on the

thermally efficient servers mitigates the hot spots. The average utilization of thermal

efficient computing nodes in PT-d+ as shown in Fig. 4.10 are a little lower than LRH

because the PT-d+’ active server set size is larger than TASP-LRH. If active server

set size of both PT-d+ and TASP-LRH would be the same, the average utilization of

the most thermal efficient servers under PT-d+ would be higher than their average

utilization under TASP-LRH.

Discussion on results: A significant observation is that non linear energy pro-

portionality (observed in power-utilization curve of modern servers) can help in the

savings of TASP and TAWD. Provisioning can consolidate the workload to fewer

servers, thus increasing the per-server utilization with minimal increase in the energy

consumption. Note that since consolidation of workload is applied on thermal efficient
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Figure 4.10: Average Utilization for

Computing Nodes Indexed by LRH.

Figure 4.11: Energy Consumption of

Schemes under a Homogeneous Data

Center with Server Type 5.

Table 4.3: Performance Violations of TASP and SurgeGuard

Trace Method server-reserve* |A′| delay d(ms) Perf. viol.(%) violated dref (ms) saving**

HotMail

TASP 0 31 5.5 6.18 6.7 24.96

SurgeGuard 5 25 6.1 40 6.7 22.2

SurgeGuard 10 30 5.7 10.23 7.4 12.57

SPECweb

TASP 0 15 4.8 2.6 10.1 60

SurgeGuard 5 12 5.1 8.02 9.5 59.8

SurgeGuard 10 17 4.8 3.3 10.9 47.6

* server-reserve is expressed as the number of servers in reserve.

** energy saving percentage of TASP-LRH under the corresponding “method” compared to NoSP.

servers, hot spots are unlikely to occur and the total energy is always minimized.

4.6.3 TACOMA QoS Violations

This section evaluates TASP for predicting the minimum active server set size

and its impact on performance violations, compared to SurgeGuard [44] as described
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in Section 4.4.2 in this chapter. Since, the average workload prediction scheme is

not available for SurgeGuard Kalman filtering is used to predict the workload arrival

rate. The performance violation is measured as the percentage of slots where the

average response time of servers goes above the reference response time. Results for

TASP-LRH with HotMail and SPECweb workloads shown in Table 4.3 indicate that

for almost the same active server set size, TASP saves more energy and yields much

lower performance violations than SurgeGuard. The reason is TASP leverages the

correlation between the peak and the average arrival rate during an epoch, whereas

SurgeGuard uses the same static value of over provisioning (i.e., server-reserve for all

epochs). Therefore, sometimes it underprovisions and sometimes it overprovisions.

Even under TASP performance violation still happen due to unpredictable spikes in

the workload. These violations are conjuncted to be predominantly eliminated by

using a hybrid approach of proactive and reactive server provisioning (e.g., quickly

activating servers whenever an unpredicted spike is observed). The investigations of

such a hybrid scheme is left for future work.

4.7 Summary

This chapter proposes thermal aware server provisioning (TASP) and workload

distribution (TAWD) schemes integrated into a two-tier Thermal-Aware Computing

and cOoling Management Architecture (TACOMA). The chapter examines the per-

formance of TACOMA over modern servers which tend to have low idle power and a

nonlinear power-utilization curve. The analytical study and simulation results show

that non thermal-aware server provisioning schemes are insufficient and even ineffi-

cient in improving the energy efficiency of data centers with modern servers, as their

impact on cooling power increases (due to the creation of hot spots by highly utilizing

the active servers) may outweigh their impact on computing power decrease. This
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phenomenon is due to the cooling-computing power tradeoff, which can manifest in

air-cooled data centers. The chapter provides theoretical work on the conditions that

cause the tradeoff to occur. TASP addresses inefficiencies such as this tradeoff through

formulating the server provisioning problem as a mixed integer program and a mini-

max optimization for homogeneous and heterogeneous data center cases, respectively.

In both cases, the objective is to minimize the sum of cooling and computing power.

The results show that TASP solutions save up to 20% of the energy compared to

previous non thermal aware and a newly published thermal aware server provisioning

schemes. Further, the nonlinearity of the power-utilization curve of modern servers

can be leveraged by the proposed TAWD to shift the workload dispatching toward

the thermally and power efficient servers, and utilize them at their high energy effi-

ciency level without creating hot spots. TASP and TAWD respect the performance

constraints by considering the maximum affordable load of each server (according to

a queuing model used) into the determination of the minimum number of required

active servers servers, for TASP, and the determination of the workload distribution,

for TAWD.
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Chapter 5

ENERGY COST OPTIMIZATION AT GLOBAL DATA CENTER LEVEL

The solutions of this chapter and the two next chapters are on designing cost-aware

workload management at the global data center level. This chapter primarily concerns

algorithm design of the cost-aware workload management scheme in the presence of

servers with non-zero idle power. The results show that the cost-aware workload

management is generally an NP-hard problem, and that the proposed greedy solution

has a performance near to that of the optimal solution. The results of the greedy

solution is used in the next two chapters which account for more complex energy cost

models (joint optimization of energy cost and carbon footprint, and an extension of

the energy cost model to incorporate peak power cost). Further, the modeling and

the solutions of this chapter accounts for stateful applications (applications that need

to keep track of the state of the online users), in addition to the stateless applications

(regular Internet workload with no state information).

In summary, this chapter presents Dynamic Application Hosting Management

(DAHM), a workload management scheme for geographically distributed data cen-

ters, which decides on the number of active servers and on the workload share of each

data center. DAHM achieves cost-efficient workload management by taking into ac-

count: (i) the spatio-temporal variation of energy cost, (ii) the data center computing

and cooling energy efficiency, (iii) the live migration cost, and (iv) any SLA viola-

tions due to migration overhead or network delay. DAHM is modeled as fixed-charge

min-cost flow and mixed integer programming for stateless and stateful applications,

respectively, and it is shown to be NP-hard in both cases. The chapter also develops

heuristic algorithms and proves, when applications are stateless, that the approxi-
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mation ratio on the minimum total cost is bounded by the cost of running one idle

server at each data center over the entire budgeting period. Further, the heuristics

are evaluated in a simulation study using realistic parameter data; compared to a

performance-oriented application assignment, i.e., hosting at the data center with the

least delay, the potential cost savings of DAHM reaches 33%. The savings come from

reducing the total number of active servers as well as leveraging the cost efficiency

of data centers. Through the simulation study, we further explore how relaxing the

delay requirement for a small fraction of users can increase the cost savings of DAHM.

In the rest of the chapter we first present the system model under which we

study DAHM (Section 5.1). Next, we present the online algorithms for DAHM in

Section 5.2 and provide a theoretical proof for performance bound guarantee of the

greedy algorithm. We evaluate DAHM in Section 5.3 and conclude the chapter in

Section 5.5.

5.1 Problem Formulation

In this section, we formally define DAHM problem. The DAHM system model are

mainly consistent with Section 2.7, and Fig. 2.9. The specific assumptions, however,

are that data centers get their required power from the grid, and that applications

can be either stateless or stateful. Further, the notations are mainly given in Table 2.2

with this-chapter-specific-notations in Table 5.1.

We frame DAHM as an optimization problem. The optimization is a two level

process: (i) deriving the number of required active servers at each data center i,

(yi,t ∈ N0, 0 6 yi,t 6 Yi, where Yi denotes the total number of servers at data center

i), and (ii) deriving the traffic fractions λi,j(t) from each area j to each data center i.

The optimization is performed regularly with equal time intervals, namely slots.

DAHM is designed according to data center models introduced in Chapter 2
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Table 5.1: Symbols for DAHM Problem Formulation

Symbol Definition

uthi threshold util. of servers at DC i

β migration cost per migration

γ performance violation cost per each user

si % of new users over an slot

so % of users to sign out over an slot

(Section 2.7) with some additional models to account for migration cost of stateful

applications, as briefly described below:

Performance Modeling The results of this chapter work for any linear perfor-

mance model (e.g., performance model based on M/M/n and performance model

based on CPU threshold utilization model described in Section 2.7.1). For the sake

of notation brevity, the chapter develops the formulation and the analysis based on

CPU threshold utilization performance model to account for service delay. Following

to this model, we denoted by uth, the threshold CPU utilization of a server. By

bounding the maximum workload offered to a server, we bound the service delay by

d′ref . Therefore, for a data center i to receive workload from front-end j, we should

have d′′i,j(t) + d′ref ≤ dref , where d′′i,j(t) denote the network delay and dref denote the

reference delay.

Energy Costs We use energy cost as cost per unit of energy consumed. Following

computing power consumption model of Section 2.7.1, and considering PUE to model

the cooling energy, the energy cost can be written as follows:

Costenergyi (t) =

(∑
j λi,j(t)

µi
(t)putili + yi(t)p

idle
i

)
PUEi(t)αi(t), (5.1)
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where the ’+’ indicates that only when the difference is positive the cost is considered,

otherwise there is no cost. Also recall that the phrase
∑

j λi,j(t)

µi
, gives the total data

center utilization (i.e., ui(t)) where µi denotes the service rate of the servers in data

center i.

Migration Cost Dynamic workload distribution for stateful applications may re-

quire live migration (i.e., online users’ state information should migrate from the

source to the destination data center). Migration imposes a cost in terms of increase

in network bandwidth consumption, and delaying the service for the affected online

users.

Therefore, we consider a uniform, per-user migration cost, β, assuming equal-

sized state information for all users. The calculation of the migration cost is based

on the number of online users who have been migrated, as follows. Eq. 5.1 suggests

that if a front-end assignment to a data center between two intervals changes, then

migration is performed. Therefore, we can calculate the number of migrated users

for each data center and front-end by calculating the difference in the number of

assigned users between two consecutive slots. However, we choose not to directly

take the difference between the previous slot’s (t− 1) assignment and the next slot’s

(t) assignment, i.e., because we have to account for the users that are signing out in

slot t − 1 (and therefore their connections are not migrated) and the users that are

signing in, in slot t (and therefore their connections did not exist at migration time).

Let si(t) denote the average fraction (0 6 si 6 1) of new users out of the total users

at each area during slot t, and so(t− 1) denote the average fraction (0 6 so 6 1) of

users at each area who sign out during slot t− 1, then the migration cost for a data
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center i at time t can be formulated as

costmigration
i (t) = β

∑
j

(
(1− si(t))λi,j(t)− (1− so(t− 1))λ(t− 1)

)+

, (5.2)

where ”+” indicates that only when the difference is positive the cost is considered,

otherwise there is no cost. Each of the si and so parameters can be estimated from

the other based on preservation of flow, expressed by this relation: Λj(t)(1− si(t)) =

Λj(t−1)(1−so(t−1)) (i.e. the users that did not sign out in slot t−1 should be equal

to the online users that did not just sign in, in the slot t), and that one of them is

given as input for a given time. Note that si and so also imply the linear conversion

from request arrival rate to the user arrival rate.

The decision to migrate workload is justified by the premise that it can com-

plete its execution at a lower energy cost on another data center. The migration

depends on two parameters: (i) the longevity of user connection; naturally, it is

rarely beneficial to migrate a short running job as the benefit does not outweigh the

migration costs; and (ii) the migration cost; if the migration cost is much higher than

the difference between energy cost efficiency of two data centers for processing an

online user workload, the migration never happens. If the migration cost is much

lower than the difference between energy-cost efficiency of two data centers, it always

happens. In our simulation study (Section 5.3), we assume long connections for the

online users, and investigate the migration cost impact on the DAHM cost saving with

respect to the average energy-cost benefit of migration. We refer DAHM problem as

the DAHM for zero migration cost case, and the DAHM for non-zero migration cost

case problem in the rest of chapter, where the former assumes β = 0 (i.e. stateless

applications), and the latter assumes β 6= 0 (i.e., stateful applications).
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5.1.1 Dynamic Application Hosting Management (DAHM) Optimization

Framework

The problem can be summarized as follows:

DAHM Problem: Given an application with a specific delay requirement

dref, a cloud with N data centers in which the application can be hosted in

a dynamic way, a spatio-temporal variation of the electricity price, αi(t), a

spatio-temporal variation of the number of the online users Λj(t), find the

hosting for each slot t that minimizes the sum of energy and migration cost,

Eq. 5.1 and Eq. 5.2.

All aforementioned costs are assumed to be monetary. We can model the application

hosting problem as an optimization problem where the objective is minimizing the

total cost as shown in Fig. 5.1.

Cost minimization is subject to the following constraints:

� Service constraint (Eq. 5.4), which asserts that all users of every area should be

assigned to a data center, and that there are no double assignments in either

direction.

� Idle power constraint (Eq. 5.5), which ensures that the idle power consumption

of all active servers is accounted.

� Capacity constraint (Eq. 5.6), i.e., the number of assigned active servers to the

application in a data center should not exceed the available servers (denoted by

Yi) in that data center.

� Performance constraint (Eq. 5.7), i.e., the traffic of end users should be split

among data centers whose network and service delay is less than the users’ delay

requirement.
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Minimize

Cost = Costenergy + Costmigration

=
∑S

t=1

(∑
i

(
ui(t)p

util
i + yi(t)p

idle
i

)
PUEi(t)αi(t)+

+β
∑

i

∑
j

(
(1− si(t))λi,j(t)− (1− so(t− 1))λi,j(t− 1)

)+
) (5.3)

subject to

(Service constraint) ∀i, j, t :
∑

i
λi,j(t) = Λj(t), (5.4)

(Idle power constraint) ∀i, j, t : yi(t) ∈ N0 and, yi(t) ≥
∑

j λi,j(t)

µiuthi
, (5.5)

(Capacity constraint) ∀i, t : 0 6 yi(t) 6 Yi, (5.6)

(Performance constraint) ∀i, j, t : d′ref
i + d′′i,j(t)λi,j(t) ≥ 0. (5.7)

Figure 5.1: Mixed Integer Programming (MIP) Formulation of the Dynamic Appli-

cation Hosting Management (DAHM) Problem.

A solution to this problem would specify, at each slot, how many servers in each

data center should be assigned to the application (i.e., yi(t)) and what portion of

each area’s traffic should be assigned to which data center (i.e., λi,j(t)). Observe

that some of the variables are reals (i.e., λi,j(t)) and some are integers (i.e., yi(t)).

Therefore, due to linearity of all equations (both the objective function and the con-

straints), the problem is a Mixed Integer Programming, (MIP). MIP is a well-known

and general NP-hard problem class for which generic solutions have high computa-

tional complexity. For the case of zero migration cost, DAHM can be formulated as

a more specific problem that is a Fixed Charge Min Cost Flow (FCMCF). FCMCF is

also NP-hard [66] but, compared to MIP, more efficient approximation methods have

been developed [29] (FCMCF can be solved by MIP but not vice versa). We also

show that DAHM is NP-hard by reducing an NP-hard sub-case of FCMCF to it.
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Lemma 5.1.1. The DAHM problem is NP-hard.

Preliminary: We reduce FCMCF to DAHM. In FCMCF [66] a graph G =

(V,E) with nonnegative capacities capacityi and nonnegative costs wi for each edge i

is given with the edge cost defined on each edge’s flow fi as follows: wi = flow-costifi+

fixed-chargei, when fi > 0 and wi = 0 when fi = 0. The question is whether there

is a subset A ⊆ E of the edges of G such that the flow from the source to the sink

in (V,A) is at least F and the cost is at most W . FCMCF is known to be NP-hard

even on a graph with two nodes and a set of multiple edges between them [66] (this

case solves Knapsack).

Proof. Given a two-node FCMCF instance with a set of multiple edges between them,

we construct a DAHM instance as follows: let migration cost be zero: β = 0 (i.e.,

the problem becomes memoryless and the index t can be removed), PUE = 1 and

electricity cost αi = 1. Also, the delay constraint is relaxed (dref = ∞). We group

the edges such that the capacities capacityi and costs flow-costi and fixed-chargei are

respectively equal within each edge group. Let N be equal to the the number of

these groups, and let Yi be equal to the number of edges at each group i. Set µi = 1

(i.e., service rate) for all edges. We map the flow F to the workload arrival rate, i.e.,

let M = 1 and Λ1 = F . Finally, let fixed-chargei and flow-costi be pidlei and putili

respectively. It is easy to see that the instance of FCMCF has a solution if and only

if there is a solution to DAHM by flow split and number of servers of cost at most W .

Therefore, DAHM is NP-hard even with zero migration cost, and no network delay

constraint.
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5.2 Solutions to DAHM

This section presents DAHM solutions for both zero and non-zero migration

cost cases.

5.2.1 DAHM solution for Zero Migration Cost Case

In this case, a one-slot DAHM instance can be modeled as an FCMCF. To

illustrate the modeling of DAHM as an FCMCF, at slot t, without loss of generality,

we consider a simple case that M = 3, and N = 4. We can make a graph by adding

a source and sink node as shown by Fig. 5.2 such that the source is connected to

the front-ends by edges whose capacity is equal to the corresponding workload arrival

rate of the front-ends (mapping the service constraint). Each data center is connected

to the sink by multiple homogeneous edges such that the number of edges equals to

the number of available servers (i.e., Yi) (mapping the capacity constraint), where

the capacity of each edge equals to the maximum affordable workload by each server

at data center i (i.e., λthi = uthi µi) (mapping to the capacity constraint) and, the

fixed cost and flow dependent cost are set according to the idle energy cost and the

utilization energy cost as shown in Fig. 5.2 (in the example Y1 = 2, Y2 = 1, and Y3 = 1,

and Y4 = 2) (mapping the objective function). Finally, the edges between front-ends

and data centers are added under no capacity constraint and zero cost. An edge

between a data center and a front-end is added if and only if the delay requirement

of the front-end can be met by the data center (mapping the delay constraint). A

solution flow F =
∑

j λi,j to FCMCF can be converted to a DAHM solution by

mapping the set of selected edges between data centers and the sink to yi(t), and the

flow between front-ends and data centers to xi,j(t).

The LP relaxation of FCMCF (i.e. converting all integer variables to reals)
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does not provide a solution that is tight to the optimal [29]. However, there has

been much work that suggests to use Benders Decomposition [35] or branch-and-

bound methods to find the exact solution for FCMCF. Both of these solutions have

exponential computation cost in the worst case. We used branch-and-bound to find

the optimal in our simulation study and to evaluate the proposed solution.

There is a 2-approximation algorithm [29], which is based on adding an expo-

nential number of constraints to the problem; consequently, it is very computationally

expensive to solve and therefore prohibitive for finding a solution in a time-constrained

manner. For that reason, we designed a greedy algorithm, “Greedy”, and show that

it has a small approximation ratio (see Lemma 5.2.1), Propositions 5.2.2, and 5.2.2).

Greedy Algorithm to Solve DAHM for Zero Migration Cost Case

The Greedy algorithm associates a Cost Efficiency Metric (CEM) to each data center

i at time t as follows: CEMi,t =
(pidle+putili uthi )αi(t)PUEi(t)

uthi
, which equals to the average

cost of a data center normalized to its per server capacity. The idea is to use a

linear energy cost for data centers and solve the DAHM problem approximately using

linear programing and more specifically min-cost flow method (using the energy cost

below fixed charge at FCMCF becomes zero, fixed-charge = 0, consequently FCMCF

becomes a min-cost flow problem) which have polynomial-time complexity. In this

case, the energy cost in Eq. 5.3 becomes as follows:

Costenergy(t) =
∑
i

∑
j

λi,j(t)CEMi(t). (5.8)

Using the above energy cost, the variable yi(t) is removed from the objective function

(i.e., Eq. 5.3) which will be derived after the solutions for xi,j(t)s are found as follows:

yi(t) =
⌈∑

j λi,j(t)

uthi

⌉
. Similarly the capacity constraint (i.e., Eq. 5.6) for each data

center and slot becomes
∑

j λi,j(t)

uthi (t)
6 Yi.
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source a2

a1

a3

front ends

s1

s2

s3

s4

data centers

sink

∀(source, aj), j = 1, 2, 3:

capacityj = nj

fixed-chargej = 0

flow-costj = 0

Delays:

d31, d41 > dref

d42 > dref

d23, d13 > dref

∀(ai, sj), i = 1, 2, 3, j = 1, . . . , 4:

capacityj,i =∞

fixed-chargej,i = 0

flow-costj,i = 0

∀(si,sink), i = 1, . . . , 4:

capacityi = nth
i

fixed-chargei = Pidle · ai · PUEi

flow-costi = ci · putil
i · ai · PUEi

Figure 5.2: An Example of Modeling DAHM for Zero Migration as a FCMCF Prob-

lem.

Lemma 5.2.1. The Greedy algorithm (5.2.1) is a N-approximation for DAHM when

these three assumptions hold: (i) zero migration cost, and (ii) either (a) servers over

the cloud have uniform IPR, or (b) for any two data centers i, k, CEMi 6 CEMk ⇒

IPRi 6 IPRk
1.

We use Ci to denote the numerator of CEM (see Section 5.2.1), and overload

the notation Yi to denote the data center i. Note that (i) Greedy prefers data centers

with lower CEM because it optimizes the energy cost in Eq. 5.8, and (ii) we assume

that Eq. 5.8 has a unique optimal solution which is true if no two CEMs are equal

1The 2nd condition is highly likely to happen in practice, since (i) CEM is dominantly affected

by the servers’ power model as PUE and electricity price do not vary as much, and (ii) low IPR

values also reduce the PUE, and finally (iii) modern servers are exhibit low IPR values without any

increase in their peak power.
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(we can add a minute value to one of the equal CEMs to maintain the uniqueness

without significantly changing the problem). The latter assumption ensures that as

long as an efficient data center has available capacity, no other is used. The proof of

the lemma is as follows:

Proof. Assume all servers within each data center are homogeneous (we argue on the

case of heterogeneous data centers right below this proof). Due to the homogeneity

of each data center and the linearity of the power model (Eq. 5.1), it follows that

the total power of the assigned servers in a data center is equivalent to that of m

fully utilized servers (i.e., u = uth) and one under-utilized server. Let N denote the

set of all data centers. We denote as W ⊆ N the set of data centers where, for each

data center in W , Greedy assigns up to one server which is under-utilized, and as

K = N−W the set of data centers where Greedy assigns servers of equivalent power

of at least one fully utilized server. Assume that Greedy yields y′i,t fully utilized (i.e.,

u = uthi ) and one under-utilized server in K. Let the total cost for the fully utilized

servers in the set K be k1, and the total cost for the under-utilized servers be k2, and

the total cost of each data center in the set W be w, we prove that each of k1, k2, and

w provide a lower bound on the optimal cost, i.e., Cost(Optimal) > max(k1, k2, w).

� Hypothesis 1: k1 is a lower bound on the optimal cost. By contradiction, assume

Optimal pays less than k1, then one of the two must be true:

– Splitting the workload of one or more fully utilized servers across other

data centers achieves cost less than k1. Without loss of generality, assume

Optimal splits the workload of a fully utilized server at data center 1 (as

chosen by Greedy) onto data centers 2 and 3 . Since Greedy chose data

center 1, it must be true that CEM1 6 CEM2, and CEM1 6 CEM3.

Assume the q portion of the fully utilized server workload is assigned to
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a server at data center 2 (and 1−q to data center 3). Also consider the

most favorable scenario where all servers in all three data centers are truly

energy proportional. Then the total cost of the workload becomes

qλth1 C2

λth2
+

(1− q)λth1 C3

λth3
≥ qλth1 C1

λth1
+

(1− q)λth1 C1

λth1
≥ C1,

where λthi is the upper workload arrival rate per server that can be hosted

at data center i. Hence, the assumed case is contradicted.

– Merging the workload of one or more fully utilized servers achieves cost

less than k1. Without loss of generality, assume that Optimal merges the

workload of two fully utilized servers in data centers 1 and 2 (as chosen by

Greedy) onto data center 3. Also, without loss of generality, assume that

CEM1 6 CEM2 (one data center must be more efficient than the other

due to the uniqueness assumption). It follows that λth3 ≥ λth1 + λth2 . Since

Greedy prefers data centers 1 and 2 over data center 3, it also follows that

CEM1 6 CEM2 6 CEM3. Also, assuming the most favorable scenario

where all servers in all three data centers are truly energy proportional,

then we have:

λth1 C3

λth3
+
λth2 C3

λth3
≥ λth1 C1

λth1
+
λth2 C2

λth2
≥ C1 + C2,

which contradicts the assumed case.

Hence, both the assumptions are contradicted, and Hypothesis 1 holds.

� Hypothesis 2: k2 is a lower bound on the optimal cost. Since k2 6 k1 (for

each data center in K, there is up-to-one under-utilized server whereas there

are one-or-more fully utilized servers), Hypothesis 1 proves this hypothesis as

well.

� Hypothesis 3: For any data center in W , the cost w of its under-utilized server

Yw is a lower bound on the optimal cost. We consider the case that there exist
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other data centers that respect the delay requirement, otherwise Greedy would

have no choice but to match the Optimal and yield the same cost. For the total

cost of Optimal to be less than w, either (i) there is an available server with

a lower CEM than the CEM of Yw, or (ii) there is a data center on which the

optimal solution can put the workload of Yw to reduce the cost below w.

Case ii contradicts with the definition of Greedy: this would be possible if

the server had a lower IPR than Yw, which contradicts with Lemma 5.2.1’s

condition-iii-a or iii-b.

For case i, we observe that, for Greedy to select Yw instead of any other

eligible server with lower CEM, it must be so because all other eligible servers

are fully utilized. Assume, by contradiction, that the optimal cost is less than

w. By Hypothesis 1, we know that the optimal solution can not pay less than

Greedy for the fully utilized servers (i.e., k1). Therefore, for Optimal to achieve a

lower total cost, it must merge the workload of some of fully utilized servers and

the under-utilized one (i.e., server Yw) onto any other server. This is possible

only if the IPR of the target server is less than of that Yw, which contradicts

with Lemma 5.2.1’s condition iii-a or iii-b.

Combining the above Hypotheses, Cost(Optimal) > max(k1, k2, w). The lower bound

on total cost for the data centers in the set W is |W |Cost(Optimal). We know that

Cost(Greedy) = k1 + k2 + |W |w, then according to Hypotheses 1, 2 and 3, it follows

that:

Cost(Greedy)
Cost(Optimal)

= k1+k2+|W |w
Cost(Optimal)

6Cost(Optimal)+Cost(Optimal)+|W |Cost(Optimal)
Cost(Optimal)

6 (|S|+1)Cost(Optimal)
Cost(Optimal)

= |S|+1.

(5.9)
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For the heterogeneous case of data centers, it is easy to see that the ap-

proximation ratio is the number of the classes of servers in the cloud. A tight example

is as follows: assume M=3 and |N=3, where each data center has only one available

server and that all have IPR=1 (no utilization-dependent cost). Further, assume Y1

and Y2 have the same CEM, where the total cost and capacity of a fully utilized

servers for them is 1 and 10, whereas they are 1 + ε, and 10 respectively for s3. (i.e.,

CEM1 = CEM2 = 1
10
< CEM3 = 1+ε

10
). Also assume Y1 can only respect the delay re-

quirement of front-end one,denoted by a1 workload, similarly Y2 can only respect the

delay requirement of front-end number two, denoted a2. But, the delay requirement

of all areas can be respected by Y3. Finally, assume each area has Λj = 1 one user.

Greedy selects s1 to provide service for a1 workload, s2 for a2, and s3 for a3, hence

it incurs 3 + ε cost in total. However, the optimal solution selects only s3 to provide

service for all areas, and incurs only 1 + ε cost. It is worth noting that the worst

case situation happens only if utilization-dependent cost of servers is zero, and that

number of required servers are low, neither of which are the case in practice. The

following proposition, using the results of this lemma, gives another approximation

ratio without making any assumption on the data centers’ IPR. The ratio is specially

very intuitive and show that the performance of Greedy solution is indeed very close

to that of the optimal solution for practical cases.

Proposition 5.2.2. The total cost of Greedy, satisfies the following , i.e., Cost(Greedy) ≤

Cost(Optimal) + S
∑

i PUEiαi(t))p
idle
i

Proof. This directly follows from Lemma 5.2.1. According to Hypothesis 1 in Lemma 5.2.1,

the cost of Greedy solution for servers that are fully utilized is lower than that of Op-

timal. Further, the cost of utilization power of the remaining servers is lower for

Greedy, since Greedy optimizes the utilization power.
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Given that data centers usually require thousands of servers, the worst case

cost difference of Greedy versus Optimal solution as given in the above proposition

is negligible (at each slot the cost of Greedy compared to the optimal solution is at

most increased by the cost of one idle server at each data center).

Proposition 5.2.3. Greedy, under the conditions of Lemma 5.2.1, is a 2-approximation

ratio when there is no network constraint delay or it is universally satisfied, i.e.,

dij = d′refi + d′′i,j 6 dref, ∀ i = 1 . . . |S| and j = 1 . . . |A|.

Proof. In this case, Greedy incurs at most one under-utilized server. By contradiction,

assume that there are two or more under-utilized servers in S. If the data centers

containing the underutilized servers are of equal CEM, then we can merge their

workload and result into only one under-utilized server without altering the total

cost, thusly contradicting the assumption. Conversely, if those data centers have

unequal CEMs, it will contradict with the definition of Greedy which does not assign

another data center before it fully uses the one with smaller CEM. Hence, Greedy

yields only one under-utilized server; specifically, either |W |=1 and k2=0, or |W |=0

and k2 6=0, or |W |=0 and k2=0. Therefore, we can safely conclude from Lemma 5.2.1

that the approximation ratio of Greedy in this case is 2.

5.2.2 DAHM Solution for Non-zero Migration Cost Case

Similar to the zero migration cost case, the optimal solution for this case can be

obtained using the branch-and-bound technique. However, the optimal solution to

the problem can only be obtained offline where all information about the workload

and electricity price is available in advance. In this case, DAHM generalizes FCMCF.

Similar to DAHM for zero migration cost case, we can model DAHM at each time as

a FCMCF for the non-zero migration cost case. However, the per-epoch solutions of
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DAHM in the non-zero migration cost case depend on each other (i.e. each epoch’s

solution depends on the previous epoch’s solution), and, to our knowledge, there is no

way to connect those FCMCF instances in such a way that migration cost is incurred

and flow conservation law is preserved, in order to find a combined optimal solution

for the entire period.

We devise the following online algorithms that solve the problem at the begin-

ning of each epoch, t, based on the current hosting state (i.e., xi,j,t−1) of the applica-

tion, the electricity price (ei,t) and the next epoch’s traffic behavior (i.e., distribution

and population of online users).

OnlineMIP Algorithm

The online version of DAHM (Eq. 5.3), i.e., without summation over time in all the

terms in Eq. 5.3, is solved using the branch-and-bound technique.

The online version of DAHM (Eq. 5.3), i.e., without summation over time in all the

terms in Eq. 5.3, is solved using branch-and-bound.

OnlineGreedy Algorithm

The algorithm accounts for the online version of DAHM problem (Eq. 5.3), i.e., with-

out summation over time in all the terms in Eq. 5.3, and uses Eq. 5.8 as the energy

cost model in the objective function. It solves DAHM at each slot using linear pro-

graming.

OnlineCOB, Cost Oblivious Algorithm

We use conventional performance oriented load balancing assignment as a baseline

algorithm to evaluate the cost efficiency of our approach. In this approach, (i) each

area is assigned to a data center whose delay is the least among all other data centers,
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(ii) load is balanced among data centers whose delay with respect to areas are the

same. This is the approach that is currently used for mirror severs [41]. Also, the

number of servers at each data center is dynamically adjusted at each epoch according

to the size of incoming traffic. This algorithm is referred as Online Cost OBlivious,

OnlineCOB in the rest of the chapter.

5.3 Evaluation

We simulate a cloud consisting of three data centers. Their characteristics

are set according to realistic data. To this end, we assume data centers are located

at the following three locations: Atlanta, GA; Houston, TX; and Mountain View,

CA, namely DC1, DC2 and DC3, respectively. These locations correspond to the

location of three major Google data centers. We used the historical electricity prices

for the above locations [117] (see Fig. 5.3). Note that, in reality, each data center

provider may have different electricity price contracts, i.e., lower electricity price

than households. However, the electricity cost can be defined according to the actual

electricity price or the type of energy source (green or brown). The electricity price of

Fig. 5.3 is used as an example to show the cost saving benefit of DAHM by leveraging

electricity cost.

To model the front-end coverage of the data centers we measure the network

delay from the simulated data center locations to all US states using traceroute. We

choose one IP address for each state (e.g., IP address of state universities) and run

traceroute through three servers of the simulated data center locations (provided

by “www.traceroute.org”) to all 51 IP addresses. We ran traceroute hourly for 24

hours. As we did not find a server in Georgia, the location of DC3, to run traceroute,

we chose Florida instead. The summary of results, shown in Fig. 5.5, indicates that

the delay is highly correlated with the distance. Also the delay depends on the source
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Figure 5.3: Hourly Electricity

Price Data for Three Major Loca-

tions of Google IDCs on May 2nd,

2009 (data are taken from [97]).

Figure 5.4: Hourly Number of

Online Users from Three States

for an Entertainment Web Site

Hosted at GoDaddy.com.

network from which traceroute is run. Moreover, the daily variation of delays were

negligible (within 1 ms).

Data center types Three homogeneous (identical) data centers are considered for

the simulation with contemporary servers (e.g., IBM Systems x3650 M2: idle power

100 and peak power 320 watt) and very low PUE (we use 1.3, which is the PUE of

the state of the art data centers [8]). To show the efficiency of DAHM solution under

different energy proportionality of servers, the Idle to Peak power Ratio (IPR) [117]

of servers is varied between zero (ideally energy-proportional server) and 0.6 (old

servers). The maximum number of servers for each data center is set to 25 which

matches the workload intensity range used in the simulations.

To model the utilization of servers, we assume that each online user imposes

0.00005 utilization to each server (i.e., c = 0.0005) and that each server can at most

handle requests from 2000 online users. The server utilization thresholds, uthi , are set
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Table 5.2: Data Centers’ Characteristics

DC Elec. price model Servers’ peak power PUE case*

DC1 Mountain View, CA. 320 1.3 homogen.

DC1 Mountain View, CA. 400 1.5 heterogen.

DC2 Houston, TX. 320 1.3 homogen. and heterogen.

DC3 Atlanta, GA. 320 1.3 homogen. and heterogen.

* The characteristics of DCs for the homogeneous and heterogeneous case study.

to 75%2. The dref is set to 66 ms, and data centers’ reference delay, d′ref is set to 6

ms [32].

Workload Model We used one day (March 17, 2011) of workload trace of an

entertainment Web site hosted at GoDaddy.com. Using Google Analytics, we collected

the hourly total number of visitors to the Web site from different USA states (see

Fig. 5.6). The workload is scaled up to the data centers’ capacity. Also we assume

50% of the users are new users (i.e., si(t) = 0.5).

Experiments Performed We performed different experiments to show the cost

saving of DAHM with respect to the energy proportionality of servers (see Sec-

tion 5.3.1), migration cost (see Section 5.3.2), heterogeneity of data centers (see Sec-

tion 5.3.3), and workload variation (see Section 5.3.4).

We used GNU Linear Programming Kit (GLPK) solver under MATLAB 2009,

to run the branch-and-bound algorithm on MIP. GLPK is also used to run our Greedy

algorithms. All of the cost savings are with respect to OnlineCOB.

Under non-zero migration cost, the offline optimal, namely OfflineMIP, is im-

2This value was determined from anecdotal Web searching. It does not affect the validity of the

results but only the amount of savings.
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Figure 5.5: The Network

Delay between Servers

from Texas, California,

and Florida to all other

States in USA versus

Distance between States.

Figure 5.6: Hourly Num-

ber of U.S. Online Users

for an Entertainment

Web Site Hosted at

GoDaddy.com on 17th

March, 2011.

Figure 5.7: DAHM Cost

Savings w.r.t. OnlineCOB

over Different IPR of

Servers and Zero Migra-

tion Cost (homogeneous

DCs).

plemented using branch-and-bound and used to evaluate the proposed online solu-

tions.

5.3.1 DAHM Cost Efficiency for Zero Migration Cost Case

The DAHM cost saving under different IPR of servers, shown in Fig. 5.7,

interestingly indicates that the efficiency of Greedy is better than the theoretical

bound (see Section 5.2.1). The same figure shows that at IPR= 0 (energy proportional

case) Greedy and optimal solution incur the same cost. This is expected because in

this case DAHM becomes a simple linear programing problem. The DAHM cost

saving is due to both leveraging the variation of electricity price and minimizing the

number of required servers across all data centers (see Fig. 5.13). The cost saving of

the optimal solution increases for higher IPR, because consolidation of servers incurs

more cost saving. The results in Fig. 5.7 show the benefit of the DAHM optimal
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solution over previous workload distribution schemes [70, 96]; the cost saving of

those schemes was maximized under ideally energy-proportional servers and decreased

significantly when the servers had an IPR greater than zero.

5.3.2 DAHM Cost Efficiency for Non-zero Migration Cost Case

To study the migration cost impact on DAHM cost saving, we choose a mi-

gration cost comparable to the reference energy-cost benefit of a migration denoted

by β0, which is defined as the difference between the energy-cost of the most and

the least cost-efficient data centers for one online user. Fig. 5.8 shows that when the

migration cost is less than 5β0, DAHM cost saving only drops from 27% down to

23% (with respect to OnlineCOB). The reason for the small drop is that when the

workload share among the data center changes, new users do not have any migration,

and that the benefit of migration is usually more than β0, since it helps to consolidate

servers. Therefore, if the migration cost is comparable to the cost efficiency difference

of data centers, DAHM can still saves a significant cost due to reducing number of

servers. The cost saving of DAHM diminishes down to 2.5% for very high migration

cost cases 10-20 times β0. The reason is that, since the migration is always applied

to a portion of users (see Section 5.1), a very high migration cost prevents the work-

load share changes of data centers for total cost minimization. For the rest of the

experiments we adjust β = 5β0, and refer to it as the non-zero migration cost case.

For non-zero migration cost, neither OnlineMIP nor OnlineGreedy provide an

optimal solution. As shown in Fig. 5.9, the cost saving of OnlineMIP is marginally

greater than the cost saving of OnlineGreedy. The optimal solution under non-zero

migration cost can only be achieved offline. Comparing DAHM offline optimal with

respect to the online solutions3, we find out that the offline optimal always achieves

3Due to high time complexity of the offline optimal algorithm, we just ran the algorithm for few
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Figure 5.8: Cost Savings

of MIP Solution w.r.t.

OnlineCOB over Differ-

ent IPR of Servers and

Migration Cost β (Homo-

geneous DCs).

Figure 5.9: DAHM

Cost Savings w.r.t. On-

lineCOB under Different

IPR of Servers and

Non-zero Migration Cost

(Homogeneous DCs).

Figure 5.10: DAHM

Cost Savings w.r.t. On-

lineCOB under Different

IPR and Zero Migration

Cost (Heterogeneous

DCs).

up to 1% better cost saving over the online solutions with respect OnlineCOB. Its cost

saving accumulates with the increase in simulation time. Developing online algorithm

with a competitive bound is left for future work.

5.3.3 DAHM Performance under Heterogeneous Data Centers

To investigate the potential saving of heterogeneous data centers and the het-

erogeneity’s effect on the total cost efficiency of DAHM, we make DC1 to be less

energy-efficient than DC2 and DC3. To this end, the PUE of DC2 is changed to 1.5

and the peak power of servers is changed to 400 W (see Table 5.2). The results in

Figs. 5.10 and 5.11 show that DAHM cost saving increases from the range of 27-30%

for the homogeneous data center case to 30-32% for the heterogeneous data cen-

ter case. Also, in contrast to the case of homogeneous data center (§ 5.3.2) where

hours instead of entire 24 hours.
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Figure 5.11: DAHM

Cost Savings w.r.t. On-

lineCOB under Different

IPR, and Non-zero Migra-

tion Cost (Heterogeneous

DCs).

Figure 5.12: The Data

Center Host and Work-

load Density of an Area

over time (homogeneous

DCs).

Figure 5.13: The perfor-

mance of OnlineMIP with

respect to OnlineCOB

under Different IPR of

Servers (homogeneous

DCs).

Greedy’s cost saving for non-zero migration cost decreases with respect to servers

IPR, Greedy’s saving in this case increases, yet marginally. The reason is that, in

this case, minimizing the number of active servers over the cloud yields more cost

saving.

5.3.4 DAHM Performance under Various QoS Requirement

To investigate how workload variation can be leveraged to save more cost, we

used Lagrangian relaxation to move the performance constraint into the objective

function (see Eq. 5.3 and 5.7) and adjust the Lagrangian multiplier (which is γ into

the number of users whose delay is violated) to force the solution to perform tradeoff

between energy cost and delay violation minimization. Since the current simulation

setup would not yield a lot of delay violations (all DCs have low delays with most

states), we change the simulation setup to restrict the data centers coverage area to at

most half of the areas with low delay (this artificially makes areas out of the coverage
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Table 5.3: Cost-saving and Delay Tradeoff of DAHM Compared to OnlineCOB

γ = γ0 γ = 2γ0 γ = 10γ0

DC case Algorithm saving(%)** viol.(%)** saving(%) viol.(%) saving(%) viol.(%)

homogen.
MIP 17-25 15-20 12-19 0-6 13-15 0

OnlineMIP 13-25 0.1-7 11-18 0-2 9-14 0

heterogen.
MIP 22-28 10-18 21-24 1-8 20-22 0

OnlineMIP 21-26 4-15 19-21 0.5-2.5 15-19 0

* The value of γ0 is set to 0.000001.

** The saving values are given in a range from IPR=0 to IPR=1.

of a DC to have a delay above the constraint). The latter setup allows to investigate

the potential cost-performance tradeoff under variability of network delays. With this

setup, DAHM saves 9-15% cost in the case of no delay violation.

The results in Table 5.3 show that allowing delay violations for up to 1% of

the users improves the cost saving of DAHM to 13-22% depending on the IPR value

and migration cost. This saving can be explained using results in Figs. 5.12 and 5.13

as follows.

5.4 DHAM Implementation Issues in Practice

As summarized by Table 5.4, DAHM is NP-hard. We provide numerical results to

evaluate the polynomial-time greedy algorithms and show they can have an approxi-

mation ratio very near to the optimal solution for the zero migration cost case. As a

practical example, Greedy and GreedyOnline take a fraction of a second to compute

the number of servers and workload share for a hypothetical cloud of 100 data cen-

ters, whereas MIPOnline takes around half an hour, all running on a 2.8 GHz Intel

Pentium system, as performed in a side experiment.
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Table 5.4: Summary of DAHM Problem and Solutions Characteristics

mig. cost problem formulation optimal sol. complexity approx. ratio

zero FCMCF Branch&Bound NP-hard 2 (see [29]), and see Prop. 5.2.2,

non-zero MIP Branch&Bound NP-hard not known

For the homogeneous data center case, DAHM cost saving comes only from

leveraging electricity cost and its magnitude depends on the number of available

servers in the data centers, the delay constraints and the algorithm (MIP or Greedy).

The maximum cost saving was 40% when there was no limit on the number of servers

and delay. We provide numerical results to show how performance of DAHM is

affected through the aforementioned parameters in the subsections above. The cost

saving difference between Greedy and MIP algorithm diminishes as the workload and

number of servers are scaled up, and the Appendix 5.2.1 shows the Greedy algorithm

approximation ratio for the general case of workload volume.

In practice, different classes of workload may have different SLA and delay

requirements. Incorporating the class of workload into the cost model does not change

the nature of the problem, yet it needs more parameters to express the problem. Also,

it adds the flexibility of DAHM to move workload of a lower class to the most cost

efficient data centers to yield more cost savings. An exhaustive study of this modeling

is left for future work.

In our simulation study, we assume that at the beginning of each slot, the input

about workload and electricity price is available; but, in practice, this information

should be predicted. Both workload and electricity are predictable, however the

prediction error may marginally decrease the overall cost saving. DAHM can be

considered as a central controller and should be frequently updated with information
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on network delay, electricity price and history of workload from data centers. Since

these data should be sent at each epoch, and each epoch is nominally around half an

hour to several hours, its overhead is negligible.

5.5 Summary

This chapter presents problem formulation and algorithms for DAHM, which allow

cloud providers to host Web allocation cost efficiently in a dynamic fashion. The

problem is formulated according to a cost model that accounts for energy cost of

data centers, delay requirement, and traffic behavior of applications as well as live

migrations. We show that the problem is generally NP-hard and that in the zero

migration cost case, the problem can be modeled as FCMCF. We also show that

the polynomial-time Greedy algorithm can provide a performance near to that of

Optimal solution. Further, a simulation study is performed using realistic data and

we make the following conclusions: (i) dynamic workload and server management

minimizes the total number of servers over cloud and yields significant cost savings by

removing idle power cost; (ii) dynamic server and workload management can leverage

the temporal and spatial variation of electricity price, workload and data centers’

energy efficiency to minimize total cost, and (iii) relaxing the delay requirement of a

few users by incorporating the SLA revenue lost in the cost model can increase the

total cost efficiency; this is due to (a) periods of low and high online user population

over different areas are not simultaneously happened, and (b) assigning users of areas

at periods of low online user population to data centers which are in service for other

areas reduces total number of active servers while it may incur delay violation for a

few fraction of population.
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Chapter 6

JOINT OPTIMIZATION OF ELECTRICITY COST AND CARBON

FOOTPRINT AT GLOBAL DATA CENTER LEVEL

The problems and the solutions of this chapter further extend the cost management

of the global data center level as given in the previous chapter to incorporate car-

bon footprint capping across data centers. In particular, the chapter presents online

workload and server management solutions towards achieving carbon neutrality for a

cloud consisting of several geo-distributed data centers while minimizing the electric-

ity bill. Carbon neutrality necessitates imposing a cap on the carbon footprint of data

centers to reduce brown energy consumption (e.g., coal and Natural Gas). However,

a joint electricity cost minimization and carbon footprint capping favors an offline

solution with entire future information. We make use of Lyapunov optimization to

design online solutions, namely OnlineCC and OnlineCC-T, to jointly optimize elec-

tricity cost and carbon footprint of a set of geo-distributed data centers. OnlineCC

and OnlineCC-T leverage one slot and T-slot Lyapunov optimization, respectively,

to provide solutions for both stationary and non-stationary data center parameters

(e.g., workload). The performance of these solutions is analytically studied against

the offline solution with the entire future information and an offline solution with

limited lookahead information. We prove that both the online solutions achieve a

near-optimal operational cost (electricity cost) compared to the offline algorithms,

while deterministically bounding the potential violation of carbon footprint target,

depending on the Lyapunov control parameter. A salient feature of the proven bound

on OnlineCC’s carbon cap violation, is that it can be estimated without the need

to solve the offline solution, which is usually hard to solve due to the curse of di-
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mensionality. The bound is also used to design a heuristic for adjusting the value

of the Lyapunov control parameter, by significantly reducing its search space. The

study also accounts for designing OnlineCC based on an actual data center nonlinear

energy consumption model. We show that in this case OnlineCC can be modeled as

a convex optimization problem. Finally, we perform a trace-based simulation and a

small scale experiment to complement the analysis. The results show that OnlineCC

reduces cost by more than 18% compared to a prediction-based online solution while

resulting in equal or smaller carbon footprint.

Similar to the previous Chapter, we focus on the electricity operational costs

optimization to make the operational cost more efficient. Adapting the results of the

previous chapter (Chapter 5), we formulate OnlineCC as a linear programming. In

particular, number of active servers is approximated as a real-type decision variable.

This simplification significantly improves the computation efficiency of the solution,

yet it has a minimal effect on the performance of the solution.

This chapter also links the solutions of the local and the global data center

level. TACOMA is a dynamic server and workload management solution which can

be locally used by each data center. Instead of integrating TACOMA, we choose to

use TACOMA’s results in the cost management at the global data center level. In

Chapter 4 it is shown that the cooling energy varies depending on the active server

set selection algorithm (e.g., TASP and CPSP in TACOMA), and so does the PUE.

We consider that the PUE can be characterized using profiling which is a function

of data center physical layout, workload, and active server set selection algorithm

(see Chapter 4). Using such a PUE model we device Thermal-aware OnlineCC which

takes into consideration the impact of global workload and server management on the

thermal conditions and on the cooling energy of data centers.
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In the rest of the chapter, we first briefly describe the system model (Sec-

tion 6.1). This section also accounts for formulating an offline optimization problem,

namely P1, to minimize the energy cost and cap the carbon footprint of a cloud (Sec-

tion 6.1.3). Next, we present OnlineCC, our online solution to P1 in Section 6.2, fol-

lowed by the performance analysis of OnlineCC with respect to several variants of the

offline optimal solution. Next, we present Thermal-aware OnlineCC, which further ex-

tends OnlineCC to optimize the energy consumption of data centers (Section 6.3. We

evaluate the online solutions by (i) using a real-world trace based simulation study in

Section 6.4, (ii) using an actual data center energy consumption model in Section 6.4.5,

and (iii) using a small scale experimental study in Section refsec:onlinecc:experiment.

We conclude in Section 6.6. A summary of optimization problems and the proposed

algorithm is given in Table. 6.1.

6.1 Problem Formulation

The problem setting of this chapter is based on the aforementioned system

model in Chapter 2. The modeling and the optimization framework are particularly

designed to make use of the results from Chapter 4 in order to account for realistic

data center cooling power consumption models, and Chapter 5 in order to approx-

imate servers power consumption without significantly affecting the performance of

the solutions.

In summary, the optimization framework is designed for a set of N geo-

distributed data centers which receive their workload form a total number of M

front-ends. Optimizations is performed regularly per each discrete equal time inter-

vals, namely slots, and within a budgeting period (the period for the carbon budget or

cap) consisting a total number of S slots. Similar to DAHM solution (see Chapter 5),

the optimization is a two level process: (i) deriving the number of required active
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Table 6.1: Summary of Variables, Optimization Problems and Algorithms for Joint

Optimization of Cost and Carbon Footprints

Symbol Definition

Ψ carbon cap

ψ time-average carbon cap

X virtual queue

V Lyapunov control param.

Xlim see Lemma 6.2.2

bmax(t) maximum carbon footprint over slot t

bmin(t) maximum carbon footprint over slot t

bmax maximum per-slot carbon footprint over S

bmin minimum per-slot carbon footprint over S

Ψmax maximum total carbon footprint over S

Ψmin minimum total carbon footprint over S

θ see periodicity assumption in Section 6.1.3

Problem Definition

P1 Offline cost and carbon footprint optimization problem

P2 Variant of P1 with T slot future data

P3 Thermal-aware variant of P1

P4 Variant of P1 with nonlinear power consumption model

Solution Definition

OnlineCC Online solution to P1 and P2 designed based on one-slot Lyap. opti-

mization

OnlineCC-T Online solution to P1 designed based on T -slot Lyap. optimization

Thermal-aware OnlineCC Online solution to P3 and P4 designed based on convex programming

and one-slot Lyap. optimization
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servers at each data center i, (yi,t ∈ N0, 0 6 yi,t 6 Yi, where Yi denotes the total

number of servers at data center i), and (ii) deriving the traffic fractions λi,j(t) from

each area j to each data center i.

Performance Model We base the performance model on the M/M/n queuing the-

ory as described in Chapter 2. Following the M/M/n queuing theory, the performance

requirements can be expressed as the following set of equations:

∑
i λi,j(t) = λj(t), ∀j, t [service],

ni(t)µi >
∑

j λi,j(t), ∀i, t [queuing stability],

1
ni(t)µ−

∑
j λi,j(t)

≤ d′ref , ∀i, t [service delay] ,

(dref − (d′ref + d′′i,j(t))λi,j(t) ≥ 0, ∀i, j, t [total delay],

yi(t) = (1 + yslacki )ni(t) ≤ Yi, ∀i, t [data center capacity].

(6.1)

In the above, “service” constraint guarantees providing service for all requests, “queu-

ing stability” constraint ensures the queuing model convergence, “service delay” con-

straint estimates the service delay using the M/M/n queuing model and guarantees

maintaining reference average service delay, and “total delay” asserts that the sum of

service and network delay is below the reference, dref . Further, “data center capac-

ity” ensures that number of required servers to maintain the average reference service

delay and the additional number of servers (i.e., yslack) to maintain the reference delay

during workload spikes are within the data center capacity.

6.1.1 Power Supply and Demand Modeling

Following the results from Chapter 5, we model the average one-slot energy

consumption of an active server, denoted by pi. Then yi(t)pi estimates the total one-

slot energy consumed by active servers in data center i. The total one-slot energy

consumption of the data center can be estimated as follows: ptoti (t) = PUEi(t)piyi(t).
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As mentioned earlier, PUE of a data center usually varies over time depending on

several factors. Of particular interest is air-cooled data centers for which PUE varies

with respect to workload and active server set (see Chapter 4). When considering

variation of PUE with respect to workload, the total energy consumption of data

centers becomes a nonlinear function of number of active servers (see Chapter 4). In

this chapter, we first analytically study non-thermal aware carbon capping problem

where data center total energy consumption can be formulated as a linear function.

Next in Section 6.3, we extend the problem formulation and the solutions for ther-

mal aware carbon capping problem, where workload management is performed with

respect to the temperature distribution in data center room and its impact on data

center total energy consumption and the PUE.

Linear Power Consumption Model

In this model, similar to the most of existing work [12, 46, 77, 97], we assume PUE is

independent of the workload and workload placement, where total energy consump-

tion can be calculated as a linear function of number of active servers as follows:

ptoti (t) = PUEi(t)piyi(t) (6.2)

Note, PUE may vary over time (e.g., depending on temperature [46]).

We proceed with the rest of the study considering linear power consumption

model (6.2). Particularly, all of the theoretical results are obtained under the linear

power consumption model assumption. We discuss how to extend the results for

thermal aware cost and carbon footprint optimization problem in Section 6.3.

Given ptoti (t), and the available renewable energy, the power draw from the
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grid should be decided as follows:

ptoti (t) = gi(t) + ri(t),∀i and t,

gi(t) ≥ 0,∀i and t.
(6.3)

As shown in the above equation, we assume power draw from the grid is always

positive.

6.1.2 Carbon Footprint Capping

Denote by b(t) the total carbon footprint of the cloud over slot t: b(t) =∑
i bi(t), where bi(t) can be calculated using the model (2.3). The cloud desires to

follow the long-term carbon capping target, denoted by Ψ, which is typically expressed

for a year of operation of a data center. Mathematically, for ψ = Ψ
S

, the long term

carbon capping constraint can be written as follows:

1

S

S−1∑
t=0

b(t) ≤ ψ. (6.4)

6.1.3 Optimization Framework

We also set the renewable energy operational cost to zero, since the primary

cost for solar panels and wind turbines is the construction cost. Further, data centers

would like to maximize the utilization of their on-site renewable energy. At each

slot t, the operation cost is power procurement cost across all the data centers i.e.,

cost(t)=
∑

i gi(t)αi(t), where α denotes the electricity cost. Finally, we formulate the

offline workload distribution strategy over the cloud to minimize the long-term average

electricity cost of the cloud, which is demonstrated in the following optimization

problem, namely P1:
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minimizeg,r,y,λ ¯cost = 1
S

∑S−1
t=0

∑
i gi(t)αi(t),

subject to: (6.1), (6.3), and (6.4).
(6.5)

Observe that some of the variables are real (i.e., gi and λi,j) and some are

integer (i.e., yi). Following Lemma 5.1.1 in can be proven that the well-known NP-

hard Fixed-Charge Min-Cost Flow problem can be reduced to P1. However relaxing

y to a real variable has a very negligible impact on the cost given the thousands

of servers in data centers, as proven in Proposition 5.2.2 (Chapter 5). Therefore, we

consider solving P1 where all its decision variables are real. In this way, P1 can be

optimally solved using linear programming. Carbon capping constraint (6.4) couples

the solution of P1 over slots. Therefore, it is natural that optimally solving P1

requires complete offline information (e.g., workload arrival rate, electricity price)

which is impractical. To ensure there exist at least one feasible solution to P1 and to

design online solution we make the following assumptions which are practically not

too constraining:

� Boundedness assumption: The cloud carbon footprint on every slots is

upper-bounded by bmax which implies that the workload arrival rate and the

carbon intensity associated with the cloud are finite for t=0, . . . , S−1, that is

true due to the finite number of servers.

� Feasibility assumption: There exists at least one sequence of workload dis-

tribution policy over slots t = 0, . . . , S−1 that satisfies P1’s constraints.

� Periodicity assumption: There exits θ number of continuous slots, θ << S,

during which if carbon footprint is minimized ( i.e., ∀k ∈ θ : b(k)=bmin(k),

where bmin(k) is the minimum possible carbon footprint for slot k which can be

achieved by any workload distribution policy) then the average carbon footprint
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Algorithm 6.1: OnlineCC Algorithm

function OnlineCC

Initialize the virtual queue X.

for every slot t = 1 . . . S (beginning of the slot) do

Predict the system parameters over slot t.

Solve the following problem:

Minimize:

costOnlineCC = V
∑

i gi(t)αi(t) +X(t)
∑

i bi(t). (6.6)

Subject to: (6.1), and (6.3).

Update the virtual queue X using (6.7).

end for

end function

over θ becomes lower than that of average carbon cap (ψ). The parameter θ

depends on the cycle variation of the cloud carbon footprint as well as the

tightness of ψ, i.e., the proximity of the ψ to the minimum feasible average

carbon footprint. Consider an extreme case where ψ≥bmax, then θ equals to

one. If ψ is very tight, then θ becomes close to the cloud cycle variation. Note,

given the weekly and daily variation of data center system parameters (e.g.,

workload, electricity price, carbon emission), we have that θ<<S even for the

case where ψ is very tight.

6.2 OnlineCC: Online Cost and Carbon Footprint Optimization Solution

Carbon capping constraint (6.4) in P1 couples the data center decisions across

different time slots. Eliminating (6.4) from P1 leads to an online problem, however
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we need a technique for managing the carbon capping requirement. There are some

well-studied online algorithms such as Metrical Task System (MTS), and K-servers.

These algorithms typically solve online problems to minimize cost, where the cost is

given per system state and per state change. The Problem P1 is different in the sense

that the coupling property (carbon capping constraint) is a requirement which needs

to be met when operating over the budgeting period. Lyapunov optimization refers

to the use of a Lyapunov function to optimally control a dynamical system. A Lya-

punov function is a nonnegative scalar measure of the system state (e.g., in Problem

P1, the deviation of carbon footprint from the cap at a given time). Typically, the

function is defined to grow large when the system moves towards undesirable states

(e.g., in Problem P1, violation of the cap). System stability is achieved by taking

control actions that make the Lyapunov function drift in the negative direction to-

wards zero. We leverage Lyapunov optimization to enables online control of carbon

footprint cap. In accordance with Lyapunov optimization, we construct a (virtual)

queue with occupancy X(t) to include the total excess carbon footprint beyond the

average carbon footprint until the time slot t. Using X(0) = 0, we propagate X(t)

values over slots as follows:

X(t+ 1) = max[X(t)− ψ, 0] +
∑
i

bi(t). (6.7)

We design OnlineCC as given in Alg. 6.1 to solve the cost minimization in an online

way. OnlineCC, solving the optimization problem in Alg. 6.1, requires only one slot

ahead information as the inputs (i.e., λj(t), ri(t), αi(t), ε
g
i (t), and εri (t)), since the

problem in Alg. 6.1 removes the coupling property of P1 (i.e., removing the constraint

(6.4)). OnlineCC uses the control parameter V (see Alg. 6.1) to adjust the cost mini-

mization and carbon capping tradeoff, for which we provide an analytically supported

guideline for its adjustment.
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6.2.1 OnlineCC Performance Analysis

We prove Lemma 6.2.1 which helps to prove the worst-case carbon capping

violation of OnlineCC. It can be seen that OnlineCC minimizes the weighted sum

of the electricity cost and the carbon footprint, weighted by V and X(t), respec-

tively. Lemma 6.2.1 presents a condition under which the second term of (6.6) out-

weighs its first term such that minimizing carbon footprint yields lesser value for

OnlineCC objective function. The condition in Lemma 1 is related to the param-

eter Xlim which is a bound of the electricity cost difference over the carbon foot-

print difference across data centers for the entire time period. Mathematically, it is

represented as Xlim= cmax−cmin

b′
, where, cmax= maxi,t(

pi
µi
αi(t)), cmin= mini,t(

pi
µi
αi(t)),

b=mini,k,t,i6=k(
pi
µi
εgi (t)−

pk
µk
εgk(t)|

pi
µi
εgi (t) 6=

pk
µk
εgk(t)). Next in Lemma 6.2.2 we prove how

much farther X can grow beyond V Xlim. The upper bound of X specifies OnlineCC

carbon violation (see (6.7)).

Lemma 6.2.1. Suppose data centers require non-zero active servers, and for a given

slot t, X(t)≥V Xlim, then OnlineCC minimizes carbon footprint for slot t.

Proof. We prove the lemma for yslack=0 for the sake of notation brevity. Let p′toti , g′i,

y′i, λ
′
i and r′i denote the value of parameters when minimizing carbon footprint. For

OnlineCC to minimize the carbon footprint for any values of ptoti , gi, yi, λi, and ri we

should have the following:

V
∑

i(p
tot
i (t)− ri(t))αi(t)

+X(t)
∑

i(p
tot
i (t)− ri(t))εgi (t) + ri(t)ε

r
i (t)

≥ V
∑

i(p
′tot
i (t)− r′i(t))αi(t)

+X(t)
∑

i(p
′tot
i (t)− r′i(t))ε

g
i (τ) + r′i(t)ε

r
i (t).

The rest of the proof is about obtaining a bound for which the above inequality

always holds. Since the carbon intensity of renewable power is much lower than that
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of grid where brown energy forms its significant energy source, εri (t)<<ε
g
i (t), and that

we consider zero cost for on-site renewable power, increasing the renewable energy

favors both reducing the total electricity cost and carbon footprint i.e., ri(t)=r
′
i(t).

Therefore, given that ptoti =yipi, to prove the above inequality it is sufficient to show:

X(t) ≥ V
∑

i y
′
i(t)piαi(t)−

∑
i yi(t)piαi(t)∑

i yi(t)piε
g
i (t)−

∑
i y
′
i(t)piε

g
i (t)

. (6.8)

Using “service delay” constraint in (6.1) and the assumptions of yslack=0 and

yi > 0 we have that yi(t)=
∑

j λi,j(t)

µi
+ 1

dµi
. Plugging this into (6.8), rearranging the

terms, cancelling the term pi
dµi

from both numerator and denominator, and defining

the parameters cost per flow, c as ci(t)=
piαi(t)
µi

, and carbon per flow, b′ as b′i(t)=
piαi(t)
µi

,

it is left to prove the following:

X(t) ≥ V
∑

i

∑
j λ
′
i,j(t)ci(t)−

∑
i

∑
j λi,j(t)ci(t)∑

i

∑
j λi,j(t)bi(t)−

∑
i

∑
j λ
′
i,j(t)bi(t)

≤ V
∑

i

∑
j λ
′
i,j(t)cmax−

∑
i

∑
j λi,j(t)cmin∑

i

∑
j λi,j(t)b1−

∑
i

∑
j λ
′
i,j(t)b2

.
(6.9)

where cmax= maxi,t(ci(t)), cmin= mini,t(ci(t)), and b1, and b2 are such that

b1−b2= min
i,k,t,i6=k

(b′i(t)− b′k(t)|b′i(t) 6= b′k(t)).

Note that for every b′i(t)=b
′
k(t), we have gi(t)=g

′
i(t), and gk(t)=g

′
k(t) (this is because

online algorithm first minimizes the carbon footprint and then the electricity cost)

which means that such carbon factors do not affect the above inequality. Given∑
i

∑
j λi,j(t)=

∑
i

∑
j λ
′
i,j(t), the lemma follows.

Lemma 6.2.2. Suppose X(0)=0, then using OnlineCC, the virtual queue X is deter-

ministically bounded as: ∀t=0 . . . S−1, X(t) ≤ V Xlim+ max(θ−2, 0)(bmax−ψ)+bmax.

We consider that bmax>ψ, otherwise the proof is trivial. We prove by induc-

tion. Clearly the lemma holds for t=0. Now suppose it holds for t, we will prove it for
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t+1. First, supposeX(t)≤V Xlim then according to (6.7) the most thatX(t+1) can in-

crease in one slot is bmax−ψ. Next, suppose V Xlim<X(t)≤V Xlim+k(bmax−ψ)+bmax,

for every integer k<θ−2. If b(t+1)≤ψ then we have:

X(t+ 1)=X(t)−ψ+b(t+1)≤X(t)−ψ+ψ≤X(t).

Otherwise X(t+1) at most becomes V Xlim+(k+1)(bmax−ψ)+bmax. Finally, suppose

X(t)=V Xlim+ max(θ−2, 0)(bmax−ψ)+bmax. According to Lemma 6.2.1, once X(t)

exceeds V Xlim, OnlineCC minimizes carbon footprint. Thus the value of X(t) im-

plies that there has been θ−1 number of slots that OnlineCC has minimized carbon

footprint, yet it has incurred carbon footprint of bmax on each of those θ−1 slots (worst

case scenario). According to definition of θ, the minimum carbon footprint in t+1, i.e.,

bmin(t+1) must satisfy bmin(t+1)<ψ which follows thatX(t+1)=X(t)−ψ+bmin(t+1) ≤

X(t)−ψ+ψ≤X(t).

Now we present Theorem 6.2.3 which is built upon Lyapunov optimization [90],

and makes use of Lemma 6.2.1 and Lemma 6.2.2 to provide the performance analysis

of OnlineCC.

Theorem 6.2.3. (Performance Bound Analysis): Suppose X(0)=0, and that power

demands and input workloads of data centers are bounded. Then, given any fixed

control parameter V >0, OnlineCC achieves the following:

1. Assume data center parameters are i.i.d. over every slot, the time averaged cost

under the online algorithm is within B
V

of the offline optimal time averaged cost

value, cost∗:

lim supt→∞
1
t

∑t−1
τ=0 E{costOnlineCC(τ)} ≤ cost∗ + B

V
, (6.10)

where B = 1
2
(bmax

2+ψ2), costOnlineCC refers to the value of (6.6) as shown in

Alg. 6.1, and cost∗ is the optimal solution to P1.
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2. The carbon footprint capping constraint is approximately satisfied with a bounded

deviation as follows:

∑S−1
t=0

∑
i bi(t) ≤ Ψ + min(R1, R2), (6.11)

where,

R1=V Xlim+ max(θ−2, 0)(bmax−ψ)+bmax

, and

R2=
√

2

√√√√SB+V (Scost∗−
S−1∑
t=0

costOnlineCC(t)).

Proof. First, the proof of (6.10) builds upon the recently-developed Lyapunov opti-

mization technique [90]. We only show the key steps. Let’s define a quadratic Lya-

punov function L(t) that measures the aggregate carbon deficit in the system: L(t) =

1
2
X(t)2. Next, let’s define the one-slot Lyapunov drift, ∆(t) as the expected change in

the Lyapunov function over every slot as follows: ∆(t) = 1
2
(E{L(t+ 1)−L(t)}|X(t)).

Now we derive the upper bound on ∆(t) as follows. By (6.7) we have that:

(X(t+ 1))2 ≤ (X(t)− ψ +
∑
i

bi(t))
2.

Squaring both side of (6.7), and given that
∑

i bi(t) = b(t) ≤ bmax we have:

[X(t+ 1)]2 ≤ [X(t)]2 + [ψ]2 + [
∑

i bi(t)]
2

−2X(t)ψ + 2X(t)
∑

i bi(t)− 2ψ
∑

i bi(t)

⇒ [X(t+ 1)]2 − [X(t)]2 ≤ bmax
2 + ψ2 − 2X(t)[ψ −

∑
i bi(t)].

(6.12)

Now multiplying the above inequality by 1
2
, taking expectations over X(t), and bi(t),

conditioning on X(t), we get the one-slot conditional Lyapunov drift ∆(t):

∆(t) ≤ B −X(t)E{ψ −
∑

i bi(t)|X(t)},
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where B=1
2
(bmax

2+ψ2). Adding the cost as penalty term to the both side of the above

inequality, i.e., V cost(t), we get:

∆(t) + V cost(t) ≤ B + V cost(t)−X(t)E{ψ −
∑

i bi(t)|X(t)}. (6.13)

Observe that OnlineCC as shown in Alg.(6.1) minimizes the right hand side of (6.13).

The i.i.d. assumptions of input parameters, ensures the existence of an optimal

stationary randomized policy π which can achieve as follows for solving problem P2

at all t = 0 . . . S−1 : E{bi(t)} ≤ ψ and E{costπ}(t)=cost∗, where cost∗ is the offline

optimal average cost (this can be proven using Caratheodory’s theorem similar to the

proof in [90]).

Using the fact that OnlineCC is constructed to minimize the R.H.S. of (6.13),

we have:

∆(t) + V costOnlineCC(t) ≤

B + V costalt(t)−X(t)E{ψ −
∑

i bi(t)|X(t)},
(6.14)

where alt represents any alternate policy (including stationary randomized

policy π) that can be implemented over slot t. Then plugging the control decisions

corresponding to the stationary randomized policy π, we get:

∆(t) + V costOnlineCC(t) ≤ B + V cost∗. (6.15)

Taking the expectations from both sides, summing the above over t=0 . . . S−1,

using the fact that ∆(t)≥0, and dividing both sides by SV , we have:

1

S
E{

S−1∑
t=0

costOnlineCC(t)} ≤ V cost∗ +
B

V
.

Taking a lim sup as S→∞, we complete the proof.

Next, to prove (6.11) we first prove OnlineCC carbon violation never exceeds

R1 as defined in theorem. This immediately follows from Lemma 6.2.2, and (6.7).
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The reason is that, by definition of the virtual queue X, i.e., (6.7), the total carbon

footprint violation of OnlineCC from cap (i.e., b) up to end of slot t is equal to

max(X(t)−ψ, 0). and that by Lemma 6.2.2 we have that

X(S) ≤ V Xlim+ max(θ−2, 0)(bmax−ψ)+bmax.

To prove (6.11), it is left to show that OnlineCC carbon violation never exceeds

R2, where R2 is defined in the theorem. From the carbon deficit queue dynamic (6.7),

we have that:

X(t+ 1)−X(t) ≥
∑
i

bi(t)− ψ.

Summing the above over t = 01, . . . S, and using the fact that X(0)=0 we obtain the

following:
S−1∑
t=0

∑
i

bi(t) ≤ Sψ +X(S). (6.16)

Similarly, summing (6.15) over the entire budgeting period, i.e., t=0 . . . S, and

using the fact that L(0)=X(0)=0 yields:

L(S) = 1/2X2(S) ≤ SB + SV cost∗ − V
S−1∑
t=0

costOnlineCC(t). (6.17)

Plugging (6.17) into (6.16), and using the fact that Ψ=Sψ we prove the theorem as

follows:
S−1∑
t=0

bi(t) ≤ Ψ +
√

2

√√√√SB + V (Scost∗ −
S−1∑
t=0

costOnlineCC(t)). (6.18)

The results of Lemma 6.2.1 and (6.11) are important, since they provide a

deterministic bound on the maximum carbon capping violation of OnlineCC. The

intuition behind R1 in (6.11) is that the carbon cap violation is bounded by the

maximum value that X can get which is equal to the sum of V Xlim (the upper bound

value of X to minimize carbon footprint) and the total carbon footprint backlog
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accumulated when minimizing carbon footprint in the worst case (i.e., over θ). The

salient feature of this bound (i.e., R1) is that the worst case carbon capping violation

can be calculated without the need to solve the optimal offline solution (as opposed

to the bound of R2 which is derived using standard steps of Lyapunov optimization).

This is important, since the optimal offline solution is hard to solve due to the curse

of dimensionality problem. Further, per slot carbon capping violation from bound

R1 equals to R1
S

. Since R1 is independent of the budgeting period length (S), the per

slot carbon capping violation becomes tight for large S as long as Xlim and θ do not

vary significantly with increasing S. A tight bound on the carbon capping violation

of OnlineCC is of utmost importance as it can be used to adjust the additional carbon

credit required for the cloud to achieve carbon neutrality. Finally, R1 can be used to

adjust the value of V as described in the section below.

How to Choose V Value?:

OnlineCC uses a control parameter V >0 that affects the distance from optimality.

Particularly, according to Theorem 6.2.3, the algorithm achieves an average cost no

more than O(1/V ) distance above the optimal average cost, while the large value of

V comes at the expense of an O(V ) tradeoff in achieving the carbon cap. In this

section we present two heuristic solutions which intuitively guide on how to choose

V value.

First solution: According to (6.7) the aggregated carbon violation until

time t equals max(X(t)−ψ). Suppose we choose V=Vmin, where ψ=VminXlim, then

according to Lemma 6.2.1, OnlineCC minimizes carbon footprint whenever either the

carbon footprint over a slot exceeds ψ (due to peak workload) or the sum of backlog

and the slot carbon footprint exceed ψ. This means that choosing V=Vmin, OnlineCC

most of the time yields a value lower than that of ψ, since the offline solution does not
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always minimizes the carbon footprint when the workload is at its peak (e.g., for loose

ψ). This is particularly true because V Xlim is an upper-bound value for OnlineCC to

minimize the carbon footprint. Choosing the right value for V such that OnlineCC

achieves near or very close to the carbon cap (Ψ) depends on the variability of the

electricity cost (αi(t)) and the carbon emission (εgi (t)) of data centers over time. The

right V value also depends on θ. The input workload, the carbon intensities and the

electricity prices periodically have ups and downs (e.g., daily variation). Depending on

the variation periodicity of these parameters, the optimal offline solution may violate

the average carbon cap in some slots (e.g., where workload is at its peak), which

can be compensated in future slots (e.g., where workload is low). The parameters

variation period and the carbon cap value also determines θ. One heuristic solution

to imitate this behavior, is to choose V such that on average around θ
2
ψ violations

above the average carbon cap is allowed, i.e., V such that θ
2
ψ=V Xlim or V= θ

2
Vmin.

Further, for choosing V we should consider how tight the bound Xlim is, which can be

approximately calculated using the data center input parameters (i.e., peak to mean

ratio of the electricity cost and the carbon intensities).

Second solution: Another solution is to find the sweet V value to minimize

the sum of cost and carbon capping violation from Optimal. According to (6.10) and

(6.11), such minimization can be written as follows:

Minimize
B

V
+ V Xlim + max(θ − 2, 0)(bmax − ψ) + bmax

This can be solved analytically, which yields V=
√

B
Xlim

. We evaluate the

performance of the two solutions in the experimental study.

In the following section, first we give a simple example to illustrate how On-

lineCC works. Then, we study OnlineCC-T which is designed based on T -slot Lya-

punov optimization. Next, we study the performance of OnlineCC with respect to an
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Figure 6.1: Illustrating OnlineCC and V Adjustment Solutions.

offline solution with T slots future information.

Numerical Examples

Consider a cloud consisting of only one front-end and two data centers (DC1 and

DC2), each having identical power consumption and service rate per server (p=pi,

and µ=µi). Suppose, both the electricity cost and the carbon footprint are constant

over time, their magnitude are comparable (in the same range) and that the data

center with the lower cost has the higher carbon footprint and vice versa: ∀t, α1(t)=2

$/J, εg1(t)=4 CO2 g/J, α1(t)=4 $/J, εg1(t)=2 CO2 g/J. Observe that DC1 and DC2

are optimal destination for power demand to minimize electricity cost and carbon

footprint, respectively. Finally, consider T=8, and a cyclic power demand as given in

Fig. 6.1(a). Observe that in this setting the minimum feasible average carbon foot-

print equals to eight and Xlim=1. To illustrate the proposed solutions for OnlineCC

and V adjustment, consider two cases. First, suppose ψ is equal to the minimum

feasible value, i.e., ψ=8. According to the solution Vmin= ψ
Xlim

=8. Note, the offline

solution chooses to minimize the carbon cap over all slots to satisfy the carbon cap

target (by assigning the entire power demand to DC2). Assume we choose V=Vmin.

For this setting, as shown in Fig. 6.1(b) except the first slot, OnlineCC assigns the
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Algorithm 6.2: OnlineCC-T Algorithm

Initialize the virtual queue X

for every T frame k = 0 . . . K − 1 (beginning of the frame k) do

Predict the system parameters over slot (kT, kT + T − 1)

Minimize:

costOnlineCC-T(k) =

V
∑KT+T−1

τ=kT

∑
i gi(τ)αi(τ) +Xi(kT )

∑KT+T−1
τ=kT

∑
i bi(t)

(6.19)

Subject to: (6.1), and (6.3)

Update the virtual queue X as X(kT + T ) = max(X(kT ) − Tψ, 0) +∑kT+T−1
τ=kT bi(τ)

end for

power demand to DC2, since assigning power to DC2 causes to minimize the carbon

footprint. This is because X value (see (6.7)) quickly exceeds V value (see Fig. 6.1(c))

resulting in the second term of OnlineCC objective function (see (6.6)) outweighing

the first term such that minimizing the carbon footprint yields smaller value for On-

lineCC objective function compared to minimizing the electricity cost.

Next, suppose ψ gets a larger feasible value i.e., ψ=9. By choosing V=Vmin=ψ=9,

it can be seen in Figs. 6.1(d) and (e) that as soon as either the slot carbon footprint

exceeds ψ (slots 3 and 7), or the sum of the backlog and the slot carbon emission ex-

ceeds ψ (slots 2 and 6), X value exceeds V and that OnlineCC minimizes the carbon

footprint by assigning the power demand to DC2. This results an average carbon

footprint of 8.2, a value less than ψ (in agreement with Section 6.2.1).
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6.2.2 OnlineCC-T: Leveraging Predictability of Parameters

The competitive cost ratio of OnlineCC, (Theorem 6.2.3) is based on i.i.d.

assumption of data center system parameters. Therefore, there is this concern that

the results may not hold depending on the nature of parameters (e.g., non-stationary

distribution for renewable energy). Further, data center system parameters, usually

have seasonality pattern (e.g., daily and weekly), where the information can be pre-

dicted with reasonable accuracy. Therefore, there is this question that whether the

performance of OnlineCC can be improved by leveraging the predictability of infor-

mation in T slots ahead (T≥1) rather than one slot ahead. To address the above,

we also develop and evaluate an online solution using T -slot Lyapunov optimization,

namely OnlineCC-T . The parameter T can be viewed as the time required for the

system to reach near steady state. This is due to the fact that systems with non-

i.i.d. parameters such as workload arrival rate may have the systems states that yield

low workload arrival rates or large arrival bursts for many time slots within every

T . Similarly, the system within T may have many slots with very low renewable

energy and low electricity price, and many slots of large renewable energy burst or

high electricity price. However, the variation ofsystem parameters for every T can

be assumed stationary (an i.i.d. system case can be viewed as a special case where

T=1). Such definition is consistent with the general nature of workload, solar energy,

and electricity price as they usually have a daily (or weekly) basis variation pattern.

OnlineCC-T, given in Alg. 6.2 can be viewed as a general case of OnlineCC where

the optimization problem in Alg. 6.1is solved over every T slots. Further, the carbon

deficit queue (X) is updated over every T slot. The following theorem shows the

performance of OnlineCC-T with respect to the offline optimal solution.

Theorem 6.2.4. Suppose X(0)=0, and that power demand and input workload of
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data centers are bounded. Further, let cost∗T denotes the optimal solution to the

problem P1 over every T slot, costOnlineCC−T denotes the OnlineCC-T per-T-slot

cost as defined in Alg. 6.2, and B denotes a finite constant parameter as follows:

B=1
2
(b2
max+ψ

2). Then given integer numbers k=0, 1 . . . K, where t = kT and S=KT ,

and given any fixed control parameter V >0, OnlineCC-T achieves the following:

1. If data center parameters are i.i.d. over every T-slots, then the time averaged

cost under the online algorithm is within BT
V

of the offline optimal time averaged

cost, cost∗T :

¯costOnlineCC−T =

lim supt→∞
1
t

∑K−1
k=0 {

∑kT+T−1
τ=kT costOnlineCC−T (τ)}

≤ cost∗T + BT
V
.

(6.20)

2. The carbon footprint capping constraint is approximately satisfied with a bounded

deviation as follows:

∑S−1
t=0

∑
i bi(t) ≤ Ψ + min(R1, R2), (6.21)

where,

R1=V Xlim+ max(θT−2, 0)(Tbmax−Tψ)+Tbmax

, and

R2=
√

2

√√√√SB+V (Kcost∗T−
K−1∑
k=0

costOnlineCC−T (k))

Proof. The similar steps to the proof of Theorem 6.2.3 can be taken to prove this the-

orem. The only difference is that we need to define the T -slot Lyapunov optimization

drift.

The above theorem, shows that OnlineCC and OnlineCC-T have similar per-

formance with respect to offline optimal solution. In particular, the competitive ratio
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of OnlineCC-T cost over cost∗T (average optimal cost over T slots) is similar to the

competitive ratio of OnlineCC cost over cost∗ (average optimal cost over every slot).

Further, the similar steps as Section 6.2.1 can be taken to choose V for OnlineCC-T.

The first solution in Section 6.2.1 suggests to use a Vmin for OnlineCC-T such that

Tψ=Vmin. The second solution of Section 6.2.1 suggests a V value equal to
√

BT
Xlim

.

6.2.3 Offline Solution with T Slots Lookahead Information

Suppose we divide the entire budgeting period into K equal time frames

each consisting of T≥1 time slots such that S=KT . Consider an instance of P1

where the optimal solution for the problem equals to the sum of optimal solutions

for each of independent K frames (note we overload the parameter T to define

OnlineCC-T and the offline solution with limited lookahead information). The ques-

tion is how is the performance of OnlineCC for such an instance of the problem.

This is important, since the performance of OnlineCC is often compared to a pre-

diction based solution e.g. the solution in [69] and our reference online solution,

OnlineH (see Section 6.4). The optimal solution of P3 is a representative of a

prediction based solution which operates near optimal solution. Hence, we make

use of offline algorithm with T-slot lookahead information as a benchmark. To

this end, we divide the carbon capping target into chunks per each frame, denoted

by ΨT as follows ΨT= Ψ
K

. Then, at the beginning of every k-th frame, for k =

0, 1, . . . K − 1, the offline decisions are chosen to solve the following problem, namely

P2:

minimizeg,r,y,λ ¯cost = 1
T

∑kT+T−1
t=kT

∑
i gi(t)αi(t)

subject to: (6.1), and (6.3)∑kT+T−1
t=kT

∑
i bi(t) ≤ ΨT .

(6.22)

We also consider that P2, similar to P1, fulfills the Boundedness, Feasibility, and
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Periodicity assumptions.

Next, building upon Lyapunov optimization technique, we formalize the per-

formance analysis of OnlineCC in Theorem 6.2.5 where cost∗k denotes the optimal cost

of P2 for each frame k.

Theorem 6.2.5. (Performance Bound Analysis w.r.t. offline with T slots looka-

head information): Consider the optimal solution to P2 under the aforementioned

boundedness and feasibility assumptions and define B′ as follows:

B′ = BT+1/2T (T−1)(b2
max−bmaxψ+ψ2).

Then, for any T∈N, and K∈N such that S=KT , the following statements hold.

1. If data center parameters are i.i.d. over every slots, then the time averaged cost

under the online algorithm is within B′

V
of the offline solution with T slot looka-

head information:

1
K

∑S−1
τ=0 costOnlineCC(t) ≤ B′

V
+ 1

K

∑K
k=0 cost∗k (6.23)

2. The carbon footprint capping constraint is approximately satisfied with a bounded

deviation as follows:

∑S−1
t=0

∑
i bi(t) ≤ KΨT + min(R1, R2), (6.24)

where,

R1=V Xlim+ max(θ−2, 0)(bmax−ψ)+bmax,

and

R2=

√√√√KB′+V (
K∑
k=0

cost∗T,k−
K∑
k=0

kT+T−1∑
t=kT

costOnlineCC(t))
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Proof. To prove (6.23), let’s define the T-slot Lyapunov drift, ∆T (t) = L(t + T ) −

L(t) as the expected change in the Lyapunov function over every T-slot, where the

Lyapunov function is defined in Theorem 6.2.3. We define k ∈ N where k = 0 . . . K−1.

Consider ∆(kT ), summing (6.13) over a T-slots, i.e., τ = kT . . . kT + T − 1, yields:

∆T (kT ) + V
∑kT+T−1

τ=kT cost(τ) ≤ TB + V
∑kT+T−1

τ=kT cost(τ)

−
∑kT+T−1

τ=kT X(τ)E{ψ −
∑

i bi(τ)}.
(6.25)

According to (6.7) we have that:

∀τ ∈ [kT, kT + T − 1] :

X(kT )− (τ − kT )ψ ≤ X(τ) ≤ X(kT ) + (τ − kT )(bmax − ψ).

Consequently we have:

∑kT+T−1
τ=kT X(τ)

∑
i bi(τ)−X(τ)ψ

≤ X(kT )
∑kT+T−1

τ=kT (
∑

i bi(τ)− ψ) + 1
2
T (T − 1)(b2

max − bmaxψ + ψ2).

Plugging the above into (6.25) we get:

∆T (kT ) + V
∑kT+T−1

τ=kT cost(τ) ≤ B′ + V
∑kT+T−1

τ=kT cost(τ)

−X(kT )
∑kT+T−1

τ=kT E{ψ −
∑

i bi(τ)},
(6.26)

where B′ is as follows:

B′ = BT +
1

2
T (T − 1)(b2

max − bmaxψ + ψ2).

Note that, OnlineCC explicitly minimizes the right-hand side of the above inequality.

Thus, by applying OnlineCC on the left-hand side and considering the optimal T-slot

lookahead policy on the right-hand side of (6.26), denoted by cost∗k, and summing the

inequality over k ∈ {0, 1, . . . K} we obtain the following inequality:

L(KT )− L(0) + V

KT−1∑
t=0

cost(t) ≤ KB′ + V

K∑
k=0

cost∗k. (6.27)
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Dividing by V K, using the fact L(KT ) > 0 and L(0) = 0 and rearranging

terms yields:

1

K

S−1∑
τ=0

cost(t) ≤ 1

K

K∑
k=0

cost∗k +
B′

V
.

To prove (6.24), following the carbon deficit queue dynamic specified by (6.7),

we have for any t ∈ [kT, kT+T−1], and any k = 0, 1 . . . K:

X(t+ 1)−X(t) ≥
∑
i

bi(t)− ψ.

By summing the above inequality over a T -slot frame: t=kT . . . kT+T−1, we obtain:

X(kT + T )−X(kT ) ≥
∑kT+T−1

t=kT

∑
i bi(t)− Tψ.

Thus:
kT+T−1∑
t=kT

∑
i

bi(t) ≤ Tψ +X(kT + T )−X(kT ). (6.28)

Summing (6.28) over k=0, 1 . . . K−1, and using the fact that X(0)=0 we

obtain the following:
KT−1∑
t=0

∑
i

bi(t) ≤ KTψ +X(KT ). (6.29)

Further, from (6.27) we have:

1

2
X2(KT ) ≤ KB′ + V

K∑
k=0

cost∗k − V
S−1∑
t=0

costOnlineCC(t).

Plugging (6.29) in the above inequality we obtain:

KT−1∑
t=0

∑
i

bi(t) ≤ Ψ +
√

2

√√√√KB′ + V (
K∑
k=0

cost∗k −
S−1∑
t=0

costOnlineCC(t)).

The above results are very similar to the results of Theorem 6.2.3. However,

in practice it is easer to design OnlineCC which is competitive to Offline solution

with T lookahead. The reason is that the parameter V can be found in an easier way

depending on the parameters within every frame T .
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6.3 Thermal-aware Cost Minimization and Carbon Footprint Capping

This section extends the problem formulation and the solutions for data cen-

ters with non-uniform heat distribution, where the servers’ power consumption affect

the temperature distribution and the cooling energy of the data centers. From Chap-

ter 4 recall that the heat recirculation coefficients for all pairs of servers in a data

center can be modeled considering the data center layout and thermodynamic con-

ditions: Hi={hi,m,n}Yi×Yi where each hi,m,n denotes the fraction of heat that flows

from server n to server m among all Yi servers of data center i [110]. Denote by

Tsup,i, the supplied temperature of the cooling system at data center i, the maximum

allowed cooling system’s supplied temperature is limited by the following constraint:

Tsup,i(t)≤Tred,i−max(Hipi(t)), where pi(t) denotes the power consumption vectors of

servers at data center i, i.e., pi(t) = {pi,1(t) . . . pi,m(t), . . . pi,Yi(t)}. Cooling power can

be modeled as the ratio of computing power over coefficient of performance (CoP)

of the cooling system. CoP is the ratio of the heat removed (i.e., computing power)

over the work required to remove that heat (i.e., cooling power) and is typically a

supper-linear function of the supplied temperature (Tsup,i). In order to account for

the active server set, we introduce the binary variable xi,m which captures the power

state of server m at data center i (i.e., “1” for active state and “0” for inactive state)

and denote xi to represent its vector. Also assume pi,m denotes the average power

consumption of server m at data center i in the active state. Then, Hadamard prod-

uct of pi and xi denoted by pi◦xi(t) gives the power consumption vector of the active

servers. Now, the total data center power consumption (power consumption of active
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servers and the cooling system) can be formulated as follows:

ptoti (t) =
∑

m pi,mxi,m(t)(1 + 1
CoP (Tsup,i(t)

Tsup,i(t) ≤ Tred,i −maxHi(pi◦xi(t))),∑
m xi,m(t) = yi(t).

(6.30)

Observe that the above data center power consumption model captures the impact

of active server set on the temperature distribution in the data center room and

consequently on the cooling power consumption. Using this model, the offline thermal

aware cost minimization and carbon footprint problem, namely P3, can be formalized

as follows:

minimizeg,r,y,λ,x ¯cost = 1
S

∑S−1
t=0

∑
i gi(t)αi(t),

subject to: (6.1), (6.30), and (6.4).
(6.31)

A solution to this problem would specify, the active server set of each data

center (i.e., xi,m(t) which also implies yi(t)), the workload distribution policy of front-

ends and data centers (i.e., λi,j(t)), and the power supply model of each data center

(gi(t) and ri(t)). Observe that some of the variables are reals (i.e., λi,j(t), gi(t) and

ri(t)) and some are binary (i.e., xi,m(t)). Therefore, P3 is a nonlinear (due to non-

linearity of Eq. 6.30) binary programming. Following the discussion in Section 6.1.3,

and similar to problem P1, the problem P3 is a NP-hard problem. However, relax-

ing the binary variable x to a real variable does not significantly help to derive a

computation efficient solution to P3: (i) P3 is a large-scale optimization problem; in

particular, its number of variables compared to that of P1 is increased by the order

of number of servers at data centers, which is typically in the order of thousands,

(ii) P3 is a non-convex problem, since CoP is typically a super-linear function of

the supplied temperature, Tsup,i(t) (e.g., a quadratic function [110]). The later would

suggest that if P3 is solved using distributed optimization techniques (solutions to
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Figure 6.2: BlueCenter PUE when using TASP (i.e., TASP-LRH in Section 4.4) and

CPSP.

solve large-scale optimization problems [77]), then there would be no guarantee on

the convergence of the solution to a local optimal solution. The following section

gives a heuristic solution to solve P3 in a computation-efficient and online way.

6.3.1 Thermal-aware OnlineCC

In order to find a computation efficient solution to P3, we decompose the

problem into two distinct optimization problems; thermal-aware active server set

selection problem, and cost and carbon footprint optimization problem. The idea is

to model the energy consumption of the data centers for a given number of required

servers and a given active server set selection algorithm, and use that model in the cost

and carbon footprint optimization problem. In this way, we remove the complexity of

the active server set selection from P3 (similar to P1 which does not account for the

active server set selection). We already devised a computation-efficient thermal-aware

active server selection (i.e., TASP-LRH in Section 4.4) where for a given number of

required active servers it finds the active server set to competitively minimize the

sum of cooling and computing energy of the data center with respect to optimal

solution. In particular, TASP-LRH uses a model similar to (6.33) to calculate the
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Algorithm 6.3: Thermal-aware OnlineCC Algorithm

procedure Initialization( )

Initialize the virtual queue X

for each data center i do

find γi and γ0,1 (6.33) using TASP-LRH solution (Section 4.4)

end for

end procedure

procedure OnDataCenterLayoutChange(()i)

Update the heat recirculation model

Update γi and γ0,1 (6.33) using TASP solution (Section 4.4)

end procedure

procedure OnSlotTimeOut( )

Predict the system parameters over slot t.

Solve the following problem:

Minimize: costOnlineCC = V
∑

i gi(t)αi(t) +X(t)
∑

i bi(t). (6.32)

Subject to: (6.1), and (6.33).

Update the virtual queue X using (6.7).

end procedure

data center total energy consumption. The computation complexity of TASP-LRH is

O(Y 3) (where Y denotes the number of servers in a data center), and its performance

is analytically and experimentally evaluated against the optimal solution. We run

this algorithm to model the energy consumption of BlueCenter (and its PUE) for a

given number of required active servers. BlueCenter is an NSF funded small scale

data center facility located in the ASU campus [57] which offers experimentation
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environment with innovative data center management schemes. It is an air-cooled

data center with a layout similar to contemporary data centers. It has physical

dimensions of 27.6” × 28” × 11.8”. There are total of 288 servers each of which

consumes 300 W at peak utilization. The chiller supplies cold air with a flow rate of

5m3/s from a single CRAC and follows a regular hot-cold aisle structure. Similar to

the contemporary data centers, BlueCenter has a nonuniform heat distribution across

servers such that the hot spot temperature varies depending on how many servers and

which servers are active. The heat recirculation model of BlueCenter is derived and

validated in [56]. We run some experiments to calculate PUE of BlueCenter for various

input workload and number of required active servers using two algorithms: TASP-

LRH and a reference non-thermal aware server selection algorithm namely Computing

Power aware Server Provisioning (CPSP) (see Chapter 4). CPSP is oblivious to

the cooling energy, it resizes the active servers to the incoming workload without

considering the impact of the active server set on the cooling energy. Results as

shown in Fig. 6.2 depicts that PUE varies depending on the active server set selection

algorithm and the number of active servers. The results expectedly show that TASP

yields lower PUE than CPSP, since it minimizes the sum of the cooling and the

computing energy.

We use regression to model BlueCenter’s PUE as a linear function of number

of active servers when using TASP (i.e., TASP-LRH) and CPSP. Both models incur

around 7% mean absolute error and a R2 of around 0.9. The models can be repre-

sented as PUE(y)=γy+γ0 where TASP yields γ=0.0025, and γ0=1.07, and CPSP

yields γ=0.0028, and γ0=1.12. Using this PUE model, ptot, the total energy con-

sumption of a data center becomes a nonlinear function of number of active servers

as follows:

ptoti (t)≥piγiy2
i (t)+piγ0,iyi(t). (6.33)
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We intensionally, use inequality “≥” instead of equality in the above model.

Incorprating the above model in P3 instead of (6.30), we make a new convex optimiza-

tion problem, namely P4 where its scale (in terms of number of decision variables)

is equal to that of P1. In this way, P4, similar to P1 can be solved using exiting

convex optimization solvers. Since both the electricity cost minimization (for posi-

tive electricity cost models) and the carbon footprint minimization favor low energy

consumption, the solution of P4 are still true when using the inequality for (6.33)

instead of an equality. Further, for rare cases where electricity pricers are negative

(negative prices are a price signal on the power wholesale market that occurs when

a high power generation plant meets low demand. This is because some of power

generation plants cannot be shut down and restarted in a quick and cost-efficient

manner.), the outcomes as a result of using either inequality or equality in (6.33) are

equivalent (as long as the upper bound of ptot is appropriately set). This is because,

the performance model (6.1) favors large number of servers.

Note that the problem P4 which uses (6.33) as the data center power con-

sumption model implies that the corresponding active server set selection algorithm

to the parameters γi, and γ0,i runs locally at each data center as shown in Fig.2.9.

Therefore it is left to design an online solution similar to that of OnlineCC

in order to solve P4 in an online way. Lyapunov optimization, as used to design

OnlineCC, does not make any assumption on the cost model of OnlineCC. This

means that we can update the power consumption model of OnlineCC to (6.33) and

use it to solve P4 in an online way. Note, in this way, except, Lemma 1 and Lemma

2, and the parts of the Theorems that use these Lemmata’s results, all other results

hold true. Particularly, it is guaranteed that OnlineCC for both power consumption

models satisfies the carbon cap and achieves a cost with optimality distance of B
V

,

when it runs for sufficiently large S.
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Figure 6.3: Hourly Traces for August: (a) Electricity Price, and (b) Carbon Emission.

The aforementioned online thermal aware cost and carbon footprint capping

is summarized in three procedures as given in Alg. 6.3, namely Thermal-aware On-

lineCC. The “Initialization” procedure similar to OnlineCC solution initializes the

virtual queue X. It also runs the data centers active server selectin algorithm (e.g.,

TASP-LRH) to find each data centers’ energy consumption model when deploying the

corresponding active server seltion algorithm (i.e., finding γi and γ0,i of (6.33)). The

parameters γi and γ0,i are updated whenever there is any change in the data center

physical layout and consequently in its heat reciruclation model (see the procedure

“OnDataCenterLayoutChange”), whcih is an infrequent event. Finaly, the procedure

“OnSlotTimeOut” at each time slots runs an algorithm similar to that of OnlineCC.

The only difference is that Thermal-aware OnlinECC usee (6.33) in the procedure

instead of (6.3).

6.4 Evaluation

We simulate a cloud consisting of six data centers located at CA, TX, GA,

IA, NC and VA, most of which correspond to Google’s data centers’ locations. The
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Figure 6.4: Hourly Traces for August: (a) Front-ends’ Workload, and (b) Solar and

Wind Power.

data centers are assumed to be homogeneous in terms of power consumption and

computing characteristics, such that all the electricity cost savings and the carbon

footprint reduction only comes from spatio-temporal variation of the electricity cost

and the carbon footprint. Servers in each of the data centers are assumed to consume

300 W at peak utilization and data centers are considered to have an ideal PUE of 1

(Section 6.4.5 evaluates the solutions according to PUE model of a real data center).

We set the slot length to one hour, S to one month, and use realistic hourly traces of

the electricity price, carbon intensity, renewable power, from data centers’ locations.

To ensure data consistency, all traces are chosen from the month of July and August,

since the workload traces were available for only these two months. Particularly, we

obtain the hourly Locational Marginal Prices (LMP) of the aforementioned locations

in August 2012, from their corresponding RTO/ISO website (see Figure 6.3(a)). Fur-

ther, we estimate the hourly carbon emission intensity of our six data centers by

calculating the weighted average of carbon intensities of fuels in Table 2.1 where the

weights are taken from the available hourly electricity fuel mix of data center locations
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in August 2012 (see Figure 6.3(b)).

We consider four front-ends, corresponding to four time-zones in the U.S.,

and use two months (July and August) of NASA workload Internet trace [1]. The

workload of each front-end is scaled proportionally to the number of Internet users

and shifted according to the time zone for each front-end in the corresponding area,

as shown in Fig. 6.4(a). Each data center has 280 servers, and the intensity of the

workload is such that at peak, 70% of servers in the entire cloud are required to

be activated. We assume that a data center can receive workload from any of the

front-ends. Note, in practice there might be a large number of front-ends. However,

under the assumption that front-ends can send their requests to all data centers, high

number of front-ends does not affect the results as long as the study accounts for at

least one front-end in each time zone. This is because the aggregated workload of all

front-ends is affected by the time-variation of workload at different time-zones.

To capture the availability of wind and solar energy, we use the traces [2]

for three sites located in the data center locations of CA, TX and GA. We use the

wind speed and the rated power to calculate the wind power, and Global Horizontal

Irradiance (GHI) and the ambient temperature to calculate the solar power using

models described in [125]. The renewable infrastructure capacity (i.e., PV cells and

wind turbines) are considered to be equal for all three data centers (see Fig. 6.4(b)).

Prediction results: We use one month of training data (July traces) and

build weekly and daily Seasonal Auto Regressive Integrated and Moving Average

(SARIMA) prediction model to predict workload and solar energy, respectively. Fur-

ther, we use ARMA prediction model for wind energy. The lag one (one hour-ahead)

prediction error is 14%, 12% and 18% for workload, solar and wind energy respec-

tively. The error goes up to 20%, 18% and 52% for 24 lag (24 hour ahead) prediction

of workload, solar and wind energy respectively. Since wind and solar traces contain
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some values of zero or nearly zero, we report 95 percentile mean absolute percentage

error of these two traces (e.g., lag one mean absolute error of the solar energy is 25%).

Experiments Performed The following algorithms are used to evaluate OnlineCC:

� MinCost (reference algorithm): performs workload distribution in the cloud

to first minimize the electricity cost and then the carbon footprint.

� MinCarbon (reference algorithm): performs workload management to first

minimize the carbon footprint and then the electricity cost in the cloud.

� Optimal: offline optimal solution to P1.

� OnlineCC, PP, and OnlineCC, P: Alg. 6.1 with Perfect Prediction (PP),

and Predicted data (P).

� OnlineCC-T, PP, and OnlineCC-T, P: Alg. 6.2 with Perfect Prediction

(PP), and Predicted data (P).

� OnlineH, PP, and OnlineH, P (similar to heuristic solution of [69]): OnlineH

divides the given carbon cap for a month (i.e., Ψ) into chunks per day (i.e., T=24

hours/slots), where data center parameters can be predicted, and solves the

problem P1 over T. OnlineH satisfies the carbon cap in a best-effort manner,

since the feasible carbon cap for a T -slot depends on the workload intensity,

the availability of renewable energy and the carbon intensity on that T -slot.

Similar to OnlineCC, we implemented OnlineH PP, and OnlineH P. Finally, we

use the Receding Horizon Control (RHC) technique to minimize the impact of

the prediction error on the performance of OnlineH. Accordingly, the solution

at time slot t is calculated by solving optimization problem of P1 over the time

frame T=24, given the solution at time t−1, and the predicted information
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Figure 6.5: The Monetary Comparison of MinCost and MinCarbon for a Given Car-

bon Cap (Ψ) and a Given Carbon Price.

over T . Using RHC the impact of prediction error on OnlineH performance

degradation becomes minimal.

Note, when we use online algorithms without any postfix i.e. P or PP, it implies that

the algorithms are run with perfect prediction (PP). MinCost and MinCarbon can

be viewed as representative of the previous schemes which solely focus on either cost

minimization (e.g., [12, 96, 97]) or carbon footprint minimization (e.g., an algorithm

in [46]). The carbon footprint target of the cloud, i.e., Ψ, is clearly a value between

the carbon emissions achieved by MinCost and MinCarbon solutions for feasibility

assumption. We use MATLAB and GNU Linear Programming Kit (GLPK) to solve

all of the algorithms. In the experiments we justify Lemma 1, Theorem 1, 2 and 3, and

the solution of Section 6.2.1. Further, we study the performance of OnlineCC versus

OnlineH under various parameters i.e., V value (§ 6.4.2), and carbon cap (Ψ) (§ 6.4.3).

We also study the performance of OnlineCC-T for 1≤T≤24 for various availability of

the renewable energy and prediction error (§ 6.4.4). Finally, we evaluate OnlineCC

when using a real data center (BlueCenter) PUE model (Section 6.4.5).
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6.4.1 Electricity Cost and Carbon Reduction Tradeoff for Data Centers

Given existing carbon capping policies and carbon pricing, this experiment

compares monetary values of electricity cost reduction versus carbon reduction for

data centers. The purpose is to study whether a MinCost or a MinCarbon strategy is

sufficient for the cloud to manage its cost and carbon footprints. The existing carbon

capping policies typically define the carbon price as the amount that must be paid

for the right to emit one tonne of CO2 into the atmosphere which is given in the

form of a carbon tax or a requirement to purchase permits to emit (e.g., cap and

trade). Of particular interest is carbon pricing in USA where our simulated cloud is

located. However, there is no nationwide carbon tax leveled in USA. For this reason,

we evaluate monetary values of carbon reduction for a range of carbon prices. We

consider that the cloud has to purchase carbon credits per excess carbon footprints

from the cap. We compare the cloud total cost as a result of applying MinCost and

MinCarbon, where the total cost is the sum of the electricity cost and the carbon cost.

Fig. 6.5 shows the total cost for a given carbon cap versus carbon price for a tonne of

carbon ranging from $0 to $100 which is larger than the existing carbon prices. The

carbon price in Australia, for instance, is set to $24.15 for the 2013-2014 financial

year [9]. Also the carbon price in USA is estimated around $37 [7]. The carbon price

is typically estimated from the monetary value of the future damage from climate

change associated with an increase in CO2 emissions in a given year, referred to as

the social cost of carbon (SCC). Estimates of the SCC are highly uncertain, and

researchers have produced a wide range of values [10]. SCC for USA is estimated $21

for 2010 [10] and $37 for 2013-2014 [7]per one tonne of carbon.

Therefore, the carbon price of $50-$100 is very large which is used to evaluate

the performance of MinCost in the worst-case. As shown in Fig. 6.5, we use the total
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cost of MinCarbon as the reference which yields the minimum feasible cap (Ψmin).

The total cost of MinCarbon, therefore, is equal to its electricity cost, since it yields

zero excess carbon from the cap. MinCost, however, incurs carbon cost depending on

the cap, since it yields larger carbon footprint than that of MinCarbon (i.e., Ψmax).

The results indicate that for the carbon price of $0-$60 the total cost of MinCost is

always (i.e., independent of the cap) significantly smaller than that of MinCarbon,

which means that the electricity cost saving of MinCost significantly outweighs the

monetary value of the carbon reduction. Also when the cap increases form the mini-

mum cap (Ψmin), the total cost of MinCost is smaller than that of MinCarbon even

for very small carbon cap value (Ψ = Ψmin). The results suggest that data centers can

significantly save cost by leveraging the spatio-temporal variation of the electricity

even when it comes with the expense of violating the carbon cap. The reason is that

the existing carbon prices and the spatio- and temporal variation of electricity prices

is such that the monetary value of carbon reduction is significantly smaller than the

monetary value of electricity cost reduction. However, cloud operators many times

prefer to operate under the cap for their credential and for their responsibility to the

environment which necessitates a workload management strategy to minimize the

cost while maintaining the carbon cap, i.e., a solution such as OnlineCC.

6.4.2 Performance of the Solutions versus Lyapunov Control Parameter

First, we run an experiment without on-site renewable energy for data centers.

In order to run Optimal solution we run this experiment for S=168 (i.e., one week

of data) since running the Optimal solution for larger number of slots takes huge

time (due to the curse of dimensionality problem). We set Ψ to 7.2 CO2 Mg (ψ=43

CO2 Kg), the mean total carbon footprint of MinCost and MinCarbon, and vary V

starting from V=Vmin=0.02×1010, where Xlim equals to 0.00023 in the data set (see
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the first solution in Section 6.2.1). The second solution of Section 6.2.1 suggests a V

value equal to
√

B
Xlim

, where B = 1
2
(b2
max + ψ2). Similar to the first solution, this

solution also gives an estimation of V and depends on the tightness of B and Xlim.

Considering that in our data set, bmax=0.13 CO2 Mg, this solution suggests a V value

around 0.0006× 1010 that is lower than Vmin. Therefore, we proceed investigating V

value using the first solution. In practice, either of the solutions of Section 6.2.1 can

be used as a start point to investigate the right V value.

The results, shown in Figs. 6.6(a) and (b), being consistent with Theorem 6.2.3,

clearly demonstrate the electricity cost and carbon reduction tradeoff which is man-

aged by OnlineCC V parameter. Further, interestingly the prediction error has very

negligible impact on the performance of the both online solutions i.e., OnlineCC and

OnlineH. This is due to the relatively low prediction error of workload for both lag

one and 24 hours. Comparing OnlineCC with OnlineH from Fig. 6.6(a) and (b), it

can be seen that for V >1×1010, OnlineCC achieves a lower cost than OnlineH while

satisfying the carbon footprint cap for V <2×1010. In particular, under the condition

that both OnlineH and OnlineCC satisfy the carbon cap, OnlineCC achieves cost sav-

ing up to 18% more than OnlineH depending on the value of V . This indicates that

OnlineCC surpasses OnlineH when V is appropriately adjusted. OnlineCC violates

carbon cap for V >2×1010.

However, as shown in Fig. 6.6(c) and being in agreement with Theorem 6.2.3,

the carbon violation is much lower than the proven upper-bound. Particularly, as

shown in the top graph of Fig. 6.6(c), for large V where OnlineCC violates carbon

cap, V Xlim itself is larger than the total carbon cap violation. According to Fig. 6.6(c),

the per slot (i.e., time averaged) carbon capping violation for V=2×1010 is around

50% of ψ, while the actual time averaged carbon capping violation for this V value is

around 4.6% of ψ (see Fig. 6.6(b)). Note, the bound of Theorem 6.2.3 becomes tighter
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Figure 6.6: OnlineCC and OnlineH Performance versus Optimal with and without

Prediction Error: (a) Average Cost, (b) Average Carbon, (c) Total Carbon Violation

form the Cap, i.e., Ψ=7.25 CO2 Mg. It can be seen that the violation in the given

range of V value is up to 6% of the carbon cap target.

with increasing the budgeting period length. This can be clearly seen from Fig. 6.8(a)

which demonstrates the carbon footprint violation of OnlineCC over the budgeting

period of one month (S=744) as opposed to the results of Fig. 6.6(c) which are given

for the budgeting period of one week S = 168. The figure shows that the OnlineCC

average carbon capping violation for V=2×1010 is still around 5%, while the value of

V Xlim divided by the one month budgeting period i.e., S=744 is around 11%. The

OnlineCC worst case carbon violation also depends on θ in addition to the value of

V Xlim (see R1 in (6.11)), however this result shows how the bound becomes tighter

with increasing S.

Figs. 6.6(a) and (b) show that there exists V for which OnlineCC achieves near

one cost competitive ratio with respect to Optimal, while maintaining the carbon cap.

In agreement with discussion in Section 6.2.1, the same figures show that choosing

V=Vmin=0.02×1010, OnlineCC yields an output almost equal to that of MinCarbon.

Considering the daily variation of the workload, the daily variation of the electricity

price, and the carbon intensity as demonstrated in Fig. 6.3(b), the parameter θ can be

181



2.5 3 3.5 4 

x 10 
7 

2000 

2200 

2400 

2600 

2800 

3000 

3200 

Carbon cap, (CO2 g/J) 

T
o

ta
l 
e

le
c
tr

ic
it
y
 c

o
s
t 

($
) 

  

  

MinCost 

OnlineCC, V=V 
min 

OnlineCC, V= q /2V 
min 

OnlineCC, V= q V 
min 

OnlineH, PP 

MinCarbon 

Ψ 

(a)

2.5 3 3.5 4 

x 10 
7 

2 

2.5 

3 

3.5 

4 

4.5 
x 10 

7 

Carbon cap, Ψ 

 

(CO2 g/J) 

T
o

ta
l 
c
a

rb
o
n

 e
m

is
s
io

n
 (

C
O

2
 g

/J
) 

  

  

MinCost 

OnlineCC, V=V min 

OnlineCC, V= q /2V 
min 

OnlineCC, V= q V 
min 

OnlineH, PP 

Optimal 

MinCarbon 

(b)

0 2 4 6

x 10
10

1

1.1

1.2

1.3

1.4

1.5

V value

O
n

lin
e

 t
o

 O
p

ti
a

m
l 
c
o

s
t 

ra
ti
o

 

 

OnlineCC

OnlineCC-T (T=6)

OnlineCC-T (T=12)

OnlineCC-T (T=24)

OnlineH

(c)

Figure 6.7: OnlineCC and OnlineH Performance versus the Magnitude of Carbon

Cap (Ψ): (a) Total Electricity Cost, (b) Total Carbon Emission, and (c) OnlineCC-T

to Optimal Carbon Footprint Ratio for Different Values of V and T .

overestimated as the number of slots for a day, i.e., 24. According to Section 6.2.1, for

a sufficiently tight Xlim value, OnlineCC for V= θ
2
Vmin (i.e., V=0.2 × 1010) achieves

a performance near to Optimal. However, in our dataset Xlim is not very tight, e.g.,

the value of (αmax−αmin) is around 3 times greater than the average electricity price

differences in data centers (see Fig. 6.3 (a) and (b)). Therefore, OnlineCC for a V

value around 0.6×1010 achieves near Optimal solution performance. In general, due

to the variability of input data parameters, the task of deciding the tightness of Xlim

becomes tedious. This means that we need to run number of trials to find a right

value for V . However, the heuristic solution of Section 6.2.1 significantly reduces its

search space.

6.4.3 Performance of the Solutions versus the Carbon Cap

In the rest of experiments including this experiment we run the experiments

for the entire one month of traces. We compare the carbon footprint of the online

solutions against Optimal. Also motivated by the result of the previous section,

which suggests Optimal solution achieves a cost very close to MinCost, we compare
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Figure 6.8: OnlineCC-T to Optimal Carbon Footprint Ratio for Different Values

of V and T , (b) OnlineCC and OnlineCC-T (T=24) to MinCost Cost Ratio versus

Prediction Error and Different Availability of Renewable Energy, and (c) OnlineCC

and OnlineCC-T (T=24) to Optimal Carbon Footprint Ratio versus Prediction Error

and Different Availability of Renewable Energy.

the electricity cost of online solutions against MinCost.

We vary the carbon cap Ψ from Ψ=Ψmin, up to Ψmax, where Ψmin and Ψmax

denote the minimum and maximum total carbon footprint of the cloud achieved by

MinCarbon and MinCost, respectively. Further, for a given Ψ, we run OnlineCC

for three values of V : V=Vmin, V= θ
2
Vmin, and V=θVmin, where θ'24 and Vmin is

calculated for the given carbon cap. The results, shown in Fig. 6.7(a) and (b) indicate

that when Ψ is tight, i.e., Ψ is close to Ψmin, OnlineH and OnlineCC for large V values

slightly violate the carbon cap (see Fig. 6.7(b)). However, in the same situation,

OnlineCC for V=Vmin satisfies the cap (see Fig. 6.7(b)). Interestingly, when Ψ is

tight, OnlineCC yields a carbon footprint lower ( for V= θ
2
Vmin) or very close to that

of OnlineH, yet achieves 10% lesser cost than that of OnlineH (see Fig. 6.7(a)). Note

OnlineCC violates cap for high V value, however, the violation never exceeds the

upper bound defined in Theorem 6.2.3 (see Fig. 6.7(b)).

When the carbon cap is loose, i.e., it is close to Ψmax, the offline solution is
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comparable with offline solution with T ahead information (Section 6.2.3). It can be

seen in Fig. 6.7(a) and (b) that for Ψ close to Ψmax, OnlineH achieves a performance

very close to that of Optimal, suggesting that an Offline solution with a T value

slightly greater than 24 slots achieves a similar performance to that of offline solution

with entire future information. It can be seen that for loose carbon cap still OnlineCC

with appropriate V value surpasses that of OnlineH in terms of cost saving, suggesting

the competitiveness of OnlineCC against Optimal in agreement with Theorem 6.2.5.

6.4.4 Performance of the Solutions versus Parameters’ Prediction Error

First, we run OnlineCC-T for different values of T and calculate the cost

ratio and the carbon footprint ratio of the online solutions over MinCost and Opti-

mal, respectively (note, OnlineCC corresponds to OnlineCC-T for T=1). The results

as shown in Fig. 6.7(c) and Fig. 6.8(b) indicate that OnlineCC for every T value

achieves near Optimal performance albeit for different values of V (as explained in

Section 6.2.4). Results also show that OnlineCC-T (T=24) has higher performance

over OnlineCC-T (T < 24) since it achieves near one cost ratio, while reducing carbon

footprint more than the other variants of OnlineCC-T solutions.

Next, we run some experiments where we use on-site renewable energy for three

data centers at locations CA, TX and GA. We run the experiments for various renew-

able energy availability by scaling the renewable traces with factors of [0 1 2 4 8 16].

As a result of this scaling, the renewable energy forms 0% up to 70% of the total

energy consumption by the cloud when using Optimal algorithm. We run OnlineCC-

T PP, OnlineCC-T P for T=1 and T=24. Further we show the results for V values

that OnlineCC-T, PP maintains the carbon cap. As shown in Figs. 6.8(b) and (c),

prediction error is a downgrading factor to the performance of all online solutions. In

particular, for the situation where all online solutions with perfect prediction (PP)
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maintain the cap and achieve a cost ratio near to 1, the solutions with predicted data

(P) violates the cap and achieve a large cost ratio with respect to Optimal. The im-

pact of prediction error worsens with increasing the available renewable energy. The

results suggest to use a more efficient prediction technique to predict the availability

of the renewables with low prediction error.

From Figs. 6.8(b) and (c), it can also be seen that both OnlineCC, PP and

OnlineCC-T, PP achieves 10-20% more cost saving than OnlineH, PP while all the

solutions satisfy the carbon cap. Interestingly, OnlineCC-T, P for both T=1 and

T=24 achieves lower cost (around 5-10%) and lower (or very close) carbon footprint

than OnlineH, P.

Finally, the results of Figs. 6.8(b) and (c) show that OnlineCC-T, P and

OnlineCC-T, PP for T=24 achieves slightly lower carbon footprint than OnlineCC,

while achieving the same cost saving. Interestingly, the impact of prediction error on

the performance of OnlineCC-T T=24 and OnlineCC is very similar even when the

availability of the renewable energy is high. This is because of the high renewable

energy prediction error even for lag one.

6.4.5 Performance of Thermal-aware OnlineCC

This section evaluates Thermal-aware OnlineCC when using BlueCenter’s en-

ergy consumption model. We use IBM ILOG CPLEX Studio version 12.5, the MAT-

LAB connector of CPLEX and the function “cplexqcp” to run MinCost, MinCarbon

and OnlineCC. All algorithms are run when using (6.33) as the energy consumption

of all six data centers, where γi and γ0,i are set according to BlueCenter’s PUE models

(one round all data centers use TASP PUE model and another round all data centers

use CPSP PUE model).

Results, as shown in Fig 6.9, in agreement with Theorem 6.2.3, indicates that
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Figure 6.9: OnlineCC Performance when using BlueCenter TASP and CPSP PUE

Models: (a) Time Averages Electricity Cost versus V, and (b) Time Average Carbon

Footprint versus V.
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Figure 6.10: Experiment Traces and Results: (a) Microsoft Hotmail Traces and Num-

ber of Active VMs in the Experiment, (b) Power and Performance Measurements, and

(c) OnlineCC Performance over Experimental Data.
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Thermal-aware OnlineCC has a similar performance trend to Section 6.4.2 where a

linear energy consumption model is used. The results also show that for a V value

that both non-thermal-aware OnlineCC (i.e., OnlineCC CPSP) and Thermal-aware

OnlineCC (i.e.e, Online TASP) satisfy the carbon cap, OnlineCC TASP yields 9%

lower average cost than OnlineCC CPSP. This is because TASP solution decrease the

total energy consumption of data centers by choosing servers that have less contribu-

tion in the data center heat recirculation (see Chapter 4).

6.5 Experimental Evaluation of OnlineCC

We implemented a small-scale experiment using real systems in order to val-

idate the performance model (Eq. 6.1), as well as to validate the simulation results.

We use two Intel(R) W2600 Pedestal server, 2 × Intel Quad 1.8 GHZ CPU (32 cores),

and 32 GB RAM as the test servers. KVM hypervisor is used to create a virtualized

environment with four virtual machines (VMs) in each system, and each VM is as-

signed two V-CPU and 1G of RAM. Each server emulates a data center and each VM

emulates a physical server in our model. In other words, the control parameter in our

experiment is the number of active VMs. Ubuntu Linux server 12.04 LTS 64-bit is

installed as the VM operating system. One line of the future work is to extend the

experimental study using BlueCenter Infrastructure[57], which offers small scale data

center for experiments.

We developed a server-client program in C generating TCP-based requests

on image files with size distribution following Pareto distribution and ranging from

0.3KB to 90KB, in accordance to a study on the file size distribution of web image

content [101]. The server-side program performs image transcoding for each file,

yielding in CPU-intensive operations. Each VM hosts the server-side program. The

client-side programs run from a separate machine, where the workload arrival rate
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is taken from the two and half days of Microsoft Hotmail traces [113] (see Fig. 6.10

(a)) (the original Microsoft trace is a little bit modified by removing large spikes

for the sake of do-ability in our testbed). The original trace gives the normalized

average workload arrival (between 0 and 1). We first perform several trial runs with

different workload arrival rates to model the servers’ service rate (µ). Accordingly,

we adjust the service rate µ to 6700 request per second and the reference average

service delay d′ref (including service time) to 0.0012 ms. Then we scale the traces,

so that using (6.1) the total number of servers needed is eight with zero slack (see

Fig. 6.10 (a)). With zero slack (yslack=0) we expect our model to meet the reference

average service delay d′ref . Next, we choose some slots (in hour) of the trace, which

represent all of the workload variation range (number of needed VMs vary from 1

to 8). We run 10 minutes of the actual Hotmail traces in all those slots (in second

resolution) with appropriate number of VMs and log the servers power consumption,

VMs’ CPU utilization, and the turn around time of the requests. Considering that

the servers and the workload generators are connected using an internal network, the

turn around time of the requests are assumed to emulate data center service delay

(including queuing delay and service time). Results in Fig. 6.10(b) indicates that the

average turn around time satisfy the reference average service delay. Note that we

subtract a certain amount of power from the measurements such that the total power

consumption is roughly in proportion to the number of active VMs (i.e., enabling

a new VM has a similar effect on power consumption as turning on a new physical

server) as given in Fig. 6.10(b). For parameters that cannot be captured by our system

(e.g., electricity price (αi), carbon intensity (εi)), we use first two and half days of

real-world trace data of DC1 and DC2 as presented in the simulation section.

Fig. 6.10(d) shows the results of running OnlineCC on the entire Hormail traces

using the measurement data. We adjust Ψ=480 CO2 g (i.e., ψ=8 for 60 slots), the
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mean carbon footprint achieved by MinCost and MinCarbon algorithms. We find that

Xlim=0.01, and consequently Vmin=816. The results are consistent with Section 6.2.1

and the simulation study where OnlineCC performs close to MinCarbon algorithm for

V=Vmin. Having daily variation in the system parameters we have θ=24 hours. Since,

Xlim is not as tight (see Section 6.2.1) OnlineCC achieves near Optimal performance

for V=1×106 (see Fig. 6.10(d)).

6.6 Summary

We developed online solutions, OnlineCC, OnlineCC-T, and Thermal-aware

OnlineCC, which help a cloud, consisting a set of geo-distributed data centers, to

move toward carbon neutrality in a cost efficient way. OnlineCC, balances work-

load across data centers of a cloud to minimize the electricity bill while satisfying

the cloud’s carbon footprint cap. Carbon neutrality can be achieved by purchas-

ing additional carbon credit for the remaining offset from carbon cap. OnlineCC-T,

further extends OnlineCC to account for the case where data center parameters ex-

hibit non-stationary characteristics. Thermal-aware OnlineCC extends OnlineCC to

account for the impact of global server and workload management on the tempera-

ture distribution and on the cooling energy of data centers. All the online solutions,

building upon Lyapunov optimization, may violate the carbon cap up to a proven

bound depending on the control parameter, namely V. We extended the Lyapunov

optimization results such that the worst case carbon cap violation of OnlineCC and

OnlineCC-T can be calculated without the need to solve the optimal offline solution.

The performance of the online solutions heavily depends on the control parameter,

V, where we devised some heuristics to adjust its value. We evaluated the perfor-

mance of the online solutions, analytically and experimentally in a simulation study,

against the optimal solution with entire information, an offline solution with limited
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lookahead information, and a prediction-based scheme. Further, Thermal-aware On-

lineCC is evaluated using an actual data center energy consumption traces. We also

evaluated OnlineCC in a small scale experiment. The studies show positive results.
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Chapter 7

PEAK POWER DEMAND SHAVING AND CARBON FOOTPRINT CAPPING

AT GLOBAL DATA CENTER LEVEL

Global workload management, exploring temporal and spatial diversities in data cen-

ters, has been shown to be promising in optimizing data centers’ operational cost

and carbon footprint capping. Nevertheless, in this chapter we consider some key

aspects that have not been explored in this approach. First, the data centers cost

model are often simplified to only account for energy cost. Yet, data centers spend

significant cost in provisioning their power infrastructure and the peak power draw

from utilities, regardless of the energy actually consumed. In this chapter, we extend

OnlineCC model to account for peak power shaving and energy buffering. Second,

global workload management favors an offline solution, due to the time coupling to

manage energy storage devices, carbon capping and peak power cost minimization.

Yet the online algorithms are often designed to address each of the aforementioned

coupling factors separately, disregarding their management implications on each other

and more importantly the practical considerations (e.g., sensitivity to the prediction

error). In this chapter we design OnCMCCLyp which extends OnlinCC (Chapter 6)

to utilize the predicted information within T future slots. OnCMCCLyp uses T fu-

ture slots information to smoothen the power draw and consequently decrease the

peak power cost, and T -slot Lyapunov technique to dynamically mange the carbon

capping requirements over the entire budgeting period in an online way. We im-

plement OnCMCCLyp using stochastic programming approach to remove/alleviate

the harmful impact of the prediction error (particularly on the peak power shaving)

without significantly affecting the size of the problem. We, further, adapt the Al-
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ternating Direction Method of Multipliers to design the distributed algorithms with

linearly convergence for OnCMCCLyp in accordance to the data center confidentiality

and the solution scalability requirements in practice. We perform a comprehensive

trace-based study using realistic traces to complement the analysis. In particular,

the results, in agreement with the analysis, show that OnCMCCLyp achieves near

optimal solution performance, when T is sufficiently large and that the information

over T is accurately available. Prediction error, however, downgrade the performance

of OnCMCCLyp by increasing the cost (electricity cost $/J, and peak power cost

$/W) up to 45% compared to the offline optimal solution. Our stochastic program-

ming based solution is shown to remove up to 66% of such a harmful impact of the

prediction error. We also show that the distributed implementation of OnCMCCLyp

converges quickly (around tens of steps).

In the rest of the chapter we first frame the global workload management

problem as a linear programming (Section 7.1) which extends the models of OnlineCC

(Chapter 6 )to include peak power shaving and energy buffering. Next, We develop

Online Cost minimization and Carbon Capping (OnCMCC) solution, which leverages

predictability of data center parameters (e.g., workload) over T to solve the problem

in an online way. Next, we design OnCMCCLyp which extends OnCMCC for using

T -slot Lyapunov optimization technique to jointly minimize the cost (electricity cost

$/J, and peak power cost $/W) and the carbon footprint across data centers (Sec-

tion 7.2.2). T slots future information is used to smooth the peak power draw, while

data center carbon footprint dynamics is stabilized through Lyapunov optimization

(Theorem 7.2.1). We also introduce and design a stochastic programming approach

to model and solve the global workload management solutions (OnCMCC and On-

CMCCLyp) in the presence of the parameters’ prediction error (Section 7.3). Then,

we design a 2-block ADMM based algorithm to solve OnCMCC and OnCMCCLyp in
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Table 7.1: Summary of Variables, Problems and Solutions of Peak Power Minimiza-

tion

Sym. Definition Sym. Definition

p0 stipulated power S′ no. of slots for peak power billing

period

dschrg ESD discharge rate D ESD max discharge rate

chrg ESD charge rate C ESD max charging rate

E ESD capacity η ESD energy inefficiency

φ ESD cost per charge/discharge

Symbol and formula Definition

ei(t+ 1) = ei(t) + ηchrgi(t) + 1
ηdschrgi(t) ESD energy level

P5 global workload management optimization problem

P6 stochastic counterpart of P5

OnCMCC predictive based online solution

OnCMCCLyp T−slot Lyapunov based solution

Sym. Definition Sym. Definition

W set of stochastic scenarios ρ penalty term in Alg. 7.3

w a scenario in W γ Lagrangian multiplier in Alg.,7.3

ζ prediction error rand. var. a auxiliary variable in Alg.7.3

a distributed way both of which are linearly convergent (Section 7.4). The distributed

algorithm of OnCMCCLyp is shown to be more efficient than that of OnCMCC in

terms of scalability and confidentiality. Finally, we perform a real-world trace based

study to complement our analysis (Section 7.5).
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7.1 Problem Formulation

We introduce our model for data center energy cost and peak power cost in

this section. It builds on the models of OnlineCC (see Chapter 6), which is in turn

related to the system model described in Chapter 2. The key change we make to

OnlineCC is to incorporate charges for the peak power draw form utility, and energy

buffering into the optimization framework. This is a simple modeling change, but

one that creates significant algorithmic challenges (see Sections 7.2, 7.3 and 7.4 for

more details). In the following we describe cloud power supply and demand model

when considering energy storage into consideration, with the notations specific to this

chapter in Table 7.1 (see Tables 2.2 and 6.1 for other variables).

7.1.1 Power Supply and Demand Modeling

In order to smoothen the grid power draw and remove/reduce the peak power

cost, the related work propose to utilize the existing batteries in data centers. The

batteries are primarily deployed to power data centers for a duration which it takes the

diesel generators to get activated during utility outages. The diesel generators’ start-

up time is about a few seconds, while existing UPS typically can power the data center

for about 10-15 minutes. To model energy storage, we denote the energy storage level

at time t by ei(t), and the charge/discharge energy during time slot t by chrgi(t) and

dschrgi(t), respectively. There is limit on the maximum charging and discharging

rate denoted by C and D, respectively. An ESD has limited capacity, further it

is associated with a cycle-life i.e., the number of charging/discharging cycles that

can be accomplished during the lifetime of the device for a given depth of discharge.

Furthermore, depending on the ESD functionality in a data center some of its capacity

is reserved for using during the power outages. Therefore, we denote E the capacity of
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the ESD which can be used to manage energy cost and renewable energy utilization,

without affecting the data center availability and without violating the given depth

of discharge. We assume that the efficiencies of ESD charging and discharging are

the same, denoted by η ∈ [0, 1], e.g., η = 0.8 means that only 80% of the charged

or discharged energy is useful when charging or discharging. Energy level of an ESD

over time satisfies the following:

∀i, t : ei(t+ 1) = ei(t) + ηchrgi(t) + 1
η
dschrgi(t)[ESD energy level],

∀i, t : 0 ≤ ei(t+ 1) ≤ E, 0 ≤ ei(0) ≤ Ei,

∀i, t : 0 ≤ chrgi(t) ≤ C, 0 ≤ dschrgi(t) ≤ D.

(7.1)

Energy storage devices have some other physical limitations such as self discharge

rate, which are ignored for notation brevity. Finally, in any slot, one can either

recharge or discharge the battery or do neither, but not both. This means that for

all t and i we have:

∀i, t : chrgi(t)dschrgi(t) = 0. (7.2)

Today’s data centers are increasingly have some form of local renewable energy

available, with solar and wind being the most popular ones. The energy availability

of thees sources is closely tied to the external conditions (e.g., wind speed and tem-

perature). Their fluctuation and variability introduce a significant challenge for data

centers management. We assume data centers also gets their power partially from

the available on-site energy denoted by ri(t) ≤ Ri. We study the impact of their

prediction on data center management. For every data center i and all time t the

energy demand and supply should be balanced as follows:

∀i, t : gi(t) + ri(t) + dschrgi(t) = ptoti (t) + chrgi(t),

gi(t) ≥ 0.
(7.3)
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7.1.2 Offline Optimization Framework

Cost model in this chapter extends that of OnlineCC to account for peak power

cost (see § 2.7.2) and the operation cost of energy storage devices. Reducing peak

power, allowing under provisioning of power infrastructure, indirectly helps to reduce

power capital expenditure. The peak power cost is usually calculated per the peak

excess power draw from stipulated power seen at any point in a given billing period,

denoted by S ′. In addition to the energy cost (cost per KWh) and the peak power cost,

we consider that the data center operational cost accounts for the cost per maximum

charging and discharging denoted by φi,C , and φi,D, respectively which depends on

the ESD characteristics (e.g., number of cycle life for a given depth of discharge). We

keep the program linear by approximating battery cost model as a linear function

where the cost is inured proportionally to the charging/discharging rate with respect

to maximum charging and discharging. Therefore, the time-averaged operational cost

of data centers over S slots, can be written as the following optimization problem,

namely P5:

minimize 1
S

∑S
t=1

∑
i gi(t)αi(t) + chrgi(t)

Ci
γi,C + dschrgi(t)

Di
γi,D,

+
∑T ′

t′=1

(
max1≤k≤T (gi((t

′ − 1)T + k)− p0

)+

βi,

subject to (6.1), (6.4), (7.1), and (7.3).

(7.4)

Similar, the solutions of Chapter 6, we can relax the integer constraint in (6.1)

(i.e., yi number of active servers) and round the resulting solution with minimal

increase in cost, as proven in Prop. 5.2.2. Also observe that P5 disregards the non-

convex and non-linear constraint (7.2), however the following lemma asserts that the

optimal solution to P5 never chooses to simultaneously charge and discharge from

ESDs. This is intuitively clear, because charging and discharging the ESD in the
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same slot incur additional battery cost and energy due to the battery inefficiency. It

is, thereby, beneficial to instead satisfy the demand form the grid.

Lemma 7.1.1. The optimal solution to P5 for every data center i and time t always

chooses chrgi(t)dschrgi(t) = 0.

Proof. We prove by contradiction. First, assume chrgi(t) > 0 and dschrgi(t) > 0

and ηchrgi(t) − 1
ρ
dschrgi(t) = ηc′ ≥ 0, which means that the energy level of ESD

increases. Also given that 0 ≤ η ≤ 1, it follows that c′ = chrg − 1
η2

dschrgi(t) ≤

chrgi(t) − dschrgi(t), and obviously c′ ≤ chrgi(t). Since charging rate is higher than

discharging rate, energy (and power) cost increases (see (7.3)). Due to linearity of

data center energy and peak power cost, we define the parameter a to denote the

energy and cost increase rate. We have that:

a(chrgi(t)− dschrgi(t)) +
chrgi(t)

C
+

dschrgi(t)

D
≥ ac′ +

c′

C
.

In the above, the left side denotes the value of the objective function when the so-

lution decides only on charging the ESD with the rate c′, i.e., chrgi(t) = c′, and

dschrgi(t) = 0. This means that there is a feasible solution which results in the same

amount of increased energy level in ESD as the optimal solution, and yet it results a

lower increase in the value of the objective function than the optima solution, which

contradicts the optimality of the solution.

Next, assume chrgi(t) > 0 and dschrgi(t) > 0 and ηchrgi(t) − 1
η
dschrgi(t) =

− 1
η
d′ ≤ 0, which means that the energy level of ESD decreases. Also given that

0 ≤ η ≤ 1 it follows that d′ = dschrgi(t) − η2chrgi(t) ≥ dschrgi(t) − chrgi(t), and

obviously we have d′ ≤ dschrgi(t). Since discharging rate is higher than charging

rate, energy (and power) cost decreases. Similar to the previous case we define the

parameter a to denote the energy and cost decrease rate. We have that:
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a(chrgi(t)− dschrgi(t)) +
chrgi(t)

C
+

dschrgi(t)

D
≥ −ad′ + d′

D
.

In the above, the left side denotes the value of the objective function when

the solution decides only on discharging the ESD with the rate c′, i.e., chrgi(t) = 0′,

and dschrgi(t) = d′. This means that there is a feasible solution which results in the

same amount of decreased energy level in ESD as the optimal solution and yet higher

reduction in the value of the objective function, which contradicts the optimality of

the solution.

The problem P5 as described above (given relation of number of servers to

a continuous variable) is a linear programing which can be optimally solved using

the existing linear programming solvers. However, the solutions of P5 over time are

dependent due to the several sources of coupling factors: (i) the peak power cost is

calculated over every S ′≥1 slots (7.4), as a result it couples the solutions over S ′,

(ii) the ESDs’ dynamics (7.1) and the carbon capping constraint (6.4) couples the

solutions over time. In practice, the billing period (S ′) is typically a month, and the

carbon cap is typically given over a year of operation of the data centers. This means

that S is typically equals to the number of slots for a year. Therefore, in practice, it

becomes impractical to solve P5: (i) it is infeasible to predict the parameters over a

large number of slots of S, (ii) even if we use historical data (e.g., the data from the

previous year), traditional approaches to construct optimal policies of P5 involve the

use of Markov Decision Theory and Dynamic Programming [26, 116]. It is well known

that these techniques suffer from the “curse of dimensionality” where the optimal

strategy computing complexity exponentially grows with the system size [105].
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7.2 Online Solutions

In this chapter, we study and propose online solutions to solve P5. The perfor-

mance of the online solutions are based on (i) the feasibility assumption which ensures

that P5 has non-zero feasible solutions, (ii) the bounded assumption which ensures

that the total one-slot cloud’s carbon footprint is bounded by bmax, i.e., b(t)≤bmax ∀t,

and (iii) the predictability assumption which ensures that the data center parameters

are predictable over T slots with reasonable accuracy, and their most variabilities fall

within T slots. Observe that, the assumptions are not constraining in practice, and

that the last assumption is consistent with the daily variability of the data center

parameters for a T value that is daily basis.

7.2.1 OnCMCC: Predictive Online Solution

We design the online solution , namely OnCMCC, to solve the problem P5 over

T≤S ′, where T consists of slots for one or more days (e.g., T=24 or T=48 for hourly

basis slots). In this solution we also use β′ for the peak power cost where β′= T
S′
β. The

energy cost efficiency of OnCMCC is lower than that of the offline optimal solution,

since it ignores the energy migration of ESDs across T slots, and it cannot leverage

the variation of the data center parameters across T slots to further smoothen the

power and consequently optimally decrease the peak power cost. However, OnCMCC

is inspired by the observation that the variation of the data center parameters across

days is usually lower than the variation across slots within days. Given the limited

ESDs’ sizes, therefore, the ESDs most likely to be best utilized to leverage the daily

variation of the data center parameters. As a result, the energy migration of ESDs

over every T slots become very negligible. Similarly, most of the power smoothing

can be obtained by leveraging the daily variation of the parameters. The availability
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of renewable energy, however, not only significantly varies within days (solar energy is

only available in the days), but also significantly varies across days and even months

in a year depending on the weather conditions and geographical locations. However,

due to the limited size of ESDs and their physical limitations (e.g., self-discharge),

it is impractical to migrate renewable energy across such long periods, making the

cost optimality distance of OnCMCC negligible when carbon capping requirement is

relaxed. Note, OnCMCC can only satisfy the carbon cap in a best-effort manner, since

the feasible carbon cap for a T -slot depends on the workload intensity, the availability

of renewable energy and the carbon intensity on that T -slot. Due to the intermittent

nature of the renewable power, therefore, OnCMCC may significantly violates the

carbon cap, making it inefficient particularly when cloud needs to perform under

(relatively tight) carbon capping requirement. To avoid this problem, we extend

OnCMCC to leverage the T -slot Lyapunov optimization in order to account for the

dynamics of carbon footprint over S.

7.2.2 OnCMCCLyp: T -slot Lyapunov Optimization Solution

In this section we extend OnCMCC to make use of T -slot Lyapunov opti-

mization, namely OnCMCCLyp, for carbon capping requirement. In accordance of

Lyapunov optimization, we define a virtual queue [90] with occupancy X(t) equal to

the maximum excess carbon footprint beyond the average carbon footprint over every

T -slot. Using X(0)=0, we propagate the X(t) values over every T -slot as follows:

X(t0 + T ) = max[X(t0)− Tψ, 0] +

t0+T−1∑
τ=t0

∑
i

bi(τ). (7.5)

Building upon Lyapunov optimization technique we design OnCMCCLyp as

given in Algorithm 7.1. The parameter V Algorithm 7.1 is the Lyapunov control pa-

rameter which manages the cos carbon footprint reduction tradeoff. It can be seen
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that OnCMCCLyp, requires only the T ahead information as the inputs. The al-

gorithm removes the coupling property of P5 by (i) removing the constraint (6.4)),

and (ii) managing the energy storage dynamics over window (t+T−1) rather than

S and managing peak power reduction over (t, t+T−1), rather than S ′. It can be

seen that OnCMCCLyp leverages both the predictability of data center input param-

eters over window of T and Lyapunov optimization to design the online algorithm.

The predicted input parameters of the time frames T helps to optimally manage the

operational cost according to the variation of the parameters within the frame T as

described in Section 7.2.2. The Lyapunov technique is used to stabilize the carbon

footprint dynamics across T -slots. In order to evaluate OnCMCCLyp, we theoret-

ically compare its performance against the offline optimal solution of problem P5

for the case of (i) S ′=T , and (ii) the energy storage dynamics only depends on the

window of T . In other words, we consider that the operational cost and energy stor-

age can be optimally managed using T slots future information, and evaluate how

OnCMCCLyp can manage the carbon cap (i.e., Ψ) without excessively increasing

the operational cost. The theoretical results, in particular, extend Theorem 6.2.4, to

evaluate OnCMCCLyp as follows

Theorem 7.2.1. (Performance Bound Analysis of OnCMCCLyp): Suppose X(0)=0,

and that the maximum carbon footprint of the cloud over every T slot is upper bounded

by Tbmax. Also define cost∗T as the optimal solution to the special case of problem

P5, where S ′=T , and for every t0 the beginning slot in every frame T, we have

ei(t0 + T ) = ei(t0). Further, suppose data center parameters are i.i.d. over every T -

slots, and let cost(τ) and b(τ) to denote the OnCMCCLyp cost and carbon footprint,

respectively for slot τ . Then for V > 0, and the integer variable k = 0, 1, . . . K where
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S = KT we have the following:

costT = lim supK→∞
1
K

∑K−1
k=0 E{

∑kT+T−1
τ=kT cost(τ)}

≤ cost∗T + B
V
,

(7.6)

S−1∑
t=0

∑
i

bi(t) ≤ Ψ +
√

2

√√√√KB+V (Kcost∗T−
K−1∑
k=0

kT+T−1∑
τ=kT

cost(τ)), (7.7)

where B = 1
2
(T 2b2

max + T 2ψ2).

Proof. To prove (7.6), let’s define a quadratic Lyapunov function L(t) that measures

the aggregate carbon deficit in the system: L(t) = 1
2
X(t)2. We define k ∈ N where

k = 0 . . . K− 1. Next, let’s define the T-slot Lyapunov drift, ∆T (kT ) as the expected

change in the Lyapunov function over every T slots as follows: ∆T (kT ) = 1
2
(E{L(kT+

T ) − L(kT )}|X(kT )). Now we derive the upper bound on ∆T (kT ) as follows. By

(7.5) we have that (X(kT + T ))2 ≤ (X(kT ) − Tψ +
∑

i

∑KT+T−1
τ=kT bi(t))

2. Squaring

both side of (7.5), and given that (
∑KT+T−1

τ=kT bi(τ))2 ≤ T 2b2
max we have:

[X(kT + T )]2 ≤ [X(kT )]2 + T 2[ψ]2 + [
∑KT+T−1

τ=kT bi(τ))]2

−2TX(kT )ψ + 2X(kT )
∑KT+T−1

τ=kT

∑
i bi(τ)− 2Tψ

∑KT+T−1
τ=kT

∑
i bi(τ)

⇒ [X(kT + T )]2 − [X(kT )]2 ≤

T 2bmax
2

+ T 2ψ
2 − 2X(kT )[Tψ −

∑KT+T−1
τ=kT

∑
i bi(τ)].

(7.8)

Now multiplying the above inequality by 1
2
, taking expectations over X(kT ), and

bi(τ), conditioning on X(kT ), we get the T -slot conditional Lyapunov drift ∆T (kT ):

∆T (kT ) ≤ B −X(kT )E{Tψ −
∑kT+T−1

tau=kT

∑
i bi(τ)|X(kT )},

where B = 1
2
(T 2bmax

2 + T 2ψ2). Adding the cost as penalty term to the both side of

the above inequality, i.e., V
∑KT+T−1

τ=kT cost(τ), we get:

∆T (kT ) + V
∑KT+T−1

τ=kT cost(τ) ≤

B + V
∑KT+T−1

τ=kT cost(τ)−X(kT )E{Tψ −
∑KT+T−1

τ=kT

∑
i bi(τ)|X(kT )}.

(7.9)
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Observe that OnCMCCLyp as shown in Alg.(7.1) minimizes the right hand side of

(7.9). The i.i.d. assumptions of input parameters, ensures the existence of an optimal

stationary randomized policy π which can achieve as follows for all k = 0 . . . K − 1

: E{
∑kT+T−1

τ=kT bπ(τ)} ≤ Tψ and E{
∑kT+T−1

τ=kT costπ(τ)} = cost∗T , where cost∗T is the

offline optimal T -slot averaged cost of problem P1 under Theorem’s conditions (this

can be proven using Caratheodory’s theorem similar to the proof in [90]).

Using the fact that OnCMCCLyp is constructed to minimize the R.H.S. of

(7.9), we have that:

∆T (kT ) + V
∑kT+T−1

τ=kT cost(τ) ≤

B + V costaltT −X(kT )E{(Tψ −
∑kT+T−1

τ=kT

∑
i b
alt
i (τ))|X(kT )},

(7.10)

where alt represents any alternate policy (including stationary randomized

policy π) that can be implemented over slot t. Then, plugging the control decisions

corresponding to the stationary randomized policy π, we get:

∆T (kT ) + V
kT+T−1∑
τ=kT

cost(τ) ≤ B + V cost∗T . (7.11)

Taking the expectations from both sides, summing the above over k=0 . . . K−1,

using the fact that ∆T (kT )≥0, and dividing both sides by KV , we have:

1

K
E{

K−1∑
k=0

kT+T−1∑
τ=kT

cost(τ)} ≤ cost∗T +
B

V
.

Taking a lim sup as K→∞, we complete the proof.

To prove (7.7), from the carbon deficit queue dynamic (7.5), we have that:

X(kT + T )−X(kT ) ≥
kT+T−1∑
τ=kT

∑
i

bi(t)− Tψ.

Summing the above over k = 01, . . . K−1, and using the fact that X(0)=0 we obtain

the following:
K−1∑
k=0

kT+T−1∑
τ=kT

∑
i

bi(t) ≤ KTψ +X(KT ). (7.12)
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Algorithm 7.1: OnCMCCLyp Algorithm

1: Initialize the virtual queue X

2: for every slot t = 1 . . . S (beginning of the slot) do

3: Predict the system parameters over the window t+ T − 1

4: Solve the following problem:

5: Minimize:

V
(

1
T

∑t+T−1
τ=t

∑
i gi(t)αi(t) + ci(t)

C φi,C + di(t)
D φi,D

+
∑
i maxt≤τ≤t+T−1(gi(τ)− pi,0)+βi

)
−X(t)

∑t+T−1
τ=t

∑
i bi(τ)

(7.15)

6: Subject to: ((6.1), (7.1), and (7.3).

7: Update the virtual queue X using (7.5).

8: end for

Similarly, summing (7.11) over the entire budgeting period, i.e., k=0 . . . K−1,

and using the fact that L(0)=X(0)=0 yields:

L(KT ) = 1/2X2(KT ) ≤ KB +KV cost∗T − V
K−1∑
k=0

kT+T−1∑
τ=kT

cost(τ). (7.13)

Plugging (7.13) into (7.12), and using the fact that Ψ=KTψ we prove the theorem

as follows: ∑K−1
k=0

∑kT+T−1
τ=kT

∑
i bi(t) ≤

Ψ +
√

2
√
KB + V (Kcost∗T −

∑K−1
k=0

∑kT+T−1
τ=kT cost(τ)).

(7.14)

According to Theorem 7.2.1, the OnCMCCLyp achieves average cost no more

than O(1/V ) distance above the optimal average cost of P4 under the Theorem’s

conditions. The large value of V comes at the expense of an O(V ) tradeoff in achieving

carbon cap.
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Z=z1

Z=z1 Z=z2 Z=z3

Z=z2

Z=z1 Z=z2 Z=z3

Z=z3

Z=z1 Z=z2 Z=z3

Figure 7.1: A Sample Scenario Tree for the Example Random Variable Z with Three

Possible Values over Two Stages.

7.3 Stochastic Programming Approach

The performance of the online solutions depends on the predictability of the

parameters over T . To realize the impact of the prediction error consider an example

where we have a cloud consisting of two data centers DC1 and DC2 with no carbon

capping requirement. Suppose an hourly basis slots, T = S ′ = 1, and that for a given

slot t, α1(t)=1 $/KWh, and α2(t)=2 $/KWh. Also assume the stipulated power for

both of DC1 and DC2 is equal to 8 KW, p0=8, and β=10 $/KW). Further, assume

the predicted power demand (ptot) is 8 KW, wheres as the actual power demand is

9 KW. The online solution OnCMCC to minimize the electricity cost uses the pre-

dicted power demand as the input and assigns the entire demand to DC1 to achieve

the optimal cost of 8. The actual cost, however, becomes 19, since the actual demand

assigned to DC1 is 9 KW. Observe that the prediction error has a very harmful im-

pact on the peak power shaving. This is because the optimal approach, as seen in

the example, is to utilize the data centers with low electricity cost as much as pos-

sible without violating their stipulated power (DC1 in the example). Therefore, any

under prediction error (e.g., under prediction of the workload or over prediction of

the available renewable power) is likely to violate the stipulated power of those data

centers, resulting in unexpected increase in the peak power cost. As a result, the cost

efficiency of the solutions decrease since the peak power cost contributes a signifi-
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cant portion of the data center operational energy cost (we typically have β>>α(t)).

Therefore, we choose to solve the problem given non-zero prediction error. Accord-

ingly, we use stochastic programming to take into consideration the randomness of

the predicted input parameters. Stochastic programming is an approach for model-

ing optimization problems that involve uncertainty and takes advantage of the fact

that probability distributions governing the data are known or can be estimated (e.g.,

from historical data). The major issue in developing the stochastic problem formula-

tion is the modeling of the uncertainties. We characterize and model uncertainties in

the form of scenarios (possible outcomes of the data), a typical scheme in stochastic

programming approach [102]. The outcomes (scenarios) are generally described in

terms of elements w of a set W . For instance, in our problem W can be the set of

possible input workload over the budgeting period T . The goal is to find a policy

that is feasible for all the possible parameter realizations (scenarios) and optimize

the expectation of the objective functions given the input random variables and their

probabilities. Stochastic programming has many variants including stochastic dy-

namic programming. Although our problem can be modeled as a stochastic dynamic

programming, it’s not an appropriate solution because of the large number of states at

each time stage. This is partially because of the continuous dynamic states of ESDs.

Discretization of the ESD states for multiple data centers causes the number of states

at each stage of the stochastic dynamic programming to dramatically increase. We

incorporate the stochastic scenarios in the original optimization problem and designed

the ”deterministic equivalent” of the stochastic problem which is a typical stochastic

programming approach [102]. Consider a deterministic optimization problem of the

objective function f , the constraint function of h, and the decision variable of x,

i.e., minimize f(x), subject to h(x). Its stochastic programming counterpart can be
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written as follows:

Minimize
∑

w∈W Pr(w)f(x,w),

Subject to: h(x,w) ∀w ∈ W.
(7.16)

where Pr denotes the probability function.

To capture the randomness of the parameters and characterize the scenarios,

we model the prediction error of the input workload of each front-end, Λj, the avail-

able renewable power at each data center i, ri(t), the electricity price at data center

location i, αi, and the carbon intensity of the grid power at each data center i, εgi .

We denote ri(t) the actual renewable energy available to data center i at time t and

use r̂i(t) for the predicted generation. We denote ri(t)=(1+ζi,r)r̂i(t) , where ζi,r is the

prediction error. We assume unbiased prediction E(ζr)=0, and denote the variance

by Ψ2
r which can be obtained from historic data. These are standard assumptions

in statistics. We use the similar assumptions for the prediction error of the input

workload, the electricity price, and the carbon intensity: i.e., Λj(t)=(1+ζj,λ)Λ̂j(t),

αi(t)=(1+ζi,α)α̂i(t), and εgi (t)=(1+ζi,ε)ε̂i(t), where we use hat superscript to distin-

guish between the actual and the predicted data, and denote ζ as the prediction error

random variable. We also consider that the random variables (e.g., the prediction er-

ror of workload of each front-end, ζj,λ) as independent random processes. As a result,

the evolution of these stochastic processes is modeled as a multivariate random pro-

cess. The marginal distribution for each of these random processes at any time step is

assumed to be a normal distribution in consistent with the nature of unbiased predic-

tion error. The sampling of these random processes results in scenarios representing

the future realizations of the uncertainties. To define the scenarios, we approximate

the marginal distribution of the random parameters (i.e., ζ) into discrete samples with

equal probabilities. The multivariate random process has therefore LMλ L
N
r L

N
α L

N
ε sam-

ples at each time step, where Lλ, Lr, Lα, and Lε (e.g., L = 5) denote the number of
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discretization levels used for workload demand, renewable power, energy price, and

grid carbon intensity, respectively. The evolution of the random process for the entire

T slots is a huge set of scenarios. In other words, this type of uncertainty modeling

results in a multistage “scenario tree” with T branching stages and LMλ L
N
r L

N
α samples

at each node of the tree (see Fig. 7.1 as an example). Each of the scenarios (i.e., a

path from root to a leaf of the scenario tree) represents a possible future realization

of the multivariate random process. Observe that the scenario tree for our problem

is huge. For example consider five discretization levels for each random processes,

hourly-basis slots and T = 24 to capture the daily variation of the input processes.

Further assume a small cloud consisting of five data centers and ten front-ends. The

scenario tree in this case has 24 branching stages where each node in the tree has 525

children. Hence, the total number of scenarios (total number of paths in the scenario

tree) is equal to 5600. To solve the stochastic model, the multivariate random process

with huge set of scenarios has to be approximated to a simple random process with

finite set of scenarios and should be as close as possible to the original scenario tree.

7.3.1 Stochastic Scenario Generation

The computational effort for solving scenario-based optimization models de-

pends on the number of scenarios, as the size of input variables and the constraints

typically dramatically grows with increasing the number of scenarios. Hence, it is

natural to look for scenario-based approximations of the random data processes that

have a small number of scenarios, but still represent reasonably good approximations.

The currently available scenario reduction techniques make use of probability metrics

to choose a subset of scenarios [54, 59]. The scenario to be deleted is selected by com-

paring each scenario with the rest of the scenarios. For deleting scenarios from an

initial set of scenarios, the process of one-to-one comparison has to be repeated times.
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This is computationally expensive and is not suited for the huge set of initial scenarios

(in particular the scenario reduction algorithms in [54] make use of algorithms very

similar to “k-means” and “k-medoids” where the probabilistic measures are used to

evaluate the distance of the scenarios). Similar to k-means, these solutions can be

implemented efficiently using parallel programming to run on huge set of initial sce-

narios. Further, it should be noted that scenario reduction procedure does not need

to run frequently. As long as the stochastic parameters (i.e., standard deviation) of

the prediction error are remained constant, the scenarios do not change. Therefore,

in practice, it is feasible to find a subset of scenarios from the entire set of initial

scenarios. As a general case, where running algorithms on the complete scenario tree

may not be feasible, one can use the following two steps heuristic approach:

� Step one: generate a scenario tree with reasonable size such that the scenario

reduction algorithms can run with reasonable speed.

� Step two: apply scenario reduction algorithm (e.g., [54, Algorithms 2, and 3])

over the scenario tree to achieve the desired number of scenarios.

Depending on the number of initial scenarios and the resources available to run the

algorithm at step two, the step one can be configured to generate a complete scenario

tree or a reduced one. In the following we explain some of the possible strategies

which can be used in the step one in order to build a scenario tree with a reasonable

size.

� Use stochastic aggregation rules to reduce the number of initial input random

processes (e.g., workload). Consider the random processes X and Y with normal

distribution, X ∼ N(µ1,Ψ
2
1), Y ∼ N(µ2,Ψ

2
2), then aX+bY , where a and b

are constant numbers, also has a normal distribution as follows, aX+bY ∼
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N(aµ1+bµ2, a
2Ψ2

1+b2Ψ2
2). We can use such stochastic aggregation rules to reduce

the number of random processes as follows. First, data centers may use a

combination of wind and solar energy where an aggregate random process of

the two can capture their randomness. Second, in practice, number of front-

ends (i.e., M) is very large. Suppose there is no restriction on the destination

data center of front-ends, such that every front-end can get service from all

the available data centers in the cloud. Then, the entire input workload of

all front-ends can be aggregated into one single random process. In practice,

however, there are always some restrictions such as network latency (proximity

of front-ends to the data centers) and data availability, where every front-ends

can get service from a subset of data centers. In this case we can group front-

ends depending on their feasible destination data centers and aggregate the

workload of each group.

� Ignore random processes which have relatively small prediction error to the

other random data processes. Ignoring these processes, significantly reduces

the initial scenario tree size with negligible impact in the solution.

� Trade accuracy with speed. We can also reduce the size of the initial scenario

tree at the expense of lower accuracy of the solution. This can be achieved by (i)

compacting the number of stages, (ii) using small number of discretization levels

for the random data processes, and (iii) prioritizing the random data processes

according to their importance in the problem and ignoring the randomness of

the low priority ones. To compact the number of stages, we build the initial

scenario tree with T ′, T ′≤T stages and then for every t∈T we use the scenarios

of t′ where t′∈T ′ and (t′ − 1)T/T ′≤t≤t′T/T ′. Most of the scenario reduction

algorithms reduce the number of scenarios without considering the impact of the
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scenarios on the solution. However, problem-specific strategies can be designed

to remove the randomness of the less important random processes in order to

increase the contribution of the more important data process in the final scenario

set. In our problem, for instance, the available renewable power of data centers,

i.e. solar and wind power, can be predicted with relatively high prediction error

compared to the input workload and the electricity price. In practice, however,

not all of data centers in a cloud utilize on-site renewable power, making the

randomness impact of the available renewable power less important than the

randomness impact of the input workload on the solution.

In practice, any other problem-specific strategies can be applied. Also an alterna-

tive to the two-steps scenario reduction solution is to use a solution such as the

meta heuristic solution described [93] to generate the number of desired scenarios

directly from the complete scenario tree without the need to perform scenario com-

parisons over the entire scenario tree. Generally, because the size of the final scenario

set is significantly smaller than the initial scenario set (i.e., scenario tree), applying

problem-specifics strategies helps to choose the right scenario subset. We study some

of the above strategies and their impact in the experimental study.

7.3.2 Stochastic Programming Problem Formulation

The deterministic equivalent of the stochastic problem can be written taking

into account the stochastic scenarios. Accordingly, following the model of (7.16), and

given the set of scenarios W we formulate the stochastic counterpart of the problem

P5, namely P6 as follows.

To formulate P6, we need to rewrite the objective function and the constraints

of P5 that are affected by each element w of the scenario set W . We introduce a new

decision variable of xi,j(t), 0 ≤ xi,j(t) ≤ 1 which denotes the fraction of workload from
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front-end j to be routed to data center i, i.e., λi,j(t) = xi,j(t)Λj(t). We use x instead

of λi,j(t), as it simplifies the modeling of P6. Note that the problem P6 should solve

for workload distribution, xi,j(t), number of active servers, yi(t), and charging, ci(t),

and discharging, di(t) of ESDs at each data center i. This is performed using the

stochastic input parameters as elements w from the scenario set W , each of which is

associated with the probability Pr(w): the workload from each front-end j, Λj,w(t),

the parameters of data center i including the electricity price αi,w(t), the available

renewable power, ri,w(t), and the grid carbon intensity εgi,w(t). In the following we

give an overview of how P6 can be written according to the models of P5 and the

scenario set W .

Following the model (6.1), the service constraint can be written as follows:

∀j, t :
∑

i xi,j(t) = 1, [service]. (7.17)

Similar to (6.1) the performance constraints of P6 can be written as follows:

∀i, t, w : ni,w(t)µi >
∑

j xi,j(t)Λj,w(t), [queuing stability],

∀i, t, w : 1
ni,w(t)µ−

∑
j xi,j(t)Λj,w(t)

≤ dly′ref , [service delay] ,

∀i, j, t : (dlyref − (dly′ref + dly′′i,j(t))λi,j(t) ≥ 0, [total delay],

∀i, t, w : yi,w(t) ≥ (1 + yslack)ni,w(t) ≤ Yi, [capacity],

∀i, t : yi(t) =
∑

w∈W Pr(w)yi,w(t)[expected no of servers].

(7.18)

Observe that the above equations are counterpart of equations of (6.1) plus an

additional equation for yi(t), i.e. “expected number of servers”. Similarly, the power

supply demad balance and the carbon capping constraint can be written as follows:

∀i, t, w : gi,w(t) + ri,w(t) + dschrgi(t) = ptoti,w(t) + chrgi(t). (7.19)
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bi(t) =
∑

w∈W Pr(w)(gi,wε
g
i,w(t) + ri,w(t)εri,w(t)),

1
S

∑S−1
t=0

∑
i bi(t) ≤

Ψ
S

= ψ.
(7.20)

Finally, given the scenario set W and the associated probabilities P6 can be

written to minimize the expected cost over scenarios as follows:

minimize 1
S

(∑
w∈W Pr(w)

∑S−1
t=0 (

∑
i gi,w(t)αi,w(t)

+ chrgi(t)
C

φi,C + dschrgi(t)
D

φi,D)

+
∑S/S′−1

t′=0 (max(t′−1)S′≤τ≤t′S′

(gi,w(τ)− p0,i

)+

βi

)
.

subject to (7.17), (7.18), (7.1), (7.19), and (7.20).

(7.21)

The stochastic counterpart of the online solutions, OnCMCC, and OnCMC-

CLyp can be designed based on P6 (see Alg. 7.2 for the stochastic counterpart of

OnCMCCLyp).

7.4 Distributed Implementation of the Online Solutions

Since OnCMCC and OnCMCCLyp are linear programming, they can be ef-

ficiently solved centrally if all the necessary information can be collected at a single

point, and that if the scale of the system in terms of number of data centers and front-

ends, and number of stochastic scenarios are sufficiently small. However, in practice

a distributed algorithm is preferable due to the following. First there is a strong

case where the different parts of the system (i.e., data centers, front-ends, and the

network) have different owners (e.g., Internet-scale systems usually outsource route

services (e.g., Akamai). In such a setting a distributed algorithm is preferable to

partially exchange information, and maintain the confidentiality of different parts of

the system as much as possible. Second, the online problems, OnCMCC and OnCM-

213



Algorithm 7.2: Stochastic counterpart of OnCMCCLyp Algorithm

1: Initialize the virtual queue X

2: Generate the stochastic scenario set of W

3: for every slot t = 1 . . . S (beginning of the slot) do

4: Predict the system parameters over the window t+ T − 1

5: Solve the following problem:

6: Minimize:

∑
w Pr(w)

(
V
(

1
T

∑t+T−1
τ=t

∑
i

∑
i gi,w(t)αi,w(t) + ci(t)

C φi,C + di(t)
D φi,D

+
∑
i maxt≤τ≤t+T−1(gi,w(τ)− pi,0)+βi

)
−X(t)

∑t+T−1
τ=t

∑
i(gi,wε

g
i,w(t) + ri,w(t)εri,w(t))

)
(7.22)

7: Subject to: ((7.1), (7.18), and (7.19).

8: Update the virtual queue X using (7.5).

9: end for

CCLyp become a large-scale linear optimization problems in practice. The number

of decision variables are in the order of (T × N ×M)). Particularly, the magnitude

of number of front-ends, M can be very large. More importantly when designed as

a stochastic problem as described in Section 7.3, the size of OnCMCC and OnCMC-

CLyp grows with increasing the number of scenarios. A distributed algorithm which

can be efficiently parallelized is preferable to solve the problems in a computation

efficient way.

We make use of the standard 2-block Alternating Direction Method of Mul-

tipliers (ADMM) which is a simple yet powerful algorithm to solve large-scale dis-

tributed convex and linear programming problems [27]. Particularly, ADMM is shown

to linearly converge for linear programming problems, such as OnCMCC and On-

CMCCLyp. The standard 2-block ADMM solves the problems where the objective

function is separable over two sets of variables, which are coupled through an equality
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constraint as shown in the following example:

minimize: f1(x) + f2(z)

subject to: x ∈ C1, and z ∈ C2,

A1x+ A2z = l.

(7.23)

where x and z are the variable vectors forming two set of variables, C1 and C2 denote

the non-empty polyhedral sets, f1 and f2 are convex functions, and A1, A2, and l are

constant matrices and vector, respectively forming a coupling equality constraint for

x and z variables. In accordance with ADMM we can form the augmented Lagrangian

of (7.23) as follows [27]:

Lρ = f1(x) + f2(z) + γT (A1x+ A2z − l) + ρ/2‖A1x+ A2z − l‖2
2,

where ρ denotes the penalty term, and γ denotes the Lagrangian parameter. ADMM

solves the above dual problem with iterations from k=0, 1 . . . until the convergence

condition is stratified, where each iteration has three steps as follows:

1. x(k+1) := argminx∈C1
Lρ(x, z

(k), γ(k)),

2. z(k) := argminz∈C2
Lρ(x

(k+1), z, γ(k)),

3. γ(k+1) := γ(k) + ρ(A1x
(k+1) + A2z

(k+1) − l).

It can be seen that x and z are updated in an alternating fashion. For large scale

problems where functions f1 and/ or f2 are separable, and consist of sum of several

functions, each of steps (1) and (2) can be decomposed and solved separately. This

is precisely what allows ADMM algorithm to be useful in solving OnCMCCLyp in a

distributed way as described below.
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Algorithm 7.3: Distributed Algorithm to Solve OnCMCCLyp

1: initialize γ0i,j(t) = 0∀i, j, and t

2: initialize ρ

3: initialize a
(
i,j0) = 0∀i, j, and t

4: k := 0

5: repeat

6: Step 1 (data center minimization): given a
(k)
i,j (t) and γ

(k)
i,j (t), update λ

(k+1)
i,j (t), as follows:

λ
(k+1)
i,j (t) := minimizeλ,g,y,r (7.15) +

∑
i,j λi,j(γi,j(t)

−ρa(k)i,j (t)) + ρ/2λi,j(t)
2

subject to: (6.1), (7.1), and (7.3)

(7.24)

7: Step 2 (workload distribution minimization): given λ
(k+1)
i,j (t), and γ

(k)
i,j update a

(k+1)
i,j (t) as follows

a
(k+1)
i,j (t) := minimize:

∑
i,j

ρ
2ai,j(t)

2 − ai,j(t)(γki,j(t) + ρλki,j(t))

subject to: ∀i, j, t : ai,j(t) = Λj(t)
(7.25)

8: Step 3 (dual update): given λ
(k+1)
i,j (t) and a

(k+1)
i,j (t) update γ(k+1) as follows:

γ
(k+1)
i,j := γ

(k)
i,j + ρ(λ

(k+1)
i,j (t)− a(k+1)

i,j (t)

9: k := k+1

10: until convergence condition satisfied

7.4.1 Distributed Algorithm to Implement OnCMCCLyp

For the sake of notation brevity we design the distributed algorithm for the case

of one scenario i.e., |W | = 1, in this case P6 is identical to P5. Consider the problem

OnCMCCLyp, we can divide the decision variables into two sets, the data center local

variables which are the variables solely associated with each individual data center i.e.,

yi, gi, ri, dschrgi, chrgi, and ei, and the complicating workload distribution variables,

the variables associated with each front-end and data centers i.e., λi,j. Observe that

the objective function (7.15) only depends on the data center local variables. However,
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two inequality constraints couples the complicating variables λi,j to the data center

local variables i.e., yi (6.1). In order to fit the problem in to two-block ADMM, we

introduce a new set of auxiliary variables ai,j = λi,j, and re-formulate the problem

(7.15) as follows:

minimize: (7.15)

subject to: (6.1), (7.1), and (7.3)

∀i, j, t : ai,j(t) = λi,j(t),

∀j, t :
∑

i ai,j(t) = Λj(t).

(7.26)

This is a 2-block ADMM problem, where ai,js form the variables of one block,

and all other variables form the second block (i.e., comparing this problem with the

example (7.23), observe that ai,j(t)s form the z vector, and other variables form the

x vector where (7.15) forms f1, and f2 = 0). The augmented Lagrangian can then

be readily obtained from (7.26). By omitting the irrelevant terms, we can form the

optimization required for ADMM iteration steps (similar to the example given in

§7.4) as presented in Alg. 7.3.

Remarks: The key points about the Alg. 7.3 is that first, the optimization

problem in Step 1, i.e., (7.24), is a separable quadratic optimization problem over

data centers where for the given γ
(k)
i,j (t) and a

(k)
i,j (t), each data center can separately

solve for its local variables as well as λi,j(t). In other words, (7.24) is a distributed

algorithm where each yi, gi, ri, ci, di, ei, and λi is optimized in parallel. Similarly,

the optimization problem in Step 2 i.e., (7.25), is a separable quadratic optimization

problem over front-ends, where for the given γ
(k)
i,j (t) and λ

(k+1)
i,j (t), each front-end j

can solve (7.25) separately for its local variables, i.e., ai,js. Next, using Alg. 7.3

data centers only required to exchange λi,j(t)s and not their other local parameters

(renewable energy, servers power characteristics, etc). Third, all the optimization
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Table 7.2: ESD Characteristics

Parameters FLA

Capacity (KW) 115

Cost per discharge ($) 0.65

Cycle life of one cell (cycles) 1200

Discharge rate, D (W) 5387.5

Discharge-to-charge ratio (D/C) 10

Efficiency, η (%) 80

Number of cells 53

problems of Alg. 7.3 are convex quadratic programming which can be optimally solved

in a time-efficient way. Finally, Alg. 7.3 is guaranteed for its linear convergence [40].

7.4.2 Distributed Algorithm to Implement OnCMCC

We can take the similar steps of the previous section to implement a distributed

algorithm for OnCMCC. However, the corresponding Step 1 of OnCMCC becomes a

non-separable optimization problem where the cost optimization for all data centers

need to be performed centrally. This is because of the carbon capping constraint

(6.4) for each window T . Such solution neither helps in the confidentiality of the

problem, nor its scalability. We can apply decomposition techniques to decompose

the constraint over data centers, which results to a complex hierarchal distributed

algorithm.

7.5 Evaluation

We use the simulation testbed of Chapter 6 and Section 6.4 to evaluate On-

CMCC and OnCMCCLyp. The peak power cost is typically calculated over a billing

period (typically monthly), therefore we set S’ to the number of slots for a month.

According to [121] a typical peak power cost is 12 $/KW per averaged power over
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15-minutes slots. Given our hourly basis slots we amortize β to 30 $/KW. We also

provide results with β varying from 0 $/KW up to 40 $/KW.

Also the data sheet of Flooded Lead Acid (FLA) batteries used in data centers

is used for the simulation study (see Table 7.2). We use GNU Linear Programming Kit

(GLPK) to solve the optimal solution (solution to P5, P6 and the online solutions.

Prediction results: We use one month of training data (July traces) and build

weekly and daily Seasonal Auto Regressive Integrated and Moving Average (SARIMA)

prediction model to predict workload, and electricity prices and solar energy, respec-

tively. Further, we use ARMA prediction model for wind energy. The lag one (one

hour-ahead) prediction error is 14%, 12% and 18% for workload, electricity prices,

solar and wind energy respectively. The error goes up to 20%, 18% and 52% for

24 lag (24 hour ahead) prediction of workload, solar and wind energy, respectively.

Since wind and solar traces contain some values of zero or nearly zero, we report 90

percentile mean absolute percentage error of these two traces. For instance,lag one

and lag 24 mean absolute error of the solar energy is 25%, and 40%, and lag 24 mean

absolute error of wind goes up to 67%. Observe that the prediction error of both

the solar and the wind energy in our data set is very high which can be typically

improved using sufficient training data (using historical data of about 2-3 years []).

Since, sufficient training data is not always available, We perform a pessimistic analy-

sis on the impact of high prediction error on our solution, and the way that stochastic

programming can remove its harmful impact. The prediction results of the electricity

pries are very different across data centers. In particular, the electricity prices of

DC3, DC4, DC5, and DC6 are predicted with relatively high accuracy, exhibiting

error of 5% for lag one and 15% for lag 24. The electricity prices of DC1 and DC2,

however, are predicted with low accuracy, exhibiting the error of 25% for lag one and
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36% for lag 24. Note, we do not claim on the perdition models, in practice any other

model suited to the data set can be used. We ignore the prediction error of the grid

carbon emission intensity (i.e., εgrid), due to their small intensity variation (see ) and

that we did not have access to their historical data). We use “forecast” library of “R”

package (to build time-series based prediction models.

Experiments performed We evaluate the online solutions OnCMCC and OnCM-

CCLyp for various configurations of data centers including, the length of T , ESD size,

E, the magnitude of the stipulated power, p0 and the magnitude of the carbon cap Ψ.

To evaluate OnCMCC and OnCMCCLyp, we use three reference solutions namely

Optimal (optimal offline solution to P5), MinCost and MinCarbon. MinCost

performs global workload management over the cloud to first minimize the cost and

then the carbon footprint. MinCarbon, on the contrary, first minimizes the car-

bon footprint across the cloud and then the cost. MinCost and MinCarbon can be

viewed as representative of the previous schemes which solely focus on either cost

minimization (e.g., [12, 96, 97]) or carbon footprint minimization (e.g., an algorithm

in [46]). The carbon footprint target of the cloud, i.e., Ψ, is clearly a value between

the carbon emissions achieved by MinCost and MinCarbon solutions for feasibility

assumption. We also perform a comprehensive study to evaluate the impact of the

prediction error on the solutions and the way that stochastic optimization can help

to remove its harmful impact. Finally, we evaluate the convergence of the proposed

distributed algorithm of OnCMCCLyp.

7.5.1 Cost Efficiency of the Solutions

In this experiment we focus on cost minimization for the case where there is

no carbon capping requirement and that the lookahead data is accurately available
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Figure 7.2: Total cost of OnCMCC versus Optimal and prediction window length (T ):

(a) cost versus ESD capacity, and (b) cost versus the magnitude of stipulated power,

p0 (p0 is calculated as the percentage of the per-slot maximum power consumption of

data centers).

over T . In order to run Optimal solution in a reasonable time, we use only three data

centers (i.e., DC1, DC2, and DC3). First, we wish to evaluate OnCMCC against

Optimal versus ESD capacity. We hypothesis that, OnCMCC, leveraging daily vari-

abilities of data center parameters, achieves near Optimal performance in terms of

cost (sum of energy cost, peak power cost and ESD operational cost) even for the

case of large ESD capacities. First, we fix pi,0 of each data center i to 80% of the

its per-slot maximum power consumption. Then we vary Ei, ESD capacity of each

data center i from 0 to a value that the full ESD can fully power the data center for

15 minutes, 30 minutes, an hour, two hours and 16 hours. Existing UPSes typically

can power data centers for about 10-15 minutes. Data centers tend to use larger

ESDs for energy cost management. However, an ESD that can power the data cen-

ter for 16 hours is an extreme case and is used to evaluate the worst-case efficiency

of OnCMCC. The results, shown in Fig. 7.2(a), indicates that OnCMCC for T=24

achieves a cost very close to that of Optimal. Interestingly, in agreement with our
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initial hypothesis, its cost increase compared to Optimal is negligible for the case of

16 hours ESD capacity. However, the cost increase of OnCMCC against Optimal is

high for T=6 and T=12, as they cannot leverage the daily variabilities of the data

center parameters.

Next, we evaluate OnCMCC versus different magnitude of peak power (p0).

The magnitude of p0 is typically such that such a power consumption rarely happen

in data centers. Global workload management, however, utilizes data centers near

to their maximum capacity whenever they offer low electricity cost. Therefore, it

is important to evaluate OnCMCC under a range of p0. We hypothesis that if p0 is

chosen reasonably large (e.g., larger than the average data center power consumption),

OnCMCC can achieve near Optimal cost. We fix the ESD capacity of all data centers

such that ESDs can sustain the data centers for an hour. Similar to the previous

experiment, we adjust the magnitude of p0 as percentage of data center per-slot

maximum power. Results, shown in Fig.7.2(b), in agreement with the hypothesis,

indicate that when p0 is relatively large (i.e., p0 is greater than 65% of data centers

maximum power), OnCMCC for T=24 can competitively manage the cost versus

Optimal. Note that the workload intensity in our simulation setup is such that at

the peak all data centers are fully utilized. Also according to our data set each data

center around 20% of slots need a power equal or greater than that of 65% of the

data center maximum power. Given that data center operators choose the magnitude

of p0 based on how frequent such a power consumption is required, a stipulated

power equal to 65% of the maximum power is a pessimistic example and is used to

show the performance of OnCMCC in the worst case. When p0 is relatively small,

the Optimal solution leverages the workload variabilities across days as well as the

workload variabilities within days to smoothen the power, whereas OnCMCC with

T=24 is only capable of leveraging the daily variabilities. As a result, OnCMCC for
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Figure 7.3: Performance of OnCMCCLyp versus Optimal and OnCMCC for Various

V Values for the of Tight Cap (Ψ is small) (a) Time-averaged Carbon Footprint, (b)

Total Cost.

small stipulated power, incurs a cost significantly higher than that of Optimal. For

the similar reasons, OnCMCC for T=12 and T=6 incurs higher cost than Optimal

even for stipulated power of greater than 80% and 70% of data center maximum

power, respectively.

Summary of the Results the results show that larger the value of T , the closer

the performance of OnCMCC becomes to that of Optimal. A daily basis T (T=24)

can competitively manage the cost compared to Optimal even for large ESDs as long

as p0 is relatively large.

7.5.2 Cost and Carbon Footprint Efficiency of the Solutions

We evaluate our holistic solutions to jointly minimize, the electricity cost,

the peak power cost while satisfying the carbon capping requirement of the cloud.

Accordingly, we fix the ESD capacities such that ESDs can sustain their associated
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Figure 7.4: Performance of OnCMCCLyp versus Optimal and OnCMCC for Various

V Values for the case where Ψ is equal to the mean carbon footprint of MinCost and

MinCarbon: (a) Time-averaged Carbon Footprint, (b) Total Cost.

data centers for an hour, fix the stipulated power to account for 80% of the data

centers per-slot maximum power consumption. Similar to the previous section we run

the experiments using only three data centers, i.e., DC1, DC2, and DC3. Following

the results from the previous section we also fix T as T=24. We run MinCost and

MinCarbon and perform some experiments to evaluate OnCMCC and OnCMCCLyp

for three values of the cap, Ψ, and various values of V , the Lyapunov control parameter

(in the case of OnCMCCLyp solution). First, we set Ψ to a value very close to the

carbon footprint achieved by MinCarbon. This is an example of the case where the

cloud is associated with a tight cap. Results, shown in Figs. 7.3(a) and (b) show that

OnCMCC fails to meet the cap, whereas OnCMCCLyp meets the cap for V values

less than 1.5×1011 (see Fig. 7.3(a)).

Interestingly, Fig 7.3 (b) shows that for V values in the range [0.5×1011 1.5×1011],

OnCMCCLyp yields lower carbon footprint and achieves lower energy cost (up to 7.5%

lower cost) than that of OnCMCC. In particular, for a V value around 1.3×1011, On-
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CMCCLyp performs very close to Optimal in terms of minimizing cost (sum of the

electricity cost, the peak power cost and ESD cost) while satisfying the cap. Since

OnCMCC independently manages the carbon footprint across T frames, it cannot

opportunistically leverage the ups and downs of the cloud carbon footprint and the

energy cost to optimally manage the two. OnCMCCLyp, however, takes the dynamics

of the cloud carbon footprint into account and achieves a performance near to Op-

timal when V is appropriately adjusted. The cost competitiveness of OnCMCCLyp

against Optimal also comes from the daily basis T , where OnCMCCLyp leverages the

daily variability of the workload and the electricity price along with energy buffering

to smoothen the peak power.

Second, we set Ψ to the mean carbon footprint of MinCost and MinCarbon.

Results, shown in Fig. 7.4(a) and (b), indicate that OnCMCC, in this case, achieves

a lower carbon than that of Optimal, albeit at the expense of increasing the cost by

10%. OnCMCCLyp, however, for V values less than 4.5×1011 meets the cap. Similar

to the previous case, OnCMCCLyp, when run with appropriate V value, outperforms

than OnCMCC and achieves near Optimal performance in terms of minimizing the

cost (see Fig. 7.4(b) for V values in the range [2.5×1011 4.5×1011]).

Finally, we set Ψ to a value close to the carbon footprint of MinCost. This is

an example of the case where the cloud’s cap is loose. Results, given in Figs. 7.5(a)

and (b) have similar trends to the two previous cases in the sense that OnCMCCLyp

outperforms OnCMCC in minimizing cost when V is appropriately adjusted. Also

in this case, expectedly, Optimal achieves a cost very close to MinCost. Further

OnCMCC meets the cap, and its performance in cost minimization is close to Optimal.

Note a cap equal or greater than the carbon cap of MinCost is equivalent to the case

where there is no carbon capping requirement. In such a case OnCMCC is equivalent

to OnCMCCLyp where the both can competitively minimize the cost against Optimal
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Figure 7.5: Performance of OnCMCCLyp versus Optimal and OnCMCC for Various

V Values for the case of Loose Cap (Ψ is large): (a) Time-averaged Carbon Footprint,

(b) Total Cost.

as shown in Section 7.5.1.

Summary of the Results The results of this section show that OnCMCCLyp

achieves a near Optimal performance in minimizing cost and satisfying the cap. On-

CMCC, however, independently operating on every time frame T , cannot manage the

carbon footprint and achieves higher cost (up to 10% increase in the cost) than that

of Optimal because of unnecessary reducing the cap. Further, it violates the cap for

the cases where the cap is tight. It is worth noting that in practice, OnCMCCLyp is

expected to yield higher performance against OnCMCC than what we report in this

section. This is because, our experiments is for a duration of only one month, where

the variability of the grid carbon intensity and the availability of the renewable energy

across days is low. In practice, however, the algorithms’ performance are evaluated

over their long term operation where carbon intensity variation over months are huge.

In this case, OnCMCCLyp, managing the dynamic of carbon footprint, is expected
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to significantly outperform than that of OnCMCC.

Observe that the performance of OnCMCCLyp, heavily depends on V value.

In particular, as given in Theorem 7.2.1, V manages the tradeoff of cost minimiza-

tion and carbon footprint capping. Appropriate V value depends on the cloud pa-

rameters e.g., electricity prices, and carbon footprint. In other words, according to

Theorem 7.2.1, B
V

where B=1
2
(T 2b2

max+T
2ψ2) controls the cost optimality distance

of OnCMCCLyp against Optimal. B can be estimated according to historical data,

then choosing a V value comparable to the value of B gives a clue to adjust V value

to both minimize the cost and meet the cap.

Although the results of Theorem 7.2.1 is based on the assumption of T=S ′

(in the experiment S ′=S=168 i.e., one month), the experimental results running

for T=24<<S ′ show that OnCMCCLyp achieves near one competitive ratio against

Optimal for appropriate V value. This is because the daily basis T (T=24), leveraging

the daily variabilities of the cloud can smoothen the power near to that of Optimal

and competitively decrease the peak power cost (in agreement with the results of

Section 7.5.1). From the results of Section 7.5.1 and this section we can conclude that

OnCMCCLyp, designed based on T -slot Lyapunov optimization, is indeed effective

for using as a holistic solution to manage the electricity cost, the peak power cost and

the carbon capping. The results so far, however, are given for the case where the T

slots future information are accurately available. Next section evaluates the solutions

when using predicted data over T slots.

7.5.3 Performance of the Stochastic Optimization Solutions

We characterize ζr,i, ζλ and ζα,i through the prediction results. Then the

marginal distribution of each of them, covering 90% confidence interval, is approxi-

mated to five samples each with equal probabilities. Due to their large differences,
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parameters’ samples are normalized between zero and one. We use ζr,i to represent

the aggregated prediction error of both the wind and the solar energy at each data

center and ζλ to represent the aggregated prediction error of the workload for all

front-ends (see Section 7.3). Given a random process at one stage, we construct the

scenario tree over T and apply [54, Algorithm 2] to construct two reduced scenario

sets: (i) S1 solely from the discrete marginal distribution of ζλ, and (ii) S2 from the

discrete marginal distribution of ζλ, ζr,i, and ζα,i. In order to run [54, Algorithm 2]

in a reasonable time, we evolve the scenario trees of S1 over eight stages, and S2 over

two stages. Fig. 7.6, shows that S1 and S2 capture the randomness of the predicted

workload more accurately than that of the predicted renewable energy due to its high

prediction error. We evaluate OnCMCC and OnCMCCLyp when using predicted data

over T=24 (namely OnCMCCpred and OnCMCCLyppred) versus when using stochas-

tic programming approach (namely OnCMCCstoch and OnCMCCLypstoch) and when

using accurate data (namely OnCMCCopt and OnCMCCLypopt). We run stochastic

solutions for different number of scenarios (OnCMCCstoch of one scenario is identical

to OnCMCCpred). In the figures we show the sum of the electricity cost and the

battery cost as energy cost.

Number and Type of Scenarios First, we set the renewable energy of all data

centers to zero and use S1. From the results of Fig. 7.7(a), it can be seen that the

prediction error has a harmful effect on the peak power cost. In particular, while

OnCMCCopt can manage grid power draw to avoid the peak power cost, OnCMCCpred

with one scenario incurs $2400 for the peak power, increasing the total cost by 66%

compared to OnCMCCopt. The total cost of OnCMCCstoch is decreased from 6% for 3

scenarios up to 24% for 15 scenarios compared to the total cost of OnCMCCpred (i.e.,

OnCMCCstoch of one scenario). This means that OnCMCCstoch yielding $900 more
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Figure 7.6: Scenario Tree of Stochastic Workload and Renewable Generation for a

Sample Time Frame T = 24.

cost than OnCMCCopt (as opposed to $2400 for OnCMCCpred), can remove 62.5% of

the harmful prediction error impact in increasing the cost. Hence, the results agree

with our initial hypothesis that stochastic programming with small number of scenar-

ios can significantly mitigate the harmful impact of the prediction error. Fig. 7.7(a)

also shows that the peak power cost saving of OnCMCCstoch with multiple scenarios,

compared to its deterministic counterpart (OnCMCCpred), comes at the expense of a

slightly increase in the energy cost. Further, the performance of OnCMCCstoch does

not improve when number of scenarios increases beyond 15. Note that stochastic pro-

gramming does not guarantee an optimal performance, and its performance heavily

depends on the problem, the predicted error magnitude, and the scenarios.

Next, we fix the number of scenarios of S2 to 15, and scale the renewable

energy of DC1, DC2, and DC3 such that the total renewable energy utilization of

the cloud varies from 0% to 57% when using OnCMCCopt. Results, as shown in

Fig. 7.7(b), similar to that of Fig. 7.7(a), indicates that OnCMCCstoch when using S2

significantly removes the impact of the prediction error of the workload, the elec-

tricity prices, and the renewables (removing 66% and 89% of the prediction error
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impact for 15% and 57% renewable energy utilization cases, respectively). The less

scenario coverage of S2 for the predicted workload compared to that of S1, causes

the performance of OnCMCCstoch to downgrade by 5% (compare 24% cost saving

of OnCMCCstoch in Fig. 7.7(a) with 19% in Fig. 7.7(b) for the case of 0% renewable

utilization). The cost saving of OnCMCCstoch increases compared to its deterministic

counterpart (OnCMCCpred) with increasing the availability of the renewable energy.

This is because taking the randomness of the renewable and workload prediction

error into consideration results in higher utilization of the renewable energy and con-

sequently decreasing the cost. The impact of such a management is higher for the

higher availability of the renewable energy.

We also evaluate the performance of OnCMCCstoch (when using S2 with 15

scenarios and 15% renewable energy utilization case) for various stipulated peak power

(p0) and peak power cost (β). Fig. 7.8(a) shows that the cost saving of OnCMCCstoch

against OnCMCCpred is higher for higher stipulated power where stochastic scenarios

can significantly affect the decisions. Fig. 7.8(b) indicates that the cost saving of

OnCMCCstoch against OnCMCCpred is higher for higher β. Generally, OnCMCCstoch

incurs very similar expected electricity cost to that of OnCMCCpred, this is the reason

that OnCMCCstoch has a total cost almost equal to that of OnCMCCpred for the case

where β=0. With increasing the peak power cost the impact of prediction error on

increasing the peak power cost of OnCMCCpred is worsen which can be mitigated

using OnCMCCstoch.

Finally, we set the carbon cap, Ψ, to the mean carbon footprint of MinCost

and MinCarbon and run OnCMCCLypstoch with appropriate V value over differ-

ent number of scenarios of S2. The results, as shown in Fig. 7.9(a), have a similar

trend to those of the previous results (e.g., Fig. 7.7(a)) in the sense that the stochas-

tic programming solutions (OnCMCCstoch and OnCMCCLypstoch), significantly re-
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Figure 7.9: Total Cost of OnCMCCLypstoch and OnCMCCstoch versus OnCMCCopt

(Opt) and Number of Scenarios of S2: (a) Total Cost, and (b) Carbon Footprint.

move the impact of the prediction error, improving the cost of OnCMCCpred, and

OnCMCCLyppred up to 30% by using ten scenarios (removing the impact of the pre-

diction error by 66%). This cost saving comes at a slightly energy cost increase as

shown in Fig. 7.9(a) and consequently a slightly carbon footprint increase as shown

in Fig. 7.9(b).

Overhead of the Stochastic Solution The cost efficiency of the stochastic pro-

gramming solutions comes at the expense of increasing the size of the optimization

problems. As a result, the execution time of the solutions increases depending on the

computing system’s capability. Fig. 7.10(a) shows that the size of the optimization

problem of OnCMCCstoch linearly increases with increasing the number of scenarios

in terms of both the number of decision variables and the number of constraints.

This translates into the exponential increase in the execution time of the solution in

our testbed (Intel Quad core i7-3770 CPU 3.4GHz, and 8G memory). Therefore it

is important to run the stochastic solutions with small number of scenarios and an
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Figure 7.10: (a) Solution Overhead of OnCMCCstoch versus the Number of Stochastic

Scenarios when using S1 , and (b) Convergence Rate of OnCMCCLyp when Solved

via Algorithm 7.3.

efficient implementation.

Summary of the Results The main conclusion from the results is that stochas-

tic programming approach is indeed effective in reducing the harmful impact of the

prediction error in our holistic solution. Also given large number of parameters, and

uncertainties the solution run into curse of dimensionality, therefore it is needed to

run the solution under a compact scenarios to represent uncertainties. The results

agree with the main hypothesis that we can mitigate the impact of the prediction

error by using small number of stochastic scenarios (removing the prediction error

impact in increasing cost up to 66%). Further, since in practice it is required to

choose only a small number of scenarios out of billions of the total scenarios, it is

important to deploy some problem specific strategies to choose the right reduced sce-

nario set. Finally, an efficient implementation, similar to our proposed distributed

implementation, is required to handle the overhead of the stochastic solutions.
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7.5.4 Convergence of the Distributed Algorithm

We use MATLAB quadratic programming (quadprog and interior-point-convex)

to simulate Alg. 7.3. Further, we initialize the penalty term (i.e., ρ) to 0.01. Next

we run OnCMCCLyp for 120 number of slots in centralized way (using linear pro-

gramming solver) and in distrusted way using Alg. 7.3 (the algorithm is implemented

sequentially). The results shown in Fig.7.10(b) demonstrate that the distributed

ADMM based algorithm converges quickly. Since it can be implemented in parallel,

it is well suited for large-scale global workload management algorithms with many

data centers, front-ends and stochastic scenarios.

7.6 Summary

We proposed a holistic global workload management solution, which jointly

minimizes data centers operational cost (including peak power cost), while satisfying

the carbon capping requirement of the geo-distributed data centers. Data centers

spend significant cost for their power infrastructure and for their peak power draw,

therefore it is important to take the peak power cost into consideration when de-

signing a global workload management. We formulated such a problem as linear

programming. Peak power cost management, energy buffering and carbon capping

all introduce time coupling in the solution. We developed an online algorithm On-

CMCCLyp which (i) leverages (daily) predictability of data center input parameters

to efficiently manage energy storage dynamics and to smoothen the power draw from

the grid, and (ii) uses T slot Lyapunov optimization to manage the cost carbon

footprint tradeoff. Our trace based study shows that our T -slot Lyapunov based

solution, OnCMCCLyp can achieve near one competitive ratio with respect to the

optimal offline solution when the Lyapunov control parameter is appropriately ad-
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justed, T is sufficiently large and data over T is accurately available. However, the

prediction error of the parameters over T slots has a very harmful impact on the peak

power shaving and consequently on the cost efficiency of the solution. Our proposed

stochastic programming approach is shown to remove up to 66% of such an impact

as demonstrated in our trace based study. Global workload management operating

across data centers need to maintain the confidentiality of data centers as much as

possible. Also it becomes a large scale problem in practice depending on the number

of data centers, front-ends, and scenarios of the stochastic programming based solu-

tion. We relied on the ADMM algorithm and designed a distributed algorithm which

is shown to maintain the scalability and confidentiality requirements and converge in

tens of steps.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

8.1 Discussion and Conclusions

We discuss how the solution of this dissertation help data centers to achieve

sustainability, how the solutions can be utilized in practice and how effective they

are.

8.1.1 Holistic View of the Solutions

This dissertation presented several server and workload management schemes

at the local and the global data center level. The solutions, when integrated, result

in an integrated energy and cost management architecture suited for Internet Data

Centers (IDCs).

TACOMA, an energy management solution at the local data center level, dis-

tinguishes two functionalities: (i) deciding on which servers are needed during a small

period to serve the predicted workload, and (ii) how to dynamically distribute the

workload among the selected resources as it arrives. The first functionality is known

as server provisioning, which is largely equivalent to dynamic consolidation plus power

management. The second functionality is workload distribution (or dispatching).

The global cost and carbon aware workload distribution schemes determine

the request redirection mechanism policies in order to distribute requests across data

centers and through leveraging the inherent variabilities of several aspects (e.g., elec-

tricity cost, available renewable energy, carbon footprint) in participating data centers

of a cloud. We design the global workload management schemes for different data
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center operational energy cost models. The solutions account for a holistic solution

that combines various data center energy and power operational cost models, those

being time-varying electricity cost, peak power cost and the battery cost, along with

the cloud’s carbon capping requirement. The holistic solution introduces new chal-

lenges which have been successfully addressed. This is performed using a combination

of window based predictive approach to smoothen the peak power draw and manage

the dynamics of the energy storage device in data centers, Lyapunov optimization

to mange the dynamics of the carbon footprint over a long operation of the data

centers in an online way, stochastic programming based optimization to remove the

harmful impact of the prediction error on the peak power shaving, and distributed

implementation of the algorithm to improve the scalability of the solution.

The proposed solutions at the local and the global data center levels can be

integrated, similar to the model in Section 6.3. In other words, TACOMA runs locally

at each individual data center, whereas solutions such as OnlineCC, run globally (in

a distributed or central implementation model) and decide on the workload distribu-

tion policies taking into account the energy consumption of data centers dictated and

managed by TACOMA. This integration comes at the expense of increasing the com-

plexity of the global workload management solution, depending on the data center

energy consumption model when running TACOMA (e.g., the impact of TACOMA

on data center PUE).

The solutions at both the local and the global data center levels aim to infuse

an elastic behavior to IDCs, providing mechanisms to adjust the energy consump-

tion, electricity cost, carbon footprint, peak power to the given workload at a given

time. The achievable energy and cost savings of the solutions come from the synergy

between predictive modeling (e.g., TACOMA and OnlineCC work based on one slot

ahead predicted future information, whereas OnlineCC-T and OnCMCCLyp work
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based on T slot ahead predicted information), the ability to individually shut down

unused resources, the ability to redirect the requests, and the ability to charge and

discharge energy storage devices in a data center.

Carbon capping: OnlineCC is guaranteed to achieve a near optimal per-

formance (i.e., optimal offline solution) in minimizing energy cost while bounding

the carbon cap violation. When integrated with TACOMA, OnlineCC can further

decrease the cost without affecting the total carbon footprint due to the increased

energy efficiency by TACOMA.

8.1.2 Practical Considerations

All of the solutions are sensitive to the predictive accuracy of the models, and

on the ability to sense and implement their functionality.

1. Predictive accuracy of models. The proposed solutions such as TACOMA heav-

ily rely on several models and methods, including traffic prediction, performance

estimation, heat recirculation modeling and power consumption modeling. As

the solutions needs to make dynamic, regular and frequent decisions, the models

and prediction methods have to be very lightweight. The models presented in

this research (e.g. Kalman filtering for traffic average, linear scaling of average

to estimate mean, use of heat recirculation matrix to compute the temperature

distribution at the servers’ air inlet, and queuing theory to estimate the average

response time) have been carefully selected to meet the accuracy and speed ob-

jectives. Nevertheless, if the solutions are viewed as an abstract architecture, it

is easy to see that several models, e.g., prediction models can be flexibly replaced

with others that meet stricter criteria (on either time or accuracy). Although

high curacy of the prediction techniques generally improve the performance of

the solutions, its impact on the peak power shaving is huge. Since in practice, it
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is inevitable to have non-zero prediction error for parameters such as workload

and renewable energy, we design a solution based on stochastic programming

to mitigate and remove the impact of the prediction error (see Chapter 7). The

performance of this solution heavily depends on the stochastic scenarios which

represent the possible future realization of the prediction error. Therefore, it is

important to build and use prediction models with high accuracy.

2. Implications on implementation. These implications are mainly on the impact

of frequent switching servers on and off, CRAC control and monitoring, energy

storage charging/discharging and request redirection mechanism.

� Feasibility of sensing and actuating : All solutions require the ability to

sense the various cyber parameters (e.g., workload intensity and utilization

levels) and physical parameters (e.g., temperatures and power consump-

tion), and also to actuate the various decisions, e.g., to power down certain

servers. Modern computing servers are equipped with built-in temperature

and power sensors, and provide control interfaces, e.g., ACPI (http://

www.acpi.info/ and IPMI (http://www.intel.com/design/servers/

ipmi/index.htm); modern CRACs have optional modules for remove mon-

itoring and control over the network (network thermostats); modern power

distribution units (PDUs) have similar networked capabilities for individ-

ual monitoring and control of their power plugs. Further, OnCMCCLyp

requires to dynamically adjust the charging/discharging of the energy stor-

age devices such as (UPSes), which has been throughly studied and tested

in the related work [51, 52]. Other cyber related parameters such as work-

load, and performance models have to be collected using system resource

utilization monitoring tools.
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� Cost of switching : Generally, suspending the servers can cause overhead in

two ways: (i) affect the response time of workload due to resume time, and

(ii) incur extra power consumption due to frequent switching. The pro-

posed solutions are proactive scheme that activates the required servers be-

fore they are needed, thusly eliminating the performance concerns. Switch-

ing a server is an action that happens once in an epoch (∼1hr); modern

systems are manufactured to support “deep sleep” modes that can go back

to an active state rather quickly without adversely affecting the expected

remaining lifetime of the equipment.

� Compatibility with performance metrics : The performance (QoS) of IDCs

is typically defined as some metric on delay, e.g. 95th-percentile delay. We

believe that the delay metric used in this research, i.e., the expected delay

at peak traffic, is compatible with the ones widely used. This is because

traffic peaks account for less than 5% of the traffic, thus the presented

optimization satisfies the 95th-percentile. Moreover, it is possible to intro-

duce performance margins to the active server set calculation in order to

satisfy arbitrary performance constraints.

� Request redirection mechanism: The load balancing policies of the global

workload management solutions such as OnlineCC can be achieved with

protocol-level mechanisms which are in use today such as dynamically

generated DNS responses, HTTP redirection and the forwarding of HTTP

requests. All of these have been evaluated thoroughly [33, 79, 95].

8.1.3 Value of the Solutions

The value of the proposed solutions are governed by three criteria: usability,

validity and effectiveness.
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1. Usability. Much of the usability has to do with the implementation limita-

tions, as discussed in section “Practical considerations”, and with low running

time. The time complexity analysis of the solutions i.e., greedy solutions to

TACOMA, and DAHM and the online solutions of OnlineCC, OnCMCCLyp,

suggests a polynomial ruining time for all of the solutions. Further, the sim-

ulations running on MATLAB and a desktop computer shows a running time

of at most a few seconds for all of the solutions. OnCMCCLyp when imple-

mented using stochastic programming, however, run into “curse of dimension-

ality” problem with increasing number of stochastic scenarios (see results of

Section 7.5.3 and Fig. 7.10). Therefore, it is important to use small number of

scenarios and implement the solution using distributed algorithm as proposed

in Algorithm 7.4 in Section 7.3.

2. Validity. To show the validity of the solutions we perform exhaustive simula-

tion studies using real-world traces (e.g., Microsoft hotmail and NASA workload

traces, realistic electricity prices, and renewable energy traces). We also per-

form a small scale experimental study to further validate the results of OnlineCC

solution.

3. Effectiveness. The solutions are effective if they yield considerable energy/cost/carbon

footprint savings for realistic parameters.

� Energy management at the local data center level, TACOMA: As we saw

in Section 4.1.2, the effectiveness of TACOMA with respect to conventional

methods depends on the thermal efficiency of the data center and on the

energy proportionality of its servers. In Fig. 2.4, we observe that servers

have low IPR, but no less than 0.2, and they have a varying LDR. Low

IPRs favor the occurrence of cooling-computing power trade-off, whereas a
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varying LDR pushes toward heterogeneity of system’s peak efficiency; both

of these factors necessitate the use of thermal-aware management, even at

low data center PUEs. For example, in Fig. 4.11, the data center has an

initial PUE of about 1.4; this is yielded from dividing the leftmost column’s

height (∼19 GJ) over the computing-only height (∼14 GJ). For that kind of

data center energy efficiency, TACOMA manages to yield over 31% energy

savings, compared to 23% savings of non-thermal aware sever consolidation

(our reference solution, CPSP). These results are complementary to our

analytical results which ensure the performance of TACOMA under general

cases of data center conditions and technology trend. Our analytical results

proves the necessity of thermal awareness depending on PUE and IPR of

data centers, derives an easy-to-use mathematical method to check the

necessity of thermal awareness, proves NP hardness of the thermal aware

server management schemes and the performance of the developed greedy

solution with respect to the optimal solution.

� Operational energy cost and carbon footprint management at the global

data center level (DAHM, OnlineCC, and OnCMCCLyp): The electricity

cost saving of the schemes depend on the variability of electricity cost over

the data centers’ locations. Our study considers the electricity variation

of 3-6 states inside USA and showed an electricity saving of around 30%

against a performance orientated cost oblivions workload distribution (e.g.,

see results in Section 5.3). Further, OnlineCC, is shown to outperform a

heuristic predictive scheme in cost shaving by 18% while resulting in an

equal or a smaller carbon footprint (Section 6.4). Furthermore, our holistic

global workload management (OnCMCCLyp) achieve near offline optimal

performance in minimizing the peak power cost, and the electricity cost
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while satisfying the clouds carbon capping , when the lookahead infor-

mation is accurately available. Prediction error, however, increases the

cost up to 45%, which can be removed (about 66% improvement) when

using our proposed stochastic programming based solution (Section 7.5).

These trace-based simulations results complement the analytical results

ensuring the performance of the solutions with respect to the optimal so-

lutions. In summary, our analytical study accounts for the NP-hardness

proof of the cost minimization problem and a greedy solution for solving

it (Section 5.1.1 and Section 5.2). Our results on joint optimization of cost

minimization and carbon footprint capping proves the performance of the

online solutions (e.g., OnlineCC and OnlineCC-T) for stationary and non-

stationary parameters of data centers, estimates maximum carbon capping

violation of the online solutions (Section 6.2), and suggests a distributed

implementation of online solutions with proven linearly convergence (Sec-

tion 7.4).

8.2 Future Work

Future work improves the research results by relaxing the assumptions under

which the study is performed, and adopting new approaches for ease of implementa-

tion and improving the effectiveness of the solutions in practice.

8.2.1 Relaxing the Assumptions

The research is performed under some assumptions on the applications char-

acteristics and requirements, underlying infrastructure, and models to characterize

cyber and physical aspects of the data centers. Future work would extend and en-

hance the proposed work by relaxing such assumptions to improve their usability,
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functionality and effectiveness in practice.

Heterogeneous applications

The solutions of this research solely account for delay-sensitive Internet applications.

The assumption is that either the entire data center or some clusters in data centers

dedicatedly provide Internet services. However, in data centers, there exist a vast

amount of delay-tolerant jobs, such as background/maintenance jobs. The existing

energy and cost management solutions also mainly focus either solely on Internet

applications or solely on delay-tolerant batch applications. In particular, a thermal

aware scheduling for a data center with mix of delay tolerant and delay sensitive

applications has yet to be addressed throughly. Similarly, a global cost and carbon

aware workload management accounting for both delay-sensitive and delay-tolerant

jobs needs to be studied. The potential effectiveness of such schemes are as follows.

First, the proposed server management solutions performs workload-proportional re-

source provisioning schemes, where servers are turned on/off according to the load

of requests. However, delay-tolerant jobs can be opportunistically scheduled to fill

the extra capacity of data centers, when doing so is more cost efficient (e.g., avoiding

frequent switching of the servers). Second, such solutions are consistent with the

functionality of some data centers that do not dedicatedly allocate some clusters to

Internet applications. Due to their high migration overhead, data centers unlikely to

consider global scheduling for bath jobs as a cost efficient option. However, batch

jobs when jointly managed with Internet applications, creates many carbon and cost

management possibilities in global workload management. The idea is to scale up and

down the available data center capacity considering its local background jobs and its

global Internet requests.

Also, this research assumes a single Internet application type. In practice, data
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centers host different Internet applications. In this regard, energy and cost manage-

ment solutions would be designed to consolidate different applications over the cloud

to optimize energy and cost. Applications can be assigned to VMs, which can be

placed at the most cost efficient data center at a give time. However, consolidation

of different set of applications comes with interferences amongst them. Existing work

suggest that consolidation of applications in a single server increases the contention

on the shared resources such as on-chip caches, buses, main memory, CPUs and net-

work [80, 84]. This contention results in performance degradation of applications.

The performance overhead due to contention depends on the workload type of appli-

cations. The contention can also cause energy consumption overhead due to increase

in the runtime. Modeling such an effect and incorporating into energy management

solution is not an easy task. The interference effect depends on the workload type of

applications and the workload intensity which are not easy to quantify and model for

the scale of data centers [80].

Implementation and Underlying Infrastructure

This research is performed under the assumption that the underlying infrastructure

is virtualized, meaneing that every server is capable of running the application. Such

assumption is consistent with the large-scale Internet applications infrastructure. To

enhance the functionality of the proposed schemes, they need to be implemented

in widely used data center software management tools and should be provided with

solutions to deal with practical challenges associated with every management kit.

While there exist plenty of software management frameworks for big data analysis in

data centers, e.g., Hadoop and cloud management e.g., OpenStack, their scheduling

algorithms are usually preliminary in the sense that they trade energy consumption

for achieving guaranteed quality of service, and swiftness.
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Evaluation

The evaluation of the solutions are performed using small scale experiments and

some assumption on data center power infrastructure (e.g., any node can be turned

off at any time without considering the physical data center power infrastructure).

The small scale experiments performed in this dissertation only provides proof of the

concept, and needs further investigation (implementing and testing in moderate-large

scale experiments) in order to build elegant solutions for real world problems. For

further validation, the future work becomes to implement and test the solutions on

experimental data centers such as BlueCenter, a small data center which is part of the

BlueTool1 [57], a project with the purpose to provide an infrastructure for research

on data centers.

Models

This study incorporated steady state models of data centers’ dynamics i.e., workload,

renewable energy sources, and data center thermal conditions over an epoch/slot.

However, all of these parameters exhibit temporal fluctuation. Ignoring such tem-

poral aspects can potentially affect the energy savings projected by the proposed

solutions. Due to the management overhead of the proposed solutions, it is infeasi-

ble to choose very short decision time interval. However, initial transient analysis of

data center parameters can help to optimally choose the solution control parameters

such as slot length and prediction window to minimize such problems. Further, most

of the theoretical results are derived under the assumptions of linear servers power

consumption models and linear performance models. The future work would extend

the results by incorporating more general models.

1http://impact.asu.edu/BlueTool/
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8.2.2 Adopting New Approaches

The future work would explore new approaches to improve the effectiveness of

the solutions in practice. New approaches would address the followings.

Thermal-aware Algorithms

This study provides approximation algorithm with provable guarantee for thermal

aware scheduling of the homogeneous data center case i.e., a data center with ho-

mogeneous servers in terms of computing capabilities and power consumption (Sec-

tion 4.4.1). However, the theoretical approximation ratio is in the order of number of

servers in the cluster which can be a large number. Although the simulation study

using real-world traces showed a near optimal performance of the proposed solution

(i.e., approximation ratio of 1.18), future work is required to improve the theoret-

ical results and to ensure the performance of the solution for any instance of data

center parameters. For the heterogeneous data center case (i.e., a data center with

heterogeneous servers in terms of computing capabilities and power consumption),

the proposed scheme is a heuristic solution (Section 4.4.2). Devising a solution with

provable guarantee for the heterogeneous data center case is left for future work.

Online Carbon Capping

Online carbon capping is a crucial management scheme which helps data centers to

achieve carbon neutrality in a cost efficient way. Our exhaustive trace based sim-

ulation study shows that, the proposed online carbon capping solution, OnlineCC,

achieves near one competitive ratio in optimizing cost and capping carbon footprint

with respect to the offline optimal solution when the Lyapunov control parameter

is optimally adjusted. In particular, it achieves within O(1/V ) of the optimal solu-
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tion cost and O(V ) of the optimal solution carbon footprint. Although the proposed

heuristic solution significantly reduces the search space to adjust the Lyapunov con-

trol parameter (Section 6.2.1), its optimal adjustment requires a number of trials.

Further, the efficiency of the proposed heuristic solutions depends on how big the

ratio of the peak electricity price over the average electricity price is. Therefore, in

general, due to the variability of input data parameters, the task of deciding the right

value for the Lyapunov control parameter is tedious and demands more investigation.

One potential solution is to extend Lyapunov optimization to automatically and dy-

namically decide on the value of its control parameter. This has to be done without

compromising its performance both in theory and in application.

Further, the future work would improve the competitiveness of the Lyapunov

optimization solution for cost and carbon aware workload management problem. Par-

ticularly, the existing work devised Lyapunov optimization solution that manages the

tradeoffs of the competitive factors for wireless network data transfer (i.e., energy

delay tradeoff) in logarithmic order [91] (e.g., achieving O(V ) in optimizing energy

and O(logV ) in optimizing delay with respect to offline optimal solution). A cost

and carbon aware workload management algorithm which provides a tight competi-

tive bound in optimizing the electricity cost and the carbon footprint, results a tight

bound on the algorithm’s worst case carbon capping violation.

Other future work is to adopt other online algorithms which are easy to im-

plement while providing provable competitiveness against the offline solution.

Online Peak Power Management

Peak power management of data centers, as discussed in Chapter 7, is very sensitives

to the parameters’ prediction error. This study adopted stochastic programing in

order to remove the harmful impact of the prediction error. The experimental results
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show that the proposed solution removes upto 66% of the harmful prediction error

impact in increasing the cost. Designing a solution to entirely remove the impact

of the prediction error is left for future work. Future work would also adopt new

approaches to design competitive online algorithms which do not require the predicted

data.

Renewable Energy Prediction

The results of this study show that the peak power shaving and the energy buffering,

being effective in reducing the data centers’ operational cost, can be best managed

when leveraging the future information within a time frame (e.g., 24 hours). How-

ever, the performance of such a solution heavily depends on the prediction accuracy

of data centers’ input parameters, and in particular the available on-site renewable

energy sources. The proposed stochastic programming solution is shown to remove

the harmful impact of the prediction error. However, its effectives heavily depends

on the prediction accuracy. The number of data centers, installing on-site renewable

energy sources, is expected to grow in future. In such data centers energy buffering

is essential in order to smoothen the available renewable energy and maximize their

utilization. The results of this study show that while workload can be predicted with

reasonable accuracy (e.g., using seasonal time series), the available solar and wind en-

ergy, particularly wind energy, cannot be predicted when using a small training data

set (e.g., one month training data). The related work highlighted that the prediction

accuracy of both solar and wind energy significantly increases when using a very large

training data set (e.g., data set of up to three years) [36]. However, such a scheme

is not always an option for data centers, particularly for those who recently installed

their renewable infrastructure. One potential solution would be implementing wind

and solar prediction services using the available weather information for data centers.
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The services should be consistent with the nature of workload management in data

centers in terms of time granularity of decision intervals and the prediction window.
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