

Distributed SPARQL over Big RDF Data,

A Comparative Analysis

Using Presto and MapReduce

by

Mulugeta Mammo

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved November 2014 by the

Graduate Supervisory Committee:

Srividya Bansal, Chair

Ajay Bansal

Timothy Lindquist

ARIZONA STATE UNIVERSITY

December 2014

i

ABSTRACT

The processing of large volumes of RDF data require an efficient storage and query processing

engine that can scale well with the volume of data. The initial attempts to address this issue

focused on optimizing native RDF stores as well as conventional relational databases

management systems. But as the volume of RDF data grew to exponential proportions, the

limitations of these systems became apparent and researchers began to focus on using big data

analysis tools, most notably Hadoop, to process RDF data. Various studies and benchmarks that

evaluate these tools for RDF data processing have been published. In the past two and half years,

however, heavy users of big data systems, like Facebook, noted limitations with the query

performance of these big data systems and began to develop new distributed query engines for

big data that do not rely on map-reduce. Facebook’s Presto is one such example.

This thesis deals with evaluating the performance of Presto in processing big RDF data against

Apache Hive. A comparative analysis was also conducted against 4store, a native RDF store. To

evaluate the performance Presto for big RDF data processing, a map-reduce program and a

compiler, based on Flex and Bison, were implemented. The map-reduce program loads RDF data

into HDFS while the compiler translates SPARQL queries into a subset of SQL that Presto (and

Hive) can understand. The evaluation was done on four and eight node Linux clusters installed

on Microsoft Windows Azure platform with RDF datasets of size 10, 20, and 30 million triples.

The results of the experiment show that Presto has a much higher performance than Hive can be

used to process big RDF data. The thesis also proposes an architecture based on Presto, Presto-

RDF, that can be used to process big RDF data.

ii

DEDICATION

This thesis is dedicated my parents for their love and support and to my brother who initiated the

idea of coming to the US for my master’s study and who sponsored my education.

iii

ACKNOWLEDGMENTS

I would like to thank my supervisor, Dr. Srividya Bansal, for her guidance and encouragement

during the course of the development of this thesis. My appreciation also goes to Prof. Timothy

Lindquist for introducing me to Flex and Bison, which were used in this thesis to build the

SPARQL to SQL compiler. Last, but not least, I would like to thank Dr. Ajay Bansal for his

constant encouragement and positivity he showed me throughout my stay in ASU.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

CHAPTER

1 INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Problem Statement .. 2

2 THE SEMANTIC WEB ... 3

2.1 Introduction ... 3

2.2 Challenges of Implementing the Semantic Web 5

2.3 Semantic Modeling .. 6

2.4 Identifying Resources – the URI ... 8

2.5 RDF – The Resource Description Framework 10

2.6 RDF Serialization Formats .. 11

2.7 RDF-Schema ... 15

2.8 OWL – the Web Ontology Language .. 16

2.9 SPARQL .. 17

3 BIG DATA ... 21

3.1 Definition ... 21

3.2 Apache Hadoop ... 22

3.3 HDFS – The Hadoop Distributed File System 23

3.4 Hadoop MapReduce .. 25

v

CHAPTER Page

4 RDF STORES .. 30

4.1 Introduction ... 30

4.2 Parameterized Classification of RDF Stores 31

4.3 Native RDF Stores .. 33

4.4 Relational–based RDF Stores .. 34

4.5 NoSQL RDF Stores ... 34

5 STORING RDF DATA IN HDFS ... 38

5.1 RDF and HDFS ... 38

5.2 Triple-store .. 39

5.3 Property Table ... 39

5.4 Clustered-property Tables ... 42

6 SPARQL BENCHMARKS .. 44

6.1 DBpedia ... 44

6.2 LUBM ... 45

6.3 BSBM .. 46

6.4 SP2Bench ... 48

6.5 Rationale for Choosing SP2Bench ... 49

6.6 Benchmarking the Benchmarks ... 50

6.7 Critique of the Standard Benchmarks ... 52

7 PRESTO, HIVE, AND 4STORE ... 54

7.1 Facebook Presto .. 54

7.2 Presto Architecture .. 54

7.3 Presto versus MapReduce.. 55

vi

CHAPTER Page

7.4 Apache Hive .. 56

7.5 Apache Hive Architecture ... 57

7.6 4store ... 58

8 PRESTO-RDF .. 59

8.1 Architecture ... 59

8.2 RDF–Loader .. 60

8.3 Triple-store .. 61

8.4 Wide–table ... 62

8.5 Horizontal-store Scheme ... 64

7.6 Vertical-store Scheme ... 65

9 RQ2SQL - SPARQL TO SQL COMPILER .. 67

9.1 SPARQL Graph Patterns ... 67

9.2 SPARQL Solution Sequences and Modifiers 70

9.3 RQ2SQL .. 73

10 BENCHMARKING PRESTO-RDF .. 79

10.1 Benchmark Queries ... 79

10.2 Four Node Cluster Setup ... 81

10.3 Loading Time for 3M Triples .. 81

10.4 Benchmarking using 3M Triples ... 83

10.5 Benchmarking Presto-RDF using 10, 20, and 30M Triples 89

11 RELATED WORK .. 103

11.1 Distributed SPARQL ... 103

11.2 Apache Spark and Cloudera Impala .. 104

vii

CHAPTER Page

12 CONCLUSION AND FUTURE WORK .. 105

12.1 Conclusion ... 105

12.2 Hypotheses Revisited .. 106

12.3 Contributions ... 106

12.4 Future Work .. 107

REFERENCES……..…….…………………………………………………………………….108

APPENDIX

A SQL TRANSLATION OF THE BENCHMARK QUERIES…………………. 113

B LEX FILE FOR THE RQ2SQL COMPILER…………………………………. 122

C GRAMMAR FILE FOR THE RQ2SQL COMPILER………………………… 126

viii

LIST OF TABLES

Table Page

1 Table 1 A Table of Triples ... 11

2 Table 2 Triple Table Representation of RDF Graph .. 39

ix

LIST OF FIGURES

Figure Page

1 Semantic Web as a Web of Data [3] .. 4

2 Semantic Web Modeling Languages ... 7

3 A Triple as a Labeled Directed Graph ... 10

4 A Labeled Directed Graph of Triples... 11

5 HDFS Architecture [21] ... 24

6 MapReduce Execution Steps [23] .. 28

7 A Column in Wide-column Store .. 36

8 Vertical Representation of RDF Triples .. 41

9 Horizontal Representation of RDF Triples .. 41

10 Clustered-property Table Representation of RDF Triples 42

11 Clustered-property Table Representation (contd.) ... 43

12 Performance Evaluation of RDF Dataset Generation .. 51

13 Size of Generated RDF Dataset ... 52

14 Presto Architecture [53] ... 55

15 Apache Hive Architecture [55] .. 57

16 Presto-RDF Architecture .. 59

17 LUBM Query 1 [47]... 74

x

Figure Page

18 LUBM Query 4 [47]... 75

19 LUBM Query 12 [47]... 76

20 LUBM Query 13 [47]... 77

21 LUBM Query 14 [47]... 78

22 Loading Time for 3M Triples .. 82

23 Query Response Time [3M Triples, 2-Node Cluster, Triples Storage Scheme] 83

24 Query Response Time [3M Triples, 4-Node Cluster, Triples Storage Scheme] 84

25 Effect of Node Increase on Query Performance .. 85

26 Presto vs Hive using the Vertical Storage Scheme .. 86

27 Presto vs. Hive using the Horizontal Storage Scheme ... 87

28 Performance Comparison of the Three Storage Schemes on Presto 88

29 Performance Comparison of the Three Storage Schemes on Hive 88

30 Loading Time of RDF Triples ... 89

31 Performance of Q1 over a 4-Node Cluster ... 91

32 Performance of Q1 over 8-Node Cluster ... 92

33 Effect of Node Increase on Presto for Q1 .. 93

34 Q1 Performance [30M Triples over 8-Node Cluster] .. 94

35 Q6 Performance on Presto with 4 Nodes ... 95

36 Q6 Performance on Presto with 8 Nodes ... 95

xi

Figure Page

37 Effect of Node Increase on Presto for Q6 with 30M Triples 96

38 Effect of Node Increase on Hive for Q6 with 30M Triples 97

39 Presto vs. Hive for 30M Triples over 8-Node Cluster ... 98

40 Q8 Performance, on Presto with 4 Nodes .. 99

41 Q11 Performance, on Presto with 4 Nodes .. 100

42 Q11 Performance, on Presto with 8 Nodes .. 101

43 Presto vs. Hive, 30M Triples on 8-Node Cluster ... 102

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

The Semantic Web is a technology and a set of standards for sharing data using a model called

the Resource Description Framework (RDF). RDF enables the representation of data as a set of

linked statements, each of which consists of a subject, predicate, and object called a triple. RDF

datasets, consisting of millions of triples, form a network of directed graph (DG) and are stored

in systems called triple-stores. A query language standard, SPARQL, has also been developed to

query RDF datasets.

For the Semantic Web to work, both triple-stores and SPARQL query processing engines have to

scale well with the size of data. This is especially true when the size of RDF data is too big such

that it is difficult, if not impossible, for conventional triple-stores to work with. In the past few

years, however, new advances have been made in the processing of large volumes of data sets,

aka big data, which can be made to use for processing big RDF data. In this regard, various

researches that study the use of big data technologies for RDF data processing have been

published.

In the past two and half-years, new trends in big data technology have emerged that use

distributed in-memory query processing engines based on SQL syntax. Some of these tools

include: Facebook Presto, Apache Shark, and Cloudera Impala. These tools promise to deliver

high performance query execution than traditional Hadoop system like Hive. It is the motivation

of this thesis to validate this claim for big RDF data – i.e. if these new in-memory query

processing models work well to deliver faster response times for SPARQL queries, which must

be translated to SQL.

2

1.2 Problem Statement

The problem statement of this thesis can be summarized as:

Can we gain query execution performance, compared to Hive and 4store, by storing big

RDF data in HDFS and using in-memory processing engines instead of MapReduce?

Specifically, it addresses these questions:

- Is it feasible to store big RDF data in HDFS and get improved query execution time,

compared to Hive and native RDF stores like 4store, by translating SPARQL queries into

SQL and then using the Presto distributed SQL query processing engine to run the

translated queries?

- How much improvement, in query response time, can be attained by using in-memory

query processing engine, e.g. Presto, against native RDF stores, like 4store, and other

query processing engines based on MapReduce, like Hive?

- How do different RDF storage schemes in HDFS affect the performance of SPARQL

queries? And is it possible to construct an end-to-end distributed architecture to store and

query RDF datasets?

Based on the above questions, the following hypothesis are put forward:

1. As the size of RDF data increases to big-data levels, RDF stores based on Hadoop

outperform native RDF stores like 4store.

2. Distributed in-memory query processing engines deliver faster response time on big

RDF datasets than query processing engines that rely on MapReduce.

3. Vertical partitioning scheme for RDF data gives better performance than other RDF

storage schemes on Hive.

4. Increasing number of processing nodes dramatically improves query performance.

3

CHAPTER 2

THE SEMANTIC WEB

This thesis is based on two technologies – the semantic web and big data. This chapter presents a

summarized review of the semantic web.

2.1 Introduction

The original paper on semantic web, written in 2001 by Tim–Berners Lee, defines the semantic

web as a web of data that is an extension of the current web but one in which information has

semantics or well–defined meaning [1]. The motivation behind the creation was to address the

fundamental limitation of the current World Wide Web – which is a web of pages and not of

data.

Consider an example of consulting a trips advisory website to choose a hotel for your summer

vacation. You browse the hotels listed in the trips advisory website and choose one hotel. But

when trying to book from the hotel’s website you discover that they have closed their branch.

This looks a simple outdated data issue on part of the trips advisory website, however in its

essence it points to a major limitation in the current web architecture – data is linked at

presentation level and not at a representation level [2].

In the current web architecture, the problem stated above can be solved in a variety of ways. The

simplest solution can be making data available as lined data and updating it regularly. But if the

linked data changes frequently, this solution would be very hard, if not impossible, to implement.

The other option would be to back up both sites with the same relational database so that when

the linked data is updated by one party, the other party gets it automatically. This approach

would require that a trust relationship be established between the parties. Yet another option,

4

which is popular, is to publish functions as web services so that parties who need the published

functionalities would get needed data by consuming the web services.

Though both the relational database and web services approach can solve the data linking

problem at an enterprise level, they are not feasible solutions in the context of the entire World

Wide Web – which has an open and distributed data architecture that grows organically with

contributions coming from different sources.

The semantic web attempts to solve the data linking problem by creating a web infrastructure, on

top of the current web infrastructure, that would make it possible for one data item to point to

another, using global references called Uniform Resource Identifiers (URIs), thereby creating a

single, distributed web of data.

Figure 1 Semantic Web as a Web of Data [3]

5

In the Semantic web, a website would not just publish its data at the presentation level (i.e. for

human consumption) but also a machine–readable description of the data. The Semantic web

infrastructure provides a data model, called Resource Description Framework (RDF), that can be

used to encode this machine–readable data. Semantic web comprises of web pages that

implement this data model.

The ultimate aim of the Semantic web, according to Tim–Berners Lee, is to transform the current

web of documents (pages) to web of data thereby bridging the divide that exists between the

web, which is unstructured and human–readable, and databases, that are well structured and

machine–readable.

2.2 Challenges of Implementing the Semantic Web

The Semantic web infrastructure is based on the existing web infrastructure and hence inherits its

features. These features, however, become more problematic to handle because the entity that is

being linked in the semantic web is not pages, but data [4]:

● Anyone can say anything about any topic assumption – in the current web context, this

means that anyone can create and publish a document online which others can link to. In

the context of the semantic web, however, it means that anyone can create a data item

about any entity (called a resource in the Semantic web terminology) in a way that can be

integrated with other data items from other sources.

● Open world assumption – the Semantic web must assume that new data items can be

introduced to the distributed web of data at any time and no conclusions may be drawn

based on the assumption that all data is available.

6

● Non–unique naming assumption – different names can refer to the same resource and the

Semantic web has to assume, until otherwise told, that a resource can be referred to using

different names by different sources.

● Network effect and synergy – the semantic web infrastructure must enable knowledge

synergy possible – more people joining creates more value which attracts more people

who would in turn add more values that would expand and increase knowledge sharing

exponentially.

Because the Semantic web is a distributed web of data from different sources and its aim is to

create a coherent web of data that is useful, the chaos that arises from non–unique naming,

subtleties in the meaning of terms, etc. have to be resolved [4]. For example, the Semantic web

infrastructure has to provide a mechanism to differentiate the word “apple” from two sources that

talk about fruit and the multibillion-dollar company, Apple. The semantic web achieves this by

providing a number of modeling languages that can be used to express meaning, semantics, at

different levels of detail.

2.3 Semantic Modeling

The semantic web provides a number of modeling languages that can express meaning at

different levels. These modeling languages are defined as standards by the W3C group and can

be used to express, i.e. give semantics to, different kinds of data. The standard organizes these

modeling languages as a stack of layers where a layer is dependent upon the layers under it. The

expressiveness that can be achieved increases as one goes from lower to higher layers [4].

7

Figure 2 Semantic Web Modeling Languages

▪ RDF – the Resource Description Framework – is the bottom layer in the stack of

semantic web modeling languages and is used to express a basic statement about a

resource [5].

▪ RDFS – the RDF Schema language – is the next more expressive layer above the RDF

layer. It can be used to express commonality and/or variability between resources. RDFS,

aka RDF-S, can be likened to how classes and class hierarchies are organized in object-

oriented programming languages [4, 6].

▪ RDFS–Plus – is the next top layer above RDF-S but below OWL – hence, it is more

expressive than RDF-S, but less expressive and complex than OWL. Currently, there are

no standards defined for RDFS–plus. RDFS-Plus can express the relationship and

constraints that exist between properties of resources. Since it sits on top of the RDFS

and RDF, it can express semantics that can be expressed by RDFS and RDF [4].

8

▪ OWL – the Web Ontology Language – is the top layer of the stack and can be used to

express semantics that cannot be expressed by the other models. OWL is more complex

and can be used to express detailed constraints between resources [4, 7].

2.4 Identifying Resources – the URI

A resource, in the semantic web technology, refers to a specific entity or thing that can be

identified. The standard way to identify a resource in the web is to give it a URI – Uniform

Resource Identifier. A URI is a string of characters with a well-defined format. The Internet

standard STD 66 (also RFC 3986), defines the generic syntax for a URI as [8]:

 <scheme name> : <hierarchical part> [? <query>] [# <fragment]

Where:

● Scheme name – is a sequence of characters beginning with a letter and followed by a

combination of letters, digits, the plus character (‘+’), period (‘.’), or hyphen (‘-‘).

Scheme names are case-insensitive but the standard is to write them in small letters.

● Hierarchal part – holds identification information and may or may not begin with double

forward slashes. If it begins with double forward slashes, then authority and path parts

follow, if not path follows.

o Authority part – can hold a hostname, an optional port that is preceded by a colon

(‘:’) or a user information that is terminated with ‘@’.

o Path – is a sequence of segments separated by a forward slash ‘/’. A path may

begin with a forward slash but may not begin with two forward slashes.

● Query – is optional and holds additional information that is not hierarchical.

● Fragment – holds additional information that identifies a secondary resource. For

example, a section in a document. Fragment, just like query, is optional.

9

A URI can be used to identify and name anything – from physical structures, like buildings, to

abstract concepts like subclass. A URI must not contain any embedded spaces and is guaranteed

to be unique.

A related term, URL (Uniform Resource Locator), is a subset of URI that, in addition to

identifying a web resource, can be used to specify the means of locating the resource. It does this

by specifying the resource’s primary access mechanism.

URIs can be also expressed using qualified names, or qnames. A qname has two parts: a

namespace and an identifier that are separated with a colon [9]. For example the URI:

 http://purl.org/dc/elements/1.1/creator

Can be expressed as the qname:

 dc: creator

Where dc, the namespace, represents http://purl.org/dc/elements/1.1/. Namespaces in qnames,

just like namespace in object-oriented programming languages, are used to group related

identifiers together and avoid name collisions.

There are a number of namespaces that have been defined by the W3C and the Semantic Web

standards group for use with web and Semantic Web technologies. For example, W3C defines

xsd as a namespace for XML schema definitions. Likewise, the Semantic Web defines

namespaces for its different layers [10]:

● rdf – is the namespace for identifiers used in RDF. The URI for the namespace is

http://www.w3.org/1999/02/22-rdf-syntax-ns#

● rdfs – is the namespace for identifiers used in RDF schema, RDFS. The URI for the

namespace is http://www.w3.org/2000/01/rdf-schema#

● owl – is the namespace used for owl, the Web Ontology Language..

http://purl.org/dc/elements/1.1/creator
http://purl.org/dc/elements/1.1/creator
http://purl.org/dc/elements/1.1/

10

2.5 RDF – The Resource Description Framework

The Resource Description Framework, RDF, is the basic construct of the Semantic Web that is

used to make a statement about an entity (subject or resource). An RDF statement is composed

of three parts: subject, predicate and object (aka spo). The subject denotes the entity the

statement is made about while the predicate denotes some attribute or aspect of the entity [5].

The object is the value of the predicate for the subject. An RDF statement is also known as a

triple.

For example, the statement:

Einstein was born in 1879.

Can be represented as an RDF statement with spo:

(s, p, o) = (Einstein, wasBorn, 1879).

A triple can also be represented as the labeled directed graph (DG):

Figure 3 A Triple as a Labeled Directed Graph

Multiple statements can also be made about a subject and a subject may have multiple values for

a predicate. Multiple RDF statements are called triples. Triples can be represented as a table of

subject-predicate-object values:

Subject Predicate Object

Einstein wasBorn 1879

Einstein developed Special Relativity

Einstein developed General Relativity

11

Einstein diedIn 1955

Newton wasBorn 1642

Galileo died 1642

General Relativity dealsWith Gravity

Newton discoveredLawsOf Gravity

Table 1 A Table of Triples

Triples can also be represented using a network of labeled directed graphs (DG):

Figure 4 A Labeled Directed Graph of Triples

2.6 RDF Serialization Formats

RDF data can be serialized, i.e. stored in a file system, in different formats. The W3C defines

four serialization formats for RDF data – RDF/XML, Turtle, N–Triples, and N3 [11]. There are

also other serialization formats – RDFa, microdata, rdf-json, etc.

RDF/XML – serializes RDF data (graph) as an XML file where the nodes and edges of the RDF

graph are represented using XML elements, attribute and text values. RDF/XML was the first

RDF serialization format adopted by the W3C [12]. The RDF graph in Figure 4 can be

represented in XML as:

12

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF

 xmlns:ns1="http://www.eg.com/ex/description#"

 xmlns:ns2="http://www.eg.com/ex/yr#"

 xmlns:ns3="http://www.eg.com/ex/work#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

>

<rdf:Description rdf:about="http://www.eg.com/ex/subject#General_Relativity">

 <ns1:dealsWith rdf:resource="http://www.eg.com/ex/subject#Gravity"/>

</rdf:Description>

<rdf:Description rdf:about="http://www.eg.com/ex/person/name#Einstein">

 <ns3:developed rdf:resource="http://www.eg.com/ex/subject#General_Relativity"/>

 <ns2:wasBorn>1879</ns2:wasBorn>

 <ns3:developed rdf:resource="http://www.eg.com/ex/subject#Special_Relativity"/>

 <ns2:diedIn>1955</ns2:diedIn>

</rdf:Description>

<rdf:Description rdf:about="http://www.eg.com/ex/person/name#Newton">

 <ns3:discoveredLawsOf rdf:resource="http://www.eg.com/ex/subject#Gravity"/>

 <ns2:wasBorn>1642</ns2:wasBorn>

</rdf:Description>

<rdf:Description rdf:about="http://www.eg.com/ex/person/name#Galileo">

 <ns2:diedIn>1642</ns2:diedIn>

</rdf:Description>

</rdf:RDF>

The main advantage of RDF/XML over the other serialization formats is that it can be used

readily with system and programming environments that are based on XML. However, not all

RDF triples can be represented in RDF/XML due to a limitation XML imposes on its syntax.

Turtle –Terse RDF Triple Language – is a serialization format created by Tim Berners–Lee to

encode RDF graphs in a compact form that is also readable for humans [13]. Unlike the

RDF/XML serialization format, the Turtle format can be used to encode any type of RDF graph.

A turtle document consists of a list of directives and triples. The RDF graph in Figure 4, for

example, can be represented in turtle format as:

@prefix ns0: <http://www.eg.com/ex/yr#> .

@prefix ns1: <http://www.eg.com/ex/work#> .

@prefix ns2: <http://www.eg.com/ex/description#> .

13

@prefix ns3: <http://www.eg.com/ex/person/name#> .

@prefix ns4: <http://www.eg.com/ex/subject#>

ns3:Einstein ns0:wasBorn “1879”^xsd:integer .

ns3:Einstein ns1:developed “Special_Relativity” .

ns3:Einstein ns1:developed “General_Relativity” .

ns3:Einstein ns0:diedIn “1955”^xsd:integer .

ns4:General_Relativity ns2:dealsWith ns4:Gravity .

ns3:Newton ns1:discoveredLawsOf ns4:Gravity .

ns3:Newton ns0:wasBorn “1642”^xsd:integer .

ns3:Galileo ns0:diedIn “1642”^xsd:integer .

Turtle is a subset of, and is compatible with, the N3 serialization format and has the MITME

type text/turtle.

N–triples – Notation of Triples – is another RDF serialization format that is simpler than the

turtle format but not as compact as the Turtle format. The RDF graph in Figure 4, for example,

can be represented in N-triples as:

<http://www.eg.com/ex/person/name#Einstein> <http://www.eg.com/ex/yr#wasBorn>

“1879”^xsd:integer.

<http://www.eg.com/ex/person/name#Einstein> <http://www.eg.com/ex/work#developed>

<http://www.eg.com/ex/subject#Special_Relativity> .

<http://www.eg.com/ex/person/name#Einstein> <http://www.eg.com/ex/work#developed>

<http://www.eg.com/ex/subject#General_Relativity> .

<http://www.eg.com/ex/person/name#Einstein> <http://www.eg.com/ex/yr#diedIn>

“1955”^xsd:integer.

<http://www.eg.com/ex/person/name#Einstein> <http://www.eg.com/ex/yr#wasBorn>

“1879”^xsd:integer.

<http://www.eg.com/ex/subject#General_Relativity>

<http://www.eg.com/ex/description#dealsWith> <http://www.eg.com/ex/subject#Gravity>.

<http://www.eg.com/ex/person/name#Newton>

<http://www.eg.com/ex/work#discoveredLawsOf> <http://www.eg.com/ex/subject#Gravity>.

<http://www.eg.com/ex/person/name#Newton> <http://www.eg.com/ex/yr#wasBorn>

“1642”^xsd:integer.

<http://www.eg.com/ex/person/name#Galileo> <http://www.eg.com/ex/yr#diedIn>

“1642”^xsd:integer

N–triples has a text/turtle MIME type.

14

N–3 – Notation–3 – is another serialization format for RDF. N-3 is a superset of the Turtle

format and has been designed with human readability in mind. The RDF graph in Figure 4 can be

represented in N-3 as:

@prefix ns1: <http://www.eg.com/ex/description#> .

@prefix ns2: <http://www.eg.com/ex/yr#> .

@prefix ns3: <http://www.eg.com/ex/work#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xhv: <http://www.w3.org/1999/xhtml/vocab#> .

@prefix xml: <http://www.w3.org/XML/1998/namespace> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://www.eg.com/ex/person/name#Einstein> a rdfs:Resource ;

 ns3:developed <http://www.eg.com/ex/subject#General_Relativity>,

 <http://www.eg.com/ex/subject#Special_Relativity> ;

 ns2:diedIn “1955”^xsd:integer ;

 ns2:wasBorn “1879”^xsd:integer .

<http://www.eg.com/ex/person/name#Galileo> a rdfs:Resource ;

 ns2:diedIn “1642”^xsd:integer .

<http://www.eg.com/ex/person/name#Newton> a rdfs:Resource ;

 ns3:discoveredLawsOf <http://www.eg.com/ex/subject#Gravity> ;

 ns2:wasBorn “1642”^xsd:integer .

<http://www.eg.com/ex/subject#General_Relativity> a rdfs:Resource ;

 ns1:dealsWith <http://www.eg.com/ex/subject#Gravity> .

RDFa – Resource Description Framework in Attributes – is a W3C is recommendation that adds

meta-data information to HTML (or XHTML) documents by extending the attributes of

elements. The RDF graph from Figure 4 can be represented using RDFa as:

<div xmlns="http://www.w3.org/1999/xhtml"

 prefix="

 ns3: http://www.eg.com/ex/work#

 ns1: http://www.eg.com/ex/description#

 ns2: http://www.eg.com/ex/yr#

 rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

 rdfs: http://www.w3.org/2000/01/rdf-schema#"

15

 >

 <div typeof="rdfs:Resource" about="http://www.eg.com/ex/person/name#Newton">

 <div rel="ns3:discoveredLawsOf" resource="http://www.eg.com/ex/subject#Gravity"></div>

 <div property="ns2:wasBorn" content=“1642”^xsd:integer></div>

 </div>

 <div typeof="rdfs:Resource" about="http://www.eg.com/ex/person/name#Einstein">

 <div property="ns2:wasBorn" content=“1879”^xsd:integer></div>

 <div property="ns2:diedIn" content=“1955”^xsd:integer></div>

 <div rel="ns3:developed">

 <div typeof="rdfs:Resource" about="http://www.eg.com/ex/subject#General_Relativity">

 <div rel="ns1:dealsWith" resource="http://www.eg.com/ex/subject#Gravity"></div>

 </div>

 </div>

 <div rel="ns3:developed"

resource="http://www.eg.com/ex/subject#Special_Relativity"></div>

 </div>

 <div typeof="rdfs:Resource" about="http://www.eg.com/ex/person/name#Galileo">

 <div property="ns2:diedIn" content=“1642”^xsd:integer></div>

 </div>

</div>

2.7 RDF-Schema

RDF–Schema (RDF-S) is a data modeling vocabulary for RDF data. According to the W3C,

“RDF–S provides mechanisms for specifying groups of related resources and the relationship

between these resources”.

In RDF-S, resources are grouped into classes. A resource that belongs to a class is called an

instance of the class. In many respects, RDF-S classes are similar to classes found in object-

oriented programming languages like Java and C++. However, unlike classes in object-oriented

programming languages where a class is defined in terms of the attributes of its instances, RDF-S

defines properties in terms of the classes to which they belong (apply). For example, in Java, one

can define a class called Person with an attribute (property) Age whose type int. In RDF-S, same

idea can be expressed by defining a property Age with domain Person and range integer [12].

16

2.8 OWL – the Web Ontology Language

OWL is a W3C standard designed for use by web applications that need to define and process

semantic data. OWL provides a much richer set of vocabularies than RDF–S and can be used to

express and relate complex knowledge about things and their relationships. OWL has three sub-

languages – OWL Lite, OWL DL, and OWL Full [4].

OWL Lite – is a smaller subset of OWL that can be used to express classification hierarchy of

resources and simple constraints. OWL Lite provides a set of vocabularies that are classified into

seven groups based on their purpose:

▪ RDF-S features – Class, rdfs:subClassOf, rdf:Property, rdfs:subPropertyOf,

rdfs:domain, rdfs:range, Individual.

▪ Equality and inequality – equivalentClass, equivalentProperty, sameAs, differentFrom,

AllDifferent, distinctMembers.

▪ Property characterstics – ObjectProperty, DatatypeProperty, inverseOf,

TransitiveProperty, SymmetricProperty, FunctionalProperty, InverseFunctionalProperty.

▪ Property restrictions – Restriction, onProperty, allValuesFrom, someValuesFrom.

▪ Restricted Cardinality – minCardinality, maxCardinality, cardinality

▪ Header Information – ontology, imports

▪ Class Intersection – intersectionOf

▪ Datatypes – xsd:datatypes

▪ Annotation properties – rdfs:label, rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy,

AnnotationProperty, OntologyProperty

17

OWL Lite guarantees computational completeness and decidability. Computational

completeness means that all conclusions that can be drawn are computable while decidability

means computations can finish in finite time.

OWL DL – OWL Description Logics – is a subset of OWL that is more expressive than OWL

Lite but less expressive and complex than OWL Full. OWL DL also guarantees computational

completeness and decidability.

OWL Full – is a super set of OWL data and provides maximum expressiveness. However,

unlike OWL DL and OWL Lite, it cannot guarantee computational completeness.

2.9 SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) is a query language defined by the

W3C to query RDF data. The “Protocol” in the SPARQL deals with how a client program and a

SPARQL processing engine interact to exchange queries and results from queries. W3C specifies

the rules of these interactions. SPARQL has been design to query any RDF data regardless of its

storage format – RDF/XML, Turtle, N–Triples, N–3, JSON, etc. SPARQL queries can also be

run against a combination of these different storage formats.

Basic SPARQL Query – The most basic SPARQL query consists of a SELECT clause that

identifies variables that appear in the result set and a WHERE clause which provides a graph

pattern to match against the RDF graph the query is being run on.

For example, given the following RDF data set from Figure 3:

@prefix ns0: <http://www.eg.com/ex/yr#> .

@prefix ns1: <http://www.eg.com/ex/work#> .

@prefix ns2: <http://www.eg.com/ex/description#> .

@prefix ns3: <http://www.eg.com/ex/person/name#> .

@prefix ns4: <http://www.eg.com/ex/subject#>

18

ns3:Einstein ns0:wasBorn “1879”^xsd:integer .

ns3:Einstein ns1:developed “Special Relativity” .

ns3:Einstein ns1:developed “General Relativity” .

ns3:Einstein ns0:diedIn “1955”^xsd:integer .

ns4:General_Relativity ns2:dealsWith ns4:Gravity .

ns3:Newton ns1:discoveredLawsOf ns4:Gravity .

ns3:Newton ns0:wasBorn “1642”^xsd:integer .

ns3:Galileo ns0:diedIn “1642”^xsd:integer .

A SPARQL query that returns the theories Einstein developed can be written as:

SELECT ?theory

WHERE

{

<http://www.eg.com/ex/person/name#Einstein>

<http://www.eg.com/ex/work#developed> ?theory.

}

Returning:

“Special Relativity”

“General Relativity”

Same query can also be expressed using prefixes:

@prefix ns1: <http://www.eg.com/ex/work#> .

@prefix ns3: <http://www.eg.com/ex/person/name#> .

SELECT ?theory

WHERE

{

ns3:Einstein ns1:developed ?theory.

}

Multiple matches – multiple graph pattern conditions can be stated in a SPARQL query by

adding more triples and variables.

@prefix ns0: <http://www.eg.com/ex/yr#> .

SELECT ?x ?z

WHERE

19

{

?x ns0:wasBorn ?y.

?x ns0:diedIn ?z.

}

Running the above query on the dataset from Figure 3, gives the result:

“Einstein” 1955

The first pattern, ?x ns:wasBorn ?y, selects:

 “Einstein” 1879

 “Newton” 1642

While the second pattern, ?x ns0:diedIn ?z, selects:

 “Einstein” 1955

 “Galileo” 1642

Because the first pattern and the second pattern are linked by their subject, ?x, and the

variable ?z relates to the ns0:diedIn predicate, the returned result is:

 “Einstein” 1955

Matching RDF Literals – SPARQL also supports querying based on string, integer and other

types of literals.

RDF Constraints – SPARQL allows one to specify constraints that filter bindings of variables

to RDF terms.

Filtering string values – the SPARQL FILTER function, regex, can be applied on string literals

to do regular expression pattern matching:

@prefix ns1: <http://www.eg.com/ex/work#> .

SELECT ?y

WHERE {

 ?x ns1:developed ?y

 FILTER regex(?y, "Special%")

}

Returns the result “Special Relativity”.

20

Filtering numeric values – SPARQL also allows filters to be applied to queries:

@prefix ns0: <http://www.eg.com/ex/yr#> .

SELECT ?x

WHERE

{

 ?x ns0:wasBorn ?y.

 FILTER (?y < 1800)

}

Returns the result “Newton”

SPARQL data types – SPARQL also supports integer, floating-point, string, boolean and

dateTime literals.

Blank Nodes – are denoted by _:someLabel, can appear in an RDF data. When a blank node

appears in RDF data, it indicates either a lack of value – if it appears in the object position of a

triple – or an unknown resource – if it appears in the subject position. When a blank node is used

in SPARQL query, however, it is treated just like a variable. For example, the two queries below

have identical semantics:

SELECT ?a ?b

WHERE {

?a :predicate _:blankNode .

_:blankNode :otherPredicate ?b .

}

SELECT ?a ?b

WHERE {

?a :predicate ?variable .

?c :otherPredicate ?b .

}

21

CHAPTER 3

BIG DATA

The other core technology, besides the Semantic Web, that this thesis relies on is big data. This

chapter reviews the latest information and articles written about big data. It also presents one of

its very important and popular open–source application framework – Apache Hadoop.

3.1 Definition

There are a number of definitions that have been suggested for big data. IBM, for example,

defines big data as a term that describes quintillion bytes of data aggregated from various sources

in different file formats and that which grows rapidly [15]. Likewise, in an article published by

Microsoft in 2013, big data is a term that is used to describe the process of applying serious

computing power to seriously massive and often highly complex sets of information [16]. Many

technologists also have proposed various definitions of big data. John Worthington from Tech

Republic, for example, defines big data as a large amount of data that is moving at a rapid pace

and upon its valuable analysis a company’s existence is based on [17]. On the other hand, Edd

Dumbill from O’Reilly Strata, defines big data as data that exceeds the processing power of

conventional database systems and that which is too big and too fast to fit into these systems

[18].

Though each of the definitions above emphasizes one or another aspect of big data, all

definitions agree that big data is big in size, is unstructured, holds lots of different data formats

(text, video, sensor data, financial transactions, etc.) and is very difficult to process using

conventional database systems.

This thesis assumes the definition of big data as proposed by Bernard Marr in 2013. Bernard

Marr defines big data as data that is characterized by four parameters [19]:

22

1. Volume – big data holds vast amounts of data, usually in TB and PB – i.e. big data is big.

2. Velocity – big data is generated rapidly and moves around fast. For example social media

messages that are created rapidly and going viral in seconds.

3. Variety – big data holds increasingly different types of data from various sources – social

media feeds, financial data, photos, sensor data and so forth.

4. Veracity – big data is incredibly messy and unstructured and may involve

inconsistencies.

From the perspective of this thesis, big RDF data refers to vast amounts of RDF triples with

hundreds of millions of interconnections.

3.2 Apache Hadoop

The Apache Hadoop framework is an open–source software framework for storing and

processing large data sets over a cluster of commodity machines. Hadoop is designed to scale

horizontally and can run on few to thousands of machines. Each machine in a Hadoop cluster can

be used both to store and compute data. Hadoop is designed to be fault–tolerant and can detect

and handle failures at an application level gracefully – there by delivering a high–availability

service [20].

The Apache Hadoop is composed of four modules – Hadoop Common, Hadoop Distributed File

System (HDFS), Hadoop YARN, and Hadoop MapReduce.

▪ Hadoop Common – is the module that is responsible for providing a set of utility

(foundation) classes used by the other modules.

▪ Hadoop Distributed File System (HDFS) – is a distributed file system that is designed to

store big data over a cluster of commodity machines.

23

▪ Hadoop YARN – Hadoop Yet another Resource Negotiator – is framework that is used

for job scheduling and resource management over a cluster.

▪ Hadoop MapReduce – is an open–source implementation of the MapReduce

programming model.

The Apache Hadoop project consists of other Hadoop-related projects: Ambari, Avro,

Cassandra, Chukwa, HBase, Hive, Mahout, Pig, Spark, Tez, and Zookeeper. Apache Hadoop can

therefore be regarded as an ecosystem of frameworks and utilities designed to handle use cases

that relate to the storage and processing of big data. This thesis makes use of the HDFS,

MapReduce and Hive parts of this ecosystem [20].

3.3 HDFS – The Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) is a distributed file system that is designed to store

big data over a cluster of commodity machines. HDFS was originally developed by Doug

Cutting and has its origin in the Apache Nutch project – an open–source web search engine

project [21, 22].

HDFS has been designed to cope with hardware failures and has an error-detection and

automatic recovery mechanism when faults occur. HDFS also provides high aggregate data

bandwidth and can scale horizontally to thousands of nodes. Files in HDFS are created are

written once but can be read many times. This model, also known as the write–once–read–many

model, guarantees data coherency and enables a high throughput data access. High throughput is

also achieved by localizing data and computation together so that network congestion is

minimized. HDFS, as a distributed file system for big data, emphasizes high throughput of data

access rather than low latency.

24

HDFS uses a master/slave architecture that consists of one master node, the NameNode, and

multiple slave nodes. The NameNode is responsible for managing the file system and regulate

file access by clients. Each node in the HDFS cluster, including the NameNode, has DataNodes

that manages its storage. The data nodes are also responsible for providing file read and write

requests from client applications, performing data creation, replication and deletion upon a

request from the NameNode.

Figure 5 HDFS Architecture [21]

HDFS supports a hierarchical file organization similar to POSIX systems where the root

directory is represented by “/”. Applications can create, remove, and rename files and directories

inside this root directory. Unlike POSIX systems, however, HDFS does not support user quotas,

hard links as well as soft links. Any changes to the file system, including its properties, are

recorded and managed by the NameNode.

A file in HDFS is stored as a sequence of equally sized blocks where the size of each block is

defined by applications. HDFS ensures fault–tolerance and high–reliability by replicating these

25

data blocks across the cluster. Applications can also specify the number of replicas of a file, at

file creation time or later. The NameNode makes all decisions regarding the replication of blocks

including which data nodes will be used to store replicas. Replicas are essential in HDFS to

guarantee fault–tolerance and performance. HDFS has a replica placement policy that is “rack

aware”. This policy is based on the experience that network bandwidth between machines in the

same rack is greater than between machines on different racks. Hence, when HDFS receives a

read request, it tries to answer the request by consulting the closer replica to the reader. If the

replica exists in the same rack as the reader then that replica is chosen. HDFS uses the TCP/IP

protocol for communication [21, 22].

Data upload in HDFS is accomplished in a sequence of steps. When an application wants to

create a file, it sends a file creation request to the HDFS client. Upon receiving the request, the

HDFS client creates a temporary local file to which the application writes data. When the size of

the temporary local file reaches the block size, typically 64 MB, the HDFS client contacts the

NameNode. When the NameNode receives the request, it sends the destination DataNode and

block back to the client. The client would then flush the data from the temporary file to the

destination DataNode and block and notifies and notifies the NameNode when the transfer is

complete. Upon receiving a completion message, the NameNode commits the file creation and

persistently stores the data.

3.4 Hadoop MapReduce

Hadoop MapReduce is Apache’s implementation of the map-reduce programming model that

was popularized by Google in 2004. The Hadoop MapReduce framework can be used to write

client applications that process large amounts of data (usually in hundreds of Giga and Tera

Byes) in parallel, over a cluster of machines. HDFS and MapReduce can be considered as the

26

two most important components of the Hadoop ecosystem – HDFS is responsible for handling

the storage and management of data while MapReduce is responsible for computations over the

data.

A computation is much more efficient when it is executed near the data it operates on [22]. This

is particularly important when dealing with big data because it minimizes network congestion

that would otherwise have been overloaded by transferring vast amount of data back and forth.

Hence, moving computation is much cheaper than moving data and for this reason HDFS and

MapReduce are typically configured to run on the same node. HDFS also provides interfaces to

applications to move themselves closer to where the data resides.

The MapReduce programming can be defined as a programming model and an associated

implementation for processing and generating large data sets using a parallel, distributed

algorithm over a cluster of commodity hardware. MapReduce is inspired by the map and reduce

primitives that exist in functional programming languages like Lisp, Haskell, and others.

A map function takes in a <key, value> input pair and generates a set of intermediate <key,

values> pairs. The intermediate <key, value> pairs are then be taken by the MapReduce library,

which groups and sorts together all intermediate key values associated with the same

intermediate key, in a process called sort-and-shuffle, and passes it to the reducer function. The

reducer function, upon receiving an intermediate key and a list of values for the key, merges the

list of values together to output a possibly smaller set of values – typically just zero or one output

value.

Both the map and reduce functions are written by the user. User programs can also specify a

comparison function that would be used in the sort–and–shuffle step to compare and sort

intermediate keys.

27

 map: <key1, value1> → list (<key2, value2>)

 reduce: <key2, list (value2)> → list (value3)

The creators of the MapReduce programming model, Jeffery Dean and Sanjay Ghemawat [23]

argue that many real world tasks can be expressed using this simple model and that the model

can be easily used to parallelize large computation over a cluster of machines.

During the execution of a MapReduce program each machine holds a copy of the program and

the map and reduce functions are executed in parallel by the different machines across the

cluster. MapReduce uses a hash-based algorithm to splits its input data.

According to Jeffery Dean and Sanjay Ghemawat, the execution of MapReduce programs

follows the following sequence of steps [23]:

1. User’s MapReduce program is loaded into memory.

2. The input files are split into M blocks, each with size 16 – 64 MB size. The master node,

aka the NameNode, distributes these blocks across the cluster.

3. The master starts copies of the program across the cluster.

4. The master picks up idle workers and assigns a map task or a reduce task.

5. A slave/worker node that is assigned a map task reads the contents of its assigned input

split, parses the <key, value> pairs out of the input data, and calls the map function on

each <key, value> pair. The set of intermediate key value pairs produced by the map

function are buffered in the worker’s memory.

6. The buffered pairs are written periodically to local disk, which is partitioned into regions

by a partitioning function. Upon completion of the write operations, the worker node

notifies back the master of these locations which updates its file system namespace and

would then notifies a reducer of these locations.

28

7. When a reducer receives the location of the intermediate/key value pairs produced by

map workers, it does a remote procedure call to these map workers, reads the

intermediate data, and sorts it by the intermediate keys.

8. For each unique intermediate key in the sorted set, the reducer calls the reduce function

and appends the output of the reduce function to a final output file.

9. When all the map and reduce tasks are complete control is returned back to the user code.

Figure 6 MapReduce Execution Steps [23]

The MapReduce model is designed to run on a cluster of hundreds and thousands of worker

nodes controlled by a single master node. The master node maintains a data structure that holds

the state of each map and reduce task – which could be in idle, in–progress or completed state.

The MapReduce model also has an inherent support to gracefully handle worker node crashes.

29

The master nodes periodically listens for a workers’ heartbeat and if no response is received, the

master node marks the worker node as dead and all map and reduce tasks that are in progress in

the assigned node are set to idle states and become candidates for task re–scheduling. The model

can also handle a master node crash by periodically writing checkpoints so that when it does fail

a new copy can be started from the most recent check–pointed stated.

30

CHAPTER 4

RDF STORES

A number of articles and conference presentations that propose and evaluate different RDF

storage managers have been published during the past five years. This chapter presents a review

of some these papers that are relevant to this thesis.

4.1 Introduction

RDF stores, also known as triple stores, are data management systems that are used to store and

query RDF data. RDF stores also provide an interface, called a SPARQL end–point, which can

be used to submit SPARQL queries. Some triple stores, like Sesame, also provide APIs that can

programmers can use to submit SPARQL queries and get results.

RDF storage managers can be broadly classified into three categories:

1. Native triple stores – are stores that are built from scratch to store RDF triples. Native

triple stores make a direct use of the RDF data model – a labeled directed graph – to store

and access RDF data. These triple stores usually store RDF data in a custom binary

format. Examples are 4store [25], Jena TDB [26], and Sesame [27].

2. Relational–backed triple stores – are triple stores that are built on top of traditional

RDBMs. Because RDBMs have a number of well-advanced features that have developed

over the years, triple stores based RDBMs benefit from these features. Examples are

3store [28] and Jena SDB [26].

3. NoSQL triple stores – are triple stores based on NoSQL systems and by far are the largest

triple stores in number. This group includes triples stores based on NoSQL systems as

well as systems based on the Hadoop ecosystem. Examples include: Hive+HBase [29],

CumulusRDF, Couchbase, and many more. Because NoSQL systems include a wide

31

range of systems, including graph databases, some researches have classified

AllegroGraph [30], a graph database, both as a native as well a NoSQL store.

Despite the large number of RDF triple stores that have been developed and proposed by

researchers, very few attempts have been made to systematically parameterize triple stores based

on specific implementation parameters. The next section presents a review of three such papers.

4.2 Parameterized Classification of RDF Stores

Kiyoshi Nitaa and Iztok Savnik [32] proposed a parameterized view of RDF stores that is based

on “single” and “multi–process” attribute sets. In this view, an RDF Store Manager, RSM, can

be parameterized as function of single–process, S, and multi–process attributes, M:

RSM = f (S, M) = (<Ts, Is, Qs, Js, Cs, Ds, Fs>, <Dm, Qm, Sm, Am>)

The single–process attributes, S, this paper identifies are:

● Ts – Is the type of triple table structure the store uses – vertical, property-table, or

horizontal.

● Is – is the index structure type – 6–independent, GSPO–OGPS, O matrix.

● Qs – Indicates whether a SPARQL end–point is implemented.

● Ss – Indicates the translation method type of IRI and literal strings – URI, literal, long, or

none.

● Js – the join optimization method – RDBMS–based, column–store based, conventional

ordering, pruning, or none.

● Cs – the cache type used – materialized–path–index, reified–statement, or none.

● Ds – whether the store relies on traditional RDBMS or uses its own custom database

engine, and

● Fs – the type of inference type it supports – TBOX, ABox or none.

32

While multi–process attributes, M, are:

● Dm – data distribution method type – hash, data–source or none.

● Qm – query process distribution method type – data-parallel, data–replication, or none.

● Sm – stream process type – pipeline or none.

● Am – resource-sharing architecture – memory, disk, or nothing.

Based on the above parameterized classification, 4store has the characteristics: Ts = vertical, Qs

= SPARQL, Ss = string id, Js = conventional ordering, Ds = RDB, Dm = hash, Qm = data

parallel, Am = nothing, while Hadoop/HBase has Ts = horizontal, Ds = custom, Qm = data

parallel, Am = memory.

RDF triple stores, specifically relational–backed triple stores, can also be characterized based on

how they shred RDF data, triples, into relational tables. Y. Theoharis, V. Christophides, and G.

Karvounarakis, in their 2005 paper [32] identify three shredding mechanisms: schema–oblivious,

schema–aware and hybrid. In the schema–oblivious shredding, a single table is used to store

RDF data as rows of triples of the form subject-predicate-object. In a schema-aware shredding,

each RDF property or class is represented as a table. In hybrid shredding, on the other hand, one

table is created per an RDF meta-class by distinguishing the range type of properties.

Some researchers [33] have also characterized and classified RDF stores as in–memory, native,

and non–native-non–memory stores based on the implementation architecture they use.

According to these researchers, in–memory RDF stores are useful to benchmark inference and

reasoning operations by loading data from remote sites and storing in memory but are not useful

to process large sets of triples. The native stores provide persistent storage with own database

implementation that is modelled after the RDF model while the non–native-non–memory stores

are setup to run on top of traditional databases like MySQL, PostsgreSQL, Oracle, etc.

33

4.3 Native RDF Stores

Native RDF stores provide a direct implementation of the RDF data model described in chapter 2

where the subject and object of a triple are represented as nodes, and the predicate as a labeled

edge from the subject to the object – resulting in a network of labeled direct graph (DG). RDF

data that has millions of triples and association among the triples would end up as a directed

graph with hundreds of millions of interconnections. 4store and Jena TDB are two examples of

native triple stores:

● 4store – is a native RDF store implemented in C and that, according to its designers, was

designed to handle loads of 1 billion triples and above. 4store can run on a single

machine or in a cluster of 32 machines (nodes). Garlik, the company behind 4store,

reported that they were able to load and process more than 15 billion triples1. 4store, like

other native stores, has a SPARQL end–point [25].

● Jena TDB – is another native RDF store from the Apache Jena project. Jena TDB comes

with a full set of APIs that are used to store and query RDF data. Jena TDB has a

SPARQL end–point and supports a number of extensions – e.g. property functions,

aggregates, and arbitrary length property paths. Jena TDB is implemented in Java and

employs a memory mapped I/O and a custom implementation of B+ Trees. The major

limitation of Jena TDB is that it runs only on a single machine. However, it was reported

that TDB was able to process 1.7 billion triples on a single machine with 64-bit hardware

within 36 hours – i.e. 12k triples/second [26].

1
 In comparison, DBpedia 580 million triples (for English edition of Wikipedia)

34

4.4 Relational–based RDF Stores

Relational RDF stores use RDBMs to store triples. This section presents two such RDF stores –

Apache Jena SDB and Sesame. The main characteristics that distinguish relational–backed RDF

stores from native RDF is the presence of a mapping layer that maps RDF graphs into relational

tables and SPARQL queries into SQL queries.

Apache Jena SDB is designed to run on top of a number of relational database management

systems – MySQL, PostgeSQL, Oracle, BerkeleyDB, to name a few. Jena SDB, just like Jena

TDB, was designed to run on a single machine. Application store RDF triples in Jena SDB using

a JDBC connector. Jena SDB also requires that only single Java Virtual Machine should be

involved in the triple writing, else data corruption may result. Jena SDB supports a number of

RDF parsers and I/O modules for N3, N–triples and XML/RDF serialization formats [26].

Jena SDB also supports a simple triple store as well as three different kinds of property tables – a

single–valued property table, a multi–valued property table and a property–class table. Each of

these will be reviewed in detail in the next chapter.

4.5 NoSQL RDF Stores

NoSQL, Not Only SQL, stores model their data storage and retrieval in ways other than the

traditional relational database management systems. NoSQL database are characterized by being

non–relational, distributed, open–source, schema–free, horizontally scalable and able to handle

huge amount of data [34]. NoSQL databases do not support relational ACID properties –

Atomicity, Consistency, Isolation, and Durability. Instead, they support the BASE guarantee –

Basic Availability, Soft–state and Eventual consistency.

The BASE guarantee is based on the CAP theorem formulated in 2001 by Eric Brewer. The

theorem states that a distributed computer system cannot guarantee consistency, availability and

35

partition tolerance at the same time. A BASE guarantee gives up on consistency and relies on an

eventual consistency [35]. Base guarantee offers:

● Basic availability – system is guaranteed for availability.

● Soft state – indicates that the state of the system may change over time even without

input because of the eventual consistency property.

● Eventual consistency – indicates that the system will become consistent over time,

and not after every transaction.

NoSQL databases, and therefore NoSQL RDF stores, are classified based on their data storage

model. The primary classifications are: Key-Value stores, Document stores, Column family

stores, and Graph databases.

Key–Value stores – are the simplest NoSQL databases where every single record in the database

is stored as an attribute name, key, and its associated value. Key-value stores use the map or

dictionary data model where data is accessed and addressed via the key. Because the values

stored in key-value stores are independent of each other, the relationship among them has to be

established at an application level - i.e. key-value stores are schema-free. In key-value stores new

entries can be added dynamically without affecting the system’s availability. Amazon

DynamoDB and Apache Cassandra are key-value stores. CumulusRDF [36], based on Apache

Cassandra, is a key-value RDF store.

Document stores – are NoSQL stores that are similar to key-value stores but extend the

functionality of key-value stores. The main notion in document stores is a document - which is a

collection of data items (or values) that are organized and can be treated as a single item. Unlike

key-value stores where values are opaque to the system, values in document stores have an open

structure and queries can be written against them. The key-value pairs in document stores are

36

usually encapsulated in JSON or a JSON like structure that allows for nested representation of

key-value pairs. NoSQL document stores, just like key-value stores, are schema free. MongoDB

and CouchDB are the most popular document stores. Both CouchDB and MongoDB have been

used to store and query RDF data.

Wide-column stores – aka column-family stores or just column stores – store data as sections of

columns-of-data rather than as rows-of-data. The basic unit in wide-column stores is a column

and consists of a key-value pair. Some wide-column stores, for example Google Big Table [37],

also add a timestamp attribute to a column to indicate when the data is added to the database or

when it was last updated.

Key

Value

Timestamp

Figure 7 A Column in Wide-column Store

Unlike relational tables, where the number and type of columns are defined prior to the insertion

of rows, a column in a wide-column store can be dynamically created as needed. A row in

standard column-family store consists of a key, which is unique, and a collection of columns.

There are two types of column-family stores – standard column-family and super column-family.

Examples of column stores include BigTable [37], HBase [38], and HyperTable [38]. RDF stores

based on column stores have also been developed.

Graph databases – graph databases are another variant of NoSQL databases. According to [40]

a graph database is “an online database system that exposes a graph data model and supports

37

traditional CRUD methods - Create, Read, Update, and Delete”. Graph databases are mostly

built for use with OLTP – Online Transaction Processing – systems. RDF data, being a labeled

directed graph, can be suitably represented and stored in graph databases. Examples of graph

databases include Neo4j, AllegroGraph, and OpenLink Viruoso. AllegroGraph, according to its

website, is “a modern, high-performance, persistence graph databases”. AllegroGraph is

designed to store RDF data and fully compliant with SPARQL 1.0. Because AllegroGraph has

been designed from start to store RDF data, some researchers have classified it as a native triple

store.

38

CHAPTER 5

STORING RDF DATA IN HDFS

The RDF data model, which is based on a tuple of subject, predicate and object values, is a

flexible way of representing information about resources and relationships between resources.

This chapter presents a review of how RDF data, triples, can be stored using facilities provided

by the Hadoop ecosystem, most notably Hive.

5.1 RDF and HDFS

RDF triples can be stored and accessed in HDFS by creating a relational layer on top of HDFS

that maps triples into relational schemas. Hive, for example, allows storing data in HDFS based

on a relational schema that defined by the user.

Though there are some discrepancies among researchers regarding the naming and classification

of relational schemas for RDF data, most researchers classify these schemas in to three groups

[40, 41, 42, 43]:

● Triple table – the entire RDF data is stored as a single table with three columns – subject,

predicate and object. Each triple is stored as a row in this table.

● Property-table – triples are grouped together by predicate name. In this scheme, all triples

with the same predicate are stored in a separate table. Some researchers call property

tables vertical partitioning.

● Cluster-property tables – in this scheme triples are grouped into classes based on

correlation and occurrence of predicates. A triple is stored in the table based on the

predicate class it belongs to.

39

5.2 Triple-store

The triple-store schema, aka triple table, is the simplest and straightforward to implement.

Though the triple-store schema may be suitable for very simple queries, running complex queries

will require many self-joins. In a big RDF data context, a triple table may hold hundreds of

millions of records and self-joining such table would have a dramatic impact on performance.

Table 1, from Chapter 2, can be represented using triple table as:

Subject Predicate Object

Einstein wasBorn 1879

Einstein developed Special Relativity

Einstein developed General Relativity

Einstein diedIn 1955

Newton wasBorn 1642

Galileo diedIn 1642

General Relativity dealsWith Gravity

Newton discoveredLawsOf Gravity

Table 2 Triple Table Representation of RDF Graph

5.3 Property Table

The property table schema can have many variants. In one variant, called vertical partitioning,

each predicate is separated out into its own table having two columns – subject and object.

Subjects that have the same predicate are stored in the same table. For the RDF data from

Chapter 2, a vertical partitioning scheme results in five tables:

40

WasBorn:

Subject Object

Einstein 1879

Newton 1642

Developed:

Subject Object

Einstein Special Relativity

Einstein General Relativity

DiedIn:

Subject Object

Einstein 1955

Galileo 1642

DealsWith:

Subject Object

General Relativity Gravity

41

DiscoveredLawsOf:

Subject Object

Newton Gravity

Figure 8 Vertical Representation of RDF Triples

Another variant of the property table, which is the opposite extreme of the vertical partitioning,

lays out all the predicates in the RDF data set as columns of a table. The resulting structure is one

table that a subject column and as many predicate columns as there are in the dataset. This

structure is sometimes called horizontal. The horizontal representation2 for the RDF data from

Chapter 2 is:

Subject WasBorn Developed DiedIn DealsWith Dis.LawsOf

Einstein 1879 Special R. 1955 Null Null

Einstein 1879 General R. 1955 Null Null

Newton 1642 Null Null Null Gravity

Galileo Null Null 1642 Null Null

Figure 9 Horizontal Representation of RDF Triples

As can be observed from the above table, the horizontal representation has many null values for

undefined subject-predicate values.

2 There are discrepancies among researchers regarding the naming [40, 41].

42

5.4 Clustered-property Tables

In the clustered-property table representation3, if many subjects all have the same set of

predicates, then a table with these predicates as columns may be created. Considering the

example from the previous sections, the predicates WasBorn and DiedIn are shared by two

subjects and hence can be joined together as a single table.

Subject WasBorn DiedIn

Einstein 1879 1879

Newton 1642 Null

Galileo Null 1642

Figure 10 Clustered-property Table Representation of RDF Triples

Predicates that occur less in the RDF data set will be represented using their own tables, just like

the vertical partitioning scheme.

Developed:

Subject Predicate

Einstein Special Relativity

Einstein General Relativity

3 Some researchers call clustered-property representation property-class representation.

43

DealsWith:

Subject Predicate

General Relativity Gravity

DiscoveredLawsOf:

Subject Predicate

Newton Gravity

Figure 11 Clustered-property Table Representation (contd.)

44

CHAPTER 6

SPARQL BENCHMARKS

RDF benchmarks are models that test the scalability, performance, and efficiency of RDF stores

in a standard and systematic way. These models define a finite set of carefully designed queries

that vary in their selectivity, output size, and depth – i.e. on the number of nodes the query visits

in the RDF graph. The scalability, performance and efficiency of an RDF store are measured by

running these benchmark queries on a SPARQL end–point. Each of these models also provides

utility application that can be used to generate RDF data. This chapter reviews four such

benchmarks – DBpedia, SP2Bench, BSBM, and LUBM. The chapter concludes by reviewing

some of the criticisms that have been leveled against the benchmarks.

6.1 DBpedia

The DBpedia SPARQL benchmark is a generic SPARQL benchmark creation methodology that

is based on query–log mining, clustering and SPARQL feature analysis. The methodology has

been applied on different RDF data sizes from the DBpedia dataset (RDF dataset derived from

Wikipedia). In order to construct benchmark queries that are prototypical to real queries, the

creators performed query analysis and clustering on queries sent to DBpedia SPARQL end–point

– http://dbpedia.org/sparql. Based on the highest ranked query clusters they derived a set of 25

SPARQL query templates to which parameterization is applied to generate the actual benchmark

queries [44, 45].

The creators of the benchmark ran the benchmark queries against the Virtuoso, Sesame, Jena–

TDB, and Big OWLIM triple stores and found out that the performance of these triples stores is

far less homogenous than what other benchmarks suggested. Furthermore, they argue that their

benchmark is a pure benchmark and is more suitable than other benchmarks, like LUBM, BSBM

http://dbpedia.org/sparql

45

and SP2B, to evaluate the performance of triple stores because the underlying data structure

these benchmarks use, they state, are relational in nature and are most suitable to benchmark

relationally–backed RDF stores.

DBpedia SPARQL benchmark project is currently deprecated and replaced by project Mosquito,

https://github.com/AKSW/mosquito, which is a program and an API framework that can be used

to benchmark different types of SPARQL end–points.

 6.2 LUBM

The Lehigh University Benchmark (LUBM) is a benchmark that is created to facilitate the

evaluation of RDF data in a standard and systematic way. The benchmark is based on ontology

for the university domain and can generate synthetic data of arbitrary size and provides fourteen

queries that represent a variety of RDF graph properties and several performance metrics [46,

47].

The LUBM benchmark, according to its creators, has been designed with the following goals:

1. Support for extensional, rather than intentional queries – the creators of the benchmark

conjecture that the majority of semantic web applications will use queries about the data

instances, extensional queries, rather than queries about classes and properties,

intentional queries. The benchmark, therefore, focuses on extensional queries.

2. Support for data scalability – the LUBM creators predict that, in the long run, data will

outnumber ontologies and the benchmark therefore has to be scalable.

3. Support for a moderate size and complex ontology – the benchmarks tries to strike a

balance between queries that manipulate large and complex ontologies versus queries that

manipulate ontologies based on OWL Lite.

https://github.com/AKSW/mosquito

46

LUBM provides fourteen benchmark queries that vary in their input size, selectivity, complexity,

class and property hierarchy, as well as the degree of logical inference that is required to answer

the query.

LUBM measures input size as the proportion of the class instances involved in a query to the

total number of class instances in the benchmark data. Input size is considered large if the

proportion is greater than 5%. Selectivity, on the other hand, measures the ratio of the number

class instances involved in a query to the number of class instances that satisfy the query. A

query is said to have high complexity if this proportion is less than 10%. The creators of the

benchmark argue that query complexity can be implicitly measured by the number of classes and

properties that are involved in the query as well as by the depth and width of the class hierarchies

involved in the query. The fourteen benchmark queries LUBM uses have different levels of input

size, selectivity and complexity [47].

The dataset generated by LUBM consists of fifteen to twenty five departments per university,

each described in a separate OWL file. The LUBM data generator generates a data set based on

the number of universities users specify.

LUBM is used in this thesis to validate the SPARQL to SQL compiler, RQ2SQL, component of

the Presto–RDF implementation this thesis proposes to analyze big RDF data. Because Presto–

RDF does not support RDFS inference, LUBM was not chosen as a benchmark in this thesis.

6.3 BSBM

The Berlin SPARQL Benchmark (BSBM), proposed in 2008, is another benchmark that can

measure the performance of native RDF stores against systems that convert SPARQL to SQL,

also known as SPARQL–to–SQL rewriters [48, 49]. Examples are D2R Server and Virtuoso

47

RDF Views. Presto–RDF, the architecture this thesis proposes, can be considered in this group

because it translates SPARQL to SQL, i.e. it is a SPARQL–to–SQL re–writer architecture.

The benchmark is based on an e–commerce use case in which different vendors can offer

different sets of products and consumers can write reviews on these products. The benchmark

has an abstract data model based on the following classes: Product, ProductType,

ProductFeature, Producer, Vendor, Offer, Review, and Person. Based on these classes and a set

of data production rules the benchmark can generate RDF data of different sizes. The benchmark

also offers a relational representation of the RDF data.

The BSBM data generator works based on the number of products that a user specifies. Each

product is described by rdfs:label and rdfs:comment and can have 3 to 5 textual properties whose

value can consist of 5 to 15 words that are randomly chosen from a dictionary. A product also

has 3 to 5 numeric properties whose values range from 1 to 2000, with a normal distribution.

Each product also has a type that is part of a type hierarchy where the depth and width of the

subsumption hierarchy depends on a scaling factor that users can specify.

The BSBM benchmark queries are 25 in number and, just like the other benchmarks reviewed in

this thesis, satisfy two principles for the design of benchmark queries, aka, query mixes [48]:

1. Benchmark queries should be designed to test specific features of the query language,

SPARQL, or the data management, RDF.

2. Benchmark queries should be based on real world use cases.

BSBM places much more emphasis on the second criteria and its 25 benchmark queries try to

simulate a realistic search and navigation pattern by an e–commerce user looking for a product.

The creators of the benchmark tested the 25 queries against four RDF triple stores – Sesame,

Virtuoso, Jena TDB, and Jena SDB – and two SPARQL–to–SQL rewriters – D2R Server and

48

Virtuoso RDF Views. Their results indicate that Virtuoso triple store has the best overall

performance against the other three RDF triple stores while Virtuoso RDF Views outperformed

D2R Server.

6.4 SP2Bench

SP2Bench, proposed in 2008, is another SPARQL benchmark that is designed to test SPARQL

queries over RDF triples stores as well as SPARQL–to–SQL re–write systems. SP2Bench

focuses on how well an RDF store supports the different SPARQL operators and their

combination – known as operator constellations [50, 51]. This is different from BSBM, which

places more emphasis on creating benchmark queries that are closer to the real world. And,

unlike LUBM, SP2Bench presents a set of benchmark queries that are based on the UNION and

OPTIONAL operators that are central to SPARQL.

SP2Bench data model is based on the DBLP, http://www.informatik.uni–trier.de/~ley/db/, a

computer science bibliography created in the 1980s and currently featuring more than 2.3 million

articles. The SP2Bench data generator can generate any number of triples based on what a user

specifies. For the experiments conducted in this thesis, for example, triples of size 10, 20, and 30

million were generated. The SP2Bench data model defines classes such as: Person, Document,

Journal, Article, Book, PhD Thesis, etc.

SP2Bench benchmark queries are 12 in number and are designed to evaluate an RDF storage

scheme by imposing various data accesses – for example, through a triple subject, predicate or

object. Unlike BSBM and LUBM, which focus on common SPARQL patterns, SP2Bench also

provides queries (e.g. Query 9 (Q9) and 10 (Q10)) that test uncommon access patterns. Q9, for

example, returns incoming and outgoing properties of Persons.

49

The creators of the SP2Bench tested their benchmark queries on Jena TDB, Redland RDF

Processor, Sesame and Virtuoso and were able to discover that, despite claims that a vertically

partitioned RDF store is superior to a simple triple store, some queries performed well on simple

triple store than a vertically partitioned store. This thesis also verifies this observation.

6.5 Rationale for Choosing SP2Bench

Though there was a plan to conduct the experiments of this thesis based on the four benchmarks

discussed in the previous section, the time and money involved in running the benchmark queries

over a cluster of machines proved difficult. The author of this thesis also noted, based on the

literature review he conducted, that no single benchmark is good enough to characterize the

performance of RDF stores. Instead, a combination of them taken in a bottom–up approach may

yield a better benchmarking. More specifically, the author proposes the following benchmarking

guideline that can be used while developing and benchmarking an RDF store:

SP2Bench → BSBM → LUBM → DBpedia

Start with SP2Bench, which evaluates an RDF store at low–level, i.e. at SPARQL operator

constellations level, and progress toward DBpedia – which is a higher level measure that

benchmarks on real data with real queries. Starting with SP2Bench, the author of this thesis

believes, would help optimize RDF store designers optimize their SPARQL end–point. The

guideline can be also be viewed from the perspective of an RDF store designer and user. An

RDF store user, while evaluating an RDF store, may rely on the high–level benchmarks (e.g.

DBpedia) and ignore SP2Bench. On the other hand, an RDF store designer can’t do without

SP2Bench as it focuses on low-level implementation and how efficiently an RDF implementation

implements the SPARQL operators.

50

6.6 Benchmarking the Benchmarks

LUBM, BSBM, and SP2Bench benchmarks all offer applications that can be used to generate

RDF data set. Each generator provides its own command line interface that takes in different sets

of parameters.

The LUBM data set generator supports only the OWL format. BSBM can generate data sets in

n–triples, turtle, RDF/XML, TriG and MySQL dump. SP2Bench supports the n–triples format.

To evaluate the dataset generation performance, triples of size 10 million, 20 million, and 30

million were generated. The evaluation was conducted using the latest versions of the data set

generators – UBA 1.7 for LUBM4, version 3.1 for BSBM5, and SP2B 1.0.1 for SP2Bench. The

data generators were run on a 16–core machine with 16GB RAM running Linux Mint 17

(Quiana).

The results of the evaluation show that both BSBM and SP2Bench have comparable dataset

generation performance while LUBM takes almost twice the amount of time to generate the

same number of triples. This could be due to the fact that LUBM generates multiple OWL files

which require many I/O operations.

4
 LUBM generates OWL files - LUBM(72), LUBM(144), LUBM(215) were used to generate ~ 10M, 20M, and

30M triples
5
 BSBM generates triples based on products - 28480 products correspond to 10 million triples.

51

 Figure 12 Performance Evaluation of RDF Dataset Generation

In terms of the size of the dataset that is generated, LUBM has the smallest size of dataset per the

number of triples. For 20 million triples, for example, LUBM generates a total of 1.6 GB files

while SP2Bench generates a file size of 2.3 GB. BSBM, on the other hand, generates a 5.2 GB

file - i.e. for 20 million triples.

52

Figure 13 Size of Generated RDF Dataset

6.7 Critique of the Standard Benchmarks

A number of papers that evaluate different RDF stores using the SPARQL benchmarks discussed

in the previous sections have been published. However, only a single paper was found that

looked critically into how well the data sets generated by these benchmarks resembles real data,

from different sources, in its structure [52]. The paper argues that, though primitive RDF data

set metrics, such as number of subjects, predicates, objects, number of predicates per type, etc.

are useful, they offer no little insight into the structure of an RDF dataset. The authors

developed a mathematical formula, based on the primitive metrics, that evaluates the structured-

ness of an RDF dataset using a 0 – 1 scale where a zero represents a data set that is completely

unstructured while one denotes a data set that is well structured – e.g. relational data. The authors

evaluated DBpedia, LUBM, BSBM, SP2Bench and other benchmarks and found out that

53

DBpedia is less structured, with a value of 0.025, and resembles real data. LUBM and BSBM

both have the highest value, 0.975, implying a high structure in their generated data set.

SP2Bench has a value 0.775.

54

CHAPTER 7

PRESTO, HIVE, AND 4STORE

Presto–RDF, the big RDF query analyzer this thesis proposes, is based on Presto and uses a Hive

connector to get data that resides in HDFS. The thesis benchmarks Presto–RDF against Hive and

4store, a native RDF store. This chapter gives an overview of each of these systems. Presto–

RDF is discussed in the next chapter.

7.1 Facebook Presto

According to Facebook, “Presto is an open source distributed SQL query engine for running

interactive analytic queries against data sources of all sizes ranging from gigabytes to petabytes”.

Presto can query data that resides in different systems – Hive, Cassandra, relational databases as

well as other proprietary data sources (as long as its interface requirements are met). The

motivation behind the creation of Presto is the high latency BI tools have while visualize Tera

and Peta bytes of Facebook data. Currently Presto is deployed on Facebook running against

thousands of data stores that are distributed at different geographic locations as well as an

internal 300PB data warehouse.

7.2 Presto Architecture

Presto is a distributed SQL query engine that runs on a cluster of machines controlled by a single

coordinator with hundreds or thousands of worker nodes. Presto is optimized for ad–hoc analysis

and supports standard ANSI SQL, including complex queries, aggregation, joins, and window

function [53].

The simplified architecture of Presto is presented in the diagram below. The client sends SQL

query using the Presto command line interface to the coordinator that would then parse, analyze

and plan the query execution. The scheduler, component within the coordinator, connects

55

together the execution pipeline and assigns and monitors work to worker nodes that are closer to

the data. The client gets data from the output stage, one of the worker nodes, which in turn pulls

data from the underlying stages.

Figure 14 Presto Architecture [53]

7.3 Presto versus MapReduce

SQL queries executed by Hive are implemented using MapReduce where each query is

translated into more than one MapReduce tasks that executed over one after another. Each

MapReduce task reads intermediate inputs from disk and writes back intermediate results back to

disk and finally performs reduces tasks to give the result back to the user. Presto, on the other

hand, does not use MapReduce. Instead, it uses a query and execution engine with operators that

supports SQL semantics. Presto does all its processing in memory and pipelines its processes

across the cluster between stages. The creators believe this avoids unnecessary IO operations and

reduces latency [53].

56

Presto is also designed to run against different types of data sources using storage plugins, also

known as connectors. Presto relies on interfaces provided by these connectors. These interfaces

must provide, according to the Presto specification, a way to fetch metadata, get data locations

and access the underlying data. Hence, Presto can ran against any data source as long as the data

source provides a connector that can subscribe to the Presto interface. Multiple connectors can

also be dynamically installed which would enable Presto to work on many different data sources

at the same time. Presto also provides predefined connectors for Hive, Cassandra and TPC–H.

7.4 Apache Hive

Apache Hive is an open–source data warehouse solution for querying and analyzing large data

sets residing in Hadoop Distributed File System (HDFS). Hive provides a mechanism to define a

relational structure on top of HDFS and supports a SQL–like query language, called HiveQL,

which one can use to query data [54].

The Hive data model is organized into Tables, Partitions and Buckets:

● Tables – Hive tables are analogous to relational database tables. Each table in Hive is

mapped to a specific HDFS directory. A table in Hive stores its data as files inside its

directory.

● Partitions – Each table in Hive, which has its own directory in HDFS, can further

distribute its data inside subdirectories, called partitions.

● Buckets – Data residing in each partition of a Hive table can further be divided into

buckets where each bucket is a file that is stored inside a specific partition. The

partitioning of data into buckets is based on the hash of a column in the table.

Hive table columns can be defined with one of these types – integer, float, string, date, boolean,

array, and map. Hive also allows programmers to define their own column types.

57

7.5 Apache Hive Architecture

The paper [55] describes the architecture of Hive as a system composed of six main components

– External Interfaces, Hive Thrift Server, MetaStore, Driver, Compiler, and Execution Engine.

Figure 15 Apache Hive Architecture [55]

● The External Interfaces component provides a command line interface (CLI), a web UI,

and application programming interfaces (APIs) that can be used to programmatically

connect to Hive, create tables and submit queries.

● Hive Thrift Server exposes a simple API that can be used to execute HiveQL statements.

● The metastore functions as a system catalog that stores the metadata about the tables that

are stored in Hive. The metadata is specified during table creation and is re–used every

time the table is referenced, in HiveQL. The metastore is Hive’s data warehouse.

58

● The Driver component manages the life cycle of HiveQL statements during compilation,

optimization and execution. The driver is also responsible for submitting map–reduce

jobs from the DAG graph which is created by the compiler.

● The Compiler is invoked by the driver upon receiving HiveQL statements and is

responsible for translating the statements into a directed acyclic graph (DAG) of map–

reduce jobs.

● The Execution engine receives map–reduce jobs, from the driver, and executes it in

Hadoop.

Hive was created in Facebook before becoming an Apache project. At Facebook, the Hive

warehouse contains more than 700 TB of data and manages more than 5000 queries on daily

basis.

7.6 4store

4store was developed at Garlik, www.garlik.com, by Steve Harris to support the company’s

semantic web application need. 4store is regarded as a native RDF store and has been used by

Garlik to store and analyze RDF data of over 15TB. 4store is written in ANSI C99 and was

designed to run on UNIX–like systems. According to its creator, 4store is optimized to run on

shared–nothing clusters of up to 32 nodes linked with gigabit Ethernet.

Many research papers, including this thesis, have used 4store to benchmark native RDF stores

with non–native RDF stores.

http://www.garlik.com/

59

CHAPTER 8

PRESTO-RDF

This chapter proposes architecture, called Presto–RDF, which can be used to store and query big

RDF data using the Hadoop Distributed File System (HDFS) and Facebook Presto. It also

presents RDF–Loader, a component of the architecture, which is used to read, parse and store

RDF triples. The next chapter will cover RQ2SQL – a SPARQL to SQL compiler developed as

part of the architecture.

8.1 Architecture

Presto–RDF consists of the following components: a command line interface (CLI), a SPARQL

to SQL compiler (RQ2SQL), Facebook Presto, Hive Metastore, HDFS, and RDF–Loader. The

following diagram illustrates these components:

Figure 16 Presto-RDF Architecture

RDF data that extracted from the Semantic Web is parsed and loaded into HDFS using a

custom–made loader, RDF–loader, which will also store metadata information on Hive Thrift

60

Server. When a user submits a SPARQL query over a command line interface, the query is

processed by a custom–made SPARQL to SQL converter, RQ2SQL, that translates the the

SPARQL query into SQL which would then be submitted to Facebook Presto. Presto, using its

Hive connector and Hive Thrift Server, runs the SQL against HDFS and returns the result back

to the CLI.

8.2 RDF–Loader

The purpose of the RDF–Loader is to load, parse and store RDF data in HDFS. RDF–Loader

implements four different RDF storage schemes and creates external Hive tables whose metadata

is stored in the Hive Thrift server.

Before the RDF–Loader can run, the raw RDF data to be first processed and loaded into HDFS

using this command:

hadoop fs –put file hdfs–dir

Once the raw RDF data is uploaded, RDF–Loader runs several MapReduce jobs and stores the

output back into HDFS. The structured of the data is defined by the schema that users can

specify.

In order for the RDF–Loader to run and process raw RDF, the following input parameters are

required:

● database – is the name of the database that will be created.

● target – is the type of RDF storage structure, i.e. the type of schema. There are four

options: triples, vertical, wide, and horizontal.

● expand – this option indicates if qnames are to be expanded6.

6
 The current implementation forces a true value for this option.

61

● server – is the DNS name or IP address of the master node, NameNode, of the Hadoop

cluster.

● port – is the port number Hadoop listens to connections.

● input – is the path of the HDFS directory that holds the raw RDF data.

● output – is the path of the HDFS directory the processed RDF data will be stored into.

● format – defines the format of the output files as they are stored in HDFS. The current

version of the Hive meta–store supports five different formats: SEQUENCEFILE,

TEXTFILE, RCFILE, ORC, and AVRO. This thesis makes use of the TEXTFILE

format.

The following sections discuss four different RDF storage strategies implemented by the RDF–

Loader. The next chapter presents a performance report on each of these storage strategies.

8.3 Triple-store

In the triples store storage scheme, an RDF triple is stored as is – resulting in a table with three

columns: subject, predicate and object. If the raw RDF data has 30 million triples, the triple store

strategy will have one table with 30 million rows.

The map–reduce algorithm that transforms the raw RDF data into the triples table is quite

simple:

 map (String key, String value)

 // key: RDF file name

 // value: file contents

 for each triple in value

 emit_intermediate (subject + '\t ' + predicate, object)

 reduce (String key, Iterator values)

 // key: subject and predicate delimited by tab

 // values: list of object values

 for each v in values

 emit (subject + '\t ' + predicate + object);

62

For an RDF dataset with n number of triples, the map algorithm has O(n) running time while the

reducer, which is called once for each unique subject, has O(s*o) running time, where s is the

number of unique subjects and o are the average number of object values per subject.

8.4 Wide–table

In the wide table RDF storage scheme, the raw RDF data is parsed and stored as a single table

having one column for subject values, and multiple predicate columns for object values. The

resulting table has the following schema:

WideTable (String subject, String predicate_1, String predicate_2, …, String predicate_n)

Because it is unlikely that a subject has all the predicates found in the data set, this storage

strategy will have a number of null values.

For an RDF data set that has unique object values for a subject–predicate pair, this scheme would

result in a table that has s number of rows, where s is the number of subjects in the data set. For

example, given the triple set:

subject_1 predicate_1 object_1

subject_1 predicate_1 object_3

subject_2 predicate_2 object_3

The wide table representation for the triples would be:

subject predicate_1 predicate_2

subject_1 object_1 object_3

63

subject_2 null object_3

If the dataset, however, contains multiple values for the same subject–predicate pair, the table

will have multiple rows for the same subject. For example, given the triple set:

subject_1 predicate_1 object_1

subject_1 predicate_1 object_2

subject_2 predicate_2 object_3

The wide table representation for the triples would be:

subject predicate_1 predicate_2

subject_1 object_1 null

subject_1 object_2 null

subject_2 null object_3

The algorithm for storing triples using the wide table storage scheme would get complicated if

the data set contains subjects with multiple predicates (which is natural) and multiple object

values for the same predicate. For example, given the triple set:

subject_1 predicate_1 object_1

subject_1 predicate_1 object_2

subject_1 predicate_2 object_3

64

subject_2 predicate_2 object_4

The wide table representation for the triples would be:

subject predicate_1 predicate_2

subject_1 object_1 null

subject_1 object_2 null

subject_1 null object_3

subject_2 null object_4

The storage scheme, thus, forces new rows to be created for each unique subject–predicate pair.

The map–reduce algorithm for the wide table storage scheme, as implemented in this thesis, is:

 map (String key, String value)

 // key: RDF file name

 // value: file contents

 for each triple in value

 emit_intermediate (<subject, predicate>, <predicate, object>)

 reduce (String key, Iterator values)

 // key: a <subject, predicate> pair

 // values: list of <predicate, object> pairs

 String subject = key.getSubject();

 String[] row = new String[1 + num_unique_predicates];

 int i = 0

 for each v in values

 row[i] = v.getObject();

 i++;

 emit (subject, row);

8.5 Horizontal-store Scheme

The horizontal storage scheme is similar to the wide table storage scheme in terms of the schema

of the table. However, unlike the wide–table scheme, it optimizes the number of rows stored for

65

subjects that have multiple object values for the same predicate. Given the example presented in

the previous section:

subject_1 predicate_1 object_1

subject_1 predicate_1 object_2

subject_1 predicate_2 object_3

subject_2 predicate_2 object_4

The horizontal storage scheme stores the triples as:

subject predicate_1 predicate_2

subject_1 object_1 object_3

subject_1 object_2 null

subject_2 null object_4

In this scheme, it is not necessary to create new rows for each unique subject–predicate pair.

Instead, rows that are already created for the same subject, but for a different predicate will be

used.

7.6 Vertical-store Scheme

In the vertical storage scheme implemented in this thesis, the raw RDF data is partitioned into

different tables based on the predicate values of the triples in the data with each table having two

columns – the subject and object values of the triple. Thus, if the raw RDF data has 30 million

triples that have 20 unique predicates, the vertical storage scheme will create 20 tables and stores

the subject and object values of triples that share the same predicate in the same table.

66

The map–reduce algorithm works with predicate as a key value and a pair of subject and object

values as value:

map (String key, String value)

 // key: RDF file name

 // value: file contents

 for each triple in value

 emit_intermediate (predicate, <subject, object>);

reduce (String key, Iterator values)

 // key: predicate

 // values: list of <subject, predicate> pairs

 String table = key.replace_unwanted('_');

 MultipleOutputs<String, String> mos;

 for each v in values

 // create a directory table

 // write the subject, values inside the directory

 mos.write (v.getFirst(), v.getSecond(), table);

Because predicate values are URIs that contain non–alpha numeric characters, e.g.

http://www.w3.org/1999/02/22–rdf–syntax–ns#, which cannot be used in naming directories, the

reducer has to replace these characters with some other character, for example the underscore

character, http___www_w3_org_1999_02_22_rdf_syntax_ns_, and creates the directory (which

is considered as a table for the Hive Metastore).

In the vertical storage scheme, for a raw RDF data that contains n number of triples, the mapper

runs at O(n) while the reducer runs at O(p*x) where p and s are the number of unique predicates

and subjects in the data set, respectively. In the worst case scenario, where there are as many

unique predicates and subjects, the number of triples, the map-reduce algorithm for the vertical

storage scheme runs at O (n2).

http://www.w3.org/1999/02/22-rdf-syntax-ns

67

CHAPTER 9

RQ2SQL - SPARQL TO SQL COMPILER

This chapter presents a review of basic SPARQL graph patterns and RQ2SQL – a SPARQL to

SQL mini-compiler that is developed as part of Presto–RDF. RQ2SQL (RDF Query to SQL)

converts SPARQL queries into SQL statements that can be run on Presto and Hive. RQ2SQL is

implemented in Flex and Bison using C++11.

9.1 SPARQL Graph Patterns

SPARQL query processing is based on graph pattern matching. Complex graph patterns can be

constructed by combining few basic graph pattern techniques. The W3C classifies SPARQL

graph pattern matching into five smaller patterns [14]: Basic Graph Pattern, Group Graph

Pattern, Optional Graph Pattern, Alternate Graph Pattern and Named Graph Pattern.

▪ Basic graph patterns – are set of triple patterns where the pattern matching is defined in

terms of joining the results from individual triples. A single graph pattern is composed of

a sequence of triples that may optionally be interrupted by filter expressions. The below

example is a basic graph pattern.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?age

WHERE {

 ?x foaf:name ?name .

 ?x foaf:age ?age .

}

68

● RQ2SQL translates the above SPARQL into the SQL7:

SELECT T0.object,

 T1.object

FROM http___xmlns_com_foaf_0_1_name T0

JOIN http___xmlns_com_foaf_0_1_age T1 ON (T1.subject = T0.subject)

▪ Group graph pattern – a group graph pattern is specified by delimiting it with braces. The

below example specifies one graph pattern with two basic graph patterns.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?age

WHERE {

 { ?x foaf:name ?name . }

 { ?x foaf:age ?age . }

}

The RQ2SQL translation, for the vertical store, is the same as the previous:

SELECT T0.object,

 T1.object

FROM http___xmlns_com_foaf_0_1_name T0

JOIN http___xmlns_com_foaf_0_1_age T1 ON (T1.subject = T0.subject)

▪ Optional graph pattern – optional graph patterns are specified using the OPTIONAL

keyword. The semantics of the optional graph pattern matching is that it either adds

additional binding to the solution or would leave it unchanged.

Given the RDF data:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix rdf: <http://www.w3.org/1999/02/22–rdf–syntax–ns#> .

7
 The translation given here is for the vertical store

69

_:a rdf:type foaf:Person .

_:a foaf:name "Michael" .

_:a foaf:email <mailto:michael@example.com> .

_:a foaf:email <mailto:michael@hahusofware.com> .

_:b rdf:type foaf:Person .

_:b foaf:name "Mulugeta" .

And a SPARQL optional graph pattern query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?email

WHERE {

 ?x foaf:name ?name .

 OPTIONAL {

 ?x foaf:email ?email

 }

}

Would give the result:

name email

“Michael” <mailto:michael@example.com>

“Michael” <mailto:michael@hahusoftware.com>

“Mulugeta”

The RQ2SQL translation, for the vertical store, is the same as the previous:

SELECT T0.object,

 T1.object

FROM http___xmlns_com_foaf_0_1_name T0

LEFT JOIN http___xmlns_com_foaf_0_1_email T1 ON (T1.subject =

T0.subject)

Constraints can also be applied to optional graph patterns.

70

▪ Alternate graph Pattern – are constructed by specifying the keyword UNION between

two graph patterns.

▪ Named graph patterns – are constructed by specifying a FROM NAMED IRI where each

IRI is used to provide one named graph in the RDF dataset. Using same IRI in two or

more NAMED clauses would result in one named graph.

Graph: http://example.org/bob

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Mulugeta" .

_:a foaf:email <mailto:mulugeta@hahusoftware.com> .

Graph: http://example.org/alice

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Michael" .

_:a foaf:email <mailto:michael@example.com> .

...

FROM NAMED <http://example.org/michael>

FROM NAMED <http://example.org/mulugeta>

...

 RQ2SQL does not support Named graph patterns.

9.2 SPARQL Solution Sequences and Modifiers

The results returned from a SPARQL query are unordered collection of single or composite

values that, according the W3C, can be regarded as solution sequences with no specific order.

SPARQL defines six solution modifiers: order, projection, distinct, reduced, offset and limit.

▪ Order modifier – is specified by the ORDER BY clause and forms the order of a

solution sequence. Ordering can be qualified as ASC for ascending or DESC for

descending.

71

▪ Projection modifier – is specified by listing a subset of variables defined in the pattern-

matching clause.

▪ Distinct modifier – is specified by the DISTINCT keyword and filters out duplicates

from the solution sequence.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT DISTINCT ?name WHERE { ?x foaf:name ?name }

 RQ2SQL translation:

SELECT DISTINCT T0.object

FROM http___xmlns_com_foaf_0_1_name T0

▪ Reduced modifier – unlike the distinct modifiers which ensures that duplicate solutions

are eliminated from the solution sequence, the reduced modifier, specified by the

REDUCED keyword, permits them to be eliminated. The result set of a solution sequence

with a reduced modifier is at least one and at most the cardinality of the solution

sequence without the distinct and reduce modifiers.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT REDUCED ?name WHERE {

?x foaf:name ?name

}

 RQ2SQL does not support the REDUCED keyword.

▪ Offset modifier – just like SQL, the offset modifier, specified by the OFFSET keyword,

returns results of the solution sequence starting at the specified offset value. Offset value

of 0 has no effect.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name

WHERE {

?x foaf:name ?name

72

}

ORDER BY ?name

LIMIT 5

OFFSET 10

RQ2SQL translation:

SELECT TOP 5 T0.object

FROM http___xmlns_com_foaf_0_1_name T0

ORDER BY http___xmlns_com_foaf_0_1_name

Both Presto and Hive do not support the OFFSET keyword.

▪ Limit modifier – just like SQL, the LIMIT modifier puts an upper bound to the number

of solution sequences returned. A limit value of 0 would return no results. A negative

limit value is not valid.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name

WHERE {

?x foaf:name ?name

}

LIMIT 20

RQ2SQL translation:

SELECT TOP 20 T0.object

FROM http___xmlns_com_foaf_0_1_name T0

▪ The ASK query modifier – SPARQL queries specified using the ASK form test whether

or not a SPARQL query has a solution.

Given the following triples:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Michael" .

_:a foaf:homepage <http://work.example.org/michael/> .

_:b foaf:name "Mulugeta" .

_:b foaf:mbox <mailto:mulugeta@hahusoftware.com> .

73

Running the SPARQL query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

ASK { ?x foaf:name "Michael" }

 Returns the value: yes.

 RQ2SQL does not support the ASK query modifier.

9.3 RQ2SQL

RQ2SQL is a mini SPARQL to SQL compiler built using Flex – a lexical analyzer creator – and

Bison – a parser generator creator. RQ2SQL supports basic SPARQL queries including

OPTIONALS, FILTERS as well as ORDER BY, DISTINCT, projection and LIMIT modifiers.

However, it does not support UNION, ASK, named graph patterns as well as group graph

patterns. RQ2SQL generates SQL queries for the four different RDF storage schemas explained

in chapter 7 – triple, wide, horizontal, and vertical.

Translating LUBM queries to SQL

RQ2SQL was tested for correctness by compiling the 14 LUBM benchmark queries against

Presto and then comparing the result with the output generated after running same queries on

4store. This section presents selected queries from LUBM and their RQ2SQL translation for the

vertical storage scheme.

▪ Q1

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?x WHERE {

 ?x rdf:type ub:GraduateStudent.

 ?x ub:takesCourse <http://www.Department0.University0.edu/GraduateCourse0>.

}

74

Graph representation:

Figure 17 LUBM Query 1 [47]

RQ2SQL translation – for the vertical storage scheme:

SELECT T1.Subject

FROM http___www_w3_org_1999_02_22_rdf_syntax_ns_type T0

JOIN http___www_lehigh_edu__zhp2_2004_0401_univ_bench_owl_takesCourse T1

ON (T1.Subject = T0.Subject)

▪ Q4

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?x ?y1 ?y2 ?y3 WHERE {

 ?x rdf:type ub:Professor.

 ?x ub:worksFor <http://www.Department0.University0.edu>.

 ?x ub:name ?y1.

 ?x ub:emailAddress ?y2.

 ?x ub:telephone ?y3.

}

75

Graph representation:

Figure 18 LUBM Query 4 [47]

RQ2SQL translation:

SELECT T4.Subject,

 T2.Object,

 T3.Object,

 T4.Object

FROM http___www_w3_org_1999_02_22_rdf_syntax_ns_type T0

JOIN http___www_lehigh_edu__zhp2_2004_0401_univ_bench_owl_worksFor T1 ON

(T1.Subject = T0.Subject)

JOIN http___www_lehigh_edu__zhp2_2004_0401_univ_bench_owl_name T2 ON

(T2.Subject = T1.Subject)

JOIN http___www_lehigh_edu__zhp2_2004_0401_univ_bench_owl_emailAddress T3

ON (T3.Subject = T2.Subject)

JOIN http___www_lehigh_edu__zhp2_2004_0401_univ_bench_owl_telephone T4 ON

(T4.Subject = T3.Subject)

▪ Q12

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?X ?Y

WHERE {

 ?X rdf:type ub:Chair .

 ?Y rdf:type ub:Department .

 ?X ub:worksFor ?Y .

 ?Y ub:subOrganizationOf <http://www.University0.edu>

}

76

Graph representation:

Figure 19 LUBM Query 12 [47]

RQ2SQL translation:

SELECT T2.Subject,

 T3.Subject

FROM http___www_w3_org_1999_02_22_rdf_syntax_ns_type T0

JOIN http___www_w3_org_1999_02_22_rdf_syntax_ns_type T1

JOIN http___www_lehigh_edu__zhp2_2004_0401_univ_bench_owl_worksFor T2 ON

(T2.Object = T1.Subject AND T2.Subject = T0.Subject)

JOIN ttp___www_lehigh_edu__zhp2_2004_0401_univ_bench_owl_subOrganizationOf

T3 ON (T3.Subject = T2.Object)

▪ Q13

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?x WHERE {

 ?x rdf:type ub:Person.

 <http://www.University0.edu> ub:hasAlumnus ?x.

}

77

Graph representation

Figure 20 LUBM Query 13 [47]

RQ2SQL translation:

SELECT T1.Object

FROM http___www_w3_org_1999_02_22_rdf_syntax_ns_type T0

JOIN http___www_lehigh_edu__zhp2_2004_0401_univ_bench_owl_hasAlumnus T1

ON (T1.Object = T0.Subject)

▪ Q14

SELECT ?x WHERE {

 ?x rdf:type ub:UndergraduateStudent.

}

78

Graph representation:

Figure 21 LUBM Query 14 [47]

RQ2SQL translation:

SELECT T0.Subject

FROM http___www_w3_org_1999_02_22_rdf_syntax_ns_type T0

79

CHAPTER 10

BENCHMARKING PRESTO-RDF

This chapter presents the experiment and the results conducted to benchmark the performance of

Presto-RDF against Hive. A comparative measurement was also done on 4store – a native RDF

store. Overall, two experimental setups were constructed for benchmarking the performance of

Presto-RDF. The first setup was a 4-node cluster virtualized on a single 16GB memory machine.

The second setup was 8-node cluster virtualized on the Windows Azure platform. The second

setup was required because the experiments conducted used up the hard disk space and it was not

possible to run queries on triples of more than 4 million. For the experiment, four benchmark

queries from SP2Bench were used and three different RDF storage schemes were evaluated –

triple, vertical and horizontal stores.

10.1 Benchmark Queries

The experiment was based on running four benchmark queries, from SP2Bench8, with different

degrees of complexity – query 1, 6, 8, and 11. The SP2Bench use case is based on the DBLP9.

Query 1: return the year of publication of journal 1

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX bench: <http://localhost/vocabulary/bench/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?yr

WHERE {

 ?journal rdf:type bench:Journal .

 ?journal dc:title "Journal 1 (1940)"^^xsd:string .

 ?journal dcterms:issued ?yr

}

8 The reasons behind choosing SP2Bench can be found in section 5.5.
9 http://www.informatik.uni-trier.de/~ley/db/

80

Query 6: return, for each year, the set of all publications authored by persons that have not

published in years before.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX dcterms: <http://purl.org/dc/terms/>

SELECT ?yr ?name ?document

WHERE {

 ?class rdfs:subClassOf foaf:Document .

 ?document rdf:type ?class .

 ?document dcterms:issued ?yr .

 ?document dc:creator ?author .

 ?author foaf:name ?name

 OPTIONAL {

 ?class2 rdfs:subClassOf foaf:Document .

 ?document2 rdf:type ?class2 .

 ?document2 dcterms:issued ?yr2 .

 ?document2 dc:creator ?author2

 FILTER (?author=?author2 && ?yr2<?yr)

 } FILTER (!bound(?author2))

}

Query 8: Compute authors that have published with Paul Erdoes, or with an author that has

published with Paul Erdoes.

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT DISTINCT ?name

WHERE {

 ?erdoes rdf:type foaf:Person .

 ?erdoes foaf:name "Paul Erdoes"^^xsd:string .

 {

 ?document dc:creator ?erdoes .

 ?document dc:creator ?author .

 ?document2 dc:creator ?author .

 ?document2 dc:creator ?author2 .

81

 ?author2 foaf:name ?name

 FILTER (?author!=?erdoes &&

 ?document2!=?document &&

 ?author2!=?erdoes &&

 ?author2!=?author)

 } UNION {

 ?document dc:creator ?erdoes.

 ?document dc:creator ?author.

 ?author foaf:name ?name

 FILTER (?author!=?erdoes)

 }

}

Query 11: Return (up to) 10 electronic edition URLs starting from the 51th publication, in

lexicographical order.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?ee

WHERE {

 ?publication rdfs:seeAlso ?ee

}

ORDER BY ?ee

LIMIT 10

OFFSET 50

10.2 Four Node Cluster Setup

The first setup was a virtualized four node cluster on a machine with 16GB of memory and

300GB of hard disk. Each of the four virtual machines had 2GB of memory and 32GB of hard

disk. To evaluate the performance of Presto-RDF, an RDF dataset with three million (3M) triples

was generated and the four benchmark queries from section 9.1 were ran on 2-Nodes and 4-

Nodes for each of the three storage schemes - triples, vertical, and horizontal.

10.3 Loading Time for 3M Triples

Once the 3M triples were generated using the SP2Bench dataset generator, it was copied into a

specific HDFS directory. The copying took 27 seconds. After the triples data was loaded into

82

HDFS, RDF-Loader was run on the data to parse the triples and store them in the three storage

schemas - triples, vertical and horizontal storage schemes. Figure 22 shows a comparison of the

loading times.

Figure 22 Loading Time for 3M Triples

The results above measure the performance of the RDF-Loader component of Presto-RDF in

parsing and loading 3M triples for the three different storage strategies under study - triples,

vertical and horizontal. The results are in accordance with the complexity of the map-reduce

algorithms (from Chapter 7) used to parse, decompose and store the 3M triples for the three

storage strategies.

83

10.4 Benchmarking using 3M Triples

After the RDF-Loader loaded the 3M triples into HDFS and the corresponding external tables

have been created on Hive metastore, the SQL equivalent of the four benchmark queries from

section 9.1 were run on a 2-Node10 and 4-Node cluster.

10.4.1 Performance Comparison - Triples Storage Scheme11 -

Figure 23 Query Response Time [3M Triples, 2-Node Cluster, Triples Storage Scheme]

As can be seen from the chart, the query response time for 4store is very fast compared to Presto

and Hive. 4store took 0, 8, 9, and 7 seconds to respond to queries Q1, Q6, Q8, and Q11

respectively. Presto also performed much better than Hive. Hive was very slow on Query 8,

which involved UNION.

The performance results over a 4-node cluster are show below in Figure 24.

10

 Simulating a 2-Node cluster simply involves shutting down two nodes out of the four nodes.
11

 Note that 4store has no partitioning scheme and was run on a single-node cluster. The results are included in the

chart to give how well Presto and Hive perform in comparison to it.

84

Figure 24 Query Response Time [3M Triples, 4-Node Cluster, Triples Storage Scheme]

Similar behavior was observed for Presto and Hive over a 4-node cluster - Presto was much

faster than Hive. One interesting result that was observed was, as the number of nodes increase

from 2 to 4, Presto showed some improvement (i.e. speed up in query response time) while Hive

showed a delay - i.e. the query response time for Hive got longer when more nodes are added.

85

Figure 25 Effect of Node Increase on Query Performance

10.4.2 Performance Comparison - Vertical Storage Scheme

Figure 26 below show the query response time of 3M triples using the vertical storage scheme.

The results are very similar to the triples storage scheme - Presto performs much faster than

Hive. Moreover, for the same query, the vertical storage scheme has a better performance than

the triples storage scheme.

86

Figure 26 Presto vs. Hive using the Vertical Storage Scheme

The results for the vertical storage scheme show that, once again, Presto performed much faster

than Hive. Moreover, the node increase from 2 to 4 also increased the performance of Presto but

not Hive.

10.4.3 Performance Comparison - Horizontal Storage Scheme

Figure 27 shows the performance comparison of Presto and Hive for the horizontal storage

scheme. Once again, Presto has a better performance than Hive. For queries that does not involve

UNIONs (Q1, Q6, and Q11), the performance of Presto over Hive was not as significant as it

was for the triples and vertical storage schemes.

87

Figure 27 Presto vs. Hive using the Horizontal Storage Scheme

The results for the vertical storage scheme show that, once again, Presto performed much faster

than Hive. Moreover, the node increase from 2 to 4 also increased the performance of Presto but

not Hive.

10.4.4 Comparison of Triples, Vertical and Horizontal Storage Schemes

Figure 28 below shows the performance comparison of the three storage schemes for Presto and

Hive over a 4 node cluster. The results indicate that the vertical storage scheme outperforms both

the triples and horizontal storage schemes on both Presto and Hive. For queries Q1, Q8 and Q11,

the horizontal storage scheme has a slightly better performance than the triples storage scheme.

88

Figure 28 Performance Comparison of the Three Storage Schemes on Presto

Figure 29 Performance Comparison of the Three Storage Schemes on Hive

89

10.5 Benchmarking Presto-RDF using 10, 20, and 30M Triples

The second experimental setup that was conducted involved setting up four and eight node

clusters on Microsoft Windows Azure Platform. Each node in the cluster had a 2-core x86-64

processor, 14GB of memory, and 1TB of hard disk. Measurements were conducted for the four

benchmark queries listed in section 9.1 for 10, 20, and 30 million triples.

10.5.1 Loading Time

Once the RDF dataset is copied into HDFS, the RDF-Loader will parse and run a map-reduce job

to convert the raw dataset to a structured dataset based on three storage schemas – triple-store,

vertical and horizontal. The results of the measurement are shown in Figure 30 below.

Figure 30 Loading Time of RDF Triples

90

The performance of the RDF-loader has a linear relationship with the size of the triples. The

horizontal store map-reduce algorithm always took much longer time than the triple-store and

vertical store schemes.

10.5.2 Evaluation Result for Q1

The equivalent SQL translations of SPARQL Q1 for the three storage schemes are given below.

Q1 Triple-store SQL:

SELECT

 T3.Object AS yr

FROM Triples T1

 JOIN Triples T2 ON T1.subject = T2.subject

 JOIN Triples T3 ON T1.subject = T3.subject

WHERE

 T1.Predicate = '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>'

 AND T2.Predicate = '<http://purl.org/dc/elements/1.1/title>'

 AND T3.Predicate = '<http://purl.org/dc/terms/issued>'

 AND T1.Object = '<http://localhost/vocabulary/bench/Journal>'

 AND T2.Object = '"Journal 1 (1940)"^^<http://www.w3.org/2001/XMLSchema#string>'

;

Q1 vertical-store SQL:

SELECT

 T3.Object AS yr

FROM http___www_w3_org_1999_02_22_rdf_syntax_ns_type T1

 JOIN http___purl_org_dc_elements_1_1_title T2 ON T1.subject = T2.subject

 JOIN http___purl_org_dc_terms_issued T3 ON T1.subject = T3.subject

WHERE

 T1.Object = '<http://localhost/vocabulary/bench/Journal>'

 AND T2.Object = '"Journal 1 (1940)"^^<http://www.w3.org/2001/XMLSchema#string>'

;

Q1 horizontal-store SQL:

SELECT

 T.dcterms_issued AS yr

FROM HorizontalTable T

WHERE

91

 T.rdf_type = '<http://localhost/vocabulary/bench/Journal>'

 AND T.dc_title = '"Journal 1 (1940)"^^<http://www.w3.org/2001/XMLSchema#string>'

;

The result of running the above queries on Presto for a 4-node and 8-node cluster setup are

shown in the figures below.

Figure 31 Performance of Q1 over a 4-Node Cluster

For Q1, the vertical and horizontal stores have a much better performance than the triple-store

scheme. This can be explained by looking into the SQL translations of the vertical and horizontal

storage schemes – which have lesser rows involved in JOINs. This fact remains true when the

number of nodes is increased from 4 to 8 – Figure 32.

92

Figure 32 Performance of Q1 over 8-Node Cluster

For Q1, increasing number of nodes resulted in performance improvement for the three storage

schemes. See Figure 33 below.

93

Figure 33 Effect of Node Increase on Presto for Q1

Presto vs. Hive:

Compared to Hive, Presto once again has a much higher performance. Figure 34 shows a

comparison of Presto and Hive for 30M triples.

94

Figure 34 Q1 Performance [30M Triples over 8-Node Cluster]

10.5.3 Evaluation Result for Q6

The SQL translations for Q6, unlike Q1, involve multiple JOINs for each of the three storage

schemes and are given in Appendix A. The results of the evaluation on a 4-node and 8-node

cluster are shown in Figure 35 and 36 below.

95

Figure 35 Q6 Performance on Presto with 4 Nodes

Figure 36 Q6 Performance on Presto with 8 Nodes

96

The results of the evaluation above (Figure 35 and 36) indicate that the performance increased

with increase in the number of nodes – see Figure 37 below. The vertical store, again, has a

much better performance than the triple-store and horizontal store. Unlike Q1, however, where

the horizontal store had a slightly better performance than the triple-store, the triple-store in Q6

had a slightly better performance than the horizontal store, especially as the size of the triples

increases. This result can be explained by the fact that the horizontal store SQL for Q6, unlike

the triple-store, involves multiple selections before making JOINs.

Figure 37 Effect of Node Increase on Presto for Q6 with 30M Triples

For Hive, unlike Presto, as the number of nodes was increased there was a drop in performance –

which can be attributed to increase in replication across nodes and disk I/O operations – see

figure 38 below.

97

Figure 38 Effect of Node Increase on Hive for Q6 with 30M Triples

Presto vs. Hive: For Q6 as well, Presto has a much higher performance than Hive – see Figure

39 below.

98

Figure 39 Presto vs. Hive for 30M Triples over 8-Node Cluster

10.5.4 Evaluation Result for Q8

The SQL translations for Q8 involve multiple JOINs (just as the case were in Q6) and a UNION

– see Appendix A. The results have the same behavior as Q6 – the vertical store has a much

better performance than the triple-store and horizontal stores, and Presto has a much higher

performance than Hive.

99

Figure 40 Q8 Performance, on Presto with 4 Nodes

10.5.5 Evaluation Result for Q11

The SQL translations for Q11 involve a simple select with an ORDER BY and LIMIT clauses.

Q11 Triple-store SQL:

SELECT

 T.Object AS ee

FROM

 Triples T

WHERE

 T.Predicate='<http://www.w3.org/2000/01/rdf-schema#seeAlso>'

ORDER BY ee

LIMIT 10

;

100

Q11 Vertical-store SQL:

SELECT

 T.Object AS ee

FROM

 http___www_w3_org_2000_01_rdf_schema_seeAlso T

ORDER BY ee

LIMIT 10

;

Q11 Horizontal-store SQL:

SELECT

 T1.rdfs_seeAlso AS ee

FROM

 HorizontalTable T1 WHERE T1.rdfs_seeAlso != 'null'

ORDER BY ee

LIMIT 10

;

Figure 41 below shows the results of running the above queries over 10, 20 and 30M triples.

Figure 41 Q11 Performance, on Presto with 4 Nodes

101

Because Q11 involves just one table which has less number of rows for the vertical and

horizontal storage schemes than the triple-store (which is one table), the results shown above are

expected.

For 8 nodes, there is a performance improvement – see Figure 42 below.

Figure 42 Q11 Performance, on Presto with 8 Nodes

Presto vs. Hive:

Compared to Hive, Presto again has a much higher performance – see Figure 43 below.

102

 Figure 43 Presto vs. Hive, 30M Triples on 8-Node Cluster

103

CHAPTER 11

RELATED WORK

This chapter presents a review of selected research papers that propose and evaluate different

distributed SPARQL query engines. It also presents a review of two systems, Apache Spark and

Cloudera Impala, which are similar to Facebook Presto. Research papers that propose and

evaluate different RDF storage schemes have already been discussed in chapters 4 and 5.

11.1 Distributed SPARQL

[56] proposes a distributed SPARQL query engine based on Jena ARQ [57]. The query engine

extends Jena ARQ and makes it distributed across a cluster of machines. The extension involves

re-designing some parts of Jena ARQ. Document indexing and pre-computation joins were also

used to optimize the design. The results of the experiments that were conducted showed that the

distributed query engine scaled well with the size of RDF data but its overall performance was

very poor. The query engine, unlike Facebook Presto, uses MapReduce.

Marcello Leida et al. [58] propose a query processing architecture that can be used to efficiently

process RDF graphs that are distributed over a local data grid. The architecture has no single

point of failure and no specialized nodes – which is a different than Hadoop. The paper proposes

a sophisticated non-memory query planning and execution algorithm based on streaming RDF

triples. Presto uses a distributed in-memory query processing algorithm.

Xin Wang et al. [59] discuss how the performance of a distributed SPARQL query processing

can be optimized by applying methods from graph theory. They propose a Minimum-Spanning-

Tree-based (MST-based) algorithm for distributed SPARQL processing. The results of their

experiment show that a distributed SPARQL processing engine based on MST-based algorithms

performs much better than other non-graph traversal algorithms. Because this thesis translates a

104

SPARQL query into its equivalent SQL query, the query optimization that is done by Presto is

for the SQL query and not for the SPARQL query.

[60] proposes a distributed RDF query processing engine based on a message passing. The

engine uses in-memory data structures to store indices for data blocks and dictionaries. Just like

Presto, the query processing engine avoids disk I/O operations. The authors experimented their

design over several types of SPARQL queries and were able to get a significant performance

gain (as compared to Hadoop).

11.2 Apache Spark and Cloudera Impala

Apache Spark [61] and Cloudera Impala [62] are two open-sources systems that are very similar

to Facebook Presto. Both Apache Spark and Cloudera Impala offer in-memory processing of

queries over a cluster of machines.

According to Apache, Apache Spark is a “fast and general engine for large-scale data

processing”. Spark uses advanced Directed Acyclic Graph (DAG) execution engine with cyclic

data flow and in-memory processing to run programs up to 100 (for in-memory processing

mode) or 10 times faster (for disk processing mode) than Hadoop MapReduce [61]. Apache

Spark became an Apache top-level project in February 2014.

Cloudera Impala is an open-source massively parallel processing (MPP) engine for data stored in

HDFS. Cloudera Impala is based on Cloudera’s Distribution for Hadoop (CDH) and benefits

from Hadoop’s key features – scalability, flexibility, and fault tolerance. Cloudera Impala, just

like Presto, uses Hive Metastore to store the metadata information of directories and files in

HDFS [62]. Cloudera Impala became available in May 2013.

105

CHAPTER 12

CONCLUSION AND FUTURE WORK

This thesis presented a comparative analysis of big RDF data using Presto, which uses in-

memory query processing engine, and Hive, which uses MapReduce to evaluate SQL queries.

The thesis also proposed a Presto-based architecture, Presto-RDF, that can be used to store and

process big RDF data.

12.1 Conclusion

From the experiments conducted, the following conclusions can be drawn:

- 4store has a much higher performance than Presto and Hive for small data sets. For

bigger data sets (10M, 20M and 30M triples), however, 4store was simply unable to

process the data and crashed. This is true when Presto, Hive and 4store are all tested with

single-node setups.

- For all queries, Presto has a much higher performance than Hive.

- The vertical storage scheme has a consistent performance advantage than both the triple-

store or horizontal storage schemes.

- As the size of data increases, the horizontal storage scheme performed relatively better

than the triple-store scheme. This is unlike the articles reviewed during this thesis, which

ignore the horizontal scheme as being not efficient (because it has many null values).

- Increasing the number of nodes improved query performance in Presto but not in Hive.

This can be explained by the fact that Hive replicates data across clusters and does IO

operations – which increase as the size of nodes increase.

106

12.2 Hypotheses Revisited

Revisiting the hypotheses from Chapter 1, we can conclude:

- As the size of RDF data increases to big-data levels, RDF stores based on Hadoop

outperform native RDF stores like 4store.

This is a true hypothesis if qualified like the below:

As the size of RDF data increases to big-data levels, RDF stores based on Hadoop

outperform native RDF store, 4store, for a single-node setup.

- Distributed in-memory query processing engines deliver faster response time on big

RDF datasets than query processing engines that rely on MapReduce.

This hypothesis holds true.

- Vertical partitioning scheme for RDF data gives better performance than other RDF

storage schemes on Hive.

This hypothesis holds true.

- Increasing number of processing nodes dramatically improves query performance.

This hypothesis, as stated, and according to the experiments conducted, is false. But it

holds true for Presto if the qualification “dramatically” is removed.

12.3 Contributions

This thesis is unique in the following respects:

- It uses a distributed in-memory query execution model, based on Presto, to evaluate the

performance of SPARQL queries over big RDF data.

- It demonstrates the use of a SPARQL to SQL compiler based on Flex and Bison. The

compiler is also unique in that it generates SQL for the three storage schemes discussed

in this thesis – triple-store, vertical and horizontal.

107

- Publishes the result of the query performance of a horizontal storage scheme, which had

a better performance than the triple-store as the size of data increases. No published

results were found on the horizontal storage scheme during the literature review.

- The RDF-Loader component of Presto-RDF uses map-reduce to load RDF data into the

different storage structures and the implementation is available.

12.4 Future Work

There are a number of areas that a future researcher can work on to extend this thesis:

- This thesis used a single benchmark, SP2Bench, which has a limitation of being “not

realistic”. Hence, one can extend the work by experimenting on different benchmarks

based on the proposal made in Chapter 6, section 5.

- There are different optimization techniques that can be applied to the three storage

schemas as well as to the RDF data directly. In this thesis, the RDF data is stored as a text

file, which is not optimal. A researcher can test using RCFILE, ORC, and AVRO

formats, which are better optimized than text file.

- Presto is an open-source project whose implementation can be download for free GitHub.

https://github.com/facebook/presto. In this thesis, a SPARQL to SQL compiler was built

because Presto does not support SPARQL. A project that extends Presto to have a direct

support for SPARQL would be nice.

https://github.com/facebook/presto

108

REFERENCES

[1] T. Berners-Lee, J. Hendler, and O. Lassila. “The Semantic Web”, May 2001

[2] Nigel Shadbolt, Wendy Hall, Tim Berners-Lee "The Semantic Web Revisited", 2007

[3] linkeddata.org, "Linked Data - Connect Distributed Data across the Web", 2014

[4] Dean Allemang, "Semantic Web for the Working Ontologist: Effective Modeling in

RDFS and OWL", May 2008

[5] Ora Lassila, Ralph R. Swick, "Resource Description Framework (RDF) Model and

Syntax Specification No. REC-rdf-syntax-19990222.", 1999

[6] D. Brickley, R. V. Guha, "RDF Vocabulary Description Language 1.0: RDF Schema",

February 2004

[7] J.A. Hendler, “Frequently Asked Questions on W3C’s Web Ontology Language (OWL),”

W3C, 2004; www.w3.org/2003/08/owlfaq

[8] T. Berners-Lee, R.T.Fielding, and L.Masinter, "Uniform Resource Identifier (URI:

Generic Syntax", IETF RFP 3986 (standards strack), Internet Eng. Task Force, Jan. 2005:

www.ietf.org/rfc/rfc3986.txt

[9] World Wide Web Consortium (W3C), "Using Qualified Names (QNames) as Identifiers

in XML Content", TAG Finding 17 March 2004,

http://www.w3.org/2001/tag/doc/qnameids-2004-03-17

[10] World Wide Web Consortium (W3C), "RDF Schema 1.1, W3C Recommendation" 25

February 2014, http://www.w3.org/TR/rdf-schema/

[11] World Wide Web Consortium (W3C), "Media Types Issues for Text RDF Formats",

January 2008, http://www.w3.org/2008/01/rdf-media-types

[12] World Wide Web Consortium (W3C), "RDF/XML Syntax Specification (Revised)",

W3C Recommendation 10 February 2004, http://www.w3.org/TR/REC-rdf-syntax/

[13] World Wide Web Consortium (W3C), "Turtle – Terse RDF Triple Language". 10 July

2012. Retrieved 20 November 2012.

http://www.w3.org/2003/08/owlfaq
http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/2001/tag/doc/qnameids-2004-03-17
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/2008/01/rdf-media-types
http://www.w3.org/TR/REC-rdf-syntax/

109

[14] World Wide Web Consortium (W3C), "SPARQL Query Language for RDF", 2006

[15] IBM, "What is big data?", http://www-01.ibm.com/software/data/bigdata/what-is-big-

data.html, 2014

[16] Microsoft, "The Big Bang: How the Big Data Explosion is Chaning the World", April

2013

[17] John Weathington, "Big Data defined", September 2012

[18] Edd Dumbill, "What is big data? An introduction to the big data landscape", January

2012

[19] Bernard Marr, "Big Data - The 5 Vs Everyone Must Know", Feb 28, 2014

[20] Apache Hadoop Project, "What is Apache Hadoop?” , hadoop.apache.org, 2014

[21] Apache Hadoop Project, "HDFS Architecture Guide", 2008

[22] Dhruba Borthakur, "The Hadoop Distributed File System: Architecture and Design",

2008

[23] Jeffery Dean, Sanjay Ghemawat, "MapReduce: Simplified Data Processing on Large

Clusters", Communications of the ACM, 2008

[24] M.A. Bornea, J. Dolby, A. Kementsietsidis, K. Srinivas, P. Dantressangle, O. Udrea,

and B. Bhattacharjee, “Building an efficient rdf store over a relational database,” in

Proceedings of the 2013 international conference on Management of data. ACM, 2013,

pp. 121–132.

[25] 4store.org, “4store, an efficient, scalable and stable rdf database,”

http://www.4store.org/, 2014

[26] K. Wilkinson, C. Sayers, H. A. Kuno, D. Reynolds et al., “Efficient rdf storage and

retrieval in jena2.” in SWDB, vol. 3, 2003, pp. 131–150

[27] Jeen Broekstra, Arjohn Kampman, Frank van Harmelen, "Sesame: A Generic

Architecture for Storing and Querying RDF and RDF Schema", June 2002

[28] Stephen Harris, Nicholas Gibbins, "3store: Efficient Bulk RDF Storage", 2003

http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
http://www.4store.org/

110

[29] Albert Haque, Lynette Perkins, "Distributed RDF Triple Store Using HBase and Hive",

December 2012

[30] AllegroGraph, "Semantic Graph Technologies", http://franz.com/agraph/allegrograph,

2014

[31] Kiyoshi Nitaa, Iztok Savnik, "Survey of RDF storage Managers", 2010

[32] Y. Theoharis, V. Christophides, and G. Karvounarakis. "Benchmarking database

representations of RDF/S stores”. In Proc. of ISWC, 2005

[33] David C. Faye, Olivier Cure, Guillaume Blin. "A survey of RDF storage approaches".

February 2012

[34] Philippe Cudre-Mauroux, LLiya Enchev, Sever Fundatureanu, Paul Groth, Albert

Haque, Andreas Harth, Felix Leif Keppmann, Daniel Miranker, Juan F. Sequeda,

Marcin Wylot. "NoSQL Databases for RDF: An Empirical Evaluation", 12th

International Semantic Web Conference, Sydney, NSW, Australia, October 21-25, 2013,

Proceedings, Part II

[35] Nancy Lynch and Seth Gilbert, “Brewer's conjecture and the feasibility of consistent,

available, partition-tolerant web services”, ACM SIGACT News, Volume 33 Issue 2

(2002), pg. 51-59.

[36] Gunter Ladwig and Andreas Harth. "CumulusRDF: Linked Data Management on

Nested Key-Value Stores", 2011

[37] F. Chang, J. Dean, S. Ghemawat, WC Hsieh "Bigtable: A distributed system for

structured data", ACM Transactions on Computer Systems archive Volume 26 Issue 2,

June 2008

[38] A. hetrapal and V. Ganesh, “Hbase and hypertable for large scale distributed storage

systems,” http://www.uavindia.com/ankur/downloads/HypertableHBaseEval2.pdf, 2006

[39] Ian Robinson and Jim Webber, "Graph Databases", June 20, 2013

[40] Andreas Harth, Katja Hose Ralf Schenkel, "Linked Data Management", 2014

[41] Sherif Sakr and Ghazi Al-Naymat, "Relational Processing of RDF Queries: A Survey",

2009

http://franz.com/agraph/allegrograph

111

[42] Yongming Luo, Fran¸cois Picalausa, George H.L. Fletcher, Jan Hidders, and Stijn

Vansummeren. Storing and indexing massive RDF datasets. Springer Berlin Heidelberg,

2012

[43] Daniel J. Abadi, Adam Marcus and Samuel R. Madden "Scalable Semantic Web Data

Management Using Vertical Partitioning". 2007

[44] DBpedia, http://www.dbpedia.org, 2014

[45] Mohamed Morsey, Jens Lehmann, Soren Auer, and Axel-Cyrille Ngona Ngomo,

"DBpedia SPARQL Benchmark - Performance Assessment with Real Queries on Real

Data", Springer, 2011

[46] Yuanbo Guo, Zhengxiang Pan, Jeff Heflin. "LUBM: A benchmark for OWL knowledge

base systems", October 2005

[47] The Lehigh University Benchmark (LUBM), http://swat.cse.lehigh.edu/projects/lubm,

2014

[48] Christian Bizer and Andreas Schultz, "The Berlin SPARQL Benchmark", 2009

[49] The Berlin SPARQL Benchmark, http://wifo5-03.informatik.uni-

mannheim.de/bizer/berlinsparqlbenchmark/, 2014

[50] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SP2Bench: A SPARQL

Performance Benchmark. In Proceedings of the 25th International Conference on Data

Engineering, pages 222–233, Shanghai, 2009.

[51] SP2Bench, http://dbis.informatik.uni-freiburg.de/forschung/projekte/SP2B/, 2014

[52] S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea. “Apples and Oranges: A

Comparison of RDF Benchmarks and Real RDF Datasets” 2011.

[53] Facebook, "Presto: Interacting with petabytes of data at Facebook",

https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-

petabytes-of-data-at-facebook/10151786197628920, 2014

[54] Apache Hive Project, "Apache Hive", http://hive.apache.org, 2014

[55] Thusoo,A., Sarma, J.s., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff,

P., and Murthy, R. “Hive, a warehousing solution over a Map-Reduce framework”, 2009

http://www.dbpedia.org/
http://swat.cse.lehigh.edu/projects/lubm
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
http://dbis.informatik.uni-freiburg.de/forschung/projekte/SP2B/
https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920
https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920
http://hive.apache.org/

112

[56] Prasad Kulkarni “Distributed SPARQL query engine using MapReduce”, Univerisity of

Edinburgh, 2010.

[57] ARQ - A SPRQL Processor for Jena, http://jena.apache.org/documentation/query/, 2014

[58] Marcello Leida, Andrej Chu, "Distributed SPARQL query answering over RDF data

streams", IEEE International Congress on Big Data, 2013

[59] Xin Wang, Thanassis Tiropanis, and Hugh C. Davis, "Evaluating Graph Traversal

Algorithms for Distributed SPARQL Query Optimization", Springer-Verlag Berlin

Heidelberg 2012

[60] Arnab Kumar Dutta "A Distributed In-Memory SPARQL QUery Processor based on

Message Passing", Universitat des Saarlandes Max-Planck-Institut fur Informatik, July

2012

[61] Apache Software Foundation, https://spark.apache.org/, 2014

[62] Cloudera, http://www.cloudera.com, 2014

http://jena.apache.org/documentation/query/
https://spark.apache.org/
http://www.cloudera.com/

113

APPENDIX A

SQL TRANSLATIONS OF THE BENCHMARK QUERIES

114

Q1 – Triple-store

SELECT

 T3.Object AS yr

FROM Triples T1

 JOIN Triples T2 ON T1.subject = T2.subject

 JOIN Triples T3 ON T1.subject = T3.subject

WHERE

 T1.Predicate = '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>'

 AND T2.Predicate = '<http://purl.org/dc/elements/1.1/title>'

 AND T3.Predicate = '<http://purl.org/dc/terms/issued>'

 AND T1.Object = '<http://localhost/vocabulary/bench/Journal>'

 AND T2.Object = '"Journal 1 (1940)"^^<http://www.w3.org/2001/XMLSchema#string>'

;

Q6 – Triple-store

SELECT

 X.yr AS yr,

 X.name AS name,

 X.document AS document

FROM (SELECT

 T1.subject AS class,

 T2.Subject AS document,

 T3.Object AS yr,

 T4.Object AS author,

 T5.Object AS name

 FROM Triples T1

 JOIN Triples T2 ON T1.subject = T2.object

 JOIN Triples T3 ON T3.subject = T2.subject

 JOIN Triples T4 ON T4.subject = T3.subject

 JOIN Triples T5 ON T5.subject = T4.object

 WHERE

 T1.Predicate = '<http://www.w3.org/2000/01/rdf-schema#subClassOf>'

 AND T2.Predicate = '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>'

 AND T3.Predicate = '<http://purl.org/dc/terms/issued>'

 AND T4.Predicate = '<http://purl.org/dc/elements/1.1/creator>'

 AND T5.Predicate = '<http://xmlns.com/foaf/0.1/name>'

 AND T1.Object = '<http://xmlns.com/foaf/0.1/Document>') X

 LEFT JOIN (SELECT

 T1.subject AS class,

 T2.Subject AS document,

 T3.Object AS yr,

 T4.Object AS author

 FROM Triples T1

115

 JOIN Triples T2 ON T1.subject = T2.object

 JOIN Triples T3 ON T3.subject = T2.subject

 JOIN Triples T4 ON T4.subject = T3.subject

 WHERE

 T1.Predicate = '<http://www.w3.org/2000/01/rdf-schema#subClassOf>'

 AND T2.Predicate = '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>'

 AND T3.Predicate = '<http://purl.org/dc/terms/issued>'

 AND T4.Predicate = '<http://purl.org/dc/elements/1.1/creator>'

 AND T1.Object = '<http://xmlns.com/foaf/0.1/Document>') Y ON X.author = Y.author

;

Q8 – Triple-store

SELECT DISTINCT

 name

FROM Triples T1

 JOIN Triples T2 ON T1.subject = T2.subject

 JOIN (SELECT

 name,

 erdoes

 FROM (SELECT

 T5.Object AS name,

 T3.object AS erdoes

 FROM Triples T3

 JOIN Triples T4 ON T3.subject = T4.subject

 JOIN Triples T5 ON T4.object = T5.subject

 WHERE

 T3.Predicate = '<http://purl.org/dc/elements/1.1/creator>'

 AND T4.Predicate = '<http://purl.org/dc/elements/1.1/creator>'

 AND T5.Predicate = '<http://xmlns.com/foaf/0.1/name>'

 AND NOT T3.object = T4.object) X

 UNION ALL

 SELECT

 T7.Object AS name,

 T3.object AS erdoes

 FROM Triples T3

 JOIN Triples T4 ON T3.subject = T4.subject

 JOIN Triples T5 ON T4.object = T5.object

 JOIN Triples T6 ON T5.subject = T6.subject

 JOIN Triples T7 ON T6.object = T7.subject

 WHERE

 T3.Predicate = '<http://purl.org/dc/elements/1.1/creator>'

 AND T4.Predicate = '<http://purl.org/dc/elements/1.1/creator>'

 AND T5.Predicate = '<http://purl.org/dc/elements/1.1/creator>'

 AND T6.Predicate = '<http://purl.org/dc/elements/1.1/creator>'

116

 AND T7.Predicate = '<http://xmlns.com/foaf/0.1/name>'

 AND NOT T4.object = T3.object

 AND NOT T5.subject = T3.subject

 AND NOT T6.object = T3.object

 AND NOT T4.object = T6.object) Y ON T2.subject = Y.erdoes

WHERE

 T1.Predicate = '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>'

 AND T2.Predicate = '<http://xmlns.com/foaf/0.1/name>'

 AND T1.Object = '<http://xmlns.com/foaf/0.1/Person>'

 AND T2.Object = '"Paul Erdoes"^^<http://www.w3.org/2001/XMLSchema#string>'

;

Q11 – Triple-store

SELECT

 T.Object AS ee

FROM

 Triples T

WHERE

 T.Predicate='<http://www.w3.org/2000/01/rdf-schema#seeAlso>'

ORDER BY ee

LIMIT 10

;

Q1 – Vertical Scheme

SELECT

 T3.Object AS yr

FROM http___www_w3_org_1999_02_22_rdf_syntax_ns_type T1

 JOIN http___purl_org_dc_elements_1_1_title T2 ON T1.subject = T2.subject

 JOIN http___purl_org_dc_terms_issued T3 ON T1.subject = T3.subject

WHERE

 T1.Object = '<http://localhost/vocabulary/bench/Journal>'

 AND T2.Object = '"Journal 1 (1940)"^^<http://www.w3.org/2001/XMLSchema#string>'

;

Q6 – Vertical Scheme

SELECT

 X.yr AS yr,

 X.name AS name,

 X.document AS document

FROM (SELECT

 T1.Subject AS class,

 T2.Subject AS document,

117

 T3.Object AS yr,

 T4.Object AS author,

 T5.Object AS name

 FROM http___www_w3_org_2000_01_rdf_schema_subClassOf T1

 JOIN http___www_w3_org_1999_02_22_rdf_syntax_ns_type T2 ON T1.subject =

T2.object

 JOIN http___purl_org_dc_terms_issued T3 ON T3.subject = T2.subject

 JOIN http___purl_org_dc_elements_1_1_creator T4 ON T4.subject = T3.subject

 JOIN http___xmlns_com_foaf_0_1_name T5 ON T4.object = T5.subject

 WHERE

 T1.Object = '<http://xmlns.com/foaf/0.1/Document>') AS X

 LEFT JOIN (SELECT

 T1.Subject AS class,

 T2.Subject AS document,

 T3.Object AS yr,

 T4.Object AS author

 FROM http___www_w3_org_2000_01_rdf_schema_subClassOf T1

 JOIN http___www_w3_org_1999_02_22_rdf_syntax_ns_type T2 ON T1.subject =

T2.object

 JOIN http___purl_org_dc_terms_issued T3 ON T3.subject = T2.subject

 JOIN http___purl_org_dc_elements_1_1_creator T4 ON T4.subject = T3.subject

 WHERE

 T1.Object = '<http://xmlns.com/foaf/0.1/Document>') AS Y ON X.author = Y.author

;

Q8 – Vertical Scheme

SELECT DISTINCT

 name

FROM http___www_w3_org_1999_02_22_rdf_syntax_ns_type T1

 JOIN http___xmlns_com_foaf_0_1_name T2 ON T1.subject = T2.subject

 JOIN (SELECT

 name,

 erdoes

 FROM (SELECT

 T3.Object AS name,

 T4.object AS erdoes

 FROM http___purl_org_dc_elements_1_1_creator T4

 JOIN http___purl_org_dc_elements_1_1_creator T5 ON T4.subject = T5.subject

 JOIN http___xmlns_com_foaf_0_1_name T3 ON T5.object = T3.subject

 WHERE

 NOT T4.object = T5.object) AS L

 UNION ALL

 SELECT

 T3.Object AS name,

118

 T4.object AS erdoes

 FROM http___purl_org_dc_elements_1_1_creator T4

 JOIN http___purl_org_dc_elements_1_1_creator T5 ON T4.subject = T5.subject

 JOIN http___purl_org_dc_elements_1_1_creator T6 ON T5.object = T6.object

 JOIN http___purl_org_dc_elements_1_1_creator T7 ON T6.subject = T7.subject

 JOIN http___xmlns_com_foaf_0_1_name T3 ON T7.object = T3.subject

 WHERE

 NOT T5.object = T4.object

 AND NOT T6.subject = T4.subject

 AND NOT T7.object = T4.object

 AND NOT T5.object = T7.object) AS R ON T2.subject = R.erdoes

WHERE

 T1.Object = '<http://xmlns.com/foaf/0.1/Person>'

 AND T2.Object = '"Paul Erdoes"^^<http://www.w3.org/2001/XMLSchema#string>'

;

Q11 – Vertical Scheme

SELECT

 T.Object AS ee

FROM

 http___www_w3_org_2000_01_rdf_schema_seeAlso T

ORDER BY ee

LIMIT 10

;

Q1 – Horizontal Scheme

SELECT

 T.dcterms_issued AS yr

FROM HorizontalTable T

WHERE

 T.rdf_type = '<http://localhost/vocabulary/bench/Journal>'

 AND T.dc_title = '"Journal 1 (1940)"^^<http://www.w3.org/2001/XMLSchema#string>'

;

Q6 – Horizontal Scheme

SELECT

 X.yr AS yr,

 X.name As name,

 X.document As document

119

FROM

 (

 SELECT T4.dc_creator As author, T3.dcterms_issued AS yr, T5.foaf_name AS name,

T1.rdfs_subClassOf As document

 FROM

 (SELECT Subject, rdfs_subClassOf FROM HorizontalTable WHERE rdfs_subClassOf =

'<http://xmlns.com/foaf/0.1/Document>') T1

 JOIN (SELECT Subject, rdf_type FROM HorizontalTable WHERE rdf_type != 'null') T2

ON T2.rdf_type = T1.Subject

 JOIN (SELECT Subject, dcterms_issued FROM HorizontalTable WHERE

dcterms_issued != 'null') T3 ON T3.Subject = T2.Subject

 JOIN (SELECT Subject, dc_creator FROM HorizontalTable WHERE dc_creator !=

'null') T4 ON T4.Subject = T3.Subject

 JOIN (SELECT Subject, foaf_name FROM HorizontalTable WHERE foaf_name !=

'null') T5 ON T5.Subject = T4.dc_creator

) X

 LEFT JOIN

 (

 SELECT T4.dc_creator AS author, T3.dcterms_issued AS yr

 FROM

 (SELECT Subject, rdfs_subClassOf FROM HorizontalTable WHERE rdfs_subClassOf =

'<http://xmlns.com/foaf/0.1/Document>') T1

 JOIN (SELECT Subject, rdf_type FROM HorizontalTable WHERE rdf_type != 'null') T2

ON T2.rdf_type = T1.Subject

 JOIN (SELECT Subject, dcterms_issued FROM HorizontalTable WHERE

dcterms_issued != 'null') T3 ON T3.Subject = T2.Subject

 JOIN (SELECT Subject, dc_creator FROM HorizontalTable WHERE dc_creator !=

'null') T4 ON T4.Subject = T3.Subject

) Y

 ON X.author = Y.author

;

Q8 – Horizontal Scheme

SELECT DISTINCT

 name

FROM

 (SELECT Subject, rdf_type FROM HorizontalTable WHERE rdf_type =

'<http://xmlns.com/foaf/0.1/Person>') T1

 JOIN (SELECT Subject, foaf_name FROM HorizontalTable WHERE foaf_name = '"Paul

Erdoes"^^<http://www.w3.org/2001/XMLSchema#string>') T2 ON T1.Subject = T2.Subject

 JOIN

 (

 SELECT

 name,

120

 erdoes

 FROM

 (

 SELECT

 T7.foaf_name AS name,

 T3.dc_creator AS erdoes

 FROM

 (SELECT Subject, dc_creator FROM HorizontalTable WHERE dc_creator != 'null')

T3

 JOIN (SELECT Subject, dc_creator FROM HorizontalTable WHERE dc_creator !=

'null') T4 ON T4.Subject = T3.Subject

 JOIN (SELECT Subject, dc_creator FROM HorizontalTable WHERE dc_creator !=

'null') T5 ON T5.dc_creator = T4.dc_creator

 JOIN (SELECT Subject, dc_creator FROM HorizontalTable WHERE dc_creator !=

'null') T6 ON T6.Subject = T5.Subject

 JOIN (SELECT Subject, foaf_name FROM HorizontalTable WHERE foaf_name !=

'null') T7 ON T7.Subject = T6.dc_creator

 WHERE

 T4.dc_creator != T3.dc_creator AND T5.Subject != T3.Subject AND T6.dc_creator !=

T3.dc_creator AND T6.dc_creator != T4.dc_creator

) X

 UNION ALL

 SELECT

 T10.foaf_name AS name,

 T8.dc_creator As erdoes

 FROM

 (SELECT Subject, dc_creator FROM HorizontalTable WHERE dc_creator != 'null')

T8

 JOIN (SELECT Subject, dc_creator FROM HorizontalTable WHERE dc_creator !=

'null') T9 ON T9.Subject = T8.Subject

 JOIN (SELECT Subject, foaf_name FROM HorizontalTable WHERE foaf_name !=

'null') T10 ON T10.Subject = T9.dc_creator

 WHERE

 T9.dc_creator != T8.dc_creator

) Y ON T2.Subject = Y.erdoes

;

Q11 – Horizontal Scheme

SELECT

 T1.rdfs_seeAlso AS ee

FROM

 HorizontalTable T1 WHERE T1.rdfs_seeAlso != 'null'

121

ORDER BY ee

LIMIT 10

;

122

APPENDIX B

LEX FILE FOR THE RQ2SQL COMPILER

123

/***

*

* Tool: Sparql to Sql Compiler

* version: 1.0

* Author: Mulugeta Mammo

* Date: September 2014

*

**/

%{

#include <cstdio>

#include <iostream>

#include "rq2sql.tab.h"

%}

%option case-insensitive

%%

"SELECT" return T_SELECT;

"DISTINCT" return T_DISTINCT;

"WHERE" return T_WHERE;

"PREFIX" return T_PREFIX;

"FILTER" return T_FILTER;

"UNION" return T_UNION;

"OPTIONAL" return T_OPT;

"ORDER BY" {

 yylval.s = strdup(yytext);

 return T_ORDER_BY;

 }

"ASC" {

 yylval.s = strdup(yytext);

 return T_ASC;

 }

"DESC" {

 yylval.s = strdup(yytext);

 return T_DESC;

 }

"LIMIT" {

 yylval.s = strdup(yytext);

 return T_LIMIT;

 }

"@PREFIX" return T_AT_PREFIX;

"bound" return T_BOUND;

"{" return T_LB;

"}" return T_RB;

124

"(" return T_LP;

")" return T_RP;

";" return T_SEMICOLON;

"=" return T_EQU;

"!" return T_NOT;

"!=" return T_NEQ;

"&&" return T_AND;

"||" return T_OR;

"<" return T_LT;

"<=" return T_LTE;

">" return T_GT;

">=" return T_GTE;

[1-9][0-9]* {

 yylval.i = atoi(yytext);

 return T_INT;

 }

[a-z][a-z0-9_]* {

 yylval.s = strdup(yytext);

 return T_IDT;

 };

\?[a-z][a-z0-9_]* {

 yylval.s = strdup(yytext);

 return T_VAR;

 };

[a-z][a-z0-9]*":"[a-z0-9_]+ {

 yylval.s = strdup(yytext);

 return T_SURI;

 }

[a-z][a-z0-9]*":" {

 yylval.s = strdup(yytext);

 return T_SYM;

 }

\<http[^\>]*\> {

 yylval.s = strdup(yytext);

 return T_URI;

 };

\"(\\.|[^"])*\"\^\^[^]* {

 yylval.s = strdup(yytext);

 return T_VALUE;

 };

\"(\\.|[^"])*\" {

 yylval.s = strdup(yytext);

 return T_CSTR;

125

 };

"\n" {

 yylineno++;

 };

\. return T_DOT;

[\t]+ {

 /* ignore white space */

 };

"#".* {

 /* ignore comments */

 };

[\t\v\f\r]+ {

 };

 {

 std::cerr << "Lexical Error!\n";

 };

%%

int yywrap() {

 return 1;

}

126

APPENDIX C

GRAMMER FILE FOR THE RQ2SQL COMPILER

127

/***

*

* Tool: Sparql to SQL Compiler

* version: 1.0

* Author: Mulugeta Mammo

* Date: September 2014

*

**/

%{

#include <iostream>

#include <fstream>

#include <sstream>

#include <map>

#include <string>

#include <vector>

#include <stack>

#include <utility>

#include <algorithm>

#include <regex>

#include "definition.h"

#include "utility.h"

#include "vertical.h"

#include "horizontal.h"

#include "triples.h"

using namespace std;

int num_errors = 0; // We report the # of syntax errors

const int T_TOK = 0; // Triple ID

const int F_TOK = -1; // Filter ID

// Bison's

extern FILE* yyin;

extern int yylineno;

extern int yylex();

extern int yyparse();

extern void yyerror(const char*);

%}

%error-verbose

%union {

128

 int i;

 char* s;

}

%token<s> T_PREFIX T_AT_PREFIX;

%token<s> T_IDT T_VAR T_URI T_CSTR T_INT T_SURI T_VALUE T_NOT;

%token<s> T_SELECT T_DISTINCT T_WHERE T_FILTER T_LIMIT T_BOUND T_SYM

T_OPT T_UNION;

%token<s> T_LP T_RP T_LB T_RB T_COLON T_SEMICOLON T_DOT;

%token<s> T_AND T_OR T_EQU T_NEQ T_LT T_LTE T_GT T_GTE;

%token<s> T_ORDER_BY T_ASC T_DESC;

%type<s> primary unary_expr or_expr and_expr equality_expr relational_expr stmt stmts;

%%

query:

 body

 | decl body

 ;

decl:

 prefix

 | decl prefix

 ;

prefix:

 prefix_keyword T_SYM T_URI line_end

 {

 string s($<s>2);

 prefixes[s.substr(0, s.size() - 1)] = $<s>3;

 }

 ;

prefix_keyword:

 T_PREFIX

 | T_AT_PREFIX

 ;

line_end:

 | T_DOT

 ;

body:

 T_SELECT distinct select T_WHERE T_LB stmts T_RB order_by limit

 ;

129

distinct:

 | T_DISTINCT

 {

 distinct_stmt = "DISTINCT ";

 }

 ;

select:

 T_VAR

 {

 select_list.push_back($<s>1);

 }

 | select T_VAR

 {

 select_list.push_back($<s>2);

 }

 ;

stmts:

 stmt

 | stmts stmt

 | stmts T_OPT T_LB stmts T_RB

 {

 cerr << "This production version of rq2sql does not support code generation for

optionals." << endl;

 }

 | stmts T_LB stmts T_RB T_UNION T_LB stmts T_RB

 {

 cerr << "This version of rq2sql does not support code generation for unions." <<

endl;

 }

 | T_LB stmts T_RB T_UNION T_LB stmts T_RB

 {

 cerr << "This version of rq2sql does not support code generation for unions." <<

endl;

 }

 ;

stmt:

 subject predicate object line_end

 {

 query_index.push_back(make_pair(T_TOK, subjects.size() - 1));

 }

130

 | T_FILTER T_LP expr T_RP line_end

 {

 string e($<s>3);

 for (int i = 0; i != predicates.size(); ++i) {

 if (subjects[i].second == "var") {

 replace(e, subjects[i].first, rq_vars[subjects[i].first]);

 }

 if (objects[i].second == "var") {

 replace(e, objects[i].first, rq_vars[objects[i].first]);

 }

 }

 filters.push_back(e);

 query_index.push_back(make_pair(F_TOK, filters.size() - 1));

 }

 ;

expr:

 or_expr

 ;

or_expr:

 and_expr

 | or_expr T_OR and_expr

 {

 $$ = cat_str($<s>1, " || ", $<s>3);

 }

 ;

and_expr:

 equality_expr

 | and_expr T_AND equality_expr

 {

 $$ = cat_str($<s>1, " && ", $<s>3);

 }

 ;

equality_expr:

 relational_expr

 | equality_expr T_EQU relational_expr

 {

 $$ = cat_str($<s>1, " = ", $<s>3);

131

 }

 | equality_expr T_NEQ relational_expr

 {

 $$ = cat_str($<s>1, " != ", $<s>3);

 }

 ;

relational_expr:

 unary_expr

 | relational_expr T_LT unary_expr

 {

 $$ = cat_str($<s>1, " < ", $<s>3);

 }

 | relational_expr T_LTE unary_expr

 {

 $$ = cat_str($<s>1, " <= ", $<s>3);

 }

 | relational_expr T_GT unary_expr

 {

 $$ = cat_str($<s>1, " > ", $<s>3);

 }

 | relational_expr T_GTE unary_expr

 {

 $$ = cat_str($<s>1, " >= ", $<s>3);

 }

 ;

unary_expr:

 primary

 | T_NOT primary

 ;

primary:

 T_VAR

 {

 string s = rq_vars[$<s>1];

 replace_quote(s);

 char* str = (char*) malloc(strlen(s.c_str()) + 1);

 strcpy(str, s.c_str());

 $$ = str;

 }

 | T_VALUE

 | T_CSTR

 {

 string s($<s>1);

132

 replace_quote(s);

 char* str = (char*) malloc(strlen(s.c_str()) + 1);

 strcpy(str, s.c_str());

 $$ = str;

 }

 | T_INT

 {

 string s(itos($<i>1));

 char* str = (char*) malloc(strlen(s.c_str()) + 1);

 strcpy(str, s.c_str());

 $$ = str;

 }

 | T_LP expr T_RP

 {

 cerr << "This version of rq2sql does not support nested filter expressions." <<

endl;

 exit(1);

 }

 | T_BOUND T_LP T_VAR T_RP

 {

 string s = " != null";

 char* str = (char*) malloc(strlen(s.c_str()) + strlen($<s>3) + 1);

 strcpy(str, $<s>3);

 strcat(str, s.c_str());

 $$ = str;

 }

 ;

subject:

 T_VAR

 {

 rq_vars[$<s>1] = "T" + itos(subjects.size()) + ".Subject";

 rq_vars_index[$<s>1] = subjects.size();

 subjects.push_back(make_pair($<s>1, "var"));

 }

 | T_URI

 {

 subjects.push_back(make_pair($<s>1, "uri"));

 }

 | T_SURI

 {

 string result = "";

 expand_uri(result, prefixes, $<s>1);

 subjects.push_back(make_pair(result, "suri"));

 }

133

 ;

predicate:

 T_VAR

 {

 cerr << "This version of rq2sql does not support variables at the predicate

position." << endl;

 exit(1);

 }

 | T_URI

 {

 string p($<s>1);

 format_predicate(p);

 predicates.push_back(make_pair(p, "uri"));

 }

 | T_SURI

 {

 string result = "";

 expand_uri(result, prefixes, $<s>1);

 format_predicate(result);

 predicates.push_back(make_pair(result, "suri"));

 }

 ;

object:

 T_VAR

 {

 rq_vars[$<s>1] = "T" + itos(objects.size()) + ".Object";

 rq_vars_index[$<s>1] = objects.size();

 objects.push_back(make_pair($<s>1, "var"));

 }

 | T_URI

 {

 objects.push_back(make_pair($<s>1, "uri"));

 }

 | T_CSTR

 {

 string s($<s>1);

 replace_quote(s);

 objects.push_back(make_pair(s, "val"));

 }

 | T_VALUE

 {

 objects.push_back(make_pair($<s>1, "val"));

 }

134

 | T_SURI

 {

 string result = "";

 expand_uri(result, prefixes, $<s>1);

 objects.push_back(make_pair(result, "suri"));

 }

 ;

sort_option:

 {

 char* str = (char*) malloc(strlen("ASC") + 1);

 strcpy(str, "ASC");

 $<s>$ = str;

 }

 | T_ASC

 | T_DESC

 ;

order_by:

 | T_ORDER_BY T_VAR sort_option

 {

 char* str = (char*) malloc(strlen($<s>1) + strlen($<s>2) + strlen($<s>3) + 1);

 strcpy(str, $<s>1);

 strcat(str, " ");

 string s($<s>2);

 strcat(str, rq_vars[s].c_str());

 string s2($<s>3);

 strcat(str, rq_vars[s2].c_str());

 order_by_stmt = str;

 $<s>$ = str;

 }

 ;

limit:

 | T_LIMIT T_INT

 {

 const char* istr = itos($<i>2).c_str();

 char* str = (char*) malloc(strlen($<s>1) + strlen(istr) + 1);

 strcpy(str, $<s>1);

 strcat(str, " ");

 strcat(str, istr);

 limit_stmt = str;

 $<s>$ = str;

135

 }

 ;

%%

int main(int argc, char** argv)

{

 if (argc < 4) {

 cerr << "Error: Invalid command. Usage:rq2sql --storage [triples | vertical |

horizontal] input.rq\n";

 return 1;

 }

 string arg1 = argv[1];

 if (arg1 != "--storage") {

 cerr << "Error: Invalid command. Usage: rq2sql --storage [triples | vertical |

horizontal] input.rq\n";

 return 1;

 }

 string storage = argv[2];

 if (storage != "triples" && storage != "vertical" && storage != "horizontal") {

 cerr << "Error: Invalid storage. Options: triples, vertical and horizontal.\n";

 return 1;

 }

 string input = argv[3];

 if (input.substr(input.length() - 2) != "rq") {

 cerr << "Error: " << argv[3] << " is not a valid rq file.\n";

 return 1;

 }

 yyin = fopen(input.c_str(), "r");

 if (yyin == NULL)

 {

 cerr << "Error: " << input << " does not exist.\n";

 return 1;

 }

 cout << "Compiling:\t" << input << "...\n";

 // parse sparql query

 //

136

 yyparse();

 // generate code based on parse result and storage type

 //

 string sql_str = "";

 if (storage == "vertical")

 sql_str = get_vertical_sql();

 else if (storage == "triples")

 sql_str = get_triples_sql();

 else if (storage == "horizontal")

 sql_str = get_horizontal_sql();

 string output = input;

 output = output.substr(0, output.length() - 3).append("_" + storage + ".sql");

 ofstream ofs(output);

 ofs << sql_str.c_str() << endl;

 cout << "Errors:\t\t" << num_errors << "\n";

 if (num_errors) {

 cout << "Generated:\tNothing\n";

 exit(1);

 }

 cout << "Generated:\t" << output << "\n";

 return 0;

}

void yyerror(const char* str)

{

 cerr << "Line " << yylineno << ": " << str << "\n";

 yyclearin;

 ++num_errors;

}

	INTRODUCTION
	1.1 Motivation
	1.2 Problem Statement

	THE SEMANTIC WEB
	2.1 Introduction
	2.2 Challenges of Implementing the Semantic Web
	2.3 Semantic Modeling
	2.4 Identifying Resources – the URI
	2.5 RDF – The Resource Description Framework
	2.6 RDF Serialization Formats
	2.7 RDF-Schema
	2.8 OWL – the Web Ontology Language
	2.9 SPARQL

	BIG DATA
	3.1 Definition
	3.2 Apache Hadoop
	3.3 HDFS – The Hadoop Distributed File System
	3.4 Hadoop MapReduce

	RDF STORES
	4.1 Introduction
	4.2 Parameterized Classification of RDF Stores
	4.3 Native RDF Stores
	4.4 Relational–based RDF Stores
	4.5 NoSQL RDF Stores

	STORING RDF DATA IN HDFS
	5.1 RDF and HDFS
	5.2 Triple-store
	5.3 Property Table
	5.4 Clustered-property Tables

	SPARQL BENCHMARKS
	6.1 DBpedia
	6.2 LUBM
	6.3 BSBM
	6.4 SP2Bench
	6.5 Rationale for Choosing SP2Bench
	6.6 Benchmarking the Benchmarks
	6.7 Critique of the Standard Benchmarks

	PRESTO, HIVE, AND 4STORE
	7.1 Facebook Presto
	7.2 Presto Architecture
	7.3 Presto versus MapReduce
	7.4 Apache Hive
	7.5 Apache Hive Architecture
	7.6 4store

	PRESTO-RDF
	8.1 Architecture
	8.2 RDF–Loader
	8.3 Triple-store
	8.4 Wide–table
	8.5 Horizontal-store Scheme
	7.6 Vertical-store Scheme

	RQ2SQL - SPARQL TO SQL COMPILER
	9.1 SPARQL Graph Patterns
	9.2 SPARQL Solution Sequences and Modifiers
	9.3 RQ2SQL

	BENCHMARKING PRESTO-RDF
	10.1 Benchmark Queries
	10.2 Four Node Cluster Setup
	10.3 Loading Time for 3M Triples
	10.4 Benchmarking using 3M Triples
	10.5 Benchmarking Presto-RDF using 10, 20, and 30M Triples

	RELATED WORK
	11.1 Distributed SPARQL
	11.2 Apache Spark and Cloudera Impala

	CONCLUSION AND FUTURE WORK
	12.1 Conclusion
	12.2 Hypotheses Revisited
	12.3 Contributions
	12.4 Future Work

	REFERENCES
	SQL TRANSLATIONS OF THE BENCHMARK QUERIES
	LEX FILE FOR THE RQ2SQL COMPILER
	GRAMMER FILE FOR THE RQ2SQL COMPILER

