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ABSTRACT

Peptide microarrays have been used in molecular biology to profile immune re-

sponses and develop diagnostic tools. When the microarrays are printed with random

peptide sequences, they can be used to identify antigen antibody binding patterns

or immunosignatures. In this thesis, an advanced signal processing method is pro-

posed to estimate epitope antigen subsequences as well as identify mimotope anti-

gen subsequences that mimic the structure of epitopes from random-sequence pep-

tide microarrays. The method first maps peptide sequences to linear expansions of

highly-localized one-dimensional (1-D) time-varying signals and uses a time-frequency

processing technique to detect recurring patterns in subsequences. This technique is

matched to the aforementioned mapping scheme, and it allows for an inherent anal-

ysis on how substitutions in the subsequences can affect antibody binding strength.

The performance of the proposed method is demonstrated by estimating epitopes and

identifying potential mimotopes for eight monoclonal antibody samples.

The proposed mapping is generalized to express information on a protein’s se-

quence location, structure and function onto a highly localized three-dimensional

(3-D) Gaussian waveform. In particular, as analysis of protein homology has shown

that incorporating different kinds of information into an alignment process can yield

more robust alignment results, a pairwise protein structure alignment method is pro-

posed based on a joint similarity measure of multiple mapped protein attributes. The

3-D mapping allocates protein properties into distinct regions in the time-frequency

plane in order to simplify the alignment process by including all relevant information

into a single, highly customizable waveform. Simulations demonstrate the improved

performance of the joint alignment approach to infer relationships between proteins,

and they provide information on mutations that cause changes to both the sequence

and structure of a protein.
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In addition to the biology-based signal processing methods, a statistical method

is considered that uses a physics-based model to improve processing performance. In

particular, an externally developed physics-based model for sea clutter is examined

when detecting a low radar cross-section target in heavy sea clutter. This novel model

includes a process that generates random dynamic sea clutter based on the governing

physics of water gravity and capillary waves and a finite-difference time-domain elec-

tromagnetics simulation process based on Maxwell’s equations propagating the radar

signal. A subspace clutter suppression detector is applied to remove dominant clutter

eigenmodes, and its improved performance over matched filtering is demonstrated

using simulations.
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Chapter 1

INTRODUCTION

1.1 Introduction and Motivation

Detection methods determine whether or not an observed noisy signal consists

of useful information. Once information is detected, then information parameters

need to be estimated, or specific information patterns need to be identified. One

approach to improving detection performance is to first process an observed signal

before applying statistical methods designed to determine the presence of a signal in

noise. Signal processing techniques are most useful when they are designed to match

the properties of the observed signal or when they can apply a physical-based model

that describes the observation medium.

In this dissertation, we consider two detection applications that benefit from

matched signal processing techniques, or techniques that rely on physics-based mod-

els. The first application is in molecular biology, and it involves mapping one-

dimensional (1-D) protein sequences or three-dimensional (3-D) protein structures

onto signals with highly-localized representations in the time-frequency plane. Using

processing techniques that are matched to these mapped signals can provide impor-

tant information for identifying diseases or for drug discovery. The second application

involves detecting small radar targets in heavy sea clutter. Using a dynamic model for

generating sea clutter based on the governing physics of water gravity and capillary

waves provides useful information for improving the target detector design.
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1.2 Signal Processing Methods in Molecular Biology

The area of bioinformatics is mainly involved with the management of biological

information using computer technology and statistics. Signal processing for molec-

ular biology, on the other hand, encompasses the development of algorithms and

methodologies for extracting, processing and interpreting information from biological

sequences [3–8]. Intelligent use of signal processing algorithms can provide invaluable

insight into the structure, function and evolution of biological systems. For example,

complex assays that determine the functional activities of analytes or peptide chips

that manifest key residues for protein binding can provide a wealth of information on

underlying biological systems. However, in each of these cases, appropriately designed

processing is required to robustly extract the most relevant information. Images of

array fluorescence are enhanced to improve the estimation of gene reactivity, while

gene expression classification performance is increased by including biological and

experimental variability in the algorithm design [6].

Genomics and proteomics, in general terms, study the functions and structures

of genomes and proteomes, respectively. Genomes, which are genetic material of

organisms encoded in deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), and

proteomes, which are expressed proteins in given organisms, provide discrete infor-

mation, represented in sequences of unique molecules [9, 10]. More specifically, DNA

are bio-molecules that are represented as letter sequences of precise orderings of four

nucleobases; the different orderings correspond to patterns that influence the forma-

tion and development of different organisms. Similarly, proteins are bio-molecules

represented as sequences of unique orderings of twenty linked amino acids, with each

amino acid represented by a letter of the alphabet.
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DNA and protein sequence analysis requires significant processing of the discrete

gene orderings in order to identify intrinsic common features, or find gene variations

such as mutations [11, 12]. One important application in genome analysis is the

identification of gene sequence periodicity; this periodicity selects regions of genetic

repetition that have been shown to correlate with functionally important genes [13,

14]. Gene periodicity has been analyzed using spectral methods [15–18]; such methods

have also been used to estimate variations in base pair frequencies between organisms

as they can indicate phylogenic origin from the species genome. Time-frequency

(TF) signal processing methods such as wavelet transforms have also been used in

gene sequencing to characterize long range correlations or identify irregularities in

DNA sequences [19, 16, 20].

Signal processing methods have also been used for sequence alignment. This is

a method for ordering sequences to identify regions of similarity due to functional,

structural, or evolutionary relationships between the sequences [21, 22]. As thousands

of organisms have been sequenced completely, and many more have been partially

sequenced, searching for these similarities requires a vast number of computations.

There are many algorithms designed to perform these searches including dynamic

programming algorithms such as Smith-Waterman, basic local alignment search tool

(BLAST), correlation based methods, Bayesian approaches, and TF based methods

[23–27, 12, 28–30]. Computational alignment tools based on dynamic programming

such as the Smith-Waterman algorithm are guaranteed to find all similarity matches,

but they are slow and inefficient [23]. Other tools, such as BLAST [24, 25], are

widely made available for database similarity searching as they were developed to

provide a fast approach of approximating the complete alignment found by dynamic

programming algorithms. BLAST runs very quickly, around an order of magnitude

faster than the complete alignment algorithms, and finds most significant alignments
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under most circumstances. However, it tends to miss alignments for queries with

repetitive segments. Correlation based methods map DNA or amino acid sequences

to sequences of real or complex numbers and use correlation between sequences of

numbers to compute similarity [28]. Correlation algorithms can be implemented ef-

ficiently using the fast Fourier transform; however, errors increase when aligning se-

quences of longer lengths. We have recently developed a TF based method that first

uniquely maps DNA or amino acid sequences to highly-localized Gaussian waveforms

in the TF plane and then uses the matching pursuit decomposition (MPD) algorithm

to perform alignment [30–32]. The TF-based alignment approach was compared to

other approaches and was shown to perform well with repetitive segments in real time

without pre-processing.

In addition to gene sequencing, microarray analysis has also played a significant

role in the extraction and interpretation of genomic information. Microarrays can

provide measurements of expression levels of large numbers of genes. For example,

peptide microarrays have been used to study binding properties and functionality

of different types of protein-protein interactions and to provide insight into specific

pathogens [33–37]. Peptide microarrays are a relatively new application in biological

signal processing. The technology to create assays using single peptide chains has been

around for a while in the form of the enzyme linked immunosorbent assay (ELISA)

[38]. In recent years, as the cost of printing many peptide clusters onto a single

substrate has been dropping, tens or hundreds of thousands of peptide clusters can be

reasonably printed on a single array. In addition to being able to construct large scale

peptide arrays to detect specific diseases, another important aspect are robust analysis

methodologies used to interpret and analyze the extracted peptide data in order

to establish relationships between peptide sequences and binding strengths. Some

of these methodologies include support vector machine (SVM) modeling methods
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[39], computational alignment approaches [40] and statistical tools such as t-test and

analysis of variance linear regression [41–43].

1.3 Epitope and Mimotope Estimation Methods

The human body’s response to a foreign pathogen is a complex process of creat-

ing cells to identify, inhibit, and eventually destroy the pathogen. Antibodies play an

integral role in this response, as their primary function is to recognize and neutralize

pathogens and alert the immune system on the pathogen’s presence. Antibodies, act-

ing as pathogen biomarkers, can be detected by locating the pathogen binding site or

epitope [44, 45]. As antibodies can recognize epitopes of multiple amino acids (AAs)

in length, each peptide may have several such binding sites. As a result, mapping

antibody epitopes on a target pathogen is very critical in diagnosing diseases. Mimo-

topes are peptides that mimic antibody binding sites and have binding characteristics

similar to epitopes [46]. In particular, an antibody for a given epitope antigen re-

sponds similarly to both the epitope and its derivative mimotope. Mimotopes have

been shown to induce an epitope antigen response with vaccination [47, 48] and thus

have the not yet realized potential to be used in developing new vaccines and diagnos-

tics. It is also possible to design methods for mapping mimotopes to a source antigen

in order to find the interacting epitope on the antigen [49].

There are a number of existing research tools that can be used to provide infor-

mation about a pathogen’s epitope as well as the binding strength of the antibody-to-

pathogen interface and the effect of changing the epitope sequence on the antibody

binding strength. Some of the more frequently used tools to study pathogens by proxy

of the antibodies include ELISA [50], phage display combined with peptide panning

[51–54], and peptide microarrays. Phage display results in a single epitope estimate

which is likely to be the strongest binder to the targeted antibody. Phage display
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can also be combined with peptide panning to further refine the epitope estimate by

measuring the binding strength of a set of peptide sequences which are single AA

substitutions from the phage display estimate of the epitope. Peptide microarrays

are printed with either a set of peptides from a sequenced proteome [37] or from

adaptations on known epitopes [36]. They are commonly used to profile the humoral

immune response by finding the antigenic regions of a proteome. Highly binding pep-

tides are antigen candidate sequences that are further verified by checking which of

the sequences are on the folded protein surface and are physically available to an anti-

body for binding. Epitopes are efficiently mapped using peptide microarrays acting as

screening tools for profiling antibody signatures and discovering diagnostic signatures.

Peptide microarrays are designed to diagnose a specific infectious disease pathogen,

assuming that the pathogen has already been identified and sequenced before the

microarray is designed. Mimotopes have thus far been discovered by phage display

technology [51], and mimotope databases have been developed based on information

acquired from phage display [55, 56].

The recently developed random-sequence peptide microarrays provide platforms

for identifying antigen antibody binding patterns or immunosignatures [44, 57, 58].

These microarrays have a major advantage over tests designed for one specific an-

tibody as they adopt an unbiased sampling of hundreds of thousands of random,

but known, peptide sequences. These random-sequence peptides are important for

recognizing multiple antibodies from pathogens present in the testing blood sample,

without any a priori knowledge of a specific disease. As a result, they can be used to

classify different diseases based on identifying patterns of peptides that exhibit high

image pixel median fluorescence intensity (MFI) in the microarray. From the MFI of

the aggregate set of peptides, it is possible to estimate antibody epitope sequences and

obtain their corresponding binding strength. Specifically, peptides with the highest
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MFI are composed of specific binding to sub-sequences which match antigen epitopes

or potential antigen mimotopes. The fluorescence patterns for pathogens have been

shown to be consistent across patients and thus can act as biomarkers to classify

patients into disease groups [59–63].

Epitope and mimotope estimation has been attempted before on smaller arrays

with 5,520 and 10,000 peptides [34, 44]. The peptides with the largest binding

strength tended to resemble the true epitopes, but with so few peptides, exact epitope

sub-sequences of more than a few AAs did not exist on these smaller arrays. Increas-

ing the number of peptides on the array increases the number of unique sub-sequences

on the array as well as the number of times that those sub-sequences are repeated.

Arrays with 100,000 or more peptides contain enough unique sequences to estimate

exact epitopes with a high degree of reliability and robustness, and thus are adequate

for diagnosing diseases from sequenced proteomes [64, 65]. Furthermore, given that

random sequence peptides can yield mimotopes for many different antigens [66], many

disease associated antigen could, in theory, be detected.

A challenge of analyzing random-sequence peptide microarrays is how to integrate

peptide sequences and MFI measurements to estimate epitopes or identify mimotopes.

NNAlign is an algorithm which attempts to solve this problem by generating neural

network models from subsets of the peptide array data and then combining those

multiple models into a single motif [67]. This algorithm provides a representation

of AA probabilities at each position in the estimated motif. Another method for

motif/epitope estimation uses regular expressions, a formally defined sequence of

characters which forms a search pattern, to estimate epitopes. This method includes

a dependence on the sub-sequence position within the peptide sequence [2].

Random sequence peptide arrays are in contrast to panned peptide arrays which

start from epitope candidate sequences either derived from phage display, the pro-

7



teome of the pathogen of interest. Proteome sub-sequences are printed on arrays

as individual peptides [68], and epitope candidates from phage display and random-

sequence peptides are printed on the array with exhaustive substitutions and trun-

cations to find minimal length, exact epitope sub-sequences [69, 70]. However, these

methods require and initial step that can be computationally intensive, can prohibit

comprehensive specificity analysis, and can limit the biological search space. For ex-

ample, if the search is limited to only linear sequences of a pathogens proteome, the

methods may not be able to identify conformal epitopes that can be detected in large

random sequence peptide arrays. Additionally, not all antibodies are linear sequences

to proteins, or are even necessarily in response to proteins, making it difficult to

determine a suitable peptide panning set.

1.4 Processing of Protein Structures

Protein alignment methods are used to arrange protein sequences or structures to

identify regions of similarity or homology between proteins with common function,

structure or evolutionary relationships. These methods are important not only for

drug discovery but also for providing associations between gene mutations and dis-

eases. Early pairwise protein alignment methods were based on the protein’s primary

structure or 1-D amino acid sequence [71–73]. Sequence protein alignment provides

some degree of similarity accuracy but can have a difficult time matching dissimilar

sequences which result in similar 3-D folded structures. Protein structures demon-

strate different shapes due to the hydrogen bonds, ionic bonds, and van der Waals

attractions between the molecules that make up the amino acids. The invention of x-

ray crystallography provided atomic coordinate information. As a result, alignments

are also performed using protein secondary and tertiary structures to improve match-

ing algorithm performance [74–76]. Recent research into protein alignment focuses on
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developing methods that integrate multiple protein attributes in order to improve the

evolutionary relevance between the identified matches [77–80]. Finding protein simi-

larity in sequence, function and structure can lead to accurately inferencing distantly

related homologs for which only some of the protein’s functions may be conserved and

to decreasing the number of structurally similar matches that have no evolutionary

relationship.

The integration of multiple protein information, when available, can aid in de-

termining homology and contributing to protein functionality [81]. Such information

includes amino acid sequences [77], hydrophobicity and structural factors [82–85],

hydrogen bonding potential and structural substitution matrices [80, 86], proteins

geometrical location [78, 79], and protein domains [87]. Note, however, that integrat-

ing the different information is not a simple problem. There is no known optimal

method to perform the integration and different integration methods yield different

matching results [78, 75]. In [74], a method is provided that takes into consideration

both protein sequence and structure information. The method models the evolution-

ary cost of protein mutations, insertions and deletions that occurred on the structure

level during transformation as implied by changes in the protein sequences. Struc-

ture alignment can be taken into consideration for amino acid substitution matrices

such as local substructure mutation matrices and hydrogen-bonding similarity. The

alignment accuracy for different types of information is a function of how distantly

related the proteins are. Amino acid sequence information is more useful for closely

related proteins, while more distantly related proteins require supplemental structure

information [80].

Traditional bioinformatic methods of protein sequence and structure pattern match-

ing can be computationally intensive due to the large amounts of proteomic data

available in reference databases. An approach toward this problem is the use of
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signal processing techniques for protein alignment after appropriately mapping the

protein element representations [6, 30, 88, 89]. In [30], a robust querying algorithm

is used based on a time-frequency signal expansion matched to the waveforms in

the mapped protein sequences. This approach is shown to outperform current-used

sequence alignment methods such as BLAST for queries with repetitive sequence

segments [90]. A 3-D Gaussian waveform is considered in [88] for protein structure

alignment, with each waveform mapping an individual amino acid. Graph theory and

additional properties of the protein are utilized in [91]. In [89], a 3-D waveform match-

ing algorithm is provided for local and global alignments between multiple protein

structures. In this approach, linearly separable, highly-localized Gaussian waveforms

are used to map links between amino acids with inherent directionality information.

1.5 Sea Clutter Radar Signal Processing

The detection and tracking of small targets on the sea surface is difficult, as

strong scattering from the sea can mask weaker target reflections. In particular, at

low grazing angles and high sea states, transmitted signals with bandwidths large

enough to observe reflections from breaking waves and sea spikes can result in a low,

or even negative signal-to-clutter ratio (SCR) [92]. In such heavy sea clutter scenarios,

the detection performance deteriorates and the targets cannot be realistically tracked.

Increasing the received signal power through antenna gain, transmitter power, and

pulse Doppler processing may not improve detection as sea clutter returns consist of

the transmitted signal undergoing small Doppler shifts relative to the target.

One approach to improving target detection performance at low radar cross section

(RCS) is by accurately modeling the sea clutter statistics. This was demonstrated in

prior work using the compound Gaussian model that relates back to the physical sea

clutter phenomenology [93]. The model assumes that the sea clutter return consists
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of speckle and texture components. The speckle return is primarily a function of

small-scale capillary waves forming a large number of independent scattering from

the incident signal. The texture is a function of the large-scale gravity waves; it is

assumed to modulate the local mean power of the speckle return, while exhibiting

spatial correlation based on the range resolution, sea state, and wind speed [94]. The

compound Gaussian model has been validated using real sea clutter data, and has

been used to construct improved detectors and configure waveforms [95–97].

1.6 Dissertation Contributions

In this dissertation, we have three main contributions, summarized as follows.

1.6.1 Epitope Estimation and Mimotope Identification For Random Sequence

Peptide Microarrays

We propose a signal processing based method for epitope estimation and mimotope

identification using random-sequence peptide microarrays. In particular, we select an

appropriate time-domain basis signal to map the AAs in a peptide sequence. For a

unique mapping, we transform the highly-localized Gaussian signal in the TF plane;

we then map transformation parameters, such as time and frequency shifts to AA

characteristics, such as type, position in the sequence, and rate of change of type over

time. Signal processing is an established area of research in electrical engineering

for processing time-domain signals. Furthermore, a multitude of algorithms have

already been developed and evaluated for analyzing, detecting, estimating, identifying

and classifying signals. As a result, once peptide sequences are mapped to time-

domain signals, the problem is to select the appropriate algorithms for finding exact

and single-substitution matches between peptide sequences and and peptide sub-

sequences. We use the number of times a sub-sequence is found to occur in a random-

11



sequence for epitope estimation and mimotope identification. The number of times

a single substitution sub-sequence occurs is used to determine the effects of single

AA substitutions on epitope and mimotope binding strength. Note that we have

successfully applied the TF mapping approach for DNA alignment and showed that

it outperformed BLAST in some alignment cases [30].

1.6.2 Generalized Mapping for Protein Multi-Alignment

We propose a signal processing based protein alignment approach to search for

similarities and establish homology by integrating information from multiple protein

attributes. Specifically, we perform alignment by integrating information from pri-

mary sequences to model the process of sequence evolution by mutations, insertions

and deletions; from geometric structures to provide similarity between 3-D shapes;

and from amino acid physical-chemical features, such as hydrophobicity, since the

pattern of hydrophobic residues in substitution matrices can provide alignment in-

formation of distantly related proteins. Variation in physical-chemical properties

can lead to substitution patterns represented by matrices including the codon sub-

stitution matrix, Dayhoff evolutionary mutation matrix, hydrophobicity amino acid

substitution matrix and block substitution matrix (BLOSUM) [84]. An amino acid

substitution matrix can, for example, show that hydrophilic amino acids are more

frequently substituted by hydrophobic amino acids than the vice versa scenario [86].

Also, predicting the effects of amino acid substitutions can lead to information on

protein function [98].

As proteins have distinct 3-D geometrical shapes, our signal processing based

approach first models the protein secondary or tertiary structure as a linear combi-

nation of 3-D Gaussian waveforms, following our initial work in [89]. The Gaussian

waveform provides a compact time-frequency representation while encoding the 3-D
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position of a protein’s α-carbons. The covariance matrix of the Gaussian waveform

is designed using pairwise angles between two neighboring α-carbons. Time-shifting

the Gaussian waveform provides information on the 3-D coordinates of the two amino

acids; frequency-shifting the Gaussian waveform provides directionality by pointing

between neighboring α-carbons. Additional transformations of the Gaussian wave-

form in the higher-order time-frequency plane can be used to map different protein

attributes. These attributes include the 1-D protein sequence, that characterizes the

location of covalently linked amino acids, and numeric amino acid physical-chemical

features, such as substitution matrix entries that could lead to protein function in-

formation. Note that multiple features, such as entries from different substitution

matrices, could be represented by additional unique waveform transformations. The

three protein attribute mappings, location, structure, and function (LoStrFn) provide

unique representation methods for performing multi-alignment (or alignment based

on multiple attributes) not only based on denotation and geometric similarities but

also on property similarity leading to different protein functions.

1.6.3 Physics-based Sea Clutter Model For Improved Target Detection of Low

Radar Cross-Section Targets

In this dissertation we present the detection results using an externally developed

physics-based sea clutter generation model based on an electromagnetic simulation of

gravity and capillary waves evolving through time. By computing radar returns from

the simulated sea surface and low RCS target scattering, we utilize the statistical

variation of the returns to separate the target from the clutter and thus improve

target detection performance. We specifically compare the performance of a matched

filter detector to that of a subspace clutter suppression detector [97]. The subspace

clutter suppression detector is an eigenmode analysis algorithm that exploits the
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statistical independence of clutter compared to the target of interest [99, 100]. As we

demonstrate, this detector can separate and suppress clutter from the radar returns,

significantly improving SCR and detection performance.

1.7 Dissertation Organization

This dissertation is organized as follows.

In Chapter 2, we first discuss the immunosignature data collection procedure

and explain how we form the peptide subsequences. We describe the amino acid to

signal mapping technique and provide details on our proposed peptide subsequence

estimation algorithm. We provide and discuss our findings on epitope estimation and

mimotope identification using data from monoclonal antibody (mAb) array samples.

We also discuss the different factors that affect the algorithm performance.

In Chapter 3, we first provide the protein-to-waveform mapping model for the

location, structure, and functional attributes of a protein. We then describe the 3-D

alignment in terms of the structure, sequence, and hydrophobicity alignment. We

demonstrate our results using two human mutant ferrochelatase proteins, showing

how the structure and functional attributes improve alignment.

In Chapter 4 we first provide the physics-based finite-difference time-domain sea

clutter simulation model based on Maxwell’s equations and define the environmental

and target parameters that define the strong sea clutter, and electromagnetically

weak targets under study. We consider the problem of detecting these low radar cross

section targets and define the generalized matched filter detector. We then present the

better performing subspace cutter suppression detector, and we provide simulations

demonstrating the detection performance of the two detectors under different modeled

sea clutter scenarios.
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Finally, Chapter 5 summarizes the work presented in this dissertation, provides

some concluding remarks, and comments on future directions for these lines of re-

search.

In Appendix A we provide a comprehensive list of all of the acronyms used in this

dissertation. In Appendix B we list the full results of our subsequence estimation

algorithm for all of the monoclonal antibody samples, and in Appendix C we provide

some preliminary epitope estimates for random sequence peptide array data collected

using blood samples of patients infected with different diseases.
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Chapter 2

EPITOPE ESTIMATION AND MIMOTOPE IDENTIFICATION USING

RANDOM SEQUENCE PEPTIDE MICROARRAYS

2.1 Immunosignature Random-Sequence Peptide Microarrays

The random-sequence peptide microarrays are designed by the Center for Inno-

vations in Medicine at the Biodesign Institute at Arizona State University [101].

The data corresponds to immunosignatures from eight different monoclonal antibody

(mAb) samples. The immunosignature assay is performed by incubating diluted blood

antibodies on a microarray of random-sequence peptides. The peptides are printed

on standard glass slides or synthesized onto silicon dioxide wafers and diced into

standard slides [101]. The 330k random-sequence peptide microarrays have 330,034

probes manufactured by HealthTell, Inc. in Chandler, AZ. The sequences are suffi-

ciently long such that binding occurs between an antibody and a subsequence of the

peptide, but not the entire peptide sequence. The average length of the peptide se-

quences on the 330k microarray is 11.2 amino acids (AAs), with a standard deviation

of 1.3 AAs. More specifically, 95% of the peptides are between 5 and 14 AAs long;

the minimum and maximum lengths are 1 and 22 AAs, respectively. From the 20

AAs, the AAs cysteine, isoleucine, methionine, and threonine are not included in the

selection. Note that these lengths do not include the constant AA linker sequence

GSG (glycine-serine-glycine), which attaches the AA chain to the array substrate.

The arrays are first washed in dimethylformamide for an hour. The solvent phase

is transitioned to an aqueous phase over a six hour period using a phosphate-buffered

saline incubation buffer before incubating in the presence of antibodies or serum. In

16



order to bind the antibodies to the arrays, the arrays are washed in distilled water and

then loaded into a multi-well 24-up gasket. Each well receives an incubation buffer and

diluted sera solution containing antibodies. A secondary fluorescing antibody is added

to bind to the appropriate primary antibody. After incubation for an hour, the arrays

are washed using a plate washer. The removed arrays are scanned and the resulting

images are processed to provide raw microarray image data. The amount of antibody

binding to a feature measured remotely by fluorescence; more signal results when

more primary antibodies bind to the peptide and thus more secondary antibodies

bind to the primary antibodies. A calibrated picture is taken of the fluorescing array,

where pixels in the image have been associated with specific peptide clusters. The

median fluorescence intensity (MFI) is calculated as the median value of the pixels

associated with a given peptide cluster.

2.2 Forming Peptide Subsequences

Our objective is to detect and identify subsequences or their single AA substi-

tutions from a microarray peptide sequence. The subsequences could correspond to

epitopes or mimotopes of a specific pathogen. We consider an immunosignature mi-

croarray consisting of M peptide sequences; we denote the mth peptide sequence of

length Lm as Vm,m= 1, . . . ,M . As the maximum number of AAs in a peptide se-

quence is 22 using the 330k microarray, the maximum value of Lm = 22. By shifting

one AA at a time in the mth peptide sequence, we obtain at most Nm ≤ (Lm−L+1)

unique, length L, subsequences of Vm. In particular, the `th shifting operation,

`= 1, . . . , Nm, generates the `th subsequence, whose first and last AAs correspond to

the `th and (`+L)th AAs of the peptide, respectively. We denote the aforementioned

shifting function by h`(Vm;L), `= 1, . . . , Nm, m= 1, . . . ,M . This function generates

the length-L `th subsequence of the mth peptide Vm in the array by shifting the
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starting position of the subsequence from the first AA position of the peptide to the

`th AA position of the peptide. Using this function, we represent the `th unique

subsequence of Vm as

χ(`; dm,L) = h`(Vm;L) . (2.1)

Here, dm is the MFI of the mth peptide sequence Vm; it is the same value for

all subsequences of peptide Vm. For example, considering the Lm = 10 AAs long

peptide Vm=ARVYHKHKHE, we can generate at most (Lm − L + 1) = 8 unique sub-

sequences of length L= 3. The subsequences are χ(1; dm, 3)=ARV, χ(2; dm, 3)=RVY,

χ(3; dm, 3)=VYH, χ(4; dm, 3)=YHK, χ(5; dm, 3)=HKH, χ(6; dm, 3)=KHK, χ(7; dm, 3)=HKH,

χ(8; dm, 3)=KHE. Since two of the subsequences are identical, χ(5; dm, 3) = χ(7; dm, 3)

= HKH, then the number of unique sequences is Nm = 7.

To achieve our objective, we find the number of times each unique subsequence

of length L is repeated on the microarray. We form all possible unique subsequences

as the union of all subsequences from the M microarray peptides. Specifically, there

are at most J ≤
∑M

m=1Nm unique subsequences, χj, j= 1, . . . ,J , in the set

SL =
M⋃
m=1

Nm⋃
`=1

χ(`; dm,L) . (2.2)

Note that, in practice, it is uncommon for a single peptide to contain repeated sub-

sequences; even when this occurs, it is only for the smaller length subsequences of

L= 4 or L= 5 AAs. It is much more common that different peptides share the same

subsequences.

2.3 Time-Frequency Mapping of Peptide Subsequences

The proposed peptide subsequence estimation algorithm is based on first mapping

the peptide AAs to unique signals and then using time-frequency (TF) signal pro-

cessing techniques to detect recurring patterns. The mapping uses the basic Gaussian
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signal, gb(t) =π−1/4 exp (−0.5 t2), t ∈ (−Tg, Tg), as it is the most localized signal in

the TF plane. The effective duration 2Tg is normally chosen to ensure minimum

computational processing complexity. The basic Gaussian signal has unit energy and

is centered at the TF origin. We design the AA-to-signal mapping as follows. Con-

sidering Nm subsequences of length L formed from the mth peptide Vm of length Lm,

we map each AA to the time-shifted and frequency-shifted Gaussian signal

g(t; l, k) = gb(t− lT ) exp (j2πkFt), t ∈ (lT − Tg, lT + Tg) . (2.3)

The time shift parameter lT is used to represent the lth AA in the peptide subse-

quence, l= 1, . . . ,L. The frequency shift parameter, kF , k= 1, . . . , 20, is used to map

the 20 existing AAs, as shown in Figure2.1. Using this mapping, the L AAs long `th

subsequence χ(`; dm,L), `= 1, . . . , Nm, in Equation (2.1) can be represented by the

linear combination of L TF shifted Gaussian signals as

x`,m(t) =
L∑
l=1

g(t; l, u[{αl}]) =
L∑
l=1

gb(t− lT ) exp (j2π u[{αl}]F t), (2.4)

on the domain t ∈ (` T − Tg, (`+ L)T + Tg).

Note that we denote x`,m(t) to be dependent onm to clarify that the mapped signal

originated from the mth peptide. This dependence is required for the estimation

algorithm since we need to track the MFI of the subsequence; both the peptide and

any of its generated subsequences have the same MFI. The function u[{αl}] in (2.4),

that replaced k in (2.3), is the integer-valued frequency shift that is used to map the

type of the lth AA. Figure 2.2 provides an example of the mapping for the subsequence

EEDFRV of length L= 6 AAs. Note, for example, that time shifts l= 1, 2, share the

same frequency shift, u[{α1}] =u[{α2}] = 14, since the type of AA (glutamic acid) is

the same for both positions in the subsequence. Using the mapping, the weighted
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Gaussian signal representation for the mth peptide Vm is given by

vm(t) =
Lm∑
i=1

g(t; i, u[{αi}]) =
Lm∑
i=1

gb(t− iT ) exp (j2π u[{αi}]F t), (2.5)

where t ∈ (T − Tg, LmT + Tg) and Lm is the length of the peptide AA sequence,

m= 1, . . . ,M .

T 

f 

t 

A (Alanine) 
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D (Aspartic acid) 
C (Cysteine) 
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Figure 2.1: TF Representation of Mapping AA Type to Frequency Shifts

2.4 Peptide Subsequence Estimation Algorithm

Once the set SL of all unique subsequences of length L on a microarray are formed

as in (2.2), we need to find the OCRC of each subsequence; we use occurrence count

(OCRC) as a metric for the number of times each subsequence appears in the array.
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Figure 2.2: TF Representation of the Mapped AA Subsequence EEDFRV.

In addition to OCRC, we sometimes down-select the set of peptides used to find an

occurrence count, and denote this as the down-selected occurrence count (DS-OCRC).

In particular, we want to detect the signal x`,m(t) in (2.4) that represents the

`th subsequence χ(`; dm,L) of length L, `= 1, . . . , Nm, of the mth peptide within all

possible signals vm(t), m= 1, . . .M , that represent the M peptides. This process is

analogous to searching for similarity between a given subsequence and all the peptide

sequences on the microarray. Essentially, we use this approach to estimate pathogen

epitopes and identify candidate pathogen mimotopes.

We perform the subsequence estimation and identification method in TF using the

matching pursuit decomposition algorithm [102]. The matching pursuit decomposi-

tion (MPD) is an iterative signal expansion technique that can be used to represent

a signal with time-varying spectral characteristics as a linear combination of basis
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functions. Normally, the basis functions are selected from a dictionary that consists

of a basic Gaussian signal that is centered at the TF origin as well as time-shifted,

frequency-shifted and scaled transformed versions of this basic signal. Transformed

Gaussian signals form the dictionary as they highly-localized in the TF plane; how-

ever, based on the application, the MPD can give a sparse representation if the

dictionary is formed using real signals [103].

If the signal under processing is well-matched in TF to the Gaussian basis func-

tions, then the algorithm converges after only a few iterations; otherwise, the MPD

can be computationally intensive. For our application, the processing signals are per-

fectly matched to the Gaussian basis functions as we map the AAs in the peptide

sequences directly to Gaussian signals. We thus expect the MPD to converge fast

when used to identify subsequences, provided that the time shift and frequency shift

transformations of the MPD dictionary are selected to be integer multiples of the

time and frequency shift parameters T and F in Equation (2.3), respectively.

Algorithm 1 provides the steps of our proposed approach to determine the DS-

OCRC / OCRC of each unique subsequence χj, j= 1, . . . ,J , of length L, in a mi-

croarray. In order to compute both the DS-OCRC/OCRC of each subsequence as

well as keep track of the MFIs of the peptides that contributed to the count, we

compute the DS-OCRC/OCRC of the length-L `th unique subsequence χ(`; dm,L) of

the mth peptide, m= 1, . . . ,M . The subsequence is represented by the signal x`,m(t)

with duration (LT + 2Tg) and MFI dm. To reduce computational cost, we need to

ensure that we do not unnecessarily process two or more subsequences when their

corresponding mapped signals x`,m(t) and x`′,m′(t), m 6= m′ and any ` or `′, are iden-

tical; each subsequence to be processed is generated only once, because of how the

subsequences are defined in Equation (2.2). The algorithm computes inner products

between the linear combination of Gaussian signals in x`,m(t) that represent the `th
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subsequence and the linear combination of Gaussian signals vm(t) that represent the

mth peptide. A perfect match is determined only when the sum of the inner product

outputs is exactly equal to L. The DS-OCRC/OCRC of the `th subsequence is the

total number of perfect matches after processing all microarray peptides.

Algorithm 1 runs with the following considerations:

• Consider a sample microarray consisting of M random peptide sequences

• Either calculate the OCRC using m= 1, . . . ,M peptides, or calculate the DS-

OCRC using a down-selected peptide set of m= 1, . . . , Q, where Q ≤M

• Use the approach in Section 2.2 to generate the length-L unique subsequence

χj, j= 1, . . . ,J , from the set SL in Equation (2.2); equivalently, by ensuring

that each subsequence is not generated more than once when considering all

peptides, generate the length-L unique subsequence χ(`; dm,L), `= 1, . . . , Nm,

from the mth, length-Lm, peptide, m= 1, . . . ,M ; note that Nm ≤ (Lm−L+ 1)

and J ≤
∑M

m=1Nm

• Form a one-to-one correspondence between the indexing of the unique subse-

quences: χj is equivalent to χ(`; dm,L), with j= 1, . . . ,J , `= 1, . . . , Nm, and

m= 1, . . . ,M

• Use the TF mapping in Section 2.3 to represent: (i) the mth peptide of length

Lm, m= 1, . . . ,M , by the signal vm(t) in Equation (2.5); and (ii) the `th sub-

subsequence χ(`; dm,L), `= 1, . . . , Nm, of length L and MFI dm, by the signal

x`,m(t) in Equation (2.4)
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Algorithm 1 Computation of OCRC Υj and Mean MFI d̄j of Unique Subsequence
χj in a Peptide Microarray

for m= 1, . . . ,M do
? Set count = 0 and d̄ = 0 to initialize the OCRC/DS-OCRC and the mean MFI
respectively of the `th unique subsequence of the mth peptide
? Form the MPD dictionary Dm = {g(t; 1, u[{α1}]), . . . , g(t;Lm, u[{αLm}])} using
the signals in (2.3)
? Denote any signal in the dictionary Dm by ym(t)
for n= 0, 1, . . . , (Nm − L + 1) {shift the subsequence by one AA position at a
time} do

• Initialize the MPD iterations by setting r
(0,n)
` (t) =x`,m(t− nT )

for ζ = 0, . . . ,L − 1 {perform L MPD iterations} do

� Compute C(ζ,n)`,Dm
=

∫
r
(ζ,n)
` (t) y∗m(t) dt, the correlation of r

(ζ,n)
` (t) with every

dictionary signal
� Select the dictionary signal with the maximum correlation

y
(ζ,n)
` (t) = argmax

ym(t)∈Dm

C(ζ,n)`,Dm
, t ∈

(
(n+ 1)T − Tg, (n+ L)T + Tg

)
(2.6)

� Compute the MPD coefficient λζ,n =

∫
r
(ζ,n)
` (t) y

∗ (ζ,n)
` (t) dt {if the two

AAs match, λζ,n = 1}
� Compute the residue r

(ζ+1,n)
` (t) = r

(ζ,n)
` (t)− λζ,n y(ζ,n)` (t)

end for

• Evaluate the sum of the MPD coefficients, Λm,n =
L−1∑
ζ=0

λζ,n

if Λm,n =L then
- Subsequence x`,m(t − nT ), with fluorescence value dm, is a perfect match
in peptide vm(t)
- Update the mean MFI of as d̄=

(
d̄·count + dm

)
/ (count + 1)

- Increase OCRC/DS-OCRC of subsequence x`,m(t) by one, count = count+1
end if

end for
end for
. Obtain the final OCRC/DS-OCRC as Υj = count
. Algorithm output: The OCRC/DS-OCRC and mean MFI of subsequence χj are
Υj and d̄, respectively
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2.5 Estimation of Subsequences with Single AA substitutions

Subsequences formed by replacing a single AA with another AA are called point

mutations or single AA substitutions. Although substituting one AA can signifi-

cantly change the peptide structure and binding characteristics, sometimes the effect

is unimportant to structure or binding. Silent mutations occur when the substitution

is by an AA with similar properties as the original AA, resulting in no significant

change in functionality [104]. As a result, single substitutions of AAs with similar

properties are important to consider for estimating specific types of subsequences

such as epitopes and mimotopes, or substitutions are in the epitope, but do not form

critical contacts with the antibody.

Algorithm 1 can be modified to estimate subsequences with single AA substitu-

tions at a time. In particular, the design of the proposed algorithm is inherently

matched to handle substitutions with computational ease. This is because the algo-

rithm only needs to find subsequence matches with identical mapped time shifts, as

they represent the position of an AA in the sequence; all frequency shifts are allow-

able as they represent the AA type. Note, however, that we need to keep track of

the exact AA substitution in order to determine the OCRC of a silent mutation. The

resulting approach for estimating silent mutations is described in Algorithm 2.

Algorithm 2 runs with the following considerations:

• Consider a sample microarray consisting of M random peptide sequences

• Either calculate the OCRC using m= 1, . . . ,M peptides, or calculate the DS-

OCRC using a down-selected peptide set of m= 1, . . . , Q,where Q ≤M

• Following Algorithm 1, generate the length-L unique subsequence χj, j= 1, . . . ,J ,

or equivalently χ(`; dm,L), `= 1, . . . , Nm, from the mth, length-Lm, peptide,
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m= 1, . . . ,M ; form a one-to-one correspondence between the subsequence in-

dexing

• Following Algorithm 1, use TF mapping to represent the mth peptide sequence

by vm(t) and the `th subsequence χ(`; dm,L) by x`,m(t) in (2.4)

2.6 Peptide Sequence Down-Selection and Bias-Normalization

Although the microarrays consist of a very large number of peptides, not all pep-

tides are applicable for detecting antibody subsequences that bind to specific antigens.

In order to avoid unnecessary processing, we down-select the peptides using two dif-

ferent schemes. The first scheme involves down-selecting peptides with high MFIs;

this is because only a small fraction of the peptides bind strongly and specifically

to the monoclonal antibody samples. The remaining peptides bind weakly and non-

specifically, and thus do not provide sufficient information on the sample antibodies.

Antibody peptides that bind specifically, but only somewhat strongly to antigens are

also not down-selected. To include these peptides, we use a second scheme which

involves the calculation of Pearson’s (PCC) that can be used to down-select peptides

that bind strongly on only one of the monoclonal antibody samples. The PCC is

calculated between a vector of MFIs and a reference vector, and it measures the sim-

ilarity between the two vectors. PCC of −1, 0, and 1 imply negative correlation, no

correlation, and positive correlation, respectively. For each of the M peptides in the

%th microarray sample, %= 1, . . . ,P , the PCC is calculated as

r%,m =
(
sm − s̄m 1P

)T(
b% −

1

P
1P

)
(2.8)

for m= 1, . . . ,M . Here, sm = [s1,m . . . sP,m]T, s%,m is the mean MFI of the mth

peptide in the %th microarray sample, s̄m = (1/P)
∑P

%=1 s%,m is the MFI of all the

mth peptides in the P microarray samples, 1P is a P × 1 column vector of ones, b% is
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Algorithm 2 Computation of OCRC and Mean MFI of Subsequences With Single
AA Substitutions.

for m= 1, . . . ,M do
? Form the MPD dictionary using the signals in Equation (2.3)
{Ensure that any position on the sequence can be substituted at a time by any
of 16 possible AAs}
{Exclude AAs threonine, methionine, soleucine, and cysteine that are not used
in the 330k microarray; these AAs correspond to frequency shifts k= 4, 8, 11, 16,
respectively, in Equation (2.3)}

Dm = {g(t; i, 1), . . . , g(t; i, 3), g(t; i, 5), . . . , g(t; i, 7), g(t; i, 9),

g(t; i, 10), g(t; i, 12), . . . , g(t; i, 15) | i = 1, . . . , Lm}
? Denote any signal in the dictionary Dm by ym(t)
for n= 0, 1, . . . , (Nm − L + 1) {shift the subsequence by one AA position at a
time} do

for l = 1, . . . ,L {consider AA at the lth position of χ(`; dm,L)} do
for k= 1, 2, 3, 5, 6, 7, 9, 10, 12, 13, 14, 15 {substitute AA at the lth position
by the kth AA} do
• Generate the (l, k)th new subsequence ql,k,m(t− nT ) of x`,m(t− nT ) by
substituting the lth position of x`,m(t− nT ) by the kth AA

ql,k,`,m(t− nT ) = g(t− nT ; l, k) +
L∑
l′=1
l′ 6=l

g(t− nT ; l′, u[{αl′}]) (2.7)

• Set countl,k = 0 and d̄l,k = 0 to initialize the OCRC/DS-OCRC and
mean MFI of the (l, k)th subsequence

• Initialize the MPD iterations by setting r
(0,n)
` (t) = ql,k,`,m(t− nT )

• Perform L iterations as in Algorithm 1 to obtain the MPD coefficients
λζ,n, ζ = 0, . . . ,L
• Compute the sum of the MPD coefficients, Λm,n =

L−1∑
ζ=0

λζ,n
if Λm,n =L then

- Mapped subsequence ql,k,`,m(t−nT ) that was derived from the mapped
subsequence x`,m(t − nT ), with MFI dm, is a perfect match in the
mapped peptide vm(t)
- Update the mean MFI of subsequence ql,k,`,m(t− nT ):

d̄l,k =
(
d̄l,k countl,k + dm

)
/ (countl,k + 1)

- Increase by one the OCRC of subsequence ql,k,`,m(t− nT ):
countl,k = countl,k + 1

end if
. Obtain the final OCRC as Υl,k,j = countl,k and the final mean MFI as
d̄l,k,j = d̄l,k
. Algorithm output: The OCRC and mean MFI of the subsequence formed
by substituting the lth position of χj by the kth AA are Υl,k,j and d̄l,k,j,
respectively

end for{kth for loop}
end for{lth for loop}

end for{nth for loop}
end for{mth for loop}
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a P ×1 reference vector that is defined as the %th column of a P ×P identity matrix,

and T denotes vector transpose. The reference vector indicates the correlation pattern

needed to match the %th array.

Down-selecting based on the PCC provides an effective ranking metric for various

cases, as illustrated in the following three examples. The first example assumes that

all P = 8 samples have approximately the same MFI. Such a situation can occur when

all samples are either binding non-specifically to something in the antibody or not

binding to anything. Using the reference vector b1 = [1 07] for the sample %= 1, the

PCC is computed as r1,m = 0.01 in (2.8), and 0% is a % × 1 vector of zeros. The

second example assumes a specific binding at the microarray for which the PCC is

computed. Specifically, as shown in Figure 2.3a, the MFI of the specific binding in the

%= 1 sample is higher than the values of the non-specific binding in the %= 2, . . . , 8

samples. Using reference vector b1, the PCC is r1,m = 0.98 for the %= 1 sample. In

the last example, the specific binding is for the %= 2 sample, as shown in Figure 2.3b;

using b1, the PCC for the d= 1 sample is r1,m =−0.22. Thus, the correlation for

the MFI in Figure 2.3a is very large as the binary vector matches the MFI pattern,

whereas the correlation for the MFI in Figure 2.3b is negative as the binary vector

does not match the pattern.

The PCC provides a better metric than MFI for ranking peptides with antigen

binding subsequences. The binding to an epitope different than the original epitope

can be equal to the the original binding. If that occurs, peptides with larger MFI

on the sample of interest, relative to the same peptide on other samples, will be

kept because of that specific binding. This is demonstrated for the monoclonal Ab8 in

Figure 2.4. Using the PCC instead of MFI to rank peptides resulted in a larger fraction

of peptides with epitopes. This behavior was typical for most of the monoclonal

samples. In the few cases where MFI ranking resulted in a higher percentage of the
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Figure 2.3: The MFIs in (a) and (b) Are Due to a Specific Binding for the First and

Second Monoclonal Antibody Samples, Respectively, and Non-Specific Binding for

All Other Samples.

selected peptides containing epitopes, the PCC also performed well in estimating the

epitope. Note that when we used the MFI as the ranking metric for monoclonal Ab8,

the epitope was not correctly estimated.

In some cases, it was found that the subsequence estimation performance in-

creased when the MFIs of the down-selected peptides were normalized. The normal-

ization tends to remove biases in the data resulting from inter-experimental varia-

tion (wafer-to-wafer-synthesis variation, temperature, duration, mechanical forces) or

intra-experimental variation (sub-wafer variation, peptide location effects). The nor-

malization approaches used include logarithmic (log10) normalization (resulting in

Gaussian-like characteristics), median normalization, and linear model normalization

[40, 105]. The effect of normalization is demonstrated in Figure 2.4 for monoclonal

mAb8. For example, logarithmic normalization of the MFIs before computing the PCC

resulted in more peptides with subsequences than combined logarithmic and median
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normalizations. Note, however, that the best estimation results were obtained when

the MFIs were not normalized, indicating that the data are of consistent quality.
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Figure 2.4: Fraction of Peptides With Epitopes for Different Numbers of Down-

Selected Peptides for Monoclonal Antibody Ab8.

2.7 Subsequence Estimation Results

The analysis data consisted of 330k peptide microarrays for eight monoclonal an-

tibody samples and a list of the synthesized peptides. The peptides are the same for

all eight samples, allowing for comparison calculations across different samples for the

same peptide. Algorithms 1 and 2 provide the steps for estimating epitopes and iden-

tifying mimotopes based on finding unique subsequences and their DS-OCRC. The

most frequently occurring subsequences in the down-selected peptides are selected as

the estimated epitopes. The algorithms also provide a list of additional subsequences

that, although they do not occur as frequently as the epitope estimates, they still

occur a sufficiently large number of times to warrant further investigation. These
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subsequences are proposed as potential antigen mimotopes as they appear to have

readily permissible substitutions of the true epitopes.

2.7.1 Epitope Estimation Performance Results

We used the algorithms to estimate epitopes for the eight monoclonal samples

as the most frequently occurring subsequences. The resulting estimated epitopes

are listed in Table 2.1, together with their OCRC, DS-OCRC and mean MFI. As

demonstrated in the table, the algorithms estimated exact subsequences for the full

epitopes of the monoclonal antibodies 2C11, A10, Ab1, Ab8, and DM1A; close matches

were obtained for 4C1, Flag, and HA. These results demonstrate both the diversity

of the peptides on the microarray, spanning enough of the possible sequence space to

bind all eight monoclonal antibodies, as well as the high performance of the epitope

estimation algorithm in finding relevant epitopes.

Sample Full Estimated Mean

mAb Epitope Epitope OCRC DS-OCRC MFI

2C11 NAHYYVFFEEQE VFFEEQE 22 7 805

4C1 LQAFDSHYDY GYDSR 21 13 8,731

A10 EEDFRV EDFRV 34 20 65,535

Ab1 NTFFRHSVVV RHSVV 209 186 65,535

Ab8 TFSDLWKLLPE DLWKL 63 6 1,174

DM1A AALEKDYEEVGV AALEKD 2,053 5 2,368

Flag DYKDDDDK AALEKDG 2,001 1,323 44,567

HA YPYDVPDYA YDAPE 16 14 61,414

Table 2.1: Epitope Estimates With OCRC, DS-OCRC, and the Mean MFI for Those

Estimates.
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The performance of the epitope estimation algorithm is tightly coupled to the

frequentness and diversity of the subsequences in a microarray. By frequentness we

mean how often a specific subsequence (of fixed length) occurs in the whole microar-

ray; this is important because it affects the number of peptides the antibodies bind on

and, as a result of that, the number of down-selected peptides that contain an epitope

subsequence increases, and those subsequences are at the top of the DS-OCRC those

peptides; and by diversity we mean the variety of peptide subsequences included in

the whole microarray. We present next the processing of specific subsequences for

four of the eight monoclonal antibody epitopes. For Ab1, we estimated the exact epi-

tope whereas for 4C1, Flag, and HA, we obtained comparable (not exact but similar)

epitopes. Comparable and not exact epitopes are estimated because the true epitopes

have low OCRC on the microarray and also the subsequences estimated have only

moderately strong binding strength.

2.7.2 Epitope Estimation Analysis

As the microarray peptides are typically much longer than the estimated epitopes,

the monoclonal antibodies only bind to a fractional portion of a peptide. It is thus

only possible to infer that a particular subsequence contributed to the binding if that

subsequence is present on multiple peptides with large MFIs. The success of the

estimation algorithm also depends on the diversity of the microarray peptides; this

is achieved using the sufficiently large 330k random sequence peptide microarray. In

particular, many of the shorter length subsequences were found to repeat numerous

times. As a result, this increased the robustness of the estimation algorithm and also

allowed for an analysis of single AA substitutions based on binding strength.

In order to determine how well subsequences of different lengths are represented,

we list the number of potential subsequences on the microarray in Table 2.2. On
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Subsequence # of unique # of possible % of unique

length subsequences subsequences subsequences

4 58,700 65,500 89.5%

5 550,000 1,050,000 48.1%

6 1,490,000 1,680,000 9%

7 1,880,000 2,680,000 0.7%

Table 2.2: Number of Possible and Unique Subsequences of Varying Lengths on the

Microarray.

the 330k peptide microarray, approximately 90% of length-4 (and 50% of length-5)

subsequences occur on the array. Also, many of these subsequences are repeated

multiple times, as shown in Table 2.3. As it can be observed, most of the length-

4 and length-5 subsequences of the monoclonal epitopes are present on the array

and are also repeated multiple times. This occurs for the epitopes of monoclonal

antibody samples 2C11, A10, Ab1, and Ab8 and DM1A, for which we obtain exact

epitope estimates. The results for the remaining three monoclonal antibody samples,

4C1, Flag, and HA did not provide exact matches to the full epitopes. It is important to

emphasize that the performance of the proposed estimation algorithm depends on the

design of the random peptides on the microarray. More specifically, the performance

depends on how frequently subsequences of the full epitope occur, whether the actual

subsequences are present, and how strongly the antibodies bind to the peptides with

these subsequences. As it is not possible to provide the details of every selected

epitope, we illustrate next some specific examples which show trends in the data.

Our analysis demonstrated that it is possible that the full epitope does not cor-

respond to the subsequence with the highest binding strength. This is demonstrated
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Subsequence % of subsequences repeated at least G times

Length G= 5 G= 10 G= 50 G= 100 G= 500 G= 1, 000

4 99.8% 99.5% 95.2% 90% 69.1% 46.1%

5 94.2% 89.2% 61.5% 38.6% 1.2% 0.3%

6 57.8% 37% 2.6% 0.4% 0.2% 0.2%

7 5.9% 1.2% 0.2% 0.2% 0.1% 0.1%

Table 2.3: Percentage of Subsequences of Varying Lengths That Are Repeated in the

Microarray at Least G Times.

with the monoclonal antibody sample Ab1, with full epitope NTFFRHSVVV. Table 2.4

lists the matched subsequences, their OCRC and corresponding mean MFIs for Ab1.

Although the AA T occurs in the full epitope, we do not consider this AA in our

estimation as it was not used to generate the peptides [101]. Also, when computing

the OCRC of a short subsequence whose identical AA pattern appears in a longer

subsequence, we do not include the OCRC of the longer subsequences. For example,

when computing the OCRC of HSVV, we did not include the peptides which con-

tain RHSVV, RHSVVV or any other higher-length subsequences of NTFFRHSVVV. This is

because we wanted to ensure that the OCRC metric for HSVV is not influenced by

the binding strength of longer subsequences. From Table 2.4, we can conclude that

while RHSVV has the highest binding strength, the smaller length HSVV also has a

high binding strength when compared to other subsequences. No conclusions can be

made from the single occurrence of RHSVVV because some variability exists in the MFI

measurements, and because multiple subsequence occurrences are required to disam-

biguate which subsequence on a peptide caused the antibody binding. Also, longer

subsequences such as FFRHS, FRHSV, and HSVVV have very low binding strength.

34



The estimation results for Ab1 are typical for other samples in that not all sub-

subsequences of the epitope bind strongly to the antibody. Typically, the longest

subsequence was estimated and listed in Table 2.1, and this often corresponded to

the most dominant subsequence, that is, the subsequence with the highest binding

strength. For Ab1, the dominant subsequence is RHSVV (shaded in Table 2.4). Note,

however, that not only RHSVV but also HSVV occurred more frequently than the other

length-4 and length-5 epitopes. However, RHSVV has comparatively larger binding

strength.

Ab1 Mean

subsequence OCRC MFI

L= 4

FFRH 44 1,394

FRHS 28 2,711

RHSV 87 3,119

HSVV 402 11,455

SVVV 5 1,087

L= 5

FFRHS 4 2,250

FRHSV 2 1,308

RHSVV 208 65,535

HSVVV 7 2,062

L= 6

RHSVVV 1 10,502

Table 2.4: Subsequences of Varying Lengths L for Ab1 Where the Shaded Row Cor-

responds to the Estimated Epitope.
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The exact epitope was not estimated for the monoclonal antibody HA. The full

epitope of this monoclonal is YPYDVPDYA; however, the estimated epitope YDAPE ap-

pears to be a substitution (at positions 3 and 5) of the exact epitope YDVPD. We thus

selected this non-exact epitope as our estimate since the exact subsequence occurred

very infrequently on the array. Tables 2.5a and 2.5b show the occurrences of different

epitope subsequences and the mean MFIs for the antibody epitope subsequence YDVPD

and the estimated epitope sequence YDAPE, respectively. While the antibody epitope

sequence YDVPD occurred on the array with a high binding strength, the estimated

epitope subsequence YDAPE occurred more frequently, and with almost as high bind-

ing strength. The exact epitope was also not estimated for the monoclonal antibody

Flag. The non-exact estimate for Flag was AALEKDG, which is interesting because it

is a close match to the true epitope for monoclonal antibody DM1A of AALEKD. The

similarity of the estimated epitope for Flag, and the true epitope of DM1A is due to

the similarities between their true epitopes, and the sparsity of sufficiently long true

epitope subsequence for Flag. The important overlap between these two epitopes is

the KD AA pair, and the permissive binding of Flag antibodies.

The sparsity of true epitope subsequences of Flag on the array is seen in Table

2.17, which lists the median MFI and the OCRC for each of the subsequences for this

monoclonal antibody. The only true epitope subsequence with high binding strength

was DYKDD; however, this subsequence only occurred twice on the array, which is not

very frequently for a 5-mer, and therefore it is hard to identify it as an important

subsequence. The overlap between the epitopes of the monoclonal antibodies Flag

and DM1A is the AA pair KD. The MFI effects of this overlap can be seen by comparing

the MFIs of peptides which contain subsequences similar to the epitopes. Figures 2.5

and 2.6) provide scatter plots of the MFIs for all the peptides on the array that contain

a 4-mer or longer subsequence of peptide AALEKD, the estimated epitope for DM1A. In

36



Figure 2.5, the MFIs of HA are plotted with respect to the MFIs of Flag. As expected,

the MFIs for HA are small as this sample has the unrelated true epitope YPYDVPDYA.

This is in contrast to the scatter plot of Figure 2.6 which plots the MFIs of DM1A

versus Flag, which have related epitopes and therefore the peptides containing these

subsequences are bound strongly.
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Figure 2.5: Scatter Plots of the Fluorescence of Flag Compared to the MFI of HA.

Here, we list out the top DS-OCRC results for monoclonal antibody samples

2C11, A10, and HA in Tables 2.6 - 2.14 to show what subsequence occur beyond the

top estimate, what happens across multiple estimate lengths, and the characteristics

of the potential mimotopes which occur in these lists.
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Figure 2.6: Scatter Plots of the Fluorescence of Flag Compared to the MFI of DM1A.
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HA Mean

subsequence OCRC MFI

L= 4

YDAP 75 5,028

DAPE 98 884

L= 5

YDAPE 16 61,414

(a)

HA Mean

subsequence OCRC MFI

L= 4

YPYD 22 813

PYDV 18 688

YDVP 42 3,377

DVPD 28 21,429

VPDY 19 746

PDYA 462 757

L= 5

YPYDV 0 -

PYDVP 1 31,435

YDVPD 3 65,535

DVPDY 1 65,535

VPDYA 0 -

L= 6

YPYDVP 0 -

PYDVPD 1 65,535

YDVPDY 0 -

DVPDYA 0 -

(b)

Table 2.5: Subsequences of Varying Lengths L for (a) the Estimated Epitope of HA,

and (b) the True Epitope of HA. Note That in (a) the Shaded Row Corresponds to the

Estimated Epitope, and That in (b) the L = 5 and L = 6 True Epitope Subsequence

Do Not Occur Often on the Array.
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Subsequence OCRC DS-OCRC Mean MFI Max. MFI

FEEQE 168 7 586 5,826

FFEEQ 117 7 636 5,826

VFFEE 87 7 676 5,826

ARWFN 54 6 931 65,535

AVNWF 64 6 760 187

PWFNK 139 6 848 2,144

WFNRL 30 6 1,010 1,704

ARLRP 120 5 1,098 4,613

ARRVR 30 5 1,980 4,142

DARWF 37 5 834 65,535

Table 2.6: Estimated Top 10 Subsequences of Length L = 5 Obtained When Algo-

rithm 1 Was Applied to mAb 2C11, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

Subsequence OCRC DS-OCRC Mean MFI Max. MFI

FFEEQE 116 7 636 5,826

VFFEEQ 86 7 685 5,826

DARWFN 10 4 1,197 65,535

AWRGFN 7 3 997 1,692

FARLRE 9 3 1,183 3,327

FKYARL 24 3 1,208 2,414

HFFKAL 6 3 954 1,693

KARLRP 6 3 1,652 4,613

WFARLL 6 3 1,050 1,769

WFNGYA 12 3 938 1,470

Table 2.7: Estimated Top 10 Subsequences of Length L = 6 Obtained When Algo-

rithm 1 Was Applied to mAb 2C11, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.
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Subsequence OCRC DS-OCRC Mean MFI Max. MFI

VFFEEQE 85 7 694 5,826

YVFFEEQ 22 3 805 2,089

AALEKDG 2,000 2 630 16,310

ALEKDGY 111 2 701 16,310

AVARPFQ 2 2 1,849 2,182

AVGWQAR 3 2 1,922 16,130

AWRGFNY 3 2 997 1,616

FARLREY 2 2 1,415 1,647

FEEQERY 13 2 656 1,559

FFEEQER 23 2 759 1,559

Table 2.8: Estimated Top 10 Subsequences of Length L = 7 Obtained When Algo-

rithm 1 Was Applied to mAb 2C11, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

Subsequence OCRC DS-OCRC Mean MFI Max. MFI

WDVA 272 55 17,534 65,535

DVAW 473 52 8,790 65,535

DSAW 442 46 8,763 65,535

WQEA 135 46 65,535 65,535

DAAW 385 40 11,101 65,535

DVSW 239 36 19,765 65,535

QEYA 323 35 37,316 65,535

EDVA 242 34 20,428 65,535

WFEA 267 34 8,875 65,535

EWDA 346 32 10,617 65,535

Table 2.9: Estimated Top 10 Subsequences of Length L = 4 Obtained When Algo-

rithm 1 Was Applied to mAb A10, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

41



Subsequence OCRC DS-OCRC Mean MFI Max. MFI

EDFRV 34 20 65,535 65,535

EWDVA 41 15 65,535 65,535

EDVAW 35 14 65,535 65,535

WFEGA 53 14 32,589 65,535

WDVAP 33 13 65,535 65,535

DAAWP 52 11 16,042 65,535

DVAWG 57 11 10,288 65,535

EWDAA 44 11 31,044 65,535

PWFEA 69 11 10,370 65,535

WDVAW 42 11 19,322 65,535

Table 2.10: Estimated Top 10 Subsequences of Length L = 5 Obtained When Al-

gorithm 1 Was Applied to mAb A10, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

In Tables 2.6 - 2.14 the most frequently occurring down-selected subsequences for

lengths L = 7, L = 5, and L = 5 respectively are the epitope estimates. While

Algorithm 1 can be run for different length subsequences, we choose the longest,

consistent top subsequence as the epitope estimate. For example, the top subsequence

in Table B.4 is VFFEEQE. We see that the top few estimates in Tables 2.7 and 2.6 are

all subsequence of VFFEEQE, e.g. FEEQE, FFEEQ, VFFEE, FFEEQE, and VFFEEQ. These

top subsequence infer that the there is a longer length epitope subsequence. Similarly

for HA and the top subsequence in Table 2.13 is YDAPE, and the top two subsequence

in Table 2.12 are YDAP and DAPE.

While this sort of trend is seen in many of the monoclonal samples, sometimes the

binding strength appears to be dependent on a more complete epitope. An example

of this is seen for A10 in Table 2.10, where the top L = 5 subsequence is the epitope

estimate. Neither EDFR or DFRV are seen in the Table 2.9 L = 4 subsequences, however
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Subsequence OCRC DS-OCRC Mean MFI Max. MFI

DFRVDW 22 8 35,188 65,535

FRVDWK 40 8 5,252 65,535

EDFRVD 6 5 65,535 65,535

EDVRPF 10 5 39,784 65,535

PWQEAS 7 5 65,535 65,535

AVWFEG 11 4 7,222 65,535

DVAWPF 12 4 22,508 65,535

EDARSG 6 4 34,672 65,535

EDVAPN 9 4 60,074 65,535

EDVAWP 6 4 65,535 65,535

Table 2.11: Estimated Top 10 Subsequences of Length L = 6 Obtained When Al-

gorithm 1 Was Applied to mAb A10, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

DFRV, DFRV, and FRV are present in the top three L = 6 subsequences in Table 2.11.

One of these two methods is used to determine which length subsequence should be

the epitope estimate for each of the eight monoclonal antibodies.

Tables 2.6 - 2.14 also contain information about the potential mimotopes for those

three monoclonal antibodies. The potential mimotope for 2C11 is DARWFN. It meets

the four criteria listed for mimotopes, and some of its subsequences, ARWFN, ARWF,

and WFN are seen in the L = 5 subsequence in Table 2.6. Similarly, the potential

mimotopes for A10 and HA meet the criteria for mimotopes, and subsequences of

these mimotopes are seen in the top DS-OCRC lists of smaller lengths.

In addition to the results listed in Tables 2.6 - 2.14, we include a full list of

Algorithm 1 results in Appendix B. We list the top 10 epitope estimates, ranked in

descending order by DS-OCRC, for all eight mAbs, and L = 4, 5, 6, and 7.
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Subsequence OCRC DS-OCRC Mean MFI Max. MFI

YDAP 91 44 6,400 65,535

DAPE 114 31 1,537 65,535

ADAP 285 27 864 65,535

DVPE 93 25 1,008 65,535

DAPG 168 24 1,122 65,535

DVPD 33 24 31,506 65,535

DAPV 112 23 1,027 65,535

YDVP 47 23 4,846 65,535

LDVP 153 20 823 65,535

FDAP 47 18 2,071 65,535

Table 2.12: Estimated Top 10 Subsequences of Length L = 4 Obtained When Al-

gorithm 1 Was Applied to mAb HA, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

Subsequence OCRC DS-OCRC Mean MFI Max. MFI

YDAPE 16 14 61,414 65,535

PYDAP 11 10 44,289 65,535

YDSPE 13 9 12,542 65,535

FDAPV 12 8 9,961 56,901

PFDAP 8 8 47,053 65,535

QYDAP 10 8 31,196 65,535

YDVPE 9 8 51,759 65,535

ADAPE 18 7 10,457 65,535

EDLPD 15 7 1,706 11,385

FYDAP 11 7 5,583 65,535

Table 2.13: Estimated Top 10 Subsequences of Length L = 5 Obtained When Al-

gorithm 1 Was Applied to mAb HA, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.
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Subsequence OCRC DS-OCRC Mean MFI Max. MFI

FNYDSP 6 4 2,146 65,535

GYDAPE 4 4 59,422 65,535

NQYDAP 4 4 47,437 65,535

NYDSPE 4 4 11,997 65,535

AALEKD 2,053 3 694 11,285

ALEKDG 2,002 3 697 11,285

APYDAP 3 3 44,289 65,535

EDHPDG 3 3 4,984 40,563

EDLPDS 4 3 6,698 11,385

FFYDAP 3 3 6,135 65,535

Table 2.14: Estimated Top 10 Subsequences of Length L = 6 Obtained When Al-

gorithm 1 Was Applied to mAb HA, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.
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2.8 Substitution Analysis

The epitope estimates are derived from the peptides on the array which contain

that epitope subsequence. In addition to that specific subsequence, there are other

peptides on the array which contain that same subsequence, but with a single AA

substitution. Our proposed algorithm for detecting subsequences using single AA

substitutions is provided in Algorithm 2. Using this algorithm, we can analyze how

these single AA substitutions affect the binding strength. In doing this, we see that

the binding is not exact, but that some of the AAs in the epitopes can be substi-

tuted without much of a loss in binding strength; in some cases, these substitutions

increase the binding strength. However, there are also specific AAs in the epitope

subsequence which are required for the binding, and substituting them with different

AAs can dramatically decrease the binding strength. One example of this is seen in

Tables 2.15a and 2.15b which show AA substitutions at positions which are tolerant

of substitutions and intolerant of substitutions, respectively. Figures 2.7a and 2.7a

are plots of the MFI listed in the tables; the plots clearly show how much more toler-

ant of substitutions 4C1 is for epitopes in the first AA of the subsequence YDS than

it is for substitutions in the third AA of the subsequence GY S. The tolerance for AA

substitutions is particularly helpful when trying to estimate an epitope whose exact

subsequences do not appear frequently on the array. This is true for Flag, where the

third AA of the exact subsequence KDDD is substituted to form subsequence KDGD; this

subsequence appears more frequently on the microarray.
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(a) MFIs for YDS substitutions
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(b) MFIs for GY S substitutions

Figure 2.7: The Mean MFIs for Two Different Substitutions of GYDS: (a) Substitu-

tion YDS is Tolerant of Substitutions; and (b) Substitution GY S is Not Tolerant of

Substitutions.
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Mean

AA OCRC MFI

A 11 1,457

R 19 982

N 100 977

D 6 3,792

Q 85 1,776

E 129 4,337

G 158 3,667

H 201 1,337

L 5 693

K 67 1,119

F 107 883

P 55 2,503

S 9 1,624

W 50 1,194

Y 6 844

V 16 855

(a)

Mean

AA OCRC MFI

A 267 803

R 195 1,011

N 26 947

D 158 3,667

Q 13 873

E 21 805

G 6 867

H 20 784

L 165 784

K 42 859

F 13 775

P 47 837

S 21 813

W 16 856

Y 9 780

V 37 751

(b)

Table 2.15: AA Substitutions With OCRC and Mean MFI for (a) GY S and (b) YDS.
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2.8.1 Mimotope Identification

In addition to showing the top epitope results for all eight monoclonal antibodies,

we show expanded results for monoclonal antibodies 2C11, A10, and HA in Tables 2.6

- 2.14. These results in these tables are listed in descending order by DS-OCRC.

The most frequently occurring subsequence according to the DS-OCRC, and the

subsequences can be used to find mimotope sequences.

Sample Full Potential

mAb Epitope Mimotope

2C11 NAHYYVFFEEQE DARWFN

4C1 LQAFDSHYDY ADSWP

A10 EEDFRV EWDVA

Ab1 NTFFRHSVVV -

Ab8 TFSDLWKLLPE -

DM1A AALEKDYEEVGV -

Flag DYKDDDDK ALEKDGD

HA YPYDVPDYA EDLPD

Table 2.16: Potential Mimotopes for the Monoclonal Antibody Samples.

In addition to finding the monoclonal antibody epitopes, we used the algorithms to

identify potential mimotopes for the monoclonal antibody samples, as listed in Table

2.16. While these mimotopes do not match the AA subsequences of the full epi-

topes, they can potentially act as subsequences that uniquely bind to the monoclonal

antibodies, without matching the AA composition of the epitope. We deduced the

following considerations for potential mimotopes when analyzing random-sequence

peptide microarrays: mimotopes are (i) distinctively different from the epitope of a

49



specific monoclonal antibody sample; (ii) distinct across all eight monoclonal anti-

body samples; (iii) notably different from other peptide subsequences when comparing

binding strength and/or occurrence count. From these considerations, we developed

the following criteria to identify potential mimotopes. A potential mimotope of a

monoclonal antibody sample is a subsequence that:

1. is not an exact or a single substitution match to a full or an estimated mono-

clonal epitope

2. is not sufficiently similar to high occurring peptide subsequences of other mon-

oclonal antibody samples

3. has a sufficiently large MFI

4. has a large DS-OCRC, obtained using the down-selected monoclonal peptides.

Following these criteria led to potential mimotopes for the monoclonal antibodies

samples 2C11, 4C1, A10, Flag, and HA. Subsequences of the remaining three mon-

oclonal antibody samples did not meet all of the aforementioned criteria, and thus

they were not identified as potential mimotopes.

The proposed approach identified some potential mimotopes, as listed in Table

2.18, for five of the monoclonal antibody samples we analyzed. As discussed in Sec-

tion 2.7, we provide some criteria we developed on mAb mimotope identification.

Although our mimotope analysis is only theoretical, we found that our criteria seem

to match mimotope identification approaches in recent publications. More specifically,

in [48], mimotopes were identified from peptide sequences by T cells with common

receptors as they resulted in increased antigen immunity. As the authors discuss, op-

timizing the identification of mimotopes can lead to improvements in antigen-specific

vaccines. Mimotopes were identified for a monoclonal cancer antibody using phage
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display efficient screening of random peptide libraries [46]. Similar to our findings, the

mimotopes were selected based on their strong binding to the original peptides; it was

also noted that stronger binding was obtained with AA substitutions. In [106], mi-

motopes displaying phages for monoclonal antibodies were investigated for biomarker

assay development; it was found that the diversity of mimotope displaying phages of

selected peptides is inversely correlated with binding strength.

Table 2.18 provides additional information on how we identified the mimotopes

for the five monoclonal antibodies in Table 2.18. For each monoclonal antibody, the

four criteria in Section 2.7 are met. In particular, all these mimotope subsequences

have very large median or maximum fluorescence intensities.

Flag Mean

sample OCRC FMI

L= 4

DYKD 16 947

YKDD 9 799

KDDD 2 523

DDDK 90 391

L= 5

DYKDD 2 23,744

DDDDK 22 376

Table 2.17: Subsequences of Varying Length L for Flag.
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Sample Full Potential Mean Max.

mAb Epitope Mimotope OCRC DS-OCRC MFI MFI

2C11 NAHYYVFFEEQE DARWFN 10 4 1,197 65,535

4C1 LQAFDSHYDY ADSWP 20 10 12,769 65,535

A10 EEDFRV EWDVA 41 15 65,535 65,535

Flag DYKDDDDK ALEKDGD 267 250 65,535 65,535

HA YPYDVPDYA EDLPD 15 7 1,706 11,385

Table 2.18: Identified Mimotopes for Five Monoclonal Antibody Samples With Cor-

responding OCRC, DS-OCRC Mean and Maximum Fluorescence Intensity.
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2.9 Peptide Array Data Consistency Analysis

In the previous sections of this chapter, we have shown how the exact and sin-

gle substitution matching algorithms can be used to successfully estimate epitopes,

discover mimotopes, and analyze the effects of amino acid substitutions on binding

strength. The epitope estimate results match closely with exact epitope subsequences,

showing that the algorithms are performing well, and that the data are consistent

enough to use PCC as a down-selection method. Using PCC instead of fluorescence

as the ranking metric improved the epitope estimation accuracy, and further perfor-

mance improvements could be expected with an improvement in consistency between

the data. This section compares the peptide array datasets for similarity using sta-

tistical characterizations of the fluorescing peptides and the adjacent background

substrate.

2.10 Data Collection

At the device level, after preparing and incubating the primary and secondary

antibodies onto the array, the array is washed and dried, and then illuminated with

fluorescent light. A 16-bit tagged image file format (TIFF) image of the fluorescing

array is recorded. This image is calibrated to be able to spatially locate pixels either

within the bounds of the peptide cluster, our outside of it. 12 pixels from within the

peptide cluster are median averaged to obtain the MFI, while 104 pixels from outside

of the peptide cluster are median averaged to obtain the median background intensity

(MBI). In addition to the MFI and MBI, the the standard deviation of the fluorescence

intensity (SFI) is calculated. These three quantities are the basis for analyzing the

quality of individual peptide array sample datasets, as well as the consistency between

them. Figure 2.8 is an illustration of the extent of the pixles (black squares) and the
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circular extent of the peptide cluster (blue circle). Pixels that lie entirely within

the circular extent of the peptide cluster are used for calculating the MFI and SFI,

while pixels entirely outside of the peptide cluster are used for calcuating MBI. Note

that the source image is 16-bit, and therefore the individual pixel intensity values are

between 0 and 65535, as are the MFI and MBI.

Figure 2.8: Image Pixels Inside of the Peptide Cluster Are Used to Estimate Statistics

Related to the Fluorescence, and Pixels Outside of the Peptide Cluster Are Used to

Estimate Statistics Related to the Background.

The eight monoclonal antibodies were collected at two different times. Five of

the eight monoclonal antibody array samples 2C11, 4C1, A10, Flag, and HA were

collected in January 2013, while the other three were samples, Ab1, Ab8, and DM1A

were collected in June 2012.

2.11 Dataset Analysis

One common method for comparing peptide array datasets is to compute the

Pearson’s correlation coefficient between the fluorescence values of two entire arrays.
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This scalar value is a good first order approximation of similarity, because we expect

that most of the peptides on the array will not be specifically bound to, that these

background peptides will for the most part be the same when comparing two different

monoclonal antibody samples.

Data normalization techniques seek to undo some of the biases and scalings that

can occur when data are not collected using identical procedures. As was discussed

previously, datasets can either be normalized through dividing the fluorescence values

by the median fluorescence value so that all datasets have a median fluorescence value

of 1, or by base 10 logarithmically transforming the datasets so that the distributions

are more “Gaussian-like”. When computing the Pearson’s correlation coefficient be-

tween array samples, median normalization does not affect the correlation coefficient

because part of that computation is to subtract out the mean array fluorescence. A

color-scaled matrix of the correlation coefficients between array samples with no nor-

malization and median normalization are shown in Figures 2.9a and 2.9b respectively.

Note that the data set order has been rearranged such that samples from the same

year are grouped together, i.e. the first five samples were collected in 2013, while

the last three samples were collected in 2012. Note that the correlation between two

samples is associative; the correlation between any two samples is the same regardless

of order.

From the correlation analysis, we can see that the data from 2012 is well corre-

lated independent of the normalization used, while the data from 2013 is a far less

correlated. A correlation value greater than 0.9 would indicate that the data were

collected using the same procedure, and that the non-specific binding between arrays

is consistent. The logarithmic transformation significantly improves the correlation

between most of the samples from 2013, with the exception of monoclonal antibody
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(b) Logarithmic transformation

Figure 2.9: Array Sample Correlations for (a) Unnormalized Data, and (b) Logarith-

mically Transformed Data

A10. While additional normalization techniques do exist, they would require more

calibration information than was available for this dataset.

Some of the array samples are very much uncorrelated (0.2-0.4), in apparent con-

tradiction to the results shown earlier in this chapter. However, lower array-to-array

correlation values and good estimation results are possible because the array-to-array

correlation is an aggregate metric for all 330k peptides, while only 2.5k peptides,

selected using the PCC ranking metric, are used to estimate the epitope. Improving

the array-to-array correlation is likely to result in a set of peptides which is more

likely to contain epitope subsequences.

As the individual pixel intensities are not provided in the peptide array data files,

we work with the statistical estimates which are provided such as the MFI, MBI, and

SFI. Mean estimates of the pixel intensity are also given, and from comparing the

mean to the median fluorescence intensity we see only small differences, and therefore

are able to conclude that the pixel intensity distributions are symmetric, and without
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additional information assume that they are mostly Gaussian. Thus, we look at the

ratio of the MFI to the SFI as a measure of data quality, and also look at histograms

of the MFI and MBI to see how they vary across peptide array sample.

Figure 2.10 is a plot of the MFI divided by the SFI. Because we assume an

underlying Gaussian distribution, this quantity is an approximation for a quality

factor. The median values of this distribution range between 5 and 9, showing that

the measurements themselves are much larger than the statistical variation of that

measurement. Additionally, we can see that the data again separates itself into two

groups, where the data collected in 2012 and the mAb A10 are in one group, and the

remaining data collected in 2013 are in the second group. Based on this data quality

metric, the data collected in 2013 (excluding A10) is higher quality data.
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Figure 2.10: Histograms of the Median Fluorescence Intensity Divided by the Stan-

dard Deviation of the Fluorescence Intensity Pixels.
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Figures 2.11 and 2.12 are histograms of the MFI and MBI respectively, for each

of the eight monoclonal antibody samples. From these two plots we see the same

groupings from previous figures. From these figures we can infer that the higher

quality factors for the 2013 data group (excluding A10) seen in Figure 2.10 was a

result of smaller SFI, as well as the relative size of MFI to SFI.
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Figure 2.11: Histograms of the Median Fluorescence Intensity for All Eight Mono-

clonal Antibodies.

The analysis in this section has shown that the monoclonal antibody data collected

in 2013 is, for the most part, of higher quality than the 2012 data. This is, according

to the scientists collecting the data a result of improved data collection practices,

including a higher level of consistency between samples. We can assume that if

the mAb data were collected again, that the epitope estimates would be at least as

accurate as they were with this data set.
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Figure 2.12: Histograms of the Median Background Intensity for All Eight Monoclonal

Antibodies.

2.12 Comparison Methods

Random sequence peptide arrays containing hundreds of thousands of peptides

are very new, and as a result, there are very few algorithms to which our epitope

estimation algorithms can be compared. The most directly comparable method is a

motif estimation algorithm [2] developed by the Center for Innovations in Medicine

[101]. This method analyzes the peptide array data and searches for subsequences

of length 3-7 which occur more than three times with MFI values that are statisti-

cally significant. They assess statistical significance by comparing the fluorescence

of peptides which contain the subsequence of interest to the fluorescence of peptides

selected at random from the array. Table 2.19 is a comparison of our results and the

results from Figure 1 of [2].

The two methods find approximately the same epitope sequences for five of the

eight monoclonal antibodies, however our method finds epitope subsequences for 2C11,
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A10, and Ab8 at the top of our epitope estimate lists, while their method does not find

an epitope subsequence for 2C11, and only finds epitope subsequences for A10, and

Ab8 in their 11th and 13th spots in their epitope estimate list. As they state in their

paper, these are difficult antibodies to estimate epitopes for because the antibodies

bind non-specifically to a range of peptide sequences with the same strength as the

specific binding. The reason we are able to estimate these epitopes is because we use

the PCC instead of fluorescence. As we showed in Figure 2.4 for Ab8, using correlation

as a ranking metric results in more peptides containing the epitope subsequences, and

this is true for 2C11, and A10 as well.

Sample Full Estimated Comparison Motif

mAb Epitope Epitope Epitope Rank

2C11 NAHYYVFFEEQE VFFEEQE - -

4C1 LQAFDSHYDY GYDSR DSFDS 1

A10 EEDFRV EDFRV EDF 11

Ab1 NTFFRHSVVV RHSVV RHSVV 1

Ab8 TFSDLWKLLPE DLWKL SDLKW 13

DM1A AALEKDYEEVGV AALEKD LEKD 1

Flag DYKDDDDK AALEKDG DY D 1

HA YPYDVPDYA YDAPE DVPD, YDAPD 1

Table 2.19: A comparison of Our Epitope Estimates to the Motif Estimates in [2].
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Chapter 3

ALIGNMENT OF MULTIPLE PROTEIN ATTRIBUTES USING WAVEFORM

MAPPING

3.1 Protein Alignment and Generalization of Amino Acid to Waveform Mapping

Protein alignment methods find similarities in the structure and functional or evo-

lutionary attributes of the proteins being compared. Aligning proteins is important

for the discovery of evolutionary relationships, as well as discovery of important drug

target locations, and for finding the effects of gene mutations. When aligning, the

three dimensional structure of the protein is the most important important target to

align on, however additional attributes are important to integrate as well, especially

for more distantly related proteins, or more extreme mutations which may have sig-

nificantly affected the structure. Examples of these additional attributes include the

amino acid sequence, hydrophobicity, and sub-groupings of three consecutive amino

acids.

As we have had previous success in incorporating additional information from

one dimensional (1-D) signals into time-frequency transformations, in this chapter we

propose a generalization to three dimensions (3-D). These additional dimensions allow

for a concise representation of the structure, as well as time-frequency modulation to

represent additional attributes.
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3.2 Protein-to-Waveform Mapping Model

3.2.1 Selection of Highly-Localized Waveform

Current methods of protein structure alignment using waveform mapping do not

consider all possible multiple global and local conformations [88]. Including direc-

tionality between linked amino acids as part of the waveform mapping leads to more

successful structural alignment [89]. In particular, a protein-to-waveform mapping

model needs to allow for translations and rotations in the three dimensional (3-D)

plane to better represent the protein structure. As a result, there is a need for a

parametric waveform representation with a unique 3-D shape and parameters that

can be selected to identify changes in 3-D conformations. An important motivation

for a 3-D basis representation of protein structures is the fact that distantly related

proteins need not have similarity over the entire structure. Similarities can be local-

ized, and if the representation is linearly separable, it can be used to analyze similar

segments over shorter structure lengths.

For multiple attribute mapping, we use a 3-D Gaussian waveform that is highly-

localized in the higher-order six dimensional time-frequency plane. The multivariate

Gaussian waveform, g(t), is defined across a 3-D time-domain, (tx, ty, tz), with co-

variance matrix Σ as

g(t; Σ) = Ag (2π)−1.5|Σ|−0.5 e−0.5 tTΣ−1t , (3.1)

where t = [tx ty tz]
T, Ag is a normalization constant so that the Gaussian waveform

has unit energy, |Σ| is the determinant of Σ, and T denotes vector transpose. The

Gaussian waveform can also be transformed by changing its amplitude a(t) and its

phase function ψ(t) to obtain

s(t; Σ,ψ) = a(t) g(t; Σ) e−j2πψ(t) . (3.2)
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For example, the Gaussian signal can be time-shifted and frequency-shifted

s(t; Σ, τ ,ν) = g(t− τ ; Σ)ej2π (t−τ )Tν , (3.3)

where τ = [τx τy τz]
T and ν = [νx νy νz]

T are the time shift and frequency shift trans-

formations along each axis, respectively.

3.2.2 Mapping Geometric Structure Attributes

We consider two neighboring amino acids, Ai and Ai+1, where each amino acid is

centralized about a single α-carbon [107]. The 3-D geometric atomic coordinates of

the ith amino acid are given by xi = [xi yi zi]
T; these 3-D structure coordinates are

specified in protein data bank (PDB) files [1]. For the 3-D protein-to-waveform map-

ping, we use the time-shifted and frequency-shifted Gaussian waveform s(t; Σi, τ i,νi)

in (3.3). We then select the time-shift parameter τ i, frequency-shift parameter νi,

and covariance matrix Σi to represent the neighboring Ai and Ai+1 amino acids.

The time-shift parameter τ i = [τx,i τy,i τz,i]
T is selected such that the waveform in

Equation (3.3) is centered between adjacent α-carbons. Thus,

τx,i = (xi − xi+1)/2,

τy,i = (yi − yi+1)/2,

τz,i = (zi − zi+1)/2,

corresponding to the mid point between Ai and Ai+1.

The covariance of the 3-D Gaussian is selected to model the amino acids 3-D

orientation. Specifically, we want the energy of the Gaussian to be localized in the

region between the two α-carbons such that xi and xi+1 appear as the two outer-

most points on the 3-D Gaussian function in the mapped (tx, ty, tz) plane. Using

eigendecomposition of the Gaussian covariance matrix, we can obtain the eigenvector
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matrix that can be shown to correspond to the orientation or rotation matrix from

3-D point xi to xi+1. The geometric design of the rotation matrix is thus based on the

spherical angles description, (φi, θi), of the vector between these two points. Using

the coordinates for Ai and Ai+1, the angles are obtained as

φi = arctan

(
yi − yi+1

xi − xi+1

)
, θi = arccos

(
zi − zi+1√

di

)
(3.4)

where

di = (xi − xi+1)
2 + (yi − yi+1)

2 + (zi − zi+1)
2. (3.5)

Using the angles in (3.4), the rotation matrices [108] are given by

Rφi =


cos(φi) −sin(φi) 0

sin(φi) cos(φi) 0

0 0 1



Rθi =


cos(θi) 0 −sin(θi)

0 1 0

sin(θi) 0 cos(θi)

 .

The designed covariance matrix Σi is then calculated as

Σi = Rφi Rθi ΛiR
T
θi
RT
φi

(3.6)

where Λi = diag([di/36 0.1 0.1]). The scaling on each axis by Λ is chosen to

concentrate the energy between the amino acid locations, and to limit the amount of

overlap between adjacent Gaussian waveforms.

The frequency-shift parameter νi = [νx,i νy,i νz,i]
T is selected to provide direction-

ality information. Fixing the frequency-shift along each plane demonstrates pointing

from xi to xi+1; the negative of the same frequency demonstrates pointing from
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xi+1 to xi. Note that the time and frequency-shifted Gaussian waveform is sampled

compactly so that the correlation between two mapped amino acids with different

parameters is almost zero. An entire protein consisting of N amino acids is then

modeled by the sum of N − 1 time and frequency-shifted Gaussian waveforms

s(t) =
N−1∑
i=1

s(t; τ i,Σi,νi) . (3.7)

3.2.3 Mapping Sequence and Function Property Attributes

The sequence and function property attributes can be mapped using other wave-

form transformations. For example, the time-varying phase function in (3.2) can be

chosen to be a quadratic function along each axis with an amplitude modulation

selected to preserve waveform orthogonality.

3.3 Protein Multi-Alignment Metric

The 3-D structure protein alignment requires rotating and shifting a query protein

and a database protein to find their globally maximum alignment. We define the set

of α-carbons describing the 3-D geometric atomic coordinates of N amino acids as

X = [x1 x2 . . . xN ]. As we are using the location of amino acid α-carbons to model

the location of the proteins, we only need to shift and rotate those point sets.

Structure Alignment Searching the entire 3-D space of feasible shifts and rotations is

computationally prohibitive, so we utilize a search procedure where the 3-D protein

structures are always in a position of at least partial alignment. The procedure

focuses on a set of three consecutive amino acids Ai−1, Ai, Ai+1, with corresponding

3-D coordinates xi−1, xi, xi+1. The coordinates are shifted to place xi at the origin

[0 0 0]. The origin-shifted amino acid structure, with coordinates (X− xi), is then
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rotated using rotation matrix Qi. This matrix is obtained based on the following

conditions:

(a) the vector from xi to xi+1 lies along the x-axis;

(b) the vector from xi to xi−1 lies in the x-y plane.

The 3-D coordinates of the origin-shifted and rotated structure are given by

XR = Qi(X− xi) . (3.8)

Figures 3.1 and 3.2 illustrate a short protein sequence before, and after shifting and

rotating respectively.

Figure 3.1: A Short Protein Sequence in an Arbitrary Coordinate System.

The structure is then mapped using the protein-to-waveform Gaussian mapping

described in Equations (3.3) and (3.7). The mapping is applied to both the query

and database structures. Considering a query amino acid A
(q)
i and a database amino
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Figure 3.2: A Short Protein Sequence Shifted and Rotated to the 3-D Coordinate

Origin.

acid A
(d)
j , the structure mapping for each amino acid results in the 3-D Gaussian

waveforms s(q)(t; τ i,Σi,νi and s(d)(t; τ j,Σj,νj), respectively. We obtain a structure

alignment score (Str) by calculating the inner product between these 3-D Gaussian

waveforms as

Stri,j =

∫
s(q)(t; τ i,Σi,νi) s

(d)(t; τ j,Σj,νj)dt . (3.9)

Sequence Alignment The sequence alignment score (Seq) is calculated by looking

at the corresponding rows and columns of the relevant block substitution matrix

(BLOSUM), in this case, BLOSUM62 as

Seqi,j =
1

11
BLOSUM62(A

(q)
i , A

(d)
j ) . (3.10)

Note that this score is normalized to have a maximum match score of 1.
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Hydrophobicity Alignment The hydrophobicity alignment score (Hydr) is calculated

using

Hydri,j =
1

13.64
(13.64− |hi − hj|) (3.11)

where hi and hj are the hydrophobicity values of amino acids A
(q)
i and A

(d)
j , re-

spectfully, in units of kJ/mol. The normalization constant 13.64 results in a maximum

score of 1 when the amino acid sequences are identical and a score of 0 when the hy-

drophobicity values of the two amino acids are maximally different.

The overall location, structure, and function (LoStrFn) alignment score is obtained

by combining the three scores in Equations (3.9)-(3.11). In particular, it is given by

SCi,j = Stri,j + Seqi,j + Hydri,j . (3.12)

Note that each of the scores can be weighted differently based on the available

information on the importance of each attribute. In additional to computing separate

scores and adding them together, as is done above in Equation 3.12, it is possible, but

not implemented here, to integrate all of the information into a single time-frequency

waveform where the inner product evaluated in Equation 3.9 would compute the

entire score, and not just the structure score.

When all LoStrFn attributes are combined, we can use a single overall metric for

protein alignment. An alternative method of obtaining a LoStrFn alignment metric

is by performing each attribute mapping and corresponding alignment separately

and then combining the three resulting metrics together to obtain a single metric

[80]. This approach is less computationally intensive since the alignment algorithm

becomes more complex as the signal transformation parameters increase. One possible

way to perform each attribute mapping and alignment separately is by matching the
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one dimensional sequence information using the BLOSUM62 matrix and the matching

pursuit decomposition method from [30]; and by matching the property amino acid

or substitution matrix information directly from tabulated available results.

3.4 Alignment Results

A local LoStrFn alignment is performed to identify regions of similarity within

long protein sequences that could be widely divergent. The metric score in (3.12) can

be used for local alignment. A global LoStrFn alignment involves finding regions of

similarity for the entire query protein. This alignment is computed using a structured

search across all possible time and frequency-shifts and rotations of the query and

database proteins. The 3-D structural alignment is performed for all three amino acid

combinations of the database and query sequences. This is done by cycling through

all of the possible combinations of Qi in (3.8) for both protein sequences.

To demonstrate the effectiveness of the LoStrFn alignment method, we compare

two human mutant ferrochelatase proteins. The mutations cause changes in the amino

acid sequence as well as the 3-D structure of the protein. Here, the 7 amino acid

query sequence (TSDHIET) is a sub-sequence of protein 2po5 and the 19 amino acid

database sequence (ILLVPIAFTSDCIETLYEL) is a sub-sequence of protein 2po7.

The location, geometry and hydrophobicity values for the two proteins are obtained

from the Protein Data Bank [1]. The 3-D protein structure waveform mapping in

the time-frequency plane for global alignment is demonstrated in Figure 3.3. The

structure of the two protein subsections are highly overlapping. The query protein,

2po5, is plotted in blue, while the database protein, 2po7, is plotted in green. The

global alignment scores for each attribute and the overall alignment scores are listed in

Table 3.1. As expected, the overall score improves protein similarity as it incorporates

the matching of different attributes that contribute toward the protein mutations.
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Score Type Score Values

3-D Structure 0.66 0.95 0.98 1.00 1.00 0.99

AA Sequence 0.45 0.36 0.54 -0.27 0.36 0.45

Hydrophobicity 1 1 1 0.57 1 1

Overall 2.11 2.31 2.52 2.3 1.36 2.44

Table 3.1: LoStrFn Matching Scores

Figure 3.3: Structure Slignment of Two Human Mutant Ferrochelatase Proteins:

Query 2po5 Protein (Blue) and Database 2po7 Protein (Green) From [1].
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Chapter 4

PHYSICS-BASED SEA CLUTTER MODEL FOR IMPROVED DETECTION OF

LOW RADAR CROSS SECTION TARGETS

4.1 Detection Problem in Rapidly Varying Sea Clutter

In highly cluttered environments, such as in heavy sea clutter, the problem of

detecting a small target is very challenging. It is thus important to understand the

statistical characteristics of the complex sea environment and obtain physics-based

models that we can incorporate into our detector algorithm designs. This can lead to

an increase in detection performance by using the model to minimize the impact of

the environment.

Sea clutter is often characterized by the compound Gaussian sea clutter model.

While described mathematically later in this chapter, the concept behind this model

is that sea clutter is a summation of large amplitude and wavelength waves, called

gravity waves, and smaller amplitude and wavelength waves called capillary waves.

The capillary waves are are quick to decorrelate, and the strength of these random

reflections is modulated by the size of the gravity waves. Thus, these large, quickly

changing clutter reflections present a significant obstacle to the detection of electro-

magnetically small targets.

4.2 Physics-based Finite-Difference Time-Domain Sea Clutter Simulation

The sea clutter generation model includes two main processes. The first process is

the generation of a three-dimensional (3-D) random dynamic sea surface that moves

according to the governing physics of water waves as driven by the wind; the waves
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include gravity waves whose restoring force is gravity, and capillary waves whose

restoring force is water surface tension. The second process includes two dimen-

sional (2-D) finite-difference time-domain (FDTD) simulations. It is based on using

Maxwell’s equations to propagate radar pulses through the FDTD domain, where the

incident electromagnetic (EM) field impinges on the sea surface and scatters. The

implementation of a teleportation window [94] in the FDTD simulations separates

the scattering field or clutter from the total field; it is then propagated to the far field

and collected for processing. The 2-D FDTD simulations involve individual radar

pulses incident on single cuts of the dynamic 3-D sea surface. The sea is modeled as a

perfectly conducing surface (water cells are perfect electric conductors). As the radar

pulse duration is on the order of nano seconds, the surface is a static snapshot during

each pulse simulation but is propagated in between simulations of subsequent pulses

according to the pulse repetition time. For a single radar pulse, multiple down-wind

cuts of the 3-D sea surface are simulated. These cuts are strategically spaced in the

cross-wind direction in an attempt to collect scattering samples of the 3-D sea and

capture scattering across the radar footprint area on the sea surface. The superposi-

tion of radar backscatter collected from the multiple down-wind sea cuts constitutes

quasi-3-D sea clutter. The features of the sea surface are developed in stages: incorpo-

rating 2-D static gravity waves and developing a capillary waves model, implementing

a spreading function to expand into 3-D, and superimposing the capillary waves on

the gravity waves while mathematically giving each random wave its respective phase

velocity.

The gravity waves component of the 2-D sea surface are generated as described in

[109]. The height f(yn) of the 2-D sea surface at points yn along the surface is given
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by

f(yn) =
1

L

N/2−1∑
m=−N/2

F (Km) exp (jKmyn) (4.1)

where

F (Km) =
√

2πLW (Km)Rm, (4.2)

Rm is a zero-mean, unit-variance Gaussian random variable r(0, 1) for m = 0, N/2,

and

Rm = ((r(0, 1) + jr(0, 1))/
√

2 (4.3)

for m = 1, . . . , N/2− 1. The function

W (Km) = (α/(4|Km|3) exp (−βg2/(K2
m U

4)) (4.4)

is the P-M sea spectrum [110], where L is the sea surface length in meters, N is

the number of surface sampling points, Kn = 2πΛn is the wave number of the ocean

wave, Λn is the ocean wave wavelength, β = 0.74, α = 0.0081, g = 9.81 m/s2 is the

gravitational constant, and U is the wind speed in m/s.

The slope of the gravity waves versus time at any point on the sea surface is

proportional to the amplitude modulation of the clutter (or the clutter texture) re-

turning from that point of the sea, so it is vital that the instances of gravity waves

are generated correctly. In order to verify that the gravity waves model is correct,

we simulated 2-D FDTD incident EM plane wave illumination on our gravity wave

surface f(yn). The parameters of the EM simulations were chosen based on infor-

mation found in previous work. The proper discretization of the Pierson-Moscowitz

(P-M) sea surface, to capture scattering from relevant details of the sea, is given in

[111]. We chose an extreme case to reproduce for generating the far field scattering

from large details of the sea (gravity waves), following an FDTD simulations study

in [112]. The sea details of interest are relatively large gravity waves, with a sea state
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of 7 (wind speed of 20 m/s) and a significant wave height of roughly 6 meters. Thus,

to capture details of this size, the free space EM illumination wavelength is chosen as

λ0 = 7.49 m. The sea surface is sampled at λ0/16 intervals. The discretization cell

in our FDTD space is λ0/16, and the plane wave EM illumination angle of incidence

is 20 degrees above the horizon. Using these settings, we simulated 40 independent,

completely decorrelated, random instances of the gravity wave surface of total length

160λ0 m.

The scattering from the gravity waves is propagated to the far field over the

horizon, where evidence of the changing slopes of larger gravity waves can be seen

from one instance of sea to the next. The far field scattered intensity of 3 instances

and the average of 40 instances (black curve) are shown in Figure 4.1. These results

Figure 4.1: Far Field of 2-D Gravity Waves.

demonstrate that we have a valid simulation of large realistic sea surface details in

the EM environment using the FDTD computational EM method. The results also

show that the 2-D gravity wave surface is correctly generated.
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To include the smaller details of the sea surface, we develop an energy spectrum

to generate capillary waves in the same manner that the P-M spectrum is used to

generate gravity waves. The spectrum is obtained using results from other capillary

wave studies. We first estimate an exponential function that relates the wind speed

U and capillary wave wavelength Λ [113]. The total kinetic and potential energy

of water waves is given by E = ρπA2, where A is the wave amplitude and ρ is the

density of water [114], and the amplitude of the capillary wave of greatest height

is 2A = 0.73Λ [115]. Using these relations, we estimate the energy spectrum for

capillary waves using

w(Kn) = (4αcρπ
3U/|Kn|2) exp (−(KB − βcKn)/(β2

cKn))2 , (4.5)

where KB = 2πΛB, ΛB is the wavelength boundary between gravity and capillary

waves, αc = 0.0445, and βc = 0.6. This expression does not account for other

phenomena such as the effect of the local gravity wave slope and the angle of incidence

of the local wind and instantaneous wind speed. However, it yields roughly the correct

capillary wave heights based on experimental data [113] and is suitable for our study.

Note that, although capillary and gravity waves are generated by the same approach,

we continuously change the random number sets to prevent repeating capillary wave

patterns.

The waves are propagated using the phase velocity equation

v2p =
T

ρ
K +

g

K
, (4.6)

where T is the surface tension per length, ρ is the water mass density, g is gravity

acceleration, K = 2π/Λ is the water wave number, and Λ is the wavelength of the

water wave [114]. The first and second terms in (4.6) correspond to the velocity of

capillary waves and gravity waves, respectively. Each wave is given a phase velocity
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φn =Knyn − ωnt, following (4.6), where

ωn = (|Kn|2(TKn/ρ+ g/Kn))0.5. (4.7)

To expand to 3-D surface, we implement a spreading function as in [116]. Super-

imposing the moving capillary waves on the moving gravity waves results in the full

dynamic and random 3-D realistic sea surface.

The speckle component of sea clutter is backscatter from capillary waves. A simple

test to demonstrate that our capillary weaves scatter clutter in as similar fashion as

the real sea is to calculate the Pearson’s correlation coefficient of the first returning

clutter pulse with all returning pulses. If the capillary waves have the correct motion,

the speckle component of the clutter decorrelates in the time that real sea speckle

decorrelates, which is on the order of 10 ms. For this test, in order to best observe

the capillary waves, we chose to use X-band radar, since the EM wavelength is on

the order of the capillary wave wavelength and amplitude. We simulated 100 radar

pulses incident on a single cut of time-varying 3-D sea, using 1 ms pulse repetition

time, to capture the effect of the clutter. The correlation results are plotted in Figure

4.2, which shows that the speckle decorrelated in approximately 15 ms.

4.3 Detection Methods of Low Radar Cross Section Targets

We consider a radar system for detecting a target in heavy sea clutter. The target

is assumed to have low radar cross-section due to its actual size and its relative size

in relation to the wavelength of the illuminating radar. We assume that the radar

system transmits a pulse train of K identical pulses, s(t), which scatter off sea surface

scatterers, and if present, the target. The two detection hypotheses describing this

scenario for the kth transmit signal, k= 1, 2, . . . , K, and the ith sea surface scatterer
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Figure 4.2: Decorrelations of the Radar Returns From the Simulated Sea Clutter

Occur Over Approximately 15 ms.

are given by

H0 : xk(t) =
∑
i

ak,i s(t− ti) + w(t)

H1 : xk(t) = bk s(t− t0) +
∑
i

ak,i s(t− ti) + w(t) .

Under hypothesis H0, we assume that that received signal consists of multiple scat-

terers with complex scattering coefficients ak,i and time delays ti and white Gaussian

noise w(t). Under hypothesis H1, we assume that, in addition to the scatterers and

noise, the target is also present with a scattering coefficient bk at time delay t0. In

both hypotheses, the signals are sampled using as sampling period Ts to yield the

discrete time sequence xk[n] =xk(tTs), n= 0, . . . , N − 1. For the rest of the chapter,

we assume that the clutter-to-noise ratio is very high and that the effects of noise

on detection can be ignored. The pulse train radar waveform transmission scheme

described above, is illustrated in Figure 4.3.
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Figure 4.3: Illustration of the Radar Waveform Pulse Model.

4.3.1 Generalized Matched Filter Detector

We derive the generalize matched filter (GMF) detector, that under hypothesis H1,

assumes that the discrete-time incident signal s[n] is known and deterministic but the

target time-delay is unknown. After first estimating the time-delay using maximum

likelihood estimation, the GMF detector is obtained by maximizing the probability

of detection for a fixed false alarm rate. For our signal model, the discrete-time

matched filter output corresponding to the kth pulse at the `th lag, `= 0, . . . , N − 1,

with estimated n0, is given by

rk[`] = bkzs[`− n0] +
N−1∑

n=−(N−1)

zs[n] dk[n+ `] (4.8)

where the autocorrelation function of the transmit signal s[n] at lag ` is defined as

zs[`] =
N−1∑
n=0

s[n]s∗[n− `], (4.9)

and

dk[`] =
∑
i

ak,i (4.10)

is the aggregate scattering coefficient from all of the clutter scatterers that fall within

the `th range bin. The decision threshold γ is set based on the distribution of rk[m]

and by fixing either a desired value of false alarm rate PFA or probability of detection

PD.
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4.3.2 Subspace Clutter Suppression Detector

The GMF detector is not expected to perform well for low radar cross section

(RCS) targets in heavy sea clutter. In such cases, the clutter is much stronger than

the signal, and for reasonable values of PD, the number of false alarms is large. This

is expected as matched filtering does not involve clutter mitigation. The subspace

clutter suppression (SCS) detector decomposes the signal into subspaces consisting of

mostly clutter or mostly target energy. The detection performance is improved when

only the subspaces that are orthogonal to the clutter are processed.

We assume a Swerling I point target so that the complex reflectivity of the target

b = [b1 b2 . . . bK ]H

for all K transmit pulses has a zero-mean complex Gaussian distribution with covari-

ance matrix σ2IK , where IK is the (K ×K) identity matrix and H denotes complex

transpose. For each of the K transmit pulses, the matched filter output at the `th

lag or range bin can be written in vector form as

r` = b zs[`− n0] +
N−1∑

n=−(N−1)

dn+` zs[n] (4.11)

where

r` = [r1[`] r2[`] . . . rK [`]]H,

dn+` = [a1,n+` a2,n+` . . . aK,n+`]
H.

The covariance matrix of the matched filter output depends on both the target and

clutter characteristics, and it is given by

R` = E[r`r
H
` ] = E[bbH]|zs[`− n0]|2

+
N−1∑

n=−(N−1)

N−1∑
l=−(N−1)

E[dn+` dHl+`] zs[`] z
H
s [l] . (4.12)
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The matrix can be re-written in the form of the compound Gaussian sea clutter model

as

R` = σ2IK |zs[`− n0]|2 +
N−1∑

n=−(N−1)

Φ Ln+` |zs[n]|2 (4.13)

where Φ is the speckle covariance matrix and L` is the sea clutter texture component.

Some existing detection methods use the above formulation to estimate the texture

and speckle clutter components for use in a generalized likelihood ratio test. While a

reasonable approach, estimating the texture and speckle clutter components is com-

putationally intensive, and it is often performed using expectation maximization or

another iterative method. A less computationally intensive approach, that also yields

reasonably good results, estimates sample covariance matrix from the data in all the

range bins in one coherent processing interval as

R =
1

N

N−1∑
`=0

(r` − r̄`)(r` − r̄`)
H (4.14)

where r̄` is the mean value of r` at the `th lag. To suppress the clutter from the re-

ceived signal, we decompose R into the eigenvector matrix Q and diagonal eigenvalue

matrix D to obtain

R = QDQH, (4.15)

where we assume that the eigenvalues along the diagonal of D are sorted in descending

order. The eigenvector matrix Q is also sorted according to the ordered eigenvalue

matrix.

Negative SCR values imply that the larger eigenvalues and associated eigenvectors

are due to sea clutter and define the eigenvectors that we want to suppress. We form

a matrix Qc from the J < K eigenvectors of Q whose columns are associated with the

smallest J eigenvalues of R. The projected signal onto the signal subspace is given

by QcQ
H
c r`; this is the clutter suppressed signal that results in a larger SCR than
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r`. Using the clutter suppressed signal for target detection results in an improved

detection performance when compared to that of the GMF detector.

4.4 Simulation Results

In order to evaluate the performance characteristics of the GMF and SCS detec-

tors across a range of SCRs, we need to vary the strength of the clutter and target

reflections. Varying these parameters is straightforward when clutter realizations are

simulated using the compound Gaussian model or any other statistical model. How-

ever, this is not the case when using our proposed sea clutter generation model. The

data generated from the physics-based FDTD model is controlled by physical prop-

erties of the sea surface (such as the size and shape of the waves), the target (such

as the size of an object), and the radar (such as the radar beamwidth). While we

have direct control over the strength of the clutter and target reflections, we do not

know the exact numerical value of the SCR. This is because the reflected signal is

a combination of both direct reflection from the target as well as delayed reflections

from the sea surface; this makes it difficult to calculate just the target component or

just the clutter component of the received signal.

As we cannot control the numerical SCR values, we cannot specify the exact

detector performance, such as the probability of detection versus the probability of

false alarm, for a given SCR. We can, however, evaluate the detector performance

for relative ranges of SCR values, that is simulate scenarios for relatively larger or

smaller SCRs. In order to accomplish this, we keep all parameters but one constant,

and then we vary that one parameter to affect the SCR. In the following simulations,

we hold the target size and radar beamwidth constant but increase the size of the

waves resulting in varying SCR values. We consider three such scenarios to illustrate
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the detector performance across a wide range of SCRs. The SCR in these scenarios

is ordered as these scenarios, SCR1 > SCR2 > SCR3.

The first scenario shows detection performance for a large SCR value. The receiver

operating characteristic (ROC) curves, demonstrating probability of detection PD as

a function of the probability of false alarm PFA, for the GMF and SCS detectors at

SCR1 is shown in Figure 4.4. As expected, GMF detector outperforms SCS because

of the positive SCR. When operating on a positive SCR the SCS detector removes

the dominant mode, which in this case happens to be the signal of interest, and as a

result its performance is poor.
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Figure 4.4: ROC Curves Comparing the Performance of the SCS and GMF Detectors

Using SCR1 Values.

In the second scenario, SCR2, the SCR is now low enough that the SCS detector

is removing clutter power from the radar returns, and is improving the SCS detector

ROC curve. At this SCR, the GMF detector is performing much worse than before,

and does not perform as well as the SCS detector. The ROC curves for both the

GMF and SCS detectors are plotted in Figure 4.5.
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Figure 4.5: ROC Curves Comparing the Performance of the SCS and GMF Detectors

Using SCR2 Values.

The ROC curves for the third scenario, SCR3 are shown in Figure 4.6. Here, the

SCR is even more negative than in Figure SCR2, and the processing gain of the SCS

detector over the GMF detector has increased.

The simulated results shown in Figures 4.4, 4.5 and 4.6 use the sea clutter gen-

eration model with K=31 pulses; for the SCS detector, only the first eigenmode was

suppressed (J=30). The number of clutter eigenvectors is data dependent and is of-

ten chosen by looking for an abrupt drop-off value in the eigenvalue amplitude from

the ordered list of eigenvalues. For K=31, this drop-off value occurred after only one

eigenvalue. We expect that for larger values of K, more than one clutter eigenmode

would need to be suppressed. However, as in this set of simulations we considered a

constant pulse repetition frequency, larger values of K resulted in poorer detection

statistics because the sample covariance matrix was then computed from decorrelated

sea clutter data.

83



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
FA

P
D

 

 

GMF Detector
SCS Detector

Figure 4.6: ROC Curves Comparing the Performance of the SCS and GMF Detectors

Using SCR3 Values.

Decreasing the SCR beyond what it is in the SCR3 results in poorer performance

for both the SCS and GMF detectors. While the clutter removed from the first

eigenmode using the SCS detector improves the SCR, it does not remove enough

clutter to continue improving the performance. A more complex algorithm would

need to be developed to automatically select the number of eigenmodes which should

be removed.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The dissertation proposed signal processing methods for improving detection per-

formance in molecular biology and radar applications. The signal processing al-

gorithms included mapping biological sequences to signals and then using highly-

localized time-frequency representations to estimate epitopes and identifying mimo-

topes from one-dimensional sequences and to perform alignment in protein structures.

They also included an improved detector of a target in heavy sea clutter based on a

high-fidelity physics-based electromagnetics simulation.

Random sequence peptide microarray analysis requires the detection and iden-

tification of antibody epitopes from microarray peptide sequences to discriminate

between pathogens and diagnose diseases. This was achieved by first mapping charac-

teristics of peptide and epitope sequences to parameters of highly-localized Gaussian

waveforms in the time-frequency plane. After down-selecting the large number of

sequences from a microarray, time-frequency based matching methods were used to

estimate epitope candidates corresponding to specific pathogens. The performance of

the novel epitope estimation and identification method was demonstrated using eight

monoclonal antibodies. The candidate sequences that resulted in a stronger response

for one antibody over the others corresponded well with the actual epitope sequences

that generated the monoclonal antibodies. Using this method, we estimated exact

epitope subsequences for five of the eight monoclonal antibodies, and we estimated
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epitope subsequences which closely resembled the exact subsequences for the other

three monoclonal antibodies.

Initial results for the 330k array and a comprehensive description of the signal

processing algorithms on subsequence estimation were published in a book chapter

[117]. In [118] we present a more in-depth analysis which includes both epitope

estimation and mimotope identification. We have also performed some related work

on the adaptive learning of peptide features, using a smaller random sequence peptide

array with 10k peptides [119]. This work was supported in part by DTRA, and by

the Ira A. Fulton Schools of Engineering Dean’s Fellowship.

We demonstrated a novel method of protein alignment incorporating multiple

attributes by mapping them onto three dimensional (3-D) Gaussian waveforms and

multiple waveform transformations between neighboring amino acids in the protein.

In particular, we map information about a protein’s sequence location, structure and

characteristic properties, and use a combined matching score to obtain protein multi-

alignment. As demonstrated by an example with query and database proteins from

the Protein Data Bank, when multiple attributes are incorporated in the alignment,

the overall alignment score improves and can lead to information on mutations that

cause changes not only in the protein structure but also in the protein [32].

We have also considered a detection problem that made use of physics-based

modeling but in a different application area. Specifically, we considered the detection

of a low radar cross section (RCS) target in heavy sea clutter. The modeled sea clutter

was generated using a 3-D random dynamic sea surface with gravity and capillary

wave models. The model included gravity waves with gravity as the restoring force

as well as capillary waves where the restoring force is the water surface tension.

The generation model includes two dimensional (2-D) finite-difference time-domain

(FDTD) sea clutter simulations. We investigated a simple matched filter detector
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and a subspace clutter suppression detector, and we used the FDTD simulations to

compare the performance of the two detectors [120]. This work was supported in part

by ONR, and a Doctoral Fellowship from the ASU Security and Defense Systems

Initiative (SDSI) Institute. Note that some additional radar work was performed

related to waveform design [121].

5.2 Future Work

5.2.1 Random Sequence Peptide Microarray Epitope and Mimotope Estimation

Future research into processing random sequence peptide array data will focus on

improving the robustness of the algorithms presented in this dissertation. One of the

major conclusions of the random sequence peptide array epitope estimation was that

Pearson’s correlation coefficient is an excellent ranking metric. It selects the peptides

which do not fluoresce strongly relative to the median array response, yet are fluo-

rescing strongly relative to how those peptides fluoresce in other antibody samples.

It would be useful to confirm the results of this work with a new set of monoclonal

antibody samples where the data are collected using exactly the same procedures

such that the background fluorescence of all the samples are approximately constant.

Furthermore, sometimes there is cross-reactivity between monoclonal antibody sam-

ples which can lead to worse performance of the Pearson’s correlation coefficient as a

ranking metric. The algorithm could be modified to be tolerant of this cross-reactivity

in order, for example, for the epitope of Flag to be better estimated.

5.2.2 Protein Alignment Using Time-Frequency Encoded Waveforms

The work published in [32] included structural information in the 3-D Gaussian

time-frequency modulation. While the locational and functional information was in-
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cluded in the alignment score, it was not part of the time-frequency modulation in

Equation 3.12. Future work would involve incorporating that information into the

time-frequency transform, and doing so in a computationally efficient manner. Ad-

ditionally, this method of 3-D alignment could be tested using evolutionarily related

proteins from the Protein Data Bank.

When incorporating additional information into the time-frequency transforma-

tion, the computational costs of additional information must be considered. Three

dimensional alignment can be computationally intensive, because of the number of

samples required to numerically evaluate Equation 3.9. When incorporating time-

frequency modulation, the Nyquist sampling rate increases according to the band-

width of the modulation in each of the three dimensions. While the sampling rate

and resulting number of computations increases in a single dimension as O(N), where

N is the number of samples, the computational burden of evaluating Equation 3.9

increases as O(N3). This quickly becomes a significant computational burden, even

on modern computers. One way to mitigate this is to consider time-frequency modu-

lations which are a function of one dimension at a time, e.g. a sinusoidal modulation

in the tx dimension. This class of modulations allows for encoding additional infor-

mation without an overwhelming increase in computational costs.

5.2.3 Sea Clutter Mitigation For Electromagnetically Small Targets

The radar sea clutter processing results showed improved performance for specific

target and clutter geometries, and the problem should be extended to include more

complex targets, and additional orientations between the sea clutter, target, and radar

to establish the circumstances under which the target subspace and clutter subspace

are meaningfully separable. Future work could also include dynamically estimating
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the number of clutter eigenmodes to cancel, and quantifying how dynamic estimation

would affect the detection statistics.
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APPENDIX A

LIST OF ACRONYMS
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1-D one dimensional

2-D two dimensional

3-D three dimensional

AA amino acid

BLAST basic local alignment search tool

BLOSUM blocks substitution matrix

DNA deoxyribonucleic acid

DS-OCRC down-selected occurrence count

ELISA enzyme linked immunosorbent assay

EM electromagnetic

FDTD finite-difference time-domain

GMF generalized matched filter

LoStrFn location, structure and function

mAb monoclonal antibody

MBI median background intensity

MFI median fluorescence intensity

MPD matching pursuit decomposition

OCRC occurrence count

PCC pearson’s correlation coefficient
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PDB protein data bank

P-M pierson-moscowitz

RCS radar cross-section

RNA ribonucleic acid

ROC receiver operating characteristic

SCR signal-to-clutter ratio

SCS subspace clutter suppression

SFI standard deviation of the fluorescence intensity

SVM support vector machine

TF time-frequency

TIFF tagged image file format
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APPENDIX B

RESULTS FROM THE ESTIMATION OF SUBSEQUENCES OF

MONOCLONAL ANTIBODY SAMPLES
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In Chapter 2, we proposed a time-frequency based signal processing algorithm for

estimating epitopes and identifying mimotopes for eight different monoclonal anti-

body samples. Here we provide, in detail, our results for all eight samples.

Subsequence OCRC DS-OCRC Mean MFI Max. MFI

PWFK 682 19 883 2,798

PWFN 781 18 726 2,390

ARLR 659 16 1,220 5,556

ARPF 593 15 869 9,512

AVWF 634 15 720 2,529

PWFF 430 15 730 2,327

RPWF 515 15 902 3,277

RWFN 184 15 929 65,535

YSAW 503 15 731 3,613

ARWF 278 14 902 65,535

Table B.1: Estimated Top 10 Subsequences of Length L = 4 Obtained When Algo-

rithm 1 Was Applied to mAb 2C11, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.
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Subsequence OCRC DS-OCRC Mean MFI Max. MFI

FEEQE 168 7 586 5,826

FFEEQ 117 7 636 5,826

VFFEE 87 7 676 5,826

ARWFN 54 6 931 65,535

AVNWF 64 6 760 187

PWFNK 139 6 848 2,144

WFNRL 30 6 1,010 1,704

ARLRP 120 5 1,098 4,613

ARRVR 30 5 1,980 4,142

DARWF 37 5 834 65,535

Table B.2: Estimated Top 10 Subsequences of Length L = 5 Obtained When Algo-

rithm 1 Was Applied to mAb 2C11, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

Subsequence OCRC DS-OCRC Mean MFI Max. MFI

FFEEQE 116 7 636 5,826

VFFEEQ 86 7 685 5,826

DARWFN 10 4 1,197 65,535

AWRGFN 7 3 997 1,692

FARLRE 9 3 1,183 3,327

FKYARL 24 3 1,208 2,414

HFFKAL 6 3 954 1,693

KARLRP 6 3 1,652 4,613

WFARLL 6 3 1,050 1,769

WFNGYA 12 3 938 1,470

Table B.3: Estimated Top 10 Subsequences of Length L = 6 Obtained When Algo-

rithm 1 Was Applied to mAb 2C11, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.
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Subsequence OCRC DS-OCRC Mean MFI Max. MFI

VFFEEQE 85 7 694 5,826

YVFFEEQ 22 3 805 2,089

AALEKDG 2,000 2 630 16,310

ALEKDGY 111 2 701 16,310

AVARPFQ 2 2 1,849 2,182

AVGWQAR 3 2 1,922 16,130

AWRGFNY 3 2 997 1,616

FARLREY 2 2 1,415 1,647

FEEQERY 13 2 656 1,559

FFEEQER 23 2 759 1,559

Table B.4: Estimated Top 10 Subsequences of Length L = 7 Obtained When Algo-

rithm 1 Was Applied to mAb 2C11, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

Subsequence OCRC DS-OCRC Mean MFI Max. MFI

GYDS 158 58 3,667 65,535

EYDS 129 32 4,337 65,535

DSWP 169 28 1,345 65,535

YDSR 127 27 1,611 65,535

DSHP 272 24 877 65,535

DSRP 303 24 942 65,535

EADS 180 24 1,275 53,944

YDSH 59 24 7,006 65,535

DADS 100 23 2,197 65,535

YDSK 113 23 2,129 65,535

Table B.5: Estimated Top 10 Subsequences of Length L = 4 Obtained When Al-

gorithm 1 Was Applied to mAb 4C1, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

106



Subsequence OCRC DS-OCRC Mean MFI Max. MFI

GYDSR 21 13 8,731 65,535

YDSRP 18 11 4,315 65,535

ADSWP 20 10 12,769 65,535

YDSHP 13 10 28,346 65,535

ADSVP 34 9 1,728 29,299

FEYDS 25 9 3,320 61,256

GYDSW 11 9 6,107 33,735

YDSKG 12 9 18,650 65,535

EDADV 22 8 3,751 30,830

GYDSH 11 8 15,211 65,535

Table B.6: Estimated Top 10 Subsequences of Length L = 5 Obtained When Al-

gorithm 1 Was Applied to mAb 4C1, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

Subsequence OCRC DS-OCRC Mean MFI Max. MFI

FDSVGG 4 4 38,206 65,535

FKQYDS 6 4 3,840 7,562

NGYDSR 6 4 14,295 65,535

PADSWP 5 4 14,259 65,535

PFDSVG 4 4 65,535 65,535

ADSWPP 5 3 12,244 15,036

APNDSG 4 3 50,593 65,535

ARPGYL 15 3 1,463 5,797

DADSVP 4 3 8,811 24,246

DADSWP 3 3 13,294 19,770

Table B.7: Estimated Top 10 Subsequences of Length L = 6 Obtained When Al-

gorithm 1 Was Applied to mAb 4C1, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.
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Subsequence OCRC DS-OCRC Mean MFI Max. MFI

AAWRFFK 2 2 5,601 9,043

AGPGYDS 2 2 8,704 11,930

APNDSGG 2 2 50,593 65,535

ARGPFAR 4 2 2,857 5,287

ARPFYAR 6 2 1,563 3,254

AVGPNWF 6 2 1,116 11,397

AWRHFNY 4 2 1,080 1,977

AYAFDSN 2 2 34,179 65,535

DADSWPW 2 2 7,805 13,294

DLAPKEY 2 2 3,538 5,732

Table B.8: Estimated Top 10 Subsequences of Length L = 7 Obtained When Al-

gorithm 1 Was Applied to mAb 4C1, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

Subsequence OCRC DS-OCRC Mean MFI Max. MFI

WDVA 272 55 17,534 65,535

DVAW 473 52 8,790 65,535

DSAW 442 46 8,763 65,535

WQEA 135 46 65,535 65,535

DAAW 385 40 11,101 65,535

DVSW 239 36 19,765 65,535

QEYA 323 35 37,316 65,535

EDVA 242 34 20,428 65,535

WFEA 267 34 8,875 65,535

EWDA 346 32 10,617 65,535

Table B.9: Estimated Top 10 Subsequences of Length L = 4 Obtained When Al-

gorithm 1 Was Applied to mAb A10, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.
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Subsequence OCRC DS-OCRC Mean MFI Max. MFI

EDFRV 34 20 65,535 65,535

EWDVA 41 15 65,535 65,535

EDVAW 35 14 65,535 65,535

WFEGA 53 14 32,589 65,535

WDVAP 33 13 65,535 65,535

DAAWP 52 11 16,042 65,535

DVAWG 57 11 10,288 65,535

EWDAA 44 11 31,044 65,535

PWFEA 69 11 10,370 65,535

WDVAW 42 11 19,322 65,535

Table B.10: Estimated Top 10 Subsequences of Length L = 5 Obtained When Al-

gorithm 1 Was Applied to mAb A10, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

Subsequence OCRC DS-OCRC Mean MFI Max. MFI

DFRVDW 22 8 35,188 65,535

FRVDWK 40 8 5,252 65,535

EDFRVD 6 5 65,535 65,535

EDVRPF 10 5 39,784 65,535

PWQEAS 7 5 65,535 65,535

AVWFEG 11 4 7,222 65,535

DVAWPF 12 4 22,508 65,535

EDARSG 6 4 34,672 65,535

EDVAPN 9 4 60,074 65,535

EDVAWP 6 4 65,535 65,535

Table B.11: Estimated Top 10 Subsequences of Length L = 6 Obtained When Al-

gorithm 1 Was Applied to mAb A10, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.
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Subsequence OCRC DS-OCRC Mean MFI Max. MFI

DFRVDWK 22 8 35,188 65,535

EDFRVDW 6 5 65,535 65,535

FRVDWKH 33 4 2,294 65,535

AGNEYAL 4 2 38,101 65,535

APEDPED 167 2 830 65,535

APWFEDS 3 2 39,460 65,535

APWKEDS 4 2 34,151 65,535

APWNEAR 3 2 65,535 65,535

AQEYRPE 2 2 65,535 65,535

AVGPWQE 3 2 65,535 65,535

Table B.12: Estimated Top 10 Subsequences of Length L = 7 Obtained When Al-

gorithm 1 Was Applied to mAb A10, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

Subsequence OCRC DS-OCRC Mean MFI Max. MFI

HSVV 618 196 16,682 65,535

RHSV 298 188 61,191 65,535

RRHS 78 17 4,082 65,535

PWFN 781 15 952 41,733

HPWF 632 14 1,069 15,186

PWHF 908 13 1,553 31,088

AAVW 611 12 1,436 43,546

AVRG 610 12 2,488 65,535

AWPF 562 12 1,033 41,005

FGAR 384 12 2,029 56,590

Table B.13: Estimated Top 10 Subsequences of Length L = 4 Obtained When Al-

gorithm 1 Was Applied to mAb Ab1, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.
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Subsequence OCRC DS-OCRC Mean MFI Max. MFI

RHSVV 209 186 65,535 65,535

RRHSV 26 16 19,861 65,535

VRHSV 11 8 23,648 65,535

ARHSV 27 5 558 65,535

AVRGF 62 5 2,013 52,630

AYAWF 45 5 828 6,867

AVWHF 168 4 1,647 25,080

AWHFS 19 4 2,254 19,262

FKEYL 37 4 1,645 12,231

FQYAL 67 4 1,095 23,112

Table B.14: Estimated Top 10 Subsequences of Length L = 5 Obtained When Al-

gorithm 1 Was Applied to mAb Ab1, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

Subsequence OCRC DS-OCRC Mean MFI Max. MFI

RRHSVV 21 16 21,999 65,535

VRHSVV 10 8 26,646 65,535

ARHSVV 13 5 33,836 65,535

RHSVVW 5 4 20,292 61,580

FFEEQE 116 3 760 3,217

RGHSVV 18 3 13,371 53,733

RHSVVD 3 3 65,535 65,535

RWHSVV 21 3 3,146 51,425

AARPFA 12 2 2,229 27,035

AARWFF 6 2 764 4,349

Table B.15: Estimated Top 10 Subsequences of Length L = 6 Obtained When Al-

gorithm 1 Was Applied to mAb Ab1, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.
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Subsequence OCRC DS-OCRC Mean MFI Max. MFI

AFQYALV 3 2 1,485 2,275

APFKGRL 4 2 1,977 3,080

ARHSVVD 2 2 65,535 65,535

AVNWFLK 2 2 2,380 2,396

AVRHSVV 3 2 29,643 30,839

FFEEQEK 34 2 948 3,217

FSLKEWY 2 2 3,281 4,092

HVVLEEV 2 2 2,183 2,529

KYARNKR 3 2 2,099 3,054

LEEVLNL 167 2 1,121 15,534

Table B.16: Estimated Top 10 Subsequences of Length L = 7 Obtained When Al-

gorithm 1 Was Applied to mAb Ab1, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

Subsequence OCRC DS-OCRC Mean MFI Max. MFI

PWHF 14 908 1,717 43,903

AWHF 13 872 2,055 32,972

VWHF 13 632 1,713 31,684

HPWF 12 632 1,264 15,576

PWFH 12 342 1,609 29,293

PWFK 12 682 1,306 39,635

WHFN 12 736 2,103 32,972

AARL 11 437 2,862 65,535

AVWG 11 662 1,420 64,190

AVWN 11 575 1,417 63,356

Table B.17: Estimated Top 10 Subsequences of Length L = 4 Obtained When Al-

gorithm 1 Was Applied to mAb Ab8, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.
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Subsequence OCRC DS-OCRC Mean MFI Max. MFI

APEDP 7 172 1,107 33,036

AVGPW 7 97 1,428 23,273

DLWKL 6 63 1,174 10,504

EDPED 6 170 1,098 9,271

PEDPE 6 169 1,093 6,309

PWFAR 5 89 1,089 33,684

WFKYA 5 61 999 24,968

YALRV 5 55 1,500 12,950

AARLP 4 61 3,228 47,610

AAWHF 4 120 2,292 13,586

Table B.18: Estimated Top 10 Subsequences of Length L = 5 Obtained When Al-

gorithm 1 Was Applied to mAb Ab8, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

Subsequence OCRC DS-OCRC Mean MFI Max. MFI

APEDPE 6 167 1,093 6,309

PEDPED 6 167 1,093 6,309

LAPEDP 4 107 1,045 5,434

APWFKY 3 14 1,443 3,086

AVGPWF 3 30 1,312 23,273

EDPEDK 3 14 1,197 3,392

EDPEDS 3 39 1,031 6,309

FNYALR 3 14 1,685 5,422

PWFARP 3 11 1,467 3,281

WHFFKY 3 9 1,037 4,614

Table B.19: Estimated Top 10 Subsequences of Length L = 6 Obtained When Al-

gorithm 1 Was Applied to mAb Ab8, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.
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Subsequence OCRC DS-OCRC Mean MFI Max. MFI

APEDPED 6 167 1,093 6,309

LAPEDPE 4 107 1,045 5,434

PEDPEDK 3 14 1,197 3,392

PEDPEDS 3 39 1,031 6,309

APWFKYA 2 3 2,591 3,086

ARPWFHP 2 2 4,410 4,809

DHPADAW 2 2 1,962 2,479

DLDSDLW 2 2 3,713 5,483

DSDLWKL 2 2 3,713 5,483

DSWFKQG 2 2 1,458 1,534

Table B.20: Estimated Top 10 Subsequences of Length L = 7 Obtained When Al-

gorithm 1 Was Applied to mAb Ab8, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

Subsequence OCRC DS-OCRC Mean MFI Max. MFI

AVWF 634 15 944 17,499

WHFN 736 14 2,034 32,980

PWFN 781 13 1,053 41,133

AVPW 545 12 1,419 50,578

AWPF 562 12 1,098 46,024

GPWF 611 12 1,082 41,133

PFFN 381 12 1,293 31,135

PWFF 430 12 769 10,266

PWFK 682 12 1,206 41,829

VPWN 186 12 1,313 29,619

Table B.21: Estimated Top 10 Subsequences of Length L = 4 Obtained When Algo-

rithm 1 Was Applied to mAb DM1A, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.
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Subsequence OCRC DS-OCRC Mean MFI Max. MFI

ALNRP 109 6 2,314 59,404

AALEK 2,058 5 2,364 43,563

ALEKD 2,100 5 2,369 43,563

DLWKL 63 5 1,075 7,130

LAWHF 62 5 1,534 7,388

AAPWF 82 4 1,298 31,956

ALLRP 62 4 1,776 28,850

ARHPW 104 4 2,002 10,599

AVRNK 45 4 2,205 23,019

AVWFF 60 4 895 7,230

Table B.22: Estimated Top 10 Subsequences of Length L = 5 Obtained When Algo-

rithm 1 Was Applied to mAb DM1A, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

Subsequence OCRC DS-OCRC Mean MFI Max. MFI

AALEKD 2,053 5 2,368 43,563

GPWFGY 11 3 1,137 4,580

LPAVFN 7 3 4,835 14,123

YALNRP 16 3 2,937 29,036

AAFYAL 6 2 1,591 2,287

AARWHF 10 2 2,850 12,048

AAVWFN 14 2 1,279 1,869

AAWARL 7 2 1,264 2,981

ADYRHF 3 2 3,295 3,474

AGPNWF 15 2 1,368 3,406

Table B.23: Estimated Top 10 Subsequences of Length L = 6 Obtained When Algo-

rithm 1 Was Applied to mAb DM1A, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.
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Subsequence OCRC DS-OCRC Mean MFI Max. MFI

AALEKDG 2,000 2 2,416 43,563

AALEKDN 3 2 7,503 17,762

APEDPED 167 2 947 5,464

APFFNLS 2 2 3,227 3,874

AVWRGNF 3 2 2,189 2,903

DAVWRGN 4 2 1,839 2,903

FGALLGW 2 2 1,317 1,606

FYALNRP 4 2 2,420 3,599

GPFYAKR 2 2 1,913 2,404

HGPFYAK 2 2 1,913 2,404

Table B.24: Estimated Top 10 Subsequences of Length L = 7 Obtained When Algo-

rithm 1 Was Applied to mAb DM1A, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

Subsequence OCRC DS-OCRC Mean MFI Max. MFI

ALEK 2,143 1,325 34,896 65,535

LEKD 2,156 1,325 34,296 65,535

EKDG 2,026 1,324 42,310 65,535

AALE 2,117 1,323 36,032 65,535

KDGD 284 250 65,535 65,535

KDGE 278 191 65,535 65,535

KDGA 250 162 28,590 65,535

KDGW 276 153 10,010 65,535

KDGP 206 128 33,848 65,535

KDGH 237 90 17,798 65,535

Table B.25: Estimated Top 10 Subsequences of Length L = 4 Obtained When Algo-

rithm 1 Was Applied to mAb Flag, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.
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Subsequence OCRC DS-OCRC Mean MFI Max. MFI

ALEKD 2,100 1,324 37,480 65,535

AALEK 2,058 1,323 40,477 65,535

LEKDG 2,002 1,323 44,588 65,535

EKDGD 268 250 65,535 65,535

EKDGE 215 191 65,535 65,535

EKDGA 250 162 28,590 65,535

EKDGW 253 153 14,352 65,535

EKDGP 182 128 50,613 65,535

EKDGH 232 90 19,087 65,535

EKDGL 134 81 14,198 65,535

Table B.26: Estimated Top 10 Subsequences of Length L = 5 Obtained When Algo-

rithm 1 Was Applied to mAb Flag, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

Subsequence OCRC DS-OCRC Mean MFI Max. MFI

AALEKD 2,053 1,323 40,576 65,535

ALEKDG 2,002 1,323 44,588 65,535

LEKDGD 267 250 65,535 65,535

LEKDGE 210 191 65,535 65,535

LEKDGA 250 162 28,590 65,535

LEKDGW 253 153 14,352 65,535

LEKDGP 181 128 51,217 65,535

LEKDGH 231 90 19,120 65,535

LEKDGL 134 81 14,198 65,535

LEKDGV 139 67 24,323 65,535

Table B.27: Estimated Top 10 Subsequences of Length L = 6 Obtained When Algo-

rithm 1 Was Applied to mAb Flag, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.
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Subsequence OCRC DS-OCRC Mean MFI Max. MFI

AALEKDG 2,000 1,323 44,588 65,535

ALEKDGD 267 250 65,535 65,535

ALEKDGE 210 191 65,535 65,535

ALEKDGA 250 162 28,590 65,535

ALEKDGW 254 153 14,427 65,535

ALEKDGP 181 128 51,217 65,535

ALEKDGH 231 90 19,120 65,535

ALEKDGL 134 81 14,198 65,535

ALEKDGV 139 67 24,323 65,535

ALEKDGS 64 55 65,535 65,535

Table B.28: Estimated Top 10 Subsequences of Length L = 7 Obtained When Algo-

rithm 1 Was Applied to mAb Flag, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

Subsequence OCRC DS-OCRC Mean MFI Max. MFI

YDAP 91 44 6,400 65,535

DAPE 114 31 1,537 65,535

ADAP 285 27 864 65,535

DVPE 93 25 1,008 65,535

DAPG 168 24 1,122 65,535

DVPD 33 24 31,506 65,535

DAPV 112 23 1,027 65,535

YDVP 47 23 4,846 65,535

LDVP 153 20 823 65,535

FDAP 47 18 2,071 65,535

Table B.29: Estimated Top 10 Subsequences of Length L = 4 Obtained When Al-

gorithm 1 Was Applied to mAb HA, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.
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Subsequence OCRC DS-OCRC Mean MFI Max. MFI

YDAPE 16 14 61,414 65,535

PYDAP 11 10 44,289 65,535

YDSPE 13 9 12,542 65,535

FDAPV 12 8 9,961 56,901

PFDAP 8 8 47,053 65,535

QYDAP 10 8 31,196 65,535

YDVPE 9 8 51,759 65,535

ADAPE 18 7 10,457 65,535

EDLPD 15 7 1,706 11,385

FYDAP 11 7 5,583 65,535

Table B.30: Estimated Top 10 Subsequences of Length L = 5 Obtained When Al-

gorithm 1 Was Applied to mAb HA, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.

Subsequence OCRC DS-OCRC Mean MFI Max. MFI

FNYDSP 6 4 2,146 65,535

GYDAPE 4 4 59,422 65,535

NQYDAP 4 4 47,437 65,535

NYDSPE 4 4 11,997 65,535

AALEKD 2,053 3 694 11,285

ALEKDG 2,002 3 697 11,285

APYDAP 3 3 44,289 65,535

EDHPDG 3 3 4,984 40,563

EDLPDS 4 3 6,698 11,385

FFYDAP 3 3 6,135 65,535

Table B.31: Estimated Top 10 Subsequences of Length L = 6 Obtained When Al-

gorithm 1 Was Applied to mAb HA, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.
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Subsequence OCRC DS-OCRC Mean MFI Max. MFI

AALEKDG 2,000 3 697 11,285

FNYDSPE 3 3 19,861 65,535

PFNYDSP 3 3 19,861 65,535

AAWRNWQ 2 2 3,196 4,288

AGPYDAP 2 2 31,213 60,226

ANQYDAP 2 2 42,126 65,535

ARFDAPV 2 2 40,791 56,901

ARPFYAR 6 2 1,556 2,171

AVWFKSL 3 2 1,107 1,393

AVWRNQR 3 2 3,705 9,178

Table B.32: Estimated Top 10 Subsequences of Length L = 7 Obtained When Al-

gorithm 1 Was Applied to mAb HA, With Their Corresponding OCRC, DS-OCRC,

Mean MFI and Maximum MFI; the Estimated Subsequences Are Sorted in Descend-

ing Order According to the Values of Their Corresponding DS-OCRC.
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APPENDIX C

RESULTS FROM THE ESTIMATION OF SUBSEQUENCES OF DISEASE

SAMPLES
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In addition to the monoclonal antibody data that was analyzed in Chapter 2, we

also analyzed random sequence peptide array data which were collected using blood

samples of patients infected with four different diseases. The samples analyzed were,

Borrelia, Dengue, West Nile Virus, and Bordetella. Figures C.1 - C.4 are plots of

the down selected occurrence count for the top 10 estimated subsequences for these

four diseases. Two of the analyzed disease samples have literature-reported epitopes;

Borrelia and Dengle, whose epitopes are EDAK and AVHAD respectively. The epitope

for Borrelia was the first epitope estimate, while the epitope for Dengue was the fifth

epitope estimate.

Figure C.1: Estimated Top 10 Subsequences of Length L = 4 Obtained When Algo-

rithm 1 Was Applied to the Borrelia Disease Sample. The Estimated Subsequences

Are Sorted in Descending Order According to the Values of Their Corresponding

DS-OCRC.
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Figure C.2: Estimated Top 10 Subsequences of Length L = 5 Obtained When Algo-

rithm 1 Was Applied to the Dengue Disease Sample. The Estimated Subsequences

Are Sorted in Descending Order According to the Values of Their Corresponding

DS-OCRC.
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Figure C.3: Estimated Top 10 Subsequences of Length L = 5 Obtained When Al-

gorithm 1 Was Applied to the West Nile Virus Disease Sample. The Estimated

Subsequences Are Sorted in Descending Order According to the Values of Their Cor-

responding DS-OCRC.
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Figure C.4: Estimated Top 10 Subsequences of Length L = 5 Obtained When Algo-

rithm 1 Was Applied to the Bordetella Disease Sample. The Estimated Subsequences

Are Sorted in Descending Order According to the Values of Their Corresponding

DS-OCRC.
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