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ABSTRACT 
   

Ecohydrological responses to rainfall in the North American monsoon (NAM) region lead 

to complex surface-atmosphere interactions. In early summer, it is expected that soil properties 

and topography act as primary controls in hydrologic processes. Under the presence of strongly 

dynamic ecosystems, catchment hydrology is expected to vary substantially in comparison to 

other semiarid areas, affecting our understanding of ecohydrological processes and the 

parameterization of predictive models. A large impediment toward making progress in this field is 

the lack of spatially extensive observational data. As a result, it is critical to integrate numerical 

models, remote sensing observations and ground data to understand and predict ecohydrological 

dynamics in space and time, including soil moisture, evapotranspiration and runoff generation 

dynamics.  

In this thesis, a set of novel ecohydrological simulations that integrate remote sensing 

and ground observations were conducted at three spatial scales in a semiarid river basin in 

northern Sonora, Mexico. First, single site simulations spanning several summers were carried 

out in two contrasting mountain ecosystems to predict evapotranspiration partitioning. Second, a 

catchment-scale simulation was conducted to evaluate the effects of spatially-variable soil 

thickness and textural properties on water fluxes and states during one monsoon season.  

Finally, a river basin modeling effort spanning seven years was applied to understand 

interannual variability in ecohydrological dynamics. Results indicated that ecohydrological 

simulations with a dynamic representation of vegetation greening tracked well the seasonal 

evolution of observed evapotranspiration and soil moisture at two measurement locations. A 

switch in the dominant component of evapotranspiration from soil evaporation to plant 

transpiration was observed for each ecosystem, depending on the timing and magnitude of 

vegetation greening. Furthermore, spatially variable soil thickness affects subsurface flow while 

soil texture controls patterns of surface soil moisture and evapotranspiration during the transition 

from dry to wet conditions. Finally, the ratio of transformation of precipitation into 

evapotranspiration (ET/P) and run off (Q/P) changed in space and time as summer monsoon 

progresses. The results of this research improve the understanding of the ecohydrology of NAM 
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region, which can be useful for developing sustainable watershed management plans in the face 

of anticipated land cover and climate changes.  
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CHAPTER 1 

INTRODUCTION 

The North American Monsoon (NAM) is a meteorological phenomenon that increases the 

summer rain in a large portion of the Southwestern United States and Northwestern Mexico. 

Although the NAM largely influences the US, especially the state of Arizona, is largely recognized 

that it is centered in Northwestern Mexico. The combination of seasonally warm land surfaces in 

both lowlands and high elevation regions along with moisture supplied by the Gulf of California 

and the Pacific Ocean forms a monsoon system.  This system is defined as a seasonal reversal 

of pressure and wind patterns, energy and mass transfers (Douglas et al., 1993; Adams and 

Comrie, 1997). There is a general agreement that the main source of moisture at low levels is the 

eastern Pacific Ocean and the Gulf of California while moisture at high levels is usually provided 

by the Gulf of Mexico. There is also a common agreement that a mixing of sources occurs in the 

Sierra Madre Occidental in western Mexico (Carleton, 1986).  

The reversal in atmospheric conditions leads to increase precipitation during the summer. 

This increase in regional rainfall produces a very remarkable change in vegetation greening with 

impacts in land surface conditions (Méndez-Barroso et al., 2009; Vivoni et al 2010) However, 

rainfall events are different depending of the location within the NAM domain, for example, high 

elevation sites, where evergreen woodlands dominate are characterized by more frequent but 

less intense rains while low elevation sites, where deciduous ecosystems dominate, experience 

less frequent but more intense rainfalls (Gochis et al., 2006; Gebremichael et al., 2007). 

 Therefore, vegetation patterns are strongly linked to differences in soil moisture from 

elevation patterns. Forzieri et al. (2011); found two main vegetation functional groups closely 

related to precipitation. One consisted in deciduous ecosystems (semiarid grasslands, subtropical 

scrublands, tropical dry forest) with high seasonality during a short period of intense greening 

occurring rapidly after the NAM precipitation onset. The other group consisted in evergreen 

ecosystems (mountain woodlands and conifer forest) with more muted seasonality during a 

prolonged period of moderate greenness that it is delayed with respect to monsoon onset.  
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Nowadays, it is well recognized the effect of vegetation on the energy and water balance 

of the North American Monsoon region.  Vegetation can influence heat fluxes, momentum and 

energy on the land surface. Furthermore, vegetation plays a great role in the partition of energy 

into sensible and latent, and also by affecting surface albedo and roughness (Watts et al., 2007, 

Richardson et al., 2013). Such changes in surface conditions can lead to feedbacks mechanisms 

that can enhance or sustain precipitation in the NAM region. For example; Méndez-Barroso and 

Vivoni (2010) reviewed and explored the theoretical rainfall-vegetation feedback mechanisms of 

Eltahir (1998) and Brunsell (2006) and found that subtropical vegetation exhibited large shifts in 

land surface variables (such as albedo, land surface temperature and NDVI) that could promote 

vegetation-rainfall feedback only if sunny conditions persist.   

Despite the recognition of vegetation in affecting the seasonality of water and energy 

fluxes in the NAM region, more observations or model predictions are required to test the 

influence of vegetation on the climatology of the NAM system. To date, only few studies have 

explored the role of vegetation in rainfall-feedback mechanism in the region with diverse results, 

e.g., Dominguez et al.,( 2008) found that tropical dry forest supported most of the regional 

evapotranspiration (ET ) and enhanced precipitation recycling in the NAM region. Furthermore, 

continental soil moisture contributions to NAM precipitation were stronger when large scale 

moisture advection decreases and evaporation provides the moisture to the lower atmosphere 

enhancing precipitation. Conversely, Notaro and Gutzler (2012) found that a reduction of 0.2 in 

vegetation cover fraction over the NAM region had considerable impact in surface radiation 

budget.  

Main findings include a decrease in latent heat, increase in upward long-wave radiation 

and downward shortwave radiation, no considerable changes in albedo and a monsoon was 

shifted to earlier onset in the US with largest feedback to the atmosphere found in woody 

vegetation. Clearly, the region requires further studies on the influence of the vegetation on the 

NAM system. To achieve this, more observations and modeling efforts are required in the NAM 

domain to understand the temporal and spatial variability of ecohydrological processes especially 

in Northwestern Mexico.  
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Another key role of vegetation is the partition of surface evapotranspiration into plant 

transpiration, soil evaporation and in some cases, evaporation from intercepted water by the 

canopy. There are many methods and techniques to estimate the fraction of transpiration (T) to 

total moisture flux from the surface. For example, some methods rely on hydrometric 

measurement such as sap flow to estimate transpiration rate (Cavanaugh et al., 2011). More 

recent methods analyzed the isotopic composition of liquid water and water vapor (Yépez et al., 

2003; Sutanto et al., 2012; Jasechko et al., 2013). Last approach involves the use of land surface 

models (Oleson et al., 2004; Dirmeyer et al., 2006) to estimate the components of 

evapotranspiration from turbulent transfer, moisture limitations and plant physiology. The fraction 

of transpiration to total ET widely varies among methods but the isotopic method tends to 

estimate higher transpiration fractions than the other methods. Studies of ET partition 

encompassed a wide range of ecosystems but only a few studies have addressed in semiarid 

areas (Reynolds et al., 2000; Scott et al., 2006; Moran et al., 2009).  

Under the presence of strongly dynamics ecosystems in this region, catchment hydrology 

is expected to vary a lot in comparison with other semiarid areas, affecting the understanding of 

ecohydrological processes and the parameterization of predictive models. However, a large 

impediment in making progress in hydrological modeling in the region is the lack of spatially-

extensive observational datasets and bad representation of basin characteristics (Gochis et al., 

2010; Vivoni et al., 2010). Currently, Mexico’s National Weather Service (Sevicio Meterológico 

Nacional, SMN), the Federal Agency in charge of collection and record of historical 

meteorological data, has 4500 climate stations, 94 automatic meteorological stations and 12 

radars nationwide. However, Because Federal budget cuts, only 27% of the stations collect data 

continuously (Perevochtchivoka, 2013). The National Water Commission (Comision Nacional del 

Agua, CONAGUA) the Mexican Federal Agency in charge of collecting water data. In 2008, 

CONAGUA had 499 stream gauges and 211 hydroclimatic stations nationwide. However, 

because of critical financial and political situation, a large number of stations are not operational 

today. Notwithstanding, both Federal hydrometeorological networks share common problems 

such as: heterogeneous, inaccurate and inaccessible data; non-continuous time series due to 
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changes in state and federal governments policies and usually the information is inconsistent 

when comparing each other agencies ((Perevochtchivoka, 2011). Lack of long-term ground 

observations in the NAM region within Mexico and it is necessary to have complete time series of 

climatic data in order to carry out accurate studies (Brunet, 2010) 

Furthermore; the effect of soil properties distribution such as soil texture or soil depth in 

models uncertainty is poorly understood (Weiler et al., 2006; Lanni et al., 2013). Basin 

representation can be improved by incorporating seasonal land surface changes and realistic 

subsurface and surface topography into hydrological model framework. One way to account for 

land surface changes is by incorporating vegetation dynamics, albedo seasonality and 

subsurface topography such as soil thickness (Gochis et al., 2010).  

Poor understanding of hydrological processes in the NAM region leads to poor model 

parameterization. Global land surface models in the NAM region have shown limitations in the 

North American Monsoon region to properly simulate surface energy and water fluxes (Unland et 

al., 1999; Vivoni et al., 2008). Conversely, a better understanding of the complex interactions and 

feedbacks between seasonal shifts in vegetation greening and soil moisture with temporal spatial 

variability of water and energy fluxes can help us to design better water management policies and 

planning. Nowadays, water management has been dominated by a mechanistic-predatory 

approach with severe degradation of the biota that is the most important and dynamic regulatory 

component of the water cycle. For this reason, there is an urgent need to incorporate ecosystem 

properties as management tool. Ecohydrology, the study of functional interrelations between 

hydrology and the plants at catchment scale, is a new approach to develop sustainable water 

management (Zalewski, 2000). Furthermore, ecohydrology offers a scientific basis for designing 

more holistic and integrative approaches better suited to the complexity of environmental 

problems at the interaction between hydrology and ecology (Wagener et al., 2010; Wilcox at al., 

2010). However, more research is required in semiarid areas with emphasis on those with 

monsoonal regime exhibiting complex interactions between vegetation and hydrological 

processes. In this context, this research work is an important contribution to the understanding of 

ecohydrological processes within the NAM region.  
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Remote sensing is a tool that can be used to understand land surface conditions at basin 

or regional scales. Remote sensing data generally have better geographical coverage than in situ 

observations that generally are based upon point sources. For this reason, remote sensing has 

opened a new opportunity for the development of fully distributed hydrologic and land-surface 

models. Remote sensing and hydrologic modeling are two key approaches to evaluate and 

predict hydrologic processes. However, due to the complexity of the land surface with several 

interconnected processes is not possible that one single waveband can effectively explain them. 

For this reason is essential to use information from several sources in order to have a better 

representation of basin characteristics or processes 

In general, remote sensing data can be applied to hydrologic or land surface modeling 

through three different strategies. The first approach includes the use of remote sensing data as 

model inputs. Usually remote sensing provides input information into models such as digital 

elevation model and land cover. Furthermore, distributed remote sensing data can be used for 

forcing hydrologic models (Andersen et al., 2002). 

The second approach includes the application of remote sensing data for parameter 

estimation. Most of hydrological models contain conceptual parameters that are hard to measure 

in reality. Therefore, these parameters need to be calibrated in order to have a good match 

between estimated and observed variables. The third strategy involves state estimation that it is 

also known as data assimilation. Data assimilation refers to the process to constrain the model 

simulations with observations to improve estimation of the state variable. This research work 

used a multi-platform remote sensing approach integrated with scarce ground observations to 

characterize land surface properties in novel ways, including soil classes, surface and subsurface 

topography and seasonal changes in vegetation conditions. Secondly, remote sensing-based 

variables and basin topography was incorporated to ecohydrological simulations at different 

scales to estimate water and energy fluxes. Finally, some remote sensing observations were 

used to calibrate model estimations.  

Recently, incorporation of vegetation dynamics in hydrological simulations has made a 

big improvement in representation of basin conditions (Droogers and Kite, 2002). Leaf Area Index 
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(LAI) is one of the critical variables linked to vegetation dynamics. This variable is directly linked 

to intercepted rainfall by canopy and evapotranspiration. Over the last decade, estimated LAI 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) has been utilized as one of 

the inputs that account for vegetation structure and dynamics in hydrological model. The 

incorporation of MODIS-LAI in hydrological models has improved the estimation of land surface 

evapotranspiration (ET). There are several examples of successfully incorporation of MODIS-LAI 

in hydrological modeling (Zhang and Wagehenkel, 2006; Andersen, 2008; Boegh et al., 2009) 

ranging from natural systems to agricultural fields. However, only few studies have coupled 

MODIS vegetation indices or LAI in arid or semiarid areas around the world (Vivoni et al., 2010, 

Mendez-Barroso et al., 2014). 

 This dissertation includes a set of novel ecohydrological simulation that integrates 

remote sensing data and ground observations to a semiarid basin in Northwestern Mexico. The 

mathematical simulations were carried within the domain of the North American Monsoon region 

at three different spatial scales. In particular, this research focus on the differences between 

water and energy fluxes among the ecosystems found in a semiarid basin with high response to 

rainfall pulses. Furthermore, this research evaluates the effect of subsurface topography and 

spatial distribution of soil properties on water and energy fluxes within the domain of the North 

American Monsoon. This latter statement has not been deeply explored in hydrological modeling 

and the uncertainty in computation of fluxes and states with varying properties distribution are 

poorly understood. Finally, we used the integration of different tools to explore the inter-annual 

and intra-seasonal variation of hydrological importance variables such as runoff ratio (Q/P) and 

fraction ET/P at river basin scale. This latter coefficient is considered a proxy of the capacity of 

the ecosystems found in semiarid basins to return water to the atmosphere, define by other 

authors as the recycling precipitation ratio. A summary of chapters (2-4) is given in the next 

section. Each chapter has been prepared and formatted for publication in scientific journals. 

 

1.1 Overview of chapters 
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Chapter two describes the most important findings in single site hydrological simulations 

spanning several summer seasons on two contrasting mountain ecosystems to predict 

evapotranspiration and its partition with the incorporation of dynamic vegetation parameters. The 

scientific questions for Chapter two are the following: 

1. Does the incorporation of vegetation dynamics in modeling tracks the seasonality of 

observed water fluxes? 

2. Does the incorporation of vegetation seasonality help us to understand ET partitioning 

and its seasonal evolution? 

To answer these questions we use a distributed model with the incorporation of vegetation 

seasonality expressed in model parameters that account for rainfall interception, plant 

evapotranspiration and partition of energy. Model vegetation parameters are estimating from 

MODIS products such as leaf area index (LAI), normalized difference vegetation index (NDVI), 

short wave albedo and fraction of photosynthetic active radiation (fPAR) by applying empirical 

equations. The hydroecological simulations are focused on the monsoon seasons (June through 

September) of the years 2004 and 2006 through 2009. The period of simulations include 

contrasting years in terms of precipitation and vegetation cover allowing to observed differences 

in water and energy fluxes. We calibrated the model using two eddy-covariance towers for one 

summer season in two contrasting ecosystems along a mountain front within the NAM region. 

Model simulations are focused on the capabilities to track site observations by incorporating 

vegetation seasonality and its effect on ET partitioning. 

Ecohydrological simulations tracked well the seasonal evolution of observed ET and soil 

moisture (SM). Results suggest that transition from dominant soil evaporation to dominant plant 

transpiration depends on timing and magnitude of rainfall pulses. Furthermore, partition behaves 

differently on both ecosystems (Madrean woodland and Sinaloan thornscrub) suggesting 

differences in water efficiency. For example, in the Sinaloan thornscrub site transpiration was the 

dominant component of total evapotranspiration while soil evaporation dominates on Madrean 

woodland.  Sinaloan thornscrub follows an intensive water use strategy with a rapid and robust 

transpiration response to water availability. In contrast, Madrean woodland has delayed and 
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attenuated transpiration, suggesting an extensive water use strategy persisting beyond the North 

American monsoon. 

Chapter three evaluates the effect of spatially variable soil thickness and textural properties 

on model estimated water fluxes and states during a monsoon season. These set of hydrological 

simulations are performed at catchment-scale incorporating seasonal vegetation greening. The 

scientific questions for Chapter three are the following: 

1. How large is the impact of variable soil thickness and textural properties on simulated 

fluxes? 

2. How is the spatial representation of these simulated fluxes? 

To answer these questions, we utilize the hydrological model Triangulated Irregular 

Network (TIN)-based Real time Integrated Basin Simulator (tRIBS) to investigate the effect of 

spatially variable soil thickness and soil textural properties on water fluxes and states. Models 

simulations allow also investigating the effect on spatial patterns of water fluxes at catchment 

scale. Our simulations focus on the variability of water fluxes by incorporating three different 

spatial distribution of soil thickness and three different distribution of soil texture. Distributed soil 

thickness was estimated using: 1) A linear function between observed soil thickness and local 

elevation, 2) A linear function between surface slope and observed soil thickness, 3) A multi-

linear relation between soil thickness, topographic wetness index (TWI) and surface curvature 

(Gessler et al., 1995) and 4) the relation between curvature and soil thickness (Heimsath et al., 

1999). One novel way to know the spatial distribution of soil textural properties was estimated by 

using measured radiance at the Advance Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) based on the emission properties of different soil classes. We perform a 

total of twenty-one simulations including uniform soil depth (1.5 m) and uniform soil texture. 

Results suggest that soil texture exert a strong control in surface soil moisture and the 

hydrological model is very sensitive to the spatial variation of soil thickness. Soil depressions 

caused by the high variability in the estimation of soil thickness, especially in the Heimsath and 

Gessler methods, are the responsible of increasing groundwater fluxes leading to wetter soils and 

higher evapotranspiration.  
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Finally, Chapter four describes the inter-annual variability in ecohydrological dynamics by 

performing a seven-year simulation period on the entire San Miguel River Basin. The scientific 

questions for Chapter four are the following: 

1. How is the spatial and temporal evolution of the run off coefficient in San Miguel 

basin? 

2. Is vegetation cover impacting the variability of runoff and ET? 

3. How is the spatial and temporal evolution of the ratio ET/P over the San Miguel 

Basin? 

To answer this question, we used the Triangulated Irregular Network (TIN)-based Real time 

Integrated Basin Simulator (tRIBS) to evaluate the differences in water fluxes and states among 

the ecosystems found in the San Miguel Basin. Furthermore, we utilize the hydrological model to 

explore the temporal and spatial evolution of the run off coefficient (Q/P) and the ratio ET/P which 

both are a proxy of the capacity of the land surface to support precipitation recycling (Savenije, 

1996). Ecohydrological simulations span a period of seven years starting in January 2004 and 

finishing in December 2010. Results suggest that accounting for incorporation of seasonal 

vegetation greening allows to see clear differences among ecosystems in water fluxes, for 

example; grasslands and sparse woodlands to return water to the atmosphere, which suggest 

that these two ecosystems are important to sustain rainfall within the basin. In general, there is an 

increasing capacity of the basin to return water tit he atmosphere as ET as summer monsoon 

progresses as well as produce runoff. Finally, hydrological model allow us to understand regions 

or ecosystems that highly support the conversion of precipitation into evapotranspiration or runoff. 

These later statement is very important for the design of water resources management as well as 

decisions for stakeholders in water use planning.   



  10 

CHAPTER 2 

A MODELING APPROACH REVEALS DIFFERENCES IN EVAPOTRANSPIRATION AND ITS 

PARTITIONING IN TWO SEMIARID ECOSYSTEMS IN NORTHWEST MEXICO 

 

2.1 Introduction 

Vegetation is a key dynamical factor that modifies the water, energy and momentum 

fluxes occurring at the land surface (e.g., Arora, 2002; Van den Hurk et al., 2003; Vivoni et al., 

2008). Plant canopies affect the water balance through rainfall interception and plant water 

uptake during transpiration, while playing a role in the energy balance through radiation 

attenuation and modifications of surface roughness and albedo (e.g., Eltahir, 1998; Méndez-

Barroso and Vivoni, 2010). Nevertheless, the impact of vegetation greening on land-atmosphere 

exchanges is not well understood, in particular during seasonal changes induced by radiation or 

water availability. This problem is exacerbated when plant transpiration (T) is lumped with soil 

evaporation (E) and evaporation of intercepted water (I) into a single term, evapotranspiration 

(ET), as this mixes vegetation- and soil-mediated processes occurring over disparate temporal 

and spatial scales. The ability to partition ET into its underlying components would improve our 

understanding of plant water uptake and its feedback to the carbon and water cycle (e.g., 

Newman et al., 2006; Yépez et al., 2007). To date, only a few studies have addressed ET 

partitioning and consensus has not been achieved across different methodologies on the relative 

importance of each component, even for similar ecosystems (Reynolds et al., 2000; Stannard and 

Weltz, 2006; Scott et al., 2006; Moran et al., 2009; Raz-Yaseef et al., 2012; Yang et al., 2013). 

One approach for estimating ET and its components is through the use of models that 

incorporate vegetation greening either through prognostic equations (e.g., Kucharik et al., 2006; 

Lawrence et al., 2007; Ivanov et al., 2008) or via remote sensing observations (e.g., Matsui et al., 

2005; Cleugh et al., 2007; Vivoni, 2012). Satellite-derived products, such as the Normalized 

Difference Vegetation Index (NDVI) and Leaf Area Index (LAI), have been used to provide 

vegetation parameters for land-atmosphere models instead of the direct simulation of plant 

processes, at a range of scales from regional to global (Yan et al., 2012). Thus, a first step to 
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include vegetation greening in simulation models has been through comparisons of static and 

seasonally-varying vegetation parameters. Van den Hurk et al. (2003), for example, conducted 

climate simulations to investigate the impact of seasonally-varying LAI on evapotranspiration, 

finding a larger range of values due to increases in summer ET and decreases in winter ET, as 

compared to static conditions. Furthermore, Tang et al. (2012) showed that the interannual 

variability of seasonal (summer) changes in LAI were important to account for when predicting 

spatiotemporal patterns of evapotranspiration using a hydrologic model, in particular during 

periods of vegetation green-up. While promising, open questions remain with respect to the 

seasonal and interannual variations of ET and its components and how these are linked to 

readily-available information about an ecosystem, such as precipitation or vegetation greening. 

Furthermore, few studies have accounted for the complete set of changes to plant processes 

(e.g., radiation, interception, transpiration) that simultaneously occur during vegetation greening. 

In a recent study, Vivoni (2012) conducted hydrologic simulations using the Triangulated 

Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS, Ivanov et al., 2004; 

Vivoni et al., 2007a) that accounted for seasonal variations in vegetation parameters. The study 

was focused on an intermediate-sized watershed (~100 km2) experiencing dramatic vegetation 

greening during the North American monsoon (NAM). The NAM is a summertime atmospheric 

circulation occurring in the southwestern U.S. and northwestern Mexico that leads to increased 

precipitation, soil moisture, evapotranspiration and stream flow in the arid and semiarid areas. A 

large number and variety of ecosystems respond to the rainy season through biomass 

production, leading to regional patterns in vegetation greenness (Watts et al., 2007; Méndez-

Barroso et al., 2009; Lizárraga-Celaya et al., 2010; Forzieri et al., 2011). Vivoni (2012) found that 

ecosystem-specific variations in vegetation greening were responsible for the simulated 

spatiotemporal patterns of ET components. For example, subtropical scrubland ecosystems, such 

as Sinaloan thornscrub (ST), exhibited early greening in the summer season that favored high 

plant transpiration, whereas oak savanna ecosystems, such as Madrean woodland (MW), had a 

more delayed and prolonged green-up with sustained plant transpiration into the early fall. 

However, the focus of Vivoni (2012) on a single summer did not permit an assessment of the 
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interannual variations in evapotranspiration and its partitioning or on the differences among 

ecosystems.  

In this study, we seek to understand how variations in vegetation greening affect ET 

partitioning in two semiarid ecosystems (ST and MW) in northwestern Mexico. By virtue of their 

organization along semiarid mountain fronts, these ecosystems occupy specific niches related to 

climate conditions and water availability that also likely occur in other semiarid regions. To do so, 

we utilize the tRIBS model applied to an eddy covariance tower site in each ecosystem, while 

accounting for the impact of seasonal greening on the vegetation parameters in the model. For 

the first time, this approach allows a direct comparison between the ST and MW ecosystems, 

arranged from intermediate (~600 to 1200 m for ST) to high (~1200 to 1700 m for MW) 

elevations, in terms of both observations and simulations. Based on data availability, multiple 

summer periods are studied in each ecosystem to cover a range of seasonal precipitation 

amounts. We are interested in answering the following questions that are broadly applicable to 

other ecosystems: How do seasonal variations in vegetation greening in the different ecosystems 

affect ET partitioning? and Do interannual differences in rainfall and vegetation greening affect ET 

and its components? While we focus primarily on ET, the surface soil moisture and sensible heat 

flux are also inspected due to its importance in controlling ET rates or serving as a 

complementary measure of the surface energy balance. 

 

2.2. Methods 

2.2.1. Study Region 

The study region is located in northern Sonora, Mexico, in a rural, sparsely populated 

area characterized by north to south trending mountain ranges and valleys that are part of the 

Sierra Madre Occidental. Ecosystems in the region vary from desert shrublands to conifer pine 

forests, with a significant proportion of subtropical species (Méndez-Barroso and Vivoni, 2010).  
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Month or year 
Mean (± 1 std) precipitation [mm] 

Sinaloan thornscrub Madrean Woodland 
   
June 28(± 7) 39 (± 21) 

July 169 (± 38) 180 (± 113) 

August 165 (± 61) 177 (± 59) 

September 84 (± 88) 41 (± 12) 

   
2004 278 - 

2006 549 - 

2007 490 - 

2008 519 551 

2009 397 321 

   
 

Table 2.1. Mean Monthly Precipitation and ±1 Monthly Standard Deviation (Std) and Summer 
Season (JJAS) Precipitation at Sinaloan Thornscrub and Madrean Woodland Sites Over 2004-
2009. 
 

Overall, site climate is considered steppe or semiarid (BSh), according to the Köppen-

Geiger classification (Peel et al., 2007), characterized by hot, arid conditions and winter 

temperatures above 0 ºC.  

The two study sites are located in the Río San Miguel basin (3796 km2), which have 

mean annual precipitation values (±1 standard deviation) ranging from 481 ± 181 mm/yr (Rayón, 

near ST) to 496 ± 204 mm/yr (Meresichic, near MW), over 1981-2006. Table 2.1 presents the 

site-specific monthly and summer seasonal precipitation values over the periods with available 

data. Mean annual air temperatures in the region range from 21.4 ± 6.4 ºC (Rayón, near ST) to 

18.9 ± 6.1 ºC (Meresichic, near MW), over 1981-2006. The Sinaloan thornscrub (ST) site is 

located on top of an alluvial foothill near Rayón (29.74 ºN, 110.54 ºW) at an elevation of 632 m, 

while the Madrean woodland (MW) site is found on a gentle mountain slope, ~21 km southeast of 

Meresichic (29.96 ºN, 110.46 ºW) at an elevation of 1314 m. Figure 2.1 depicts the location of the 

study region and the elevation and ecosystem characteristics of the two sites. Transects A-A’ and 

B-B’ clearly show how the sites represent intermediate and high elevations along these semiarid 

mountain fronts (c.f., Vivoni et al., 2007b; 2010). All ecosystems in the region respond by 
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greening to the seasonal precipitation from the NAM extending from July to September and 

leading to 60-70% of the annual precipitation (Méndez-Barroso et al., 2009).  

 

2.2.2. Field and Remote Sensing Observations 

An eddy covariance (EC) tower was deployed at each site in an area of homogeneous 

vegetation cover within the EC fetch to measure water, energy and carbon fluxes, as well as site 

meteorology, during the summer season (June 1 to September 30) over multiple years. Figure 

2.2 provides details of the characteristics of each site, including a high-resolution (~1 m) terrain 

model obtained using site surveying and a 1 m satellite image depicting the vegetation patterns. 

The ST site was installed in 2004 as part of the SMEX04 (Soil Moisture Experiment 2004) 

experiment (Bindlish et al., 2008) and was operated for summers 2006-2009 as part of this study 

for five summers of observations. Vegetation at the ST site includes thorny, deciduous trees and 

shrubs, as well as cacti and succulents, with low amounts of grass cover (see Brown, 1994, for a 

description of ST). Watts et al. (2007), Méndez-Barroso and Vivoni (2010), Vivoni et al. (2010), 

Tang et al. (2012) and Tarín et al. (2014) have reported on the EC data at the ST site. On the 

other hand, the MW site was installed in 2007 and operated in 2008 and 2009 allowing for only 

two summers (as with ST, the EC system continues to be operated during short periods).  

Vegetation at the MW site is primarily oak trees interspersed with grasses and succulents 

(Brown, 1994). To date, the EC data at the MW site have not been reported on, though Méndez-

Barroso et al. (2009) described the precipitation, soil moisture and vegetation at a nearby site, 

and detailed simulations have not been conducted at the site. Both the ST and MW EC systems 

form part of a growing network of flux measurements in Mexico (Vargas et al., 2013). Figure 2.3 

shows the seasonal evolution of rainfall and surface soil moisture (SM, top 10 cm) for the 2004-

2009 summers in the ST and MW sites as bi-weekly averages and ±1 standard deviations.  
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Figure 2.1. (a) Location of the Study Site In Sonora, Mexico. (b) Location of Two Eddy 
Covariance (EC) Tower Sites and Their Relation to Ecosystem and Topographic Distributions in 
the Region Note that the Sinaloan Thornscrub is Represented as Transparent. MW is at A’ and 
ST is at B (Square Symbols). (c) Elevation Cross-Sections Along the Mountain Fronts Containing 
the Two EC Sites With Extents of ST and MW Ecosystems Labeled.  
 

Both EC systems have a standard configuration consisting of a three-dimensional, sonic 

anemometer (CSAT3, Campbell Scientific, Logan, UT) and an open-path Infrared Gas Analyzer 

(LI7500, LI-COR, Lincoln, NE) aligned to the dominant wind direction of 225º (Moncrieff et al., 

2000). EC sensors were placed at 9 m above ground (installed at 2 m above the canopies). Net 

shortwave and long-wave radiation were measured (CNR2, Kipp & Zonen, Delft, Netherlands), 

along with incoming solar radiation (CMP3, Campbell Scientific). Ground heat flux was measured 

using two soil plates (HFP01SC, Hukseflux, Manorville, NY) placed at 2 cm depth. Site rainfall 

was measured using a tipping-bucket rain gauge (TB3, Hydrological Services, Sydney, Australia 

at ST and TR-52USW, Texas Electronic, Dallas, TX at MW), while soil moisture was measured 

using soil dielectric sensors (Stevens Hydra sensor, Portland, OR) at each site at 5 and 10 cm 

depths, with MW having additional sensors at 15 and 30 cm. We used here the 5 and 10 cm 

depth soil moisture sensors due to their greater data availability at both sites. It should be noted 

that the soil moisture response at MW beyond 10 cm was similar to the shallower sensors (not 
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shown). Sensors were connected to CR5000 data loggers (Campbell Scientific) with the EC 

sensors operating at 20 Hz and averaging data to 30 min periods. Covariances of vertical wind 

speed, temperature and water vapor concentration were processed to obtain the sensible (H) and 

latent heat (λE) flux using EdiRe (University of Edinburgh). Turbulent flux corrections for the EC 

measurements followed Scott et al. (2004) and included data filtering (i.e., data removal after or 

during rain events and outliers), the Webb method for density correction (Webb et al., 1980), the 

quality check method described by Mauder and Foken (2004) and the planar fit as a method of 

rotation (Wilczak et al., 2001). The planar fit method is deemed appropriate for correcting EC 

measurements for non-zero mean vertical velocity in the sloping terrain at both sites (Lee et al., 

2004), but more markedly at MW (Figure 2.2). Ground heat flux (G) was corrected for heat 

storage in the upper 2 cm using the change in soil temperature measured by two thermocouples 

at 2 cm depth (TCAV-L, Campbell Scientific) and the volumetric water content at 5 cm depth 

(Campbell, 2012). The soil temperature readings from the thermocouples were averaged and 

then used to calculate the soil heat storage and compute the corrected ground heat flux. Canopy 

heat storage is expected to be small in short vegetation types (less than 8 meters) and was 

neglected in this study (Wilson et al., 2002). 

Energy balance closure was evaluated for each site using a least squares comparison 

between turbulent fluxes (λE + H) and available energy (Rn - G, where Rn is net radiation) and the 

seasonal energy balance ratio (ENR, defined as the cumulative sums of turbulent fluxes divided 

by the available energy) obtained for all available summers. The ST site had a slope of 0.75 (± 

0.04), an intercept of 16 (± 2) W/m2, a correlation coefficient (r2) of 0.93 (± 0.005) and an ENR of 

0.83 (± 0.02), while the MW site had a slope of 0.81 (± 0.05), an intercept of 27 (± 18) W/m2, a 

correlation coefficient (r2) of 0.90 (± 0.06) and an ENR of 0.81 (± 0.10), where the errors are 

computed as interannual standard deviations among the summers.  
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Figure 2.2. Topographic and Vegetation Characteristics at EC Tower Sites. Topographic Survey 
(a), Tower Photograph (b) and 1 m. IKONOS Image (c) at the Sinaloan Thornscrub Site Near 
Rayón, Sonora. Topographic Survey (d), Tower Photograph (e) and 1 m. IKONOS Image (f) at 
the Madrean Woodland, 16.6 km. Northeast of Opodepe, Sonora. 
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Figure 2.3. Seasonal Evolution of Rainfall, Surface Soil Moisture (SM, Top 10 cm), Normalized 
Difference Vegetation Index (NDVI), Leaf Area Index (LAI) and Albedo Over 2004-2009. Rainfall 
is Accumulated During Bi-Weekly Intervals, while SM is Averaged Over this Period. NDVI, LAI 
and Albedo Represent 16 Day Composites from MODIS. Symbols Depict Bi-Weekly Averages 
and Error Bars are ±1 Standard Deviations Across All Years. 
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Reported values for MW were affected by a net radiometer malfunction in June 2009, 

after which a replacement sensor led to a large improvement in the energy balance closure (i.e., 

increase in the slope from 0.60 to 0.81). These metrics are close to values reported for Wilson et 

al. (2002) for the energy balance closure at FLUXNET sites and as such we opted not to correct 

the EC turbulent flux measurements to account for ENR in these heterogeneous and open 

canopies that are subject to larger systematic errors (Baldocchi et al., 2000; Kustas et al., 2000). 

To validate the simulated fraction of plant transpiration to evapotranspiration (T/ET), we used a 

field dataset of T/ET obtained through the stable isotope method described by Yépez et al. 

(2003). These daily-integrated values of T/ET were sampled during July 24 and 27, 2007, and 

July 15-16, 2008, by Tarín et al. (2014) in the subtropical scrubland. These four days exhibited 

relatively small measurement errors due to the wet soil conditions experienced at the site from 

recent storms.  

We complemented the field observations with an analysis of remote sensing data on 

vegetation greening using the MODerate resolution Imaging Spectroradiometer (MODIS) sensors 

on board the EOS Terra and Aqua satellites, following Méndez-Barroso et al. (2009) and 

Lizárraga-Celaya et al. (2010). One of the limitations of remote sensing data in the visible and 

near infrared regions is the presence of cloud cover during the NAM. 

To overcome this, we used composite products: 16 day composites of NDVI (MOD13Q1, 

250 m spatial resolution) and white-sky shortwave albedo (MOD43B, 1 km), along with 8 day 

composites of LAI and fraction of Photosynthetically Active Radiation (fPAR, MOD15A2, 1 km). 

We spatially-averaged the 250 m NDVI data to 1 km to match the resolution of the other products. 

NDVI, fPAR and LAI from MODIS have been shown to represent vegetation conditions well in 

semiarid regions as compared to ground measurements (Privette et al., 2002; Fensholt et al., 

2004; Ryu et al., 2012). Figure 2.3 illustrates the seasonal evolution of NDVI, albedo and LAI for 

summer periods at the ST and MW sites as bi-weekly averages and ±1 standard deviations. 

Datasets spanned from June 1 to September 30 over 2004 to 2009 and included the extraction of 

the 1 km area around each EC tower using the MODIS Data Subsetting and Visualization Tool.  
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Parameter Variable 
[Unit] 

Sinaloan 
thornscrub 

Madrean 
woodland 

    
Saturated hydraulic conductivity Ks [mm/h] 55 30 

Soil moisture at saturation θs [-] 0.41 0.45 

Residual soil moisture θr [-] 0.02 0.04 

Pore distribution index m [-] 0.85 0.50 

Conductivity decay parameter f [mm-1] 0.0001 0.0010 

Porosity n [-] 0.45 0.48 

Volumetric heat conductivity ks [J/msK] 0.20 0.20 

Soil heat capacity Cs [J/m3K] 1.61 × 106 1.47 × 106 

    
 

Table 2.2. Soil Parameters Used in the Simulations. For The Sinaloan Thornscrub, Values Were 
Based on Vivoni et al. (2010) With Minor Adjustment to Ks. For the Madrean Woodland, Ks, θs and 
n Were Estimated Using the Pedotransfer Functions of Rawls et al. (1983) Using Soil Texture 
Data; θr Was Obtained from Van Genuchten (1980); m Was Estimated According to Rawls and 
Brakensiek (1989); f Was Based on the Logarithmic Relation Between Ks with Soil Depth 
Following Robles-Morúa et al. (2012); and ks and Cs Were Determined from Lapham (1989). 
 

Composites were linearly interpolated to daily values to allow for a gradual progression of 

vegetation changes. In addition, a smoothing technique that included the combination of weighted 

local regression and a second-degree polynomial model (with a span of 5%) was applied to the 

raw data to eliminate noise. This also accounts for the uncertainty in the timing of measured 

values within the composite. The resulting time series of NDVI, LAI, fPAR and albedo at the ST 

and MW sites constituted the basis for deriving vegetation parameters used in the modeling 

efforts described next. 

 

2.2.3. Hydrologic Model and its Application 

Hydrologic simulations were performed using the tRIBS model applied to the ST and MW 

sites independently. A single, hexagonal Voronoi polygon (or model element) was generated from 

a 30 m Digital Elevation Model (DEM) derived from the Advance Space-borne Thermal Emission 
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and Reflection Radiometer (ASTER). A model element with an area of 98.77 m2, a soil depth of 1 

m (based on a soil pit dug at each site) and a gentle slope was used at each location. In this 

study, tRIBS is used as a one-dimensional model to simulate hydrologic processes that track the 

response to meteorological forcing, including: (1) rainfall interception, (2) evaporation from bare 

soil (E) and intercepted water (I) and plant transpiration (T), (3) infiltration and moisture 

redistribution, and (4) runoff production. Appendix A details the evapotranspiration calculations in 

tRIBS and how ET is partitioned into E, T and I. Ivanov et al. (2004) provides a description of 

infiltration into the sloped, heterogeneous soil above an impermeable layer. Single infiltration 

fronts interact with a pre-storm moisture profile, determined from hydrostatic equilibrium, and the 

water table position. This interaction leads to a range of possible soil moisture states, which 

influence infiltration and runoff generation via infiltration-excess, saturation-excess, perched 

return flow and groundwater exfiltration mechanisms. Meteorological forcing to the hydrologic 

model was obtained from measurements at each site over the study periods (June 1 to 

September 30 at 30 minute time step). The month of May was also included in each year (2004, 

2006-2009 at ST and 2008-2009 at MW) to allow for an initial drying period that helped reduce 

soil moisture to low values near the residual level (θr) prior to the onset of the NAM. This 

initialization is possible due to the annual resetting of the soil moisture conditions during the dry 

spring prior to the summer rainy season (Vivoni et al., 2010). 

Model forcings consisted of precipitation (mm), atmospheric pressure (Pa), relative 

humidity (%), wind speed (m/s), air temperature (°C) and incoming solar radiation (W/m2) with a 

time resolution of 30 minutes. Gaps in the meteorological observations due to periods of no data 

collection were filled in with ground-adjusted forcing from the North American Land Data 

Assimilation System (NLDAS, Mitchell et al., 2004), following Robles-Morúa et al. (2012). The 

percentage of time with gap-filled forcing ranged from 13 to 67% of the periods, depending on the 

site and year, with the largest gaps for 2006-2007 (ST, 61 and 67%) and 2008 (MW, 63%). 
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Parameter Variable 
[Unit] 

Sinaloan thornscrub Madrean woodland 

Dynamic 
Leaf 
off 

Leaf 
on Dynamic 

Leaf 
off 

Leaf 
on 

        
Free through fall  
coefficient 

p [-] 0.09 - 0.78 0.75 0.13 0.06 - 0.51 0.51 0.06 

Maximum canopy  
storage 

S [mm] 0.07 - 0.75 0.09 0.67 0.23 - 0.94 0.23 0.97 

Albedo a [-] 0.13 - 0.19 0.18 0.15 0.13 - 0.17 0.17 0.14 

Vegetation height h [m] 6 6 6 8 8 8 

Optical 
transmission  
coefficient 

kt [-] 0.37 - 0.90 0.89 0.42 0.55 - 0.86 0.86 0.55 

Minimum canopy 
stomatal resistance 

rs [s/m] 19.5 - 247 197 23 18 - 94 85 18 

Vegetation fraction vf  [-] 0 - 0.95 0.00 0.76 0 - 0.68 0.00 0.61 

Soil evaporation  
stress factor 

βE [-] 0.55 0.55 0.55 0.55 0.55 0.55 

Plant transpiration  
stress factor 

βT [-] 0.10 0.10 0.10 0.55 0.55 0.55 

        
 

Table 2.3. Vegetation Parameters at the Sinaloan Thornscrub and Madrean Woodland Sites for 
the Three Simulation Scenarios. Constant βE And βT  were Obtained from Model Calibration. For 
the Dynamic Scenario, Parameter Ranges Shown Represent Minimum and Maximum Values. 
 

Soil parameters were obtained through a manual calibration process that focused on the 2006 

and 2008 summer periods for ST and MW sites, respectively. In this process, the soil parameters 

remained constant in time for each site. Initial parameter values were obtained from soil 

pedotransfer functions based on particle size fraction and bulk density (Van Genuchten, 1980; 

Rawls et al., 1983; Rawls and Brakensiek, 1989; Lapham, 1989). At the ST site, soil analyses 

indicated a sandy loam texture in the top 30 cm and sandy clay in the lower profile down to about 

75 cm. At the MW site, soil analyses revealed a sandy loam texture in the upper 40 cm of soil and 

a sandy clay loam down to the 55 cm of sampling depth. Manual adjustments to soil parameters 

within feasible ranges were performed independently at each site for the calibration periods only, 
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based on the comparison of observed and simulated surface soil moisture (SM, top 10 cm) and 

evapotranspiration (ET) using the Mean Absolute Error (MAE), Correlation Coefficient (CC) and 

Bias (B, see Appendix B). Sensible heat flux (H) was inspected for model validation purposes 

only using similar metrics, while root zone soil moisture (top 1 m) was not used in the model 

calibration or testing due to a lack of similar observations. Table 2.2 presents the soil parameters 

for each site and their source. Note the manual procedure allowed us to retain well-constrained 

values from pedotransfer functions, while focusing on parameters with higher uncertainty, such as 

the pore distribution index. Model testing was then performed for the remaining summer periods 

(2004, 2007-2009 at ST and 2009 at MW). 

Vegetation parameters were specified as time-varying quantities based on relationships 

to remotely-sensed data from MODIS. Appendix C describes the empirical equations used to 

transform the linearly-interpolated, daily MODIS observations of LAI, NDVI, fPAR and albedo into 

the vegetation parameters defined in Table 2.3. The implemented relations are considered more 

sophisticated than the methods presented by Vivoni (2012), in particular with respect to S, p and 

rs. Three scenarios were considered to examine the effects of vegetation greening on the 

simulated ET and SM: (1) Dynamic (time-varying plant parameters for each year), (2) Leaf off 

(fixed or time-constant vegetation parameters with no leaves) and (3) Leaf on (fixed vegetation 

parameters under full canopy conditions). For each scenario, the vegetation parameters apply to 

the vegetation fraction or green cover (vf) of the model element occupied by a subtropical tree 

species at ST and an oak tree at the MW site, while the 1-vf fraction is treated as bare soil. Note 

that the green vegetation fraction of a model element varies from near zero (Leaf off) to values 

near 0.7 or 1 (Dynamic) in Table 2.3. To obtain the Leaf off values, the mean of the minimum 

values of vf and S were calculated for each site over the 2004 to 2009 period, while the mean of 

the maximum values of a, kt, p and rs where utilized to represent dormancy. In contrast, Leaf on 

conditions were based on the mean of the maximum vf and S and the mean of the minimum a, kt, 

p and rs over 2004-2009. This selection implies that Leaf off and Leaf on scenarios are 

representative of average minimum and maximum greenness over five summers. As a result, 

care must be taken when interpreting results from each summer at each site relative to this 
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selection. Note that the Dynamic scenario varies for each summer, thus effectively capturing 

interannual variations in vegetation greening and its impact on all correlated plant processes. 

Evapotranspiration partitioning depends on the ability of E and T to extract soil water from 

the surface and root zones, respectively (e.g., Newman et al., 2006). In the model, this is 

parameterized using piecewise linear relations between E and surface soil moisture (top 10 cm) 

and T and root zone soil moisture (top 1 m), which are controlled by stress factors (Appendix A, 

Ivanov et al., 2004). The selection of the soil evaporation (βE) and plant transpiration (βT) stress 

factors (Table 2.3) was based on a manual parameter sensitivity analysis for the calibration 

periods in each ecosystem, as opposed to the fixed and equal factors used by Vivoni (2012). The 

sensitivity analysis systematically varied βE and βT within the 0 to 1 range to explore all possible 

combinations at each site. We selected the pair of βE and βT that minimized the simulated errors 

in ET and SM with respect to the observations at each site using the MAE, CC and B metrics. 

The resulting values indicate that soil evaporation stress factors are similar in each ecosystem (βE 

= 0.55), which is consistent with the sandy loam texture at each site. The plant transpiration 

stress factor, on the other hand, varied with plant functional type with βT having smaller values at 

ST (βT = 0.1), as compared to MW (βT = 0.55), due to the greater capacity of ST to sustain plant T 

under lower soil moisture conditions (Vivoni et al., 2008). This is also consistent with the more 

rapid green-up in the subtropical scrubland, which suggests a more efficient use of soil water by 

transpiration (Méndez-Barroso et al., 2009; Forzieri et al., 2011). 

 

2.3. Results 

2.3.1. Seasonal Evolution of Vegetation Parameters 

Figure 2.4 depicts the seasonal evolution of the vegetation parameters averaged over all 

simulation periods, including ± 1 standard deviations to represent interannual variability.  
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Figure 2.4. Seasonal Evolution of Vegetation Parameters from MODIS for the Sinaloan 
Thornscrub (Gray Solid Line, 2004, 2006-2009) and Madrean Woodland (Black Solid Line, 2008-
2009) Sites. Dashed Lines Depict ±1 Standard Deviation in Time for Each Ecosystem Across All 
Summers. Vegetation Parameters Were Estimated Based on Empirical Relations that Link 
Vegetation Fraction (Vf), Maximum Canopy Storage (S), Optical Transmission Coefficient (Kt), 
Minimum Canopy Stomatal Resistance (Rs) and Free Through Fall Coefficient (P) With Leaf Area 
Index (LAI), Fraction of Photosynthetically Active Radiation (fPAR) and Normalized Difference 
Vegetation Index (NDVI).  
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Clearly, the onset of vegetation greening in early July leads to large changes in the 

representation of vegetation parameters in the model. For example, the vegetation fraction (vf) 

increases from values near zero to an average of 0.6 in the subtropical scrubland and 0.5 in the 

oak savanna. 

The interannual variability in vf is higher at the MW site, in particular near the peak values. 

Overall, note that the ST site typically has earlier maximum or minimum values in vegetation 

parameters (mid-July) as compared to MW (mid-August). Since vegetation parameters were 

derived from remote sensing data, these all exhibit internally consistent temporal variations. 

Furthermore, differences between the two sites are consistent with field evidence (Vivoni et al., 

2010; Tarín et al., 2014), indicating that ST has a higher vegetation cover (higher vf) and shading 

(lower kt), but a lower interception capacity (lower S and higher p). Overall, the time-varying vf is a 

major difference between the ecosystems since it has a strong control on ET partitioning (Vivoni, 

2012). Furthermore, the fraction 1- vf is considered in the model as bare soil in both ecosystems, 

where grasses and forbs, cacti or succulents may actually occupy these understory spaces.  

 

2.3.2. Seasonal and Interannual Variations in ET and SM 

The multiple summer periods at the ST and MW sites allow for a comparison of the 

seasonal evolution of ET and SM for varying interannual conditions. As shown in Table 2.1, total 

summer precipitation (JJAS) can vary substantially in the region, in accordance with the strength 

of the NAM (Higgins and Shi, 2001; Gutzler, 2004; Forzieri et al., 2011). As compared to long-

term averages at Rayón (near ST site) and Meresichic (near MW site but at lower elevation), the 

study periods fall into below-average (2004 and 2009) and average (2006-2008) categories. Soil 

moisture, vegetation greenness and evapotranspiration are expected to vary in response to year-

to-year differences in precipitation (e.g., Tang et al., 2012). Furthermore, the onset and demise of 

the NAM varies interannually, leading to changes in the timing and duration of greening and its 

associated effects on water and energy fluxes. As such, we first present the comparison of model 

simulations that capture vegetation seasonality in each summer to the observations in each site. 
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For reference, the smoothed, daily NDVI time series is presented along with the composite NDVI 

values placed at the mid-point of the compositing period.  

Figure 2.5 presents the seasonal evolution and interannual differences in observed rainfall, 

vegetation greening (NDVI) and surface soil moisture (average of top 10 cm of soil) as derived 

from available observations (average of sensors at 5 and 10 cm) and model simulations using the 

Dynamic scenario at the ST site. Note how precipitation pulses affect the rapid vegetation green-

up and their coincident influence on the surface soil moisture. Diurnal fluctuations are due to a 

temperature-dependence of the sensors when installed at shallow depths (Seyfried and Murdock, 

2004; Vivoni et al., 2007b) and not a diurnal redistribution of soil moisture. The observed and 

simulated soil moisture (depicted volumetrically as m3/m3 at 30 min intervals) match well, in 

particular with respect to average conditions and the peak and recession characteristics of each 

wetting event across all summers.  

Model performance was inferior during periods when: (1) meteorological forcings from the 

tower was missing and NLDAS products were used in their place (i.e., 2006 had a high 

percentage of missing tower forcing, 67%), and (2) soil moisture sensors did not operate correctly 

(i.e., 2009 had issues with soil moisture data availability and quality). Note that the same soil 

parameters (Table 2.2) were used for each summer based on the calibration period, such that 

only meteorological forcing and vegetation parameters vary in time each summer in accordance 

with the observed conditions. Table 2.4 provides a quantitative evaluation of SM at the 30 minute 

resolution for the Dynamic scenario at the ST site, showing a low MAE of 0.02 m3/m3, a B near 

1.1 and a CC greater than ~0.7 across all summers. Model performance varies depending on the 

metric and variable inspected, but is generally consistent across calibration and testing periods, 

suggesting the model is transferable across the different summer periods. In addition, the model 

performance in terms of soil moisture is robust with respect to the time scale of evaluation, as 

shown by the daily-averaged statistics in Table 2.4.  
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Figure 2.5. Comparison of Observed and Simulated Soil Moisture (SM At 10 cm Depth) at the 
Sinaloan Thornscrub Site for 2004 And 2006-2009. Model Simulations Account for the Dynamic 
Scenario. For Reference, NDVI Shows the Vegetation Greenness Variations at the Site With the 
Squares Indicating the Composite Data With the Smoothed Series as Dashed Lines. Gaps in the 
Observations Due to Sampling Protocols or Equipment Malfunction are Depicted by Missing 
Data. 
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Figure 2.6. Comparison of Observed and Simulated Latent Heat Flux at the ST Site for 2004 and 
2006-2009 Under the Dynamic Scenario. Gaps in the Observations are Depicted by Missing 
Data. For Reference, NDVI Shows the Vegetation Greenness Variations at the Site With the 
Squares Indicating the Composite Data With the Smoothed Series as Dashed Lines. 
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Figure 2.7. Comparison of Observed and Simulated Latent Heat Flux and Surface Soil Moisture 
(SM, Top 10 cm) at the MW Site for 2008-2009. Missing Data are Due to Observational Gaps. 
For Reference, NDVI Shows the Vegetation Greenness Variations at the Site With the Squares 
Indicating the Composite Data With the Smoothed Series as Dashed Lines. 
 

Overall, the model captures the major features of the soil moisture data at the ST site, 

including how certain summer periods have sustained levels of high soil water content (2006-
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2008), while others experience long interstorm periods with low soil moisture levels (2004, 2009). 

The seasonal progression of soil wetting induces a vegetation green-up that increases ET in the 

subtropical scrubland, as depicted across all summers in Figure 2.6. Only daytime periods are 

included in the comparison. Latent heat flux (λET, where λ is the latent heat of vaporization) is 

low prior to the NAM onset (June) in both the observations and model simulations (see 2008 and 

2009). As SM and NDVI increase, the Dynamic scenario captures well the gradual rise in ET and 

its temporal variations in response to individual storms and dry periods. Reductions in ET during 

late summer are also captured well in response to lower water availability and radiation, as well 

as the start of vegetation senescence.  

Table 2.4 shows the model performance metrics with respect to latent and sensible heat 

flux (W/m2) at the ST site at both 30 minute and daily scales. For the 30 minute statistics, we 

obtained an average MAE of 41 W/m2, average B of 0.62 and average CC of 0.68 for λE and an 

average MAE of 53 W/m2, average B of 0.53 and average CC of 0.61 for H across all summers, 

consistent with daily total fluxes. Focusing on λE, the Bias indicates that under certain conditions 

in mid-summer the model underestimates ET with respect to observations, as seen in 2008, likely 

due to an inability of the model to account for transpiration emanating from plant water uptake 

from deep (> 1 m) soil layers occurring when the modeled (1 m) root zone has dried. Despite this, 

the major features of the seasonal evolution of ET and its interannual variation are nevertheless 

captured with reasonable accuracy to warrant a closer analysis of the underlying soil and 

vegetation contributions to the total ET.  

Figure 2.7 presents the comparison of ET and SM observations and model simulations at 

the MW site for 2008 and 2009 using the Dynamic scenario. Only daytime periods are included in 

the comparison. The wetter summer in 2008 (551 mm) leads to a higher NDVI than in the drier 

2009 summer (321 mm), with vegetation greenness slowly increasing during the NAM onset and 

peaking in mid-August in both periods.  
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Table 2.4. Model Performance for Periods With Simultaneous Observations and Simulations of 
Latent Heat Flux, Sensible Heat Flux and Surface Soil Moisture at the ST and MW Sites for the 
Dynamic Scenario for Both 30 Minute and Daily Intervals. Italicized Years Represent the Model 
Calibration Periods. The Statistical Metrics Used to Measure Model Performance Were Bias (B), 
Mean Absolute Error (MAE) and Correlation Coefficient (CC). The Units of MAE Depend on 30 
Minute (W/M2) or Daily (MJ/M2/Day) Statistics for the Latent and Sensible Heat Fluxes. 
 

Differences in time-varying vegetation parameters in the Dynamic scenario (under the 

same soil properties of Table 2.2) are able to capture well the interannual variations in ET and 

SM, with wetter soils and higher evapotranspiration losses in 2008 than in 2009. Table 2.4 shows 

that the model performance at the Madrean woodland is comparable to the ST site in terms of 

latent and sensible heat fluxes and surface soil moisture, with a better match during the drier 

2009 period, at both 30 minute and daily scales. This suggests that model performance may 

Year Latent heat flux Sensible heat flux Surface soil moisture 
 

B 
[-] 

MAE [W/m2] 
or 

[MJ/m2/day] 

CC 
[-] 

B 
[-] 

MAE [W/m2] 
or 

[MJ/m2/day] 

CC 
[-] 

B 
[-] 

MAE 
[m3/m3] 

CC 
[-] 

          
Sinaloan thornscrub, ST (30 minute statistics) 

2004 0.53 31.46 0.71 0.72 58.40 0.69 0.90 0.02 0.75 

2006 0.60 45.35 0.78 0.84 37.85 0.66 1.06 0.02 0.79 

2007 0.87 28.52 0.68 0.46 47.33 0.61 1.05 0.02 0.65 

2008 0.51 71.28 0.58 0.13 50.19 0.45 1.08 0.02 0.86 

2009 0.58 30.32 0.66 0.48 71.10 0.63 1.14 0.02 0.66 

Sinaloan thornscrub, ST (daily statistics) 

2004 0.48 76.63 0.85 0.77 90.73 0.67 0.90 0.02 0.78 

2006 0.64 105.32 0.94 0.84 73.87 0.78 1.05 0.02 0.84 

2007 0.92 53.02 0.84 0.46 138.66 0.72 1.04 0.02 0.76 

2008 0.49 257.79 0.16 0.13 188.14 0.23 1.08 0.02 0.88 

2009 0.56 37.47 0.91 0.48 206.36 0.72 1.12 0.02 0.79 

          
Madrean woodland, MW (30 minute statistics) 

2008 0.75 62.38 0.67 0.17 62.26 0.49 0.78 0.04 0.90 

2009 0.91 39.86 0.57 0.91 74.04 0.59 1.00 0.02 0.74 

Madrean woodland, MW (daily statistics) 

2008 0.75 135.33 0.46 0.18 170.60 0.31 0.77 0.05 0.93 

2009 1.03 64.00 0.73 0.91 107.84 0.48 0.99 0.02 0.76 
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improve in terms of certain variables above the calibration results depending on the 

meteorological forcing and its subsequent vegetation response. For this ecosystem, the seasonal 

evolution of ET and SM are also captured well, as are the hydrologic responses to individual 

storms and subsequent dry-down periods. It is interesting to note that the MW site experiences 

higher soil moisture values with lower recession rates as compared to the ST ecosystem. The 

more frequent, smaller rainfall events at the higher elevation MW site (Gebremichael et al., 2007) 

also permit sustained ET throughout the summer season. Although the model captured well the 

observations overall, it is important to note an underestimation in ET in August and September 

2008, which are likely related to the high precipitation that year leading to plant water uptake from 

deep (> 1 m) soil layers.  

In addition, high rainfall conditions and the presence of fog or dew during this period may have 

interfered with the EC measurements causing unusually large and sustained ET observations that 

were not removed during standard data processing using the quality control method of Mauder 

and Foken (2004). Among other identified sources of EC measurement error (e.g., Kochendorfer 

et al., 2012; Frank et al., 2013), the effects of standing water from fog, dew or precipitation on the 

LI7500 sensor are well known and occur by obstructing passage of the infrared beam (e.g., 

Massman and Lee, 2002).  

 

2.3.3. Comparisons of ET-SM Relation for Vegetation Scenarios 

The two static scenarios (Leaf off and Leaf on) allow analyzing the effects of seasonal 

and interannual variations of vegetation on the hydrologic conditions at the ST and MW sites. For 

simplicity, these scenarios are described through a comparison of the relation between daily total 

ET and daily-averaged SM for the top 10 cm. Figure 2.8 presents the ET-SM relation for each 

summer period from the three scenarios as well as the available daily data (not used in the 

relations). For clarity, the simulations for all summer days are presented as piecewise linear 

regressions, such that the lines are a visualization tool to compare the scenarios.  
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Figure 2.8. Interannual Variability of the Relation Between Daily Evapotranspiration and Surface 
Soil Moisture (SM, Top 10 Cm) for Three Vegetation Scenarios at the ST and MW Sites. Daily 
Observations (n Is The Number Of Available Days) are Included for Comparison (Circles) Along 
With the Root Mean Square Error (RMSE) in Evapotranspiration (Mm/Day) for the Piecewise 
Linear Regression in Each Scenario. 
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The regression parameters were identified through a semi-automatic procedure aimed at 

minimizing the root mean square error (RMSE) between the pair of points (SM, ET) of the model 

simulations and the regression lines. Note that the ET-SM relations are determined based on all 

simulated days, while the observations are limited to only days (n) with available data. The 

regressions allow depicting the stressed ET (region with positive slope) and the maximum ET 

(region with constant values) corresponding to low and high SM. From the observations, it is clear 

that interannual variations exist in the ET and SM ranges at both sites, with wetter summers 

(2006-2008) exhibiting higher values. Due to its adjustment of vegetation parameters each 

summer, the Dynamic scenario shows interannual differences in the ET-SM relation that visually 

match the observations better than the Leaf off and Leaf on scenarios. This is corroborated by the 

lower RMSE in daily ET between observations and the piecewise linear regressions for the 

Dynamic scenario. When averaged over all summers and both sites, the Dynamic case has an 

RMSE of 1.73 mm/day, as compared to 1.93 mm/day and 2.93 mm/day for the Leaf off and Leaf 

on scenarios. The ET-SM relation for the Dynamic scenario generally has better performance 

relative to observations for the calibration periods (2006 at ST and 2008 at MW), with a lower skill 

in the testing periods.  

The Leaf on and Leaf off cases present an interesting comparison to the Dynamic 

scenario in each ecosystem. For the ST site, the Leaf on scenario has the highest ET for most 

SM values across all summer periods, indicating the full canopy development in the subtropical 

scrubland maximizes ET losses to the atmosphere and thus lowers SM. This suggests that plant 

transpiration is a more efficient means to extract soil moisture since it acts over a deeper (1 m) 

profile and has a lower stress factor, βT (Table 2.3). In contrast, the Leaf off scenario has the 

lowest ET and highest SM, indicating that bare soil conditions at the ST site have lower losses, 

primarily due to a higher soil evaporation stress factor, βE (Table 2.3). Interestingly, the Dynamic 

scenario has a behavior that suggests that time-varying parameters result in an ET bounded by 

the two other cases, in particular for intermediate soil moisture values (i.e., 0.05 to 0.125 m3/m3). 

In the oak savanna, comparisons between vegetation scenarios are limited to two summers.  
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Figure 2.9. Simulated Evapotranspiration Partitioning Under the Dynamic Scenario at the ST and 
MW Sites for 2008 and 2009. For Reference, NDVI Shows the Observed Vegetation Greenness 
Variations at the Sites. 

 

The Leaf on and Leaf off scenarios were selected from observations over a period of five 

summers and as a result represent conditions not necessarily experienced in 2008 and 2009. In 

contrast to the ST site, the minimum greenness in the Leaf off scenario leads to high ET and low 

SM, while the maximum greenness in the Leaf on scenario leads to a lower ET and higher SM. 

Here, the Dynamic scenario also exhibits an intermediate ET-SM relation as compared to the 

bounds presented by the other cases and matches the field data better when averaged over the 

two seasons, as shown by the RMSE. Differences between MW and ST in the relative 

performance of the Leaf off and Leaf on scenarios can be attributed to: (1) Higher incoming solar 
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radiation that favors greater ET at MW and (2) Lower vegetation fraction in the oak savanna. 

Interestingly, the ability of the Dynamic scenario to adjust the ET-SM relation to match the 

available data indicates that vegetation greening plays a crucial role in modulating losses to the 

atmosphere in the oak savanna ecosystem. It also reveals that lower vegetation fractions at MW 

leads to a different behavior as compared to the ST site, with respect to the partitioning of ET 

between vegetation canopies and surrounding bare soil, as will be explored in the following.  

 

2.3.4. Temporal Variations of ET Partitioning 

The simulated partitioning of evapotranspiration (Appendix C) permits an evaluation of 

the effect of vegetation greening on soil- and vegetation-mediated processes. Figure 2.9 presents 

the simulated ET partitioning for two contrasting summers, the wetter 2008 and drier 2009 

periods, at the ST and MW sites under the Dynamic scenario. Both summers received rainfall 

events in late June and early July, but 2008 had more sustained precipitation in late August and 

September that allowed NDVI to remain higher. Prior to green-up, ET is dominated by soil 

evaporation (E) at both sites, as bare soil fractions (1-vf) are greater than 50%. In the subtropical 

scrubland, a switch to transpiration (T) dominance was simulated after early to mid-July, reaching 

values of 5 to 7 mm/day in each summer, with an earlier green-up and a quicker transition to 

transpiration in 2009. In contrast, the oak savanna exhibited this switch only in the wetter 2008 

period. The late greening and low NDVI at MW in 2009 resulted in higher soil evaporation rates 

throughout the season. During the late summer, precipitation determines whether ET is sustained 

(as in 2008) or rapidly decays (as in 2009), while the partitioning begins to favor E as NDVI 

decreases in response to lower radiation. Overall, transpiration rates at MW were consistently 

lower than at ST and contributed a lower fraction of the total ET. Since total ET averaged over all 

summers was higher at MW (465 mm) than at ST (422 mm), E plays a dominant role in the oak 

savanna due to a sparser plant cover. As expected, the evaporation of intercepted water (I) had a 

small contribution to ET with maximum values of 2 mm/day during periods of higher vf. 
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Figure 2.10. Vegetation-Mediated Fraction, (T+I)/ET, Under Three Vegetation Scenarios at the 
ST and MW Sites for 2008 and 2009. 
 

The impact of the vegetation greening on the ET partitioning is presented in Figure 2.10 

by comparing the vegetation scenarios in terms of the vegetation-mediated fractions or (T+I)/ET. 

Vegetation-mediated processes are typically dominated by transpiration and E/ET can be 

obtained as 1 - (T+I)/ET. The comparison in Figure 2.10 includes both the ST and MW sites for 

the wetter 2008 and drier 2009 summer periods. Note that the Leaf off scenario was entirely 

dominated by E/ET such that (T+I)/ET was near zero for all cases.  

Similarly, the Leaf on scenario exhibited (T+I)/ET primarily between 0.8 and 1 (ST) and 

0.5 and 0.7 (MW), indicating a significantly lower contribution of E/ET at ST and a larger E/ET at 
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MW. As such, the Leaf off and Leaf on scenarios are considered as hypothetical bounds on the 

actual ET partitioning for each ecosystem under variable (day-to-day) meteorological forcing.  

The Dynamic scenario, on the other hand, represents well the seasonal evolution and 

interannual variations in ET partitioning. (T+I)/ET exhibits a gradual increase in response to 

vegetation green-up and a peak amount and timing that varies according to the seasonal 

distribution of rainfall events. During peak greenness, (T+I)/ET can range from 0.5 to 1, with 

higher contributions at ST and for wetter periods. Interestingly, the day-to-day variations in 

(T+I)/ET seem to be higher for the drier 2009 period at both sites, indicating that lower vegetation 

greenness leads to higher susceptibility to decreases in vegetation-mediated processes during 

interstorm periods. The drier summer also has a lower seasonal recession of (T+I)/ET in each 

ecosystem. This indicates that ET partitioning is highly variable within and across summer 

seasons in response to vegetation differences.  

 

2.3.5. Comparison of ET Partitioning in Two Ecosystems 

The analysis over multiple summers in the two ecosystems allows determining the impact 

of seasonal rainfall amounts on the partitioning of evapotranspiration. Establishing this relation 

would allow for a simple approach for estimating the vegetation effects on ET based on available 

rainfall data for the two different ecosystems. Figure 2.11 shows the relation between the monthly 

vegetation-mediated losses to the atmosphere, (T+I)/ET, and the cumulative rainfall over the 

current and previous months (Paccm) and the best-fit regressions obtained over a range of 

possible models. The ST site shows an asymptotic relation between (T+I)/ET and Paccm over the 

five summer periods (n = 20 based on 4 months in five summers; (T+I)/ET = -2.0×10-6Paccm
2 + 

2.5×10-3Paccm - 2.4×10-2, R2 = 0.95). In contrast, the MW site exhibits a linear increase in (T+I)/ET 

with the cumulative rainfall (n = 8 for 4 months in 2 summers; (T+I)/ET = 9.2×10-4Paccm - 5.7×10-2, 

R2 = 0.92). In both cases, higher accumulated precipitation leads to a greater amount of 

vegetation-mediated processes due to the production of biomass supporting transpiration and 

evaporation of intercepted rainfall. 
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Figure 2.11. Relation of Vegetation-Mediated Fraction, (T+I)/ET, With Cumulative Seasonal 
Rainfall, Defined as the Current and Prior Month Totals. The Black Solid Line is a Regression for 
ST, While the Gray Dashed Line is a Regression for MW. 
 
 
 
 

For the subtropical scrubland, however, a threshold of 390 mm in two-month total rainfall 

yields a change in the slope of the (T+I)/ET relation with Paccm, as compared to the linear increase 

in the MW site, indicating that additional rainfall does not appreciably increase vegetation-

mediated losses. Nevertheless, the ST site sustains higher (T+I)/ET than the MW site at all 

rainfall amounts, indicating that subtropical scrublands have a greater ability to return soil 

moisture back to the atmosphere through (T+I)/ET. Since plant interception is larger at the MW 

site, this implies that transpiration at the ST site is more sensitive to low rainfall (higher slope for 

Paccm < 390 mm), while being less sensitive at higher accumulations (lower slope for Paccm > 390 

mm), as compared to MW. The differences in ET partitioning in the two ecosystems are further 

explored in Figure 2.12 as the time-averaged seasonal evolution of T/Tmax and E/Emax, where 

normalization is performed with maximum values over all summers. Time-averaged 

NDVI/NDVImax is also shown to indicate vegetation green-up onset and duration. 
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Figure 2.12. Seasonal Evolution of Normalized Evapotranspiration Components (T/Tmax and 
E/Emax) and NDVI/Ndvimax at the ST and MW Sites Averaged over Available Seasons. 
 

 

Note that the seasonal evolution of E/Emax and T/Tmax are inversely related since these 

losses represent the primary ET components (Table 2.5). The subtropical scrubland and oak 

savanna are both characterized by high E/Emax in the early summer prior to the onset of greening. 

At the ST site, the earlier and faster increase in NDVI to maximum canopy development 

(NDVI/NDVImax = 1) yielded a quicker transition towards high T/Tmax that is sustained throughout 

the summer. In contrast, the delayed green-up at the MW site results in high T/Tmax only towards 

the end of the season, indicating that soil-mediated processes are significant in the oak savanna 

during a larger fraction of the summer as compared to the ST site (Table 2.5). As expected, the 

peak transpiration losses, T/Tmax = 1, occur after the peak NDVI in both ecosystems as it takes 

times for vegetation greening to impact water and energy fluxes at each site. Interestingly, the 

delay between peak NDVI/NDVImax and peak T/Tmax is on the order of five days in the subtropical 

scrubland and nearly three weeks (20 days) in the oak savanna.  
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Month Sinaloan thornscrub Madrean woodland 

 E/ET [%] T/ET [%] I/ET [%] E/ET [%] T/ET [%] I/ET [%] 

       
June 90.3 7.8 1.9 96.4 3.3 0.3 

July 58.3 38.9 2.8 89.8 8.2 1.9 

August 23.7 70.8 5.6 64.3 26.8 8.9 

September 26.4 70.8 3.7 53.8 41.9 4.3 

Total 39.0 57.4 3.7 77.4 18.6 4.0 

       
 

Table 2.5. Evolution of Monthly ET Partitioning Into Soil Evaporation (E), Plant Transpiration (T) 
and Evaporation of Intercepted Rainfall (I) for the ST and MW Sites. Seasonal Totals are Shown 
as ‘Total’. Values Represent Averages over All Summer Periods 
 

This indicates that the MW site has a slower transpiration response to rainfall during the 

North American monsoon leading to a higher proportion of soil-mediated losses, as summarized 

in Table 2.5. Toward the end of the summer, E/Emax begins to increase in both ecosystems in 

response to the beginning of vegetation senescence, which lasts for different periods of time in 

each ecosystem (Méndez-Barroso et al., 2009; Forzieri et al., 2011). 

 

2.4. Discussion and Conclusions 

Seasonal vegetation greening affects the partitioning of water and energy fluxes in arid 

and semiarid ecosystems under the influence of the North American monsoon (e.g., Reynolds et 

al., 2000; Yépez et al., 2003, 2007; Scott et al., 2006; Watts et al., 2007; Vivoni, 2012). As a 

result, modeling applications that assume constant parameters or represent each summer with a 

fixed seasonal cycle can miss important vegetation impacts. In this study, we compared 

simulations that capture seasonally-varying parameters inferred from remotely-sensed data to 

static scenarios representing no canopy and full canopy conditions for two ecosystems that are 

representative of intermediate and high elevation landscapes along mountain fronts in the North 

American monsoon region. We found good agreement between field observations of 
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evapotranspiration and soil moisture and simulations from Dynamic scenarios, indicating that the 

hydrologic model can represent interannual differences in the water and energy fluxes in the two 

ecosystems. In contrast, the Leaf off and Leaf on scenarios had a limited ability to track the 

seasonal evolution and interannual differences in ET and SM responding to precipitation-induced 

vegetation variations. While this result is robust over the five-summer period in the subtropical 

scrubland (ST site), additional data in the oak savanna (MW site) would be valuable for 

quantifying interannual ecosystem adjustments.  

Precipitation events during the North American monsoon wet surface soils and induce a 

vegetation response that varies substantially across the two ecosystems. Early in the monsoon 

season, however, both ecosystems have dormant plants and soil evaporation is the dominant ET 

component. The switch toward transpiration dominance occurs differentially in each ecosystem 

such that it takes 2-3 weeks for the full transition to take place in the subtropical scrubland and 6-

8 weeks in the oak savanna. These model-based estimates are consistent with field data in arid 

and semiarid ecosystems that respond to the North American monsoon (e.g., Mielnick et al., 

2005; Scott et al., 2006; Yépez et al., 2007; Cavanaugh et al., 2011). Furthermore, the model 

identified, for the first time, which the peak transpiration losses are delayed by five days and 

twenty days, on average, from the peak NDVI at the ST and MW sites, respectively. A longer lag 

time between peak NDVI and transpiration at the MW site as compared to the ST site is likely due 

to the slower production of more costly leaves and ensuing activation of the photosynthetic 

process. This also suggests that rapid and robust vegetation greening in subtropical scrublands is 

linked directly to the dominance of vegetation-mediated losses, where T/ET was found to be 56 ± 

9% over the five summer periods, well within the range of values at shrubland sites with a high 

vegetation cover (e.g., Scott et al., 2006). Recent efforts by Tarín et al. (2014) using an isotopic 

partitioning method found T/ET = 59 ± 6% at ST for four specific days. Model comparisons for 

these days revealed a standard error of estimates (SEE) of 0.16, with the match varying from a 

16% to a 40% difference for individual days. To illustrate this, figure 2.13 shows the comparison 

between observed and estimated T/ET (fraction of evapotranspiration from plant transpiration).  
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Figure 2.13. Comparison of Observed and Simulated T/ET (Fraction of Evapotranspiration from 
Plant Transpiration), Depicted as Black Circles. The Blue Line is a 1:1 Line. Observed Isotopic 
Fractions Were Obtained for July 24 and 27, 2007 and July 15-16, 2008. 
 
 

This suggests that the model is capturing ET partitioning well under the limited conditions 

of the available data for the study periods. In contrast, delayed and attenuated vegetation 

greening in the oak savanna is responsible for soil-mediated losses having a dominant role 

throughout the season, with T/ET of only 18 ± 8%. The important role of soil evaporation in oak 

savannas has been recognized previously by Baldocchi and Xu (2007) and Pereira et al. (2009), 

but not placed in the context of summer vegetation greening.  

Overall, the seasonal evolution of ET components indicates that transpiration is in-phase 

with vegetation greenness at the ST site, but out-of-phase (or delayed) at the MW site, a 

significant new insight provided through the model. This is consistent with a stronger link between 

cumulative precipitation and vegetation-mediated losses, (T+I)/ET, in subtropical scrublands as 

compared to oak savannas.  
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Based on long-term analyses of vegetation greening, Forzieri et al. (2011) found that 

deciduous subtropical ecosystems in the NAM region have high seasonality with a short period of 

intense greening occurring rapidly after precipitation onset. Mountain woodlands including oak 

savannas, on the other hand, were found to have more a prolonged period of moderate 

greenness that was delayed with respect to the precipitation onset but continued well into the fall 

season. Results described in this study identify the implications of the two ecosystem types on 

the water and energy fluxes, specifically on evapotranspiration and its partitioning, which have not 

been previously known. Intermediate-elevation subtropical scrublands have a high sensitivity to 

precipitation, primarily during the early development of the NAM, which allow them to quickly 

transition from soil- to vegetation-mediated losses to the atmosphere. These intensive water 

users rapidly deplete available soil moisture through transpiration, subsequently leading to 

decreases in vegetation greenness and transpiration near the end of the summer. In contrast, 

high-elevation oak savannas, with a lower sensitivity of canopy development to precipitation, 

have a slower transition from evaporation- to transpiration-dominated periods. As a result, these 

extensive water users slowly deplete soil moisture during the NAM, preserving it for subsequent 

use to maintain greenness and transpiration during the fall. As discussed by Rodríguez-Iturbe et 

al. (2001), variations in plant water use between intensive and extensive strategies may allow 

different ecosystems to occupy specific niches along the mountain front. 

The noted variations in seasonal and interannual dynamics of ET and its components in 

the two ecosystems have a number of implications on the ecological and hydrologic properties of 

semiarid mountain fronts in the NAM region. First, the switch from soil- to vegetation-mediated 

losses affects soil moisture storage since evaporation is primarily sourced from shallower layers. 

The delayed transition at higher elevations implies that deeper soil water is preserved for longer 

periods, potentially leading to mountain recharge (Wilson and Guan, 2004). Second, the rapid 

transition towards transpiration in subtropical scrublands implies these sites are more likely to be 

responsible for the precipitation-soil moisture-vegetation feedback mechanism (Dominguez et al., 

2008; Méndez -Barroso and Vivoni, 2010). Thus, the local precipitation recycling that sustains 

vegetation greening during the NAM may be sourced primarily from intermediate elevations along 
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mountain fronts rather than higher elevations. Finally, spatially-variable consumption of 

precipitation in the different ecosystems through ET may have implications on runoff production 

(Robles-Morúa et al., 2012). However, the underlying processes that could distinguish runoff in 

subtropical scrublands and oak savannas have yet to be elucidated. Further, the model findings 

on the interannual variations of ET partitioning in the two ecosystems need to be corroborated by 

additional field studies, in particular at high elevation oak savannas. As demonstrated in this 

work, the comparative analysis of evapotranspiration and its partitioning in different ecosystems 

through the use of field observations, remote sensing estimates and hydrological modeling is a 

fruitful avenue of future work.  
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CHAPTER 3 

IMPACT OF SPATIALLY VARIABLE SOIL TEXTURE AND THICKNESS ON SIMULATED 

ENERGY AND WATER FLUXES IN A SEMIARID BASIN 

 

3. 1 Introduction 

 

Soil depth exerts a strong control on the water and energy balance. It is widely accepted 

that thin soils can lead to the production of saturated overland flows while thicker soils can have 

more water storage capabilities affecting ecosystem processes (Boer et al., 1996; Bertoldi et al., 

2006; Tromp-Van Meerveld and McDonnell, 2006, Gochis et al., 2010). Although, the controlling 

effect of soil depth and aspect could be important in semi-arid areas where water is the most 

limiting resource.  Because soil depth acts as the main reservoir for water in semiarid 

ecosystems, it affects the partition of energy fluxes into sensible and latent heat at the land 

surface. Furthermore, it affects plant transpiration and carbon fixation depending on the temporal 

and spatial availability of soil moisture. For this reason, an accurate spatial representation of soil 

thickness at catchment scale is important to identify not only the spatial patterns in soil moisture, 

evapotranspiration rates and connectivity but also their persistence in time and space.  

Hydrological models can be an excellent tool to identify such patterns but requires an accurate 

representation of the spatial variability of soil thickness (Saulnier et al., 1997; Pelletier et al., 

2009; Catani et al., 2010, Nicótina et al., 2011). 

Soil depth mapping is not a feasible procedure because it requires a large number of 

sampling points and consumes a considerable amount of time; thus, we need to rely on models 

that can accurately predict the spatial patterns of soil depth.  One widely used approach to 

estimate distributed soil depth is to develop empirical relationships between terrain attributes, 

such as slope and curvature with a limited number of soil thickness observations (Moore et al., 

1993; Gessler et al., 1995; Heimsath et al., 1999, Catani et al., 2010).  A less commonly used 

approach includes the assumption of a linear decreasing function between soil thickness with site 

elevation and topographic slope (Saulnier et al., 1997).  Today is widely accepted that the 
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relationship between soil depth and terrain curvature, assuming steady state conditions, is one of 

the most accurate ways to infer soil thickness (Heimsath et al., 1999; Dietrich et al 2003).  

On the other hand, the piedmonts of the Sierra Madre Occidental, located in the North 

American Monsoon region (NAM), show complex topography. Consequently, this rugged 

topography produces large variations in both soil thickness and physical properties that may 

influence the spatial distribution and storage of water.  Therefore, the semiarid basins located in 

the NAM region represent an opportunity to explore the effects of the variability of soil depth on 

water fluxes and states. Previous modeling studies in the region have found that simulated 

sensible and latent heat were considerably affected by soil thickness; thus, resulted in the 

improvement of model performance when observed soil depth was used instead of the standard 2 

meters soil column from the Noah model (Gochis et al., 2010).  Although this study represents an 

important contribution understanding the effect of soil thickness on water and energy fluxes in the 

region, this was performed at point scale and did not consider the spatial distribution of soil depth 

at basin scale.  

In this study we evaluate the impact of variable soil thickness and soil texture in the 

temporal and spatial variability of basin evapotranspiration and soil moisture in a semiarid 

mountain basin under monsoonal regime. To do so, we performed ecohydrological simulations 

using the distributed model TIN-based Real-time Integrated Basin Simulator (tRIBS) during July 

through September of the year 2004. This year was selected in particular because the large 

change in vegetation greening and the high availability of ground data as part of the soil moisture 

experiment 2004 (SMEX04). We are interested to answer the following questions: How large is 

the impact of variable soil thickness and textural properties on model estimated water fluxes? 

How is the spatial representation of these simulated fluxes? 

Finally, this research represents an unexplored pathway to evaluate model sensibility. 

Previous modeling efforts did not take into consideration the effect of spatially variable soil 

thickness on simulated fluxes. For this reason, this research work makes an important 

contribution to model users to evaluate model sensitivity. However, it is necessary to expand the 

soil sampling and evaluate the sensitivity analysis to different scales. 
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Figure 3.1. Location of the Sierra Los Locos Catchment. (a) Location of the San Miguel Basin 
Within the Mexican State of Sonora. (b) Sample Sites for Soil Texture Characterization. Triangles 
Shows the Location of Shallow Soil Samples and Squares Shows the Location of Soil Pits for 
Profile Analysis. Dashed Lines in (b) Show the Spatial Extension of NLDAS Forcing (North-
American Land Data Assimilation). 
 

 

3.2 Methods 

3.2.1 Study Site 

In order to evaluate the impact of soil depth on simulated water fluxes and states, we 

used different tools and sources of datasets that include: (1) a fully operational hydrological 

model with benchmark simulations in the NAM region, (2) Soil depth observations and a soil 

texture dataset (3) Raster and vector geospatial data for the region, and (4) an operational 

network of soil moisture sensors. The study site is located in the Sierra Los Locos basin (93.2 

km2) east of the small rural town of Opodepe and about 150 km northeast of the city of 

Hermosillo, capital of the Mexican state of Sonora.  

Figure 3.1a shows the location of Sierra Los Locos basin that is nested inside the San 

Miguel River Basin (3796 km2). Both basins are part of the Rio Sonora System, which is the main 

source of surface water for the capital Hermosillo, which is important for sustaining economic 

activities in this region.  Figure 3.1b shows the physiographic characteristics of the Sierra Los 

Locos Basin. Rainfall distribution and local elevation has a large influence in the vegetation types 
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in Sierra Los Locos Basin. The basin relief is 1035 meters with lower elevations dominated by 

subtropical scrubland; while oak woodlands and grasses dominate higher elevations. Local 

topography influences rainfall distribution, varying from 500 to 700 mm/year with close to 70 % 

falling during the North American Monsoon (Xiang et al., 2014).  Several studies in the North 

American Monsoon region have shown that these highly seasonal rainfall pulses lead to a 

dramatic change in vegetation greening, which affected the surface water and energy partition 

(Méndez-Barroso et al., 2014). For this reason, this research has incorporated dynamic 

vegetation during model simulations in order to emulate seasonal surface conditions. Basin 

boundaries and river networks were delineated using a 30-meter resolution digital elevation 

model (DEM) from Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER).   

 

3.2.2 Soil Thickness Observations and Soil Texture Samples 

Two soil-sampling activities were carried out in August 2007 at Sierra Los Locos Basin.  

One of the survey activities consisted of estimation of soil depth and characterization of soil 

horizons from six soil pits distributed in several sites in the Sierra Los Locos basin.  Soil pits 

database contained soil thickness, number of horizons, horizon depth, color (Munsell color 

system) and texture. Soil pits sites represented different terrain characteristics such as elevation, 

slopes, and vegetation cover. The second sampling activity consisted of taking surface soil 

samples (0-5 cm depth) at forty-two sites distributed from the basin headwaters to the outlet. Soil 

samples were taken to a laboratory in order to determine particle size (texture) and bulk density.  

Bulk density was estimated by the clod method (Blake, 1965), while relative masses of sand, silt 

and clay were determined by the “Pipette” method (Gee and Bauder, 1986). The soil textural 

class was determined by the USDA triangle method by using the results from the soil particle size 

analysis. Figure 3.1b shows the location of soil pits (dark squares) and surface soil samples sites 

(triangles). Soil thickness was correlated with local curvature to estimate the spatial distribution of 

soil depth while soil textural classes were correlated with surface radiance to infer the spatial 

distribution of soil textural properties.  
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3.2.3 Methods to Estimate the Spatial Distribution of Soil Thickness 

Surveying soil depth is not a simple task and it requires considerable amount of 

resources. For this reason, it is feasible to apply simple models to estimate the spatial distribution 

of soil thickness. Although there is not a consensus about one universal model to estimate soil 

thickness, there are several empirical models that relate soil depth with topographic features. The 

first method evaluated in this work used an empirical approach that related soil depth with local 

terrain elevation (Saulnier et al., 1997). This method assumed a linear decreasing function 

between soil thickness and elevation and was used to perform a sensitivity analysis to evaluate 

the effect on soil depth from TOPMODEL outputs for the Maurets Catchment in France. This 

method will be referred hereafter as the Saulnier-z method: 

 

ℎ! = ℎ!"! −
!!!  !!"#

!!"#!!!"#
ℎ!"# − ℎ!"#   ;      (3.1) 

 

where hi is depth to bedrock at pixel i, zi is local elevation estimated by a 30-meter ASTER 

(Advance Spaceborne Thermal Emission and Reflection radiometer) digital elevation model, zmin 

represents the minimum elevation found in the basin, zmax represents the maximum elevation in 

the basin, hmax is the maximum observed soil depth, and hmin represents the minimum observed 

soil depth. Saulnier et al., 1997 also developed an alternative method for soil depth estimation 

assuming a linear relation between soil thickness and terrain slope. This method is referred 

hereafter as Saulnier-Slope method: 
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 ;     (3.2) 

 

where tanθi is the local calculated slope using ArcGIS 9.3 Spatial Analyst from 30-meter 

resolution DEM, θmin is the minimum calculated slope found in Sierra Los Locos basin and θmax is 

the maximum calculated slope in the basin.  The third approach used to estimate the spatial 

distribution of soil thickness is based on a multi-linear regression approach between plane 
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curvature, topographic index and soil depth (Gessler et al., 1995).  The authors performed a 

multiple regression with Poisson Error Function between several terrain attributes and sixty soil 

depth observations in a 100-km2 semiarid basin in Australia.  The evaluated terrain attributes 

included: terrain slope, aspect, elevation curvature and topographic index (TI). However, they 

found that topographic index and plane curvature were highly significant in predicting soil 

thickness.  We estimated the topographic index in Sierra Los Locos basin based on the idea of 

Beven and Kirby, 1979: 

 

𝑇𝐼 = 𝑙𝑛 !"
!"#$

 ;         (3.3) 

 

where CA is the upslope contributing area and θ is the local slope gradient. Contributing area was 

calculated using flow accumulation estimated by the method of Jenson and Domingue (1988) 

while slope gradient was estimated using spatial analyst in ArcGIS 9.2. Multi-linear regression 

was performed by using pixel values of curvature and topographic index at the location of the soil 

pits as independent variables of soil thickness. Regression statistics were obtained in Matlab 

using the function  “regress”. This method is named hereafter as the Gessler method. Finally, the 

last method evaluated to estimate soil thickness relied on the relation between terrain curvature 

with soil thickness, assuming steady state conditions. Today, this relationship is widely accepted 

as preferred way to infer soil thickness from terrain attributes (Heimsath et al., 1999; Dietrich et 

al., 2003). This method is referred later in this work as the Heimsath method. We performed a 

linear regression analysis by extracting local curvature from the soil pit locations and used this 

information as independent variables for predicting soil thickness. Local curvature was estimated 

on ASTER 30-meter resolution digital elevation model using Spatial Analyst tool within ArcGis 

9.2. Curvature of the surface is estimated on a cell-by-cell basis using a fourth-order polynomial: 

 

𝑍 = 𝐴𝑥!𝑦! + 𝐵𝑥!𝑦 + 𝐶𝑥𝑦! + 𝐷𝑥! + 𝐸𝑦! + 𝐹𝑥𝑦 + 𝐺𝑥 + 𝐻𝑦 + 𝐼;    (3.4) 
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This equation is fit to a 3 x 3 pixel window. Then, “Z” is the elevation value corresponding to the 

local pixel, hence, there are nine values of elevation where Z1 corresponds to the upper left 

corner of the 3 x 3 matrix and Z9 corresponds to the lower right corner of the 3 x3 matrix. Two 

coefficients are required for the computation of curvature where Z5 corresponds to the central 

pixel of the 3x3 window and L corresponds to the dimension of the pixel: 

𝐽 =
!!!!!
!!!!
!!

  ;          (3.5) 

 

𝐾 =
!!!!!
!!!!
!!

 ;          (3.6) 

Then the output of the curvature is the second derivative of local elevation: 

𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 =   −2   𝐽 + 𝐾 ∗ 100   ;       (3.7) 

 

Estimated soil thickness maps by all approaches were smoothed and resampled to a final 

spatial resolution of 120-meter. The goal of raster smoothing is to reduce the difference between 

adjacent pixels and avoid large gradients in soil depth that can induce preferential groundwater 

flows. Raster resampling was performed using ArcGIS 9.3 with the application of the bilinear 

interpolation method. This method used the values of the four nearest input cell centers to 

determine the value on the output raster. The new values from the output cell are a weighted 

average of these four values, adjusted to account for their distance from the center of the output 

cell. 

 

3.2.4 Remote Sensing Data and Estimation of Soil Textural Classes 

Understanding the spatial distribution of soil texture is essential to understand the spatial 

variability of hydrological properties, such as hydraulic conductivity, porosity and water holding 

capacity. Recent studies have indicated that soil texture correlates significantly with soil 

reflectance in the visible and near infrared regions (Zhang et al., 1992 and Sullivan et al., 2005).  

Much of the research in soil texture estimation involved Landsat images, but the Advanced 
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Spaceborne Thermal Emission and Reflection Radiometer (ASTER) can offer very high spatial 

resolution in the visible-near infrared region (15 meters in green, red and near infrared bands), 

short and long wave infrared (30 and 90 meters respectively). Therefore, ASTER reflectance 

and/or radiance can be used to explore the spectral signature of soil texture.   

We used an ASTER image of Sierra Los Locos Basin during the dry season to allow 

exposition of bare soil. ASTER overpassed the region on May 15, 2008, and the L1B registered 

radiance at the sensor was used for image processing. ASTER digital numbers (DN) of all bands 

(1-14) were converted to radiance by multiplying DN times a unit conversion coefficient, specific 

for each band.  The pixel values of radiance for all ASTER bands were extracted at the locations 

of the soil surface sampling points (Figure 3.1b).  ASTER’s radiance was grouped in four 

dominant textural classes found in Sierra Los Locos Basin: Sandy clay loam, sandy loam, loamy 

sand and sand. The mean and standard deviation of ASTER’s radiance was calculated for every 

soil class and plotted with their corresponding band number.  The scatter plot with band number 

in the x-axis and band radiance in the y-axis will show the response of ASTER bands to soil 

composition. The bands that show significant differences in radiance among textural classes were 

selected to allow image classification. More details about ASTER radiances processing and 

estimation of textual properties map are described in Appendix D. 

 Statistical information of the selected bands was obtained by cluster analysis and later 

was used within an unsupervised classification approach (Maximum Likelihood). Both Analyses 

were performed using the Spatial Analyst module (Arc-GIS 9.3) and the final soil texture map was 

identified later as “ASTER”. One of the maps used for the sensitivity analysis was generated by 

the National Institute of Statistics and Geography (INEGI, for acronym in Spanish). Finally, the 

last map used in the analysis was generated using a slope ranges criteria. This map was used on 

previous hydrological simulations in Sierra Los Locos Basin. For further details about this latter 

map the reader should reference Vivoni et al. (2010). 
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ID 
 

Bedrock Data 
 
 
( 

Mean soil 
depth [m] Soil texture data 

Simulation 
ID 

1 Uniform  1.5 Slope-based B 

2 Uniform  1.5 ASTER-based UB+A 

3 Uniform  1.5 INEGI UB+I 

4 Uniform  1.5 Uniform sandy-loam UB+Sal 

5 Uniform  1.5 Uniform sand UB+Sa 

6 Uniform  1.5 Uniform loamy sand UB+lSa 

7 Uniform  1.5 Uniform sandy clay loam UB+SaCl 

8 Gessler 0.80±0.46 Slope-based G+V 

9 Heimsath 0.83±0.50 Slope-based H+V 

10 Saulnier_slp 1.53±0.28 Slope-based S+V 

11 Saulnier_z 1.19±0.42 Slope-based Z+V 

12 Gessler  0.80±0.46 ASTER-based G+A 

13 Heimsath  0.83±0.50 ASTER-based H+A 

14 Saulnier_slp  1.53±0.28 ASTER-based S+A 

15 Saulnier_z  1.19±0.42 ASTER-based Z+A 

16 Gessler  0.80±0.46 INEGI G+I 

17 Heimsath  0.83±0.50 INEGI H+I 

18 Saulnier_slp  1.53±0.28 INEGI S+I 

19 Saulnier_z  1.19±0.42 INEGI Z+I 

20 Uniform  1.0±0.34 Slope-based U+V 

21 Uniform  1.0±0.34 ASTER-based U+A 

22 Uniform  1.0±0.34 INEGI U+I 

 
 
 
Table 3.1. Simulations Carried Out in Sierra Los Locos Basin. The Table Shows All Different 
Combinations of Distributed Soil Depth and Textural Classes. Furthermore, Two Uniform Soil 
Depths and 4 Uniform Textural Classes Were Evaluated. 
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3.2.5 Model Description and Forcing 

Numerical simulations of hydrological variables were carried out in Sierra Los Locos 

basin using a distributed hydrological model. The hydrological model tRIBS (TIN-based Real-time 

Integrated Basin Simulator) represents the basin by a Triangulated Irregular Network (TIN) 

consisting of elevation, stream and boundary nodes that captures the basin’s geometry and 

reduces the number of computing elements compared to the original DEM (Vivoni et al., 2004). 

The model uses Voronoi polygons (associated with TIN node similarly to Thiessen polygons) as a 

finite volume domain for water and energy calculations. The hydrological model tRIBS has been 

widely used in the North American Monsoon region and has demonstrated good performance in 

estimating water fluxes and states (Vivoni et al., 2010) ET partitioning  (Méndez-Barroso et al., 

2014), and surface temperature (Xiang et al., 2014).  

Sierra Los Locos Basin boundaries and TIN were delineated using an ASTER 30-meter 

resolution digital elevation model producing 49390 Voronoi polygons in the basin. Hydrological 

simulations were carried out in parallel mode (distribution of tasks over multiple processors at 

once) on Saguaro high-performance computer at ASU-Advance Computer Center, and 

encompassed the summer monsoon of the year 2004 (June 1st to September 30). For details of 

model parallel operation, the reader can refer Vivoni et al. (2011). The domain of the Sierra Los 

Locos Basin was divided in fifteen processors using reach-based partitioning. We used ground-

corrected meteorological grids from the North American Land Data Assimilation System, version 

2 (NLDAS-2) as the rainfall and meteorological forcing for model simulations. The spatial 

resolution of the meteorological forcing grids is 12-km (0.125°), and was converted from the 

standard GRIdded Binary format (grib) to ESRI ascii format, which is the required format for the 

hydrological model.  Figure 3.1b shows the spatial coverage of NLDAS pixels (gray dashed lines) 

in relation with basin domain. The NLDAS-2 meteorological variables used to force the model 

included: Atmospheric pressure (PA), relative humidity (RH), incoming short wave radiation (IS), 

air temperature (TA), wind speed (US), and precipitation (RA). Our NLDAS datasets were 

corrected from ground observations using the approach by Robles-Morúa et al. (2012) based on 
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the application of an averaged ratio of means multiplicative factor from Steiner et al. (1999).  Soils 

and land cover attributes followed the model parameterization of Xiang et al. (2014).  

 It is well know that catchment response to rainfall is non-linear phenomena and a 

possible cause in non-linearity in runoff production is the difference in response time between 

surface and subsurface flows. The model tRIBS is able to simulate four basic runoff mechanisms: 

Infiltration-excess runoff (Horton, 1933), saturation-excess runoff (Dunne and Black, 1970), 

groundwater-exfiltration (Hursh and Bratter, 1941) and perched return flow (Weyman, 1970). 

Total runoff is estimated as the sum of these four mechanisms. Saturation and infiltration excess 

runoff are quick surface response as soil properties allow water to move deeper. Conversely, 

perched return flow and groundwater exfiltration have slower response as subsurface flow delay 

the response to rainfall. Furthermore, runoff production from multiple mechanisms will vary with 

the rainfall and landscape factors that influence the coupling of surface and subsurface flows 

(Vivoni et al., 2007). Finally, it is important to reiterate that the meteorological forcing, seasonal 

evolution of vegetation parameters, land cover types and soil parameters did not change in all 

simulations cases. Only the spatial distribution of soil texture and soil thickness was changed. 

 

3.2.6 Model Initialization and Boundary Conditions 

The goal of this research is to evaluate the effect of variable soil thickness and texture on 

simulated water and energy fluxes. In order to do so, we performed a sensitivity analysis using a 

previous calibrated hydrological model simulation (Xiang et al., 2014). We evaluated different 

combinations of data sources and soil depth scenarios, for example: four variable soil depth maps 

(Saulnier-z, Saulnier-slp, Heimsath and Gessler) with three distributed soil texture maps (INEGI, 

slope-based and ASTER) resulting in twelve different simulations. Furthermore, we evaluated two 

uniform soil depths (1.5 and 1.0 meters) with three soil texture maps (6 simulations) and four 

uniform textural classes (sand, sandy-loam, sandy-clay-loam and loamy sand) at 1.5 meters soil 

depth (4 simulations). Therefore, we evaluated a total of twenty three different combinations of 

soil depth and texture. Table 3.1 shows the hydrological simulations evaluated in the sensitivity 

analysis. Model initialization included a period of dry conditions prior to the calculation of basin 
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fluxes. This dry period is known in modeling as “spin-up” process, which allowed depleting the 

water table and emulated dry conditions before the monsoon onset.  The spin up period occurred 

from May 1st to May 31st, 2004. For consistency, all model simulations experienced dry conditions 

at the beginning of the model simulation (water table and bedrock depths had the same value).  

 

3.3. Results and Discussion 

3.3.1   Distributed Soil Texture and Thickness 

Figure 3.2 shows the differences in the spatial distribution of soil thickness among the 

methods evaluated in this research. Figure 3.2a shows the estimated spatial distribution of soil 

depth by applying the method developed by Saulnier et al. (1997), and based on the assumption 

of a linear relation between elevation and soil depth (Saulnier-z). This method showed the second 

highest basin-averaged soil depth with a mean value of 1.19 (±0.42 m). Furthermore, it is evident 

that soil depth mimics the elevation patterns at Sierra Los Locos basin.  Shallower soils were 

found on the highest elevations (south-east and north-east regions of basin), while deepest soil 

thickness was found in the western region, near the basin.  Map accuracy in relation with soil 

thickness observations was about three times larger in absolute errors than the most accurate 

map (38.4 cm, see table 3.2 for reference).  

Therefore, the assumption of a linear relation between soil depth and elevation is not 

valid in this semiarid basin, which it is characterized by complex topography. Secondly, figure 

3.2b shows the spatial distribution of the estimated soil depth by applying the Saulnier-slope 

method. This method showed the deepest basin-averaged and the lowest spatial variability with a 

mean value of 1.53 (±0.28 m). Soil depth distribution is less smooth than the Saulnier-z method 

resulting in sudden changes in soil depth as observed in the central and western portion of the 

Sierra Los Locos Basin. Shallower soil thickness was found on steepest surfaces (central, 

northeast and east of Sierra Los Locos Basin), while deep soils were found in the west region, 

near the basin outlet. This method showed the least reliable prediction of soil depth with a mean 

absolute error of 92.4 centimeters (Table 3.2).   
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Figure 3.2. Comparison in Soil Depth Estimated With Different Methods. (a) The Saulnier-Z 
(z=Elevation, Saulnier Et Al., 1995) (b) Saulnier-Slope (Saulnier et al., 1995). (c) Gessler Method 
(Gessler et al., 1997) and (d) Heimsath Approach (Heimsath et al., 2003). 
 

 

As indicated in the method developed by Gessler et al., 1995, a multivariable linear correlation 

between observed soil depths, wetness topographic index and terrain curvature was conducted. It 

was found that these two later variables were highly correlated (p < 0.01, R2=0.77) to soil depth 

as expressed in the following regression equation: 

 

𝑆𝑜𝑖𝑙  𝑑𝑒𝑝𝑡ℎ   𝑐𝑚 = 37.12 + 3.31𝑇𝑊𝐼 − 242.19𝑐𝑢𝑟𝑣 + 5.98𝑇𝑊𝐼𝑐𝑢𝑟𝑣 ;   (3.8) 

 

where TWI is wetness topographic index and curv is terrain curvature expressed as 1/100 m, and 

calculated from 30-m digital elevation model.  
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Soil texture map Correct pixels (%) 

ASTER-based 68 

Slope-based 56 

INEGI 53 

Soil depth map Absolute error (cm) 

Gessler 11.6 

Heimsath 15.5 

Saulnier-z 38.4 

Saulnier-slope 92.4 

 

Table 3.2. Accuracy of Estimated Soil Texture and Thickness Maps. Pixel Value of Soil Depth 
and Texture at the Sampling Sites Were Compared to Ground Observations. 
 

The Gessler method (figure 3.2c) obtained the shallowest basin-averaged soil depth with 

a value of 0.80(±0.46 m). Furthermore, this method showed the most reliable performance in 

estimated soil depth with an absolute error of 11.6 centimeters. Finally, we performed a linear 

relation between terrain curvature and observed soil depth as suggested in the method of 

Heimsath et al., 1999. We found that curvature had a significant and close relation with soil depth 

(p < 0.01, R2=0.71), and it can be used as a proxy for soil depth as expressed in the following 

regression equation: 

 

𝑆𝑜𝑖𝑙  𝑑𝑒𝑝𝑡ℎ   𝑐𝑚 =   −198.82𝑐𝑢𝑟𝑣 + 79.9 ;       (3.9) 

where curv is terrain curvature calculated from 30-m digital elevation model. Both methods of 

Heimsath and Gessler showed similar spatial representation of soil depth in Sierra Los Locos 

Basin. Nevertheless, the Gessler method has a slightly clearer representation of the stream 

network and floodplains, however; basin average soil depth is quite similar between these two 

methods. The Heimsath method obtained the second shallowest basin averaged soil depth with a 

mean value of 0.83 (±0.50 m).   
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Figure 3.3. Comparison of Different Soil Texture Products. (a) Soil Texture Distribution From 
INEGI (Mexican Institute Of Geography and Statistics). (b) Slope-Derived Soil Texture Map from 
Vivoni et al., 2010 And (c) ASTER (Advance Spaceborne Thermal Emission and Reflection) 
Based Map. 
 

Accurate spatial representation of basin or catchment properties such as soil texture, 

which it is the major factor influencing hydrological properties, is still a challenge in semiarid 

areas due to the lack of observations and the coarse information of the midsize basins or small 

catchments.  For instance, INEGI’s soil map (figure 3.3a) illustrates three soil textural classes with 

a clear pattern moving from coarser textural soil in the east (sandy loam) to finer soil texture near 

the basin outlet in the west (loamy sand) including some coarser material in the main floodplain 

(sand). However, the coarser resolution of INEGI map does not capture the variability in soil 

texture along the stream network and local topography.  One attempt to improve the spatial 

distribution of soil texture in Sierra los Locos was carried out by Vivoni et al., 2010. This map 

relied on the assumption that soil texture is closely related to terrain attributes such as slope 

under the assumption that high gradient have shallow soils.   
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In this research, the approach of Apan et al., 2002 and Liao et al., 2014 was used to infer 

spatial patterns of soil texture using remote sensing data. This approach accounted for the 

emission, absorption or reflectance of electromagnetic energy at several wavelengths, thus is 

related to target composition or structure.  We found that ASTER’s visible and thermal bands 

showed large differences in radiance (emission) among the soil textural classes found in Sierra 

Los Locos Basin. For example: sandy-loam and sand had larger differences in radiance on bands 

1 (green), 2 (red) and 3 (near infrared), whereas thermal bands 12 and 13 helped to distinguish 

between loamy sand and sand. Such bands were used as input for cluster analysis and for 

maximum likehood classification with four classes. Figure 3.3c shows the spatial distribution of 

soil textural types generated with ASTER radiance. Similarly to Vivoni et al., 2010 map, we found 

that the upper part of the basin was dominated by sandy loam and/or loamy sand. However larger 

discrepancies among the maps were found in the lower part of the basin (west) with sand 

dominating the ASTER-based textural distribution whereas INEGI was dominated by sandy loam 

with sand in the flood plains. In the map of Vivoni et al., 2010 there is not a particular soil type 

dominating the lower part of the basin. The results validated that ASTER had the highest 

accuracy in comparison with ground samples (68 % of correct pixels, see table 7), whereas 

Vivoni and INEGI had 56% and 53 % of correct pixels respectively. 

 

3.3.2   Basin-Scale Water Balance in Sierra Los Locos 

Figure 3.4 shows the basin-scale components of the water balance at the Sierra Los 

Locos Basin. Benchmark simulation was already calibrated using ground observations of soil 

moisture and MODIS land surface, according to the methods of Xiang et al. (2014) and Vivoni et 

al. (2010).  Figure 3.4a shows the temporal evolution of surface soil moisture (5 cm. depth) and 

root zone soil moisture (1 m. depth). The model was able to represent the transition from extreme 

dry conditions at the beginning of the monsoon season to relative humid conditions during the 

monsoon onset. Soil moisture responded to rainfall pulses in June and mid-July as expected. 

Surface soil moisture during this period increased significantly due to rainfall pulses with large 

inter-storm periods.  
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Parameter Variable 
(unit) 

Rock Sand Loamy 
sand 

Sandy 
loam 

Sandy 
clay loam 

Saturated hydraulic 
conductivity1 

Ks 
[mm/h] 9.0 25 36.3 25.0 4.7 

Saturated soil moisture 
content1 θs [-] 25 1662 598 241 98 

Residual soil moisture 
content2 θr[-] 0.009 0.010 0.005 0.015 0.058 

Pore size distribution 
index3 

m [-] 0.17 0.60 0.45 1.50 0.32 

Air entry bubbling 
pressure3 

ψb [mm] 0 0 0 0 0 

Conductivity decay 
parameter4 

f [mm-1] 0.01 0.01 0.025 0.001 0.001 

Conductivity anisotropy 
ratio4 As [-] 600 600 600 600 600 

Soil porosity1 N [-] 0.385 0.437 0.437 0.453 0.398 
Soil heat conductivity-
dry5 ks 

[J/msK] 

1.2 1.2 1.2 1.2 1.2 

Soil heat conductivity-
wet5 

1.3 1.3 1.3 1.3 1.3 

Soil heat capacity-dry5 Cs 
[J/m3K] 

6x105 6x105 6x105 6x105 6x105 
Soil heat capacity-wet5 1.3x106 1.3x106 1.3x106 1.3x106 1.3x106 

 

 
Table 3.3. Model Parameters for Soil Types in Sierra Los Locos Basin. Source of Model 
Parameters are as Follows: (1) Rawls et al. [1983] and Schaap et al [2003] With Modifications 
During Calibration. (2) Minimum Observed Soil Moisture. (3) Vivoni et al. [2010]. (4) Model 
Calibration. (5) Ivanov et al. [2008] And Vivoni et al. [2010] With Modifications During Calibration. 
 

Furthermore, soil moisture rapidly decreases leading to pronounced recession limbs 

caused by sudden drying periods. In contrast, soil moisture decays slowly during August and 

September as a result of a continuous rainfall that led to higher soil moisture. In general, the 

model represents well the soil-drying period during the late-monsoon (Mid-August through early 

September) season in which vegetation is fully developed (high values of NDVI, figure 3.4a).  
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Figure 3.4.  Basin-Average Water Balance During the Monsoon Season 2004 (July to 
September). (a) Basin Average Estimate Soil Moisture at Two Different Depths (Five Centimeters 
and One Meter) in Relation With Remotely Sensed Surface Soil Moisture (2D-STAR) and Daily 
Observations Along a Transect (Grey Dots). (b) Basin-Average ET. (c) Basin-Averaged Depth to 
Groundwater and (d) Basin Average Discharge at the Catchment Outlet. The Dashed Lines 
Presents the Time Series of Vegetation Greening Expressed as Basin-Averaged Normalized 
Vegetation Index (NDVI) from MODIS. 
 

This later statement can be demonstrated by the comparison between basin- average 

estimated surface soil moisture and basin-average readings of shallow soil moisture retrieved 

from the L-band radiometer of the 2D Synthetic Aperture Radar (2DSTAR) that overflew the San 

Miguel Basin in 2004 (Ryu et al., 2010).  In particular, there is a moderate correlation between 

estimated and observed soil moisture during the relatively wet period in mid-August (R2 = 0.54).  

The soil moisture observations from 2DSTAR tend to have drier soil moisture in late August and 

early September leading to larger discrepancies. Evapotranspiration (ET) also responded rapidly 
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to rainfall, specifically before the monsoon onset. Similarly to soil moisture, ET responded quickly 

to rainfall pulses in late-June early July with a sudden increase in ET fluxes (largest ET fluxes 

during the season) but also experienced a fast recession which is a typical behavior of water 

fluxes at the beginning of the monsoon season.  Figure 3.4b also shows how vegetation exerts a 

strong control in evapotranspiration fluxes in this site.  As observed, there is a transition in ET 

from spike-like fluxes in late June to steady fluxes from mid-July to the rest of the monsoon 

season.  In addition, there is a small peak in ET fluxes in mid-July that coincides with the rising 

limb in the NDVI curve. After NDVI reached its maximum, there was an in-phase relation between 

NDVI and ET; for example, the clear decrease in NDVI during mid-July to mid-August coincides 

with the reduction in ET fluxes during the same period and later entering to quasi-stable 

conditions in September.   

As shown in figure 3.4c, basin-averaged depth to groundwater slightly increased at the 

end of the monsoon season with a small ten centimeters increase in the groundwater table. 

Despite the sporadic rainfall events in late June and early July, the groundwater level remained 

static during the first month of the period of simulation. Notwithstanding, there was a steady 

increase in groundwater level during July (Δh =75 mm) as a result of continuous rainfall events 

that occurred within this month.  There was a small intra seasonal drought period in August that 

led to the return of stable groundwater levels. There was a brief period of drought (consecutive 

days without rain) within the monsoon season and had a considerable impact on surface water 

fluxes and vegetation greening that is clearly confirmed with a sudden drop in NDVI and ET 

values in mid-August.  Again, groundwater level decreased in September as a result of increased 

precipitation, which led to a final groundwater depth of 1375 mm.  Similarly to groundwater levels, 

surface discharge at the basin outlet remained without base flow during the first month of the 

study period although there were some rainfall events. 
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Figure 3.5.  Comparison of Hydrological States Between the Benchmark Simulation (Solid Bold 
Black Line) With a Set of Alternative Model Simulations. The Simulations are: 
Benchmark+ASTER Soil Depth (UB+A), Benchmark+INEGI Soil Depth (UB+I), Gessler Soil 
Depth+Vivoni Soil Texture (G+V), Heimsath Soil Depth With Vivoni Soil Texture (H+V), Saulnier-
Slp Soil Depth+ Vivoni Soil Texture (S+V) and  Saulnier-Z Soil Depth+ Vivoni Soil Texture (Z+V).  
 

Surface runoff was observed during mid-July when precipitation events exceeded an 

intensity of 10 mm/h. Antecedent soil moisture conditions in early August was a product of 

continuous precipitation events, which lead to peak discharge within this month followed by a fast 

recession and lack of basin base flow in late August-early September (which it coincides with 

intra-seasonal drought). Low surface discharge was observed in September with the arrival of 

slight rainfall events.   

 

3.3.3 Differences in Water Fluxes and States among Simulations 

Seventeen out of a total number of twenty-two simulations are shown in this section. The 

simulations with the most contrasting results were included in this analysis. Two cases with 

uniform soil texture (UB+S and UB+lSa) and three with shallower-uniform soil thickness 

(U+V,U+A and U+I) were excluded due to similarity to other simulations. 
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Figure 3.5 shows the differences in water fluxes and states among all hydrological 

simulations. Figure 3.5a shows the basin-averaged (averaged in space within the boundaries of 

Sierra Los Locos basin) evapotranspiration accumulated during the monsoon season. Figure 3.5b 

shows the cumulative basin-averaged surface flow expressed as the sum of infiltration and 

saturation excess runoff flow. Figure 3.5c shows the cumulative subsurface flow, expressed as 

the sum of perched return flow and groundwater exfiltration flow. Figure 3.5d shows the 

cumulative infiltrated surface soil moisture (ignoring soil moisture losses) whereas Figure 3.5e 

explores the temporal evolution of cumulative infiltrated root zone soil moisture. 

It is evident that subsurface flow, expressed in this research as the combination of 

perched return and groundwater exfiltration flows, which dominated the partition of the basin 

runoff throughout the simulation, but it was remarkably higher on those simulations that had 

abrupt changes in bedrock depth. For instance, soil thickness estimated by the Heimsath and 

Gessler methods, regardless the soil texture source had an impact in the generation of 

groundwater flow with cumulative seasonal values ranging from 40 to 148 mm. In all simulations, 

cumulative basin groundwater flows were similar at the beginning of the monsoon season until 

deviations occurred in August where the impact of groundwater to run off partition was evident. 

Furthermore, these methods showed a reasonable effect in surface flow (infiltration excess + 

saturation excess).  Once again, soil thickness calculated by Heimsath and Gessler had a 

significant effect in the seasonal cumulative surface flow. Conversely, the hydrological 

simulations that used Saulnier-z soil thickness with INEGI soil data (Z+I) and the uniform 1.5 soil 

thickness with INEGI soil data (UB+I) were similar to the Benchmark case (solid bold black line).  

A more detailed evaluation of the performance of hydrological simulations in comparison 

with the model benchmark will be mentioned later. On the other hand, basin averaged-ET was 

affected more directly by soil texture than soil thickness. Hydrological simulations assuming 

uniform soil texture, established the upper and lower boundaries in seasonal cumulative ET 

(figure 17a) and the rest of the simulation fluctuated between these two limits. Uniform sandy clay 

loam texture on Sierra Los Locos basin set up the upper limit in seasonal cumulative ET fluxes 

while uniform sandy loam texture showed the lower ET fluxes.  It is well known that soil texture 
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highly influences water retention and infiltration in soils; as a matter of fact, previous studies in 

arid and semiarid areas have demonstrated that clay-rich soils have more water availability in the 

surface, which may enhance evaporation from the soil, and transpiration for shallow rooted plants 

(Noy-Meir, 1973; Sala et al., 1988; Rodriguez-Iturbe et al., 1999). Conversely, sandy-rich soils 

can rapidly infiltrate water to deeper soil layers and could not be available for soil evaporation or 

transpiration of plants (English et al., 2005). In a like manner, estimated soil thickness with high 

spatial variability increased the rates of cumulative seasonal evapotranspiration. For instance, 

estimated soil thickness by the Heimsath and Gessler method obtained higher seasonal ET 

fluxes than the benchmark simulation. However, the differences between Heimsath-Gessler 

simulations and the benchmark were higher when the soil texture data of Vivoni et al. (2010) was 

used and decreased with the other soil texture sources. In contrast, the hydrological simulations 

similar to the model benchmark included Saulnier-z method with ASTER soil texture (Z+A), 

Saulnier-z with Vivoni soil texture (Z+V) and the Saulnier-slope soil thickness with ASTER soil 

texture (S+A).  Later, these simulations did not show extreme soil thickness gradients and its 

spatial variability was much smoother compared to the Heimsath and Gessler methods.   

Seasonal cumulative surface and root zone soil moisture had a similar temporal 

distribution compared to evapotranspiration.  Likewise, soil texture established the lower and 

upper limits of the basin-average soil moisture with uniform sandy clay loam simulation resulted in 

the highest soil moisture values, whereas uniform sandy loam texture yield the lowest soil 

moisture values. This suggested that soil moisture exerted a strong control in basin-average 

evapotranspiration. High variability soil thickness tended to accumulate more soil moisture than 

smoother soil thickness variability. Similar modeling studies have found that spatially-variable soil 

depth and bedrock topography play an important role in subsurface hydrology, for example; Lanni 

et al. (2013) have found that soil bedrock interface, in particular bedrock depressions, played a 

key role in the sustaining of wetter soil conditions acting as an impedance for downslope drainage 

and developing a temporary perched water table. If basin connectivity exists, then subsurface 

flow can increase and dominate runoff flow (Tromp-Van Meerveld and McDonnell, 2006). 

Therefore the spatial and temporal variations of the spilling and filling of bedrock gaps are 
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essential to the soil-bedrock interface. Lately, the effect of gaps in subsurface have received 

more attention in hillslope hydrology (Weiler et al., 2006).  

 

3.3.4 Effect of Spatial Distribution of Soil Thickness on Water Fluxes and States: Constant 

Mean Soil Thickness but Different Spatial Distribution 

In this section, we have evaluated the effect of having a mean soil thickness of 1.5 

meters in all methods on water fluxes. In this set of hydrological simulations, we attempted to 

eliminate the possible effect of shallower or deeper soil moisture in the increase of surface soil 

moisture leading to high fluxes of ET. All soil thickness methods (Heimsath, Salnier-z, Salnier-

slope and Gessler) had the same mean soil thickness (1.5 meters) but the spatial distribution id 

completely different among methods (figure 3.2). The depth value of 1.5 meters was selected in 

order to have a similar depth to the one used in the benchmark simulation. It is important to 

remark we kept the meteorological forcing, soil parameters and vegetation parameters 

unchanged for all simulations; only the spatial distribution of soil thickness was changed. Similarly 

to the other cases, the total hours of simulation was 3672 hours during the monsoon season 2004 

(June 1 to September 30).  

In order to evaluate the statistical difference with the model benchmark, we performed a 

t-test to paired datasets, in this case model benchmark to any other soil thickness method. Table 

3.4 shows the results of the t-test using the value of the probability (p). This latter variable is the 

probability of observing a test statistic as extreme as, or more extreme than, the observed value 

under the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.  

We found statistical significance in basin evapotranspiration (ET) in all methods with the 

exception of Saulnier_slp. Figure 3.5a confirms this statement because the cumulative seasonal 

ET obtained in the Saulnier_slope method closely tracks the benchmark simulation.  
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Soil 
thickness 
method 

ET SM SM root zone Runoff 
p p < 0.01 p p < 0.01 p p < 0.01 p p < 0.01 

Gessler 7.07 e-7 **** 0.19 - <7.07 e-23 **** <7.07 e-23 **** 

Heimsath 2.59 e-7 **** 0.11 - <7.07 e-23 **** <7.07 e-23 **** 

Saulnier_slope 0.41 - 0.08 - 0.0019 **** <7.07 e-23 **** 

Saulnier_z 0.01 ** 0.66 - 7.07 e-23 **** 0.254 - 

 

Table 3.4. Results of T-Test Statistical Analysis for the Hydrological Simulations With Variation in 
Soil Thickness. In All Cases, Hydrological Simulations Were Compared to Benchmark 
Simulations. The P<0.01 Column Indicates the Statistical Significance, For Example; Highly 
Statistically Significant (****), Statistically Significant (**) and No Statistically Significant (-).  

 

 

Curiously, none of the evaluated soil thickness methods showed statistical difference with 

the model benchmark when soil moisture is used as variable of evaluation. Conversely, root zone 

soil moisture was highly significant in all cases suggesting that subsurface topography has a role 

in the overestimation of total soil moisture in one-meter profile. Finally, Saulnier_z was not 

statistical different from the model benchmark on runoff. This statement is confirmed with figure 

3.2b and c where surface and subsurface flow were very similar to model benchmark. However 

the rest of methods were highly significant. In summary, although we had similar mean soil 

thickness in Sierra Los Locos Basin, its spatial distribution highly affects the basin-averaged 

values of hydrological variables such as evapotranspiration, soil moisture and runoff.  

 

3.3.5 Effect of Soil Thickness and Soil Texture in Basin-Averaged Water Fluxes and States 

Soil thickness and soil texture was evaluated separately to evaluate the impact of these 

variables on the magnitude of basin-averaged evapotranspiration (ET) and soil moisture (SM). In 

order to isolate separately the effect of soil thickness and soil texture, we have separated two 

subsets of hydrological simulations. In both subsets, soil parameters, meteorological forcing and 

vegetation seasonality remained without changes. 
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Figure 3.6. Effect of Soil Texture and Soil Thickness in Basin-Averaged Hydrological Variables. 
The Metric Used to Evaluate Model Performance Was Bias Expressed as Percentage of 
Under/Over Estimation to the Model Benchmark. (a) And (c) Show the Impact of Four Different 
Soil Thickness Distributions on Basin-Averaged Evapotranspiration (ET) and Surface Soil 
Moisture (SM) Respectively. (b) And (d) Illustrate the Effect of Six Different Soil Texture 
Depictions on Basin-Averaged ET and SM. 
 
 

In one subset, soil thickness (Heimsath, Gessler, Saulnier-z and Saulnier-slp) was 

changed while in the other one soil texture was changed (ASTER, INEGI and four uniform soil 

texture cases). The results were compared to the benchmark simulation and the statistical metric 

used to evaluate simulation performance was bias (expressed as percentage of difference with 

benchmark). Figure 3.6 shows the rate of change in basin-averaged ET and soil moisture by 

running the benchmark simulation with different soil thickness data or soil texture. As observed, 

both soil moisture and ET were consistently overestimated regardless of the soil thickness data. 

Evapotranspiration was greatly affected by the Heimsath (H+V) and Gessler (G+V) methods. 

Both approaches overestimated seasonal cumulative evapotranspiration close to 30%. 
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Conversely, Saulnier-elevation (Z+V) overestimated seasonal ET in about 10% while Saulnier-

slope (S+V) increased ET in about 3%.  Unlike evapotranspiration, soil moisture did not follow the 

same magnitude of overestimation by soil thickness method, for example; the Saulnier-slope 

(S+V) method overestimated up to 20 % the seasonal soil moisture followed by Saulnier-elevation 

(Z+V) with in an overestimation of 14 % and both Heimsath and Gessler overestimated soil 

moisture close to 7%. It is clear that changing soil thickness produce wetter basins in comparison 

with benchmark simulation. However, there were one case (S+V) where ET was very close to 

model benchmark (~3% difference) but soil moisture was largely overestimated (20%). We can 

infer that although soil moisture is higher that model benchmark, this soil moisture is not 

accessible either to plants that can enhance evapotranspiration or low vegetation cover is 

present. In section 3.5 there will be a detailed description of how soil moisture is distributed in the 

Sierra Los Locos Basin 

In contrast to soil thickness, soil texture showed larger differences in basin-averaged 

evapotranspiration and soil moisture in comparison with model benchmark.  Figure 3.6b shows 

the effect of the spatial distribution of soil texture on basin evapotranspiration. As previously 

mentioned, there was a larger range of values in flux bias. For example uniform Sandy-loam, 

uniform sand and the INEGI soil texture map tended to underestimate ET in comparison with 

model benchmark. INEGI soil texture and uniform sandy loam underestimated ET in 10 %, while 

uniform sand overestimated only 5%. Conversely, seasonal ET was overestimated 10% when 

using ASTER-soil texture (UB+A); whereas uniform loamy sand over Sierra Los Locos Basin 

overestimated basin ET around 30% higher than benchmark simulation.  Not surprisingly, uniform 

sandy-clay-loam overestimated the basin ET for more than 100%; and also, soil moisture in more 

than 35%. This latter soil texture showed the largest differences in basin averaged ET. One may 

infer that clay-rich soils have lower water infiltration than sandy-rich soils after rainfall pulses, 

allowing water to be available at the surface for plant transpiration or soil evaporation.  
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Figure 3.7. Comparison of Four Different Spatial Representations of Time Integrated Surface Soil 
Moisture During the Monsoon Season 2004 (June Through September). The Model Scenarios 
Used for Comparison Were: Model Benchmark, Gessler Soil Thickness + Vivoni Soil Texture 
(G+V), Saulnier-Z Soil Thickness + Vivoni Soil Texture (Z+V), and Model Benchmark + ASTER 
Soil Texture (UB+A). 
 
 

 

However, when vegetation is present, the surface loses water more quickly than bare soil 

because transpiration of plants (Huxman et al., 2004). Our results express the capacity of water 

retention related with soil texture and other studies have found similar patterns in soil moisture 

and vegetation with fine and coarse texture soils (Sala et al., 1988; Huxman  et al., 2004).  

Finally, In the case of basin averaged soil moisture, uniform sandy loam, uniform sand, INEGI soil 

data and ASTER-based soil map showed an underestimation of 35, 20, 30 and 7 % with respect 

to the model benchmark respectively. 
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Figure 3.8. Comparison of Four Different Spatial Representations of Time Integrated Root Zone 
Soil Moisture During the Monsoon Season 2004 (June Through September). The Model 
Scenarios Used for Comparison Were: Model Benchmark, Gessler Soil Thickness + Vivoni Soil 
Texture (G+V), Saulnier-Z Soil Thickness + Vivoni Soil Texture (Z+V), and Model Benchmark + 
ASTER Soil Texture (UB+A). 
 
 
 
 
3.3.6. Spatial Patterns of Surface Soil moisture, Root Zone Soil Moisture and 

Evapotranspiration in Sierra Los Locos Basin 

In this section we have evaluated the role of soil thickness and texture on spatial patterns 

of soil moisture and ET at basin scale. Three different soil thickness distributions and two soil 

texture maps have been compared with model benchmark to evaluate changes in hydrological 

patterns at basin scale. The three maps of soil thickness evaluated in this section are 

characterized by contrasting distribution in soil thickness, for example; Gessler map is a shallow 

basin with a mean soil thickness of 80 cm with very complex subsurface topography. Secondly, 

Saulnier-z map has a deeper soil thickness with a smooth gradient in change of soil thickness 

that goes from shallower soil thickness in higher elevations and deeper soil thickness at lower 

elevation. Finally, Benchmark map has a uniform soil thickness of 1.5 meters. The two maps of 
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soil texture (ASTER and slope-based) have contrasting soil texture distributions, therefore, 

selected to evaluate their role in the spatial distribution of water fluxes. 

As observed in figure 3.7, model benchmark, Gessler and Saulnier-z cases showed 

similar spatial patterns in surface soil moisture. In fact, these model scenarios had a high spatial 

correlation coefficient with model Benchmark (R2 = 0.88). Wetter soils were found in the main 

floodplain located in the western portion of the basin as well as some clusters in the gentle slopes 

located in the northern and eastern zones of the basin.  The highest values in soil moisture 

(ranging from 0.260 to 0.90) found in model benchmark, Gessler and Saulnier matched with the 

spatial distribution of sandy clay loam (see figure 3.3b). This information suggested that the high 

capacity of water retention by clay-rich soils exerted a high control in wetness persistence. 

Furthermore, moderate soil moisture values (ranging from 0.0318 to 0.126) matches the spatial 

distribution of sandy loam textural soil type that suggest a moderate water retention capacity that 

affects the distribution of soil moisture. Finally, these three cases showed the lowest soil moisture 

values in loamy sand soils. Albeit the spatial patterns in soil moisture were similar in model 

benchmark, Gessler and Saulnier-z, the range in soil moisture values differs greatly among 

simulations. For example, Gessler simulation obtained the highest surface soil moisture values 

with those close to saturation soil moisture.  Again this simulation reflects the role of sinks in 

subsurface topography in enhancing soil moisture values.  

Conversely, the ASTER-soil texture map highly affected the spatial distribution of soil 

moisture and differs from the patterns observed in Vivoni et al. (2010) soil texture map. The 

almost non-existent clay rich-soils on this map reflected the lack of large spatial coverage of 

extreme high values in soil moisture. However, there was a clear gradient in soil moisture values 

that matches with the spatial distribution of soil type; for example, the lowest soil moisture values 

(ranging from 0.0181 to 0.0184) coincided with the distribution of loamy sand soils (figure 3.3c). 

Similarly, moderate soil moisture values (ranging from 0.0192 to 0.0318) matched with the spatial 

distribution of sandy soils; whereas the highest values (0.0318 to 0.126) were located on sandy 

loam soils.  
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In contrast, root zone soil moisture was affected in lesser degree by spatial distribution of 

soil texture but in certain cases was largely affected by soil thickness distribution.  For instance, 

model benchmark showed slight differences in root zone soil moisture. There was a clear 

gradient in root zone soil moisture values with drier soil moisture values in the northern part of 

Sierra Los Locos basin while the south part is moderately wetter. In the same way that surface 

soil moisture, the west part of the basin observed the highest values of soil moisture. Likewise, 

floodplains and the spatial distribution of clay-rich soils (sandy clay loam) exerted a strong control 

on the spatial distribution of root zone soil moisture.  The moderately increase in root zone soil 

moisture in the southern part of the basin could have been attributed to topographic controls such 

orographic effect on the distribution of rainfall. The southern region of Sierra Los Locos basin had 

the highest elevation with a pronounced relief. It is well known that precipitation-vegetation in the 

region was closely linked to the elevation distribution (Méndez-Barroso et al., 2009; Forzieri, et 

al., 2011).  

Conversely, Sierra Los Locos basin showed wetter conditions when spatially variable soil 

thickness was used. For instance, there were extreme values of soil moisture (ranging from 0.505 

to 0,728) when the Gessler soil thickness was used during hydrological simulations. These high 

values zones are represented as localized clusters (sinks) of high soil moisture values and are 

found in regions of high gradient in soil depth (soil pits upstream followed by shallow soil depth 

downstream). The dominant mechanism that increased the root zone soil depth was the filling 

and spilling of such subsurface bedrock pits that produced perched groundwater flux and 

increased soil moisture values when such soil pits were followed by shallow soil thickness. In fact, 

this phenomenon is widely accepted as the main mechanism of moisture dynamics in hillslope 

Hydrology.  More authors found similar results when spatially variable soil depth was used to 

estimate hydrologic responses in virtual experiments (Weiler et al., 2004; Spence, 2010; Lanni et 

al., 2013).  



  77 

 

 
 
Figure 3.9. Comparison of Four Different Spatial Representations of Time Integrated 
Evapotranspiration During The Monsoon Season 2004 (June Through September). The Model 
Scenarios Used for Comparison Were: Model Benchmark, Gessler Soil Thickness + Vivoni Soil 
Texture (G+V), Saulnier-Z Soil Thickness + Vivoni Soil Texture (Z+V), And Model Benchmark + 
ASTER Soil Texture (UB+A). 
 

 

When the Saulnier-z approach was used in hydrological modeling, a less complex and 

smoothly distribution was observed in simulated root zone soil moisture. High root zone soil 

moisture matched the distribution of shallow soil thickness while the rest of the basin showed a 

similar distribution to the model benchmark. Finally, estimates in distribution of root zone soil 

moisture with ASTER-soil texture map did not show large differences in spatial distribution of soil 

moisture compared to model benchmark. However, main discrepancies between ASTER-soil 

texture and model benchmark were found in the floodplain (west region of the basin). The high 

soil moisture values did not extend as wide as model benchmark. Unlike the model benchmark, 

the ASTER-soil texture map did not illustrate a large spatial extension of clay-rich soils in the 

flood plain that led to a low water retention capacity.  
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Unlike soil moisture, evapotranspiration highly depends on the spatial distribution of 

vegetation cover and the root zone soil moisture, as well as, but in a lesser degree; to the spatial 

distribution of soil texture. Although the magnitude of evapotranspiration varies among model 

scenarios, their highest seasonal integrated evapotranspiration values were found in mountain 

forests (for spatial distribution of ecosystems reader should reference Xiang et al., 2014).  Model 

benchmark and Saulnier-z soil thickness experienced similar spatial distribution of seasonal ET 

with a great exception of the mountains regions. Saulnier-z showed high values in ET ranging 

from 378 to 473 mm with clusters reaching up to more than 600 mm. Such high values in ET 

could be attributed to the high availability of root zone soil moisture to the vegetation found at 

high elevations. Estimated ET with Gessler soil thickness was closely related to the spatial 

distribution of the root zone soil moisture. In general, ET was uniformly high in Sierra Los Locos 

using Gessler’s soil thickness with lower values found in sandy soils. Sand-rich soils facilitated 

water infiltration leading water to deeper soil layers, which are not easily accessible to surface 

rooted plants, hence decreasing ET rates. 

 

3.3.7 Impact of Vegetation Greening in the Spatial Variability of Basin ET and Soil Moisture 

This section explores how the spatial variability of evapotranspiration and soil moisture 

behaved within the Sierra Los Locos during the evolution of the monsoon season 2004 (June to 

September). To evaluate this, the mean and standard deviation within the Sierra Los Locos basin 

was estimated each week in order to find out the evolution of the variability during the monsoon 

season. Figure 3.9 shows the evolution in the spatial variability of estimated soil moisture within 

Sierra Los Locos basin by applying five representative model simulations. The time series of 

basin-averaged Normalized Difference Vegetation Index (NDVI) was included in the figure to 

illustrate the conditions of vegetation growth in the basin.  As observed, basin variability in soil 

moisture was in phase with the curve of vegetation growth. During dry conditions at the end of 

June through early July variability was low. Nevertheless, the largest variability consistently 

reached during the transition from dry to wet conditions, before vegetation achieved its maximum 

activity. 
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Figure 3.10 Comparison of Four Different Spatial Representations of Time Integrated 
Evapotranspiration During The Monsoon Season 2004 (June Through September). The Model 
Scenarios Used For Comparison Were: Model Benchmark, Gessler Soil Thickness + Vivoni Soil 
Texture (G+V), Saulnier-Z Soil Thickness + Vivoni Soil Texture (Z+V), and Model Benchmark + 
ASTER Soil Texture (UB+A). 
 

 

Once basin vegetation was at its maximum point of seasonal greenness, soil moisture 

variability began to decrease or remained stable until the end of the monsoon season (late 

September).  However, there were differences in the magnitude and rate of change in the spatial 

variability of soil moisture. For instance, model benchmark, Saulnier-slope and Heimsath soil 

thickness (using Vivoni soil texture) showed similar and stable spatial variability within the Sierra 

Los Locos Basin during dry conditions as well as the transition period (σ = 0.05 and 0.13 

respectively). 
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Figure 3.11. Temporal Evolution of Standard Deviation of Soil Moisture Under Five Model 
Scenarios. Dashed Black Line Shows the Time Series of Vegetation Greenness (NDVI) During 
the Monsoon Season 2004. The Model Scenarios Evaluated Were: Benchmark (Black Solid 
Line), Model Benchmark + ASTER Soil Texture (Grey Line), Heimsath Soil Thickness + Vivoni 
Soil Texture (Open Dots), Uniform Sandy Clay Loam (Squares) and Saulnier-Slope Soil 
Thickness + Vivoni Soil Texture (Triangles). 
 

 

When vegetation is well established, the spatial variability of estimates soil moisture 

among these later simulations started to deviate in different ways. Heimsath hydrological 

simulations continued to be stable after reaching the maximum point of variability in late July with 

a slight decrease in mid-August. Conversely, spatial variability of Saulnier –slope and model 

benchmark decreased with larger discrepancies between these two model simulations starting in 

late August to the end of the monsoon season.  In the case of the ASTER-soil texture simulation, 

the spatial variability of soil moisture was lower than the model benchmark along with the 

Heimsath and Saulnier- slope simulations (σ = 0.012 at the beginning of the monsoon season 

and maximum of 0.12 in early August).  Uniform sandy clay-loam showed the lowest values of 



  81 

standard deviation and smallest temporal variability. Due to the fact that soil type did not vary in 

the basin, spatial variation was small. These minimal changes could be attributed to basin 

topography or patterns in vegetation. Similarly to the other cases, variability increases during the 

shift from dry to wet conditions or during the vegetation green up. Once vegetation vigor (high 

NDVI starting at mid-July) is high, variability stabilized, suggesting small spatial variability within 

the basin. 

Evapotranspiration showed a similar temporal behavior in spatial variability within the 

Sierra Los Locos Basin. In general, all simulation cases showed the highest spatial variability 

during vegetation green up. Spatial variability remained stable during the dry period (June to early 

July). During vegetation green up, there was significant spatial variability inside the basin and it 

was expressed as high values of standard deviation.  Model benchmark, Heimsath and Saulnier-

slope had a similar temporal evolution since the beginning of monsoon season until early August. 

In mid-August, Heimsath deviated from model benchmark and Saulnier-slope. These two latter 

cases continued with similar temporal evolution in basin variability through the end of the season. 

The model simulation with ASTER-soil texture started with small basin spatial variability at the 

beginning of the monsoon season but when vegetation greenness reached its maximum point 

behaved similar to model benchmark, Heimsath and Saulnier-slope simulations. Finally, the 

uniform sand-clay loam simulation had a different evolution in spatial variability in comparison 

with the rest of the cases. This latter case started with stable spatial conditions at the beginning of 

the monsoon season. When growing season progressed the spatial variability increased steadily 

until mid-September, when a sudden decrease of the spatial variability occurred leading to stable 

conditions. 

 

3.4 Summary and Conclusions 

This research ran a set of hydrological simulations in a semiarid basin within the North 

American Monsoon region. Some of these simulations accounted for the spatial distribution of soil 

depth and soil texture with the goal to evaluate their effect on energy and water fluxes.  The 

results of these simulations were compared to a previous calibrated hydrological simulation, 
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which was described in this research as model benchmark and is described in Xiang et al., 

(2014). After performing a series of analyses the research concluded: 

Surface soil texture exerted a strong control in surface soil moisture (5 cm depth). Wetter 

regions within Sierra Los Locos basin were closely linked to textural classes with large water 

retention capacities such as clay-rich or sandy-loamy soils. Drier soils are closely linked to high 

infiltration capacities soils, similar to sandy soils with scarce vegetation. 

Root zone soil moisture was strongly controlled by spatial variability of soil thickness by 

creating soil depressions that retained subsurface water. The filling and spilling of these soil 

depressions greatly affected groundwater exfiltration, especially; when soil depressions were 

followed by shallow soil thickness. Semiarid basin groundwater table was usually disconnected 

from the river network and the main mechanism of run off generation was infiltration excess 

(Hughes, 1995; Pilgrim et al., 1988). In this case, it is essential to establish a fixed groundwater 

table or the Saulnier-z or Saulnier-slope when is necessary to account for spatial variation in soil 

thickness. However, there could be regions or events during the monsoon season when the water 

table could be connected to the river network. In this case, an alternative is to use a more realistic 

and accurate spatial distributed soil thickness similar to Heimsath or Gessler. 

Heimsath and Gessler are reliable alternatives to estimate distributed soil thickness 

particularly in basins with limited information and surveying may be labor intensive and 

expensive. Soil texture surveying using remotely sensed data was also another reliable 

alternative for remote basin with lack of soil information.  

The visible and thermal bands of the Advance Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) have demonstrated to be a reliable option for soil texture 

surveying. 

Soil texture exerted a strong control in spatial patterns of soil moisture and 

evapotranspiration during the transition from dry to wet conditions. Once vegetation vigor and 

cover fraction are dominating the basin, the influence of soil texture in controlling spatial patterns 

decreased and vegetation tended to smooth this spatial variability within the basin. 



  83 

Finally, this work displayed a significant improvement in the representation of basin 

characteristics. This can help future research to understand and improve water balance 

forecasting and spatial patterns of hydrological variables. 
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CHAPTER 4 

INTER-ANNUAL VARIABILITY OF VEGETATION COVER AND ITS EFFECT ON THE SPATIAL 

AND TEMPORAL DISTRIBUTION OF EVAPOTRANSPIRATION AND RUN OFF IN A SEMIARID 

BASIN 

 

4.1 Introduction 

It is well known that water controls vegetation growth in arid and semiarid areas in the 

world. Furthermore, vegetation exerts a feedback mechanism by returning water to the 

atmosphere and controlling surface processes such as run off generation, albedo and land 

surface temperature (Eltahir, 1998; Dominguez et al., 2008).  One of the regions that experience 

large shift in vegetation greening is the west slopes of the Sierra Madre due to the onset of the 

North American Monsoon (NAM) region (Forzieri,  et al., 2011; Watts et al., 2006). Recently, the 

amount of run off and ET studies in the NAM have been increasing despite the lack of 

hydrological observations. For example, previous studies have shown the regional variation in the 

relation between rainfall-runoff and its dependence with monsoon rains (Brito-Castillo et al., 2003; 

Gochis et al., 2006;). Other studies have evaluated the impact of land use or land cover change 

on surface run off and soil removal (Navar and Synnott, 2000; Viramontes and Descroix, 2003) in 

field plots.  Moreover, the use of hydrological models has been recently increasing to understand 

hydrological processes and water balance in ungauged basins in the NAM region (Vivoni et al 

2010; Gochis et al., 2010; Vivoni, 2012, Robles-Morúa et al., 2012; Mendez-Barroso et al., 2014; 

Robles-Morúa et al., 2014). Main contribution in this area comprises the impact of the surface and 

subsurface features on water and energy fluxes, e.g.; surface water states such as antecedent 

soil moisture and water content decay parameter play an important role in the generation of run-

off and catchment hydrological behavior in subtropical ecosystems of Northern Mexico (Descroix 

et al., 2002).  
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Figure 4.1. Land Morphology and Basin Location. (a) Location of the San Miguel River Basin in a 
Regional Domain. (b) Topographic Characteristics of the San Miguel Basin With the Location of 
El Cajón Gauging Site and Some Important Towns. (c) Land Surface and Bedrock Elevation 
Profiles on Transects A-A' And B-B'. Basin Relief is About 2000 Meters. 
 

 

4.2. Methods 

4.2.1 Study Region 

The San Miguel river basin (SMRB) is located in the Northwestern Mexican state of 

Sonora. This basin has an area of 3796 km2 (figure 4.1) and it is the second largest within the 

Sonora River System. The topography is quite complex with an elevation relief close to 2000 

meters and slopes ranging from 0 to 65 degrees. The central part of the state belongs to the 

southern extreme of the Basin and range, a physiographic region characterized of valleys 

bounded by one or more normal faults that runs parallel to range front (Dickinson, 2002). Normal 

faults usually trend North-South in the same direction of the mountain range. Basin headwaters 

are located in the Sierra Azul mountain range with river tributaries flowing along the east-west 

and west-east directions into the main river. The main river flows from north to south until it 

reaches the only stream gauge that monitors and records basin discharge at El Cajon gauge 

station, near San Miguel de Horcasitas, Sonora, Mexico. 
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Figure 4.2. San Miguel River Basin Characteristics. (a) Land Cover Estimated From Landsat 5 
Using A Decision Tree Method (Yilmaz et al., 2008). (b) Soil Classes Obtained from INEGI 
(National Institute of Geography And Statistics) Following the FAO Soil Classification System. (c) 
Stream Network Derived from ASTER Digital Elevation Model Using the Terrain Analysis Model 
Taudem (Terrain Analysis Using Digital Elevation Model). 
 

Ecosystems in the San Miguel River Basin follow a very well defined rainfall (in this 

region rainfall is closely related to elevation) pattern that identifies vegetation characteristics 

(Figure 4.1b). This pattern ranges from desert scrubs (at lowest elevation ~ 300 to 400 m) to 

evergreen communities (mixed forest) in higher elevations (beyond 1300 m). The dominant 

ecosystem in the basin is subtropical scrublands, which encompass 44% of the total area, 

followed by sparse woodlands (sparse woodland with 37%) and grasslands (8%). Different soil 

types exist in the basin where the most common are Lithosol, Regosol and Xerosol that 

respectively include 43%, 28% and 15% (total of 84%) of the basin area (Table 4.1). Lithosols are 

soils with shallow thickness with lack of horizons development and are found in mountains 

regions with high steepness.  



  87 

 

 

Figure 4.3. Seasonal Variability of Rainfall, Runoff and Normalized Difference Vegetation Index 
(NDVI) on the San Miguel River Basin Encompassing the Period 2004-2010. (a) Daily Rainfall 
Aggregated from a Network of Meteorological Stations Managed by The Mexican National Water 
Commission (CONAGUA). (b) Daily Runoff Measured at the CONAGUA Gauging Site El Cajon. 
(c) Daily Interpolated Land Surface Temperature (LST) from the Moderated Resolution Imaging 
Spectroradiometer (MODIS). Gray Vertical Bars in August 2004 indicate the Days of Acquisition 
of Soil Moisture Maps by the 2DSTAR Aircraft-Based Sensor. 
 
 

Secondly, Regosols are very weakly developed mineral soil in unconsolidated material 

and are very common in arid or semiarid areas and mountain regions of the world. Finally, 

Xerosols appear in arid areas and can contain organic matter and deeper layers with 

accumulation of clays, carbonates and sulfates. Other minor soil types in the region are 

Phaeozem, Yermosol and Fluvisol.  
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Land cover type % Area 

  
Water body 0.001 

Bare soil 0.03 
Shrubland 0.22 
Grassland 8.03 

Riparian Mesquite 4.44 
Riparian Woodland 0.09 
Sparse woodland 37.80 

Evergreen 4.56 
Subtropical scrub 44.78 

Agriculture 0.05 
 

Soil Type % Area 
 

Phaeozem 
 

9.09 
Fluvisol 3.46 
LIthosol 43.01 
Regosol 27.54 
Xerosol 14.94 

Yermosol 1.96 
 

 

Table 4.1. Percentage of Area Covered by Different Land Cover and Soil Types Within the San 
Miguel River Basin (SMRB). 

 

 

The precipitation regime in this region is characterized by a marked seasonality, with 

most of the annual precipitation (60-70% of the total) falling during summer months (June, July 

and August) during the onset of the North American Monsoon (NAM) (Douglas et al., 1993; 

Adams and Comrie; 1997).  Figure 4.3a shows the time series of the mean areal precipitation 

during the study period from January 2004 to November 2010. As observed, most of the rainfall 

events occurred during the monsoon season mainly in the form of convective storms localized in 

space and time, while some sporadic rainfall events occurred in winter in the form of stratiform 

systems with larger spatial coverage (Mascaro et al., 2014). A notable exception occurred in the 

winter of 2004 when intense storms, caused by El Niño (Brito-Castillo, 2003), produced abnormal 

discharge in the basin (Figure 4.3b). Vegetation seasonality in the San Miguel River Basin is 
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highly coupled to inter-annual variability in seasonal precipitation. For example, Figure 4.3c 

shows contrasting years in seasonal precipitation where the summer season in 2004 was a dry 

monsoon season while the summer 2008 was a wet year. These contrasting conditions in 

seasonal precipitation led to similar contrasting conditions in vegetation greening in the region. 

 

4.2.2 Field and Remote Sensing Observations 

For this study we used rainfall and soil moisture observations at different locations within 

the San Miguel River Basin domain . Every station consists of a tipping bucket gauge (Texas 

electronics, TR525W) and two soil moisture probes (Stevens Water Monitor Systems, Hydra 

Probes) deployed at 5 and 10 centimeters depth. Soil moisture and rainfall data were stored 

every 30 minutes in a Campbell data logger model CR1000. We used 9 hydro-meteorological 

stations distributed along the San Miguel River Basin, which some have been operating since 

July 2004 and were installed as part of the Soil Moisture Experiment in 2004 (SMEX04). Table 

4.2 shows the locations of 9 hydro-meteorological stations in the Rio River Basin, as well as 

some site characteristics such as soil type, elevation land cover and the purpose of the station 

data set (either calibration or validation).  

In addition to ground observations, we utilized remote sensing imagery of the land 

surface to monitor vegetation development, surface energy states and surface topography. 

Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), short wave white-sky 

albedo and Land Surface Temperature (LST) from The MODerate resolution Imaging 

Spectroradiometer (MODIS) were used to characterize the spatial variability of the land surface 

conditions, and generate dynamic vegetation fields required to parameterize plant phenology in 

the hydrological model as described in Méndez-Barroso (2014). We utilized 16-day composites of 

NDVI (MOD13Q1, with spatial resolution of 250 meters) along with 8-day composite of white sky-

albedo (MOD43B, spatial resolution 1000 meters), LAI (MOD15A2, spatial resolution 1000 

meters) and LST (MOD11A2, spatial resolution 1000 meters) comprising an image catalog of 7 

years (2004 through 2010). Our MODIS dataset was projected, transformed and clipped using the 

HDF-EOS to GeoTIFF conversion tool (HEGtool). This tool allows converting the MODIS native 
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hierarchical data format (hdf) to the widely used GIS-format GeoTIFF. Furthermore, HEGtool 

allows clipping MODIS imagery to a smaller region of interest in batch form. MODIS 16 and 8-day 

composites of LST, NDVI and LAI were interpolated to daily images to capture the progression of 

land surface changes. For evaluation of model performance, we used MODIS LST as well as soil 

moisture observations at 800-m resolution from the Two-Dimensional Synthetic Aperture 

Radiometer (2DSTAR) aircraft-based sensor, which collected measurements on August 7-8 and 

24-26, 2004 as part of SMEX04 (Ryu et al., 2010).  

 

4.2.3 Basin, Floodplain and River Network Delineation 

A realistic representation of basin characteristics is critical in order to have an accurate 

temporal and spatial distribution of water and energy fluxes. Basin topography is represented in 

the tRIBS hydrological model through a Triangular Irregular Network (TIN) (Ivanov et al., 

2004a,b). The TIN for the RSMB was created from the 30-m resolution Digital Elevation Model 

(DEM) derived from ASTER (Advance Space-borne Thermal and Reflection Radiometer), 

according to the procedure described in Vivoni et al. (2005) and aimed at capturing the hydro-

physiographic features of the basin by sampling the DEM with varying resolution. Specifically, 

given the importance of the processes occurring in the riparian area, a higher detail was adopted 

to represent the floodplain. Floodplain delineation was conducted by using thermal infrared 

spectral indices from ASTER that allowed us to separate different materials based on their 

spectral absorption. The indices used were carbonate Index (band13/band14), quartz Index 

(band112/band10*band12) and the mafic index (band12*band143/band134). These ASTER-based 

geological maps helped us to identify the extension of the current flood plain and later corroborate 

it with existing geological maps and aerial orthophotos in order to have a more accurate 

delineation of the river floodplain.  

River network was delineated using the Terrain Analysis Using Digital Elevation Models 

(TauDEM version 5.0) adopting the slope-area relation method that allow to have a better 

representation of the stream network in wide and meandering floodplains (Tarboton, 2003).  



  91 

Station Lat. 
[°] 

Long. 
[°] 

Easting 
[m] 

Northing 
[m] 

Elevation      
[m] 

Soil 
Type 

Land 
cover 

Cal. 
year 

Val. 
year 

          
130 30.0 -110.6 531465 3323298 708 R Sps 2004 2007 

132 29.9 -110.5 546347 3314298 878 L Ss 2004 2007 

133 29.8 -110.5 539130 3305014 624 F Sps 2005 2007 

143 30.3 -110.5 542590 3356533 947 F Ss 2004 2007 

144 30.2 -110.6 530134 3341169 778 F Ss 2007 2007 

146 29.9 -110.4 551091 3315638 1377 L Ws 2004 2007 

151 30.6 -110.5 542954 3387967 1419 X Rm 2007 2007 

154 29.5 -110.6 530064 3264545 419 P Sw 2007 2007 

ST-EC 29.7 -110.5 544811 3290182 632 Y Ss 2004 2007 

 

Table 4.2. Characteristics and Location of Hydro-Meteorological Stations Used for Model 
Calibration and Validation. Soil Types are: Regosols (R), Lithosols (L), Fluvisols (F), Xerosols (X), 
Yermosol (Y) and Phaeozem (P). Land Cover Types are: Sparse Woodland (Sps), Subtropical 
Scrubland (Ss), Woodland Savanna (Ws), Riparian Mesquite (Rm) and Sparse Woodland (Sw). 

 

 

Both the river flood plain and river network was later incorporated in the creation of 

triangulated irregular network. The final representation of topography by triangulated irregular 

network was generated using the TINindex Analysis Package (TIAP, version 1.2). The total 

number of Voronoi polygons (unit for fluxes computations) for the San Miguel River Basin TIN 

was 618,745 resulting in a horizontal point density (the ratio of DEM cells to TIN nodes) was d = 

0.147 with an equivalent cell size of re = 78.21 meters. 

Spatially variable depth to bedrock was estimated according to the method proposed by Saulnier 

et al., (1997). This method correlates soil depth (h) as a linear function of local elevation (z): 

 

ℎ = ℎ!"# −
!!!!!"#

!!"#!!!"#
ℎ!"# − ℎ!"#        (4.1) 
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Where hmax is the maximum bedrock depth observed in the basin, hmin is the minimum bedrock 

depth observed, zi is the current value of elevation whereas zmax and zmin are the maximum and 

minimum elevation values respectively.  

 

4.2.4 Hydrological Forcing 

We used ground-corrected meteorological grids form the North American Land Data 

Assimilation System, version 2 (NLDAS-2) to force our model simulations (Cosgrove, 2003).  

NLDAS hourly data was obtained from the NASA-GES Hydrology Data Holdings web site 

(http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings). The native GRIdded Binary format (grib) 

was converted to ESRI ascii format, which is the format, required as an input for the hydrological 

model. The meteorological variables used to force the model consisted in grids with a spatial 

resolution of 12 km (0.125°) of atmospheric pressure (PA), relative humidity (RH), incoming short 

wave radiation (IS), air temperature (TA), wind speed (US) and precipitation (RA).  

The NLDAS datasets were corrected with ground observation using the approach of Robles-

Morúa et al. (2012) based on the application of an averaged ratio of means multiplicative factor of 

Steiner et al. (1999). We relied on a network of meteorological station managed by the Sonora 

State Water Commission (CEA for the acronym in Spanish) to adjust model meteorological 

forcing and rainfall. Due to the lack of ground observations during the year 2006 and part of 2007, 

we decided to use NLDAS-adjusted data for the year 2004 and 2005 for model calibration and 

year 2008 through 2010 for model validation.  

 

4.2.5 Description of the Distributed Hydrological Model 

Numerical hydrological simulations were carried out using the TIN-based (Triangular 

irregular network) Real-time Integrated Basin Simulator (tRIBS), a fully distributed model of 

hydrological fluxes (Ivanov et al., 2004, Vivoni, 2007).  This model works in a framework 

represented by a network of TIN with embedded elevation, channel and boundary nodes that 

mimic the basin topographic features. TINs are linked to a series of Voronoi polygons that allow 

flux and mass calculations under the finite difference approach. Hydrological domain (San Miguel 
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River Basin) was delineated using a digital elevation model from ASTER with a spatial resolution 

of 30 meter draining to the only stream gauge located in the basin. The National Water 

Commission (CONAGUA for the acronym in Spanish) operates this stream gauge (known as “El 

Cajon”) and it is located near the town of San Miguel de Horcasitas.   

Because the large amount of Voronoi polygons, The Saguaro supercomputer performed 

the hydrological simulations in parallel mode (distribution of tasks over multiple processors at 

once) at ASU-Advance Computer Center. Saguaro is a massively parallel cluster or a collection 

of many small computer nodes that are interconnected with high speed, low-latency network 

fabric. The reach-based partitioning method divided the domain of the San Miguel River Basin in 

256 processors. A set of empirical equations described in Méndez-Barroso et al. (2014) 

calculated dynamic vegetation parameters that accounts for rainfall interception and plant 

transpiration. Such equations relate remotely sensed vegetation indices such as MODIS-Leaf 

Area Index (LAI) and Normalized Vegetation Index (NDVI) with vegetation variables such as 

Optical transmission (OT), canopy capacity (CC), stomatal resistance (SR), through-fall 

coefficient (TF) and vegetation fraction (VF). Furthermore, MODIS-short wave albedo (AL) was 

incorporated to account for the partition of energy balance in the surface.  

Spatial distribution of soil types in grid format was acquired from the National Institute of 

Statistics and Geography (INEGI for its the acronym in Spanish) based on the soil classification 

system of the Food and Agriculture Organization (FAO). Soil hydraulic parameters were 

estimated from particle size distribution applying the pedotransfer functions described in Saxton 

et al., 2006. Soil texture was estimated by analysis of soil samples collected nearby the station 

sites. However, when soil samples were not available for analysis, we relied in soil texture 

fractions obtained from the Global Soil Profile Dataset (ISRIC-WISE, version 3.1) developed and 

updated by the International Soil Reference and Information Centre. The ISRIC-WISE database 

contains soil horizon information for about 149 countries using the FAO-UNESCO soil 

classification (Batjes, 2009). Furthermore, we utilized the land cover-land use classification 

developed by Yilmaz et al., 2008 using a decision tree parameterization over Landsat 5 TM 

imagery over the region.  
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Parameter Variable 
[unit] 

Lithosol 
coarse 

Lithosol 
medium 

Phaeozem 
medium 

Regosol 
coarse 

Yermosol 
coarse 

       
Saturated 
hydraulic 
conductivity1 

Ks 
[mm/h] 

32.4 6 15 49.1 32.4 

Saturated soil 
moisture content1 

θs [-] 0.4 0.47 0.49 0.38 0.4 

Residual soil 
moisture content2 θr[-] 0.01 0.01 0.01 0.002 0.01 

Pore size 
distribution index3 

m [-] 2 2 2 0.8 1.6 

Air entry bubbling 
pressure3 ψb [mm] 0 0 0 0 0 

Conductivity 
decay parameter4 f [mm-1] 8x10-4 8x10-4 8x10-4 3x10-4 8x10-3 

Conductivity 
anisotropy ratio4 

As [-] 1 1 1 1 1 

Soil porosity1 n [-] 0.42 0.49 0.51 0.40 0.42 
       

Parameter Variable 
[unit] 

Regosol
medium 

Xerosol 
medium 

Xerosol 
fine 

Fluvisol
coarse 

Fluvisol 
medium 

Saturated 
hydraulic 
conductivity1 

Ks 
[mm/h] 8.3 3.9 33.6 5 49.1 

Saturated soil 
moisture content1 θs [-] 0.47 0.47 0.4 0.51 0.38 

Residual soil 
moisture content2 θr[-] 0.002 0.01 0.03 0.05 0.002 

Pore size 
distribution index3 m [-] 2 2 0.06 2 1.5 

Air entry bubbling 
pressure3 

ψb [mm] 0 0 0 0 0 

Conductivity 
decay parameter4 

f [mm-1] 3x10-4 3x10-4 0.05 0.0009 0.0009 

Conductivity 
anisotropy ratio4 As [-] 1 1 1 1 1 

Soil porosity1 n [-] 0.49 0.49 0.42 0.53 0.40 
       

 

Table 4.3. Model Parameters for Different Soil Types in Rio San Miguel River Basin. Source of 
Model Parameters are as Follows: (1) Based on ISRIC-WISE World Soils Database With 
Modifications During Calibration. (2) Minimum Observed Soil Moisture. (3) Méndez-Barroso et al., 
2014 and Xian et al., 2014 (4 and 5) Model Calibration.  
 

However; this land cover map did not cover the southern part of the basin. For this 

reason, we performed a non-supervised classification (Maximum Likelihood Classification) using 
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all the bands of a previous Landsat image over the region and complement the land cover of 

Yilmaz et al., 2008. 

Dynamic groundwater equilibrium was reached by performing a spin-up process to our 

hydrological simulation. We did not find inter-annual statistically significant differences in 

discharge and soil moisture during the three years of spin-up. Consequently, the spin up process 

lasted only 1 year. 

 

4.2.6 Model Initialization, Calibration and Validation 

Because the limitation of continuous soil moisture and temperature observations in the 

hydro-meteorological network, we restricted the model calibration to the monsoon seasons (June 

1 through September 30) 2004, 2005 and 2007. We selected not only those stations that kept the 

longest continuous datasets but also the ones that cover the most representative soil and 

vegetation types. In total, we used 9 hydro-meteorological to compare with model outputs. Table 

4.2 summarizes the characteristics of the stations used for model calibration and validation. We 

performed a manual calibration approach by modifying the value of some hydrological soil 

properties within a reasonable range of variable values and evaluated the difference with 

observed soil moisture and soil temperature.  The soil parameters evaluated were pore 

distribution index (m), air entry bubbling pressure (ψb) and conductivity decay parameter (f) and 

the optimum value was selected when minimum value of root mean squared error was achieved. 

Conversely, saturated hydraulic conductivity (Ks), soil moisture at saturation (θs), residual soil 

moisture (θr) and porosity (n) were estimated from pedotransfer functions (Saxton et al., 2006) 

based on FAO or field textural data and were not modified during the calibration process. Model 

performance during the calibration/validation process was evaluated using the following statistical 

metrics: Mean absolute error (MAE), root mean squared error (RMSE), correlation coefficient 

(CC) and bias. For a description of the statistical metrics, the reader can reference Méndez-

Barroso et al., 2014. 
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4.3. Results and Discussion 

4.3.1 Evaluation of Model Performance: Model Calibration 

The performance of the hydrological simulations was evaluated through one summer 

monsoon season (June 1st to September 30) with a time resolution of one hour. We selected a 

set of stations that represented the most representative soil types and land cover of the San 

Miguel River Basin. Different monsoon years were utilized for model runs due to the lack of 

continuous hydrological observations on the selected subset of hydrological stations (see Table 

4.2 for monsoon season used in model calibration). Model parameterization includes the manual 

tuning of six soil variables described in section 4.2.6.  The optimal soil parameters were selected 

when the minimum root mean squared error between simulated and observed soil moisture and 

soil temperature was achieved.  

Table 4.3 shows the soil parameters after the calibration process. The values of 

saturated hydraulic conductivity (Ks) range from 5 to 49.1 mm/h. The lowest values of hydraulic 

conductivity were found in Xerosols and Phaeozem with medium texture. Conversely, the highest 

Ks values were found in Regosols and Yermosols with coarse texture.  These later soils are 

characterized by a high fraction of coarse unconsolidated material and very common in arid and 

semiarid areas. The high fraction of sand allows water to infiltrate rapidly (Brady & Weil, 1996).  

Xerosols are soils that are poor inorganic matter but can have layer rich in clays or caliche that do 

not allow water infiltration and prevent soil erosion while Phaeozem are found in flat areas with 

considerable organic matter in the upper layers that helps to retain soil moisture, therefore in both 

cases decreasing hydraulic conductivity. The values of hydraulic conductivity, saturated soil 

moisture and porosity found in San Miguel River Basin agreed with those found by other authors 

on similar soil textural types and classification (Clapp & Hornenberg, 1978; Freeze and Cherry, 

1979;  Batjes, 2009). Regosols showed low soil porosity and saturated soil moisture (0.38 and 

0.40 respectively) whereas Fluvisols and Phaeozem obtained the highest values of these 

hydraulic soil properties (0.50 and 0.51 respectively). 
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Figure 4.4. Model Calibration at Different Hydro-Meteorological Stations Using Surface Soil 
Moisture at 5 Centimeters Depth. Stations Represents Different Soil Types as Well as Land 
Cover. Solid Triangles Show the Values of 2Dstar Soil Moisture Whereas Gray and Black Lines 
are Simulated and Observed Soil Moisture. Inner Plots Show the Comparison Between Observed 
and Simulated Land Surface Temperature (LST). 
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Root mean squared error (RMSE), correlation coefficient (CC) and mean absolute error 

(MAE) between observed and estimated soil moisture were the statistics metrics used to evaluate 

model performance (table 10). RMSE values on calibration process ranged from 0.015 to 0.044 

m3/m3 with a mean of 0.027 (±0.009 m3/m3). The best model performance occurred on the EC 

tower (ST-147) followed by the hydro-meteorological stations 130 and 132 with RMSE values of 

0.015, 0.018 and 0.02 respectively. Moreover, these stations also obtained very low mean 

absolute errors (0.012, 0.013 and 0.016), high correlation coefficients (0.91, 0.94 and 0.90) and 

relatively good accuracy (-2.6, 17.8 and 5.1 % bias). Figure 4.4 shows the temporal evolution of 

observed and simulated soil moisture as well as the comparison with land surface temperature. 

As observed, stations 130,132 and 147 capture very well the temporal evolution of soil moisture 

and surface temperature during the monsoon season 2004. The hydrological model tRIBS was 

able to capture and simulate the response to rainfall pulses, recession time and the dry out period 

accurately in these stations.  To add more confidence to our model calibration, these stations are 

located in three different soil types (ST147 = Yermosol, ST130 = Regosol and ST132 = Lithosol).  

These soil types represent representing nearly 74 % of the total area of the basin. In 

addition, stations 132 and 147 agreed well with measurements of remotely sensed soil moisture 

from the Two-dimensional Synthetic Aperture Radiometer (2D-STAR), especially on wet days in 

station 147 and dry days in station 132. Other stations that obtained a very good calibration 

performance were stations 133 and 144 with relative low root mean squared error (0.021 and 

0.028 respectively), very high correlation coefficients  (0.947 and 0.948) and excellent degree of 

accuracy (-1.2 % and 5.8 % difference with observations). Stations 133 and 144 were found in 

Fluvisols that increase the represented area of the San Miguel River Basin in 77 %.  These 

stations tracked very well the temporal evolution of surface soil moisture and the values were 

quite closed to observation. However, there were some problems in reproducing peak values 

after rainfall events.  
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Figure 4.5. Model Calibration at the Subtropical Scrubland EC Site Using: (a) Soil Moisture, (b) 
Latent Heat and (c) Soil Surface Temperature. Dashed Black Lines Represent Vegetation 
Development at the Site Using Normalized Difference Vegetation Index (NDVI). Solid Triangles in 
(A) Show The Values of 2Dstar Soil Moisture Whereas Gray And Black Lines in (a) and (b) are 
the Simulated and Observed Soil Moisture and Latent Heat Respectively. Finally, (d) Shows The 
Comparison Between Daily Maximum Albedo Measured at the Tower Location (Gray Lines) With 
MODIS Albedo Product (Open Dots). 

 

Usually these stations greatly underestimated the peak values but represents very well 

values during dry up periods specially station 144 which capture the recession times in later 

period of the monsoon. Station 133 was not as good as station 144 in capturing the dry up period 

and large differences was found in this period between observations and simulated surface soil 

moisture. The rest of the stations had a moderately good performance with RMSE values ranging 

from 0.030 to 0.044, correlation coefficients ranging from 0.89 to 0.91 and bias values in the 

range of -10.7 % up to 27.6 %.  
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Station ID Soil type Soil texture BIAS (%) MAE RMSE CC 
       

130 Lithosol Coarse 17.88 0.013 0.018 0.937 

132 Phaeozem Medium 5.14 0.016 0.02 0.907 

133 Regosol Coarse 5.82 0.015 0.021 0.947 

143 Regosol Medium -21.70 0.033 0.044 0.852 

144 Xerosol Medium -1.26 0.021 0.028 0.948 

146 Xerosol Fine 27.68 0.024 0.032 0.944 

147 Fluvisol Coarse -2.61 0.012 0.015 0.912 

151 Fluvisol Medium -10.79 0.026 0.038 0.91 

154 Yermosol Coarse 4.49 0.015 0.029 0.899 

 

Table 4.4. Statistical Metrics for Model Calibration Using a Set of Hydro-Meteorological Stations 
at San Miguel River Basin.  
 

 

Station 143 showed the poorest performance among stations with a RMSE value of 

0.044 a MAE of 0.033 and a correlation coefficient of 0.85 and an underestimation of shallow soil 

moisture of -21% in comparison with station measurements. As observed in figure 4.4, this station 

underestimated peak values and also could not capture well the dry up periods. Estimated soil 

moisture rapidly decreases in dry periods while observations decayed in a steady manner with 

prolonged dry up periods. However, this station got a good match between estimated surface soil 

moisture (gray solid line) and remotely sensed soil moisture measured with two-dimensional 

synthetic Aperture radiometer (Jackson et al., 2009). Without doubt, station 147 (EC tower) 

obtained one of the best performances in model calibration.  Due to the capability of reproduction 

of soil moisture and temperature and the existence other surface observations, we will focus on 

the temporal evolution of surface energy fluxes such as latent heat and terrain albedo. For 

example; figure 4.5 shows the comparison between observed and simulated soil moisture (Figure 

4.5a), latent heat flux (Figure 4.5b), land surface temperature (Figure 4.5c) and short wave 

albedo (Figure 4.5d) at the Eddy covariance tower site.  
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Station ID Soil Type Soil texture BIAS (%) MAE RMSE CC 
       

130 Lithosol Coarse -17.37 0.017 0.025 0.882 

132 Phaeozem Medium -12.39 0.016 0.02 0.921 

133 Regosol Coarse -2.72 0.016 0.029 0.928 

143 Regosol Medium -40.41 0.062 0.068 0.94 

144 Xerosol Medium -18.21 0.038 0.048 0.839 

146 Xerosol Fine -4.99 0.019 0.027 0.942 

147 Fluvisol Coarse 12.14 0.012 0.017 0.953 

151 Fluvisol Medium -23.78 0.026 0.039 0.887 

154 Yermosol Coarse 17.67 0.029 0.039 0.835 

 

Table 4.5. Statistical Metrics for Model Validation Using a Set of Hydro-Meteorological Stations at 
San Miguel River Basin.  
 

For reference, this figure includes the evolution of vegetation growth expressed as 

Normalized Vegetation Index (NDVI) and represented with a dashed line.  The NDVI time series 

shown in figure 4.5 represents very well the seasonal phenology of subtropical scrubs 

characterized by a sudden increase in vegetation greening with the arrival of summer 

precipitation and a fast decay to dormant conditions at the end of the monsoon period. In 

particular, the monsoon season 2004 showed a very pronounced intra-seasonal drought in mid-

August to early-September that led to fast decay in vegetation greening. For this reason, there is 

a considerable impact in energy fluxes and surface temperature at the end of the monsoon 

season.   

Despite these intra-seasonal changes in surface conditions, the hydrological model was 

able to reproduce this variability in simulated hydrological variables. For instance, there was a 

considerable reduction in the latent heat flux at the end of the monsoon season (September) 

notably influenced by the rapid decrease in vegetation vigor (figure 4.5b). Similarly, there was 

also an increase in land surface temperature (figure 4.5c) due to the decrease in vegetation 

activity. In both cases, the model was able to track the changes in magnitude and timing of latent 

heat and land surface temperature. However, there was a clear overestimation in minimum land 

surface temperature during diurnal cycles. 
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These results emphasize the importance of incorporating the temporal evolution of 

vegetation vigor, fraction of soil covered by vegetation and albedo in hydrological modeling. 

Because the importance of albedo in the partition of surface energy fluxes, we have included a 

comparison between 8-days composites of MODIS short-wave albedo with daily time series of 

surface albedo measured at the tower location (figure 4.5d). The goal of this figure is to 

demonstrate that MODIS albedo is capturing the temporal variability of the site and it is 

representing well the surface conditions during the shift in vegetation greening. It is clear that 

MODIS-albedo is capturing well the transition from dry to wet conditions. Albeit the limitation in 

continuous observations, MODIS was able to track the seasonal decrease in surface albedo. 

Therefore, MODIS albedo is a reliable indicator of diffuse reflectivity of incoming solar radiation in 

semiarid areas and could be used to represent the partition of energy fluxes at the surface. 

 

4.3.2 Model Validation at Point Scale 

Statistical metrics showed very similar results to model calibration (Table 4.5). However, 

there is general increase in over/underestimation of simulated soil moisture (increase/decrease in 

bias). In similar fashion to model calibration, best model performance occurred on the EC tower 

(ST-147) followed by the hydro-meteorological stations 130 and 132 with RMSE values of 0.017, 

0.02 and 0.025 respectively. Moreover, these stations obtained very low mean absolute errors 

(0.012, 0.016 and 0.017) and high correlation coefficients (0.95, 0.92 and 0.88). Conversely, 

model accuracy in soil moisture estimation decreases in comparison with calibration. Station 147 

overestimates soil moisture in 12.1 % while stations 130 and 132 underestimated in 12.3 and 

17.3 % respectively. Notwithstanding, there was a big improvement in model performance at 

station 146 in comparison to model calibration. For example, RMSE decreased from 0.032 to 

0.027 and MAE from 0.024 to 0.019 whereas correlation coefficient practically did not change 

(0.94).  There was a huge improvement in the accuracy of estimated soil moisture in this station 

by going from an overestimation of 27.6 % to an underestimation of only 4.9 %. Station 133 is still 

a very reliable location with good statistical metrics during model validation. This station obtained 
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a moderately low RMSE (0.029), high correlation coefficient (0.93) and very low MAE (0.013). 

Even more important, this station improved its accuracy in estimating surface soil moisture by 

decreasing percentage of bias from an overestimation of 5.8% to an underestimation of 2.2%. 

The rest of the stations had similar statistical metrics in comparison to those obtained in model 

calibration. One great exception is station 144 which performance in the validation got worse by 

increasing its RMSE from 0.028 to 0.048, increasing the MAE from 0.021 to 0.038, decreasing 

the correlation coefficient from 0.95 to 0.83 and increasing the underestimation of soil moisture 

from 1.2% (the best obtained in model calibration) to 18 %.  Finally, station 143 remained as the 

station with the poorest performance with the highest RMSE (0.068), the highest MAE (0.062) 

and the highest discrepancy with observed soil moisture due to an underestimation of 40.4%. At 

the same time, station 144 obtained a very high correlation coefficient of 0.94 (second highest in 

the validation process) which suggest that estimated soil moisture is capturing the variability of 

soil moisture but systematic errors in measuring observed soil moisture could lead to mismatch of 

simulated soil moisture. 

 In summary, there were mixed results after the validation process. One station (146) 

improved their performance on the validation process while station 144 worsened the estimation 

of soil moisture during the validation. Most of the stations remained with the same performance 

during both the calibration and validation process. Remarkably, stations 147, 130, 132 and 133 

obtained the best performances during calibration and validation that aggregated confidence to 

model set up because these stations represent close to 77% of the soil types and nearly 50% of 

the lands cover types in the San Miguel Valley. 

 
4.3.3 Spatial Validation of Soil Moisture and Land Surface Temperature 

Figure 4.6 shows the comparison between the spatial distribution of estimated soil moisture and 

land surface temperature with two remote sensing products.  
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Figure 4.6. Model Calibration Using Different Distributed Products. Upper Set of Images Shows 
the Comparison Between Simulated Soil Moisture With the One Estimated from the Radar-Based 
2D-STAR (2 Dimension Synthetic Aperture Radar). Bottom Set of Figures Show the Comparison 
Between Simulated and MODIS Land Surface Temperature. Comparison Between Simulated and 
2D-STAR Soil Moisture as Well Simulated and MODIS Land Surface Temperature Were Carried 
Out on August 8 (Wet) and August 24 (Dry), 2004 as Part of the SMEX-04. Hollow Circles 
Represent Magnitude in Soil Moisture or Surface Temperature Measured in the Network of 
Hydro-Meteorological Stations. 
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Upper part of figure 4.6 shows the comparison between model-estimated soil moisture 

and soil moisture estimated from Two-dimensional Synthetic Aperture Radiometer (2D-STAR) in 

two contrasting precipitation conditions. The first comparison was made on August 8, 2004; a 

reasonable wet day followed by a mean basin precipitation of 10.5-mm. The second comparison 

was made on August 25, 2004; a very dry day followed by a mean basin precipitation of 0.03 mm.  

The 2D-STAR sensor flew over Rio San Miguel River Basin on August 8 at 10:00 AM local time 

and again at 14:00 PM on August 25. Conversely, the bottom part of figure 4.6 shows the 

comparison between model-estimated land surface temperature and the one estimated from 

Moderate Resolution Imaging Spectroradiometer (MODIS) on the same days that 2D-STAR 

overflew the region.  

Two different MODIS platforms were used due to image quality (% of cloud cover). 

MODIS-Terra was used on August 8 and overpassed the region at 11:00 AM local time while 

MODIS-AQUA was used on August 25 and overpassed the region at 13:00 PM.  Large spatial 

discrepancies were found between modeled and measured soil moisture on August 8 (wet day).  

The hydrological model forecasted an almost entirely wet basin with the exception of the extreme 

southern and northern regions that remained with very low soil moisture values (close to 0 

m3/m3). The model estimated saturated conditions along the floodplains, the river network and 

high elevations of the San Miguel River Basin with soil moisture values close to 0.28 m3/m3.. In 

contrast, 2D-STAR only measured high surface soil moisture on the southern part while most the 

basin was dry. Lack of spatial correlation can be demonstrated by statistical metrics shown in 

table 11. The very high value of bias (2.13) indicates that the hydrological model is clearly 

overestimating soil moisture in comparison with 2D-STAR observations. The extreme low 

correlation coefficient (CC<0.05) suggests lack of spatial correspondence in spatial patterns. A 

slightly improvement in the range of values but not in the representation of spatial patterns 

occurred in August 25. Model estimated wet floodplains and a moderately wetter northern region 

while 2D-STAR did not show a clear pattern of wetter floodplains or river network but measured 

scattered clusters of high soil moisture. As shown in Table 4.6, the range of values of estimated 

soil moisture was closed to those measured by 2D-STAR. Calculated bias between simulated 



  106 

and observed soil moisture was 0.90 (with 1 as a perfect match) with a slightly increase in spatial 

correlation (R2=0.08) but still showing lack of correlation in spatial patterns. There is also a 

moderately improvement in model accuracy by the decrease in MAE (0.02). Lack of spatial 

correlation between modeled soil moisture and measured by 2D-STAR could be attributed to the 

source of meteorological forcing used for the hydrological simulations. NLDAS (North American 

Land Data Assimilation System hourly meteorological forcing data was used as input for the 

hydrological simulations in Rio San Miguel River Basin. NLDAS precipitation dataset is 

constructed from gauge-based observed precipitation data and is temporally disaggregated using 

stage II radar data (involving statistical methods). Furthermore, bias-corrected shortwave 

radiation and surface meteorology is calculated from previous model-based reanalysis (Mitchell et 

al., 2004). Undoubtedly, not only the statistical temporal disaggregation of NLDAS precipitation is 

inducing a degree of uncertainty in precipitation values but also the spatial aggregation (12 km) of 

NLDAS pixel is inducing bias in spatial variability of rainfall.  It is well known that rainfall in the 

North American Monsoon region is characterized by concentrated storms in a short period of time 

and highly variable in space usually with isolated storms occurring in relative short distances 

(Liebmann et al., 2008; Gebremichael et al., 2007). Therefore, the high spatial variability of NAM 

rainfall events is not intrinsic in a12-km pixel of NLDAS. This uncertainty raised the question 

whether a 12-km pixel represents the rainfall characteristics of the NMA region. Despite the 

advances in rainfall data availability, the problem of highly temporal and spatial variability in the 

semiarid areas still persist and still remain as a common problem in hydrological modeling in 

semiarid areas (Pilgrim et al., 2009).  

 On the contrary to soil moisture, land surface temperature had a much better match 

between model-estimated and measured land surface temperature. Both products showed 

common spatial patterns on both days, for instance; on August 8, both products were able to 

represent warm regions around the flood plain of the San Miguel River and the southern region 

close to the basin outlet. Furthermore, both products agreed in the location of the cool zones 

allocated mainly on high elevations of San Miguel River Basin (figure 4.6).  Table 4.6 shows the 

statistics metrics used to evaluate the performance of the spatial validation of land surface 
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temperature in San Miguel River Basin. As observed, there is a good agreement between 

modeled and measured land surface temperature on August 8 with a slightly underestimation in 

temperature values (bias=0.95, where 1 is a perfect match) and a very low error of just 1 degree 

Celsius. Spatial patterns were very well correlated (0.52) with the exception of the central region 

of the San Miguel River Basin, for instance; 2D-STAR measured high temperatures on the central 

region of the basin while the hydrological model forecasted low temperatures. As explained 

before, forcing data is causing the bias between model-estimated and measured land surface 

temperatures due to possible overestimation in some regions of precipitation. It is clear that 

NLDAS rainfall is adding more precipitation in some places that disagreed with observations; one 

clear example is the north-central region of San Miguel River Basin (August 8), Although is a wet 

day, the spatial representation of rainfall differs in both sensors. NLDAS assumed an even 

distribution of rainfall in the basin while 2D-star inferred wetter southern region and a drier north 

region. This latter statement is confirmed by drier north-central region leading to higher 

temperatures.  However, there was a big improvement in correlation of spatial patterns on August 

25 (dry day). The spatial correlation of land surface temperature increased from 0.52 to 0.64 with 

a good agreement in the range of values (bias =1.03) albeit MAE slightly increased (2.2 degree 

Celsius). There is a clear mismatch between observed variables at the stations with those from 

model-estimated or 2D-STAR. Such discrepancies are attributed to differences in scale between 

remote sensing products and point observations. However, the agreement between point 

observations and remote sending products improved on August 25 (dry conditions) in both soil 

moisture and land surface temperature but remarkably soil moisture obtained a high correlation 

coefficient (0.55) and a relative low MAE (0.02). 

 

4.3.4 Time Series of Basin-Averaged Hydrological Variables from 2004 through 2010 

Figure 4.7 shows the basin-averaged time series of vegetation fraction, soil moisture, land 

surface temperature and evapotranspiration in the San Miguel River Basin during the simulation 

period June 2004 through September 2010. 
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Date 
Surface Temperature 

Comparison Bias [-] CC [-] MAE[°C] 

Aug 8, 2014 Simulated vs MODIS 0.95 0.52 1.01 

Aug 25, 2014 Simulated vs MODIS 1.03 0.64 2.22 

Aug 8, 2014 Simulated vs Observed 1.25 0.01 7.83 

Aug 25, 2014 Simulated vs Observed 0.99 0.14 7.21 

Date 
Surface Soil Moisture 

Comparison Bias [-] CC [-] MAE[-] 

Aug 8, 2014 Simulated vs 2DSTAR 2.13 0.02 0.06 

Aug 25, 2014 Simulated vs 2DSTAR 0.90 0.08 0.02 

Aug 8, 2014 Simulated vs Observed 2.30 0.18 0.09 

Aug 25, 2014 Simulated vs Observed 1.6 0.55 0.02 

 

 
Table 4.6. Statistical Metrics of the Comparison Between Observed Soil Temperature and 
Moisture With Those Measured With Two Remote Sensing Sensors (MODIS and 2D-STAR). 
 

 

The hydrological model captured very well the inter-annual variability and helps us to 

identify wet and dry years by the magnitude and temporal persistence of soil moisture, 

evapotranspiration and vegetation fraction. For example; it is clear that year 2005 is the driest 

year during the simulation period with low ET and soil moisture values and highly concentrated 

only during the summer season. Conversely, year 2008 showed slightly higher vegetation fraction 

and considerable higher evapotranspiration fluxes and soil moisture during the summer. 

Furthermore, this figure can also show some abnormal winter precipitation leading to high water 

fluxes in the San Miguel River Basin. The region is characterized by showing winter precipitation 

as results of frontal systems with low frequency events unlike local convection systems common 

in summer precipitation. However, there some year of unusual winter precipitation that can lead 

to high ET and soil moisture values. These unusual wet winters are enhanced by meteorological 

phenomena such as El Nino (ENSO), la Nina or Inter-decadal Oscillation.  
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Figure 4.7. Time Series of Hydrological Variables and Vegetation Fraction Among Ecosystems in 
the San Miguel River Basin. The Ecosystems Shown in this Figure are: Grassland (G), Sparse 
Woodland (SW), Evergreen Woodland (EW) and Subtropical Scrubland (SS). The Time Series 
Encompasses the Period from June 2004 Through September 2010. 
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It is well know that El Nino increases winter precipitation in the NAM while La Nina tends 

to increase summer precipitation (Brito Castillo et al., 2003). As shown in figure 29, winter season 

of years 2004 and 2010 were wetter than other winter seasons whereas year 2008 was the 

wettest during the period 2004-2010.  In fact, years 2004-2005 and 2009 coincide with reports of 

weak and moderate El Niño years that led to increase in winter precipitation. In the other hand 

2008 coincided with reports of La Nina events that produced a wetter summer (CPC, 2014). 

Therefore, this time series in water fluxes could be a useful tool to see the impacts of global 

meteorological systems in regional water fluxes. In addition, figure 29 can give us an insight of 

the differences in hydrological variables among ecosystems within the San Miguel River Basin. 

For example; Notice that most of the ecosystems in the San Miguel River Basin have a strong 

response to the rainfall pulses of the North American Monsoon.  

Subtropical scrubland (SS), sparse woodland (SW) and grassland (G) have high intensity 

(high slope to peak), quasi-symmetrical peaks (fast time to peak and fast recession curve) which 

is the main feature of subtropical ecosystems with high response to NAM rainfall (Méndez-

Barroso et al., 2009; Forzieri et al., 2011). Nevertheless, subtropical scrublands can develop 

vegetation fraction as high as evergreen but with very different recession curves during the year. 

Evergreen vegetation showed steady annual decline in vegetation fraction while the rest of the 

ecosystems showed shorter productivity with fast decline in vegetation fraction. Forzieri et al., 

(2011) found similar results by analyzing time series of MODIS-NDVI in the North American 

Monsoon region (NAM). There are clear differences in water use by vegetation type. For 

example, despite the lowest soil moisture on subtropical scrublands, they tend to produced higher 

vegetation cover and high ET during the summer growing season while grasslands showed eve 

higher soil moisture and evapotranspiration than subtropical vegetation but lower vegetation 

fraction. 

Sparse woodland showed intermediate soil moisture, vegetation fraction and ET values 

between subtropical scrublands and grassland. Evergreen vegetation experienced vegetation 

cover values as high as subtropical vegetation with a steady decrease during the rest of the year. 

Soil moisture was slightly lower than grasslands but higher than subtropical vegetation and ET 
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was as high as grasslands in summer but definitively this evergreen forest had the highest ET 

and soil moisture values during the winter period. These differences in water fluxes and 

vegetation fraction suggest that some ecosystems are more efficient to uptake soil moisture and 

produce aboveground biomass (directly related to vegetation fraction). Without doubt, subtropical 

scrublands were the most efficient ecosystems in water use because of the very high vegetation 

cover with less surface soil moisture values among all the analyzed ecosystems followed only by 

evergreen woodlands. Grasslands were the most inefficient water-use ecosystems because of 

low vegetation fraction with high soil moisture. Méndez-Barroso et al., (2009) found that Sinaloan 

thornscrub (subtropical scrub in this work) was the most efficient ecosystem in water use in the 

NAM region based on time series analysis of rainfall data and time integrated-NDVI followed by 

Madrean Woodland (evergreen woodland). Finally, there is a clear distinction between land 

surface temperatures among the ecosystems found in the San Miguel River Basin. To illustrate 

this, evergreen woodland is significantly lower than the rest of the ecosystems during the 

simulation period. The high vegetation cover and soil moisture decreases surface albedo, hence; 

the amount of radiation scattered back to the atmosphere resulting in a decrease in surface 

temperature. Furthermore, the combination of high fraction of vegetation to bare soil, high soil 

moisture and creates a cooling effect related to release of latent heat. 

 

4.3.5 Spatial Distribution of Seasonal-Averaged Evapotranspiration and Soil Moisture 

Figure 4.8 shows the comparison between the basin-distribution of seasonal 

evapotranspiration and soil moisture. Upper part of the figure shows the comparison between 

summer (July, August and September) and winter (December, January and February) soil 

moisture.  Both summer and winter seasons have in common a wetter north region with a drier 

south interconnected by a very humid floodplain.  Soil moisture values in the summer ranges from 

0.056 located mainly in the south up to 0.51 in the floodplains. Undoubtedly, soil type is exerting a 

very strong control in the spatial distribution of soil moisture specially those soils with high 

porosity and low hydraulic conductivities such as lithosol with medium texture, xerosol with 

medium texture, regosol with medium texture and fluvisol with coarse texture. These soil types 



  112 

are characterized by a high capacity of water storage per volume of bulk material but they cannot 

release the water rapidly, therefore; they act as clay-rich soil with strong water retention 

properties. Main floodplain is composed of fluvisol and holds the highest values of soil moisture in 

the basin. Regosols and lithosol with medium texture can also act as a great reservoir of water in 

soil that is quite observable in the spatial distribution of soil moisture. In winter soil moisture 

values drastically drops to values ranging from 0.0094 to no more than 0.1074.  Conversely, 

basin evapotranspiration is not entirely controlled by soil type but also vegetation fraction is 

having a strong control on its distribution. Similarly to soil moisture, evapotranspiration values are 

much higher during the monsoon season than in winter time. However, the basin is not as clearly 

divided in two humid regimes (wet north and dry south) as in the case of soil moisture. Summer 

values ranges between 217 to 600 mm with larger ET values found in sparse woodland and 

agricultural areas. Low ET values are associated to high infiltration and soils like fluvisol with 

medium texture. This type of soil rapidly infiltrates water to deeper soil horizons where could not 

be up taken by plants roots and released back to the atmosphere.  This is clearly observable by 

identification of very los values in ET in the southern region of the basin.  ET during the winter 

showed a similar spatial distribution to the summer one. ET values ranged from 0 to 74 mm with 

high values distributed mainly in the riparian corridor and high elevation woodlands. 

 

4.3.6 Temporal and Spatial Evolution of the Ratio ET/P and Q/P 

Figure 4.9 shows the temporal and spatial evolution of the ratio evapotranspiration to 

precipitation (ET/P) during the summer season. The figure shows exclusively the average of the 

months July, August and September within the simulation period 2004 through 2010. In general, 

an increasing gradient from low to high values of the ratio ET/P is observed as the monsoon 

season progresses from July to August.  
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Figure 4.8. Spatial Distribution of Seasonal Evapotranspiration and Soil Moisture Averaged 
During the Simulation Period 2004-2010. Summer Season Encompasses the Months of July, 
August and September Whereas the Winter Season includes the Months of December, January 
and February. 
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In July, the beginning of the monsoon season, high ET/P are observed only in the 

riparian corridor and some agricultural regions in the north and south with most of the native 

vegetation is found with low values of ET/P because of whether precipitation is present is not 

overpassed by ET fluxes. Nevertheless, August start to increases the ratio ET/P extending from 

the subtropical vegetation in the south to the grasslands in the north. High elevations ecosystems 

(evergreen woodland) and soil dominated by medium textured fluvisols remained with very low 

values of the ratio ET/P. 

Figure 4.10 shows the temporal evolution of the ratio ET/P among different ecosystems 

found in the San Miguel River Basin. The plot shows monthly values of ET/P and standard 

deviation estimated during the simulation period 2004 through 2010. As observed, Grassland and 

sparse woodlands were consistently the ecosystems that showed larger values of ET/P, 

suggesting that these ecosystems are the main sources of basin moisture to the atmosphere. In 

other words, these two ecosystems can help to sustain the flux or feedback of moisture that can 

strength the monsoon. Some authors consider the ratio ET/P or Q/P as a proxy for precipitation 

recycling ratio (Savenije, 1996).  Conversely, subtropical scrublands and evergreen woodland 

showed very similar trending in the temporal evolution of the ratio ET/P during the monsoon. 

However, the evergreen woodlands showed the highest variability among ecosystems. 

Figure 4.11 shows the spatial an temporal evolution of the runoff coefficient (Q/P) during 

the monsoon season. The progression in the runoff ratio is expressed as monthly values 

averaged during the simulation period (2004-2010). It is clear that a there is a increase in the 

runoff ratio as the monsoon season progresses. In July, the entire San Miguel River Basin 

showed very low values of Q/P ranging from 0 through 0.05. However, as the monsoon 

progresses the run off ranges from 0.002 up to 0.35 in August and September. As observed in 

figure 4.11, there is a clear North-South trending in the run off ratio along the Basin where the 

highest ratios are located in the northern part and decreasing along the San Miguel River to the 

South. In General, The highest values were located a long the floodplain of the San Miguel River 

and in the Northern plains where grasslands and shrublands dominate. 
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Figure 4.9. Spatial and Temporal Evolution of the Ratio ET/P Averaged During the Simulation 
Period 2004-2010 in the San Miguel River Basin. 
 
 

 
 
Figure 4.10. Temporal Evolution and Variability of the Estimated Ratio ET/P in Different 
Ecosystems During The Monsoon Season. The Plot Shows the Monthly Average During the 
Period 2004-2010 Within The San Miguel River Basin. 
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Furthermore, There is a strong link between soil texture and values of run off ratio. This 

statement is evident in the floodplains where fluvisols and regosols are found and phaeozems in 

the north. These soil types are characterized by fine or medium texture with low to moderate 

values of hydraulic conductivity. Runoff ratio ranges from 0.26 to 0.35 in the floodplains during 

September (peak in run off production) while in the northern region runoff ratio ranges from 0.09 

to 0.26. 

 Figure 4.12 help us to understand the temporal progression of the runoff ratio among 

different ecosystems in the San Miguel River Basin. Furthermore, standard deviation accounts for 

monthly variability in the period 2004-2010. Overall, sparse woodlands (SS) and grasslands (G) 

showed higher runoff ratios among the dominant ecosystems in the San Miguel River Basin. Low 

vegetation fraction and soil characteristics could be reason for high runoff coefficient. In one 

hand, vegetation helps to attenuate rainfall intensity by intercepting rainfall in leaves and stems, 

hence, helps to retain water in the surface. If soil is exposed directly to rainfall and this latter 

overpasses the capacity of water infiltration, then runoff is produced. In addition, Grasslands and 

sparse woodlands are commonly found in regosol, fluvisols and phaoezems, characterized by 

slow hydraulic conductivities at the surface, then; delaying the rapid infiltration of water. 

Conversely, Evergreen woodlands, showed the lowest runoff ratios, except in September with 

values very similar to grasslands and sparse woodlands. Evergreen woodlands also were very 

variable in time, however; again in September showed values similar to grasslands. 

 

4.4. Summary and Conclusions 

 
We performed a multiyear hydrologic simulation (2004-2010) by incorporating vegetation 

seasonality at basin scale to evaluate the inter-annual variability in ecohydrological dynamics on 

the entire San Miguel River Basin. 
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Figure 4.11. Spatial and Temporal Evolution of the Ratio Q/P Averaged During the Simulation 
Period 2004-2010 in the San Miguel River Basin. 
 

 
 
Figure 4.12. Temporal Evolution and Variability of the Estimated Ratio Q/P in Different 
Ecosystems During the Monsoon Season. The Plot Shows the Monthly Average During the 
Period 2004-2010 Within the San Miguel River Basin. 
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The calibration and validation of the model tRIBS relied in observations from 9 hydro 

meteorological stations deployed in different ecosystems and soil types. Two set of remote 

sensing observations of soil moisture (2DSTAR) and land surface temperature were used to 

evaluate the spatial correlation with distributed model outputs. This work is one of the few that 

showed the evolution temporal and spatial evolution of the ratios ET/P (used as a proxy for 

precipitation recycling) and runoff ratio in semiarid areas. Furthermore, this work explores the role 

of the ecosystems found in San Miguel River Basin in sustaining moisture to the atmosphere 

(high ET/P) and producing runoff. Our most important findings in this work include: 

Incorporation of seasonal vegetation greening allows to see clear differences among 

ecosystems in water fluxes, for example; grasslands and sparse woodlands to return water to the 

atmosphere that suggest that these two ecosystems are important to sustain rainfall within the 

basin.  

There is an increasing capacity of the basin to return water to the atmosphere as ET/P 

increases with the progression of the monsoon season. Highest ET/P values were found in 

September with values ranging from 0.5 to 1. According to our results, Grasslands and Sparse 

woodlands are the ecosystems that potentially can contribute to sustain precipitation feedback 

due to high ET/P coefficients. 

There is an increasing capacity of the basin to increase the production of runoff (Q/P) as 

the monsoon season progresses. Similarly to ratio ET/P, the highest runoff ratios values were 

found in September with values ranging from 0.05 to 0.32.  

The hydrological model tRIBS can be used as a tool to identify with high rates of 

conversion of precipitation to evapotranspiration while others supported the production of runoff.  

These later statement is very important for the design of water resources management as well as 

decisions for stakeholders in water use planning.  
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CHAPTER 5 

GENERAL CONCLUSIONS AND FUTURE WORK 
 

This research work represents a step forward in hydrological model in the semiarid 

basins of the North American Monsoon (NAM) region. As previously mentioned, the basins 

located in the Northwestern part of Mexico, within the central portion of the NAM domain, 

experience dramatic changes in vegetation greening leading to sudden changes in surface 

conditions. Therefore, incorporating the temporal evolution of vegetation and transform it in model 

parameters represents a big challenge in hydrology. We have utilized a research model, the TIN-

based Real-Time Integrated Basin Simulator (tRIBS), to explore the impact of incorporation of 

vegetation greening at three different temporal and spatial scales on water fluxes. Furthermore, in 

our efforts to improve basin representation in the semiarid basins, we have tested model 

sensitivity to the different representations of the spatial distribution of soil textual properties and 

soil thickness. In the following we describe the main findings of this research work. 

Seasonal vegetation greening affects the partitioning of water and energy fluxes in arid 

and semiarid ecosystems under the influence of the North American monsoon. As a result, 

modeling applications that assume constant parameters or represent each summer with a fixed 

seasonal cycle can miss important vegetation impacts. We found good agreement between field 

observations of evapotranspiration and soil moisture and simulations from Dynamic scenarios, 

indicating that the hydrologic model can represent interannual differences in the water and energy 

fluxes in the two ecosystems. Furthermore, the model was able to estimate the temporal 

evolution of ET partition in the region by incorporating vegetation dynamics. Previous research 

works in the region only estimate partition of ET in very specific days during the onset of the 

monsoon season by isotopic composition (Tarin, 2014). However, we have used this limited 

dataset to corroborated our findings. Our ecohydrological modeling simulations found that 

subtropical scrublands, with rapid vegetation greening, had a ratio T/ET (fraction of 

evapotranspiration from plant transpiration) of 56 ± 9% over the five summer periods while oak-

savanna stands showed a T/ET ratio of only 18 ± 8%. Results described in this study identify the 
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implications of the two ecosystem types on the water and energy fluxes, specifically on 

evapotranspiration and its partitioning, which have not been previously known. Intermediate-

elevation subtropical scrublands have a high sensitivity to precipitation, primarily during the early 

development of the NAM, which allow them to quickly transition from soil- to vegetation-mediated 

losses to the atmosphere. In contrast, high-elevation oak savannas, with a lower sensitivity of 

canopy development to precipitation, have a slower transition from evaporation- to transpiration-

dominated periods. As a result, these extensive water users slowly deplete soil moisture during 

the NAM, preserving it for subsequent use to maintain greenness and transpiration during the fall. 

Surface soil texture exerted a strong control in surface soil moisture (5 cm depth). Wetter 

regions within SMRB were closely linked to textural classes with large water retention capacities 

such as clay-rich or sandy-loamy soils. Drier soils are closely linked to high infiltration capacities 

soils, similar to sandy soils with scarce vegetation. Root zone soil moisture was strongly 

controlled by spatial variability of soil thickness by creating soil depressions that retained 

subsurface water. The filling and spilling of these soil depressions greatly affected groundwater 

exfiltration, especially; when soil depressions were followed by shallow soil thickness. This 

problem arises in the approaches with complex subsurface topography such as Heimsath and 

Gessler, however; these two approaches are reliable alternatives to estimate distributed soil 

thickness particularly in basins with limited information and surveying may be labor intensive and 

expensive. Soil texture surveying using remotely sensed data was also another reliable 

alternative for remote basin with lack of soil information. The visible and thermal bands of the 

Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER) have demonstrated 

to be a reliable option for soil texture surveying. 

Soil texture exerted a strong control in spatial patterns of soil moisture and 

evapotranspiration during the transition from dry to wet conditions. Once vegetation vigor and 

cover fraction are dominating the basin, the influence of soil texture in controlling spatial patterns 

decreased and vegetation tended to smooth this spatial variability within the basin. 

The hydrological model tRIBS was also used as an important tool that allows us to 

understand the complexity of hydrological processes in semiarid areas. One important 
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contribution of the current research is the understanding of the temporal evolution of the ratios 

ET/P and Q/P. This work is one of the few that showed the temporal and spatial evolution of the 

ratios ET/P (used as a proxy for precipitation recycling) and runoff ratio in semiarid areas. 

Furthermore, this work explores the role of the ecosystems found in San Miguel River Basin in 

sustaining moisture to the atmosphere (high ET/P) and producing runoff. The incorporation of 

vegetation dynamics definitively plays a role in the organization of patterns closely related with 

ecosystems leading to variations in water fluxes. This research recognizes the importance of 

grasslands and sparse woodlands as important components in basin water balance. These two 

ecosystems obtained the highest averaged ET/P fractions during the monsoon season (June to 

September). In general, there is an increasing capacity of the basin to return water to the 

atmosphere as ET/P increases with the progression of the monsoon season. Highest ET/P values 

were found in September with values ranging from 0.5 to 1.  

Similarly, we found that the capacity of the basin to produce of runoff (Q/P) increases as 

the monsoon season progresses. Similarly to ratio ET/P, the highest runoff ratios values were 

found in September with values ranging from 0.05 to 0.32. The hydrological model tRIBS can be 

used as a tool to identify with high rates of conversion of precipitation to evapotranspiration while 

others supported the production of runoff.  Such differences in these ratios suggested that the 

ecosystems of the San Miguel River Basin could have different contributions to recycling of 

precipitation and runoff production. This finding expands our knowledge about the complex 

interactions between vegetation and water fluxes, which are very important in the development of 

sustainable management of water and ecosystem resources. 

In summary, this research work represents an important contribution in the study of the 

hydrology in semiarid areas. One big step forward in hydrological modeling is the incorporation of 

vegetation dynamics in the form of variables that affect the water balance. In this case remote 

sensing observations were transformed to model parameters to account for seasonal evolution of 

the vegetation. Secondly, we developed the parameterization of an ecohydrological model for 

very complex and dynamic ecosystems within the North American Monsoon Region. 

Furthermore, this research is an example that it is possible to overcome the problem of lack of 
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data by integrating different data sources. The integration of remote sensing, ground observations 

and ecohydrological models is crucial to understand the complex interactions in semiarid basins. 

For this reason the current work represents a milestone in understanding the semiarid basins in 

the NAM region. 

We recognize the limitations of the current research work and future work should be done 

in order to have a better understanding of the ecohydrological processes that can lead to better 

predictions. The transpiration fractions estimated in this work must be corroborated with other 

methodologies or approaches to estimate ET partition such as isotopic signal, sap flow or soil 

chambers. In addition, more ground observations are required to improve model calibration. 

These observation include close monitoring of vegetation phenology and a more accurate 

measurement of the fate of rainfall such as rainfall infiltration, interception by canopy, stem flow, 

channel losses and surface runoff.   

The results of this research can help to aware water agencies and academic institution 

the important to expand networks of hydrological and ecological observations in order to 

understand the complexity of semiarid basins. Better observations lead to better calibration and 

better predictions. In addition, we need to upgrade our soil sampling and topographic survey in 

the area. We recognize the power of developing models for the estimation of subsurface 

topography. However, the results of soil thickness in this work could be robust and more sampling 

is required, especially in the approaches that relay on the relation between curvature and soil 

thickness. 

 

 

 



  123 

REFERENCES 

 

Adams, D., Comrie, A. (1997). The North American Monsoon. Bulletin of the American 
Meteorological Society, 78: 2197-2213. 

 

Andersen,J., Dybkjaer, G., Jensen, K.H. , Refsgaard, J.C., Rasmussen, K. (2002). Use of 
remotely sensed precipitation and leaf area index in a distributed hydrological model, Journal 
of Hydrology, 264(1–4): 34-50 

 

Andre, F., Jonard, M., Ponette, Q. (2008). Precipitation water storage capacity in temperate 
mixed Oak-Beech canopy. Hydrological Processes, 22: 4130-4141. 

 

Apan, A., Kelly, R., Jensen, T., Butler, D., Strong, W., Basnet, B. (2002). Spectral discrimination 
of agricultural crops and soil moisture attributes using ASTER imagery. 11th ARSPC.  
Brisbane, Australia. 

 

Arora, V. (2002). Modeling vegetation as a dynamic component in soil-vegetation-atmosphere 
transfer schemes and hydrological models. Reviews of Geophysics, 40(2): 1-26. 

 

Baldocchi, D.D., Law, B.E., Anthoni, P.M. (2000). On measuring and modeling energy fluxes 
above the floor of a homogeneous and heterogeneous conifer forest. Agricultural and Forest 
Meteorology, 102: 187-206. 

 

Baldocchi, D.D., Xu, L. (2007). What limits evaporation from Mediterranean oak woodlands: The 
supply of moisture in the soil, physiological control by plants or the demand by the 
atmosphere? Advances in Water Resources, 30: 2113-2122. 

 

Batjes, N.H. (2009). Harmonized soil profile data for applications at global and continental scales: 
Updates to the WISE database. Soil Use and Management, 25: 124-127. 

 

Bertoldi, G., R. Rigon, and T. M. Over, (2006). Impact of watershed geomorphic characteristics 
on the energy and water budgets. Journal of Hydrometeorology, 7, 389–403. 

 
Beven K. J., Kirby, M.J. (1979). A physically based variable contributing area model of basin 

hydrology , Hydrological Sciences. Bulletin, 24:43-69. 
 

Bindlish, R., Jackson, T.J., Gasiewski, A.J., Stankov, B., Cosh, M.H., Mladenova, I., Vivoni, E.R., 
Lakshmi, V., Watts, C.J., Keefer, T. (2008). Aircraft-based soil moisture retrievals in mixed 
vegetation and topographic conditions. Remote Sensing of Environment, 112: 375-390. 

 

Boegh, R.N. Poulsen, M. Butts, P. Abrahamsen, E. Dellwik, S. Hansen, C.B. Hasager, A. Ibrom, 
J.-K. Loerup, K. Pilegaard, H. Soegaard, (2009). Remote sensing based evapotranspiration 



  124 

and runoff modeling of agricultural, forest and urban flux sites in Denmark: From field to 
macro-scale, Journal of Hydrology, 377(3–4): 300-316. 

 

Blake, G.R. (1965). Bulk density, Methods of Soil Analysis, part 1, American Society of 
Agronomy. 

 

Brito-Castillo, L., Douglas, A. V., Leyva-Contreras, A. and Lluch-Belda, D. (2003), The effect of 
large-scale circulation on precipitation and streamflow in the Gulf of California continental 
watershed. International Journal of Climatology, 23: 751–768. doi: 10.1002/joc.913. 

 

Brown, D. (1994). Biotic Communities: Southwestern United States and Northwestern Mexico. 
University of Utah Press. 315 pages. 

 

Brunsell, N.A. (2006). Characterization of land surface precipitation feedback regimes with 
remote sensing.  Remote sensing of Environment, 100, 200-211. 

 

Campbell Scientific, Inc. (2012). Soil heat flux plate model HFP01. Instruction manual. 18 pp. 
 

Carleton, A.M. (1986). Sypoptic-dynamic character of bursts and break in the southwest U.S. 
summer precipitation singularity. Journal of Climatology, 6, 605-623. 

 

Carlson, T.N., Ripley, D.A. (1997). On the relation between NDVI, fractional vegetation cover, and 
leaf area index. Remote Sensing of Environment, 62: 241-252. 

 

Carlyle-Moses, D.E., Price, A.G. (2007). Modeling canopy interception loss from a Madrean pine-
oak stand, Northeastern Mexico. Hydrological Processes, 21: 2572-2580. 

 

Catani, F., Segoni, S., Falorni, G. (2010). An empirical geomorphology-based approach to the 
spatial prediction of soil thickness at catchment scale, Water Resources Research, 
46:W05508. 

 

Cavanaugh, M., Kurc, S., Scott, R.L. (2011). Evapotranspiration partitioning in semiarid shrubland 
ecosystems: a two-site evaluation of soil moisture control on transpiration. Ecohydrology, 4: 
671-681. 

 

Clapp, R., Hornberger, M.G. (1978). Empirical equations for some hydraulic properties. Water 
Resources Research, 14:4, 601-604. 

 

Cleugh, H.A., Leuning, R., Mu, Q., Running, S.W. (2007). Regional evaporation estimates from 
flux tower and MODIS satellite data. Remote Sensing of Environment, 106: 285-304. 

 



  125 

Cosgrove, B., Lohmann, D., Mitchell, K.E., Houser, P.R., Wood, E., Schaake, J.C., Robock, A., 
Marshall, C., Sheffield, J., Duan, Q., Luo, L., Higgins, R.W., Pinker, R., Tarpley, J.D., Meng, 
J. (2003). Real-time and retrospective forcing in the North American Land Data Assimilation 
System (NLDAS) project. Journal of Geophysical Research, 108:D22, 8842. 

 

Deardorff, J.W. (1978). Efficient prediction of ground surface temperature and moisture with 
inclusion of a layer of vegetation. Journal of Geophysical Research, 82: 1889-1903. 

 

Descroix, L., Nouvelot, J.F., Vauclin, M. (2002). Evaluation of an antecedent precipitation index to 
model runoff yield in the western Sierra Madre (North-west Mexico). Journal of Hydrology, 
263: 114-130. 

 

Dickinson, W. (2002). The Basin and range province as a composite extensional domain. 
International Geology Review, 44: 1-38. 

 
Dietrich, W., D. Bellugi, L. Sklar, J. Stock, A. Heimsath, and J. Roering (2003), Geomorphic 

transport laws for predicting landscape forms and dynamics, in Prediction in Geomorphology, 
Geophysical. Monograph Series, vol. 135, pp. 103–132, doi:10.1029/135GM09. 

 

Dirmeyer, Paul A., Randal D. Koster, Zhichang Guo, (2006). Do Global Models Properly 
Represent the Feedback between Land and Atmosphere?. Journal of Hydrometeorology, 7, 
1177–1198. 

 

Dominguez, F., Kumar, P., Vivoni, E.R. (2008). Precipitation recycling and ecoclimatological 
stability. A study using NARR data. Part II: North American monsoon region. Journal of 
Climate. 21: 5187-5203. 

 

Douglas, W.M., Maddox, A.R., Howard, K., Reyes, S. (1993). The Mexican monsoon. Journal of 
Climate, 6: 1665-1677. 

 

Dorman, J.L., Sellers, P.J. (1989). A global climatology of albedo, roughness length and stomatal 
resistance for atmospheric general circulation models as represented by Simple Biosphere 
Model (SiB). Journal of Applied Meteorology, 28: 833-855. 

 

Douglas, W.M., Maddox, A.R., Howard, K., Reyes, S. (1993). The Mexican monsoon. Journal of 
Climate, 6: 1665-1677. 

 

Droogers, P. and Kite, G. (2002), Remotely sensed data used for modelling at different 
hydrological scales. Hydrological Processes, 16: 1543–1556. doi: 10.1002/hyp.1019. 

 

Dunne, T. and Black, R. D. (1970). An experimental investigation of runoff production in 
permeable soils, Water Resources Research, 6(2), 478– 490. 

 



  126 

English, N.B., Weltzin, J.F., Fravolini, A., Thomas, L., Williams, D.G. (2005). The influence of soil 
texture and vegetation on soil moisture under rainout shelters in a semidesert grassland. 
Journal of Arid Environments, 63:324-343. 

 

Eltahir, E.A.B., Bras, R.L. (1993). A description of rainfall interception over large areas. Journal of 
Climate, 6: 1002-1008. 

 

Eltahir, E.A.B. (1998). A soil moisture-rainfall feedback mechanism: 1. Theory and observations. 
Water Resources Research, 34(4): 765-776. 

 

Feddes, R.A., Kowalik, P.J., Zaradny, H. (1978). Simulation of Field Water Use and Crop Yield. 
John Wiley, New York, NY, 188 pp. 

 

Fensholt, R., Sanholt, I., Schultz, M. (2004). Evaluation of MODIS LAI, fAPAR and the relation 
between fAPAR and NDVI in a semiarid environment using in situ measurements. Remote 
Sensing of Environment, 91: 490-507. 

 

Frank, J., Massman, W., Ewers, B. (2013). Underestimates of sensible heat flux due to vertical 
velocity measurement errors in non-orthogonal sonic anemometers. Agricultural and Forest 
Meteorology, 171-172: 72-81. 

 

Forzieri, G., Castelli, F., Vivoni, E.R. (2011). Vegetation dynamics within the North American 
Monsoon Region. Journal of Climate. 24(6): 1763-1783. 

 

Freeze, R.A., Cherry, J.A. (1979), Groundwater, Prentice Hall. Pp: 35-52. 
 

Gebremichael, M., Vivoni, E.R., Watts, C.J. and Rodríguez, J.C. (2007). Sub-mesoscale 
spatiotemporal variability of North American monsoon rainfall over complex terrain. Journal of 
Climate, 20(9): 1751-1773. 

 

Gee, G. W., Bauder, J. W. (1986). Particle-size Analysis, in: Methods of Soil Analysis, Part 1. Soil 
Science Society of America. Book Series 5, 2nd edition., Madison, pp. 383–411. 

 

Gessler P.E., Moore, I.D., McKenzie, N.J., Ryan, P. 1995. Soil-landscape modeling and spatial 
prediction of soil attributes, International Journal of Geographical Information Systems, 9(4): 
421-432. 

 

Gochis, D.J., Brito-Castillo, L., Shuttleworth, W.J. (2006). Hydroclimatology of the North American 
Monsoon region in northwest Mexico. Journal of Hydrology, 316: 53-70. 

 

Gochis, D.J., Vivoni, E.R., Watts, C. (2010). The impact of soil depth on land surface energy and 
water fluxes in the North American Monsoon region, Journal of Arid Environments, 74: 564-
571. 



  127 

 
Gutzler, D.S. (2004). An index of interannual precipitation variability in the core of the North 

American monsoon region. Journal of Climate, 17: 4473-4480.  
 

Heimsath, A.M., Dietrich, W.E., Nishiizumi, K., Finkel, R.C. (1999). Cosmogenic nuclides, 
topography, and the spatial variation of soil depth: Geomorphology, 27: 151-172. 

 

Higgins, R.W., Shi, W. (2001). Intercomparison of the principal modes of interanual and 
intraseasonal variability of the North American monsoon system. Journal of Climate, 14: 403-
417. 

 

Horton, R. E. (1933). The role of infiltration in the hydrological cycle, Trans. AGU, 14, 446–460. 
 

Hursh, C. R. and Brater, E. F. (1941). Separating storm-hydrographs form small drainage-areas 
into surface and subsurface flow, Trans. AGU, 22, 863–870. 

 

Huxman, T.E., Cable, J.M., Ignace, D.D., Eilts, A.J., English, N.B., Weltzin, J., Williams, D.G., 
(2004). Response of net ecosystem gas exchange to a simulated precipitation pulse in a 
semi-arid grassland: the role of native and non-native grasses and soil texture. Oecologia 
141, 295–305. 

 

Irmak, S., Mutiibwa, D., Irmak, A., Arkebauer, T.J., Weiss, A., Martin, D.L., Eisenhauer, D.E. 
(2008). On the scaling up leaf stomatal resistance to canopy resistance using photosynthetic 
photon flux density. Agricultural and Forest Meteorology, 148: 1034-1044. 

 

Ivanov, V.Y., Vivoni, E.R., Bras, R.L., Entekhabi, D. (2004). Catchment hydrologic response with 
a fully distributed triangulated irregular network model. Water Resources Research, 40: 
W11102, doi: 10.1029/2004WR003218. 

 

Ivanov, V.Y., Bras, R.L., Vivoni, E.R. (2008). Vegetation-hydrology dynamics in complex terrain of 
semiarid areas. I. A mechanistic approach to modeling dynamic feedbacks. Water Resources 
Research, 44: W03429, doi:10.1029/2006WR005588. 

 

Jasechko, S., Sharp, Z., Gibson, J., Birks, S.J., Fawcett, P. (2013). Terrestrial water fluxes 
dominated by transpiration, Nature, 496: 347–350. doi:10.1038/nature11983. 

 

Jenson, K.S., Domingue,J.O.(1988). Extracting topographic structure from digital elevation data 
for geographic information system analysis. photogrammetric engineering and remote 
sensing, 54(11):1593-1600. 

 

Kochendorfer, J., Meyers, T.P., Frank, J., Massman, W.J., Heuer, M.W. (2012). How well can we 
measure the vertical wind speed? Implications for fluxes of energy and mass. Boundary 
Layer Meteorology, 145(2): 383-398. 

 



  128 

Kustas, W.P., Prueger, J.H., Hatfield, J.L., Ramalingam, K., Hipps, L.E. (2000). Variability in soil 
heat flux from a mesquite dune site. Agricultural and Forest Meteorology, 103: 249-264. 

 
Lanni, C., McDonnell, J., Hopp, L. and Rigon, R. (2013), Simulated effect of soil depth and 

bedrock topography on near-surface hydrologic response and slope stability. Earth Surf. 
Process. Landforms, 38: 146–159. doi: 10.1002/esp.3267. 

 

Lapham, W.W. (1989). Use of temperature profiles beneath streams to determine rates of vertical 
groundwater flow and vertical hydraulic conductivity. USGS Water Supply Paper 2337, 1-35. 

 

Lawrence, D., Thornton, P., Oleson, K., Bonan, G. (2007). The partition of evapotranspiration into 
transpiration, soil evaporation, and canopy evaporation in GCM: Impacts on land-atmosphere 
interactions. Journal of Hydrometeorology, 8: 862-880. 

 

Lee, X., Finnigan, J., Paw U, K.T. (2004). Coordinate systems and flux bias error. In: Handbook 
of Micrometeorology: A Guide for Surface Flux Measurements, eds. Lee, X., Massman, W.J., 
Law, B.E. Dordrecht, The Netherlands: Kluwer Academic, pp. 33-66. 

 

Liao, K., Xu, S., Wu, J., Zhu, Q. (2014). Spatial estimation of surface soil texture using remote 
sensing data. Soil Science and Plant Nutrition. 59:4, 488-500. 

Liebmann, B., Blade, I., Bond, N., Gochis, D., Allured, D., Bates, G.T. (2008). Characteristics of 
North American summertime rainfall with emphasis on the monsoon. Journal of Climate. 21: 
1277-1294. 

 

Lizárraga-Celaya, C., Watts, C.J., Rodríguez, J.C., Garatuza- Payán, J., Scott, R.L., Sáiz-
Hernández, J.A. (2010). Spatio-temporal variations in surface characteristics over the North 
American monsoon region. Journal of Arid Environments, 74: 540-548. 

 

Maass, J.M., Vose, J.M., Swankb, W., Martinez-Yrizar, A. (1995). Seasonal changes of leaf area 
index (LAI) in a tropical deciduous forest in west Mexico. Forest Ecology and Management, 
74: 171-180. 

 

Mahfouf, J.-F., Ciret, C., Ducharne, A., Irannejad, P., Noilhan, J., Shao, Y., Thorton, P., Xue, Y., 
Yang, Z.-L. (1996). Analysis of transpiration results from the RICE and PILPS Workshop. 
Global and Planetary Change, 13: 73-88. 

 

Mascaro, G., Vivoni, E.R., Gochis, D.J., Watts, C.J. and Rodriguez, J.C. (2014). Temporal 
Downscaling and Statistical Analysis of Rainfall across a Topographic Transect in Northwest 
Mexico. Journal of Applied Meteorology and Climatology. 53(4): 910-927. 

 

Massman, W.J., Lee, X. (2002). Eddy covariance flux corrections and uncertainties in long-term 
studies of carbon and energy exchanges. Agricultural and Forest Meteorology, 113: 121-144. 

 



  129 

Matsui, T., Lakshmi, V., Small, E.E. (2005). The effects of satellite derived vegetation cover 
variability on simulated land-atmosphere interactions in the NAMS. Journal of Climate, 18: 
21-40. 

 

Mauder, M., Foken, T. (2004). Documentation and instruction manual of the eddy covariance 
software package TK2. Universität Bayreuth, Abt. Mikrometeorologie, 26, 44 pp. 

 

Meek, D.W., Hatfield., J.L., Howell, T.A., Idso, S.B., Reginato, R.J. (1984). A generalized 
relationship between photosynthetically active radiation and solar radiation, Agronomy 
Journal, 76: 939-945. 

 

Méndez-Barroso, L.A., Vivoni, E.R., Watts, C.J., Rodríguez, J.C. (2009). Seasonal and 
interannual relations between precipitation, soil moisture and vegetation dynamics in the 
North American monsoon region. Journal of Hydrology, 377: 59-70. 

 

Méndez-Barroso, L.A., Vivoni, E.R. (2010). Observed shift in land surface conditions during the 
North American monsoon: Implications for a vegetation-rainfall feedback mechanism. Journal 
of Arid Environments, 74: 549-555. 

 

Méndez-Barroso, L.A., Vivoni, E.R., Robles-Morúa, A., Mascaro, G., Yépez, E.A., Rodriguez, 
J.C., Watts, C.J., Garatuza-Payan, J., Saiz-Hernandez, J.A. (2014). A modeling approach 
reveals differences in evapotranspiration and its partitioning in two semiarid ecosystems in 
Northwest Mexico. Water Resources Research, 50, doi:10.1002/2013WR014838. 

 

Mielnick, P., Dugas, D.A., Mitchell, K., Havstad, K. (2005). Long-term measurements of CO2 flux 
and evapotranspiration in a Chihuahuan desert grassland. Journal of Arid Environments, 60: 
423-436. 

 

Mitchell, K.E., and coauthors. (2004). The multi-institution North American Land Data Assimilation 
System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed 
hydrological modeling system. Journal of Geophysical Research, 109: D07S90, 
doi:10.1029/2003JD003823. 

 

Moncrieff, J.B., Jarvis, P.G., Valentini, R. (2000). Canopy fluxes. In: Methods in Ecosystem 
Science (Sala, O.E., Jackson, R.B., Mooney, H.A., Howarth, R.W. eds. Springer-Verlag, New 
York, NY, pp. 161-181.  

 

Moore, I.D., Gessler, P.E., Nielsen, G.A. Petersen, G.A. (1993). Soil attribute prediction using 
terrain analysis, Soil Science Society of America Journal, 57: 443-452. 

 

Moran, M.S., Scott, R.L., Keefer, T.O., Emmerich, W.E., Hernandez, M., Nearing, G.S., Paige, 
G.B., Cosh., M.H., O'Neill, P.E. (2009). Partitioning evapotranspiration in semiarid grassland 
and shrubland ecosystems using time series of soil surface temperature. Agricultural and 
Forest Meteorology, 149: 59-72. 

 



  130 

Návar, J., Synnott, T. (2000). Surface runoff, soil erosion and land use in northeastern Mexico. 
TERRA Latinoamericana. 18:3, 247-253. 

 

Newman, B.D., Wilcox, B.P., Archer, S., Breshears, D.D., Dahm, C.N., Duffy, C.J., McDowell, 
N.G., Phillips, F.M., Scanlon, B.R., Vivoni, E.R. (2006). The ecohydrology of arid and 
semiarid environments: A scientific vision. Water Resources Research, 42: W06302, 
doi:10.1029/2005WR004141. 

 

Nicótina, L., D. G. Tarboton, T. K. Tesfa, and A. Rinaldo (2011), Hydrologic controls on 
equilibrium soil depths, Water Resources Research, 47, W04517, 
doi:10.1029/2010WR009538. 

 

Noy-Meir, I. (1973). Desert Ecosystems: Environment and Producers. Annual Review of Ecology 
and Systematics, 4: 25-51. 

 

Notaro, M., Gutzler, D. (2012). Simulated impact of vegetation on climate across the North 
American Monsoon region in CCSM3.5. Climate Dynamics, 38: 795-814. 

 

Oleson, K. W., and Coauthors, (2004). Technical description of the community land model (CLM). 
NCAR Tech. Note NCAR/TN-461+STR, 186 pp. 

 

Peel, M.C., Finlayson, B.L, McMahon, T.A. (2007). Updated world map of the Köppen-Geiger 
climate classification. Hydrology and Earth System Science, 11: 1633-1644. 

 

Pelletier, J. D., and C. Rasmussen (2009), Geomorphically based predictive mapping of soil 
thickness in upland watersheds, Water Resources Research, 45, W09417, 
doi:10.1029/2008WR007319. 

 

Pereira, F.L., Gash, J.H.C., David, J.S., David, T.S., Monteiro, P.R., Valente, F. (2009). Modelling 
interception loss from evergreen oak Mediterranean savannas: Application of a tree-based 
modelling approach. Agricultural and Forest Meteorology, 149(3-4): 680-688. 

 

Perevochtchikova M. (2009). Retos de la información del agua en Mexico para una mejor 
gestión. Realidad, datos y espacio: Revista internacional de estadística y geografía. 4(1): 42-
57. 

 

Perevochtchikova M. (2011). El Uso del dato obtenido del monitoreo hidroclimatologico: el caso 
de la cuenca del valle de Mexico en: Oswald,U. Retos de la Investigacion del agua en 
Mexico, Mexico, CRIM-UNAM: 77-87. 

 

Pitman, J.I. (1989). Rainfall interception by bracken in open habitats relations between leaf area, 
canopy storage and drainage rate. Journal of Hydrology, 105: 317-334. 

 



  131 

Privette, J.L., Myneni, R.B., Knyazikhin, Y., Mukelabai, M., Roberts, G. (2002). Early spatial and 
temporal validation of MODIS LAI product in the Southern Africa Kalahari. Remote Sensing of 
Environment, 83: 232-243. 

 

Rawls, W.J, Brakensiek, D.L. (1989) Estimation of soil water retention and hydraulic properties In: 
Unsaturated Flow in Hydrologic Modeling: Theory and Practice, Kluwer Academic Publishing, 
Dordrecht, pp. 275-300. 

 

Rawls, W.J., Brakensiek, D.L., Miller, N. (1983). Green-Ampt infiltration parameters from soils 
data. Journal of Hydraulic Engineering, 109(1): 62-70. 

 

Raz-Yaseef, N., Yakir, D., Schiller, G., Cohen, S. (2012). Dynamics of evapotranspiration 
partitioning in a semi-arid forest as affected by temporal rainfall patterns. Agricultural and 
Forest Meteorology, 157: 77-85. 

 

Reynolds, J.F., Kemp, P.R., Tenhunen, J.D. (2000) Effects of long-term rainfall variability on 
evapotranspiration and soil water distribution in the Chihuahuan Desert: A modeling analysis. 
Plant Ecology, 150: 145-159. 

 

Richardson A.D., Keenan, T., Migliavacca, M., Ryu, Y., Sonnentag, O., Toomey, M. (2013). 
Climate change, Phenology and phenological control of vegetation feedbacks to the climate 
system. Agricultural and Forest Meteorology 169: 156-173. 

 

Robles-Morúa, A., Vivoni, E.R., Mayer, A. (2012). Distributed hydrologic modeling in Northwest 
Mexico reveals the links between runoff mechanisms and evapotranspiration. Journal of 
Hydrometeorology, 13: 785-807. 

 

Robles-Morúa, A., Che, D., Mayer, A.S., and Vivoni, E.R. (2014). Hydrologic Assessment of 
Proposed Reservoirs in the Sonora River Basin, Mexico, under Historical and Future Climate 
ScenariosHydrological Sciences Journal. (In Press). DOI:10.1080/02626667.2013.878462. 

 

Rodriguez-Iturbe, I., A. Porporato, L. Ridolfi, V. Isham, and D. Cox (1999), Probabilistic modelling 
of water balance at a point: The role of climate soil and vegetation, Proc. R. Soc. London, 
Ser. A, 455, 3789 – 3805. 

 
Rodríguez-Iturbe, I., Porporato, A., Laio, F., Ridolfi, L. (2001). Intensive versus extensive use of 

soil moisture: plant strategies to cope with stochastic water availability. Geophysical 
Research Letters, 28: 4495-4497. 

 

Rutter, A.J., Kershaw, K.A., Robins, P.C., Morton, A.J. (1971). A predictive model of rainfall 
interception in forests: 1. Derivation of the model from observation in a plantation of Corsican 
pine. Agricultural Meteorology, 9: 367-384. 

 



  132 

Ryu D., Jackson, T.J., Bindlish, R., Le Vine D.M., Hacken, M. (2010). Soil moisture retrieval using 
a two-dimensional L-band synthetic aperture radiometer in a semiarid environment. IEEE 
Transactions on Geoscience and Remote Sensing, 48(12): 4273-4283. 

 

Ryu, Y., Verfaille, J., Macfarlane, C., Kobayashi, H., Sonnentag, O., Vargas, R., Ma, S., 
Baldocchi, D. (2012). Continuous observations of tree leaf area index at ecosystem scale 
using upward-pointing digital cameras. Remote Sensing of Environment, 126: 115-125. 

 

Saulnier, G.M., Beven, K., Obled, C. (1997). Including spatially variable effective soil depths in 
TOPMODEL. Journal of Hydrology, 202: 158-172. 

 

Sala, O.E., Parton, W.J. Lauenroth, W.K. Joyce, L.A. (1988). Primary production of the central 
grasslands region of the United States. Ecology, 69: 40-45. 

 

Savenije, H.H.G. (1996).The runoff coefficient as the key to moisture recycling. Journal of 
Hydrology, 176: 219-225. doi:10.1016/0022-1694(95)02776-‐‑9. 

 

Saxton, K.E., Rawls, W.J. (2006). Soil water characteristics estimates by texture and organic 
matter for hydrologic solutions. Soil Science Society of America Journal, 70: 1569-1578. 

 

Sellers, P.J., Randall, D.A., Collatz, G.J., Berry, J.A., Field, C.B., Dazlich, D.A., Zhang, C., 
Collelo, G.D., Bounoua, L. (1996) A revised land surface parameterization (SiB2) for 
atmospheric GCMs. Part 1: Model formulation, Journal of Climate, 9: 676-705. 

 

Schaap, M.G., Shouse, P.J., Meyer, P.D. (2003). Laboratory measurements of the unsaturated 
hydraulic properties at the vadose zone transport field study. Pacific Northwest National 
Laboratory. Report #PNNL-14284, Richland, WA, 73 pp. 

 

Schulze, E.D., Leuning, R., Kelliher, F.M. (1995). Environmental regulation of surface 
conductance for evaporation from vegetation, Vegetatio, 121: 79-87. 

 

Scott, R.L., Edwards, E.A., Shuttleworth, W.J., Huxman, T.E., Watts, C.J., Goodrich, D.C. (2004). 
Interannual and seasonal variations in fluxes of water and carbon dioxide from a riparian 
woodland ecosystem. Agricultural and Forest Meteorology, 122: 64-84.  

 

Scott, R.L., Huxman, T.E., Cable, W.L., Emmerich, W.E. (2006). Partitioning of 
evapotranspiration and its relation to carbon dioxide exchange in a Chihuahuan desert 
shrubland. Hydrological Processes, 20: 3227-3243. 

 

Seyfried, M.S., Murdock, M.D. (2004). Measurement of soil water content with a 50-MHz soil 
dielectric sensor. Soil Science Society of America Journal, 68: 394-403. 

 



  133 

Shuttleworth, W.J. (1992). Evaporation. In Handbook of Hydrology, edited by D. R. Maidment, pp. 
4.11 – 4.18, McGraw-Hill, New York, NY.  

 

Stannard, D.I., Weltz, M.A. (2006). Partitioning evapotranspiration in sparsely vegetated 
rangeland using a portable chamber. Water Resources Research, 42: W02413, 
doi:10.1029/2005WR004251. 

 

Sugiyama, S., Yoneyama, M., Takahashi, N., Gotoh, K. (1985). Canopy structure and productivity 
of Festuca arundinacea Schreb. during vegetative and reproductive growth. Grass Forage 
Science, 40: 49-55. 

 

Sullivan, D.G., Shaw, N.J., Rickman, D. (2005). IKONOS imagery to estimate surface soil 
property variability in two Alabama Physiographies, Soil Science Society of America Journal, 
69: 1789-1798. 

 

Sutanto, S. J., Wenninger, J., Coenders-Gerrits, A. M. J., and Uhlenbrook, S. (2012). Partitioning 
of evaporation into transpiration, soil evaporation and interception: a comparison between 
isotope measurements and a HYDRUS-1D model, Hydrology and Earth System Science, 16, 
2605-2616, doi:10.5194/hess-16-2605-2012. 

 

Tang, Q., Vivoni, E.R., Munoz-Arriola, F. and Lettenmaier, D.P. (2012). Predictability of 
evapotranspiration patterns using remotely-sensed vegetation dynamics during the North 
American monsoon. Journal of Hydrometeorology, 13: 103-121. 

 

Tarboton, D. G., (2003),  Terrain Analysis Using Digital Elevation Models in Hydrology, 23rd ESRI 
International Users Conference, San Diego, California, July 7-11. 

 

Tarín, T.T., Yépez, E.A., Garatuza-Payán, J., Watts, C.J., Rodríguez, J.C., Vivoni, E.R., Méndez-
Barroso, L.A. (2014). Evapotranspiration partitioning with stable isotopes in ecohydrological 
studies. Water Technology and Sciences, 5(3): (In Press). 

 

Tromp-van Meerveld, H.J., McDonnell, J.J. (2006). On the interrelations between topography, soil 
depth, soil moisture, transpiration rates and species distribution at the hillslope scale, 
Advances in Water Resources, 29(2): 293-310. 

 

Unland, H., Houser, P.R., Shuttleworth, J.W/, Yang, Z.L. (1996). Surface flux measurement and 
modeling at a semi-arid Sonoran Desert site, Agricultural and Forest Meteorology, 82(1-
4):119-153. 

 

Van den Hurk, B.J.J.M., Viterbo, P., Los, S.O. (2003). Impact of leaf area index seasonality on 
the annual land surface evaporation in a global circulation model. Journal of Geophysical 
Research, 108(D6): 4191. 

 



  134 

Van Genuchten, M.T. (1980). Predicting the hydraulic conductivity of unsaturated soil. Soil 
Science Society of America Journal, 44: 892-898. 

 

Vargas, R., Yépez, E.A., Andrade, J.L., Angeles, G., Arredondo, T., Castellanos, A.E., Delgado, 
J., Garatuza-Payán, J., Gonzalez del Castillo, E., Oechel, W., Sanchez-Azofeifa, A., Velasco, 
E., Vivoni, E.R., Watts, C.J. (2013). Progress and opportunities for monitoring greenhouse 
gases fluxes in Mexican ecosystems: The MexFlux Network. Atmósfera, 26(3): 325-336.   

 

Viramontes, D. and Descroix, L. (2003), Changes in the surface water hydrologic characteristics 
of an endoreic basin of northern Mexico from 1970 to 1998. Hydrological Processes, 
17: 1291–1306. doi: 10.1002/hyp.1285. 

 

Vivoni, E.R., Entekhabi, D., Bras, R.L., Ivanov, V.Y. (2007a). Controls on runoff generation and 
scale-dependence in a distributed hydrologic model. Hydrology and Earth System Sciences, 
11(5): 1683-1701. 

 

Vivoni, E.R., Gutiérrez-Jurado, H.A., Aragón, C.A., Méndez-Barroso, L.A., Rinehart, A.J., 
Wyckoff, R.L., Rodríguez, J.C., Watts, C.J., Bolten, J.D., Lakshmi, V., Jackson, T.J. (2007b). 
Variation of hydrometeorological conditions along a topographic transect in northwestern 
Mexico during the North American monsoon. Journal of Climate, 20(9): 1792-1809. 

 

Vivoni, E.R., Entekhabi, D., Bras, R.L., Ivanov, V.Y. (2007c). Controls on runoff generation and 
scale-dependence in a distributed hydrologic model, Hydrology and Earth System Sciences, 
11: 1683-1701. 

 

Vivoni, E.R., Moreno, H.A., Mascaro, G., Rodríguez, J.C., Watts, C.J., Garatuza-Payán, J., Scott, 
R.L. (2008). Observed relation between evapotranspiration and soil moisture in the North 
American monsoon region. Geophysical Research Letters, 35: L22403, doi:  
10.1029/2008GL036001. 

 

Vivoni, E.R., Rodríguez, J.C., Watts, C.J. (2010). On the spatiotemporal variability of soil moisture 
and evapotranspiration in a mountainous basin within the North American monsoon region. 
Water Resources Research, 46: W02509, doi:10.1029/2009WR008240.  

 

Vivoni, E.R., Mascaro, G., Mniszewski, S., Fasel, P., Springer, E.P., Ivanov, V.Y., Bras, R.L. 
(2011). Real-world hydrologic assessment of a fully-distributed hydrological model in a 
parallel computing environment. Journal of Hydrology, 409: 483-496. 

 

Vivoni, E.R. (2012). Diagnosing seasonal vegetation impacts on evapotranspiration and its 
partitioning at the catchment scale during SMEX04-NAME. Journal of Hydrometeorology, 13: 
1631-1638. 

 

Wagener T, Sivapalan M, Troch PA, McGlynn BL, Harman CJ, Gupta HV, Kumar P, Rao SC, 
Basu NB, Wilson JS. (2010). The future of hydrology: an evolving science for a changing 
world. Water Resources Research 46: 1–10. 



  135 

 

Watts, C.J., Scott, R.L., Garatuza-Payán, J., Rodríguez, J.C., Prueger, J.H., Kustas, W.P., 
Douglas, M. (2007). Changes in vegetation condition and surface fluxes during NAME 2004. 
Journal of Climate, 20: 1810-1820. 

 

Webb, E.K., Pearman, G.I., Leuning, R. (1980). Correction of flux measurements for density 
effects due to heat and water vapour transfer. Quarterly Journal of Royal Meteorology 
Society, 106: 85-100.  

 

Weiler, M., McDonnell, J.J. (2006). Testing nutrient flushing hypotheses at the hillslope scale: A 
virtual experiment approach, Journal of Hydrology, 319(1–4): 339-356. 

 
Weyman, D. R. (1970). Throughflow on hillslopes and its relation to the stream hydrograph, 

Hydrological Science Bulletin, 15, 25–33. 
 

Wigmosta, M.S., Vail, L., Lettenmaier, D.P. (1994). A distributed hydrology-vegetation model for 
complex terrain. Water Resources Research, 30: 1665-1679. 

 

Wilcox, B. P., and Y. Huang (2010), Woody plant encroachment paradox: Rivers rebound as 
degraded grasslands convert to woodlands, Geophys. Res. Lett., 37, L07402, 
doi:10.1029/2009/GL041929. 

 

Wilczak, J.M., Oncley, S.P., Stage, S.A. (2001). Sonic anemometer tilt correction algorithms. 
Boundary-Layer Meteorology, 99: 127-150. 

 

Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D. (2002). Energy balance closure at 
FLUXNET sites. Agricultural and Forest Meteorology, 113: 223-243. 

 

Wilson, J.L., Guan. H. (2004). Mountain-block hydrology and mountain front recharge. In 
Groundwater recharge in a desert environment: The southwestern United States. Water 
Science and Applications 9. American Geophysical Union, Washington, DC, pp. 113-137. 

 

Xiang, T., Vivoni, E.R., Gochis, D.J. (2014). Seasonal evolution of ecohydrological controls on 
land surface temperature over complex terrain. Water Resources Research, 50: 3852-
3874.doi:/10.1002/2013WR014787. 

 

Yan, H., Wang, S.Q., Billesbach, D., Oechel, W., Zhang, J.H., Meyers, T., Martin, T.A., Matamala, 
R., Baldocchi, D., Bohrer, G., Dragoni, D., Scott, R.L. (2012). Global estimation of 
evapotranspiration using a leaf area index-based surface energy and water balance model. 
Remote Sensing of Environment, 124: 581-595. 

Yang, Y., Scott, R.L., Shang, S. (2013). Modeling evaporation and its partitioning over a semiarid 
shrub ecosystem from satellite imagery: A multiple validation. Journal of Applied Remote 
Sensing, 7: 073495, doi:10.1117/1.JRS.7.073495. 

 



  136 

Yépez, E.A., Williams, D., Scott, R., Lin, G. (2003). Partitioning overstory and understory 
evapotranspiration in a semiarid savanna woodland from the isotopic composition of water 
vapor. Agricultural and Forest Meteorology, 119: 53-68. 

 

Yépez, E., Scott, R., Cable, W., Williams, D. (2007). Intraseasonal variation in water and carbon 
dioxide flux components in a semiarid riparian woodland. Ecosystems, 10: 1100-1115. 

 

Yilmaz, M.T., Hunt, E.R., Goins, D.L., Ustin, S.L., Vanderbilt, V.C., Jackson, T.J. (2008). 
Vegetation water content during SMEX04 form ground data and Landsat 5 Thematic Mapper 
imagery. Remote Sensing of Environment, 112:350-362. 

 

Zalewski, M. (2000). Ecohydrology—the scientific background to use ecosystem properties as 
management tools toward sustainability of water resources. Ecological engineering 16(1): 1-
8. 

 

Zhang, R., Warrick A.W., Myers, D.E. (1992). Improvement of the prediction of soil particle size 
fractions using spectral properties, Geoderma, 52:223-234. 

 



  137 

APPENDIX A  

 EVAPOTRANSPIRATION PARTITION  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  138 

Three evaporation components are estimated in tRIBS: (1) bare soil evaporation (E), (2) 

evaporation of canopy interception (I) and (3) plant transpiration (T). Total evapotranspiration (ET 

= E + I +T) is estimated in a stepwise fashion using the Penman-Monteith approach: 

𝜆𝐸𝑇 =
!
! !!!! !!!!

!!
!!!

!!!!!
!!
!!

 ,         (A1) 

where Δ is the slope of the Clausius-Clayperon relation, γ is the psychometric constant, λ 

is the latent heat of vaporization, Rn is the net radiation, G is the ground heat flux, ρm is the moist 

air density, δqa is the specific humidity deficit and ra and rs are the aerodynamic and canopy 

stomatal resistances. ra is estimated using wind speed observations and vegetation height (h) 

estimates under the assumption of a logarithmic velocity profile (Shuttleworth, 1992). In this 

study, the time-varying rs is obtained from remotely-sensed measurements of LAI and fPAR (see 

Appendix C). Net radiation is impacted by the albedo (a) and optical transmission coefficient (kt) 

that characterize the plant canopy or soil surface (Table 3).  

Interception occurs as a fraction of rainfall, (1-p)R, where p is the free throughfall 

coefficient and R is rainfall. Evaporation of intercepted water on the canopy is fulfilled first in the 

stepwise calculations as (Eltahir and Bras, 1993): 

𝐼 =
𝑣!𝐸!  𝑓𝑜𝑟  𝐶 > 𝑆
!
!
𝑣!𝐸!  𝑓𝑜𝑟  𝐶 ≤ 𝑆  ,     (A2) 

where C is the canopy storage volume, S is the maximum canopy storage (Table 3) and 

Ep is the potential evaporation rate that excludes the effect of canopy stomatal resistance 

obtained as: 

𝐸! = 𝐸𝑇
!!!(!!!! !!

!!!
         ,       (A3) 

The Rutter et al. (1971) approach to tracking the canopy water storage is utilized in the 

model.  
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Bare soil evaporation is then obtained for the bare soil fraction, independently of the plant 

transpiration, from the potential evaporation rate as (Deardorff, 1978):  

𝐸 = (1 − 𝑣!)𝛽!𝐸!   ,       (A4) 

where vf is the vegetation fraction of a model element occupied by a plant functional type 

(i.e., tree or shrub) and represents the green vegetation cover that can be linked to NDVI 

(Appendix C), while 1-vf represents the bare soil area, and βS is a function of soil moisture as:  

𝛽! = 𝑚𝑖𝑛 1, !!"#!!!
!!!!!!!

  ,     (A5) 

where θsur is the surface soil moisture (top 10 cm), θs is the soil moisture at saturation, θr 

is the residual soil moisture and βE is the soil evaporation stress factor (Tables 2 and 3). The form 

of A5 is commonly used in hydrologic models (see Feddes et al., 1978; Mahfouf et al., 1996). 

Plant transpiration (T) is calculated after accounting for the consumption of intercepted water by 

evaporation as: 

𝑇 = 𝛽!𝑣!(𝐸! − 𝐼)
!!!

!!!(!!!! !!
  ,     (A6) 

where βR accounts for soil moisture stress that limits the plant water uptake as: 

𝛽! = 𝑚𝑖𝑛 1, !!""#!!!
!!!!!!!

  ,     (A7) 

where θroot is the root zone moisture (top 1 m) and βT is the plant transpiration stress 

factor. Thus, ET is composed of three components (ET = E + I + T) that depend on vegetation (vf, 

rs, p, S, βE and βT) and soil (θs and θr) properties, including soil moisture, as well as 

meteorological forcing, through a weighting based on the areal proportions of bare soil and 

vegetation. For additional information, the reader is referred to Wigmosta et al. (1994) and Ivanov 

et al. (2004).  
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APPENDIX B  

STATISTICAL METRICS  
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Model performance is assessed using three metrics to compare observations (O) and simulations 

(S) of latent heat flux and soil moisture over the number of time steps (N) with available data. The 

Mean Absolute Error (MAE) describes the absolute differences between observations and 

simulations without emphasizing the value of outliers as: 

𝑀𝐴𝐸 =    !
!

𝑂! − 𝑆!!
!!!    ,     (B1) 

The correlation coefficient (CC), which measures the linear relation between S and O, is: 

  ,    (B2) 

where the overbar denotes a temporal mean value. CC varies from -1 (negative 

correlation) to 1 (positive correlation), with CC = 0 indicating no correlation. The dimensionless 

bias (B) is obtained as the ratio of temporal mean of the simulated and observed variables, as: 

     .      (B3) 
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APPENDIX C 

EMPIRICAL EQUATIONS TO ESTIMATE VEGETATION PARAMETERS 
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 A set of empirical equations are used to link remote sensing data to vegetation parameters in 

tRIBS (Table 3). In each case, coefficient values were locally-calibrated by comparing the 

retrieved parameters to the range of values from available literature in similar ecosystems. 

Maximum canopy storage (S) controls rainfall interception as a function of time-varying LAI from 

MODIS. For both sites, we used the relation, S = 0.5LAI, from Pitman (1989) and Carlyle-Moses 

and Price (2007), with the coefficient verified with the datasets of Pitman (1989) for shrubs and 

Andre et al. (2008) for oaks. The free through fall coefficient (p) accounts for the fraction of rainfall 

not captured by plants. We relate p to time-varying LAI, following Pitman (1989), as: 

𝑝 = exp  (−1.5𝐿𝐴𝐼)   ,          (C1) 

   

The optical transmission coefficient (kt) is obtained from the Beer-Lambert law as: 

𝑘! = exp  (−𝑘𝐿𝐴𝐼) , (C2) 

 

where k = 0.61 for ST (Maass et al., 1995) and k = 0.31 for MW (Sugiyama et al., 1985), based 

on differences in leaf architecture at the two sites. The minimum canopy stomatal resistance (rs) 

was obtained using an energy-limited relation developed by Schulze et al. (1995) and up-scaled 

from an individual leaf to the canopy following Irmak et al. (2008):  

𝑟! =
!!"!!
!!"#!

!"#
     , (C3)

   

where gmax is the maximum seasonal stomatal conductance specified as 0.03 m/s for drought 

deciduous trees (Schulze et al., 1995) and assumed here to be constant in time and for different 

vegetation types. A diurnal cycle is prescribed for stomatal resistance such that the minimum 

value (rs) occurs at noon. This relation does not account for atmospheric conditions that are 

treated separately in the evapotranspiration estimate (A1). Q50 is the value of the absorbed 

photosynthetically active radiation (Q) obtained when gmax is half of its value. Q is obtained as: 
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𝑄 = 0.45𝐼!𝑓𝑃𝐴𝑅 , (C4) 

 

where Is the incoming shortwave radiation, fPAR is the fraction of Photosynthetically Active 

Radiation from MODIS and the coefficient 0.45 represents the fraction of Is that is used by plants 

directly for photosynthesis (Meek et al., 1984). Minimum stomatal resistance values (rs) for both 

sites were calibrated using the global estimates of Dorman and Sellers (1989). Vegetation 

fraction (vf) was estimated following Carlson and Ripley (1997) as: 

𝑣! =
!"#$!!"#$!"#

!"#$!"#!!"#$!"#

!
 ,  (C5) 

  

 where NDVImin and NDVImax are the minimum and maximum values of the time-varying NDVI 

obtained over the MODIS record (2004-2009) at each site. NDVImin and NDVImax represent the 

background signal from the soil during the driest period of the record and peak greenness during 

the wettest period of the record (Méndez-Barroso et al., 2009). In the model, the vegetated 

fraction carries out transpiration, while the 1-vf fraction is considered to be bare soil and is subject 

to soil evaporation (Appendix A). Time-varying albedo (a) was obtained directly from MODIS. 

Other vegetation parameters, such as vegetation height (h), were kept constant in the simulations
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APPENDIX D 

ASTER IMAGE PROCESSING AND ESTIMATION OF DISTRIBUTED OF SOIL TEXTURE 
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The estimation of the spatial distribution of soil texture involves certain preprocessing of 

ASTER image such conversion of ASTER raw data or digital numbers (DN) into surface radiance. 

The digital number value of the ASTER image is multiplied by a conversion factor specific for 

every band according to the following equation: 

𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒 = 𝐷𝑁 − 1 ∗ 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛  𝑓𝑎𝑐𝑡𝑜𝑟 ,        (D1) 

  The following table shows the conversion factors specific for every ASTER band. This 

conversion factor are specified in the metadata file of ASTER: 

 
Table D.1 Characteristics and Conversion Factors of ASTER Bands 
 

ASTER Band 
Wavelength 

[µm] 
Description 

Conversion factor 

[W/m2/sr*µm] 

    
1 0.520–0.600 Visible, green-yellow 1.688 

2 0.630–0.690 Visible, red 1.415 

3 0.760–0.860 Near infrared 0.862 

4 1.600–1.700 Short-wave infrared 0.2164 

5 2.145–2.185 Short-wave infrared 0.0696 

6 2.185–2.225 Short-wave infrared 0.0625 

7 2.235–2.285 Short-wave infrared 0.0597 

8 2.295–2.365 Short-wave infrared 0.0417 

9 2.360–2.430 Short-wave infrared 0.0318 

10 8.125–8.475 Thermal infrared 0.00682 

11 8.475–8.825 Thermal infrared 0.00678 

12 8.925–9.275 Thermal infrared 0.00659 

13 10.250–10.950 Thermal infrared 0.00569 

14 10.950–11.650 Thermal infrared 0.00522 

 

Once ASTER digital number is converted in surface radiance, then radiance value in all 

bands are extracted at the location of the sampling sites for surface soil. Figure 3.1a shows the 

location of the sampling sites for the determination of surface soil textural properties. After pixel 

extraction, radiance values are sorted according to soil textural type. The following table shows 

the values of radiance in all ASTER bands sorted by soil textural type determined by the method 
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of the pipette. For clarification, the table has the following nomenclature: X an Y represents the 

location of the sampling sites in Universal Transverse Mercator (UTM) projected coordinate 

system, zone 12 North with datum World Geodetic System 1984 (WGS84). Sample ID 

corresponds to two type of samples: Surface sample (S) and soil pits (P) follow by a number that 

indicates the number of sample according to map 3.1b. Texture type describes the soil texture of 

the sample found in Sierra Los Locos basin: The soil textural types found in this basin were: 

Loamy sand (LS), sand (S), sandy clay loam (SCL) and loamy sand (LS). Finally, the column 

header indicates the number of the ASTER band and the range in the electromagnetic spectrum, 

for example; V refers to the visible portion of the electromagnetic radiation whereas S and T 

represents the shortwave and thermal infrared regions respectively. Bold numbers at the end of 

every soil textural class are the mean and standard deviation calculated for every ASTER band.  

 
Table D.2 ASTER Radiance Values for the Soil Textural Classes Found in Sierra Los Locos, 
Sonora, Mexico. Radiance Values Were Extracted at Sampling Sites. 
 

X Y ID Texture  V1 V2 V3N V3B S4 S5 S6 S7 
549622 3315727 S6 LS 92.8 89.1 76.7 75.9 19.6 5.4 5.1 4.4 
546031 3314637 S13 LS 82.7 73.6 63.8 61.2 17.0 4.9 4.6 4.0 
544266 3314158 S17 LS 67.5 58.0 50.0 50.9 15.2 4.6 4.3 3.6 
548501 3312681 S33 LS 79.3 72.2 65.5 62.1 19.8 5.5 5.3 4.5 
551302 3316141 S36 LS 99.6 97.6 87.9 90.5 21.3 5.8 5.6 4.7 
552194 3314095 S38 LS 87.8 82.1 77.6 75.0 21.5 5.7 5.7 4.8 
539955 3310984 S43 LS 79.3 72.2 60.3 69.0 16.1 4.8 4.4 4.1 
546045 3313803 P5_1 LS 79.3 72.2 65.5 64.7 17.2 4.8 4.6 3.9 
546082 3312189 P7_1 LS 79.3 72.2 68.1 70.7 19.8 5.4 5.2 4.4 
549357 3313609 P8_1 LS 81.0 72.2 68.1 69.0 18.9 5.3 5.1 4.4 

- - Mean LS 82.88 76.13 68.36 68.87 18.63 5.23 4.98 4.29 
- - Stdev LS 8.77 10.96 10.42 10.57 2.16 0.41 0.48 0.37 

545281 3314524 S14 S 69.2 58.0 56.0 59.5 15.7 4.7 4.3 3.7 
543757 3314003 S18 S 77.6 67.9 67.2 64.7 17.0 4.9 4.6 3.9 

- - Mean S 73.43 62.97 61.63 62.06 16.31 4.80 4.41 3.82 
- - Stdev S 5.97 7.00 7.92 3.66 0.92 0.20 0.22 0.17 

542254 3314534 S31 SCL 84.4 76.4 69.8 65.5 18.0 5.0 4.9 4.2 
542809 3313456 P6_1 SCL 96.22 87.73 76.72 70.68 18.04 5.22 5.00 4.36 
551215 3315613 P11_1 SCL 84.40 79.24 72.41 72.41 21.31 5.71 5.56 4.72 

- - Mean SCL 88.34 81.13 72.98 69.53 19.13 5.31 5.15 4.44 
- - Stdev SCL 6.82 5.89 3.48 3.59 1.88 0.36 0.37 0.25 

550784 3315525 S4 SL 97.9 89.1 81.0 77.6 21.7 5.8 5.8 4.8 
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550463 3315804 S5 SL 89.5 76.4 68.1 56.0 17.8 5.2 4.8 4.2 
549355 3315721 S7 SL 101.3 93.4 80.2 81.9 20.4 5.6 5.4 4.7 
548673 3315046 S8 SL 94.5 92.0 81.9 75.9 21.7 5.9 5.7 4.9 
547887 3315228 S9 SL 104.7 90.6 75.0 70.7 18.3 5.2 4.9 4.2 
546684 3314894 S10 SL 86.1 83.5 75.9 72.4 17.4 5.1 4.8 4.1 
546434 3314814 S11 SL 84.4 75.0 69.0 67.2 18.9 5.4 5.1 4.4 
544510 3314228 S15 SL 89.5 83.5 71.5 71.5 16.3 4.9 4.6 4.1 
542672 3313662 S19 SL 86.1 83.5 73.3 71.5 18.5 5.3 5.1 4.3 
545534 3314627 S23 SL 79.3 69.3 62.1 63.8 16.7 4.8 4.4 3.9 
545513 3313165 S24 SL 76.0 65.1 69.0 68.1 17.4 4.8 4.6 3.9 
550165 3315856 S26 SL 86.1 76.4 68.1 62.1 18.5 5.2 4.9 4.3 
538996 3310490 S28 SL 81.0 75.0 75.0 76.7 20.2 5.5 5.4 4.5 
540128 3311237 S29 SL 86.1 76.4 68.1 66.4 19.3 5.6 5.3 4.5 
542626 3313867 S30 SL 79.3 75.0 64.7 64.7 18.0 5.2 4.9 4.2 
542802 3313657 S32 SL 79.3 70.8 64.7 61.2 17.0 5.0 4.8 4.0 
546992 3311854 S34 SL 89.5 82.1 75.0 67.2 21.3 5.8 5.6 4.8 
546964 3314849 S35 SL 84.4 77.8 69.8 66.4 19.6 5.4 5.1 4.5 
551762 3316701 S37 SL 87.8 80.7 69.0 86.2 17.4 4.9 4.7 4.0 
549086 3315695 S39 SL 84.4 73.6 66.4 64.7 19.6 5.4 5.3 4.4 
546383 3314803 S41 SL 81.0 75.0 64.7 62.9 17.8 5.2 4.8 4.2 
544658 3312619 S44 SL 104.7 92.0 82.8 79.3 21.1 5.8 5.6 4.7 
548033 3312191 S45 SL 69.2 62.3 57.8 62.1 17.0 4.9 4.6 4.0 
548990 3313016 S46 SL 96.2 92.0 79.3 75.0 21.5 5.7 5.6 4.8 
551761 3315016 S47 SL 103.0 94.8 85.3 81.0 21.3 5.8 5.6 4.8 
551970 3314445 S48 SL 87.8 82.1 76.7 77.6 21.1 5.6 5.6 4.5 
552525 3313144 S49 SL 81.0 76.4 74.1 71.5 21.5 5.6 5.5 4.6 
547116 3311812 S50 SL 79.3 76.4 68.1 68.1 19.6 5.4 5.4 4.5 
538676 3310169 P1_1 SL 97.90 99.05 81.03 81.03 21.74 5.99 5.94 5.07 
538427 3310294 P2_1 SL 97.90 96.22 86.20 83.61 22.39 6.47 6.19 5.43 
545410 3312106 P3_1 SL 84.40 79.24 69.82 64.65 21.52 5.64 5.44 4.78 
552045 3314362 P12_1 SL 96.22 93.39 81.89 81.89 23.04 6.12 5.88 5.07 

- - Mean SL 88.30 81.50 72.97 71.28 19.55 5.44 5.22 4.48 
- - Stdev SL 8.87 9.42 7.20 7.75 1.94 0.41 0.46 0.38 

 
X Y ID Texture  S8 S9 T10 T11 T12 T13 T14 

549622 3315727 S6 LS 3.2 2.4 9.1 9.5 9.8 9.8 9.2 
546031 3314637 S13 LS 2.8 2.2 9.6 10.1 10.4 10.4 9.9 
544266 3314158 S17 LS 2.5 2.0 9.7 10.2 10.5 10.6 10.0 
548501 3312681 S33 LS 3.2 2.4 9.6 10.2 10.5 10.4 9.9 
551302 3316141 S36 LS 3.4 2.5 9.0 9.5 9.8 9.8 9.4 
552194 3314095 S38 LS 3.4 2.7 9.4 9.9 10.3 10.1 9.6 
539955 3310984 S43 LS 2.8 2.2 10.1 10.6 11.1 11.1 10.5 
546045 3313803 P5_1 LS 2.8 2.1 9.4 9.9 10.2 10.2 9.7 
546082 3312189 P7_1 LS 3.1 2.4 9.9 10.5 10.9 10.8 10.3 
549357 3313609 P8_1 LS 3.1 2.3 9.4 9.9 10.2 10.2 9.7 
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- - Mean LS 3.02 2.31 9.52 10.02 10.37 10.33 9.82 
- - Stdev LS 0.29 0.21 0.34 0.38 0.41 0.43 0.39 

545281 3314524 S14 S 2.6 2.0 9.4 10.0 10.4 10.3 9.8 
543757 3314003 S18 S 2.7 2.1 9.8 10.4 10.7 10.7 10.1 

- - Mean S 2.65 2.07 9.61 10.18 10.52 10.51 9.97 
- - Stdev S 0.09 0.09 0.26 0.24 0.24 0.26 0.22 

542254 3314534 S31 SCL 3.0 2.2 10.0 10.6 11.0 10.9 10.3 
542809 3313456 P6_1 SCL 3.04 2.26 9.68 10.12 10.59 10.53 10.04 
551215 3315613 P11_1 SCL 3.29 2.54 8.99 9.48 9.78 9.63 9.06 

- - Mean SCL 3.10 2.34 9.56 10.07 10.44 10.37 9.81 
- - Stdev SCL 0.17 0.18 0.52 0.56 0.60 0.67 0.66 

550784 3315525 S4 SL 3.4 2.6 8.3 8.8 9.2 8.9 8.2 
550463 3315804 S5 SL 3.0 2.3 8.0 8.4 8.8 8.3 7.7 
549355 3315721 S7 SL 3.3 2.5 9.1 9.7 10.0 9.9 9.3 
548673 3315046 S8 SL 3.5 2.6 9.4 9.9 10.2 10.3 9.8 
547887 3315228 S9 SL 3.0 2.3 8.9 9.5 9.8 9.8 9.4 
546684 3314894 S10 SL 2.9 2.2 9.5 10.0 10.2 10.3 9.9 
546434 3314814 S11 SL 3.1 2.4 9.4 9.8 10.3 10.2 9.7 
544510 3314228 S15 SL 2.9 2.1 9.9 10.4 10.8 10.8 10.2 
542672 3313662 S19 SL 3.1 2.3 10.2 10.7 11.1 11.1 10.6 
545534 3314627 S23 SL 2.7 2.2 9.3 9.8 10.1 10.2 9.7 
545513 3313165 S24 SL 2.8 2.1 9.8 10.3 10.6 10.6 10.1 
550165 3315856 S26 SL 2.9 2.2 8.2 8.7 9.0 8.7 8.0 
538996 3310490 S28 SL 3.3 2.4 11.2 11.8 12.0 11.9 11.3 
540128 3311237 S29 SL 3.1 2.4 10.3 10.9 11.2 11.2 10.7 
542626 3313867 S30 SL 3.0 2.2 10.1 10.7 11.0 11.0 10.5 
542802 3313657 S32 SL 2.8 2.2 9.7 10.2 10.5 10.6 10.2 
546992 3311854 S34 SL 3.5 2.5 10.1 10.6 11.0 10.9 10.4 
546964 3314849 S35 SL 3.2 2.3 9.5 10.0 10.3 10.4 9.9 
551762 3316701 S37 SL 2.8 2.2 9.4 9.8 10.2 10.2 9.7 
549086 3315695 S39 SL 3.2 2.4 8.8 9.3 9.6 9.6 9.1 
546383 3314803 S41 SL 2.9 2.2 9.3 9.9 10.3 10.2 9.7 
544658 3312619 S44 SL 3.4 2.5 10.1 10.6 11.0 11.0 10.5 
548033 3312191 S45 SL 2.8 2.2 9.2 9.7 10.1 10.1 9.7 
548990 3313016 S46 SL 3.5 2.6 9.5 10.1 10.4 10.3 9.8 
551761 3315016 S47 SL 3.4 2.6 8.7 9.2 9.6 9.4 8.8 
551970 3314445 S48 SL 3.3 2.5 9.4 10.0 10.3 10.1 9.7 
552525 3313144 S49 SL 3.3 2.5 9.4 10.0 10.4 10.2 9.7 
547116 3311812 S50 SL 3.2 2.4 10.0 10.5 10.9 10.8 10.3 
538676 3310169 P1_1 SL 3.63 2.70 10.50 11.05 11.39 11.41 10.85 
538427 3310294 P2_1 SL 3.88 2.83 11.57 12.20 12.53 12.30 11.62 
545410 3312106 P3_1 SL 3.34 2.51 10.10 10.64 10.99 10.96 10.38 
552045 3314362 P12_1 SL 3.63 2.77 9.43 9.88 10.27 10.12 9.62 

- - Mean SL 3.17 2.40 9.58 10.10 10.45 10.36 9.83 
- - Stdev SL 0.29 0.19 0.77 0.79 0.78 0.84 0.84 



  150 

Mean radiance values were plotted with band number to evaluated what bands shows the largest 

differences or similitude and use them later for statistical classification. The following figure shows 

the variability of ASTER radiance with soil textural type in the visible and shortwave infrared 

regions. 

 

 
Figure D.1. Variability of ASTER Radiances With Soil Textural Classes. Larger Variations in 
Surface Radiance Were Found in Visible Bands (V1-V3). 
 
 
 

The y-axis represents the value of radiance in W/m2/sr*µm while the x-axis shows the 

ASTER band (V for visible regions and S for shortwave infrared). The following plot shows the 

variability of ASTER radiance on different textural soil types in the thermal bands. Larger 

differences in surface radiance among textural classes were found in the visible and near infrared 

region (bands 1-3) and the thermal bands (bands 12 and 13). This means that, soil textural 

properties have large impact in the emission of energy form the surface to the atmosphere an 

these differences were larger in the bands mentioned above. 
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Figure D.2. Variability of ASTER Radiances With Soil Textural Classes in Thermal Bands. Larger 
Variations in Surface Radiance Were Found in Bands Twelve and Thirteen. 

 

For this reason, radiance data of visible bands 1-3 and thermal bands 12 and 13 were 

used in a non-supervised classification algorithm to generate spatial maps of soil textural classes. 

These bands were used as input in clustering to determine natural groups in a multidimensional 

space. We utilized the isocluster method in ARCGIS 9.2 to determine class statistics. Isocluster 

tool can be accessed within Arctoolbox in the following way. 

• Open Arctoolbox within ArcGIS 9.2 or later 

• Click on Spatial Analyst tool, then click on Multivariate toolset 

• Select the Isocluster tool to generate clustering statistics 

The isocluster method (the initials iso are for Iterative Self Organizing) is a statistical 

clustering method that determines the natural grouping of pixels values in a multidimensional 

attribute space and stores the statistical information in a ASCII file known as signature file. 

Furthermore, this method is also known as modified iterative optimization clustering procedure or 
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migrating mean technique. The algorithm separates all pixel values into a user-specified unimodal 

groups out of the multidimensional space or multiband raster. This statistical method is the most 

common used before unsupervised classification (Richards, 2013). 

Finally, clustering statistical information contained in the signature file is used in the 

Maximum Likelihood Classification (unsupervised classification). This method is based on the 

Baye’s theorem of decision-making and uses the variance and covariances of the signature files 

to separate a raster into user defined number of classes. Maximum Likelihood Classification 

(MCL) approach assumes normal distribution within classes and incorporates the covariance. 

Then, MCL estimates the probability that a local pixel belongs to certain class (Richards, 2013). 
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APPENDIX E 

FLOODPLAIN DELINEATION 
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The delineation of the floodplain in the San Miguel River Basin includes a combination of 

different approaches like remote sensing and previous geological data. The datasets used in the 

delineation include: 1) False color image s using ASTER's band 1(blue), band 2 (red) and band 3 

(NIR). 2) 30-meters contour map generated form ASTER digital elevation model (DEM). 3) 

Geologic map from INEGI. 4) Lithology map generated from ASTER's thermal bands 10,11,12,13 

and 14 according to the methods developed by Ninomiya et al. (2005). Topographic data included 

geologic maps from the Mexican organization INEGI (acronym in Spanish for National Institute of 

Statistics, Geography and Informatics) as well as 30 meters contour maps generated form 

ASTER's digital elevation model. In the following I will explain briefly how the floodplain for the 

Rio San Miguel was generated. 

 False-color images allow to separate very well different land features such as water 

bodies, vegetation, wet and dry bare soil and urban areas. I have selected a set of images during 

the dry season of the year 2006 in order to detect easily the riparian vegetation (natural and 

riparian crops) that will appears as a bright intense red color. In addition, dry sandy riverbanks will 

show as bright white color. The selected set of images were overpasses the region during April 

(15-30) 2006. Three-color composite (RGB) images were developed using band 3 =Red, band 

2=Green and band 1=Blue. Figure 1, shows an example of the false color image generated with 

ASTER images. In the image, we can see that crops as well as riparian vegetation can be easily 

separated from the rest of the of the landscape.  

 A lithological map was created using ASTER thermal bands 10,11,12,13 and 14. 

Basically with these thermal bands we generated three different band ratios: 1) Carbonate Index 

(CI = band13/band14), 2) Quartz index (QI = band11*band11/band10*band12) and 3) Mafic index 

(MI = band12/band13). Finally, a composite image (RGB) was generated using QI= red, CI= 

green and MI = blue. Figure 2 shows the result of the compositing the band ratio values. Albeit 

the image has a lot of striping and noise (caused presumably by bad sensor calibration), we can 

clearly see differences in lithological formations. For example, the floodplain has a bluish color 

suggesting high presence of SiO2 (sandy soil) in contrast to surrounding landscape that mostly 

shows a quartz-rich material (red and reddish colors) and ultramafic material (magenta and 
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purple). Hence, we can use this composite image to identify different geologic-soil materials that 

further support the delineation of the floodplain delineation. 

 

Figure E.1. Generated Floodplain Near San Miguel de Horcasitas, Sonora. The Solid Black Line 
Shows the Preliminary Result of The Floodplain Delineation Using a False Color Image. 

Figure E.2. Lithological Map of the Rio San Miguel Produced With ASTER's Thermal Bands. 
Bluish Color Suggests High Presence of SiO2 (Sandy Soil), Red-Reddish Color Indicates Quartz-
Rich Material and Magenta-Purple Color Suggests Mafic-Ultramafic Material. 
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Geologic maps from INEGI was used mainly to identify the spatial distribution of quaternary 

alluvium deposits (Qc) , as we know, these sediments are transported by fluvial processes, then 

we can infer the extension of the floodplain by the distribution of alluvial deposits. In addition, 30-

meters contour map form ASTER digital elevation model was used to support the extension of the 

floodplain. Figure 3, shows the geologic-d map from INEGI overlaid by the contour map. 

 

Figure E3. Geologic Map from INEGI Overlaid by 30-meters Contour Lines Generated from 
ASTER Digital Elevation Model. 
 

 There are some similarities between the INEGI map and the ASTER-based lithological 

map. However we can see discrepancies in the spatial distribution of quaternary alluvium. 

INEGI's map shows the alluvium deposits extending southwards while the ASTER-based map 

shows that this region is replaced by quartz-rich material. Although this quartz rich material can 

be transported by fluvial processes, it looks like it is transported from the east part of the 

floodplain and it is not carried by the main flood plain itself. 
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APPENDIX F 

MODIS IMAGES PROCESSING 
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1) Download MODIS images from the Reverb-Echo web page: 

http://reverb.echo.nasa.gov/reverb/#utf8=%E2%9C%93&spatial_map=satellite&spatial_type=rect

angle 

2) Install MRT software (MODIS Reprojection Tool) for Linux in the following web link: 

https://lpdaac.usgs.gov/tools/modis_reprojection_tool 

3) Once you have installed MRT in Ubuntu you need to put all your MODIS files in raw format .hdf 

in one folder. Let's assume that you have put all your files in the folder /home/lmendezb/MRT/bin. 

Along with the raw data files place the following files: mrtscript.sh and modis_ndvi.prm. 

4) Open a terminal (Ctrl-Alt-t) and go to the folder where the files of part (2) are located. In this 

case is: 

lmendezb@sese-lmendezb:~$ cd lmendez/MRT/bin 

5) Change the permission of the mrtscript.sh folder in order to make it executable. In the terminal 

type the following command. 

lmendezb@sese-lmendezb:~$ sudo chmod 755 mrscript.sh 

5) Modify the mrtscript.sh in order to specify the input files, the output location, the mosaic 

information (in case you need it) and the new boundary limit for the images. In this example, the 

MODIS images will be mosaicked, and cut them in a smaller domain. We will process NDVI 

images for the year 2007.  In the terminal modify the mrscript.sh with the following command. 

lmendezb@sese-lmendezb:~$ nano mrscript.sh  

The nano command allows modifying protected files. Change the list of files (dates) by updating 

the dates of the files located in the bin folder. Be sure that the resample and mosaic tools are 

located in the following path, /home/lmendezb/MRT/bin/resample or 

/home/lmendezb/MRT/bin/mrtmosaic. The upper left and lower right corner for the smaller domain 

will be taken from the modis_ndvi.prm file. Modify the corner if necessary. 

======================================================================== 

#!/bin/bash  
# Modify the line above to the location of your BASH interpreter.  
 
DATELIST="2006361  
2007009  



 159 

2007025  
2007041  
2007057  
2007073  
2007089  
2007105  
2007121  
2007137  
2007153  
2007169  
2007185  
2007201  
2007217  
2007233  
2007249 
2007265  
2007281  
2007297  
2007313  
2007329  
2007345  
2007361  
"  
#Loop through the number of dates  
for DATE in $DATELIST  
do  
# Collect all MODIS HDF files for a specific date  
HDFFILES=$(ls MYD13Q1.A$DATE.*.hdf)  
# Write these to a text file  
echo $HDFFILES > mosaicinput.txt  
# Run mrt mosaic and write output to HDF file (extension .hdf!)  
/home/lmendezb/MRT/bin/mrtmosaic -i mosaicinput.txt -o TmpMosaic.hdf  
# Call resample. Values for projection parameters are derived  
# from the prm-file that was obtained using ModisTool. Input and  
# output are specified using the -i and -o options.  
/home/lmendezb/MRT/bin/resample -p modis_ndvi.prm -i TmpMosaic.hdf -o MYD_NDVI_$DA$  
done  
exit 0  
======================================================================== 

6) After you modify the mrscript.sh press Ctrl-X to save the changes. Type “Yes” to agree. 

7) To run the “sh” bash file, type the following instruction in the terminal. 

lmendezb@sese-lmendezb:~$ ./mrtscript.sh 

This process will take some time. This script transforms the native hdf format into geotiff and also 

mosaic and crop the original MODIS imagery. 
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APPENDIX G 

MATLAB CODES TO TRANSFORM MODIS IMAGERY TO MODEL VEGETATION 

PARAMETERS 
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The following lines show the MATLAB code to transform MODIS-Leaf Area Index into optical 

transmission (kt): 

% Read .tif files 
clc 
clear all; 
a=dir(['/home/lmendezb/Documents/MODIS_VegPar/Input/2010/LAI/*.tif']);   
[x,y] = size(a); 
coeff = load('/home/lmendezb/Documents/land_use/kcoeff_1000m.txt'); 
 
% MODIS parameters 
Scale_factor =0.1; 
Fill_value = 255; 
 
 
% 3-D matrix 
% This loop reads the .tif files in the working folder and generates a 3D-matrix with NDVI 
values 
 
for i=1:x 
    filename=a(i).name; 
A = geotiffread(filename); 
F = double(A); 
n = find(F>200); 
F(n)= 0.5; 
lai = F*Scale_factor;  
B(:,:,i) = lai(:,:); 
Z(:,:,i) = coeff(:,:); 
kt(:,:,i) = exp(Z(:,:,i).*B(:,:,i));  
%  
kt(~isfinite (kt)) = -9999 ; 
% %kt(:,:,i) = 0.5 * B(:,:,i); 
 
end 
 
% Linear interpolation of the 3-D matrix 
% This function performs a linear interpolation in order to downscale from 8-days 
composites to daily time step. We need to include the mirt3D_mexinterp function in our 
working folder  
 
[m n o] =size(kt); 
 
t1 = kt(:,:,1:4); 
t2 = kt(:,:,4:7); 
t3 = kt(:,:,7:10); 
t4 = kt(:,:,10:13); 
t5 = kt(:,:,13:16); 
t6 = kt(:,:,16:19); 
t7 = kt(:,:,19:22); 
t8 = kt(:,:,22:25); 
t9 = kt(:,:,25:28); 
t10 = kt(:,:,28:31); 
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t11 = kt(:,:,31:34); 
t12 = kt(:,:,34:37); 
t13 = kt(:,:,37:40); 
t14 = kt(:,:,40:43); 
t15 = kt(:,:,43:46); 
 
% This function performs a linear interpolation in order to downscale from 8-days 
composites to daily time % step. We need to include the mirt3D_mexinterp function in our 
working folder  
 
[xi,yi,zi] = meshgrid(1:n, 1:m, 1:0.126:4); % Period of 168 days for 22 images 
kt1 = mirt3D_mexinterp(t15,xi,yi,zi); 
[x2 y2 z2] = size(kt1); 
 
%% File name with tRIBS format 
% This part of the code generates the file name that follows thr tRIBS format  
 
start = datenum(2010,12,03,0,0,0); 
fin = datenum(2010,12,27,23,59,59); 
date = datevec(start:fin); 
fecha = [datestr(date,'mmddyyyyHH')]; 
 
%% Generation of ASCII files 
% This loop generates the interpolated matrices as an individual files withthe tRIBS format 
 
 
for k=1:z2 
    
    name = ['OT' fecha(k,:) '.txt'] 
    H = kt1(:,:,k); 
 
    % Add the names and values of the ASCII ESRI Grid format header 
       fid2=fopen(['/home/lmendezb/Documents/MODIS_VegPar/Output/2010/OT/', name],'w+'); 
       fprintf(fid2,'%s\t %3d\n%s\t %3d\n','ncols', y2, 'nrows', x2); 
       fprintf(fid2,'%s\t %10.3f\n%s\t %10.3f\n','xllcorner',505729.76,'yllcorner',3240551.66); 
       fprintf(fid2,'%s\t %s\n','cellsize','1000'); 
       fprintf(fid2,'%s\t %s\n','NODATA_value','-9999'); 
       fclose(fid2);    
          
       % Generate the files 
   dlmwrite(['/home/lmendezb/Documents/MODIS_VegPar/Output/2010/OT/' 
name],H,'delimiter','\t', '-append'); 
   
end 
 
 
The following lines show the MATLAB code to transform MODIS-Leaf Area Index into canopy 

capacity (S): 

% Read .tif files 
clc 
clear all 
a=dir(['/home/lmendezb/Documents/MODIS_VegPar/Input/2010/LAI/*.tif']);   



 163 

[x,y] = size(a); 
 
 
%% MODIS parameters 
Scale_factor =0.1; 
Fill_value = 255; 
 
 
%% 3-D matrix 
% This loop reads the .tif files in the working folder and generates a 3D- 
% matrix with NDVI values 
 
for i=1:x 
    filename=a(i).name; 
A = geotiffread(filename); 
F = double(A); 
n = find(F==Fill_value); 
F(n)=-9999; 
lai = F*Scale_factor;  
B(:,:,i) = lai(:,:); 
kt(:,:,i) = 0.5*B(:,:,i);  
%kt(:,:,i) = 0.5 * B(:,:,i);  
[x y z] = size(kt); 
for j=1:1:x 
    for k = 1:1:y 
        if kt(j,k,i) <0 %>1 
            kt(j,k,i) = -9999; 
        end 
    end 
end 
 
end 
 
%% Linear interpolation of the 3-D matrix 
% This function performs a linear interpolation in order to downscale from 8-days 
composites to daily time step. We need to include the mirt3D_mexinterp function in our 
working folder  
[m n o] =size(kt); 
 
t1 = kt(:,:,1:4); 
t2 = kt(:,:,4:7); 
t3 = kt(:,:,7:10); 
t4 = kt(:,:,10:13); 
t5 = kt(:,:,13:16); 
t6 = kt(:,:,16:19); 
t7 = kt(:,:,19:22); 
t8 = kt(:,:,22:25); 
t9 = kt(:,:,25:28); 
t10 = kt(:,:,28:31); 
t11 = kt(:,:,31:34); 
t12 = kt(:,:,34:37); 
t13 = kt(:,:,37:40); 
t14 = kt(:,:,40:43); 
t15 = kt(:,:,43:46); 
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% This function performs a linear interpolation in order to downscale from 8-days 
composites to daily time step. We need to include the mirt3D_mexinterp function in our 
working folder  
 
[xi,yi,zi] = meshgrid(1:n, 1:m, 1:0.126:4); % Period of 168 days for 22 images 
kt1 = mirt3D_mexinterp(t15,xi,yi,zi); 
[x2 y2 z2] = size(kt1); 
 
%% File name with tRIBS format 
% This part of the code generates the file name that follows thr tRIBS format  
 
start = datenum(2010,12,03,0,0,0); 
fin = datenum(2010,12,27,23,59,59); 
date = datevec(start:fin); 
fecha = [datestr(date,'mmddyyyyHH')]; 
 
%% Generation of ASCII files 
% This loop generates the interpolated matrices as an individual files with the tRIBS 
format 
 
for k=1:z2 
    
    name = ['CC' fecha(k,:) '.txt'] 
    H = kt1(:,:,k); 
 
    % Add the names and values of the ASCII ESRI Grid format header 
      fid2=fopen(['/home/lmendezb/Documents/MODIS_VegPar/Output/2010/CC/', name],'w+'); 
       fprintf(fid2,'%s\t %3d\n%s\t %3d\n','ncols', y2, 'nrows', x2); 
       fprintf(fid2,'%s\t %10.3f\n%s\t %10.3f\n','xllcorner',505729.760,'yllcorner',3240551.660); 
       fprintf(fid2,'%s\t %s\n','cellsize','1000'); 
       fprintf(fid2,'%s\t %s\n','NODATA_value','-9999'); 
       fclose(fid2);             
       % Generate the files 
     dlmwrite(['/home/lmendezb/Documents/MODIS_VegPar/Output/2010/CC/' 
name],H,'delimiter','\t', '-append'); 
   
end 
 
 
The following lines show the MATLAB code to transform MODIS-Leaf Area Index into Trough fall 

coefficient (p): 

% Read .tif files 
clc 
clear all 
a=dir(['/home/lmendezb/Documents/MODIS_VegPar/Input/2010/LAI/*.tif']);   
[x,y] = size(a); 
 
 
%% MODIS parameters 
Scale_factor =0.1; 
Fill_value = 255; 
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%% 3-D matrix 
% This loop reads the .tif files in the working folder and generates a 3D- 
% matrix with NDVI values 
 
for i=1:x 
    filename=a(i).name; 
A = geotiffread(filename); 
F = double(A); 
n = find(F==Fill_value); 
F(n)=-9999; 
lai = F*Scale_factor;  
B(:,:,i) = lai(:,:); 
kt(:,:,i) = exp(-1.467*B(:,:,i));  
 
kt(~isfinite (kt)) = -9999 ; 
%kt(:,:,i) = 0.5 * B(:,:,i); 
end 
 
%% Linear interpolation of the 3-D matrix 
% This function performs a linear interpolation in order to downscale from 8-days 
composites to daily time step. We need to include the mirt3D_mexinterp function in our 
working folder  
[m n o] =size(kt); 
 
t1 = kt(:,:,1:4); 
t2 = kt(:,:,4:7); 
t3 = kt(:,:,7:10); 
t4 = kt(:,:,10:13); 
t5 = kt(:,:,13:16); 
t6 = kt(:,:,16:19); 
t7 = kt(:,:,19:22); 
t8 = kt(:,:,22:25); 
t9 = kt(:,:,25:28); 
t10 = kt(:,:,28:31); 
t11 = kt(:,:,31:34); 
t12 = kt(:,:,34:37); 
t13 = kt(:,:,37:40); 
t14 = kt(:,:,40:43); 
t15 = kt(:,:,43:46); 
 
% This function performs a linear interpolation in order to downscale from 8-days 
composites to daily time step. We need to include the mirt3D_mexinterp function in our 
working folder  
 
[xi,yi,zi] = meshgrid(1:n, 1:m, 1:0.126:4); % Period of 168 days for 22 images 
kt1 = mirt3D_mexinterp(t15,xi,yi,zi); 
[x2 y2 z2] = size(kt1); 
 
%% File name with tRIBS format 
% This part of the code generates the file name that follows thr tRIBS format  
 
start = datenum(2010,12,03,0,0,0); 
fin = datenum(2010,12,27,23,59,59); 
date = datevec(start:fin); 
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fecha = [datestr(date,'mmddyyyyHH')]; 
 
%% Generation of ASCII files 
% This loop generates the interpolated matrices as an individual files withthe tRIBS format 
 
for k=1:z2 
    
    name = ['TF' fecha(k,:) '.txt'] 
    H = kt1(:,:,k); 
 
    % Add the names and values of the ASCII ESRI Grid format header 
%        fid2=fopen(name,'w+'); 
       fid2=fopen(['/home/lmendezb/Documents/MODIS_VegPar/Output/2010/TF/', name],'w+'); 
       fprintf(fid2,'%s\t %3d\n%s\t %3d\n','ncols', y2, 'nrows', x2); 
       fprintf(fid2,'%s\t %10.3f\n%s\t %10.3f\n','xllcorner',505729.760,'yllcorner',3240551.660); 
       fprintf(fid2,'%s\t %s\n','cellsize','1000'); 
       fprintf(fid2,'%s\t %s\n','NODATA_value','-9999'); 
       fclose(fid2);             
       % Generate the files 
dlmwrite(['/home/lmendezb/Documents/MODIS_VegPar/Output/2010/TF/' name],H,'delimiter','\t', 
'-append'); 
  %dlmwrite(['/media/WD_VIV1/SONORA_NLDAS/2005/Nr/' newFileName],V_r,'delimiter','\t', '-
append'); 
end 
 
 
The following lines show the MATLAB code to convert raw MODIS albedo data into white sky 

short-wave albedo 

 
%% Read albedo.tif files 
clc 
clear all 
a=dir(['/home/lmendezb/Documents/MODIS_VegPar/Input/2010/albedo/*.tif']);   
[x,y] = size(a); 
 
 
%% MODIS parameters 
Scale_factor =0.001; 
Fill_value = 32767; 
 
 
%% 3-D matrix 
% This loop reads the .tif files in the working folder and generates a 3D- 
% matrix with NDVI values 
 
for i=1:x 
    filename=a(i).name; 
A = geotiffread(filename); 
F = double(A); 
n = find(F==Fill_value); 
F(n)=-9999; 
z = F<0; 
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F(z)=-9999; 
alb = F*Scale_factor;  
B(:,:,i) = alb(:,:); 
end 
 
[x3,y3,z3] = size(B); 
%% Linear interpolation of the 3-D matrix 
% This function performs a linear interpolation in order to downscale from 8-days composites to 
daily time step. We need to include the mirt3D_mexinterp function in our working folder  
 
t1 = B(:,:,1:4); 
t2 = B(:,:,4:7); 
t3 = B(:,:,7:10); 
t4 = B(:,:,10:13); 
t5 = B(:,:,13:16); 
t6 = B(:,:,16:19); 
t7 = B(:,:,19:22); 
t8 = B(:,:,22:25); 
t9 = B(:,:,25:28); 
t10 = B(:,:,28:31); 
t11 = B(:,:,31:34); 
t12 = B(:,:,34:37); 
t13 = B(:,:,37:40); 
t14 = B(:,:,40:43); 
t15 = B(:,:,43:46); 
 
 
[xi,yi,zi] = meshgrid(1:y3, 1:x3,1:0.126:4); % 
B1 = mirt3D_mexinterp(t15,xi,yi,zi); 
[x2 y2 z2] = size(B1); 
 
%% File name with tRIBS format 
% This part of the code generates the file name that follows thr tRIBS format  
 
start = datenum(2010,12,03,0,0,0); 
fin = datenum(2010,12,27,23,59,59); 
date = datevec(start:fin); 
fecha = [datestr(date,'mmddyyyyHH')]; 
 
%% Generation of ASCII files 
% This loop generates the interpolated matrices as an individual files with the tRIBS 
format 
 
for k=1:z2 
    
    name = ['ALB' fecha(k,:) '.txt'] 
    H = B1(:,:,k); 
 
    % Add the names and values of the ASCII ESRI Grid format header 
      fid2=fopen(['/home/lmendezb/Documents/MODIS_VegPar/Output/2010/albedo/', name],'w+'); 
       fprintf(fid2,'%s\t %3d\n%s\t %3d\n','ncols', y2, 'nrows', x2); 
       fprintf(fid2,'%s\t %10.3f\n%s\t %10.3f\n','xllcorner',505729.760,'yllcorner',3240551.660); 
       fprintf(fid2,'%s\t %s\n','cellsize','1000'); 
       fprintf(fid2,'%s\t %s\n','NODATA_value','-9999'); 
       fclose(fid2);             



 168 

       % Generate the files 
     dlmwrite(['/home/lmendezb/Documents/MODIS_VegPar/Output/2010/albedo/' 
name],H,'delimiter','\t', '-append'); 
   
end 
 
 
 
The following lines show the MATLAB code to transform MODIS-Normalized Difference 

Vegetation Index into vegetation fraction (vf) 

% Read .tif files 
clc 
clear all 
a=dir(['/home/lmendezb/Documents/MODIS_VegPar/Input/2010/NDVI/*.tif']);   
[x,y] = size(a); 
 
% MODIS parameters 
Scale_factor =0.0001; 
Fill_value = -3000; 
 
%% 3-D Matrix 
% This loop reads the .tif files in the working folder, generates a 3D-and calculates the 
NDVI values. 
 
for i=1:x 
    filename=a(i).name; 
A = geotiffread(filename); 
F = double(A); 
n = find(F==Fill_value); 
F(n)=NaN; 
u = find(F<0); 
F(u)=0; 
ndvi = F*Scale_factor;  
B(:,:,i) = ndvi(:,:); 
end 
 
[x3,y3,z3] = size(B); 
 
%% I have calculated the maximum and minimum for all years (2010 to 2010 including 
2006 and 2007) %and the values were 
%NDVImax =0.9977 (2010) y NDVImin=0 
NDVIMAX = 0.9977; 
NDVIMIN = 0; 
DeltaNDVI = NDVIMAX-NDVIMIN; 
 
% Estimation of VF 
vf = ((B-NDVIMIN)./DeltaNDVI).^2; 
nan_locations = find(isnan(vf)); 
vf(nan_locations)=-9999; 
 
t1 = vf(:,:,1:4); 
t2 = vf(:,:,4:7); 
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t3 = vf(:,:,7:10); 
t4 = vf(:,:,10:13); 
t5 = vf(:,:,13:16); 
t6 = vf(:,:,16:19); 
t7 = vf(:,:,19:22); 
t8 = vf(:,:,22:23); 
 
 
%% Linear interpolation of the 3-D matrix 
% This function performs a linear interpolation in order to downscale from 16-days 
composites to daily time step. We need to include the mirt3D_mexinterp function in our 
working folder  
 
 
 
[xi,yi,zi] = meshgrid(1:y3, 1:x3, 1:0.063:4); % Period of 48 days for 4 images 
vf1 = mirt3D_mexinterp(t8,xi,yi,zi); 
[x2 y2 z2] = size(vf1); 
 
 
% %% File name with tRIBS format 
% % This part of the code generates the file name that follows thr tRIBS format  
 
start = datenum(2010,12,03,0,0,0); 
fin = datenum(2010,12,18,23,59,59); 
date = datevec(start:fin); 
fecha = [datestr(date,'mmddyyyyHH')]; 
 
%% Generation of ASCII files 
% This loop generates the interpolated matrices as an individual files withthe tRIBS format 
 
for k=1:z2 
    
    name = ['VF' fecha(k,:) '.txt'] 
    H = vf1(:,:,k); 
 
    % Add the names and values of the ASCII ESRI Grid format header 
       fid2=fopen(['/home/lmendezb/Documents/MODIS_VegPar/Output/2010_VF/', name],'w+'); 
       fprintf(fid2,'%s\t %3d\n%s\t %3d\n','ncols', y2, 'nrows', x2); 
       fprintf(fid2,'%s\t %10.3f\n%s\t %10.3f\n','xllcorner',505729.76,'yllcorner',3240551.66); 
       fprintf(fid2,'%s\t %s\n','cellsize','250'); 
       fprintf(fid2,'%s\t %s\n','NODATA_value','-9999'); 
       fclose(fid2);             
       % Generate the files 
    dlmwrite(['/home/lmendezb/Documents/MODIS_VegPar/Output/2010_VF/' 
name],H,'delimiter','\t', '-append'); 
   
end 
 
 
The following lines show the MATLAB code to transform MODIS-Leaf Area Index into empirical 

stomatal resistance (rs) 
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%% Read lai.tif files 
clc 
clear all 
a=dir(['/media/TX_Drive/DYN_SLL/lai/kt/*.tif']);   
[x,y] = size(a); 
 
 
%% MODIS parameters 
Scale_factor =0.1; 
Fill_value = 255; 
 
 
%% 3-D matrix 
% This loop reads the .tif files in the working folder and generates a 3D- 
% matrix with NDVI values 
 
for i=1:x 
    filename=a(i).name; 
A = geotiffread(filename); 
F = double(A); 
n = find(F==Fill_value); 
F(n)=-99990; 
lai = F*Scale_factor;  
B(:,:,i) = lai(62:216,20:149); 
end 
 
%% Linear interpolation of the 3-D matrix 
% This function performs a linear interpolation in order to downscale from 8-days 
composites to daily time step. We need to include the mirt3D_mexinterp function in our 
working folder  
 
[xi,yi,zi] = meshgrid(1:130, 1:155, 1:0.125:8); % Period of 168 days for 22 images 
B1 = mirt3D_mexinterp(B,xi,yi,zi); 
[x2 y2 z2] = size(B1); 
 
%% Read f_par.tif files 
a=dir(['/media/TX_Drive/DYN_SLL/fpar/f_par/*.tif']);   
[x,y] = size(a); 
 
 
%% MODIS parameters 
Scale_factor =0.01; 
Fill_value = 255; 
 
 
%% 3-D matrix 
% This loop reads the .tif files in the working folder and generates a 3D- 
% matrix with NDVI values 
 
for i=1:x 
    filename=a(i).name; 
A = geotiffread(filename); 
F = double(A); 
n = find(F==Fill_value); 
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F(n)=-999900; 
fpar = F*Scale_factor;  
C(:,:,i) = fpar(62:216,20:149); 
end 
 
%% Linear interpolation of the 3-D matrix 
% This function performs a linear interpolation in order to downscale from 8-days 
composites to daily time step. We need to include the mirt3D_mexinterp function in our 
working folder  
 
[xi,yi,zi] = meshgrid(1:130, 1:155, 1:0.125:8); % Period of 168 days for 22 images 
C1 = mirt3D_mexinterp(C,xi,yi,zi); 
[x2 y2 z2] = size(C1); 
 
%% Prepare ISWR from NLDAS 
 
n = dir(['/media/TX_Drive/NLDAS_2004/Nr/*.txt']); 
 
for i=5390:24:6734  %14:00 from 4/22 to 10/06/2004 
    filename=n(i).name; 
    [a1 a2 a3 a4 a5 a6 a7 a8 a9 a10]=textread(filename,'%f %f %f %f %f %f %f %f %f 
%f','headerlines',6); 
    nldas(:,:,(i-2702)/24+1)=[a1 a2 a3 a4 a5 a6 a7 a8 a9 a10]; 
    nldas1(:,:,(i-2702)/24+1) = resizem(nldas(:,:,(i-2702)/24+1),[155 130],'nearest'); 
end 
 
%% Calculate rs with LAI, F-PAT and ISWR from NLDAS 
s=113 
e=168 
for i=s:1:e 
    rs(:,:,i)= ((((nldas1(:,:,i)*0.45*4.6).*C1(:,:,(i-s+1))+80)/34.16)./(nldas1(:,:,i).*C1(:,:,(i-
s+1))*0.45*4.6))./B1(:,:,(i-s+1))*1000; 
    for j=1:1:155 
        for k =1:1:130 
            if rs(j,k,i)>1000 
                rs(j,k,i)=-9999; 
            end  
        end 
    end 
end 
 
 
 
%% File name with tRIBS format 
% This part of the code generates the file name that follows thr tRIBS format  
 
start = datenum(2004,8,13,0,0,0); 
fin = datenum(2004,10,6,23,59,59); 
date = datevec(start:fin); 
fecha = [datestr(date,'mmddyyyyHH')]; 
 
%% Generation of ASCII files 
% This loop generates the interpolated matrices as an individual files withthe tRIBS format 
 
for k=1:1:(e-s+1) 
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    name = ['RS' fecha(k,:) '.txt'] 
    H = rs(:,:,(k+s-1)); 
 
    % Add the names and values of the ASCII ESRI Grid format header 
       fid2=fopen(name,'w+'); 
       fprintf(fid2,'%s\t %3d\n%s\t %3d\n','ncols', y2, 'nrows', x2); 
       fprintf(fid2,'%s\t %10.3f\n%s\t %10.3f\n','xllcorner',503451,'yllcorner',3265266); 
       fprintf(fid2,'%s\t %s\n','cellsize','926.625'); 
       fprintf(fid2,'%s\t %s\n','NODATA_value','-9999'); 
       fclose(fid2);             
       % Generate the files 
    dlmwrite(name,H,'delimiter','\t', '-append') 
   
end 
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APPENDIX H 

EDDY COVARIANCE PROCESSING AND FLUX CORRECTIONS 
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The software required for high frequency processing of eddy-covariance data is EddyPro®. This 

software was developed by Licor and can be downloaded at: 

http://www.licor.com/env/products/eddy_covariance/software.html 

EddyPro® is compatible with Windows. There are no versions for Linux or mac. Ubuntu users can 

run this application on a virtual machine. 

1. PROJECT CREATION 

Open project: C:/Desktop/Raw_data/encino_test. There is a another file for Rayon site 

(rayon_test). 

Select the Input raw data as TOB1. The binary format TOB1 is often used for storing raw data 

obtained from Campbell Scientific® dataloggers. These files are customizable, as one can select 

the format of each individual variable (e.g. integer, single precision, etc.).  

Chose the Metadata file (encino_test.metadata). This file contains the physical characteristics of 

towers and the sensors. 

Set up the acquisition frequency in 20Hz although some towers could sample at 10Hz. 

Canopy height: 9m 

Displacement height: 6.03m 

Roughness length: 1.03 

Altitude: 1300-m (Elevation of the Encino site). 

Lat Long: 29 57'36", 110 27'36" (location of the Encino site). 

 

2. BASIC SETTINGS 

Raw data format: TOB1_2310.ts_data_yyyy_mm_dd_HHMM.dat 

Anemometer: CSAT-3 

Sensor of for CO2 and H2O are available. 

 

3. ADVANCE SETTINGS 

Rotation method: Planar fit (Wilczak et al., 2001) 

Detrend Method: Block average 
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Time lag detection method: covariance maximization with default 

Quality check: Mauder and Foken, 2004 

Footprint method; Kljun et al., 2004 

Compensation for density fluctuations: Webb et al 1980 (open path) 

3.1 SPECTRAL CORRECTIONS 

Low pass filtering: Moncrieff et al., 1997 

High pass fileting Moncrieff et al., 2004 

3.2 STATISTICAL ANALYSIS 

It includes spike count removal, Amplitude resolution, absolute limits and skewness-kurtosis  

4. OUTPUT 

Results according to the AmeriFlux format. 

Metadata 
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APPENDIX I 

MODEL SET UP AND DATA 
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This appendix show the location of the files used for the hydrological simulations. All the files and 

folder are stored in the hard drive “FreeAgent_2Tb”. 

 

FOLDER DESCRIPTION 

Simulations_Luis This folder contains the model setup as well 

as a modified version of tRIBS. Model 

modifications include the improvement in 

reading NLDAS and reduced number of 

outputs. This folder also contains the hydro-

meteorological data use for the calibration and 

validation of the model 

Rayon2004 Contains the point scale simulation at the 

Rayon EC tower during the summer season 

2004. This folder contains model set up, 

outputs, observations and MATLAB codes to 

visualize outputs 

Rayon2006 Contains the point scale simulation at the 

Rayon EC tower during the summer season 

2006. This folder contains model set up, 

outputs, observations and MATLAB codes to 

visualize outputs 

Rayon2007 Contains the point scale simulation at the 

Rayon EC tower during the summer season 

2007. This folder contains model set up, 

outputs, observations and MATLAB codes to 

visualize outputs 

Rayon2008 Contains the point scale simulation at the 

Rayon EC tower during the summer season 

2008. This folder contains model set up, 

outputs, observations and MATLAB codes to 

visualize outputs 

Rayon2009 Contains the point scale simulation at the 

Rayon EC tower during the summer season 

2009. This folder contains model set up, 

outputs, observations and MATLAB codes to 
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visualize outputs 

SLLocos2008 Contains the point scale simulation at the 

Sierra Los Locos EC tower during the summer 

season 2008. This folder contains model set 

up, outputs, observations and MATLAB codes 

to visualize outputs 

SLLocos2009 Contains the point scale simulation at the 

Sierra Los Locos EC tower during the summer 

season 2009. This folder contains model set 

up, outputs, observations and MATLAB codes 

to visualize outputs 

SLL_Tiantian Contains the catchment scale simulation at 

Sierra Los Locos during the summer season 

2004, based on the previous work of Xian et 

al. 2014. This folder contains model set up, 

outputs, observations and MATLAB codes to 

visualize outputs. It also contains the different 

soil thickness and soil texture data. 

Sites Contains the rainfall data for the 

Hydrometeorological Network in Sonora. 

Dataset ranges from 2004 to 2010. 

EC_Observations Contains the processed EC data from the 

Rayon and the Encino towers in Sonora. 

Dataset ranges from 2004 to 2010 for Rayon 

and 2008 to 2010 for Encino. 

 

 
 
 
 
 
 
 
 
 
 
 

   


