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ABSTRACT

We studied the relationship between the polarizability and the molecular conductance

that arises in the response of a molecule to an external electric field. To illustrate

the plausibility of the idea, we used Simmons’ tunneling model, which describes im-

age charge and dielectric effects on electron transport through a barrier. In such a

model, the barrier height depends on the dielectric constant of the electrode-molecule-

electrode junction, which in turn can be approximately expressed in terms of the

molecular polarizability via the classical Clausius-Mossotti relation. In addition to

using the tunneling model, the validity of the relationships between the molecular

polarizability and the molecular conductance was tested by comparing calculated

and experimentally measured conductances of different chemical structures ranging

from covalent bonded to non-covalent bonded systems. We found that either using

the tunneling model or the first-principle calculated quantities or experimental data,

the conductance decreases as the molecular polarizability increases. In contrast to

this strong correlation, our results showed that in some cases there was a weaker or

none correlation between the conductance and other molecular electronic properties

including HOMO-LUMO gap, chemical geometries, and interactions energies. All

these results together suggest that using the molecular polarizability as a molecu-

lar descriptor for conductance can offer some advantages compared to using other

molecular electronic properties and can give additional insight about the electronic

transport property of a junction.
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These results also show the validity of the physically intuitive picture that to a first

approximation a molecule in a junction behaves as a dielectric that is polarized in the

opposite sense of the applied bias, thereby creating an interfacial barrier that hampers

tunneling. The use of the polarizability as a descriptor of molecular conductance offers

significant conceptual and practical advantages over a picture based in molecular

orbitals. Despite the simplicity of our model, it sheds light on a hitherto neglected

connection between molecular polarizability and conductance and paves the way for

further conceptual and theoretical developments.

The results of this work was sent to two publications. One of them was accepted

in the International Journal of Nanotechnology (IJNT) and the other is still under

review in the Journal of Physical Chemistry C.
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Chapter 1

INTRODUCTION

The idea of using individual molecules as active components in nano-electronic devices

was first introduced by A. Aviram and M. Ratner in 1974 in theoretically explain-

ing the I-V property of π molecular system as a potential rectifier (Aviram et al.,

1974). From that time until now, there has been many studies and researches in

exploring, modelling, and interpreting the electron transport properties of different

single molecules (Cui et al., 2001; Smit et al., 2002; Xu, et al., 2003; Reed, et al.,

1997; Porath, et al. 2000; Evers et al. 2004; Stokbro et al. 2003; Lang, 1988; Tersoff

et al., 1993; Imry, 1997; Miller, 1975; Miller, 1983; Galperin et al., 2005; Mujica et

al., 1996; de Andrade, 1998). One of the main focuses of these studies has been on

determining and interpreting molecular conductance which can represent the most

aspects of the electron transport properties of a molecule (Chen et al., 2007). Despite

many difficulties in both experimental and theoretical work, researchers have recently

made a remarkable advances in determining molecular conductance. In this chapter,

a brief overview of these developed experimental methods and advanced theoretical

frameworks in measuring and interpreting molecular conductance will be provided.

This chapter is organized as fallows: first the experimental methods for measuring

the molecular conductance will be explained briefly. Second, the fundamental as-

pects of theoretical framework used in this study for computing conductance values

and driving our model will be discussed in detail. Finally, a brief overview of the

1



work done on the connection between the intrinsic electronic property of a molecule

and its conductance will be provided. In this section, I will also briefly discuss the

possible connection between polarizability and conductance.

1.1 Experimental Methods to Measure Molecular Conductance

For measuring the conductance of a molecule, one should first fix the molecule

between two electrodes as seen in Figure 1.1 (Chen et al., 2007). The measured

molecular conductance with the described experimental set up is not only dependent

on the molecule itself but also dependent on the electrodes, the geometry and the

chemical nature of the contact, the temperature, and the environment (Kalakodimi

et al., 2006; Xue et al., 2003; San-Huang et al., 2004; Mller, 2006; Beebe et al., 2002;

Hu et al., 2005; Basch et al., 2005; Schmickler et al., 1992; Kuznetsov et al., 1992;

Weiss et al., 2005; Nitzan, 2001; Selzer et al., 2004; Haiss et al., 2006; Di Ventra et al.,

2001). Controlling all these parameters (especially the molecule-electrode contacts)

in order to get reproducible conductance values have been a challenge for many years

that experimentalists faced to (Cui, 2001; Magoga, 1997; Yaliraki, 1999; Moresco,

2003). Experimental techniques that have been developed over the past decades to

overcome these challenges are divided into two main categories: 1) the molecular film

measurement technique and 2) single-molecule measurement technique. In following

sections, these two methods will be briefly explained.
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Figure 1.1: Experimental Set-up for Molecular Conductance Measurements (Chen et

al., 2007).

1.1.1 Molecular Film Measurement

In molecular film measurements, first a layer or several of fairly ordered molecules

is placed on the surface of one of the electrodes (Figure 1.2) via self-assembly or

Langmuir-Blodgett methods (Mantooth et al., 2003; Metzger, 2003). Then the sec-

ond electrode is brought to the top of the molecular film, and the electrical current

in external circuit under different applied voltage is measured in order to determine

the conductance of the molecular film. Using this method, the exact ordering of the

molecules next to each other for making a monolayer or multi-layer molecular film

is strongly desired for successful measurements and data interpretation. The most

challenging part of this experiment is placing the second electrode on the top of the

molecular film without having a short circuit between the top electrode and bot-

3



Figure 1.2: Experimental Set-up for Molecular Film Conductance Measurements

(Chen et al., 2007).

tom electrode. The conductance values obtained from this experiment describe the

conductance of a group of many single molecules, although one can reduce the num-

ber of involved molecules in conductance measurement by using nanoelectrodes or

nanopores fabricated in bottom electrode. The molecular film conductance measure-

ment has had a great impact on our understanding of the electron transport properties

of molecules and their function in nano-electronic devices as switches, rectifiers, and

resistors. There are some important criteria for this measurement that should be

considered: 1) this method can be only used for molecules that are able to form a

well ordered molecular film 2) inherent defects or induced defects due to fabrication
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processes or voltage application in the molecular film might affect the conductance

value 3) Noncovalent interaction between molecules in the molecular film can affect

the conductance measurement 4) the conductance of the film per molecule might not

be comparable with the conductance of a molecule obtained from the single molecule

conductance measurement and last 5) the molecules in the films are not exposed to

the outside world.

1.1.2 Single Molecule Measurement

In the single-molecule conductance measurement, first a single molecule must

be reliably wired between electrodes with well-defined contact geometry, second the

environmental conditions must be carefully controlled, and third a signature should be

provided to identify if the measured conductance is representing only the single sample

molecule conductance. When satisfying these conditions, there are three different

methods to measure the conductance of a single molecule 1) scanning probe method,

2) fixed electrodes, and 3) a mechanically controlled molecular junction.

In the scanning probe method, Scanning Tunnelling Microscopy (STM) and Atomic

Force Microscopy (AFM) are used for measuring the electric property of a single

molecule adsorbed on a conductive substrate. In both types of microscopy, a tip

place over the surface a determined distance away enable one to detect any individual

molecule and measure its property. Both methods have had an important role in the

field of molecular electronics. The tip-molecule contact is often the source of error in

both types of microscopy for determining absolute conductance of the molecule.

5



Figure 1.3: Experimental Set-up for Molecular Conductance Measurements with the

Fixed Electrode Method (Chen et al., 2007).

In fixed electrode methods, two electrodes are fixed on a surface with a determined

distance between them and the molecule of interest bridging the two electrodes (Figure

1.3). The difficult, and very important step of this experiment is fabricating electrodes

with a molecule-scale gap. Since a vast majority of molecules are a few nanometers

or less, usually the fabrication of such a small gap between electrodes is hard to reach

by using conventional micro and nano-fabrication facilities. The difficulties of fixed

electrode method are: 1) the fabrication process for fixing electrodes are not usually

reproducible 2) it’s difficult to put just one molecule between two electrodes 3) the

interaction between molecules and electrodes is not well known and 4) the structure

of the electrodes and the position of the molecule are not precisely known.

In mechanically controlled molecular junctions, one can control the gap between two

electrodes with sub-angstroms precision by using a piezoelectric transducer (PZT)

or other mechanical actuation mechanisms. Based on this method, it’s possible to

fabricate molecular junctions and measure the conductance of various molecules.

In general, the critical issues in all above mentioned methods are molecular-electrode
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contact geometry, molecular-electrode energy level alignment, effect of external force,

effect of environment, and current-induced local-heating effect.

1.2 Theoretical Framework to Compute Molecular Conductance

This part focuses on electron transport through molecular layers and single molecule

between two regions of free or quasifree electrons. The primary important issue in

this field is understanding the interrelationship between the molecular structure of

such junctions and their transport properties. “Such investigations of electrical junc-

tions, in which single molecules or small molecular assemblies operate as conductors

connecting traditional electrical components such as metal or semiconductor contacts,

constitute a major part of what has become the active field of molecular electronics”

(Nitzan, 2001).

1.2.1 Modeling the Conductance of a Thin Molecular Layer

Let’s consider a simple model for Metal-Insulator-Metal (MIM) junction repre-

sented by a continuum of electronic level for the right and left electrodes, with their

Fermi levels displaced to include the effect of the applied bias (Simmons, 1963).. The

insulator acts like a barrier and electron transport corresponds to a one-dimensional

tunneling process through the barrier. Based on the Wentzel-Kramers-Brillouin

(WKB) approximation, if a particle with mass of m and velocity vx is scattered by a
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rectangular barrier with height U(x), the probability of transmission T (E) would be:

T (E) = exp[
−4π

h̄

s2∫
s1

[2m(UB(x)− Ex)]1/2 dx] (1.1)

s1 and s2 are the turning points for UB(x). The tunneling flux is obtained by:

T (Ex)n(Ex)
√

2Ex/m. n(Ex) is the number of electrons per unit volume with the

energy of Ex in x direction which can be obtained by integrating of Fermi-Dirac dis-

tribution equation with respect to Ey and Ez. Assuming that the right electrode is

positively biased with respect to the left electrode (the two electrodes are identical),

the net current which is dependent on transmission probability and probability of

finding an electron with Ex per unit time unit volume is given by (Simmons, 1963):

J =

∞∫
0

T (Ex)ξ(Ex) dEx (1.2)

where,

(1.3)

ξ(Ex) =
2m2e

(2πh̄)3

∞∫
−∞

dvy

∞∫
−∞

[f(E)− F (E − eΦ)] dvz

=
4πme

(2πh̄)3

∞∫
0

[f(E)− F (E − eΦ)] dEr

Where Er = E − Ex = (1/2)m(vy
2 + vz

2) is the sum of kinetic energy of the

electron in y and z directions, and Φ is the bias voltage. At zero temperature and

when Φ → 0, one can get f(E) − F (E − eΦ) = eΦδ(E − EF ). Therefore Equations

1.2 and 1.3 lead to an expression giving conduction per unit area, i.e. conductivity

per unit length:

σx =
4πme2

(2πh̄)3

EF∫
0

T (EX) dEx (1.4)
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These equations have been successfully used for predicting the conductance and

current-voltage characteristic of a very thin insulator film sandwiched between two

metal electrodes at finite Φ. Simmons has derived the approximate form of these

expression based on the dependence of Φ-drop along the insulator which will be

discussed in detail later (Simmons, 1963). For deriving the equations above, we

assumed that the conductance and tunneling current are only dependent on the kinetic

energy of the electron in the x direction which in turn relies on our simple picture

of the planar geometry of the electrodes as well as the explicit form of Equation 1.1.

This assumption is not valid for a typical STM configuration that involves a tip on

one side and a structured surface on the other. Tersoff and Hamman (Tersoff et al.,

1985) have applied Bardeens formalism (Bardeen, 1961) to include the effects of the

asymmetry of the electrodes in their calculations.

Equations 1.1-1.4 are the special case of a more general formalism of the current-

voltage characteristic and the conduction of a given junction derived by Landauer

(Landauer, 1970). In the Landauer formalism, we have a system comprised of two

one-dimentional (1D) leads connected by a scattering object or a barrier characterized

by a transmission function T (E). In this picture, conductance can be obtained by

computing the total unidirectional current created in an ideal lead by electrons in

the energy range of [0,h̄2kE
2/2m]. For a one-dimensional (1D) ideal lead with length

L, the density of the electron with the wave vector of k to k + dk is n(k)dk =

2(1/L)(L/2π)f(Ek)dk = f(Ek)dk/π. The corresponding velocity of these electrons is

9



v = h̄k/m. therefore based on the definition of current, we get:

J = e

kE∫
0

dkv(k)n(k) = e

kE∫
0

dk(h̄k/m)f(E)/π =
e

πh̄

Ek∫
0

dEf(E) (1.5)

Using this equation, the net current under the bias can be obtained by:

J =
e

πh̄

∞∫
0

dE[f(E)− f(E − eΦ)] (1.6)

At zero temperature and at the limit of Φ → 0, the net current in an ideal lead,

based on equation 1.6, is given by:

(1.7)J =
e2

πh̄
Φ

Therefore, the conductance of an 1D ideal lead would be J/Φ = e2/πh̄ at zero

temperature. In the presence of a scatterer, equation 1.6 is replaced by:

J =
e

πh̄

∞∫
0

dE[f(E)− f(E − eΦ)]T (E) (1.8)

Where at zero temperature and close to zero bias, we get:

g = J/Φ =
e2

πh̄
T (EF ) (1.9)

Equation 1.9 is only valid for a 1D lead. When the transmission takes place in the

lead with finite sizes perpendicular to the propagation direction, equation 1.9 leads

to (Imry, 1997):

g =
e2

πh̄

∑
i,j

Tij(EF ) =
e2

πh̄
Tr(SS†)EF (1.10)

Where Tij = |S|2 is the transmission probability of an electron coming from , say,

the left side with the transversal mode of i and is scattered into the right side with
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the transversal mode of j. In Equation 1.10, the sum is over all transversal mode

associated with an energy lower than EF . Let’s consider a planar-tunnel junction

when tunnelling transmission can take place in only one direction, the x direction.

In this case, scattering does not couple too many different transversal modes and the

transmission function would be only dependent on the energy of the electron in the

x direction. Therefore, equation 1.10 leads to:

(1.11)

∑
i,j

Tij(EF ) =
∑
i,i

Tii(EF )

=
LyLz
2π2

∫
dky

∫
T [E − (h̄2/2m)(ky

2 + kz
2] dkz

=
LyLz
2π2

2πm

h̄2

E∫
0

T [E − Er] dEr

Erwas defined earlier. Based on this equation, the conductivity per unit area

would be:

σ ≡ g

LyLz
=

4πme2

(2πh̄)3

EF∫
0

T (EX) dEx (1.12)

Which is in agreement with Equation 1.4.

The transmission coefficient in the above equations can be replaced by the scat-

tering amplitude or T matrix elements, between unperturbed states localized on the

electrodes. ∑
i,j

Tij(EF ) = 4π2
∑
l,r

|Tlr|2(E)δ(E − El)δ(E − Er) (1.13)

On the left side of equation 1.13, the states of i, l denotes the exact scattering

states with energy E, characterized by an incoming state i on the left electrode and

an outgoing state j on the right electrode. On the right side of the equation, l, r
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denote zero order states localized on the right and left electrode, respectively. T is

the related scattering (transition) operator whose particular form is dependent on the

details of this localization. Using an expression similar to the Golden Rule for the

scattering operator, we can write:

(1.14)

J =
4πe

h̄

∞∫
0

dE[f(E)− f(E − eΦ)]
∑
l,r

|Tlr|2(E)δ(E − El)δ(E − Er)

=

∞∫
0

dE[f(E)− f(E − eΦ)]
g(E)

e

(1.15)g(E) =
4πe2

h̄

∑
l,r

|Tlr|2(E)δ(E − El)δ(E − Er)

The most difficult part of the above equations is calculating the T matrix. Green

function method is one of the most popular methods among the different methods that

have been proposed for calculating the T matrix. This method will be explained later

in more detail. When Φ → 0, Equation 1.14 leads to J = gΦ and the conductance

would be:

g = g(EF ) (1.16)

Equations 1.13-1.16 provide a complete model for calculating the conductance of a

thin molecular layer.

1.2.2 Modeling the Conductance of a Single Molecule

Equations 1.14-1.16 provide a convenient starting point for most treatments of

currents through a molecular junction where the direct coupling between two elec-
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trodes is weak. In order to obtain the scattering operator, it is convenient to write the

Hamiltonian of the system as the sum H = H0 +V . H0 represents the Hamiltonian of

the isolated electrodes and molecular junction and V represents the coupling between

them. In the case of weak coupling limit, scattering operator T is given by:

T (E) = V + V G(E)V ;G(E) = (E −H + iε)−1 (1.17)

The first term is related to the direct coupling between l and r states, representing

states localized on left and right electrode respectively, which can be neglected in very

weak direct coupling. The second term corresponds to indirect coupling between l

and r via the molecular junction.

In the simple case, the molecular junction can be modeled as N localized sites in

which only site 1 is coupled directly to left electrode and site N is coupled to right

electrode. Using this assumption, we can write Tlr = Vl1G1NVNr and at zero tem-

perature, based on this operator, transmission elements can be obtained by following

equation(Mujica et al., 1994):

∑
i,j

Tij(EF ) = |G1N(EF )|2Γ
(L)
1 (EF )Γ

(R)
N (EF ) (1.18)

Using Equations 1.14 and 1.15:

(1.19)J(Φ) =
e

πh̄

EF∫
EF−eΦ

dE|G1N(E,Φ)|2Γ
(L)
1 (E)Γ

(R)
N (E + eΦ)

Where G1N is one element of the reduced Green’s function in the bridge subspace,

obtained by projecting out the electrodes states:

G(E) = (E −HB − ΣB(E))−1 (1.20)
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Here HB = H0
B + VB is the unperturbed Hamiltonian of the molecular junction

(bridge) and can be presented by:

H0
B =

N∑
n=1

En|n〉〈n|;VB =
N∑
n=1

N∑
n′=1

Vn,n′ |n〉〈n′| (1.21)

Also ΣB(E) is given by:

(1.22)(ΣB(E))n,n′ = δn,n′(δn,1 + δn,N)(Λn(E)− i(1/2)Γn(E))

(1.23)
Γn(E) = Γ(L)

n (E) + Γ(R)
n (E)

= 2π
∑
l

|Vln|2δ(E1 − E) + 2π
∑
r

|Vrn|2δ(EN − E)

(1.24)Λn(E) =
PP

2π

∞∫
−∞

dE
Γn(E ′)

E − E ′

ΣB(E), Γn(E), and Λn(E) are the self-energy operator, its width, and its associated

shift, respectively. Γ and Λ represent the life time of staying electron on the molecular

junction. Since all these operators span the bridge subspace, they would be N×N

matrixes. In the simple case of the tight binding model and in the weak coupling

limit, G1N leads to:

(1.25)G1N =
V1,2

(E − E1 − Σ1(E))(E − EN − ΣN(E))

N−1∏
j=2

Vj,j+1

E − Ej

Equations 1.18-1.25 provide a complete simple model to calculate the molecular con-

ductance. One of the convenient methods to calculate the required parameters in

the mentioned equations is the methods based on Density functional Theory (DFT).

Therefore, some researchers have developed different DFT methodology to the prob-

lem of electron transport via atomic or molecular bridges. For instance, in Lang’s
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approach (Lang, 1995; Lang et al., 200; Parr et al., 1989), the single-electron wave-

function ψ0(r) and the electron density n0(r) for two bare metal (jellium) electrodes

are computed based on DFT and these wavefunctions are used in the Lippman-

Schwinger equation:

(1.26)ψ(r) = ψ0(r) +

∫
dr′dr′′G0(r, r′)δV (r′, r′′)ψ(r′′)

to obtain the single-electron scattering wavefunction ψ(r) in the presence of a

molecular junction, where G0 is the Green Function of the bare electrode and δV

is the potential difference between bare electrodes and electrodes with the molecular

junction. Equation 1.26 gives the scattering states labelling by their energy, the mo-

mentum in direction yz parallel to the electrodes k||, the sign of the momentum in

the x direction, and their spin. Close to zero temperature, current density based on

the obtained scattering states would be:

(1.27)J(r) = −2

uR∫
uL

dE

∫
d2K||Im{ψ∗+∇ψ−}

The factor 2 accounts for the double occupancy of each orbital. This approach

was used recently (Di Ventra et al., 2000) to calculate current through a molecular

species, benzene 1,4-dithiolate molecule (as used in the experiment of Reed et al.

1997), between two jellium surfaces and has demonstrated the large sensitivity of

the computed current to the microscopic structure of the molecule-metal contacts.

However, one of the most important issues in the DFT methodology is that DFT

is not able to fully describe the infinite and non-equilibrium system underlying elec-

tron transport process in the experimental set-up. Thus, another powerful formalism
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has been developed based on non-equilibrium Green’s Function that enable one to

compute molecular conductance while considering the effect of the infinite size and

non-equilibrium state of the system (Xue et al., 2002). This formalism will be ex-

plained briefly in the method and results sections.

1.3 The Relationship Between Molecular Conductance and Molecular Electronic

Structure.

As seen in previous sections, studying molecular conductance is demanding and

challenging work in both experimental and theoretical treatments. Therefore, finding

a molecular descriptor for the conductance which is easy to measure and calculate is

very desirable and interesting from a purely theoretical standpoint and also exper-

imental view point for designing new junctions with tailored properties as building

blocks in future generation nano-electronic devices (Gonzale et al., 2006; Mujica et

al.,2000; Lafferentz et al., 2009; Galperin et al., 2008; Nitzan et al., 2003; Joachim et

al., 2000; Tao, 2006). Unfortunately, despite the immense advances during the past

decade in both theory and experiment, understanding, interpreting, and modelling

the transport properties of a simple molecular junction based on the simple electronic

properties, remains an important and desirable task.

Generally speaking, transport in a junction is a complex non-equilibrium problem

where the description of the current should include, in principle, many-body and vi-

bronic effects (Liu et al., 2014). In such a description, the conductance of the device,

consisting of the molecule and the electrodes operating under a bias potential, cannot
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be separated into a molecular and an electrode contribution and it depends, in a

complicated way, on the nature and strength of the molecule-electrode coupling and

the voltage (Hartle et al., 2009; Bergfield et al., 2009; Baer et al., 2003).

However, in the limit of low voltage, which physically corresponds to the linear re-

sponse regime, it is possible to define a voltage-independent molecular conductance.

This property is affected by both the nature of the anchoring groups connecting the

molecule to the electrode and ,more importantly for our study, by some intrinsic

properties of the molecule (Nitzan, 2006). For instance, it has been shown that the

gap between HOMO and LUMO (Eg), molecular conformation and molecular bond

characteristic have a determining role in the molecular conductance (Magoga et al.,

1997; Xue et al., 2001; Tomfohr et al., 2002; Pauly et al., 2008; McDermott et al.,

2009; Kamenetska et al., 2010; Burkle et al., 2012; Venkataraman et al., 2006).

In addition to the intrinsic electronic properties of the molecule, the conductance of a

molecular junction also depends on the chemical nature of the anchoring groups, the

position of the Fermi energy level of the electrode, and the contact geometry of the

molecule and electrodes (Kiguchi et al., 2010; Park et al., 2007; Chen et al., 2006)

named here as environmental factors. By assuming and keeping environmental fac-

tors consistent, we study the effect of the polarizibilty of a molecular junction biased

by a finite potential on its conductance. The possible connection between molecu-

lar conductance and polarizability may be understood from the heart of theoretical

framework which has been proposed for decades to model molecular conductance. As
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Figure 1.4: Spatial Profile Potential of an Electrode-Bridge-Electrode Structure with a

(a) Very Easy Polarizable Medium (b) Unpolarizable Medium, as the Bridge (Nitzan,

2006).

described in a previous section, the conductance of a molecular junction depends on

the transmission function, which in turn depends on the electrical potential biased on

the molecular junction. Based on how this biased electrical potential drops along the

molecular bridge, the transmission function and consequently the conductance would

be different. As a matter fact, electrostatic potential dropping or spatial profile of

the electrostatic potential is highly dependent on the polarizability of the junction.

Figure 1.4 shows the schematic spatial profile potential for two extreme cases (Nitzan,

2006).

The physical plausibility of the connection between molecular conductance and

polarizability becomes stronger based on the results of recent works in trying to de-

scribe the spatial profile of the electrostatic potential by solving in a self-consistent

way Schrdinger and Poisson equations to connect the quantum electronic density to
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the electrostatic potential (Gonzalez et al., 2006; Xue et al., 2001). This model re-

veals essential features of the interplay between the molecular charge density and

the spatial profile of the field across the junction, a key variable in determining the

rectification properties of the device (Metzger, 2003). The picture that emerges from

this model is that molecules behave to a large extent as a dielectric whose polariza-

tion response counteracts the driving field. This leads to a spatial profile that differs

substantially from that of a vacuum junction between two electrodes, which is a lin-

ear function of the inter-electrode separation as found by solving Poisson equation

for zero charge density, and corresponds rather to an S-shaped function associated

with a spatial profile characterized by the fact that the potential drop occurs at the

interfaces between the molecule and the electrodes.

Once one has accepted the crucial role played by the molecular bridge in determining

the local dielectric properties of a junction, the next conceptual step is to connect

the dielectric constant to the molecular polarizability. It comes perhaps as a surprise

that the validity of the age-old Clausius-Mossotti equation, that relates the static

molecular polarizability of a simple dielectric material to its macroscopic dielectric

constant, has been explored in the nano-domain and found to work reasonably well

using a state-of-the-art description of the electronic structure of electrified interfaces

(Natan et al., 2010; Bergren et al., 2010). In a way, this result is a consequence of

the connection between Maxwell’s equations of electromagnetism and quantum me-

chanics, which requires that the charge and the current densities be calculated via
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the Schrödinger equation to obtain a consistent description.

One of the earliest models to explicitly connect electron transport to the dielec-

tric properties of a junction is a generalized version of Simmons model of tunneling

through a continuous barrier whose properties depend on the charge and dielectric

properties of the junction. It has been previously established that under some ap-

proximations it is possible to map a molecular orbital description of a molecule into a

tunneling barrier, in such a way that the barrier height and width correspond to the

energy difference between the Fermi energy and the energy of the bridge molecular

orbitals and the length of the molecule, respectively (Mujica et al., 2001). Inspired

by the connection discussed above and earlier works that hinted to the importance

of molecular polarizability (Bergren et al., 2010; InhetPanhuis et al., 2004; Munn et

al., 2002), we decided to explore the consequences of using molecular polarizability

to calculate the local dielectric constant in a tunneling model as well as the direct

correlation between polarizability and the zero-voltage conductance calculated using

a DFT-NEGF approach. The results of such a comparison are very encouraging and

have led us to a more thorough theoretical investigation of the connection between

the dynamic molecular polarizability and the ability of a molecule to transfer charge,

either in the context of a molecular device or in an intra-molecular transfer process.

The connection between polarizabilty and molecular conductance will be discussed

with more details in a later section.

The rest of this thesis is organized as follows: Chapter 2 provides detailed informa-
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tion on calculating the electronic structure, molecular conductance and polarizability.

Chapter 3 provides a theoretical study as a proof of concept on the connection between

polarizability and molecular conductance and also provides results with analysis of

the data obtained by DFT calculations. Finally, Chapter 4 finalize the dissertation

with a discussion about the nature of the correlation between molecular polarizability

and conductance and speculations about future work.
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Chapter 2

METHODS

In this chapter, a brief overview of the computational method used in this thesis is

given. Part of this work is based on density functional theory (DFT) and the Non-

Equilibrium Green’s Function(NEGF). The electronic structure, conductance, and

polarizability of a molecular system are described from first principles. In the first

part of this chapter, an overview of the detail of the calculations will be given. In the

second part, a brief overview of important aspects of DFT is given, as employed for

the electronic structure calculations in this thesis. Also, the concepts of basis sets and

pesudopotential functions will be briefly described. In the last part of the chapter,

the NEGF for the description of the elastic current will be introduced.

2.1 Computational Details

Full geometry optimizations of all structures, including hydrogen-bonded com-

plexes and the corresponding monomers were carried out at DFT-level as implemented

in the ORCA 2.9 software package using the Becke gradient-corrected exchange func-

tional and Lee-Yang-Parr correlation functional with three parameters (B3LYP) and

the 6-311++G(2d,2p) basis set (Neese, 2012; Becke, 1993; Lee et al., 1988; Krishnan

et al., 1980; Clark et al., 1983; Frisch et al., 1984; Curtiss et al., 1998; Hazra et al.,

2012). This level of calculation was found to accurately describe the properties all

studied systems in this work (Hazra et al., 2012; Rustad et al., 2010; Foreman et al.,
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2003; Li et al., 2001). The calculated interaction energies were corrected for basis

set superposition error using the Boys and Bernardi counterpoise correction (Boys

et al., 1970). In the present work, the static dipole polarizability was partitioned

into individual atomic components using a recent approach based on Hirshfeld pop-

ulation analysis αγγ(Marenich et al., 2013). In this method, the spherically averaged

molecular static dipole polarizability can be partitioned over all atoms i in a molecule

as

(2.1)αγγ =
∑
i

αγγi

using the following relation:

(2.2)αγγi = lim
Fγ→0

µγi(Fγ)− µγi(0)

Fγ

(2.3)α =

∑
γ αγγ

3

(2.4)
αγγ = (

∂µγ
∂Fγ

)0

= lim
Fγ→0

µγ(Fγ)− µγ(0)

Fγ

where µγ is the component of the dipole moment along the γ axis, with γ = x, y,

or z. Fγ is the magnitude of an auxiliary static electric field F used in the calculation,

oriented along theγ axis, and 0 indicates F = 0. Averaging over αxx, αyy, and αzz

yields the spherically averaged molecular static dipole polarizability. Each component

of the molecular polarizability tensor is then written is a sum of the individual atomic

polarizabilities.
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Since the major aim of the current investigation is to examine the nature of elec-

tronic transport across a hydrogen bond, the transport properties were obtained us-

ing the ab initio program TRANSIESTA (Soler, et al., 2002). The program uses the

Hamiltonian provided by the DFT code SIESTA (Soler, et al., 2002), in combination

with the nonequilibrium Greens Function formalism (Datta, 2000; Ferry et al., 2009;

Landauer, 1957; Bttiker, 1986). Norm-conserving pseudopotentials account for the

core electrons and a linear combination of pseudoatomic orbitals span the valence

states. The calculations used a single-ζ basis set for the all the atoms and an energy

cutoff of 300 Ry was chosen to define the real-space grid. The local density approxi-

mation (LDA) was employed to account for exchange and correlation effects (Perdew

et al., 1981). 30 points of contour integration on the imaginary plane is used to obtain

the density matrix from the Greens Function. A cut off energy of 380 Ry for the grid

mesh is employed to have converged transmission values at zero bias. The molecular

condutance was obtained by multiplying the calculated transmission values with the

value for quantum conductance (7.75× 105S) (Zimbovskaya et al., 2011).

Prior to evaluation of the transport properties, gold electrodes were attached to

either side of the structure through a sulfur atom. Earlier local density approximation

(LDA) calculations indicated that the C-S bond length was 1.76 Å in the energetically

most stable conformation of molecules attached to gold atoms (Maniu et al., 2007).

LDA calculations of dithiol-terminated oligo(phenylene-ethynylene)-type molecules

attached to two gold electrodes indicated that the sulfur atom bound to the hollow-
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Figure 2.1: A Typical System Set-up in this Study Comprised of Gold Electrode,

Sulfur, Molecular Bridge, Sulfur and Gold Electrode.

site with a Au-S distance of 2.4 Å was found to be energetically most stable (Kaliginedi

et al., 2012; Haiss et al., 2006; Martin et al., 2010). In all our transport calculations,

the structures were attached to the gold through the hollow-site with a S-C distance

of 1.76 Å and a Au-S distance of 2.4 Å. A schematic of the (Au electrode)-H-bonded

complex-(Au electrode) model used to calculate the conductances reported in this

work is shown in Figure 2.1.

Some of the important concepts and aspects of DFT and Green’s Function used

in ORCA 2.9 and SIESTA will be briefly explained below, a full description of the

codes are available in Refs. (Soler et al., 2002; Artacho et al., 2008) (SIESTA), Refs.

(Neese, 2012) (Abinit) and references therein.

2.2 Density Functional Theory

DFT is a theory in quantum mechanics used in physics, chemistry, and material

science as an alternative to solving the many-body wavefunction associated with

Schrödinger equation. The demonstration of its validity is well-established for the

ground state, and some theoretical issues remain open regarding its applicability to
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excited states. The use of DFT in solving complicated many-body problem has led to

a dramatic reduction in computational expense and time. this explains why DFT has

become one of the most popular computational methods in computational chemistry.

DFT relies on Hohenberg-Kohn theorems which state (Hohenberg et al., 1964;

Kohn et al., 1965):

Theorem 1. “If two systems of electrons have the same ground state density ρ(r)

while one is trapped in the potential V (r) and the other in potential V ′(r) then,”

(2.5)V (r)− V ′(r) = Constant

From this theorem, one can conclude that V (r) is a unique functional of ρ and conse-

quently the obtained wave-function from the Schrödinger equation based on the given

v(r) would be also a unique function of ρ. Therefore, it is possible to define an energy

functional as below:

(2.6)E[ρ(r)] = F [ρ(r)] +

∞∫
−∞

V (r)ρ(r)dr

Based on this equation, one can prove that:

Theorem 2. “The global minimum of the energy functional, Equation 2.6, is the

true ground-state energy, E0, for the system and the density that minimizes the

functional is the ground-state density, ρ0(r).”

In Equation 2.6, F [ρ(r)] is an universal functional containing the kinetic energy

of electrons and the potential energy of the electrons resulting from the coulomb

repulsion between them. In the majority of systems, F [ρ(r)] is an extremely compli-

cated functional whose exact form is not known, and should be approximated in some

way. Despite the need for an approximate form of this functional, Hohenberg-Kohn
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theorems still makes quantum mechanics calculations much simpler by mapping the

many-body problem to an electron density problem dependent on just three spatial

variables.

One of the earliest approximations for the universal functional, E[ρ] was proposed

by Kohn and Sham based on an effective potential model (Kohn et al., 1965). They

introduced the idea of an auxiliary system of non-interacting electrons for which

the kinetic energy functional and the exact density could be written in terms of

one-electron Kohn-Sham orbitals. Employing this approximation, the many-body

problem can be mapped into a set of coupled one-electron equations similar in spirit

to the Hartree-Fock scheme but actually preserving the many-body character of the

problem :
(2.7)HΦj(r) = εjΦj(r)

Φj(r) is Kohn-Sham (KS)-wavefunction and εj is the eigenvalue of KS-wavefunction.

The Hamiltonian of the system in Kohn-Sham formalism is:

(2.8)H = −5
2

2
+ Veff (r)

and

(2.9)Veff (r) = Vext +

∫
ρ(r′)

|r − r′|
dr +

∂Exc[ρ(r)]

∂ρ(r)

As seen, the effective potential includes three terms. The first term is the external

potential described by the interaction between the nucleus (ion cores) and electrons

(valence electrons), the second term is the repulsive coulomb interaction between

electrons, and the third term is the exchange correlation energy, which is the most
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complicated term and needs to be approximated. KS-equation should be solved iter-

atively as follows:

1) The initial form of ρ(r) is guessed.

2) The KS Hamiltonian is constructed based on Equation 2.8.

3) The KS-orbitals are obtained via Equation 2.7.

4) The new electron density is calculated through ρ(r) =
∑

j|φj(r)|2.

5) If the difference between new and old electron densities is equal or lower to the

convergence criteria, a solution to KS equations are is achieved otherwise the process

is iterated from Step 2.

In solving KS equations, it is necessary to find an approximation for the exchange-

correlation (XC) energy functional. The role of this functional in KS equation is

to correct the error resulting from using the non-interacting kinetic energy of the

electrons. Quantum treatment of electron-electron interaction includes Fermi corre-

lation which prevents two electrons with parallel spins to be in the same point of

space, coulomb correlation which describes the correlation between the position of

two electrons due to the coulomb repulsion, and the correlation related to the overall

symmetry of the system wavefunction. The exact form of XC functional is unknown,

but there are some approaches to approximate this functional. The earliest approxi-

mation of XC functional was proposed by Kohn-Sham (Kohn et al., 1965) known as

Local Density Approximation (LDA). Exc obtained from LDA is described as follow:

(2.10)ELDA
xc (ρ) =

∫
ρ(r)εxc[ρ(r)]dr
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Here εxc is the Exc per electron in an homogenous electron gas. Since LDA gives a bad

approximation of Exc in some systems, there have been so many efforts to introducing

a better functional for estimating Exc. Maybe the best known functional for exchange-

correlation energy after LDA is Generalized Gradient Approximation (GGA), which

states that XC energy not only depends on the value of electron density but also

depends on its spatial gradient (Perdew et al., 1992). The typical form for a GGA

functional is;

(2.11)EGGA
xc (ρ) =

∫
ρ(r)εxc[ρ(r),5ρ(r)]dr

GGA significantly improves on the LDAs description of the binding energy of molecules.

This improvement caused the wide spread acceptance of DFT in the chemistry com-

munity in the early 1990s. It’s worth mentioning that both ELDA
xc and EGGA

xc can be

separated into two exchange and correlation parts (Harrison, 2003):

(2.12)ELDA
xc (ρ) = ELDA

x (ρ) + ELDA
c (ρ)

(2.13)EGGA
xc (ρ) = EGGA

x (ρ) + EGGA
c (ρ)

Based on this separation, different hybrid exchange correlation functionals have been

proposed for further accuracy such as the linear combination of ELDA
xc and EGGA

xc .

One of the well-known and successful hybrid functionals is B3LYP (Becke, three-

parameter, Lee-Yang-Parr). This functional is defined as follows:

EB3LY P
xc = ELDA

x +a0(EHF
x −ELDA

x ) +ax(E
GGA
x −ELDA

x ) +ELDA
c +ac(E

GGA
c −ELDA

c )
(2.14)

Where EHF
x is the HartreeFock exact exchange functional:

(2.15)EHF
x = −1

2

∑
i,j

∫ ∫
ψ∗i (r1)ψ∗j (r1)

1

r12

ψi(r2)ψj(r2)dr1dr2

The exchange-correlation functional used in this study was B3LYP.

29



2.3 Basis Sets and Pseudopotentials

As mentioned before, in order to solve the Kohn-Sham equation, an initial guess for

ρ(r) as the starting point of the calculations is required. The initial ρ can be obtained

from the initial guess of a wavefunction constructed from a single Slater determinant

of the orbitals that are generally expressed based on the linear combination of atomic

wavefunctions of the atoms in the given system. Several different approaches have

been proposed to generate atomic wavefunctions in order to correctly describe the

behavior of the electrons in core and valance levels. These atomic wavefunctions are

called basis sets. Four of the most popular basis sets are: Plane Waves, Gaussian,

Augmented, and Numerical. Since I used Guassian type basis set in ORCA program,

I will briefly explain this type of basis sets.

The basis set used in ORCA calculations for this study was 6 − 311++G∗∗. This

basis set has been fully explained in several previous works (Ditchfield et al., 1971;

Hehre et al., 1972; Hariharan et al., 1973; Hariharan et al., 1973), so here I present

a brief summary of its properties. The 6 in the notation (6 − 311++G∗∗) indicates

that the program uses 6 primitive functions to construct a basis function/core orbital.

The 311 in the notation means the program uses 3 valance basis functions/orbitals

in which the first function has 3 primitives, the second one has 1 primitive, and the

third one has also one primitive. The ”++” in the notation means the program

also uses diffuse functions for building the basis sets. The G in the notation means

the program uses Gaussian type primitive to build basis functions. The ”∗∗” in the
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notation means all heavy atoms get an extra d-function and all hydrogen atoms get

an extra p-function. An example of a basis function with three parameters, is given

as:

φ1S(r) = Σ3
i=1ai(

2ai
π

)3/4e−αir
2

(2.16)

In this equation, the function e−αir
2

is called the primitive function (primitives). The

coefficients ai and αi are optimized in a way so that the behaviour of the electrons

(here core electrons) can be described accurately. In my calculations, I used triple-zeta

basis sets for describing the valence electrons and minimal basis sets for describing core

electrons. The triple-zeta basis sets is consists of three basis function with different

number of primitives and minimal basis sets consists of just one basis function for

each atomic core orbital. It is also possible to represent the core electrons and nucleus

of an atom together with an effective potential or pseudopotential, while the electrons

in the valence states are represented more explicitly (Troullier et al., 1991). Using this

approach makes DFT calculations inexpensive and faster for systems containing many

atoms and heavy atoms. There has been much effort in finding a way to create proper

pseudopotentials, which are both successful in describing the all-electron behaviour

correctly, and computationally efficient at the same time. In the SIESTA calculations

performed in this study, the psuedopotential are created from all-electron atomic

calculation performed in DFT through solving radial Kohn- Sham equations.

(2.17)(−1

2

d2

d2r
+
l(l + 1)

2r2
+ v[ρ; r)])rRn,l(r) = εnlrRn,l(r)
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Here v[(ρ; r)] is the self-consistent one-electron potential:

v[ρ; r] = −Z
r

+ vH [ρ; r] + vxc[ρ(r)] (2.18)

vH is the Hartree potential, vxc is the exchange-correlation potential functional of the

core electrons, and ρ(r) is the total electron density of the occupied orbitals by the

core electrons. The psuedopotential should satisfy following conditions:

1) The pseudo-orbitals obtained from pseudopotential shouldn’t have a node.

2) The normalized atomic radial pseudo-orbitals (PP), with angular momentum l,

should be equal to the normalized radial all-electron orbitals (AE) after a given cutoff

radius rc

RPP
l (r) = RAE

l (r) for r > rc (2.19)

3) Both orbitals (PP and AE) should have the same charge inside of the cutoff radius

as follow:

rc∫
0

|RPP
l (r)|2r2dr =

rc∫
0

|RAE
l (r)|2r2dr (2.20)

4) The eigenvalues of AE and PP orbitals must be the same.

The pseudopotentials with these conditions are usually called, ”norm-conserving pseu-

dopotentials”. This type of pseudopotentials are used, by default, in both SIESTA

and TRANSIESTA calculations.

Despite the core electrons, the valence electrons behaviour should still be described

with a basis set composed of a linear combination of localized numerical atomic
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orbitals (LCAO). In fact, the atomic orbitals are the product of a spherical harmonic

and a radial function:

Ψn,l,m(r, θ, ϕ) = Rn,l(r)Yl,m(θ, ϕ) (2.21)

where Rn,l and Yl,m are the radial functions with the principal quantum number of n

and the real spherical harmonic for orbital angular momentum l and magnetic quan-

tum number m, respectively. Since there is much freedom in how to combine atomic

orbitals for building basis sets, the size and shape of the basis set is flexible. This

flexibility can come from the number of angular momentum channels, the number of

radial functions, the shape of radial function, and the cut-off radius. This includes

the center (not necessarily atom centered), how many angular momentum channels

around each centre, how many radial functions per angular momentum channel and

last, the cut-off, rc, and shape for each radial function. These parameters must be

selected with care to maximize efficiency and accuracy. There are different ways to

variationally generate optimized basis sets (Junquera et al., 2001), but there is still

no well-defined way to generate the optimal basis set and check for convergence. In

SIESTA, these optimal basis sets change from basis sets of single-ζ (SZ) type to mul-

tiple ζ including polarization and diffuse orbitals which can lead from fast and low

convergence calculations to highly converged and more time consuming calculations.

SZ is the minimal basis set which contains of one radial function per angular momen-

tum channel. In this minimal basis sets, the number of angular functions are chosen

based on the population of the electrons in the valence states of an given isolated
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atom. In order to make the more flexible radial part, one more radial function can

be added to generate a double-ζ (DZ) basis set. It is also possible to extend radial

functions more and getting a multiple ζ basis.

2.4 Non-equilibrium Green’s Function

The calculation of transport properties involves going beyond the description of

the electronic structure and requires the consideration of non-equilibrium processes

associated with the voltage bias. We are interested in the simplest molecular junc-

tion consisting of a molecule chemically connected to two electrodes. In such a system

electrons are driven by the voltage bias and the description of the current requires, in

principle, a many-body description. However, under some approximations a combi-

nation of DFT and transport theory has been implemented in several computational

packages like TRANSIESTA. The quantum theory of transport is a complex subject

that I will not attempt to treat here in any detail. For the purposes of this disserta-

tion I will give only the basic equations involved in the calculation of the current and

the conductance.

In general terms, the system is split into the electrode part where thermalization is

assumed to occur and a bridge part where electrons are scattered. In Landauer’s view

of quantum transport it is precisely this scattering that is associate to the current.

Transport itself is described in terms of a time-dependent propagator whose Fourier

transform gives information about the stationary current, which is the main object of
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Figure 2.2: A Typical Scattering Region in Conductance Calculations (Löf̊as, 2013).

the DFT-NEGF approach. A schematic of the system considered in NEGF formalism

is given in Fig. 2.2.

The electronic Hamiltonian of the above described system and its overlap matrix

can be written as:

H =


HL HLM 0

HML HM HMR

0 HRM HR



S =


SL SLM 0

SML SM SMR

0 SRM SR


respectively. Let’s assume that the Hamiltonian of the bulk in the L- and R-region

can be converged. Therefore, we only need to compute the Hamiltonian and overlap

matrix of M, M-L, and M-R. Based on this Hamiltonians, the transport properties of

the molecule can be obtained by the finite L-M-R region of the infinite system, through

a series of Green’s Function matrices. When defining the retarded electronic single-

particle Green’s function Gr(ε) as the inverse of [(ε+ iη)S−H], one can approximate
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the description of the infinite system by considering the finite system L-M-R. For the

molecular region (M), the retarded Green’s Function can be written as follow:

Gr
M(ε) = [(ε+ iη)SM −HM − Σr

L(ε)− Σr
R(ε)]−1 (2.22)

Where ε is the energy of the electron, η is 0+, and Σr
L and Σr

R are the self-energies

operators for the left and right lead, respectively, due to the coupling between the

molecule and the leads. The self-energy operator for the left electrode can be described

as:

Σr
L(ε) = (HML − εSML)grL(ε)(HML − εSML) (2.23)

Where grL is the retarded surface Green’s function of the left electrode which described

by (εSL−HL + iη)−1. Similarly self-energy operator can be also defined for the right

electrode.

The current in this framework is given by (Xue et al., 2002):

J =
ie

2h

∫ µR

µL

dε (tr{[fL(ε)ΓL − fR(ε)ΓR](Gr
M −Ga

M)}+ tr{(ΓL − ΓR)G<}) (2.24)

where µL and µR are the electrochemical potentials of the right and left electrodes

that include the bias voltage (Meir et al., 1992; Jauho et al., 1994). All G functions

in above and following equations are functions of the energy of the electron. Here

Gr, Ga, G< stand for the retarded, advanced Green’s function and ”lesser” Keldysh

function. The retarded Green function is related to the advanced Green function with

the relation of [Gr(ε)]† = Ga(−ε) (Di Ventra, 2008). fL(ε), fR(ε) are the Fermi-Dirac

distribution functions for the left and right electrodes, while ΓL,ΓR represent the
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imaginary part of the self-energy. The lesser Keldysh function is related to the lesser

self-energy by

G< = GrΣ<Ga, Σ< = i[ΓLfL + ΓRfR]. (2.25)

Inserting Eq.(2.25) into Eq.(2.24), we have the more compact form for the current

(Meir et al., 1992),

J =
e

h

∫ µR

µL

dε[fL(ε)− fR(ε)]tr[GaΓRGrΓL] (2.26)

and the conductance is defined as,

g(E) = gotr[G
aΓRGrΓL] = g0tr(Γ

LGr
MΓRGa

M) (2.27)

Here g0 is the quantum of conductance. In principle, the NEGF theoretical framework

permits the description of elastic and inelastic transport (including electron-electron

and electron-phonon interaction) through an appropriate inclusion of self-energies for

each type of interaction (Galperin et al., 2007; Pleutin et al., 2003). It is however

important to consider approximate schemes and the combination of non-equilibrium

Green’s function method with density functional theory have been extensively used

for the approximate description of electron transport in molecular junctions.
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Chapter 3

RESULTED AND DISCUSSION

This chapter is organized as follows. First we discuss the relevance of the local dielec-

tric properties of the junction for transport based on NEGF formalism. Second, we

discuss our results for the tunnelling model and different molecular systems, includ-

ing two cases where both the polarizability and the conductance are calculated, and

two cases where the conductance has been measured experimentally by other groups

and the polarizability is calculated by us. Next, we extend our exploration to hydro-

gen bonded systems and some simple biological systems to check the validity of our

correlation. We end with a discussion about the nature of this correlation between

molecular polarizability and conductance and speculations about future work.

3.1 Model

3.1.1 Local Dielectric Constant and Voltage Profile

The conductance depends on the spatial profile of the electrostatic potential, which

in principle has to be determined self-consistently through the simultaneous solution

of the Schrödinger equation to calculate the charge density ρ(~r) and the Poisson

equation to determine the electrostatic potential Φ(~r). This is expressed schematically
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as the following set of equations. 

HΨ = EΨ

Ψ→ ρ

∇2Φ = − ρ
εr

(3.1)

Where εr is the dielectric constant of the inter-electrode medium. In a previous

publication, Mujica et al. have used the scheme described by the set of Equations

3.1, for a one dimensional tight-binding system, and found that the self-consistent

charge distribution for a finite applied voltage corresponded essentially to that of

a polarizable dielectric. Similar conclusions using three-dimensional models and ab

initio electronic structure methods have been found by Xue et al (Xue et al., 2001).

These results strongly hinted at the importance of explicitly including the molecular

polarization in a conductance model based on NEGF formalism combined with DFT.

Driving our relation between conductance and molecular polarizability based NEGF

goes through a barrier model of conductance which will be discussed in next sections.

Before discussing about the barrier model of the conductance, the Clausius-Mossotti

relation will be briefly explained because this relation is used in our barrier model.

3.1.2 Clausius-Mossotti Relation

The most straightforward connection between the dielectric constant εr of an

electrified interface and the molecular polarizability α of the intervening medium is
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given by Clausius-Mossotti equation:

εr = ε0+2γα
ε0−γα

γ = NAd
3M

(3.2)

Where, NA is the Avogadro’s number, ε0 is the vacuum permittivity, M is the mo-

lar mass of the material and d is its density. It applies to the dielectric constant

of a bulk dielectric material that is homogeneous and isotropic, and it connects the

static polarizability of a single molecule with the susceptibility of a three-dimensional

molecular material. The basic microscopic premise of this relation is that in a uni-

form electric field, each molecule is represented as a polarizable point dipole that

experiences the external field (thus inducing a polarization response). These condi-

tions might seem too simplistic to describe a molecular junction, but the nanoscopic

validity of the Clausius-Mossotti equation has been systematically explored (Natan et

al., 2010) and it corresponds to a well-defined limit that provides us with a physically

reasonable starting point.

3.1.3 Barrier Model of Conductance

To initially explore the connection between polarizability and conductance we

consider a model of molecular conductance as a tunnelling process. This amounts to

ignoring all the many-body aspects of the transport process, and assuming that the

molecule acts as a one-dimensional tunnelling barrier, specified by two parameters:

the height and the width. Simmons model, including image charges and dielectric

effects, has been extensively used for the description of tunnelling through metal-
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molecule interfaces with remarkable success (Simmons et al., 1963). We are particu-

larly interested in the expression for the height of the tunnelling barrier, which has

been shown in the Simmons model to be related to the dielectric constant by:

φ̄ = φ0 − qV
s1 + s2

2x
−

1.15λxln( s2(x−s1)
s1(x−s2)

)

∆s
(3.3)

with λ defined as:

λ =
q2ln2

8πxε0εr
(3.4)

Where, q is the electron charge, V is the bias voltage, φ0 is the bare barrier height,

s1 and s2 are the distances between the barrier and the two electrodes, ∆s = s2− s1,

x is the midpoint between the electrodes, ε0 is the vacuum permittivity and εr is the

dielectric constant.

The relationship between the current and the voltage in the tunnel junction can

be recast in a following form:

J = c(φ̄e−A
√
φ̄ − (φ̄+ qV )e−A

√
φ̄+qV )

c = q
2πh(σ∆s)2

A = (4π∆s
h

√
2me)

(3.5)

Where σ is a correction factor defined in Ref (Simmons, 1963). The combined use

of Eqs. 3.2 and 3.3 results in the desired connection between the effective barrier’s

height and the polarizability:

φ̄ = φ0 − qV
s1 + s2

2x
−

0.0317q2xln( s2(x−s1)
s1(x−s2)

)

(∆s)ε0
(
ε0 − γα
ε0 + 2γα

) (3.6)

The differential conductance g is defined as

g(V ) =
∂J

∂V
(3.7)
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The differential conductance in the limit of zero voltage can be obtained straightfor-

wardly from Eq.(3.5) as:

lim
V→0

g(V ) = qce−A
√
φ̄

(
Aφ̄

2
√
φ̄
− 1

)
(3.8)

In deriving Eq. 13, we assume that s1+s2
2x

= 1 and that the molecular polarizability

is not dependent on the bias voltage.

A different theory, based directly on the Green’s function approach to transport,

showing the explicit mapping of a one-dimensional tight-binding model of a molecule

into a tunnelling barrier, was obtained by Mujica et al (Mujica et al., 2001). In this

description, for a chain of N sites, characterized for an inter-site separation a, and a

hopping integral t, the zero-voltage conductance is obtained as:

g = g0e
−βL

g0 = 2e2

h̄

∆2
0

t2

β = − 2
a
ln( t

Eo
)

(3.9)

Where Eo is the site energy with respect to Fermi energy level, L = Na is the length

of the chain, a is the inter-site distance and ∆0 is the spectral density, equal to the

ΓR/L in Eq.(2.24). Starting from Eq.(3.9) and replacing the parameter E0 by the

barrier height given by Eq.(3.6), φ̄ we obtain:

g =
2e2

h̄

∆2
0

t2

 t

φ0 −
0.0317q2xln(

s2(x−s1)
s1(x−s2)

)

(∆s)ε0
( ε0−γα
ε0+2γα

)


2N

(3.10)

Figure 3.1 shows a plot of conductance vs polarizability using both Simmon’s con-

tinuous model of the barrier and Mujica’s model based on a discrete site description.
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Figure 3.1: The Predicted Trend Between Conductance and Polarizability Based on

Eq.(3.5) and Eq.(3.10). The Blue Upward Triangle Represent Normalized Conduc-

tance Values That Are Calculated Using Eq.(3.5) and Red Downward Triangle Are

Based on Eq.(3.10). Both Approaches Predict Identical Behaviour for Conductance

vs Polarizability.

We use normalized values of these quantities, defined by XN = X−Xmin
Xmax−Xmin , to elim-

inate irrelevant dependencies on the parameters for each model. It is apparent that

in both cases the physical intuition based on the dielectric description of the junction

is borne out by the calculations and that the agreement between the two models is

nearly perfect and thus gives us a more precise picture of the connection between

conductance and polarizability. A thorough comparison between the predictions of

these two models, for instance for the length dependence, can be found elsewhere

(Mujica et al., 2001).
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3.2 Molecular Models

Given the encouraging results obtained with the tunnelling description, we decided

to test our idea with more realistic molecular models, where in all cases we have

used as a measure of the molecular property the isotropic polarizability, ᾱ defined

in terms of the polarizability tensor as ᾱ = (1/3)tr(α) (Martin et al., 1979). The

computational details can be found in the method section.

We first calculated conductance and polarizabilities of a series of π conjugated

aliphatic chains with different lengths obtained by adding C2H4 units. This effect

has been studied experimentally and theoretically in similar systems (Tao, 2006; Li

et al., 2006; Engel et al., 2004; Liu et al., 2008) and the STM current shows an

exponential decay with increasing length, a result fully consistent with the idea that

under some conditions the bridge molecule in a STM junction behaves essentially as a

tunneling barrier. More interestingly is the fact that for families of related molecules,

the static isotropic polarizability scales with the molecular volume (Ratkova et al.,

2011) We then have two equations giving the conductance and the polarizability as

an approximate function of molecular length:

g = Ae−βL (3.11)

ᾱ = BL3 (3.12)

where A,B and β are constants characteristic of the molecular system and the molec-

ular volume has been simply approximated as scaling as L3. The implication of these
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Figure 3.2: Calculated Conductance Versus Calculated Polarizability for π-

Conjugated Chains. As Seen, the Predicted Trend Is Observed for These Chains.

The Points on the Graph Correspond to C2H4 to C8H18. The Correlation Coef-

ficient R2 for the Fitting Line Is 0.9606 and the Equation of the Fitting Line Is

ln(g) = −3.4474α− 5.5639.

equations is that the conductance should be related to the polarizability simply as

g = Ce−β
′ᾱ1/3

(3.13)

where the new constants C and β′ can be obtained straightforwardly from those in

equations 3.11 and 3.13. The linear relationship between the log of g and the the third

root of the polarizability is clearly displayed in Figure 3.2, confirming the validity of

Eq.(3.13). We next put our model to another test, where we examined the correlation

between polarizability and conductance for a benzene ring with different substituents
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Figure 3.3: Calculated Conductance Versus Polarizability for Different Substituted

Benzene Rings. As Seen, the Same Predicted Trend for Conductance Versus Polar-

izability Is Also Observed for Substituted Benzene Rings. The Substituted Benzene

Rings 1 to 8 Are, ph-F , p-Cl, ph-CHF2, ph-OCH3, ph-SH, ph-NO2, ph-CH2Cl and

ph-CCl3 Respectively.

(Figure 2.1). Importantly, (because of its rigidity) substituents ranging from electron

withdrawing group (EWG) to electron donating group (EDG), imposed negligible

structural effects on the benzene ring. This helped us maintain similar geometries for

the electrodes, anchoring groups and the molecular bridge in all systems; avoiding, to

a large extent, the effect of the linkers on the conductance. Figure 3.3 suggests that,

qualitatively, the results follow the predicted trend. The conductance values are also

consistent with experimental measurements (Martin et al., 2008).
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Next, we analyzed the results presented in a recent paper by Breslow and coworkers

who have measured the conductance of different molecular wires (Figure 3.4) with a

five-membered rings of furan or thiophene (Chen et al., 2014). Their results showed a

consistently higher conductance for analogous thiophene systems that was attributed

to a decrease of aromaticity (Chen et al., 2014). We have computed the polarizability

of these systems and plotted the experimental conductance against the calculated

polarizability. We are sticking to the same notation that was used in the experimental

papers to facilitate cross checking of the systems. The computational details can be

found in the supporting information. The results are displayed in Figure 3.5 and they

clearly suggest that, the behaviour of these junctions is controlled by the same type

of physics included in our simple dielectric model.

To further investigate the robustness of our correlation between polarizability and

conductance, we have chosen a series of molecules that were studied experimentally by

Meisner and coworkers (Meisner et al., 2012). The molecular wires are functionalized

with para-para or para-meta di-methyl sulfide groups at both of the phenyl termini as

can be seen in Figure 3.6. The difference in the conductances is justified by the differ-

ence in the ”linker” group properties and binding interactions. Figure 3.7 summarizes

the results. In this case, the polarizability of linker+molecule is calculated. It can

be seen that for each family of molecules the increase in polarizability corresponds

to a decrease in the conductance. It is also apparent that the conductance of PPn

is systematically higher than that of PMn. It is known that the nature of bonding
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(a) Compound 2, 2,5-bis(4-

aminophenylethinyl)furan.

(b) Compound 3, 2,5-bis(4-

aminophenylethinyl)thiophene.

(c) Compound 5, 2,5-bis-

(4-aminophenyl)furan.

(d) Compound 6, 2,5-bis(4-

aminophenyl)thiophene.

Figure 3.4: The Molecular Wires Studied By Chen et al. These Molecular Wires

Contain a Five Membered Ring. The Amino Groups at Both Ends of the Wires Act

as the Linker and Connects the Wires to the Gold Electrodes (Chen et al., 2014).
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Figure 3.5: Experimentally Measured Conductance vs Calculated Polarizability for

Structures 2,3 and 5, 6 of the Systems Studied by Chen et al (Chen et al., 2014).

between the electrode and the linker groups can dramatically affect the conductance

(Hong et al., 2012; Chen et al., 2006; Ke et al., 2004). Our polarizability model does

not encompass the interaction and electronic coupling between the electrode and the

anchoring group. Hence, the difference between the Au-S bonding and Au-N and

their effect on conductance cannot be captured in our model. In fact, polarizability

should clearly be a better descriptor of molecular conductance for weaker electrode-

anchoring group interaction, because this weak interaction is a necessary condition

for the approximate separability of the conductance in a molecular and an electrode

term.

So far, we only discussed electron transport across covalent bonded systems and

its relationship with the polarizability. In addition, due to the importance of non-
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(a) PP1.

(b) PM1.

Figure 3.6: The Molecular Wires Experimentally Studied by Meisner et al. (Meisner

et al., 2012).

covalent interactions between individual molecules in designing nanoelectronic de-

vices based on supramolecular self-assembly, we decided to investigate the electron

transport across molecules bound by hydrogen bonds (as one of the most important

non-covalent interaction in biology and chemistry) and its relation with polarizabil-

ity. Therefore the next section, will be about electron transport across the hydrogen

bond.

3.3 Hydrogen Bond Electron Transport Property

There is tremendous interest in the design and development of functional nanoelec-

tronic devices based on the principles of controlled organization and supramolecular
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Figure 3.7: Experimentally Measured Conductance of Different Systems from Meisner

et al. (Meisner et al., 2012) Versus Calculated Polarizability. It Can Be Seen That

PPn and PMn (n=1-3) Molecules Approximately Follow the Trend Predicted by the

Polarizability Model.

self-assembly (Weiss et al., 2008; Whitesides et al., 2002; Parviz et al., 2003; Boncheva

et al., 2002; Yokoyama et al., 2001; Lindsay et al., 2012; Huang et al., 2012; Bath et

al., 2013; Kim et al., 2012; Lehn et al., 2013; Pease et al., 2001). This has been largely

spurred by the recent demand for electronics in biomedical applications (Lindsay et

al., 2012). Thus, non-covalent interacations between individual molecules can lead to

functional nanoelectronic devices by controlled organization and self-assembly. Apart

from being structurally rigid, these molecular asssemblies should also facilitate elec-

tron transfer between the individual molecules. Despite substantial breakthroughs

in the context of nucleotide sensing devices (Weiss et al., 2008; Huang et al., 2012;
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Chang et al., 2011) there have been relatively few investigations of electron transfer

across molecules or molecular assemblies bound by non-covalent interactions (Wu et

al., 2008; Holmlin et al., 2001; Slowinski et al., 1997; De Rege et al., 1995). As a

result, there is scant information on the nature of electron transport across hydrogen

bonds despite it being one of the most widely investigated non-covalent interactions

(Jeffrey et al., 1997; Scheiner, 1997; Kim et al., 2000; Lee et al., 2007; Tarakeshwar

et al., 2002). In view of the growing relevance of hydrogen bonds in the context

of organic electronic devices (Gowacki et al., 2013), there is an urgent need for a

systematic study of electronic transport across hydrogen bonding.

A hydrogen bond results from an attractive interaction between the hydrogen

atom of a donor-hydrogen covalent bond (D-H) and an electronegative acceptor atom

(B) or a polarizable π system (Scheiner, 1997; Kim et al., 2000; Tarakeshwar et al.,

2002). Despite their small interaction energies compared to a conventional covalent

bond, cooperative and collective effects between hydrogen bonds have known to be

extremely useful in direct electronic sensing of chemical and physical processes (Ca-

hen et al., 2005; Paltiel et al., 2010) An important feature of hydrogen bonds is that

they are characterized by extremely high polarizabilies (Janoschek et al., 1972), which

are further increased in the presence of external electric fields (Eckert et al., 1987).

In the context of electron transport across hydrogen bonds, this feature is extremely

important because polarizable systems have a soft electron cloud that deforms in re-

sponse to bias modulation which in turn modulates the tunneling current via changes
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in the barrier properties that can be correlated to changes in the local dielectric

properties of the media (Natan et al., 2010). Indeed, changes in the conductance of

molecules adsorbed on gold electrodes have been extremely useful in measuring their

polarizabilities (Moore et al., 2010).

The current investigation was spurred by a recent experimental measurement of

electron transfer across hydrogen bonds (Nishino et al., 2013). Even though the

magnitude of the conductance was very small (∼ 10−9 S), the authors found that

at short range, hydrogen bonds conduct electrons better than a covalent σ bond

(Nishino et al., 2013). However, the conductance rapidly decays when the electron

transfer pathway becomes longer (Nishino et al., 2013). Against this background, we

felt it would be interesting to investigate electron transport across hydrogen bonds and

examine the role of factors like hydrogen bond length, strength, and polarizabilities in

influencing its magnitude. As has been shown in a recent study of the development of

nano pH indicator (Granhen et al., 2010), knowledge of some of these factors would

provide useful theoretical guidelines for the development of hydrogen bond based

functional electronic nanodevices and organic electronics.

As hydrogen bonding systems relevant to organic electronics need to be both

structurally rigid and also facilitate electron transport, all the molecules chosen in this

study (crotonic acid, propenyl amine, benzoic acid, aniline, pyridine) either possess

double bonds or aromatic rings. Since N-H· · ·O, O-H· · ·O and N-H· · ·N are the three

most widely prevalent hydrogen bonds in biological systems and organic electronics
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(Jeffrey et al., 1997; Gowacki et al., 2013), the carboxyl and amino functional groups

were chosen for mediating the hydrogen bonds. In the next sections, I will talk more

about these hydrogen bonded complexes, their electron transport properties and their

relevance.

3.3.1 The structures of the hydrogen bonded complexes considered in this study

As mentioned above, we were interested in studying hydrogen bonded complexes

with N-H· · ·O, O-H· · ·O and N-H· · ·N bonds. Therefore, we chose 5 different monomers

including crotonic acid, propenyl amine, benzoic acid, aniline, and pyridine which are

enable to form our desirable hydrogen bonds with different strength and electronic

properties. Based on the monomers employed in this study, several plausible hydro-

gen bonded complexes can be obtained. Thus a linear hydrogen bonded complex

1 can result from the interaction of two crotonic acid molecules. In Figure 3.8,

the B3LYP/6-311++G(2d,2p) optimized structures of the different hydrogen bonded

complexes are displayed. It can be seen that structures 1 and 2 exhibit a O-H· · ·O

type of interaction, structures 3 and 4: a O-H· · ·N type of interaction, structures 5

and 6: a N-H· · ·O type of interaction and structures 7 and 8: a N-H· · ·N type of

interaction. Thus, the interacting molecules in all the odd-numbered systems involve

double bonds and those in the even-numbered systems involve aromatic systems.

Though the interaction of two propenyl amine or aniline molecules can result in the

formation of a N-H· · ·N hydrogen bond, pyridine was employed as an acceptor be-

cause the biologically relevant N-H· · ·N interactions involve a ring nitrogen as an

54



acceptor atom. Though the hydroxyl functional group of crotonic and benzoic acid

can also behave as hydrogen bond acceptors, we did not consider them because the

resulting hydrogen bonds are much weaker than those investigated in this stidy. We

also investigated a energetically more stable dimeric structure (Figure 3.9) resulting

from the interaction of two crotonic or benzoic acid molecules. Though the anti form

of carboxyl group is energically less stable than the corresponding syn form, we also

carried out an investigation of the interaction of aniline with the anti form of benzoic

acid 60.

3.3.2 Geometries and Energies

The calculated interaction energies (Table 3.1) of the linear hydrogen bonded com-

plexes indicate that the relative magnitude of the strength of the interaction follow

the order (N-H· · ·O < N-H· · ·N < O-H· · ·O < O-H· · ·N). Interestingly, the calcula-

tions involving the smaller 6-31+G* basis set exhibit similar trends as those involving

the larger 6-311++G(2d,2p) basis set. Even though, the O-H· · ·N hydrogen bonds

are the strongest, they are not prevalent in biological systems (Jeffrey, 1997). In the

absence of any experimental or theoretical study of the linear hydrogen bonded com-

plexes, it is useful to note that the calculated interaction energies (∼15.5 kcal/mol)

of the benzoic acid dimer (2D) are in good agreement with earlier experimental and

theoretical studies (Lourderaj et al., 2006; Allen et al., 1966). As was noted in an

earlier study of the acetic acid dimer (Nakabayashi et al., 2001), the interaction of the

linear hydrogen bonded complexes is weaker than the interaction in the corresponding
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Figure 3.8: B3LYP/6-311++G(2d,2p) Optimized Structures of All Linear Hydrogen

Bonded Complexes.

dimeric hydrogen bonded complexes. It is obvious from 3.1 that there is little correla-

tion between the strength and length of the hydrogen bond. Since electron transport

across hydrogen bonds is predominantly mediated through quantum-mechanical elec-

tron tunneling, it has been earlier mentioned that hydrogen bond length is a relevant
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Figure 3.9: B3LYP/6-311++G(2d,2p) Optimized Structures of the Crotonic (1d) and

Benzoic (2d) Acid Dimers.

issue in tunneling (Lindsay, 2012; Huang et al., 2010; Nishino et al., 2013; Lee et al.,

2009).

3.3.3 Electronic Transport Characteristics

Before we discuss the electronic transport characteristics of these hydrogen bonded

complexes, it is useful to note that the all the monomers have nearly similar highest

occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO)

gaps (Table 3.2). Interesting however is the relative magnitude of the polarizabilities

of the donor and acceptor atoms involved in the formation of the hydrogen bond. Since

the donor atom is involved in the formation of a covalent bond with the hydrogen

atom, its calculated atomic polarizability is substantially smaller than that of the

acceptor atom.

With this background, it is useful to examine the electronic characteristics of all

the hydrogen bonded complexes investigated in this study (Table 3.3). In recent work,

the experimentally observed conductance of hydrogen-bonded ω-carboxyl ethanethiol

(HS-(CH2)2COOH) dimer was found to be 1.5 nS, which was slightly larger than that
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Table 3.1: Calculated B3LYP Interaction Energies and Selected Geometry Parameters

of Different Hydrogen Bonded Systema

aAll energies are in kcal/mol. See Figures 3.8 and 3.9 for description of the various

complexes. ∆E and ∆EB represent the interaction energies without and with BSSE

correction, respectively. D, H, and A, are the donor, hydrogen, and acceptor atoms

in the hydrogen bond. rD· · ·A, rD-H, and rA· · ·H are in the units of Å.
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Table 3.2: Calculated B3LYP Orbital Energies, Molecular and Atomic Polarizabilities

of Different Hydrogen-Bonded Systemsa

aH (highest occupied molecular orbital) and L (lowest unoccupied molecular orbital)

energies are in eV. Σα is the total molecular polarizability in atomic units (a.u.).

αD, αH , and αA are the polarizabilities (a.u.) of the donor, hydrogen, and acceptor

atoms in the various monomers.

of a single octanedithiol molecular junction (0.99 nS) (Nishino et al., 2013). The

calculated conductance of the benzoic acid dimer (2D) optimized at the B3LYP/6-

311++G(2d,2p) level of theory is 5.8 nS (Table 3.3). While the higher conductance

of 2D compared to that of ω-carboxyl ethanethiol can be attributed to the fact

that the former possesses a conjugated aromatic system, it is useful to note that the

calculated conductance of all the hydrogen-bonded complexes reported in this work

are of nearly the same order of magnitude. It has been observed that molecular

wires exhibit enhanced condutivities possess smaller HOMO-LUMO gaps (Emberly
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Table 3.3: Calculated B3LYP Orbital Energies, Molecular and Atomic Polarizabilities

of Different Hydrogen-Bonded Systemsa

aH (highest occupied molecular orbital), L (lowest unoccupied molecular orbital),

and H-L (HOMO-LUMO gap) energies are in eV. Σα is the total molecular

polarizability in atomic units (a.u.). αD, αH , and αA are the polarizabilities (a.u.)

of the donor, hydrogen, and acceptor atoms in the hydrogen bond. The molecular

conductance (G) is in units of nanoSiemens (nS).
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et al., 1998; Tian et al., 1998; Kemp et al., 1994; Cohen et al., 2007; Perepichka et al.,

2005). In Table 3.3, it can be seen that the calculated conductances of these hydrogen

bonded complexes do not exhibit any correlation to the corresponding HOMO-LUMO

gaps. It is however interesting to note that hydrogen bonded complexes resulting

from the interaction of aromatic molecules exhibit lower conductance than those

involving the interaction of molecules possessing alkenyl double bonds. Given the

relation between conductance and polarizabilities, we plot the calculated molecular

polarizabilties and the corresponding conductances in Figure 3.10. It is obvious from

the plot that for complexes exhibiting identical hydrogen bonding interactions, an

enhanced conductivity is associated with a smaller polarizability. On a similar note,

it can be noted that a larger conductance across the hydrogen bond corresponds

to a smaller magnitude of polarizability of the acceptor atom. While we highlight

this correlation in more detail in a subsequent section, the above correlation can be

construed to mean that a larger change in the polarizabilty of the acceptor atom in

the dimer compared to its polarizability in the monomer is associated with a higher

conductivity.

3.3.4 Extensions to systems of biological relevance

The hydrogen bond between p-benzosemiquinone and imidazole is vital in fa-

cilitating electron transfer in energy conversion reactions involving most biological

systems (Ohashi et al., 2010; Saito, et al., 2013) It is therefore interesting to exam-

ine the nature of charge transport across this hydrogen bond. Since previous work
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Figure 3.10: Correlation of the Calculated Molecular Polarizabilities (a.u.) and the

Molecular Conductances (nS) of All the Hydrogen-Bonded Complexes.

has shown that the presence of substituents greatly influence the electronic trans-

port properties of the molecular devices (Zhang et al., 2009; Fan et al., 2010; Lu et

al., 2004), we also examined the role of substituents on the nature of the hydrogen

bond and the resulting transport characteristics. The presence of a hydroxyl group in

the para position relative to the acceptor oxygen of the hydrogen bond implies that

electron withdrawing (NO2) and electron donating (NH2) groups can be substituted

either on the imidazole ring or the ortho and meta positions of the phenyl ring. In

Figure 3.11, the B3LYP/6-31+G* optimized structures of the various substituted p-

benzosemiquinone-imidazole complexes. It should be noted that all these complexes
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Figure 3.11: B3LYP/6-31+G* Optimized Structures of All the p-Benzosemiquinone-

Imidazole Hydrogen- Bonded Complexes.

possess a single positive charge and are open-shell spin doublets. As was seen earlier,

the interaction energies HOMO-LUMO gaps are not very informative on the nature

of electron transport. Hence we only present the polarizabilties, selected geometrical

parameters, and the corresponding conductances in Table 3.4. It can be seen that

the presence of an electron-withdrawing or electron-donating substituent on the im-

idazole ring has little effect on the observed conductances. However, the presence
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Table 3.4: Calculated Polarizabilties, Selected Geometrical Parameters, and Molecu-

lar Conductance of the p-Benzosemiquinone-Imidazole Hydrogen-Bonded Systema

aSee Figure 3.11 for description of the various complexes. Σα is the total molecular

polarizability in atomic units (a.u.). αD, αH , and αA are the polarizabilities (a.u.)

of the donor, hydrogen, and acceptor atoms in the hydrogen bond. The molecular

conductance (G) is in units of nanoSiemens (nS).

of an electron-withdrawing group at the meta position or a electron-donating group

at the ortho position of the phenyl ring enhances the observed conductances. This

effect is easy to understand in the context of activating and deactivating groups in

electrophilic aromatic substitution reactions (Olah 1971). Thus, the presence of an

electron withdrawing (NO2) group at the ortho position leads to a partial positive

charge on the carbon attached to acceptor oxygen atom. The resulting decrease in

the electron density of the acceptor oxygen atom leads to a weakening of the O· · ·H-

N hydrogen bond. Thus, the rO···N in (12) is 2.753 Å compared to 2.647 Å in the
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Figure 3.12: Correlation of the Calculated Atomic Polarizabilities (a.u.) of the Ac-

ceptor Oxygen Atom and the Molecular Conductances (nS) of Ortho-Substituted

p-Benzosemiquinone-Imidazole Hydrogen-Bonded Complexes.

unsubstituted p-benzosemiquinone-imidazole (11) complex. On a similar note, the

enhancement of the condutance in 15 can be explained. Since the electron density on

the acceptor oxygen atom is influenced by the presence of the substituents, it can be

expected that its polarizability would reflect the observed conductance. It can indeed

be seen in Figure 3.12, that the polarizabilities of the acceptor oxygen atom exhibit

an inverse correlation to the observed conductance.
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Chapter 4

CONCLUSION AND FUTURE WORKS

In this work we have explored the rather substantial computational evidence of an ex-

isting correlation between the static isotropic molecular polarizability and the molec-

ular contribution to the zero-voltage conductance of a molecular junction. We have

also examined the physical origin of such a correlation via a model that connects

the local dielectric properties of the junction to its transport behaviour via changes

in the effective height of the associated tunneling barrier. The model was compu-

tationally tested with various covalent and non-covalent bonded systems. It’s worth

mentioning that our model only provides some physically plausible arguments and

does not constitute a first-principle theory, however to our knowledge it is the first

systematic attempt in trying to explicitly describe molecular conductance in terms of

polarizability.

Our results, together with the fact that there is a direct relationship between

molecular conductance and electron transfer rate (Nitzan, 2001), which is valid for

low bias, point in the direction that it should be possible to reformulate Marcus theory

of electron transfer directly in terms of the frequency-dependent dielectric response,

a goal we are currently working on. Using molecular polarizability as a descriptor

of conductance may also have important implications for the theory of molecular

dielectrics.
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