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ABSTRACT

Sparse learning is a powerful tool to generate models of high-dimensional data with

high interpretability, and it has many important applications in areas such as bioin-

formatics, medical image processing, and computer vision. Recently, the a priori

structural information has been shown to be powerful for improving the performance

of sparse learning models. A graph is a fundamental way to represent structural

information of features. This dissertation focuses on graph-based sparse learning.

The first part of this dissertation aims to integrate a graph into sparse learning to

improve the performance. Specifically, the problem of feature grouping and selection

over a given undirected graph is considered. Three models are proposed along with

efficient solvers to achieve simultaneous feature grouping and selection, enhancing

estimation accuracy. One major challenge is that it is still computationally challeng-

ing to solve large scale graph-based sparse learning problems. An efficient, scalable,

and parallel algorithm for one widely used graph-based sparse learning approach,

called anisotropic total variation regularization is therefore proposed, by explicitly

exploring the structure of a graph. The second part of this dissertation focuses on

uncovering the graph structure from the data. Two issues in graphical modeling are

considered. One is the joint estimation of multiple graphical models using a fused

lasso penalty and the other is the estimation of hierarchical graphical models. The

key technical contribution is to establish the necessary and sufficient condition for the

graphs to be decomposable. Based on this key property, a simple screening rule is

presented, which reduces the size of the optimization problem, dramatically reducing

the computational cost.
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Chapter 1

INTRODUCTION

The fast advancement of data acquisition technologies in biology, engineering and

social science, makes a significant amount of high-dimensional data available. The

vast high-dimensional datasets pose a great challenge to statistical inference due to

the curse of dimensionality. To make the inference possible, there is a need to de-

velop new statistical and machine learning techniques to represent or approximate

the complex high-dimensional dataset using a much smaller number of parameters

than the original dimension. Sparse learning has been emerged as a powerful tool to

generate models of high dimensional data with high interpretability, and it has many

important applications in areas such as bioinformatics, medical image processing, and

computer vision. A well-known sparse learning approach is the ℓ1 regularization ap-

proach, known as lasso (Tibshirani, 1996), which can simultaneously perform feature

selection and regression/classfication. However, in the presence of highly correlated

features lasso tends to only select one of those features resulting in suboptimal perfor-

mance (Zou and Hastie, 2005). Moreover, lasso lacks the ability to incorporate prior

knowledge into the regression/classfication process, which is critical in many applica-

tions. As a motivating example, many biological studies have suggested that genes

tend to work in groups according to their biological functions, and there are some reg-

ulatory relationships between genes (Li and Li, 2008). This biological knowledge can

be represented as a graph, where the nodes represent the genes, and the edges imply

the regulatory relationships between genes. In previous literature, many variants of

group lasso such as standard group lasso, overlapping group lasso, and tree structured

group lasso (Bach et al., 2004; Jacob et al., 2009; Yuan and Lin, 2006; Liu and Ye,
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2010; Jacob et al., 2009; Liu and Ye, 2010) have demonstrated the benefits of the

prior knowledge in improving the performance of regression/classfication. A graph

is a fundamental way to represent structural information of features. Many types

of structural information can be encoded as a graph. This dissertation addresses

the problem how to integrate a graph into the sparse learning process to improve

the performance. Specifically, the problem of feature grouping and selection over a

given undirected graph is considered. Three models are proposed along with efficient

solvers to achieve simultaneous feature grouping and selection, enhancing estimation

accuracy.

One major challenge is that it is still computationally challenging to solve large

scale graph-based sparse learning models. The well-known total variation regular-

ization uses a special graph structure, where each node is only connected to its

neighbors. The wide range of applications of total variation regularization includ-

ing image restoration, image denoising and deblurring (Barbero and Sra, 2011; Beck

and Teboulle, 2009a; Huang et al., 2011; Li et al., 2009; Vogel and Oman, 1998; Yang

et al., 2009), underscore its success in signal/image processing. We therefore pro-

pose an efficient, scalable, and parallel algorithm for this widely used graph-based

sparse learning approach, called the anisotropic total variation regularization model,

by explicitly exploring the structure of a graph.

Due to the benefits of graph structural information in sparse learning, there is a

need to uncover the graph structure from data sets. The second part of this disser-

tation focuses on how to estimate graph structures. Traditional approaches usually

make simple assumptions such as ignoring dynamic changes among graphs or a sin-

gle type of edge. These approaches may not be suitable for data nowadays, which

can be noisy, high dimensional, and dynamic. A motivating example is the analysis

of brain networks of Alzheimer’s disease using neuroimaging data. Specifically, we
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may wish to estimate a brain network for the normal controls (NC), a brain net-

work for the patients with mild cognitive impairment (MCI), and a brain network

for Alzheimer’s patients (AD). We expect the two brain networks for NC and MCI

to share common structures but not to be identical to each other; similarly for the

two brain networks for MCI and AD. We consider the problem of estimating multiple

graphical models simultaneously. Compared with estimating each graph separately,

joint estimation of multiple graphical models can utilize the information of underlying

common structure, thus yields a better estimation. In addition to an efficient second-

order method, we propose a necessary and sufficient screening rule which decomposes

the large graphs into small subgraphs and allows an efficient estimation of multiple

independent (small) subgraphs, dramatically reducing the computational cost.

1.1 Notation

In this dissertation, ℜ stands for the set of all real numbers, ℜn denotes the n-

dimensional Euclidean space, and the set of all m × n matrices with real entries is

denoted by ℜm×n. All matrices are presented in bold format. The space of symmetric

matrices is denoted by Sn. If X ∈ Sn is positive semidefinite (resp. definite), we

write X ≽ 0 (resp. X ≻ 0). Also, we write X ≽ Y to mean X − Y ≽ 0. The

cone of positive semidefinite matrices in Sn is denoted by Sn
+. Given matrices X

and Y in ℜm×n, the standard inner product is defined by ⟨X,Y⟩ := tr(XYT ), where

tr(·) denotes the trace of a matrix. X ◦ Y and X ⊗ Y means the Hadamard and

Kronecker product of X and Y, respectively. We denote the identity matrix by

I, whose dimension should be clear from the context. The determinant and the

minimal eigenvalue of a real symmetric matrix X are denoted by det(X) and λmin(X),

respectively. Given a matrix X ∈ ℜn×n, diag(X) denotes the vector formed by the

diagonal of X, that is, diag(X)i = Xii for i = 1, . . . , n. Diag(X) is the diagonal
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matrix which shares the same diagonal as X. vec(X) is the vectorization of X. In

addition, X > 0 means that all entries of X are positive. A d-mode tensor (or d-

order tensor) is defined as X ∈ ℜI1×I2×···×Id . Its entries are denoted as xj1,...,jd , where

1 ≤ jk ≤ Ik, 1 ≤ k ≤ d. For example, 1-mode tensor is a vector, and 2-mode tensor is a

matrix. xj1,...,ji−1,:,ji+1,...,jd denotes the mode-i fiber at {j1, . . . , ji−1, ji+1, . . . , jd}, which

is the higher order analogue of matrix rows and columns. The Frobenius norm of a

tensor is defined as ∥X∥F = (
∑

j1,j2,...,jd
x2
j1,j2,...,jd

)
1
2 . The inner product in the tensor

space is defined as ⟨X ,Y⟩ =
∑

j1,j2,...,jd
xj1,j2,...,jd yj1,j2,...,jd . For simplicity of notation,

we use /{ji} to represent the index set excluding ji, i.e., {j1, . . . , ji−1, ji+1, . . . , jd}.

For instance,
∑

j1,...,ji−1,ji+1,...,jd
can be simply written as

∑
/{ji}.
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Chapter 2

FEATURE GROUPING AND SELECTION OVER AN UNDIRECTED GRAPH

2.1 Introduction

High-dimensional regression/classification is challenging due to the curse of di-

mensionality. Lasso (Tibshirani, 1996) and its various extensions, which can simul-

taneously perform feature selection and regression/classification, have received in-

creasing attention in this situation. However, in the presence of highly correlated

features lasso tends to only select one of those features resulting in suboptimal per-

formance (Zou and Hastie, 2005). Several methods have been proposed to address

this issue in the literature. Shen and Ye (2002) introduce an adaptive model selection

procedure that corrects the estimation bias through a data-driven penalty based on

generalized degrees of freedom. Elastic Net (Zou and Hastie, 2005) uses an additional

l2 regularizer to encourage highly correlated features to stay together. However, these

methods do not incorporate prior knowledge into the regression/classification process,

which is critical in many applications. As an example, many biological studies have

suggested that genes tend to work in groups according to their biological functions,

and there are some regulatory relationships between genes (Li and Li, 2008). This

biological knowledge can be represented as a graph, where the nodes represent the

genes, and the edges imply the regulatory relationships between genes. Therefore, we

want to study how estimation accuracy can be improved using dependency informa-

tion encoded as a graph.

Given feature grouping information, the group lasso (Bach et al., 2004; Jacob et al.,

2009; Yuan and Lin, 2006; Liu and Ye, 2010; Xiang et al., 2013b, 2014, 2013a) yields
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a solution with grouped sparsity using l1/l2 penalty. The orignal group lasso does not

consider the overlaps between groups. Zhao et al. (2009) extend the group lasso to

the case of overlapping groups. Jacob et al. (2009) introduce a new penalty function

leading to a grouped sparse solution with overlapping groups. Yuan et al. (2011)

propose an efficient method to solve the overlapping group lasso. Other extensions of

group lasso with tree structured regularization include (Liu and Ye, 2010; Jenatton

et al., 2010). Prior works have demonstrated the benefit of using feature grouping

information for high-dimensional regression/classification. However, these methods

need the feature groups to be pre-specified. In other words, they only utilize the

grouping information to obtain solutions with grouped sparsity, but lack the capability

of identifying groups.

There are also a number of existing methods for feature grouping. Fused lasso (Tib-

shirani et al., 2005) introduces an l1 regularization method for estimating subgroups

in a certain serial order, but pre-ordering features is required before using fused lasso.

A study about parameter estimation of the fused lasso can be found in (Rinaldo,

2009); Shen and Huang (2010) propose a non-convex method to select all possible

homogenous subgroups, but it fails to obtain sparse solutions. OSCAR (Bondell and

Reich, 2008) employs an l1 regularizer and a pairwise l∞ regularizer to perform fea-

ture selection and automatic feature grouping. Li and Li (2008) suggest a grouping

penalty using a Laplacian matrix to force the coefficients to be similar, which can be

considered as a graph version of Elastic Net. When the Laplacian matrix is an iden-

tity matrix, Laplacian lasso (Li and Li, 2008; Fei et al., 2010) is identical to Elastic

Net. GFlasso employs an l1 regularization over a graph, which penalizes the difference

|βi − sign(rij)βj|, to encourage the coefficients βi, βj for features i, j connected by an

edge in the graph to be similar when rij > 0, but dissimilar when rij < 0, where rij is

the sample correlation between two features (Kim and Xing, 2009). Although these
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grouping penalties can improve the performance, they would introduce additional

estimation bias due to strict convexity of the penalties or due to possible graph mis-

specification. For example, additional bias may occur when the signs of coefficients

for two features connected by an edge in the graph are different in Laplacian lasso (Li

and Li, 2008; Fei et al., 2010), or when the sign of rij is inaccurate in GFlasso (Kim

and Xing, 2009).

In this chapter, we focus on simultaneous estimation of grouping and sparseness

structures over a given undirected graph. Features tend to be grouped when they

are connected by an edge in a graph. When features are connected by an edge in

a graph, the absolute values of the model coefficients for these two features should

be similar or identical. We propose one convex and two non-convex penalties to

encourage both sparsity and equality of absolute values of coefficients for connected

features. The convex penalty includes a pairwise l∞ regularizer over a graph. The

first non-convex penalty improves the convex penalty by penalizing the difference of

absolute values of coefficients for connected features. The other one is the extension of

the first non-convex penalty using a truncated l1 regularization to further reduce the

estimation bias. These penalties are designed to resolve the aforementioned issues of

Laplacian lasso and GFlasso. The non-convex penalties shrink only small differences

in absolute values so that estimation bias can be reduced. Through ADMM and DC

programming, we develop computational methods to solve the proposed formulations.

The proposed methods can combine the benefit of feature selection and that of feature

grouping to improve regression/classification performance. Due to the equality of

absolute values of coefficients, the model complexity of the learned model can be

reduced. We have performed experiments on synthetic data and two real datasets.

The results demonstrate the effectiveness of the proposed methods.

The main contributions of this chapter are summarized as follows:
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• We propose a convex solution to OSCAR over an arbitrary undirected graph,

called graph OSCAR (GOSCAR);

• We propose two non-convex methods for simultaneous feature grouping and

selection. The basic method is called ncFGS and the extension using the trun-

cated l1 regularization is called ncTFGS;

• We show that feature grouping and feature selection are complementary through

the proposed non-convex methods.

The rest of the chapter is organized as follows. We introduce the proposed con-

vex method in Section 2.2, and describes the two proposed non-convex methods in

Section 2.3. Experimental results are given in Section 2.4. We conclude the chapter

in Section 2.5.

2.2 A Convex Formulation

Consider a linear model in which response yi depends on a vector of p features:

y = Xβ + ϵ, (2.1)

where β ∈ ℜp is a vector of coefficients, X ∈ ℜn×p is the data matrix, and ϵ is random

noise. Given an undirected graph, we try to build a prediction model (regression or

classification) incorporating the graph structure information to estimate the nonzero

coefficients of β and identify the feature groups when the number of features p is

larger than the sample size n. Let (N,E) be the given undirected graph, where

N = {1, 2, . . . , p} is a set of nodes, and E is the set of edges. Node i corresponds to

feature xi. If nodes i and j are connected by an edge in E, then features xi and xj

tend to be grouped. The formulation of graph OSCAR (GOSCAR) is given by

min
β

1

2
∥y −Xβ∥2 + λ1∥β∥1 + λ2

∑
(i,j)∈E

max{|βi|, |βj|} (2.2)
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where λ1, λ2 are regularization parameters. We use a pairwise l∞ regularizer to

encourage the coefficients to be equal (Bondell and Reich, 2008), but we only put

grouping constraints over the nodes connected over the given graph. The l1 regularizer

encourages sparseness. The pairwise l∞ regularizer puts more penalty on the larger

coefficients. Note that max{|βi|, |βj|} can be decomposed as

max{|βi|, |βj|} =
1

2
(|βi + βj|+ |βi − βj|).

1
2
(|βi + βj|+ |βi − βj|) can be represented by

|uTβ|+ |vTβ|,

where u,v are sparse vectors, each with only two non-zero entries ui = uj =
1
2
, vi =

−vj = 1
2
. Thus (2.2) can be rewritten in a matrix form as

min
β

1

2
∥y −Xβ∥2 + λ1∥β∥1 + λ2∥Tβ∥1, (2.3)

where T is a sparse matrix constructed from the edge set E.

The proposed formulation is closely related to OSCAR (Bondell and Reich, 2008).

The penalty of OSCAR is λ1∥β∥1+λ2

∑
i<j max{|βi|, |βj|}. The l1 regularizer leads to

a sparse solution, and the l∞ regularizer encourages the coefficients to be equal. OS-

CAR can be efficiently solved by accelerated gradient methods, whose key projection

can be solved by a simple iterative group merging algorithm (Zhong and Kwok, 2011).

However, OSCAR assumes each node is connected to all the other nodes, which is

not sufficient for many applications. Note that OSCAR is a special case of GOSCAR

when the graph is complete. GOSCAR, incorporating an arbitrary undirected graph,

is much more challenging to solve.

2.2.1 Algorithm

We propose to solve GOSCAR using the alternating direction method of multi-

pliers (ADMM) Boyd et al. (2011). ADMM decomposes a large global problem into
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a series of smaller local subproblems and coordinates the local solutions to identify

the globally optimal solution. ADMM attempts to combine the benefits of dual de-

composition and augmented Lagrangian methods for constrained optimization (Boyd

et al., 2011). The problem solved by ADMM takes the form of

minx,z f(x) + g(z)

s.t. Ax+Bz = c.

ADMM uses a variant of the augmented Lagrangian method and reformulates the

problem as follows:

Lρ(x, z, µ) = f(x) + g(z) + µT (Ax+Bz− c) +
ρ

2
∥Ax+Bz− c∥2,

with µ being the augmented Lagrangian multiplier, and ρ being the non-negative dual

update step length. ADMM solves this problem by iteratively minimizing Lρ(x, z, µ)

over x, z, and µ. The update rule for ADMM is given by

xk+1 := argmin
x

Lρ(x, z
k, µk),

zk+1 := argmin
z

Lρ(x
k+1, z, µk),

µk+1 := µk + ρ(Axk+1 +Bzk+1 − c).

Consider the unconstrained optimization problem in (2.3), which is equivalent to

the following constrained optimization problem:

minβ,q,p
1
2
∥y −Xβ∥2 + λ1∥q∥1 + λ2∥p∥1

s.t β − q = 0, Tβ − p = 0,
(2.4)

where q,p are slack variables. (2.4) can then be solved by ADMM. The augmented

Lagrangian is

Lρ(β,q,p, µ, υ) =
1
2
∥y −Xβ∥2 + λ1∥q∥1 + λ2∥p∥1

+ µT (β − q) + υT (Tβ − p) + ρ
2
∥β − q∥2 + ρ

2
∥Tβ − p∥2,

10



where µ, υ are augmented Lagrangian multipliers.

Update β: In the (k + 1)-th iteration, βk+1 can be updated by minimizing Lρ

with q,p, µ, υ fixed:

βk+1 = argminβ
1
2
∥y −Xβ∥2 + (µk +TTυk)Tβ

+ ρ
2
∥β − qk∥2 + ρ

2
∥Tβ − pk∥2.

(2.5)

The above optimization problem is quadratic. The optimal solution is given by βk+1 =

F−1bk, where

F = XTX+ ρ(I+TTT),

bk = XTy − µk −TTυk + ρTTpk + ρqk.

The computation of βk+1 involves solving a linear system, which is the most time-

consuming part in the whole algorithm. To compute βk+1 efficiently, we compute the

Cholesky factorization of F at the beginning of the algorithm:

F = RTR.

Note that F is a constant and positive definite matrix. Using the Cholesky factoriza-

tion we only need to solve the following two linear systems at each iteration:

RT β̂ = bk, Rβ = β̂. (2.6)

SinceR is an upper triangular matrix, solving these two linear systems is very efficient.

Update q: qk+1 can be obtained by solving

qk+1 = argmin
q

ρ

2
∥q− βk+1∥2 + λ1∥q∥1 − (µk)Tq

which is equivalent to the following problem:

qk+1 = argmin
q

1

2
∥q− βk+1 − 1

ρ
µk∥2 + λ1

ρ
∥q∥1 (2.7)

(2.7) has a closed-form solution, known as soft-thresholding :

qk+1 = Sλ1/ρ(β
k+1 +

1

ρ
µk), (2.8)
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where the soft-thresholding operator is defined as:

Sλ(x) = sign(x)max(|x| − λ, 0).

Update p: Similar to updating q, pk+1 can also be obtained by soft-thresholding :

pk+1
i = Sλ2/ρ(Tβk+1 +

1

ρ
υk). (2.9)

Update µ, υ:

µk+1 = µk + ρ(βk+1 − qk+1),

υk+1 = υk + ρ(Tβk+1 − pk+1).
(2.10)

A summary of GOSCAR is shown in Algorithm 1.

Algorithm 1: The GOSCAR algorithm

Input: X,y, E, λ1, λ2, ρ

Output: β

Initialization: p0 ← 0,q0 ← 0, µ0 ← 0, υ0 ← 0;

Compute the Cholesky factorization of F;

do

Compute βk+1 according to (2.6).

Compute qk+1 according to (2.8).

Compute pk+1 according to (2.9).

Compute µk+1, υk+1 according to (2.10).

Until Convergence;

return β;

In Algorithm 1, the Cholesky factorization only needs to be computed once, and

each iteration involves solving one linear system and two soft-thresholding operations.

The time complexity of the soft-thresholding operation in (2.8) is O(p). The other one

in (2.9) involves a matrix-vector multiplication Tβk+1. Due to the sparsity of T, its
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time complexity is O(ne), where ne is the number of edges. Solving the linear system

involves computing bk and solving (2.6), whose total time complexity is O(p(p+n)+

ne). Thus the time complexity of each iteration is O(p(p+ n) + ne).

2.3 Two Non-Convex Formulations

The grouping penalty of GOSCAR overcomes the limitation of Laplacian lasso

that the different signs of coefficients can introduce additional penalty. However,

under the l∞ regularizer, even if |βi| and |βj| are close to each other, the penalty

on this pair may still be large due to the property of max operator, resulting in

the coefficient βi or βj being over penalized. The additional penalty would result

in biased estimation, especially for large coefficient, as in the lasso case (Tibshirani,

1996). Another related grouping penalty is GFlasso, |βi − sign(rij)βj|, where rij is

the pairwise sample correlation. GFlasso relies on the pairwise sample correlation

to decide whether βi and βj are enforced to be close or not. When the pairwise

sample correlation wrongly estimates the sign between βi and βj, additional penalty

on βi and βj would occur, introducing the estimation bias. This motivates our non-

convex grouping penalty, ||βi| − |βj||, that shrinks only small differences in absolutes

values. As a result, estimation bias is reduced as compared to these convex grouping

penalties. The proposed non-convex methods perform well even when the graph

is wrongly specified, unlike GFlasso. Note that the proposed non-convex grouping

penalty does not assume the sign of an edge is given; it only relies on the graph

structure.
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2.3.1 Non-Convex Formulation I: ncFGS

The proposed non-convex formulation (ncFGS) solves the following optimization

problem:

min
β

f(β) =
1

2
∥y −Xβ∥2 + λ1∥β∥1 + λ2

∑
(i,j)∈E

||βi| − |βj||, (2.11)

where the grouping penalty
∑

(i,j)∈E ||βi| − |βj|| controls only magnitudes of differ-

ences of coefficients ignoring their signs over the graph. Through the l1 regularizer

and grouping penalty, simultaneous feature grouping and selection are performed,

where only large coefficients as well as pairwise differences are shrunk.

A computational method for the non-convex optimization in (2.11) is through DC

programming. We will first give a brief review of DC programming.

A particular DC program on ℜp takes the form of

f(β) = f1(β)− f2(β)

with f1(β) and f2(β) being convex on ℜp. The algorithms to solve DC programming

based on the duality and local optimality conditions have been introduced in (Tao

and El Bernoussi, 1988). Due to their local characteristic and the non-convexity of

DC programming, these algorithms cannot guarantee the computed solution to be

globally optimal. In general, these DC algorithms converge to a local solution, but

some researchers observed that they converge quite often to a global one (Tao and

An, 1997).

To apply DC programming to our problem we need to decompose the objective

function into the difference of two convex functions. We propose to use:

f1(β) =
1
2
∥y −Xβ∥2 + λ1∥β∥1 + λ2

∑
(i,j)∈E(|βi + βj|+ |βi − βj|),

f2(β) = λ2

∑
(i,j)∈E (|βi|+ |βj|).

The above DC decomposition is based on the following identity: ||βi| −|βj|| = |βi +

βj|+ |βi − βj| − (|βi|+ |βj|). Note that both f1(β) and f2(β) are convex functions.
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Denote fk
2 (β) = f2(β

k) + ⟨β − βk, ∂f2(β
k)⟩ as the affine minorization of f2(β),

where ⟨·, ·⟩ is the inner product. Then DC programming solves (2.11) by iteratively

solving a sub-problem as follows:

min
β

f1(β)− fk
2 (β). (2.12)

Since ⟨βk, ∂f2(β
k)⟩ is constant, (2.12) can be rewritten as

min
β

f1(β)− ⟨β, ∂f2(βk)⟩. (2.13)

Let ck = ∂f2(β
k). Note that

cki = λ2disign(β
k
i )I(βk

i ̸= 0), (2.14)

where di is the degree of node i, and I(·) is the indicator function. Hence, the

formulation in (2.13) is

minβ
1
2
∥y −Xβ∥2 + λ1∥β∥1 − (ck)Tβ + λ2

∑
(i,j)∈E (|βi + βj|+ |βi − βj|), (2.15)

which is convex. Note that the only differences between the problems in (2.2) and

(2.15) are the linear term (ck)Tβ and the second regularization parameter. Similar

to GOSCAR, we can solve (2.15) using ADMM, which is equivalent to the following

optimization problem:

minβ,q,p
1
2
∥y −Xβ∥2 − (ck)Tβ + λ1∥q∥1 + 2λ2∥p∥1

s.t β − q = 0, Tβ − p = 0.
(2.16)

There is an additional linear term (ck)Tβ in updating β compared to Algorithm 1.

Hence, we can use Algorithm 1 to solve (2.15) with a small change in updating β:

Fβ − bs − ck = 0.

where s represents the iteration number in Algorithm 1.

The key steps of ncFGS are shown in Algorithm 2.
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Algorithm 2: The ncFGS algorithm

Input: X,y, E, λ1, λ2, ϵ

Output: β

Initialization: β0 ← 0;

while f(βk)− f(βk+1) > ϵ do

Compute ck according to (2.14).

Compute βk+1 using Algorithm 1 with ck and λ1, 2λ2 as regularization

parameters.

end

return β;

2.3.2 Non-Convex Formulation II: ncTFGS

It is known that the bias of lasso is due to the looseness of convex relaxation

of l0 regularization. The truncated l1 regularizer, a non-convex regularizer close to

the l0 regularizer, has been proposed to resolve the bias issue (Zhang, 2013). The

truncated l1 regularizer can recover the exact set of nonzero coefficients under a

weaker condition, and has a smaller upper error bound than lasso (Zhang, 2013).

Therefore, we propose a truncated grouping penalty to further reduce the estimation

bias. The proposed formulation based on the truncated grouping penalty is

minβ fT (β) =
1
2
∥y −Xβ∥2 + λ1p1(β) + λ2p2(β) (2.17)

where

p1(β) =
∑

i Jτ (|βi|),

p2(β) =
∑

(i,j)∈E Jτ (||βi| − |βj||),

and Jτ (x) = min(x
τ
, 1) is the truncated l1 regularizer, a surrogate of the l0 function; τ

is a non-negative tuning parameter. Figure 2.1 shows the difference between l0 norm,

l1 norm and Jτ (|x|). When τ → 0, Jτ (|x|) is equivalent to the l0 norm given by the
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Figure 2.1: Example for l0 norm (left), l1 norm (middle), and Jτ (|x|) with τ = 1
8

(right).

number of nonzero entries of a vector. When τ ≥ |x|, τJτ (|x|) is equivalent to the l1

norm of x.

Note that Jτ (||βi| − |βj||) can be decomposed as

Jτ (||βi| − |βj||) = 1
τ
(|βi + βj|+ |βi − βj|)− 1

τ
max(2|βi| − τ, 2|βj| − τ, |βi|+ |βj|),

and a DC decomposition of Jτ (|βi|) is

Jτ (|βi|) =
1

τ
|βi| −

1

τ
max(|βi| − τ, 0).

Hence, the DC decomposition of fT (β) can be written as

fT (β) = fT,1(β)− fT,2(β),

where

fT,1(β) =
1
2
∥y −Xβ∥2 + λ1

τ
∥β∥1 + λ2

τ

∑
(i,j)∈E(|βi + βj|+ |βi − βj|),

fT,2(β) =
λ1

τ

∑
i max(|βi| − τ, 0) + λ2

τ

∑
(i,j)∈E max(2|βi| − τ, 2|βj| − τ, |βi|+ |βj|).

Let ckT = ∂fT,2(β
k) be the subgradient of fT,2 in the (k + 1)-th iteration. We have

ckT,i = sign(βk
i )
(
λ1

τ
I(|βk

i | > τ) + λ2

τ

∑
j:(i,j)∈E

(2I(|βk
j | < |βk

i | − τ) + I(||βk
i | − |βk

j || < τ))
)
.

(2.18)

Then the subproblem of ncTFGS is

minβ
1
2
∥y −Xβ∥2 + λ1

τ
∥β∥1 − (ckT )

Tβ + λ2

τ

∑
(i,j)∈E (|βi + βj|+ |βi − βj|), (2.19)
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Algorithm 3: The ncTFGS algorithm

Input: X,y, E, λ1, λ2, τ, ϵ

Output: β

Initialization: β0 ← 0;

while f(βk)− f(βk+1) > ϵ do

Compute ckT according to (2.18).

Compute βk+1 using Algorithm 1 with ckT and λ1

τ
, 2λ2

τ
as regularization

parameters.

end

return β;

which can be solved using Algorithm 1 as in ncFGS.

The key steps of ncTFGS are summarized in Algorithm 3.

ncTFGS is an extension of ncFGS. When τ ≥ |βi|, ∀i, ncTFGS with regularization

parameters τλ1 and τλ2 is identical to ncFGS (see Figure 2.3). ncFGS and ncTFGS

have the same time complexity. The subproblems of ncFGS and ncTFGS are solved by

Algorithm 1. In our experiments, we observed ncFGS and ncTFGS usually converge

in less than 10 iterations.

2.4 Numerical Results

We examine the performance of the proposed methods and compare them against

lasso, GFlasso, and OSCAR on synthetic datasets and two real datasets: FDG-PET

images 1 and Breast Cancer 2 . The experiments are performed on a PC with dual-

core Intel 3.0GHz CPU and 4G memory. The source codes written in MATLAB are

1http://adni.loni.ucla.edu/

2http://cbio.ensmp.fr/∼jvert/publi/
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available online 3 . The algorithms and their associated penalties are:

• Lasso: λ1∥β∥1;

• OSCAR: λ1∥β∥1 + λ2

∑
i<j max{|βi|, |βj|};

• GFlasso: λ1∥β∥1 + λ2

∑
(i,j)∈E |βi − sign(rij)βj|;

• GOSCAR: λ1∥β∥1 + λ2

∑
(i,j)∈E max{|βi|, |βj|};

• ncFGS: λ1∥β∥1 + λ2

∑
(i,j)∈E ||βi| − |βj||;

• ncTFGS: λ1

∑
i Jτ (|βi|) + λ2

∑
(i,j)∈E Jτ (||βi| − |βj||);

2.4.1 Efficiency

To evaluate the efficiency of the proposed methods, we conduct experiments on

a synthetic dataset with a sample size of 100 and dimensions varying from 100 to

3000. The regression model is y = Xβ + ϵ, where X ∼ N (0, Ip×p), βi ∼ N (0, 1), and

ϵi ∼ N (0, 0.012). The graph is randomly generated. The number of edges ne varies

from 100 to 3000. The regularization parameters are set as λ1 = λ2 = 0.8max{|βi|}

with ne fixed. Since the graph size affects the penalty, λ1 and λ2 are scaled by 1
ne

to

avoid trivial solutions with dimension p fixed. The average computational time based

on 30 repetitions is reported in Figure 2.2. As can be seen in Figure 2.2, GOSCAR

can achieve 1e-4 precision in less than 10s when the dimension and the number of

edges are 1000. The computational time of ncTFGS is about 7 times higher than

that of GOSCAR in this experiment. The computational time of ncFGS is the same

as that of ncTFGS when τ = 100, and very close to that of ncTFGS when τ = 0.15.

We can also observe that the proposed methods scale very well to the number of

edges. The computational time of the proposed method increases less than 4 times

3http://www.public.asu.edu/∼jye02/GraphOSCAR

19



when the number of edges increases from 100 to 3000. It is not surprising because the

time complexity of each iteration in Algorithm 1 is linear with respect to ne, and the

sparsity of T makes the algorithm much more efficient. The increase of dimension is

more costly than that of the number of edges, as the complexity of each iteration is

quadratic with respect to p.
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100 200 300 400 500 1000 1500 2000 3000

10
0

Edge Number

C
P

U
 t

im
e
 (

s
e
c
)

Precision 1e−2

GOSCAR

ncFGS

ncTFGS(τ=0.15)

ncTFGS(τ=100)

100 200 300 400 500 1000 1500 2000 3000
10

0

10
1

10
2

Edge Number

C
P

U
 t

im
e
 (

s
e
c
)

Precision 1e−4

GOSCAR

ncFGS

ncTFGS(τ=0.15)

ncTFGS(τ=100)

(b) The dimension is fixed to 500.

Figure 2.2: Comparison of GOSCAR, ncFGS, ncTFGS (τ = 0.15), and ncTFGS
(τ = 100) in terms of computation time with different dimensions, precisions and the
numbers of edges (in seconds and in logarithmic scale).

20



2.4.2 Simulations

We use five synthetic problems that have been commonly used in the sparse

learning literature (Bondell and Reich, 2008; Li and Li, 2008) to compare the per-

formance of different methods. The data is generated from the regression model

y = Xβ + ϵ, ϵi ∼ N (0, σ2). The five problems are given by:

1. n = 100, p = 40, and σ = 2, 5, 10. The true parameter is given by

β = (0, . . . , 0︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
10

)T .

X ∼ N (0,Sp×p) with sii = 1, ∀i and sij = 0.5 for i ̸= j.

2. n = 50, p = 40, β = (3, . . . , 3︸ ︷︷ ︸
15

, 0, . . . , 0︸ ︷︷ ︸
25

)T , and σ = 2, 5, 10. The features are

generated as

xi = Z1 + ϵxi , Z1 ∼ N (0, 1), i = 1, . . . , 5

xi = Z2 + ϵxi , Z2 ∼ N (0, 1), i = 6, . . . , 10

xi = Z3 + ϵxi , Z3 ∼ N (0, 1), i = 11, . . . , 15

xi ∼ N (0, 1) i = 16, . . . , 40

with ϵxi ∼ N (0, 0.16), and X = [x1, . . . ,x40].

3. Consider a regulatory gene network (Li and Li, 2008), where an entire network

consists of nTF subnetworks, each with one transcription factor (TF) and its

10 regulatory target genes. The data for each subnetwork can be generated as

XTF
i ∼ N (0,S11×11) with sii = 1, s1i = si1 = 0.7,∀i, i ̸= 1 and sij = 0 for

i ̸= j, j ̸= 1, i ̸= 1. Then X = [XTF
1 , . . . ,XTF

nTF
], n = 100, p = 110, and σ = 5.

The true parameters are

β = (
5√
11

, . . . ,
5√
11︸ ︷︷ ︸

11

,
−3√
11

, . . . ,
−3√
11︸ ︷︷ ︸

11

, 0, . . . , 0︸ ︷︷ ︸
p−22

)T .
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4. Same as 3 except that

β = (5,
5√
10

, . . . ,
5√
10︸ ︷︷ ︸

10

,−3, −3√
10

, . . . ,
−3√
10︸ ︷︷ ︸

10

, 0, . . . , 0︸ ︷︷ ︸
p−22

)T

5. Same as 3 except that

β = (5,
5√
10

, . . . ,
5√
10︸ ︷︷ ︸

10

,−5, −5√
10

, . . . ,
−5√
10︸ ︷︷ ︸

10

,

3,
3√
10

, . . . ,
3√
10︸ ︷︷ ︸

10

,−3, −3√
10

, . . . ,
−3√
10︸ ︷︷ ︸

10

0, . . . , 0︸ ︷︷ ︸
p−44

)T

We assume that the features in the same group are connected in a graph, and those

in different groups are not connected. We use MSE to measure the performance of

estimation of β, which is defined as

MSE(β) = (β − β∗)TXTX(β − β∗).

For feature grouping and selection, we introduce two separate metrics to measure

the accuracy of feature grouping and selection. Denote Ii, i = 0, 1, 2, ..., K as the

index of different groups, where I0 is the index of zero coefficients. Then the metric

for feature selection is defined as

s0 =

∑
i∈I0 I(βi = 0) +

∑
i/∈I0 I(βi ̸= 0)

p
,

and the metric for feature grouping is defined as

s =

∑K
i=1 si + s0
K + 1

,

where

si =

∑
i̸=j,i,j∈Ii I(|βi| = |βj|) +

∑
i ̸=j,i∈Ii,j /∈Ii I(|βi| ̸= |βj|)

|Ii|(p− 1)
.

si measures the grouping accuracy of group i under the assumption that the absolute

values of entries in the same group should be the same, but different from those
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in different groups. s0 measures the accuracy of feature selection. It is clear that

0 ≤ s0, si, s ≤ 1.

For each dataset, we generate n samples for training, as well as n samples for

testing. To make the synthetic datasets more challenging, we first randomly select

⌊n/2⌋ coefficients, and change their signs, as well as those of the corresponding fea-

tures. Denote β̃ and X̃ as the coefficients and features after changing signs. Then

β̃i = −βi, x̃i = −xi, if the i-th coefficient is selected; otherwise, β̃i = βi, x̃i = xi. So

that X̃β̃ = Xβ. We apply different approaches on X̃. The covariance matrix of X is

used in GFlasso to simulate the graph misspecification. The results of β converted

from β̃ are reported.
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Figure 2.3: MSEs (left), s0 (middle), and s (right) of ncFGS and ncTFGS on dataset
1 for fixed λ1 and λ2. The regularization parameters for ncTFGS are τλ1 and τλ2. τ
ranges from 0.04 to 4.

Figure 2.3 shows that ncFGS obtains the same results as ncTFGS on dataset 1 with

σ = 2 when τ is larger than |βi|. The regularization parameters are τλ1 and τλ2 for

ncTFGS, and λ1 and λ2 for ncFGS. Figure 2.4 shows the average nonzero coefficients

obtained on dataset 1 with σ = 2. As can be seen in Figure 2.4, GOSCAR, ncFGS,

and ncTFGS are able to utilize the graph information, and achieve good parameter

estimation. Although GFlasso can use the graph information, it performs worse than

GOSCAR, ncFGS, and ncTFGS due to the graph misspecification.
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Figure 2.4: The average nonzero coefficients obtained on dataset 1 with σ = 2: (a)
Lasso; (b) GFlasso; (c) OSCAR; (d) GOSCAR; (e); ncFGS; (f) ncTGS

The performance in terms of MSEs averaged over 30 simulations are shown in

Table 3.1. As indicated in Table 3.1, among existing methods (Lasso, GFlasso, OS-

CAR), GFlasso is the best, except in the two cases where OSCAR is better. GOSCAR

is better than the best existing method in all cases except for two, and ncFGS and

ncTFGS outperform all the other methods.

Table 2.3 shows the results in terms of accuracy of feature grouping and selection.

Since Lasso does not perform feature grouping, we only report the results of the other

five methods: OSCAR, GFlasso, GOSCAR, ncFGS, and ncTFGS. Table 2.3 shows

that ncFGS and ncTFGS achieve higher accuracy than other methods.
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Table 2.1 shows the comparison of feature selection alone (λ2 = 0), feature group-

ing alone (λ1 = 0), and simultaneous feature grouping and selection using ncTFGS.

From Table 2.1, we can observe that simultaneous feature grouping and selection

outperforms either feature grouping or feature selection, demonstrating the benefit of

joint feature grouping and selection in the proposed non-convex method.

Table 2.1: Comparison of feature selection alone (FS), feature grouping alone (FG),
and simultaneous feature grouping and feature selection (Both). The average results
based on 30 replications of three datasets with σ = 5: Data3 (top), Data4 (middle),
and Data5 (bottom) are reported. The numbers in parentheses are the standard
deviations.

Meth. MSE s0 s

FG 2.774(0.967) 0.252(0.156) 0.696(0.006)

FS 6.005(1.410) 0.945(0.012) 0.773(0.037)

Both 0.348(0.283) 0.996(0.014) 0.978(0.028)

FG 9.4930(1.810) 0.613(0.115) 0.770(0.038)

FS 6.437(1.803) 0.947(0.016) 0.782(0.046)

Both 4.944(0.764) 0.951(0.166) 0.890(0.074)

FG 10.830(2.161) 0.434(0.043) 0.847(0.014)

FS 10.276(1.438) 0.891(0.018) 0.768(0.026)

Both 7.601(1.038) 0.894(0.132) 0.919(0.057)
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2.4.3 Real Data

We conduct experiments on two real datasets: FDG-PET and Breast Cancer.

The metrics to measure the performance of different algorithms include accuracy

(acc.), sensitivity (sen.), specificity (spe.), degrees of freedom (dof.), and the number

of nonzero coefficients (nonzero coeff.). The dof. of lasso is the number of nonzero

coefficients (Tibshirani, 1996). For the algorithms capable of feature grouping, we

use the same definition of dof. in (Bondell and Reich, 2008), which is the number of

estimated groups.

FDG-PET

In this experiment, we use FDG-PET 3D images from 74 Alzheimer’s disease (AD),

172 mild cognitive impairment (MCI), and 81 normal control (NC) subjects down-

loaded from the Alzheimer’s disease neuroimaging initiative (ADNI) database. The

different regions of whole brain volume can be represented by 116 anatomical volumes

of interest (AVOI), defined by Automated Anatomical Labeling (AAL) (Tzourio-

Mazoyer et al., 2002). Then we extracted data from each of the 116 AVOIs, and

derived average of each AVOI for each subject.

In our study, we compare different methods in distinguishing AD and NC subjects,

which is a two-class classification problem over a dataset with 155 samples and 116

features. The dataset is randomly split into two subset, one training set consisting of

104 samples, and one testing set consisting of the remaining 51 samples. The tuning

of the parameter is achieved by 5-fold cross validation. Sparse inverse covariance

estimation (SICE) has been recognized as an effective tool for identifying the structure

of the inverse covariance matrix. We use SICE developed in (Huang et al., 2009) to

model the connectivity of brain regions. Figure 2.5 shows sample subgraphs built by
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Figure 2.5: Subgraphs of the graph built by SICE on FDG-PET dataset, which
consists of 265 edges.

SICE consisting of 115 nodes and 265 edges.

The results based on 20 replications are shown in Table 2.4. From Table 2.4, we

can see that ncTFGS achieves more accurate classification while obtaining smaller

degrees of freedom. ncFGS and GOSCAR achieve similar classification, while ncFGS

selects more features than GOSCAR.

Figure 2.6 shows the comparison of accuracy with either λ1 or λ2 fixed. The λ1

and λ2 values range from 1e-4 to 100. As we can see, the performance of ncTFGS is

slightly better than that of the other competitors. Since the regularization parameters

of subproblems in ncTFGS are λ1

τ
and 2λ2

τ
, the solution of ncTFGS is more sparse

than those of other competitors when λ1 and λ2 are large and τ is small (τ = 0.15 in

this case).
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Figure 2.6: Comparison of accuracies for various methods with λ1 fixed (left) and
λ2 fixed (right) on FDT-PET dataset.

Breast Cancer

We conduct experiments on the breast cancer datasets, which consists of gene ex-

pression data for 8141 genes in 295 breast cancer tumors (78 metastatic and 217

non-metastatic). The network described in Chuang et al. (2007) is used as the input

graph in this experiment. Figure 2.7 shows a subgraph consisting of 80 nodes of the

used graph. We restrict our analysis to the 566 genes most correlated to the output,

but also connected in the graph. 2/3 data is randomly chosen as training data, and

the remaining 1/3 data is used as testing data. The tuning parameter is estimated by

5-fold cross validation. Table 2.5 shows the results averaged over 30 replications. As

indicated in Table 2.5, GOSCAR, ncFGS and ncTFGS outperform the other three

methods, and ncTFGS achieves the best performance.

2.5 Conclusion

In this chapter, we consider simultaneous feature grouping and selection over a

given undirected graph. We propose one convex and two non-convex penalties to
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Figure 2.7: A subgraph of the network in Breast Cancer dataset (Chuang et al.,
2007). The subgraph consists of 80 nodes.

encourage both sparsity and equality of absolute values of coefficients for features

connected in the graph. We employ ADMM and DC programming to solve the pro-

posed formulations. Numerical experiments on synthetic and real data demonstrate

the effectiveness of the proposed methods. Our results also demonstrate the benefit of

simultaneous feature grouping and feature selection through the proposed non-convex

methods. In this chapter, we focus on undirected graphs. A possible future direction

is to extend the formulations to directed graphs. In addition, we plan to study the

generalization performance of the proposed formulations.
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Chapter 3

AN EFFICIENT ADMM ALGORITHM FOR MULTIDIMENSIONAL

ANISOTROPIC TOTAL VARIATION REGULARIZATION PROBLEMS

3.1 Introduction

The presence of noise in signals is unavoidable. To recover original signals, many

noise reduction techniques have been developed to reduce or remove the noise. Noisy

signals usually have high total variation (TV). Several total variation regularization

approaches have been developed to exploit the special properties of noisy signals and

they have been widely used in noise reduction in signal processing. The total varia-

tion model was first introduced by Rudin et al. (1992) as a regularization approach

to remove noise and handle proper edges in images. More recently, the total variation

models have been applied successfully for image reconstruction, e.g. Magnetic Res-

onance (MR) image reconstruction (Huang et al., 2011; Ma et al., 2008). The wide

range of applications including image restoration, image denoising and deblurring

(Barbero and Sra, 2011; Beck and Teboulle, 2009a; Huang et al., 2011; Li et al., 2009;

Vogel and Oman, 1998; Yang et al., 2009; Wang et al., 2014; Yang et al., 2013b),

underscore its success in signal/image processing. The discrete penalized version of

the TV-based image denoising model solves an unconstrained convex minimization

problem of the following form:

min
X

1

2
∥X−Y∥2F + λ∥X∥TV , (3.1)

where ∥ · ∥F is the Frobenius norm defined as ∥X∥F =
√∑

i,j x
2
i,j, Y is the observed

image, X is the desired unknown image to be recovered, and ∥·∥TV is the discrete TV
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norm defined below. The nonnegative regularization parameter λ provides a tradeoff

between the noise sensitivity and closeness to the observed image. There are two

popular choices for the discrete TV norm: ℓ2-based isotropic TV defined by

∥X∥TV =
m∑
i=1

n∑
j=1

∥∇xi,j∥2, X ∈ ℜm×n,

and the ℓ1-based anisotropic TV defined by

∥X∥TV =
m∑
i=1

n∑
j=1

∥∇xi,j∥1, X ∈ ℜm×n,

where ∇ denotes the forward finite difference operators on the vertical and horizonal

directions, i.e., ∇xi,j = (∇1xi,j, ∇2xi,j)
T :

∇1xi,j =

 xi,j − xi+1,j if 1 ≤ i < m

0 if j = n
,∇2xi,j =

 xi,j − xi,j+1 if 1 ≤ j < n

0 if i = m.

Despite the simple form of the TV norm, it is a challenge to solve TV-based

regularization problems efficiently. One of the key difficulties in the TV-based image

denoising problem is the nonsmoothness of the TV norm. Continued research efforts

have been made to build fast and scalable numerical methods in the last few years.

Existing methods aim to balance the tradeoff between the convergence rate and the

simplicity of each iterative step. For example, computing the exact optimal solution at

each iteration leads to a better convergence rate (Schmidt et al., 2011). However, this

usually requires heavy computations, for instance, a large linear system of equations.

Simple methods with less computation efforts at each iteration are more suitable for

large-scale problems, but usually they have a slow convergence rate. To this end, we

propose a fast but simple ADMM algorithm to solve TV-based problems. The key

idea of the proposed method is to decompose the large problem into a set of smaller

and independent problems, which can be solved efficiently and exactly. Moreover,
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these small problems are decoupled, thus they can be solved in parallel. Therefore,

the proposed method scales to large-size problems.

Although the TV problems have been extensively studied for matrices (e.g. two-

dimensional images), there is not much work on tensors, a higher-dimensional ex-

tension of matrices. Tensor data is common in real world applications, for instance,

functional magnetic resonance imaging (fMRI) is a 3-mode tensor and a color video

is a 4-mode tensor. Another contribution of this chapter is that the proposed ADMM

algorithm is designed to solve TV problems for tensors, e.g., multidimensional TV

problems. The 2D TV problem can be solved efficiently by a special case of the

proposed algorithm (for matrices). Our experiments show that the proposed method

is more efficient than state-of-the-art approaches for solving 2D TV problems. We

further demonstrate the efficiency of the proposed method for multidimensional TV

problems in image reconstruction, video denoising and image deblurring.

3.1.1 Related Work

Due to the nonsmoothness of the TV norm, solving large-scale TV problems ef-

ficiently continues to be a challenging issue despite its simple form. In the past,

considerable efforts have been devoted to develop an efficient and scalable algorithm

for TV problems. The 1D total variation, also known as the fused signal approxi-

mator, has been widely used in signal noise reduction. Liu et al. (2010) propose an

efficient method to solve the fused signal approximator using a warm start technique.

It has been shown to be very efficient in practice, though the convergence rate has

not been established. Barbero and Sra (2011) introduce a fast Newton-type method

for 1D total variation regularization, and solve the 2D total variation problem using

the Dyktra’s method (Combettes and Pesquet, 2011). Wahlberg et al. (2012) pro-

pose an ADMM method to solve the 1D total variation problem. A linear system of
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equations has to be solved at each iteration. Recently, a very fast direct, nonitera-

tive, algorithm for 1D total variation problem has been proposed in (Condat, 2013).

A dual-based approach to solve the 2D total variation problems is introduced in

(Chambolle, 2004). Beck and Teboulle (2009a) propose a fast gradient-based method

by combining the dual-based approach with the acceleration technique in Fast Iter-

ative Shrinkage Thresholding Algorithm (FISTA) (Beck and Teboulle, 2009b). One

potential drawback of the dual-based approaches is that it may not scale well. Gold-

stein and Osher introduce the split Bregman method to solve the 2D total variation

problem, which is an application of split Bregman method solving ℓ1 based problems.

The total variation has also been widely used in Magnetic Resonance (MR) image

reconstruction (Huang et al., 2011; Ma et al., 2008). Ma et al. (2008) introduce an

operator-splitting algorithm (TVCMRI) to solve the MR image reconstruction prob-

lem. By combining the composite splitting algorithm (Combettes and Pesquet, 2011)

and the acceleration technique in FISTA, Huang et al. (2011) propose an efficient MR

image reconstruction algorithm called FCSA. We show that our proposed method is

much more efficient than these methods for solving 2D TV problems.

The rest of this chapter is organized as follows. We present the multidimensional

total variation regularization problems and the proposed ADMM method in Section

3.2. One of the key steps in the proposed algorithm involves the solution of a 1D TV

problem; we show how to estimate the active regularization parameter range for 1D

TV problem in Section 3.3. We report empirical results in Section 3.4, and conclude

this chapter in Section 3.5.

3.2 The Proposed Algorithm for Multidimensional TV Problems

We first introduce the multidimensional total variation regularization problems

in Section 3.2.1. In Section 3.2.2, we present the details of the proposed algorithm.
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Figure 3.1: Fibers of a 3-mode tensor: mode-1 fibers x:,j2,j3 , mode-2 fibers xj1,:,j3 ,
and mode-3 fibers xj1,j2,:(left to right).

The global convergence is established in Section 3.2.3. Section 3.2.4 presents the time

complexity of the proposed algorithm.

3.2.1 The Multidimensional TV Problem

Denote Fi(X ) as the fused operator along the i-th mode of X taking the form of

Fi(X ) =
∑
/{ji}

Ii−1∑
ji=1

|xj1,...,ji,...,jd − xj1,...,(ji+1),...,jd |.

It is not hard to see that Fi(X ) is decomposable with respect to mode-i fibers, which

are the higher order analogue of matrix rows and columns (see Figure 3.1 for an

illustration). In the case of matrix, Fi(X) only involves the rows or columns of X.

For example, F1(X) =
∑n

j=1

∑m−1
i=1 |xi,j − xi+1,j|,X ∈ ℜm×n. It is clear that the ℓ1-

based anisotropic TV norm for matrices can be rewritten as
∑2

i=1 Fi(X). The tensor

is the generalization of the matrix concept. We generalize the TV norm for the matrix

case to higher-order tensors by the following tensor TV norm:

∥X∥TV =
d∑

i=1

Fi(X ).
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Based on the definition above, the TV-based denoising problem for the matrix case

can be generalized to tensors by solving the following optimization problem:

min
X

1

2
∥Y − X∥2F + λ

d∑
i=1

Fi(X ), (3.2)

where Y ∈ ℜI1×I2×...,×Id is the observed data represented as a tensor, X ∈ ℜI1×I2×...,×Id

is the unknown tensor to be estimated,
∑d

i=1 Fi(X ) is the tensor TV norm, and λ is

a nonnegative regularization parameter. The tensor TV regularization encourages X

to be smooth along all dimensions.

3.2.2 The Proposed Algorithm

We propose to solve the multidimensional TV problem (MTV) using ADMM

(Boyd et al., 2011). ADMM decomposes a large global problem into a series of

smaller local subproblems, and coordinates the local solutions to compute the globally

optimal solution. ADMM attempts to combine the benefits of augmented Lagrangian

methods and dual decomposition for constrained optimization problems (Boyd et al.,

2011). The problem solved by ADMM takes the following form:

min
x,z

f(x) + g(z)

s.t. Ax+Bz = c,

(3.3)

where x, z are unknown variables to be estimated.

ADMM reformulates the problem using a variant of the augmented Lagrangian

method as follows:

Lρ(x, z, µ) = f(x) + g(z) + µT (Ax+Bz− c) +
ρ

2
∥Ax+Bz− c∥2

with µ being the augmented Lagrangian multiplier, and ρ being the nonnegative

penalty parameter (or dual update length). ADMM solves the original constrained
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problem by iteratively minimizing Lρ(x, z, µ) over x, z, and updating µ according to

the following update rule:

xk+1 =argminxLρ(x, z
k, µk)

zk+1 =argminzLρ(x
k+1, z, µk)

µk+1 =µk + ρ(Axk+1 +Bzk+1 − c).

Consider the unconstrained optimization problem in (3.2), which can be reformu-

lated as the following constrained optimization problem:

min
X ,Zi

1

2
∥Y − X∥2F + λ

d∑
i=1

Fi(Zi)

s.t. X = Zi, for 1 ≤ i ≤ d,

(3.4)

where Zi, 1 ≤ i ≤ d are slack variables. The optimization problem in (3.4) can be

solved by ADMM. The augmented Lagrangian of (3.4) is given by

L(X ,Zi,Ui) =
1

2
∥Y − X∥2F + λ

d∑
i=1

Fi(Zi)+

d∑
i=1

⟨Ui,Zi −X⟩+
ρ

2

d∑
i=1

∥Zi −X∥2F .

(3.5)

Applying ADMM, we carry out the following steps at each iteration:

Step 1 Update X k+1 with Zk
i and Uk

i fixed:

X k+1 =argminX
1

2
∥Y − X∥2F −

d∑
i=1

⟨Uk
i ,X⟩+

ρ

2

d∑
i=1

∥Zk
i −X∥2F . (3.6)

The optimal solution is given by

X k+1 =
Y +

∑d
i=1(Uk

i + ρZk
i )

1 + dρ
. (3.7)

Step 2 Compute Zk+1
i , i = 1, · · · , d with X k+1, and Uk

i , i = 1, · · · , d fixed:

{Zk+1
i } = argmin{Zi}

ρ

2

d∑
i=1

∥Zi −X k+1∥2F +
d∑

i=1

⟨Uk
i ,Zi⟩+ λ

d∑
i=1

Fi(Zi), (3.8)
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where {Zi} denotes the set {Z1, . . . ,Zd}. This problem is decomposable, i.e., we can

solve Zk+1
i , 1 ≤ i ≤ d separately,

Zk+1
i = argminZi

ρ

2
∥Zi −X k+1∥2F + ⟨Uk

i ,Zi⟩+ λFi(Zi),

which can be equivalently written as

Zk+1
i = argminZi

1

2
∥Zi − Ti∥2F +

λ

ρ
Fi(Zi) (3.9)

with Ti = −1
ρ
Uk
i + X k+1. The problem in (3.9) is decomposable for different mode-i

fibers. Denote zj1,...,ji−1,:,ji+1,...,jd as a mode-i fiber to be estimated, which is a vector

of Ii length. For simplicity, we use v to represent the vector zj1,...,ji−1,:,ji+1,...,jd . Then,

(3.9) can be decomposed into a set of independent and much smaller problems:

vk+1 = argminv

1

2
∥v − t∥2 + λ

ρ

Ii−1∑
i=1

|vi − vi+1|,

∀j1, . . . , ji−1, ji+1, . . . , jd,

(3.10)

where t is the corresponding mode-i fiber of Ti. (3.10) is the formulation of 1D total

variation regularization problem, which can be solved exactly and very efficiently

(Condat, 2013; Liu et al., 2010).

The problem of computing Zk+1
i , 1 ≤ i ≤ d in (3.8) is therefore decomposed into a

set of much smaller problems of computing fibers. Each fiber problem is independent,

enabling that the whole set of problems can be computed in parallel.

Step 3 Update Uk+1
i , i = 1, . . . , d:

Uk+1
i = Uk

i + ρ(Zk+1
i −X k+1). (3.11)

A summary of the proposed method is shown in Algorithm 4 below.

The algorithm stops when the primal and dual residuals (Boyd et al., 2011) satisfy

a certain stopping criterion. The stopping criterion can be specified by two thresholds:
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Algorithm 4: The proposed ADMM algorithm for multi-dimensional total vari-

ation
Input: Y , λ, ρ

Output: X

Initialization: Z0
i = X 0 ← Y ,U0

i ← 0;

do

Compute X k+1 according to (3.7).

Compute Zk+1
i , i = 1, . . . , d according to (3.9).

Compute Uk+1
i , i = 1, . . . , d according to (3.11).

Until Convergence;

return X ;

absolute tolerance ϵabs and relative tolerance ϵrel (see Boyd et al. (2011) for more

details). The penalty parameter ρ affects the primal and dual residuals, hence affects

the termination of the algorithm. A large ρ tends to produce small primal residuals,

but increases the dual residuals (Boyd et al., 2011). A fixed ρ (say 10) is commonly

used. But there are some schemes of varying the penalty parameter to achieve better

convergence. We refer interested readers to Boyd et al. (2011) for more details.

Remark 1. We can add the ℓ1 regularization in the formulation of multidimensional

TV problems for a sparse solution. The subproblem with ℓ1 regularization is called the

fused signal approximator. The optimal solution can be obtained by first solving 1D

total variation problem, then applying soft-thresholding (Friedman et al., 2007; Liu

et al., 2010).

3.2.3 Convergence Analysis

The convergence of ADMM to solve the standard form (3.3) has been extensively

studied (Boyd et al., 2011; Eckstein and Bertsekas, 1992; He and Yuan, 2012). We
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establish the convergence of Algorithm 4 by transforming the MTV problem in (3.4)

into a standard form (3.3), and show that the transformed optimization problem

satisfies the condition needed to establish the convergence.

Denote x as the vectorization of X , i.e., x = vec(X ) ∈ ℜ
∏

i Ii×1, y = vec(Y) ∈

ℜ
∏

i Ii×1, z = [vec(Z1)
T , . . . , vec(Zd)

T ]T ∈ ℜd
∏

i Ii×1, f(x) = 1
2
∥y − x∥22, and g(z) =

λ
∑d

i=1 Fi(Zi). Then the MTV problem in (3.4) can be rewritten as

min
x,z

f(x) + g(z),

s.t. Ax− z = 0,

(3.12)

where A = [I, . . . , I]T ∈ ℜd
∏

i Ii×
∏

i Ii , and I is the identity matrix of size
∏

i Ii×
∏

i Ii.

The first and second steps of Algorithm 4 are exactly the steps of updating x and z

in the standard form. Since f, g are proper, closed, and convex, and A is of column

full rank, the convergence of Algorithm 4 directly follows from the results in (Boyd

et al., 2011; Eckstein and Bertsekas, 1992; He and Yuan, 2012). Moreover, an O(1/k)

convergence rate of Algorithm 4 can be established following the conclusion in (He

and Yuan, 2012).

3.2.4 Time Complexity Analysis

The first step of Algorithm 4 involves computations of X k+1
i , i = 1, . . . , d. Com-

puting X k+1
i needs to compute

∏
j ̸=i Ij mode-i fibers of Ii length by the 1D total

variation algorithm. The complexity of solving the 1D total variation is O(Ii), but

O(I2i ) in the worst case (Condat, 2013). However, we observe that the empirical com-

plexity is O(Ii) in our experiments (see Figure 3.2). Thus, the complexity of the first

step is O(d
∏

j Ij). The time complexity of the second and third steps are O(
∏

j Ij).

Hence, the complexity of each iteration is O(d
∏

j Ij). The number of iterations in

Algorithm 4 to obtain an ϵ-optimal solution is O(1/ϵ) (He and Yuan, 2012). Thus, the
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total complexity of Algorithm 4 is O(d
∏

j Ij/ϵ) for achieving an ϵ-optimal solution.

Since each step of Algorithm 4 can be solved in parallel, the complexity of the parallel

version of Algorithm 4 is O(d
∏

j Ij/npϵ) with np processors.
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Figure 3.2: Computational time (seconds) of three efficient 1D total variation algo-
rithms: Liu et al. (2010), Condat (2013), and Wahlberg et al. (2012). Left: dimension
varies from 103 to 106 with λ = 1. Right: λ varies from 0.15 to 1.45 with dimension
104. The data is sampled from standard normal distribution.

3.3 Active Regularization Range for 1D Total Variation

The most time-consuming part of the proposed ADMM algorithm is the first step,

which involves the computation of X k+1
i , 1 ≤ i ≤ d. We decompose the problem of

computing X k+1
i , 1 ≤ i ≤ d into a set of small 1D total variation problems. Thus, the

computation of the proposed method highly depends on that of 1D total variation.

In this section, we show how to estimate the active regularization range for 1D total

variation, which only relies on the regularization parameter and the observed vector,

to directly compute the optimal solution. More specifically, we compute λmin and

λmax based on the observed vector; if λ /∈ (λmin, λmax), the optimal solution can be

computed in a closed form, thus significantly improving the efficiency.
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Consider the formulation of 1D total variation, i.e.,

inf
x

1

2
∥y − x∥22 + λ

n−1∑
i=1

|xi − xi+1|,

which can be rewritten as

inf
x

1

2
∥y − x∥22 + λ∥Gx∥1 (3.13)

in which y,x ∈ ℜn. G ∈ ℜ(n−1)×n encodes the structure of the 1D TV norm. We

have

gi,j =


1 if j = i+ 1

−1 if j = i

0 otherwise.

(3.14)

3.3.1 The Dual Problem

Before we derive the dual formualtion of problem in (3.13) (Boyd and Vanden-

berghe, 2004; Dhara and Dutta, 2012), we first introduce some useful definitions and

lemmas.

Definition 1. (Coercivity).(Dhara and Dutta, 2012) A function ϕ : ℜn → ℜ̄ is

said to be coercive over a set S ⊂ ℜn if for every sequence {xk} ⊂ S

lim
k→∞

ϕ(xk) = +∞ whenever ∥xk∥ → +∞.

For S = ℜn, ϕ is simply called coercive.

Denote the objective function in problem (3.13) as:

f(x) =
1

2
∥y − x∥22 + λ∥Gx∥1. (3.15)

It is easy to see that f(x) is coercive. For each α ∈ ℜ, we define the α sublevel set of

f(x) as Sα = {x : f(x) ≤ α}. Then we have the following lemma.
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Lemma 1. For any α ∈ ℜ, the sublevel set Sα = {x : f(x) ≤ α} is bounded.

Proof. We prove the lemma by contradiction. Suppose there exists an α such that Sα

is unbounded. Then we can find a sequence {xk} ⊂ Sα such that limk→∞ ∥xk∥ =∞.

Because f(x) is coercive, we can conclude that limk→∞ f(xk) = +∞. However, since

{xk} ⊂ Sα, we know f(xk) ≤ α for all k, which leads to a contradiction. Therefore,

the proof is complete.

We derive the dual formulation of problem (3.13) via the Sion’s Minimax Theorem

(Dhara and Dutta, 2012; Sion, 1958). Let B = {x : y − λGT s, ∥s∥∞ ≤ 1} and

x′ = argmaxx∈B f(x). Because B is compact, x′ must exist. Denote α′ = f(x′) and

S ′ = Sα′ .

inf
x

1

2
∥y − x∥22+λ∥Gx∥1 = inf

x∈S′

1

2
∥y − x∥22 + λ∥Gx∥1

= inf
x∈S′

1

2
∥y − x∥22 + λ sup

∥s∥∞≤1

⟨s,Gx⟩

= inf
x∈S′

sup
∥s∥∞≤1

1

2
∥y − x∥22 + λ⟨s,Gx⟩.

(3.16)

By Lemma 1, we know that S ′ is compact. Moreover, the function

1

2
∥y − x∥22 + λ⟨s,Gx⟩

is convex and concave with respect to x and s respectively. Thus, by the Sion’s

Minimax Theorem (Sion, 1958), we have

inf
x

1

2
∥y − x∥22 + λ∥Gx∥1 (3.17)

= inf
x∈S′

sup
∥s∥∞≤1

1

2
∥y − x∥22 + λ⟨s,Gx⟩

= sup
∥s∥∞≤1

inf
x∈S′

1

2
∥y − x∥22 + λ⟨s,Gx⟩.

We can see that

x∗(s) = y − λGT s = argminx∈S′
1

2
∥y − x∥22 + λ⟨s,Gx⟩ (3.18)
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and thus

inf
x∈S′

1

2
∥y − x∥22 + λ⟨s,Gx⟩ = −λ2

2
∥GT s∥2 + λ⟨s,Gy⟩

=
1

2
∥y∥2 − λ2

2
∥y
λ
−GT s∥2.

Therefore the primal problem (3.16) is transformed to its dual problem:

sup
∥s∥∞≤1

1

2
∥y∥2 − λ2

2
∥y
λ
−GT s∥2, (3.19)

which is equivalent to

min
s
∥y
λ
−GT s∥2 (3.20)

s.t. ∥s∥∞ ≤ 1.

3.3.2 Computing the Maximal Value for λ

Consider 1D total variation problem, the matrix G ∈ ℜ(n−1)×n can be written as:

G =



−1 1 · · · · · · 0

... −1 1
...

...
. . . . . .

...

0 · · · · · · −1 1


.

Then, it follows that GT has full column rank. Denote e = (1, · · · , 1)T ∈ ℜn, and the

subspace spanned by the rows of G and e as VGT and Ve. Clearly ℜn = VGT ⊕Ve and

VGT ⊥ Ve.

Let P = I − eeT

⟨e,e⟩ and P⊥ denote the projection operator into VGT and Ve respec-

tively. Therefore the equation

Py = GT s (3.21)

must have a unique solution for each y.
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Let Py = ỹ, (3.21) can be written as:

−1 · · · · · · · · ·

1 −1 · · · ...

... 1 −1 ...

...
. . . −1

0 · · · · · · 1





s1

s2
...

sn−1


=



ỹ1

ỹ2
...

ỹn


,

then it follows that

si = −
i∑

j=1

ỹj, ∀i = 1, · · · , n− 1

and clearly sn−1 = −
∑n−1

j=1 ỹj = ỹn since ⟨e, ỹ⟩ = 0. Denote

λmax = ∥s∥∞ = max{|
i∑

j=1

ỹj| : i = 1, · · · , n− 1}. (3.22)

From the above analysis, it is easy to see that when λ ≥ λmax, there is an s∗ such

that

Py

λ
= GT s

∗
and ∥s∗∥∞ ≤ 1.

According to (3.18), we have

x∗ = (P+P⊥)y − λGT s∗ = P⊥y =
⟨e,y⟩
⟨e, e⟩

e =
⟨e,y⟩
n

e. (3.23)

The maximal value for λ has been studied in Liu et al. (2010). However, a linear

system has to be solved. From (3.22), it is easy to see that the maximal value can be

obtained by a close form solution. Thus, our approach is more efficient.

3.3.3 Computing the Minimum Value for λ

We rewrite the dual problem (3.19) as:

min
s

1

2
∥y − λGT s∥2 (3.24)

s.t. ∥s∥∞ ≤ 1.
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Denote g(s) = 1
2
∥y − λGT s∥2. The gradient of g(s) can be found as: g′(s) =

−λG(y − λGT s).

Let B∞ denote the unit ∞ norm ball. We know that s∗ is the unique optimal

solution to the problem (3.24) if and only if

−g′(s∗) ∈ NB∞(s∗),

where NB∞(s∗) is the normal cone at s∗ with respect to B∞.

Let I+(s) = {i : si = 1}, I−(s) = {i : si = −1}, and I◦(s) = {i : si ∈ (−1, 1)}.

Assume d ∈ NB∞(s), then d can be found as:

di ∈


[0,+∞), if i ∈ I+(s)

(−∞, 0], if i ∈ I−(s)

0, if i ∈ I◦(s)

Therefore the optimality condition can be expressed as:

s∗ = argmins

1

2
∥y − λGT s∥2

if and only if

λG(y − λGT s∗) ∈ NB∞(s∗).

Because λ > 0, λG(y − λGT s) ∈ NB∞(s∗) is equivalent to

G(y − λGT s∗) ∈ NB∞(s∗). (3.25)

According to (3.18), we have

x∗
1 =y1 + λs∗1

x∗
i =yi − λ(s∗i−1 − s∗i ), for 1 < i < n (3.26)

x∗
n =yn − λs∗n,
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and

G(y − λGT s∗) =


x∗
2 − x∗

1

...

x∗
n − x∗

n−1

 . (3.27)

By (3.25) and (3.27), we have the following observations:

B1. If x∗
i+1 > x∗

i , s
∗
i = 1;

B2. If x∗
i+1 = x∗

i , s
∗
i ∈ [−1, 1];

B3. If x∗
i+1 < x∗

i , s
∗
i = −1.

Notice that, from (3.26), we can estimate a range for every x∗
i , which is not

necessarily the tightest one. In fact, we have

x∗
i ∈


[yi − λ, yi + λ], if i ∈ {1, n}

[yi − 2λ, yi + 2λ], otherwise.

(3.28)

Define

λmin = min

{
|yi+1 − yi|

3
, i ∈ {1, n− 1}; |yi+1 − yi|

4
, i ∈ {2, . . . , n− 2}

}
. (3.29)

It follows that when λ < λmin, the solution to (3.26) is fixed and can be found as:

s∗i = sign(yi+1 − yi), i = 1, . . . , n− 1. (3.30)

Then x∗
i can be computed accordingly by (3.26).

3.4 Experimental Results

In this section, we evaluate the efficiency of the proposed algorithm on synthetic

and real-word data, and show several applications of the proposed algorithm.
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3.4.1 Efficiency Comparison

We examine the efficiency of the proposed algorithm using synthetic datasets on

2D and 3D cases. For the 2D case, the competitors include

• SplitBregman written in C 1 (Goldstein and Osher, 2009);

• ADAL written in C faithfully based on the paper (Qin et al., 2011);

• The dual method in Matlab 2 (Beck and Teboulle, 2009a);

• Dykstra written in C (Combettes and Pesquet, 2011);

For the 3D case, only the Dykstra’s method and the proposed method (MTV) are

compared, since the other algorithms are designed specifically for the 2D case.

The experiments are performed on a PC with quad-core Intel 2.67GHz CPU and

9GB memory. The code of MTV is written in C. Since the proposed method and

the Dykstra’s method can be implemented in parallel, we also compare their parallel

versions implemented with OpenMP.

2D case

We generate synthetic images Y ∈ ℜN×N of different N . The value of each pixel is

1 or 0. A Gaussian noise ϵ = N (0, 0.22) is added to each image as Ỹ = Y + ϵ. A

synthetic example image is shown in Figure 3.3. The comparisons are based on the

computation time. For a given λ, we first run MTV until a certain precision level

specified by ϵabs and ϵrel is reached, and then run the others until they achieve an

objective function value smaller than or equal to that of MTV. Different precision

levels of the solutions are evaluated such that a fair comparison can be made. In

1http://tag7.web.rice.edu/Split_Bregman.html

2http://iew3.technion.ac.il/~becka/papers/tv_fista.zip
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Figure 3.3: Synthetic images. Left: clean image; right: noisy image;

addition, we set the maximal iteration number of all methods to be 2000 in order to

avoid slow convergence. The penalty parameters ρ for MTV and ADAL are fixed to

10. We vary the size of image (N×N) from 50×50 to 2000×2000 with λ = 0.35, and

vary the regularization parameter λ from 0.15 to 1 with a step size of 0.05 with a fixed

N = 500. For each setting, we perform 20 trials and report the average computational

time (seconds). The results are shown in Figure 3.4.

From Figure 3.4, we observe that the proposed method is much more efficient than

its competitors. The non-parallel version of MTV is about 70 times faster than the

dual method, and 8 times fasters than ADAL when N is 2000 and ϵabs = ϵrel = 1e−3.

Although the subproblems of MTV and Dykstra are the same, Dykstra is about 12

times slower than MTV, demonstrating that MTV has faster convergence than Dyk-

stra. Utilizing parallel computing, the parallel version of MTV and Dykstra are about

3.5 times more efficient than their non-parallel version in a quad-core PC. We also

observe that the Split Bregman method, dual method, and ADAL need more itera-

tions to achieve a similar precision to that of MTV when the regularization parameter

λ increases, i.e., the portion of the nonsmooth part increases. However, MTV and
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Figure 3.4: Comparison of SplitBregman (Goldstein and Osher, 2009), ADAL (Qin
et al., 2011), Dual Method (Beck and Teboulle, 2009a), Dykstra (Combettes and
Pesquet, 2011), and our proposed MTV algorithm in terms of computational time (in
seconds and in the logarithmic scale). Dykstra-P and MTV-P are the parallel version
of Dykstra and MTV. Different precision levels are used for comparison. The size
of image is N × N . Left column: λ = 0.35 with N varying from 50 to 2000; right
column: N = 500 with λ varying from 0.15 to 0.95.

Dykstra are more stable when λ varies. The reason is that we directly compute the

exact optimal solution of the proximal operator of the fused regularization in the sub-

problems of MTV and Drystra, unlike ADAL and the Split Bregman method which

perform soft-thresholding.
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Figure 3.5: Comparison of Dykstra and the proposed MTV in terms of computa-
tional time (in seconds and in the logarithmic scale) in the 3D case. Different precision
levels are used for comparison. The size of 3D images is N × N × 50, and N varies
from 50 to 500 with λ = 0.35.

3D case

The synthetic 3D images are generated in a similar manner to the 2D case. Gaussian

noise ϵ = N (0, 0.22) is added to each pixel. We set the size of 3D images to N×N×50,

and vary N from 50 to 500 with a step size of 25. The regularization parameter λ

is set to 0.35. We apply the Dykstra’s method and MTV on the noisy 3D images.

In this experiment, we compare the computational time of Dykstra and MTV in a

similar setting to the 2D case. Figure 3.5 shows the comparison between the Dykstra’s

method and MTV. From Figure 3.5, we can see that MTV is much more efficient than

Dykstra, demonstrating the efficiency of MTV. MTV is about 20 times faster than

Dykstra when N = 500 and ϵabs = ϵrel = 1e− 4.

Scalability

We conduct experiments to evaluate the scalability of the proposed method. The

experiments are performed on a Linux server with 4 quad-core Intel Xeon 2.93GHz
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Figure 3.6: Scalability of the proposed method. The size of image is N × N , and
λ = 0.35. Left: the computational time of MTV and MTV-P with 12 processors and
N varying from 2500 to 11000; right: the speedup of MTV-P with respect to the
number of processors varying from 1 to 16.

CPUs and 65GB memory. We vary the size of images (N × N) from 2500 × 2500

to 11000 × 11000 with 12 processors, and the number of processors from 1 to 16

with a fixed image size. The regularization parameter λ is set to be 0.35. For each

setting, the average computational time of 10 trials is reported to demonstrate the ef-

ficiency/speedup of MTV-P (Figure 3.6). As shown in Figure 3.6, the computational

time of MTV-P is less than 100 seconds when N = 11000, demonstrating the supe-

riority of the proposed method. We also observe that the speedup increases almost

linearly with the number of processors used. The speedup is less than the number of

processors used because of the parallel overhead.

3.4.2 Applications

Image reconstruction

Due to the excellent depiction of soft tissue changes, Magnetic Resonance Imaging

(MRI) has been widely used in medical diagnosis. Based on the compressive sensing
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theory, it is possible to reconstruct perfect signals from a limited number of samples by

taking advantage of the sparse nature of the signals in a transform domain. In the case

of MRI, an accurate reconstruction of MR images from undersampled K-space data

is possible, reducing the cost of scanning. The formulation of image reconstruction is

given by

X̂ = argmin
X

1

2
∥R(X)− b∥2 + λ1∥W(X)∥1 + λ2∥X∥TV (3.31)

where b is the undersampled measurements of K-space data, R is partial Fourier

transformation and W is wavelet transform. We try to reconstruct the image X ∈

ℜm×n from the undersampled measurements b. A fast algorithm, FCSA, is introduced

by Huang et al. (2011). One of the key steps in FCSA is the proximal operator of

the 2D TV norm, which is a special case of MTV. In Huang et al. (2011), the dual

method proposed in Beck and Teboulle (2009a) is used to solve the proximal operator.

We follow the same framework as FCSA, but apply the proposed MTV to solve the

proximal operator to achieve a speedup gain.

We compare two approaches: FCSA with the dual method (FSCA-Dual)(Huang

et al., 2011) and FCSA with MTV (FSCA-MTV). We apply these two methods on

four 2D MR images 3 : cardiac, brain, chest, and artery. We follow the same sampling

strategy as in (Huang et al., 2011). The sample ratio is set to about 25%. A Gaussian

noise ϵ = N (0, 0.012) is added to the observed measurements b. For a fair comparison,

we first run FCSA-MTV and keep track of the objective function values of MTV in

each iteration, then run FCSA-Dual. In each outer iteration, the dual method stops

when its objective function value is equal to or smaller than the corresponding tracked

objective function value of MTV. Both FCSA-Dual and FCSA-MTV run 50 iterations.

Only the computational time of the proximal operator by dual method and MTV, is

recorded. The precision parameters of MTV are set to ϵabs = ϵrel = 1e − 3, and the

3http://ranger.uta.edu/~huang/R_CSMRI.htm
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Table 3.1: Comparison of the dual method and MTV in FCSA in terms of average
computational time of 50 iterations (seconds).

Methods Cardiac Brain Chest Artery

Dual 0.6762 0.5855 0.5813 0.7588

MTV 0.0066 0.0061 0.0056 0.0078

Speedup 102.45 95.98 103.80 97.28

dual update step length ρ is set to 10. Since the objective function of both methods

are identical, and the precision of each iteration are about the same, the solutions of

both methods are expected to be the same.
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Figure 3.7: MRI reconstruction. Columns: original (left), FCSA-Dual and FCSA-
MTV(middle), and the difference image between original image and reconstructed
image (right); (top) Cardiac: SNR of two methods are 17.615; (bottom) Brain: SNR
are 20.376;

The reconstruction results of the MR images are shown in Figure 3.7 and Figure

3.8. Table 3.1 shows the average time of dual method and MTV for 50 iterations.
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Figure 3.8: MRI reconstruction. Columns: original (left), FCSA-Dual and FCSA-
MTV(middle), and the difference image between original image and reconstructed
image (right); (top) Chest: both SNR are 16.082; (bottom) Artery: both SNR are
23.769;

Figure 3.9: Image deblurring: original image(left), blurred and noisy image (mid-
dle), and deblurred image (right). The SNR of the blurred image is 11.01, and the
SNR of the deblurred image is 17.23.

Since each iteration of FCSA-MTV and FCSA-Dual are the same, FCSA-MTV and

FCSA-Dual have the same SNR. But we can observe from Table 3.1 that MTV is

more efficient than dual method(about 100 times speedup), thus FCSA-MTV is more
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efficient than FCSA-Dual.

Image deblurring

The proposed method can be used to deblur images. The formulation of TV-based

image deblurring model is given by

X̂ = argmin
X

1

2
∥B(X)−Y∥2 + λ∥X∥TV , (3.32)

where Y ∈ ℜm×n is the observed blurred and noisy image, B : ℜm×n → ℜm×n is a

linear transformation encoding the blurring operator, and X ∈ ℜm×n is the image to

be restored. A popular approach to solve the convex optimization problem in (3.32) is

FISTA (Beck and Teboulle, 2009a,b). One of the key steps is the proximal operator

of TV regularization. Similar to the previous experiment, we use MTV instead of

the dual method (Beck and Teboulle, 2009a) to solve the proximal operator of TV

regularization to achieve a speedup gain. The “lena” image of size 512×512 is used in

this experiment. The image is rescaled to [0,1], and then blurred by an average filter

of size 9 × 9. Furthermore, a Gaussian noise, N (0, 0.0012), is added to the blurred

image. The parameter setting of MTV is the same as the previous experiment. The

regularization parameter λ is set to 0.001. The results are shown in Figure 3.9. The

average computation time of the dual method for 100 iterations is 1.066 seconds,

while that of MTV is 0.037 seconds. The proposed MTV method achieves about 29

times speedup.

Video denoising

A video is a 3-mode tensor. The proposed method in the 3D case can be used to

denoise video. We expect that pixel values should be smooth along all 3 modes. In

this experiment, we use a time series of 2D MR images of heart beats downloaded
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Figure 3.10: Sample frames of video denoising: original frames (top), and denoised
frames (bottom) (best viewed on a screen).

from the website of the Cardiac Atlas 4 . The 2D MR images are in the format of

avi, which includes 32 frames. We applied the proposed method and the Dystra’s

method to denoise all the MR images as a 3-mode tensor of size 257 × 209 × 32.

The computational time of MTV is 4.482 seconds, and the computational time of

the Dykstra’s method is 43.751 seconds. The speedup is about 10 times. Some

sample result frames are shown in Figure 3.10. This experiment demonstrates the

effectiveness of total variation regularization in video denoising.

3.5 Conclusion

In this chapter, we propose an efficient optimization of the multidimensional total

variation regularization problems. We employ an efficient ADMM algorithm to solve

the formulation. The key idea of our algorithm is to decompose the original problem

4http://atlas.scmr.org/download.html
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into a set of independent and small problems, which can be solved exactly and effi-

ciently. Furthermore, the set of independent problems can be solved in parallel. Thus,

the proposed method can handle large-scale problems efficiently. We also establish

the global convergence of the proposed algorithm. The experimental results demon-

strate the efficiency of the proposed algorithm. The proposed algorithm opens the

possibility of utilizing the power of GPU computing to further improve the efficiency

of the proposed algorithm. We will explore the GPU computing in the future work.

Moreover, we plan to apply the proposed algorithm to other real-world applications,

such as MBB (mobile broad band) data and 3G network data, both are big data

problems.
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Chapter 4

FUSED MULTIPLE GRAPHICAL LASSO

4.1 Introduction

Undirected graphical models explore the relationships among a set of random

variables through their joint distribution. The estimation of undirected graphical

models has applications in many domains, such as computer vision, biology, and

medicine (Guo et al., 2011; Huang et al., 2009; Yang et al., 2012). One instance is the

analysis of gene expression data. As shown in many biological studies, genes tend to

work in groups based on their biological functions, and there exist some regulatory

relationships between genes (Chuang et al., 2007). Such biological knowledge can be

represented as a graph, where nodes are the genes, and edges describe the regulatory

relationships. Graphical models provide a useful tool for modeling these relationships,

and can be used to explore gene activities. One of the most widely used graphical

models is the Gaussian graphical model (GGM), which assumes the variables to be

Gaussian distributed (Banerjee et al., 2008; Yuan and Lin, 2007). In the framework

of GGM, the problem of learning a graph is equivalent to estimating the inverse of

the covariance matrix (precision matrix), since the nonzero off-diagonal elements of

the precision matrix represent edges in the graph (Banerjee et al., 2008; Yuan and

Lin, 2007).

In recent years many research efforts have focused on estimating the precision

matrix and the corresponding graphical model (see, for example (Banerjee et al.,

2008; Friedman et al., 2008; Hsieh et al., 2011; Huang et al., 2009; Li and Toh,

2010; Liu et al., 2011; Lu, 2009, 2010; Mazumder and Hastie, 2012b; Meinshausen
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and Bühlmann, 2006; Olsen et al., 2012; Yuan and Lin, 2007). Meinshausen and

Bühlmann (2006) estimated edges for each node in the graph by fitting a lasso problem

(Tibshirani, 1996) using the remaining variables as predictors. Yuan and Lin (2007)

and Banerjee et al. (2008) propose a penalized maximum likelihood model using

ℓ1 regularization to estimate the sparse precision matrix. Numerous methods have

been developed for solving this model. For example, d’Aspremont et al. (2008) and

Lu (2009, 2010) studied Nesterov’s smooth gradient methods (Nesterov, 2005) for

solving this problem or its dual. Banerjee et al. (2008) and Friedman et al. (2008)

propose block coordinate ascent methods for solving the dual problem. The latter

method (Friedman et al., 2008) is widely referred to as Graphical lasso (GLasso).

Mazumder and Hastie (2012b) propose a new algorithm called DP-GLasso, each step

of which is a box-constrained QP problem. Scheinberg and Rish (2009) propose

a coordinate descent method for solving this model in a greedy approach. Yuan

(2012) and Scheinberg et al. (2010) apply alternating direction method of multipliers

(ADMM) (Boyd et al., 2011) to solve this problem. Li and Toh (2010) and Yuan and

Lin (2007) propose to solve this problem using interior point methods. Wang et al.

(2010), Hsieh et al. (2011), Olsen et al. (2012), and Dinh et al. (2013) studied Newton

method for solving this model. The main challenge of estimating a sparse precision

matrix for the problems with a large number of nodes (variables) is its intensive

computation. Witten et al. (2011) and Mazumder and Hastie (2012a) independently

derive a necessary and sufficient condition for the solution of a single graphical lasso

to be block diagonal (subject to some rearrangement of variables). This can be used

as a simple screening test to identify the associated blocks, and the original problem

can thus be decomposed into a group of smaller sized but independent problems

corresponding to these blocks. When the number of blocks is large, it can achieve

massive computational gain. However, these formulations assume that observations
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are independently drawn from a single Gaussian distribution. In many applications

the observations may be drawn from multiple Gaussian distributions; in this case,

multiple graphical models need to be estimated.

There are some recent works on the estimation of multiple precision matrices (Dana-

her et al., 2013; Guo et al., 2011; Hara and Washio, 2011; Honorio and Samaras, 2010;

Kolar et al., 2010; Kolar and Xing, 2011; Mohan et al., 2012; Zhou et al., 2010). Guo

et al. (2011) propose a method to jointly estimate multiple graphical models using

a hierarchical penalty. However, their model is not convex. Honorio and Samaras

(2010) propose a convex formulation to estimate multiple graphical models using

the ℓ1,∞ regularizer. Hara and Washio (2011) introduce a method to learn common

substructures among multiple graphical models. Danaher et al. (2013) estimate mul-

tiple precision matrices simultaneously using a pairwise fused penalty and grouping

penalty. ADMM is used to solve the problem, but it requires computing multiple

eigen decompositions at each iteration. Mohan et al. (2012) propose to estimate

multiple precision matrices based on the assumption that the network differences are

generated from node perturbations. Compared with single graphical model learning,

learning multiple precision matrices jointly is even more challenging to solve. Re-

cently, a necessary and sufficient condition for multiple graphs to be decomposable

is proposed in (Danaher et al., 2013). However, such necessary and sufficient condi-

tion is restricted to two graphs only when the fused penalty is used. It is not clear

whether this screening rule can be extended to the more general case with more than

two graphs, which is the case in brain network modeling.

There are several types of fused penalties that can be used for estimating mul-

tiple (more than two) graphs such as pairwise fused penalty and sequential fused

penalty (Tibshirani et al., 2005). In this chapter we set out to address the sequen-

tial fused case first, because we work on practical applications that can be more

63



appropriately formulated using the sequential formulation. Specifically, we consider

the problem of estimating multiple graphical models by maximizing a penalized log

likelihood with ℓ1 and sequential fused regularization. The ℓ1 regularization yields a

sparse solution, and the fused regularization encourages adjacent graphs to be sim-

ilar. The graphs considered in this chapter have a natural order, which is common

in many applications. A motivating example is the modeling of brain networks for

Alzheimer’s disease using neuroimaging data such as Positron emission tomography

(PET). In this case, we want to estimate graphical models for three groups: normal

controls (NC), patients of mild cognitive impairment (MCI), and Alzheimer’s patients

(AD). These networks are expected to share some common connections, but they are

not identical. Furthermore, the networks are expected to evolve over time, in the

order of disease progression from NC to MCI to AD. Estimating the graphical models

separately fails to exploit the common structures among them. It is thus desirable

to jointly estimate the three networks (graphs). Our key technical contribution is to

establish the necessary and sufficient condition for the solution of the fused multiple

graphical lasso (FMGL) to be block diagonal. The duality theory and several other

tools in linear programming are used to derive the necessary and sufficient condition.

Based on this crucial property of FMGL, we develop a screening rule which enables

the efficient estimation of large multiple precision matrices for FMGL. The proposed

screening rule can be combined with any algorithms to reduce computational cost.

We employ a second-order method (Hsieh et al., 2011; Lee et al., 2012; Tseng and

Yun, 2009) to solve the fused multiple graphical lasso, where each step is solved by

the spectral projected gradient method (Lu and Zhang, 2011; Wright et al., 2009). In

addition, we propose an active set identification scheme to identify the variables to be

updated in each step of the second-order method, which reduces the computation cost

of each step. We conduct experiments on both synthetic and real data; our results
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demonstrate the effectiveness and efficiency of the proposed approach.

The rest of this chapter is organized as follows. We introduce the fused mul-

tiple graphical lasso formulation in Section 4.2. The screening rule is presented in

Section 4.3. The proposed second-order method is presented in Section 4.4. The ex-

perimental results are shown in Section 4.5. We conclude the chapter in Section 4.6.

4.2 Fused Multiple Graphical Lasso

Assume we are given K data sets, x(k) ∈ ℜnk×p, k = 1, . . . , K with K ≥ 2, where

nk is the number of samples, and p is the number of features. The p features are

common for all K data sets, and all
∑K

k=1 nk samples are independent. Furthermore,

the samples within each data set x(k) are identically distributed with a p-variate

Gaussian distribution with zero mean and positive definite covariance matrix Σ(k),

and there are many conditionally independent pairs of features, i.e., the precision

matrix Θ(k) = (Σ(k))−1 should be sparse. For notational simplicity, we assume that

n1 = · · · = nK = n. Denote the sample covariance matrix for each data set x(k)

as S(k) with S(k) = 1
n
(x(k))Tx(k), and Θ = (Θ(1), . . . ,Θ(K)). Then the negative log

likelihood for the data takes the form of

K∑
k=1

(
− log det(Θ(k)) + tr(S(k)Θ(k))

)
. (4.1)

Clearly, minimizing (4.1) leads to the maximum likelihood estimate (MLE) Θ̂(k) =

(S(k))−1. However, the MLE fails when S(k) is singular. Furthermore, the MLE is

usually dense. The ℓ1 regularization has been employed to induce sparsity, resulting

in the sparse inverse covariance estimation Banerjee et al. (2008); Friedman et al.

(2008); Yuan and Lin (2006). In this chapter, we employ both the ℓ1 regularization

and the fused regularization for simultaneously estimating multiple graphs. The ℓ1

regularization leads to a sparse solution, and the fused penalty encourages Θ(k) to be
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similar to its neighbors. Mathematically, we solve the following formulation:

min
Θ(k)≻0,k=1...K

K∑
k=1

(
− log det(Θ(k)) + tr(S(k)Θ(k))

)
+ P (Θ), (4.2)

where

P (Θ) = λ1

K∑
k=1

∑
i̸=j

|Θ(k)
ij |+ λ2

K−1∑
k=1

∑
i̸=j

|Θ(k)
ij −Θ

(k+1)
ij |,

λ1 > 0 and λ2 > 0 are positive regularization parameters. This model is referred to

as the fused multiple graphical lasso (FMGL).

To ensure the existence of a solution for problem (4.2), we assume throughout this

chapter that diag(S(k)) > 0, k = 1, . . . , K. Recall that S(k) is a sample covariance

matrix, and hence diag(S(k)) ≥ 0. The diagonal entries may be not, however, strictly

positive. But we can always add a small perturbation (say 10−8) to ensure the above

assumption holds. The following theorem shows that under this assumption the

FMGL (4.2) has a unique solution.

Theorem 2. Under the assumption that diag(S(k)) > 0, k = 1, . . . , K, problem (4.2)

has a unique optimal solution.

To prove Theorem 2, we first establish a technical lemma which regards the exis-

tence of a solution for a standard graphical lasso problem.

Lemma 3. Let S ∈ Sp
+ and Λ ∈ Sp be such that Diag(S) +Λ > 0 and diag(Λ) ≥ 0.

Consider the problem

min
X≻0
− log det(X) + tr(SX) +

∑
ij

Λij|Xij|︸ ︷︷ ︸
f(X)

. (4.3)

Then the following statements hold:

(a) Problem (4.3) has a unique optimal solution;
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(b) The sub-level set L = {X ≻ 0 : f(X) ≤ α} is compact for any α ≥ f ∗, where

f ∗ is the optimal value of (4.3).

Proof. (a) Let U = {U ∈ Sp : Uij ∈ [−1, 1], ∀i, j}. Consider the problem

max
U∈U
{log det(S+Λ ◦U) : S+Λ ◦U ≻ 0} . (4.4)

We first claim that the feasible region of problem (4.4) is nonempty, or equivalently,

there exists Ū ∈ U such that λmin(S+Λ ◦ Ū) > 0. Indeed, one can observe that

max
U∈U

λmin(S+Λ ◦U) = max
t,U∈U

{t : Λ ◦U+ S− tI ≽ 0},

= min
X≽0

max
t,U∈U

{t+ tr(X(Λ ◦U+ S− tI))} ,

= min
X≽0

{
tr(SX) +

∑
ij

Λij|Xij| : tr(X) = 1

}
, (4.5)

where the second equality follows from the Lagrangian duality since its associated

Slater condition is satisfied. Let Ω := {X ∈ Sp : tr(X) = 1, X ≽ 0}. By the

assumption Diag(S) +Λ > 0, we see that Λij > 0 for all i ̸= j and Sii +Λii > 0 for

every i. Since Ω ⊂ Sp
+, we have tr(SX) ≥ 0 for all X ∈ Ω. If there exists some k ̸= l

such that Xkl > 0, then
∑
i̸=j

Λij|Xij| > 0 and hence,

tr(SX) +
∑
ij

Λij|Xij| > 0, ∀X ∈ Ω. (4.6)

Otherwise, one hasXij = 0 for all i ̸= j, which, together with the facts that Sii+Λii >

0 for all i and tr(X) = 1, implies that for all X ∈ Ω,

tr(SX) +
∑
ij

Λij|Xij| =
∑
i

(Sii +Λii)Xii ≥ tr(X)min
i
(Sii +Λii) > 0.

Hence, (4.6) again holds. Combining (4.5) with (4.6), one can see that max
U∈U

λmin(S+

Λ ◦U) > 0. Therefore, problem (4.4) has at least a feasible solution.
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We next show that problem (4.4) has an optimal solution. Let Ū be a feasible

point of (4.4), and

Ω̄ := {U ∈ U : log det(S+Λ ◦U) ≥ log det(S+Λ ◦ Ū), S+Λ ◦U ≻ 0}.

One can observe that {S+Λ ◦U : U ∈ U} is compact. Using this fact, it is not hard

to see that log det(S+Λ ◦U)→ −∞ as U ∈ U and λmin(S+Λ ◦U) ↓ 0. Thus there

exists some δ > 0 such that

Ω̄ ⊆ {U ∈ U : S+Λ ◦U ≽ δI},

which implies that

Ω̄ = {U ∈ U : log det(S+Λ ◦U) ≥ log det(S+Λ ◦ Ū), S+Λ ◦U ≽ δI}.

Hence, Ω̄ is a compact set. In addition, one can observe that problem (4.4) is equiv-

alent to

max
U∈Ω̄

log det(S+Λ ◦U).

The latter problem clearly has an optimal solution and so is problem (4.4).

Finally we show that X∗ = (S+Λ ◦U∗)−1 is the unique optimal solution of (4.3),

where U∗ is an optimal solution of (4.4). Since S+Λ ◦U∗ ≻ 0, we have X∗ ≻ 0. By

the definitions of U and X∗, and the first-order optimality conditions of (4.4) at U∗,

one can have

U∗
ij =


1 if X∗

ij > 0;

β ∈ [−1, 1] if X∗
ij = 0;

−1 otherwise.

It follows that Λ ◦ U∗ ∈ ∂(
∑

ij Λij|Xij|) at X = X∗, where ∂(·) stands for the

subdifferential of the associated convex function. For convenience, let f(X) denote

the objective function of (4.3). Then we have

−(X∗)−1 + S+Λ ◦U∗ ∈ ∂f(X∗),
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which, together with X∗ = (S + Λ ◦U∗)−1, implies that 0 ∈ ∂f(X∗). Hence, X∗ is

an optimal solution of (4.3) and moreover it is unique due to the strict convexity of

− log det(·).

(b) By statement (a), problem (4.3) has a finite optimal value f ∗. Hence, the

above sub-level set L is nonempty. We can observe that for any X ∈ L,

1

2

∑
ij

Λij|Xij| = f(X)− [− log det(X) + tr(SX) +
1

2

∑
ij

Λij|Xij|︸ ︷︷ ︸
f(X)

],

≤ α− f ∗, (4.7)

where f ∗ := inf{f(X) : X ≻ 0}. By the assumption Diag(S) + Λ > 0, one has

Diag(S) + Λ/2 > 0. This together with statement (a) yields f ∗ ∈ ℜ. Notice that

Λij > 0 for all i ̸= j. This relation and (4.7) imply that Xij is bounded for all X ∈ L

and i ̸= j. In addition, it is well-known that det(X) ≤ X11X22 · · ·Xpp for all X ≽ 0.

Using this relation, the definition of f(·), and the boundedness of Xij for all X ∈ L

and i ̸= j, we have that for every X ∈ L,∑
i

− log(Xii) + (Sii + Λii)Xii ≤ f(X)−
∑
i ̸=j

(SijXij + Λij|Xij|),

≤ α−
∑
i̸=j

(SijXij + Λij|Xij|) ≤ δ (4.8)

for some δ > 0. In addition, notice from the assumption that Sii + Λii > 0 for all i,

and hence

− log(Xii) + (Sii + Λii)Xii ≥ 1 + min
k

log(Skk + Λkk) =: σ

for all i. This relation together with (4.8) implies that for every X ∈ L and all i,

− log(Xii) + (Sii + Λii)Xii ≤ δ − (p− 1)σ,

and hence Xii is bounded for all i and X ∈ L. We thus conclude that L is bounded.

In view of this result and the definition of f , it is not hard to see that there exists
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some ν > 0 such that λmin(X) ≥ ν for all X ∈ L. Hence, one has

L = {X ≽ νI : f(X) ≤ α}.

By the continuity of f on {X : X ≽ νI}, it follows that L is closed. Hence, L is

compact.

We are now ready to prove Theorem 2.

Proof. Since λ1 > 0 and diag(S(k)) > 0, k = 1, . . . , K, it follows from Lemma 3 that

there exists some δ such that for each k = 1, . . . , K,

− log det(Θ(k)) + tr(S(k)Θ(k)) + λ1

∑
i̸=j

|Θ(k)
ij | ≥ δ, ∀Θ(k) ≻ 0.

For convenience, let h(Θ) denote the objective function of (4.2) and Θ̄ = (Θ̄(1), . . . , Θ̄(K))

an arbitrary feasible point of (4.2). Let

Ω =
{
Θ = (Θ(1), . . . ,Θ(K)) : h(Θ) ≤ h(Θ̄), Θ(k) ≻ 0, k = 1, . . . , K

}
,

Ωk =
{
Θ(k) ≻ 0 : − log det(Θ(k)) + tr(S(k)Θ(k)) + λ1

∑
i ̸=j |Θ

(k)
ij | ≤ δ̄

}
for k = 1, . . . , K, where δ̄ = h(Θ̄) − (K − 1)δ. Then it is not hard to observe that

Ω ⊆ Ω̄ := Ω1 × · · · × ΩK . Moreover, problem (4.2) is equivalent to

min
Θ∈Ω̄

h(Θ). (4.9)

In view of Lemma 3, we know that Ωk is compact for all k, which implies that Ω̄ is

also compact. Notice that h is continuous and strictly convex on Ω̄. Hence, problem

(4.9) has a unique optimal solution and so is problem (4.2).

4.3 The Screening Rule for Fused Multiple Graphical Lasso

Due to the presence of the log determinant, it is challenging to solve the formu-

lations involving the penalized log-likelihood efficiently. The existing methods for
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c1 c2

Figure 4.1: Two precision matrices (bottom) whose nodes are in the different order
corresponds to the same graph with two connected components (top). The white
color in precision matrices represents 0.

single graphical lasso are not scalable to the problems with a large amount of features

because of the high computational complexity. Recent studies have shown that the

graphical model may contain many connected components, which are disjoint with

each other, due to the sparsity of the graphical model, i.e., the corresponding precision

matrix has a block diagonal structure (subject to some rearrangement of features, see

Figure 4.1 for illustration). To reduce the computational complexity, it is advanta-

geous to first identify the block structure and then compute the diagonal blocks of

the precision matrix instead of the whole matrix. Danaher et al. (2013) develop a

similar necessary and sufficient condition for fused graphical lasso with two graphs,

thus the block structure can be identified. However, it remains a challenge to derive

the necessary and sufficient condition for the solution of fused multiple graphical lasso
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to be block diagonal for K > 2 graphs.

In this section, we first present a theorem demonstrating that FMGL can be

decomposable once its solution has a block diagonal structure. Then we derive a

necessary and sufficient condition for the solution of FMGL to be block diagonal for

arbitrary number of graphs.

Let C1, . . . , CL be a partition of the p features into L non-overlapping sets, with

Cl ∩ Cl′ = ∅, ∀l ̸= l′ and
∪L

l=1 Cl = {1, . . . , p}. We say that the solution Θ̂ of

FMGL (4.2) is block diagonal with L known blocks consisting of features in the

sets Cl, l = 1, . . . , L if there exists a permutation matrix U ∈ ℜp×p such that each

estimation precision matrix takes the form of

Θ̂(k) = U


Θ̂

(k)
1

. . .

Θ̂
(k)
L

UT , k = 1, . . . , K. (4.10)

For simplicity of presentation, we assume throughout this chapter that U = I.

The following decomposition result for problem (4.2) is straightforward. Its proof

is thus omitted.

Theorem 4. Suppose that the solution Θ̂ of FMGL (4.2) is block diagonal with L

known Cl, l = 1, . . . , L, i.e., each estimated precision matrix has the form (4.10) with

U = I. Let Θ̂l = (Θ̂
(1)
l , . . . , Θ̂

(K)
l ) for l = 1, . . . , L. Then there holds:

Θ̂l = arg min
Θl≻0

K∑
k=1

(
− log det(Θ

(k)
l ) + tr(S

(k)
l Θ

(k)
l )
)
+ P (Θl), l = 1, . . . , L,

(4.11)

where Θ
(k)
l and S

(k)
l are the |Cl| × |Cl| symmetric submatrices of Θ(k) and S(k)

corresponding to the l-th diagonal block, respectively, for k = 1, . . . , K, and Θl =

(Θ
(1)
l , . . . ,Θ

(K)
l ) for l = 1, . . . , L.
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The above theorem demonstrates that if a large-scale FMGL problem has a block

diagonal solution, it can then be decomposed into a group of smaller sized FMGL

problems. The computational cost for the latter problems can be much cheaper. Now

one natural question is how to efficiently identify the block diagonal structure of the

FMGL solution before solving the problem. We address this question in the remaining

part of this section.

The following theorem provides a necessary and sufficient condition for the solution

of FMGL to be block diagonal with L blocks Cl, l = 1, . . . , L, which is a key for

developing efficient decomposition scheme for solving FMGL. Since its proof requires

some substantial development of other technical results, we shall postpone the proof

until the end of this section.

Theorem 5. The FMGL (4.2) has a block diagonal solution Θ̂(k), k = 1, . . . , K with

L known blocks Cl, l = 1, . . . , L if and only if S(k), k = 1, . . . , K satisfy the following

inequalities: 

|
∑t

k=1 S
(k)
ij | ≤ tλ1 + λ2,

|
∑t−1

k=0 S
(r+k)
ij | ≤ tλ1 + 2λ2, 2 ≤ r ≤ K − t,

|
∑t

k=1 S
(K−t+k)
ij | ≤ tλ1 + λ2,

|
∑K

k=1 S
(k)
ij | ≤ Kλ1

(4.12)

for t = 1, . . . , K − 1, i ∈ Cl, j ∈ Cl′ , l ̸= l′.

One immediate consequence of Theorem 5 is that the conditions (4.12) can be used

as a screening rule to identify the block diagonal structure of the FMGL solution. The

steps about this rule are described as follows.

1. Construct an adjacency matrix E = Ip×p. Set Eij = Eji = 0 if S
(k)
ij , k = 1, . . . , K

satisfy the conditions (4.12). Otherwise, set Eij = Eji = 1.
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2. Identify the connected components of the adjacency matrix E (for example, it

can be done by calling the Matlab function “graphconncomp”).

In view of Theorem 5, it is not hard to observe that the resulting connected

components are the partition of the p features into nonoverlapping sets. It then

follows from Theorem 4 that a large-scale FMGL problem can be decomposed into a

group of smaller sized FMGL problems restricted to the features in each connected

component. The computational cost for the latter problems can be much cheaper.

Therefore, this approach may enable us to solve large-scale FMGL problems very

efficiently.

In the remainder of this section we provide a proof for Theorem 5. Before pro-

ceeding, we establish several technical lemmas as follows.

Lemma 6. Given any two arbitrary index sets I ⊆ {1, · · · , n} and J ⊆ {1, · · · , n−1},

let Ī and J̄ be the complement of I and J with respect to {1, · · · , n} and {1, · · · , n−1},

respectively. Define

PI,J = {y ∈ ℜn : yI ≥ 0, yĪ ≤ 0, yJ − yJ+1 ≥ 0, yJ̄ − yJ̄+1 ≤ 0} , (4.13)

where J + 1 = {j + 1 : j ∈ J} and J̄ + 1 = {j + 1 : j ∈ J̄}. Then, the following

statements hold:

(i) Either PI,J = {0} or PI,J is unbounded;

(ii) 0 is the unique extreme point of PI,J ;

(iii) Suppose that PI,J is unbounded. Then, ∅ ̸= ext(PI,J) ⊆ Q, where ext(PI,J)

denotes the set of all extreme rays of PI,J , and

Q := {α(0, · · · , 0︸ ︷︷ ︸
m

, 1, · · · , 1︸ ︷︷ ︸
l

, 0, · · · , 0)T ∈ ℜn : α ̸= 0,m ≥ 0, 1 ≤ l ≤ n}.

(4.14)
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Proof. (i) We observe that 0 ∈ PI,J . If PI,J ̸= {0}, then there exists 0 ̸= y ∈ PI,J .

Hence, {αy : α ≥ 0} ⊆ PI,J , which implies that PI,J is unbounded.

(ii) It is easy to see that 0 ∈ PI,J and moreover there exist n linearly independent

active inequalities at 0. Hence, 0 is an extreme point of PI,J . On the other hand,

suppose y is an arbitrary extreme point of PI,J . Then there exist n linearly indepen-

dent active inequalities at y, which together with the definition of PI,J immediately

implies y = 0. Therefore, 0 is the unique extreme point of PI,J .

(iii) Suppose that PI,J is unbounded. By statement (ii), we know that PI,J has a

unique extreme point. Using Minkowski’s resolution theorem (e.g., see Bertsekas and

Tsitsiklis (1997)), we conclude that ext(PI,J) ̸= ∅. Let d ∈ ext(PI,J) be arbitrarily

chosen. Then d ̸= 0. It follows from (4.13) that d satisfies the inequalities

dI ≥ 0, dĪ ≤ 0, dJ − dJ+1 ≥ 0, dJ̄ − dJ̄+1 ≤ 0, (4.15)

and moreover, the number of independent active inequalities at d is n−1. If all entries

of d are nonzero, then d must satisfy dJ − dJ+1 = 0 and dJ̄ − dJ̄+1 = 0 (with a total

number n − 1), which implies d1 = d2 = · · · = dn and thus d ∈ Q. We now assume

that d has at least one zero entry. Then, there exist positive integers k, {mi}ki=1 and

{ni}ki=1 satisfying mi ≤ ni < mi+1 ≤ ni+1 for i = 1, . . . , k − 1 such that

{i : di = 0} = {m1, · · · , n1} ∪ {m2, · · · , n2} ∪ · · · ∪ {mk, · · · , nk}. (4.16)

One can immediately observe that

dmi
= · · · = dni

= 0, dj − dj+1 = 0, mi ≤ j ≤ ni − 1, 1 ≤ i ≤ k. (4.17)

We next divide the rest of proof into four cases.

Case (a): m1 = 1 and nk = n. In view of (4.16), one can observe that dmi−1−dmi
̸=

0 and dni−1
− dni−1+1 ̸= 0 for i = 2, . . . , k. We then see from (4.15) that except the
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active inequalities given in (4.17), all other possible active inequalities at d are

dj − dj+1 = 0, ni−1 < j < mi − 1, 2 ≤ i ≤ k (4.18)

(with a total number
∑k

i=2(mi − ni−1 − 2)). Notice that the total number of inde-

pendent active inequalities given in (4.17) is
∑k

i=1(ni −mi + 1). Hence, the number

of independent active inequalities at d is at most

k∑
i=1

(ni −mi + 1) +
k∑

i=2

(mi − ni−1 − 2) = nk −m1 − k + 2 = n− k + 1.

Recall that the number of independent active inequalities at d is n − 1. Hence, we

have n − k + 1 ≥ n − 1, which implies k ≤ 2. Due to d ̸= 0, we observe that k ̸= 1

holds for this case. Also, we know that k > 0. Hence, k = 2. We then see that all

possible active inequalities described in (4.18) must be active at d, which together

with k = 2 immediately implies that d ∈ Q.

Case (b): m1 = 1 and nk < n. Using (4.16), we observe that dmi−1 − dmi
̸= 0

for i = 2, . . . , k and dni
− dni+1 ̸= 0 for i = 1, . . . , k. In view of these relations and a

similar argument as in case (a), one can see that the number of independent active

inequalities at d is at most

k∑
i=1

(ni −mi + 1) +
k∑

i=2

(mi − ni−1 − 2) + n− nk − 1 = n−m1 − k + 1 = n− k.

Similarly as in case (a), we can conclude from the above relation that k = 1 and

d ∈ Q.

Case (c): m1 > 1 and nk = n. By (4.16), one can observe that dmi−1−dmi
̸= 0 for

i = 1, . . . , k and dni
−dni+1 ̸= 0 for i = 1, . . . , k−1. Using these relations and a similar

argument as in case (a), we see that the number of independent active inequalities at

d is at most

m1 − 2 +
k∑

i=1

(ni −mi + 1) +
k∑

i=2

(mi − ni−1 − 2) = nk − k = n− k.
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Similarly as in case (a), we can conclude from the above relation that k = 1 and

d ∈ Q.

Case (d): m1 > 1 and nk < n. From (4.16), one can observe that dmi−1− dmi
̸= 0

for i = 1, . . . , k and dni
− dni+1 ̸= 0 for i = 1, . . . , k. By virtue of these relations and

a similar argument as in case (a), one can see that the number of independent active

inequalities at d is at most

m1 − 2 +
k∑

i=1

(ni −mi + 1) +
k∑

i=2

(mi − ni−1 − 2) + n− nk − 1 = n− k − 1.

Recall that k ≥ 1 and the number of independent active inequalities at d is n − 1.

Hence, this case cannot occur.

Combining the above four cases, we conclude that ext(PI,J) ⊆ Q.

Lemma 7. Let PIJ and Q be defined in (4.13) and (4.14), respectively. Then,

∪{ext(PI,J) : I ⊆ {1, · · · , n}, J ⊆ {1, · · · , n− 1}} = Q.

Proof. It follows from Lemma 6 (iii) that

∪{ext(PI,J) : I ⊆ {1, · · · , n}, J ⊆ {1, · · · , n− 1}} ⊆ Q.

We next show that

∪{ext(PI,J) : I ⊆ {1, · · · , n}, J ⊆ {1, · · · , n− 1}} ⊇ Q.

Indeed, let d ∈ Q be arbitrarily chosen. Then, there exist α ̸= 0 and positive in-

tegers m1 and n1 satisfying 1 ≤ m1 ≤ n1 such that di = α for m1 ≤ i ≤ n1

and the rest of di’s are 0. If α > 0, it is not hard to see that d ∈ ext(PI,J)

with I = {1, · · · , n} and J = {m1, · · · , n − 1}. Similarly, if α < 0, d ∈ ext(PI,J)

with I = ∅ and J being the complement of J̄ = {m1, · · · , n − 1}. Hence, d ∈

∪{ext(PI,J) : I ⊆ {1, · · · , n}, J ⊆ {1, · · · , n− 1}}.
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Lemma 8. Let x ∈ ℜn, λ1, λ2 ≥ 0 be given, and let

f(y) := xTy − λ1

n∑
i=1

|yi| − λ2

n−1∑
i=1

|yi − yi+1|.

Then, f(y) ≤ 0 for all y ∈ ℜn if and only if x satisfies the following inequalities:

|
∑k

j=1 xj| ≤ kλ1 + λ2,

|
∑k−1

j=0 xi+j| ≤ kλ1 + 2λ2, 2 ≤ i ≤ n− k,

|
∑k

j=1 xn−k+j| ≤ kλ1 + λ2,

|
∑n

j=1 xj| ≤ nλ1

for k = 1, . . . , n− 1.

Proof. Let PI,J be defined in (4.13) for any I ⊆ {1, . . . , n} and J ⊆ {1, . . . , n − 1}.

We observe that

(a) ℜn = ∪{PI,J : I ⊆ {1, . . . , n}, J ⊆ {1, . . . , n− 1}};

(b) f(y) ≤ 0 for all y ∈ ℜn if and only if f(y) ≤ 0 for all y ∈ PI,J , and every

I ⊆ {1, . . . , n} and J ⊆ {1, . . . , n− 1};

(c) f(y) is a linear function of y when restricted to the set PI,J for every I ⊆

{1, . . . , n} and J ⊆ {1, . . . , n− 1}.

If PI,J is bounded, we have PI,J = {0} and f(y) = 0 for y ∈ PI,J . Suppose that

PI,J is unbounded. By Lemma 6 and Minkowski’s resolution theorem, PI,J equals the

finitely generated cone by ext(PI,J). It then follows that f(y) ≤ 0 for all y ∈ PI,J if

and only if f(d) ≤ 0 for all d ∈ ext(PI,J). Using these facts and Lemma 7, we see

that f(y) ≤ 0 for all y ∈ ℜn if and only if f(d) ≤ 0 for all d ∈ Q, where Q is defined

in (4.14). By the definitions of Q and f , we further observe that f(y) ≤ 0 for all

y ∈ ℜn if and only if f(d) ≤ 0 for all

d ∈

±(0, · · · , 0︸ ︷︷ ︸
m

, 1, · · · , 1︸ ︷︷ ︸
l

, 0, · · · , 0)T ∈ ℜn : m ≥ 0, 1 ≤ l ≤ n

 ,
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which together with the definition of f immediately implies that the conclusion of

this lemma holds.

Lemma 9. Let x ∈ ℜn, λ1, λ2 ≥ 0 be given. The linear system

x1 + λ1γ1 + λ2v1 = 0,

xi + λ1γi + λ2(vi − vi−1) = 0, 2 ≤ i ≤ n− 1,

xn + λ1γn − λ2vn−1 = 0,

−1 ≤ γi ≤ 1, i = 1, . . . , n,

−1 ≤ vi ≤ 1, i = 1, . . . , n− 1

(4.19)

has a solution (γ, v) if and only if (x, λ1, λ2) satisfies the following inequalities:

|
∑k

j=1 xj| ≤ kλ1 + λ2,

|
∑k−1

j=0 xi+j| ≤ kλ1 + 2λ2, 2 ≤ i ≤ n− k,

|
∑k

j=1 xn−k+j| ≤ kλ1 + λ2,

|
∑n

j=1 xj| ≤ nλ1

for k = 1, . . . , n− 1.

Proof. The linear system (4.19) has a solution if and only if the linear programming

min
γ,v
{0Tγ + 0Tv : (γ, v) satisfies (4.19)} (4.20)

has an optimal solution. The Lagrangian dual of (4.20) is

max
y

min
γ,v

{
xTy + λ1

n∑
i=1

yiγi + λ2

n−1∑
i=1

(yi − yi+1)vi : −1 ≤ γ, v ≤ 1

}
,

which is equivalent to

max
y

f(y) := xTy − λ1

n∑
i=1

|yi| − λ2

n−1∑
i=1

|yi − yi+1|. (4.21)
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By the Lagrangian duality theory, problem (4.20) has an optimal solution if and only

if its dual problem (4.21) has optimal value 0, which is equivalent to f(y) ≤ 0 for all

y ∈ ℜn. The conclusion of this lemma then immediately follows from Lemma 8.

We are now ready to prove Theorem 5.

Proof. For the sake of convenience, we denote the inverse of Θ̂(k) as Ŵ(k) for k =

1, . . . , K. By the first-order optimality conditions, we observe that Θ̂(k) ≻ 0, k =

1, . . . , K is the optimal solution of problem (4.2) if and only if it satisfies

−Ŵ(k)
ii + S

(k)
ii = 0, 1 ≤ k ≤ K, (4.22)

−Ŵ(1)
ij + S

(1)
ij + λ1γ

(1)
ij + λ2υ

(1,2)
ij = 0, (4.23)

−Ŵ(k)
ij + S

(k)
ij + λ1γ

(k)
ij + λ2(−υ(k−1,k)

ij + υ
(k,k+1)
ij ) = 0, 2 ≤ k ≤ K − 1,(4.24)

−Ŵ(K)
ij + S

(K)
ij + λ1γ

(K)
ij − λ2υ

(K−1,K)
ij = 0 (4.25)

for all i, j = 1, . . . , p, i ̸= j, where γ
(k)
ij is a subgradient of |Θ(k)

ij | at Θ
(k)
ij = Θ̂

(k)
ij ; and

υ
(k,k+1)
ij is a subgradient of |Θ(k)

ij −Θ
(k+1)
ij | with respect to Θ

(k)
ij at (Θ

(k)
ij ,Θ

(k+1)
ij ) =

(Θ̂
(k)
ij , Θ̂

(k+1)
ij ), that is, υ

(k,k+1)
ij = 1 if Θ̂

(k)
ij > Θ̂

(k+1)
ij , υ

(k,k+1)
ij = −1 if Θ̂

(k)
ij < Θ̂

(k+1)
ij ,

and υ
(k,k+1)
ij ∈ [−1, 1] if Θ̂(k)

ij = Θ̂
(k+1)
ij .

Necessity: Suppose that Θ̂(k), k = 1, . . . , K is a block diagonal optimal solution

of problem (4.2) with L known blocks Cl, l = 1, . . . , L. Note that Ŵ(k) has the same

block diagonal structure as Θ̂(k). Hence, Ŵ
(k)
ij = Θ̂

(k)
ij = 0 for i ∈ Cl, j ∈ Cl′ , l ̸= l′.

This together with (4.23)-(4.25) implies that for each i ∈ Cl, j ∈ Cl′ , l ̸= l′, there exist
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(γ
(k)
ij , v

(k,k+1)
ij ), k = 1, . . . , K − 1 and γ

(K)
ij such that

S
(1)
ij + λ1γ

(1)
ij + λ2υ

(1,2)
ij = 0,

S
(k)
ij + λ1γ

(k)
ij + λ2(−υ(k−1,k)

ij + υ
(k,k+1)
ij ) = 0, 2 ≤ k ≤ K − 1,

S
(K)
ij + λ1γ

(K)
ij − λ2υ

(K−1,K)
ij = 0,

−1 ≤ γ
(k)
ij ≤ 1, 1 ≤ k ≤ K,

−1 ≤ v
(k,k+1)
ij ≤ 1, 1 ≤ k ≤ K − 1.

(4.26)

Using (4.26) and Lemma 9, we see that (4.12) holds for t = 1, . . . , K − 1, i ∈ Cl, j ∈

Cl′ , l ̸= l′.

Sufficiency: Suppose that (4.12) holds for t = 1, . . . , K − 1, i ∈ Cl, j ∈ Cl′ , l ̸=

l′. It then follows from Lemma 9 that for each i ∈ Cl, j ∈ Cl′ , l ̸= l′, there exist

(γ
(k)
ij , v

(k,k+1)
ij ), k = 1, . . . , K − 1 and γ

(K)
ij such that (4.26) holds. Now let Θ̂(k), k =

1, . . . , K be a block diagonal matrix as defined in (4.10) with U = I, where Θ̂l =

(Θ̂
(1)
l , . . . , Θ̂

(K)
l ) is given by (4.11) for l = 1, . . . , L. Also, let Ŵ(k) be the inverse of

Θ̂(k) for k = 1, . . . , K. Since Θ̂l is the optimal solution of problem (4.11), the first-

order optimality conditions imply that (4.22)-(4.25) hold for all i, j ∈ Cl, i ̸= j, l =

1, . . . , L. Notice that Θ̂
(k)
ij = Ŵ

(k)
ij = 0 for every i ∈ Cl, j ∈ Cl′ , l ̸= l′. Using this

fact and (4.26), we observe that (4.22)-(4.25) also hold for all i ∈ Cl, j ∈ Cl′ , l ̸= l′.

It then follows that Θ̂(k), k = 1, . . . , K is an optimal solution of problem (4.2). In

addition, Θ̂(k), k = 1, . . . , K is block diagonal with L known blocks Cl, l = 1, . . . , L.

The conclusion thus holds.

4.3.1 Extension to Other Regularizations

We show how to establish a similar necessary and sufficient condition for general

fused regularization (i.e., graph fused regularization). Denote G = (V,E) as an

undirected graph, where the nodes are V = {1, . . . , K} and E is a set of edges.
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Assume there is no redundancy in E (i.e., if (u, v) ∈ E, (v, u) /∈ E). Then we define

the graph fused regularization by

P (Θ) = λ1

K∑
k=1

∑
i̸=j

|Θ(k)
ij |+ λ2

∑
i̸=j

∑
(u,v)∈E

|Θ(u)
ij −Θ

(v)
ij |. (4.27)

Clearly, the sequential fused and pairwise fused regularization are special cases of the

graph fused regularization. The graph fused regularization is decomposable based

on the connected components of the given graph G. Without loss of generality, we

assume that G has only one connected component, which means that there exists an

edge across any two set partition of V . The technique used in the sequential fused

case can be extended to the case of graph fused regularization. The key is to prove

the results similar to those in Lemma 6 and Lemma 7 for graph fused regularization.

Denote G = {G1, G2, . . . , GM} as the set of subgraphs in graph G such that each

subgraph Gm has only one connected component. For example, a fully connected

graph with 3 nodes has 7 such subgraphs. According to the assumption that G has

only one connected component, we have G ∈ G. Let V = {V1, V2, . . . , VM} where Vm

represents the nodes of subgraph Gm. Then we have the following results:

Lemma 10. Given an undirected graph G = (V,E), where the nodes are V =

{1, . . . , n} and E is a set of edges of size |E|. Given any two arbitrary index sets

I ⊆ {1, · · · , n}, J ⊆ {1, · · · , |E|}, let Ī and J̄ be the complement of I and J with

respect to {1, · · · , n} and {1, · · · , |E|}, respectively. Define

PI,J = {y ∈ ℜn : yI ≥ 0, yĪ ≤ 0, yu − yv ≥ 0, ∀(u, v) ∈ EJ ,

yu − yv ≤ 0,∀(u, v) ∈ EJ̄} ,
(4.28)

where EJ and EJ̄ denote the sets of edges whose indexes are in J and J̄ , respectively.

Then, the following statements hold:

(i) Either PI,J = {0} or PI,J is unbounded;
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(ii) 0 is the unique extreme point of PI,J ;

(iii) Suppose that PI,J is unbounded. Then, ∅ ̸= ext(PI,J) ⊆ Q, where

Q :=

αd ∈ ℜn : α ̸= 0, di =

 1, i ∈ Vm

0, i /∈ Vm

,∀Vm ∈ V

 . (4.29)

(iv) ∪{ext(PI,J) : I ⊆ {1, · · · , n}, J ⊆ {1, · · · , |E|}} = Q.

Proof. (i) and (ii) can be proved in a similar way to Lemma 6.

(iii) Similar to Lemma 6, we can show that ext(PI,J) ̸= ∅. Next we show that

∪{ext(PI,J) : I ⊆ {1, · · · , n}, J ⊆ {1, · · · , |E|}} ⊆ Q. Denote GJ and GJ̄ as the

subgraphs with edges only in EJ and EJ̄ respectively. Accordingly, GJ represents

the set of all possible subgraphs with only one connected component in GJ , and VJ

denotes the corresponding node sets of GJ . Then we have VJ ∪ VJ̄ ⊆ V . Moreover,

∪{VJ ∪ VJ̄ , J ⊆ {1, . . . , |E|}} = V .

Let d ∈ ∪{ext(PI,J) : I ⊆ {1, · · · , n}, J ⊆ {1, . . . , |E|}}. Then d ̸= 0 and the

number of independent active inequalities at d is n− 1. It is clear that the maximum

number of independent active inequalities restricted to the nodes in Vm ∈ V is |Vm|

which is achieved when di = 0, ∀i ∈ Vm. If di ̸= 0,∀i ∈ Vm, Vm ̸= ∅, it is not hard

to show that the maximum number of independent active inequalities restricted to

Vm is |Vm| − 1 which is achieved when di = dj,∀i, j ∈ Vm. Suppose there exist

two nonempty and nonoverlapping sets Vl and Vm such that di = dj ̸= 0, ∀i, j ∈ Vl

and di = dj ̸= 0, ∀i, j ∈ Vm. We consider the following two cases: (a) there is

no edge across Vl and Vm. In this case, the maximum number of independent active

inequalities is |Vm|−1+|Vl|−1+n−|Vm|−|Vl| = n−2; (b) di ̸= dj, i ∈ Vl, j ∈ Vm, thus

inequalities from the edges across Vl and Vm are inactive. In this case, the maximum

number of independent active inequalities is |Vm|−1+ |Vl|−1+n−|Vm|−|Vl| = n−2.

This is a contradiction to the definition of extreme ray d. Combining the arguments
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above, we show that all nodes in V with a nonzero value in d form a set in V .

Therefore, ∪{ext(PI,J) : I ⊆ {1, · · · , n}, J ⊆ {1, . . . , |E|}} ⊆ Q.

(iv) Let d ∈ Q be arbitrarily chosen. Then, there exist α ̸= 0 and a Vm ∈ V

such that di = α, i ∈ Vm and the rest of d′is are 0. If α > 0, it is not hard

to see that d ∈ ext(PI,J) with I = {1, . . . , n} and J such that EJ = {(u, v) :

u, v ∈ Vm, (u, v) ∈ E} ∪ {(u, v) : u ∈ Vm, v ∈ V̄m, (u, v) ∈ E}, where V̄m is

the complement of Vm. If α < 0, d ∈ ext(PI,J) with I = ∅ and J such that

EJ = {(u, v) : u, v ∈ Vm, (u, v) ∈ E} ∪ {(u, v) : u ∈ V̄m, v ∈ Vm, (u, v) ∈ E}.

Hence, d ∈ ∪{ext(PI,J) : I ⊆ {1, · · · , n}, J ⊆ {1, . . . , |E|}}. Combined with (iii), we

have ∪{ext(PI,J) : I ⊆ {1, · · · , n}, J ⊆ {1, . . . , |E|}} = Q.

After we obtain the set of all extreme rays, the remaining steps can be proved in

the same manner as in the fused case. Let |E\Vm | be the number of edges across Vm

and its complement, and let |Vm| be the number of nodes in Vm. Then the necessary

and sufficient condition for graph fused regularization is∣∣∣∣∣∣
|Vm|∑
k=1

S
(uk)
ij

∣∣∣∣∣∣ ≤ |Vm|λ1 + |E\Vm|λ2, uk ∈ Vm, ∀Vm ∈ V . (4.30)

The complexity of verifying the necessary and sufficient condition for an arbitrary

graph is exponential due to all possible subgraphs with only one connected component.

Exploring the structure of the given graph may reduce redundancy of the conditions

(4.30). We defer to future work.

4.3.2 Screening Rule for General Structured Multiple Graphical Lasso

We consider the following general structured multiple graphical lasso (SMGL):

min
Θ(k)≻0,k=1...K

K∑
k=1

(
− log det(Θ(k)) + tr(S(k)Θ(k))

)
+
∑
i ̸=j

ϕ(Θij), (4.31)
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where Θij = (Θ
(1)
ij , . . . ,Θ

(K)
ij )T ∈ ℜK , and ϕ(x) is a convex regularization that en-

courages estimated graph models to have a certain structure. Besides fused and graph

regularizations, there are other examples including but not limited to

• Overlapping group regularization:

ϕ(x) = λ1∥x∥1 + λ2

g∑
i=1

∥xGi
∥2,

where Gi, i = 1, . . . , g are g groups such that
∪g

i=1Gi = {1, . . . , K}. Different

groups may overlap.

• Tree structured group regularization:

ϕ(x) =
d∑

i=1

ni∑
j=1

wi
j∥xGi

j
∥2,

where wi
j is a positive weight, and the groups Gi

j, j = 1, . . . , ni, i = 1, . . . , d

exhibit a tree structure (Liu and Ye, 2010).

Theorem 11. The SMGL (4.31) has a block diagonal solution Θ̂(k), k = 1, . . . , K

with L blocks Cl, l = 1, . . . , L if and only if 0 is the optimal solution of the following

problem:

min
x

1

2
∥x+ Sij∥22 + ϕ(x) (4.32)

for i ∈ Cl, j ∈ Cl′ , l ̸= l′.

Proof. By the first-order optimality conditions, Θ̂(k) ≻ 0, k = 1, . . . , K is the optimal

solution of problem (4.2) if and only if it satisfies

−Ŵ(k)
ii + S

(k)
ii = 0, 1 ≤ k ≤ K, (4.33)

−Ŵij + Sij + ∂ϕij = 0, (4.34)

for all i, j = 1, . . . , p, i ̸= j, where Ŵij = (Ŵ
(1)
ij , . . . ,Ŵ

(K)
ij )T , Sij = (S

(1)
ij , . . . ,S

(K)
ij )T ,

and ∂ϕij is a subgradient of ϕ(Θij) at Θij = Θ̂ij.
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Suppose that Θ̂(k), k = 1, . . . , K is a block diagonal optimal solution of prob-

lem (4.2) with L known blocks Cl, l = 1, . . . , L. Ŵ
(k)
ij = Θ̂

(k)
ij = 0 for i ∈ Cl, j ∈

Cl′ , l ̸= l′. This together with (4.34) implies that for each i ∈ Cl, j ∈ Cl′ , l ̸= l′, there

exists a ∂ϕij such that

Sij + ∂ϕij = 0,

which directly shows that 0 is the optimal solution of (4.32). The sufficiency can be

proved in a similar way to Theorem 5.

Theorem 11 can be used as a screening rule for SMGL. If (4.32) has a closed form

solution as in the case of tree structured group regularization (Liu and Ye, 2010),

the screening rule results in an exact block diagonal structure. However, if (4.32)

does not have a closed form solution, the screening rule may not identify an exact

block diagonal structure due to numerical error. Although the identified structure

may be inexact, it can still be used to find a good initial solution as shown in Hsieh

et al. (2012). An interesting future direction is to study the error bound between the

identified and exact block diagonal structures.

4.4 Second-order Method

The screening rule proposed in Section 4.3 is capable of partitioning all features

into a group of smaller sized blocks. Accordingly, a large-scale FMGL (4.2) can be

decomposed into a number of smaller sized FMGL problems. For each block l, we

need to compute its individual precision matrix Θ
(k)
l by solving the FMGL (4.2) with

S(k) replaced by S
(k)
l . In this section, we show how to solve those single block FMGL

problems efficiently. For simplicity of presentation, we assume throughout this section

that the FMGL (4.2) has only one block, that is, L = 1.

We now propose a second-order method to solve the FMGL (4.2). For simplicity
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of notation, we let Θ := (Θ(1), . . . ,Θ(K)) and use t to denote the Newton iteration

index. Let Θt = (Θ
(1)
t , . . . ,Θ

(K)
t ) be the approximate solution obtained at the t-th

Newton iteration.

The optimization problem (4.2) can be rewritten as

min
Θ≻0

F (Θ) :=
K∑
k=1

fk(Θ
(k)) + P (Θ), (4.35)

where

fk(Θ
(k)) = − log det(Θ(k)) + tr(S(k)Θ(k)).

In the second-order method, we approximate the objective function F (Θ) at the

current iterate Θt by a “quadratic” model Qt(Θ):

min
Θ

Qt(Θ) :=
K∑
k=1

qk(Θ
(k)) + P (Θ), (4.36)

where qk is the quadratic approximation of fk at Θ
(k)
t , that is,

qk(Θ
(k)) =

1

2
tr(W

(k)
t D(k)W

(k)
t D(k)) + tr((S(k) −W

(k)
t )D(k)) + fk(Θ

(k)
t )

with W
(k)
t = (Θ

(k)
t )−1 and D(k) = Θ(k) − Θ

(k)
t . Suppose that Θ̄t+1 is the optimal

solution of (4.36). Then we obtain the Newton search direction

D = Θ̄t+1 −Θt. (4.37)

We shall mention that the subproblem (4.36) can be suitably solved by the non-

monotone spectral projected gradient (NSPG) method (see, for example, Lu and

Zhang (2011); Wright et al. (2009)). It was shown by Lu and Zhang (2011) that the

NSPG method is locally linearly convergent. Numerous computational studies have

demonstrated that the NSPG method is very efficient though its global convergence

rate is so far unknown. When applied to (4.36), the NSPG method requires solving

the proximal subproblems in the form of

proxαP (Zr) := argmin
Θ

1

2
∥Θ− Zr∥2F + αP (Θ), (4.38)
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where r represents the r-th iteration in NSPG, ∥Θ − Zr∥2F =
∑K

k=1 ∥Θ(k) − Z
(k)
r ∥2F ,

Zr = Θr−αGr, andG
(k)
r = S(k)−2W(k)

t +W
(k)
t Θ

(k)
r W

(k)
t . DenoteR = Θr−Θr−1 and

ᾱ =
∑K

k=1 tr(R
(k)W

(k)
t R(k)W

(k)
t )/

∑K
k=1 ∥R(k)∥2F . Then α is given by α = max(αmin,

min(1/ᾱ, αmax)), where [αmin, αmax] is a given safeguard (Lu and Zhang, 2011; Wright

et al., 2009).

By the definition of P (Θ), it is not hard to see that problem (4.38) can be de-

composed into a set of independent and smaller sized problems

min
Θ

(k)
ij ,k=1,...,K

1

2

K∑
k=1

(Θ
(k)
ij − Z

(k)
r,ij)

2 + α1

K∑
k=1

|Θ(k)
ij |+ α2

K−1∑
k=1

|Θ(k)
ij −Θ

(k+1)
ij | (4.39)

for all i > j, (α1, α2) = α(λ1, λ2), and for i = j, α1, α2 = 0, j = 1, . . . , p. The

problem (4.39) is known as the fused lasso signal approximator, which can be solved

very efficiently and exactly (Condat, 2013; Liu et al., 2010). In addition, they are

independent from each other and thus can be solved in parallel.

Given the current search direction D = (D(1), . . . ,D(K)) that is computed above,

we need to find the suitable step length β ∈ (0, 1] to ensure a sufficient reduction in

the objective function of (4.2) and positive definiteness of the next iterate Θ
(k)
t+1 =

Θ
(k)
t + βD(k), k = 1, . . . , K. In the context of the standard (single) graphical lasso,

Hsieh et al. (2011) have shown that a step length satisfying the above requirements

always exists. We can similarly prove that the desired step length also exists for the

FMGL (4.2).

Lemma 12. Let Θt = (Θ
(1)
t , . . . ,Θ

(K)
t ) be such that Θ

(k)
t ≻ 0 for k = 1, . . . , K, and

let D = (D(1), . . . ,D(K)) be the associated Newton search direction computed according

to (4.36). Suppose D ̸= 0. 1 Then there exists a β̄ > 0 such that Θ
(k)
t + βD(k) ≻ 0

and the sufficient reduction condition

F (Θt + βD) ≤ F (Θt) + σβδt (4.40)

1It is well known that if D = 0, Θt is the optimal solution of problem (4.2).
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holds for all 0 < β < β̄, where σ ∈ (0, 1/2) is a given constant and

δt =
K∑
k=1

tr((S(k) −W
(k)
t )D(k)) + P (Θt +D)− P (Θt). (4.41)

Proof. Let β̃ = 1/max{∥(Θ(k)
t )−1D(k)∥2 : k = 1, . . . , K}, where ∥ · ∥2 denotes the

spectral norm of a matrix. Since D ̸= 0 and Θ
(k)
t ≻ 0, k = 1, . . . , K, we see that

β̃ > 0. Moreover, we have for all 0 < β < β̃ and k = 1, . . . , K,

(Θ
(k)
t )−

1
2

(
Θ

(k)
t + βD(k)

)
(Θ

(k)
t )−

1
2 = I+ β(Θ

(k)
t )−

1
2D(k)(Θ

(k)
t )−

1
2

≽ (1− β∥(Θ(k)
t )−1D(k)∥2)I ≻ 0.

By the definition of D and (4.36), one can easily show that

δ ≤ −
K∑
k=1

tr(W
(k)
t D(k)W

(k)
t D(k)),

which together with the fact that W
(k)
t ≻ 0, k = 1, . . . , K and D ̸= 0 implies that

δ < 0. Using differentiability of fk, convexity of P , and the definition of δ, we obtain

that for all sufficiently small β > 0,

F (Θt + βD)− F (Θt) =
∑K

k=1(fk(Θ
(k)
t + βD(k))− fk(Θ

(k)
t )) + P (Θt + βD)− P (Θt),

=
∑K

k=1 tr((S
(k) −W

(k)
t )D(k))β + o(β) + P (β(Θt +D) + (1− β)Θt)− P (Θt),

≤
∑K

k=1 tr((S
(k) −W

(k)
t )D(k))β + o(β) + βP (Θt +D) + (1− β)P (Θt)− P (Θt),

≤ βδ + o(β).

This inequality together with δ < 0 and σ ∈ (0, 1) implies that there exists β̂ > 0

such that for all β ∈ (0, β̂), F (Θt + βD) − F (Θt) ≤ σβδ. It then follows that the

conclusion of this lemma holds for β̄ = min{β̃, β̂}.

By virtue of Lemma 12, we can adopt the well-known Armijo’s backtracking line

search rule (Tseng and Yun, 2009) to select a step length β ∈ (0, 1] so that Θ
(k)
t +

βD(k) ≻ 0 and (4.40) holds. In particular, we choose β to be the largest number of
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the sequence {1, 1/2, . . . , 1/2i, . . . } that satisfies these requirements. We can use the

Cholesky factorization to check the positive definiteness of Θ
(k)
t +βD(k), k = 1, . . . , K.

In addition, the associated terms log det(Θ
(k)
t + βD(k)) and (Θ

(k)
t + βD(k))−1 can be

efficiently computed as a byproduct of the Cholesky decomposition of Θ
(k)
t + βD(k).

4.4.1 Active Set Identification

Given the large number of unknown variables in (4.36), it is advantageous to mini-

mize (4.36) in a reduced space. The issue now is how to identify the reduced space. In

the case of a single graph (K = 1), problem (4.36) degenerates to a lasso problem of

size p2. Hsieh et al. (2011) propose a strategy to determine a subset of variables that

are allowed to be updated in each Newton iteration for single graphical lasso. Specifi-

cally, the p2 variables in single graphical lasso are partitioned into two sets, including

a free set F and an active set A, based on the gradient at the start of each Newton

iteration, and then the minimization is only performed on the variables in F . We call

this technique “active set identification” in this chapter. Due to the sparsity of the

precision matrix, the size of F is usually much smaller than p2. Moreover, it has been

shown in the single graph case that the size of F will decrease quickly (Hsieh et al.,

2011). The active set identification can thus improve the computational efficiency.

This technique was also successfully used in (Joachims, 1999; Oberlin and Wright,

2006; Olsen et al., 2012; Yuan et al., 2012). We show that active set identification

can be extended to the fused multiple graphical lasso based on the results established

in Section 4.3.

Denote the gradient of fk at t-th iteration by G̃
(k)
t = S(k)−W

(k)
t , and its (i, j)-th

element by G̃
(k)
t,ij. Then we have the following result.
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Lemma 13. For Θt in the t-th iteration, define the active set A as

A = {(i, j)|Θ(1)
t,ij = · · · = Θ

(K)
t,ij = 0 and G̃

(1)
t,ij, . . . , G̃

(K)
t,ij satisfy the inequalities below}.

|
∑u

k=1 G̃
(k)
t,ij| < uλ1 + λ2,

|
∑u−1

k=0 G̃
(r+k)
t,ij | < uλ1 + 2λ2, 2 ≤ r ≤ K − u,

|
∑u

k=1 G̃
(K−u+k)
t,ij | < uλ1 + λ2,

|
∑K

k=1 G̃
(k)
t,ij| < Kλ1

(4.42)

for u = 1, . . . , K − 1.

Then, the solution of the following optimization problem is D(1) = · · · = D(K) = 0 :

min
D

Qt(Θt +D) such that D
(1)
ij = · · · = D

(K)
ij = 0, (i, j) /∈ A. (4.43)

Proof. Consider problem (4.43), which can be reformulated to

minD

∑K
k=1

(
1
2
vec(D(k))TH

(k)
t vec(D(k)) + vec(G̃

(k)
t )Tvec(D(k))

)
+P (Θt +D),

s.t. D
(1)
ij = · · · = D

(K)
ij = 0, (i, j) /∈ A,

(4.44)

where H
(k)
t = W

(k)
t ⊗W

(k)
t . Because of the constraint D

(1)
ij = · · · = D

(K)
ij = 0, (i, j) /∈

A, we only consider the variables in the set A. According to Lemma 9, it is easy to

see that DA = 0 satisfies the optimality condition of the following problem

min
DA

K∑
k=1

vec(G̃
(k)
t,A)

Tvec(D
(k)
A ) + P (DA).

Since
∑K

k=1 vec(D
(k))TH

(k)
t vec(D(k)) ≥ 0, the optimal solution of (4.43) is given by

D(1) = · · · = D(K) = 0.

Lemma 13 provides an active set identification scheme to partition the variables

into the free set F and the active set A. Lemma 13 shows that when the variables

in the free set F are fixed, no update is needed for the variables in the active set A.
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The resulting second-order method with active set identification for solving the fused

multiple graphical lasso is summarized in Algorithm 5.

Algorithm 5: Proposed Second-Order Method for Fused Multiple Graphical

Lasso (FMGL)

Input: S(k), k = 1, . . . , K, λ1, λ2

Output: Θ(k), k = 1, . . . , K

Initialization: Θ
(k)
0 = (Diag(S(k)))−1;

while Not Converged do

Determine the sets of free and fixed indices F and A using Lemma 13.

Compute the Newton direction D(k), k = 1, . . . , K by solving (4.36) and

(4.37) over the free variables F .

Choose Θ
(k)
t+1 by performing the Armijo backtracking line search along

Θ
(k)
t + βD(k) for k = 1, . . . , K.

end

return Θ(k), k = 1, . . . , K;

4.4.2 Convergence

Convergence of proximal Newton-type methods has been studied in previous lit-

erature (Byrd et al., 2013; Hsieh et al., 2011; Lee et al., 2012; Scheinberg and Tang,

2014; Tseng and Yun, 2009). Under the assumption that the subproblems are solved

exactly, a local quadratic convergence rate can be achieved when the exact Hessian

is used (i.e., proximal Newton method) (Hsieh et al., 2011; Lee et al., 2012; Tseng

and Yun, 2009). When an approximate Hessian is used (i.e., proximal quasi-Newton

method), the local convergence rate is linear or superlinear (Lee et al., 2012; Tseng

and Yun, 2009). We show that the FMGL algorithm (with active set identification)
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falls into the proximal quasi-Newton framework. Denote the approximate Hessian by

H̃
(k)
t =

 H
(k)
t,F

H
(k)
t,A

 (4.45)

where H
(k)
t,J is the submatrix of the exact Hessian H

(k)
t with variables in J . Using H̃(k)

t

instead, the subproblem (4.36) can be decomposed into the following two problems:

minDJ

∑K
k=1

(
1
2
vec(D

(k)
J )TH

(k)
t,J vec(D

(k)
J ) + vec(G̃

(k)
t,J )

Tvec(D
(k)
J )
)

+P (Θt,J +DJ ), J = F , A.
(4.46)

Consider the problem with respect to the variables in A:

minDA

∑K
k=1

(
1
2
vec(D

(k)
A )TH

(k)
t,Avec(D

(k)
A ) + vec(G̃

(k)
t,A)

Tvec(D
(k)
A )
)
+ P (Θt,A +DA),

which is equivalent to problem (4.44). According to the definition of the active set

A, it follows Lemma 13 that the optimal solution is D
(k)
A = 0, k = 1, . . . , K. Thus,

FMGL in Algorithm 5 is a proximal quasi-Newton method. The global convergence

to the unique optimal solution is therefore guaranteed (Lee et al., 2012).

In the case when the subproblems are solved inexactly (i.e., inexact FMGL), we

can adopt the following adaptive stopping criterion proposed in (Byrd et al., 2013;

Lee et al., 2012) to achieve the global convergence:

∥Mτ q̄(Θ̄)∥ ≤ ηt∥Mτ f̄ (Θt)∥, QH
t (Θ̄)−QH

t (Θt) ≤ ζ(Lt(Θ̄)− Lt(Θt)), (4.47)

for some τ > 0, where Θ̄ is an inexact solution of the subproblem, ηt ∈ (0, 1) is a

forcing term, ζ ∈ (σ, 1/2), Lt(Θ) is defined by

Lt(Θ) = f̄(Θt) + vec(∇f̄(Θ))Tvec(Θ−Θt) + P (Θ),

and the composite gradient step Mτ f̄ (Θ) is defined by

Mτ f̄ (Θ) =
1

τ

(
Θ− proxτP (Θ− τ∇f̄(Θ))

)
.
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The function q̄(Θ) and f̄(Θ) are defined by

q̄(Θ) =
K∑
k=1

qHk (Θ(k)), f̄(Θ) =
K∑
k=1

fk(Θ
(k)).

The superscript in QH
t and qHk represents the “quadratic” approximate functions

Qt and qk using the approximate Hessian in (4.45) rather than the exact Hessian.

According to the definition of A (i.e., DA = 0 and Θt,A = 0), the adaptive stopping

criterion in (4.47) can only be verified over the variables in the free set F . Following

(Byrd et al., 2013), the sufficient reduction condition in the line search of inexact

FMGL uses Lt(Θt + βD)− Lt(Θt) instead of βδt in (4.40).

Although the global convergence of inexact proximal Newton-type (including New-

ton and quasi-Newton) methods is guaranteed, it is still challenging to prove a conver-

gence rate for inexact proximal quasi-Newton methods such as inexact FMGL where

an approximate Hessian is used. The local convergence rate of inexact proximal New-

ton method has been studied in Byrd et al. (2013); Lee et al. (2012). However, their

proofs require the Hessian to be exact, which is not the case in inexact FMGL. It

is worthy of noting that Scheinberg and Tang (2014) have recently shown a sublin-

ear global convergence rate for inexact proximal quasi-Newton methods. In order

to have such global convergence rate, their method uses a prox-parameter updating

mechanism instead of line search for acceptance of iterates (Scheinberg and Tang,

2014). It is difficult to apply their technique to our formulation, since the conditions

in Scheinberg and Tang (2014) for the global convergence rates may not hold for

inexact FMGL. The property of the selected active set A and the special structure of

the approximate Hessian may be the key to establish a faster local convergence rate

for inexact FMGL. We defer these analysis to future work.
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4.5 Experimental Results

In this section, we evaluate the proposed algorithm and screening rule on syn-

thetic datasets and two real datasets: ADHD-200 2 and FDG-PET images 3 . The

experiments are performed on a PC with quad-core Intel 2.67GHz CPU and 9GB

memory.

4.5.1 Simulation

We conduct experiments to demonstrate the effectiveness of the proposed screen-

ing rule and the efficiency of our method FMGL. The following algorithms are included

in our comparisons:

• FMGL: the proposed second-order method in Algorithm 5.

• ADMM: ADMM method.

• FMGL-S: FMGL with screening.

• ADMM-S: ADMM with screening.

Both FMGL and ADMM are written in Matlab, and they are available online 4 . Since

both methods involve solving (4.38) which involves a double loop, we implement the

sub-routine for solving (4.38) in C for a fair comparison.

The synthetic covariance matrices are generated as follows. We first generate K

block diagonal ground truth precision matrices Θ(k) with L blocks, and each block

Θ
(k)
l is of size (p/L) × (p/L). Each Θ

(k)
l , l = 1, . . . , L, k = 1, . . . , K has random

sparsity structures. We control the number of nonzeros in each Θ
(k)
l to be about

2http://fcon_1000.projects.nitrc.org/indi/adhd200/

3http://adni.loni.ucla.edu/

4http://www.public.asu.edu/~jye02/Software/MGL/
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10p/L so that the total number of nonzeros in the K precision matrices is 10Kp.

Given the precision matrices, we draw 5p samples from each Gaussian distribution

to compute the sample covariance matrices. The fused penalty parameter λ2 is fixed

to 0.1, and the ℓ1 regularization parameter λ1 is selected so that the total number of

nonzeros in the solution is about 10Kp.

Convergence

We first explore the convergence behavior of FMGL with different stopping criteria

in NSPG. Three stopping criteria are considered:

• 1E-6: stop when the relative error
max{∥Θ(k)

r −Θ
(k)
r−1∥∞}

max{∥Θ(k)
r−1∥∞}

≤ 1e-6.

• Exact: the subproblems are solved accurately as in (Lee et al., 2012) (More

precisely, NSPG stops when
max{∥Θ(k)

r −Θ
(k)
r−1∥∞}

max{∥Θ(k)
r−1∥∞}

≤ 1e-12).

• Adaptive: stop when adaptive stopping criterion (4.47) is satisfied. The forcing

term ηk is chosen as in (Lee et al., 2012).

We plot the relative error of objective value versus Newton iterations and time on

a synthetic dataset (K = 5, L = 1, p = 500) in Figure 4.2. We observe from

Figure 4.2 that the exact stopping criterion has the fastest convergence with respect

to Newton iterations. Considering computational time, the adaptive criterion has

the best convergence behavior. Although the criterion 1E-6 has almost the same

convergence behavior as the exact criterion in the first few steps, FMGL with this

constant stopping criterion converges slower when the approximated solution is close

enough to the optimal solution. We also include the convergence of ADMM in Figure

4.2. We can see that ADMM converges much slower than FMGL.
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Figure 4.2: Convergence behavior of FMGL with 3 stopping criteria (exact, adaptive
and 1E-6) and ADMM.

Screening

We conduct experiments to show the effectiveness of the proposed screening rule.

NSPG is terminated using the adaptive stop criterion. FMGL is terminated when

the relative error of the objective value is smaller than 1e-5, and ADMM stops when

it achieves an objective value equal to or smaller than that of FMGL. The results

presented in Table 4.1 show that FMGL is consistently faster than ADMM. More-

over, the screening rule can achieve great computational gain. The speedup with the

screening rule is about 10 and 20 times for L = 5 and 10 respectively.

Stability

We conduct experiments to demonstrate the effectiveness of FMGL. The synthetic

sparse precision matrices are generated in the following way: we set the first precision

matrix Θ(1) as 0.25Ip×p, where p = 100. When adding an edge (i, j) in the graph,

we add σ to θ
(1)
ii and θ

(1)
jj , and subtract σ from θ

(1)
ij and θ

(1)
ji to keep the positive

definiteness of Θ(1), where σ is uniformly drawn from [0.1, 0.3]. When deleting an

edge (i, j) from the graph, we reverse the above steps with σ = θ
(1)
ij . We randomly
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Table 4.1: Comparison of the proposed FMGL and ADMM with and without screen-
ing in terms of average computational time (seconds). FMGL-S and ADMM-S are
FMGL and ADMM with screening respectively. p stands for the dimension, K is the
number of graphs, L is the number of blocks, and λ1 is the ℓ1 regularization parame-
ter. The fused penalty parameter λ2 is fixed to 0.1. ∥Θ∥0 represents the total number
of nonzero entries in ground truth precision matrices Θ(k), k = 1, . . . , K, and ∥Θ∗∥0
is the number of nonzeros in the solution.

Data and parameter setting Computational time

p K L ∥Θ∥0 λ1 ∥Θ∗∥0 FMGL-S FMGL ADMM-S ADMM

500
2

5

9848 0.08 9810 0.44 4.13 13.30 100.79

1000 20388 0.088 19090 2.25 17.88 57.44 617.88

500
5

24866 0.055 23304 0.97 12.23 32.40 286.98

1000 50598 0.054 44030 5.16 50.95 174.91 1595.91

500
10

49092 0.051 45474 2.33 24.35 63.75 458.51

1000 100804 0.046 84310 10.27 111.78 302.86 2966.72

500
2

10

9348 0.07 9386 0.32 4.87 6.82 105.01

1000 19750 0.08 20198 0.76 17.93 25.62 674.28

500
5

23538 0.055 22900 0.77 14.96 15.09 256.33

1000 49184 0.054 45766 1.92 53.96 64.31 1314.18

500
10

47184 0.051 47814 1.66 52.32 29.86 455.43

1000 98564 0.046 94566 4.44 126.26 128.52 2654.24

assign 200 edges for Θ(1). Θ(2) is obtained by adding 25 edges and deleting 25

different edges from Θ(1). Θ(3) is obtained from Θ(2) in the same way. For each

precision matrix, we randomly draw n samples from the Gaussian distribution with

the corresponding precision matrix, where n varies from 40 to 200 with a step of 20.

We perform 500 replications for each n. For each n, λ2 is fixed to 0.08, and λ1 is

adjusted to make sure that the edge number is about 200. The accuracy nd/ng is

used to measure the performance of FMGL and GLasso, where nd is the number of
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true edges detected by FGML and GLasso, and ng is the number of true edges. The

results are shown in Figure 4.3. We can see from the figure that FMGL achieves higher

accuracies, demonstrating the effectiveness of FMGL for learning multiple graphical

models simultaneously.
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Figure 4.3: Comparison of FMGL and GLasso in detecting true edges. Sample size
varies from 40 to 200 with a step of 20.
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Figure 4.4: Comparison of FMGL with 3 stopping criteria and ADMM in terms of
objective value curve on the ADHD-200 dataset. The dimension p is 2834, and the
number of graphs K is 3.
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Figure 4.5: A subgraph of ADHD-200 identified by FMGL with the proposed screen-
ing rule. The grey edges are common edges among the three graphs; the red, green,
and blue edges are the specific edges for TDC, ADHD-I, and ADHD-C respectively.

4.5.2 Real Data

ADHD-200

Attention Deficit Hyperactivity Disorder (ADHD) affects at least 5-10% of school-age

children with annual costs exceeding 36 billion/year in the United States. The ADHD-

200 project has released resting-state functional magnetic resonance images (fMRI)

of 491 typically developing children and 285 ADHD children, aiming to encourage

the research on ADHD. The data used in this experiment is preprocessed using the

NIAK pipeline, and downloaded from neurobureau 5 . More details about the prepro-

5http://www.nitrc.org/plugins/mwiki/index.php?title=neurobureau:NIAKPipeline/
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cessing strategy can be found in the same website. The dataset we choose includes

116 typically developing children (TDC), 29 ADHD-Combined (ADHD-C), and 49

ADHD-Inattentive (ADHD-I). There are 231 time series and 2834 brain regions for

each subject. We want to estimate the graphs of the three groups simultaneously.

The sample covariance matrix is computed using all data from the same group. Since

the number of brain regions p is 2834, obtaining the precision matrices is computa-

tionally intensive. We use this data to test the effectiveness of the proposed screening

rule. λ1 and λ2 are set to 0.6 and 0.015. The comparison of FMGL with 3 stopping

criteria and ADMM in terms of the objective value curve is shown in Figure 4.4.

The result shows that FMGL converges much faster than ADMM. To obtain a solu-

tion of precision 1e-5, the computational times of FMGL (Adaptive), FMGL (1E-6),

FMGL (Exact), and ADMM are 252.78, 855.86, 1269.75 and 5410.48 seconds respec-

tively. However, with the screening, the computational times of FMGL-S (Adaptive),

FMGL-S (1E-6), FMGL-S (Exact), and ADMM-S are reduced to 4.02, 12.51, 19.55,

and 80.52 seconds respectively, demonstrating the superiority of the proposed screen-

ing rule. The obtained solution has 1443 blocks. The largest one including 634 nodes

is shown in Figure 4.5.

The block structures of the FMGL solution are the same as those identified by the

screening rule. The screening rule can be used to analyze the rough structures of the

graphs. The cost of identifying blocks using the screening rule is negligible compared

to that of estimating the graphs. For high-dimensional data such as ADHD-200, it

is practical to use the screening rule to identify the block structure before estimating

the large graphs. We use the screening rule to identify block structures on ADHD-200

data with varying λ1 and λ2. The size distribution is shown in Figure 4.6. We can

observe that the number of blocks increases, and the size of blocks deceases when the

regularization parameter value increases.
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Figure 4.6: The size distribution of blocks (in the logarithmic scale) identified by
the proposed screening rule. The color represents the number of blocks of a specified
size. (a): λ1 varies from 0.5 to 0.95 with λ2 fixed to 0.015. (b): λ2 varies from 0 to
0.2 with λ1 fixed to 0.55.

FDG-PET

In this experiment, we use FDG-PET images from 74 Alzhei-mer’s disease (AD), 172

mild cognitive impairment (MCI), and 81 normal control (NC) subjects downloaded

from the Alzheimer’s disease neuroimaging initiative (ADNI) database. The different

regions of the whole brain volume can be represented by 116 anatomical volumes

of interest (AVOI), defined by Automated Anatomical Labeling (AAL) (Tzourio-

Mazoyer et al., 2002). Then we extracted data from each of the 116 AVOIs, and

derived the average of each AVOI for each subject. The 116 AVOIs can be categorized

into 10 groups: prefrontal lobe, other parts of the frontal lobe, parietal lobe, occipital

lobe, thalamus, insula, temporal lobe, corpus striatum, cerebellum, and vermis. More

details about the categories can be found in (Tzourio-Mazoyer et al., 2002; Wang et al.,

2007). We remove two small groups (thalamus and insula) containing only 4 AVOIs

in our experiments.
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Figure 4.7: The average number of stable edges detected by FMGL and GLasso in
NC, MCI, and AD of 500 replications. Sample size varies from 20% to 100% with a
step of 10%.

To examine whether FMGL can effectively utilize the information of common

structures, we randomly select g percent samples from each group, where g varies

from 20 to 100 with a step size of 10. For each g, λ2 is fixed to 0.1, and λ1 is adjusted

to make sure the number of edges in each group is about the same. We perform 500

replications for each g. The edges with probability larger than 0.85 are considered

as stable edges. The results showing the numbers of stable edges are summarized

in Figure 4.7. We can observe that FMGL is more stable than GLasso. When the

sample size is too small (say 20%), there are only 20 stable edges in the graph of NC

obtained by GLasso. But the graph of NC obtained by FMGL still has about 140

stable edges, illustrating the superiority of FMGL in stability.

The brain connectivity models obtained by FMGL are shown in Figure 4.8. We can

see that the number of connections within the prefrontal lobe significantly increases,

and the number of connections within the temporal lobe significantly decreases from

NC to AD, which are supported by previous literatures (Azari et al., 1992; Horwitz

et al., 1987). The connections between the prefrontal and occipital lobes increase

from NC to AD, and connections within cerebellum decrease. We can also find that

the adjacent graphs are similar, indicating that FMGL can identify the common

103



0 20 40 60 80 100

0

20

40

60

80

100

nz = 530

NC

0 20 40 60 80 100

0

20

40

60

80

100

nz = 530

MCI

0 20 40 60 80 100

0

20

40

60

80

100

nz = 530

AD

Figure 4.8: Brain connection models with 265 edges: NC, MCI, and AD. In each
figure, the diagonal blocks are prefrontal lobe, other parts of frontal lobe, parietal lobe,
occipital lobe, temporal lobe, corpus striatum, cerebellum, and vermis respectively.

structures, but also keep the meaningful differences.

4.6 Conclusion

In this chapter, we consider simultaneously estimating multiple graphical models

by maximizing a fused penalized log likelihood. We have derived a set of necessary

and sufficient conditions for the FMGL solution to be block diagonal for an arbitrary

number of graphs. A screening rule has been developed to enable the efficient estima-

tion of large multiple graphs. The second-order method is employed to solve the fused

multiple graphical lasso, which is shown to be equivalent to a proximal quasi-Newton

method. The global convergence of the proposed method with an adaptive stopping

criterion is guaranteed. An active set identification scheme is proposed to identify

the variables to be updated during the Newton iterations, thus reduces the compu-

tation. Numerical experiments on synthetic and real data demonstrate the efficiency

and effectiveness of the proposed method and the screening rule. We plan to further

explore the convergence properties of the second-order methods when the subprob-

lems are solved inexactly. Due to the active set identification scheme, the proposed

second-order method is suitable for warm-start techniques. A good initial solution
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can further speedup the computation. As part of the future work, we plan to explore

how to efficiently find a good initial solution to further improve the efficiency of the

proposed method. One possibility is to use divide-and-conquer techniques Hsieh et al.

(2012).
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Chapter 5

TREE-GUIDED GRAPHICAL LASSO

In this chapter, we describe a hierarchical graphical model framework where the

features have a hierarchical structure. A motivating example is the estimation of

brain network. The brain is a multi-level system, and the brain network has a native

hierarchical structure as shown in Figure 5.1: hundreds of thousands of voxels form

regions, and regions form systems. We present a second-order method to efficiently

solve the proposed formulation. In addition, we derive a necessary and sufficient

condition for the graph to be decomposable based on its connected components. Based

on this property, we propose a simple screening rule which significantly reduces the

size of the optimization problem, thus improving the computational efficiency. The

proposed screening only relies on the data and the used parameters, thus it can be

combined with any algorithms to reduce the computational cost. The experiments

on both synthetic and real data demonstrate the effectiveness of our approaches.

5.1 Formulation

Suppose we are given a data set X ∈ ℜn×p with n samples, and p features (or

variables). The n samples are independently and identically distributed with a p-

variate Gaussian distribution with zero mean and positive definite covariance matrix

Σ. Even all features are correlated, there usually are many conditional independences

among these features. In other words, a sparse precision matrixΘ = Σ−1 is of interest

in most cases. This Gaussian graphical model (GMM) is also referred to Gaussian

Markov Random Field (GMRF). The negative log likelihood for the data X takes the
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Figure 5.1: Brain image (Umich, 2014). Yellow: frontal lobe; green: parietal lobe;
red: temporal lobe; blue: occipital lobe. Number represents brain regions within
lobes.

Figure 5.2: A sample index tree. Root: G0
1 = {1, 2, 3, 4, 5, 6, 7, 8}. Depth 1: G1

1 =
{1, 2}, G1

2 = {3, 4, 5, 6}, G1
3 = {7, 8}. Depth 2: G2

1 = {1}, G2
2 = {2}, G2

3 = {3, 4, 5},
G2

4 = {6}, G2
5 = {7}, G2

6 = {8}.

form of

L(Θ) := − log det(Θ) + tr(SΘ), (5.1)

where S is the sample covariance matrix given by S = 1
n
XTX. Minimizing (5.1) leads

to the maximum likelihood estimation (MLE) Θ∗ = S−1. However, there are some
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Figure 5.3: Illustration of a hierarchical graphical model. The features have a
hierarchical structure specified by tree groups {Gj

i}. The blue blocks represent the
nonzero blocks in the precision matrix.

issues with MLE. MLE fails in high-dimensional setting (n < p). In this setting,

S is singular, thus Θ∗ does not exists. On the other hand, Θ∗ is unlikely to be

sparse even S is invertible. The ℓ1 regularization has been employed to induce the

sparsity, resulting in sparse precision matrix estimation. In this chapter, we employ

the tree structured group regularization to encourage the estimated graph to have a

hierarchical structure. Mathematically, we solve the following formulation:

min
Θ≻0
− log det(Θ) + tr(SΘ) + ϕ(Θ) (5.2)

where

ϕ(Θ) =
∑
j

(∑
i̸=i′

wj
ii′∥ΘGj

i ,G
j

i′
∥F + wj

ii∥ΘGj
i ,G

j
i ,off
∥F

)
,

108



the groups Gj
i is defined in Definition 2 (see Figure 5.2 for illustration), ΘGj

i ,G
j

i′

denotes the submatrix of Θ consisting of features in Gj
i , G

j
i′ , and wj

ii′ = wj
i′i is a

positive weight for ΘGj
i ,G

j

i′
. Θ.,.,off represents the matrix Θ.,. excluding the diagonal

elements. We do not penalize the diagonal elements of Θ since Θ is required to be

positive definite. For simplicity of notation, we use Θj
ii′ to represent ΘGj

i ,G
j

i′
, and Θj

ii/

to represent ΘGj
i ,G

j
i ,off

. It is clear that Θj
ii′ = (Θj

i′i)
T , thus we require wj

ii′ = wj
i′i. The

regularization ϕ(Θ) encourages the estimated precision matrix to be tree structured

(see Figure 5.3 for example).

Definition 2. (Liu and Ye, 2010) For an index tree T of depth U , we let Tu =

{G1, . . . , Gni
} contain all the nodes corresponding to depth u, where n0 = 1, G0

1 =

{1, . . . , K} and ni ≥ 1, i = 1, . . . , U . The nodes satisfy the following conditions: 1)

the nodes from the same depth level have non-overlapping indices, i.e., Gu
j ∩ Gu

k =

∅,∀u = 1, . . . , U, j ̸= k, 1 ≤ j, k ̸= ni; 2) let Gu−1
j0 be the parent node of a non-root

node Gu
j , then Gu

j ⊆ Gu−1
j0 .

5.2 Algorithm

We employ the second-order method to solve tree-guided graphical lasso (5.2).

Let f(Θ) be the smooth function in (5.2) such that

f(Θ) = − log det(Θ) + tr(SΘ).

(5.2) can be rewritten as

min
Θ≻0

f(Θ) + ϕ(Θ). (5.3)

In the second-order method, we solve a “quadratic” model of (5.2) at each iteration

defined by

min
Θ

1

2
tr(WtDWtD) + tr((S−Wt)D) + ϕ(Θ), (5.4)
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where Wt = Θ−1
t and D = Θ−Θt, and t represents the t-th Newton iteration.

The subproblem (5.4) can be solved by non-monotone spectral projected gradient

(NSPG) method (Wright et al., 2009). When applied to (5.4), NSPG needs to solve

the proximal subproblem taking form of

min
Θ

1

2
∥Θ−Gr∥2F + αϕ(Θ), (5.5)

where

Gr = Θr − α(S− 2Wt +WtΘrWt)

and r denotes the r-th inner iteration in NSPG. Denote R = Θr − Θr−1 and

ᾱ = tr(RWtRWt)/∥R∥2F , then α is given by α = max(αmin,min(1/ᾱ, αmax)), where

[αmin, αmax] is a given safeguard.

After obtaining the optimal solution of (5.4) Θ∗, the Newton direction D can be

computed as

D = Θ∗ −Θt. (5.6)

Once the Newton direction is obtained, we need to find an appropriate step size

β ∈ (0, 1] to ensure a sufficient reduction in the objective function in (5.3). Because

of the positive definite constraint in (5.3), we need to ensure the next iterate Θt+1 =

Θt+βD to be positive definite. In Chapter 4, we prove that such step size satisfying

the above requirements always exits. Thus, we can adopt the Amrmijo’s backtracking

line search rule to select a step length β ∈ (0, 1]. We use the Cholesky decomposition

to check the positive definiteness of Θt+1 = Θt + βD. In addition, the log det(Θt+1)

and Θ−1
t+1 can be efficiently computed as a byproduct of the Cholesky decomposition

of Θt+1. The algorithm can be summarized in Algorithm 6.

Under the assumption that the subproblem (5.4) is solved exactly, the convergence

rate of the second-order method is locally quadratic when the exact Hessian is used

(Hsieh et al., 2011; Lee et al., 2012; Tseng and Yun, 2009). If the subproblem (5.4)
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Algorithm 6: Tree-Guided Graphical Lasso (TGL)

Input: S, {Gj
i}, {w

j
ii′}

Output: Θ

Initialization: Θ0 = (Diag(S))−1;

while Not Converged do

Compute the Newton direction D by solving (5.4) and (5.6).

Choose Θt+1 by performing the Armijo backtracking line search along

Θt + βD.

end

return Θt+1;

is solved inexactly, the convergence rate of the second method is locally superlinear

by adopting an adaptive stopping criteria in NSPG (Lee et al., 2012). Due to the use

of Cholesky decomposition and the need of computing tr(WtDWtD) in (5.4), the

complexity of Algorithm 6 is O(p3).

5.3 Screening

Due to the existence of log determination, it is computationally challenging to

solve the penalized log likelihood approach. Screening has commonly been employed

to reduce the size of optimization problem so that a missive computational gain can

be achieved. In this section, we derive a necessary and sufficient condition for the

solution of TGL to be block diagonal (subject to some rearrangement of features).

Since the elements in off diagonal blocks are zero, the original optimization problem

can be thus reduced to a small problem restricted to the elements in diagonal blocks,

resulting in a great computational gain.

Let C1, . . . , CL be a partition of the p features into L non-overlapping sets such

that Cl ∩Cl′ = ∅, ∀l ̸= l′. We say that the solution Θ̂ of TGL (5.2) is block diagonal
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(subject to some rearrangement of features) with L known blocks Cl, l = 1, . . . , L if

Θ̂ij = Θ̂ji = 0 for i ∈ Cl, j ∈ Cl′ , l ̸= l′. Without loss of generality, we assume that

a block diagonal solution Θ̂ with L blocks Cl, l = 1, . . . , L takes the form of

Θ̂ =


Θ̂1

. . .

Θ̂L

 , (5.7)

where Θ̂l is the |Cl| × |Cl| symmetric submatrix of Θ̂ consisting of features in Cl.

Theorem 14. The TGL (5.2) has a block diagonal solution Θ̂ with L blocks Cl, l =

1, . . . , L if and only if the solution to the below problem is block diagonal with blocks

Cl, l = 1 . . . , L:

min
X

1

2
∥X+ S∥2F + ϕ(X). (5.8)

Proof. By the first-order optimality condition, Θ̂ is the optimal solution of prob-

lem (5.2) if and only if it satisfies

−(Θ̂)−1 + S+ ∂ϕ(Θ̂) = 0. (5.9)

For simplicity of notation, we useW and ∂ϕ to representΘ−1 and ∂ϕ(Θ), respectively.

If: Let X̂ be the optimal solution of (5.8). Suppose that X̂ has a block structure

Cl, l = 1 . . . , L, then we have X̂ij = 0, i ∈ Cl, j ∈ Cl′ , l ̸= l′. According to the first

optimality condition, we have

Sij + ∂ϕij = 0

for i ∈ Cl, j ∈ Cl′ , l ̸= l′.

Now Let Θ̂ be a block diagonal matrix with blocks Cl, l = 1 . . . , L. It is clear to

see that the optimality condition of (5.2) for off diagonal elements can be satisfied. We

can let the elements in diagonal block of Θ̂ be the solution of the following problem:

min
Θl,l=1,...,L

L∑
l=1

(− log det(Θl) + tr(SlΘl)) + ϕ(Θ).
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Note that zero elements in the off diagonal blocks of Θ do not affect ϕ(Θ). The first

optimality condition (5.9) holds for Θ̂, thus Θ̂ is the optimal solution of (5.2).

Only if: Suppose that the optimal solution of (5.2) Θ̂ has a block diagonal

structure Cl, l = 1, . . . , L. Note that Ŵ has the same block diagonal structure as Θ̂,

thus we have

Sij + ∂ϕij = 0

for i ∈ Cl, j ∈ Cl′ , l ̸= l′. It is not hard to see that the optimal solution of (5.8) has

the same block structure Cl, l = 1 . . . , L.

Theorem 14 can be used as screening rule to determine the elements in the iden-

tified off-diagonal blocks to be zero in advance. Assume that there are L blocks of

the same size identified by the screening rule, p2(1 − 1
L
) elements do not need to be

computed as the optimal value for these elements are determined as 0 by the screen-

ing. Recall that the complexity of the proposed second-order method is O(p3) due to

Cholesky decomposition and computation of tr(WtDWtD). The complexity of solv-

ing the proximal operator (5.8) is O(p2) (Liu and Ye, 2010). By applying the screening

rule, the complexity of Cholesky decomposition and computation of tr(WtDWtD)

are reduced to O(p3/L2), and the complexity of solving (5.8) is reduced to O(p2/L).

Therefore, the complexity of the second-order method with screening is O(p3/L2)

since L ≤ p. When L is large, applying the screening rule can achieve a great com-

putational gain.

5.4 Experimental Results

In this section, we conduct experiments to demonstrate the effectiveness of the

proposed tree-guided graphical lasso (TGL). The experiments are performed on a PC

with quad-core Intel i7 3.4GHz CPU and 16GB memory. TGL is written in Matlab,
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while its sub-routine for solving the subproblem (5.5) is written in C. We compare

TGL with standard graphical lasso (GLasso) in the following experiments.
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Figure 5.4: Comparison between TGL and GLasso in terms of edge detection. Left:
the ground truth precision matrix; middle: the precision matrix estimated by GLasso;
right: the precision matrix estimated by TGL.

5.4.1 Synthetic Data

The synthetic covariance matrix is generated in a similar way to Yang et al.

(2013a): we first generate the ground truth precision matrix Θ with random block

nonzero patterns. Each nonzero block has a random sparse structure. Given the

precision matrix Θ, we sample from Gaussian distribution to compute the sample

covariance matrix. The weights for tree structured group regularization take the

form of wj
ii′ =

ρ√
|Θj

ii′ |
, where ρ is a given positive parameter and |Θj

ii′| is the number
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of elements in Θj
ii′ . We control the regularization parameters of TGL and GLasso to

ensure the edge number of both estimations to be the same, so that a fair comparison

can be made.

Figure 5.4 shows the comparison between TGL and GLasso in terms of edge

detection. The first column of Figure 5.4 shows the nonzero patterns (i.e. edges)

of two ground truth precision matrices. In both cases, the same index tree is used,

which is {G3
i = {i}, i = 1, . . . , 100;G2

i = {20i + 1 : 20(i + 1)}, i = 0, . . . , 4;G1
1 = {1 :

60}, G1
2 = {61 : 100}}. We can observe from Figure 5.4 that the nonzero patterns of

the precision matrices estimated by TGL are more similar to the ground truth than

GLasso, demonstrating the superiority of TGL over GLasso.

Screening

We conduct experiments to show the effectiveness of the proposed screening rule.

NSPG is terminated when
∥Θ(k)

r −Θ
(k)
r−1∥∞

∥Θ(k)
r−1∥∞

≤ 1e-6. TGL is terminated when the relative

error of the objective value is smaller than 1e-5. The used index tree is given by {G3
i =

{i}, i = 1, . . . , p;G2
i = { ip

2L
+ 1 : (i+1)p

2L
}, i = 0, . . . , 2L − 1;G1

i = { ip
L
+ 1 : (i+1)p

L
}, i =

0, . . . , L − 1; }, where L is the number of blocks. We can observe from Table 5.1

that the computational time of screening is negligible compared with solving multiple

TGL (i.e., TGLs). Since the complexity of identifying the connected components is

O(∥Θ∗∥0), the computational time of screening is almost linear with respect to ∥Θ∗∥0.

Table 5.1 shows that the screening rule can achieve great computational gain. The

larger the L is, the higher the speedup is.

5.4.2 Real Data

We apply the proposed TGL method to the voxel-level gene expression and brain

connectivity data from Allen Developing Mouse Brain Atlas (2013) to demonstrate
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Table 5.1: Comparison of the proposed TGL with and without screening in terms
of average computational time (seconds). TGL-S is TGL with screening. The com-
putational time of TGL-S is the summation of screening and TGLs. p stands for
the dimension, and L is the number of blocks. ∥Θ∥0 represents the total number
of nonzero entries in ground truth precision matrix Θ, and ∥Θ∗∥0 is the number of
nonzeros in the solution.

Data setting Computational time (seconds)

p L ∥Θ∥0 ∥Θ∗∥0
TGL-S

TGL
screening TGLs

1000
5

11442 11914 0.0109 0.1715 2.8219

2000 23694 23854 0.0395 1.0839 12.2679

1000
10

11142 9782 0.0105 0.2286 6.481

2000 23308 23862 0.0366 0.4257 19.1117

the effectiveness of TGL and the proposed screening rule. The data consists of 1724

genes and 7796 structural voxels. The structural voxels have a hierarchical structure

which can be obtained from Allen Developing Mouse Brain Atlas (2013). We use

such hierarchical structure as the input prior knowledge for our algorithm TGL. We

compare TGL with standard GLasso on this data. Figure 5.5 shows the comparison

between the precision matrices estimated by TGL and GLasso. From Figure 5.5,

we can see that the precision matrix estimated by TGL has a clear pattern which

fits the input hierarchical structure. To obtain a solution with precision 1e-6, the

computational time of TGL is 57189.6 seconds. Applying the screening, the compu-

tational time of TGL-S (with screening) is reduced to 2781.5 seconds, demonstrating

the superiority of the proposed screening rule.

5.5 Conclusion

In this chapter, we propose a hierarchical graphical model framework called tree-

guided graphical lasso. The second-order method is employed to solve the proposed
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Figure 5.5: Comparison between TGL and GLasso in terms of edge detection on
Allen developing mouse brain atlas data. Left: the precision matrix estimated by
GLasso; right: the precision matrix estimated by TGL. The red and green grids
visualize the tree structured groups in two layers.

formulation. In addition, we derive a necessary and sufficient condition for the TGL

solution to be block diagonal. Based on this condition, a simple screening rule has

been developed to allow our algorithm scaling up to the large-scale problems. Numeri-

cal experiments on synthetic and real data demonstrate the efficiency and effectiveness

of the proposed method and the screening rule.
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

The main goal of this dissertation is to uncover the structural information from the

high-dimensional data, and is to develop flexible and advanced learning algorithms

with integration of the structural information (e.g., graph) to improve the learning

performance. In this dissertation, we focus on addressing the following two specific

questions:

• How can we select and group relevant features from high-dimensional and noisy

data while taking advantage of structural information among features?

• How can we estimate graphs with certain structure from data in a fast and

reliable way?

For the first question, we propose three new feature grouping and selection meth-

ods incorporating graph structural information to improve the performance of feature

selection and grouping. The first method employs a convex function to penalize the

pairwise l∞ norm of connected regression/classification coefficients, achieving simul-

taneous feature grouping and selection. The second method improves the first one by

utilizing a non-convex function to reduce the estimation bias. The third one is the

extension of the second method using a truncated l1 regularization to further reduce

the estimation bias. The proposed methods combine feature grouping and feature se-

lection to enhance estimation accuracy. We employ the alternating direction method

of multipliers (ADMM) and difference of convex functions (DC) programming to solve
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the proposed formulations. Our experimental results on synthetic data and two real

datasets demonstrate the effectiveness of the proposed methods.

In addition, we also consider a special case of graph-based sparse learning algo-

rithm, anisotropic total variation regularization problem, which has important ap-

plications in signal processing including image denoising, image blurring, and image

reconstruction. We propose an efficient optimization of multidimensional total vari-

ation regularization problems. The key contribution is to decompose the original

problem into a set of independent and small problems which can be solved in par-

allel. Thus, the proposed algorithm can handle large-scale problems efficiently. Our

experimental results show that our algorithm is more efficient than state-of-the-art

methods.

For the second question, we consider the problem of estimating multiple graphi-

cal models simultaneously using the fused lasso penalty, which encourages adjacent

graphs to share similar structures. We propose a second-order method to solve the

proposed formulation. The developed approach is applied to the analysis of brain net-

works of Alzheimer’s disease. Our preliminary results show that joint estimation of

multiple graphical models leads to a better result than current state-of-the-art meth-

ods. To allow our method scaling up to large-scale problems, we establish a necessary

and sufficient screening rule, which decomposes the large graphs into small subgraphs

and allows an efficient estimation of multiple independent (small) subgraphs. Thus,

a huge computational gain can be achieved. In addition to fused penalty, we ex-

tend our approaches and screening rule to other general structural penalties, such as

overlapping group penalty and tree group structural penalty.
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6.2 Future Work

The proposed work can be improved from the following aspects. It will be very

interesting to develop a distributed and efficient solution for general graph-based

sparse learning problems similar to that for the anisotropic total variation regulariza-

tion problem. One possible solution is to cluster the nodes within a graph into several

connected components such that few connections between different connected compo-

nents exists. One computer is assigned to solve a small graph-based sparse learning

restricted to one connected component. Stochastic ADMM can be employed to solve

this problem. The partition of the graph into connected components is important,

since it directly affects the communication among computers.

We mainly consider the undirected graph models (i.e., Gaussian graphical model)

in this dissertation. One limitation of undirected graph models is that it does not

reflect the causal information among the variables. Directed graph models such as

directed acyclic graphical models are widely used to make causal inferences for the

random variables in multivariate systems. It will be interesting to integrate directed

acyclic graph structure information into learning processes in order to improve the

learning performance. Estimating directed acyclic graphs from data is also an inter-

esting and challenging problem for future research.
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