
Enabling Multithreaded Applications

on Hybrid Shared Memory Many-core Architectures

by

Tushar Rawat

A Thesis Presented in Partial Fulfillment
of the Requirement for the Degree

Master of Science

Approved October 2014 by the
Graduate Supervisory Committee:

Aviral Shrivastava, Chair
Georgios Fainekos
Partha Dasgupta

ARIZONA STATE UNIVERSITY

December 2014

ABSTRACT

As the number of cores per chip increases, maintaining cache coherence becomes pro-

hibitive for both power and performance. Non Coherent Cache (NCC) architectures

do away with hardware-based cache coherence, but they become difficult to program.

Some existing architectures provide a middle ground by providing some shared mem-

ory in the hardware. Specifically, the 48-core Intel Single-chip Cloud Computer (SCC)

provides some off-chip (DRAM) shared memory and some on-chip (SRAM) shared

memory. We call such architectures Hybrid Shared Memory, or HSM, manycore ar-

chitectures. However, how to efficiently execute multi-threaded programs on HSM

architectures is an open problem. To be able to execute a multi-threaded program

correctly on HSM architectures, the compiler must: i) identify all the shared data

and map it to the shared memory, and ii) map the frequently accessed shared data

to the on-chip shared memory. This work presents a source-to-source translator writ-

ten using CETUS [7] that identifies a conservative superset of all the shared data in

a multi-threaded application and maps it to the off-chip shared memory such that

it enables execution on HSM architectures. This improves the performance of our

benchmarks by 32x. Following, we identify and map the frequently accessed shared

data to the on-chip shared memory. This further improves the performance of our

benchmarks by 8x on average.

i

To My Family,

for always expecting great things.

ii

ACKNOWLEDGEMENTS

This work would not have been possible without the support and encouragement of

numerous individuals. I am extremely grateful to my advisor, Dr. Aviral Shrivastava,

for the introduction to power-efficient computing and for nurturing the best quality

production from his students. His flexibility, help and guidance proved fundamental

to achieving more than I thought possible.

I am especially grateful to Intel Corporation, not only for generous use of the

MARC Datacenter and access to the Single-chip Cloud Computer, but also for the

valuable time I spent working within the Storage Group and Platform Validation

Engineering divisions which fostered immense professional and personal growth.

Thanks also go to my committee members, Dr. Partha Dasgupta for his in-

struction with Cryptography and Distributed Operating Systems, and Dr. Georgios

Fainekos teaching Real-time Embedded Systems. Thanks to labmates within the

Computer Microarchitecture Lab for their valuable discussions and assistence, es-

pecially Ke Bai, Jian Cai, Russel Dill, Shri Hari Rajendra Radhika, Bryce Holton,

Reiley Jeyapaul, Di Lu, Jing Lu, Mahdi Hamzeh, Yooseong Kim, Jared Pager, Ab-

hishek Rhisheekesan, and Dipal Saluja.

A very special thanks to the Mohanraj family, and friends. My time in Arizona

simply would not have been the same without you all.

Last but not least, thank you to my friends Rudolph Troha, Albert Cho, Sean

Leary, Arushi Kapoor, Kelly MacDonald (final proof lifesaver!), Vishwas and Vinay

Seshachellam, Ying Wu, Victor Moussalem, Anantha Krishna Nelliparthi, Chase Par-

enteau, AJ Thau, James Ha, Dylan Knuth and members of the Davis/Meetup group.

Your good humor and sage advice helped more than you know.

And without which none of this would have been possible – the unwavering dedi-

cation, love and support of my parents.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF ALGORITHMS . viii

CHAPTER

1 INTRODUCTION . 1

2 RELATED WORK . 7

3 MOTIVATION and BACKGROUND . 11

4 TRANSLATION FRAMEWORK . 17

4.1 Stage 1: Variable Scope Analysis . 19

4.2 Stage 2: Inter-thread Analysis . 22

4.3 Stage 3: Alias and Pointer Analysis . 24

4.4 Stage 4: Data Partitioning . 26

4.5 Stage 5: Translation Framework . 28

5 EXPERIMENTAL SETUP . 33

5.1 Architecture . 34

5.2 Benchmarks . 36

5.3 Compilation Framework . 37

6 RESULTS . 39

7 FUTURE WORK . 43

7.1 Translation Candidates Expansion . 43

7.2 Core Count . 43

7.3 Code Optimizations . 44

8 CONCLUSION . 45

BIBLIOGRAPHY. 46

iv

APPENDIX Page

A CODE REMOVAL ALGORITHMS . 49

B CODE ADDITION ALGORITHMS . 52

C BENCHMARK PSEUDOCODE . 54

v

LIST OF TABLES

Table Page

4.1 Information Extracted Per Variable (Post Stage 3) 19

4.2 Variables Sharing Status. 21

6.1 SCC Configuration . 39

vi

LIST OF FIGURES

Figure Page

1.1 Framework Overview of All Major and Minor Stages 6

3.1 Tasks in Parallel . 13

4.1 A Shared Memory Space Within a Process . 18

5.1 SCC Core Layout . 35

6.1 Performance of RCCE Applications Utilizing Off-Chip Shared Memory

and 32 Cores Normalized to the Performance of the 32-Thread Pthread

Programs Running on a Single Core . 40

6.2 Run Time Performance Comparison of RCCE Programs Utilizing Shared

Off-Chip Memory Against the On-Chip Shared Memory Provided by

the MPB . 41

6.3 Relative Performance Improvement Over Single-Core Pthread Appli-

cation of Multiprocessor RCCE Program With Varying Core Count on

SCC. 42

vii

LIST OF ALGORITHMS

Algorithm Page

1 Variable in Thread . 23

2 Points-to Analysis (Shared Variables) . 25

3 Partitioning Shared Variables . 27

4 Threads to Processes . 29

5 Remove Pthread Join Calls . 50

6 Remove Pthread Self Calls . 50

7 Remove Pthread Data Types . 51

8 Remove Pthread API Calls . 51

9 Add RCCE Init Call . 53

10 Add RCCE Finalize Call . 53

11 Count Primes (Serial) . 55

12 Pi Approximation . 55

13 Stream Add (Serial) . 55

14 Stream Copy (Serial) . 56

15 Stream Scale (Serial) . 56

16 Stream Triad (Serial) . 56

viii

Chapter 1

INTRODUCTION

Rapid improvement of microprocessor architectures has been foundational to the

rise of advanced computer and electronic technology in development and use around

the world today. The increase in integrated circuit density, following the trajectory of

Moore‘s Law, along with improvements in wafer process technology, larger die pack-

age sizes with increased caches, and voltage scaling with leakage compensation to

modulate chip frequency have all converged, ultimately resulting in the emergence of

multicore and many-core computing systems. In turn, the performance envelope has

been firmly pushed from hardware logic improvements into the realm of software de-

velopment, specifically parallel programming [10]. And although concurrent systems

are deployed in all manner of computing environments, from enterprise data centers to

personal computing devices, parallel programming remains an often misunderstood,

improperly implemented, and difficult paradigm to apply to the systems for which it

is intended.

The plethora of parallel programming languages masks the lack of an easy-to-use

framework for leveraging concurrent systems. Not only do many popular parallel

programming languages already exist, but many parallel programming models exist

as well. These models establish a concurrent systems paradigm by enabling a given

programming language for an architecture or set of architectures. Building a model

around the right language has a significant impact on its implementation and usage.

For example, object-oriented languages have the advantage of being familiar to mod-

ern programmers, and as such, extensions and revisions to well-known languages such

as C and Java are already utilized. The rise of General-Purpose Graphics Processing

1

Units (GPGPUs) saw the emergence of CUDA and OpenCL to take advantage of hun-

dreds of stream-processing cores. With computer systems comprised of many nodes

and distributed memory becoming widely available, Global Address Space (GAS)

and Partitioned Global Address Space (PGAS) languages, particularly Unified Paral-

lel C, Titanium, and High Performance Fortran have become popular in the scientific

computing community [8] [17] [2]. In many ways, parallel programming has become

a modern challenge similar to that faced by developers of early machine code. It’s

highly dependent on the underlying architecture and available runtime support. Port-

ing by hand from one concurrent programming paradigm to another quickly becomes

tedious for all but the simplest programs.

Crucially, managing shared memory is one of the most important challenges when

scaling the number of cores. Shared memory is the part of the processor/application

address space which is coherent and consistent as recognized among cores / tasks / threads.

In other words, if one core / thread writes to a shared variable, and another core / thread

reads it, then it will read the updated value. The presence of shared memory can

simplify multithreaded programming, since the threads in a multithreaded program

can communicate by just reading from and writing to shared variables. There is of

course an implicit assumption of memory being shared among the cores. In gen-

eral, the illusion of shared memory in todays multicore systems is instrumented by

implementing hardware-based coherence protocols within the memory hierarchy. Co-

herence protocols essentially make the writes by any core visible to all the cores. Each

core may then read and obtain the updated values. Since implementing coherence

requires all-to-all communication between cores, the overhead of implementing co-

herency increases dramatically with the number of cores [12]. One way to scale the

number of cores is to utilize Non-Coherent Cache (NCC) architectures that skip im-

plementing cache coherence in hardware. While NCC architectures are power-efficient

2

and scalable, it is difficult to program them [20]. Such architectures are excellent for

programs written in a Message Passing Interface (MPI) paradigm where the commu-

nication between tasks is explicitly present in the application. However, programs

written in the popular multi-threaded programming paradigm may not execute cor-

rectly on these architectures, since the values written by one thread on a core may not

be propagated to another thread on a different core. Because shared memory is not

provided by the hardware in the NCC architecture, communication methods must be

explicitly present in the software for the programs to work correctly. One option to

make multithreaded programs execute correctly on NCC architecture is to identify

the communication between the threads and convert them to explicit communication

commands. Even when possible, this approach may suffer from significant perfor-

mance overhead since now all communication has to be performed in the software

through instructions.

A compromise between current multicore designs (in which all memory is shared

memory, but suffers from poor scalability) and pure NCC architectures (in which

there is no shared memory, but are scalable) is Hybrid Shared Memory (HSM) many-

core architectures – in which there is some shared memory. In HSM architectures,

the private memory of the cores can be cached, but the shared memory cannot as

the caches are non-coherent. Multi-threaded programs can be executed on HSM ar-

chitectures by mapping the shared data to the shared memory. To enable higher

preformance, HSM architectures may provide some limited on-chip shared memory

to improve access to frequently accessed, or long-access latency, shared data. The 48-

core SCC processor from Intel is a prime example. It features non-coherent caches.

Pages in the off-chip memory can be configured as shared-among-all-cores or private-

to-a-core through page tables. The data in the private pages are cache-able, but the

shared pages are not. To enable efficient execution, the Intel SCC processor provides

3

384 KB on-chip shared memory (8 KB per core).

This research is composed of two main parts. First, identification of a tight super-

set of shared data. Existing hardware techniques focus on cache improvements and

detecting sharing between threads in order to reduce the overhead of implementing

cache coherence protocols. Some work implements shared data detection at runtime

through profiling techniques. While effective, these require multiple runs of the ap-

plication which uses valuable compute time and resources. Static analysis techniques

to detect and prevent race conditions resulting from improper access of shared vari-

ables, and limiting the lifetime of shared data in memory, are both used to detect

and minimize the impact of improper use of shared variables. However, none of these

techniques are directly applicable as we require a compile-time approach to identify

shared data in a multi-threaded application. Second, we provide shared data parti-

tioning and memory management. Many previous techniques partition data between

on- and off-chip shared memory yet fail to take into account parallel systems. The

work presented here estimates the number of accesses to program variables in both

serial and multi-threaded applications. This work extends prior solutions by imple-

menting a partitioning scheme which takes into account parallelism for both multicore

and many-core environments.

To enable the execution of multithreaded programs on HSM many-core architec-

tures, i) all the shared data must be mapped to the shared memory, and ii) the more

frequently accessed shared data must be mapped to the smaller but faster on-chip

shared memory. The approach to solve this problem consists of an analysis phase

followed by a source-to-source transformation. The technique is divided into 5 major

stages, as shown in Figure 1.1. In the first three stages, the multithreaded program

source code is analyzed and each stage progressively identifies more information about

the variables, including pointers, within the program. In Stage 1 basic details, in-

4

cluding the name, size, type, read count, write count, and scope of the variables are

determined. Stage 2 establishes the sharing status for each variable. For example,

initially, if a variable is a global variable, it is classified as shared. An inter-thread

analysis also determines whether the sharing status of a variable is shared or pri-

vate. Some variables exist simply as an alias pointing to another variable, therefore

a “Points-to” pointer analysis in Stage 3 identifies such variables and updates the

sharing status for identified shared variables.

Following the analysis technique the multithreaded programs, in the final two

stages, are converted to HSM applications executable on the SCC. This process is

implemented in a source-to-source translator. In Stage 4, the results of the ana-

lytic technique are used to convert the implicitly shared variables to explicitly shared

variables, as expected by the many-core architecture. In Stage 5, the program is con-

verted from using threads to using multiple processes. The experimental test platform

is the 48-core Intel SCC. The runtime is measured for each program configured for 32

threads (original) or 32 cores (converted), compiled to run on this target architecture.

As unconverted programs cannot fully take advantage of the HSM memory hierarchy

and are limited to single-core execution, the converted programs using only off-chip

shared memory show significant performance improvement – up to 32x. As the HSM

programs are further optimized to take advantage of the on-chip memory, they show

up to 8x improvement on average.

5

Figure 1.1: Framework overview of all major and minor stages.

6

Chapter 2

RELATED WORK

Multicore and many-core systems embody the many advancements developed since

the birth of the planar transistor. The impetus for these developments has been a de-

sire for improved performance and functionality as well as reduction in material cost.

These include the introduction and subsequent refinement of caches, the implemen-

tation of threading (e)specially for user-level applications), optimizations for shared

data in both local and distributed systems, and finally the advent of the many-core

systems in response to physical design constraints.

Caches came about in an effort to bridge the performance gap between CPUs

and the storage medium, namely main memory and physical media. Because CPUs

operate orders of magnitude faster than the storage and memory devices, there is an

element of idleness whereby the CPU is waiting for operations sent to memory or

disk to complete. In such a case the CPU may be blocked from performing further

operations. Since the same data is often repeatedly accessed, making that data avail-

able faster directly influences the performance of the overall system. Thus, a cache

provides an intermediate storage location physically close to the CPU where data ele-

ments from memory and disk may be kept temporarily for easy reuse and fast access.

Improvements to caching protocol may often improve overall performance without

changes to the other components within the system. Rawat [25] predicts cache misses

for scalar data towards improving performance of real-time programs while Weissman

[31] uses hardware performance counters to detect cache misses and reduce conflict

and capacity misses.

7

Pthread was originally developed to provide a standardized threading interface

across POSIX-compliant systems [1]. Even though operating systems natively sup-

ported kernel-level threads for managing processes and system resources, user-level

(application) threads were difficult to port between various computing systems due

to their proprietary nature. For example, an application built using the Microsoft

Windows threading API will run only on Windows. In contrast a program built using

the standardized version of Pthreads (without the use of the non-portable functions)

will run on any POSIX-compliant operating system, from basic UNIX variants, to

Linux, even to Apple’s Mac OS X. In basic terms, Pthreads enables a multithreaded

program to be written once and simply recompiled for the target platform. This

enables many systems to benefit from the same parallel program source code.

Transitioning to multicore systems also enables Pthread programs to more fully

utilize the processor, as each thread may be individually assigned to different cores.

A performance benefit can be realized, but only if the threads efficiently manage

the shared data between the application. The shared memory is implicitly shared

amongst all the threads, making the architecture easier to program. However, since

scalability becomes a larger issue as core count increases, a new class of architecture

called “many-core” offers improved performance yet comes at a cost whereby shared

data must be managed explicitly.

The work presented here has two aspects. The first aspect is to identify a conserva-

tive yet tight superset of shared data. Many hardware-level techniques for identifying

shared data have been developed with the intent of better utilizing or improving

caches. Bellosa and Steckermeier [3] utilize hardware performance counters in order

to detect data sharing between threads with a goal of co-locating data on the same

processor. Liu and Berger [18], Roy and Jones [26] and Paul et al. [22] focus on

cache improvement as well – detecting and preventing false sharing in cache lines or

8

reducing the traffic overhead incurred through cache coherence protocols. In addi-

tion, there is work in this domain that attempts to detect shared data at runtime.

For example, shared memory spaces are explored in von Praun and Gross [30] and

Pozniansky and Schuster [23], where thread access is controlled in order to efficiently

allocate shared data. Savage et al. [27] need to determine data sharing in order to

prevent race conditions; unsafe operations in a program are prevented by employing a

consistent locking discipline in order to manage resource contention. The advantage

of runtime-based analyses is evident in repeated-run profiling techniques such as Xu

et al. [32] and Yang et al. [33], where the former implement a detector with atomic

regions that identify data sharing when multiple threads interact with the regions,

and the latter in which multiple runs of the program help detect shared data. Due

to the overhead of increased time spent during analysis and execution of runtime-

based schemes, a static analysis approach is preferred. Kahlon et al. [15] use a static

analysis technique in order to detect and prevent race conditions which result from

improper access of shared variables. Gondi et al. [11] take a different path to prevent-

ing race conditions by minimizing the time shared data is kept in memory, purging it

as soon as a last-use is detected. However, none of these works is directly applicable

for this approach, since a compile-time approach is needed to identify shared data in

a multi-threaded application.

The second component of this work deals with data partitioning and memory

management. The HSM manycore architecture has both on-chip and off-chip shared

memory, and both Panda et al. [21] and Kandemir et al. [16] have addressed data

partitioning between on and off-chip memory. However, neither consider parallel pro-

grams in their analysis. In particular, estimating the number of accesses to program

variables is different in sequential and multi-threaded applications. This work extends

theirs by implementing a data partitioning scheme which considers parallel programs

9

and approximates data read and write counts from all the threads. This technique is

novel in that it combines a static shared data analysis within the context of a multi-

threaded program and uses it in order to enable application execution on an HSM

manycore architecture.

10

Chapter 3

MOTIVATION AND BACKGROUND

The advent of multicore systems has put renewed emphasis on the development

and optimization of multithreaded programs. Prior to multicore computing, com-

mercial CPUs had a single core which ran threads sequentially one after another.

With the introduction of Simultaneous Multithreading (SMT), superscalar CPUs be-

gan to exhibit support for multiple hardware-level threads, effectively enabling the

operating system to schedule multiple threads for execution at the same time. How

SMT is implemented is largely architecture-dependent. In 2002, Intel Corporation

introduced Hyper-threading technology (HTT) for the Xeon and Pentium line of x86-

Architecture CPUs. HTT implements SMT by making each physical core appear

as two logical cores. Thus, an operating system and application supporting HTT

can increase the amount of work processed by distributing it to more than one core

and better utilizing the existing core architectural execution units which previously

waited idle for instructions and data. Although HTT was meant to increase the

performance of applications taking advantage of the technology on HTT-enabled pro-

cessors, Hyperthreading and other technology that increases chip utilization has some

interesting consequences. On a single-core system which utilizes HTT, applications

more efficiently utilizing the processor resources meant that the energy consumption

of the overall package increased. Prior to the emergence of HTT many of the pro-

cessor resources were waiting idly while only a single thread was executing. This

scenario could be quite common: suppose that a particular workload does only inte-

ger operations and completely ignores the floating point units. Thus two threads, one

focused on integer operations and the other on floating point operations, could better

11

utilize these resources by being scheduled simultaneously. However, going from idle

to active increases the current these units draw, leading to increased heat dissipation

from the chip. Some Intel chips that implemented Hyperthreading ran too hot and

too fast, subsequently overheating.

In addition to increasing the capabilities of the processing core through additional

hardware-level threads, semiconductor chip manufacturers also moved to multicore

processors where each processor had two or more cores on the same package die.

While the move to multicore systems benefits multithreaded applications because

each thread can be assigned to an individual core, the transition to multicore systems

is promoted for several reasons.

The primary reason is that increasing the core clock frequency no longer delivered

guaranteed performance gains for applications as in the past. Chip designers were

forced to abandon ever-higher clock frequencies due to increased voltage required to

drive the clocks faster, which in turn also increased the current leakage on-chip, and

both of which contribute to higher heat dissipation [24]. From a system integra-

tion perspective this would immediately require better cooling solutions which aren’t

readily available. Thus if frequency is increased ad infinitum under the status quo

the chip will quickly experience catastrophic failure – obviously an unacceptable out-

come. This phenomenon has come to be known as the power wall and is a fascinating

study of the thermal, power and performance tradeoffs in modern microprocessor

development. Note that the “free performance lunch” that enabled software devel-

opers to make minute or no changes to their software and automatically enjoy the

benefits from the next generation of processors has ended [28]. Since the emphasis

is now on multiple cores, hardware designers and software developers must optimize

applications for these new architectures.

12

Figure 3.1: Tasks in parallel may finish earlier than tasks ordered sequentially.

This is where the value of multithreaded programming via Pthreads becomes

readily apparent. Although it is possible to run POSIX thread applications on a

single core processor, the threads are each limited to a given time quanta cut out

of the overall processor time. Thus, on a single-core processor, no two threads run

simultaneously, making the use of parallelism impossible even if the application is

written with a task-concurrency design. Increasing software performance through

parallel programming for better utilization of multicore systems has become a primary

goal of computer scientists and industry professionals. Pthreads is widely available

with stable libraries on Linux, Unix, and Mac OS X based operating systems. Even

Windows, which does not natively support Pthreads, has a third-party Pthread-like

API called Pthreads-Win32 built on top of the Windows proprietary threads [9].

Multicore processors provide the capability for a given process or thread to be

assigned to a core other than that which is running the operating system. Each core

duplicates certain essential hardware components, such as having a private L1 and

L2 cache. Other components are shared by the cores, such as an optional L3 cache.

Pthread programs running on a multicore system distribute the threads amongst

participating cores. These threads have access to and share the process address

space. When a process is assigned to a particular core, it retains its own stack,

stack pointer, heap and program data. Additionally, it utilizes the cores L1 and L2

caches, if available, as well as the shared L3 cache and main memory. Remarkably,

it is the convenience of sharing data that also introduces inefficiencies into multicore

13

programming.

In the single-core processor, a program may request data from the cache hierarchy.

If the data is in the cache it is provided to the processor, however, if the data is not in

the cache then the request is made to main memory or disk to retrieve the appropriate

data. Moving to multicore processors, main memory is shared but the caches and

execution hardware are private to the core they are on. Thus if two or more threads in

the same program are working on the same data, initially that data is copied to each

cache for each participating core. However, a situation arises whereby a thread may

read and modify data in its cache while the same piece of data in the remote cache

in another processing core could potentially have a more recent copy of the data.

Thus characterizes the issue of cache coherency. In multicore systems it is normal

that multiple copies of a shared-memory object reside in several different caches at

the same time. Unless each copy is updated to reflect a change in one cache, it

may be that one or more copies become outdated in their respective locations. If this

happens, and if that piece of data is read or transformed by the processor core, invalid

operations or results will likely occur. To prevent this and ensure all changes to the

data are properly communicated, a cache coherence protocol adhering to a coherency

model is required.

Cache coherent hardware, on the other hand, introduces performance penalties

with increasing core count, as more updates need propagation to more cores. Also,

each additional cache also draws power, quickly making large multicore systems ex-

tremely costly in both power and performance. One solution is to write a parallel

program for multicore systems that is easily ported to many-core systems. There are

several challenges involved. For example, in multicore systems, threads are assigned

and managed by the operating system; however, in many-core systems – where a

global application runs across several cores – each core may in fact be running its

14

own OS. Fundamentally, in order to support the distributed memory environment

found on many-core systems, a thread-to-process mapping must be established for a

proper program conversion.

Pthread is uniquely suited for such a mapping. In many-core systems there are

a large number of processing elements (cores) that accept processes as the execution

vector of choice. Programs written for many-core systems may utilize a master-worker

or multi-worker paradigm in which the tasks are distributed to the processes and via

some communication mechanism data is shared between the processes. Threads are

very similar. The heart of Pthread computation lies in the creation of the thread

entity using the pthread create library routine. This function takes as parameters the

thread ID in the form of pthread t data type, thread attributes, function pointer to

the routine the thread should execute, and any function arguments to be passed to

that thread.

pthread_create (&thread , NULL , function , (void *) argument)

Note that the Pthread application calls pthread create from within the parent process

and that the threads are assigned to cores based on core availability and preference of

the operating system scheduler. Programs which expect a predefined or fixed order

of execution for the threads and attempt to assign threads to cores in such a manner

are not valid POSIX-compliant programs and are not considered in this work. In a

Pthread program, pthread create calls are encountered sequentially, one by one, but

their actual execution order is dependent on the operating system scheduler. Con-

verting the threads into processes that interact with each other requires modifications

to the programming model based on the nature of the parallelism within the Pthreads

application. Consider the two following parallelism scenarios: in the first case each

thread handles a standalone task. The tasks may communication with each other on

different threads and facilitate the exchange of data. Each task is largely independent

15

and performs work which does not have dependencies on all the threads finishing their

execution. Such a program may have two or more pthread create calls which initiate

different functions and sit outside of a for-, while-, or do-while-loop. In the second

case, each thread operates on different parts of the same larger problem, dividing

the work amongst the threads. Because each thread is given a portion of the overall

work, the entirety of the program cannot finish until all the threads have finished their

portion of the computation and returned to the managing thread. In this situation,

a pthread create call might be inside of a loop structure where the work is divided

among the threads according to thread ID. Alternatively, threads may divide the work

outside of a loop structure in a similar manner. This second case has each thread

utilizing essentially the same code but accessing different offsets (usually thread or

core ID) to index the computation. Essentially, each thread does the same type of

computation as part of a divide-and-conquer strategy.

The following sections describe the novel analytics and translation framework

developed to assess, extract, convert and transform variables, memory and program

data from one parallel processing paradigm to another.

16

Chapter 4

TRANSLATION FRAMEWORK

The objective of this work is to enable the efficient execution of multithreaded pro-

grams on a Hybrid Shared Memory (HSM) many-core architecture – one that expects

a multiprocess/many-core program. This methodology starts with considering mul-

tithreaded applications [1] using the C POSIX threads (Pthreads) library. In such a

program, a global variable is implicitly shared between any threads within that pro-

cess since they share the program text, data, and heap space of the parent process.

However, in a multiprocess application – where each thread from the multithreaded

process can be mapped to a full process – the global variables cannot be implicitly

shared; instead, they must be identified and converted to explicitly shared variables

accessible through the HSM many-core software API. Determining which variables are

shared and which are private must be done extremely carefully. Marking a variable

as private when it should have been shared can and will result in erroneous behavior

ranging from incorrect results to program crash, or even the programming falling into

an infinite loop. Variables shared across threads must be properly identified, and

variables that are referenced in a shared context must also be processed. Superfi-

cially, both threads and processes may run on the same multicore architecture, as

processes are composed of one or more threads. However, the architecture may lend

itself to particular softwar that better utilizes threads over processes, or vice-versa,

and is highly dependent on how memory is shared (see Figure 4.1 for similarities and

differences). Threads active within one process do not have access to global vari-

ables within adjacent processes unless the data sharing is explicitly managed. Due to

this difference, memory management and conversion of global variables in Pthreads

17

Figure 4.1: A shared memory space within a process (left) provides easy and imme-
diate access to global variables. In contrast, processes with access to shared memory
must explicitly define global variables in such a space for use as a shared resource.

programs is a key aspect of the transformation process. This process is composed

of several stages as shown in Figure 1.1. In each stage the multithreaded program

source code, which is parsed into a Cetus intermediate representation (IR) tree [7],

is analyzed. The analysis builds up an increasingly accurate picture of the state of

each variable as it appears in the program – including pointers. The sample program

given in Example Code 4.1 will serve as a guide for this process. The program source

code is passed into a lexical analyzer which assists in building a tree-based structure

for identifying components of the C language. Once the syntax-tree exists, the parser

does pass-based analysis whereby each pass establishes a search pattern based on

transformation rules intended to convert Pthread program features first into an IR

and subsequently into the source code deployable to the target architecture (Example

Code 4.2).

18

4.1 Stage 1: Variable Scope Analysis

The first stage performs a rudimentary analysis of local and global variables,

extracting basic properties such as size, type, and read/write counts, as shown in

Table 4.1. Each step in this stage represents an analytic pass used to extract infor-

mation from the source code. If the pass looks only within procedures in the program

IR then the analysis is constrained to local variables only. The opposite is done when

traversing the program for all globals – procedures within the IR are excluded.

Table 4.1: Information Extracted Per Variable (Post Stage 3)

Name Type Size Rd Wr Use In Def In

global int 1 0 0 null null

ptr int* 1 1 1 tf main

sum int* 3 2 2 tf, main tf

tLocal int 1 3 1 tf tf

tid n/a n/a 1 0 tf null

local int 1 8 4 main main

tmp int 1 1 1 main main

threads pthread t* 3 2 0 main main

rc int 1 0 3 null main

19

Example Code 4.1: Store thread ID sums and a locally defined shared variable
#include <stdio.h>
#include <pthread.h>

4 int global;
int *ptr;
int sum [3] = {0};

void *tf(void * tid) {
9 int tLocal = (int)tid;

sum[tLocal] += tLocal;
sum[tLocal] += *ptr;
pthread_exit(NULL);

}
14

int main() {
int local = 0;
int tmp = 1;
ptr = &tmp;

19 pthread_t threads [3];
int rc;
for(local = 0; local < 3; local ++) {

rc = pthread_create (& threads[local], NULL , tf , (void *) local);
}

24 for(local = 0; local < 3; local ++) {
pthread_join(threads[local], NULL);
printf("Sum Array: %d\n",sum[local])

}
return 0;

29 }

20

Threads implemented in the program are not analyzed at this stage and only

variables identified as global are assumed to have a sharing status of shared = true.

During a subsequent stage the sharing status may be refined from true to false or

false to true once, but it will not revert. Changes from null are always accepted. At

the end of this stage each variable has been seen at least once; therefore, sets which

comprise all variables, local variables, and global variables are created and populated.

Sets which contain variables that are defined or used within the procedure and thread

which executes once it is launched are built during the next stage. Because only the

global variables have had a valid sharing status assigned, the remaining variables

are temporarily assigned a sharing status of null as shown in the second column of

Table 4.2.

Table 4.2: Variables Sharing Status
Shared Status After

Variable Stage 1 Stage 2 Stage 3

global true true false
ptr true true true

sum true true true
tLocal null false false

tid null false false
local null false false
tmp null false true

threads null false false
rc null false false

21

4.2 Stage 2: Inter-thread Analysis

This stage identifies the variables existing within threads and determines which

ones are shared. Recall that in Pthread applications the threads are launched from

the parent process. In the target architecture applications are instead run via a

launcher which sends the executable to each core involved in the computation. To

clarify, in Pthreads programs, the threads are launched from a single point of control:

the parent process. These threads may all access the shared memory of that parent

process and execute the function that is passed to them through the pthread create

library routine. Now consider the translated application. There is no pthread create

call in the target code. Instead, each core is running one process which replaces one

thread from the Pthreads application. Given a variable name and a list of procedures

which are executed by threads, the IR is traversed in a depth-first-search manner

to locate the variable and the procedure within which it appears. The IR is then

searched for the thread which executes this procedure. Based on whether the thread

is launched only once, or several times (for example, within a loop), a qualification is

made whether the variable is seen within a single thread or multiple threads, and this

information is returned as a single result. With these results the variable might be

placed into either the single thread execution set, the multiple thread execution set, or

neither if it is not found within any thread execution environment at all. Algorithm 1

details this operation. In the third column of Table 4.2 the sharing status of each

variable is updated with a boolean value. Note that even though both the variables

sum and tLocal exist within the function tf (which is launched by a thread), tLocal is

defined in the scope of the function (not shared between threads), and has the sharing

status set to false. Table 4.1 is also updated to reflect the function within which each

variable was used and defined.

22

Algorithm 1 Variable in Thread

Input: P, v, F /* Program IR, variable v, set of functions called by pthread create
*/

Output: /* How many threads v is in */

1: for all Variable s ∈ Program P do
2: if v matches s then
3: proc← name of procedure which contains v
4: if proc ∈ F then
5: caller ← pthread create launching proc
6: if caller appears within a loop then
7: return “In Multiple Threads”
8: else
9: seen← number of times proc appears in pthread create calls
10: if seen > 1 then
11: return “In Multiple Threads”
12: else
13: return “In Single Thread”
14: end if
15: end if
16: end if
17: end if
18: end for
19: return “Not in Thread”

23

4.3 Stage 3: Alias and Pointer Analysis

Potentially shared variables may be hidden behind pointer relationships. This

stage leverages the built-in Points-to analysis that the Cetus translation framework

provides [7]. Here’s a description about how this analysis works – the goal is to iden-

tify the set of memory locations that a pointer variable may point to: A dataflow

methodology is used to analyze interprocedural pointer information. Pointer relation-

ships are explicitly identified from pointer assignments, including through function

calls. Once a fixed point is reached, the analyzer produces a relationship map as

output. This data is updated at each statement in the program and is merged with

the existing pointer information that was collected before it. Pointer relationships

are classified as definite or possibly, the latter often occurring after analyzing pointers

within an if-else statement. Such control-flow information is contained within the

traversal of Cetus-generated control-flow graphs.

Through this analysis a map of relationships from pointer to pointed-at symbol

is constructed. Based on this information, if a particular pointer is shared then the

object it points to is also accessible in the context of this sharing. Algorithm 2 de-

scribes the high-level details of this process. It is possible that this is another pointer

or it may be a variable. In any case, the pointed-to object is retrieved and its sharing

status is updated as a shared entity – such as that of the variable tmp in the last

column of Table 4.2. The Points-to analysis offers a powerful capability to extract

relationships that may not be evident otherwise. Additionally the analysis can be

less conservative since the set of variables which are the same as a given variable may

be constrained.

24

Algorithm 2 Points-to Analysis (Shared Variables)

Input: P, V, R /* Program IR, Variable Status Map, Pointer relationships map */
Output: V /* Updated Variable Status Map */

1: for all Pointer symbol s ∈ R do
2: if A relationship exists with s and the relationship is “definite” then
3: ptr ← Pointer symbol
4: ptt← Pointed-to symbol
5: shared ← ptr status from V
6: if shared is True then
7: shared ← ptt status from V
8: shared ← True
9: update ptt status in V
10: end if
11: end if
12: end for

As Stage 3 ends, refer again to Table 4.2. Notice that global variables which were

defined but entirely unused (such as global) may be set as private and potentially

removed from the source altogether. After this post-processing, the analytics are

used to influence the data partitioning and translation framework that follows.

25

4.4 Stage 4: Data Partitioning

Without the analytics from the previous stages this stage would lack crucial in-

formation. For example, the size and type of variables are identified in order to gain

insight into how much space they may take up in memory. Additionally, with the

read/write counts for each piece of data, variables which are accessed frequently may

be mapped to the on-chip memory whereas data that is not in high demand might

go to the off-chip memory – if space is a constraint. The partitioning scheme starts

off simple but is also very flexible. In the best-case scenario all the shared data

identified during stages 1–3 will fit into the on-die shared memory and provide the

best possible performance. However, if the total shared data exceeds the capacity

of the shared SRAM available, a few opportunities for improved performance exist.

First, small shared scalars may be mapped to on-chip memory readily, with further

granularity provided by frequency of access to those variables. Second, larger arrays

may be allocated entirely in DRAM or split between DRAM and SRAM. High level

details are given in Algorithm 3 which allocates memory by first considering if it can

fit all of it onto the on-chip shared memory, and if not, partitioning based on size

of variables and the space remaining on the on-chip memory. Note that mem size

is a combination of the Size and Type properties as shown in Table 4.1. These are

architecture-dependent. The shared memory declaration is identical to a dynamically

allocated variable in C, with the difference being the name of actual function call.

This function call is dependent on how the software API enables access to various

parts of the memory hierarchy on the HSM architecture. The newly constructed dec-

laration is inserted into the ‘main’ procedure in the target program to effectively make

the variable or pointer explicitly shared across the entire multiprocess application.

26

Algorithm 3 Partitioning Shared Variables

Input: P, V /* Program IR, Set of Shared Variables+properties */
Output: M /* Transformed Program IR */

1: for all Shared variable s ∈ V do
2: total size + = s.mem size
3: end for
4: if total size ≤ on-chip memory then
5: for all Shared variable s ∈ V do
6: Create on-chip malloc call, C
7: Insert put and get calls in P to access on-chip memory
8: if Previous malloc call B for s exists in P then
9: Remove B
10: end if
11: Insert C in main function of P
12: end for
13: else
14: Sort V by size, ascending
15: R ← size of remaining on-chip memory
16: for all Shared variable s ∈ V do
17: if s.mem size ≤ R then
18: Create on-chip malloc call, C
19: Insert put and get calls in P to access on-chip memory
20: R ← R− s.mem size
21: else
22: Create off-chip malloc call, C
23: end if
24: if Previous malloc call B for s exists in P then
25: Remove B
26: end if
27: Insert C in main function of P
28: end for
29: end if

27

4.5 Stage 5: Translation Framework

In this final stage a source-to-source translator is implemented that takes as input

a well-defined Pthread program and generates a transformed intermediate represen-

tation which is output as C source code. Several passes are executed during the

transformation. Each pass consists of an algorithm that analyzes and shapes the IR

into the final representation. The main passes in the framework focus on handling

the conversion from threads to processes as well processing the conversion of implicit

shared variables to explicit shared variables based on the information collected in

stages 1–4.

The thread-to-process pass (Algorithm 4) consists of the traversal of the pro-

gram IR which looks primarily at function calls, attempting to find those that match

the pthread create call and extracting the relevant information from them. The

pthread create routine accepts four parameters: the thread ID, a thread attribute

(which also allows NULL values), the function executed by the thread, and an argu-

ment (or NULL) which is passed to the executing function (See Example Code 4.1).

Once a function is matched as pthread create the third and fourth arguments to

pthread create are extracted and saved. A new function call is generated using the

function name derived from the third argument and is given either the original argu-

ment specified as the fourth parameter in the pthread create call, or, a core identifier

if the following two conditions apply. These conditions are that the argument passed

to the function would be a thread ID and the target architecture supports such an

identifier in the translated program. If these are satisfied, a core ID may be inserted in

place of the argument. After inserting the new function call above the pthread create

call in the IR, the pthread create call is removed from the IR. Last, the function name

and the order of appearance of the pthread create call are noted for subsequent use

28

Algorithm 4 Threads to Processes

Input: P, T /* Multithreaded Program IR and set of thread IDs (user supplied) */
Output: M /* Transformed Multiprocess Program IR */

1: ProcList ← List of Procedures in P
2: for all functions ∈ P do
3: UseCoreID ← False
4: if function name is pthread create then
5: ProcName ← argument 3 from pthread create call
6: ProcArg ← argument 4 from pthread create call
7: if ProcArg ∈ T then
8: UseCoreID ← True
9: end if
10: end if
11: if ProcName ∈ ProcList then
12: NewFunction ← ProcName /* Create new function from ProcName */
13: if UseCoreID is True then
14: Set NewFunction argument to ‘CoreID‘
15: else
16: Set NewFunction argument to value in ProcArg
17: end if
18: end if
19: if pthread create ∈ Loop then
20: Insert NewFunction outside Loop
21: else
22: Insert NewFunction before pthread create call
23: end if
24: Remove pthread create call
25: if Loop contains no pthread create then
26: Remove Loop
27: end if
28: end for
29: return P as M

29

and stored within a hash table. Consider the scenario for the usage of this infor-

mation. After the thread to process conversion, an application may run the same

executable on multiple cores. If this is the case (and if a particular thread runs on

all cores) then the information in the hash may be discarded. However, if a task is

thread-specific and not delegated across all the other threads, it must be isolated such

that it executes only on the given core(s). This isolation is straightforward. Each

object, if assessed and found to be a function call, is checked for existence within the

hash table populated previously. This function is wrapped in an if-condition where

the conditional statement checks if the program is running on the proper core with the

associated core ID. The core ID is the value associated with the function name in the

hash table. This process adheres to the POSIX specification whereby threads are not

specifically tied to any particular core. It is irrelevant whether a given task executes

on Core 2 vs Core 3. All that matters is that the thread ID given for the function

originally launched through pthread create corresponds one-to-one to the same core

ID in the target program that is used for wrapping the function found within the

hash table.

Working with multithreaded programs necessitates handing synchronization is-

sues, and although synchronization is not a main facet of the parser, some basic

conversion of the mutual exclusion (mutex) variables and functions is implemented.

A mutex variable is essentially a lock enabling or preventing access to some shared

resource. On its own a mutex does nothing, but if threads requiring access to a com-

mon resource all participate in utilizing a lock, it ensures that only one thread can

access the resource at a given time. This helps prevent race conditions. Recall that

in traditional Pthread programming all threads and variables are contained within a

process. Therefore it is simple for any thread to access the mutex variable since it is a

global variable. In the target applications two concerns arise. The first is that any sort

30

of mutex or synchronization primitive must be accessible from any process in order

to be effective as a critical section control agent. Because of this, a typical Pthread

mutex cannot be used. The second challenge is that the target architecture may offer

a locking capability much different than that of the source architecture. Specifically,

what if each core has exactly one test-and-set register? A test-and-set register is used

for checking and setting (or clearing) a condition all at the same time [14]. It is a low-

level hardware register that enables the construction of higher level atomic operations.

To provide synchronization and control routines across processes, the mutex lock and

unlock routines are converted to acquire and release methods built around the target

API. However, because a Pthread mutex and hardware test-and-set register are not

exactly the same, performance varies when converting a synchronization-dependent

application from Pthreads on a multicore system to the target application on the

many-core architecture. These changes facilitate the transition from a multithreaded

application to the program consisting of multiple processes.

After taking care of the larger changes, simple cleanup of the converted application

is necessary. First, all pthread * functions are removed from the code. A pass to

remove these functions is created which contains a hash table containing one entry

for each function name. As the AST is traversed, each function name is compared

using an O(1) lookup in the hash table. If the entry is found in the table the function

is removed from the AST with all other code being preserved. Following this, all

Pthread-specific data types are removed as well, though in a separate pass with its

own hash table but utilizing the same methodology. Because core IDs are used instead

of thread IDs in the target application, any occurrence of thread ID must be replaced

with core ID. In particular, core ID is assigned by calling a function which returns

the rank of the core that the process is running on. Within the main procedure a

call to initialize the target API library must be inserted. This initialization function

31

is placed right after the entry point to the main procedure. As the pthread join

and pthread exit calls are removed, a finalize call is placed at the end of the main

procedure to clean up execution at the end of the target program – inserted just

before the return statement. Described in Appendix A, Algorithms 5, 6, 7 and 8

define code removal procedures. Appendix B contains Algorithms 9 and 10 defining

code addition methods. The converted program for Example Code 4.1 is given in the

transformed Example Code 4.2.

Example Code 4.2: Translated RCCE source code for Example Code 4.1
1 #include <stdio.h>

#include "RCCE.h"

int * ptr;
int * sum;

6
void * tf(void * tid)
{

int tLocal = ((int)tid);
sum[tLocal]+= tLocal;

11 sum[tLocal]+=(* ptr);
}

int RCCE_APP(int * argc , char * argv [])
{

16 RCCE_init (&argc , &argv);
sum=(int *)RCCE_shmalloc ((sizeof(int)*3));
ptr=(int *)RCCE_shmalloc ((sizeof(int)*1));
int myID;
myID=RCCE_ue ();

21 int tmp = 1;
ptr=(& tmp);
tf(((void *)myID));
RCCE_barrier (& RCCE_COMM_WORLD);
printf("Sum Array: %d\n",sum[myID]);

26 RCCE_finalize ();
return (0);

}

32

Chapter 5

EXPERIMENTAL SETUP

Each experiment consists of either a multithreaded Pthread application or the

same program converted via the translation framework to run on the multiprocess

SCC architecture, through use of the RCCE library. RCCE is the C-based, low-level

communication library purpose-built for the SCC architecture which supports explicit

communication between cores as well as memory and power management routines [29].

The foundation of RCCE lies in one-sided put and get primitives similar to those of

MPI. These functions work by moving data from the private memory and L1 cache of

the sending core into the MPB whereby it is retrieved into the L1 cache and memory

of the receiving core. In such a manner, the data moves from one core to another

without either core accessing the off-chip shared memory. The compiled program, run

the same way for each core, is written in such a way that each core does different work

given different conditional inputs. One way different inputs are given to the program

is through varying core IDs. In RCCE programs, each executable is “owned” by a

Unit of Execution (UE) tied 1-to-1 to a core. At runtime, the UE, physical core and

rank (a sequence number given to each participating core from 0 to N − 1 where

N processors are involved) are all linked, making it simple for a program to obtain

core-specific information (such as a core ID) from the core it is executing on. This

section details the test environment, programs, and infrastructure utilized during the

analysis, translation, and experiments.

33

5.1 Architecture

For the experimental HSM platform the Intel Single-chip Cloud Computer (SCC)

is utilized [13]. The 48-core non-coherent cache architecture features a unique on-die

shared SRAM called the Message Passing Buffer (MPB). Through the MPB the cores

may communicate a limited amount of data directly and bypass both the L2 cache

and DRAM. The overall size of the MPB is quite limited at 384 KB, or 8 KB per

core. For small messages this allows for very fast, very efficient inter-core commu-

nication, presenting a significant improvement over message passing in traditional

cluster computing environments. The cores are connected to one another and to the

off-chip memory through a mesh-grid of routers as shown in Figure 5.1. Each tile has

a mesh interface unit (MIU) that connects to the router and facilitates data trans-

fers. The mesh as a whole can operate up to a maximum frequency of 2 GHz which

is significantly faster than the 1 GHz maximum processing frequency of the cores.

The frequency of the mesh and the cores is variable and can be set in a variety of

ways. First, the frequency for each core can be set all at the same time by setting

the frequency of the entire chip. Second, groups of cores may have their frequency

changed by changing the frequency of the power domain they fall under. Third, both

of these steps can be carried out dynamically within a program by making procedure

calls to the power management API.

With operating ranges of 0.7 V and 125 MHz (25 W at 50◦C) up to 1.14 V and

1 GHz (125 W at 50◦C) the SCC platform provides extensive control over power

management at varying granularity making it a very flexible power-sensitive archi-

tecture. Each core is a full P54C Pentium-class processor. Up to 64 GB of memory

is available for use as either private or shared space using the off-chip DRAM [19].

RCCE accommodates both the shared memory and message passing paradigms of

34

Figure 5.1: SCC core layout. Each tile is composed of two IA-32 P54C Pentium-
class processors. Tile locality impacts memory access time relative to each memory
controller.

sharing data. Each benchmark was run on the SCC, each core running Linux, at 800

MHz core frequency, 1600 MHz network mesh, and 1066 MHz off-chip DDR3 memory

frequency – see Table 6.1. The Pthread benchmarks are built for 32 threads whereas

the RCCE applications utilize 32 cores.

Being comprised of Pentium-class cores, the SCC utilizes an x86-based instruction

set which helps facilitate a familiar programming environment. The Linux operat-

ing system can be run on each core for a total of 48 concurrent operating system

environments running at once. Generic x86-compatible programs written in C and

Fortran can be recompiled with supported Intel and gcc compilers and run easily on

any single core of the SCC – in a manner similar to any general x86 chip.

All applications were compiled for the SCC using the Intel C++ compiler (icc)

version 8.1 (gcc 3.4.5), and RCCE version 2.0.

35

5.2 Benchmarks

The transformation is optimized for enabling multithreaded programs to run on

HSM architecture. Therefore, the primary focus is regarding applications that dis-

tribute the work into a set of tasks which can be executed in parallel over multiple

compute units. The programs divide up their respective computation into a number

of threads, each of which performs the same task on a subset of the data. These

applications include a program to Count Primes, to do a Pi Approxmiation, sum

increasingly large multiples of 3 and 5 in 3-5-Sum, LU Decomposition, Dot Product,

and also a synthetic benchmark for memory operations, Stream. The latter three

programs exhibit a high degree of memory operations: allocating, copying and loop

traversals. The former two applications perform more division and modulo compute

operations rather than specifying high memory activity. Understanding this becomes

crucial in properly handling data in the HSM environment.

A note about these particular benchmarks. In order to have a meaningful compar-

ison between the performance of a given application – across the Pthreads software

environment and the RCCE environment – it is beneficial to have a variety of bench-

marks that operate in the same manner in these two multiprocessing paradigms. The

intention is to have a program which takes the same input and produces the same

output – with both Pthreads and RCCE source codes. Pursuant to the goals of

this report, the intent was to utilize the Pthread-to-RCCE parser to convert exist-

ing Pthread benchmarks to RCCE source code. These are subsequently compiled

to binary programs executable on the SCC. A wide variety of parallel applications

and scientific programs exist. Despite this, obtaining benchmarks developed using

Pthreads proved especially challenging. One reason is that standardized benchmarks

are strictly controlled (regarding how they are modified and run), in order to preserve

36

accurate reporting of results across many different platform configurations. If official

results are desired then modification of a benchmark to utilize Pthreads instead of an-

other parallel implementation, such as CUDA or OMP, must be done with the bench-

mark maintainers permission and some form of supervision. This brings up a second

reason: numerous many-core applications are tailored towards scientific computing.

These types of programs emphasize optimization, efficiency, and advanced operations

using model-specific programming languages – including but not limited to, CUDA,

OpenMP, OpenCL, C++ with Intel KML, and MPI [4] [5]. Finally, some bench-

marks utilize well–aged programming languages such as Fortran and as such require

translation to C, conversion to Pthreads, and then subsequent conversion to RCCE.

The general-purpose nature of Pthreads lends itself well to platform-independent mul-

tithreaded programming but not very well to the architecture-specific performance

benefits of more specialized programming languages and parallelism models. For this

reason a set of common, albeit comparatively simple, parallel programs have been

written in Pthreads and converted to RCCE using the analytic parser and trans-

lator utility. These were subsequently run on the SCC. The various workloads are

separated into three categories: linear algebra programs, approximation and num-

ber theory applications, and memory operations benchmarks. The performance of

these microbenchmarks is determined by using a timestamping function which re-

turns the systems wall-clock time. Each application generates a timestamp just prior

to launching threads as well as just after all the threads complete execution.

Algorithms 12, 13, 14, 15, and 16 describe these benchmarks in Appendix C.

5.3 Compilation Framework

Without this analysis and transformation, programs written in Pthreads (multi-

threaded programs) can only execute on a single core. To enable them to run on

37

multiple cores requires convertion to RCCE programs – to use RCCE primitives for

communication. The analysis and transformation is implemented in the source-to-

source CETUS compiler framework [7]. Each component, or ‘pass’, of the framework

is a subclass of either the AnalysisPass or TransformPass classes. These classes

provide boilerplate code as well as perform some consistency checking to ensure that

the intermediate representation (IR) of the program remains in a self-consistent state.

The Driver class brings together all passes and executes them in series, providing fine-

grain analysis and making iterative changes to the IR. The software packages that

Cetus requires are Java 1.6 from the OpenJDK runtime environment, and ANTLR

2.7.5. Cetus 1.3 runs on Linux Mint 12.

38

Chapter 6

RESULTS

Multithreaded applications do run on the SCC, however they can only take ad-

vantage of a single core. Each Pthread application is run on one core of the SCC and

the time measured to obtain a baseline. In each program 32 threads compete for pro-

cessor time which greatly reduces the efficiency of each given thread. The translation

framework enables conversion of the Pthread applications to RCCE programs which

can take advantage of 32 cores of the SCC.

Mapping shared data to off-chip shared memory improves performance by 32x

As an evaluation baseline each Pthread application is run on a single core of the

SCC. Then a RCCE variant is generated for each program which takes advantage

of 32 cores of the SCC and utilizes off-chip shared memory. Every program has

its runtime measured. The Pthread benchmarks were built for 32 threads and the

RCCE applications utilize 32 cores. Pi Approximation, 3-5-Sum, Count Primes and

Stream achieve improvements of 32x, 29x, 16x and 17x, respectively. Fig. 6.1 shows

Table 6.1: SCC Configuration

RCCE Pthreads

Core Frequency 800 MHz 800 MHz

Communication Network 1600 MHz 1600 MHz

Off-chip Memory 1066 MHz 1066 MHz

Execution Units 32 cores 32 threads

39

Figure 6.1: Performance of RCCE applications utilizing off-chip shared memory and
32 cores normalized to the performance of the 32-thread Pthread programs running
on a single core.

the relative performance increase for each application (using only off-chip shared

memory). The RCCE applications for Dot Product and LU Decomposition have

large arrays in off-chip memory and have at least 8 cores in contention per memory

controller. Although the performance benefits of 32 vs 1 core are hardly surprising,

this work of converting multi-threaded programs to run as HSM applications makes

this comparison possible.

Using on-chip shared memory further improves performance by 8x on average

Comparison of RCCE programs which only use off-chip memory vs those that

utilize on-chip memory is given in Fig. 6.2. As the MPB is a small, on-chip memory,

programs which either exhibit a high degree of memory usage or those that balance

memory use and core computation see the most performance improvement. For ex-

ample, Stream already benefits from the parallelism via 32 cores, versus being run

on a single core where each thread competed for processor time. In addition, when

40

Figure 6.2: Run time performance comparison of RCCE programs utilizing shared
off-chip memory against the on-chip shared memory provided by the MPB.

converted to utilize the MPB, not only are the memory accesses distributed across

the cores but the locality for core-to-MPB is much closer than than of core-to-DRAM.

Finally, transfers to and from the MPB may be done in bulk copy of memory (often

contiguous addresses), further improving performance for an all-memory synthetic

benchmark. LU Decomposition is an interesting case as the matrix within that pro-

gram does not fit into the on-chip shared memory. For a very slight performance

improvement a small portion of the matrix, for example a few rows, may be allocated

separately on the MPB.

Enabling Scalable Applications on HSM Architecture

Converting multi-threaded programs to take advantage of multiple cores of the

HSM architecture enables scalability. In general this is application-dependent. How-

ever, programs which have a sufficiently large amount of computation and which

transfer data between cores using the on-die MPB can gain significant performance

benefits with increasing core count. Performance relative to scaling core count for Pi

41

Figure 6.3: Relative performance improvement over single-core Pthread application
of multiprocessor RCCE program with varying core count on SCC.

Approximation is shown in Fig. 6.3.

42

Chapter 7

FUTURE WORK

The compute potential of many-core processors is that of a datacenter-on-chip and

merits further study as its use matures. The work presented here is a proof-of-concept

parser-analyzer and translation utility which identifies shared data and efficiently

maps it into memory regions on the many-core architecture. Both an abstract rep-

resentation of the program, as well as a final product ready for deployment to the

experimental SCC system, are generated. This work represents a preliminary foun-

dation framework with potentially rewarding enhancements.

7.1 Translation Candidates Expansion

The analyzer accepts nearly all standard Pthread applications. However, parsing

and/or translation may suffer in certain cases. For example, Pthread code wrapped

within macros is inaccessible to the parser and cannot be sufficiently translated.

One possibility is mapping the macro abstractions such as CreateThread and Barrier

to their appropriate counterparts for the many-core architecture. This presents at

least one more layer of abstraction and serves to make the parser too specialized for

the general Pthread program. To provide the foundation most compatible with the

Pthread specifications, this enhancement is left to subsequent improvements.

7.2 Core Count

Programs with large numbers of threads cannot be converted 1:1 with this exper-

imental architecture. This is an artificial limitation as the parsing technique is actu-

ally scalable with the availability of additional cores. Along the same lines, programs

43

with greater than 48 threads are currently not handled by this technique. However,

[6] have implemented a many-to-one methodology to run multiple threads upon one

core, and this work may provide a springboard to build upon. Since thousand-plus

core count processors are possible with NCC architectures, such an avenue for further

development is promising.

7.3 Code Optimizations

This work, although a proof-of-concept, does present optimizations based on mem-

ory space and locality. Many further optimizations, such as improving for data content

and repeated code execution, are open to study.

44

Chapter 8

CONCLUSION

Developing and utilizing tools to better exploit the capabilities of many-core systems

is crucial to enabling and unlocking the potential for improving performance and par-

allelization. The presented technique is used to convert otherwise incompatible, or

inefficiently executing, programs by leveraging the Intel SCC through architecture-

specific transformations. The described approach automatically analyzes the mul-

tithreaded source program and, extracting the properties of all variables, efficiently

maps the shared data to available on-chip and off-chip shared memory. The pro-

cedure is well-defined, automated and repeatable which enables porting of Pthread

applications for execution onto a many-core architecture. Experimental results from

benchmarks indicate 32x performance improvement over the baseline when using off-

chip memory alone, and 8x improvement when utilizing the on-chip memory over

the off-chip memory, on average. The results demonstrate the suitability and per-

formance benefits of enabling multi-threaded applications for efficient execution on

HSM manycore architectures.

Already many-core systems have trickled down to the high-performance computing

space from the supercomputing realm and are making their way further into special-

ized consumer applications. Speed and reusability are primary factors in adopting

new architectures. Without new tools existing multithreaded applications will not be

able to take full advantage of the many-core revolution, and opportunities for improv-

ing scalability might be overlooked. This technique seeks to address this shortcoming

and demonstrates the suitability and performance benefits of enabling multithreaded

applications for efficient execution on HSM many-core architectures.

45

BIBLIOGRAPHY

[1] Blaise Barney. POSIX Thread Programming. URL https://computing.llnl.gov/
tutorials/pthreads/.

[2] Christian Bell, WY Chen, Dan Bonachea, and Katherine Yelick. Evaluating
support for global address space languages on the Cray X1. In Proceedings of the
18th annual international conference on Supercomputing, pages 184–195, 2004.
ISBN 1581138393. URL http://dl.acm.org/citation.cfm?id=1006209.1006236.

[3] Frank Bellosa and Martin Steckermeier. The performance implications of locality
information usage in shared-memory multiprocessors. J. Parallel and Distributed
Comput., 37(1):113–121, 1996.

[4] Christian Bienia, Sanjeev Kumar, JP Singh, and Kai Li. The PARSEC bench-
mark suite: characterization and architectural implications. pages 72–81, 2008.
URL http://dl.acm.org/citation.cfm?id=1454128.

[5] S Che, M Boyer, J Meng, D Tarjan, and J Sheaffer. Rodinia: Accel-
erating Compute-Intensive Applications with Accelerators, 2008. URL
http://www.cs.virginia.edu/∼skadron/wiki/rodinia/index.php/Rodinia:
Accelerating Compute-Intensive Applications with Accelerators.

[6] Patrick Cichowski, Gabriele Iannetti, and Joerg Keller. Towards Converting
POSIX Threads Programs for Intel SCC. MARC Symposium at RWTH Aachen
University, 2012.

[7] Chirag Dave, Hansang Bae, Seung-Jai Min, Seyong Lee, Rudolf Eigenmann,
and Samuel Midkiff. Cetus: A source-to-source compiler infrastructure for
multicores. Computer, 42(12):36–42, 2009. doi: 10.1109/MC.2009.385. URL
http://ieeexplore.ieee.org/xpls/abs\ all.jsp?arnumber=5353460.

[8] Jason Duell. Pthreads or Processes: Which is Better for Implementing Global
Address Space languages? PhD thesis, University of California, 2007. URL
http://upc.lbl.gov/publications/JasonDuell MS report final.pdf.

[9] Ben Elliston, Ross Johnson, Robert Colquhoun, John E. Bossom, Anders Nor-
lander, Tor Lillqvist, Scott Lightner, Kevin Ruland, Mike Russo, Mark E. Arm-
strong, Lorin Hochstein, Peter Slacik, Mumit Gardian, Aurelio Medina, Gra-
ham Dumpleton, Tristan Savatier, Erik Hensema, Rich Peters, Todd Owen, Ja-
son Nye, Fred Forester, Keven D. Clark, David Baggett, Paul Redondo, Scott
McCaskill, Jef Gearhart, Arthur Kantor, Steven Reddie, Alexander Terekhov,
Thomas Pfaff, Franco Bez, Louis Thomas, David Korn, Jr. Phil Frisbie,
Ralf Brese, Prionx@juno.com, Max Woodbury, Rob Fanner, Michael Johnson,
Nicholas Barry, Piet van Bruggen, Makoto Kato, Panagiotis E. Hadjidoukas,
Will Bryant, Anuj Goyal, Gottlob Frege, Vladimir Kliatchko, Ramiro Polla,
Daniel Richard G., and John Kamp. POSIX Threads (Pthreads) for Win32.
URL http://sourceware.org/pthreads-win32/.

46

[10] David Geer. Chip makers turn to multicore processors. Computer, 38(5):11–13,
2005. ISSN 0018-9162. doi: 10.1109/MC.2005.160. URL http://ieeexplore.ieee.
org/xpl/articleDetails.jsp?arnumber=1430623.

[11] Kalpana Gondi, A. P. Sistla, and V. N. Venkatakrishnan. Minimizing Lifetime of
Sensitive Data in Concurrent Programs. In Proceedings of the 4th ACM confer-
ence on Data and application security and privacy, pages 171–174. ACM, 2014.

[12] Vishal Gupta, Hyesoon Kim, and Karsten Schwan. Evaluating Scalability of
Multi-threaded Applications on a Many-core Platform. Technical report GIT-
CERS-12-03, 2012.

[13] Jason Howard, Saurabh Dighe, SR Vangal, Gregory Ruhl, Nitin Borkar, Shailen-
dra Jain, Vasantha Erraguntla, Michael Konow, Michael Riepen, Matthias Gries,
Guido Droege, Tor Lund-Larsen, Sebastian Steibl, Shekhar Borkar, Vivek K. De,
and R van der Wijngaart. A 48-core IA-32 processor in 45 nm CMOS using on-die
message-passing and DVFS for performance and power scaling. Solid-State Cir-
cuits, IEEE Journal of, 46(1):173–183, January 2011. ISSN 0018-9200. doi: 10.
1109/JSSC.2010.2079450. URL http://dx.doi.org/10.1109/JSSC.2010.2079450.

[14] Intel. Intel Architecture Software Developer’s Manual. 2(243190):51–52, 1999.

[15] Vineet Kahlon, Yu Yang, Sriram Sankaranarayanan, and Aarti Gupta. Fast and
accurate static data-race detection for concurrent programs. Computer Aided
Verification, pages 226–239, 2007.

[16] M. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan, I. Kadayif, and
A. Parikh. Dynamic management of scratch-pad memory space. Proceedings of
the 38th annual Design Automation Conference, pages 690–695, 2001.

[17] Henry Kasim, Verdi March, Rita Zhang, and Simon See. Survey on parallel
programming model. Network and Parallel Computing, pages 266–275, 2008.
URL http://link.springer.com/chapter/10.1007%2F978-3-540-88140-7 24.

[18] Tongping Liu and Emery D. Berger. SHERIFF: precise detection and automatic
mitigation of false sharing. ACM SIGPLAN Notices, 46(10):3–18, 2011.

[19] T.G. Mattson, Michael Riepen, Thomas Lehnig, Paul Brett, Werner Haas,
Patrick Kennedy, Jason Howard, Sriram Vangal, Nitin Borkar, Greg Ruhl, and
Saurabh Dighe. The 48-core SCC processor: the programmer’s view. In Pro-
ceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–11. IEEE Computer So-
ciety, 2010. URL http://portal.acm.org/citation.cfm?id=1884676.

[20] Timothy G. Mattson, Rob Van der Wijngaart, and Michael Frumkin. Program-
ming the Intel 80-core network-on-a-chip terascale processor. In Proceedings of
the 2008 ACM/IEEE conference on Supercomputing, 2008. ISBN 9781424428359.
URL http://dl.acm.org/citation.cfm?id=1413409.

47

[21] Preeti Ranjan Panda, Nikhil D. Dutt, and Alexandru Nicolau. On-chip vs.
off-chip memory: the data partitioning problem in embedded processor-based
systems. ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), 5(3):682–704, 2000.

[22] Johny Paul, Walter Stechele, Manfred Kroehnert, and Tamim Asfour. Improving
Efficiency of Embedded Multi-core Platforms with Scratchpad Memories. pages
1–8, VDE, 2014.

[23] Eli Pozniansky and Assaf Schuster. Efficient on-the-fly data race detection in
multithreaded C++ programs. ACM SIGPLAN Notices, 38(10), 2003.

[24] Ravishankar Rao, Sarma Vrudhula, and Chaitali Chakrabarti. Throughput of
multi-core processors under thermal constraints. In Proceedings of the 2007
international symposium on Low power electronics and design, pages 201–206.
ACM New York, NY, USA, 2007. URL http://portal.acm.org/citation.cfm?id=
1283824.

[25] Jai Rawat. Static Analysis of Cache Performance for Real-Time Programming.
Master’s thesis, Iowa State University, 1993.

[26] Amitabha Roy and Timothy M. Jones. ALLARM: Optimizing Sparse Directories
for Thread-Local Data. pages 1–6. IEEE, 2014.

[27] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. Eraser: A dynamic data race detector for multithreaded programs.
ACM Transactions on Computer Systems (TOCS), 15(4):391–411, 1997.

[28] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s Journal, 30(3):202–210, 2005. URL http://mondrian.die.
udec.cl/∼mmedina/Clases/ProgPar/Sutter-TheFreeLunchisOver.pdf.

[29] Rob F. van der Wijngaart, Timothy G. Mattson, and Werner Haas. Light-
weight Communications on Intel’s Single-Chip Cloud Computer Processor. ACM
SIGOPS Operating Systems Review, 45(1):73–83, February 2011. ISSN 01635980.
doi: 10.1145/1945023.1945033. URL http://portal.acm.org/citation.cfm?doid=
1945023.1945033.

[30] Christoph von Praun and Thomas R. Gross. Static conflict analysis for multi-
threaded object-oriented programs. ACM SIGPLAN Notices, 38(5):115–128,
2003.

[31] Boris Weissman. Performance counters and state sharing annotations: a unified
approach to thread locality. ACM SIGPLAN Notices, 33(11):127–138, 1998.

[32] Min Xu, Rastislav Bod́ık, and Mark D. Hill. A serializability violation detector
for shared-memory server programs. ACM SIGPLAN Notices, 40(6):1–14, 2005.

[33] Yu Yang, Xiaofang Chen, and Ganesh Gopalakrishnan. Inspect: A runtime
model checker for multithreaded C programs. University of Utah, USA, Tech.
Rep, 2008.

48

APPENDIX A

CODE REMOVAL ALGORITHMS

49

Algorithm 5 Remove Pthread Join Calls

Input: Program IR (PIR)
1: for all objects in PIR do
2: if object is a function then
3: if function name is pthread join then
4: if function is within a loop then
5: Remove the loop from PIR
6: else
7: Remove the function from PIR
8: end if
9: end if
10: end if
11: end for

Algorithm 6 Remove Pthread Self Calls

Input: Program IR (PIR)
1: for all objects in PIR do
2: if object is a function then
3: if function name is pthread self then
4: Replace pthread self with RCCE ue
5: end if
6: end if
7: end for

50

Algorithm 7 Remove Pthread Data Types

Input: Program IR (PIR)
1: Prepopulate a HashSet with all pthread data types
2: for all objects in PIR do
3: if object is a variable declaration then
4: if specifier name ∃ ∈ HashSet then
5: Remove object from PIR
6: end if
7: end if
8: end for

Algorithm 8 Remove Pthread API Calls

Input: Program IR (PIR)
1: Prepopulate a HashSet with all pthread API calls
2: for all objects in PIR do
3: if object is a function then
4: if function name ∃ ∈ HashSet then
5: Remove object from PIR
6: end if
7: end if
8: end for

51

APPENDIX B

CODE ADDITION ALGORITHMS

52

Algorithm 9 Add RCCE Init Call

Input: Program IR (PIR)
1: for all objects in PIR do
2: if object is a procedure then
3: if procedure name is main then
4: Create a new function called RCCE init
5: As first argument specify &argc
6: As second argument specify &argv
7: f ← first statement in main
8: Insert RCCE init into main before f
9: end if
10: end if
11: end for

Algorithm 10 Add RCCE Finalize Call

Input: Program IR (PIR)
1: for all objects in PIR do
2: if object is a procedure then
3: if procedure name is main then
4: Create a new function called RCCE finalize
5: l← second-to-last object in main
6: Insert RCCE init after l
7: end if
8: end if
9: end for

53

APPENDIX C

BENCHMARK PSEUDOCODE

54

Algorithm 11 Count Primes (Serial)

Input: limit, prime, total
1: total ← 0
2: for i← 2 to i ≤ limit do
3: i← i + 1
4: prime ← 1
5: for j ← 2 to j < i do
6: if i mod j == 0 then
7: prime ← 0
8: break
9: end if
10: end for
11: total ← total + prime
12: end for
13: return total

Algorithm 12 Pi Approximation

1: step = 1
total number of steps

2: while iteration ≤ total number of steps do
3: x = (iteration + 0.5)× step
4: sum = sum + 4.0/(1 + x× x)
5: iteration ← iteration + 1
6: end while
7: pi = step× sum

Algorithm 13 Stream Add (Serial)

Input: ARRAY a, b, c
Input: limit
1: for j = 0 to j < limit do
2: c[j] ← a[j] + b[j]
3: end for

55

Algorithm 14 Stream Copy (Serial)

Input: ARRAY a, c
Input: limit
1: for j = 0 to j < limit do
2: c[j] ← a[j]
3: end for

Algorithm 15 Stream Scale (Serial)

Input: ARRAY b, c
Input: limit
1: for j = 0 to j < limit do
2: b[j] ← 3.0× c[j]
3: end for

Algorithm 16 Stream Triad (Serial)

Input: ARRAY a, b, c
Input: limit, SCALAR
1: for j = 0 to j < limit do
2: a[j] ← b[j] +3.0× b[j]
3: end for

56

