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ABSTRACT

The role of environmental factors that influence atmospheric propagation of sound

originating from freeway noise sources is studied with a combination of field experiments

and numerical simulations. Acoustic propagation models are developed and adapted for

refractive index depending upon meteorological conditions. A high-resolution multi-nested

environmental forecasting model forced by coarse global analysis is applied to predict real

meteorological profiles at fine scales. These profiles are then used as input for the acoustic

models. Numerical methods for producing higher resolution acoustic refractive index fields

are proposed. These include spatial and temporal nested meteorological simulations with

vertical grid refinement. It is shown that vertical nesting can improve the prediction of finer

structures in near-ground temperature and velocity profiles, such as morning temperature

inversions and low level jet-like features. Accurate representation of these features is

shown to be important for modeling sound refraction phenomena and for enabling accurate

noise assessment. Comparisons are made using the acoustic model for predictions with

profiles derived from meteorological simulations and from field experiment observations in

Phoenix, Arizona. The challenges faced in simulating accurate meteorological profiles at

high resolution for sound propagation applications are highlighted and areas for possible

improvement are discussed.

A detailed evaluation of the environmental forecast is conducted by investigating the

Surface Energy Balance (SEB) obtained from observations made with an eddy-covariance

flux tower compared with SEB from simulations using several physical parameterizations of

urban effects and planetary boundary layer schemes. Diurnal variation in SEB constituent

fluxes are examined in relation to surface layer stability and modeled diagnostic variables.

Improvement is found when adapting parameterizations for Phoenix with reduced errors

in the SEB components. Finer model resolution (to 333 m) is seen to have insignificant
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(< 1σ ) influence on mean absolute percent difference of 30-minute diurnal mean SEB terms.

A new method of representing inhomogeneous urban development density derived from

observations of impervious surfaces with sub-grid scale resolution is then proposed for

mesoscale applications. This method was implemented and evaluated within the environ-

mental modeling framework. Finally, a new semi-implicit scheme based on Leapfrog and a

fourth-order implicit time-filter is developed.
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PREFACE

This dissertation presents a selection of the research topics investigated in relation

to environmental effects on freeway acoustics. An extended abstract is now given.

The role of environmental factors that influence atmospheric propagation of sound

originating from freeway noise sources is studied with a combination of field experiments

and numerical simulations. Acoustic propagation models are developed and adapted for

refractive index depending upon meteorological conditions within both homogeneous and

heterogeneous horizontal approximations. Acoustic models are used to compute the

refracted sound field up to 600 m from the freeway to predict the noise exposure of

residential areas nearby. The model was used in conjunction with meteorological and

sound-level measurements taken at freeway sites in Phoenix, AZ. From the data collected,

test cases of varying levels of atmospheric stratification and wind shear are presented and

discussed. The acoustic model demonstrates that atmospheric effects are able to raise sound

levels by 10–20 dB at significant distances away from the highway, causing violations of

acceptable limits imposed by the Federal Highway Administration in residential areas that

are normally in compliance. Sound propagation in settings with terrain and back-scatter

from walls are investigated. Simplified terrain cases without meteorological effects are

presented to illustrate the capabilities of the new model with emphasis on effects of terrain.

A reflection scheme for 1-way parabolic-type acoustic models is derived based upon the

normal impedance ground boundary condition and tested.

A high-resolution multi-nested environmental forecasting model forced by coarse

global analysis is then applied to predict real meteorological profiles at finer scales. These

profiles are then used as input for the acoustic models. Numerical methods for producing

higher resolution acoustic refractive index fields are proposed. These include spatial and

xxvii



temporal nested meteorological simulations with vertical grid refinement; and also a

Lagrangian technique of reverse domain filling trajectories which have the ability to resolve

structures at scales that are much finer than those of the wind fields used for advection. It is

shown that vertical nesting can improve the prediction of finer structures in near-ground

temperature and velocity profiles, such as morning temperature inversions and low level

jet-like features. Accurate representation of these features is shown to be important for

modeling sound refraction phenomena and for enabling accurate noise assessment.

Comparisons are made using the acoustic model for predictions with profiles derived from

meteorological simulations and from field experiment observations in Phoenix, Arizona.

The challenges faced in simulating accurate meteorological profiles at high resolution for

sound propagation applications are highlighted and areas for possible improvement are

discussed.

A detailed evaluation of the environmental forecast is conducted by investigating

the Surface Energy Balance (SEB) obtained from observations made with an

eddy-covariance flux tower compared with SEB from simulations using several physical

parameterizations of urban effects and planetary boundary layer schemes. Diurnal variation

in SEB constituent fluxes are examined in relation to surface layer stability and modeled

diagnostic variables. Improvement is found when adapting parameterizations for Phoenix

with reduced errors in the SEB components. Finer model resolution (to 333 m) is seen to

have insignificant (< 1σ ) influence on mean absolute percent difference of 30-minute

diurnal mean SEB terms. A new method of representing inhomogeneous urban

development density derived from observations of impervious surfaces with sub-grid scale

resolution is then proposed for mesoscale applications. This method was implemented and

evaluated within the environmental modeling framework.

Finally, a new semi-implicit scheme based on Leapfrog and a fourth-order implicit

xxviii



time-filter is developed. Formal stability analysis and benchmark tests demonstrate that this

scheme has third-order accuracy for amplitude errors while damping non-physical modes

inherent in time-filtered Leapfrog methods. The scheme can be implemented explicitly,

only uses one function evaluation per timestep and gives a factor of three speed-up over the

third-order Runge-Kutta scheme. This method has many applications including acoustic,

atmospheric, oceanic, and climate modeling.
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Chapter 1

INTRODUCTION

1.1 Motivation

The issue of anthropogenically generated noise pollution, particularly within a

metropolitan setting, is within the purview of the concept of a “tragedy of the commons,”

discussed by Hardin 1968 and provides a broader context within which the content of this

dissertation resides. Namely, the perceived individual cost-to-benefit of an activity that

produces noise is often low, such as the personal decision to drive a vehicle on the freeway.

Yet the emergent effect of many similar such decisions within an metropolitan area

produces a nuisance much larger than the actions of any single agent. Management

strategies of common-pool resources (e.g. for unintentional freeway noise) are often within

the realm of engineering solutions as described in De Young 1999. These include to

mitigate generation of noise at or near the source, such as with quiet pavement Scofield and

Donavan 2005, or to determine recommendations for noise barrier placement and other

such strategies. Evaluation and development of tools to understand the optimal

implementation and efficacy of such strategies is thus needed to ensure cost effectiveness.

However, there is no current framework that can forecast real environmental effects on the

propagation of noise for a roadway network for an entire metropolitan area. The work

presented herein attempts to develop necessary components toward such a goal.

The aggregate global-scale impact of human activities is suggested to have brought

about a geological epoch known as the Anthropocene (Crutzen 2002, Smith and Zeder

2013). Most noticeable since the industrial revolution, anthropogenic influence may result
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in adverse transitions beyond critical thresholds, triggering ecosystem collapse, as discussed

by Barnosky et al. 2012. The world population is rapidly increasing and urbanizing while

also increasing energy use and emissions ((Moreno et al. 2008), Cohen 2004, Seto et al.

2011, Mattick, Williams, and Allenby 2009, Webster et al. 2002). The pre-eminent

influence of anthropogenically determined local-scale urban microclimate is thus becoming

ever more important within hot arid cities (e.g. Coutts, Beringer, and Tapper 2007). These

cities are growing worldwide and are particularly vulnerable to climate change and water

resource availability ((Golden 2004), Luber and McGeehin 2008, Vörösmarty et al. 2000,

Vörösmarty et al. 2010). These issues motivate the development of fine resolution modeling

tools for studying effects of urban design on a regional scale to mitigate adverse effects and

optimize urban microclimate. Modeled values of temperature and moisture provide key

results to inform policy making and decisions regarding human-ecosystem interaction

(Fernando 2008, Chow, Brennan, and Brazel 2012, M Georgescu et al. 2013), though lack

of available observations, particularly of surface energy balance (SEB) fluxes within urban

settings, often leaves such predictions unvetted. Furthermore, many features of urban

microclimate are determined at scales below 1 kilometer (Grimm et al. 2008, Rosenzweig

et al. 2010, Hunt et al. 2012, Ching 2013).

1.2 Environmental and Health Impacts of Noise Pollution

Noise pollution, deemed as undesired sound and largely of anthropogenic origin has

many adverse effects in both atmospheric and marine environments. These range from

human health and stress, as reported in e.g. Babisch et al. 2012, Ising, Kruppa, et al. 2004,

Babisch et al. 2005, Goines and Hagler 2007, Moudon 2009, Stansfeld and Matheson 2003,

Passchier-Vermeer and Passchier 2000. Especially for newborns Etzel 1997, Bremmer,
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Byers, and Kiehl 2003, issues with learning, health and cognition in school children,

particularly from railways A. Bronzaft 1981, Bronzaft and McCarthy 1975, aircraft Haines

et al. 2002, Hygge, Evans, and Bullinger 2002 and wind turbine sources in A. L. Bronzaft

2011.

Wildlife is also the recipient of adverse anthropogenic noise influences. Freeway

noise has been shown to influence success of bird reproduction by interfering with

communication between parents and the nest Halfwerk et al. 2011. Remote areas are also

influenced Rheindt 2003, Forman and Deblinger 2000. Other studies have shown that

marine habitat is also strongly influenced from anthropogenic activities Hildebrand 2009

including offshore oil prospecting Parsons et al. 2009, shipping Hatch et al. 2008,

construction and operation of offshore wind farms Madsen et al. 2006 and naval activities

Parsons et al. 2008; Zirbel, Balint, and Parsons 2011, to highlight just a few.

Predictability of the ambient acoustic environment implicated in the aforementioned

adverse effects within a metropolitan setting is of interest given the rate of urban growth

both in terms of population and land-use modifications as the current world population is

rapidly moving away from rural lifestyles Moreno et al. 2008. Human activity is increasing

ambient noise conditions worldwide, reducing access, extent, and quality of quiet locations

(e.g. McGregor et al. 2013, Votsi et al. 2012), and the extent and quietness of remote areas

(e.g. Iglesias Merchan, Diaz-Balteiro, and Soliño 2014 and references therein). Tyes of

sources include transport (vehicular on land, car/truck/motorbike/recreational, vessel at sea,

aircraft), and industrial (construction, building machinery, wind turbines). Though this is

not an exhaustive listing. The main anthropogenic sources of topical study for atmospheric

propagation are aircraft, transportation, and wind turbines.

The growing concern to residents poses a particular challenge to land managers and

city planners to account for noise or in preserving quiet areas Votsi et al. 2012, specifically
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when designing highway transportation systems Stewart et al. 2011; Pry and Andersen

2011. Additionally, housing prices in populated urban and suburban settings are influenced

by noise Nelson 1982.

Studies on the effects of chronic noise exposure are reviewed by Hygge 2011, and

suggest that there is no critical threshold demarking impact, rather that there is a significant

difference on impairment of memory and learning with exposure to ambient outdoor noise

levels above Leq =60 dBA compared to around 55 dBA. A recent study by Hart et al. 2014

finds that the dose-response relationship between major roadway proximity and risk of

sudden cardiac death for middle-age women was linear for distances between 50 m and 500

m, and that each 100 m reduced proximity was associated with a 8% increased risk (95%

confidence interval 3-14%).

Engineering considerations are used to inform how best to design and implement

mitigation strategies to improve areas already receiving complaints of traffic noise, or for

being in violation local regulations. Guidelines for traffic noise in the United States, for

instance, are set by the Federal Highway Noise Abatement Criterion with a limit of 67

dB(A)1, where human sensitivity to hearing is represented by applying a band-pass filter

called A-weighting following International Standard IEC 561 (1993-09). More restrictive

levels for mitigation are suggested by the World Health Organization (WHO) deeming 55

dB(A) as a level of serious annoyance during daytime and evening (Berglund, Lindvall, and

Schwela 1999, WHO 2007) and are being considered in Europe (Boer and Schroten 2007).

1Title 23: Highways - Part 772-Procedures for Abatement of Highway Traffic Noise and Construction
Noise
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1.3 Field Experiments

Several field experiments were conducted during the course of this work. For the

ADOT acoustics studies, experimental configuration is described in Chapter 2. Additional

data is described and provided in Appendix A. In short, these experiments included three

several-day deployments of balloon-tethersonde, SODAR-RASS, and towers with sonic

anemometers.

Additionally, an eddy-covariance flux tower was recently installed in a Phoenix

residential neighborhood and is described in detail in Chow et al. 2014. These data are used

in Chapter 5 for WRF model evaluation. Additional data is presented in Appendix C.

Ongoing work to study the influence of freeway noise walls is being conducted but is

beyond the scope of the present dissertation. Further field experiments are needed with both

detailed meteorological and acoustic measurements, to enable validation of the acoustic

models to large distances, and also to evaluate or provide input profiles for high-resolution

micro-meteorological predictions and simulations.

1.4 Acoustic Modeling

1.4.1 Context and Assumptions

Focus will now be on atmospheric acoustics, basic mathematical theory and

determining important factors. In particular, how does noise propagate from source to

receiver? The role of propagation medium via temperature/density gradients, wind shear,

turbulence, and relative humidity role in attenuation. Boundary effects, such as acoustic

reflections, distortion of flow and feedback onto the acoustic propagation. Ranges
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considered are up to 1 km. As such, we can assume that the medium is “frozen” and

examine mean field propagation. This is because the propagation timescale is much smaller

than atmospheric timescales. To be explicit, consider the acoustic propagation timescale,

τsound obtained as the ratio of the lengthscale of consideration Λ to the mean sound speed

¯Ceff, as,

τsound =
Λ

¯Ceff
∼ 1000 m

330 m s−1 ∼ 3 s.

Near the ground, the eddy turnover timescale τeddy is found as

τeddy =
zi

v∗ ∼


1000 m
1 m s−1 ∼ 1000 s, for w∗

100 m
.1 m s−1 ∼ 1000 s, for u∗

,

where zi is the boundary layer depth and v∗ is a velocity scale. For neutral or unstable PBL

the convective velocity scale w∗, and friction velocity scale u∗ for stable PBL, with typical

order-of-magnitude values (e.g. Stull 1988). Clearly τsound� τeddy. Investigations will

include boundary layer stability considerations, turbulence considerations, and synoptic

forcing considerations. There are several methods to incorporate turbulent fields as an

ensemble of perturbations about the mean, since smaller eddies have much smaller

timescales than for τeddy given above. The scattering by turbulent media is beyond

immediate scope of this work and will be covered in future work. Inhomogeneities within

the medium are accounted for by updating the effective sound speed profile at each range

step, within the frozen-field approximation, as will be discussed below and in Appendix B.

1.4.2 General Modeling Background Details

We use the same acoustic model as presented in Ovenden, Shaffer, and Fernando

2009, called the wide-angle Parabolic Equation (PE) model, a summary of which is

provided here with emphasis placed on the PE model equations and the effective sound
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speed. When considering 20 minute time-averaged sound levels a straight highway-segment

can be treated as a series of mono-frequency coherent effective line-sources placed at some

position above the travel lane of the roadway. Stability of the PE model requires 10 points

per wavelength, so high frequencies become costly to compute. Fortunately, due to

A-weighting, restricting the acoustic spectrum to 17 standard third-octave frequency bands

incurs less than 1% error when compared to the sum over any larger bandwidth and speeds

computation time by eliminating higher frequencies.

The ground is treated as a locally reacting impedance plane using boundary

conditions for the complex pressure amplitude pc,

−1
iω

∂z pc =
pc

Z
, (1.1)

at z = 0, with an empirically derived relation for complex impedance,

Z = 1+0.0511
(

σ

f

)0.75

+ i0.0768
(

σ

f

)0.73

, (1.2)

dependent upon acoustic frequency and a model of flow porosity, an intrinsic property of

the material Delany and Bazley 1970; Attenborough, Li, and Horoshenkov 2007. Here ω is

the Helmholtz number defined below. We used a Green’s function solution for

homogeneous atmosphere above an impedance plane based upon Chandler-Wilde and

Hothersall 1995 to derive a starting field for the PE domain at the edge of the road using

porosities σ = 3x107, and 4x105 Pa s m−2 representative of asphalt and sandy soil,

respectively. The source strengths and heights were derived by minimizing a cost function

using measured values of sound pressure, a penalty for height to keep the sources near the

ground, and using the Green’s function at the sound meter locations.

The PE model is an approximation to the elliptic Helmholtz equation E. Salomons

2001 which governs acoustic pressure fluctiations, pc(~x)exp(−iωt), of angular frequency

ω = 2π/ f , for frequency f and complex amplitude scalar field pc. Using the assumption of
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a stationary atmosphere with effective wavenumber, ke f f ,i = ω/(c+ui), in direction xi to

account for wind ui and adiabatic sound-speed c from an isentropic equation of state

P = c2
0ρ , a harmonic perturbation to the mean for the Euler equations results in,

(k2
e f f ∇ · k−2

e f f ∇+ k2
e f f )pc = 0. (1.3)

The PE model variant we use is derived by reducing the two-way hyperbolic

Helmholtz wave equation in cylindrical coordinates into a one-way parabolic equation

approximation. The propagation direction is taken as being in the plane transverse to a line

source of strength S0 at position~xs, representation of the roadway. The derivation we use

assumes that the complex pressure varies slowly with range so that second derivative terms

can be dropped, i.e. ∂xx pc� ∂x pc. Then treating the remaining terms as an operator and

using a rational Padé expansion to higher order yields a wide angle form for the PE method

given as equation 6 in Ovenden, Shaffer, and Fernando 2009. An alternate derivation is to

split the Helmholtz equation into two one-way propagation operators and considering only

waves moving in one direction within a 2-D plane,

(
∂x + i

√
H
)(

∂x− i
√

H
)

pc = S0δ (~x−~xs). (1.4)

This is valid if [H,∂x] = 0, and an approximation if H varies slowly with range x.

Taking pc = ψ(x,z)exp(ik0x) as a complex acoustic pressure for a plane wave of

representative wavenumber k0 (i.e. surface value) and complex amplitude modulation ψ .

From a finite difference approximation to the differential operators we obtain an equation of

the form,

Mψ
i+1 = Nψ

i, (1.5)

relating the complex pressure amplitude at range i+1 to that at range step i, where M and

N can be expanded in terms of E,D, and O viz, M = ∆2
z (E−D+O) and
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N = ∆2
z (E +D−O). These diagonal matrices for the interior of the domain on vertical

coordinate z = j∆z, j = 2, . . . ,n = nz−1, with horizontal grid spacing ∆x, are defined by,

E =



E22 α + γ2−Ωb(α− γ2)

α− γ j −2α +
κ j

4k2
0∆x

+ 1
∆x

α + γ j

. . . . . . . . .

α− γn−Ωt(α− γn) Enn


(1.6)

With E22 =−2α + κ2
4k2

0∆x
+ 1

∆x
+4Ωb(α + γ2) and

Enn =−2α +
κnz−1

4k2
0∆x

+ 1
∆x

+4Ωt(α + γnz−1) and using shorthand n = nz−1 to avoid

confusion with the subscripts. The diagonal matrix D has entries,

D j =
iκ j

2k0
. (1.7)

Lastly we have,

O =



O22 β −δ2−Ωb(−β +δ2)

−β +δ j 2β −β −δ j

. . . . . . . . .

−β +δn−Ωt(−β −δn) Onn


.

(1.8)

Where, O22 = 2β +4Ωb(−β +δ2) and Onn = 2β +4Ωt(−β −δn) are used as shorthand to

represent the matrix when typesetting. For the above equations, the dimensionless

Helmholtz number is ω = 2π f L/c0, the reference wavenumber is k0 = ω/ce f f ,0, the

density, where gravitational effects be included, is ρ0 = 1/c2
0, and we have the following

relations,

α = (4k2
0∆

2
z ∆x)

−1, (1.9)

β = i(4k0∆
2
z )
−1, (1.10)
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γ j =
∂zCe f f , j

4k2
0∆z∆xCe f f , j

, (1.11)

δ j =
i∂zCe f f , j

4k0∆zCe f f , j
, (1.12)

κ j =
ω2

C2
e f f , j

− k2
0. (1.13)

Beginning with the Green’s function solution at the edge of the road, a

Crank-Nicholson scheme is used to march the starting field of complex acoustic pressure

perturbations across the PE domain in equation 1.5. An exponential attenuation layer at the

top third of the domain, combined with the Sommerfeld radiation condition, was used to

prevent artificial numerically reflected waves.

Each third-octave band’s central frequency is assumed to represent the entire band,

so the logarithmic-sum of the PE calculations for each band gives the resultant total field

using,

Leq = 10log10

17

∑
n=1

10LA( fn)/10, (1.14)

where LA( fn) = LA, fn(x,z) is the A-weighted spectral contribution of frequency fn at point

(x,z) within the domain. It may be written in terms of the complex pressure and source

strength by, LA, fn = 10log10(.5|ηψ|2)+20log10 S0, fn , where η−1 = maxi, j |ψ| is a

normalization factor since we effectively calculate the attenuation with respect to the

Green’s function starting field and still need to account for the amplitude of the source.

Lastly, atmospheric absorption can be applied to each frequency band after the PE model

gives output by using a constant attenuation factor with range dependent upon frequency

and humidity (see Ovenden, Shaffer, and Fernando 2009).

In summary, the model input is the starting pressure field derived from the source

strength and height along with the effective-sound-speed profile, defined as,

Ce f f (z) =
√

γRT (z)+U‖(z), (1.15)
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which we normalize with respect to the surface value. Here γ is the ratio of specific heats, R

is the gas constant, T (z) is the temperature profile and U‖(z) is the profile of wind speed

parallel to the direction of propagation. The first term is commonly referred to as the

adiabatic sound speed, Cad , is also given by Cad(z) = 331.3
√

T (z)/273.15 m s−1 for

temperature T in Kelvin. The second term accounts for advection and compensates for the

assumption of a stationary medium.

1.5 Atmospheric Modeling

Acoustic models need profiles of acoustic refractive index, or effective sound speed,

as described (e.g. Eqn. 1.15), from temperature and velocity. These profiles can be obtained

by observation only for limited areas, and clearly only for the period of observation.

However, with the capability of employing numerical weather prediction techniques,

profiles may be forecast for entire regions, at any time, and in advance. Thus, in

combination with suitable acoustic source models (beyond the scope of the present work),

such tools provide a key step in scaling up efforts from studies of specific sites to larger

regions.

For the following discussion, the Advanced Research Weather Research and

Forecasting (ARW-WRF) model will be assumed, and is described in further detail in

Skamarock and Klemp 2008. Background material related to subsequent chapters will now

be described.
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1.5.1 Parameterizations of Turbulence Closure

For mesoscale applications, the horizontal grid scale (∆H) is typically larger than 1

km, with 1 km considered to be high resolution. As such, eddy structure responsible for

mixing within the planetary boundary layer (PBL) is not explicitly resolved and must be

parameterized. When employing a PBL scheme, the ARW-WRF model separates horizontal

mixing from vertical mixing, with the PBL scheme accounting for vertical mixing for the

entire vertical column. Flux exchange between the land surface model (LSM) and PBL are

incorporated by a surface layer scheme (SLS) within the model’s first vertical level. Here,

we describe two PBL schemes employed in later chapters without delving into the details of

turbulence closure, which can be found in e.g. Tennekes and Lumley 1972 and Stull 1988.

The non-local scheme of Yonsei-University (YSU) Hong, Noh, and Dudhia 2006,

explicitly treats entrainment between the free atmosphere and top of the boundary layer, in

addition to a non- local gradient flux term to account for large eddies. The YSU PBL

scheme couples with the 5th generation Mesoscale Model (MM5) SLS (Hong, Noh, and

Dudhia 2006), a first-order closure gradient transport model. The MM5 SLS is

implemented in WRF based on stability functions given in Paulson 1970, Dyer and Hicks

1970, and Webb 1970, for four stability regimes following Zhang and Anthes 1982, and

with a convective velocity following Beljaars 1995.

The local scheme of Mellor-Yamada-Janjic (MYJ) Janjic 1994, 2001 is a 1.5 order

scheme following Mellor and Yamada 1982 where closure is based on TKE. The MYJ PBL

scheme requires the Eta SLS (Janjic 1996, 2001), is a zero-order similarity scaling based

upon Monin-Obukhov Similarity Theory (MOST) (Monin and Obukhov 1954). A 1 cm

deep viscous sub-layer over land surface is parametrized in terms of a variable roughness

length for moisture and humidity following Zilitinkevich 1995. Friction velocity is limited

12



in unstable conditions with low wind speeds so that u∗ > 0 holds, following Beljaars 1995.

The Obukhov stability parameter and stability functions are derived iteratively and are

determined for stable and unstable conditions following Holtslag and de Bruin 1988 and

Paulson 1970, respectively.

Although ∆H near 1 km is considered high resolution, PBL schemes are typically

still employed since the domain is typically being forced by coarser nests that also employ

the scheme. However, this scale of ∆H is encroaching upon the so-called “Terra-Incognita”

of Wyngaard 2004, where the ∆H (and model filter length scales) become small enough

where they should resolve the energetic PBL eddies. With smaller ∆H , the PBL scheme

method of parameterization by separating horizontal and vertical mixing is no longer valid.

Here, methods such as large eddy simulation (LES) (e.g. Moeng 1984, Moeng et al. 2007,

F. Chen et al. 2011, Mirocha, Kosović, and Kirkil 2014), are typically employed since PBL

eddies are explicitly resolved. Thus, several model parameterization scheme assumptions

are expected to break down as grid resolution is refined, both vertically and horizontally,

while using a PBL scheme.

Forecasting at smaller scales has become computationally possible by advances in

technology (Schaller 1997), and by advances in numerical technique, such as nesting within

a limited area (Davies 1983; Smolarkiewicz and Grell 1992; Skamarock and Klemp 2008;

Alex Mahalov and Mohamed Moustaoui 2009). Yet theoretical issues regarding turbulence

closure and parameterization of PBL eddies remain a challenge as resolution approaches

what Wyngaard 2004 describes as the Terra-Incognita, beginning near order of 1 km

(Mirocha, Kosović, and Kirkil 2014). At scales finer than the Terra-Incognita, methods such

as large eddy simulation (LES) ([ )e.g.][]Moeng1984,Moeng2007, are typically employed

since PBL eddies are explicitly resolved. Recently, model development efforts have been

focused on enabling transiting the Terra-Incognita by combining these computational
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methods, (Mirocha, Kosović, and Kirkil 2014; Wyszogrodzki, Miao, and Chen 2012;

F. Chen et al. 2011). Yet computational feasibility often limits applications to research

rather than real-time operational forecasting. Furthermore, there has been limited

assessment of model error as nested simulation resolution approaches the Terra-Incognita

regime. Studies often avoid the Terra-Incognita issues by limiting resolution to around 1

km, some of which have been reviewed by Loridan et al. 2013.

In addition to the need of transitioning from employing a PBL scheme to LES with

decreased ∆H , the influence on turbulent fluxes from resolving groups of building are

expected to complicate the currently available schemes (Bou-Zeid et al. 2009). Although

this is not considered in this work it is mentioned for completeness of discussion. One such

solution to incorporate building-resolved flow can be achieved by coupling WRF with the

EULerian LAGrangian (EULAG) model (Prusa, Smolarkiewicz, and Wyszogrodzki 2008),

and is being added to the WRF system by F. Chen et al. 2011. Combining EULAG with fine

scale digital elevation model data and building data could yield powerful simulation

methods. One goal is to inform development of sub-grid parameterizations for coarser

resolution models yet still within Terra-Incognita. Furthermore, each simulation should be

considered as a single realization of expected eddy structure, not a forecast of the actual

eddies. Therefore, averaging is typically applied to determine flow structure results. These

techniques may be adapted for e.g. flow over noise walls and groups of buildings for sound

propagation applications.

1.5.2 Parameterizations of Land Surface and Urbanization

The capability of atmospheric modeling in urban environments is influenced by

land-atmosphere coupling within models (Ching 2013; F. Chen et al. 2012, 2011; Fernando
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Q QΔ S = Δ ′S + QF + QG = Q* − QH − QE  
 G↓

LW − G↑
LW + G↓

SW − G↑
SW = Q*  

 

 
 

 
 
   Figure 1: Schematic depiction of SEB relationship given in Eq. 1.16.

2010; Sailor and Lu 2004). The Surface Energy Balance (SEB) is intimately related to the

atmospheric surface-layer (ASL), or region closest to the ground, which provides via a

surface-layer scheme (SLS) the interconnection between the ground, or land surface model

(LSM), and lower atmosphere, or, the planetary boundary layer (PBL) (Stull 1988; Arya

1988). In particular, SEB closure error (Foken 2008), has been examined in the context of

urban climate for several decades and remains a challenging issue (T. R. Oke 1974, 1979,

1982; Arnfield 2003). In the context of SEB modeling, the role of vegetation, moisture,

latent heat flux, and anthropogenic forcing are important areas of active research (Arnfield

2003; Kalma, McVicar, and McCabe 2008; Ching 2013). A systematic evaluation of the
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modeled SEB is thus needed before proceeding to address applications such as discussed

above. An extensive inter-model comparison and evaluation of contemporary methods for

modeling urban effects in off-line models found that not all models explicitly check or force

SEB closure, which could result in a source of bias in long-term urban climate modeling

(C. S. B. Grimmond et al. 2010).

The SEB relationship as depicted in the schematic (Fig. 1), is defined as,

∆Qs = ∆Q′S +QF −QG = Q∗−〈QH〉−〈QE〉, (1.16)

where ∆Qs, is the residual or storage term within the canopy layer, which can be

represented by reduced residual ∆Q′s, anthropogenic forcing QF , ground heat flux QG. The

net radiation, Q∗, can be written in terms of the longwave (subscript ’LW’) and shortwave

(subscript ’SW’) partitions for upward and downward components, as,

Q∗ = G↓LW −G↑LW +G↓SW −G↑SW .

Within the Noah LSM, the turbulent fluxes of sensible and latent heats are defined by,

QH=ρcpCH |Uz1|(θs−θz1),

QE=ρCE |Uz1 |(qs−qz1),
(1.17)

where variables with subscript z1 are prognostic values (integrated in time) at the first model

level, and variables with subscripts s are diagnostic surface-layer values, for air potential

temperature θ , air specific humidity q, and magnitude of the horizontal winds |U |, along

with specific heat at constant pressure for air cp, heat and moisture exchange coefficients

CH and CE , respectively (Chen and Dudhia 2001, Chen and Zhang 2009). These fluxes

provide the bottom boundary condition to the surface layer and PBL. Fluxes are aggregated

from the LSM and urban schemes before forcing the SLS.

Parameterizations of urban processes within atmospheric models typically presume

that the city is entirely sub-grid to the ASL. This modeling assumption means that the built
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environment should be contained within the surface layer, or first full model level

(C. S. B. Grimmond et al. 2010). One main concern is that anthropogenic waste heat and

momentum modifications are only supplied to the first model level. However, one method

often employed within studies of the surface layer or of lower PBL profiles is to add extra

model levels near the ground. Hence, there is a trade-off between explicitly resolving fine

structure in the ASL, especially within the urban boundary layer (UBL), also in conjunction

with flow dominated by complex terrain, as detailed for Phoenix in Fernando 2010, and the

sub-grid requirement for these urban models. Furthermore, parameterizations of the ASL

often employ Monin-Obukhov Similarity Theory (MOST) (Monin and Obukhov 1954),

wherein horizontal homogeneity is assumed, meaning that individual buildings and land

uses at sub-grid scales are not explicitly resolved. This assumption can break down in

settings with inhomogeneous land use and land cover (LULC) and variable roughness, such

as urban areas (Grimmond and Oke 1999; Nordbo et al. 2013). Arnfield 2003 reviews

spatial scale effects where variability between LULC types decreases when transitioning

towards larger horizontal spatial scales (e.g. from about 101 to 104 m, the city-scale),

enabling average value parameterization of urban processes at coarser resolutions. However,

micro-scale LULC variations may become important when comparing with

neighborhood-scale flux-tower measurements.

The National Building Statistics Database 2 (NBSD2) Burian, Velugubantla, and

Brown 2002 has been incorporated into the latest release of WRF v3.5 (2013) within the

National Urban Database and Access Portal Tool (NUDAPT) described by Ching et al.

2009. However, cities such as Phoenix have limited coverage since emphasis of NUDAPT

has been on central business districts. The residential areas have shown impacts on regional

climate (e.g. M Georgescu et al. 2013), along with impacts of heterogeneity of urban

development Monaghan et al. 2014. Although NUDAPT provides a formulation for
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development density, Ching 2013 indicates that more guidance is needed for aggregating

subgrid representation to grid scales. This topic is explored in Chapter D.
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Chapter 2

IMPACT OF METEOROLOGICAL CONDITIONS ON NOISE PROPAGATION FROM

FREEWAY CORRIDORS

Published in: Journal of the Acoustical Society of America,

N.C. Ovenden, S.R. Shaffer, H.J.S. Fernando (2009) 126(1)25-35.

This chapter examines the impact of meteorological conditions on the propagation

of vehicular noise from urban freeways. A parabolic equation model coupled to an

analytical Green’s function solution close to the source field is used to compute the

refracted sound field up to half a mile from the freeway to predict the noise exposure of

residential areas nearby. The model was used in conjunction with meteorological and

sound-level measurements taken at two freeway sites over the course of four days in

Phoenix, Arizona. From the data collected, three test cases of varying levels of atmospheric

stratification and wind shear are presented and discussed. The model demonstrates that

atmospheric effects are able to raise sound levels by 10−20dB at significant distances

away from the highway, causing violations of acceptable limits imposed by the Federal

Highway Administration in residential areas that are normally in compliance.
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2.1 Introduction

Noise pollution is a serious and worsening environmental concern in urban areas.

Not only does it diminish the quality of human life Goines and Hagler 2007, Granados

1998, Ward and P. Suedfeld 1973, but it also alters wildlife habitats and breeding sites

Forman and Deblinger 2000. Highway traffic, airports, heavy industry, railways and even

leisure activities located close to built-up areas all contribute to the noise menace, and thus

urban planners and managers pay close attention to mitigate it. This paper concerns a main

contributor to noise pollution in urban areas - the freeway noise - which varies considerably

in time and space in the proximity of roadways. The noise level therein depends on a myriad

of factors, to name a few, the traffic speed and volume, vehicle type, ground conditions,

terrain, sound barriers, atmospheric absorption and meteorological variables (e.g.

temperature, wind velocity, turbulence) and their spatial and temporal profiles E. Salomons

2001; Attenborough, Li, and Horoshenkov 2007. While a majority of these factors are

accounted for in operational sound prediction models, such currently available models do

not take all the salient factors into account C. Steele 2001, Lihoreau et al. 2006, Wayson

et al. 1995. For example, the latest version of the Federal Highway Administration’s

(FHWA) Traffic Noise Model (TNM) Version 2.5 released in 2004 does not include the

effects of temperature and wind variability; i.e. uniform, isothermal atmospheric conditions

are assumed in the calculations. The latter is a reasonable assumption for shorter (less than

200m) distances from the sound source, but errors can be substantial when predicting

intermediate and far field noise, since refraction of sound due to temperature and wind

causes anomalous intensity variations at a significant distance from the source. For example,

noise measurements conducted in Scottsdale, Arizona, following complaints by residents

living more than about 400m (∼1/4 mile) from the East Loop 101 freeway, suggest that
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ground-level inversions (surface stable temperature stratifications) can increase the sound

level by as much as 10-15dB J. Chambers et al. 2006. While the noise level therein under

neutral atmospheric conditions is well within the FHWA noise abatement criterion (NAC),

an inversion can cause the dBA level to exceed it. FHWA-NAC recommends implementing

abatement procedures such as noise walls or modified pavement types (quiet pavements)

when the energy averaged or equivalent sound level (Leq) approaches an A-weighted value

of 67dBA. The challenge, however, is accounting for inversions and wind shear.

The influence of atmospheric factors becomes particularly critical when noise

mitigation is realized via a combination of techniques, for example, noise walls and quiet

pavements. The Arizona Department of Transportation (ADOT) has received approval from

the FHWA for the Quiet Pavement Pilot Program (QPPP) to investigate the usefulness of

pavement surface type as a noise mitigation strategy, subject to the condition that Arizona

would be a pilot program with specific research objectives and requirements Scofield and

Donavan 2005. This research is intended to validate the efficacy of Asphalt Rubber Friction

Courses (ARFC) as a noise mitigation method. ADOT would overlay Portland Cement

Concrete Pavement (PCCP) in the Phoenix valley with a one-inch thick ARFC surface.

Where the ARFC is placed and noise walls are required the walls may be reduced in height

in view of the extra mitigation offered by ARFC surfacing Scofield and Donavan 2005.

Beginning in 2003, ADOT has been monitoring six sites across the Phoenix Metropolitan

Area for traffic-generated noise to evaluate the effectiveness of ARFC. While measurements

show that ARFC has reduced freeway noise appreciably (8-10dB) at close-in community

locations, sound refraction due to environmental conditions can defeat the noise abatement

approaches (e.g. the use of walls) at some distances away. Noise walls are expensive and

typically cost ∼ $1M/mile, and hence merits of their installation should be carefully

evaluated a priori.
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The effectiveness of AFRC pavements, sound walls and environmental factors

become dominant only at certain intrinsic frequency ranges. The relationships between

these variables and A-weighted noise levels in the field thus are intricate and can only be

delineated via models that properly quantify fundamental relationships and their complex

interactions. To develop such models will help in design, interpretation of measurements

taken at different positions/times and in placing results on a unified scientific basis. The

only viable method for predicting sound in complex field situations is the use of a numerical

model that incorporates salient governing factors. A straightforward (yet onerous, because

of computational expense) method is the nesting of an acoustic model with an

environmental forecasting model. A simpler methodology is to use available representative

atmospheric data from the area to feed the acoustic model, assuming local smaller scale

variations are unimportant. The research reported herein is of this ilk and includes a

meteorological measurement component. The aim is to examine how different

meteorological conditions, especially ground based inversions and shear, can affect freeway

noise, by taking Phoenix as a case of interest J. Wang and J. Angell 1999; H. Fernando et al.

2001.

A suite of computational approaches are presently being used for atmospheric sound

propagation studies E. Salomons 2001, which include (i) Gaussian-beam methods, (ii)

Fast-Field Program (FFP) models and (iii) Parabolic Equation (PE) models. Ray theories,

although robust for indoor acoustics, rapidly become highly cumbersome to compute in

downward refracting media where many rays are needed and caustics are problematic.

Additional complications, such as diffraction by obstacles, turbulence and prediction of

acoustic shadow regions, further urge the use of alternative methods. The key to PE models

is the use of an effective sound speed based upon temperature and wind speed of the actual

mean flow field that both modify the isotropic adiabatic sound speed Gilbert and White
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1989; West, Gilbert, and Sack 1992. When assuming a line (or an axisymmetric) source, the

two dimensional wave operator is factored into left- and right-traveling components

transverse to the source. The unsteady pressure field due to a source can then be resolved by

marching the computation across the domain away from the source by discounting any

waves that propagate towards the source. Major disadvantages of this method are that it

becomes inaccurate at high elevation angles and cannot directly account for back scatter

unless the more difficult task of handling propagation in both directions is addressed. It has

many advantages, however, including the ease of incorporating atmospheric absorption,

varying boundary conditions and geometries (e.g. complex terrain) along with actual

spatially varying meteorological profiles. For these reasons, methodologies based on the PE

equation prove highly popular Gilbert and X. Di 1993, X. Di and Gilbert 1994; R. Sack and

M. West 1995; M. West and Y. Lam 2000; Wilson 2000; Wilson, Brasseur, and Gilbert

1999; P. Chevret, P. Blanc-Benon, and D. Juve 1996, although it is common practice to use

hybrid models combining several methods to exploit features of the problem at hand in an

attempt to circumvent potential caveats of any individual method E. Salomons 2001,

Ostashev 1997; Ostashev, V. Mellert, et al. 1997; Ostashev, F. Gerdes, et al. 1997; Ostashev

et al. 2005; F. de Roo and I. Noordhoek 2003.

In order to understand and quantify the effects of atmospheric temperature and

velocity profiles on sound propagation, we have combined a field measurement campaign

(section 2.2) with modeling efforts (section 2.3). The field measurements are to provide

realistic vertical profiles of temperature and cross wind velocities to the model and were

performed over four days at two freeway sites in Scottsdale, AZ and Mesa, AZ, where

meteorological and sound data were taken and recorded over roughly a six-hour period

between 6 a.m. and 12 p.m. (section 2.4). For the modeling, the sound data is input into a

Green’s function model to evaluate the near source field generated from the freeway traffic
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(section 2.5). This source field along with the meteorological data is then input into a

parabolic equation (PE) model to compute the refracted sound field out to a distance of

600m. The results are compared to neutral atmospheric conditions, and the effect of

stratification and wind shear are separated and quantified in three twenty-minute

time-averaged cases selected from the field data (section 2.6). The conclusions of the study

are given in section 2.7.

2.2 Experiments

In order to study the influence of meteorological conditions on noise propagation

from Phoenix highways, the Center for Environmental Fluid Dynamics at Arizona State

University (EFD-ASU) conducted a joint field campaign with ADOT and Illingworth &

Rodkin, Inc. The EFD-ASU team made detailed measurements of atmospheric

meteorological conditions, Illingworth & Rodkin Inc. provided sound measurements and

ADOT videotaped the traffic and recorded its speed.

The field experiments were conducted on October 10th and 11th, 2006, in a location

just on the west side of Phoenix loop 101 (ADOT location 3E, 33o30′05.95” N

111o53′17.09” W) and on November 7th and 8th, 2006, just on the north side of Phoenix

loop 202 (ADOT location 3D: 33o28′56.65” N 111o45′48.16” W). The details of

motivation for site selection are outlined in Chambers et al. (2005) J. Chambers et al. 2006.

Although both sites are situated in urban locations, the freeways are relatively new so that

housing and other buildings are located some distance (at least 0.5km) away. Hence, the

terrain neighboring both freeways is relatively flat and homogeneous with hard sandy soil

and sparse bushes. A cross section of the terrain for the route 202 site is shown in figure 2.

Measurements were taken from 7 a.m. to 11 a.m. in order to better understand how
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Figure 2: Cross section of loop 202 site as elevation above sea level. Horizontal distance is
measured in feet from the fence on the south side. Positions of instruments are shown as
squares for microphones and triangles for sonic anemometers in the November 2006 field
campaign. Arrows indicate distances from the center of the nearest travel lane (filled circle)
on the West Bound (WB) side.

noise levels change during a period of a temperature inversion, typical daytime adiabatic

lapse conditions and during the morning transition period. It is interesting to note that the

temperature conditions near the surface were found to be unstable even in the early morning

hours, and this is believed to be due to retention of heat by the roadway surfaces even after

the sunset, because of the high thermal capacity of road surfaces.

A number of instruments were employed, which included 3D sonic anemometers

and a SODAR (SOund Detection And Ranging) with RASS (Radio Acoustic Sounding

System). SODAR measures vertical wind profiles of all three components whereas RASS

measures the vertical temperature profile. Sound measurement instruments at the 3E site
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were also located at the following positions, where range is the horizontal distance from the

center of the nearest travel lane and height is measured above ground level (agl):

Location Range Height

1 15.24m(50ft) 1.52m(5ft)

2 15.24m(50ft) 3.66m(12ft)

3 30.48m(100ft) 1.52m(5ft)

Note at the 3D site there was an additional meter at 76.22m (250ft) from the center of the

nearest travel lane at a height of 1.52m (5ft) above ground level. The sonic anemometers

were located on towers at the same distance from the highway as the sound measurement

instruments, while the SODAR/RASS systems were located further away to avoid possible

contamination of the sound level measurements (figure 2).

The sonic anemometers were operated at a frequency 10 Hz, providing all three

velocity components and temperature. The data collected enables us to obtain detailed

information on mean flow and temperature close to the surface, as well as turbulent

statistics. During October 10th and 11th two sonic anemometers were located on a tripod

15.24m (50 ft) from the center of the nearest travel lane and three on a tower 30.48m (100 ft)

from the center of the nearest travel lane. The heights of instruments on the tripod were 1.8

and 2.9 m agl (above ground level) and the height of those on the tower were 2, 4 and 6 m

agl. During measurements on November 7th and 8th, an additional tripod was also located

at 15.24m (50 ft) where the heights of the sonics were 1.8 and 2.9 m agl, while sonics at the

tower were placed at levels 6.8, 10.4 and 13.8 m agl. On November 8th, one more sonic was

placed on a tripod at a location 76.22 m (250 ft) from the center of the nearest travel lane at

2.2m agl to measure atmospheric conditions close to the furthest sound measurement point.

The SODAR/RASS system was utilized to measure wind speed and temperature

profiles, respectively, between roughly 20m to 600m agl. during the October and November
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deployments. This system provided more details on the structure of the atmospheric

boundary layer during the periods of measurements at high altitudes, but for the present

study the most important is the data taken up to 200m or so in height. Both the

SODAR/RASS and the sonic anemometers were set up to enable the wind velocity

component across the highway to be separated from the wind velocity component parallel

to the highway. Only the component perpendicular to the highway is input into the sound

propagation model.

2.3 Modelling

Based on the initial sound data from the field experiments, we construct a

two-dimensional model of acoustic propagation from a single monofrequency coherent line

source in a vertically layered atmosphere. A rectangular xy coordinate system is used with y

measuring the vertical height and x measuring the horizontal range from the centre of the

nearest travel lane. All lengths are non-dimensionalised on a typical source height L0,

velocities are non-dimensionalised on the sound speed measured at ground level C0, density

is non-dimensionalised on the density of air at 1 atmosphere (ρ0 = 1.2kgm−3) and pressure

p is non-dimensionalised on ρ0C2
0 . For a given frequency f [Hz], we define the Helmholtz

number as ω = 2π f L0/C0 and by writing the acoustic pressure perturbation as

p(x,y, t) = pc(x,y)e−iωt the Helmholtz equation for a line source at x = x0 of strength S in

a vertically layered atmosphere is obtained:

∂ 2 pc

∂x2 +
ω2

c̃2(y)
∂

∂y

(
c̃2(y)
ω2

∂ pc

∂y

)
+

ω2

c̃2(y)
pc = Sδ (x−x0). (2.1)

Here, c̃ is the non-dimensional effective sound speed which includes the effects of both

temperature and crosswind. Given measured vertical temperature T (y) and crosswind U0(y)
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profiles, the effective sound speed is defined in a standard manner to be

c̃(y) =

√
γRT (y)+U0(y)

C0
,

where γ is the ratio of specific heats and R the ideal gas constant. The boundary conditions

imposed are a far-field Sommerfield radiation condition as r =
√

x2 + y2 becomes large,

which takes the form

∂ pc

∂ r
− i

ω

c̃
pc = o(r−1/2) and pc = O(r−1/2) as r→ ∞, (2.2)

and an impedance boundary condition at the surface

− 1
iω

∂ pc

∂y
=

1
Z

pc at y = 0. (2.3)

Throughout this paper, the empirical impedance model of Delany and Bazley Delany and

Bazley 1970 is used where, for a ground surface with flow resistivity σ [Pa s m−2], the

impedance Z is given by

Z = 1+0.0511
(

σ

f

)0.75

+ i 0.0768
(

σ

f

)0.73

. (2.4)

Two models are used in tandem to compute the far-field sound propagation: (i) a

near-field analytic Green’s function solution assuming a homogeneous atmosphere and (ii)

a parabolic equation approximation. Figure 3 shows the regions of the x-y domain where

each model is used.

The near-field Green’s function solution Chandler-Wilde and Hothersall 1995 is

used to obtain the acoustic field in the vicinity of the line source where the refractive effects

of atmospheric factors are assumed to be negligible. In other words, the Green’s function

solution assumes a constant effective sound speed c̃ = 1 and solves (2.1) to (2.3) with this
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Figure 3: A schematic of the coupled models used to resolve the far-field propagation of
traffic noise from a freeway corridor. The filled circles represent monofrequency coherent
effective line sources above the centerline of the nearest lane of traffic. A Green’s function
method is utilized both to determine virtual source heights and strengths from the sound
meter data and also to initialize the sound field along the vertical dashed line at the edge of
the pavement. A parabolic equation model then marches this input pressure field across the
domain, handling each frequency component separately.

assumption up to the edge of the highway, at 6.7m (22ft), obtaining the sound field

pc(x,y;y0)

S
= − i

4
H(1)

0 (ω
√

x2 +(y− y0)2)

− i
4

H(1)
0 (ω

√
x2 +(y+ y0)2)

+PZ(x,y;y0), (2.5)

where H(1)
0 is the zeroth order Hankel function of the first kind, and the term PZ(x,y;y0)

represents the correction to the hard-wall solution for Z finite. This correction is derived by
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Chandler-Wilde and Hothersall 1995 and is given in terms of

λ = ω

√
x2 +(y+ y0)2,

γ = (y+ y0)/
√

x2 +(y+ y0)2,

a+ = 1+
γ

Z
−
(
1−Z−2)1/2 (

1− γ
2)1/2

,

with the result

PZ(x,y;y0) =
eiλ

πZ
√

λ

∫
∞

0
s−1/2 e−s g(s/λ )ds

+
eiλ (1−a+)

2
√

Z2−1
erfc(e−iπ/4

√
λa+)

where

g(t) = −
[
Z−1 + γ(1+ it)

]
(t−2i)1/2 [t2−2i(1+ γ/Z)t− (Z−1 + γ)2]

− e−iπ/4√a+
2(1−Z−2)1/2(t− ia+)

.

The first integral expression is calculated using Gauss-Laguerre Quadrature and the second

surface wave term (due to its strong exponential decay away from the ground) is evaluated

using the formula given in Attenborough K. Attenborough 2002. We assume over the

near-field calculation that the ground impedance is typically of porous asphalt with

σ = 3×107Pa s m−2, which is given in Table 4.9 of Attenborough, Li, and Horoshenkov

2007.

The near-field Green’s function solution provides an acoustic field at the edge of the

freeway pini(y) = pc(xedge,y), which is subsequently used as an initial condition for a

two-dimensional cartesian variant of the standard axisymmetric parabolic equation (PE)

model, first derived by Gilbert and White Gilbert and White 1989.

The PE model used is the parabolic wide-angle approximation of (2.1) assuming a

two-dimensional line source. The pressure field is rewritten as pc(x,y) = ψ(x,y)eiωx and
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ψ(x,y) is obtained by solving the equation

∂ψ

∂x
+

1
4ω2

[
1
c̃2

∂

∂y

(
c̃2 ∂ 2ψ

∂y∂x

)
+ω

2
(

1
c̃2 −1

)
∂ψ

∂x

]
=

i
2ω

[
1
c̃2

∂

∂y

(
c̃2 ∂ψ

∂y

)
+ω

2
(

1
c̃2 −1

)
ψ

]
. (2.6)

The equation (2.6) and the impedance boundary condition (2.3) are finite-differenced and

the solution is obtained by marching forward in the x direction. Sandy soil is taken to be the

ground surface type beyond the freeway with σ = 4×105Pa s m−2 and we assume the

ground to be completely flat to concentrate strictly on atmospheric effects in this study.

The radiation condition (2.2) is dealt with numerically by a buffer zone West,

Gilbert, and Sack 1992; E. M. Salomons 1998; Robertson, Seigmann, and Jacobson 1995

occupying approximately the upper one third (100m) of the grid domain, yatt < y < ymax,

where the effective sound speed c̃ in (2.6) is replaced by

c̄(y) = c̃(y)

[
1+ iA

(
y− yatt

ymax− yatt

)3
]−1

.

Here, A is a real parameter that can be optimised for each frequency component. To ensure

the effectiveness of the buffer zone, the initial pressure profile obtained from the near-field

Green’s function method pini(y) must also be smoothly reduced to zero within the buffer

zone to prevent spurious reflections from the truncated top of the grid domain. Thus,

ψ(xedge,y) = pini exp

(
−Bω2

2

(
y− yatt

ymax− yatt

)2

− iωxedge

)

where 1 6 B 6 4 is another optimised parameter dependent on frequency.

Effects of atmospheric absorption are additionally incorporated following the

method outlined in E. Salomons 2001 (section B.5) by applying an attenuation rate

dependent on the local humidity, temperature and atmospheric pressure in dB m−1 to each

frequency band at 1m agl before summing to form the Leq versus range plots (figures 9, 11
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and 13). This method follows the International Standard ISO 9613-1:1993(E). The

attenuation rate used here is based a relative humidity of 20%, which is typical for the city

of Phoenix, and the temperature profiles obtained from the measurements taken. The

pressure in the absorption calculation is assumed to be 101.325kPa.

2.4 Chosen Test Cases and Modelling Parameters

Based on the large amount of meteorological and sound data collected, three test

cases are presented here for long-scale sound transmission modeling. To exclusively

illustrate the strong dependence of acoustic properties on environmental conditions, the

main focus will be on one site (Rt. 202). Temperature and crosswind profiles above 40

metres are obtained from the SODAR/RASS measurements in 10 meter increments,

whereas data at lower altitudes is gleaned from the sonic anemometers. The meteorological

profiles are time-averaged over a period of 20 minutes. To obtain the surface-layer velocity

profile for an unstable convective boundary layer (below 60m), theoretical curves of the

Monin-Obukhov (MO) stability theory are fitted to the sonic data. The MO theory suggests

that near the ground both vertical temperature and velocity gradients have the form

∂ ζ̄

∂y
∼ A

ζ̄

(
1−B

ζ̄
y
)2/3

y−4/3 for ζ̄ =U0(y), T (y). (2.7)

where A
ζ̄

and B
ζ̄

are parameters fitted to the data Stull 1988. Since ∂ ζ̄

∂y diverges like y−4/3

as y→ 0, the chosen temperature profile is made linear near the ground so that

T (y)∼ Ay+B and the velocity takes instead a standard logarithmic form,

U0(y)∼ A log(z/z∗), where z∗ is the aerodynamic roughness length. Above 60m the

theoretical curve smoothly transitions into the SODAR-RASS data. If the useful range of

data from the SODAR-RASS is less than 300m, the theoretical curve is held constant at the

last entry from the SODAR-RASS. Measurements and theoretical profiles for the three
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Figure 4: Temperature and crosswind (to the freeway) data with fitted theoretical profiles
for the three cases. All data points above 20 m are given by the SODAR-RASS with lower
height information obtained from the sonic anemometers as shown in the legend.

chosen cases are shown in figure 4. The following representative cases were selected for

study:

A Nov 7th 2006 (Rt 202) 11am - wind shear at very high altitudes but little temperature

stratification. Note that in this case, the SODAR-RASS data was usable up to 250 m

compared with 200 m in the other cases.

B Nov 7th 2006 (Rt 202) 8am - significant stratification and shear flow.
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Figure 5: The difference in overall A-weighted sound level on 11 October 2006, measured
between the sound meter located 15.2 m (50 ft) from the center of the nearest lane of traffic
at a height of 1.5 m (5 ft) and the sound meter located 30.5 m (100 ft) from the center of the
nearest lane of traffic at a height of 1.5 m (5 ft). The triangles merely display an indication
of the traffic conditions at the time (either free flowing, slow moving or intermediate). A
decrease of 3 dB with a doubling of distance corresponds to what is expected for a line
source as Pline ∼ r−1 in a neutral atmosphere.

C Nov 8th 2006 (Rt 202) 8am - strongly stratified with a sharp change in temperature at

approx 120m above the ground and a crosswind jet at approximately 50m above the

ground.

2.5 Analysis of Traffic Spectra Taken by Noise Meters

The overall acoustic source field we are attempting to replicate consists of a six-lane

highway (three lanes in each direction) with multiple moving sound sources that vary
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Figure 6: (a) Virtual source heights for the three cases obtained by minimising an error
norm based on dB differences between sound meters. (b) Measured dBA minus the dBA
obtained from the Green’s function solution for each virtual line source at the three sound
meter locations. Circles show measured minus computed dBA for the meter at location 1,
diamonds for the meter at location 2 and crosses for the meter at location 3.
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Figure 7: Virtual source strengths for the three cases obtained by minimising an error norm
based on dB differences between sound meters.

according to their speed, traffic density and vehicular type. Without knowledge of the exact

acoustic signature of every car and truck, a number of severe but unavoidable assumptions

need to be made about the nature of the sound sources. We emphasise here that the focus of

this paper is on the meteorological aspect of noise transmission from freeways as opposed

to understanding the composition of sound sources emitted.

Our sound data consists of five-minute time-averaged 1/3rd octave data from three

sound meters placed close to the highway. We have no information about the sound

generated from separate lanes of traffic or the frequency output of different vehicle types

traveling at different speeds. Hence, the principal aim of our model noise source must be to

generate a representative sound field that matches the three sound meter measurements
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taken at the site. Figure 5 shows the difference between the five-minute averaged dBA level

taken from the sound meter at 1.5m (5ft) above the ground and located 15.2m (50ft) away

from the center of the nearest travel lane and the sound meter at 1.5m (5ft) above the

ground and located 30.5m (100ft) away from the center of the nearest travel lane. This

clearly shows a geometric attenuation of 3dB as the distance from the source doubles,

providing some justification to the assumption that the freeway can be treated as series of

line sources. We assume that this holds true for the entire study domain.

For the purpose of our model, the traffic noise is approximated as a series of

monofrequency coherent line sources positioned vertically above the center of the nearest

travel lane (see figure 3). The strength and effective height of these virtual sources are

unknowns that are determined by replicating as closely as possible the 1/3rd octave data

obtained from the three closest sound meters. As the sound meters are positioned relatively

close to the source, the influence of meteorological conditions is regarded as negligible over

the range up to the furthest sound meter, and a neutral atmosphere is therefore assumed in

the near field. This enables the unknown line source parameters to be determined by using

the Green’s function model for acoustic propagation from a line source above an impedance

plane as detailed in section 2.3. As mentioned before, the flow resistivities chosen are

σ = 3×107Pa s m−2 for the asphalt and σ = 4×105Pa s m−2 for the sandy soil where, for

the loop 202 experimental site (figure 2), the surface is assumed to be asphalt out to a range

of 6.7m (22ft) from the virtual line sources with sandy soil beyond, as shown in Figure 3.

Repeating the calculation for other flow resistivities suggests that neither representating the

asphalt as a hard wall (Z = ∞) nor varying the sandy soil flow resistivity between 2×102 to

6×105 Pa s m−2 change the results significantly.

For a given 1/3rd octave interval, the height of a representative line source can be

calculated by accurately trying to replicate the differences between the dBA values recorded

37



by the three sound meters. This is done by varying the source height to minimise the sum of

the absolute errors between the differences obtained by the Green’s function model in the

meter locations and the actual measured differences. However, this can lead to unrealistic

virtual source heights and so an additional height penalty is also imposed. A norm based on

this premise can be obtained by defining ∆M f
i j to be the dBA difference actually recorded at

frequency band f between meter locations i and j (as numbered in section 2.2) and

∆G f
i j(H) to be the dBA difference obtained between meter locations i and j from a virtual

monofrequency coherent line source at frequency f and at height H above the surface. Our

virtual source height H is then determined by minimising

∑
i 6= j,i< j

∣∣∣∆M f
i j−∆G f

i j(H)
∣∣∣+3H.

where the term 3H represents the additional height penalty mentioned above. Once the

height is determined, the source strength can be obtained by averaging the source strengths

required to reproduce the three meter readings. The source heights calculated for each

frequency band in Cases A-C are plotted in Figure 6(a) and Figure 6(b) shows for all three

cases the difference between the dBA measured at each sound meter and that determined

from the virtual source obtained through the optimisation process described above. Observe

that the virtual line sources replicate the measured sound field accurately, to well within

1dBA error for most frequencies and meter readings. Note additionally that there is

generally very good agreement on the source heights obtained in each case for all

frequencies (using data taken on different days at different times) although three obvious

exceptions are the significant virtual source height differences for the 1kHz, 1.25kHz and

2kHz components between Case A and the other cases. We point out, however, that local

norm minima are obtained for Case A at approximately the same heights as the virtual

heights obtained for the two other cases but these are not optimal with the chosen norm.

Other small discrepancies in figure 6(b) for the lower frequencies can be explained as the

38



dBA difference errors do not vary that much with height due to the large wavelengths so

that variations of source height do not significantly alter spatially the sound field generated.

Perhaps in fact the most problematic difficulty in selecting source height here occurs around

400 to 500 Hz range where the norm error at small heights takes unacceptably high values

(possibly 7 dB) but only approaches zero again at source heights of well over 2m or so.

This can be observed in the increase in measured minus computed errors at around 400Hz

and providing some justification for imposing a height penalty.

Following the determination of source heights, it is relatively straightforward to use

the Green’s function near-field model to obtain the A-weighted source strengths and these

are shown for Cases A-C in figure 7. Note the good agreement in the source strength profile

across the frequency ranges 63Hz to 2.5kHz for the three cases. The sound signature is

almost identical for Cases B and C, both taken at the same time during rush hour on

consecutive days, whereas Case A has lower sound levels particularly in the 100−160Hz

and 630Hz to 1.6kHz bands, possibly due to the lower traffic levels occuring in the late

morning.

2.6 Construction of Leq Plots

In each chosen case, the model is run for each frequency component, based on the

central frequency of the 1/3rd octave band, with and without the influence of

meteorological effects for comparison. For efficiency, the frequency range of the

computation is reduced from spanning the entire range of 25Hz to 20kHz to only include

those bands between 63Hz and 2.5kHz (17 components in all). Such a restriction produces

an error of less than 0.2% in terms of the final overall sound pressure level when compared

to the actual values measured by the sound meters.
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The spatial A-weighted sound pressure level distribution for each frequency

component is resolved by the PE model on a grid of size and spacing dependent on the

wavelength (based on a usual ten grid points per wavelength). These results are

subsequently interpolated onto a grid of one metre spacing with a range of 0−600m

horizontally and 0−300m vertically. Then at each grid point the A-weighted frequency

contributions LA( fn)(x,y) are combined to produce the overall Leq sound pressure level by

the formula

Leq = 10log10

17

∑
n=1

10LA( fn)/10,

with

fn =


63, 80, 100, 125, 160, 200,

250, 315, 400, 500, 630, 800,

1000, 1250, 1600, 2000, 2500

 .

Results of the spatial sound pressure levels are presented in figures 8 and 9 for Case

A, figures 10 and 11 for Case B, and figures 12 and 13 for Case C. For each case, figures 8,

10 and 12 show a contour plot of the equivalent spatial sound field obtained in a neutral

atmosphere directly above the contour plot of the resolved spatial sound field when the

temperature and crosswind velocity effects are included. Note that the downwind side of the

freeway is always shown and the vertical range displayed is only up to 20m in height agl. It

is clear from these figures that the overall impact of the meteorological effects is significant

in all three cases examined. Indeed, significantly higher noise levels are predicted near the

ground downwind for all cases. For guidance, FHWA’s noise abatement criteria threshold of

67 dBA is shown as a thick contour line on the spatial contour plots of Leq (figures 8, 10

and 12). Furthermore, on the range plots (the top plot in figures 9, 11 and 13), the shaded

area also represents sound pressure levels exceeding the 67dBA threshold. Below each case

is examined in more detail.
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Figure 8: Case A: A-weighted sound pressure level contours without meteorological effects
(top) and with meteorological effects (bottom). The effect of atmospheric absorption is not
included here. Each contour line represents a change of 3 dBA. The bold contour represents
the 67 dBA level.
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Figure 9: Case A: Overall A-weighted sound pressure level (SPL) and the SPL of each
frequency component at a height of 1 meter above the ground. The top figure shows the
SPL for neutral conditions (bold blue dotted line), with meteorological effects but without
atmospheric absorption (bold black dotted line) and with both meteorological effects and
with atmospheric absorption (bold black solid line and frequency bands). The shaded area
in the top figure represents the region where the SPL range exceeds the 67 dBA threshold.
The bottom figure shows contours of A-weighted sound pressure level with meteorological
effects for each frequency component at an altitude of 1 meter neglecting atmospheric
absorption. Each contour line represents a change of 3 dBA.
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Figure 10: Same caption as for figure 8, but for case B.
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Figure 11: Same caption as for figure 9, but for Case B.
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Figure 12: Same caption as for figures 8 and 10, but for Case C.
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Figure 13: Same caption as for figures 9 and 11, but for Case C.
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The meteorological effects are weakest for Case A with little temperature

stratification and a crosswind of the order of 2ms−1 persisting from about 30 metres to

around 150 metres in altitude. However, figure 8 clearly shows how the crosswind shear

flow present up to 30 metres above the surface focuses sound into a thin layer of 3-5 metres

in height, where the sound intensity is raised by roughly 10-15 dB. As a result, the sound

level close to the ground does not fall below 67 dBA until a horizontal distance of

approximately 220m from the freeway is reached, as opposed to approximately 110m

predicted for a neutral atmosphere (see figure 9). A close examination of the impact of the

meteorological effects on individual frequency components (figure 9 bottom) reveals that

the frequency bands 200-250Hz and 1kHz to 2.5kHz remain the most intense out to the

far-field.

Case B occured during rush-hour traffic on Loop 202 with a stronger wind shear

from the ground attaining a crosswind speed 6ms−1 at 60 metres in height. More severe

temperature gradients can be observed, with the temperature falling 5 degrees with

increasing altitude before rising back to its ground level value at an altitude of 100 m. The

competition between the near-ground negative temperature gradient and positive wind shear

means that overall near-ground sound levels drop more rapidly than they would in neutral

atmospheric conditions over the first 150 metres or so from the freeway. However, the

refractive effects due to wind shear and to the presence of a temperature inversion at higher

altitudes lead to sound rays being refracted back towards the ground from above and sound

focussing at around 550m from the freeway. Indeed, figures 10 and 11 indicate that the

A-weighted sound pressure level starts to exceed the 67 dBA threshold close to the ground

at a range of 500 metres before continuing to exceed 67 dBA almost up to the edge of the

calculation domain. It would appear that the frequency range 800Hz to 1.6kHz is

particularly influenced and focussed most intensely by the combination of wind shear and
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temperature gradients (see bottom of figure 11) although all frequency ranges appear to be

subject to some degree of near-ground focussing at the 500m range. It is especially

interesting to note that the most intensely focused frequency range components appear, in

fact, to fall to perceptively low sound levels (below 40dBA) in the range 200m - 400m from

the freeway. The spatial contours in figure 10 thus strongly suggest that this case could be a

typical example of excessive sound levels occuring far from the freeway which are unlikely

to be abated by the use of a sound barrier.

Case C is also taken during rush-hour traffic and has the more severely altering

meteorological profiles, being strongly stratified and having a crosswind jet peaking at

4ms−1 at a height of 50 m above the ground. Figures 12 to 13 show a concentration of

sound rays and pockets of constructive and destructive interference between the rays in a

roughly 5-6m wide layer close to the ground, particularly beyond the 300m range. As a

result, the effect of the wind shear with only a mild negative temperature gradient close to

the ground leads to the near-ground sound pressure level persisting in excess of the 67 dBA

threshold up to almost 350 metres from the freeway. Once again the dominant frequencies

responsible appear to be 1 kHz and 1.25 kHz with other neighbouring frequencies also

being strongly influenced by the meteorological conditions.

2.7 Conclusions/Further Comments

This work represents a combined experimental and theoretical study on the impact

of meteorological conditions on the propagation of traffic noise from a freeway corridor.

Clear indications from the results obtained are that traffic noise models used to judge the

environmental noise impact on nearby communities must incorporate the usual or expected

meteorological conditions that occur in that geographical location. This is of particular

48



importance for the case of ARFC that motivated this study, wherein the reduction of the

effectiveness of the pavement with use is deduced via measurements made over certain time

periods of different years. Without corrections for the effects of meteorology, the validity of

such assessments is highly questionable unless only the near field data is utilized. It should

also be added that some of the atmospheric effects observed in this paper appear to offer the

possibility of rendering traditional mitagation techniques, such as noise walls, ineffective.

However, this would not occur with strategies based on controlling the traffic noise at

source, by developing quiet pavement materials such as ARFC for instance.

The combined Green’s function and PE model has shown its capabilities in taking

meteorological data and near-field sound measurements to generate a spatial map of

predicted noise levels. The model also enables analysis of individual frequency components

(e.g. as in Figure 9 for Case A), and there is a some indication in this study that the

frequency range 1kHz to 1.6kHz is the most significantly influenced by meteorological

conditions and thus provides the principal contribution to far-field traffic noise levels;

however, this requires experimental confirmation. If such further evidence arises, mitigation

strategies targeting this frequency band would be the most effective in preventing excessive

noise levels at large distances from the freeway corridor.
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Chapter 3

INCORPORATING TERRAIN AND VERTICAL WALLS INTO A FREEWAY NOISE

PROPAGATION MODEL

Material from this chapter is published in:

Arizona Dept. of Transportation, Final Report: Project ID - R060518P (JPA 06-014T), SPR

605-2, S.R. Shaffer, H.J.S. Fernando and N.C. Ovenden (2012). “Investigations of

environmental effects on freeway acoustics”.

A generalized terrain PE (GTPE) model for sound propagation in an atmosphere

bounded by non-uniform terrain is presented, following the work of R. Sack and M. West

1995. Simplified terrain cases without meteorological effects are presented to illustrate the

capabilities of the new model with emphasis on effects of terrain. The GTPE model is

extended by deriving a reflection scheme for PE-type models based upon the normal

impedance ground boundary condition to account for two-way propagation. Thus this new

model enables the study of backscatter from vertical terrain features in addition to the

forward propagation of traffic noise in settings with complex terrain. Future model

developments will extend the reflection scheme to terrain features with arbitrary angles.

Future possibilities also include coupling the sound model with flow calculation software to

determine the flow response to terrain and the sound field response to perturbed flow, along

with model evaluation with field and lab experiments.
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3.1 Introduction

Typical results of PE modeling have only been one-way calculations ignoring

backscatter from terrain features. We have derived a simple method for calculating the

back-reflected field using the normal impedance boundary condition and the first order PE

approximation. Utilizing the reflected component in a reverse running calculation and

iterating over several subsequent back reflections, a more representative prediction for the

effects of terrain features of various impedances and geometries on the 2D sound field from

a line source can be made. Furthermore, the relevent meteorological parameters of

temperature and flow velocity can be incorporated into the model via the 2D scaler field of

an effective sound speed either through prediction with numerical techniques or derived

from field experiment measurements. Thus this new model enables assessment of the sound

field under both varying terrain boundary conditions and the additional influence from the

response of the meteorological field to the varying terrain through the effective sound speed.

The organization of this chapter is as follows. The GTPE and reflection model is

presented in Section 3.2 with the terrain following transformation and boundary condition

given in Section 3.2.1. A derivation of our vertical terrain backscatter approximation is

given in Section 3.2.2. We then present several model validation and application

experiments to demonstrate the model capabilities in Section 3.3. A discussion and

conclusions follow in Section 3.4with future directions proposed in Section 3.5.Note that

some figure numbers and references of this preliminary draft are still in a format using

roman numerals, the reader is cautioned to not be confused by this.
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3.2 GTPE and Reflection Model

We follow the development presented in Sack and West (1995) for the General

Terrain Parabolic Equation (GTPE) model and apply it to a Gaussian hill, an escarpment

with and without a wall, and to a symmetric canyon treating the reflection from a theoretical

wall placed atop the escarpment. In general, it is desirable to determine the back-reflected

field at all points in the range, but a first approximation can be made by only considering

the reflection from vertical boundaries. This can then be enhanced to account for

boundaries tilted slightly from vertical, and also for general terrain boundaries. In this

report we only show results for reflection from vertical barriers.

It is desirable to determine the back-reflected field at all points in the range, but a

first approximation can be made by only considering the reflection from vertical boundaries.

This can then be enhanced to account for boundaries tilted slightly from vertical, and also

for general terrain boundaries. The methods will be derived in this order. We begin with the

simplest case in Section 3.2.2 where we will show the derivation for backscatter from a

perfectly vertical wall or terrain obstacle with complex impedance Z. We then propose a

method to account for terrain with small variations from vertical and then for backscatter

from a general smooth terrain. Future considerations could explore constraints on the

smoothness of H and comparison of diffraction calculations for non-continuous H ′ and

with analytical ray-based approaches Robertson 1999.

3.2.1 Terrain Following Coordinates and Boundary Conditions

The (x,z) Cartesian coordinate system is transformed into terrain-following

eta-coordinates defined here by ξ = x and η = z−H(x), where the terrain height above
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some reference datum is given by the function H(x). The core of our method is to apply the

normal impedance boundary condition (eqn 24 of R. Sack and M. West 1995)

∂~nψ =
∂ψ

∂~n
=−ik0β̂ψ, (3.1)

for an appropriate representation of the normal derivative ∂n̂. The ground normal vector,~n

is away from the ground, β̂ = ρ0cZ−1 is the complex admittance defined in terms of a

reference fluid density ρ0, characteristic sound speed c and representative complex ground

impedance Z, which can be represented in terms of the frequency of interest and an

effective flow resistivity representative of the ground materials Attenborough, Li, and

Horoshenkov 2007; Delany and Bazley 1970. The complex velocity potential, ψ = ϕeik0ξ

is written in terms of a complex modulator ϕ multiplied by an exponential carrier term with

reference wavenumber k0 and horizontal coordinate ξ . In general, the outward normal

derivative ∂~n to a slope at an angle δ from vertical is defined in transformed coordinates by,

∂~n =−(sinδ )−1
∂η − (cosδ )∂ξ . (3.2)

3.2.2 Vertical Terrain Backscatter

We begin with the simplest case for a vertical wall and set δ = 0 at the postion of

the wall, ξ = ξw, so equation 3.2 becomes,

∂~n =−∂ξ . (3.3)

We now should write the total field as the sum of the left and right traveling components,

ψ =←−ψ +−→ψ . Upon substitution of equation 3.3 into equation 3.1 we have,

∂ξ (
←−
ψ +−→ψ ) = ik0ρ0cZ−1

w (←−ψ +−→ψ ) at ξ = ξw, (3.4)
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as the boundary condition for the total field on the face of the vertical obstacle (wall) with

surface impedance Zw. Next, the wavenumber for the left (right) traveling components are

written as
←−
k0 =−k0 (

−→
k0 = k0). Separating the left from the right components, we arrive at,

[
ik0ρ0cZ−1

w + ik0w−∂ξ

]←−
ϕ = exp(2ik0wξw)

[
∂ξ + ik0w− ik0ρ0cZ−1

w
]−→

ϕ , (3.5)

where k0w and Zw are the wavenumber and complex impedance at the face of the wall.

The next key step to our method uses equations 10-12 from Sack and West 1995 for

the first-order or narrow angle PE operator. Written here in the notation of the left-traveling

component as,

∂ξ

←−
ϕ =

−i
2k0

←−
L 1[
←−
ϕ ]. (3.6)

Where the left traveling first order (narrow angle) PE operator
←−
L 1, is defined in general

(without direction) as,

L1[ϕ] = (1+(H ′)2)∂ηηϕ− (H ′′−2ik0H ′)∂ηϕ + k2
0w− k2

0. (3.7)

For a vertical wall, we assume nearly flat terrain in front of the discontinuity and set

limξ→ξw H ′ = H ′′ = 0 to obtain the approximation (for the left traveling component),

←−
L (v)

1 [←−ϕ ]≈ ∂ηη
←−
ϕ + k2

0w− k2
0, (3.8)

where the superscript (v) is used to denote the L1 operator for the vertical terrain case.

3.2.3 Nearly Vertical Terrain Backscatter

The motivation for a nearly vertical approximation would be to allow application to

fascade features for a wall which only varies slightly from vertical and typically less than

grid resolution δ ∼ λ/10, without the need for modifying the resolution or making
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assumptions about varying the impedance value. This enhancement is made by applying a

small angle approximation to equation 3.2 resulting in,

∂

∂~n
≈
(

6δ−1

δ 2−6

)
∂

∂η
−
(

1− δ 2

2

)
∂

∂ξ
. (3.9)

Which, with the same approximation used in equation 3.8 gives a model equation simalar to

equation 3.5 viz,

[(
6δ−1

δ 2−6

)
∂

∂η
−
(

1− δ 2

2

)(
ik+ i

−2k0

←−
L (v)

1

)
+ ik0

Z0

]←−
ϕ

= e2ikξ

[(
−6δ−1

δ 2−6

)
∂

∂η
+
(

1− δ 2

2

)(
ik+ ∂

∂ξ

)
− ik0

Z0

]−→
ϕ . (3.10)

3.3 GTPE Model Test Cases

The general domain configuration used in these test cases was a 300 meter high by

300 meter in range grid with 10 points per wavelength for several frequency bands. The

only case with a different range was the symmetric canyon, which is the same as for the

escarpment with barrier and symmetric about the origin but not extending beyond the

barriers. For all but the reflected field case in Section 3.3.4, a road section of width 6.7

meters using the one parameter ground impedance model of Delany and Bazley (1970) with

a flow resistivity representative of asphalt σ = 3 x 107 Pa s m−2 (Attenborough 2007). This

was used in conjunction with a Green’s function solution for an infinite line source above an

impedance plane to obtain the starting complex pressure field at the edge of the road in a

manner identical to Ovenden et al. (2009). For the remainder of the domain, the ground

flow resistivity value was changed to 4 x 105 Pa s m−2, which is a value representative of

hard sandy soil. The flow resistivity model variable can be vectorized to enable variations

with range, but the creation of artificial diffraction at impedance discontinuities within the
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PE model needs to be explored. The terrain function was also constrained to vary smoothly

after the edge of the road to avoid artificial diffraction. In all cases, an attenuating layer was

placed at the top third of the PE model domain to eliminate numerically reflected waves.

The source heights and frequencies are described for each case.

3.3.1 Gaussian hill

Owing to smoothness constraints to minimize possible artificial diffraction at terrain

discontinuities when the function is discretized onto the computational grid, we chose to

use a Gaussian profile over the sine-squared profile used in Sack and West (1995). We also

significantly scaled down the domain size in comparison, yet the results are qualitatively

similar.

3.3.1.1 Model and Domain Setup

The terrain function used for this case is,

H(x) = 40e−((x−206)/50)2
[m],

giving a hill of 50 m half-width centered at 206 m in range ( 200 m from the edge of the

pavement) with a height of 40 m. The source height was placed at 5 m AGL with a source

strength of S=1 since log10(1)=0, so that the output SPL field would then be attenuation

with respect to the source. However, there is a shift in the results shown by -20 dB in the

terrain case and +52 dB in the flat comparison (which can be revised as appropriate). The

meteorological fields were held constant with T = 25◦C and U=0 m s-1 giving a neutral

atmosphere. This case was run for a set of 17 frequency bands listed in figure 14.
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Figure 14: Terrain profile used for the Gaussian hill case along with parameters of the setup
configuration. The set of frequencies for which output was created are also given.

3.3.1.2 Model Results

Shown in (Fig. 15) and (Fig. 16) are the cases for no terrain and with terrain,

respectively. In (Fig. 16), the terrain following transformation has been inverted to give

display, and so the black region at the top was above the computational grid and the brown

region is the ground below the computational grid. Regions of white contours are below the

minimum contour level. The attenuating layer is visible most notably above 250 m in

height, and this is the reason that contours above 200 meters in height are diminished. Note

that high angles in the PE and GTPE models lose accuracy. Observe the region of

constructive and destructive interference on the near side of the hill, the diffraction pattern

from the top of the hill and down range and the acoustic shadow region down range. Shown

in (Fig. 17) (top) is a zoom in the lowest 60 m height showing the detail of the sound field
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Figure 15: Flat terrain comparison for 63 Hz, T = 25◦C and U=0 m s−1 for the entire
domain.

near the terrain. Also shown in (Fig. 17) (bottom) is an attenuation versus range plot at 2 m

AGL, comparing sound levels in range against the value at 50 m in range. The dotted curve

is the case with terrain and the dashed curve is without for evaluation of the terrain effect.

Shown in (Fig. 18) are results for 7 of the 17 frequency bands computed, showing how each

frequency responds to the terrain. Since the model is to be extended accounting for

meteorological profiles, a useful nondimensionalization is difficult to define, though for the

neutral case one might explore nondimensionalization based on the wavelength. We do not

pursue this aspect.
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Figure 16: Gaussian hill results for 63 Hz, T = 25◦C and U=0 m s−1 for the entire domain.
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Figure 17: Gaussian hill results for 63 Hz zoomed to the lowest 60 m (top) and attenuation
versus range at 2 m AGL (bottom) for the flat comparison (dashed) and with terrain (dotted).
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Figure 18: Gaussian hill attenuation with respect to 50 m range at 2 m AGL for select
frequencies.
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3.3.1.3 Comparison to Literature Benchmarks

Figure 19: From R. Sack and M. West 1995 Figure 7 showing the terrain comparison given
by Eq. 3.11 showing qualitative agreement with Figure 16.

Figure 20: From R. Sack and M. West 1995 Figure 6 showing attenuation at 2 m AGL
relative to 100 m from source for geometric attenuation (solid smooth) GTPE results for
their terrain case (solid wiggly) using Maekawa barrier diffraction approximation (dashed).

For comparison with the Gaussian hill, we present the results from Sack and West
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(1995). The terrain function used in their work is,

H(x) = {
acos2

[
πxtop

W

(
1− x

xtop

)]
, W

2 ≤ x≤W = 1[km]

0 , elsewhere
, (3.11)

where the hill height a = 200 m, the width W = 1 km and the center xtop = 1 km. They use a

50 Hz source at 2 m height with U=0 and T=constant. Reproduced in (Fig. 19) is Figure 7

from their work showing the resultant sound field for this case. Comparing the qualitative

features with those in (Fig. 16) indicates good agreement.

3.3.2 Escarpment

To explore a terrain configuration similar to a highway canyon, a smooth

escarpment was chosen. Note that we still use a scale much different from the actual cases

to show the general effect of including terrain.

3.3.2.1 Model and Domain Setup

The terrain function used in this case is,

H(x) = .5A
(

tanh(
x− xc

W
)+1

)
, (3.12)

where A = 10 m scales the height of the escarpment, xc = 30+7 m shifts the center of the

feature by 30 m plus accounting for the Green’s function domain of 6.7 m (and rounding

up), while the slope angle is controlled by varying W, which is set to 20 m in this case. The

other model parameters are identical to the case outlined in Section 3.3.1, namely U = 0 m

s−1 and T = 25◦C, S = 1 and has a height of 1 m.
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3.3.2.2 Model Results

Figure 21: GTPE output for right propagating field from a 63 Hz line source of unit strength
at coordinate (0,1) [m] with zero wind and uniform temperature (25 °C) interpolated onto a
1m grid.

The PE starter field is computed with a Green’s function solution initialized at 6.7 m

from the line source with a ground porosity representative of asphalt transitioning to hard

sandy soil in the PE domain (σ = 3×107 and 4×105 Pa s m−2). The escarpment is

defined by equation 3.12.The dimensions of the escarpment were chosen to be quite large to

demonstrate the effects of terrain as a first step. A large set of values will be tested in the

future. Shown in (Fig. 21) are the contours representing the attenuation from the source,

shown in increments of -3dB normalized based upon the PE starting field. The brown

shaded region represents ground, and along with the black shaded region, are cells outside

of the computational domain. Similar to results from Section II.C.1, the diffraction pattern
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from the slope along with the constructive and destructive interference patterns on the near

side are quite evident. Also present is an acoustic shadow region on top of the escarpment.

Contour levels of -3dB are the attenuation one expects from geometrical spreading

of a line source when doubling distance in a neutral atmosphere. As in figure 16, regions

outside the computational domain are shaded black (above) and brown (ground) and white

regions represent values below the minimum contour level. The Green’s function starting

field is present out to 6.7 m and the exponentially attenuating layer above 200 m is evident

beyond 6.7 m.
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3.3.3 Escarpment With Barrier

To explore the effects of placing a wall in the domain, we placed a perfectly

absorbing wall by setting the forward pressure field to zero at the wall position. This allows

determining the absolute best effect that placing such a wall would have on attenuating the

sound field on the far side of the barrier.

3.3.3.1 Model and Domain Setup

The model configuration is the same as for Section 3.3.2 with a wall at the top of the

escarpment. Keep in mind that the large scale used in the terrain configuration is intended

to demonstrate the effects of the terrain. The wall was placed at xw = 170 meters with a

height Hw = 25 meters. The height was chosen to knock out the first diffracted constructive

lobe pattern. The pressure field at the wall position was set to zero to obtain the best

theoretical wall possible.

3.3.3.2 Model Results

The effects of placing a wall are evident in figure 22 in contrast to not having a

barrier.
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Figure 22: (Top) Same configuration as for (Fig. 21) with the additional inclusion of a 25 m
high barrier with zero transmission placed 170 m from the source position. The pressures
were set to zero “within” the barrier of single computational-cell width for the continuation
of the PE marching loop. (Middle) The terrain profile is in meters (Bottom). The sound
pressure level at 1 meter above ground level versus range.
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3.3.4 Symmetric Canyon with Barrier and Reflected Field

The complex pressure field which was incident on the wall in Section 3.3.3was used

in equation 3.5to compute a reflected field for the left traveling component of the total field.

For this purpose, the impedance was set such that the barrier would be partially reflecting

by setting σw = 105 Pa s m−2.

3.3.4.1 Model and Domain Setup

The domain is identical to Section 3.3.3, only symmetric about the origin extending

from -170 m to 170m, from the source. There was no change in the ground impedance to

represent crossing the asphalt section as we want to focus on the reflected field in this

neutral case. The starting pressure field for the GTPE model was calculated using the

reflected field in equation 3.8 to the top of the wall, and set to zero above the wall to the top

of the domain.

3.3.4.2 Model Results

For the left running GTPE calculation, we reverse the x coordinate and show the

reflected field as starting at x = -170 m and propagating to the right, shown as attenuation

relative to the initial starting field (from (Fig. 22)) in (Fig. 23). Since the outline of the

contours is quite jagged, the contour filling patching algorithm could not properly render

the image; thus only the contour levels without solid fill are shown. The reflected field

initially decreases in intensity as the waves spread, but then begins to increase in intensity

on the far side of the canyon as reflected waves superimpose constructively to refocus the
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Figure 23: Same as for (Fig. 22), only showing the reflected field by reflecting the x-axis
and applying the right traveling GTPE model to the starting field reflected from the barrier.
Contours levels without filling due to irregular boundaries are shown. Note that the ground
impedance remains that of hard sandy soil and does not account for the asphalt section from
the starting field of (Fig. 22). The start and end position of the middle panel is bounded
by the reflecting barriers and is symmetric about the origin. The attenuation of the bottom
panel is with respect to the original starting field of (Fig. 22) and is for 1 m AGL.
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acoustic energy. The net effect results in less than 10 dB attenuation to the symmetrically

opposite side of the canyon (seen in the bottom of figure II.10), where at the midpoint of the

canyon nearly 30 dB of attenuation along with periodic destructive interference drops, or

quiet zones, was achieved. Subsequent reflections, resulting in reverberation of the sound

field due to two walls in a symmetric canyon, could be calculated to determine if this trend

continues with each echo.

3.4 Discussion and Conclusions

The performance of the GTPE code was demonstrated for a general Gaussian terrain

bump and compared against expectations for similar terrain from Sack and West (1995). A

second numerical terrain profile test case was created for a symmetric recessed canyon both

with and without vertical walls placed at the top of an escarpment. Owing to smoothness

constraints on the terrain function H(x) and to eliminate artificial numerical diffraction from

discontinuities in H’(x), the shape of the canyon is generated with a hyperbolic tangent

function (see (Fig. 22) and (Fig. 23) middle panel). A routine to determine the reflected

pressure wave field from vertically oriented terrain features (e.g. noise barrier walls) was

derived from the normal impedance boundary condition and incorporated into the model.

Several cases were then run both without and with barriers atop the escarpment for the 63

Hz band. In the case with a barrier, the reflected field was then calculated back to a

symmetrically opposing barrier. Calculating multiple reflections is now possible but first the

single reflection needs to be validated. Issues were encountered using the contourf routine

in Matlab, which are believed to be due to the patch algorithm that has difficulties with the

irregular contour morphology. Thus, simple contour plots without solid level set filling are

presented for the reflected field. Additionally, range plots at 1 meter AGL are generated for

71



all cases. It is difficult to justify summing the incident and reflected fields because the path

lengths vary, and so the phase of each wave will be difficult to account for when computing

their sum. Instead, the reflected field should be used as a guideline for understanding the

intensity of the reflected field, and presented separately from the incident field. A worst

case could then be constructed by summing the magnitudes of the two fields, accounting for

phase by distance along the ground from the source, including reflected distances.

3.5 Future Work

In the review of Li, Franke, and Liu 1993, a method was proposed for determining

the analytical prediction of sound field over a terrain with a Gaussian shaped hill in the

presence of a uniform or linearly varying sound speed profile. The method substitutes a

Green’s function solution for the field from a line source into the Helmholtz-Kirchoff

integral equation yielding an exact closed form solution. This method could be extended for

the hyperbolic tangent terrain profile without barrier for comparison with the neutral cases

presented herein. Literature was reviewed to find methods for benchmark comparisons and

calculations of diffraction from simple terrain features. Some potentially useful

publications include Gauvreau et al. 2002; Robertson 1999; Rasmussen 1985; Bowman,

Senior, and Uslenghi 1987.

Additionally, a formulation was derived for calculating the backscattered field from

terrain with arbitrary angle and for barriers with facades tilted slightly from vertical. The

formulation is similar to that derived for vertical barrier reflection, resulting from

combining the first order parabolic equation operator with the normal impedance ground

boundary condition of Sack and West 1995. A numerical implementation has been outlined

and will soon be implemented. Computational fluid dynamics software such as FLUENT or
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WRF-LES could be utilized for generating simulated input meteorological fields for the

case of flow over fine terrain features.
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Chapter 4

SIMULATING METEOROLOGICAL PROFILES TO STUDY NOISE PROPAGATION

FROM FREEWAYS

Accepted for publication in: Applied Acoustics,

S.R. Shaffer; N.C. Ovenden; H.J.S. Fernando; M. Moustaoui; A. Mahalov (Accepted, Oct.

2014).

The capability of vertical nesting in version 3.2 of the Weather Research and

Forecasting model (ARW-WRF) is utilized for studies in highway noise pollution. The

ARW-WRF is used to produce a limited area forecast with 1 kilometer horizontal resolution

and near-ground vertical resolution finer than 20 meters for input into a sound propagation

model to produce forecasts of noise pollution from a highway line segment noise source. It

is shown that vertical nesting can improve the prediction of finer structures in near-ground

temperature and velocity profiles, such as morning temperature inversions and low level

jet-like features. Accurate representation of these features is shown to be important to

modeling sound refraction phenomena and for enabling accurate noise assessment.

Comparisons are made with parabolic equation model predictions using profiles derived

from field experiment observations [Ovenden et al. J. Acoust. Soc. Am. 126(1):25-35

(2009)] during mornings on November 7 and 8, 2006 in Phoenix, Arizona.
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4.1 Introduction

Since early work of Reynolds Reynolds 1875a, 1875b, the importance of

atmospheric structure on sound propagation is well recognisedEmbleton 1996; E. Salomons

2001. In a previous study(Ovenden, Shaffer, and Fernando 2009), hereafter OSF09, the

effects of measured near-ground profiles of temperature and wind speed on sound

propagation from a highway noise source were quantified and a high sensitivity to

temperature and wind profiles was found. For this reason it is desirable to accurately

replicate temperature and wind velocity profiles in sound propagation models using either

careful measurements or detailed simulations. Simulations are applicable for future

situations as a forecast (derived from observations of an initial state at the current time or a

future state based on models of global change), or for previous situations using either

hind-casting (derived from observations of an initial state at a previous time) or reanalysis

(hind-casting combined with periodic assimilation of in-situ data). Obviously, in combining

the meteorological model with an acoustic model, the mode of forecasting requires

additional modeling/forecasting of the acoustic sources which is not considered here.

OSF09 used a few surface measurements coupled to Monin-Obukhov similarity

theory (MOST) to derive near-surface meteorological profilesStull 1988. However, the

appropriateness of such approaches to settings with varying terrain and land-cover must be

viewed with caution because the theory is only suitable for flat horizontally homogeneous

terrain and land-cover. Furthermore, stable conditions can lead to decoupling of the surface

layer from dynamics aloft which can host rich complexity including intrusions, low level

jets or katabatic/adabatic valley flows typical of cities set within mountainous

terrain(Fernando 2010; Whiteman 2000). The inadequacy of Monin-Obukhov scaling in the
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presence of a katabatic jet has been discussed previously as well as for flat terrain stable

flowsSun et al. 2012.

A second criticism of assuming MOST for sound propagation is that it is applicable

only for mean profiles and hence will not capture transient atmospheric events that may

influence sound propagation even from steady sources leading to strong fluctuations in

sound levels at far field locations. Such transient atmospheric events have been reported in

cities such as Salt Lake City, UtahBanta et al. 2004 and Phoenix, ArizonaFernando 2010,

where morningLee et al. 2003; Shaw, Doran, and Coulter 2005 and eveningBrazel et al.

2005 transitions occur during frequent high pressure/weak synoptic forcing. Similarly,

coastal cities, especially with adjoining mountains such as in California, have added

influences of marine intrusions in the local dirunal circulation patternsZaremba and Carroll

1999; Bao et al. 2008.

There have been scarce previous studies where real regional-scale meteorological

conditions are simulated for use in near-ground acoustic models for noise pollution. Most

notably, Hole and HaugeHole and Hauge 2003 predicted the influence on transmission loss

of a 100 Hz source due to a temperature inversion breakup during low wind conditions.

They derived vertical profiles using the Fifth-Generation NCAR / Penn State Mesoscale

Model (MM5)(Grell, Dudhia, and Stauffer 1994) model, where their highest resolution

domain had a 500 m horizontal grid spacing with 31 vertical levels, 6 of which being below

100 m above ground level (AGL). In the same paper, the authors explored special

considerations for the influence of topographic shading on the surface energy budget and

concluded that doing so improved prediction of temperature profiles in comparison with

balloon-tethersonde observations. Such an improvement potentially makes such model

applications for sound predictions more reliable. Other efforts focus on large-eddy
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resolving scales (horizontal length scales less than 500 m) and are beyond the scope of the

present manuscriptLihoreau et al. 2006.

In this paper, we employ the Weather Research and Forecasting (WRF) model, a

software framework developed and currently maintained by the National Center for

Atmospheric Research (NCAR)Michalakes et al. 2004; Skamarock and Klemp 2008, which

is a successor to the MM5 model mentioned above. Like MM5, WRF makes use of

horizontal nesting, which is a method of grid refinement wherein a child domain with

increased horizontal resolution derives initial and lateral boundary conditions from a parent

domain, thus making it possible to study detailed phenomena within a limited area without

the computational expense of running all nests at the higher resolutionSkamarock et al.

2008. Moreover, since the release of version 3.2 in April 2010, the Advanced Research core

of WRF (ARW) has the added capability of refining the vertical grid resolution within a

child domain. Doing so has demonstrated the ability to resolve dynamics not present in the

coarser simulations, thus more closely predicting observations for phenomena within the

upper troposphere and lower stratosphereAlex Mahalov and Mohamed Moustaoui 2009;

A. Mahalov and M. Moustaoui 2010; Mahalov, Moustaoui, and Grubišić 2011.

In this study, we examine the degree to which the refractive effects of actual

measured wind and temperature profile can be represented by utilizing vertical nesting

within ARW-WRF V3.2, in contrast to unrefined simulations, for deriving profiles below

400 m AGL. Such an investigation then enables us to judge how useful such models might

be in assessing environmental noise impact from near-ground sources. A baseline

configuration of WRF is used to derive vertical profiles of temperature and velocity to be

used in an acoustic propagation model described in our previous paperOvenden, Shaffer,

and Fernando 2009. Field experiment data and subsequent results from the original paper

are then used to evaluate the simulation improvements. We perform a reanalysis of the
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meteorological conditions for the November 2006 Arizona Department of Transportation

(ADOT) field experiment using a 1 km horizontal grid as the finest domain. Diffraction and

reflection effects from buildings are not incorporated into our models since they are not

present in the meteorological code nor in the vicinity of the highway section of field

experiments.

4.2 Acoustic Model

The same acoustic model is used in this paper as that presented in our previous

workOvenden, Shaffer, and Fernando 2009, but using sound speed profiles derived from

WRF simulations rather than observations. A brief description of the model is provided

here. The two-dimensional vertical plane transverse to the highway is divided into two

sub-domains: a near-field domain where refractive effects are ignored, and a far-field

domain beyond. The traffic noise is represented by 17 monofrequency coherent line sources,

with each frequency representing a standard one-third octave band. Within the near-field

domain where a homogeneous atmosphere is assumed, a Green’s function solution adapted

from the work of Chandler-Wilde and HothersallChandler-Wilde and Hothersall 1995 for a

line source above a horizontal plane of spatially varying acoustic impedance is used. The

Green’s function solution is solved to obtain a vertical profile of the acoustic pressure field

at the edge of the roadway. The same virtual line source strengths and positions as derived

in our previous paperOvenden, Shaffer, and Fernando 2009 were applied for each case.

The acoustic pressure profile is then used as the starting field for a wide-angle

parabolic equation (PE) model that incorporates a varying vertical effective sound speed

profileGilbert and White 1989; West, Gilbert, and Sack 1992. This sound speed profile used

in the PE model is derived from profiles of the wind component in the direction of
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propagation, U‖(z), and the potential temperature T (z) in Kelvin. The

effective-sound-speed profile is then given by,

Ceff(z) =
√

γRT (z)+U‖(z), (4.1)

where γ is the ratio of specific heats, and R is the gas constant. The first term in Equation

4.1 is the adiabatic sound speed, Cad, and the second term accounts for motion of the

medium in the direction of propagation. A key assumption within the PE model is that the

medium is stationary, which this form of Ceff enables. Within the PE model, a

Crank-Nicholson scheme is used to march the starting acoustic field horizontally out to the

far-field and an exponentially attenuating layer at the top third of the domain, combined

with the Sommerfeld radiation conditionWest, Gilbert, and Sack 1992; K. Attenborough

2002; E. M. Salomons 1998, is applied to prevent artificial numerically reflected waves.

The ground boundary condition is represented by the Delany and Bazley impedance

modelDelany and Bazley 1970 with flow resistivities representative of asphalt (σ = 3×107

Pa s m−2) for the near-field ray domain, and hard sandy soil (σ = 4×105 Pa s m−2) for the

PE domain. The PE model is run for each single one-third octave band. Stability and

accuracy of the PE model requires 10 points per wavelength, so high frequencies become

costly to compute. However, only 17 bands are needed since each frequency’s contribution

to the sound pressure level is A-weightedOvenden, Shaffer, and Fernando 2009. Acoustic

model output for each frequency band is then interpolated onto a uniform 0.25 m by 0.25 m

grid and summed in the usual fashion to obtain an overall A-weighted sound pressure level.
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Observational Periods
Case Date Local Time (MST) Remarks on Profiles

A 7 Nov 2006 1040 to 1100 Shear aloft, little stratification
B 7 Nov 2006 0740 to 0800 Shear , stratified
C 8 Nov 2006 0740 to 0800 Shear and cross-wind jet, stratified

Table 1: Specific cases used from OSF09. Note: MST=UTC-7 and the sunrise/set times for
these dates was 0653/1730 MST. See timeline in Figure 1c.

4.3 WRF Numerical Experiment

4.3.1 Study Domain of Coupled Acoustic Model

The vertical profiles derived from the WRF simulation were evaluated against those

taken during the previous field experiments on freeway noise propagation during morning

transitionOvenden, Shaffer, and Fernando 2009 conducted during the morning hours of

November 7 and 8, 2006 along the Phoenix Loop 202 highway in Mesa, Arizona near

coordinates 33.48240◦N, 111.76338◦W; the exact location is highlighted in Figure 2

(discussed in Section 4.3.3). Instruments deployed included microphones, SOund Detection

And Ranging (SODAR) with Radio Acoustic Sounding System (RASS), and sonic

anemometers positioned on one meteorological tower and two tripods. Three cases in the

observational dataset were selected in the previous paper because they exemplified varying

levels of shear and stratification and these are specified in Table 1. The measured wind and

temperature profiles obtained in these cases are compared here to profiles computed using

WRF in terms of their impact on long-range noise propagation.
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4.3.2 WRF Model Configuration

As noted previously, for applications such as highway acoustics studies, we seek to

produce vertical profiles of temperature and horizontal velocity in the lowest 400 m above

ground with resolution sufficient to contain salient features necessary for deriving

representative acoustic fields. Towards this goal, we use nested simulations with initial

resolutions finer than what is typically used for real-time forecasting. The benefit of using a

new method of vertical refinement of a child domain, described below, is investigated here.

Such refinement is adopted as opposed to increasing near-surface resolution because

increasing near-surface resolution adds extra model levels to all domains. Four telescoping

nested domains, shown in Figure 1a and Figure 1b, centered near Phoenix Arizona, at

coordinates 33.45 ◦N, 112.074 ◦W, with horizontal grid resolutions of 27, 9, 3 and 1 km

were used. The model top is set to 50 mbar (≈20 km MSL).

The vertical coordinate used in ARW-WRF is based on terrain-following

hydrostatic-pressure and levels are non-uniformly distributed, being more closely spaced

near the model bottom and top. We test refinement of vertical resolution applied for the

fourth nest which has 1 km horizontal resolution, from a modest 27 initial vertical levels

(domain d04) to 81 (domain d04R). One-way vertical refinement is achieved with the WRF

program ndown.exe for a vertical refinement factor of 3, which subdivides each initial

vertical level spacing while satisfying smoothness of pressureAlex Mahalov and

Mohamed Moustaoui 2009. The schematic in Figure 1c illustrates how the refined nest

derives lateral boundary conditions from hourly output of the 3 km domain, and was also

nested in time by 12 h to allow sufficient spin-up of the parent domains (Skamarock 2004).

An unrefined 1 km nested domain was used as a control, being initialized in a similar

fashion except it had the vertical refinement factor set to 1.
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The simulations are for a 66 h period, initialized using the 1° 6 h Final Operational

Global Analysis (FNL) data product from the National Center for Environmental Prediction

(NCEP)NCEP beginning at 06:00 UTC on November 6th 2006, as shown in the timeline

schematic in Figure 1c. This allows a 20 h spin-up time before the first observational period

(OP-1) of the field experiment for the refined nest, which is nested in time by 12 h from the

model initialization of the outer three domains. Two-way feedback was used between the

first three nests, which were run in concurrent mode. Hourly output was recorded for the

entire period, with 5 min output for the 3 km and 1 km domains. The first domain used a

135 s timestep and a parent-to-child timestep ratio of 1:3 was used for all except the 1 km

domain, where increased resolution necessitated a 4 s timestep due to Courant number

stability constraints Skamarock et al. 2008. The 4 s timestep was also used in the control

domain.

All of the model parameterizations were held fixed to the following settings.

Physical processes involving moisture were modeled using the WRF single-moment

microphysics 3-class scheme (Hong, Dudhia, and Chen 2004). Standard radiation schemes

of (RRTM) long-wave (Mlawer et al. 1997) and Dudhia short-wave (Dudhia 1989) were

called every 9, 3, 1 and 1 min for domains d01 through d04, respectively. The Kain-Fritsch

cumulus parameterization for unresolved convective processes (Kain 2004) was used only

for the outer domain, being called every 5 min. We use 5th (3rd) order horizontal (vertical)

advection methods. The split-step scheme uses 4 acoustic timesteps per model timestep for

each domain(Wicker and Skamarock 2002; Klemp, Skamarock, and Dudhia 2007). The

base temperature was set to 300 K and the non-hydrostatic option was used with no vertical

damping imposed.

The geographic land-use classifications and terrain elevations were obtained from

the U.S. Geological Survey (USGS) 24-category 30° resolution data supplied with the
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standard WRF Preprocessing System (WPS) V3.2. The legacy MM5 5-layer thermal

diffusion land surface model(Grell, Dudhia, and Stauffer 1994) was employed to represent

ground temperature response to solar forcing. The coupling between the ground and the

atmosphere was parameterized by the MM5 surface layer similarity scheme, which is a

form of MOST applied to the first model level, and is connected to the Yonsei University

planetary boundary layer (YSU-PBL) scheme(Hong, Noh, and Dudhia 2006). The YSU

PBL scheme is a non-local method of turbulence closure and handles the vertical mixing

due to unresolved eddies. Horizontally, a 2nd-order diffusion parametrization for turbulence

and mixing and a horizontal Smagorinsky 1st order closure scheme are implemented to

account for subgrid processes.
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Figure 24: Schematic of WRF Model Domain: (a) Map of terrain height km MSL showing
outer perimeter of 4 telescoping nests centered on Phoenix, Arizona. (b) Schematic of
nesting by staggered horizontal grid index with nest label d0X, X=1-4, and horizontal
grid spacing in km. (c) Schematic of nesting feedback, parent data source, method of
nesting and refinement of vertical levels, with corresponding timeline schematic for each
nest depicting lateral boundary update and nest initialization times along with observational
periods (shaded).
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4.3.3 WRF Profile Selection and Coupling With Acoustic Model

Figure 25: Google Earth image (circa 6/2006) near approximate site location (diamond)
and ensemble of WRF Arakawa-C grid cell center locations used in analysis for 3 km (d03,
circle), and 1 km (d04, squares; d04R, triangles) horizontal resolution domains.

The ARW-WRF model uses an Arakawa-C grid where scalar variables are at grid

cell centers, and vector variable components are on a staggered grid at cell faces. Scalars

(e.g. temperature), and horizontal vector components, are at the half-mass level (hereafter

level), one-half of the full-mass level (around 60 m for 27 vertical levels). Values at grid

centers are interpreted as representative of the cell volume average. Thus, unstaggered
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velocities at the grid centers are obtained by a simple arithmetic average between adjacent

cell faces.

Shown in Figure 2 are the WRF computational domain non-staggered Arakawa-C

grid (cell center) coordinates for the 3 and 1 km domains in the neighborhood of the

observational site location used in our analysis. These coordinates are overlaid on a

historical Google Earth image to illustrate the land use for the study area near the date of

the study. Based upon these grid locations and with the highway running primarily

East-West, profiles of potential temperature and the V velocity component (positive to

north) are extracted to generate the input Ceff(z) profiles used in the PE model for

propagation transverse to the highway. As the field experiment in our previous

paperOvenden, Shaffer, and Fernando 2009 typically measured crosswinds from the North

and examined downwind impacts, we will look here also at propagation downwind only.

In constructing profiles for the acoustic model, we examine each location in

latitude-longitude and time separately. Doing so enables us to check for phase offsets in the

timing or localization of phenomena such as low-level jet-like features. In order to directly

compare the profiles derived from WRF with the 20 min time-averaged profiles from

experimental observationsOvenden, Shaffer, and Fernando 2009, an ensemble of

representative profiles from the model domain near the observational site was built by using

model output at 5 min intervals during the 20 min observational period on the de-staggered

1 km grid points close to the site, as shown in Figure 2. This is intended to capture both the

mean profile shape and to estimate variance in the derived profiles.

Profiles are derived using the geopotential height, given by,

z =
φ

g
−h, (4.2)

where the height above ground level, z, is related to the surface elevation h, gravitational
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acceleration g = 9.81 m s−2, and the geopotential, φ . The model-level temperature values

were obtained by,

T = θ

(
P
P0

)R/cp

, (4.3)

where θ = θ ′+ θ̄ is potential temperature with base value θ̄ = 300 K, and prognostic

perturbation value θ ′. P is total atmospheric pressure, P0 = 105 Pa is a reference pressure,

and R/cp is the ratio of the gas constant, R = 8.3144 J mol−1 K−1, to the specific heat at

constant pressure for dry air, cp = 29.07 J mol−1 K−1.

The WRF model considers the surface layer as a constant-flux layer linking the

land-surface and the first model level, employing similarity theory to obtain diagnostic

quantities based upon surface fluxesKlemp, Skamarock, and Dudhia 2007. To allow a fair

comparison with the previous method to derive profiles between measurements near-surface

and aloftOvenden, Shaffer, and Fernando 2009, we likewise combine the WRF diagnostic 2

m temperature, T2, and diagnostic 10 m northward wind velocity component, V10, with

model level values. The near-ground theoretical wind and temperature profiles, along with

prognostic model-level values, are then interpolated for input into the acoustic model using

a monotonic cubic spline to a 0.25 m resolution below 10 m and a 2 m resolution above.

The acoustic model then subsequently interpolates further for each frequency band to the

requisite grid spacing of ten-points per wavelength.

The temperature profile is constructed by holding the value below 2 m constant at

T2, and a linear fit is used to interpolate from 2 m to the lowest model level, z1. A

near-ground logarithmic wind profile was constructed (Stull 1988) of the form,

V (z) = sgn(V0)
u∗

κ
log
(

z
z0

)
+V0, (4.4)

with V0 based on either V (z1), or V10, depending on the position of the first level z1 in the

simulation via the following rule:
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if z1 < 15 [m] V0 =V (z1) , z0 = z1

else V0 =V10 , z0 = 10 [m].

Here, κ = 0.4 is the Von Karman constant, u∗ the friction velocity, z0 represents the surface

model roughness length, and sgn(V0) =V0/|V0| ensures that the profile is in the correct

direction. Since log(zsfc/z0) diverges as zsfc→ 0, we restrict derived velocity profiles from

reversing direction near the ground. This restriction is achieved by setting V (z̃) = 0 for

0≤ z̃≤ z010−|V0|κ/u∗ .
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Figure 26: Ensemble of derived WRF profiles of temperature (left column), velocity
component parallel to propagation direction (middle column), and effective sound speed
(right column), for OSF09 case A (top row), case B (middle row), and case C (bottom row).
Shown are curves for domains d03 (red), d04 (cyan), and d04R (blue), at the beginning of
the respective observational period at closest site location, and mean (white dashed) with
±1 standard deviation (shaded) for the ensemble over all 5-minute output times at locations
shown in Figure 2 during each case. The green circles and triangles are SODAR-RASS and
sonic anemometer observations, respectively, with the black curves being the respective
OSF09 theoretical profiles derived from observations.
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4.4 Methods of Analysis of Acoustic Model Predictions

The spectral components for each one-third octave frequency band fn, are defined

by,

LA, fn(x,z) = 10log10(.5|p(x,z)|2)+20log10 S0, fn, (4.5)

for acoustic pressure p(x,z) with a virtual source strength given by S0, fn . Since the

observed values used within the optimization procedure described in our previous

workOvenden, Shaffer, and Fernando 2009 were A-weighted, so will be the source

strengths and resultant spectral components. The LA, fn results for all frequency bands are

then interpolated onto a uniform grid (which here has a spacing of .25 m) and combined to

obtain the A-weighted sound pressure level (SPL) given by,

Leq = 10log10

17

∑
n=1

10LA, fn/10, (4.6)

for the 17 standard one-third octave bands between 63 Hz and 2500 Hz, inclusive.

For a quantative analysis of the influence of different effective sound speed profiles

Ceff, j, we examine the relative SPL with respect to the point x0 = 50 m range at z = 1 m

AGL, defined for an ensemble of profiles indexed by j as,

∆L j(x,z = 1) = Leq, j(x,z = 1)−Leq, j(x = x0,z = 1). (4.7)

Furthermore, PE results for equivalent stationary homogeneous (non-refracting) atmosphere

cases, wherein the vertical profiles of crosswind velocity and temperature are set to zero and

the ground value, respectively, are used to correct for each ensemble member having

different baseline sound speeds. For non-refracting cases the Leq value decays due to

geometrical spreading proportional to inverse distance, Leq ∝ x−1, for a line source. The

equivalent relative SPL in the non-refracting atmospheric case (superscript N) can be
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written as,

∆LN = a(x−1− x−1
0 ). (4.8)

The coefficient, a, will only depend upon the ground-level sound speed (or reference

Helmholtz number) for each non-refracting case, which is explicitly denoted by a = a(C0, j).

Thus, the non-refracting case relative SPL between an ensemble member (subscript j) with

respect to an arbitrary reference ensemble member (subscript r), are related by,

∆LN
r

∆LN
j
=

a(C0,r)

a(C0, j)
. (4.9)

This non-refracting case relationship enables a fair direct comparison of the relative SPL for

an ensemble member, subscript j, with respect to an arbitrary reference member, r, viz,

∆L j,r =
∆LN

r

∆LN
j

∆L j, (4.10)

arising from PE model predictions using different input Ceff, j profiles.

4.5 Results

4.5.1 Influence of Horizontal and Vertical Nest Resolution on Simulated Meteorological

Profile Features

Firstly we present the vertical profiles of temperature (T ), wind component parallel

with propagation direction (U‖ =−V ), and effective sound speed (Ceff), derived from WRF

and used for input into the acoustic model. These profiles are shown in Figure 3 for OSF09

cases A, B and C, with main features distinguishing observed profile cases summarized in

Table 1. The instantaneous profile at the first time of WRF output during the 20 min interval

at the nearest horizontal grid location (see Figure 2), which will be employed in later
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OSF T U V |UH | Ceff ∆L
case d0X ◦C m s−2 m s−2 m s−2 m s−2 dB(A)
A 3 2.4 6.7 2.3 5.8 3.6 -
A 4 3.3 4.2 1.9 4.0 1.0 4.6
A 4R 3.9 3.0 2.8 2.6 1.1 5.5
B 3 4.1 6.4 1.8 4.9 2.6 -
B 4 3.5 4.6 1.6 3.3 2.9 9.9
B 4R 2.7 1.9 1.5 0.9 2.7 7.9
C 3 3.6 2.5 3.9 2.5 2.3 -
C 4 3.1 3.0 5.0 2.4 3.7 10.7
C 4R 3.4 3.5 3.1 4.2 1.8 4.6

Table 2: RMSE values of profiles for T , V (= −U‖), and Ceff, shown in Figure 3, using
interpolated profiles at 10 m AGL and between 40 m and 190 m AGL at 10 m increments
(valid SODAR-RASS levels for all cases), between observations and ensemble mean for each
domain, grouped by OSF09 meteorological case. Also for Eastward velocity component
(U) and horizontal wind magnitude (|UH |). For relative SPL (∆L) using the ensemble mean
of curves shown in Figure 10 over the entire 600 m range.

examples of acoustic model output, is also shown for each of the domains d03, d04 and

d04R.

Additionally, the ensemble spreads (±1 standard deviation) are shown in Figure 3

as shaded regions for each domain, where the ensemble consists of all 5 min output of

instantaneous realizations at profile locations indicated in Figure 2 during the 20 min

interval. Each ensemble represents the same spatial and temporal footprint between the

different resolution simulation domains, and enables evaluation of spatial and temporal

phase errors for a given ensemble member with respect to a representative mean profile

within the site neighborhood during the observation period. For comparison, 20 min

averaged SODAR-RASS and sonic anemometer observed data obtained from the original

experimentsOvenden, Shaffer, and Fernando 2009 are also plotted, along with the OSF09

theoretical curves.
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Root-mean square errors (RMSE)Willmott et al. 1985 were derived between each

ensemble mean profile and the corresponding OSF09 profile, by interpolating to 10 m

height and 10 m increments from 40 m height to 190 m height (limit of SODAR

observations), which are summarized in Table 2. Also given in Table 2 are the RMSE

values at these same heights for the U velocity component (positive to east) which is

perpendicular to the PE model propagation direction and so is not used within the Ceff

profile, and horizontal wind magnitude |Uh|= (U2 +V 2)1/2. These additional terms enable

assessing for wind direction errors within the entire profile, when RMSE for |Uh| is smaller

than for each component.

Case A in Figure 3 (top), at 1040 MST (3 h after sunrise), observations show that an

unstable layer has formed in the lowest 300 m, with wind shear only present above 150 m.

An underprediction bias for all domains is present in predicted temperature, with a 2.4 ◦C

RMSE at 3 km, and larger for the 1 km domains. The V-component winds were

underpredicted in the 3 km simulation but overpredicted at 1 km resolution up to the

observed shear layer at 150 m, with no corresponding increase in predicted wind speed

above 150 m. Meanwhile, horizontal wind magnitude error was reduced at 1 km compared

to 3 km resolution, and further reduced by vertical refinement. Also, d04R wind component

RMSE values indicate a direction bias. The bias error in constituent terms of Ceff partially

cancel when constructing profiles, which show reduced RMSE for both 1 km domains

compared to 3 km.

For case B in Figure 3 (middle), observations indicate a temperature inversion,

warming by nearly 7 ◦C from 60 m to 160 m AGL, also with a warm surface creating an

unstable layer up to ≈ 100 m AGL. Wind shear is also present in the same height range,

with U‖ rising to 6 m s−1 at 100 m AGL. The diagnostic 2 m values are all within 2 ◦C of

observations, and better represented at 1 km than at 3 km. However, the lowest prognostic
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values all have considerable error below 100 m AGL, failing to capture the observed

temperature inversion.

For all domains, the observed temperature variations for the lowest RASS range

gates are not well reproduced, with overprediction bias of ≈ 4.5 ◦C at 50 m AGL for d04R,

and increasing bias for coarser resolution domains. Furthermore, the presence of any

near-ground temperature inversion in the derived profiles for the unrefined domains is due

to the fit between T2 and T (z1), which could change with bias in either component. The

vertically refined profiles, however, indicate an inversion but not at the same height or

magnitude as in observations, and only with the lowest few model levels.

Agreement for U‖ between WRF and observed profiles is not encouraging. The

d04R U‖ profile has closest agreement with observations, showing a gradual shear, whereas

U‖ derived from d04 has a kink where the profile interpolated from the 10 m value meets

the first model level. The U‖ RMSE values are comparable for all domains, being between

1.5-1.8 m s−1. The RMSE values also indicate directional errors, where d04R performed

best in terms of both reduced errors for wind components and wind speed. However, these

profiles combine to produce an incorrect Ceff profile below 100 m AGL for all domains.

Case C in Figure 3 (bottom) seems to yield the worst reproduced simulated profiles.

The temperature in case C seems quite well reproduced only between 150-210 m AGL for

both the unrefined 1 km and 3 km domains. Yet, observations indicate a nearly 6 ◦C

temperature change within the 30 m just below this height, which is not captured at all by

the model. The modeled 2 m values are within 1 ◦C, but then the model exhibits a low

inversion of 4 ◦C over 50 m, then a more gradual inversion of 2-3 ◦C over the next 150 m,

rather than being unstable for the first 140 m followed the aforementioned strong inversion.

The observations of U‖ indicate a 4.5 m s−1 jet with local maxima near a height of 50 m.

However, all domains indicate flow in the opposite direction for this velocity component,
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with a weak -1 m s−1 local maxima in d04R near this height, whereas d04 indicates a local

maxima nearly -3 m s−1 at 200 m AGL. Furthermore, the observations indicate a reversing

of direction above 200 m, coincident with the temperature inversion height range, with

speeds approaching -4 m s−1 at the limit of the SODAR profile.

4.5.2 Influence of Increasing Vertical Resolution of Meteorological Simulation on

Predicted Freeway Noise Propagation

While the analysis of simulating meteorological profiles considered model grid cells

in the observational site neighborhood for a stencil with side of 3 km, at each 5 min output

during the 20 min period, we now restrict to just the model grid cell containing the site

location for each output time. One ensemble member of each meteorological case is shown

for the LA, fn and Leq plots, and the entire ensemble is shown for the ∆L plots. The acoustic

model results presented here use the same acoustic source heights and strengths and same

propagation model as for the respective cases in OSF09, but the vertical effective sound

speed, Ceff, is now obtained from the WRF derived profiles for the unrefined and refined 4th

WRF domain discussed above (Figure 3). Comparisons are made with the propagation

results obtained using experimentally observed profilesOvenden, Shaffer, and Fernando

2009. No atmospheric absorption has been applied to these results.

Individual spectral contributions to SPL at 1 m above the ground versus range,

LA, fn(x,z = 1m), following Equation 4.5, are shown in Figure 4 to Figure 6. With the the

total SPL against range and vertical height up to 50 m AGL, Leq(x,z), following Equation

4.6, shown in Figure 7 to Figure 9. The noise abatement criteria threshold value of 67 dBA

is emphasized by a change from red to blue contours. The relative SPL, ∆L, following

Equation 4.10, is shown in Figure 10 for each case A-C. RMSE results for ∆L are also given
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in Table 2 for the entire 600 m range between observations and ensemble mean of 1 km

domain predictions without and with vertical refinement.

4.5.2.1 Case A

In case A, since the temperature profiles for the 4th domains are similar, the main

differences in outcome will be produced by variations between the velocity profiles. The

refined domain’s wind profile is somewhat stronger with more shear near the ground. This

aspect in the Ceff profile leads to ducting close to the ground, most apparent at 500 Hz and

above, with multiple loud and quiet interference extrema at the 1 m analysis height.

The Leq in this case fits the experimental observations more closely, and remains

above 67 dBA close to the ground up to a range of approximately 300 m, similar to case A

in our previous workOvenden, Shaffer, and Fernando 2009. It is unclear if the upward

refracting behavior above 150 m in Ceff, which is not as pronounced as in the unrefined

domain, leads to the reduction in Leq beyond 300 m. Whereas the weaker shear, yet still

slightly downward refracting Ceff for the unrefined domain, leads to sound focussing around

500 m range. Here, levels exceed 67 dBA, mostly due to contributions from the octave

bands between 100-250 Hz, and above 1 kHz.

The aforementioned role of refinement is also manifested within the ∆L. The

unrefined domain’s values decay with range to a minimum around 300 m range at 12 dBA

below 50 m range, before returning to just 5 dBA loss at 600 m range. However, the refined

domain displays an irregular and more gradual decay, yet still at a faster rate than for the

observed profile. Yet, the RMSE statistic indicates that overall, the unrefined domain

performed with nearly 1 dBA reduced error over the refined domain.
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4.5.2.2 Case B

For case B, the near-ground shear and inversion were both seen to contribute to

downward refraction within the Ceff profiles for each domain below 100 m AGL. Based

upon standard deviations of ensemble means, there is little difference between Ceff profiles

for these domains. However, We interpret the resultant near-ground acoustic field

differences as being due to the inter-domain Ceff variations below 100 m AGL between

specific ensemble members. In particular, the fit to the lowest model level in d04R (at ≈ 10

m AGL), provides a stronger low-level wind shear than within d04, and creates stronger

near-ground ducting of sound, with 500-1000 Hz bands again remaining dominant to larger

ranges as in Case A. There is then a more gradual increase in the d04R Ceff profile up to

≈ 100 m AGL. Whereas, the Ceff for d04 peaks near the first model level (≈30 m), with a

similar gradient, but more elevated and sustained than in d04R.

These Ceff features leads to a near-ground quiet zone centered just after 300 m range

before the SPL rises to well above 67 dBA. While this larger scale ducting continues to 600

m range, a smaller scale ducting closer to the ground is apparent in frequencies above 500

Hz after the first near-ground maxima. The decreasing proximity of maxima for higher

frequencies supports an interference effect from the ducting by the Ceff gradient.

Meanwhile, frequency-dependent ground impedance would tend to differentially attenuate

the reflected wave amplitude by frequency band, emphasizing the importance of the ground

impedance model.

The ∆L for d04 shows that the locations of near-ground maxima are sensitive to the

ensemble-member variability, while the higher frequency ducting beyond 300 m range is

responsible for the spread in ∆L between ensemble members. Indeed, the unrefined sound

field has two near ground constructive maxima in SPL in the first 600 m from the source
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whereas the original results based on experimental observations only produces one focusing

just before 600 m. The less severe shear and lack of any strong inversion in d04R produces

down range ∆L similar to that observed in case A, with 2 dBA better overall RMSE

compared to d04.

4.5.2.3 Case C

For case C, all of the WRF-derived T profiles indicate downward refraction below

70 m AGL, whereas U‖ would cause upward refraction, aside from d04R from 70-130 m

AGL. These aspects combine within Ceff indicating that below 30 m AGL, both d04 and

d04R refract downwards, with d04R having a much stronger gradient in Ceff in the lowest

10 m AGL. Suggesting that the method to interpolate between near-ground and first model

level values, along with any bias in either value, plays a significant role. From 30 m AGL to

around 100 m AGL, Ceff profiles indicate that d04 will refract upward whilst d04R refracts

downward. The observed profiles, however, show that the wind speed should be causing

substantial downward refraction below 50 m, whereas, the unstable temperature profile

below 130 m AGL would cause upward refraction below 50 m AGL and otherwise be

non-refracting. This scenario is reversed aloft with a second ducting region apparent in Ceff

between 50-150 m AGL. Here, the strong temperature inversion causes downward refraction

from above, and the upper half of a low-level jet causes upward refraction from below.

The spectra and ∆L both indicate near-ground ducting, but with much more gradual

refraction than previous cases, having large spacing between near-ground maxima. Ducting

within d04R maintains the near-ground SPL above 73 dBA out to 550 m from the source.

Whereas d04 exhibits a quiet zone at all frequencies above 250 Hz, with the Leq spatial map

indicating a likely second near-ground maxima will occur beyond the PE model’s range.
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All frequencies contribute to the increased SPL within d04R, with bands above 630 Hz

exhibiting two near-ground focusing maxima with just under 300 m spacing at 1 m AGL.

The Leq plot indicates that spacing of maxima will shift as LA, fn is evaluated at different

heights, up to 10 m AGL. Lower frequencies begin to exhibit a single quiet zone after 400

m range in d04R, and 300 m in d04, suggesting lower sensitivity than the higher

frequencies to the first 10 m of the Ceff profile. Lower frequency bands exhibit a

near-ground ducting interference pattern similar to that noted for the high frequency bands

in case B. The near-ground ∆L suggest that using the vertically-refined Ceff profile of

domains d04R more closely matched the experimentally derived profiles, with RMSE of 4.6

dBA versus 10.7 dBA, despite the noted issues with Ceff.
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Figure 27: Spectra versus range at 1 meter AGL for d04 (top), d04R (middle) and OSF09
(bottom), for case A. The profiles are from the first of five 5-minute output during the
20-minute observational interval. The color transition from blue to red occurs at 67 dBA
denoting noise abatement threshold criteria.
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Figure 28: Same as for Figure 27 but for Case B.
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Figure 29: Same as for Figure 27 but for Case C.
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Figure 30: Vertical cross-section up to 50 meters AGL of Leq maps using equation 4.6 for
L fn interpolated onto a 0.25 meter grid for d04 (top), d04R (middle), and 1 meter grid for
OSF09 (bottom), for Case A. The Ceff profiles are from the first of five 5-minute output
during the 20-minute interval. The color transition from blue to red occurs at 67 dBA
denoting noise abatement threshold criteria.
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Figure 31: Same as for Figure 30 but for Case B.
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Figure 32: Same as for Figure 30 but for Case C.
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Figure 33: Relative SPL with respect to 50 meters versus range at 1 meter AGL for OSF09
case A (top) case B (middle) and case C (bottom) for OSF09 value (bold solid) non-refracting
(dotted) and profiles derived from WRF domains d04 (bold dashed), d04R (bold dash-dot)
at closest grid locations shown in Figure 25 for the output times corresponding to the
20 minute observational periods given in Table 1. No atmospheric attenuation has been
included. Neutral case reference wavenumber correction has been accounted for following
discussion in text.
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4.6 Discussion

We have demonstrated a method for simulating meteorological profiles and assessed

their suitability for use as input to an acoustic propagation model for freeway noise by

examining three case studies in comparison with profiles derived from field measurements.

We presented the method of vertical refinement for increasing meteorological simulation

child domain vertical resolution, and discussed the influence of increasing the vertical

resolution of our meteorological simulation on the predicted freeway noise propagation. We

have provided a physically-motivated interpretation of emergent phenomenalogical

qualities of spectra, total sound field, and relative SPL, resulting from features within

simulated meteorological profiles. We discussed the influence of horizontal and vertical

nest resolution on simulated meteorological profile features.

We found that bias within Cad and U‖ become entangled when constructing Ceff, and

may mask assessing the true capability and limitations of meteorological forecasting for

acoustic application. We recommend investigating forecast skill requirements imposed by

the sensitivity of acoustic model predictions of LA, fn and Leq to variations within Ceff,

especially below 100 m AGL. Overall RMSE of profiles suggest capability of simulating

temperature profiles within around 3 ◦C, wind speed profiles within around 2 m s−1, and

Ceff profiles around 2 m s−1 in the lowest 190 m AGL.

In the introduction we discussed that a null hypothesis of MOST will fail for real

profiles with features such as a jet, variable shear, and temperature inversions, as often is

present within valley cities such as Phoenix. We found that a null hypothesis of unrefined

profiles being sufficient is not true in all cases, that vertical refinement provides instances of

improvement in representation of Ceffbelow 190 m AGL. Though some simulation skill was

improved with modification of meteorological model resolutions for 1 km over 3 km, and

107



vertically refined 1 km over standard 1 km, this study provided a very limited sampling

(three 20 min periods) of the entire simulation (several days) and more evaluation is

recommended. In particular, detailed observations of profiles below 100 m AGL are key to

meteorological model evaluation for this application.

Methods of evaluation established herein may provide means to move forward in

assessing profiles for applicability to investigating highway noise pollution. In particular,

profiles of sound speed in conjunction with plots of spectra versus range at various heights

are useful for interpreting impacts on the spatial plots of total SPL. Examining relative SPL

as total sound pressure level with respect to a fixed range location is useful for comparing

an ensemble of predicted field results from derived and observed profiles. Improved

agreement was seen between vertically refined profiles and observations as opposed to

unrefined profiles. However, the RMSE of ∆L is biased by choice of range of evaluation

and reference distance. Far-field acoustic obervations are needed to properly assess the

validity of these methods. Locations for microphone placement can be considered through

identifying range windows with large disagreement between the different methods for

several meteorological cases. The experimental setup, however, may be limited by

site-specific restrictions or proximity to background sources.

For this WRF model configuration some specific details of the wind and

temperature gradients are reproduced quite poorly, in comparison with OSF09 observations,

yet other aspects were quite well reproduced. More work needs to be done to assess

possible phase errors and effects of localization of phenomena. Further studies are

doubtlessly necessary to ascertain what physical processes are either being approximated

poorly for this application (model parameterization), what aspects of the observations are

just not resolved (influences of terrain resolution, sampling space-time volume, etc), and the

added role of urbanization (not included here) on surface meteorology.
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The method of producing surface layer profiles, joining near-ground values to the

lowest model level, seems to have a strong influence on the sound field. Even though

surface values and first model level values cause a gradient to exist, this changes character

with increasing resolution, implying that there were unresolved dynamics in the coarser

domain. More analysis needs to be performed with detailed flow observations to assess the

hypothesis of unresolved dynamics. What we can glean from the current results is that shear

is present in both d04 and d04R, and so the sound model is going to be influenced in both

cases. However, the vertically refined results allow for dynamics not present in the coarser

simulation, enabling a closer agreement with observations in some instances.

In cases A and C, the input effective sound speed profile from the initial unrefined

4th domain WRF simulation, though different from the non-refracting case, is still not as

significantly sheared as for the vertically refined simulation. Moreover, although neither

refined nor unrefined Ceff applied to acoustic simulations reproduce all details in the

observations, where near-ground sound levels remain strong for quite some distance due to

ducting of sound, they do produce similar results on the sound field intensity. The

attenuation versus range results in Figure 10 indicate that near-ground predictions using

vertical refinement appear to match more closely the meteorological profiles derived from

observations (in comparison to profiles derived from the unrefined domain).

In case B, near-ground upward refraction is eventually overcome further away from

the source due to stronger elevated downward refracting conditions. In this case, the shear

is well captured. However, the method employed to interpolate between the lowest model

level value and the near-ground value, along with bias in either term, can cause strong

gradients in Ceff, to which the acoustic field appears quite sensitive. The sensitivity and

relative contribution of the interpolation method towards the total refracted field, in
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comparison with the profile features higher above ground level, needs to be explored for

various ranges of propagation.

4.7 Conclusions

In summary, our work shows that conditions of morning temperature inversion and

low-level jet or wind shear can be simulated by the WRF model to a certain degree, but that

their magnitudes at a given location and time of comparison may disagree with field

observations. As observed in case C, the velocity and temperature components within the

effective sound speed can counteract each other and make an otherwise poor representation

of the medium yield a Ceff profile which produces a sound field not too unlike what might

be observed. Some of these effects measured in the field could be due to smaller-scale

ground boundary conditions not realized in the 1 km x 1 km grid used in the WRF model.

For instance, details of the flow modification due to terrain and land-use and land-cover

may not be present, which, if accounted for, may lead to a closer representation of the

actual measured profiles. Furthermore, sub-grid influence of the roadway and

terrainDi Sabatino et al. 2008, and traffic produced turbulenceEskridge and Hunt 1979, in

the local meteorology on acoustic propagation was also not explored in our study.

We recommend further work to consider sensitivities in the models, both of the PE

model to differing levels of sound speed gradient, and also of WRF to various

parameterizations of physical processes, such as land surface, urbanization and potential

feedback on circulation and dynamics, representation of subgrid turbulence and surface

layer profiles. Assessing the skill of these models for a variety of configurations would

provide valuable insight into model prediction capability for acoustics applications.

Furthermore, sensitivity of meteorological model to physical parameterization,
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understanding unresolved subgrid aspects and their importance on acoustic field predictions,

and possible areas for improvement of meteorological models, are all topics which could be

motivated by demands within applications such as acoustics. In particular, nocturnal

inversion and morning transition are notoriously difficult to accurately simulate. These are

key periods that exhibit downward refraction and wind shear, which are ubiquitously

neglected or misrepresented in many acoustic assessments.
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Chapter 5

MULTI-SCALE MODELING AND EVALUATION OF URBAN SURFACE ENERGY

BALANCE IN THE PHOENIX METROPOLITAN AREA

Accepted for publication in: Journal of Applied Meteorology and Climatology,

S.R. Shaffer; W.T.L. Chow; M. Georgescu; P. Hyde; G.D. Jenerette; A. Mahalov; M.

Moustaoui; B.L. Ruddell (Accepted, Oct. 2014).

Physical mechanisms of incongruency between observations and Weather Research

and Forecasting (WRF) model predictions are examined. Limitations of evaluation are

constrained by: i) parameterizations of model physics, ii) parameterizations of input data,

iii) model resolution, and, iv) flux observation resolution. Observations from a new 22.1

meter flux-tower situated within a residential neighborhood in Phoenix, Arizona, are

utilized to evaluate the ability of the urbanized WRF to resolve fine scale Surface Energy

Balance (SEB) when using the urban classes derived from 30 meter resolution National

Land Cover Database. Modeled SEB response to a large seasonal variation of net radiation

forcing were tested during synoptically-quiescent high-pressure periods in Winter 2011 and

Pre-monsoon Summer 2012. We present results from simulations employing five nested

domains down to 333 meter horizontal resolution. A comparative analysis of model cases

testing parameterization of physical processes comprised of four configurations of urban

parameterization, for the bulk urban scheme versus three representations with the Urban

Canopy Model (UCM) scheme, and also for two types of planetary boundary layer

parameterization, with the local Mellor-Yamada-Janjic scheme, and the non-local Yonsei

University scheme. Diurnal variation in SEB constituent fluxes are examined in relation to

surface layer stability and modeled diagnostic variables. Improvement is found when
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adapting UCM for Phoenix with reduced errors in the SEB components. Finer model

resolution is seen to have insignificant (< 1σ ) influence on mean absolute percent

difference of 30-minute diurnal mean SEB terms.

5.1 Introduction

The aggregate global-scale impact of human activities is suggested to have brought

about a geological epoch known as the Anthropocene (Smith and Zeder 2013). Most

noticeable since the industrial revolution, anthropogenic influence may result in adverse

transitions beyond critical thresholds, triggering ecosystem collapse (Barnosky et al. 2012).

The world population is rapidly increasing and urbanizing while also increasing energy use

and emissions (i.e. Ching 2013). The pre-eminent influence of anthropogenically

determined local-scale urban microclimate is thus becoming ever more important within hot

arid cities (e.g. Coutts, Beringer, and Tapper 2007). These cities are growing worldwide

and are particularly vulnerable to climate change and water resource availability (i.e.

Vörösmarty et al. 2010). These issues motivate the development of fine-resolution modeling

tools for studying effects of urban design on a regional-scale to mitigate adverse effects and

optimize urban microclimate. Modeled values of temperature and moisture provide key

results to inform policy making and decisions regarding human-ecosystem interaction

(Fernando 2008; Chow, Brennan, and Brazel 2012; M Georgescu et al. 2013), though lack

of available observations, particularly of Surface Energy Balance (SEB) fluxes within urban

settings, often leaves such predictions unvetted. Furthermore, many features of urban

microclimate are determined at scales < 1 km (Hunt et al. 2012; Ching 2013).

The capability of atmospheric modeling in urban environments is influenced by

land-atmosphere coupling (F. Chen et al. 2011). The SEB is intimately related to the
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Atmospheric Surface-Layer (ASL), or region closest to the ground, which provides, via a

Surface-Layer Scheme (SLS), the interconnection between the ground, or Land Surface

Model (LSM), and lower atmosphere, or, the Planetary Boundary Layer (PBL). In

particular, SEB closure has been examined in the context of urban climate and remains a

challenging issue (Arnfield 2003; Foken 2008). In the context of SEB modeling, the role of

vegetation, moisture, latent heat flux, and anthropogenic forcing are important areas of

active research (Arnfield 2003; Ching 2013). C. S. B. Grimmond et al. 2010 conducted an

extensive inter-model comparison of off-line urban canopy models and found that not all

models correctly account for SEB closure. A systematic evaluation of the modeled SEB is

thus needed before addressing the above applications.

Parameterizations of urban processes within atmospheric models typically presume

that the city is entirely sub-grid to the ASL. This modeling assumption means that the built

environment should be contained within the surface layer, or first full model level

(C. S. B. Grimmond et al. 2010). One main concern is that anthropogenic waste heat and

momentum modifications are only supplied to the first model level. However, one method

often employed within studies of the ASL or of lower PBL profiles is to add extra model

levels near the ground. Hence, there is a trade-off between explicitly resolving fine structure

in the ASL, especially within the urban boundary layer, also in conjunction with flow

dominated by complex terrain (Fernando 2010). Furthermore, parameterizations of the ASL

often employ Monin-Obukhov Similarity Theory (MOST) (Monin and Obukhov 1954),

wherein horizontal homogeneity is assumed, meaning that individual buildings and land

uses at sub-grid scales are not explicitly resolved. This assumption can break down in

settings with inhomogeneous Land Use And Land Cover (LULC). Micro-scale LULC

variations may become important when comparing with neighborhood-scale flux-tower

measurements (Foken 2008; Nordbo et al. 2013).
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Forecasting at smaller scales has become computationally possible by advances in

technology and in numerical technique, such as nesting (Skamarock and Klemp 2008). Yet

theoretical issues regarding turbulence closure and parameterization of PBL eddies remain a

challenge as resolution approaches the so-called Terra-Incognita (Wyngaard 2004). At

scales finer than the Terra-Incognita (. 1 km), large eddy simulation are typically

employed (e.g. Moeng et al. 2007). Recently, model development efforts have been focused

on enabling transiting the Terra-Incognita (F. Chen et al. 2011; Mirocha, Kosović, and

Kirkil 2014) Yet computational feasibility often limits applications to research.

Furthermore, there has been limited assessment of model error at Terra-Incognita scales.

In this study we explore SEB, computational feasibility, model stability and

sensitivity to parameterization, when nesting from global analysis data to a resolution of

333 m. This study addresses questions of model feasibility and accuracy within a hot arid

city, probing the limits of current model physics parameterization schemes, computational

capability, and input data, evaluated in a manner consistent with available observations of

SEB. Model SEB terms were evaluated with flux-tower observations located in an arid

urban residential neighborhood (Chow et al. 2014), assessing for a range of seasonal and

diurnal input radiative forcing, and physically explaining errors. Multiple customized

high-resolution urban LULC data sets were incorporated to evaluate parameterization of

urban LULC appropriate to fine-resolution modeling. Two turbulence closure model PBL

schemes, Yonsei-University (YSU, Hong, Noh, and Dudhia 2006) and

Mellor-Yamada-Janjic (MYJ, (Janjic 2001)), were investigated with a data and model

combination probing the limitation of approaching Terra-Incognita.
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5.2 Methods

The influence of resolution is explored by employing spatially and temporally

nested computational domains. Modified input parameterizations of LULC are employed to

represent urbanization specific for Phoenix derived from observed data. A comparative

analysis is then conducted between two types of model turbulence closure and four urban

physical parameterization schemes for varied representations of the Phoenix urban canopy.

5.2.1 Flux Tower Observations and Study Period

Micro-meteorological data were obtained from an eddy flux-tower installed in a

residential West Phoenix neighborhood (33.484°N, 112.143°W). Observed values were

post-processed into half-hourly block-averaged (from 10 Hz) turbulent and radiative data,

along with related temperature and three-dimensional wind data. The instruments were

installed at 22.1 m above ground level. Further details can be obtained from Chow et al.

2014 regarding site characteristics, instruments employed, data quality, correction

procedures, and calculation of flux source areas. Turbulent flux footrpint lengths are

≈ .5−1 km for unstable to stable surface-layers, respectively, and the radiative flux source

area is ≈ .5 km in diameter.

A range of cloud-free dry-period SEB forcing conditions were examined by

selecting time frames during winter and pre-monsoon summer with available SEB

observations. These periods are: the 60-hour period from December 23 (Winter 2011), and

the 72-hour period from June 17 (Pre-monsoon Summer 2012).
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5.2.2 Numerical Simulations

The Weather Research and Forecasting (WRF) model (Skamarock et al. 2008) was

evaluated using observations described above. Simulations were conducted using one-way

nested domains where multiple domains were run concurrently with no feedback to parent

domains. The outer domain and soil moisture were initialized with Final operational global

analysis (FNL) data. These data are provided at one-degree spatial and six-hour temporal

resolution, at 27 vertical pressure levels. Radiative processes are represented by the RRTM

scheme for longwave (Mlawer et al. 1997) and the Dudhia scheme for shortwave (Dudhia

1989). Physical processes involving moisture were modeled using the 3-class

single-moment microphysics scheme (Hong, Dudhia, and Chen 2004). The Kain-Fritsch

cumulus parameterization (Kain 2004) was used for just the outer domain.

We utilize the Noah land-surface model (LSM) described in Chen and Dudhia 2001,

which determines skin temperature and supplies heat, momentum, and moisture fluxes into

the atmosphere in response to radiation, precipitation, humidity, and surface-layer

temperature and winds, for the dominant non-urban LULC. The geographic non-urban

LULC classifications and terrain elevations were obtained from nearest neighbor

interpolation of the MODerate-resolution Imaging Spectroradiometer (MODIS)

20-category 30-arcsecond data modified for the Noah LSM. Vegetation fraction values were

obtained from static terrestrial data provided in WRF.

5.2.2.1 Model Resolution

Five nested domains, referred to as D1 through D5, were configured with horizontal

resolution (∆H) of 27, 9, 3, 1, and .333 km, respectively, and are represented schematically
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in Figure 34. Also shown are terrain for all domains, and dominant LULC for D5, which

was configured to contain the entire Phoenix Metropolitan area. All domains used a vertical

grid with 40 vertical levels with increased grid resolution near the ground and a model top

of 50 mbar. The first three domains were started synchronously. However, the starting times

for D4 and D5 are delayed by 6 hours each to allow for spin-up. The D1 timestep for

Winter simulations was 150 s. Summer simulations required a reduction to as low as 90 s

due to model stability. Attribution of reducing the child domain timesteps by a factor of 3

from the parent domain, for D2 through D4, and by a factor of 5 for D5, led to stabilize the

fine-scale domain simulation. The D1 timestep was further constrained to ensure that the

D2 timestep would evenly divide the ∆t = 300 s output history interval.

5.2.2.2 Urban LULC Parameterizations

The categorical urban LULC fields from the 30-meter resolution 2006 U.S.

Geological Survey National Land Cover Database (NLCD) (Fry et al. 2011) were used to

derive representative urban LULC for the Phoenix Metropolitan area. Three urban LULC

classes were identified as Commercial/Industrial (C/I), High-Intensity Residential (HIR),

and Low-Intensity Residential (LIR). The C/I was derived from developed high-intensity,

HIR from developed medium-intensity, and LIR from developed low-intensity and

developed open space. Grid-scale urban LULC were then obtained by nearest neighbor

interpolation and made a higher priority when combining with the MODIS LULC classes.

To obtain the final LULC product for each domain (Fig. 34), any grid-cells still classified as

urban/built-up by MODIS were replaced with LIR. Urban schemes are applied for the

dominant urban LULC within each model grid-cell to which an urban LULC was attributed.

We compare the role of urban parameterization for the bulk urban scheme (hereafter,
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Urban LULC Class
Parameter Description Units C/I HIR LIR

Urban fraction1 default values - 0.865 0.429 0.429
Urban fraction1 PHX-A values - 0.95 0.60 0.73
Urban fraction1 PHX-B values2 - 0.95 0.85 0.70
Roof level (building height) m 10.0 4.7 3.9
Standard deviation of roof height3 m 8.0 2.7 1.0
Roof (i.e., building) width m 31.7 25.7 17.6
Road width m 98.9 39.2 108.0
Anthropogenic heat W m−2 30.0 35.0 20.0
Volumetric heat capacity of roof4,6 MJ m−3 K−1 1.32 1.32 1.32
Volumetric heat capacity of building wall5,6 MJ m−3 K−1 2.11 1.52 1.52
Volumetric heat capacity of ground (road)6 MJ m−3 K−1 1.94 1.94 1.94
Thermal conductivity of roof4,6 J m−1 s−1 K−1 0.83 0.83 0.83
Thermal conductivity of building wall6 J m−1 s−1 K−1 1.51 0.19 0.19
Thermal conductivity of ground (road)6 J m−1 s−1 K−1 0.75 0.75 0.75

Table 3: Description of modifications made to UCM urban physics option parameters
(Kusaka and Kimura 2004) from default values following S. Grossman-Clarke et al. 2010
for urban LULC classes Commercial/Industrial (C/I), High-Intensity Residental (HIR), and
Low-Intensity Residental (LIR). Notes: [1] - furb, fraction of the urban landscape which
does not have natural vegetation, [2] - Modified furb following M. Georgescu et al. 2011,
[3] - Susanne Grossman-Clarke et al. 2005, [4] - Assume brick roof, [5] - Assume concrete
wall for C/I; dense wood for HIR and LIR, [6] - Value from T. Oke 1987,

‘bulk’), described in Liu et al. 2006, versus the Urban Canopy Model (UCM) described in

Kusaka and Kimura 2004. The bulk scheme calculates fluxes from a single flat surface.

However, the UCM accounts for unresolved simplified infinite urban canyons, with building

morphology and materials, roads, and interactions between roads, roofs and walls of

buildings, with 20 parameters for each urban LULC class.

We test three UCM cases by applying the calibrated LULC parameterizations. First,

we test a baseline case (hereafter, ‘default’), then we examine two other cases using

modified morphological and material values for Phoenix (hereafter, ’PHX-A’ and ‘PHX-B’,

see Table 3). Only parameters which were changed from default values are given in Table 3,
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all of which remain fixed for PHX-A and PHX-B, except for the urban fraction, furb, also

given in Table 3 for all cases. The HIR class, which varies the most between PHX-A and

PHX-B, also happens to be the LULC designation for the flux-tower footprint

neighborhood. Thus, the differences between the three UCM cases will provide a simple

variation of parameters.

The furb value represents the computational grid-cell fraction attributed to the

dominant urban LULC. For comparison, furb values for the three UCM cases are also

presented in Table 3. The furb values are held constant for all domains for their respective

urban LULC class when that class is the dominant LULC in a given model grid cell. Unlike

the implementation of UCM, which employs 3 urban LULC classes with furb ∈ (0,1], the

bulk scheme employs a single developed/built-up urban LULC class with furb=1.0.

Furthermore, furb is used as a coefficient of the UCM scheme output variables, with the

non-urban variable (with coefficient 1− furb) derived from the Noah model. These sub-grid

fractional contributions are then aggregated to compute a single value for each grid cell.

The UCM scheme assumes that the built environment is subgrid to the first vertical

model level. Our choice of 40 vertical levels provides for z1 ≈ 55 m for the first model layer

thickness, satisfying the subgrid condition for 99% of the buildings within the 16.7 km2

core downtown Phoenix study area (Burian, Velugubantla, and Brown 2002), where 73%

are < 5 m tall, and another 20% are between 5-10 m. While there are a few other built-up

urban cores within the greater Phoenix metropolitan area, the predominant LULC is < 10 m

tall residential.
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5.2.2.3 Physical Parameterizations of Atmospheric Turbulence

The role of planetary boundary layer (PBL) scheme, which parametrizes vertical

mixing processes of unresolved turbulent motion, was examined for two methods of

turbulence closure. Each PBL scheme depends upon a specific surface-layer scheme (SLS)

to connect the LSM to the first atmospheric model level, and hence will be influenced by

feedback with the SEB. The non-local scheme of Yonsei-University (YSU, Hong, Noh, and

Dudhia 2006), explicitly treats entrainment between the free atmosphere and top of the

boundary layer, in addition to a non-local gradient flux term to account for large eddies.

YSU couples with the MM5 SLS (Zhang and Anthes 1982). The higher-order local closure

scheme of Mellor-Yamada-Janjic (MYJ), requires the Eta SLS (Janjic 2001). Both SLSs

employ MOST, and assume a horizontally homogeneous and stationary constant flux layer.

Horizontal sub-grid mixing was achieved with a 2nd-order diffusion parametrization and a

Smagorinsky 1st order closure scheme.
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5.2.3 Methods Used for Comparing Observations and Model Simulations

5.2.3.1 Physical Metrics Used for Evaluation

For WRF model evaluation, we use the following relations, with variables described

in Table 4,

G↑SW = αG↓SW ,

G↑LW = εσT0
4,

Q∗ = G↓SW −G↑SW +G↓LW −G↑LW

〈QH〉 = ∆ΣQH/∆t ,

〈QE〉 = ∆ΣQE/∆t .

(5.1)

Here σ = 5.67040×10−8 J s−1 m−2 K−4, is the Stefan-Boltzman constant, and ∆t is the

5-minute history output interval. Top-to-bottom are the upward radiative fluxes for

shortwave, G↑SW , and longwave, G↑LW , and the net radiation Q∗. Lastly, are fluxes of

sensible, 〈QH〉, and latent, 〈QE〉, heat, for which accumulated quantities were used for

comparison with time-averaged observations rather than instantaneous values. All

quantities have units of W m−2.

The SEB relation for the effective residual or storage, ∆Qs, is,

∆Qs = Q∗−〈QH〉−〈QE〉. (5.2)

When explicitly partitioning the anthropogenic forcing, QF , and ground heat flux, QG, one

could write, ∆Qs = ∆Q′s +QF +QG, with a reduced residual ∆Q′s. However, for

comparison with observations, QF is combined with the storage term ∆Qs. The present

analysis also considers QG as being a component of the residual term ∆Qs because of the

disparity in spatial scale between observation footprints of QG and the turbulent flux terms.

Anthropogenic forcing, QF , was derived following Susanne Grossman-Clarke et al. 2005.
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For making a fair comparison between observations and simulations, instantaneous

values were output from WRF with ∆t = 300 s and were averaged to the same 30-minute

periods. Percent differences, PD, were calculated between 30-minute diurnally averaged

values for observation, O, and simulation, S, as,

PD = 100× O−S
.5(O+S)

, (5.3)

with variance estimated from standard deviation of averaged values, and propagated to

estimate statistical uncertainty in each 30-minute interval of PD. Furthermore, the scale of

PD, which can be both positive and negative and vary quite widely, are presented

logarithmically in Figures 2-7 (described later) as,

Scale(PD) = signPD× log10d|10sPD|e, (5.4)

where the coefficient will preserve the sign of PD. We set the scaling factor s = 0 within the

ceil function, d·e, since we are interested in visually inspecting values of order of magnitude

with |PD|> 100. Note that simulations more closely match observations with a smaller

value of |PD|.

5.2.3.2 Diagnostic Temperature

The diurnal variation, and percent differences between observations and model

cases described in Section 5.25.2.2 are shown for the diagnostic temperature at 2-meters

above ground, T2m. Values of T2m are calculated within WRF by the relation,

T2m = T0−
QH

ρcpCH
. (5.5)

Here QH and CH are sensible heat flux and heat exchange coefficient, respectively, which

are taken from the previous timestep, T0 is the skin temperature, ρ is the air density, and cp
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Variable Output Name Units Description
ΣQH ACHFX J m−2 Accumulated surface sensible heat flux
ΣQE ACLHF J m−2 Accumulated surface latent heat flux

α ALBEDO - Surface albedo
ε EMISS - Surface emissivity

G↓LW GLW W m−2 Downward long wave flux at ground surface
QG GRDFLX W m−2 ground energy flux, positive-release
QH HFX W m−2 Surface sensible heat flux
QE LH W m−2 Surface latent heat flux

zPBL PBLH m Boundary layer height
G↓SW SWDOWN W m−2 Downward short wave flux at ground surface
T2m T2 K 2-meter temperature
T0 TSK K Surface skin temperature
u∗ UST m s−1 Friction velocity

Table 4: Description of WRF output variables used for flux analysis in Eq. 5.1 or elsewhere.

is the specific heat at constant pressure. The heat exchange parameter is defined by,

CH = u∗θ ∗/(∆θ), where ∆θ = T0−T2m. The friction velocity, u∗, and turbulent

temperature scale, θ ∗, in turn, make use of MOST integrated stability functions for

momentum and heat. Stability profiles are empirical relationships which act as fits to

surface and first model level values consistent with gradient flux relationships (see Section

5.25.2.25.2.2.3), and so are influenced by model bias at both levels. In particular, a bias in

any of the terms contributing to T2m could lead to error in derived values, and in some

cases can cancel yielding a derived T2m which may be more accurate than the individual

parameters from which it was obtained.
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5.2.3.3 Model Evaluation Across Resolution and Parameterization Configurations

A metric of model error is needed to enable intercomparison between the different

cases of model horizontal grid resolution, ∆H , and model parameterization configuration, p.

For this purpose, we examine the diurnal mean absolute percent difference between

observations and simulations, M, defined for a variable x by,

M(x;∆H , p) = N−1
k

Nk

∑
k=1
|PD(x(k;∆H , p))| . (5.6)

The sum is over the k = 1, . . . ,Nk=48 thirty-minute time intervals in the diurnal period, and

PD is as given by Eq. 5.3, for the model grid point containing the observation location.

5.3 Results and Discussion

Here we address the main research questions pertaining to how well current WRF

performs in a hot dry city (Phoenix) and where further improvement is needed, as validated

with observations of SEB components. Inspection of 30-minute averaged time-series of

observed values (not shown) exhibit a regular diurnal quality for the chosen study period,

wherein local flow processes are dominant over mesoscale forcing, and justifying the use of

diurnal averages. The diurnal maxima of net radiative forcing varies by a factor of nearly

two between the seasons.

A further distinction between the three default urban LULC classes and those

employed by S. Grossman-Clarke et al. 2010, is that the latter values are representative of

commercial-industrial, mesic residential, and xeric residential, respectively. Furthermore,

soil moisture values were initialized in our cases from NCEP FNL data with no prescription

for modifications to incorporate effects of irrigation, as conducted with the previous studies
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of S. Grossman-Clarke et al. 2010, and M. Georgescu et al. 2011. Rather, the present

analysis is focused on examining the importance of furb values along with adapting the

urban morphological and material parameters for Phoenix. The flux-tower footprint is a

neighborhood with little vegetation and irrigation, and few water bodies (e.g. swimming

pools) (Chow et al. 2014). Furthermore, the NLCD data were from 2006, with neglegible

LULC modifications in the footprint area at the time of our study and more recent

Quickbird derived LULC (Figure 2 and Table 1 Chow et al. 2014).

The diurnally averaged variables simulated by the 1 km resolution domain for WRF

model configurations defined in Section 5.25.2.2 are compared with observed temperature

and corresponding percent difference diurnal variation in (Fig. 35). Likewise, the radiation

flux components are presented for G↓LW (Fig. 85), G↑SW (Fig. 37), and G↑LW (Fig. 38), and

the friction velocity u∗ is presented (Fig. 39). Similarly, the SEB flux quantities for just

Pre-monsoon Summer 2012 are presented for 〈QH〉 and 〈QE〉 (Fig. 40), and for Q∗ and ∆Qs

(Fig. 41). Influence of resolution and configuration on model errors derived with Eq. 5.6 are

presented in Figure 42 for Pre-monsoon Summer 2012, for variables Q∗, 〈QH〉, 〈QE〉, ∆Qs,

T2m, G↑LW , G↓LW , G↑SW , and G↓SW , for ∆H= 9, 3, and 1 km, and for model configurations of

bulk, PHX-A, and PHX-B, with either MYJ-Eta or YSU-MM5. Results for the 333 m

resolution domain are only presented for model configurations MYJ-Eta bulk, YSU-MM5

PHX-A and PHX-B for Summer 2012 (Fig. 42), and YSU-MM5 PHX-B for Winter 2011

(Fig. 43), because of the excessive computational time needed at this resolution.

126



5.3.1 Influence of Modifying Turbulence Parameterization, Urban Land Use and Land

Cover, and Urban Representation Input Data

The influence of local versus non-local closure schemes on bias for T2m is apparent

in Figure 35. All cases perform well during mid-day unstable conditions. However, only

cases MYJ-Eta with bulk and YSU-MM5 with UCM for PHX-A/B perform well at all

times of day and for both seasons. Here, the notation ”PHX-A/B“ is used to represent UCM

for either PHX-A or PHX-B. Also, the YSU-MM5 cases are warmer at night than

corresponding MYJ-Eta cases, and with a higher zPBL and lower stabilty (not shown),

agreeing with previous studies comparing local and non-local schemes (e.g. Xie et al. 2012).

The role of furb is present at night (Fig. 35a,b) , with PHX-B consistently warmer than

PHX-A, for a given PBL-SLS. Here, the UCM scheme with MYJ-Eta reduces T2m

underestimation error by ≈50%. For instance, (Fig. 35a) shows that PHX-A MYJ-Eta

underestimates T2m by ≈ 8 °C between 0 to 6 local time, while PHX-B MYJ-Eta

underestimated T2m by ≈ 4 °C during the same period. The bulk scheme evaluates well

compared to the UCM scheme with regard to T2m, and YSU-MM5 for both PHX-B and

bulk show quite similar T2m for both seasons. However, this performance for bulk (Fig. 35)

does not persist for the SEB terms (Fig. 40a,c) , and for e.g. G↑LW (Fig. 38a) .

A PBL-SLS dependence is also present for G↓LW (Fig. 85), which may be due to

feedback from the surface modifying the column temperature profile where the atmosphere

is too cold. This explaination would agree with previous studies which have shown a

influence of PBL-SLS between local and non-local schemes on derived temperature profiles

(Shin and Hong 2011) and on SLS-LSM coupling strength (Chen and Zhang 2009). The

systematic G↓LW under-prediction bias could also be related to the afternoon 3-11%

over-prediction bias in G↓SW (not shown), and the lack of accounting for urban air pollutants,

127



and a repartitioning of G↓SW into G↓LW by photochemically active species. These issues will

be addressed in a future paper, and may further explain the G↓LW bias between models which

use the same Dudhia and RRTM radiation schemes. The influence of bias in G↓SW is present

in G↑SW (Fig. 37) owing to Eq. 5.1, which is clearly also influenced by the LSM and urban

scheme, since the same magnitude bias is not present.

For G↑SW (Fig. 37), the cases with UCM have smaller error than bulk during

mid-day, attributable to differences in α . The bulk scheme has furb=1, but no accounting

for buildings, roads, or other surfaces as with UCM, and so only the ’Urban and Built-Up’

LULC where α=0.15 is attributed. Meanwhile, the three UCM cases use input values of α

for road, roof and wall, unlike the bulk scheme. The Noah LSM then accounts for furb, and

non-urban fraction (1- furb) contributions to α . Thus differences between PHX-A and

PHX-B are due solely to furb since α is identical for these two cases. Differences between

default and the PHX-A/B cases are due to constituent values of α , along with building size

and road width.

The modeled G↑LW (Fig. 38) has an afternoon under-prediction bias near 10%, and

inter-parameterization bias is significantly reduced the most during Pre-monsoon Summer

2012 afternoon unstable period, yet still under-predicted (Fig. 38d) . Furthermore, and

more significantly for UCM cases than for bulk, the |PD| of YSU-MM5 tends to be smaller

than MYJ-Eta overnight, but not during afternoon unstable periods. This result occurs for

both seasons (Fig. 38c,d) , and is more pronounced for the winter period (Fig. 38c) , which

has longer stable conditions than during the summer period (not shown).

Evaluation of terms in Eq. 5.5 can reveal issues with model bias which are masked

by bias cancelation within T2m. T0 is examined with G↑LW (Fig. 38) as per Eq. 5.1. Bias of

G↑LW depends on furb in nocturnal periods. Also, bias in G↑LW has a PBL-SLS dependence,

with the role of furb either reduced during the day, or the role of PBL-SLS stability class
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becoming a factor. There are several feedbacks for T0, including stability profiles, 〈QH〉,

and CH . These variables are an aggregate of the UCM representation of the underlying

urban fabric and the Noah contribution.

A sensitivity to furb is apparent within G↑LW (Fig. 38), which, based upon (Eq. 5.1),

is most sensitive to T0, and otherwise first order to furb through flux aggregation. For this

particular neighborhood, the PHX-A/B shows improved results over the default case. The

bulk scheme yields a systematic 10-20% bias below observations which persists all day and

for both seasons. Employing UCM for Phoenix reduces error compared to bulk, though not

as significantly for Pre-monsoon Summer 2012 mid-day periods. The tendency in terms of

|PD|, where PD uses Eq. 5.3, is that PHX-B ≤ PHX-A ≤ bulk, for a given PBL-SLS case,

except during mid-day Pre-monsoon Summer 2012 where they are statistically

indistinguishable. Thus, at night, the higher furb PHX-B is warmer than PHX-A, seen both

for T0 via G↑LW (Fig. 38), and for T2m (Fig. 35).

The previously discussed G↓SW bias (not shown) should lead to an over-predicted T0,

but G↑LW has an under-prediction bias (Fig. 38). By examination of 〈QH〉 during nocturnal

Pre-monsoon Summer 2012 (Fig. 40), modeled values employing YSU-MM5 deviate from

the MYJ-Eta cases, with the YSU-MM5 cases tending to have increased 〈QH〉 compared to

both observations and the MYJ-Eta cases. The inter-PBL-SLS case difference in T0 for a

fixed urban case (Fig. 38) must arise in T2m owing to Eq. 5.5. However, 〈QH〉 (Fig. 40)

also indicates overestimated daytime heating for the larger furb case PHX-B, and an

overestimation of 〈QE〉 (Fig. 40) arises from the lower furb case PHX-A. These results

indicates that the UCM scheme is missing physical mechanisms by which T0 was increased

(with coefficient furb), or the bias is arising from the non-urban ”natural“ contribution. One

approach to reduce T0 bias is to explore models beyond UCM that incorporate other

afternoon processes that would increase G↑LW by modifying the effective T0. Alternately,
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Wang et al. 2011 demonstrated that T0 is most sensitive to uncertainties in urban geometry,

thermal properties of surface materials, and roughness lengths, which suggests other values

in Table 3 may lead to systematic bias.

The u∗ term within CH , is another source of bias for T2m, and compares well with

observations (Fig. 39). The UCM cases have lower u∗ than for bulk, owing to increased

roughness length. Afternoon magnitude of u∗ for PHX-B is less than u∗ for PHX-A, owing

to furb. Both PHX-A/B cases were closer to observations than bulk during daytime and

especially during Pre-monsoon Summer 2012. However, nocturnal periods were poorly

represented by all cases as observations show intermittent increases in u∗, as in simulations,

but a relation between events cannot be determined without more detailed observations.

Stable nocturnal period dynamics are notoriously poorly modeled, a shortcoming which is

suspected to be contributing to these errors in u∗.

For the 〈QH〉 term as a component of bias in T2m (Eq. 5.5), stable nocturnal periods

show a bias dependent upon PBL-SLS for 〈QH〉 (Fig. 40), which is much larger than the

furb influence on 〈QH〉. Here, YSU-MM5 has an increased bias, typically under-predicting

observed 〈QH〉 compared to MYJ-Eta, which often over-predicted observations. Negative

〈QH〉 values indicate a release of heat from the surface, and so the bias due to PBL-SLS

would lead to a warmer T2m for YSU-MM5 than for MYJ-Eta. These PBL-SLS dependent

differences in 〈QH〉 reduce during mid-day unstable periods, where furb becomes the

dominant parameter for 〈QH〉 (Fig. 40), and UCM case differences are low for T2m (Fig.

35).

Figure 40a shows the 〈QH〉 diurnal cycle dependence on both urban land surface

representation and PBL-SLS, with increased divergence of PD between PBL-SLS cases

during stable nocturnal periods with YSU-MM5 under-predicting observations (Fig. 40b) .

During afternoon period, both PHX-A/B cases show close agreement with observations,
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with the lower furb PHX-A having better agreement during late-afternoon, while both yield

comparable predictions at night. The late-afternoon difference can be understood by the

larger furb leading to increased heat transfer from the atmosphere to the urban canopy. A

similar argument based upon furb applies to the default UCM case, which under-predicts

daytime observations; and the bulk case, which over-predicts daytime observations.

The role of furb apparent in 〈QE〉 bias (Fig. 40c) where moisture arises from the

”natural“ (i.e. non-urban) LULC via the Noah scheme. This explaination is clearly

demonstrated by the bulk scheme reporting 〈QE〉=0. There is no significant difference

between the two PBL-SLS schemes noted for 〈QE〉 or 〈QH〉. Moreover, the agreement with

observations for 〈QE〉 indicate that the larger furb (lower non-urban fraction) PHX-B gives

better results than PHX-A, opposite to what was concluded by examining 〈QH〉. This

contradiction suggests that the contribution of vegetation is being over-represented within

the non-urban component and yields a point of caution encountered in modeling arid cities,

especially given that the soil moisture was initialized too low (.1 m3 m−3 in top layer)

compared to observed values (lowest value long after rain events approaches .1 m3 m−3,

Chow et al. 2014), and no irrigation was applied.

Q∗ (Fig. 41), exhibits mixed bias during daylight and nocturnal periods, also

dependent upon which PBL-SLS and urban representation were employed. Similar results

are present in the Winter period simulations, but with a shift that reduces mid-day

over-prediction bias and increasing nocturnal under-prediction bias (not shown). Cases and

times where the bias errors in Q∗ (Fig. 41-42) are comparable to or smaller than the bias in

the individual radiative flux terms is a result of bias error cancelation (e.g. MYJ-Eta PHX-B

at night for G↑LW , G↓LW , and Q∗), which influences the evaluation of variables composed of

differences between terms. Thus, assessing Q∗ in absentia of considering the constituent

radiative flux components will not provide a robust model evaluation. Furthermore, it is
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difficult to disentangle potential sources of model error within the radiation forcing by

solely examining bias in Q∗. For instance, an overestimation bias in solar focing by the

G↓SW term, and an underestimation bias in radiative cooling by the G↑LW term, may both lead

to an overestimation of energy at the surface, and may be related to an overestimation of

convective cooling by the 〈QH〉 term.

For ∆Qs (Fig. 41), the Pre-monsoon Summer 2012 PHX-B configuration is more

consistent all day than other cases, with bulk being furthest from observations. Afternoon

observed values are between PHX-A and PHX-B, indicating an intermediate furb would

more closely reproduce ∆Qs. Furthermore, the bulk case with MYJ-Eta was seen to reduce

errors in the pre-dawn period compared to YSU-MM5. Also, PHX-A with lower furb value

often had lower |PD| during nighttime compared to PHX-B.

The combination of terms in Eq. 5.2 used to derive ∆Qs (Fig. 41) result in mixed

performance between urban representation. The ordering of modeled ∆Qs bias correlates

with the furb, with the observed values of ∆Qs being between PHX-A and PHX-B. Choice

of PBL-SLS has small significance in ∆Qs, due to the 〈QH〉 and Q∗ terms, as insignificant

variations arose within 〈QE〉 (Fig. 40). Partial bias canceling is obscuring the G↑LW and G↓LW

bias contributions to error within Q∗. Bias canceling is more complex within ∆Qs which is

also influenced by 〈QH〉 and 〈QE〉 terms (Fig. 41). Hence, assessing ∆Qs, along with SEB

closure, can be challenging without exploring bias in all terms. Similar conclusions are

drawn for SEB terms 〈QH〉, 〈QE〉,∆Qs, and Q∗ during Winter 2011 (not shown).

Figure 42 and Figure 43 show the influence of model parameterization on mean

percent difference model bias error metric M(·) for the entire diurnal cycle derived using

Eq. 5.6 along with standard deviation errorbars with value of 1σ for the variance of the

30-minute diurnal mean PD values. From these data, the effect of ∆H on the error metric

M(.) Eq. 5.6 is small compared to the variance (Fig. 5.6). These figures demonstrate that
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the largest influence of bias canceling between terms which comprise T2m in Eq. 5.5, with

variables T0 and 〈QH〉, for which we have already examined diurnal PD at 1 km resolution.

Examining Figure 42, M(T2m) is typically similar for M(G↑LW ), while one order of

magnitude less than M(〈QH〉). Bias of other terms from which T2m is derived (not shown)

would modify the 〈QH〉 term component bias, and the magnitude of this bias canceling

effect. Bias canceling within Q∗ is most apparent in cases where M(G↑LW ) increases, yet,

M(Q∗) decreases, as with the bulk scheme. Figure 42 shows the tendency for

M(Q∗;bulk). M(Q∗;PHX-A/B) for a given season and PBL-SLS, yet,

M(Q∗;PHX-A/B). M(Q∗;bulk), with M(G↓LW ), M(G↓SW ), and M(G↑SW ), largely

unchanged for a given season and PBL-SLS. Furthermore, Figure 42 is useful for assessing

where models perform poorly, by seeking variables and cases with large values of M.

5.3.2 Effect of Model Spatial Resolution

Figure 42 also shows the influence of model domain resolution (∆H) on M(·). From

these data, the effect of ∆H on M(·) is insignificant, for all of the variables examined, aside

from T2m for Summer YSU-MM5 PHX-A, where 333 m showed minor improvement over

coarser resolutions (Fig. 42e) . However, small differences (< 1σ ) in the mean values are

observed between the different ∆H for some variables (Fig. 42). From this insignificant

convergence or divergence with varying ∆H , we infer that surface layer variables are not

significantly sensitive to the aforementioned Terra-Incognita resolution-dependent issues

with turbulence closure at the temporal and spatial resolution of observations. We

hypothesize that evaluation of models at fine-scales is limited when model resolution

surpasses resolution of either the observation footprint or mixing length scales within

physical parameterization schemes.
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5.4 Conclusion

We have performed an evaluation of the WRF model through a comparison of

model simulations with observational data derived from a flux-tower within a high-intensity

residential LULC neighborhood within the Phoenix metropolitan area for a range of diurnal

and seasonal solar forcing during calm weather periods. An analysis of diurnal and seasonal

model errors was performed for T2m, along with the radiative flux components and the SEB

terms. Evaluation of WRF simulations with observations was performed for horizontal

model grid resolutions, ∆H , ranging from 9 km to 333 m. We determined that it is

computationally feasible to perform real-time simulations with 5 nested domains to

∆H=333 m for 40 vertical levels using modern cluster architecture.

Diagnostic values such as T2m are derived by an evaluation of the stability profile.

Given the diurnal nature of surface-layer stability, and the fact that the profiles change their

form with stability, bias may appear in one stability regime but not in another. Therefore,

although a particular model may compare well with observed T2m for a given stability

regime, this evaluation is incomplete and possibly misleading without detailed SEB

comparisons, as was demonstrated by the bulk cases. Furthermore, T2m is influenced by

bias canceling between the T0, 〈QH〉, and CH variables. For this reason, we show that solely

evaluating model performance based upon diagnostic variables, such as T2m, is not

sufficient, and can in fact lead to incorrect conclusions on model evaluation. We also show

that model evaluation can benefit by enabling more detailed assessment of model errors

when considering the individual downward, in addition to upward (C S B Grimmond et al.

2011), shortwave and longwave radiation components, as opposed to just evaluating net

radiation. Errors in Q∗ may be hidden, since longwave and shortwave net radiation
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components may also give rise to bias canceling between individual components, with each

term having different mechanisms of bias.

Little effect was produced with decreasing ∆H in our analysis despite entering the

Terra-Incognita. This scale independence indicates that the modeled SEB terms are

dominated by the local representation of the land surface and radiative forcing over any

resolution-dependent turbulence dynamics influence. Furthermore, since the model does not

change surface flux profile relationships at finer-scales, any resolution-dependent dynamics

which may be present within the simulation above the surface layer must have weakly

coupled feedback to the surface layer. Detection of ∆H sensitivity within our analysis is

limited by the averaging time, and footprint of observations, which at .5-1 km is near the

larger scale of the described Terra-Incognita regime. Lastly, these results suggest that

simulation at ∆H=333 m seems to not clearly improve results with the parameterizations

examined.

Our results indicate that YSU-MM5 tends to perform better than MYJ-Eta, and that

UCM performs better than bulk for SEB terms and G↑LW . The UCM shows sensitivity to

choice of furb value, which for some variables (e.g. 〈QE〉, 〈QH〉, ∆Qs) had larger daytime

influence than PBL scheme. UCM (for PHX-A/B) and the bulk scheme, combined with

YSU-MM5, give similar results for T2m. The bulk with MYJ-Eta also performed well.

However, when evaluating the diurnal cycle of other variables (e.g. G↑SW , G↑LW , u∗, 〈QH〉,

〈QE〉), it is clear that UCM performs better than bulk during daytime. This conclusion

regarding bulk versus UCM cannot be drawn when only examining the mean diurnal error,

suggesting that evaluating the diurnal cycle is needed for improved model assessment of

SEB. Our results also indicate that evaluation or consideration of model configuration for

arid cities needs to include SEB terms not just T2m. All model configurations should

represent urban heat island, since they all have urban representation. However, we did not
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analyze for this effect. Decreasing ∆H below 1 km does not substantially improve

simulation results with the PBL-SLS and urban parameterizations tested. This null result

might be due to PBL scheme mixing and smoothing of small scales. Thus, a better

parameterization adapted for sub-kilometer grid-scales needs to be tested, and suggests that

if improvement is sought at finer scales, that parameterizations need to be adapted for these

scales. However, further investigation of parameterization (such as employing turbulent

kinetic energy closure) needs to be performed before any definitive conclusion regarding

the benefit of finer-scale resolution on T2m and SEB terms can be achieved.

Application of irrigation could provide starting points for improvement of 〈QE〉,

〈QH〉, and G↑LW . It would be necessary to prescribe irrigation for both mesic residential

classes and in agricultural areas. However, availability of necessary gridded water use input

data may be problematic. Scenarios exploring the limiting case of maintaining or

periodically recharging to maximum field capacity, or basing soil moisture upon vegetation

wilting point, may provide alternative means to supplement available input water-use data.

In particular, the impact from a water management perspective could be explored by

imposing irrigation either with a constant daily input or with a seasonal daily input,

following the work of Volo et al. 2013 for both xeric and mesic LULCs.

Evaluation of fine-scale modeling is ultimately limited by simultaneously

controlling for: 1) model physics parameterization and fundamental turbulence theory, 2)

input data parameterization, 3) model resolution and filters, 4) observation resolution and

siting, 5) anthropogenic influence. The 5th limiting factor contains aspects of the first two

factors. Salient anthropogenic factors include LULC modifications, particularly

urbanization (buildings, impervious surfaces, modified landscapes, etc.) and cropland. With

some specific aspects that are anticipated to play an important role in improving model

predictions, and in need of further investigation, being, irrigation of croplands and
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vegetation; energy input and waste heat within the urban area; representation of urban

parameters within models from values readily derived from observations; pollutants and air

quality influencing radiative forcing and to a smaller degree air temperature. Model

resolution was not seen to have a significant impact on SEB terms for the observation

footprint considered.
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Figure 34: WRF Domain nest positions (with D1 center at 33.5 ◦N, 112 ◦W) overlaid on
terrain height above mean sea level [m] for D1 to D4 (a), and, D5 within D4 (b). Dominant
LULC (c) given in legend (bottom middle) at grid resolution of D4 to D5, and the West
Phoenix flux-tower location (green circle, 33.484◦N, 112.143◦W). A schematic indicating
nesting by horizontal grid index, denoted by indices for East-West with North-South within
parenthesis, for D1 to D5 with resolution ∆H indicated (d).
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Winter 2011 Pre-Monsoon Summer 2012

a b

c d

Figure 35: Comparison of surface layer 2-meter temperature, T2m, between observed and
simulated values, for D4 (∆H=1 km) as 30-minute and diurnally averaged values (a,b),
and percent differences of simulations from observations (c,d), for Winter 2011 (a,c) and
Pre-monsoon Summer 2012 (b,d). Shown are observed values (black diamonds), PBL-SLS
for MYJ-Eta (solid symbols) and YSU-MM5 (open symbols), with bulk urban scheme (red
circles), and UCM urban scheme (triangles) for configurations of default (magenta, Pre-
monsoon Summer 2012 MYJ-Eta only), PHX-A (blue), and PHX-B (green), summarized in
the legend (bottom). Note that percent difference ordinate scale is limited to ±120% and
has been made logarithmic preserving sign following Eq. 5.4.
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Winter 2011 Pre-Monsoon Summer 2012
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Figure 36: Same as in Figure 35 but for G↓LW .
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Winter 2011 Pre-Monsoon Summer 2012
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Figure 37: Same as in Figure 35 but for G↑SW .

141



Winter 2011 Pre-Monsoon Summer 2012
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Figure 38: Same as in Figure 35 but for G↑LW .
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Winter 2011 Pre-Monsoon Summer 2012
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Figure 39: Same as in Figure 35 but for u∗.
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Figure 40: Same as Figure 35 but only for during Pre-monsoon Summer 2012 and for 30-
minute and diurnally averaged observed and simulated values (a,c), and percent difference
of simulations from observations (b,d), for 〈QH〉 (a,b), and 〈QE〉 (c,d).
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Figure 41: Similar to Figure 40 but for Q∗ (a,b), and ∆Qs (c,d), top to bottom, respectively.
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Figure 42: Error metric M (Eq. 5.6) as diurnal mean absolute percent difference between
observations and simulations, for Pre-monsoon Summer 2012, for horizontal grid resolutions,
∆H , of 9, 3, 1 km, and 333 m when available, for model configurations MYJ-Eta bulk (a),
MYJ-Eta PHX-A (b), MYJ-Eta PHX-B (c), YSU-MM5 bulk (d), YSU-MM5 PHX-A (e),
and YSU-MM5 PHX-B (f), and for variables Q∗, 〈QH〉, 〈QE〉, ∆Qs, T2m, G↑LW , G↓LW , G↑SW ,
G↓SW , left-to-right, respectively, for pre-monsoon summer 2012. Note that 9 km MYJ bulk
output was only reported hourly and is excluded from this analysis.
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Figure 43: Same as for Figure 42 but for Winter 2011.

147



REFERENCES

ADEQ. 2000. Final serious area ozone state implementation plan for Maricopa County.
Technical report. Arizona Department of Environmental Quality.

. 2001. Phoenix area PM10 Nonattainment - Agricultural Best Management
Practices. Technical report. Arizona Department of Environmental Quality.

Arizona, Republic. 2014. “Valley dust problems ease: County’s air quality improving; EPA
poised to relax scrutiny.” Arizona Republic, no. Jan. 16: 1, 3.

Arnfield, A John. 2003. “Two decades of urban climate research: a review of turbulence,
exchanges of energy and water, and the urban heat island.” Int. J. Climatol. 23 (1):
1–26. doi:10.1002/joc.859.

Arya, S. Pal. 1988. Introduction to micrometeorology. 303. San Diego: Academic Press,
Inc., San Diego.

Attenborough, K., K.M. Li, and K. Horoshenkov. 2007. Predicting outdoor Sound. London:
Taylor / Francis, London, 441 p.

Babisch, Wolfgang, Bernd Beule, Marianne Schust, Norbert Kersten, and Hartmut Ising.
2005. “Traffic noise and risk of myocardial infarction.” Epidemiology 16 (1): 33–40.

Babisch, Wolfgang, Wim Swart, Danny Houthuijs, Jenny Selander, Gösta Bluhm,
Göran Pershagen, Konstantina Dimakopoulou, et al. 2012. “Exposure modifiers of the
relationships of transportation noise with high blood pressure and noise annoyance.”
The Journal of the Acoustical Society of America 132 (6): 3788–3808.
doi:10.1121/1.4764881.

Banta, Robert M., Lisa S. Darby, Jerome D. Fast, James O. Pinto, C. David Whiteman,
William J. Shaw, and Brad W. Orr. 2004. “Nocturnal Low-Level Jet in a Mountain
Basin Complex. Part I: Evolution and Effects on Local Flows.” J. Appl. Meteor.
43:1348–1365. doi:10.1175/JAM2142.1.

Bao, J-W., S. A. Michelson, P. O. G. Persson, I. V. Djalalova, and J. M. Wilczak. 2008.
“Observed and WRF-Simulated Low-Level Winds in a High-Ozone Episode during the
Central California Ozone Study.” J. Appl. Meteor. Climatol. 47 (9): 2372–2394.
doi:10.1175/2008JAMC1822.1.

Barnosky, Anthony D., Elizabeth A. Hadly, Jordi Bascompte, Eric L. Berlow,
James H. Brown, Mikael Fortelius, Wayne M. Getz, et al. 2012. “Approaching a state
shift in Earth’s biosphere.” Nature 486:52–58. doi:10.1038/nature11018.

148

http://dx.doi.org/10.1002/joc.859
http://dx.doi.org/10.1121/1.4764881
http://dx.doi.org/10.1175/JAM2142.1
http://dx.doi.org/10.1175/2008JAMC1822.1
http://dx.doi.org/10.1038/nature11018


Beljaars, Anton. 1995. “The parametrization of surface fluxes in large-scale models under
free convection.” Quart. J. Roy. Meteor. Soc. 121 (522): 255–270.

Berglund, Birgitta, Thomas Lindvall, and Dietrich H. Schwela. 1999. Guidelines for
community noise. Geneva: World Health Organization.

Boer, L.C. den, and A. Schroten. 2007. Traffic noise reduction in Europe. Netherlands: C.E.
Delft.

Bou-Zeid, Elie, Jan Overney, Benedict D Rogers, and Marc B Parlange. 2009. “The effects
of building representation and clustering in large-eddy simulations of flows in urban
canopies.” Boundary-Layer Meteor. 132 (3): 415–436.

Bowman, J.J., T.B.A. Senior, and P.L.E. Uslenghi, eds. 1987. Electromagnetic and Acoustic
Scattering by Simple Shapes. Revised. New York: Hemisphere Publishing Corporation,
New York, 728p.

Bracher, Astrid, M Sinnhuber, A Rozanov, and JP Burrows. 2005. “Using a photochemical
model for the validation of NO 2 satellite measurements at different solar zenith
angles.” Atmos. Chem. Phys. 5 (2): 393–408.

Brazel, A. J., H. J. S. Fernando, J. C. R. Hunt, N. Selover, B. C. Hedquist, and E. Pardyjak.
2005. “Evening Transition Observations in Phoenix, Arizona.” J. Appl. Meteor.
44:99–112. doi:10.1175/JAM-2180.1.

Brazel, AJ, and WG Nickling. 1986. “The relationship of weather types to dust storm
generation in Arizona (1965–1980).” J. Climate 6 (3): 255–275.

Bremmer, Pamela, Jacqueline F. Byers, and Ermalynn Kiehl. 2003. “Noise and the
Premature Infant: Physiological Effects and Practice Implications.” J. Obstetric,
Gynecologic, & Neonatal Nursing 32 (4): 447–454.

Bronzaft, A.L. 1981. “The effect of a noise abatement program on reading ability.” Journal
of Environmental Psychology 1 (3): 215–222.

Bronzaft, Arline L. 2011. “The Noise From Wind Turbines: Potential Adverse Impacts on
Children’s Well-Being.” Bulletin of Science, Technology & Society 31 (4): 291–295.

Bronzaft, Arline L., and Dennis P. McCarthy. 1975. “The effect of elevated train noise on
reading ability.” Environment and Behavior 7 (4): 517–527.

Burian, Steven J, Srinivas Pradeep Velugubantla, and Michael J Brown. 2002.
Morphological analyses using 3D building databases: Phoenix, Arizona. Technical
report. LA-UR-02-6726, Los Alamos National Laboratory, Los Alamos, New Mexico.

149

http://dx.doi.org/10.1175/JAM-2180.1


Businger, J, JC Wyngaard, Y Izumi, and Edward F Bradley. 1971. “Flux-profile
relationships in the atmospheric surface layer.” J. Atmos. Sci. 28 (2): 181–189.

Byun, Daewon, and Kenneth L Schere. 2006. “Review of the governing equations,
computational algorithms, and other components of the Models-3 Community
Multiscale Air Quality (CMAQ) modeling system.” Applied Mechanics Reviews 59
(1/6): 51.

C. Steele. 2001. “A critical review of some traffic noise prediction models.” Appl. Acoust.
62:271–287.

Chandler-Wilde, S.N., and D.C. Hothersall. 1995. “Efficient calculation of the Green
function for acoustic propagation above a homogeneous impedance plane.” J. Sound
Vib. 180 (5): 705–724. doi:10.1006/jsvi.1995.0110.

Chen, Fei, Robert Bornstein, CSB Grimmond, Ju Li, Xudong Liang, ALBERTO Martilli,
SHIGUANG Miao, James Voogt, and Yingchun Wang. 2012. “Research priorities in
observing and modeling urban weather and climate.” Bull. Amer. Meteor. Soc. 93 (11):
1725–1728. doi:10.1175/BAMS-D-11-00217.1.

Chen, Fei, and Jimu Dudhia. 2001. “Coupling and advanced land surface-hydrology model
with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and
sensitivity.” Mon. Wea. Rev. 129 (4): 569–585.
doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

Chen, Fei, Hiroyuki Kusaka, Robert Bornstein, Jason Ching, C. S. B. Grimmond,
Susanne Grossman-Clarke, Thomas Loridan, et al. 2011. “The integrated WRF/urban
modelling system: development, evaluation, and applications to urban environmental
problems.” Int. J. Climatol. 31 (2): 273–288. doi:10.1002/joc.2158.

Chen, Fei, and Ying Zhang. 2009. “On the coupling strength between the land surface and
the atmosphere: From viewpoint of surface exchange coefficients.” Geophys. Res. Lett.
36 (10): L10404. doi:10.1029/2009GL037980.

Chen, Yingying, Kun Yang, Degang Zhou, Jun Qin, and Xiaofeng Guo. 2010. “Improving
the Noah land surface model in arid regions with an appropriate parameterization of
the thermal roughness length.” J. Hydrometeor. 11 (4): 995–1006.

Ching, J. K. S. 2013. “A perspective on urban canopy layer modeling for weather, climate
and air quality applications.” Urban Climate 3:13–39.
doi:10.1016/j.uclim.2013.02.001.

150

http://dx.doi.org/10.1006/jsvi.1995.0110
http://dx.doi.org/10.1175/BAMS-D-11-00217.1
http://dx.doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
http://dx.doi.org/10.1002/joc.2158
http://dx.doi.org/10.1029/2009GL037980
http://dx.doi.org/10.1016/j.uclim.2013.02.001


Ching, Jason, Michael Brown, Timothy McPherson, Steven Burian, Fei Chen, Ron Cionco,
Adel Hanna, Torrin Hultgren, David Sailor, Haider Taha, et al. 2009. “National urban
database and access portal tool.” Bulletin of the American Meteorological Society 90
(8): 1157–1168.

Chow, Winston T. L., Dean Brennan, and Anthony J Brazel. 2012. “Urban heat island
research in Phoenix, Arizona: Theoretical contributions and policy applications.” Bull.
Amer. Meteor. Soc. 93 (4): 517–530. doi:10.1007/s00704-010-0293-8.

Chow, W.T.L., T.J. Volo, E.R. Vivoni, G.D. Jenerette, and B.L. Ruddell. 2014. “Seasonal
Dynamics Of A Suburban Energy Balance In Phoenix, Arizona.” Int. J. Climatol. In
Press. doi:10.1002/joc.3947.

Clain, G., J.-L. Baray, R. Delmas, P. Keckhut, and J.-P. Cammas. 2010. “A lagrangian
approach to analyse the tropospheric ozone climatology in the tropics: Climatology of
stratosphere–troposphere exchange at Reunion Island.” Atmos. Environ. 44 (7):
968–975. doi:10.1016/j.atmosenv.2009.08.048.

Clements, Andrea L, Matthew P Fraser, Nabin Upadhyay, Pierre Herckes,
Michael Sundblom, Jeffrey Lantz, and Paul A Solomon. 2013. “Characterization of
Summertime Coarse Particulate Matter in the Desert Southwest–Arizona, USA.”
Journal of the Air & Waste Management Association, no. just-accepted.

Cohen, Barney. 2004. “Urban growth in developing countries: a review of current trends
and a caution regarding existing forecasts.” World Development 32 (1): 23–51.
doi:10.1016/j.worlddev.2003.04.008.

Coutts, Andrew M, Jason Beringer, and Nigel J Tapper. 2007. “Impact of increasing urban
density on local climate: spatial and temporal variations in the surface energy balance
in Melbourne, Australia.” J. Appl. Meteor. Climatol. 46 (4): 477–493.

Crutzen, Paul J. 2002. “Geology of mankind.” Nature 415 (6867): 23–23.
doi:10.1038/415023a.

Dahlback, Arne, and Knut Stamnes. 1991. “A new spherical model for computing the
radiation field available for photolysis and heating at twilight.” Planet. Space Sci. 39
(5): 671–683. doi:10.1016/0032-0633(91)90061-E.

Davies, Huw C. 1983. “Limitations of some common lateral boundary schemes used in
regional NWP models.” Mon. Wea. Rev. 111 (5): 1002–1012.
doi:10.1175/1520-0493(1983)111<1002:LOSCLB>2.0.CO;2.

151

http://dx.doi.org/10.1007/s00704-010-0293-8
http://dx.doi.org/10.1002/joc.3947
http://dx.doi.org/10.1016/j.atmosenv.2009.08.048
http://dx.doi.org/10.1016/j.worlddev.2003.04.008
http://dx.doi.org/10.1038/415023a
http://dx.doi.org/10.1016/0032-0633(91)90061-E
http://dx.doi.org/10.1175/1520-0493(1983)111<1002:LOSCLB>2.0.CO;2


De Bruin, HAR, RJ Ronda, and BJH Van De Wiel. 2000. “Approximate solutions for the
Obukhov length and the surface fluxes in terms of bulk Richardson numbers.”
Boundary-Layer Meteor. 95 (1): 145–157.

De Young, Raymond. 1999. “Tragedy of the commons.” In Encylopedia of Environmental
Science, edited by David E. Alexander and Rhodes W. Fairbridge, 601–602.
Http://hdl.handle.net/2027.42/83704. Dordrecht: Kluwer Academic Publishers.
doi:10.1007/1-4020-4494-1_328.

Delany, M. E., and E. N. Bazley. 1970. “Acoustical properties of fibrous absorbent
materials.” Appl. Acoust. 3 (2): 105–116. doi:10.1016/0003-682X(70)90031-9.

Di Sabatino, S., E. Solazzo, P. Paradisi, and R. Britter. 2008. “A Simple Model for
Spatially-averaged Wind Profiles Within and Above an Urban Canopy.”
Boundary-Layer Meteor. 127 (1): 131–151. doi:10.1007/s10546-007-9250-1.

Dragani, R., G. Redaelli, G. Visconti, A. Mariotti, V. Rudakov, A. R. MacKenzie, and
L. Stefanutti. 2002. “High-resolution stratospheric tracer fields reconstructed with
lagrangian techniques: a comparative analysis of predictive skill.” J. Atmos. Sci.
59:1943–1958.

Dritschel, David G. 1988. “Contour surgery: A topological reconnection scheme for
extended integrations using contour dynamics.” J. Comput. Phys. 77 (1): 240–266.
doi:10.1016/0021-9991(88)90165-9.

Dudhia, Jimy. 1989. “Numerical study of convection observed during the Winter Monsoon
Experiment using a mesoscale two-dimensional model.” J. Atmos. Sci. 46 (20):
3077–3107. doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

Dyer, A.J., and B.B. Hicks. 1970. “Flux-gradient relationships in the constant flux layer.”
Quart. J. Roy. Meteor. Soc. 96:715–721.

Embleton, Tony F. W. 1996. “Tutorial on sound propagation outdoors.” J. Acoust. Soc. Am.
100 (1): 31–48. doi:10.1121/1.415879.

Engling, Guenter, and András Gelencsèr. 2010. “Atmospheric Brown Clouds: From Local
Air Pollution to Climate Change.” Elements 6.

Eskridge, R.E., and J.C.R. Hunt. 1979. “Highway modeling, Part 1: Prediction of velocity
and turbulence fields in the wake of vehicles.” J. Appl. Meteor. 18 (4): 387–400.
doi:10.1175/1520-0450(1979)018<0387:HMPIPO>2.0.CO;2.

152

http://dx.doi.org/10.1007/1-4020-4494-1_328
http://dx.doi.org/10.1016/0003-682X(70)90031-9
http://dx.doi.org/10.1007/s10546-007-9250-1
http://dx.doi.org/10.1016/0021-9991(88)90165-9
http://dx.doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
http://dx.doi.org/10.1121/1.415879
http://dx.doi.org/10.1175/1520-0450(1979)018<0387:HMPIPO>2.0.CO;2


Etzel, Ruth A. 1997. “American Academy of Pediatrics, Committee on Environmental
Health. Noise a hazard for the fetus and newborn.” Pediatrics 100 (4): 724–726.
doi:10.1542/peds.100.4.724.

F. de Roo and I. Noordhoek. 2003. “Harmonoise WP2-reference sound propagation model.”
Fortschritte Der Akustik 29:354–355.

Fernando, H. J. S. 2008. “Polimetrics: the quantitative study of urban systems (and its
applications to atmospheric and hydro environments).” Environ. Fluid Mech. 8 (5-6):
397–409. doi:10.1007/s10652-008-9116-1.

. 2010. “Fluid Dynamics of Urban Atmospheres in Complex Terrain.” Annu. Rev.
Fluid Mech. 42:365–389. doi:10.1146/annurev-fluid-121108-145459.

Fernando, Harindra J S, Brett Verhoef, Silvana Di Sabatino, Laura S Leo, and Seoyeon Park.
2013. “The Phoenix evening transition flow experiment (TRANSFLEX).”
Boundary-Layer Meteor. 147 (3): 443–468. doi:10.1007/s10546-012-9795-5.

Fernando, Harindra, Marko Princevac, and Ronald Calhoun. 2007. “Atmospheric
Measurements.” In Springer Handbook of Experimental Fluid Mechanics, edited by
Cameron Tropea, Alexander L. Yarin, and John F. Foss, 1157–1178. Springer Berlin
Heidelberg. 10.1007/978-3-540-30299-5_17.

Fernando, HJS, SM Lee, J Anderson, M Princevac, E Pardyjak, and S Grossman-Clarke.
2001. “Urban fluid mechanics: Air circulation and contaminant dispersion in cities.”
Environ. Fluid Mech. 1 (1): 107–164. doi:10.1023/A:1011504001479.

Fernando, HJS, MC Mammarella, G Grandoni, P Fedele, R Di Marco, R Dimitrova, and
P Hyde. 2012. “Forecasting PM< sub> 10</sub> in metropolitan areas: Efficacy of
neural networks.” Environmental Pollution 163:62–67.

Foken, Thomas. 2008. “The energy balance closure problem: An overview.” Ecolog. Appl.
18 (6): 1351–1367. http://www.jstor.org/stable/40062260.

Forman, Richard T. T., and Robert D. Deblinger. 2000. “The Ecological Road-Effect Zone
of a Massachusetts (U.S.A.) Suburban Highway.” Conserv. Biol. 14 (1): 36–46.
http://www.jstor.org/stable/2641902.

Fry, J., G. Xian, S. Jin, J. Dewitz, C. Homer, L. Yang, C. Barnes, N. Herold, and
J. Wickham. 2011. “Completion of the 2006 National Land Cover Database for the
Conterminous United States.” Photogramm. Eng. Remote Sens. 77 (9): 858–864.

153

http://dx.doi.org/10.1542/peds.100.4.724
http://dx.doi.org/10.1007/s10652-008-9116-1
http://dx.doi.org/10.1146/annurev-fluid-121108-145459
http://dx.doi.org/10.1007/s10546-012-9795-5
10.1007/978-3-540-30299-5_17
http://dx.doi.org/10.1023/A:1011504001479
http://www.jstor.org/stable/40062260
http://www.jstor.org/stable/2641902


Gauvreau, B., M. Bérengier, P. Blanc-Benon, and C. Depollier. 2002. “Traffic noise
prediction with the parabolic equation method: Validation of a split-step Pade
approach in complex environments.” J. Acoust. Soc. Am. 112 (6): 2680–2687.

Georgescu, M., M. Moustaoui, A. Mahalov, and J. Dudhia. 2011. “An alternative
explanation of the semiarid urban area “oasis effect”.” J. Geophys. Res. 116:D24113.
doi:10.1029/2011JD016720.

Georgescu, M, M Moustaoui, A Mahalov, and J Dudhia. 2013. “Summer-time climate
impacts of projected megapolitan expansion in Arizona.” Nat. Clim. Change 3 (1):
37–41. doi:10.1038/NCLIMATE1656.

Gilbert, K. E., and X. Di. 1993. “A fast Green’s function method for one-way sound
propagation in the atmosphere.” J. Acoust. Soc. Am. 94:2343–2352.

Gilbert, K.E., and M.J. White. 1989. “Application of the parabolic equation to sound
propagation in a refracting atmosphere.” J. Acoust. Soc. Am. 85 (2): 630–637.
doi:10.1121/1.397587.

Goines, L., and L. Hagler. 2007. “Noise pollution: A modern plague.” Southern Medical
Journal 100:287–294.

Golden, Jay S. 2004. “The built environment induced urban heat island effect in rapidly
urbanizing arid regions–a sustainable urban engineering complexity.” Environ. Sci. 1
(4): 321–349. doi:10.1080/15693430412331291698.

Granados, J. A. T. 1998. “Reducing automobile traffic: an urgent policy for health
promotion.” Rev. Panam Salud Publica 3:227–241.

Grell, G.A., J. Dudhia, and D. R. Stauffer. 1994. A description of the Fifth-Generation Penn
State/NCAR Mesoscale Model (MM5). NCAR Technical Note NCAR/TN-398+STR,
pp. 121. December.

Grell, Georg A, Steven E Peckham, Rainer Schmitz, Stuart A McKeen, Gregory Frost,
William C Skamarock, and Brian Eder. 2005. “Fully coupled “online” chemistry
within the WRF model.” Atmos. Environ. 39 (37): 6957–6975.

Grimm, Nancy B, Stanley H Faeth, Nancy E Golubiewski, Charles L Redman, Jianguo Wu,
Xuemei Bai, and John M Briggs. 2008. “Global change and the ecology of cities.”
Science 319 (5864): 756–760. doi:10.1126/science.1150195.

154

http://dx.doi.org/10.1029/2011JD016720
http://dx.doi.org/10.1038/NCLIMATE1656
http://dx.doi.org/10.1121/1.397587
http://dx.doi.org/10.1080/15693430412331291698
http://dx.doi.org/10.1126/science.1150195


Grimmond, C S B, M Blackett, M J Best, J-J Baik, S E Belcher, J Beringer,
S I Bohnenstengel, et al. 2011. “Initial results from Phase 2 of the international urban
energy balance model comparison.” Int. J. Climatol. 31 (2): 244–272.
doi:10.1002/joc.2227.

Grimmond, C. S. B., M. Blackett, M. J. Best, J. Barlow, J.-J. Baik, S. E. Belcher,
S. I. Bohnenstengel, et al. 2010. “The International Urban Energy Balance Models
Comparison Project: First Results from Phase 1.” J. Appl. Meteor. Climatol.
49:1268–1292. doi:10.1175/2010JAMC2354.1.

Grimmond, C S B, and Timothy R Oke. 1999. “Aerodynamic properties of urban areas
derived from analysis of surface form.” J. Appl. Meteor. Climatol. 38 (9): 1262–1292.
doi:10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2.

Grossman-Clarke, S., J.A. Zehnder, T. Loridan, and C.S.B. Grimmond. 2010. “Contribution
of Land Use Changes to Near-Surface Air Temperatures during Recent Summer
Extreme Heat Events in the Phoenix Metropolitan Area.” J. Appl. Meteor. Climatol.
49:1649–1664. doi:10.1175/2010JAMC2362.1.

Grossman-Clarke, Susanne, Joseph A Zehnder, William L Stefanov, Yubao Liu, and
Michael A Zoldak. 2005. “Urban modifications in a mesoscale meteorological model
and the effects on near-surface variables in an arid metropolitan region.” J. Appl.
Meteor. Climatol. 44 (9): 1281–1297. doi:10.1175/JAM2286.1.

Gryning, Sven-Erik, Ekaterina Batchvarova, Burghard Brümmer, Hans Jørgensen, and
Søren Larsen. 2007. “On the extension of the wind profile over homogeneous terrain
beyond the surface boundary layer.” Boundary-Layer Meteor. 124 (2): 251–268.

Haines, M M, S A Stansfeld, J Head, and R F S Job. 2002. “Multilevel modelling of aircraft
noise on performance tests in schools around Heathrow Airport London.” J. Epidemiol.
Community Health 56 (2): 139–144.

Halfwerk, W., L.J.M. Holleman, C.M. Lessells, and H. Slabbekoorn. 2011. “Negative
impact of traffic noise on avian reproductive success.” J. Appl. Ecol. 48:210–219.

Hardin, Garrett. 1968. “The tragedy of the commons.” Science 162 (3859): 1243–1248.
doi:10.1126/science.162.3859.1243.

Hart, Jaime E., Stephanie E. Chiuve, Francine Laden, and Christine M. Albert. 2014.
“Roadway Proximity and Risk of Sudden Cardiac Death in Women.” Circulation.
doi:10.1161/CIRCULATIONAHA.114.011489.

155

http://dx.doi.org/10.1002/joc.2227
http://dx.doi.org/10.1175/2010JAMC2354.1
http://dx.doi.org/10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2
http://dx.doi.org/10.1175/2010JAMC2362.1
http://dx.doi.org/10.1175/JAM2286.1
http://dx.doi.org/10.1126/science.162.3859.1243
http://dx.doi.org/10.1161/CIRCULATIONAHA.114.011489


Hatch, L., C. Clark, R. Merrick, S. Van Parijs, D. Ponirakis, K. Schwehr, M. Thompson,
and D. Wiley. 2008. “Characterizing the relative contributions of large vessels to total
ocean noise fields: a case study using the Gerry E. Studds Stellwagen Bank National
Marine Sanctuary.” Atmos. Environ. 42:735–752.

Hemida, Hassan, and Chris Baker. 2010. “Large-eddy simulation of the flow around a
freight wagon subjected to a crosswind.” Computers & Fluids 39 (10): 1944–1956.
doi:10.1016/j.compfluid.2010.06.026.

Hildebrand, John A. 2009. “Anthropogenic and natural sources of ambient noise in the
ocean.” Marine Ecol. Prog. Ser. 395:5–20.

Hole, Lars R., and Gard Hauge. 2003. “Simulation of a morning air temperature inversion
break-up in complex terrain and the influence on sound propagation on a local scale.”
Appl. Acoust. 64 (4): 401–414. doi:10.1016/S0003-682X(02)00104-4.

Holtslag, A. A. M., and H. A. R. de Bruin. 1988. “Applied Modeling of the Nighttime
Surface Energy Balance over Land.” J. Appl. Meteor. 27 (June): 689–704.
doi:10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2.

Hong, Song-You, Jimy Dudhia, and Shu-Hua Chen. 2004. “A Revised Approach to Ice
Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation.”
Mon. Wea. Rev. 132 (1): 103–120.
doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

Hong, Song-You, Ying Noh, and Jimy Dudhia. 2006. “A New Vertical Diffusion Package
with an Explicit Treatment of Entrainment Processes.” Mon. Wea. Rev. 134 (9):
2318–2341. doi:10.1175/MWR3199.1.

Hsu, NC, R Gautam, AM Sayer, C Bettenhausen, C Li, MJ Jeong, S-C Tsay, and
BN Holben. 2012. “Global and regional trends of aerosol optical depth over land and
ocean using SeaWiFS measurements from 1997 to 2010.” Atmos. Chem. Phys. 12 (3):
8465–8501.

Hu, Xiao-Ming, John W. Nielsen-Gammon, and Fuqing Zhang. 2010. “Evaluation of Three
Planetary Boundary Layer Schemes in the WRF Model.” J. Appl. Meteor. Climatol. 49
(9): 1831–1844. doi:10.1175/2010JAMC2432.1.

Hunt, Julian C., Yulia V. Timoshkina, Sylvia I. Bohnenstengel, and Stephen Belcher. 2012.
“Implications of climate change for expanding cities world-wide.” Proc. Inst. Civil Eng.
- Urban Design Planning 166 (DP4): 241–254. doi:10.1680/udap.10.00062.

156

http://dx.doi.org/10.1016/j.compfluid.2010.06.026
http://dx.doi.org/10.1016/S0003-682X(02)00104-4
http://dx.doi.org/10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
http://dx.doi.org/10.1175/MWR3199.1
http://dx.doi.org/10.1175/2010JAMC2432.1
http://dx.doi.org/10.1680/udap.10.00062


Hygge, S. 2011. “Noise and cognition in children.” Edited by J.O. Nriagu. Encyclopedia of
Environmental Health 4:146–151.

Hygge, Staffan, Gary W. Evans, and Monika Bullinger. 2002. “A Prospective Study of
Some Effects of Aircraft Noise on Cognitive Performance in Schoolchildren.”
Psychological Science 13 (5): 469–474.

Iglesias Merchan, Carlos, Luis Diaz-Balteiro, and Mario Soliño. 2014. “Noise pollution in
national parks: Soundscape and economic valuation.” Landscape and Urban Planning
123:1–9.

Ising, H, B Kruppa, et al. 2004. “Health effects caused by noise: evidence in the literature
from the past 25 years.” Noise and Health 6 (22): 5.

J. Chambers, H. Saurenman, R. Bronsdon, L. Sutherland, K. Gilbert, R. Waxler, and
C. Talmadge. 2006. “Effects of temperature induced inversion conditions on suburban
highway noise levels.” Acta Acust. Acust. 92:1060–1070.

J. Wang and J. Angell. 1999. “Air Stagnation Climatology for the United States
(1948-1998).” NOAA/Air Resources Laboratory, Atlas No. 1, Silver Spring, MD.

Janjic, Z.I. 1994. “The step-mountain Eta coordinate model: Further developments of the
convection, viscous sublayer, and turbulence closure schemes.” Mon. Wea. Rev. 122
(5): 927–945. doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

. 1996. “The surface layer in the NCEP Eta Model.” In Eleventh Conference on
Numerical Weather Prediction, 354–355. Norfolk, VA: American Meteorological
Society, August.

. 2001. Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the
NCEP Meso model. Technical report 437. December. NCEP Office Note, December.

Jiménez, Pedro A, Jimy Dudhia, J Fidel González-Rouco, Jorge Navarro, Juan P Montávez,
and Elena García-Bustamante. 2012. “A revised scheme for the WRF surface layer
formulation.” Mon. Wea. Rev. 140 (3): 898–918. doi:10.1175/MWR-D-11-00056.1.

K. Attenborough. 2002. “Sound propagation close to the ground.” Annu. Rev. Fluid Mech.
34:51–82. doi:10.1146/annurev.fluid.34.081701.143541.

Kain, J. S. 2004. “The Kain-Fritsch convective parameterization: An update.” J. Appl.
Meteor. 43 (1): 170–181.
doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

157

http://dx.doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
http://dx.doi.org/10.1175/MWR-D-11-00056.1
http://dx.doi.org/10.1146/annurev.fluid.34.081701.143541
http://dx.doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2


Kalma, Jetse D, Tim R McVicar, and Matthew F McCabe. 2008. “Estimating land surface
evaporation: A review of methods using remotely sensed surface temperature data.”
Surveys Geophys. 29 (4-5): 421–469. doi:10.1007/s10712-008-9037-z.

Kato, S., and N.G. Loeb. 2003. “Twilight irradiance reflected by the Earth estimated from
clouds and the Earth’s radiant energy system (CERES) measurements.” J. Climate
16:2646–2650.

Kaufman, Y. J., D. Tanré, B. N. Holben, S. Mattoo, L. A. Remer, T. F. Eck, J. Vaughan, and
B. Chatenet. 2002. “Aerosol radiative impact on spectral solar flux at the surface,
derived from principal-plane sky measurements.” J. Atmos. Sci. 59:635–646.

Klemp, J. B., W. C. Skamarock, and J. Dudhia. 2007. “Conservative split-explicit time
integration methods for the compressible nonhydrostatic equations.” Mon. Wea. Rev.
135 (8): 2897–2913. doi:10.1175/MWR3440.1.

Kusaka, Hiroyuki, and Fujio Kimura. 2004. “Coupling a Single-Layer Urban Canopy
Model with a Simple Atmospheric Model: Impact on Urban Heat Island Simulation for
an Idealized Case.” J. Meteor. Soc. Japan 82 (1): 67–80. doi:10.2151/jmsj.82.67.

Latha, K. Madhavi, and K.V.S. Badarinath. 2005. “Shortwave radiative forcing efficiency of
urban aerosols-a case study using ground based measurements.” Chemosphere
58:217–220.

Lee, Sang-Mi, Harindra J.S. Fernando, Marko Princevac, Dragan Zajic, Michela Sinesi,
Jennifer L. Mcculley, and James Anderson. 2003. “Transport and Diffusion of Ozone
in the Nocturnal and Morning Planetary Boundary Layer of the Phoenix Valley.”
Environ. Fluid Mech. 3 (4): 331–362. doi:10.1023/A:1023680216173.

Lee, Sang-Mi, and HJS Fernando. 2013. “Dispersion of an Urban Photochemical Plume in
Phoenix Metropolitan Area.” Atmos. Environ. 80:152–160.
doi:10.1016/j.atmosenv.2013.07.066.

Li, Y.L., S.J. Franke, and C.H. Liu. 1993. “Wave scattering from a ground with a Gaussian
bump or trough in an inhomogeneous medium.” J. Acoust. Soc. Am. 94 (2): 1067–1075.

Lienhart, Hermann, and Stefan Becker. 2003. “Flow and turbulence structure in the wake of
a simplified car model.” Soc. Automot. Eng. 112 (6): 785–796.

Lihoreau, Bertrand, Benoit Gauvreau, Michel Bérengier, Philippe Blanc-Benon, and
Isabelle Calmet. 2006. “Outdoor sound propagation modeling in realistic
environments: Application of coupled parabolic and atmospheric models.” J. Acoust.
Soc. Am. 120 (110): 110–119. doi:10.1121/1.2204455.

158

http://dx.doi.org/10.1007/s10712-008-9037-z
http://dx.doi.org/10.1175/MWR3440.1
http://dx.doi.org/10.2151/jmsj.82.67
http://dx.doi.org/10.1023/A:1023680216173
http://dx.doi.org/10.1016/j.atmosenv.2013.07.066
http://dx.doi.org/10.1121/1.2204455


Liu, Yubao, Fei Chen, Thomas Warner, and Jeffrey Basara. 2006. “Verification of a
mesoscale data-assimilation and forecasting system for the Oklahoma City area during
the Joint Urban 2003 field project.” J. Appl. Meteor. Climatol. 45:912–929.

Loridan, Thomas, Fredrik Lindberg, Oriol Jorba, Simone Kotthaus,
Susanne Grossman-Clarke, and CSB Grimmond. 2013. “High Resolution Simulation
of the Variability of Surface Energy Balance Fluxes Across Central London with
Urban Zones for Energy Partitioning.” Boundary-Layer Meteor. 147 (3): 493–523.
doi:10.1007/s10546-013-9797-y.

Luber, George, and Michael McGeehin. 2008. “Climate change and extreme heat events.”
Am. J. Prev. Med. 35 (5): 429–435. doi:10.1016/j.amepre.2008.08.021.

M. West and Y. Lam. 2000. “Prediction of sound fields in the presence of terrain features
which produce a range dependent meteorology using the generalised terrain parabolic
equation (GT-PE) model.” Proceedings of Inter-Noise 2000 2:943.

Madsen, P. T., M. Wahlberg, J. Tougaard, K. Lucke, and P. Tyack. 2006. “Wind turbine
underwater noise and marine mammals: implications of current knowledge and data
needs.” Marine Ecol. Prog. Ser. 309:279–295.

MAG. 2007. Eight-hour ozone plan for the Maricopa Nonattainment Area. Technical report.
Maricopa Association of Governments.

. 2008. PM-10 Source Attribution and Deposition Study. Technical report. Maricopa
Association of Governments.

. 2013. 2013 Carbon monoxide maintenance plan for the Maricopa County area.
Technical report. Maricopa Association of Governments.

Mahalov, A., and M. Moustaoui. 2010. “Characterization of atmospheric optical turbulence
for laser propagation.” Laser Photonics Rev. 4 (1): 144–159.
doi:10.1002/lpor.200910002.
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A.1 ADOT Field Experiment

Supplementary material for Chapter 2 field experiments, for microphones,

ultra-sonic anemometers, SODAR-RASS, balloon-tethersonde, and other data collected at

ADOT field experiments in Oct, Nov 2006, and Apr 2007.

A field experiment Ovenden, Shaffer, and Fernando 2009; Shaffer et al. 2014 was

conducted during the morning hours of November 7 and 8, 2006 along the Phoenix Loop

202 highway in Mesa, Arizona near coordinates 33.48240◦N, 111.76338◦W, shown in

Figure 25. One aim of the study was to capture effects of sound propagation from a straight

freeway segment during morning transition from stable to unstable conditions. Measuring

equipment employed included a SOund Detection And Ranging (SODAR) with Radio

Acoustic Sounding System (RASS) and sonic anemometers situated on a meteorological

tower and two tripods. A cross-section of the Nov. 2006 setup and terrain height is

presented in Figure 44.

A.1.1 Acoustic Data

Microphone data collection and analysis was performed by Illingworth & Rodkin,

Inc. (I&R), with placements summarized in Table 5. I&R provided 5-minute time-averaged

Sound Pressure Level (SPL) measurements, Leq, fn , in 27 third-octave spectral bands from

25 Hz to 20 kHz, along with Leq, Lmax, L50 and L90 total values in 5-minute averages, shown

in Figure 45-48. Standard one-third octave bands can be found in Table 2.1 of Pierce 1981.

Of these acoustic data, we observe that only 17 frequency bands are relevant when applying

A-weighting to account for human sensitivity to sound, as typical for studies of noise
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ID Distance [ft] Height AGL [ft]
1 50 12
2 50 5
3 100 5
4 250 5

Table 5: Summary of microphone placement during November field experiment. Distance
is from the center of near travel lane, which is 12 feet from the edge of pavement.

pollution, defined as undesirable sound to humans. This approach yields less than 1% error

in the total A-weighted SPL field and speeds computations by neglecting larger frequencies.

A.1.2 Meteorological Data

Meteorological data obtained from the SODAR-RASS and sonic anemometers

during the entire measurement periods on November 7 and 8, 2006, local standard time in

Arizona (UTC-7) are presented. Shown in Figures 49-54 are time-series plots of vertical

profiles for temperature, U (East-West), V (North-South) and W (vertical) velocity

components, along with horizontal wind direction and speed, respectively. The change in

wind direction with time and height, presence and dialy breakup of temperature inversion

and presence of early morning shear and a low-level jet is evident. Unfortunately, only error

estimates in the W component and the total backscatter were retained in the data files, so

uncertainties in U, V and T are unavailable. Further data corruption could have occurred

due to anomolously loud roadway events and were not accounted for, but might be inferred

from L90 values.

The Scientech SODAR-RASS was employed to sample vertical profiles of air

velocity and temperature, which were recorded in 20 minute time averaged values with 20

meter vertical resolution between roughly 40 meters and 360 meters above ground level
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ID Manufacturer Structure Distance [ft] Height AGL [m]
1 RM Young 81000 met tower 100 6.8
2 RM Young 81000 met tower 100 13.8
3 RM Young 81000 tripod 1 50 1.8
4 Campbell Scientific tripod 2 250 2.2

Table 6: Summary of placement of sonic anemometers during field experiemnt. The
structure is as described in Figure 44, and distance is from edge of pavement. Sonic 4 was
only used on November 8th.

(AGL). Using directed pulsed acoustic signals, the SODAR obtains horizontal velocities via

doppler shifts, and when combined with electromagnetic signal source and receiver dishes,

the RASS enables sampling temperature, and combined with SODAR the vertical velocity

component Fernando, Princevac, and Calhoun 2007 Piringer and Kaiser 2008. Being a

source of acoustic contamination, the SODAR-RASS was positioned several hundred feet

away from the microphones, displaced parallel to the roadway. Furthermore, data

corruption is suspected to have occurred due to anomolously loud events from the roadway

interfering with measurement signal-to-noise ratio. Equipment difficulties caused for other

periods to lack data.

Sonic anemometers were placed on separate towers alongside microphone locations

at 50, 100 and 250 feet from the center of the near lane of traffic and at various heights

above ground, summarized in table 6. They were operated at 20 Hz during roughly 0700

and 1100 local standard time. The data were then post-processed into 5 and 15 minute

time-averaged values for observed and derived quantities.

Sonic anemometer data are presented Figures 55 - 71, with the sonic positions as

summarized in Table 6. The initial ordering of sonics in Table 6 was arbitrary, though

perhaps they should be sorted by height above ground. However, distance from road may

also be important as mentioned below. There are several features that stand out and several
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points of further analysis for careful interpretation of these data. The first is the change in

horizontal wind direction at 11 am LST more noticably on Noveber 7th. Features such as

wind speed and temperature trends could be examined from WRF data quite readily, though

one must understand the comparison being made between 5-minute time-averaged point (3

cm diameter sampling volume) measurements and an instantaneous realization of

rectangular pancake 20 meters in height and at grid resolutions of 111, 333 or 1000 meters

on a side (when comparing with WRF).

The difference between sonic positions from the roadway may be important as seen

in the rms values, Figures 61-64, Reynolds stresses and turbulent fluxes in Figures 66 - 70,

and TKE in Figure 71. In comparing sonic number 3 and 4 (Nov 8th only) which are at

similar heights 2 m agl, but at 50 ft and 250 ft, respectively, from the roadway. For

instance, between roughly 8:15 and 9:05 the urms (Fig. 61), vrms (Fig. 62), and the stresses

u′v′ (Fig. 65), and the u′w′ (Fig. 66), together with TKE (Fig. 71), deviations are present

which might be indicative of roadway influences. Comparisons with observed timeseries of

traffic intensity or a more careful analysis of the ADOT observations of travel velocity and

vehicle flux might be of use. A simple model of a wake behind a bluff body Ahmed car

model Lienhart and Becker 2003, only here we have more complex boundary layer flow

with mean wind, shear and inversion etc. so short of performing a full LES analysis (e.g.

Serre et al. 2013, Hemida and Baker 2010, Minguez, Pasquetti, and Serre 2008) perhaps

some scaling arguments could be used to infer confirmation of this possible explanation for

these observations. Also note that the rms temperature (and heat flux) is greater closer to

the roadway. See also, analysis performed in Eskridge and Hunt 1979. More detailed

analysis needs to be performed on these topics.

173



Figure 44: Schematic of ADOT experimental setup for November 2006.
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Figure 45: Time series of microphone 1 measurements for one-third octave spectrogram (25
Hz to 20 kHz) with values ranging from (13,73) dBA interpolated contours, and a 67 dBA
black contour showing individual frequencies that are above the Leq threshold (top), and
timeseries of eq, Lmax, L90, and L50 5-minute average values (bottom), during the Nov. 2006
observation periods for Nov 7th (left), and Nov. 8th (right), local time.
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Figure 46: Same as Figure 45 but for microphone 2.
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Figure 47: Same as Figure 45 but for microphone 3.
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Figure 48: Same as Figure 45 but for microphone 4.
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Figure 49: Observed time-series of SODAR-RASS vertical profiles during the two observa-
tional periods on Nov 7th (left panel) and Nov 8th (right panel) for U velocity component.
Positive values are towards the East. Ragged top is due to variations in range of SODAR-
RASS.
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Figure 50: Same as for Figure 49 but for V velocity component. Positive values are towards
the north.
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Figure 51: Same as for Figure 49 but for W velocity component. Positive values are up.
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Figure 52: Same as for Figure 49 but for temperature.
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Figure 53: Same as for Figure 49 but magnitude of horizontal wind speed.
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Figure 54: Same as for Figure 49 but for direction of horizontal wind speed. Here East is 0◦

and North is 90◦.
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Figure 55: Observed time-series of sonic anemometer data, with ID corresponding to
instrument in Table 6, during the two observational periods on Nov 7th (top) and Nov 8th
(bottom) for 5-minute time-averaged mean values of U velocity component, positive towards
east.
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Figure 56: Same as for Figure 55, but for V velocity component. Positive is towards north.

Figure 57: Same as for Figure 55, but for W velocity component. Positive is upward.
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Figure 58: Same as for Figure 55, but for temperature.

Figure 59: Same as for Figure 55, but for horizontal wind speed.
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Figure 60: Same as for Figure 55, but for horizontal wind direction where East is 0◦ and
North is 90◦.
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Figure 61: Same as for Figure 55, but for urms, RMS of u-velocity component.

Figure 62: Same as for Figure 55, but for vrms, RMS of v-velocity component.
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Figure 63: Same as for Figure 55, but for wrms, RMS of w-velocity component.

Figure 64: Same as for Figure 55, but for θrms, RMS of virtual potential temperature.
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Figure 65: Same as for Figure 55, but for Reynolds stress u′v′.

Figure 66: Same as for Figure 55, but for Reynolds stress u′w′.
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Figure 67: Same as for Figure 55, but for Reynolds stress v′w′.

Figure 68: Same as for Figure 55, but for friction velocity u∗.
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Figure 69: Same as for Figure 55, but for heat flux w′θ ′.
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Figure 70: Same as for Figure 55, but for vertical momentum flux (v′w′
2
+u′w′

2
)

1
2 .
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Figure 71: Same as for Figure 55, but for turbulent kinetic energy.
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APPENDIX B

PRELIMINARY INVESTIGATION OF EFFECTS FROM A 2D ACOUSTIC

REFRACTION FIELD VIA A LAGRANGIAN METHOD
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B.1 Introduction

We demonstrate our method of deriving realizations from ARW-WRF v3.2 of

effective acoustic index of refraction field fluctuations for studies of highway noise

pollution in Phoenix, Arizona. A 44 hour simulation period beginng on 7 November 2006

at 00 UTC is used along with several cases of model parameterizations that influence the

boundary layer. Using a six-minute output frequency for the 1 km domain we implement a

Lagrangian technique of reverse-time domain filling (RDF) which enables deriving the

spatial variation in the potential temperature field on a known grid at higher resolution than

the WRF grid. This is achieved for under two hour trajectories by invoking the adiabatic

approximation for conservation of potential temperature. The result is then used in an

acoustic model via a range dependent effective sound speed profile using the velocity

profile obtained from the WRF output. We use a one-way parabolic equation (PE)

approximation to the Helmholtz equation with a Green’s function solution for a line-source

above a flat locally-reacting impedance plane to obtain the starting field for a

Crank-Nicolson scheme. The acoustic field of a 400 HZ source is computed both with and

with RDF, at 8am local time on 7 November, during the period of morning katabatic flow

from balleys abutting Four Peaks to the Northeast. The site location and times were chosen

to coincide with field experiment measurements from previous work by the authors.

B.2 WRF Model Setup

For the preliminary study, we use similar configurations as presented in Section

4.3.2 for cases 1, 3, 4, and 5 given in Table 7 of Section ?? to which the reader is referred

for further detail outside of the following brief description. A summary table of the cases
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used here is given in figure 7. As indicated in the timeline of figure 73, these experiments

utilize model restarts to enable an hourly output rate for much of the simulation time that

was not going to be needed for RDF or other analysis, and an much higher output rate of

every six minutes during the observational and analysis times. Model nesting for the four

domains and the 2-way feedback used for all four domains is indicated in figure 72,

centered on Phoenix Arizona as indicated in figure 72. Vertical refinement was applied on

the 4th domain using hourly data and a 12 hour spin-up period. Initial resolution was 60

vertical levels and increased to 180 levels with a refinement factor of 3 in using ndown. The

model timestep for d01 was set to 120 seconds, hence the 6-minute output frequency as

parent-child timestep ratio of 3 was used for all domains. The vertically refined domain

used a 2 second timestep. For the two land-use methods, the maps of 1 kilometer 4th

domain are presented in figure 74 indicating differences in classification along with the

inclusion of urban data from NLCD.

Figure 72: (left) Schematic (from WRF Domain Wizard) showing 4 nested domains overlaid
on map of western United States. (middle and right) Schematics showing domain nesting,
resolution and feedback. Horizontal grid indices and vertical levels are indicated.
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Figure 73: Schematic timeline of simulation showing key aspects: model initialization,
model restart times, observational periods, analysis time of reverse-time domain filling and
frequency of WRF model output.

Case ID Urban Land Surface Surface Layer Boundary Layer Land Use
A UCM 5-layer MM5 YSU USGS
B bulk 5-layer MM5 YSU MODIS+NLCD
C UCM 5-layer MM5 YSU MODIS+NLCD
D bulk Noah Eta MYJ MODIS+NLCD

Table 7: Definitions of Case ID for WRF model parameterization options used in this study.

B.3 Acoustic Model

The acoustic model we use is a range-update version of what is presented in Section

4.2 with a modified schematic presented in figure 75. The PE model equation here reads,(
∂

∂y
+ i
√

H

)(
∂

∂y
− i
√

H

)
pc = 0,

where

H =
1

c2
e f f (y,z)

∂

∂ z

[
c2

e f f (y,z)
∂

∂ z

]
+

ω2

c2
e f f (y,z)

Where we retain only the factor
(

∂

∂y − i
√

H
)

for propagation in the positive y direction,

here rotated to be South, transverse to the highway and in the downwind direction for

comparison with OSF09. Again, grid spacing is ∆y = ∆z = λ f /10. The key to this section is
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Figure 74: Map of dominant land-use index for USGS (left) and Modis with NLCD urban
(right). Blue indicates urban areas in USGS and orange to red are used for NLCD. Also
forest in USGS (purple) is miscategorized in some Phoenix valley locations, as seen in the
cropland (purple) of MODIS, where MODIS forest is blue.

the slowly varying with range effective sound speed field,

ce f f (y,z) = cad(y,z)+VS(z)

where we plan to use one profile from WRF for the representative velocity field in the South

direction, VS(z), and to use a mesh with 30 meter grid spacing of 10 vertical by 20

horizontal, for a 300 meter high by 600 meter in range grid of points in temperature from

which to construct the adiabatic sound speed cad(y,z). We use the same conversions as

presented in Section 4.3.3 to obtain the sound speed, which here is interpolated from the 30

meter grid to obtain input profiles that are updated with each range step in the PE model.
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Figure 75: Schematic of range-update PE model, but rotated to propagate in the +x direction
instead of +y, with z vertical. A Green’s function solution for a monochromatic line source
above an impedance plane in a homogeneous stationary atmosphere of constant temperature
to find the starting pressure field at the edge of the asphalt. The pressure field is then
marched across the PE domain, taking updates in Ce f F(z) at each range step to recompute
H. An attenuating layer at the top is used to avoid reflections. A 1-parameter ground
impedance model is used with flow porosity representative of sandy soil for the complex
normal impedance ground boundary condition. The domain height is 300 meters and the
range id 600 meters.

B.4 Lagrangian Reverse-Time Domain Filling

B.4.1 Method

We use a Lagrangian technique called reverse-time domain filling (RDF) which has

been applied in several previous studies for other applications in the atmospheric sciences
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Clain et al. 2010; Dritschel 1988; Dragani et al. 2002. Our approach to using the technique

is now described and applied to the vertically refined fourth domain with one kilometer

horizontal resolution shown in Section B.5 with trajectory results shown below. We will use

capital notation for the WRF domain grid, and lower-case for the higher resolution grid to

which we seek to fill with an initially unknown potential temperature field – without simply

spatially interpolating the temperature. From the WRF output files, we have velocities, ~U ,

potential temperature, Θ, at the specified output times, T , all at the resolution of the domain

with positions, ~X(T ), which are time-dependent due to the η-coordinate depending upon

pressure which is also a prognostic variable. Let~x(t0) be a regular grid with individual

points~xi(t0), at time t0 = T0, with much higher resolution than ~X(T0). We seek to determine

temperature data θ(~x(t0), t0), at this higher resolution for use in deriving a range dependent

effective sound speed field ce f f (~x(t0), t0) for an acoustic model which depends on spatial

scales not resolved by the meso-scale model which produced the coarse grid data.

Furthermore, the acoustic model uses the frozen-field approach since O(U)� O(ce f f )

over a propagation distance LD. Or, more properly stated in terms of timescales, the eddy

timescale within the acoustic domain of height HD in the PBL, Teddy ∼HD/U , is related

to the acoustic timescale, Tacoustic ∼LD/ce f f , by O(Tacoustic)� O(Teddy).

Using the adiabatic approximation for short times, t�Tad ,

dθ

dt
= 0,

stating that potential temperature is conserved within the flow where Tad is an adiabatic

timescale describing time thermal diffusion and other parcel heating processes. By using

the Lagrangian perspective definition,

d~X
dT

= ~U
(
~X(T ),T

)
,
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we seek to solve for,
d~xi

dt
=~ui (~xi(t), t) ,

where ∆t� ∆T and we are neglecting shear in considering advection of an infintesimal

fluid parcel Ωi with initial coordinates~xi(t0). We set ∆T = N∆t with N� 1. For our case,

∆T = 6 minutes, the interval in WRF output files and ∆t = 4 seconds, the advection

timestep with a 4th order Runge-Kutta (RK4) method using evaluation-timesteps of 2 and

4/3 seconds. We take a 30 meter resolution grid in the y–z plane at t0 = T0 = TA as the

analysis time (for TA being, for instance, 15:20 Z on 11-07-2006 for case A in OSF09

described in Section 4.3.1 table 1) where we desire to compute the sound field using the

2-D range-update PE model described in B.3. Reverse-time advection is performed for a

total time M∆T , M ∈ N where we advect back for 2 hours giving M = 20. Any parcel that

impacts the ground or otherwise leaves the domain is stopped and evaluated at the timestep

before it would have left.

First, we determine monotonic cubic spline coefficients (using Matlab function

pchip) for the WRF model output times Tk, k = 2, . . . ,−M−3. For accuracy in temporal

interpolation we use a set of six WRF output fields bracketing the current interval ∆T for

interpolating the velocity field to perform RK4 backwards advection for each set of N

timesteps of increment −∆t. In the following, we use the notation of a hat to denote the

spatially interpolated field (using Matlab function ppval with the piecewise monotonic

cubic-spline polynomial coefficients). We first interpolate at the bracketing WRF times

T{J} ∈ {TJ−3, . . . ,TJ+2}, where J ∈ 1, . . . ,M is the current interval between WRF output

files, obtaining the coarse-time velocities at the fine-grid positions,

~U
(
~X(T{J}),T{J}

)
“spline”−−−−→
~xi(t j)

~̂U
(
~xi(t j),T{J}

)
,

for the timestep t j, j ∈ 1, . . . ,N or at RK4 evaluation-timesteps. We next interpolate in time
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using the 6 bracketing times,

~̂U
(
~xi(t j),T{J}

) “spline”−−−−→
t j

~ui
(
~xi(t j), t j

)
,

which is then used to obtain new positions~xi(t j−1). When j−1 =−N, the J = J−1 is

updated. Lastly, when t j = TM, advection is stopped and the temperature field is constructed

by,

θ(~xi(t0)) = θ(~xi(tend))
“spline”←−−−−
~xi(tend)

Θ(~X(tend), tend).

Here, we use the notation tend to denote the end-point of the trajectory of an individual

parcel with initial coordinates~x(t0) .

In the above notation, we intend that,

C
“spline”−−−−→

E
F ,

is to be interpreted as meaning the interpolation of coarse-grid data, C , onto the

evaluation-grid, E , yielding the fine-grid data, F . Or, that C (E ) = F by monotonic

cubic-spline interpolation of the data in C . The analogous relation is to hold for←−.

B.4.2 Results for Trajectories and θ(~x(t0), t0)

To conserve memory used for holding variable data and free space for parcel data,

we use only a subset of the 252 km2 1 km horizontal resolution vertically refined fourth

domain d04R when computing trajectories. Hence, the following figures 77 and 78 only

show this subset, and figure 76 shows a further zoomed subset of this domain. This section

demonstrates the results of the reverse-time trajectory calculations and temperature retrieval.

Shown in 76 is a snapshot is taken at the analysis time TA of 15:20 Z on 11-07-2006

corresponding to the end of the 20 minute interval for case A in OSF09, which is used in
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the following analysis for the temperature fields from the 4 WRF namelist configuration

cases listed in figure 7.

Shown in figure 77 is a time progression of the trajectories for a single namelist case

from the release point, tracing backwards in time up the valleys adjacent to the Four Peaks

mountain grouping confirming morning katabatic drainage flow. Differences in the

parameterizations can be seen with all four cases tested thus far in figure 78. Shown in

figure 79 is the initial raw retrieved from RDF of perturbation potential temperature in

Kelvin with initial grid points overlaid as white “x” marks, here for namelist case B. Note

that this was plotted with default contourf package method and distorts what would be a

smoother transition if it were first spline interpolated. Next, we show in figure 80 the

retrieved temperature fields in Kelvin from converting the raw perturbation potential

temperature alongside what would otherwise have been derived for range-dependence if the

adjacent WRF profiles were interpolated (here again using the contourf plot interpolation

and patching which looks messy and is deceptive in how it plots).
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Figure 76: Zoom into d04R showing terrain elevation in colored contours with height in
meters indicated by the colorbar at bottom. This snapshot is taken at the analysis time TA
of 15:20 Z on 11-07-2006 corresponding to the end of the 20 minute interval for case A in
OSF09. The field experiment point and~x(t0) location is indicated with the black dot in the
lower left. Horizontal velocity vectors are also shown for the 5th model level (≈120 meters
agl) with 1 km horizontal spacing. The Four Peaks mountain range is clearly visible as the
high elevation grouping in the center of the image and Roosevelt lake is in the valley to the
east of these peaks. The Superstition mountain range is in the bottom right of the frame.
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Figure 77: Filled contour map indicating terrain elevation in meters and blue-to-red colorbar
indicating time in minutes before the analysis time of 11-07-2006 at 15:00 Z for parcel
positions every 6 minutes, provided they haven’t hit the ground, for namelist case B.
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Figure 78: Same as figure 77 but instead of coloring trajectories by time, they are colored
by namelist case with case A (blue), case B (red), case C (green) and case D (black). Note
that case B is exactly under case C since the only difference was in use of urban canopy
model, but these trajectories are not influenced by any urban effects for this analysis time.
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Figure 79: Initial raw retrieved RDF perturbation potential temperatures in Kelvin plotted
with default contourf package with initial grid points overlaid as white “x” marks, here for
namelist case B.
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Figure 80: (left panels) RDF temperature fields converted to Kelvin in the GTPE computa-
tional grid coordinates (using default contourf plot) only shown to 200 meters AGL because
the attenuating layer begins at this height. (right panels) The 1 km horizontally spaced,
vertically refined WRF grid (d04R) temperature profiles of the 2 nearest North-South grid
coordinates interpolated (with the default contourf plotting). For namelist case A (top row)
case B or C (middle row) and case D (bottom row).
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B.5 RUPE Model Results

Unfortunately, the GTPE model was run for a plane-wave incident source and not

for the OSF09 intended highway line-source and this needs to be revisited.

B.6 Future Work

This work was prelimiary proof of concept and more validation and verification

needs to be performed. The RUPE model was modified from previous work considering a

Gaussian temperature bump, to injest the new temperature perturbation field, but the wrong

switch option on starting field changed some other settings. This was run in batch mode

under deadline. A correct field case was computed but the output field has not yet been

plotted as other pressing deadlines arose.

Below are some specific points to consider. Re-run and plot for correct acoustic

source field, of course. Modify temperature field figures to plot higher-resolution

interpolated data, then plot using contourf patching and interpolating method. I’m not

sure if I confused cases B,C and D temperature fields when collating the figures when

making plots for figure 80, but judging from the trajectories it seems unlikely that B/C and

D would be the same. There are also some code improvements and parallelizations that

could be implemented. I specifically need to ensure that I use pchip and not csape when

interpolating. The point of interpolating before entering the time loop has yet to be

implemented, and in fact, all of the wrfout times could be pre-processed in parallel or as a

sub-process of the wrf job script if faster results are needed.

Of course, linking this method with the general terrain method is a goal but there are

several idealized assumptions made in the process and the simulation can no longer be
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considered as “real”. It would be nice to check these temperature field results against what

is retrieved with d05R and d06R discussed in Section ?? and for all the namelist cases

outlined in Section ??, using resolutions of those domains with a 3D initial grid. We could

in essence, compare the retrieved temperature fields against those produced by

incorporating a child (or several) domain(s) into the nest from which we interpolate the

velocity field.

A means of applying this to the velocity field was also considered, where WRF

solves the flux-form Navier-Stokes equations for velocities,

d~U
dt

= F~U

and applies sub-grid models. If we were to modify the registry to provide auxiliary output

of F~U and other needed fields at given timesteps and implement similar sub-grid models, it

seems that in principle we might be able to devise a scheme to obtain~ui(~xi(t), t). This was

deferred until the temperature retrievals were completed.
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APPENDIX C

APPENDIX FOR CHAPTER 5
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C.1 Observed Fluxes

Seasonal (during 2012) and diurnal variation of incident shortwave forcing, along

with the persistent katabatic and anabatic diurnal consistency of horizontal winds, are

demonstrated in Figure 81, for observations averaged to 30-minutes during mid-December

2011 to January 2013. Observations during the study period are presented in Figure 82,

showing 30-minute time-series (denoted by, < ·>30) for net radiation, Q∗, fluxes of

sensible and latent heat, 〈QH〉 and 〈QE〉, SEB residual ∆Qs, anthropogenic forcing QF ,

along with the individual downward and upward radiation components for shorwave G↓SW ,

G↑SW , and longwave, G↓LW , G↑LW . Diurnally averaged 30-minute time-series (denoted by,

< ·>30,D), of the aforementioned quantites are also shown.
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Figure 81: West Phoenix 22.1 meter flux tower observed diurnal (colorbar) and seasonal
variation of 30-minute averaged downward shortwave radiation (top) and horizontal wind
direction (bottom).
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Winter 2011 Pre-Monsoon Summer 2012

Figure 82: Observed surface fluxes combined for Winter 2011 (left) and Pre-monsoon
summer 2012 (right), as a time-series during the analysis period (top), and diurnally averaged
over a 5 day period (bottom).
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C.2 Additional Model Evaluation

Figure 83: Diurnally averaged to 30-minute intervals during winter 2011 from D4 (∆H=1
km), showing comparison between observations and simulations (left), and percent differ-
ence of simulations from observations (right), for Q∗ and 〈QH〉, top to bottom, respectively.
See Figure 40 and 41 for pre-monsoon summer 2012.

C.2.1 Remark on Bias Canceling

When considering the bias error of a single measurement-and-prediction pair, for

e.g. Q∗, as,

BE(Q∗) = (Q∗)obs− (Q∗)sim, (C.1)
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Figure 84: Diurnally averaged to 30-minute intervals during winter 2011 from D4 (∆H=1
km), showing comparison between observations and simulations (left), and percent differ-
ence of simulations from observations (right), for 〈QE〉 and ∆Qs, top to bottom, respectively.
See Figure 40 and 41 for pre-monsoon summer 2012.

it is straightforward to show that the bias error, for Q∗ in this case, can be written as,

BE(Q∗) = BE(G↓SW )−BE(G↑SW )+BE(G↓LW )−BE(G↑LW ). (C.2)

So the bias error in Q∗ may be reduced in comparison to the bias of constituent radiative

flux terms depending upon the sign of each term. Therefore, assessing net radiation in

absentia of considering the constituent shortwave and longwave, upward and downward

components, is not sufficient to evaluate model agreement with physical reality.

Furthermore, it is difficult to disentangle potential sources of model error within the

radiation forcing by solely examining bias in Q∗.
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Winter 2011 Pre-Monsoon Summer 2012

Figure 85: Comparison of downward longwave radiation component, G↓LW , between ob-
served and diagnostic simulated values, from D4 (∆H=1 km) as 30-minute and diurnally
averaged values (top) and percent differences (bottom) for winter 2011 (left) and pre-
monsoon 2012 (right).

C.2.2 Downward Radiation

A systematic underestimation bias of 3-20%, especially during mid-day, is shown in

Figure 85 for the downward longwave flux, G↓LW . Model-level air temperature is an input
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Winter 2011 Pre-Monsoon Summer 2012

Figure 86: Same as in Figure 85 but for G↓SW .

for the frequency integrated Plank function when calculating the longwave radiation

convergence and heating profile (Dudhia 1989). Thus we infer that the longwave bias from

observations is because the air aloft was too cool, however we lack observed profiles of

temperature to test this hypothesis. Interparameterization differences in G↓LW may be

explained by examining potential temperature profiles controlling for PBL/SLS and UCM.

A similar potential temperature bias has been noted between PBL schemes in other studies,

with YSU being warmer than MYJ in Xie et al. 2012, and Shin and Hong 2011 show a

warm (with YSU warmer than MYJ) and dry bias from observations, where the shape and

interparameterization variability are due to PBL scheme differences.
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The downward shortwave radiation G↓SW , presented in Figure 86, shows afternoon

model overestimation bias of 3-5% in pre-monsoon summer, and 4-10% in winter.

Simulated radiation would not account for atmospheric heating from repartitioning of

shortwave flux due to pollutants in the observed UBL, since the simulations did not account

for polluted air. Furthermore, a column moisture content bias would lead to longwave

absorption and heating bias. Additional heating from other urban heat island sources and

anthropogenic waste heat sources are also expected to contribute to the UBL temperature

and radiation flux components, as discussed in Arnfield 2003. We hypothesize that an

atmospheric moisture content bias could result from a combination of soil moisture

initialization bias along with no irrigation, reducing regional evapotranspiration, or by input

meteorological data bias. Atmospheric temperature bias could arise from not having aerosol

heating, which would increase G↓LW and reduce G↓SW , discussed in further detail below, with

the reduced G↓SW influencing Q∗ and surface forcing. Note that the G↓SW overprediction bias,

seen in Figure 86, should produce a warmer surface, but the cold bias based upon G↑LW

implies that the LSM is not producing a large enough skin temperature, as already

discussed.

Examining G↓LW in Figure 85 there is more inter-parameterization divergence over

night, for both seasons, and the variance during summer is much larger than for winter. It is

suspected that summertime convection and wintertime stability play a role in model values,

owing to differing rates of vertical transport from the surface, which shuts off in stable

conditions. These differences are also manifest in zPBL in Figure 88 as the PBL responds

to surface values. When there is divergence between PBL cases, YSU is closer to

observations than MYJ. The G↓LW for the higher furb value of PHX-B is also closer to

observations than the corresponding PHX-A cases. Also, the bulk cases perform quite

competitively in both seasons, especially during the evening periods.
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C.2.2.1 Twilight

Increased bias error for all WRF cases near twilight hours is exibited for G↓SW in

Figure 86 (and G↑SW in Figure 37 owing to albedo times G↓SW ). Astronomical twilight,

defined by the center of the Sun at 108 degrees from zenith, for the study periods was, 0601

and 1956 for winter, and 0335 and 2124 for summer, all LST. While negligible in regards to

total radiative forcing when accounting for Earth’s global radiation budget (Kato and Loeb

2003), twilight seems to explain the increase to 20-60% underestimation error for G↓SW

during the periods near sunrise and sunset, with observations being 12–30 W m−2 above

simulations. This is largely due to the plane-parallel approximation used in the short wave

radiative transfer model ([ )][Eqn. C12]Dudhia1989 that neglects all downward shortwave

radiation for solar zenith angles greater than 90°. This small bias could have implications

for atmospheric photochemistry for solar zenith angles near 90 degrees, or high latitudes

which have long twilight periods (Mateshvili et al. 2005), particularly in polar regions (Kato

and Loeb 2003; Bracher et al. 2005; Zib et al. 2012). One possible correction is to consider

spherical geometry for high zenith angles by employing Chapman functions as

demonstrated by Dahlback and Stamnes 1991.

C.2.2.2 Air Quality

It is well established that Maricopa County has been in non-attainment for federal

air quality standards, in particular O3, NOx, and PM10 (Wiley 2011; Paul and Colyer 2011),

resulting in photochemical influence of the polluted airshed (Lee and Fernando 2013).

Uncertainties due to unresolved flow and upscale processes from urban airsheds and

induced dynamics (e.g. UHI and urban thermal plumes), particularly concerning the role of
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aerosol forcing (Mitchell Jr 1971), is a key uncertainty in short-term regional weather and

long-term global climate modeling and for assessing the global energy budget (Trenberth,

Fasullo, and Kiehl 2009; Ramanathan et al. 2001; Engling and Gelencsèr 2010).

Accounting for pollutants necessitates employing an atmospheric chemistry module, such

as WRF-CHEM (Grell et al. 2005), or CMAQ (Byun and Schere 2006), along with a

detailed emission source inventory, to properly address these issues. WRF-CHEM with

advanced Noah-like surface treatment meets the description of suggested work offered by

T. R. Oke 1974 as a “future” boundary-layer model suitable for addressing this problem.

A consequence of the hypothesis of qir quality causing a repartitioning of downward

fluxes for shortwave into longwave, would be a method to study the impact of pollutants

within the UBL on the radiation components of the SEB. The order of magnitude for aerosol

direct effect short-wave radiative forcing has been reported for typical urban brown-cloud

as -80 W m−2 (Kaufman et al. 2002), or -62.5 W m−2 per 0.1 increase in aerosol optical

depth (AOD) (Latha and Badarinath 2005). Not including such attenuation could explain

part of the ≈ 5% overestimation bias error in downward shortwave radiation due to not

accounting for aerosols expected to be present in the Phoenix airshed (Lee et al. 2003;

Clements et al. 2013). These data would indicate that daytime maximum AOD for Phoenix

range between .03-.06 and .05-.09, for winter and pre-monsoon summer, respectively, based

on ranges of mid-day shortwave bias. These low values are not unexpected based upon

seasonal satellite data presented by Hsu et al. 2012; Sorooshian et al. 2011 showing .

0.1-0.2 for the region, neglecting the sporadic summertime dust storm events (Brazel and

Nickling 1986) which were not present during the selected quiescent study periods.

With a population of approximately 4 million, Maricopa County, in the

south-central Arizona Sonoran Desert, consists of 26 different cities, with the largest being

the City of Phoenix. The urbanized portions of this region are generally flat, although
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numerous mountain ranges ring the urban area, with especially high ones to the east and

northeast, as seen in e.g. Figure 34. A recent study by Lee and Fernando 2013 investigates

the photochemical influence of the polluted Maricopa County airshed, but does not examine

the influence on the SEB and ground-level net radiation terms. In the absence of synoptic

frontal passages, prevailing daytime winds, as shown in Figure 81 at the study location, are

from the west and southwest, reversing during the night, both directions being a

consequence of topographically induced air flows: (1) an interstate, regional

valley-to-mountain daytime flow from the west and southwest, augmented by continental

westerlies; and (2) a more localized, county-scale nocturnal drainage from the east and

northeast (Fernando 2010).

Despite concerted regulatory efforts at reducing metropolitan emissions of air

pollutants (e.g. ADEQ 2000); despite innumerable technical analyses conducted by

governmental agencies, universities, and private-sector scientists to better understand how

the dynamics of horizontal and vertical air flow affect pollutant concentrations (e.g. ADEQ

2001; MAG 2007, 2008; H. Fernando et al. 2012); and despite remarkable improvements in

air quality exemplified by the elimination of violations of the standard for carbon monoxide

MAG 2013; much remains to be learned. With air pollutant emission densities highest in

the urban core, with the well-known air pollution meteorology of arid climates, and with the

general air flow patterns just described; the general outlines of the proximate causes of

elevated concentrations of particulate matter (both airborne particles 10 microns and

smaller (PM10) and 2.5 microns and smaller (PM2.5)) and ground-level ozone are clear

enough. For example, the west-central portion of the urban region serves as a reservoir or

“sink” of chemically inert, ground-level pollutants such as PM10 and carbon monoxide.

Visibility is conspicuously degraded on a daily basis in winter mornings, with an unsightly

“brown cloud” hovering over the central part of the urban region, slowing ascending and
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diffusing with the rising mixing height until dissipated by the mid-afternoon thermals. For

the photochemically reactive pollutant ozone, formed by the action of sunlight on emissions

of volatile organic compounds and oxides of nitrogen (mostly from vehicular traffic), the air

flow patterns tend to produce the highest concentrations in late summer afternoons along

the eastern fringe of the metropolitan area. Early morning accumulations of the ozone

precursors and of airborne particulates can be attributed to the frequent stagnant conditions

of light to calm winds and a pronounced surface temperature inversion.

Since air pollution monitoring began in the 1970s metropolitan Phoenix, Arizona

(in Maricopa County), has failed to attain the federal air quality standards for ozone and

particulate matter Wiley 2011; Paul and Colyer 2011. Notwithstanding the recent

announcement that the U.S. EPA intends to accept Maricopa County’s 2012 for reducing

particulates, and thereby declare the area to be in attainment with the PM10 standard (EPA

publication in the Federal Register is anticipated by mid 2014 (Arizona 2014)), this arid

region will continue to face difficulties in achieving and maintaining this standard. For

example, in the 2010 - 2012 period on which the attainment status is to be based, 27 days

had PM10 concentrations that exceeded the health standard. All of these were classified as

“natural exceptional events”, thereby except from having to meet the standards. Such a

blanket classification for a month’s worth of days with unhealthful concentrations of PM10

is tantamount to asserting that most if not all of the airborne particulates on these high-wind

days originate naturally. A less sanguine but perhaps more realistic viewpoint would admit

that major portions of this airborne dust arise from the actions of turbulent winds on such

disturbed land surfaces as agricultural fields, major construction sites, unpaved roads, and

heavily grazed desert cattle lands.

Improvement of numerical modeling tools such as the WRF, the subject of this

paper, is paramount in acquiring a better understanding and ultimately substantial
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improvement of air quality in the Phoenix region. The reason for this is that the WRF

routinely provides the meteorological fields necessary for physico-chemical Eulerian air

quality models employed in regulatory and other technical analyses of the air pollution

problems inherent in metropolitan Phoenix. Achieving the national health standards for air

pollution depends on a cost-effective reduction of air pollutant emissions, itself an immense

regulatory and technical effort dependent on a more complete understanding of the

atmospheric dynamics at work in the region.

However, in order to draw conclusions on this point, further observations and

simulations are needed. It is recommended to run WRF-CHEM with similar

parameterizations and to investigate the impact on these variables for different reasonable

estimates of air-quality.
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C.2.3 Atmospheric Surface Layer Stability

Winter 2011 Pre-Monsoon Summer 2012

Figure 87: Time series from West Phoenix in D4 (∆H=1 km) during simulation periods for
Winter 2011 (left), and Pre-Monsoon Summer 2012 (right), for bulk Richardson number, Rib,
used for MM5 SLS (top), and Obukhov length, LMO, in meters, used for Eta SLS (bottom),
with the boundary between stable and unstable regimes (red lines) and the following stability
sub-classification limits, as described in the text, denoted: within Rib, the MM5 defined
boundary between three unstable regimes (black line, <,=,>); for LMO, following Gryning
et al. 2007 (magenta dashed). Observations are shown for values averaged to 30-minutes
(<>30, black points), and averaged to 30-minutes diurnally over 5 days (<>30,D, black and
yellow points). Twilight periods are indicated for solar zenith angles of 90°and 108°(vertical
lines).
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Winter 2011 Pre-Monsoon Summer 2012

Figure 88: Same as for Figure 87, but showing height of mixed layer zPBL (top), and
friction velocity u∗ (bottom).

C.2.3.1 Definitions

Surface layer profiles directly influence diagnostic surface layer parameters, such as

2-meter temperature, T2m, and 10-meter winds, U10 and V10, along with the

surface-atmosphere flux coupling through sensible and latent heat fluxes, and the friction

velocity, u∗. By determining the stability regime, and changes thereof within the diurnal

period, we can seek a physical explanation for errors in the modeled SEB parameters.

Figure 87 presents the time-series for the last 48-hours of each simulation period of
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5-minute output frequency instantaneous values for the bulk Richardson number, Rib,

Obukhov length, LMO. Shown in Figure 88 are the depth of mixed layer or PBL height,

zPBL, and friction velocity, u∗. For observed data, we can only derive LMO and u∗ based

upon the 22.1 m A.G.L. measurements, which are also shown on Figure 87, and, Figure 88,

respectively. The observed LMO was derived from 30-minute averaged values as per

Equation C.5 given later. The friction velocity is a scaling parameter useful for assessing

Reynolds’ stress of turbulent shear in the surface layer by τ = ρu∗2, with the air density, ρ ,

and is used in SLS scaling relationships for turbulent fluxes. The boundary layer height

(depth) is another scaling parameter which indicates the portion of the atmosphere directly

influenced by the surface layer (Stull 1988; Zhang and Anthes 1982).

The MM5 SLS employs the bulk Richardson number of the surface layer following

Zhang and Anthes 1982, which can be written in terms of WRF variables as,

Rib =
gzSL

θ0

∆θ

∆U2
H
=

gzSL
T0
× T2m−T0

U2
10 +V 2

10
, (C.3)

where g = 9.81 m s−2 is gravitational acceleration, zSL = z2
U/zθ is the height of the surface

layer in terms of the heights of diagnostic variables, zU = 10 m, for horizontal wind

components U10 and V10, and zθ = 2 m, for temperature T2m, respectively, with

∆θ/θ0 = (T2m−T0)/T0, for T0 being the surface skin temperature, and converting T0 and

T2m to virtual potential temperature. The Richardson number is the dimensionless ratio of

buoyancy to horizontal shear forces, presuming the vertical coordinate dominates variations.

When discretized for a volume, such as the surface layer, Rib is taken as bulk value. The

four stability regimes are defined by,

1. Rib ≥ 0.2, nighttime stable conditions,

2. 0.2 > Rib > 0, damped mechanical turbulence,

3. Rib = 0, forced convection, and,
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4. Rib < 0, free convection.

The MM5 SLS is implemented in WRF based on stability functions given in Paulson 1970,

Dyer and Hicks 1970, and Webb 1970, for four stability regimes following Zhang and

Anthes 1982, and with a convective velocity following Beljaars 1995.

The Eta SLS (Janjic 2001), in turn, defines based upon the Obukhov stability

parameter,

ζ =
zPBL
LMO

. (C.4)

The stability regime is then defined by,

1. ζ ≥ 0, stable, use profiles of Holtslag and de Bruin 1988, and,

2. ζ < 0, unstable, use profiles of Paulson 1970.

The Obukhov stability parameter and stability functions are derived iteratively and are

determined for stable and unstable conditions following Holtslag and de Bruin 1988 and

Paulson 1970, respectively. The Obukhov length, LMO, can be written in terms of WRF

output variables as,

1
L
=
−κg
cp

H1

ρθau3∗
=
−κgRair

cp

HFX
PSFC× (UST)3 , (C.5)

by using ρ = PSFC/(Rair×T2), where κ = 0.4 is the von Kármán constant, Rair = 287.058

J kg−1 K−1 and cp = 1003.5 J kg−1 K−1, are the dry air values for gas constant and specific

heat at constant pressure, respectively. The Obukhov length arises from applying MOST to

the turbulent kinetic energy (TKE) budget equation for the surface layer, and is related to

the height at which the TKE production by mechanical shear stress begins to be dominated

by buoyancy. Note that LMO can be related to the Richardson number and the boundary

layer height (Businger et al. 1971; Arya 1988; Stull 1988; De Bruin, Ronda, and

Van De Wiel 2000). Since zPBL > 0, we do not show ζ , but rather just zPBL and LMO
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separately, although ζ is employed within the stability profiles. Also denoted for LMO in

Figure 87 are seven sub-classes of stability following Gryning et al. 2007, which are,

1. 10 < LMO < 50, very stable,

2. 50 < LMO < 200, stable,

3. 200 < LMO < 500, near neutral, stable,

4. |LMO|> 500, neutral,

5. −500 < LMO <−200, near neutral, unstable,

6. −200 < LMO <−100, unstable,

7. −100 < LMO <−50, very unstable,

in units of meters. Note that Gryning et al. 2007 does not designate a sub-class in the region

for which −50 < LMO < 10.

A further discussion of the dynamics of evening transition within a field experiment

in Phoenix are discussed in H. J. S. Fernando et al. 2013. They calculate a gradient

Richardson number, Rig, from observations at 3.4 and 7 m AGL, which are used to describe

critical values following the laboratory study of Strang and Fernando 2001. Regimes are

identified as: for Rig< 0.25 expect strong mixing due to Kelvin-Helmholtz instabilities; a

transition for 0.25≤ Rig ≤ 1 with interacting Kelvin-Helmholtz and internal modes as

buoyancy becomes more important; and for Rig> 1 they expect weak sporadic mixing due

to Hölmböe instabilities. While some effects are not anticipated to be identified within the

WRF simulations owing to vertical resolution requirements, similar effects may be present

within our tower measurements, such as increases in Rib and u∗, following the decrease

leading up to sunset from mid-day unstable periods. H. J. S. Fernando et al. 2013 describe
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such events within the evening transition as being due to katabatic flow from adjacent

terrain causing a “paint-stripper” effect, as dense air undercuts as it descends nearby terrain

features progressing into the valley. In their examination of u∗ and Rib values they discuss

the varied timing of such events, or pulses, in terms of the timing of transition front arrivals

from varied terrain locations and directions.
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C.2.3.2 Interparameterization Comparison of Surface Layer Stability

Figure 88 shows that zPBL for MYJ is shallower than for YSU, especially during

the summer period. This result agrees with previous studies by Xie et al. 2012 and Hu,

Nielsen-Gammon, and Zhang 2010, which have demonstrated that local mixing schemes,

such as MYJ, tend to produce shallower PBL heights than non-local schemes, such as YSU.

The sensitivity of coupling strength between the LSM and PBL are demonstrated by Chen

and Zhang 2009 as being due to heat and moisture exchange coefficients. Y. Chen et al.

2010 explain the influence of bias in thermal roughness length, as being obtained from

incorrect vegetation assumptions in the Noah LSM for an arid desert location within

Arizona, which in turn modify other terms, such as 〈QH〉 and G↑LW .

In Figure 88, it is also apparent that MYJ restricts zPBL to be on a model level and

YSU imposes minzPBL = 1
2z1. Periods of this limit occurring in YSU zPBL also coincide

with the YSU imposed minimum of u∗ = 0.1 m s−1. Influence of these limits during stable

periods is discussed in Jiménez et al. 2012. During stable periods following sunset while

the MYJ scheme is found to have zPBL=z1 (Figure 88), the YSU scheme indicates an

increase in zPBL, coinciding with an increase in u∗ and Rib, indicating damped mechanical

turbulence. The observed values of u∗ match quite well with the PHX UCM cases, seen in

Figure 88.

Examining the stability classifications based upon Rib and LMO in Figure 87, it

appears that during winter evening and morning transition periods, the bulk scheme would

remain stable for several hours longer than the UCM cases, especially for the evening

transition. The bulk scheme also produced more stable conditions at night, and more

unstable conditions during the day, based upon the magnitudes of Rib and LMO, for both

SLS schemes. Later we discuss that the latent heat flux 〈QH〉 and residual ∆Qs for bulk are
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also much larger than for UCM cases, and the residual ∆Qs peaks earlier than the UCM

cases. Daytime bulk u∗ values are much higher than for the UCM scheme cases than bulk,

which is due to building roughness modification imposed by the UCM on u∗, which is also

proportional to urban fraction.

The u∗ and zPBL values shown in Figure 88 for MM5 tend to increase following

sunset, for both seasons, whereas the Eta scheme values remain low, indicative of calmer

conditions during the evening transition for the Eta scheme. Furthermore, the larger UF

PHX-B case has lower u∗ values than the PHX-A case, showing the influence of surface

drag over an increased urban fraction. Also during the same periods for the UCM cases, the

MM5 scheme tends to produce more periods of stable Rib, but the Eta scheme LMO

indicates episodic unstable periods following sunset, as seen in Figure 87. The bulk scheme

tends to remain stable during these periods. The difference in stability between the UCM

SLS cases is more pronounced in the winter, and for UCM cases more than bulk cases.

C.2.4 Diagnostic Horizontal Wind Components

Comparisons for the 22.1 m A.G.L. observed horizontal wind components are

shown in Figure 89 with U10 and V10, and the prognostic variables U and V destaggered and

at the first half-mass height z1 in Figure 90. The diagnostic wind components are obtained

by similarity theory,

U10 =U(z1)ψ(10)/ψ(z1), (C.6)

where U(z1) is the velocity component on the first prognogistic level z1, and

ψ(z) = ln(z/z0)−Ψm(z), is the similarity function evaluated at height z with roughness

length z0, and integrated stability function for momentum ψm. A similar relation is used for
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Winter 2011 Pre-Monsoon Summer 2012

Figure 89: Same as for Figure 87, but comparison between observed horizontal wind com-
ponent measured at 22.1 m A.G.L. and diagnostic 10-meter horizontal velocity components
for positive to east U10 (top), positive to north V10 (second row).

V10. Given in Table 8 are root-mean-square errors, partitioned following Willmott et al.

1985, for the wind component time-series given in Figure 89. Linear model bias is

contained within the systematic component,

RMSE2
s =

N

∑
j=1

ω j|Ŝ j−O j|2/
N

∑
j=1

ω j, (C.7)

while model precision is contained within unsystematic component,

RMSE2
u =

N

∑
j=1

ω j|Ŝ j−S j|2/
N

∑
j=1

ω j, (C.8)
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Winter 2011 Pre-Monsoon Summer 2012

Figure 90: Same as for Figure 87, but comparison between observed horizontal wind
component measured at 22.1 m A.G.L. and prognostic velocity components destaggered
and at first half-mass level z1(≈ 27 m) for U (top), and V (bottom).

where the weighting factor ω j ≈ 1 for a uniform sampling of both observation and

comparison data (our case at 1 km and 30 minute averages), and Ŝ j is the ordinary

least-squares estimator of S j from simulation prediction, S, versus observation, O,

comparison. These values satisfy the relation, RMSE2 = RMSE2
u +RMSE2

s . From this

analysis we see that the wind components are well represented, with values ranging from

.13 - 3 m s−1, with more typical values between 1 - 2 m s−1, for both systematic and

unsystematic measures for the model parameterization cases tested, and including spinup

periods.
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Winter 2011
MYJ/Eta YSU/MM5

U10 V10 U(z1) V (z1) U10 V10 U(z1) V (z1)

bulk RMSEs 1.02 1.54 0.59 2.40 0.66 1.24 1.29 2.01
bulk RMSEu 1.08 1.45 1.96 2.81 1.27 1.24 2.83 2.98

default RMSEs - - - - - - - -
default RMSEu - - - - - - - -
PHX-A RMSEs 0.71 1.76 0.13 2.58 0.67 1.18 1.15 2.14
PHX-A RMSEu 1.02 1.45 2.01 2.93 1.83 1.77 3.27 3.09
PHX-B RMSEs 0.72 1.82 0.15 2.56 0.62 1.28 1.20 2.14
PHX-B RMSEu 1.09 1.57 2.02 2.94 1.95 1.77 3.15 2.72

Pre-Monsoon Summer 2012
MYJ/Eta YSU/MM5

U10 V10 U(z1) V (z1) U10 V10 U(z1) V (z1)

bulk RMSEs 0.92 1.12 0.83 1.68 1.42 1.14 0.91 1.63
bulk RMSEu 1.32 1.02 2.26 1.57 0.77 0.73 2.12 1.32

default RMSEs 3.00 1.32 2.47 1.99 - - - -
default RMSEu 1.27 0.86 1.52 1.91 - - - -
PHX-A RMSEs 1.93 1.25 1.09 2.00 0.66 1.25 0.39 2.28
PHX-A RMSEu 1.54 0.99 2.26 2.17 1.57 1.14 2.37 2.03
PHX-B RMSEs 1.46 1.06 0.97 1.71 0.99 1.22 0.80 2.30
PHX-B RMSEu 1.49 1.06 2.49 1.95 1.24 1.08 2.43 1.63

Table 8: Root-mean-square-error for systematic (RMSEs) and unsystematic (RMSEu) values,
in m s−1, following Willmott et al. 1985, for 30-minute average time-series of observations
and simulations, for the seasons, PBL/SLS, and urban cases given in column or row labels,
of the data presented in Figure 89.

C.2.5 Possible Additional Anthropogenic Forcing in T2m

By inspecting the winter evening period (between 1900-2200) observed in Figure

35, we possibly observe a human behavior not captured by the UCM. The effect, most

apparent in T2m and G↑LW , is hypothesized to originate from building waste heat. There is

no corresponding increase in T2m in the simulations, which have a steady cooling rate

during this period. This is the time of day when most residents arrive home after work and
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turn on or increase home heating. The observed T2m increase mostly attenuates when

people typically go to bed around 2200. Strongly stable nocturnal periods do not rule out

advection of non-local urban heat island thermal plumes, so more detailed tower footprint

analysis may be needed. It should be possible to investigate scenarios of human behavior

via increased indoor temperature with the BEP+BEM model Francisco Salamanca et al.

2011. This peak in AH forcing is expected to be shifted to afternoon periods during the

summertime, at peak indoor cooling during peak daytime temperatures (F Salamanca et al.

2014).
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C.3 Computational Feasibility of Urban WRF Modeling Below 1 km

The model was run on the Arizona State University Saguaro computer cluster

maintained by the Advanced Computing Center. Details of relevant architecture employed

include: Intel Xeon E5440 2.83 GHz processors with 8 cores and 16 GB RAM per compute

node, 16 nodes per chassis connected via DDR IB using PowerEdgeM600 (hereafter

Harpertown); and, Intel Xeon x5570 2.93 GHz processors with 8 cores and 24 GB RAM

per compute node, 16 nodes per chassis connected via DDR IB using PowerEdgeM610

(hereafter Nehalem). Model performance for several configurations was assessed with

several requested cluster architectures, summarized in Table 9.

The ratio of numerical time step to computational time was calculated from the

timing data reported in the log file for each domain for many of the simulations performed.

The reported value for a specific domain, Dn, includes overhead from processes on the child

domain, Dn-1, along with input and output tasks that take place between time steps. Model

parameterization tasks also have their associated frequency of occurrence. These varied

events, along with cluster related processes, contrive for a distribution of reported output

times on each domain. Rather than attempting a proper accounting for these tasks, a

simplified approach was employed to first correct each domain timing estimate by removing

the cumulative child timing since the last parent output. Then an estimate for the most

probable time on domain without overhead of child processes was used to calculate speedup

based upon the timestep on that domain. Based upon this method, the most probable timing

on some child domains could be larger than each specific process, resulting in an

over-estimate of the speedup on the parent domain. So the results reported in Table 9 should

be speculatively examined for parent domains.

From the analysis of most probable speedup times, and assessing only the maximum
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domain (D4 in winter, D4 or D5 in summer), we see that 5 concurrent domains to ∆H=333

m is real-time feasible with a most-probable speedup of at least 4 on 128 Nehalem

processors, and at least 5.7 on 256 Nehalem processors. For just four domains, half of the

Nehalem processors are required for a similar speedup as provided on the Harpertown

processors. Speedup is varied for large processor numbers on the Harpertown architecture,

likely owing to communication tasks between model tiles and distribution across more

remote nodes. From these data and analysis it is difficult to draw conclusions regarding

time requirements between the different physics options tested.
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APPENDIX D

APPLICATION AND EVALUATION OF SUBGRID LAND USE INFORMATION FOR

URBAN CLIMATE MODELING
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In Preparation. To be submitted to Monthly Weather Review,

S.R. Shaffer; M. Moustaoui; B.L. Ruddell; A. Mahalov

A method for representing grid-scale heterogeneous development density for urban

climate models from probability distributions of sub-grid resoloution observed data is

proposed. Derived values are evaluated in relation to normalized Shannon Entropy to

provide guidance in assessing model input data. Mosaic urban fractional contribution is

estimated by combining analysis on data products for continuous impervious surface area

with categorical urban land use. The urban parameterization schemes of the Advanced

Research Weather Research and Forecasting (ARW-WRF) model are adapted to take these

derived heterogeneous development density data as input for the dominant urban class.

Development density and urban land use are obtained from the 30-meter resolution

National Land Cover Database (NLCD) products. The impact of increased realism of input

data and parameterization obtained via heterogeneous urban fraction versus constant urban

fraction is demonstrated by a test case using the urban canopy model. Comparisons are

made between simulations employing a constant versus heterogeneous development density

for the entire Phoenix metropolitan area. Modeled variables are evaluated with an

eddy-covariance flux tower in West Phoenix. The proposed method has wider applicability

than products which are only available for central business districts, such as the National

Urban Database and Access Portal Tool.
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APPENDIX E

A SEMI-IMPLICIT METHOD FOR INTEGRATION OF GLOBAL SHALLOW WATER

AND ANELASTIC EQUATIONS

244



In Preparation. To be submitted to Monthly Weather Review,

M. Moustaoui; S.R. Shaffer; A. Mahalov; E. Kostelich

A new semi-implicit time stepping method is proposed. This method combines an

implicit scheme that stably integrates fast propagating waves, with a recently developed

scheme based on leapfrog and a fourth-order implicit time-filter for treating slow

propagating waves. Formal accuracy and stability analysis demonstrate that this combined

scheme has third-order accuracy for amplitude errors while damping non-physical modes

inherent in the unfiltered leapfrog method. The method also stabilizes the computational

modes in combined advection and damping or diffusion equations that are unconditionally

unstable when using leapfrog. The formulation and the explicit implementation of this

scheme using just one function evaluation per time-step are shown. The scheme gives a

factor of three speed-up compared with the third-order Runge-Kutta (RK3) scheme, while

maintaining O(∆t4) accuracy for amplitude errors. Comparative tests with RK3, including

applications for nonlinear global spectral shallow water equations on the sphere, and

anelastic (or Boussinesq) non-hydrostatic equations, demonstrate the ability of the proposed

scheme to control computational modes and to give more accurate results compared to the

semi-implicit time-filtered leapfrog schemes existing in the literature. This method has

many applications including acoustic, electromagnetic, atmospheric, oceanic, and climate

modeling.
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APPENDIX F

SUMMARY OF PUBLICATIONS AND PRESENTATIONS
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Peer Reviewed Journal Publications
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Mon. Wea. Rev..

4. S.R. Shaffer; M. Moustaoui; B.L. Ruddell; A. Mahalov (Submitted, Nov. 2014).

“Application and evaluation of subgrid land use information for urban climate

modeling,” Mon. Wea. Rev..

Completed

3. S.R. Shaffer; W.T.L. Chow; M. Georgescu; P. Hyde; G.D. Jenerette; A. Mahalov; M.

Moustaoui; B.L. Ruddell (Accepted, Oct. 2014). “Multi-scale modeling and

evaluation of urban surface energy balance in the Phoenix metropolitan area.” J. Appl.

Meteorol. Climatol..

2. S.R. Shaffer; N.C. Ovenden; H.J.S. Fernando; M. Moustaoui; A. Mahalov

(Accepted, Oct. 2014). “Simulating meteorological profiles to study noise

propagation from freeways,” Appl. Acoust..

1. N. Ovenden, S.R. Shaffer and H.J.S. Fernando (July 2009). “Impact of

meteorological conditions on noise propagation from freeway corridors,” J. Acoust.

Soc. Am., Vol. 126, No. 1, pp. 26-35.

247



Other Peer-Reviewed Publications

3. S.R. Shaffer, H.J.S. Fernando and N.C. Ovenden (2013). “Investigations of

environmental effects on freeway acoustics”, Arizona Dept. of Transportation, Final

Report: Project ID - R060518P (JPA 06-014T), SPR 605-2.

http://ntl.bts.gov/lib/47000/47600/47664/AZ605_2_.pdf

2. H.J.S. Fernando, N. Ovenden and S.R. Shaffer (2010). “Investigations of

environmental effects on freeway acoustics”, Arizona Dept. of Transportation, Final

Report: Project ID - R060518P (JPA 06-014T).

1. S.R. Shaffer (May 2009). “Investigations of environmental effects on freeway

acoustics”, Arizona State University, M.S. Thesis.

Other Press Releases

1. “How the Weather Affects the Scale of Urban Noise Pollution.” N.C. Ovenden, S.R.

Shaffer, H.J.S. Fernando (5-24-2011)

http://acoustics.org/pressroom/httpdocs/161st/Ovenden.html

Conference Presentations († - presenter)

6. S.R. Shaffer†, B.L. Ruddell, W.T.L. Chow, M. Moustaoui, A. Mahalov, M.

Georgescu (2013). “Evaluation of WRF for fine scale surface energy balance

modeling in Phoenix.” Fall Meeting of American Geophysical Union, San Francisco,

CA, Dec 12, A43A-0217.

248

http://ntl.bts.gov/lib/47000/47600/47664/AZ605_2_.pdf
http://acoustics.org/pressroom/httpdocs/161st/Ovenden.html


5. S.R. Shaffer†, B.L. Ruddell, W.T.L. Chow, M. Moustaoui, A. Mahalov, M.

Georgescu (2013). “Evaluation of WRF for fine scale surface energy balance

modeling in Phoenix.” 14th Annual WRF Users’ Workshop, Boulder, CO, June 26,

P66.

4. B.L. Ruddell†, E. Vivoni, M. Moustaoui, D. Jenerette, A. Mahalov, C. Martin, S.

Harlan, T. Volo, S.R. Shaffer†, W. Chow (July 2012). “Assessing decadal climate

change impacts on urban populations in the Southwestern USA”, NSF EaSM PI

Meeting, Arlington, VA. Grant No. 1049251, Theme 4 poster 11.

3. S.R. Shaffer†, N.C. Ovenden, M. Moustaoui, A. Mahalov, and H.J.S. Fernando

(2011). “Coupling WRF with an acoustic propagation model to study highway noise

pollution.” 12th Annual WRF Users’ Event, Boulder, CO, June 20-24, P.49.

2. N.C. Ovenden†, S.R. Shaffer and H.J.S. Fernando (May 2011). “Investigations of

environmental and terrain effects on the propagation of freeway noise”, 161st

meeting of the Acoustical Society of America, Seattle, WA, Talk 2pNS3.

1. S. Shaffer†, M. Moustaoui† and A. Mahalov (June 2010). “Application of vertical

nesting within ARW-WRF v3.2 to a study of highway noise pollution in Phoenix

Arizona”, 11th Annual WRF Users Event, Boulder, CO. Poster 67.

Seminar Presentations

6. “Towards a two-way parabolic equation model with terrain following coordinates”,

Center for Environmental Fluid Dynamics Seminar, Arizona State University, 24

April 2009.

249



5. “Investigations of environmental effects on freeway acoustics”, M.S. Thesis Defense,

Arizona State University, 16 February 2009.

4. “Incorporating Turbulence into Traffic Noise Models”, Center for Environmental

Fluid Dynamics Seminar, Arizona State University, 10 October 2008.

3. “Incorporating Turbulence into Traffic Noise Propagation Models”, Environmental

Fluid Dynamics Program Seminar, Arizona State University, 28 March 2008.

2. “Case Studies of the Impact from Meteorological Conditions on Propagation of

Freeway Noise”, Environmental Fluid Dynamics Program Seminar, Arizona State

University, 14 September 2007.

1. “Modeling the Atmospheric Propagation of Freeway Noise”, Environmental Fluid

Dynamics Program Seminar, Arizona State University, 13 April 2007.

250



BIOGRAPHICAL SKETCH

Born to Richard A. and Carolyn J. (Hayward) Shaffer, little brother of Michael A.
Shaffer, uncle of Liliana Mary Shaffer, and very proud father of Evan Hayward Aballe
Shaffer since late 2010, the “Thesis Baby”. Mother’s family operated a dairy farm in West
Bridgewater, Massachusetts for 10 generations, with her’s being the first to leave the farm.
Inspired at an early age by grandparents Howard Manly and Mary Caroline (Harris)
Hayward, and uncle Howard Wayne Hayward, in topics of conservation and stewardship of
the land. (The remaining 74-acres of the former Hayward Dairy Farm were recently
registered under Massachusetts’ 1979 Agricultural Preservation Restriction Program.)
Father was the first in his family to attend college, B.S. in Aeronautical Engineering from
Embry Riddle Aeronautical University, Daytona Beach, Florida, 1972, M.S. in Mechanical
Engineering from Wichita State University in Wichita Kansas, 1979, and worked with Pratt
& Whitney for 30 years, initially in Connecticut. Beginning in 1997 at Manchester
Community College in Connecticut, receiving Associate of Science degrees in General
Studies in 2000, and Engineering Science in 2001. Moved to Tucson in 2001 and received a
B.S. triple-majoring in Physics, Mathematics, and Astronomy in 2005 from the University
of Arizona. Inspired by graduate fluid dynamics course at UofA in spring 2006 with Prof.
Raymond Goldstein to continue studies in the topic. Moved to Tempe in summer 2006 to
study with Prof. H.J.S. Fernando in the Center for Environmental Fluid Dynamics at
Arizona State University. Joined a collaboration with Prof. Fernando and Prof. Nick
Ovenden from University College London on the ADOT freeway noise field experiment in
fall 2006 which became the topic of the M.S. thesis in Mechanical Engineering received in
2009. Transitioned to working with Prof. Alex Mahalov and Prof. Mohamed Moustaoui in
2010 to advance ideas for incorporating Weather Research and Forecasting modeling into
acoustic work, along with other research topics. Worked with Prof. Alex Mahalov and Sue
Mahalov at IntelliWare L.L.C. on various research topics related to applications of WRF
modeling and atmospheric turbulence, beginning in 2010. Continued collaboration with
Prof. Ovenden and Prof. Fernando on ADOT SPR-699 upon being awarded in 2013, which
extends the SPR-605 studies by considering freeway walls. Other interests include:
climbing rocks, gardening, commuting via bicycle, chasing a soccer ball, hiking, and
photography.

251


