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ABSTRACT

Advances in experimental techniques have allowed for investigation of molecular

dynamics at ever smaller temporal and spatial scales. There is currently a varied

and growing body of literature which demonstrates the phenomenon of anomalous

di↵usion in physics, engineering, and biology. In particular many di↵usive type pro-

cesses in the cell have been observed to follow a power law hx2i / t↵ scaling of the

mean square displacement of a particle. This contrasts with the expected linear be-

havior of particles undergoing normal di↵usion. Anomalous sub-di↵usion (↵ < 1)

has been attributed to factors such as cytoplasmic crowding of macromolecules, and

trap-like structures in the subcellular environment non-linearly slowing the di↵usion

of molecules. Compared to normal di↵usion, signaling molecules in these constrained

spaces can be more concentrated at the source, and more di↵use at longer distances,

potentially e↵ecting the signalling dynamics. As di↵usion at the cellular scale is a

fundamental mechanism of cellular signaling and additionally is an implicit underly-

ing mathematical assumption of many canonical models, a closer look at models of

anomalous di↵usion is warranted. Approaches in the literature include derivations of

fractional di↵erential di↵usion equations (FDE) and continuous time random walks

(CTRW). However these approaches are typically based on ad-hoc assumptions on

time- and space- jump distributions. We apply recent developments in asymptotic

techniques on collisional kinetic equations to develop a FDE model of sub-di↵usion

due to trapping regions and investigate the nature of the space/time probability

distributions assosiated with trapping regions. This approach both contrasts and

compliments the stochastic CTRW approach by positing more physically realistic un-

derlying assumptions on the motion of particles and their interactions with trapping

regions, and additionally allowing varying assumptions to be applied individually to

the traps and particle kinetics.
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Chapter 1

INTRODUCTION

The past few decades have seen remarkable advances in imaging and recording tech-

nology used to gather biological data on ever more refined temporal and spatial scales.

New developments for example in marker fluorescent marker proteins [3] and optical

microscocopy techniques [4][5] which push the resolving power of microscopes beyond

the classical defraction-limited optics have allowed for the unprecedented resolution

of the fine subcellular structures and even dynamic processes that take place in living

cells. Nanotechnology which is still in its infancy is certain to usher in still more

remarkable experimental advancements in imaging and recording. A sampling of re-

cent work shows the promise: coupling carbon nanotubes to the cell surface [29], 3D

real-time, single particle tracking and spectroscopy [30] or 3D high resolution EM

tomography [31]. These new technologies are giving us unprecedented views of cellu-

lar processes on multiple space-time scales. A recent (2014) tour-de-force of electron

and super-resolution flourescent microscopy, mass spectrometry, and quantitative im-

munoblotting was used to produce the following 3D model of an “average” synapse [6]

displaying 300,000 proteins at the level of atomic detail. We reproduce the stunning,

daunting and inspirational resulting overview of the complexities of the synapse below

with the captions from the paper.

It is evident from the picture that the microstructure of the synapse is highly

complex and heterogeneous, interlaced with not only the functional proteins that

control release and re-uptake of synaptic vessicles but also a complex network of

actin filaments and other cytoskeletal structual proteins. However many of the current

standard models and techniques used in mathematical biology are based on averaging
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Figure 1.1: A section through the synaptic bouton, indicating 60 proteins.

rules-of-thumb like law of mass action kinetics or the standard di↵usion equation

which are inherent in the standard formulations of ODE and PDE models.

The new super-resolution data both spatial and temporal that is being gener-

ated by these new technologies suggest that many of these classical models may not

merely be first-order approximations or reduced models of cellular complexity, but

may actually fail to be valid over di↵erent space-time scales. This is clearly the case

with the anomalous di↵usion of molecules in the cell cytoplasm and within the plasm

membrane (c.f.Motivations ) and also with ultra-low in-vivo concentration (picomo-

lar) kinetics where the concentration profiles may not reproduce the expected law

of mass action mechanics which tacitly assumes the reaction rate is proportional to
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reactant concentrations [1][2].

K =
[S]�[T ]⌧

[A]↵[B]�

It is based on the assumption that the reaction rate r
f

is proportional to reactant

concentrations

r
f

= k
f

[A][B]

But this assumption is only true for a statistically large number of reactants

and a relatively homogeneous environment, such as the dilute, bu↵ered, aqueous

environment of a test tube. Conditions in a living cell are generally far more dynamic,

where reactants can become bound to intercellular structures, or the complex non-

homogenous nature of the crowded cytoplasm can lead to subdi↵usion. [7][8]. There is

no current consensus on a suitable replacement for the law of mass action or detailed

analysis of its usability and limits in modeling the sub-cellular environment. But

recently some work has been done on overcoming the mathematical intractabilities

in modeling the types of dynamics often found in biological networks using tools

(stochastic Petri nets) developed in computer science: small absolute numbers of

molecules which break down the law of mass action but which are simultaneously part

of a large network of tens to hundreds of interacting species (which may additionally

be operating at various time scales) which break the analyticity of coupled sets of

stochastic equations beyond the trivial case of few interacting species. [12]

While it may be possible to salvage these classical workhorses for modeling outside

their valid space and time domains such as by using e↵ective di↵usion constants tied

to a particular time-scale in the case of the plasma membrane or introducting non-

linear time-varying di↵usion terms, we can also ask what other mathematical tools are

available which directly address the multi-scale nature of the phenomena in question.
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1.1 Motivations from Biology and Proposal of the Boltzmann Kinetic Trap Model

Biological di↵usivity within the cytoplasm of cells both upon and across their

membranes is an very active area of research in cell biology and biophysics. There

have been stunning developments achieved within the last few years in microscopic

imaging and recording techniques [35][30][36] allowing for ever increasing resolution

and accuracy in both time and space of protein mobility measurements which in turn

are leading to a new understanding of the behavior of molecules in structures such as

the lipid bi-layer. [26][27][28]

The geometry of the cellular interior is extremely complex, heterogeneous and

highly compartmentalized, filled with networks of microtubules, large and small or-

ganelles, and internal osmotic membranes which are in a state of constant dynamic

rearrangement. Indeed structures such as the plasma membrane can be classified as

quasi-liquid like structures comprised of numerous molecules with varying miscibility

dynamically forming transient protein complexes. [37] Since the motion of a di↵us-

ing particle is highly dependent on the geometric complexity of its environment, and

di↵usion and molecular interactions often take place along the complex surfaces of

the cellular membranes [38], a more careful look at the di↵usion equations used in

building models of these spaces is warranted. In particular the direct and early mo-

tivation for this current research was two papers. In [32] the authors measure the

di↵usion of a fluorescently labeled dextran tracer molecule through the cytoplasm of

HeLa cells. The measured mean square displacements show the power law hx2i / t↵

with ↵ < 1 which is a hallmark of subdi↵usion. The authors suggest that the rates

of subdi↵usion could be used as a means of gauging macromolecular crowding in the

cytoplasmic environment.

In [33] fluorescence imaging within the heavily branched dendritic arbors of Purk-
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inje cells showed a remarkable reduction in di↵usion rates compared to smooth den-

drites. The authors’ Monte Carlo simulations suggest that the trapping regions of the

spines cause the anomalous di↵usion. IP3, a synaptic second messenger molecule, was

strongly influenced while the rapid removal of Ca2+ prevented trapping and limited

its di↵usion. The authors suggest that one regulatory function of dendritic spines may

be to trap chemical messengers and thereby slow di↵usion of messenger molecules in

the dendrites.

1.1.1 Motivation for the Kinetic Trap Model

The literature on anomalous di↵usion, even limiting the scope to examples found

in biological sciences, is very wide incorporating approaches and techniques from

various branches of mathematics and statistical physics. The models in the literature

can usually be classified into three broad categories: continuous time random walk

(CTRW) approaches, stochastic ODE approaches, and fractional DEs. Although we

note that the literature is rapidly developing. The thrust of many of the theoretically

oriented papers is to derive expressions for anomalous di↵usion through one of the

above means, connect the approaches, or expand the basic developments to more

general cases. Common to all these approaches is an underlying assumption of the

non-Gaussian or non-exponential nature of the space- and time- distributions that

drive anomalous di↵usion or the built-in assumption of power-law scalings of the

fractional di↵erential operators.

Instead we propose a method of obtaining anomalous di↵usion that does not

rely on ad-hoc assumptions of the underlying nature of the distributions but instead

derives the subdi↵usive behavior from a more principled statistical mechanical Boltz-

mann kinetic formulation.

The simple linear Boltzmann equation describes the evolution of the distribution
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function of a particle which combines the free transport of the particle with the

scattering o↵ a background medium. We briefly outline the presentation in Mellet

for the derivation of classical di↵usion using the so-called Hilbert expansion method.

The linear Boltzmann equation is given as

@
t

f(t, x, v) + v ·r
x

f(t, x, v) =

Z

v⇤2V
�(t, x, v, v⇤) [f(v⇤)F (v)� f(v)F (v⇤)] dv⇤ (1.1)

where x, v 2 Rn, � is a bounded, continuous function which is symmetric with

respect to v and v⇤. The r.h.s. is a linear collision operator which describes a gain

and loss term of particles exchanging velocities v⇤ to v. Assuming that the mean free

path of the scattering particles is small compared to the time scale the equation can

be rescaled as

✏2@
t

f(t, x, v) + ✏v ·r
x

f(t, x, v) = Q(f) (1.2)

where ✏ is the ratio of the mean free path length to the macroscopic length and

x ! ✏x0 and t ! ✏2t0

The classic derivation of the di↵usion equation follows from the Hilbert expansion

in terms of the asymptotic series

f = f 0 + ✏f 1 + ✏2f 2 +O(✏3)

Substituting into 1.2 and matching and collecting terms of ✏ we have

✏2@
t

(f 0 + ✏f 1 + ✏2f 2 + . . . )+ ✏v ·r
x

(f 0 + ✏f 1 + ✏2f 2 + . . . ) = Q(f 0 + ✏f 1 + ✏2f 2 + . . . )

O(1) Q(f 0) = 0 (1.3)

O(✏) v ·r
x

(f 0) = Q(f 1) (1.4)

O(✏2) @
t

f 0 + v ·r
x

f 1 = Q(f 2) (1.5)
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The first equation simplifies to

Q(f 0) = 0 =) f 0 = ⇢(x, t)F (v)

since kerQ = ⇢F (v) by definition. Then formally

f 1 = Q�1(v ·r
x

(⇢(x, t)F (v))

Since Q is also a mass-preserving operator we have

Z

R

Q(f) dv = 0

for all f . Then integrating out O(✏2) terms with respect to v and performing the

suitible vector gymnastics gives

@
t

⇢+r
x

·
Z

R

v ⌦Q�1(vF (v))dvr
x

⇢

where with

D = �
Z

R

v ⌦Q�1(vF (v))dv

we have

@
t

⇢�r
x

·Dr
x

⇢ = 0

which must have ⇢ as a solution for the terms f 0,f 1and f 2 to exist. Also note

we assume here that Q�1 exists. When F (v) has an algebraic heavy tail such as

F (v) ⇠ 1
|v|n+↵ with 0 < ↵ < 2 then the di↵usion matrix D blows up and this type of

asymptotic expansion fails. More delicate expansion methods are needed to derive a

di↵usion equation from the distributions which lead to anomalous di↵usion. We will

present the trapping model and MonteCarlo simulations in a later chapter.

1.2 A Case Study

A practical example of how the improving resolution of experimental data is pro-

viding new understanding of biological complexity is provided by the paper of Kusumi,
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et al. [28] on the di↵usivity of molecules in plasma membrane. The plasma (or cell)

membrane, the structure of which is essentially the same in all known organisms

which have them, consists of a phospholipid bi-layer and embedded molecules such

as carbohydrates, glycoproteins and cholesterol, which separate the inside of a cell

from the outside environment. Proteins may be associated with either the external

layer or internal layers, be integral to the entire bi-layer, or bridge the outside and

inside environments such as with ion channels. These proteins may be associated

with passive structural functions such as cell-to-cell adhesion or attachment to the

internal cytoskeletal sca↵olding of microtubules, or with active cell signaling and ion

conductivity.

1.2.1 A Thirty Year Enigma

In 1972 S.J. Singer and G. Nicolson [9] proposed the idea of the fluid mosaic model

where the plasma membrane was considered to be a quasi-liquid, two dimensional bi-

layer of oriented lipids and proteins, with molecules floating in the bilayer and freely

di↵using laterally along the surface of the cell. As this structure is highly dynamic, the

model predicts an essentially random distribution of membrane molecules, and conse-

quently bulk properties, e.g. viscosity, for the lipid phase. However, decades of exper-

iments, as summarized in Kusumi et al. on the di↵usivity of both lipids and surface

proteins in artificially reconstituted membranes and liposomes showed a 5 to 50 times

slower di↵usion constant in real cells compared to artificial membranes. Attempts

to explain this by crowding of membrane proteins [39]or the e↵ects of cholesterol on

the viscosity of the lipid phase [40] could not account for the drastic reduction in the

di↵usion coe�cient. Secondly it was observed that when receptor molecules and other

signaling molecules form oligomers or other molecular complexes, their measured dif-

fusion coe�cients dramatically reduced or even became temporarily immobilized [41].
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The model of Sa↵man and Delbrück [42], based on Singer and Nicolson, modeled a

transmembrane protein as a cylinder floating in a two-dimensional fluid continuum.

The model predicts that translational di↵usion should be essentially una↵ected by

an increase in the size of the di↵usant. For instance, assuming a 0.5 nm monomer

radius of the transmembrane protein, a monomer-to-tetramer formation which has

double the radius of a monomer, predicts a decrease in the di↵usion rate by a factor

of 1.1. Similarly the formation of a much larger complex such as a 100mer, which has

10 times the radius of a monomer, predicts a decrease in the di↵usion rate only by

a factor of 1.4. It was found, however [39] that the Sa↵man-Delbrück model held up

well for reconstituted bacteriorhodopsin membranes. Therefore, the drastic drop in

di↵usion rate for receptors upon ligation could only be explained in the framework of

the Singer model by the formation of very large molecular complexes for which there

is upon the time of this writing no experimental evidence.

1.2.2 The Resolution of the Enigma with Improvements in Measurement

Early methods of tracking the di↵usion rate of membrane proteins relied on FRAP,

fluorescence recovery after photobleaching, an optical technique which measures the

spread of a photo-bleached area. In the technique the lipid bi-layer is labeled with

a fluorescent probe, and a small spot is permanently bleached with a laser. As

the photobleached lipids di↵use out of the monitoring area, and non-bleached lipids

di↵use into the monitoring area, the return of the intensity of fluorescence can be

used to calculate the di↵usion constant [43][44]. In the late 1980’s it became possi-

ble to track individual molecules through the use of SPT (single particle tracking).

Methods of SPT [45] include labeling individual membrane proteins with gold nano-

particles, polystyrene beads, or fluorescent probes. A series of experiments catalogued

in Kusumi [28] SPT experiments on lipid molecules by Fujiwara and Murase showed
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Figure 1.2: Di↵usion of L-↵-dioleoylphosphatidylethanolamine (DOPE) molecules
on two di↵erent time scales. a) A protein undergoes apparent Brownian motion on the
larger time-scale. However the measured di↵usion coe�cient disagrees with theory. b)
A refined temporal resolution reveals two scales of di↵usion, a microdi↵usion within
cytoskeletal compartments, and a macrodi↵usion among the compartments.

that the trajectories of tagged L-↵-dioleoylphosphatidylethanolamine(DOPE) lipids

in the membrane, on time scales on the order of 30 ms, undergo an apparent un-

confined random walk, from which a di↵usion rate can be estimated (Fig. 1.2 and

following reproduced from [28]). However, on the finer spatial and temporal scales

made possible by SPT, on the order of 100 µs resolution, the motion of the particle

was seen to undergo a locally confined random walk, followed by a ‘hop’ or ‘jump’

into an adjacent area. Analysis of the data suggested that proteins remained locally
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trapped in cytoskeletal compartments on the order of 45 nm radius for a mean time

of 25 ms. These experiments e↵ectively explained the enigma of both the too slow

overall di↵usion constant and the slowing of proteins under oligomerization. In the

first case, the microscopic (small time scale) di↵usion rate of the protein or lipid

in the cytoskeletal compartment corresponds to normal di↵usion. But the overall

‘hop’ di↵usion of the molecule is anomalous, and in fact sub-di↵usive. The di↵usion

rate varies at di↵erent temporal and spatial scales, which contrasts with what is ex-

pected from classical di↵usion, with its self-similar scales. Secondly, oligomerization

reduces the macroscopic (large time scale) di↵usion rate by a process called oligomer

induced trapping. The e↵ective di↵usion rate of the complex is slowed compared to

a monomer because all the molecules which form the molecular complex must simul-

taneously hop the cytoskeleton “fence”, which requires larger and longer openings in

the inter-compartmental boundaries. Moreover, complexes may become tethered to

the cytoskeleton, temporality immobilizing the complex.

Figure 1.3: a) A schematic of the cytoskeletal compartments showing small scale
(intra-compartmental) Brownian motion, and large scale hop-di↵usion. b) The cy-
toskeleton traps oligomerized signaling complexes slowing down the e↵ective di↵usion
coe�cient of the complex.

The above cytoskeletal compartment “fence” model e↵ectively explains a double

paradox that puzzled biophysicists for thirty years: an observed 5-50 fold slowdown in

the theoretical di↵usion rate for the fluid mosaic model, and the reduced di↵usion rate

of oligomerized molecular complexes in the membrane. Naive extensions of the fluid
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Figure 1.4: Mean squared displacement of the tracked molecule shows the linear
mean square displacement hX2i / t of normal di↵usion in the artificial membrane
(purple) compared to subdi↵usive behavior, hX2i / t↵,↵ < 1 of molecules in the cell
membrane, (orange, blue).

mosaic model beyond the original spatial scales of the model, approximately 10nm

X 10nm, fail. Instead we see a scale-dependent di↵usion coe�cient which cannot be

captured with simple di↵usion models. An important closing note is that care must be

taken in using previous published di↵usion rates measured by techniques using larger

time scales such as with video cameras. As molecules in the membrane do not undergo

normal di↵usion, published rates must be considered to be the e↵ective di↵usion rates,

and membrane molecules undergo e↵ective normal di↵usion valid only within a certain

space-time scale. Moreover, published di↵usion rates may only be useful if the time

window of the measurement is specified. [56] Needless the say the wrong di↵usion rate

(especially a 50x wrong rate) can significantly impact even the qualitative nature of

solutions of some model if the di↵usion rate is critical to some intrisic temporal scale

in the model, the model does not make quasi-linear approximations in time scales

or the model is trying to simulate and reproduce the details of experimental data.

We next consider some of the mathematical tools which can incorporate in a natural

way the power-law behavior of the M.S.D. shown in Fig. 1.4 which is indicative of

anomalous subdi↵usion.
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Chapter 2

A BRIEF INTRODUCTION TO FRACTIONAL CALCULUS

2.1 Introduction

Fractional calculus is at once both a topic of research that has gained much at-

tention in recent decades and also a very old topic in the calculus. Already in 1695

Leibnitz considered the possibility of generalizing di↵erentiation to non-integer order.

In an exchange of letters between L‘Hôpital and Leibnitz, Leibnitz ponders the ex-

tention of di↵erentiation to non-integer orders. L‘Hôpital inquires about the meaning

of half-order di↵erentiation. Leibnitz replies with the answer

d1/2x = x

r
dx

x

and the quip

“It will lead to a paradox, from which one day useful consequences will

be drawn.”

In 1823 N.H. Abel found the first useful consequence when he used fractional

calculus to solve a generalized version of the tautochrome problem which involves

solving the eponymous integral equation for u(s) given by

1

�(↵)

Z
t

0

u(s) dsp
t� s

= f(t)

Indeed this equation can be expressed compactly in terms of fractional integration

J↵u(t) = f(t)
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where

u(t) = D↵f(t)

is the solution and J and D represent respectively the fractional-order integration

and di↵erentiation operators which will be properly defined in the next section.

The historical bibliography of fractional calculus in the 19th and early 20th century

is extensive with major contributions by the likes of Liouville and Riemann. In more

recent times fractional calculus has seen a blossoming of development in both pure and

applied developments in a wide variety of fields from financial mathematics, biology,

and quantum field theory.[15]

However one of the reasons which perhaps limits the wider adoption of fractional

calculus is that fractional-order operators have no clear-cut geometric interpretation

compared with the well-known interpretations of the integer order calculus: velocity,

acceleration, area under the curve, etc. It has been suggested by Podlubny [16] that

the fractional order operators could be interpreted as “shadows on the walls”, where

the fractional integral is interpreted as a Riemann Stieltjes integral

Z
b

a

f(x)dg(x)

and projected onto coordinate systems involving x, f(x), and dg(x) respectively. In

a similar manner fractional operators involving time can be thought of as “shadows

of the past” (or future!). These notions capture in some sense the non-local nature

of fractional di↵erintegral operators.

2.2 Definitions

In this section we present some of the basic definitions of the fractional calculus.

Three in particular seem to have more wide-spread use, the Riemann-Liouville def-

inition which is used in many mathematical texts, the Caputo definition which has
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applications in applied situations, and the Grünwald - Letnikov definititon which is

a discrete form useful for numerical computation.

2.2.1 Naive Definitions

The earliest approaches to defining fractional operators involve generalizing com-

position of the interger operators to real-valued constructions. For instance Euler

generalized the composition of the derivative of a monomial

Daxn =
n!

(n� a)!
xn�a

where n, a 2 N. This definition can be continuously extended to the reals (and indeed

to the complex numbers) by replacing the factorial with the gamma function.

D↵xn =
�(n+ 1)

�(n� ↵ + 1)
xn�↵

where the Gamma function is given by

�(z) =

Z 1

0

e�ttz�1 dt, Re(z) > 0

This allows us to compute a fractional derivative of any function which admits a

Taylor expansion.

As an example

D
1
2x =

x
1
2

�(12)
=

2
p
xp
⇡

and

D
1
2
p
x =

�(12 + 1)

�(1)
x0 =

p
⇡

2

so that

D
1
2D

1
2x = 1

as we should hope to expect from the composition of the operators.
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Note that in general this fractional derivative is not defined for x  0 because of

the poles of the gamma function. Similarly fractional derivatives introduce fractional

powers of x which may not be defined on for x  0 for x 2 R.

As a further example we can consider the semi-derivative of the power series

expansion of sin(x).

D
1
2 sin (x) = D

1
2

1X

k=0

(�1)kx2k+1

(2k + 1)!
=

1X

k=0

(�1)kx2k+ 1
2

�
�
2k + 3

2

� =
2p
⇡

p
x 1F2

✓
1;

3

4
,
5

4
;�x2

4

◆

Note that this is a power series in terms of powers of
p
x which quickly approaches

sin(x+ ⇡/4) and represents a 45 degree phase shift compared to the 90 degree phase

shift induced by the first derivative. The overshoot from sin(x + ⇡/4) near zero is a

consequence of this particular definition of D↵ which is made more apparent in the

non-local Riemann-Liousville definition of D↵ in the next section which involves a

lower-bound which may be taken at an arbitrary base point such as at 0 or �1.

0 p 2 p 3 p 4 p 5 p 6 p
-1

0

1

0 p 2 p 3 p 4 p 5 p 6 p
-1

0

1

0 p 2 p 3 p 4 p 5 p 6 p
0

Figure 2.1: (top row):fractional derivative compared to sin(x) and sin(x + ⇡/4).
(bottom row): error: D1/2 sin(x)� sin(x+ ⇡/4)

A similar construction of the fractional derivative can be based o↵ of repeated
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Figure 2.2: Fractional derivatives of sin(x) with ↵ = 0.2, 0.4, 0.6, 0.8, 1.0 where ↵ = 1
is cos(x). This shows the continuous transition from D0 sin(x) into D1 sin(x)

di↵erentiation of the exponential function. This was first done by Liouville.

D↵ekx = k↵ekx

This definition allows for computing fractional derivatives from any function which

admits a Fourier series expansion.

D↵f(x) =
1X

n=0

c
n

k↵

n

eknx

In particular we have D↵ei✓ = i↵ei✓ which can be seen to be a rotation in phase-

space. For example for the semi-derivative (↵ = 1
2) we have

p
i = cos

⇣⇡
4

⌘
+ i sin

⇣⇡
4

⌘

which represents a 45 degree rotation in phase space.

In particular

D
1
2 sin(x) = D

1
2 (
1

2
ie�ix � 1

2
ieix) =

(1 + i)e�ix

2
p
2

+
(1� i)eix

2
p
2

= sin
⇣
x+

⇡

4

⌘

In figure 2.3 we compare the semi-derivative of x3 by computation of terms of 40

terms of its Fourier series and Taylor Series.

2.2.2 Riemann-Liouville Definition

The contributions Riemann and Liouville to the definition of fractional integrals

are combined in perhaps the most-used definition of the fraction integral.
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Figure 2.3: D
1
2x3 by Fourier (40 terms) and Taylor series

a

D↵

t

f(t) =
1

�(n� ↵)

✓
d

dt

◆
n

Z
t

a

f(s)ds

(t� s)↵�n+1
(2.1)

where n is an integer chosen such that n � 1  ↵ < n. Essentially for a given ↵

the fractional part is calculated via integration and then “pulled back” with integer

order derivates to the appropriate value. As an example consider the semi-derivative

of sin(t) calulated with the base a = 0 and a = �1.

0D
1
2
t

sin(t) =
p
2

 
C

 r
2

⇡

p
t

!
cos(t) + S

 r
2

⇡

p
t

!
sin(t)

!
(2.2)

�1D
1
2
t

sin(t) = sin
⇣
t+

⇡

4

⌘
(2.3)

Here C(t) and S(t) are the Fresnel cosine and sine integral functions respectively

defined as

C(t) =

Z
z

0

1

2
dt
��
⇡t2
�
cos
�

S(t) =

Z
z

0

1

2
dt
��
⇡t2
�
sin
�

These expressions are equivalent to the expressions derived in subsection 2.2.1

and demonstrate how the naive approaches based on Taylor expansions and Fourier

expanions are tied together by varying the base-point of the RL definition.
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Figure 2.4: RL semi-derivative of sin(x) with base-point a = 0, -1, and �1

2.2.3 Caputo Definition

The Caputo derivative is a modification to the RL derivative which has the benefit

of preserving the property that derivatives of constant functions go to zero. This is

a useful property to keep when working with fractional di↵erential equations (FDEs)

as the boundary or initial conditions can be specified in terms of standard derivatives

with their well-known physical interpretations. Generally speaking the boundary

conditions on FDEs may require fractional boundary conditions.

C

a

D↵

t

f(t) =
1

�(n� ↵)

Z
t

a

f (n)(s)ds

(t� s)↵�n+1
, n� 1  ↵ < n (2.4)

It should be pointed out that because of the inexact inverse relationship between

integration and di↵erentiation the RL and Caputo fractional operators are not gen-

erally equivalent, but are identical for ↵ < 0 with n = 0.

2.2.4 Grünwald-Letnikov Definition

The Grünwalk-Letnikov approach starts with the notion of repeated integer-order

di↵erentiation and integration defined in the sense of the limit definitions of the

derivative and in terms of Riemann sums.
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dn

dxn

f(x) = lim
h!0

1

hn

nX

k=0

(�1)k
✓
n

k

◆
f(x� kh) (2.5)

a

D�nf(x) = lim
N!1

✓
x� a

N

◆
n

N�1X

k=0

✓
n+ k � 1

k

◆
f

✓
x� k

✓
x� a

N

◆◆
(2.6)

These are generalized into a fractional-order di↵erintegral operator where again the

binomial is continuously extended with the gamma function.

a

D↵f(x) = lim
N!1

✓
x� a

N

◆�↵

N�1X

k=0

�(k � ↵)

�(k + 1)�(�↵)f
✓
x� k

✓
x� a

N

◆◆
(2.7)

1 2 3 4 5 6

-1.0

-0.5

0.5

Figure 2.5: GL semi-derivative of sin(x) with base-point a = 0 computed with
truncations at N = 5, 10, 20. The dashed curved is the RL derivative with base-point
a = 0 for comparison.

2.2.5 Fractional Di↵erential Equations

We conclude this brief overview of the fractional calculus with an example of a

linear fractional di↵erential equation

0D
2↵y(t) + k1 0D

↵y(t) + k2y(t) = 0, 0 < ↵ < 1 (2.8)

Using the techniques and tables of Laplace transforms found in [17] we proceed

by taking the Laplace transform.
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s2↵Y (s)�D2↵�1Y (0+) + k1s
↵Y (s)�D↵�1Y (0+) + k2Y (s) = 0, 0 < ↵ < 1

(2.9)

Solving for Y (s)

Y (s)
⇥
s2↵ + k1s

↵Y (s) + k2Y (s)
⇤
= c1 + a1c2 (2.10)

where we have renamed the constants D2↵�1Y (0+) = c1 and D↵�1Y (0+) = c2.

Finally

Y (S) =
c1 + a1c2

s2↵ + a1s↵ + a2
=

B

(�� µ)(s↵ + µ)
� B

(�� µ)(s↵ + �)
(2.11)

where B = c1+a1c2 and �, µ are the roots of the associated polynomial s2 + a1s+ a2.

Using the inverse Laplace transform

L
⇢

1

s↵ + k

�
= t↵�1E

↵,↵

(�kt↵)

we can write the general solution in terms of the generalized Mittag-Le✏er func-

tion

E
↵,�

(z) =
1X

k=0

zk

�(k↵ + �)
(2.12)

y(s) =

✓
B

�� µ

◆
t↵�1E

↵,↵

(�µt↵)� t↵�1E
↵,↵

(��t↵)
�

(2.13)

Next we compute a few particular solutions as examples.
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Ex. a1 = 0, a2 = 1;↵ = 1

Using the given constants we reduce 2.8 to the ordinary DE

y00(t) + y(t) = 0

Then utilizing 2.13 we have

y(t) =
B

2i
(E1,1(+it)� E1,1(�it)) (2.14)

=
B

2i
(eit � e�it) = B sin(t) (2.15)

as expected.

Ex. a1 = 0, a2 = 1;↵ = 1/2

In this case we have the ODE

y0(t) + y(t) = 0 (2.16)

which has solution

y(t) = Ce�t (2.17)

From 2.13 we compute

y(t) =
i

2

 
E 1

2 ,
1
2

��i
p
t
�

p
t

�
E 1

2 ,
1
2

�
i
p
t
�

p
t

!
(2.18)

where E 1
2 ,

1
2

��i
p
t
��E 1

2 ,
1
2

�
i
p
t
�
= 2ie�t

p
t by application of the definition of the

Mittag-Le✏er function in 2.2.5 and the solution follows.

Ex. a2 = 1;↵ = 1/2

Next we consider a similar case to the last but with a fractional order derivative which

corresponds to
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y0(t) + a1 0D
1
2y(t) + y(t) = 0 (2.19)

which has solution

y(t) =
i(a1 + 1)

⇣
E 1

2 ,
1
2

�
1
2

�
a1 �

p
a12 � 4

�p
t
�� E 1

2 ,
1
2

�
1
2

�
a1 +

p
a12 � 4

�p
t
�⌘

2
p
t

(2.20)

Notice for a1 = 0 we again recover the solution y(t) = e�t. We plot several other

solutions for increasing values of a1 which is the coe�cient of the fractional-order

derivative in Eq. 2.19

1 2 3 4 5 6

-3

-2

-1

1

2

3

Figure 2.6: The solution of Eq. 2.19 with a1 = 0, 0.1, 0.5 and 1.0

Ex. a1 = 0, a2 = 1

Lastly we consider the interesting case

D2↵y(t) + y(t) = 0 (2.21)

for general ↵. In this case when ↵ = 1 we recover the simple harmonic oscilator and

when ↵ = 1/2 we recover the negative exponential. As ↵ varies from ↵ = 1/2 to

↵ = 1 we have a smooth transition of the solution from sin(t) to e�t on (0,1).
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Figure 2.7: The solution of Eq. 2.21 with ↵ = 0.5,0.6,0.7,0.8,0.9,1.0

Figure 2.8: The solution of Eq. 2.21 with 0.5 < ↵ < 1.0 and 0 < t < 2⇡
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Chapter 3

ANOMALOUS DIFFUSION

3.1 Di↵usion

The di↵usion equation as usually stated,

@
t

U(x, t) = Dr2U(x, t) (3.1)

has multiple interpretations stemming from di↵erent historical and physical perspec-

tives. For instance we can consider U(x, t) to be a concentration and D the di↵usion

constant, or U(x, t) can be taken as temperature and D as the thermal conductivity.

The notion of stochasticity, as we shall see, is also intrinsic in the di↵usion equation as

it describes the motion of an averaged ensemble of non-interacting particles moving

in a fluctuating background. The di↵usion equation then can be seen as the time

evolution equation of a probability distribution governed by the initial states of the

particles. The function U(x, t) then is a distribution that gives the probability of

finding a particle in the neighborhood of x at time t.

In this section we will consider derivations of the di↵usion equation from the

macroscopic and microscopic perspectives.

3.1.1 The Phenomenological Perspective: Fick’s Law

Di↵usion models are an attempt to understand the movement of many individuals,

be they bacteria, ions, particles of “heat” or even large objects such as herds or schools

of animals, or the spread of epidemics. To that end we assume that the di↵using

particles reside within some region ⌦ 2 Rn and that U(x, t) is the concentration of
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“particles” at (x, t) Generally speaking the density of particles has an associated scale.

For example consider the density of the people in the state of Arizona, non uniformly

clustered in the cities. In turn the individual cities have non uniform clustering on

the neighborhood scale, and so on. For some point x 2 ⌦, let {⌦
n

}1
n=1 be a nested

sequence of subregions containing x, where the ⌦
n

’s are chosen in such a way such

that their Lebesgue measure goes to zero. We can then define the concentration as

U(x, t) = lim
n!1

count of particles in ⌦
n

|⌦
n

|

We will assume that U(x, t) is a “nice” function, continuous and di↵erentiable which

is not an unreasonable assumption for large collections of particles. The total amount

of particles in any subregion ⌦
n

is given by

Z

⌦n

U(x, t) dx

and the change of particles with time in the same region is given by

d

dt

Z

⌦n

U(x, t) dx

Fick’s First Law is the phenomenological observation that the movement or flux

of heat, ions, etc. goes from regions of high concentration to regions of low concentra-

tion, with the magnitude of the flux being proportional to the spatial concentration

gradient.

JJJ = �D(x)r
x

U(x, t) (3.2)

where J is the flux and D(x) is the space-varying di↵usion coe�cient, or di↵usivity.

Although the proportionality function D can depend on such things as temperature,

size and charge on the particles, and the viscosity of the medium, we will assume

here that it is dependent only on space. Secondly, particles may be generated or

annihilated from the region via mechanisms such as birth/death processes, harvesting
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of resources, or one-way chemical reactions forming non-reactive species. Then the

rate of change of U(x, t) due to these mechanisms, called the reaction rate, is given

by

f(x, t;U)

with the total accumulation(or removal) of particles in the region then given by

Z

⌦n

f(x, t;U) dx

and the flux across across the boundary of ⌦
n

Z

@⌦n

JJJ · n(x) dS =

Z

@⌦n

r · JJJ dx

where n(x) is the outward unit normal vector at x and the R.H.S of the equality is

by the divergence theorem. Since we assume the system is closed, the change in the

population of particles in a region is the sum of the flux across the boundary plus the

total change in particles due to the reaction rate.

d

dt

Z

⌦n

U(x, t) dx = �
Z

@⌦n

r · JJJ dx+

Z

⌦n

f(x, t;U) dx (3.3)

If we substitute in (3.2) for the flux term, then for any choice of ⌦
n

, the following

di↵erential equations holds for all values of (x, t).

@

@t
U(x, t) = r ·D(x)r

x

U(x, t) + f(x, t;U) (3.4)

which is a reaction-di↵usion equation. If we take D(x) ⌘ D a constant, and assume

that no particles are created or destroyed on ⌦, i.e. f ⌘ 0, the we have the simple

di↵usion equation.

@

@t
U(x, t) = Dr2

U(x, t) (3.5)

This equation of course has been the subject of substantial research.[14] Countless

analytical and numerical tools have been developed for the general solution and var-

ious classes of boundary value problems. Its well known solution is given by the
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Gaussian distribution, here shown for one spatial dimension with a constant di↵usion

coe�cient, and with an initial concentration at x = x0.

u
t

(x, t) = Du
xx

(x, t); u(x, t = 0) = �(x� x0) (3.6)

u(x, t) =
1p
4⇡Dt

exp

✓�|x� x0|2
4Dt

◆
(3.7)

We can use the solution (the Green’s function) to study the statistical ensemble

dynamical properties of a particle undergoing di↵usion. The mean displacement of

the particle is given by

hxi (t) =
Z 1

�1

1p
4⇡Dt

exp

✓�|x� x0|2
4Dt

◆
x dx = x0 (3.8)

which means, on average, the particle remains at its origin. Computing the second

moment, we have

⌦
x2
↵
(t) =

Z 1

�1

1p
4⇡Dt

exp

✓�|x� x0|2
4Dt

◆
x2 dx = 2Dt+ |x0|2 (3.9)

with the mean squared displacement then given by

⌦
x2
↵� hxi2 = 2Dt (3.10)

This demonstrates the important relationship which defines or characterizes normal

di↵usion, linear growth of the mean square displacement in time.

⌦
x2
↵� hxi2 / t (3.11)

3.1.2 The Microscopic Perspective: Fokker-Planck

The macroscopic or continuum view of di↵usion intuitively describes phenomeno-

logical observations such as Fick’s Law, but sheds little light on how Gaussian distri-

butions are generated from the underlying random microscopic movement of particles.

Einstein, in one of his famous 1905 Wunderjahr papers [57], first demonstrated how
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a general di↵usion equation can be derived from microscopic movements. What fol-

lows is a ‘master equation’ approach based on that derivation. Suppose a particle

a position x is impacted by other particles, with a certain energy distribution, such

that in a small time increment, �t, the particle is moved to a new position x0 with

the probability given as

 (x, x0,�t) (3.12)

with Z

⌦

 (x, x0,�t) dx0 = 1 (3.13)

over the space of all possible jumps ⌦. Next consider the probability p(x, t + �t)

which is the accumulation of probability density at a point x in time interval �t.

p(x, t+�t) =

Z

⌦

p(x� x0, t) (x� x0, x0,�t)dx0 (3.14)

That is, p(x, t + �t) is equal to the probability that a density at x � x0 and time t

makes a jump to x in an interval �t integrated over all possible jumps in ⌦. Next,

Taylor expanding the left hand side about �t we have

p(x, t+�t) = p(x, t) + @
t

p(x, t)�t+O(�t2) (3.15)

Taylor expanding the right hand side about the point x = x+ x0 we have for the first

two terms

Z

⌦

p(x� x0, t) (x� x0, x0,�t)dx0 |
x=x+x

0 =

Z

⌦

p(x, t) (x, x0,�t)dx0 = p(x, t) (3.16)

Z

⌦

(�x0·r) (p(x� x0, t) (x� x0, x0,�t)dx0) |
x=x+x

0 = �r·
✓
p(x, t)

Z

⌦

x0 (x, x0,�t) dx0
◆

(3.17)

Similarly the third term is given by

r ·

r(p(x, t))

1

2

Z

⌦

 (x, x0,�t)|x0|2 dx0
�

(3.18)
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Equating the expansions and taking the continuum limit as �t ! 0 we find

@

@t
p(x, t) = �r


p(x, t) lim

�t!0

1

�t

Z

⌦

x0 (x, x0,�t) dx0
�
+

r ·

rp(x, t) lim

�t!0

1

2�t

Z

⌦

|x0|2 (x, x0,�t) dx0
� (3.19)

Note this expression contains expressions for the first and second moments of the

distribution  (x, x0, t). We can equate the expression to the mean displacement over

a time interval, or the average velocity of the particles.

v(x) = lim
�t!0

1

�t

Z

⌦

x0 (x, x0,�t) dx0 (3.20)

Similarly the second moment measures the variance of the movement of the particles

and the following expression defines the di↵usion constant

D = lim
�t!0

1

2�t

Z

⌦

|x0|2 (x, x0,�t) dx0 (3.21)

The Fokker-Planck equation is then given by

@

@t
p(x, t) = �r [p(x, t)v(x)] +r · [Drp(x, t)] (3.22)

For the situation with zero drift velocity v(x) = 0 and a non-spatially varying di↵usion

coe�cient, we recover the di↵usion equation from the previous analysis.

@

@t
p(x, t) = Dr2p(x, t) (3.23)

3.1.3 Random Walk Approach

As a final approach from the random walk viewpoint we consider a simple one

dimensional random walk as laid out in [18] Consider a walk on the discrete spatial

steps {0,±�x,±2�x, · · · } and similarly let X(t) be a Markov chain on discrete time

steps where t 2 {0,�t, 2�t, · · · } We define u(x, t) = Pr{X(t) = x}. Next consider
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the probability that a particle may jump either to the left with probability p or the

right with probability q in time �t, where p+ q = 1.

u(x, t+�t) = pu(x��x, t) + qu(x+�x, t) (3.24)

We next expand the right hand side in a Taylor series about �x to find

u(x, t+�t) = p


u(x, t) + @

x

u(��x) + @
xx

u(
�x

2
)2 +O

�
�x3

��
+

q


u(x, t) + @

x

u(�x) + @
xx

u(
�x

2
)2 +O

�
�x3

�� (3.25)

Rearranging the terms and dividing by �t we have

u(x, t+�t)� u(x, t)

�t
=

(q � p)@
x

u(x, t)(�x) + (p+ q)@
xx

u(x, t)(�x

2 )2 +O(�x3)

�t

(3.26)

For now we will make the following bold assumptions on the limits as �t ! 0 and

�x ! 0.

lim
�x,�t!0

(q � p)
�x

�t
= k

lim
�x,�t!0

�x2

�t
= D

lim
�x,�t!0

�x3

�t
= 0

(3.27)

The passing to the continuum limit we recover a di↵usion equation with a drift term

similar to the Smoluchowski equation.

@
t

u(x, t) = k @
x

u(x, t) +
1

2
D@

xx

u(x, t) (3.28)

Returning to the assumptions we made on the limits, consider that we make
t

�t
total

time steps on the interval [0, t]. The mean displacement of a particle on that time

period is then given by

t

�t
(p�x+ q(��x)) = t (p� q)

�x

�t
(3.29)
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Similarly the variance in a time period t is given by

t

�t

�
p(�x)2 + q(��x)2 � (p� q)2(�x)2

�
= 4pqt

(�x)2

�t
(3.30)

We see then that we must require the mean and variance to be defined and finite for

the previous assumptions to hold. Moreover for (p� q)�x

�t

to be finite in the limit as

�t ! 0, we must require (p� q) to be bounded as �x ! 0.

lim
�x,�t!0

(p� q)�x  M lim
�x!0

�x = 0 (3.31)

Finally if lim
�x,�t!0

�x2

�t
is finite, then lim

�x,�t!0

�x3

�t
= lim

�x,�t!0
�x

✓
�x2

�t

◆
= 0 as re-

quired.

Example

As an example consider a symmetric random walk with p = q = 1/2. Applying

equations (3.27), then the mean displacement µ of a particle is zero, and the variance

is V ar(X) = h(X � µ)2i = hX2i = Dt. The mean squared displacement hX2i is

linear which is indicative of a normal di↵usion process, as we saw in the di↵usion

data from the artificial cell membranes in Section 1.

3.2 Anomalous Di↵usion

Normal di↵usion as we have seen generally refers to simple Brownian motion and

describes phenomena where the mean squared displacement of a di↵using particle is

observed to grow linearly with time.

⌦
x2
↵ / t (3.32)

From the previous Markov chain view of di↵usion, it can be seen in essence that

this linear growth law depends on the Markov assumption of complete independence
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between successive time displacements. Moreover, we also required the mean and vari-

ance of the spatial random variable to be defined and finite. Anomalous di↵usion by

comparison describes all other cases where the observed mean squared displacement

of a particle, at least over some relevant and interesting time interval, deviates from

linearity. An important class of anomalous di↵usion is the power-law type growth

case.
⌦
x2
↵ / t↵ 0 < ↵ < 2 (3.33)

Generally, a sub-linear di↵usion process (↵ < 1)is called subdi↵usive while super-

linear cases (↵ > 1)are referred to as super-di↵usive, with the ↵ = 1 case recovering

normal di↵usion. Both phenomenon have been widely observed in a large variety of

physical and biological domains. [58] There are two general ways to produce anoma-

lous di↵usion, corresponding to relaxing the Markov assumption or the requirement

of a defined mean and finite variance. Positive correlations in the temporal or spatial

di↵usion process, such as by particles being convected along streamlines in turbulent

hydrodynamic flows[46] lead to super-di↵usion, whereas trapping regions such as the

cytoskeletal compartments seen in the introduction lead to anti-correlated motion

before the particle escapes into an adjacent compartment, viewed from the perspec-

tive of the larger timescale. In contrast to the finite variance distributions of normal

di↵usion, infinite variance in the spatial variable yields wide distributions, or distri-

butions with long tails, from which sudden long jumps may arise. These lead to Lévy

flights, such as can be observed in the foraging patterns of bumble bees and deer. [58]

(p.463) Similarly if the distribution of escape times from a trapping region has infinite

variance, we can have unusually long trapping times leading to subdi↵usive behavior.

In a sense the particle’s overall behavior is dominated by the longest time spent in a

trap, in which there is no forward motion. In other words, the system has a ‘memory’

about the event.
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3.3 Models of Anomalous Di↵usion

There have been many approaches to anomalous di↵usion in the literature [59]

Classical non-linear extensions to the canonical di↵usion equation lead to special-

case analytic results, but these formulations lack generality and have not found wide

applicability to physical experiments. In contrast extensions of the above three deriva-

tional methods above o↵er a more general approach which leads to several analytically

distinct expressions of anomalous di↵usion.

3.3.1 Fractional Di↵usion Equations

Extensions of the definition of the derivative to non-integer order, in particular the

so-called ‘fractional’ derivatives can generalize the di↵usion equation to the space-time

fractional di↵usion equation

t

D�

⇤u(x, t) = x

D↵

✓

u(x, t) (3.34)

with x 2 R, t 2 R+ and the real parameters 0 < ↵  2, 0 < �  2, |✓| 
min (↵, 2� ↵) where the time-fractional derivative or order � here is given in the

Cuputo sense and the space-fractional derivative is of Riesz-Feller type with order ↵

and skewness ✓ [60]. The essential point of this approach is that we preserve a linear

fractional di↵erential equation which has a fundamental solution or Green’s function

for all parameter values. It has been shown in [61] by Mainardi et al. that for a

Cauchy problem with u(x, 0+) = �(x), a general solution of the form is given by

G✓

↵,�

(x, t) = t��G✓

↵,�

(x/t�, 1) � =
↵

�
(3.35)

where G is a spatial probability density function certain parameter ranges of ↵ and

�. For instance, in the time-fractional symmetric case, as shown in Mainardi [61],
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when the skew-parameter ✓ = 0, ↵ = 2, and 0 < �  1 equation (3.35) reduces to

G0
2,�(x, t) = G0

2,�(|x|, t) =
1

2t�/2
M

�/2(r), r = |x|/t�/2 (3.36)

where M
�/2(r) is a Wright transcendental function given by

M
n

(z) =
1X

m=0

(�z)m

m!�(�nm+ (1� n)

For the special case with � = 1 we recover the normal di↵usion equation

G0
2,1(x, t) = t�

1
2G0

2,1(x/
p
t, 1) =

1

2
p
⇡
t�

1
2 exp�x

2
/(4t) (3.37)

Metzler and Klafter [physica A 278] [9-11] analyze the fractional di↵usion equation

given by

@W

@t
= 0D

1��

t

K
�

@2

@x2
W (x, t) 0 < � < 1 (3.38)

which describes a non-Markovian di↵usion process with a memory. This subdi↵usion

equation corresponds to a random walk with finite jump length variance, but where

the successive jumps in time are drawn from broad waiting time distribution with infi-

nite variance. In this case the fractional derivative operator is the Riemann-Liouville

type. The solution of (3.38) in Fourier-Laplace space, with boundary conditions

lim
|x|!1

W (x, t) = 0 and a point-source initial condition W0(x) = �(x) is shown to be

W (k, u) = u��1 1

u� +K
�

k2
(3.39)

Taking the limit lim
k!0

(@2/@k2)W (k, u) and inverting the Laplace transform, the mean

squared displacement is recovered, which shows the sub-linear power law dependance

on time.
⌦
x2
↵
=

2K
�

�(1 + �)
t� (3.40)

Note again, for � = 1 we recover the normal di↵usion relationship

⌦
x2
↵
= 2K1t (3.41)
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Figure 3.1: (Metzler and Klafter a) The density function W (x, t) is plotted for time
t = 0.1, 1 and 5. The subdi↵usive case (� = 0.5) is shown on the left, while the
normal di↵usive case (� = 1) is on the right. Note the slower decay of the tails and
the sharp cusp-like behavior near the origin.

where the generalized di↵usion coe�cient K1 is a constant.

The fractional calculus is a powerful tool for analyzing the large class of anomalous

di↵usion phenomena which obey the power-law type scalings hX2i / t↵. These

FDE equations and the related fractional Fokker-Planck equations can be shown to

correspond to the class of ↵�stable Lévy distributions [47]. Further developments,

generalizations and simplifications will undoubtedly lead to a new, practical tool-set

in which to model non-Markovian processes with the power and simplicity of linear

di↵erential equations.

3.3.2 Generalized Master Equations and CTRW

Following on the discrete random walk approach outlined in Section 3.3, a con-

tinuous time random walk (CTRW) allows for the introduction of a waiting time

distribution since we no longer restrict our derivation to discrete time steps. Addi-

tionally we can introduce more general non-Gaussian jump distributions with finite or

even infinite moments. Given a waiting time distribution  and a spatial jump distri-

bution ⌘, the probability of locating a particle at (x, t) is given by the Montroll-Weiss
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equation. [62]

P (x, t) = �(x)

Z 1

t

 (t0)dt0 +

Z
t

0

 (t� t0)

Z 1

�1
⌘(x� x0)P (x0, t0)dx0

�
dt0 (3.42)

The first term of the right hand side describes the contribution to the density P of the

number of particles that have not moved on the time interval (0, t). The second term

describes the contribution to P of the number of particles that have jumped from

x0 ! x on the time interval (0, t) over the entire space. Introducing Fourier-Laplace

transform variables

b⌘(k) =
Z 1

�1
eixk⌘(x) dx e (s) =

Z 1

0

est (t) dt (3.43)

equation (3.42) becomes

beP (k, s) =
1� e (s)

s

1

1� e (s)b⌘(k)
(3.44)

As in earlier analyses, we wish to move to a macroscopic description by passing to

the continuum limit. In this case, the limit is taken in the leading order expansion of

(3.44) in the large wave-mode limit as k ! 0 and in asymptotic time limit as s ! 0.

The following simplified analysis follows the development in [58]. Taking

 (t) = µe�µt ⌘(x) =
1p
2⇡�

e�x

2
/(2�2) (3.45)

for the waiting time and jump distributions where the mean waiting time is hti = 1/µ

and the mean square jump length is hx2i = �2, we can recover the standard di↵usion

equation using standard Fourier-Laplace transform techniques. Taking the small k,

small s expansions for  and ⌘, we have

e (s) = 1

1 + s

µ

' 1� s

µ
+ · · ·

b⌘(k) = e��

2
k

2
/2 ' 1� �2

2
k2 + · · ·

(3.46)
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Substituting into (3.44) we have

beP (k, s) =
1

µ

1
�

2
k

2

2 (1 + s

µ

) + s

µ

(3.47)

and then

s
beP (k, s)� 1 = ��k2beP (k, s) (3.48)

where � ⇠ �

2
µ

2 . Inverting the Fourier-Laplace transforms using

L{@
t

P} = s eP (x, s)� P (x, 0) L{@
xx

P} = �k2 bP (k, t) (3.49)

we recover the normal di↵usion equation for P (x, 0) = �(x) as claimed. Suppose

now we take for  and ⌘ the following power-law type distributions instead of the

previously exponentially decaying PDFs. Indeed as is shown in [47] the PDFs of

Levy-stable distributions behave asymptotically as

p.d.f.
LS

⇠ K|x|�(1+↵)

where

K =
1

⇡
sin

⇡↵

2
�(1 + ↵)

 (t) ⇠ t�(�+1) ⌘(x) ⇠ |x|�(↵+1) (3.50)

Computing the expectations we find that

hti =
Z 1

�1
t (t) dt =

Z 1

�1
t�� dt (3.51)

diverges for 0 < � < 1 so there is no characteristic time scale for the waiting-times.

Similarly for the variance,

⌦
x2
↵
=

Z 1

�1
x2 ⌘(x) dx =

Z 1

�1
x2|x|�(↵+1) dx (3.52)
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diverges for all a < 2. Hence there is no characteristic spatial transport scale. Taking

the asymptotic expansions for k ! 0, s ! 0 we have

e (s) ' 1� s� + · · ·

b⌘(k) ' 1� |k|↵ + · · ·
(3.53)

and again substituting into (3.44), we have to leading order in s and k2

s�
beP (k, s)� 1 = ��|k|↵beP (k, s) (3.54)

Inverting this relationship with the fractional Fourier-Laplace transforms formally

written as

L{0D�

t

P} = s� eP (x, s)� s��1P (x, 0) L{D↵

|x|P} = �|k|↵ bP (k, t) (3.55)

we may rewrite (3.54) formally as

0D
�

t

P = �D↵

|x|P 0 < � < 1 (3.56)

This expression is a natural generalization of (3.49) to non-integer order and suggests

that the D operators written here formally can be interpreted as suitable integro-

di↵erential or the fractional di↵erential operators or the previous section, which indeed

can be shown to be the case.
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Chapter 4

SIMULATIONS AND INVESTIGATIONS

4.1 Simple Random Walks

As we highlighted in section 3.1.3 we can derive fractional di↵usion equations

describing anomalous di↵usion from random walks using non-Gaussian distributions

for space jumps and/or non-exponential waiting time probabilities. In this section

we give a method for computing such distributions and several examples of simulated

random walks highlighting normal and anomalous di↵usion in both one and two

dimensions.

Given a sequence X = (X1, X2, X3, ..) of independent identically distributed

(i.i.d.) discrete random variables each taking values of either {�1 , 1} with proba-

bilities p and 1 � p respectively where 0  p  1, we define the partial sum of the

sequence

S
n

=
nX

i=1

X
i

(4.1)

We call the series S = {S
n

} so defined a simple random walk on the integers in one

dimension with parameter value p. Geometrically we can interpret this as a random

walker which moves rightward one unit on the x�axis with probability p or leftward

one unit with probability 1� p. It is easy to compute the mean and variance of the

process.
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E(S
n

) =
nX

j=1

E(X
j

) (4.2)

=
nX

j=1

(1)(p) + (�1)(1� p) = 2p� 1 (4.3)

= n(2p� 1) (4.4)

Similarly we have

var(S
n

) =
nX

j=1

E(X2
j

)� E(X
j

)2 (4.5)

=
nX

j=1

nE(1)� n(2p� 1)2 (4.6)

= 4np(1� p) (4.7)

For a random walk with p = 1/2 which is to say an equal probability of a rightward

or leftward step we have the well-known results[48]

E(S) = 0 var(S) = n

where S = lim
n!0 Sn

and which holds for the countable sum from the finite additivity

property of the expected value. The mean square displacement, which is identical to

the variance in this case shows the expected linear growth property proportional to

the number of steps taken.

< |X|2 >= n

For figure( 4.1) we compute < r2 >= 1042.61 where r is the radial distance of a

walker to the origin and < D > the mean distance travelled

2p
⇡

�(n+1)
2 + 1

2
�(n+1)

2

⇡ 25.23

for n = 1000.
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Figure 4.1: Left: 25 simple random walk simulations for p = 1/2 and n = 50 steps.
Dark curve is the computed mean at each n. Right: Histogram of final position of
walker after n = 50 steps computed from 10,000 simulations. Dashed curve is the
theoretical PDF of a normal distribution with µ = 0 and � =

p
50.
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Figure 4.2: Left: The final positions of 1000 walkers after after n = 1000 steps. The
black line is a typical trajectory of one walker. Each walker moves one unit-step in a
uniformly chosen random direction for each step. Right: < X2 > for 10,000 walkers
sampled at n = 10, 50, 100, 500, 1000 steps with the expected linear relationship for
normal di↵usion.
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4.1.1 Continuous Time Random Walks

As we saw in section 3.3.2 replacing the spatial jump and waiting time distributions

in the generalized Master Equation with ↵-stable Lévy distributions leads to random

walks which have quite di↵erent characteristics from either discrete or continuous

simple random walks previously presented. Instead we find long spatial jumps which

give these random walks their characteristic Lévy flights or trapping events which

lead to long streches of time where the walker stays at the same location. Similar

to our earlier definition of the simple random walk in ( 4.1) for the continuous time

random walk (CTRW), first intoduced by Montroll and Weiss in [49]

we again consider a sequence of independent identically distributed random spatial

jumps X
j

and additionally a sequence of i.i.d. waiting times T
j

and a partial sum

defined as,

t
n

=
nX

j=1

T
j

, T
j

> 0 (4.8)

such that the position of a particle x(t) at time t with t
n

 t < t
n+1 is then

specified by

x(t) =
nX

j=1

X
j

, X
j

2 R (4.9)

The probability p(x, t) that the process is in position x at time t is given by the

Montroll-Weiss equation

p(x, t) = �(x)

Z 1

t

 (t0)dt0 +

Z
t

0

 (t� t0)

Z 1

�1
⌘(x� x0)p(x0, t0)dx0

�
dt0 (4.10)

where  and ⌘ are the waiting time and jump distributions respectively.
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One dimensional random walks can be realized by computing the pariticle position

from Eq.( 4.9) using appropriate distributions. In the case of anomalous di↵usion it

has been shown[50] that the CTRW leads to a to space-fractional di↵usion with the

jump probabilities given by the symmetric Lévy ↵ � stable probability distribution

often simply referred to as a stable distribution. While the stable distributions do not

have analytical expressions except in certain special cases the general characteristic

function can be expressed as

�(x;µ, c,↵, �) = exp(ixµ� |cx|↵(1� i�sng(x)�)) (4.11)

where

� = tan(⇡↵/2) a 6= 1 (4.12)

= � 2

⇡
log |t| a = 1 (4.13)

This distribution is conveniently built into Mathematica 9.0 as the command

StableDistribution[type,↵, �, µ, �]

and random samples can be generated with

RandomV ariate[StableDistributio[↵]]

as shown in Fig.( 4.1.1).

The waiting time probabilty densities can be given by

�
�

(t) = � d

dt
E

�

(�(t/�
t

)�) (4.14)

where E
�

is the one-parameter Mittag-Le✏er function given by

E
�

(z) =
1X

j=0

zj

�(�j + 1)
, z 2 C
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Following the method follows a convenient transformation method given by Chambers[34]

which gives the jumps by the following

X
↵

=

✓
�
x

� log u cos�

cos((1� ↵)�)

◆1�1/↵ sin(↵�)

cos�
(4.15)

where � = ⇡(v�1/2) and u, v are independent uniformly distributed random reals

on the interval (0, 1) and �
x

is a scale parameter.

The waiting times are given by Kozubowski and Rachev [51]

T
�

= ��
t

log u

✓
sin(�⇡)

tan(�⇡v)
� cos(�⇡)

◆1/�

(4.16)

where again u, v, are independent uniformly distributed random reals on (0, 1)

and �
t

is a scale parameter. When � = 1 Eq.( 4.16) reduces to ⌧1 = ��
t

log(u) which

is the inverse CDF of the exponential distribution and hence generates exponential

waiting times.

4.2 Subdi↵usion

Using the formulations (4.15) and (4.16) we next compute the mean square dis-

pacement (MSD) for 1D anomalous di↵usion. 1000 particles are simulated for n = 200

jumps. The locations of the particles x(t) at time t = 10, 20, 50, 100 are found by linear

interpolating on the interval [x(t
n

), x(t
n+1)] where t

n

< t < t
n+1. The mean-squared

displacement is given by

< X2(t) > =

Z 1

0

x2p(x, t)dx = 2dK
↵

t↵ ⇠ 2dK

�(1 + �)
t� (4.17)

where K is a generalized di↵usion constant, which we set to K = 1 in the simulations.
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Figure 4.3: 5000 random samples are generated from the formulation given in
Eq.( 4.15) compared with Mathematica 9.0’s built-in stable distribution, dashed line.

4.3 Analysis of Geometrically Simple Traps

As a first step towards building the formalism for a one-dimensional trapping

model, let us first consider a (Fig. 4.7) a simple rectangular trap of length L and

width W . A particle traveling deterministically enters the trap at location w0 with

incident angle ↵ 2 [�⇡

2 ,
⇡

2 ], with initial velocity v0, and follows a trajectory determined

by simple specular reflection from the walls of the region. In this model the rectangle

has three walls from which the particle reflects. When the particle returns to the

wall where it entered the trap (w0) we consider the particle to have then exited and

finished its sojourn in the trapping region. We first consider the simple case of a single

particle colliding elastically with the boundary. After a certain amount of time spent

bouncing in the trap, which we indicate by the flight time T , the particle exits the

trap with angle ↵0. It should be noted again in this simple model that the velocity of
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Figure 4.4: 1000 steps of a one-dimensional random walk with Stable Lévy dis-
tributions for jumps and waiting times with (clockwise from upper left) parame-
ters (↵, �)=(2,1),(1.3,1),(1.3,0.8)(2.0,0.8),. Note the large displacements in x when
↵ < 2.0 and the large “trapping” events when � < 1.

the particle is constant, and we have perfect specular reflection from the boundaries

of the trapping region hence no resulting loss of energy to the walls, so we may equate

the angles, ↵ and ↵0 with the corresponding velocity vector of the particle entering

and exiting the trap. Since the walls of the rectangular trap are mutually orthogonal,

it is easy to see from the Law of Reflection that the exit angle ↵0 must equal either

↵+⇡ or �↵. Moreover because the velocity of the particle is constant, the duration of

the particle in the trap, T corresponds to the total distance travelled by the particle.

To analyze the ballistic trajectory of the particle it is helpful to “unfold” the

geometry of the trajectory of the particle into a triangle as shown in (Fig. 4.8). It

follows that the right triangle that the path of the particle to the far wall P (↵) is
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Figure 4.5: 1000 steps of a two dimensional random walk with jump ↵-stable Lévy
distributions with parameter (clockwise)↵=(1.3,1.5,1.7,1.9). The long soujourns are
typical of superdi↵usive Lévy flights. The scale of the graphs have been regularized
to more e↵ectively compare the jumps for di↵erent values of ↵.
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Figure 4.6: Simulations of anomalous subdi↵usion with � = 1.0 (linear case), � =
0.8, and � = 0.6. Dashed lines are theothetical MSD for the given parameters.

L

w0
w�

Figure 4.7: A Simple Rectangular Trap with Example Trajectory

given by

P (↵) =
L

cos(↵)
(4.18)

and the total time duration of the particle in the trap is given by

T (↵) =
2L

v0 cos(↵)
(4.19)

where the factor of 2 in the numerator reflects the symmetric path the particle takes

from the far wall back to the entrance.
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Figure 4.8: The path P corresponds of the trajectory of the particle in the trap.

4.3.1 Analysis of the Rectangular Trap

Because of the symmetry of the rectangle there are only two possible exit angles

↵0 given the entrance angle ↵,namely the complementary and supplementary angles

such that ↵+↵0 = ⇡

2 or ↵+↵0 = ⇡. In the case of the trap orientated horizontally as

in (Fig. 4.8) the input angles are on the interval ↵ = [�⇡

2 ,
⇡

2 ] and the resulting output

angles ↵0 = [⇡2 ,
3⇡
2 ]. A simulation of the simple rectangular trap shows that the input

angles are perfectly correlated (Fig. 4.9) with the output angles as expected from

the reflection law, although the function f(↵) = ↵0 is highly discontinuous with many

jump discontinuities arising when a small perturbation in the incident angle causes

the trajectory to cross a vertex of the rectangle.

In the case that ↵ ⇡ 0, which corresponds to the particle entering the trap with

a velocity primarily orientated in the horizontal direction (relative to the diagram),

we see that the duration T ⇡ 2L and indeed (Eq. 4.3) has a minimum at ↵ = 0. As

is evident in (Fig. 4.10) for a wide range of ↵ the most frequent times T are within

approximately 50 units of time. However as ↵ ! ±⇡

2 , then T (↵) ! 1 and the
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Figure 4.9: The incident angle (↵) vs. exit angle (↵0) is highly correlated, but also
highly discontinuous for n = 1000 particles.

particle spends a long time in the trap which corresponds geometrically to a particle

entering the trap at a grazing angle and bouncing many times before it exits. As we

have seen in Chapter Two, it is the behavior of these uncommon but significant long

sojourns in the trap that leads to anomalous di↵usion and the non-linear behavior of

the mean square distance measurement of ensembles of particles.
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Figure 4.10: The duration of a particle (T ) in the trap vs. incident angle (↵) for
n = 1000 particles, L=10 , v0=1.
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4.3.2 Probabilistic Interpretation

Next we consider a probabilistic treatment of the simple rectangular trap. Con-

sider a uniform distribution of the incident angles ↵ with the p.d.f. given by

�(↵) =

8
><

>:

1
⇡

↵ 2 [�⇡

2 ,
⇡

2 ]

0 ↵ elsewhere
(4.20)

We wish to compute the probability density  for flight time of a particle in the trap

with a duration of time T given a uniform distribution of angles on ↵ 2 [�⇡

2 ,
⇡

2 ]. Then

the probability is given by the transformation of the distribution on the angles by

T (↵) =
L

v0 cos(↵)

For a monotonically increasing function g we can compute the p.d.f of the trans-

formed distribution f
Y

via the chain rule as

f
Y

(y) = f
X

(g�1(y))
d

dy
g�1(y)

where g is the transformation function and f
X

is the p.d.f. of the distribution to be

transformed. Then

 (T ) =
1

⇡

d

dT
arccos(

L

Tv0
) (4.21)

=
1

⇡

1

Tv0

Lq
T 2 � L

2

v

2
0

(4.22)

=
1

⇡

L

T
p
T 2v2 � L2

; T >
L

v0
(4.23)

In (Fig.4.11) we present a histogram of trap durations for the rectangular trap plotted

against (Eq. 4.21). The minimum time in the trap time is T = 2L/v0 = 20. The

most striking feature of the distribution is the long tail. Indeed the tail is trunctated

in the displayed histogram in order to better highlight the shape. Next the CDF of
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 was calculated and compared to the simulation.

CDF ( ) =

Z
T

20

2⇥ 20

⇡t
p
t2 � 202

dt

The results for several values of T are tabulated in (Table 1) along with the data

from the simulation. The accumulated percentage is shown in the last column. The

heavy-tailed nature of the distribution is made apparent in that 12.7 percent of the

particles remained in the trap for longer than T = 100 time units.

� �� ��� ��� ���
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Figure 4.11: Distribution of trap times (T) for n = 1000 particles in a L = 10, v0 = 1
trap. Solid curve is the calculated p.d.f  (T ).

A next reasonable question to ask is what is the mean time a particle with a

uniformly random incident angle stays in the channel. Calculating the expected

value of the p.d.f. we find

E[T ] =

Z 1

L

t (t) dt = lim
s!1

Z
s

L

2L

⇡
p
t2 � L2

dt (4.24)

= lim
s!1

�2L

⇡
log

✓
L

s+
p�L2 + s2

◆
(4.25)

As s ! 1 in (Eq.4.24) clearly the log term blows up and E[T ] ! 1. A similar

calulation shows the variance is also unbounded which is an important result since
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T calculated simulated % accumulated

20 0.535441 0.492 49.2

30 0.131226 0.131 62.3

40 0.0713536 0.07 69.3

50 0.0456329 0.04 73.3

60 0.0318852 0.03 76.3

70 0.0236004 0.016 77.9

80 0.0181992 0.019 79.8

90 0.0144737 0.017 81.5

100 0.011792 0.007 82.2

Table 4.1: Percentage of particles remaining in trap for several intervals of T.

this is exactly the condition we require for anomalous di↵usion.

E[T 2] =

Z 1

L

t2 (t) dt = lim
s!1

Z
s

L

2Lt

⇡
p
t2 � L2

dt (4.26)

= lim
T!1

2L
p
T 2 � L2

⇡
! 1 (4.27)

4.3.3 Cauchy Distribution

The Cauchy distribution is famous for being a “pathological” example of a distri-

bution with undefined moments. Similar to the distribution we calculated in (Eq.4.21)

for the time spend in the simple trap, the Cauchy distribution also have infinite first

and second moments. If fact we can show that the trap distribution is a transforma-

tion of the Cauchy distribution. Consider the Cauchy cumulative density function

F
X

(x) =
1

2
+

1

⇡
arctan (x) (4.28)

and the trapping function

 (T ) =
1

⇡

L

T
p
T 2v2 � L2

; T >
L

v0
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. Then the density functions are defined by

f
X

(x) =
@

@x
F
X

(x) =
1

⇡

1

(1 + x2)

and

 
T

(t) =
@

@t
 
T

(t) =
1

⇡

1

(1 + s2)

d

dt
s(t); s = � 1p

t2 +�1

Then  
T

(t) = g(X) where X is the Cauchy distribution and g(s) =
q

1
s

2 + 1 is

the transformation function.

As a final calculation for the simple trap simulation we compute the numerical

mean and variance of the total time in trap T for 10 runs to highlight the e↵ect which

the theoretical unbounded mean and variance has on the computer simulations.

run mean variance

1 103.845 46000.6

2 101.769 39552.7

3 61.5184 16213.9

4 75.8452 19334.5

5 76.0872 20354.3

6 53.0913 5627.

7 96.267 47157.2

8 53.4665 13444.

9 83.4209 32742.2

10 62.4442 10246.7

4.4 More General Traps

In the simple rectangular trap of the previous section we saw that even a very

simple geometry is enough to generate probability distributions with unbounded vari-
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ance in the trapping time. But we had the somewhat overly symmetric result that

the incident angle ↵ was highly correlated with the exit angle ↵0. Unfortunately for

geometries more complex than one-dimenional dynamical maps, regular polygons and

circles, the dynamics of the trapping region, although still deterministic, can become

weakly chaotic and di�cult to approach analytically. However simulations of arbi-

trary complex trapping regions may be carried out limited only by time constrains,

computer power and of course the sophistication of the simulation. A more general

simulation program was developed to carry out an investigation of more elaborate

geometrical set-ups.

4.4.1 Rectangular Trap with Pore

First we consider a modification of the rectangular trap with a small hole or

pore of width p placed symmetrically along the bottom wall. This increases the

surfaces a particle in the trap may reflect from from 3 walls to 5. As we will see

this complicates the possible trajectories and drastically e↵ects the nature of the

waiting time distribution from the simple u-shaped distribution in (Fig. 4.10). We

“unfold” the geometry of the trap in a similar manner of the previous analysis so that

trajectories in the trap follow straight lines. (Fig. 4.12).The trap walls are the solid

dark lines in the lower left hand quandrant of the diagram, and a sample trajectory

in the trap is shown in a dashed line. The unfolded trajectory is the long dashed line.

The pore of the trap p is indicated by a dark line segment and the reflections of the

pore are indicated on the diagram.

A particle in the trap will exit when the unfolded trajectory hits a reflection of the

pore which are located at heights of ±2Ln, n 2 Z+ in the unfolded geometry. We are

interested first in knowning the critical angles for which an incident velocity vector

will exit the trap. These are indicated on the diagram as thin gray lines. For instance
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Figure 4.12: Pore Trap. A trajectory with incident angle ↵ follows the dashed
curve in the trap, and the straight dashed curve on the unfolded geometry. The
particle exits the trap when the unfolded trajectory hits a reflection of the pore (dark
segments).

the unfolded trajectory in the diagram hit a trap wall at a height of 4L and the time

spent in the trap is therefore equal to the length of the path P over the velocity v.

This is the geometric situation which causes the trap time function ⌧(↵) to be highly

discontinuous. If the trajectory shown in the diagram were to shift out of the critical

angles the particle would continue on to the next level of the schema. The critical

angles are then e↵ectively indexed by the vertical and horizontal reflections of the

pore, namely the 2Lj heights of the trap with j = 1, 2, 3, ... and also the horizontal

shift of the width wi with i 2 Z. For a particle located at some fraction s of the pore
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width p we can compute the critical angles from the right-triangle geometry of the

unfolded path. Namely we have for i 2 Z (the symmetric case for angles ↵ > ⇡/2 is

not shown) and j = 1, 2, 3, ... the right and left bounds on the entrance angle.

✓(i,j) < ↵ < ⇥(i,j)

✓(i,j) = tan�1

✓
2Lj

sp+ iw

◆

⇥(i,j) = tan�1

✓
2Lj

sp� p+ iw

◆
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Figure 4.13: Pore Trap showing the discrete trapping times 2Ln

Fig ( 4.13) shows the simulation data plotted again the theoretical possible waiting

times calculated from:

T (↵) =
L

v0 cos(↵)

In closing we note that not all indices of (i, j) represent a possible exit pore. For

instance in the vertical strip (0, j) the traps at heights 4L, 6L, ... cannot be reached

because any angle in those critical angles such as ↵ = ⇡/2 will always exit the trap at

2L. For a particle entering the trap exactly in the center of the pore (the symmetric
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case) this reduces to only the traps at index i mod j 6= 0 being reachable. That is to

say all traps are reachible on the 2L level, every second trap on the 4L is unreachable,

every third trap is unreachable at 6L, etc. This geometry then stratifies the trapping

times into discrete quanta 2Ln for n = 1, 2, 3, ... shown in (Fig. 4.13) and tends

to remove the middle portion of the “U” from the actual trapping times. Since

which traps are reachable is also a complicated function of the horizontal location the

particle enters the trap (sp) we did not consider refining the possible trapping angle

functions ✓(i,j) to account for the computed distributions exactly.

Finally we calculate the histogram for the pore trap in (Fig. 4.14) to demonstrate

the presence of a long tail. Note the histogram bar on the far right of the simulation.

Since this simple simulation had a short maximum step time trajectories that never

exited the trap in under T < 2000 were counted as T = 2000. It turns out this was

a useful way to easily notice the long-tails in testing various simulation scenarios

because the presense of a relatively large histogram bar represents the accumulation

of all trap times over a given threshold. That is to say it represents the sum of the

long tail. Finally we plotted T (↵) for various pore sizes in (Fig. 4.15). As expected

the smaller pore size makes it more di�cult for a particle to escape so the density of

2L waiting times at the bottom of the “U” are less possible. Notice that density of

high T times represented by the sides of “U” are fairly dense across all pore sizes so

incident angles at the extremes, the horizontal grazers entering the trap, will almost

certainly tend to stay in the trap for a long time.

4.4.2 T-Shaped Trap

Perhaps the next most complex trap to consider is a T-shaped trap consisting

of two overlapping rectangles. Several example trajectories are highlighted in in

(Fig. 4.16) and data is collected from a run of n = 10, 000 particles. It is immedi-
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Figure 4.14: Pore Trap histogram showing a long tail distribution for a pore size of
1/10 the width of the trap.
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Figure 4.15: Comparison of possible trapping times for pore sizes. p = 6, 3, 1, 0.1,
clockwise for a trap of width w. The upper-left is equivalent to the simple rectangular
trap. The dark black line represents the actual trapping time since the pore covers
the entire the bottom wall.
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ately apparent from examing the traps that the trajectories have similar geometric

characteristics to the pore trap with the sequence of discrete trapping times.
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Figure 4.16: Example trajectories in T-shaped traps.

Since the geometry of the traps consists of rectangular regions only, we have the

same relationship between input and output angles as with the simple rectangular

trap, namely the angles are again perfectly correlated as shown in (Fig. 4.17).

However the function T (↵) has already become much more complicated as shown

in (Fig. 4.17). The simple addition of another rectangle to the trap has scattered

and complexified the correlation betweeen ↵ and T . Notice the large segment of

angles that enter and exit the trap in minimum time when ↵ ⇠ ⇡/2. The long

neck of the trap ensures that a wider range of input angles entering in the vertical

direction stay vertical because they have more opportunities to preserve their angle

on the trajectory of the long neck. Similarly grazing angles stay grazing angles in

the neck and contribute heavily to the long tail of (Fig. 4.18). We again see that

the preponderance of particles exit the trap in T < 100 however there are significant

numbers of particles in the long tail. A numerical calculation of the c.d.f for the
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histogram data in (Fig. 4.18) shows 79% of particles have left the trap in time

T < 100.
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Figure 4.17: Duration T in the rectangular trap sorted by input angle ↵. The
dashed line is the theoretical curve for the simple rectangular trap which ostensibly
acts as a lower limit for the T-shaped trap.
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Figure 4.18: The probability histogram of the trapping times T for the T-shaped
trap.

Figure 4.19 shows a quantile plot comparison of the distribution of output angles

↵0 compared to a uniform distribution of input angles. We can see that the exit angles

also form a uniform distribution. This is to be expected since the rectangular walls

of the trap are only capable of reflecting the input angle like ↵ 7! ±↵. This will be
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Figure 4.19: Quantile plot of the exit angles ↵0 compared to a uniform distribution
(dashed line).

the case for all traps that consist of sections of rectangles since specular reflection

↵0 = 2(n · ↵)n� ↵

where ↵ is the incident vector and n is the surface normal will only generate new angles

from the dot product of the angle with the surface normal. Indeed for any geometry

consisting of a regular polygons with s total number of distinct normal vectors the

s-fold symmetry will produce s-copies of a uniform distribution of input angles which

again is a uniform distribution. For a trap with no symmetry the distribution of

output angles will depend on the distribution of normal vectors of all surfaces in the

trap.

4.4.3 Irregular Spine-Shaped Traps

Next we simulated traps with less geometrically regular, more biologically-inspired

geometry and in particular we took inspiration from the research done on anomalous

di↵usion in dendritic spines. Dendritic spines are small protrusions from the dendrite

of a neuron. They stereotypically have “mushroom”, “stubby”, or “thin” shaped

appearance typically with with a bulbuous head attached to the dendrite by a thin
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neck. The spine heads can form a synapses with adjacent axons to typically receive

input from other nerve cells. They are well known to be pleomorphic with a dynamic

morphology, changing their shape and number on the time scale of seconds to minutes

and forming and degrading synapses with adjacent neurons to facilitate the formation

of memories and learned behaviors.[54] More relevant to anomalous di↵usion, den-

dritic spines have been implicated in causing anomalous di↵usion in Purkinje cells

[55] and have been modeled with the ”spiny” fractional cable equation.[53]
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Figure 4.20: Figure 1.Diversity of spine shape A, three-dimensional tertiary por-
tion of the dendritic tree of a CA1 pyramidal cell from a green fluorescent protein-
expressing mouse brain. Dendritic spines are classified into three main types: short,
stubby spines (< 0.5 m in length) (B), mushroom-type spines, consisting of a short
neck and mushroom-shaped head (C), or thin, long spines with an elongated neck
and small head (D). Scale bar, 1 m. reproduced from Harris, J Physiol. 2010 Jan
1;588(Pt 1):107-16.
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Figure 4.21: Some typical trajectories in the test ”spine”.

We implemented spine shapes with a thin neck and a spacious head as a test case.

A cursory examination of the example runs in Fig. 4.21 shows an immediately appar-

ent dichotomy in the behavior of the trajectories going through the neck compared

to the spine head. As we learned with the simple trap, particles that enter the spines

in a grazing trajectory stay in the neck for extended times because

T (↵) / 1

cos(↵)

of the unbounded behavior of the trapping time function. When the grazing angle

exits the neck into the comparatively larger, irregular spine head the less regular

structure of the boundary walls quickly scatters the angle of the velocity vector of the

particle. Eventually the particle re-enters the neck where it may again be subject to

a long flight time before it exits the trap.

The addition of the irregular spine head to the simulation has e↵ectively decoupled

the entrance angle ↵ from the exit angle ↵0.(Fig 4.22)

4.4.4 Traps with Inclusions
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Figure 4.22: ↵ and ↵0 angles have become highly uncorrelated. However the faint
presence of the diamond-like pattern of correlated pairs is a reflection of the shape of
the spine head which is approximately a regular polygon.
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Figure 4.23: The duration time T (↵) maintains the spread out“U” shaped appear-
ance which comes from the pore in the spine head. Notice in particular the presense
of the long tails for the grazing angles which is indicitive of the long neck.
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Figure 4.24: Left: quantile plot of exit angles against the uniform input distribution.
The presence of the deviations at the extremes of the plot indicate there is a lessened
frequency of grazer angles re-entering the trap from the spine head. Right: Quantile
plot of exit angles against a standard normal distribution suggest a heavy-tailed
distribution with respect of exit angles.

0 1 2 3 4
0

50

100

150

Figure 4.25: Left: quantile plot of trap times against the exponential distribution.
The presence of the deviations at the longer times indicate there is an increased fre-
quency of long trap times compared to an exponential distribution. Right: Histogram
of the trap times T.
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Figure 4.26: Spine heads with internal inclusions.
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Figure 4.27: n = 10k runs. The inclusions spines demonstrate an equally scattered
distribution of output angles and trap times.

4.4.5 Conclusions

The various trapping regions in the previous section were simulated to provide

some motivation and justification for using various spatial and temporal distributions

in the kinetic model, especially the long-tailed distributions for the trapping times.

We saw that the long rectangular necks alone lead to a transformed Cauchy distribu-

tion with infinite variance. It is exactly these types of distributions which lead to a

blow of up the di↵usion matrix in the expansion of the linear Boltzmann equation and

the subsequent need for a new method to handle the di↵usion limit for the anomalous

case.
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Irregular heads or walls generate an e↵ective scattering of the input angles from

the uniform distribution. The various simulations have usually exhibited long tails in

the exiting velocity vectors as well. The means that the simulated traps have tended

to damp out the large grazer angles exiting the trap which would have a slowing e↵ect

on the e↵ective velocity in the ensembles of particles in the channel. Additionally this

would make it less likely that grazers would enter the next encountered trap. However

the complex nature of the irregular trap geometry makes it di�cult to analyze even

in simulations given the multitudinous ways that the geometry can be varied. A

possible future direction would be to look at sequences of rectangular traps made up

of self-similar copies on smaller spatial scales...fractal like rectangular traps within

traps. Since the distribution of angles will always be uniform from orthogonal walls

it would be interesting to see if some type of limiting behavior could be deduced from

the nested rectangles.

Another interesting problem not considered here would be how a branching angle

could e↵ect the trapping distributions. In the cases studied the necks made a right

angle with the heads (and indeed in the next set of simulations the neck makes a

right angle with the channel). This type of geometry basically converts grazing angles

which have the higest e↵ective forward velocity in the channel and traps them for a

long time in the narrow channel neck. Similarly the orthogonal angle leaves particles

travelling mostly in the vertical direction essentially unscathed as they bounce to the

trap ceiling and back down the neck. An angular neck would tend to also trap this

class of particles in the neck.

Using what we’ve learned of the distributions inherent in these simple simulations

of 2D trapping geometries we next build a more formal Monte Carlo which reflects

the Kinematic Boltzmann model.
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Chapter 5

KINEMATIC MODEL AND MONTE CARLO

Next we build on the analysis of trapping regions considered in the previous section

and now consider the kinematics of particles flying ballistically in a long channel

with trapping regions along the walls (Fig. 5.1). Similar to the trap simulations

of the previous chapter we assume the particles collide elastically with the channel

boundaries and trap walls and also do not interact with each other. Therefore the

speed of the particles remains constant for their sojourn in the channel. In this one-

dimensional case however we are only interested in keeping track of the motion of

the particle along x�axis. It follows from the equations of motion that for a particle

moving in the channel with velocity vector v we have

ẋ = v
x

x 2 R, v 2 R2 (5.1)

= ||v|| cos(↵), ↵ 2 [0, ⇡] (5.2)

where x(t) is the location of the particle on the x-axis at time t. Although the

velocity of the particle remains constant we use the two-dimensional velocity vector

to determine the angle at which the particle enters the trap (or not) and hence its

probability of entering the trap. A particle consequently travels down the channel

with constant speed ||v|| until it reaches the trapping zone shown between the dashed

lines in (Fig. 5.1).

5.0.6 Probability of Entering the Trap

A particle will enter the trap in some finite time t (which is bound by the time

it would take the particle to cross the width of the channel) if the angle ↵ which is
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Figure 5.1: Particles flow with constant velocity rightward down the channel. The
trapping zone is denoted by dashed lines. A particle (dot) can enter the channel
directly or via bouncing on the far wall.

measured from the standard horizontal polar direction lies inside one of two critical

angular regions associated with the location of the entrance to the trap. If ✓2 > ↵ > ✓1

then the particle will enter the trapping region directly. If ✓3 > ↵ > ✓4 on the other

hand the particle will bounce (in the two dimensional sense) against the opposite

channel wall and enter the trap in finite time. The mirror-image geometry of the

channel is shown in (Fig. 5.1) to aid in visualizing the bounce trajectory and the

bottom set of critical angles. The critical angles ✓
j

depend on the location of the

particle in the trapping zone of the channel (Fig. 5.2) whose width is determined by

the size of the opening of the trap, or the trap pore, and also the angle ↵ which

corresponds to the velocity vecotr v. The y-location of the particle is specified as a

fraction of the channel width rw where w is the channel width and r 2 [0, 1]. Similarly

the x-position is a fraction sp of the pore width p where s 2 [0, 1]. It follows from
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p

Figure 5.2: The trapping zone: rw is the y-location of the particle specified in
fraction of width of the channel, and similarly for the x-location specified in terms of
fraction of the pore size of the trap.

the definition of tangent that

tan(✓1) =
rw

sp
=) ✓1 = tan�1(

rw

sp
) = tan�1(�

r

s
) (5.3)

where we define � = w

p

as the aspect-ratio of the channel trapping region, namely

the channel width to the width of the trap pore. Similarly we can compute the other

critical angles:

✓2 = ⇡ � tan�1(�
r

1� s
) (5.4)

✓3 = ⇡ + tan�1(�
2� r

1� s
) (5.5)

✓4 = 2⇡ � tan�1(�
2� r

s
) (5.6)

Note if � << 1 then w << p and we have wide trap mouths compared to the channel

width, so we would expect a high probability of trapping events occuring. Similarly

for � >> 1 we have p << w and consequently the trap pores are small compared

to the channel width. We simulate the probability histogram for a trapping event in
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(Fig. 5.3) for a “trappy“ channel (� = 0.2), a square channel (� = 1) and a channel

with small pores (� = 5).
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Figure 5.3: Densitiy histograms for � = 0.2, 1.0, and 5.0. Darker colors indicate a
lower probability to enter the trap for an angle ↵ uniformly chosen on [0, 2⇡]. Contours
are calculated from the theoretical distribution with level curves representing the
probability of a particle at (r, s) entering the trap.

We can also directly compute the probability of entering the trap according to

the aspect-ratio �. Consider the portion of the critical trapping angle traced out

between angles ✓1 and ⇡

2 . Then the probability that a particle at location (rw, sp) in

the trapping zone with angle ↵ will enter the trap is given by

 1(�) = Pr(✓1 < ↵ <
⇡

2
) (5.7)

=

Z 1

0

Z 1

0

Z ⇡
2

0

2

⇡

⇣
arctan(�

r

s
) < ↵

⌘

�

d↵ dr ds. (5.8)

=

Z 1

0

Z 1

0

⇡ � 2 tan�1(�r
s

)

⇡
dr ds. (5.9)

=
2� (� log(�)� 2 tan�1(�) + ⇡)� (�2 � 1) log (�2 + 1)

2⇡�
(5.10)

where � is the indicator function equal to 1 when the condition is true and 0 otherwise.

We can see that  (�) is a monotonically decreasing function of �. Consider

�0
1(�) =

�2 log (�2)� (�2 + 1) log (�2 + 1)

2⇡�2
(5.11)
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�0(�) < 0 =) �2 log
�
�2
�
<
�
�2 + 1

�
log
�
�2 + 1

�
(5.12)

=) log

✓
�2

�2 + 1

◆
<

1

�2
+ 1 (5.13)

Where the right-hand side of the equality is always > 0 on � 2 [0,1) and the left-

hand side is always < 0 thus proving the assertion that  is monotonically decreasing

and supporting our earlier intuition that a small aspect-ratio leads to more “trappy”

traps. Similar calulations for the other four angles lead to the following similar results

with the final total probability function over the whole range of angles  (�) given

last.

(2⇡�) 
bottom

(�) = � log
�
�2 + 1

�
+ log

�
4�2 + 1

�
+

�

✓
�

✓
log
�
�2 + 1

�� 4 log

✓
�2 +

1

4

◆
+ 6 log(�)

◆
+ 4 tan�1(�)� 8 tan�1(2�)

◆
+2⇡�

(5.14)

 
total

(�) =
(1� 4�2) log (4�2 + 1) + 4� (� log(4) + 2� log(�)� 2 tan�1(2�) + ⇡)

4⇡�

(5.15)

We calculate a few values of  (�) in (Table 5.0.7). For the case of the square aspect

ratio approximately 35% of the particles flowing in the channel past the trap will enter

the trapping region. We also compare the values of  and values computed from the

trap Monte-Carlo simulation with 300,000 test particles, and list the resulting relative

percent error.

5.0.7 Implications for Spiny Dendrites

Since our model can serve as an approximate model for di↵usion between the

dendrite and dendrite spines it is interesting to consider some speculations of how
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the aspect ratio l of the model could influence spine di↵usion dynamics by looking at

the trapping probabilities. It is also interesting to note that  (�) is most sensitive

to change for small � suggesting that certain spine types may be more sensitive to

changes in their morphology with respect to di↵usion of sequestered molecules. In

fact one of the primary functions of dendritic spines is the compartmentilization of

biochemical messengers such as Ca2+. [?] Narrowing of the spine neck diameter

could immediately serve to restrict di↵usion to and from the spine head volume.

Harris reports (Table 5.0.7)the following data for adult rat hippocampus neurons for

stubby, mushroom and thin spines. We compute the value of � from the means which

suggest an approximately 2-fold di↵erence in the amount of influx to the spine from

stubby to thin spines and mushroom spines. In a similar manner we can estimate

the probability of a particle being released from the spine head by considering the

rectangular “release zone” to be located inside the spine head and the particle being

released into the neck. If we take the length of the spine head to correspond to w

and the width of the spine neck to correspond to p and µ = w

p

then  (µ) gives the

probability of a particle being released from the release zone inside the spine head.

The data in Harris gives the total surface area of the spine head. We can compute the

proportion of area of the rectangular trapping zone wp to the reported surface area of

the spine head as an estimation of the relative probability that a particle will be in the

trapping zone of the spine head. Multiplying these ratios by the release probabilities

gives us an approximation of the relative probabilty of a particle inside the spine

head being released into the neck and hence into the dendrite. We report the relative

probability of e✏ux into the dendrite as �(µ) in Table ( 5.0.7). It is interesting to

note the release dynamics of the mushroom and thin shaped spine are similar in our

model which is to say they have approximately equally likely possibilities of a particle

being released from the spine head. The stubby shaped spine has a roughly ten-times
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greater likelihood of emmitting a particle. This suggests that the functional di↵erence

between the mushroom and thin spine concerning compartmentilization of molecules

like Ca2+ is the length of the neck.

�  (�) simulation rel. % err

0.1 0.801837 0.8037 0.232404

0.2 0.690702 0.689833 0.125779

1. 0.352213 0.348867 0.950211

2. 0.230093 0.2302 0.0463269

5. 0.121067 0.122167 0.908716

10. 0.0715551 0.0703 1.75405

Table 5.1: Values of  (�).

Stubby Mushroom Thin

dn
sn

(mean±DS) 0.78±0.36
0.32±0.13

0.81±0.24
0.2±0.07

0.62±0.26
0.1±0.03

� 2.44 4.05 6.2

 (�) 0.2 0.14 0.1

µ 1.38 5.35 4.7

 (µ) 0.29 0.12 0.13

�(µ) 0.09 0.01 0.02

Table 5.2: Ratios of dendrite diameter (d
n

) to spine neck diameter (s
n

) and calcu-
lated values of �, (�).

5.1 The Trap Monte-Carlo

Next we outline the schematic of the Monte-Carlo simulation for kinematic motion

in a channel with traps.

1. A particle travels with velocity v along the x-direction with time step �t until

77



it encounters a trapping region X
j

which spans some small interval of the x-

axis corresponding to the pore size p of the trap. That is the particle is in the

trapping region when X
j

< x < X
j+p

for some index value j.

2. Trapping regions are specified by a probability density in the model, that is

traps occur with some distribution along the channel length L.

3. A particle enters the trap with probability  (↵;w; p) which depends primarily

upon the angle ↵ with the channel width w and the pore size p being optional

considerations.

4. The particle stays in the trap for a total duration given by ⌧(↵) which again

primarily depends on the entrance angle and also the trap geometry.

5. The particle is released from the trap with a new velocity ↵0 which depends on

the trap geometry.

6. An ensemble of particles is sampled at time t with t
n

 t < t
n+1 after running

the simulation for su�ciently many time steps. The M.S.D. of the ensemble is

calculated for several discrete times by t by linearly interpolating between the

points (t
n

, x(t
n

)) and (t
n+1, x(tn+1))

5.1.1 The Ballistic Limit

First we consider the case with no traps. Then a particle with initial angle ↵

moves ballistically with position x(t) given by

x(t) =

Z
t

0

||v|| cos(↵) du (5.16)
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The mean square displacement (M.S.D.) of an ensemble of particles with initial angles

chosen from a uniform distribution on [0, ⇡] is then given by

⌦
x(t)2

↵
=

1

⇡

Z
⇡

0

(||v|| cos(↵)t)2 d↵ (5.17)

=
(vt)2

2
(5.18)
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Figure 5.4: Simulation of the model with v = 1 and no traps showing ballistic
motion only. Right: several typical trajectories. Left: MSD of n = 5000 particles for
sampled times showing the expected (solid line) hx2i = 1

2t
2 behavior in a log-log plot.

5.1.2 The Di↵usion Limit

Next we consider the case where the density of traps is su�ciently high such that

the particle is trapped at every-time step �t. Since the speed of a particle in the

trap is constant the maximum distance it can travel is the direction parallel with

the x-axis or �x
max

= ±||v||�t. Therefore it is su�cient in the simulation to set

the trapping region to a width of ||v||�t and set the probability of trapping  ⌘ 1.

That is particle is trapped for every time step of the simulation. Secondly we set the

trap soujourn travel time ⌧ ⌘ �t. This means that although the particle is captured

by the trap it is only held for one time-step of the simulation. The exit angle ↵0 is

chosen from a uniform distributions on [⇡, 2⇡]. All together the picture we have is

of a particle entering a trap at each time step and being randomly scattered along a

new velocity vector at the next time step. This reduces the Kinematic Model to the
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random walk of (Section 3.1.3). Indeed let u(x, t) be the probability density that the

particle is at x at time t. Then

u(x, t+�t) =
1

2⇡

Z 2⇡

0

u(x+ ||v|| cos(↵)�x, t) d↵ (5.19)

(5.20)

is the sum over the probabilities that the particle jumps a distance ||v|| cos(↵) in the

next time-step. Expanding the r.h.s. in a Taylor series w.r.t. �x we have

=
1

2⇡

Z 2⇡

0

u(x) + cos(a)u0(x)�x+
1

2
cos2(a)u00(x)�x2 +

1

6
cos3(a)u(3)(x)�x3 +O

�
�x4

�
d�x

(5.21)

= u(x, t) +
1

4
v2u00(x, t)�x2 +O

�
�x4

�
(5.22)

where the odd powers of cos(↵) integrate to zero. Then

u(x, t+�t)� u(x, t)

�t
=

1

4

u00(x)||v||2�x2 +O(�x)4

�t
(5.23)

The mean displacement of the particles in one time-step is given by

Z 2⇡

0

kvk cos(↵)�x d↵ = 0 (5.24)

and the variance of the displacement is

Z 2⇡

0

||v||(cos↵)�x2

2⇡
d↵ =

�x2||v||2
2

(5.25)

In the interval [0, t] where we make t

�t

time-steps, the variance of the displacement

is

�x2||v||2
2

t

�t
=

||v||2t
2

�x2

�t
(5.26)

Since �x2  ||v||2�t2  1 the variance of the process is bounded. Taking the limits

�x,�t ! 0 we recover the di↵usion equation from Eq. 5.23.
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@u(x, t)

@t
= Du

xx

(u, t) (5.27)

where D = ||v||2
4

�x

2

�t

in the limits and the variance of the random process is then

hx2i = 2Dt as expected. We also recover the Einstein di↵usion relationship between

D and velocity, hx2i = 1
2 ||v||2t.
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Figure 5.5: Simulation of the model with full traps showing normal di↵usion. Right:
typical trajectories. Left: MSD of n = 5000 particles showing the expected (solid line)

hx2i = 1
2t behavior in a log-log plot.

5.1.3 Anomalous Sub-Di↵usion

For the next case we consider what happens when the particle stays in the trap

for a time t � �t. Considering the results of Chapter Three we know that for a trap

with su�ciently irregular geometry or indeed for a trap with a spine-like shape the

entrance angle ↵ is e↵ectively decoupled from the exit angle ↵0 and that the dura-

tion a particle spends in the trap ⌧(↵) has a heavy-tailed distribution which can be

approximated by the Mittag-Le✏er waiting time distribution (4.14) which is the gen-

eralization of the exponential waiting time distribution. We used the algortihm given

in (4.16) to generate a histogram of 1,000,000 waiting times from which to sample

in the simulation. In particular sets were generated for values of ↵ = 1.0, 0.7, 0.5 in

particular. Recall that the Fourier- and Laplace- transforms of the spatial jump and

81



waiting time distributions in CTRW master-equation formulation of normal di↵usion

have the form

 (k) = 1� �2k2 +O(k4) (5.28)

⌧(u) = 1� su+O(u2) (5.29)

(5.30)

where �2 and s are constants.

For anomalous sub-di↵usion we consider the same ordinary spatial steps but re-

place the waiting times with a distribution that exhibits asymptotic power-law decay

with respect to the time-step.

⌧(�t) ⇠ 1

�t↵+1
, ↵ 2 (0, 1) (5.31)

(5.32)

Then using the following distributions in the master equation and inverting the

Fourier-Laplace transforms ( 3.3.2)

 (k) = 1� �2k2 +O(k4) (5.33)

⌧(u) = 1� d
↵

u↵, �, d
↵

const. (5.34)

(5.35)

we find the density

W (x, t) =
1

2⇡

Z
e�ikxE

↵

(�d
↵

k2t↵) dk (5.36)

⇠ 1

t↵/2
G

↵

(x/t↵/2) (5.37)
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where E is the Mittag-Le✏er function and G plays an analogous role to the normal

distribution in the heat-kernal of the standard di↵usion equation, but here is of course

not a normal distribution. However we can read o↵ the scaling relation of the M.S.D.

as

< X2 >⇠ (t(↵/2))2 ⇠ t↵

For the distributions used in the simulation we computed the minimum and max-

imum value along with the mean and variance (Tab. 5.1.3) and percentage of values

that are under 10 which was used to gauge the appropriate scale size given the time

step and velocity parameters in the simulations. For ↵ = 1 the distribution is equiv-

alent to the standard exponential distribution. For a > 1 the mean and variance of

the distributions become quite large reflecting the unbounded nature of the p.d.f. for

those values. However although the distributions include waiting times millions of

time as big as �t the bulk of the waiting times are < 10�t. This is to say that the

tabulated distributions exhibit the heavy-tails we require.

↵ min max mean variance % < 10

1 1.24673 ⇥10�6 13.5146 1.00046 0.998059 0.99996

0.7 3.60581⇥10�9 2.50228 ⇥107 281.122 6.268⇥109 0.9223

0.5 2.74617⇥10�10 7.47845⇥108 13020.3 5.75286⇥1012 0.87774

0.3 1.60783⇥10�20 1.15⇥1015 3.27761⇥1010 2.4219⇥1025 0.71012

Table 5.3: Min, max, mean and variance of the waiting time distributions used in
the simulation. % < 10 is computed from a tally of the distribution.

5.1.4 Infinite Trap Density Limit, Varying ↵

We first examine the case of infinite trapping density (a trapping event at every

time-step) with values of ↵ = 1.0, 0.7, 0.5 in the waiting time distribution ⌧(↵). We
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compute ↵ = 1.0 as a test case because this is again equivalent to normal di↵usion

where we scatter with a finite variance at each step of the simulation. In this particular

case we choose for simplicity an exit angle from the trap to be drawn from a uniform

distribution on [⇡, 2⇡] which is to say the velocity vector may point along the positive

or negative x-direction when exiting the trap. We plot the M.S.D. for several values in

Fig.(5.6) and compare it to the theorhetical M.S.D. for the ballistic (↵ = 2), di↵usive

(↵ = 1) and semi-subdi↵usive (↵ = 1/2) cases. In particular since we have a constant

speed for the particles we can make three interesting computations. Since

< X2(t) > =
1

2
v2t (5.38)

= 2Dt (5.39)

we can compute an e↵ective velocity, di↵usion and ↵ with respect to the normal

di↵usive scaling O(�t). That is to say while v,D,↵ are constants in the di↵usion

equation we can calculate an e↵ective velocity function for the time scale t↵.

v
eff

=

r
2 hX2i

t
(5.40)

D
eff

=
hX2i
2t

(5.41)

↵
eff

=
log(2 hX2i)

log(t)
(5.42)

In the test case of normal di↵usion we expect D
eff

= D, v
eff

= v,↵
eff

= ↵.

Indeed we can see from Fig.(5.7) that the computed e↵ective functions are constant.

Next we run the simulation with ↵ = 0.7 to demonstrate subdi↵usion. Again we

have an infinite trap density so the particle is trapped at every time-step. Since the

time-step p.d.f exhibits algebraically long tails for ↵ = 0.7 and infinite variance we

recover anomalous sub-di↵usion. Fig.(5.10) and Fig.(5.11). Since the M.S.D. is a

power-law of the form hX2i ⇠ t↵ ploting on a log-log plot allows us to compare the
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Figure 5.6: Simulation with v = 1, ↵ = 1.0,n = 10, 000. left: examples of simulated
walks. right: the M.S.D. of the simulation (points). Gray dashed lines are the
theoretical plots for the (top to bottom) ballistic case, the di↵usive case, and the
semi-subdi↵usive case (↵ = 1/2).
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Figure 5.7: Left:The e↵ective di↵usion and velocity profiles for the normal di↵usive
case.Right: The e↵ective ↵. The mean for D

eff

= 0.250, v
eff

= 1.00,↵ = 1.00 as
expected.
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various cases of alpha as lines with slope=↵. In the series of figures that follows we

plot the ballistic, di↵usive, and semi-subdi↵usive cases 1
2t

2, 12t,
1
2t

1/2 as a set of dashed

gray curves to acts as a guide.

mcr2
Figure 5.8: Simulation with v = 1, ↵ = 0.7,n = 10, 000. left: subdi↵usive walks with
characteristic temporal “flights”. right: the M.S.D. of the simulation (points). Gray
dashed lines for (top to bottom) ballistic case, di↵usive case, and semi-subdi↵usive
case (↵ = 1/2). Black line is theoretical curve for ↵ = 0.7.
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Figure 5.9: Case ↵ = 0.7. Left: The e↵ective parameters vary with respect to the
di↵usive time scale. The e↵ective velocity starts at v

eff

= 1 but slows down as the
simulation runs. The mean for D

eff

= 0.08, v
eff

= 0.54,↵ = 0.72

Finally we present a simulation for ↵ = 0.5 which matches the predicted M.S.D.

given by hX2i = 1
2t

1/2.

5.1.5 Discussion

One of the themes that motivates this thesis is to highlight the usefulness of frac-

tional di↵erential equations in modeling biological systems. Figure (5.11) highlights

an important observation about the ways we can characterize the flow of particles

across various time scales of a modeled system or in an experimental set-up. In the
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Figure 5.10: Simulation with v = 1, ↵ = 0.5 and 0.7,n = 10, 000.Right: e↵ective
measurements ↵ = 0.5: mean for D

eff

= 0.364, v
eff

= 0.04

case of ↵ = 1 we saw that the velocity v and the di↵usion parameter D were con-

stants with respect to the di↵usive time-scale t, but for the sub-di↵usive case we have

an e↵ective slowing of the velocity (and di↵usion) parameters as a function of time.

Indeed on the short time scale of the simulation (t < 100) the e↵ective velocity (and

di↵usion parameter) decreases quite rapidly. This highlights some of the di�culties in

measuring anomalous di↵usion in a laboratory setting as we saw in the introduction

of the Biological Paradox. Measuring the di↵usion “constant” of a process that is

undergoing anomalous di↵usion can under- or over- estimate the e↵ective di↵usion of

the system depending on the time frame under which one takes measurements. If the

time frame of measurement is too large it will under-estimate the di↵usion “constant”

on the short time scale and over-estimate the “constant” on the long time scale. As

numerical example for the simulation of Fig. (5.11) the average e↵ective di↵usion

across 0 < t < 2000 = 0.08 but D
eff

(0) = 0.2 and D
eff

(2000) = 0.03. It is clear how

this can be problematic when using di↵usion parameters from the literature which

are mismatched to the time-scale of a model we may be considering. Given that the

e↵ective di↵usion decays slowly on large time scales this may be less of a problem for

a model mainly interested in steady-state behavior. However considering that di↵u-

sion of a signalling species like Ca2++ may be happening simultaneously on di↵erent

time scales such as di↵using into and out of trappy spine heads but also logitudinally
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across the dendrite it warrants careful consideration of the parameters we choose for

our models.
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Figure 5.11: Case ↵ = 0.7. Left: The e↵ective parameters vary with respect to the
di↵usive time scale. The e↵ective velocity starts at v

eff

= 1 but slows down as the
simulation runs. The mean for D

eff

= 0.08, v
eff

= 0.54,↵ = 0.72

More generally given that the case of anomalous di↵usion is likely the typical case

in any system with trapping regions or a percolation-like structure of random obstacles

like the organelles and actin/microtubule sca↵olding found inside cells, it behooves

us to carefully consider how we implement di↵usion models or processes inherently

based on di↵usive principles especially if we are concerned about short-time scales or

confined spaces. Of course this obstacle can be overcome by implementing a time-

dependent di↵usion term in the model of interest but this still begs the question on

how one is to measure or estimate such a function from experimental data not to

mention the probably analytical complication of adding a time-dependent term to a

di↵erential equation. In stark comparison to this situation we can see on the right

panel of Fig.(5.11) that the e↵ective ↵ is constant. In essense ↵ is a constant measure

of the di↵usivity of the process on the di↵usive < X2 >⇠ t time-scale. And the

fractional di↵usion equations related to it are in that sense the “natural” equations

to use because they are appropriately scaled for subdi↵usion with parameter ↵ in the

very definition of the fractional operator. Consider in fact it can be shown that the

Riemann-Liouville fractional integral [16] given by
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0I
↵

t

f(t) =
1

�(↵)

Z
t

0

f(t0)(t� t0)↵�1dt0, t > 0

can be recast as a Riemann-Stieltjies integral for some fixed t.

0I
↵

t

f(t) =

Z
t

0

f(t0)d(g
t

(t0))

where

g
t

(t0) =
1

�(↵ + 1)
(t↵ � (t� t0)↵)

has an inherent power-law type scaling property. Indeed for some k > 0 we have

g
kt

(kt0) =
1

�(↵ + 1)
(kt)↵ � (kt� kt0)↵ (5.43)

=
1

�(↵ + 1)
k↵(t↵ � (t� t0)↵ (5.44)

= k↵g
t

(t0) (5.45)

5.1.6 Additional Cases

As a conclusion to this section on the Monte-Carlo simulation we briefly consider

two additional cases that do not lead to classical anomalous di↵usion characterised

by a invariant power-law scale. In the first case we vary the spatial density of the

traps along the channel. Recall that a channel with no traps behaves in a pure

ballistic manner. If we add traps uniformly spaced along the length of the channel

at a certain finite density then the ballistic trajectory of the particles will be only

occasionally interrupted by a trapping event on the ballistic time scale rather than on

the infinitesimal time scale. We can predict that the random walk will ostensibly have

a “mountain range” look similar to di↵usion random walks on the ballistic time scale

but will of course not exhibit the scale-invariance property of a Wiener process since

the particles are not scattered with infinite frequency. Instead we have something of

a pre-limit scenario with a finite scattering frequency. Since the number of scattering
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events increases as a function of time we can expect the simulation to exhibit ballistic

type behavior on the short time scale hX2i ⇠ t2 with increasingly di↵usive hX2i ⇠ t

behavior on the long time scale. Refering to Fig. (5.12) (left) we see the non-
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Figure 5.12: Case ↵ = 1.0 with trap spacing parameter = 5. Right: The MSD profile
exhibits ballistic scaling on the short time scale (t < 10) transitioning to di↵usive
behavior on the long time scale (t > 10). The dark curve is fitted to a di↵usive
scaling with an e↵ective velocity of v

eff

= 2.32 computed from the mean v
eff

in the
right figure. Right: v

eff

and ↵
eff

with sample trajectories in the background.

linear behavior of the M.S.D. On the short time-scale the M.S.D. behaves ballistically

with hX2i ⇠ t2 scaling. As the ensemble of particles encounter more traps their

behavior transitions to a di↵usive scaling regime with hX2i ⇠ t scaling. The o↵set

of the line from the normal di↵usive profile (lower dashed line) indicates a greater

e↵ective velocity on this log-log plot. The mean e↵ective velocity was computed (mean

v
eff

=2.32) from the simulation run displayed on the right panel dropping the first

two points which clearly belong to the ballistic regime. The traps with exponential

trapping times have slowed the ballistic trajectories to a fast di↵usion (v > 1) relative

to the normal di↵usive time scale. We also note that for this non-linear M.S.D. profile

the e↵ective ↵ has now become a function of time. We can see from the graph that it

indicates a ballistic process transitioning to a di↵usive process as ↵ goes from ↵ = 2

to ↵ = 1 in a linear fashion after the particles enter the trapping region. Several

sample trajectories are displaced in the background. On the time scale of the ballistic
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flights they resemble a normal di↵usion random walk. However it is important to

note that they do not exhibit scale invariance. Blowing up the graph on a smaller

time would show trajectories with ballistic flights. In Fig.(5.13) we compare two trap

spacings. The more widedly spaced traps are not as e↵ective in reducing the overall

e↵ective velocity of the ensemble. As a result the mean e↵ective velocity is higher.

The transition from ballistic to di↵usive regimes is reflected in the inflection points

on the right hand graphs at roughtly t = 10. More interestingly this is predicted by

the intersection of the ensembles M.S.D. with the ballistic M.S.D. Since we are only

considering a constant velocity we can predict the critical transition time t̂ by solving

for when the ballistic curve hits the di↵usive limit curve. This corresponds to when

the ensemble of particles first encounters the trapping region.

1

2
(v

eff

)2t =
1

2
v2t2 (5.46)

t̂ =
⇣v

eff

v

⌘2
(5.47)
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Figure 5.13: Case ↵ = 1.0 with trap spacing = 5 (lower) and 10 (upper). The wider-
spaced traps are not as e↵ective in reducing the e↵ective velocity of the particles.
v
eff

= 2.32 for spacing = 5 and v
eff

= 3.32 for spacing = 10.

Lastly we add the long-tailed trapping time distribution to the spacing = 10 trap

in Figs. (5.14) and (5.15). In this case we get a slight sub-di↵usive behavior in the
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Figure 5.14: Case ↵ = 0.5 with trap spacing = 10 and a collection of bounding
curves fitted to functions of the form 1

2v
2
e

t↵. Note as ↵ decreases v
e

increases.

longer time scale. We calculated a hull of linear curves fitted to the M.S.D. rescaled

to the anomalous time scale, namely

⌦
X2
↵
=

1

2
(ve↵)

2t↵

. At the small time scale the behavior of the model is again ballistic – the ensemble

of particles have not have su�cient time to encounter traps. As time increases the

long-tailed trapping time distribution increases the e↵ective velocity of the particles

(measured relative to the di↵usive O(�t) time scale) while decreasing the fractional

order ↵.
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Figure 5.15: For ↵ = 0.5 the e↵ective velocity approaches the simulation v = 1
velocity.
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Chapter 6

THE OPTIMAL HEIGHT OF THE SYNAPTIC CLEFT

One of the general underlying motivations of the current work was to explore

ways that the fractional calculus could be used to further develop the types of models

available in the neurosciences in particular. Fractional calculus has many interesting

mathematical properties for the modeler such as ways to incorporate memory e↵ects,

boundary conditions, or non-trivial geometries directly into the formalism of a linear

di↵erential equation. In particular it is interesting to consider how the fractional index

could be used either as an explicit stand-in for a complicated geometry such as how

the fractional cable equation analytically models a spiny dendrite [55] or alternatively

how experimental measurements of either the e↵ective di↵usion rate or fractional

exponent itself can reflect the underlying heterogeneity of the cellular environment.

Experimenters who have measured anomalous di↵usion both in vivo and in vitro have

found a dramatic range of ↵ 2 [0, 1] but with typical values in the surveyed literature

↵ 2 [0.5, 1]. Of particular interest are the in-vitro experiments in [52] who show in

controlled in vitro conditions that anomalous di↵usion of a tracer particle correlates

with the cytoplasmic crowding of macromolecules and in fact decreases monotonically

as the concentration of crowding molecules increases.

6.1 Savtchenko and Rusakov Paper

In [64] Savtchenko and Rusakov proposed an interesting optimization problem

regarding a elctrophysiological “optimal” height for the synaptic cleft. They report

that quite interestingly measurements of the height of the synaptic cleft seems to be

remarkably similar varying within the tight range of 15-25nm across a wide variety
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of species and neuronal morphologies. Moreover the strong structual integrity of the

cleft seems to be held stable by a network of intercleft sca↵olding. Savtchenko and

Rusakov propose the reason for this tight biological constraint is due to an optimal

balance between two opposing forces acting on the peak post synaptic current. In the

model studied a positive e↵ect on the fast excitatory post-synaptic current (EPSC)

is generated by a high rate of activation of the AMPA receptors in the cleft which

is considered to be the main contributor to the peak amplitude. When the height of

the synaptic cleft � in the model is decreased the concentration profile of glutamte in

the cleft is increased which thereby activates the AMPA receptors more frequently.

Contrary to this decreasing the height of the cleft increases the longitudinal resistance

of the intercellular medium inside the synaptic cleft. It has been shown that increas-

ing the intracleft resistance e↵ects the local membrane potential of the cell V (r) by

causing a significant voltage drop radially across the cleft. In turn this altered voltage

profile can e↵ect the receptor current depending on the radial distance of the receptor

in the active disk.

The four main equations in the paper involve an expression for the average con-

centration profile of glutamate in the active zone:

C⇤(r
a

, �, t) =
Q

⇡�r2
a

(1� exp(�r2
a

/4Dt)) (6.1)

the kinetic equations for glutamate activation

@[AR]

@t
= �2k

on

C[AR] + k
off

[Glu2AR] (6.2)

@[Glu2AR]

@t
= 2k

on

C[AR]� (k
off

+ ↵)[Glu2AR] (6.3)

+ �(1� [AR]� [Glu2AR]) (6.4)
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where C is the average concentration profile in the previous equation. An expression

for the radial voltage profile across the cleft

V (r) = V0
I0(r/�)

I0(L) + LI1(L) ln(R/r
a

)
(6.5)

where L is an expression that depends on the cleft width � and I0 and I1 are modified

Bessel functions.

Finally the expression for the synaptic current

I
syn

(t) = V0
2⇡�

R
e

x

L(t)

L(t)ln(R/r
a

) + J0(L(t))/J1(L(t))
(6.6)

where here L /
q

P0(t)
�

where P0(t) is a concentration profile computed from the

solution of the kinetic equation which in turn depends on C⇤(t). The conclusion

of the analyis and also a simulation of the above model paper was that the peak

values of I
syn

are optimized in a range of the cleft height � ⇡ 12� 20 nm for various

biologically realistic combinations of parameters in the models such as the size of the

apposition zone, the number of AMPA receptors, the number of di↵using glumatate

molecules, etc. However the size of the cleft in experimental measurements is reported

as ⇡ 15� 25 nm. The authors conclude that is is likely that the intercleft sca↵olding

is responsible for the error and that an e↵ective reduced volume does not allow the

free di↵usion of glutamate.

6.2 Extension with Anomalous Di↵usion

We propose to amend the model by introducting a new average concentration

based on fractional di↵usion in a cylinder. In a way this introduces into the model

a new natural parameter ↵, the index of the fractional-time di↵erential operator.

As the fractional index is connected to measures of macromolecular crowding we
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propose that a sub-di↵usive concentration profile (which will tend to increase the

local concentration in the active zone on the short-time scale) o↵ers a natural and

physically relevant way to correct the model and additionally o↵ers an interpretation

of the extent of the “crowding” in the cleft. Although the one-dimensional di↵usion

equation is well studied in the literature evident by the review in this thesis extensions

to higher dimensional spaces or alternative coordinate systems are less represented.

A derivation of inward cylindrical di↵usion was considered in [65][66] but we derive

the simpler 1-D radially symmetric di↵usion needed for the modification of (Eq.6.1).

We consider only di↵usion along the radial direction as the height of the synap-

tic cleft is an order of magnitude smaller compared to the radius. The well-known

classical cylindrical di↵usion equation is given by

@u(r, t)

@t
= D

1

r

@

@r

✓
r
@u

@r

◆
(6.7)

and in integral form we have

u(r, t)� u(r, 0) = D

Z
t

0

1

r

@

@r

✓
r
@u(r, ⌧)

@r

◆
d⌧ (6.8)

Following the formalism given in [65] we extend the equation by replacing the integral

with the fractional Riemann-Liouville integral. We reviewed the RL-derivative in

Section 2.1. In particular we are only interested in considering subdi↵usive regimes

so we restrict the parameter ↵ 2 (0, 1) which makes the bounding integer n in the

definition to be n = 1. Similarly we consider the base-point a = 0.

0I
↵

t

f(t) =
1

�(↵)

Z
t

a

f(s)ds

(t� s)1�↵

(6.9)

Then our modified fractional-di↵usion cylindrical equation is

u(r, t)� u(r, 0) =
D

�(↵)

Z
t

0

1

(t� ⌧)1�↵

1

r

@

@r

✓
r
@u(r, ⌧)

@r

◆
d⌧ (6.10)
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Using the approach employed in the development in Section (3.3) we introduce

Fourier-Laplace transform variables

b⌘(k) =
Z 2⇡

0

d✓

Z 1

�1
⌘(r)J0(kr)k dk e (s) =

Z 1

0

est (t) dt (6.11)

where the Fourier transform is the appropriate transform for radially symmetric

functions and J0 is a Bessel function.

Applying the Laplace transform we have

\u(r, s)�
\u(r, 0)
s

= Ds�↵

 
1

r

@

@r

 
r
@\u(r, ⌧)
@r

!!
(6.12)

Applying the Fourier transform using the fact given in (??) that

Z 2⇡

0

d✓

Z 1

�1

1

r

@

@r

✓
r
@u(r, ⌧)

@r

◆
J0(kr)k dk (6.13)

reduces to

�2⇡k2 \̂u(k, s)

we have

\̂u(r, s)�
\̂u(r, 0)
s

= Ds�↵

✓
�2⇡\̂u(k, s)

◆
(6.14)

Solving for \̂u(k, s) we have

\̂u(k, s) = u0s
�1

1 + 2⇡Dk2s�↵

(6.15)

=
u0s

↵

s(s↵ + 2⇡Dk2)
(6.16)

As we saw in Section(3.3) this type of transform has the structure of a Wright function

under inversion. Indeed in this particular case using the Laplace transform of the

Mittag-Le✏er function

s↵

s(s↵ + a)
= E

↵

(�at↵)
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we have

û(k, t) = u0E↵

(�2⇡Dk2t↵) (6.17)

Finally applying the inverse Fourier transform and the delta function initial condition

we obtain an expression for the concentration.

u(r, t) =
u0p
2⇡

Z 1

0

E
↵

(�2⇡k2t↵)J0(kr)kdk (6.18)
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Figure 6.1: Right: t = 1.0 di↵usive profiles for ↵ = 0.5, 0.7, 0.8 and 1.0 Left: relative
percent di↵erence between anomalous profiles and normal di↵usion.

In Fig (6.1) we compute di↵usion profiles for an instantaneous release of particles

at the origin plotted at t = 1.0 ms to highlight the increased concentration in the

vicinity of the origin. Even for a moderatly subdi↵usive profile with a = 0.9 shows a

5% di↵erence in concentration at the origin and more moderately subdi↵usive profiles

have significant di↵erences on the order of 10� 20%. As we move radially away from

the origin (on the short time scale) the di↵usion profile is more strongly dominated

by normal di↵usion but in the scales of the model and dimension considered by the

authors the active zone is concentrated within roughly 25% of the total radius of the

synaptic cleft.

Finally we compute the e↵ects the modified di↵usion profile has on the model for

some various ↵0s. The In Fig (6.2) we reproduce curves from the paper. The modified
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average concentration profile was numerically integrated and interpolated from

u⇤(r, t) =
Q

⇡r2
a

�

Z
ra

0

u(r, t)r dr (6.19)

The response of the model to the modified di↵usive profile is shown below.
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Figure 6.2: Left: peak current for Q = 3000, 5000, 8000. Right:D = 0.2, 0.3, 0.5.
Dashed lines highlight range of cleft heights that contain peak current.

As the anomalous exponent was decreased the peak current tended to shift upward

which is consistent with the higher initial concentration in the short time scale shown

in the di↵usion profiles in Fig(6.1). The rightward shift is consistent with a slower

e↵ective di↵usion. Overall this shifts the peak EPSC into the physiological region

reported in the literature. Given the somewhat arbitrary and ad-hoc way the di↵usion

profile was added to the model and the linearizations and assumptions of the model
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Figure 6.3: Left: peak current for Q = 3000 and ↵ = 1.0, 0.8, 0.7, 0.5. Right:D = 0.2
and alpha = 1.0, 0.8, 0.7, 0.5 Dashed lines highlight range of cleft heights that contain
peak current.

itself, it is somewhat di�cult to interpret exactly what the ↵ stands for physiologically

in the sense that ↵ = 0.5 is somehow more phyisologically relevant than ↵ = 0.6. In a

crude sense it is acting as a tuning parameter which adjusts the concentration profile in

the desired way. Nevertheless the connection that ↵ has to macromolecular crowding

suggests that a more careful model that more directly incorporates the anomalous

di↵usion profile into the cable equation (or perhaps a stochastic model of the AMPA

receptors which could more redily be tied to the probabilistic interpretation of the

anomalous exponent) could o↵er relevant biological predictons such as ↵ gauging the

“crowding” or density of cytoskeletal componenets in the cleft.
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Chapter 7

OVERVIEW AND FUTURE WORK

Anomalous di↵usion and fractional di↵erential equations represent a large and

rapidly growing area of research which are at the cross-roads of many di↵erent

branches of mathematics, physics and biology. In particular much has been writ-

ten about the mathematical foundations of the fractional calculus or one should say

fractional calculi given the multitude of definitions of fractional operators which have

been proposed. The Riemann-Liouville, Caputo and Gruenwald-Letnikov definitions

are merely the most commonly encountered. Moreover various types of anomalous

di↵usion equations have been proposed based on these definitions with varying degrees

of generality. In somecases the one-dimensional equations have analytically (or com-

putationally) tractable forms in terms of generalizations of the exponential function

such as the Mittag-Le✏er function and its related Fourier transforms. This allows

for insights into the space-time scaling relationships of the fractional exponent and

moreover provide forms of the equation which look similar to the well-known di↵usion

equation. Generally speaking these derivations start from certain assumptions about

the underlying probability distributions. In the Montroll-Weiss formulation it is par-

ticularly evident how one requires algebraic decay of the time and space probability

distributions for the inverse Laplace and Fourier transforms to give a formal operator

with the expected characterists of a generalized di↵usion equation. One of the points

of the thesis was to examine some of the underlying physical assumptions about those

probability distributions by modeling various types of trapping geometries and in par-

ticular investigating “spine-like” traps in order to show that long-tailed distributions

with infinite variance arise naturally from considering ballistic trajectories in these
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traps. This provides the foundation for an analogous derivation of anomalous di↵u-

sion from the kinetic perspective of the Boltzmann equation. Moreover our analysis

suggest that ↵ is a more indicitive measure of the underlying kinetics because it does

not depend on the scale of measurement. In fact measuring

↵ =
log(hX2(t)i)

log(t)

bears a resemblance to measures of dimensionality such as the Hurst exponent used

to measure fractal dimension.

Secondarily we wanted to show a natural example of using fractional di↵erential

equations in modeling in the neurosciences. We extended a paper deriving an optimal

height for the synaptic cleft and showed how adding the fractional exponent of the

anomalous di↵usion equation is a natural consideration given that it correlates to a

certain density of trapping regions and obstacles in the subcellular environment.

As with any long work especially one at the cross-roads of many diverse fields

this thesis has fomented far more questions than answers. In particular it would be

interesting to reformulate the model of the synaptic cleft in a form that integrates

the fractional kinetics directly into both the receptor kinematic model and also the

longitudinal voltage profile. Moreover it would be interesting to incorporate ↵ such

that it also had a computable correlation with the density of crowding in the synaptic

cleft. In particular it would be beneficial to pursure models where ↵ could be used

as a predictor of behavior rather than merely another adjustible parameter. Since

di↵usion in crowded spaces is the typical case in the cellular environment it would

seem this would be a fruitful avenue to pursue generally speaking.
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