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ABSTRACT  
   

Stroke is a leading cause of disability with varying effects across stroke 

survivors necessitating comprehensive approaches to rehabilitation. Interactive 

neurorehabilitation (INR) systems represent promising technological solutions that 

can provide an array of sensing, feedback and analysis tools which hold the 

potential to maximize clinical therapy as well as extend therapy to the home. 

Currently, there are a variety of approaches to INR design, which coupled with 

minimal large-scale clinical data, has led to a lack of cohesion in INR design. INR 

design presents an inherently complex space as these systems have multiple users 

including stroke survivors, therapists and designers, each with their own user 

experience needs. This dissertation proposes that comprehensive INR design, which 

can address this complex user space, requires and benefits from the application of 

interdisciplinary research that spans motor learning and interactive learning. A 

methodology for integrated and iterative design approaches to INR task experience, 

assessment, hardware, software and interactive training protocol design is 

proposed within the comprehensive example of design and implementation of a 

mixed reality rehabilitation system for minimally supervised environments. This 

system was tested with eight stroke survivors who showed promising results in 

both functional and movement quality improvement. The results of testing the 

system with stroke survivors as well as observing user experiences will be 

presented along with suggested improvements to the proposed design 

methodology. This integrative design methodology is proposed to have benefit for 
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not only comprehensive INR design but also complex interactive system design in 

general. 
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CHAPTER 1 

INTRODUCTION AND PROBLEM STATEMENT 

Stroke is a leading cause of disability in the United States. On average, every 40 

seconds, someone suffers a stroke in the US, leaving millions of people with chronic 

upper-extremity impairments.1 The extent and severity of these impairments varies 

across stroke survivors, necessitating comprehensive rehabilitation systems that 

can provide meaningful experiences based on individual needs. However, repeated 

visits to receive clinical-based therapy can be costly to a stroke survivor, both 

financially and logistically.2 Technology has the ability to provide an array of 

sensing, computation and data solutions that hold the potential to maximize the 

time of physical therapy as well as extend therapy to home based environments. 

Therefore, the application of technology in physical therapy has become a 

burgeoning field. 

 

Interactive neurorehabilitation (INR) systems represent a core group of 

technologies that have been applied to rehabilitation physical therapy. 3-5 While 

some implementation details may vary per particular system, at their core they 

feature similar capabilities, as seen in Figure 1. The user of the system, the stroke 

survivor, performs a physical activity. INR systems use various hardware and 

software solutions to track and measure this physical activity, which serves as the 

primary input.  From this input, the INR system can extract various assessments and 

evaluations of the activity and provide feedback back to the user based on these 

evaluations.  The form of this feedback can range across audio, visual and tactile.  
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The user then utilizes this information to correct their movement either in real time 

or upon reflection of feedback provided.  The therapist is also a user of INR systems.  

Depending on the application and environment of the system, the therapist may also 

be observing the user’s interaction of the system and can use the resulting 

evaluations and feedback to provide their own verbal or physical feedback to the 

patient.  In addition, the therapist can make adaptations to the system or protocol to 

adapt the challenge or sequence of the activities. 

 

 
Figure 1 - The core model of INR systems can be represented as a basic feedback 
loop between the user (a stroke survivor), the system and a physical therapist 
 
 
INR systems for stroke rehabilitation are beginning to show promise leading to 

practice-dependent improvement in motor function of the affected arm6 and also 

have demonstrated greater improvements in limb function in comparison to 

conventional therapy alone7, though the extent to which INR is more effective than 

traditional therapy is still under investigation.  
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Currently, the approaches to INR design range widely from robotic devices (where 

an apparatus actively drives or momentarily assists a movement)8-10, virtual reality 

environments (where a task is completely recontextualized away from a physical 

environment)11, or mixed reality (where digital media and physical elements are 

hybridized such that an activity can be adaptively recontextualized with varying 

amounts of media).12 

 

Robotics can have a range of capabilities from fully driving a movement, to only 

actively assisting at determined moments.8 Robotic systems that can be classified as 

INR systems will couple this with the display of feedback.8-10,13 The main limitation 

to robotic systems is that they limit active learning.  They do not train users to 

understand their movement in terms of an aggregation of motor elements necessary 

for self-assessment.  Other limitations to robotic INR include degrees of freedom 

and range of motion, and variety of visual feedback games. Many existing games 

only provide a visual representation of the end point in relation to the context of a 

game, rather than within the context of a functional task. 

 

Another approach to interactive rehabilitation is through the use of virtual 

reality.7,11,14 For INR purposes this means that the tracked actions of the patient do 

not engage the physical world. They only engage in virtual tasks and the results are 

fully represented in virtual reality. Virtual environments provide the benefit of 

utilizing augmented feedback to provide detailed information about performance 

that may not otherwise be available in a real world context, such as direct 



 4 

information about spatial and speed aspects of movement. Virtual reality also 

provides flexibility in designing tasks, such that they can support generalization to 

activities of daily living, as well as adapting the challenge level to a patient’s needs.  

However, VR INR systems have a key limitation.  Because tasks exist in a near 

exclusively virtual environment this impedes the transference of gains made in VR 

to ADLs in the physical world12,15,16. 

 

Mixed reality integrates virtual environments11 with physical objects to manipulate 

or navigate, and has the potential to facilitate training that can transfer to other 

contexts12, such as activities of daily living (ADLs). Increasing the amount of digital 

feedback dissociates from the physical task by changing the context in which the 

task is performed while decreasing or eliminating the presence of digital feedback 

requires that the patient move more independently.  Dynamically adjusting the 

amount of digital feedback helps the patient connect learning in the virtual domain 

to physical action.  Methodologies within mixed reality INR can be effective in both 

continuously supervised clinical and minimally supervised environments. 

 

As a result of these various approaches, a coherent methodology for how INR 

systems are developed, implemented, and assessed along functional outcomes and 

patient progress, is lacking.  The main problem is that currently no large-scale 

clinical data validating the optimal approach to INR is available, due to challenges of 

recruiting participant populations for experimental, unproven systems in significant 

amounts in a timely fashion. However, before even beginning to build this body of 
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data, consistent implementation of well-developed INR across a number of studies is 

required. 

 

While stroke rehabilitation science can provide some answers to appropriately 

defining “well-developed INR”, fields beyond rehabilitation have produced 

significant data for best practices in areas such as mediated interactive learning that 

can, and should, be incorporated.  While these fields may not have arisen from 

stroke neurorehabilitation studies, they can provide well-tested ideas and concepts 

that share commonalities with neurorehabilitation. For example, the arts have for 

centuries studied and constructed complex displays for context-aware self-

reflection.17 Learning through creative practice has formed the basis of 

constructivist learning methodologies18,19 that are prevalent in 21st century 

mediated learning. Rapidly evolving applications of interactive media (from mobile 

apps to interactive data visualizations) also rely heavily on the integration of arts, 

computing and mediated learning knowledge.20 However there are many challenges 

that need to be addressed when integrating this information and applying the 

integrated approaches to neurorehabilitation. 

 

INR systems are inherently very complex because of the merging of seemingly 

disparate aspects: INR systems have to merge physical with digital and merge 

people with computations. (Figure 2) While hybridizing these aspects is a challenge 

in and of itself, the dynamics of stroke rehabilitation offer further challenges: 
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 Stroke can affect patients differently, and thus the prospective population of 

users for and INR system will range in ability.  In addition, for a given patient, 

ability will change over time while engaged in a therapy program.  Thus 

challenges and training goals that were applicable early on in training may 

no longer be relevant in later training.  

 Just as patients are dynamic, the technology available for an INR system is 

also dynamic.  At the moment of designing and implementing an INR system, 

a particular solution may arise in the future that offers better capabilities 

than a particular aspect currently integrated in the system.  Furthermore, a 

current design and implementation impossibility may become possible with 

future technological advancements. 

 The implementation of an INR system needs to be cognizant of the space in 

which it will be utilized.  For example, clinical spaces typically offer the 

ability for long term, more permanent installation of components.  In 

addition, therapist supervision may be more frequent.  However, in a home 

environment, the same assumptions may not be applicable.  Therefore, the 

space of an INR system will greatly inform its design. 

 While INR systems are primarily designed for the improvement of patient 

ability and rehabilitation, physical therapists need to also be considered as 

primary uses of the system, as previously discussed.  INR systems are 

designed to assist therapists to meet their goals for a particular patient.  

Therefore, INR systems need to empower the therapist to make the best 
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assessments and resulting therapy decisions as possible with the given 

resources they have available. 

 

Figure 2 - The complexity of an INR design and implementation exist within a space 
that needs to connect variable elements of human and digital as well as physical and 
computation. 
 
 
As can be seen a design of a one-size-fits-all solution, both for different patients and 

environments, is unlikely. Therefore, the possibility opens up that multiple INR 

systems will be required, each maximizing a solution to a particular combination of 

the complex space previously discussed.  This is one of the primary reasons for the 

variety in INR approaches previously introduced.  However, if multiple systems are 

to be designed and implemented, an emphasis on continuity design across systems 

is required: 
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 The training needs to be continuous across systems.  Training from one 

system should transfer and to training in another system.  In addition, this 

training needs to transfer to every day activities.  

 To support the continuous connection, there needs to be a consistency in the 

data that each INR system can provide.  Evaluating patient progress is one of 

the key metrics for determining if an INR system has any benefits. This 

requires that all systems can provide a continuity of data, such that patient 

progress can be assessed accurately in multiple contexts to provide a 

comprehensive view of progress.   

 There also needs to be a continuity of user experience. Commercial design 

provides examples of this idea, such as the community of Apple products. 

These products are designed in such a way that they all share similar 

features and characteristics.  Thus, while a user may not know all the 

intricate details of how to interface with a particular product, their 

experience with other Apple products can carry over and give them a starting 

point.  The same needs to be true for INR systems.  A patient should not have 

to relearn functionally different feedback environments or user interfaces.  

The experience of using and interfacing with one system should smoothly 

transition to another system. 

This dissertation proposes that comprehensive INR design, an inherently complex 

problem, requires the hybridization of multiple knowledge sources, each with their 

own inherent levels of uncertainty.  A definition of comprehensive INR design 
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should be created before reaching for large scale clinical studies as this will help 

increase the likelihood of returning significant data and avoid trying to answer 

questions within INR that have already been answered in other fields. The intent of 

this dissertation is to define guidelines of complex system design, within the specific 

context of INR, to integrate interdisciplinary knowledge through applied design 

approaches, which can generalize to other integrated system design.  

 

A proposed model for overall INR complex system design can be seen in Figure 3.  

The first stage is to assess contextual research.  In the case of INR design, this 

requires reviewing core field research in neurorehabilitation, but also considering 

relevant interdisciplinary fields as well for best practices that may not exist 

comprehensively yet within neurorehabilitation.  This interdisciplinary contextual 

research will directly inform the design of INR systems by providing constraints for 

what core functions are required as well as how proper assessments can be made to 

evaluate patient progress, and as a result, evaluate the validity of the particular INR 

implementation methodology.  Once these constraints are identified, their 

implementation requires the used of a hybrid of existing design approaches.  

Multiple cycles of iterative design and testing, at various time scales, are required to 

test system components from early prototypes to a more fully functioning system.  

Once a full system is tested, the results form new questions for further contextual 

research or provide new insights for these domains as well. 
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Figure 3 - Effective INR design should leverage interdisciplinary research to create 
system design comprehensive requirements and metrics that should be tested in 
multiple cycles of iterative design. 
 
 
The proposed model is very much based in existing thought on experiential systems 

design21 as well as the ideas contained within the Universal Principles for Design22 

and therefore is not unique in and of itself. However in this dissertation, I propose 

and demonstrate the unique application of these concepts and models within an INR 

context, thereby highlighting their utility as well as promoting their importance for 

consideration within the field of neurorehabilitation.  My process of applying this 

model has led to numerous conclusions on the utility of the model within INR as 

well as more generalized thoughts on its overall utility across applications. 
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The intent of this dissertation is to show how this system design model was applied 

within an INR system design and implementation cycle, from contextual research to 

implementation, with reflections on considerations for more optimal 

implementation.  Chapter 2 reviews utilizing contextual research to establish 

therapy task and patient evaluation constraints. Chapter 3 reviews approaches to 

design and how they are applicable to complex INR system design.  Chapter 4 

reviews the implementation of the task and evaluation design constraints within a 

fully developed and tested INR system.  Chapter 5 reviews evaluations of this system 

across patient specific criteria as well overall system stability and use observations.  

Chapter 6 reviews future directions for extending the example INR system as well as 

overall reflections on the practicalities of the application of the system design model 

with a collaborative design team. Chapter 7 presents a summarized model for INR 

development that can extended towards other interactive system design contexts. 

Please note that some small portions of content presented in this dissertation were 

simultaneously authored by me and accepted for publication elsewhere23 and have 

been reprinted here with permission (Appendix D).  
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CHAPTER 2 

ASSESSING THE COMPLEX SPACE OF INR RESEARCH AND DESIGN 

INR exists within a very complex space complete with multiple dimensions that 

need to be addressed in varying ways depending on the specific application of the 

system.  This chapter outlines some of the key considerations that are necessary in 

the design of mixed reality INR systems.  Section 2.1 reviews key contextual 

research from motor learning as well as other interdisciplinary fields that are 

crucial to comprehensive task experience and patient assessment design.  Section 

2.2 identifies key design constraints that arise from the contextual research.  Section 

2.3 concludes with a clarification of where in the complex space of INR my design 

work fits. 

 

2.1 Key Contextual Research 

 

2.1.1 Motor Learning 

 

There has been significant research in areas of motor learning and developmental 

learning.  Overall, learning occurs within highly individualized contexts (e.g. each 

individual constructs his own knowledge from first person experience), and the 

path to achieving knowledge can be non-linear and vary across learners.  The 

accumulation of experiences contributes to a complex internal model that 

continuously evolves with more experience.24 Motor learning and other statistical 

learning25 research suggests that internal models are formed based on a collection 
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of perceived rules, associations, and probabilities that are distilled from a variety of 

experiences in which people physically engage with their environment.20  

 

Efforts to understand underlying mechanisms that foster stroke recovery suggest 

that active engagement, challenge, and independent discovery can facilitate 

neuroplasticity.26 In stroke rehabilitation, problem solving is critical to enhance 

motor learning.27 Looking beyond the field of rehabilitation science, the arts provide 

an exemplary medium for implicitly shaping the individual’s experience without 

explicit instruction28 so that the individual can independently draw conclusions 

about his experience. For example, the painting tradition capitalizes on our inherent 

perceptual sensitivities to patterns of value and color to achieve an intuitive and 

meaningful visual experience.29 The arts also provide guidance on achieving long-

term engagement over a sequence of separate sessions: consider how each chapter 

in a novel leads to anticipation of culmination.30  

 

2.1.2 Constructivist Learning and Reductionist Hierarchies 

 

Educational models grounded in constructionist theory emphasize learning through 

knowledge structures31, or component-level understanding of the phenomenon 

being studied. Modular or structural learning, gained through active engagement 

within a diverse set of problem-solving contexts, allows for more meaningful and 

sustained learning that generalizes to real world applications.32 Similarly, within a 

motor learning context, the motor control system relies on structural, generalizable 
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learning for skill acquisition.33,34 For example, some kinematic features are invariant 

across different types of multi-joint movement35,36and should be focused upon 

within training, as they are the most easily generalizable across different types of 

tasks.37 A critical aspect of this formed generalizable knowledge is that not only can 

knowledge structures be reduced back down to component levels, but also higher 

concepts of quality can be established, which is a key feature of reductionist 

hierarchy models. This can be further demonstrated in the following example. 

 

2.1.2.1 Example Learning Application: Musical Instruments 

 

An area of learning that incorporates motor learning and constructivist learning 

ideas is musical instrument performance instruction. The Dalcroze38, Kodaly39, 

Orff40 and Suzuki41 methods are historically accepted approaches to musical 

instrument instruction.  All of these methodologies approach music instruction from 

the viewpoint that anyone can gain an appreciation for music, and form amateur 

performance skills at a minimum. The key for these methods is to introduce musical 

concepts within a framework of understanding that the student already possesses 

and experience the music directly. Each method also structures the introduction of 

topics in a clear hierarchy that always tries to make small steps up in difficulty and 

complexity. Kodaly tried to form his instruction to mirror how a child’s development 

occurs. For example, he found that children had a natural ability to discern specific 

note ranges and intervals, and thus began the instruction of relative pitch from that 

foundation.39 The Kodaly method follows a structure of starting with what the 
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student knows and connecting musical experience to that context. Then, in small 

steps, new concepts are introduced in which the student needs to use their current 

musical framework to see how the new information fits and, as a result, what needs 

to be updated within their conceptual framework.  Within the Suzuki method, the 

process of learning typically utilizes a set ordered repertoire that teach certain skills 

in a meaningful sequence for student development. The Suzuki method has a focus 

on the “development of ability” such that as soon as the student can play a song, they 

do so.  Then, the immediate next step is to continue to work on making the song 

technically and musically perfect.  

 

These approaches to musical instrument instruction establish reductionist 

hierarchies. Underlying fundamental components to a song are practiced in isolation 

as well as integrated together within the context of the song.  While this 

demonstrates to a student how such concepts as scales and chord techniques (both 

understanding their place in music theory as well as physical performance) can 

aggregate to performing a song, it also builds an understanding for the ability to 

break down larger forms to their constituent components.  Thus, if a reductionist 

hierarchy of musical performance is formed, when a performer notes an error in the 

performance of a song, they are able to break the error down to its core components 

in order to isolate the specific detailed aspect of the performance to correct. 

 

The goals of these models of instruction are to get a student performing songs, 

increase their music appreciation and, resultantly, improve their daily life 
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experience.  This is where the true value and motivation of musical performance 

lies.  The reward of learning all of the techniques is to perform full songs and create 

expressive experiences.   

 

Connecting back to neurorehabilitation therapy, patients want the ability to perform 

complex tasks that are part of every day life.  However, they need to build motor 

learning skills that allow them to self-analyze and break down error in movements 

to its constituent components.  Therefore, patients need to be continually practicing 

individual components of a movement as well as how they aggregate in complex 

tasks.  They should also be afforded the ability, through the tasks, to isolate 

individual components within the performance of a complex task.  INR system 

should reward the user through continuous connection to complex task 

accomplishment. 

 

2.2 Resulting Design Constraints 

 

As the contextual research suggests, INR systems need to focus on active motor 

learning that can provide the appropriate level of challenge and show how 

individual motor elements integrate within a complex task.  From this, we can begin 

to compose a series of constraints for the design of the tasks of the system that the 

patient will perform. 
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2.2.1 Task Experience Design Constraints 

 

2.2.1.1 Tasks Should Generalize to Activities of Daily Living (ADLs) 

 

The training tasks of an INR system should focus on components of ADLs and train 

generalizable functional movements. As people learn and aggregate learning over 

multiple experiences, motor skills gained in use of INR should be easily applicable 

and reinforced in a patient’s daily life.  Similar to the example of musical instrument 

instruction, the true value in physical therapy is the performance of complex tasks, 

not just isolated practice of motor elements.  INR systems should be able to take a 

complex task encountered in daily life, and help a patient break down the task into 

components and demonstrate how the components aggregate. 

 

2.2.1.2 Integrate Component and Complex Task Training 

 

INR therapy protocols should aim to integrate training of movement components 

within a goal-directed, functional context.42 The action goal should be the primary 

focus43, while the secondary focus should be on the contribution of movement 

components to the action goal and their interrelationships. When possible, tasks 

should be unassisted to reinforce patient problem solving, within an appropriate 

challenge level at a given moment in time.44 Training sequences should move 

continually up and down the task hierarchy (from components to complex task) and 
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the corresponding feedback hierarchy. This process promotes synthesis of 

components and decomposition of complex tasks into components. 

 

2.2.1.3 Tasks Should Scale in Difficulty 

 

Each patient will have a different starting point in ability, but the end goal of 

training a complex, functional task encountered in daily life remains the same.  

Therefore, the range of tasks needs to cover a distribution of abilities, while also 

scaffolding together to build towards complex, functional tasks and competency in 

ADLs. 

 

2.2.1.4 Adapt Task Complexity and Challenge Level Across Pertinent Dimensions 

 

The dimensions of task complexity and challenge level need to be adaptable, as each 

patient will learn differently and have different abilities.  INR design should identify 

key dimensions of adaptability that ensure a distribution of patients can receive 

similar benefits from use of the system.  

 

2.2.1.5 Balance Repetition and Variation 

 

Tasks need to support repetitive training, since the amount of motor improvement 

correlates with the amount of practice.37 However, while blocked repetitive tasks 

may show short-term benefits, long-term generalization and retention is better 
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supported through introducing variability in a training protocol.43 The exact balance 

between repetition and variation is not yet clear. Related research on how learning 

aggregates with repetition and variation is being explored in machine 

learning45,46and constructivist learning.19,31 

 

2.2.1.6 Vary Level and Type of Supervision 

 

While coaching is crucial to helping the patient during training, INR systems should 

be designed to maximize the limited time and resources of the physical therapist by 

gradually reducing the need for constant supervision during training. A primary role 

of the therapist within an INR system is to help prioritize focus on specific 

experiences before the patient has had the chance to develop internal models of 

how to best use the system to better perform the task. The amount and nature of the 

coaching can change over time and context. For example, inquiry based coaching has 

the therapist ask the patient questions to promote critical thinking (e.g. “What do 

you think causes the visual feedback to look like that?”), while prescriptive based 

coaching can be verbal (e.g. “Rotate your wrist less in the beginning of your reach”) 

or physical (e.g. the therapist actively assists the patient to extend his elbow when 

reaching towards a target).  Prescriptive coaching may be necessary initially in 

specific instances to avoid frustration. However type of supervision (e.g. decreasing 

prescriptive coaching and increasing inquiry based coaching) and amount of 

supervision (e.g. from the presence of the therapist at every session to visiting only 
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every third session) need to fade as therapy progresses to encourage the patient to 

develop self-assessment strategies. 

 

2.2.2 Assessment Design Constraints 

 

One of the primary focuses in validating INR design is to evaluate patient progress.  

If a patient is not improving, an INR system has little to offer from a practical 

perspective.  Therefore it becomes important to consider throughout the design of 

an INR system how patient progress can be accurately assessed within the 

complexity of the system.  These evaluations need to reflect current understanding 

of motor learning and movement quality as well as current standard clinical 

measures that are used in daily physical therapy practice. 

 

2.2.2.1 Assessments for INR Need to Integrate Functionality and Movement Quality 

 

When assessing a patient’s movement, both task completion and its quality require 

evaluation. Assessing the functionality of completing the task alone is not sufficient.  

Other aspects of the movement, such as amount of torso compensation, degree of 

elbow extension, degree of wrist rotation and other kinematic measurements, help 

distinguish between recovery of pre-stroke movement patterns and compensatory 

movements.47  
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2.2.2.2 Integrative Assessments Should be Achieved Through Combining Kinematics, 

Therapist Ratings, and Validation by Clinical Measures 

 

Individual kinematics may not provide appropriate evaluations for variable, highly 

individualized multiphase movements.48 Kinematics should be contextualized by 

collecting several references (e.g. determining the allowable degree of torso 

compensation), which is pragmatically problematic. Therapist ratings of movement 

quality can be variable, as each therapist will observe patients differently.49 Clinical 

measures, while validated, provide only a higher level, category-based resolution of 

evaluation.  However, an integrated evaluation of movement quality and functional 

improvement could be achieved through a synthesis of kinematics, ratings and 

clinical measures.  While it may be desirable to move away from the more 

qualitative measures, they have a breadth of knowledge and research that should be 

leveraged for the initial validation of experimental assessments.  Currently members 

of the INR team at ASU are looking at computational frameworks for movement 

quality assessment using a decision tree model that can provide measures that 

correlate with therapist ratings.50 

 

2.2.2.3 Assessments Need to be Associated with ADLs 

 

Assessing progress in a therapy protocol needs to correlate through evidence to 

improvements in ADLs.  Traditional clinical approaches to assessing ADLs through 

questionnaires (e.g. Motor Activity Log (MAL)51) rely on self-reporting and can be 
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subjective. Current studies are assessing ADL more objectively through promising 

ideas such as embedded sensing52 and repurposing consumer technology.53 

Promising development work is underway to provide feedback on ADL 

evaluations.54 Applications for portable devices, such as tablets, hold promise for 

facilitating more accurate personal documentation on daily activity and reflection. 

 

2.3 Defining My Own Contributions Within a Specific Context of INR Space 

 

As has been shown, INR design deals with a very complex, multi-dimensional space, 

where dimensions of multiple users, technology and learning must be addressed 

(each with their own specific considerations).  When I joined the MMR team at ASU, 

they had just completed the design of a mixed reality rehabilitation system and were 

about to begin testing the system with stroke survivors.  One of the future goals was 

to evolve the training of this system beyond the scope of a clinical space and move 

mixed reality rehabilitation to the home. 

 

In the following chapters, a description of the design, implementation and 

evaluation of a minimally supervised INR system will be presented.  Therefore, it is 

crucial at this point to identify where my contributions bit within the INR design 

process.  I collaborated significantly with Nicole Lehrer in the entire design process.  

When thinking about how to move the clinical system forward, two significant 

components were identified: 1) the design of a system (both hardware and 

software) along with the user experience of that system (therapy protocols and 
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system use by therapists and system designers) and 2) the design of a compositional 

approach to feedback. 

 

My work has been within the first identified component.  I took the previously 

identified task experience and assessment design constraints and translated them 

into implementation designs of both hardware and software for INR use under 

minimal supervisions.  I primarily focused on the design and implementation of the 

software of the system, but also designed and maintained the architecture that 

connected other feedback and custom sensing hardware components designed 

solely by other members of the team. In addition, I also took the previous contextual 

research ideas along with the specific capabilities of the system to design protocols 

that created a multi-week therapy experience for stroke survivors using the system. 

 

Nicole Lehrer’s work was within the second identified component of compositional 

approaches to INR feedback design.  As a result, the feedback of INR will not be 

discussed here, as it will be covered in much more depth in Nicole Lehrer’s 

dissertation.  However, the components of system design, user experience and 

feedback design are highly interconnected and all required for comprehensive INR 

design. 
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CHAPTER 3 

INTEGRATED DESIGN CONSTRAINTS AND THEIR APPLICABILITY TO INR 

The integration of interdisciplinary concepts to find solutions within a very complex 

problem space requires comprehensive design approaches. Complex system design 

is not a new idea (in fact research has been conducted to try and model, as well as 

automate, complex system development55-57) and there are many traditional 

approaches within schools of design.  I argue that INR design and implementation 

requires an integration of multiple design approaches within an overall iterative 

design model.  The application of these principles was already begun in the Adaptive 

Mixed Reality Rehabilitation System (AMRR), however new considerations were 

necessary for designing a home-based mixed reality INR system.  Section 3.1 

reviews current design approaches that are important to consider for INR.  Section 

3.2 reviews iterative design and its importance. Section 3.3 identifies high-level 

design constraints that come from the integration of design approaches.  Section 3.4 

shows how these design constraints (as well as the guidelines previously identified 

from contextual research) were used to review the Adaptive Mixed Reality 

Rehabilitation system, which formed the basis for designs of the Home-base 

Adaptive Mixed Reality Rehabilitation (HAMRR) system. Finally Section 3.5 briefly 

summarizes the transition from AMRR to a home-based system. 
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3.1 Design Approaches 

 

3.1.1 Engineering Design 

 

Engineering design has been defined as “the set of decision making processes and 

activities used to determine the form of an object given the functions desired by the 

customer.”58 In this approach to design, an emphasis is placed on the functionality of 

a device, usually following a mechanical and industrial engineering specific 

approach.  Design engineering prioritizes customer needs, and designs products 

that can meet those demands, deciding upon levels of performance within various 

constraints.  Engineering design approaches suggest ways to stage designs, 

beginning from purely conceptual, all the way to detailed specifications that can be 

manufactured.  This school of design also heavily considers the economics of not 

only designing and building a product, but how well it can scale to a larger 

manufacturing process.  Engineering design is also focused on planning, with a 

continual eye on timeline and the dynamics of a design team, and in that way, looks 

at the very pragmatic consideration of project management. 

 

3.1.2 Industrial Design 

 

Industrial design has been defined as “the professional service of creating and 

developing concepts and specifications that optimize the function, value, and 

appearance of products and systems for the mutual benefit of both user and 
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manufacturer.”59 While there is certainly overlap between engineering and 

industrial design, here the focus is weighted more towards form, and its influence 

on function.  The range of industrial design influence reaches towards such 

considerations as ease of use and maintenance, required interactions for product 

function, product safety, as well as considerations such as product identity, and 

intangibles such as perceived value or importance. 

 

3.1.3 Experience Design 

 

Experience design, which is connected to interface and interaction design, explores 

more about the use and resulting experience of a system.  It is also a very 

interdisciplinary field as it seeks to find a framework for understanding experience 

across multiple disciplines.60 At its core, experience design also looks for more 

philosophic understandings of how to define experience and the many facets it 

entails.  This includes an argument that the primary way in which people synthesize 

activity with a particular environment or setting is through experience.61 Similar to 

the previously mentioned idea that people learn in a multitude of contexts and 

environments, experience design takes a step back and looks at such factors as 

“memory, desire, anticipation, relations with others, cultural patterns, bodily 

feelings, sights, smells and sounds.”61 In this way, the experience design approach is 

very user empathetic, with the focus put squarely on thinking about what the user’s 

experience might be like when using a particular technology. One model to study 

user experience categorizes experience into product-centered, user-centered, and 
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interaction-centered.60  It further explores and values how human emotion can 

shape experiences with technology.60 Experience design requires a really deep 

understanding of the target users and an understanding of the impact the 

technology might have on the user.  Further, experience design understands that 

experience is non-linear and therefore evolves over time.  Experiences will scaffold 

future experiences and thus impact how experiences are interpreted.60 The value of 

experience and its ability to create unique and identifiable experience language 

among technologies can be seen in many current consumer technology developers, 

such as Apple.62 

 

3.1.3.1 Experiential Systems Design 

 

Experiential systems design is a specific type of experience design that focuses on 

the creation of systems to foster an experience.  As a direct result, the field is very 

interested in studying the nature of experience and how design systems shape a 

particular perception of experience.  Overall, experiential systems design views 

experience as the result of multiple interactions that exist purely within subjective 

points of view.  Therefore, approaches are very sensitive to how system design can 

create certain perceptions by the user.  The approach proposed63 is defined along 

the following key questions: 

1. Point of View: How does the selection of data to sample affect construction of 

experiences? 
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2. Gaps: What data is being filtered out so as to facilitate users’ constructive 

activity? 

3. Flow of experience: How can we structure the flow of interaction with data to 

support construction models? 

4. Form & Style: How can presentation and manipulation of data by the user 

establish experiences? 

5. Context: How do we consider and individuals background? 

Across these points, the user’s experience (both with and without the system) is 

studied in its relation to what aspects of the system directly and indirectly impact 

the user’s experience.  

 

3.1.3.2 Reflective Design 

 

Another subset of experience design is reflective design, which as the title suggests, 

supports the reflection of designers and users in regards to the interactions with 

technology.64 It challenges designers to think critically of their work, especially in 

regards to aspects of the experience that a system may be indirectly providing to the 

user based on design choices.  As a result, it encourages systems to provide 

opportunities to both designers and users to reflect on aspects of the system’s 

experience.  However, it stresses that reflection should not be separated from the 

experience, and as a result, considered to be cognitively separate from the 

experience.64   Rather, reflection should be an integral part to the experience itself. 
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3.1.4 Software Design 

 

Similar to the previously mentioned types of design, software development also has 

established approaches to design and implementation.  Typically, design of code 

architectures is aided through the use of design patterns.  Design patterns provide 

partial templates that have been proven in multiple contexts that can be combined 

together to optimize solutions to a problem while leveraging previously established 

details of a programming language.65 Software design, through design patterns, is 

similar to the previously mentioned design approaches in that it provides guidelines 

to functionally break down a larger problem into manageable components, which in 

this case, are translated to code.  However, given the digital nature of code, a heavier 

emphasis is placed on adjustability and extensibility.  The software design approach 

assumes that demands will not only change but also new demands that were not 

previously part of the original design considerations will appear.  Therefore, 

software design emphasizes the need for flexible structures that can accommodate 

change quickly and reliably, without impacting the core experience. 

 

While design patterns will provide a detailed level view of code solutions to 

problems, there are also higher-level designs that are used in design and workflows 

of code development.66 Agile development places an emphasis on releasing code in 

regular, short-term releases, with regular feedback from customers and developing 

functional code over documentation.67 This approach to development encourages 
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designing for assured change.  Some have critiqued this method for a lack of focus 

on architecture and that it many not scale well to larger projects.67 

 

3.2 Iterative Design and Finding Solutions at the Intersection of Different 

Approaches 

 

Iterative design, while not a separate type of design, is a process by which a system 

is developed in multiple iterations, in which the knowledge and results gained from 

each iteration are incorporated into the next version.  This approach to design is 

used throughout engineering, industrial, experience and software design.  A design 

cycle is composed of design, implementation and evaluation with a heavy emphasis, 

especially in software iterative design, placed on usability, as the iterations will 

regularly incorporate user testing.68 This approach to design has become very 

integral to technological development as the pace of innovation can be incredibly 

fast, not allowing for serial development.69 Similarly, short, iterative design cycles 

allow for quick adaptability to a range of factors, including technology advancement 

and evolving user demands. Many times this adaptability is important due to a lack 

of clarity of the requirements for the final system. Multiple user-focused iterative 

design cycles can elucidate these requirements.69 In addition, multiple iterations 

and testing of the iterations can inherently create checks and balances of 

components along the way.70 Typically, iterative design will function such that 

components are developed in parallel, but conforming to an overall architecture 

that is established before intensive iterative design begins, therefore parallel 
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components can have a common, established, and stable manner for integration. 

Iterative design puts a heavy emphasis on prototype development and a regular 

release schedule of new components, as iteration can continue even after the 

product is released, and thus the evaluation of system quality will evolve over 

time.69 Due to the emphasis on quick release schedules, this design approach will 

also have an influence on the selection of tools used to build the system, as an 

emphasis is placed on components that can support quick development and 

integration. 

 

One widely regarded approach to iterative design is the set-based design (SBD) 

method that began in Toyota development.71 This method was created in contrast to 

point-based design, which divides design into small, repeatable linear steps with the 

goal of reducing time spent on bad or wasted designs.  However, the SBD method 

allows for more flexibility and assessing multiple alternative design methods, which 

was found to help create overall better designs.  The process is categorized in three 

steps: 

 

1. Map the design space – Understand the space of alternatives that can be 

moved forward 

2. Integrating by intersection – Find solutions at the intersection of sets of 

alternatives 

3. Establishing feasibility before commitment – Maintain a consistency with the 

overall design 
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This approach has been found to have many benefits and has been studied in 

depth.71 

 

One down side of the iterative design process is that due to the pressure of iterative 

cycles, maintenance is not an overall focus.69 As a result system documentation, for 

example, will be lacking which can cause some problems in the late stage phases of 

the design.  In addition, not all iterative design cycles are equal, and sometimes 

negative design iteration can result. 

 

3.3 Integration of Design Approaches and Resulting Constraints 

 

As previously described, INR systems are complex in nature due to the integration 

of physical and digital as well as human and computational elements.  Therefore, it 

is argued that any one of the previously described design solutions will not work in 

isolation, but rather a synthesis of approaches is required.  As the Toyota set-based 

design example demonstrates, successful solutions exist at the intersection of 

alternative ideas, and the same can be argued for alternative design approaches in 

comprehensive INR design. 

 

For example, while traditional engineering design can help establish very reliable 

and manufacturable solutions, it does not offer much help when thinking about the 

user experience and context of using the system that industrial design and 

experience design can offer.  However, INR systems in the face of all of the 
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complexity need to be stable and reliable in order to offer benefits to the patients 

and physical therapists.  Since INR relies so much on software solutions, and custom 

software solutions at that, software design patterns and models will be very helpful 

at quickly creating stable systems.  However, this level of detail does not support or 

drive the design of larger themes of user experience. 

 

In addition to these design approaches, iterative design approaches are critical.  

Testing with patients can be logistically and financially expensive, and thus needs to 

be efficiently optimized during the design of the system.  However, this should not 

create a design culture of developing systems in series, only validated through 

patient testing.  In addition, INR systems should not be only tested when there is 

exact certainty of how the system works.  The evaluation, and thus design, of an INR 

system needs to be iterative.  Both system components and integrated systems 

should be tested and developed in iterative cycles maximizing the appropriate types 

and amount of user testing.  By doing this, the system can continue to develop and 

provide new information that can drive improvements in future iterations. 

 

Integrating design approaches is not a new challenge, and as a result, there are 

examples of their result.  One example composed by IDEO is an approach called 

Human Centered Design.72 As suggested by the title, the approach is motivated to 

integrate the users of the future result of the design from the very beginning of the 

design process.  Therefore, the end users are involved from the brainstorming 

stages all they way through multiple iterative design cycles, with the end goal of 
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keeping the cost of the design process low.  The first step of the process is for the 

design team to fully understand the problem they are trying to solve and what 

assistance the end users truly need.  Then through multiple structured design and 

testing cycles a final viable product is delivered, all the while integrating the end 

user community.  The methodology integrates concepts from engineering, industrial 

and experience design, and applies them through iterative testing cycles. 

 

3.3.1 Hardware and Software Need to Track and Extract Necessary Features From 

Tasks 

 

Before hardware and software solutions to INR design can be identified, a hierarchy 

of features to sense and extract from the patient’s use of the system is required.  As 

previously discussed, from neurorehabilitation and motor learning research, an 

understanding of what the system needs to facilitate in terms of tasks can be built.  

Then, in an approach similar to engineering design, the manners in which to 

measure those tasks need to be identified.  By identifying these measurements, 

sensing solutions can be identified as well as clear metrics for how to evaluate the 

success of each hardware and software component.  However, there are additional 

considerations when selecting hardware and software solutions for INR. 
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3.3.2 Hardware and Software Should be Designed in Reflection of Desired User 

Experiences 

 

Similar to how contextual research will impact the task design (which will in turn 

impact the hardware and software solutions), desired user experiences should also 

factor into the design of both hardware and software components of the system.  

This is especially true for an INR system as accessibility constrains should be at the 

forefront of user experience design discussions.  However, just as important is to 

consider what data may need to be collected to assess the user experience (and how 

reflections on the experience may impact the further design and refinement of the 

system).  

 

3.3.3 Hardware and Software Should Avoid Proprietary Solutions 

 

Proprietary hardware and software can be costly. INR systems should react to and 

incorporate commercial technologies to avoid high costs and obsolescence.  The rise 

of the “internet of things” is producing consumer electronics, such as the Microsoft 

Kinect and immediate smart phone technology that can provide low cost solutions 

for INR as well as speed up the overall development of an INR system. This is crucial 

from two design perspectives.  First, it supports faster iterative design cycles as 

many repurposed consumer technologies have significant technical support from 

both companies and user communities.  Many times pre-existing, open-source 

solutions already exist to basic computational and sensing problems.  Secondly, 
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from an industrial and experience design perspective, the utilization of consumer 

technology leverages possible user familiarity with hardware.  If the user is already 

familiar with how to use an iPad, as an example, the cost to learning how to use a 

new system implemented with an iPad will be arguably less, as the user may already 

be comfortable with the core interface and usage patterns. 

 

3.3.4 Novel Hardware and Software Solutions Should Use Rapid Prototyping 

Methods and Open Source Communities 

 

Development of novel solutions should leverage new manufacturing paradigms.  

Hardware design solutions of 3D printing73 and use of simple sensors and 

processing solutions such as Arduino microcontrollers not only reduce total system 

cost, but also allow for rapid prototyping of ideas for quick design iterations.  This is 

crucial from an interactive design perspective, especially within rehabilitation 

systems, as many times final hardware design will require multiple user testing 

sessions (both non-impaired and impaired).  Responding to these test results 

quickly is crucial to keep the overall development time and development schedule 

reasonable.  A software design emphasis should be placed on developing open 

source74 so that others can continue to develop and stretch the code beyond its 

original purpose, while continually incorporating new functionalities.  Again, this 

approach allows for faster design iterations, and the usage of knowledge and 

solutions that already exist.  Plus designing for others so they can expand the code's 
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functionality for new purposes helps to keep the design intelligible and readily 

useful. 

 

3.3.5 Hardware and Software Components Should be Designed Iteratively, in a 

Modular Fashion, Within a Stable Architecture 

 

As the best practices of INR design are still to be established, distilling design 

requirements from current interdisciplinary literature research and therapist and 

stoke patient system need reviews is still the key starting point to INR design.  

However, as research continues and technological solutions continue to improve, 

more optimal solutions will likely present themselves.  INR system design needs to 

react quickly to these changes, and should not require the complete redesign of a 

system in order to do so.  Given the requirements and research at a starting point of 

design, an overall architecture should be designed for how components will work 

together and integrate.  At the same time, this architecture should be somewhat 

flexible to allow for parallel development and integration of new components or 

replacement of old ones without major redesign.  That being stated, multiple 

iterations should be leveraged to better understand the architecture and 

components within.  This is especially true in the burgeoning days of INR, as system 

design will still be heavily based in research and exploration.  However, within very 

complex design challenges (such as INR) it is many times advantageous to seek a 

better design than wait for the ultimate design.  Especially within an INR context, 

designing the best solution can be difficult, as it requires significant monetary and 
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logistical investment in patient population recruitment and has to factor in the 

limits of current understanding (both technologic and contextual research).  

Therefore, iterations need to be tiered: What can be tested with unimpaired 

subjects?  What then needs to be tested with impaired subjects? And, overall, how 

do research questions fit within these design cycles? Which specific questions can 

be answered first, and how do they fit within larger multifaceted research 

questions?  Faster iterations can happen with unimpaired subjects, leading to 

advancement in redesigns.  However, iterations with stroke users should not be 

overlooked and design-testing schedules should look to incorporate this type of user 

testing. 

 

3.4 Assessment of Adaptive Mixed Reality Rehabilitation System Along Design 

Principles 

 

When I joined the Mixed Reality Rehabilitation team, they were in the process of 

beginning a full study of the Adaptive Mixed Reality Rehabilitation System at Banner 

Baywood in Mesa, AZ.  While I was not involved with the development of the system, 

I did observe many of the patient sessions and in doing so ran the system, which 

entailed making task and sensitivity adjustments to the experience based on 

physical therapist desires for the patient.  This allowed me the opportunity to see a 

full experiential system in use and think about its design and implementation.  What 

follow is a summary description of the system as well as examples of how the 
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previously identified task, assessment and design principles can be applied to 

evaluate a system and its iterative design. 

 

3.4.1 Overview of Adaptive Mixed Reality Rehabilitation System 

 

Adaptive Mixed Reality Rehabilitation (AMRR) is a supervised training system that 

provides detailed evaluation information and interactive audiovisual feedback on 

the performance of reach to grasp and reach to touch tasks.75,76 (Figure 4) It was 

developed under the same goal of applying interdisciplinary approaches, within 

mixed reality, to develop a comprehensive tool for INR.  The system uses 11 infrared 

motion-sensing cameras to track 14 reflective markers worn by the patient on the 

arm and torso (Figure 5). Based on the three dimensional location of the markers, 

several key kinematic features are used for computational evaluation of the full arm 

and torso movement as well detailed, real time audio and visuals and a post reach 

visual summary. 
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Figure 4 – The physical setup of AMRR 
 

 
Figure 5 – The marker array worn by the patient using AMRR 
 
 
The AMRR experience utilizes the presence of three users: patient, therapist, and 

system controller.  The patient sits at a table, wearing a collection of markers along 

the arm and torso, and performs the tasks in sets of reaches.  They generate and 

respond to the feedback during and after their sets of reaches.  The therapist 

observes all of the patient’s movements and provides some feedback to the patient 

through suggestions for correction as well as helping to interpret the feedback if 
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there is a moment of confusion, especially early on in the training.  The therapist 

also might provide an end of session summary to the patient by translating some of 

the kinematic analysis that AMRR generates. The therapist also provides feedback to 

the system by setting the sensitivities of the feedback streams, including 

determining if a particular stream should be on or off.  The therapist also 

determines the amount of reaches spent on a particular task and the sequence of 

tasks that will compose a particular session of activity.  The system controller acts 

as an intermediary between the therapist and the system by working with the 

therapist to translate their goals for the patient into the language of the system’s 

parameters and controls. The controller will live debug issues based on 

observations of the patient and knowledge of how the system works. The controller 

is also the sole interface with the system to turn it on and configure it before each 

patient session.  Therefore, the AMRR system assumes not only that the therapist 

and system controller are continually present during all of the patient sessions, but 

also that they both have knowledge of how the system works and its range of 

capabilities. 

 

The hardware architecture of AMRR was designed to take in input from 11 infrared 

OptiTrack cameras, process the data to generate kinematic features, send those 

features to feedback engines, and finally archive the data. (Figure 6) This required 

two Mac computers, one to run the kinematic data extraction from the OptiTrack 

cameras (which can only occur on a Windows machine), and the other computer to 

process the kinematic data and generate the audio and visual feedback, as well as 



 42 

archive the data.  There was also a separate laptop computer that was setup to 

exclusively run a web camera to capture video of the patient sessions for later 

analysis.  All of these computers communicated data to one another through 

multicast communication on an internal network. 

 
Figure 6 – The software of AMRR was spread across two computers, with the 
Windows machine running two programs to process incoming data, and the Mac 
machine generating all of the real time analysis and feedback. 
 

The software of AMRR features a few main programs.  On the OptiTrack camera 

computer, a single program called BFMA was written to generate the core kinematic 

features based on input from the cameras and some calibration information from 

Task Control.  Task Control served as the master control program to the AMRR 

experience.  It would receive kinematic features from BFMA and process these for 

analysis and feedback generation.  Task Control had a main interface in which all the 

feedback mapping and task parameters could be adjusted before starting a set.  This 

UI provided the manner in which therapist goals were translated into system 

functionality.  All of the visual feedback was controlled through a DASH plugin, 
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based on received features from Task Control.  Audio feedback used a Kontakt 

interface that responded to commands from Task Control.  After the completion of 

each set, the data was archived to binary files, which another program MRR Offline 

Tools, could open for further analysis such as the Kinematic Impairment Measure.  

This program was also the manner in which the therapist could see the raw 

kinematic data through a series of plots. 

 

3.4.2 Assessment of AMRR Along Design Principles 

 

AMRR was tested across 11 mild to severe stroke survivors within a one month long 

protocol.  In addition, 10 additional stroke survivors comprised a control group that 

received traditional therapy for the same amount of time as the experimental group.  

It was found that both the experimental and control group improved significantly in 

clinical measure scores.  However, only the experimental group improved 

consistently in kinematic measures.  The results suggested that AMRR showed 

promise to improve both functionality and movement quality.77  

 

3.4.2.1 Task Generalize to Activities of Daily Living 

 

While improvement in movement quality and functionality improved for all of the 

participants, assessments of ADLs did not.  This seemed to indicate that while 

participants were improving by clinical and kinematic measures, there was not a 

perceived direct connection for each of the subjects.  The disconnect could be due to 
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the participant having a different set of criteria for improvement than what the 

clinical and kinematic measures suggest.  Relatedly, traditional ADL assessment 

measures are inherently subjective, and as a result, it was unknown whether more 

objective measures would have indicated a different story of impaired arm use after 

therapy. 

 

3.4.2.2 Lack of Comprehensive Experience Design 

 

The fact that perceived improvement did not connect to clinical scores and 

kinematic measures suggests that the system lacked from a comprehensive 

experience design approach.  As INR systems are rehabilitation tools, the primary 

user is held to be the stroke patient with the primary goal being to improve the 

quality of movement and functionality.  The main manners in which both of these 

qualities are assessed are though traditional measures.  However, when looking at 

these measures, they many times require a clinician to interpret the results.  For 

example, demonstrating how a shift in magnitude of the Wolf Motor Function Test 

(WMFT)78 correlates to a particular physiological concept.  However, to view the 

assessment from the patient’s perspective, the evaluation is more likely in terms of 

subjective, functional goals, such as:  “Can I brush my teeth?  Can I reach the garage 

door controller?”  There will likely be correlations between aspects of clinical 

measures and perceived performance in these specific tasks. However, a truly 

comprehensive INR design should begin to help make this connection. 
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The feedback and task design of AMRR was such that the subject’s task of reaching 

to grasp an object was dissociated from the physical to a digital experience.  This 

allows the patient to interact in a space with less constraints and leverage supplied 

augmented media feedback to better understand and self-assess limb dynamics in a 

very complicated task.  While this dissociation is important in the short term 

training contexts, it may be providing a long-term disconnect between performance 

during therapy and during ADL.  The system is providing, from a clinical 

perspective, functional improvement.  However, comprehensive INR systems should 

fully understand the experience of a patient and their own goals, and how those can 

be realized within the context of a clinically viable system. 

 

In addition, AMRR at its core was designed to focus on component level training 

rather than functional task training.  As the kinematic results demonstrated, the 

system was very effective at component level training.  The system did not address 

how component level training connected to functional tasks, which would be a 

crucial component to long-term home-based training. 

 

3.4.2.3 Integrate Component and Complex Task Training 

 

As previously discussed, the results from the AMRR study showed participant 

improvement in both movement quality and functionality.  Results also showed that 

different movement quality components improved for each participant in similar 

amounts independent of varied training experiences.77 This seems to indicate that 
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not only were the designed task and feedback paradigms beneficial in providing 

component and complex task training, but it could be applied to ranging patient 

impairments.   

The results of the study encouraged that future extensions of AMRR should push the 

complex task design even further.  As previously described, AMRR’s tasks were all 

single object reach to touch/grasp.  However, many functional tasks in ADL require 

complex, multi-phase movement, such as when moving a cup across a table.  

Therefore, it became a design consideration for future work to take the core ideas of 

the validated task and feedback design and apply these to more complex task 

training. 

 

3.4.2.4 Tasks Scale in Difficulty, Adapt in Challenge and Complexity, and Balance 

Repetition and Variation 

 

These three categories are being discussed in combination because they were all the 

result of the therapist’s supervision and use of provided system constraints: 

 

 Start from simple tasks and move to complex ones to support engagement 

and active learning and reduce frustration.  

 Introduce each new component first in a simple context before a complex 

context. 
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 Focus first on functional components (task completion) before addressing 

movement quality components (torso compensation) 

 Repeat each set at least twice but no more than three times.   

 Choose any overall path that follows these rules to fit a given patient’s 

impairment profile and training needs. 

Working within these constraints, the therapist was able to provide adaptable, 

beneficial therapy to each patient as shown in the AMRR study results. It was 

observed that a therapist, with training and time working with the patients, could 

come to a very good understanding of a complex media system and be able to adjust 

therapy protocols both in the language of physical task structure as well as the 

language of the feedback environments. It was also determined that 100 reaches 

and grouping reaches into blocks of sets, such that the total session did not last 

longer than an hour, supported patient compliance of the protocol and could be 

completed by patients of varying impairment levels. This validated the application 

of general motor learning principles within INR task design, and severed as a 

starting point for future work. 

 

3.4.2.5 Vary Level and Type of Supervision 

 

As was previously discussed, the environment of training is a very important 

consideration for INR design, and will directly impact system capabilities.  The 

AMRR system was designed to be a fully supervised system.  This design choice was 
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made because it was valued more to test and validate interactive training and 

feedback paradigms first, before trying to see how these ideas could be automated.  

Following the concept of iterative design, a system with known constraints and 

limitations was developed and deployed in the short term, so that the next iteration 

could answer larger questions with some evidence of core ideas and 

implementations.  The fact that functional and quality of movement improvement 

was seen in patients with varied types and levels of impairment validated the 

training paradigms and encouraged the designs to be iterated further for home-

based use. 

 

3.4.2.6 Assessments for INR Need to Integrate Functionality and Movement Quality 

 

A kinematics based impairment measure (KIM)79 was proposed and tested, which 

combines the key kinematic attributes of reach and grasp tasks into one normalized 

score.  This impairment measure was found to align with WMFT scores.77 It was also 

found that the therapist, over time, would use these scores and other kinematic data 

results to both adjust therapy protocols for each patient as well as provide the 

patient with evidence for and encouragement towards their progress. 
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3.4.2.7 Integrative Assessments Should be Achieved Through Combining Kinematics, 

Therapist Ratings, and Validation by Clinical Measures 

 

The design of the KIM and determining the weights of components that comprise 

the total integrated score involved therapist input to model how a therapist rates 

relative importance of components within the overall performance of a task.  As 

previously described, this measure was found to correlate with the Wolf Motor 

Function Test. 

 

3.4.2.8 Assessments Need to be Associated with ADLs 

 

While some patients in the AMRR studies improved in both kinematics and the 

WMFT, they did not improve in the MAL and Stroke Impact Scale80 scores, which 

could result from the failure of clinic-based practice to translate into daily activity or 

from the patient’s self-perception of limited improvement, despite indices within 

other measures. 

 

3.4.2.9 Select Hardware and Software Solutions Based on Features to Track 

 

The goal of AMRR was to focus on improving movement quality in tandem with 

functionality by giving the therapist the ability to focus on any movement quality 

features relevant to each patient.  As a result, AMRR required sensing of up to 40 

kinematic features as well as providing feedback on several of these features in any 
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combination desired.  Not only did these 40 features need to be sensed through 

hardware and software solutions, but also they needed to be tracked accurately and 

reliably to form the foundation of evidence for this style of therapy. 

 

OptiTrack cameras provided reliable, millimeter-detailed tracking of patient 

movement.  The team became familiar and comfortable with its calibration process, 

how to position the markers on a patient’s arm for proper tracking, and how to 

process the resulting 3D position of the data to extract both low level (e.g. trajectory 

and speed) and high level (e.g. evaluation of the smoothness of reach speed).  As a 

result, there was substantial existing, and validated, code to extract these features 

given 3D marker input.  This knowledge would serve as a strong basis for future 

sensing design considerations. 

 

In addition, the feedback engines, developed through a combination of DASH and 

audio instrument software, were validated.  Both of these tools were selected due to 

their ease of use in creating feedback in response to movement features based on 

experience of the team.  DASH, developed by team member Loren Olson, provided a 

manner to easily interface with OpenGL capabilities, and thus, served as the tool for 

all of the visual feedback development.  Through the development and testing of 

these feedback designs, there was a significant knowledge base created for real time 

and post reach feedback implementation. 
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AMRR began to identify appropriate task and feedback parameters.  These were a 

collection of adjustable parameters that defined how a movement could be 

characterized and mapped to feedback.  The physical space of the movement was 

divided into spatial zones.  The rest zone marked an area in which the patient would 

start each reach.  The target zone identified an area around the target object in 

which the patient’s wrist and hand should be within when interacting with the 

object.  Between these two zones, a hull space, or sensitivity zone, was created.  The 

sensitivity zone followed an idealized trajectory path that was complied from 

collecting reaching movements from non-impaired subjects.  The hull space was 

divided into three regions.  The zero zone marked variability seen in non-impaired 

subjects.  Any deviation from a reference trajectory in this zone would not be 

displayed in the feedback.  The next zone, between the zero zone and the outer hull, 

represented the first region of deviation in which feedback would be provided.  This 

ranged from nearly no error feedback (near the zero zone) to maximum feedback 

(near the hull).  Then the final zone, the area outside the hull, represented maximum 

deviation from the reference and thus maximum error feedback was provided.  

Similar zones were also setup for other aspects of the movement, and more details 

can be found elsewhere.76  Therefore, the AMRR system established, tested and fine-

tuned sensitivity zone paradigms that could be applied in future work. 

 

Relatedly, the software design also validated the idea of dividing reaches into 

discrete states.  These states time-divided a reach to help drive the patient’s 

interaction with the system.  These states defined a resting state (stop), a state to 
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check if the patient was ready to start by having their hand in the rest zone (ready 

check), a state to see their reaction time to a go prompt (reaction), a state defined by 

reaching to the target (reaching), a state defined by successfully interacting with the 

object (grasp), and finally a state defined by returning from the object to the rest 

zone (return).  The progression through these states provided a very stable 

interaction and thus informed how the flow of activity would be defined in the 

software of HAMRR. 

 

3.4.2.10 Avoid Proprietary Solutions 

 

For the task objects, a custom built button and cone were successfully instrumented 

to detect touch of the button or a grasp of the cone.  These objects used capacitive 

touch and pressure sensors which reduced costs and also allowed for easier 

integration with the custom software, as opposed to more proprietary options.  

While these object sensor data streams were not fully real-time integrated with the 

marker data, a significant amount of sensor data from these objects was collected to 

validate instrumented objects in therapy tasks. 

 

3.4.2.11 Use Rapid Prototyping and Open Source 

 

Where possible, rapid prototyping and open source solutions were used in the 

development of AMRR to quicken development time and lower costs.  As discussed, 

the task objects were custom built using low cost sensors.  In addition, open source 
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libraries were used for specific aspects of each software component module.  

However, there are many instances in which proprietary solutions cannot be 

avoided.  OptiTrack cameras, while very expensive and proprietary in the nature of 

how the data can be interfaced with, were used because they provided reliable, 

detailed motion tracking information.  At the time, neither the technology nor team 

knowledge existed to develop a more novel, low cost sensing solution.  Relatedly, 

the goal of AMRR was not to design and implement novel computer vision and 

sensing solutions, but rather to test feedback and interactive training paradigms.  

Therefore, to iteratively design and test these feedback and task ideas, OptiTrack 

was selected as a short-term functional solution to provide the necessary data for 

validation. 

 

3.4.2.12 Design a Modular Architecture 

 

The software design began to show indications that modularity would be the best 

manner in which to progress in the future.  As previously described, the software 

was divided into a motion analysis engine, a feature extraction and master control 

engine, and a feedback engine.  The motion analysis engine was developed for 

Windows because Area and Tracking Tools (the motion capture software used to 

interface with OptiTrack cameras) is exclusively based in Windows.  A program 

called BFMA was developed to listen to the OptiTrack camera data stream and 

output core motion analysis features to be used in later feedback and kinematic 

evaluation.  However, communication flow of the program was not one directional, 
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as it also responded to commands and some calibration information from the 

master control program.  The feature extraction and master control engine, Task 

Control, served as the main GUI (Graphic User Interface) to control any component 

of the therapy experience as well as starting and stopping each component of the 

interactive therapy session.  It was also the core piece that loaded and stored any 

key control data as well as patient data recordings and extracted features.  The 

feedback engines were separated into the Dash-based visual feedback component 

and a Kontakt-based audio component.  Each engine listened to a feature stream 

from Task Control and mapped that information to different aspects of the feedback 

content. 

 

While some modularity was part of the overall AMRR design, the existing 

modularity was limited and did not allow for easy future extensions.  Most likely, 

this modularity was due to leveraging exclusively the strengths of team members 

that built each component of the system.  In addition, the lack of modularity was 

also due to a lack of applying software design principles that stress the need to 

always design for future unknown, yet inevitable, new features and extensions. 

Since OptiTrack cameras could only be interfaced with Windows software, a 

computer running Windows is required.  It then followed that code to extract 

features from the data stream could be composed in Windows, further enforced by a 

team member’s expertise in C++ programming.  However, other members of the 

team were more experienced in feedback design and implementation in MacOS 

programming.  Thus the control and feedback components all needed to run on a 
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Mac machine.  This lead to some development bottlenecks as the majority of the 

team was more familiar with Mac development, and therefore had to rely on one 

particular person to implement the Windows-based feature extraction.  Once this 

team member left, a lag was introduced in getting a new team member integrated 

with BFMA. 

 

Similarly, one person also developed the control component exclusively, and as a 

result, I propose this led to a lack of modularity in the design of Task Control.  

Instead the program became a “catch-all” for any capabilities that were not 

generating feedback.  All of the adaptation, control, motion analysis (especially for 

features that drive the live interaction), feedback feature extraction and archiving 

were all part of one program, with delineation between components that did not 

support easy isolated development or extension.  Therefore, while the program was 

stable and validated many sensing and analysis components, it demonstrated that 

for future development, a more modular approach would be more ideal not only for 

short-term iterative development, but also for long-term research extensions that 

would only be apparent after future testing. 

 

3.5 Transitioning AMRR to the Home 

 

As has been shown, AMRR was a very successful system.  Significant improvements 

were found in both functional and kinematic measures.  The therapist, with some 

training and time using the system, was able to craft individual therapy sessions 
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across a multi-week protocol.  Even given the variations in starting impairments of 

each participant and the different paths used by the therapist, patient 

improvements were found.  

 

The system, both hardware and software, were very stable and demonstrated a 

framework for taking motion capture data and translating the resulting motion 

analysis into auditory and visual feedback.  AMRR also demonstrated the validity of 

many kinematic measures as well as key components to interactive mixed reality 

training. 

 

The next goal was to transition these successes into the home environment for long-

term training (with the ultimate goal to build a system that could eventually support 

multiple months of training).  However, the focus of this next system would need to 

change.  AMRR was designed specifically for component level training under 

constant supervision of the therapist with continual adjustments to the therapy 

completely under the control of the therapist.  This model was not going to work for 

the home.  The combination of long-term training as well as the constraint of 

reduced sensing in a home environment lent more to the goal of higher-level 

training that focused on complex tasks and encouraging regular therapy and 

confidence in using the impaired limb.  While some of the principles and successes 

previously identified in AMRR would be helpful in the home, many aspects would 

need to be redesigned or newly created to address the different training, analysis 

and hardware environment that a home-based system would inhabit.
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CHAPTER 4 

DESIGN AND IMPLEMENTATION OF HOME ADAPTIVE MIXED REALITY 

REHABILITATION SYSTEM (HAMRR) 

In the following chapter I describe the implementation of a Home-based Adaptive 

Mixed Reality Rehabilitation System.  The goal was to transition what the design 

team had learned from the AMRR system into a form that could support long-term 

training with minimal to no supervision.  This required not only rethinking key 

hardware and software components, but also the protocol needed to progress a 

patient through the full system experience.  My work entailed taking the previously 

described contextual research and observations of the AMRR system as well as the 

new goals for a home based therapy system and translate these into a 

comprehensive system design and implementation.   This involved designing and 

building the overall modular software architecture of the system as well as 

designing and building many of the individual plugin modules. I also designed a set 

of therapy protocols that used previously described motor learning and 

constructivist learning principles to create structured, automated therapy sessions. 

Section 4.1 provides further details on the problem statement behind the HAMRR 

design.  Section 4.2 provides details on the design and implementation of the 

system.  Section 4.3 reviews the experiment design, which tested the system with 

eight stroke survivors, each using the system for 15 sessions.  
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4.1 Problem Statement 

 

The goal for HAMRR was to take the experiment tested knowledge and successes of 

AMRR and apply them to a device that could be setup in a minimally supervised 

environment, such as the home, and thus allow for longer durations of training due 

to the device’s convenience.  While there were direct connections to be made 

between the AMRR system and design thoughts of a home based device, there were 

a few big key differences that the design team did not completely have data driven 

evidence for their implementation.  How should the physical system look and be 

built such that it could fit in someone’s home, retain a similar data resolution, yet 

minimize the setup and interface required of a stroke survivor using the system on a 

regular basis?  Also, how does the software need to be designed to support 

automated therapy progressions that utilize minimal user input yet, and at the same 

time, extract kinematic and user data real time and post activity and use analysis?  

In addition to these larger questions, there were also multiple more focused 

research questions from members of the team such as: How do we properly provide 

multi-layered feedback, both from feedback content design and motion data analysis 

perspectives?  How can object interactions be sensed and evaluated within complex 

tasks?  Overarching all of this is the consideration that the development of each 

individual component of the system will require varying degrees of testing, both in 

isolation and in connection with the system as a whole.  How can the system design 

be progressed forward in the face of multiple components being iteratively tested 
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themselves? Therefore, while the team felt fairly certain about some design 

decisions, many modifications had to be made for this new application. 

 

4.2 Design and Implementation of HAMRR 

 

4.2.1 Task Experience Design 

 

4.2.1.1 Vary Level and Type of Supervision 

 

Arguably, the most significant difference between AMRR and HAMRR was the 

change in training environment.  This manifested itself in two ways: a more variable 

home environment and less therapist supervision. 

 

In order to transition to the home environment from AMRR, the physical setup 

needed significant reductions. HAMRR was designed to be a system that could be 

setup in a space, such as the home, for a period of time and then moved elsewhere 

for another patient to use.  These criteria required an experience design perspective 

to be adopted more heavily than in AMRR.  The primary difference between AMRR 

and HAMRR was thinking about physical setup changes in terms of what was once 

permanently setup in a clinical space that would now have to be more contained or 

temporary in the home.  How would the physical design reflect in the regular use of 

a physically impaired user within the variable space of a home living room? 
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It would no longer be feasible to rely on permanent installation of components in 

someone’s home.  In addition, because each home environment could vary, it was 

assumed that any required technology (TV, computer, internet connection, etc…) 

would need to be provided by the system in a self-contained manner. Therefore, the 

overall goal was to provide a table and media stand to the patient. (Figure 7)  The 

media stand contained all of the computation, visual feedback display and optical 

tracking.  The table was custom built with embedded electronics and places for 

smart objects to be placed for each therapy session.  Finally, a specially designed 

chair was also provided, with embedded pressure sensors for coarse torso 

orientation detection.  The chair was created as an attempt to move away from 

using reflective markers to detect torso movement, or at the very least, help filter 

noise from the torso marker data.  While reflective markers can provide very 

accurate spatial measurements, they can be very susceptible to problems due to 

camera occlusion, which can be very likely with severe body compensation.  More 

specific details of the implementation of these components will be discussed later. 
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Figure 7 – The HAMRR system physical setup 
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In addition to designing the physical setup, user experience was also important to 

consider for the change in therapist supervision between AMRR and HAMRR.  

Whereas the therapist was the main source of protocol modifications and 

adaptations, as well as the main interface between the patient and system for AMRR, 

in the home this regular presence would be eliminated.  Therefore, the same aspects 

to the training that the therapist would provide during therapy would have to be 

replaced, or approximated as best possible, in a computational manner.  For 

example, the system would need to drive the therapy (in terms of task sequence and 

dosage) and provide directions and examples for how to complete each task and 

interpret the feedback.  In addition, the setup required to begin and run a therapy 

session would have to be limited to what was easily controllable by a patient with 

minimal outside assistance needed. 

 

4.2.1.2 Task Generalize to Activities of Daily Living 

 

As previously discussed, it was found in testing of AMRR that the connection of 

gains made in therapy to self-perceived changes in ADLs was not significant.  In an 

effort to change this, it was decided to widen the range of complex tasks available 

for training in order to have training tasks that are more similar to complex, 

functional ADL tasks. (Figure 8) This resulted in the introduction of a transportation 

task, in addition to the previous AMRR tasks.  The transportation task required the 

patient to grasp a cylindrical object and move it to a new location, either directly on 

the table or elevated off of the table.  It was hoped that by introducing this new, 
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more complex task and properly integrating it with the other AMRR tasks that a 

better connection of the training to ADLs might be possible.  

 
Figure 8 – HAMRR Objects (Designed by Margaret Duff) that range in complexity 
from: simple reach to touch, reach to slight elevated touch, reach to grasp a cone, 
reach to grasp a cylinder and transport (both supported and against gravity). 
 
 
4.2.1.3 Tasks Integrate Component and Complex Training, Scale in Difficulty, Adapt 

in Challenge and Complexity and Balance Repetition and Variation 

 

The integration of the new complex task in a training protocol was not an 

insignificant problem.  In addition to meeting the previously identified criteria for 

task design, it also needed to be feasible in a minimally supervised environment. 

HAMRR was designed to train and provide unique feedback for three different levels 

of activity, referred to as interaction levels: concurrent and summary feedback per 

single task (supported and against gravity reach to touch and/or grasp and/or lift 

tasks), summary feedback per set of repetitive tasks, and summary feedback for 

complex tasks (transporting an object between two locations). (Figure 9)  The 
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details of the feedback structure and content design can be found in Nicole Lehrer’s 

dissertation. 

 

Further, given the more limited sensing capability and reduced supervision (when 

compared to AMRR), the tasks in HAMRR needed to emphasize more higher-level 

outcomes, by reducing emphasis on movement quality components and increasing 

emphasis on building the patient’s confidence in using their affected limb.  Thus, as 

previously discussed, tasks needed to emphasize training ADL activities, as well as 

long term engagement.  The protocols that could build this high level confidence 

using the tasks and feedback available in the system would be very important. 
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Figure 9 – The visual feedback levels 
 
 
4.2.2 Therapy Protocol Composition Through Iterative Design 

 

Since not enough information was known about how automated adaptation could be 

successfully implemented within HAMRR, pre-composed protocols (or scenario 

paths) were created for the study.  From an iterative design perspective, this would 

allow for the collection of data and testing of semi-supervised training, which is 

important for forming the basis for future automated adaptation design. In order to 

have a basic choice in protocol difficulty (yet simultaneously limit the number of 

possible adaptation decisions), two scenario protocols, or paths, were created.  The 
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difference between paths was the weighting of time spent on against gravity 

transports.  One path put a higher emphasis on training off table transports, while 

the other focused more on on-the-table transports. Thus, even if a patient could not 

complete the off-the-table transport tasks, the on-table transport focused path was 

composed to still give them an opportunity to attempt the task, but did not present a 

large amount of off-table transports in order to reduce frustration. 

 

As will be shown, the exact design constraints for developing a protocol path were 

not known.  Some knowledge gained from the AMRR study, as well as 

interdisciplinary research, formed a basis for many design decisions.  However, 

these protocols were created as a first attempt at designing paths for unsupervised 

training using previously identified contextual research in motor learning and 

constructivist learning. 

 

4.2.2.1 Establish a Flow Back and Forth Between Simple and Complex Tasks 

 

Similar to the musical instruction models previously discussed, the path protocols 

were designed to train tasks in an overall order of simple to complex.  In order to 

accomplish this, first the collection of tasks was ranked in terms of difficulty.  The 

difficulty of a task can be defined by the combination of two factors: manipulation 

type and target location.  The manipulation type can rank from simple reach to 

touch to grasp and transport.  The location ranged from midline to far ipsilateral on 

the table, to midline to far ipsilateral off the table. In addition, because visual 
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feedback is explicit and audio feedback is implicit as well as aggregate, sets of 

reaches with a focus on trajectory feedback were introduced before speed.  And the 

integration of trajectory (Path) and speed (Flow) was introduced before body 

compensation.  In addition, a general rule was established that when new task or 

feedback elements are introduced, they should be introduced in isolation and then 

incorporated with the already established feedback environments and tasks.  Based 

on these larger structural considerations, the tasks could be ordered from simple to 

complex to provide an overall road map to composing a 15-session protocol.   

 

However, within this overarching protocol, a flow was attempted balancing simple 

and complex movements.  For example, in some sessions, a group of objects were 

used that included both a simple flat object and a more complex cone object.  

Therefore during a session, the patient could start practicing with a simple reach to 

touch object and then immediately practice transferring this knowledge to the more 

complex task of reaching to grasp a cone.  Then the protocol would move back to the 

simple reach to touch object to reinforce this connection in a simpler context. 

 

This hierarchy was also important for composing the condensed training sessions 

that comprised the first three sessions.  These first three sessions were designed to 

train the patient and give an overview of the system.  Since some training sessions 

were designed to heavily focus on only a few motor elements with one object, it was 

necessary to introduce the full breadth of the system early on so there was a feeling 

of experiences yet to be encountered after the early, more repetitive training stages 
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of the protocol.  In addition, when introducing someone to a new, complex system, 

some training time is expected.  This training time is in addition to motor learning 

training and relates to understanding how to control the system, complete tasks and 

understand the content of feedback.  Therefore, these first three sessions were 

designed to not only show all of the tasks and feedback environments, but also be 

supervised by a therapist so questions could be quickly answered. 

 

4.2.2.2 Establish Repetition and Variability 

 

Approaches to motor learning stress repetition to reinforce skill acquisition, 

however, variability is also important.  Therefore, the protocol paths were 

composed attempting to balance these two constraints.  Overall, a limit was placed 

that each set could only contain five reaches.  This number was a modification of the 

setup of the AMRR system, which contained 10 reaches per set.  The lower number 

was selected to allow for more opportunities for variability, as system parameters 

are changed in between sets. In addition, a given set (with a selected task type, 

object location and feedback environment) could only be repeated in sequence once.  

If any component of the task was changed (for example, the location was different 

but the feedback environment was the same), then the set could be repeated more 

times.  In this way, repetition was represented in blocks of sets where the amount of 

change was minimal to reinforce practice and learning, but still provide differences 

where the patient has to apply newly acquired skills in multiple contexts. 
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4.2.2.3 Establish Reductionist Hierarchies 

 

The ultimate goal of the training is for patients to be able to self-assess their 

movement and to be able to understand the dynamics of their limb during a 

reaching activity without the assistance of any additional audio or visual feedback.  

In order to accomplish this the patient needs to transition from a media-rich 

environment to a purely physical interaction space.  There are a couple 

considerations for this.  First, the frequency of provided feedback needs to fade over 

time such that the patient does not become overly reliant on the feedback. At the 

same time, feedback content needs to evolve such that less feedback is provided on 

individual motor elements of a movement, and more feedback is given on the overall 

quality of the movement.  As previously discussed, it is important to engage the 

patient in problem solving to support motor learning.  Thus, the patient needs to be 

encouraged to and learn how to self-assess their own movement.  Thus the tasks 

and resulting protocols need to help build skills in which an understanding of 

movement quality during a complex task can be broken down into individual 

elements of the movement.  Therefore, within the tasks, individual elements need to 

be shown in aggregation within a complex task, and conversely, the complex task 

needs to be broken down into constituent components.  The feedback and tasks 

should be structured to establish this connection such that, over time, more and 

more feedback can be provided about the overall quality of the movement, and the 

patient can break down that information, through their own self-assessment, into 

individual motor elements to fix an error in a complex movement. 
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Therefore, much like the musical instruction models previously discussed, the final 

form (in this case a complex task) is always instructed along with the constituting 

elements, such that the aggregation of elements and break down of complex tasks 

can be demonstrated.  As previously discussed, the integration of component and 

complex training is crucial in motor learning.  Therefore, even if the patient initially 

can’t complete a complex transport tasks, the protocols have the patient interact 

with two simple touch objects in sequence to see how motor elements connect to 

this simple task. Then, progressively more complex final forms are introduced.  Over 

time, however, the transition within the protocol between low-level component 

feedback and higher-level quality of movement feedback needs to change.  Initially, 

the protocols needs to be designed such that there is a focus on low level motor 

elements and how these elements can begin to connect together in progressively 

more complex tasks. Later in the training, less emphasis should be placed on 

component feedback and more towards quality of movement feedback.  If the 

reductionist hierarchy has been established correctly, the patient will be able to use 

this feedback to correct their movement along individual elements. 

 

4.2.2.4 Result of Applying Protocol Composition Principles 

 

The first three sessions were envisioned as a training week.  This training week 

represented the first encounters a patient would have with the system.  It was also 

fully supervised by the therapist.  The training week was designed to show most of 

the core interactions with the system, and as a result the breadth of feedback 
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environments, and allow the patient to ask questions of the therapist.  Figure 10 and 

Table 1 provide some overview information on the total composition of each 

protocol.  Figure 11 shows an example of the non-linearity of training that occurs 

during the third week of the protocol. 

 
Figure 10 – The number of reaches in a particular feedback level changed as the 
sessions progressed, such that overall more time was spent in level 3 than level 1 
towards the end of the protocol 
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Table 1. Scenario total reaches overview 

Session 
Level 

1 
Level 

2 
Level 

3 
Midline 
Target 

Midline – 
Ipsilateral 

Target 
Ipsilateral 

Target 

Ipsilateral 
- Far 

Ipsilateral 
Target 

Far 
Ipsilateral 

Target 
1 55 45 0 50 0 50 0 0 
2 50 35 15 35 15 25 0 25 
3 50 30 8 25 8 55 12 0 
4 55 45 0 35 0 30 0 35 
5 60 40 0 45 0 30 0 25 
6 55 35 10 40 10 10 0 40 
7 40 45 15 35 0 40 15 10 
8 50 50 0 55 0 0 0 45 
9 45 45 10 45 0 40 10 5 

10 A 25 50 25 35 25 10 0 30 
10 B 25 50 25 35 25 10 0 30 
11 A 35 50 15 40 0 30 15 15 
11 B 35 50 15 40 0 30 15 15 
12 A 15 45 40 25 30 35 10 0 
12 B 15 45 40 25 0 35 40 0 
13 A 45 35 20 45 20 35 0 0 
13 B 45 35 20 45 0 35 20 0 
14 A 15 45 40 25 40 35 0 0 
14 B 15 45 40 25 20 35 20 0 
15 A 10 30 60 0 0 30 60 10 
15 B 10 50 40 0 0 40 40 20 

Path A represents the transport heavy protocol.  Path B had fewer transportation 
tasks against gravity. 
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Figure 11 – The progression of feedback levels in the training was not linear.  While 
the goal was to use complex task feedback (Level 3) progressively more, when 
introducing a new feedback stream (such as compensation in Day 11), real time 
feedback is increased to help the patient experience the new training 
 
 
What follow is an overview description of each session in the protocol.   Each 

session had an object interaction focus (Touch, Press, Grasp, Transport) as well a 

focus on feedback (Path – Trajectory, Flow – Speed, Compensation).  

 

A & B Day 1 – Touch & Path & Flow 

 

Day 1 was the first day the patient was using the system.  Therefore the simplest 

objects were used in what was thought to be the more simple joint space target 

locations (midline and ipsilateral).  The goal of this training session was to show the 
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real time and post reach trajectory feedback and how they connected together by 

fading between the two.  Then speed was introduced to show its connection within 

the visual feedback.  Finally, Level 2 was introduced, mirroring the way in which the 

real time and post reach feedback was introduced: first Level 2 trajectory feedback, 

then Level 2 audio feedback, and finally Level 2 tasks with both feedback streams. 

 

A & B Day 2 – Touch & Press & Grasp & Comp & Complex Task 

 

The second day of the training week introduces two more complex stationary 

objects: the button and cone.  The session begins with real time and post feedback as 

a reminder of the previous session.  Next compensation is introduced in isolation, 

without any other feedback streams on.  As previously discussed, introduction of 

components is not strictly linear, and new task and feedback components are 

introduced in isolation first.  Next in the protocol, trajectory and compensation are 

focused on in real time and Level 2.  Next, speed is reintroduced with trajectory and 

compensation in real time.  This then progresses to Level 2 with the same feedback 

streams.  Next Level 3 is introduced with two of the simpler objects (virtual object 

and button object).  To conclude the set, the feedback fades back to real time, builds 

up to Level 2 and then concludes with Level 3. 
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A & B Day 3 – Against Gravity and Transport 

 

As the final day of the training week, this session uses the transport cylinder 

exclusively and also introduces against gravity reaches.  Since the task complexity 

has leaped dramatically compared to the last session, each feedback stream is 

reintroduced within the context of the transportable cylinder in a manner similar to 

the first day.  First task completion, trajectory and compensation are shown in Level 

1 and then in Level 2.  Next, speed is introduced followed by a set of tasks in which 

the patient has to lift an object up to a set height and place it back.  Then trajectory 

is reintroduced with the other feedback streams within the lifting task.  Next a few 

Level 2 tasks are introduced to focus on compensation and lifting.  This culminates 

in the first transport task of moving the object between two on-the-table locations. 

 

The remainder of the session is used to introduce against gravity reaches and 

transport tasks.  The sets begin with task completion, then trajectory and speed, and 

then introduce compensation in real time to a fixed off the table object.  Then Level 

2 is introduced for against gravity reaches followed by an against gravity 

transportation task. 

 

A & B Day 4 – Touch and Path 

 

Day 4 represents the first session of unsupervised training, as a result the task and 

feedback complexity is reduced significantly from Day 3.  For this day, the goal is to 
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spend time focusing on trajectory, both in real time, post reach and Level 2 for the 

simplest object: the virtual object.  Feedback streams are introduced in real time 

feedback and fading to Level 2 is interspersed. 

 

A & B Day 5 – Touch & Path & Flow 

 

Day 5 followed a similar task design as Day 4, but introduced speed feedback and 

showed its connection to trajectory in real time.  Interspersed were Level 2 sets in 

which speed was focused on exclusively. 

 

A & B Day 6 – Press & Path & Flow & Compensation 

 

Day 6 introduced a slightly more complex object: the button.  The first goal of this 

session was to show the connection of trajectory and speed in real time feedback as 

well as Level 2.  The second goal of the session was to introduce compensation 

feedback both in real time and Level 2 in conjunction with trajectory and speed 

feedback.  After fading between real-time and Level 2 for a few sets, a Level 3 task 

between the button and virtual object was introduced for the last two sets of the 

session. 
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A & B Day 7 – Grasp-Cone & Path & Flow 

 

Day 7 introduced the first intensive training day that required a grasp of a cone.  

Therefore, the initial sets just focused on task completion of grasping the cone, both 

in real time and in Level 2.  This was done to train in real time what is required for a 

successful grasp, and immediately connect this to sets in which task completion 

feedback would not be given in real-time.  Next trajectory was introduced within 

this task, both in real-time and Level 2.  Then speed was introduced, both in real-

time and Level 2.  Then a more complex Level 3 task was introduced between a cone 

and virtual object.  Once two sets of this Level 3 task were completed, a quick fade 

progression ended the session where a set of real time, Level 2 and Level 3 were 

utilized. 

 

A & B Day 8 – Grasp-Cone & Path & Flow & Compensation 

 

Day 8 continued with tasks that involved grasping the cone and introduced body 

compensation.   This day primarily utilized Level 2 feedback with an initial block of 

sets at the beginning of the session with real time feedback to reintroduce the 

patient to the training and feedback streams. 
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A & B Day 9 – Grasp-Lift & Path & Flow 

 

Day 9 increased the task completion complexity by utilizing the cylindrical lift 

object.  However, since this was the first full session with this object, it was kept 

stationary.  Also due to the task complexity jump compared to the last session, the 

real time feedback was reintroduced.  The first sets focused on task completion 

exclusively, both in real time and Level 2.  Then trajectory and speed were re-

introduced, first in real time and then in Level 2.  This fading was completed in two 

blocks, first at the ipsilateral location and then at the midline location.  To conclude 

the set, an on-the-table transportation set was introduced, followed by a quick fade 

from real time, to Level 2, ending the session with another on-the-table transport 

task. 

 

Day 10 

 

Day 10 was the first point at which the two paths split in day-to-day differences. 

 

Path A – Grasp-Lift & Path & Flow 

 

Day 10 for Path A continues with the lift object and introduces a non-transport Level 

3 task with the object.  The first part of the session fades between real time and 

Level 2 feedback for both trajectory and speed to reestablish this connection in the 
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more complex joint space of the far ipsilateral target.  The second main part of the 

session fades between Level 2 and Level 3 with a non-transport task used in Level 3. 

 

Path B – Grasp-Cone & Path & Flow 

 

Day 10 for Path B is very similar to Path A, except it uses the cone in place of the 

transportable cylinder object.  The order and selection of feedback environments is 

the same, only the object used is different.  This was done as establishing fading 

between Level 2 and Level 3 for a more complex object interaction was still 

important.  However, for the simpler task, a simpler grasp interaction with the cone 

is used. 

Day 11 

 

Path A – Grasp-Lift & Path & Flow & Compensation 

 

Day 11 for Path A continued from Day 10 by keeping the transportable cylinder as 

the main task object, and this time introducing compensation feedback in all levels. 

 

Path B – Grasp-Cone & Lift & Path & Flow & Compensation 

 

Day 11 for Path B had the same task sequence and feedback environments as Path A 

for Day 11, however, one of the lift objects was replaced with a cone.  That way 
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during the session, a break could be provided from having to grasp the cylindrical 

object, but still use the overall relatively more complex cone object. 

 

Day 12 

 

Path A – Grasp-Lift & Path & Flow & Compensation & On-Table Transport 

 

Day 12 for Path A was an on-the-table transport intensive day.  The session begins 

with a few sets of real time feedback tasks.  However, the session is mainly spent 

fading between Level 2 tasks and Level 3 transportation tasks. 

 

 

Path B – Grasp-Cone & Lift & Path & Flow & Compensation 

 

Day 12 for Path B is structured relatively similar to Day 12 for Path A except a cone 

object is used in place of the midline transportable cylinder.  Also, where Path A had 

full on-the-table transport tasks, Path B has non-transport Level 3 tasks between a 

stationary cylinder object and a virtual object.  However, the amount of time spent 

in each feedback environment is the same as Path A. 
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Day 13 

 

Path A – Transport Off of the Table 

 

Day 13 for Path A represents the first time off of the table transports have been 

introduced since the training week sessions.  Therefore, first, trajectory and speed 

are focused on in some initial Level 1 and Level 2 tasks.  Then, compensation and 

lifting tasks are introduced for both off table and on the table locations.  The session 

ends with some transportation against gravity sets and a few break sets with on 

table lifting. 

 

Path B – Transport On Table 

 

Day 13 Path B has the same overall structure as Day 13 Path A, however instead of 

transporting against gravity, these tasks are replaced with transports on the table 

instead. 
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Day 14 

 

Path A – Transport Off Table 

 

Day 14 Path A begins with some sets of on the table lifting tasks, both in real time 

and in Level 2.  The remainder of the session fades between transportation tasks 

against gravity and Level 2 against gravity tasks. 

 

Path B – Transport On and Off Table 

 

Day 14 Path B is structurally very similar to Day 14 Path A, however some of the 

against gravity transportation tasks are replaced with on the table transport tasks 

instead. 

 

Day 15 

 

Day 15 Path A is primarily comprised of transportation tasks against gravity 

between the midline and far ipsilateral location.  The initial sets feature some real 

time and Level 2 feedback as warm up tasks, but the remainder of the session is 

primarily focused on transportation against gravity. 

 

Day 15 Path B is structurally similar to Day 15 Path A, however some of the 

transport against gravity tasks are replaced with lifting tasks or Level 2 tasks. 
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4.2.3 Hardware Design 

 

4.2.3.1 Select Hardware and Software Solutions Based on Features to Track 

 

The core idea, from an input/output perspective, of AMRR and HAMRR was similar: 

track patient movement, extract kinematic features, and provide feedback based on 

those features. 

 

In the early stages of the design, based on a review of AMRR, we knew the key 

components of a movement to track were endpoint location, torso orientation and 

object manipulation.  Secondarily, if possible, it would be beneficial to consider the 

wrist rotation and elbow angle.  Similar to AMRR, these features would need to be 

assessed in real time as well as over blocks of time. Since HAMRR needed to have a 

much smaller hardware installation footprint with an emphasis on easy system 

setup, the movement features captured by HAMRR were limited to the higher-level 

categories of hand spatial and temporal performance, torso compensation and 

object manipulation. 

 

4.2.3.2 Avoid Proprietary Solutions 

 

As previously discussed in the review of AMRR, OptiTrack, while capable of 

providing real-time detailed motion tracking, is very expensive.  In fact, it is one of 

the largest financial costs of the system.  In addition, from a more logistical 
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perspective, it is challenging to setup and requires a knowledgeable person to 

calibrate the cameras.  Therefore, some lower cost, more open sourced solutions 

were considered in HAMRR’s design process.  Initially the focus was spent on video 

camera tracking of a glyph worn on the hand of the user.  However, the computer 

vision knowledge of the team was lacking and we quickly ran into many problems of 

video frame rate and occlusion, which did not provide the resolution of features we 

required for movement analysis.  As a result, given the confidence of the team in 

reflective marker tracking and the desire to focus on testing unsupervised training 

(not novel tracking solutions), the physical setup was designed such that OptiTrack 

cameras could be mounted on a provided stand and the number of trackable 

markers was reduced down to a single marker worn on the wrist. 

 

Similarly, coupled with the initial desire to remove OptiTrack sensing, the torso 

tracking was initially designed to be handled by a combination of the Kinect camera 

and a pressure sensor system embedded in the patient’s chair.81 However, as testing 

continued with the Kinect, it was found that the torso tracking was inconsistent in 

its noise and stability in tracking the upper body of someone sitting at the system.  It 

was hypothesized that because the Kinect could not see the legs of the user (due to 

them being covered by the table), the Kinect had trouble tracking the body frame.  

Therefore, an iterative design decision had to be made late in the development cycle 

to remove the Kinect tracking as it was not reliably providing the resolution of data 

that would be required to successfully test the efficacy of unsupervised therapy.  

Again, based on team confidence and knowledge of OptiTrack, a marker-based 
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solution was quickly substituted, that while slightly increasing the complexity of 

system setup (the stroke patient would not be able to put a rigid body marker plate 

on their left shoulder consistently without someone else’s help), it did not require 

the addition of any more hardware: it could use what was already available and 

provide detailed data. (Figure 12)  Again, due to the priority to test unsupervised 

training and not novel sensing solutions, this was deemed a reasonable design 

decision to make. 

 
Figure 12 – Torso rigid body used in HAMRR system 
 

4.2.3.3 Use Rapid Prototyping and Open Source 

 

HAMRR further utilized rapid prototyping beyond what was seen in AMRR.  

Through the work of Margaret Duff, a collection of objects with similar core 

hardware and physical structural design components were created. (Figure 8) 

These objects could be used for simple reach to touch, reach to slight elevated touch, 
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reach to grasp, reach to grasp and lift and reach to grasp and transport.  Each object 

had a common structural base and electronics connection, and in conjunction with 

three custom object sockets arrayed in the table, any object could be swapped 

across positions for a variety of training scenarios.  Each object was built with a 

combination of 3D printing and low cost sensor and microcontroller solutions.  This 

allowed for quick prototypes to be mocked up in the design process as well as quick 

manufacturing of multiple copies of each object. 

All of HAMRR’s code, as will be discussed, was custom designed combing significant 

new code with verified code components of AMRR and open source libraries.  

 

4.2.3.4 Design a Modular Architecture 

 

In the AMRR system, two computers were utilized: one to run OptiTrack’s software 

and generate motion analysis features, and the other to run the experience, generate 

high level evaluations and generate the feedback.  However, to reduce the footprint, 

an iMac computer was selected for HAMRR that would run all of the tracking, 

analysis and feedback generation on the same machine.  One of the hurdles that 

needed to be overcome in this solution is that OptiTrack software only runs on 

Windows, and all other software developed by the team is based in Mac OS.  Initially, 

the OptiTrack cameras were run on a Windows virtual machine.  However, many 

issues were found with this solution, which impacted all of the analysis and 

feedback generated by the system. Eventually, the OptiTrack system needed to be 

moved to an exclusive Windows machine.  Therefore, a Mac Mini, boot camping 



 87 

directly to Windows, was selected due to its small size and relatively low cost 

addition. (Figure 13)  Since such a heavy investment was placed on the OptiTrack 

sensing solution, a decision to ensure the data was clean was extremely important. 

 
Figure 13 – HAMRR was originally designed to all run on one system.  Eventually, 
motion capture was run on a Windows BootCamp on Mac.  All other analysis and 
feedback was handled within modules of HAMRR, except the RVR video recording 
tool. 
 

4.2.4 Design Modular Software Architecture and Plugin Components 

 

Instead of taking the AMRR system code and purely modifying it for new needs, the 

code was designed with a new architecture in mind.  The goal was to make the 

architecture modular.  As seen in previous engineering design research, designing 

products to be modular allows for “economy of scale, increased feasibility of 

product/component change, increase product variety, reduced order lead-time, 

decoupling risk, ease of product diagnosis, maintenance, repair and disposal.”81All of 

these have analogs in the HAMRR system design consideration.  As previously 

described, all stroke patients are different and system designs need to be able to 

quickly react to unforeseen needs or limitations, in an iterative manner, without 
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impacting the core experience.  Similarly, when system bugs occur (which is an 

inevitability when testing new hardware and software in a variable environment), 

components can be isolated and repaired in parallel in a straightforward manner.  

The design of modular, iterative code with the expectancy of future change is in line 

with the software design principles previously discussed.  In order to design a 

modular architecture, modules need to be identified based on “similarity between 

physical and functional architecture of the design and minimization of incidental 

interactions between physical components.”82Therefore, a functional decomposition 

of the problem was done to identify which modular components could be created. 

 

4.2.4.1 Create a Hierarchy Architecture with Established Fundamental System Flow 

 

The functional decomposition was broken down first based on the flow of 

information: how information would be received, how it would be processed and 

finally how it would be output. (Figure 14) 

 
Figure 14 – General functional decomposition of HAMRR 
 

 

Inputs 
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Inputs represent the information that is sensed from the environment, patient and 

therapist.  In the case of HAMRR, the inputs were motion capture data from 

OptiTrack’s TrackingTools, touch and pressure data from the tangible objects used 

in each task, pressure data from the array of sensors on the back of the chair, and 

touch data from the embedded buttons in the table. 

 

Analysis 

 

Analysis covers the operations that integrate the inputs in an appropriate, time 

synchronized fashion, and extract varying levels of features, based on the desired 

type of analysis and varying time resolutions. 

 

Outputs 

 

Outputs represent where the results of analysis need to go.  This includes all of the 

information that is presented to the patient and possibly observing therapist 

through the audio and visual feedback, as well as the archiving of data for later 

analysis. 

 

 

 

Control 
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Finally, there is a necessary component to control all of the other modules.  It serves 

as the main interface to translate therapist goals as well as therapy protocols into 

system parameters that dictate the behavior of all other sub components.  It 

controls the flow of input data, the manner in which data is processed and archived, 

and the sensitivity of feedback mappings.  This module also provides the main user 

interface for a controller or therapist to reach all of the underlying system 

parameters and sensitivities to make changes on demand if needed. 

 

4.2.4.2 Connect User Experience Design to Modular Code Design 

 

In addition to the functional decomposition of the core, unique code modules that 

would require implementation, another layer that wraps on top of the previous four 

points needs to be considered: user experience.  The previous four points primarily 

consider the system internal connections between hardware and software, but 

creating an appropriate user experience that fulfills the previously described design 

constraints is also important. 

 

The need to integrate user experience considerations with software design is an 

example of where the Toyota set-based design approach can be very helpful in INR.  

A solution for the design of the software and experience using the system exists at 

the intersection of these two design criteria.  They cannot be approached in isolation 

or in series, but rather should be iterated on as an integrated approach. 
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4.2.4.2.1 Design Required System Inputs for Controls so User Interactions are 

Minimal Yet Complete 

 

It was a crucial design consideration to keep the patient required inputs or 

interactions to a minimum, due to the varied physical impairment of each 

participant.  Therefore, the core idea was to have the patient adjust their own chair 

(which was light and had appropriate numerical markings on the floor for where the 

chair should be located), sit down in the chair, place on an elastic wristband with the 

single reflective marker (much like a wrist watch), receive assistance in placing a 

rigid body torso marker place below their left shoulder, and run through an entire 

automated therapy session.  It was decided to provide the patient with assistance 

for the torso plate, as well as configuring the system before therapy because the 

primary goal was to collect clean data for answering the larger training research 

questions.  Also it was assumed that in most cases, a patient would have the 

assistance of a spouse, family member, or friend to help with these steps if they 

were not automated in the future. 

 

Given this core experience, the hardware and software had to be designed 

accordingly.  In terms of inputs, this required that the system be able to constantly 

monitor the quality of the marker input and stop the interaction and notify the 

patient (with a prompt for correction) if the data was prohibitively noisy.  This was 

also true for the transportable object.  The system would need to be aware of where 
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the object was in the space of the table and be able to notify the subject if the object 

was in the wrong location with instructions for correction.  Similarly, at the start of 

each session, the system should check each object socket to determine if the objects 

for a given session were correctly configured, and provide any needed instructions 

for correction.  Also, the patient should have full control of the ability to take a break 

between sets.  Therefore the software would have to translate input from the two 

table buttons (Figure 15) to commands such as: start the next set, play the next 

demo or replay the previous demo.  In this way, the required input was kept to a 

minimum, but full control was given to the patient. 

 

 
Figure 15 – Table buttons used within HAMMR to control progression through the 
onscreen instructions as well as to release objects from the table sockets 
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4.2.4.2.2 Design Feedback that Support and Engage Long-Term Constructivist 

Learning Experiences 

 

The connection of the analysis and the user experience primarily provided 

constraints for the feedback design.  As this was the work of Nicole Lehrer with 

Todd Ingalls, it will not be presented in detail here.  However, the goal was to 

convey the results of analysis in an intuitive, constructivist manner as previously 

discussed. 

 

4.2.4.2.3 Design System State Feedback for the User to Understand their Inputs and 

Choices 

 

While the user experience outputs heavily focused on the design of the feedback, it 

also required considering what additional information would be important to give 

to the patient as they are progressing through therapy. 

 

As previously discussed, the system would need to interrupt an interactive set to 

report to the subject when errors were encountered, with proposed solutions.  In 

addition, given the variability of training across sessions, it was also important to 

provide the patient with some sense of the overall progression about how far along 

in a given session they were at the completion of a set. 
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4.2.4.2.4 Design a Control Component that Automates the Experience with Minimal 

Input 

 

As previously discussed, the patient should have full control of the ability to take a 

break between sets.  Conversely, there was no need for the patient to control any of 

the minute details of the system level parameters, and therefore these sensitivities 

were wrapped up as part of the system automated control. 

 

 

4.2.4.3 Translate Functional and User Experience Design Decomposition into 

Modular Code Plugins 

 

The high level functional decomposition begins to identify where dividing lines 

between modules exist.  However, there are further functional differences that can 

be isolated.  These functional differences need to be identified in order to support 

faster developed and more maintainable software solutions.  By modularizing the 

code into plugins, functionally, the code can be more easily separated by the 

designer and thus extended into different directions.  However, by utilizing a 

modular design and integrating software design principles that stress flexible, yet 

stable architectures, the code can be developed and tested faster as well as be more 

maintainable, which is crucial in iterative design cycles. 
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The application of software design approaches resulted in creating a series of 

plugins. (Figure 16)  Due to the nature of the DASH interface, writing individual 

plugins that can be loaded on demand was a natural design direction and therefore 

supported the creation of functionally unique plugins.  The DASH plugin structure 

was chosen based on team familiarity with Objective-C, and primarily because 

significant work had already been done to create visual feedback through DASH, and 

therefore to save development time, all of the modules were written as DASH 

plugins.  For more detailed information on each plugin, including class-level 

descriptions of the code, refer to Appendix A. 

 
Figure 16 – Plugin Decomposition Diagram 
 

Inputs 

 

4.2.4.3.1 Sensing Plugin 

Design and Implementation by Michael Baran, using an OptiTrack parsing library 

from Joseph Junker 
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The Sensing Plugin receives raw camera frames from OptiTrack and extracts the 

inside marker data for both individual markers and rigid bodies.  It also receives the 

data from the chair sensor system and button selection input from both the system 

dialog buttons and object release buttons.  All of the collected data gets stored into 

data objects that are sent out to other plugins and archiving. 

 

 

 

4.2.4.3.2 Tangible Plugin 

Design and Implementation by Michael Baran, using data parsing functions by 

Margaret Duff; All original tangible object code by Margaret Duff; Modifications by 

Assegid Kidane and Michael Baran 

 

Similar to the Sensing Plugin, the Tangible Plugin is the main handler for all of the 

smart objects that are used in interactive therapy sessions.  It has interfaces for all 

outgoing messages to the objects and parses incoming sensor data into data objects 

for other plugins to use.  It also controls, through specific outgoing commands, all 

the cuing of visual feedback within the objects.  The smart objects themselves are 

programmed separately through the Arduinos.   The Tangible Plugin code is 

structured such that all of the smart objects types have similar interfaces so that 

modularity could exist within the Tangible Plugin, which would simplify future 

integration of new objects. 
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When testing the integration of marker data (from the Sensing Plugin) with the 

tangible data (from the Tangible Plugin) it was found that if the tangible data was 

sampled at the same rate as the cameras, oversampling would occur.  Therefore, the 

Tangible Plugin was designed to respond to the Sensing Plugin, such that the 

tangible data is sampled at a fractional rate of the cameras. 

 

 

 

Analysis 

 

4.2.4.3.3 Motion Analysis Plugin 

Design by Michael Baran 

Implemented by: Rajaram Singaravelu and Michael Baran, using analysis functions 

from Yinpeng Chen and Long Cheng 

 

The Motion Analysis plugin is the main data engine that performs all the analysis 

and feature extraction.  It has various engines for analysis based on the type of task.  

Each engine is similar in that they use similar or the same feature calculations.  

However they differ in how each reach is divided into states. These reach states 

were based on the divisions of a reach previously tested in the AMRR system.  

However, some modifications needed to be made for the new types of tasks (blocks 

of reaches without feedback and tasks involving the movement of an object). There 



 98 

is an analysis engine for real time, post reach, post group of reaches and post 

transport of an object.  There are also smaller variants of these specific for recording 

test data, either with a patient or non-impaired user, which removes the feedback 

interaction. 

 

Within each of these engines, wrist and torso marker, chair pressure data and 

tangible object data is received.  Frame level and task level kinematics and features 

are calculated, and these results are stored into a collection of data objects.  The 

objects are then routed to the visual feedback, audio feedback and tangible plugins 

for all of the feedback to the user, as well as to the archiving plugin for storage. 

 

The Motion Analysis plugin also handles all of the reference trajectories and speeds 

for a particular object location or transportation task.  In addition, the Motion 

Analysis plugin collects the marker calibrations for both the wrist and transportable 

object location and has a separate GUI interface to control the collection of 

calibrations.  The plugin loads the existing calibrations based on a subject ID and, 

within the GUI, shows the user which of the objects currently have existing 

calibrations, thus helping in identifying which calibrations need to be completed.  As 

will be discussed later, this GUI was a later addition to the design of the Motion 

Analysis plugin to aide physical therapists running the system on their own. 

 

Outputs 
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4.2.4.3.4 Audio Feedback Plugin 

Design and Implementation by Todd Ingalls 

 

The Audio Feedback plugin handles all of the audio presented to the user, except the 

narrated demos.  It provides real time, post set, and post transport task feedback to 

the user based on the analysis received from the Motion Analysis plugin.  The details 

of the code design will not be discussed here, as it was solely the work of Todd 

Ingalls. 

4.2.4.3.5 Visual Feedback Plugin 

Design and Implementation by Nicole Lehrer 

 

The Visual Feedback plugin handles all of the visuals presented to the user, 

including on screen instructions and demos. It provides post task, post set and post 

transport tasks feedback to the user based on the analysis received from the Motion 

Analysis plugin.  The details of the code design will not be discussed here, as it was 

solely the work of Nicole Lehrer. 

 

4.2.4.3.6 Archiving Plugin 

Design by Michael Baran 

Implementation by Rajaram Singaravelu and Loren Olson 

 

The Archiving Plugin saves all received data objects to an SQLite database.  Initially, 

the Archiving Plugin was written to save data to binary data files as well as text files.  
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This was based off of the AMRR model for archiving data.  While this was a good 

start, it required a dual file format save, as the binary file format required a specific 

program to open, where as the text file could be read more easily by other 

applications.  To remove this duplication, an SQLite database format was adopted 

which would allow for structurally organized data tables that could be opened and 

previewed much faster.  This helps in quickly looking at data during iterative testing 

and removes any necessary programming to open a binary file and parse the data. 

 

The Archiving Plugin used the user, session and set id as the main index. It saves the 

marker calibrations, all data frames from real time and post task analysis, and the 

raw tangible data frames.  It also queries an existing database file at the start of the 

program to determine which set to begin with for a given session Id.  This ensures 

that if a session needs to be restarted no sets will be incorrectly repeated.  This 

decision was made from an iterative design and software design perspective that 

the code is experimental and will encounter weeks of patient use that it had not 

previously.  Thus unforeseen problems may be a possibility and In order to recover 

from and diagnose these problems quickly, the system needs to have a basic 

memory of the progression of the patient session, where the problem occurred 

along that progression, and where to resume the session upon startup. 

 

Control 

 

4.2.4.3.7 Adaptation Plugin 
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Design and Implementation by Michael Baran 

 

The Adaptation Plugin serves as the main control for the system, both internally 

within the overall architecture and externally for the user though a GUI.  It loads an 

XML file, which contains all the high level parameters and sensitivities settings for a 

given set within a session.  Originally, similar to early Archiving Plugin design, these 

settings were saved in binary data files.  As previously discussed, while this initial 

design worked, the binary files could not be easily or quickly edited.  Therefore, the 

more transparent and better hierarchical structure XML file format was used for this 

application.  Similar to the use of SQLite, XML could be opened by numerous 

applications and thus could be edited and created very easily. 

 

The Adaptation Plugin takes the XML file held sensitivity values and loads them into 

a data object and this information is broadcasted out to the plugins that need the 

information.   For example, the sensitivity of the trajectory zones are loaded and 

sent to the Motion Analysis Plugin. In addition, it also serves as the main controller 

for the demos presented to the user.  The plugin keeps track of which demos have 

been played to the user as well as when enough feedback attributes change between 

sequential sets that the user needs to be presented with a specific demo before the 

next set begins.  The GUI allows for manual control of any aspect of the task and 

feedback, including sensitivity parameters for all feedback mappings, and contains a 

manual start and stop control. 
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Adaptation Plugin GUI 

 

The Adaptation Plugin GUI serves as the main GUI for the use of HAMRR.  It is 

divided into three main panels and a header. 

 

 

 

 

Header 

 

The header (Figure 17) shows an overview of which set is currently being run or 

about to run.  It gives an indication of the Subject ID, Session ID, Set ID and Trial ID 

(during a set).  This is provided in order to ensure the correct scenario XML file has 

been loaded as well as to know where exactly the patient currently is within a 

session and set. 
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Figure 17 – Panel 1 of Adaptation GUI 
 

The header also contains a button to load XML scenario files. 

 

Panel 1: Main 

 

Panel 1 is the main panel for controlling the system.  At the top are three data state 

indicators for the OptiTrack data, Kinect data and Chair data.  These provide color-

coded status updates to a system controller on the state of each data steam.  Also 

provided is a touch/grasp indicator.  This indicator shows if the object is being 

touched or grasp.  It was provided as a way to troubleshoot if the patient is 

interacting with the object correctly or if an object is not functioning correctly. 

 

The Main panel also has a pull down tab to select a specific set from the scenario file.  

This provides manual control to skip or repeat a set as needed. 
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In the center of the main panel are the main start and stop buttons.  These are 

manual controls that are used if the system controller wants to manually stop or 

start a set.  Normally, the Adaptation Plugin automates this process. 

 

Below the main Start and Stop buttons are pull down tabs for the tangible object 

ports (left, middle, right and transportable object receiver).  These pull down tabs 

are not active, but rather show the ports that are currently in use for that particular 

session.  As discussed in more detail in Appendix A, it was decided for port opening 

and closing safety to fix the port to a particular object once the XML session file was 

loaded.  However, these pull down tabs were originally intended to provide the 

system controller with the ability to swap different objects at a particular location 

during the session without restarting HAMRR.  A further discussion of this design 

will be discussed in a later section. 

 

At the bottom of the Main panel are a series of one off controls.  These buttons play 

the study intro video, play the target insertion demo video, and play the target 

location setup screen.  There are also controls to skip or replay demos, duplicating 

the functionality of the table buttons the patient uses.  Finally, there are two check 

boxes to turn all demos off or force all demos to use prompts.  This was provided as 

a way to recover from a crash restart quickly.  When the system restarts, it does not 

have a memory of which demos have been completed, therefore it will by default, 
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play all of the full-length walkthrough videos.  To skip this, the control to force only 

text demo prompts to be used can be selected. 

 

Panel 2: Detail 

 

Panel 2 (Figure 18) provides access to some of the detailed system parameters that 

are part of a selected set.  All the controls are grouped into boxes of similar type and 

function. 

 
Figure 18 – Panel 2 of Adaptation GUI 
 

The Scenario Control box has all of the highest-level controls (they are also all of the 

features within the ADScenarioData object).  Through these controls, task and target 

parameters can be adjusted as well as feedback streams and coarse sensitivities. 

 



 106 

The Motion Analysis Constants box gives access to the parameters that are more 

constant and do not change across patients and sessions. 

 

The Trajectory box shows all of the detailed sensitivity parameters that are related 

to spatial aspects of the tasks, including rest zone, grasp zone, and trajectory zero 

zones and hulls. 

 

The Speed box shows all sensitivity parameters related to the speed aspects of the 

task. 

The Grasp box shows all of the sensitivity parameters that are related to object 

interaction and determining if the object interaction is a success. 

 

The Torso box shows all of the sensitivity parameters related to torso compensation 

analysis.  It has sensitivities for interpreting both OptiTrack data as well as chair 

sensor data. 

 

Panel 3: Level 2 and 3 

 

This final panel (Figure 19) holds all of the sensitivity parameters for Level 2 and 

Level 3 classifier analysis.  Within each level, the parameters are grouped into 

spatial and temporal features.  
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Figure 19 – Panel 3 of Adaptation GUI 

 

 

4.2.4.3.8 HAMRR Hub 

Design by Loren Olson and Michael Baran 

Implementation by Michael Baran 

 

The hub acts as the main connection between the plugins so that the Adaptation 

Plugin’s protocols can reference the appropriate plugins.  It is also the last plugin to 

load, and therefore triggers further start up functionality of the Adaptation Plugin to 

begin a session. 

 

4.2.4.4 Design Tools for All Users of the System 
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In addition to the core HAMRR software architecture, additional tools were required 

for the other users of the system.  As previously described, INR system are 

inherently complicated because they have multiple unique users with specific 

interests and correspondingly different required information.  While the previously 

discussed plugins address primarily the needs of the patient in terms of their use of 

the system and receiving appropriate feedback based on their performance of a 

task, the therapist and system design also need to assess how the patient is 

progressing as well as the effectiveness of the system.  Thus, in INR, modular 

components of the system should be identified to address the needs of both the 

therapist and system designer, which I identified as a means to compose therapy 

sessions and analyze recorded patient data. 

 

4.2.4.4.1 HAMRR Composer 

Design and Implementation by Michael Baran 

 

As previously discussed, all of the HAMRR scenarios are composed as XML files.  The 

HAMRR composer program was written as a simple interface to compose scenario 

files. (Figure 20)  New sets can be added and undesired sets can be removed.  Within 

each set, feedback streams, target types, and task sensitivities can be changed.  Due 

to the modular nature of the sensitivity hierarchy structure, this program could 

easily be extended to offer suggestions and pre-compose parts of a scenario file 

based on certain rules or other inputs. 
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Figure 20 – HAMRR Composer Interface 
 

4.2.4.4.2 HAMRR Analysis Program 

Design by Michael Baran 

Implementation by Michael Baran, using some functions by Rajaram Singaravelu and 

Yinpeng Chen 

 

The HAMRR Analysis program was written to open data from the database and 

perform offline analysis.  It allows for viewing of the data as well as filtering noise 

found in the wrist marker or torso marker data. (Figure 21)  Each set of reaches can 
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be segmented and passed through all of the computational analysis of HAMRR. Many 

of the functions are extensions of code written by Yinpeng Chen, but significant 

modifications were made to extend the code to HAMRR’s data structure, as well as 

incorporate new calculations that were not completed in the AMRR study. 

 
Figure 21 – HAMRR Analysis Interface 
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4.3 Design of the Evaluation of HAMRR 

 

4.3.1 Patient Evaluation and Related Design Principles 

 

4.3.1.1 Assessments for INR Need to Integrate Functionality and Movement Quality 

 

Previous testing with the KIM only incorporated repetitive movements of reach to 

touch and reach to grasp in a very marker rich space with constant supervision.   

However, HAMRR was being designed and built to exist in a very different context, 

which would be much more variable and possibly noisy, due to reductions in 

supervision and detailed sensor based data measurements.  Therefore, it was 

hypothesized from the beginning of the HAMRR design process that it would be 

more difficult to work on detailed lower level features in the home, compared to the 

hospital. 

 

However, it was still of primary importance to focus on the connection between 

hospital based training and ADLs, and seeing where the HAMRR system could fit in 

that ecology.  As previously discussed, due to the type of sensing and supervision, 

HAMRR was designed to place emphasis on higher-level outcomes, such as 

confidence in using the limb and long-term engagement with therapy. Many of the 

kinematic measures from AMRR were used again in HAMRR, including those that 

measured end point and torso information.  However, new measures needed to be 
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created for the assessments of groups of reaches and complex tasks that HAMRR 

introduced and utilized heavily in training sessions. 

 

4.3.1.2 Integrative Assessments Should be Achieved Through Combining Kinematics, 

Therapist Ratings and Validation by Clinical Measures 

 

Preliminary spatial and temporal category based classifiers were created for 

kinematic based assessment of groups of tasks as well as complex tasks.  The 

categories were identified based on therapist input on whether the categories were 

discrete enough and therefore did not significantly overlap in terms of their 

evaluation meaning. 82 Again, from an iterative design perspective, since the validity 

and efficacy of these new classifier-based approaches are not known, they were 

designed with previously discussed motor learning principles in mind and tested 

among the design team.  However, part of the experiment would be to see how 

successful the classifiers were in assessing patient movement by assessing 

correlations with clinical results and therapist ratings.  If these assessments were 

found to have strong correlations with established clinical scores and therapist 

ratings, then they become very valuable tools for automated assessments and 

protocol adaptation. 

 

In order to collect therapist ratings, Nicole Lehrer developed an iPad app to allow 

the therapist to record video of the patient using the system, and rate them 

(according to provided instructions) at their convenience.  In addition to recording 



 113 

the video, the therapist would also select a few videos during to create a weekly 

narrative to review with the patient their progress during the study. 

 

4.3.1.3 Assessments Need to be Associated with ADLs 

 

At this stage in the development of HAMRR, complete focus was given to designing 

the main system and ensuring that the system was usable by both patients and 

therapists.  Therefore, home based sensing of ADLs was not explored.  However the 

iPad app had the therapist walk through a questionnaire with the patient to 

ascertain feedback on how the patient perceived any effect on the use of their 

impaired limb.  While this is still not the ultimately objective measure desired, the 

questionnaire would still provide a basic sense of the patient’s perspective on using 

the system and its possible benefit. 

 

4.3.1.4 Tasks Need to be Designed for Regular, Isolated Assessment of Progress 

(Both Patient and System) 

 

Using the previously identified principles, it is important to design components of 

the system that can gather regular assessments for both the patient, therapist, and 

system designers. Expanding upon the previously discussed design for the scenario 

protocol paths, a few sessions were also included within each protocol for purely 

evaluation purposes.  These sessions collected both clinical score and kinematic 

measures. 
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1. Pre-Test: The pre-test was administered first at the very start of the study 

2. Post-Test: The post-test was administered at the completion of the 15-

session path 

3. One Month Follow Up Test: The one-month follow up test was 

administered within 1 month of the post-test. 

 

During each of these tests, the following tasks were conducted: 

 

1. Reach to grasp and midline cone (a trained task) 

2. Reach to grasp and transport a cylindrical object over a barrier between 

the midline and far ipsilateral location (a semi-trained task) 

3. Reach to grasp and rotated an elevated key at the midline (a non-trained 

task) 

 

In addition, in order to collect therapist ratings and help correlate these ratings with 

the data, a special group of assessments-based protocol sessions were created. After 

every third session of the protocol (excluding the week of training) a training 

monitoring session was administered before beginning the main training session for 

the day.  During this session, three tasks were administered: 

 

1. Reach to grasp a midline cone (same as the cone tasks provided during the 

pre, post and one-month follow up 

2. Reach to touch a surface elevated at the ipsilateral location 
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3. Reach to grasp and transport a cylindrical object with and against gravity 

between an elevated midline location and an on-the-table ipsilateral location. 

 

During these sessions the therapist would use the iPad app to both record videos, as 

well as review the videos with the patient. 

 

As previously stated, these sessions are not only important for assessment of the 

patient using the system, but they were also crucial to assess the effectiveness of the 

therapy protocols.  The training monitoring sessions provide regular glimpses into 

the overall progression of the patient to provide a better sense of how the therapy 

protocol may be having an effect, which is crucial information in the iterative design 

process of composing ultimately automated therapy protocols. 

 

4.3.2 Iterative Testing and Application of Design Principles 

 

In the process of developing HAMRR, there were many design iterations that 

involved feedback from members outside of the direct development team.  These 

were required before the system was to be installed on site and patient recruitment 

was to begin.   Therefore, the following section identifies some principles to 

consider for the very crucial testing phases of iterative design within INR. 
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4.3.2.1 Test System Experiences with Unimpaired Subjects 

 

As previously identified, impaired participants can be difficult to recruit on a large 

scale.  However, system testing should not be held off until substantial impaired 

participants are recruited for a study.  Non-impaired subjects should be recruited 

regularly throughout the design process to test components and provide feedback 

that the design team may not be able to provide. 

 

As an example, during the design of HAMRR a study with non-impaired subjects was 

conducted to gauge the feasibility and clarity of the visual and audio feedback 

environments.  As a result, some changes were made to the feedback designs to 

further strengthen their semantic metaphors.   

 

In addition, this was the first opportunity to test a series of interactive demos that 

an early prototype of the system facilitated.  The initial desire was to have 

interactive task demos where the system would walk the user through each step of 

the task. This included instructions on when to start a reach and how to determine if 

a reach task had been completed.  The user was instructed to mimic the task 

instructions with the system.  It was determined during the study that the 

interactive demos were prohibitively complex and poorly designed. Therefore, 

narrated videos demonstrating and describing the task were created as a more 

direct way to convey the task instructions.   This was a crucial problem to identify 

and resolve as it was unknown how instructions should be presented in an 
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unsupervised training environment, where clarity would be of the utmost 

importance.  

 

4.3.2.2 Include Small Iterative Tests with Impaired Participants 

 

While some more universal aspects of the user experience can be assessed with 

unimpaired users, stroke survivors will be able to provide input and feedback that 

cannot be gained elsewhere.  Therefore it is very important to include stroke 

survivors, when possible, in the iterative testing process. 

 

As an example, a short three-session study was conducted late in the development 

of HAMRR with one of the stroke patients from the AMRR study to go through a set 

of example sessions in order for the team to observe a stroke patient using the 

system as well as get feedback on aspects of the system from a stroke patient’s 

perspective, including the perceived difficulty of the tasks. This was an opportunity 

to make fine tune adjustments to aspects of the system.  It also served as a final test 

of the torso orientation sensing Kinect system when it was realized that it would be 

too complex for a stroke patient to setup on their own. 
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4.3.2.3 Search for Feedback from Domain Experts, Even Outside of Interactive 

System Testing 

 

In addition to these more formal, yet short, studies, interviews are important ways 

of gaining feedback on aspects of the system design.  These can be especially helpful 

early on in the design process as a physical, working prototype may not be available 

for interactive testing.  During the HAMRR development process, feedback was 

gained from therapists, clinicians and patients in the identification of proper 

computation algorithms (such as kinematic categories for qualitative analysis) in 

addition to identification of designs for components of the overall experience (such 

as how demo instructions are presented and how the scenario paths should be 

composed). 

 

4.3.3 Pilot Study Phase I – Iterations Within Pilot Study 

 

At the end of the development cycle, the system was installed in a clinical space in 

both the Rehabilitation Institute of Chicago and Emory University for testing with 

six patients (three at RIC and three and Emory) each across 15 training sessions.  

The goals were to see how multiple stroke patients engaged with the system, both in 

terms of usability and functional gains.  The system was also monitored for any 

stability issues.  The results of this study will be presented in a later section. 
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While the importance of regular feedback from multiple sources was previously 

stressed during the main design phase of INR system design, iterative design should 

not be overlooked during the pilot study.  While iterations at this level will need to 

be more reserved as the study will be designed to determine the efficacy of different 

aspects or variables of the system experience, they should not be ignored either.  

Observations of system use and initial review of evaluation results are crucial 

during the pilot study to identify areas that need iteration. 

 

After six subjects completed the protocol, initial review of the data (to be presented 

later) showed very inconsistent to minimal overall change in kinematic measures.  

At the time, the main question about these results was how much the recruited 

patient population’s impairment level may have played in the results.  The six 

subjects that participated in the study were of mild impairment, and it was 

questioned if these subjects may have a floor effect, in which the system could not 

address their levels of impairment.  This initial assessment of results was also 

supported by observations of the subjects using the system and seeing that the 

majority of the subjects were able to complete the tasks with little difficulty or 

perceived challenge. 

 

4.3.3.1 Include Small Iterative Tests with Impaired Participants 

 

Just as previously described, the value of smaller tests within a larger iterative 

design cycle is once again crucial here.  The iterative tests can serve the same 
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purpose of identifying strengths and weaknesses in the new design before full 

integrated testing with the larger system experience. 

 

Before beginning any redesign of HAMMR, the team needed to understand the 

current state of the system under the use of a more impaired participant.  Therefore 

as a simple test, a one-day protocol was created to test two more severely impaired 

patients to see how they would react to the feedback environments and the tasks.  

This one-day protocol represented a condensation of the three sessions used at the 

beginning of the main study protocol.  What was discovered is that the more 

impaired patients could not successfully open their hands wide enough to grasp the 

transportable cylinder object. If a patient could not complete tasks with this object, 

it would effectively eliminate a significant portion of HAMRR’s protocol as well as 

eliminate the primary goal of testing HAMRR in the context of complex tasks and 

higher-level evaluations and feedback.  

 

4.3.3.2 Use Iterative Testing with a Modular Architecture to Quickly Integrate a New 

Solution 

 

As previously shown, small tests can identify key areas for redesign.  Once those key 

areas have been identified, a solution (especially during the pilot study) needs to be 

identified as quickly as possible.  The ability to quickly integrate new solutions 

further emphasizes the value of a modular architecture that is designed with 

flexibility and extensibility in mind. 
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The solution to the identified problem of the transportable object was to create a 

smaller object that could be grasped with a smaller hand aperture.  The new object 

was able to be implemented quickly as the new design used parts from the cone 

object and transportable object, and the Tangible Plugin was designed in such a way 

that adding a new object to the code was a simple class extension.  

 

However, iterative testing is still crucial, as it was found in testing in the lab that a 

new wireless data setup utilized was impeding smooth interaction with the object 

during full interactive system testing, and thus a compromise needed to be made to 

remove any data output from the new object.  Given that this redesign was a 

temporary solution, this compromise was viewed as acceptable for the scope of the 

pilot study.  For more details on the implementation of this new object, please refer 

to Appendix B1. 

 

4.3.3.3 Include All Users of the System in Iterative Design 

 

As previously discussed, there are multiple users of an INR system, and when 

looking at observations of the system as well as evaluation data, it is equally 

important to assess where iterations in the design are required for the other users 

of the system outside of the patient. 

 

In order to ultimately test the system with more impaired participants, it was 

required that a physical therapist would have to run the system, not a system 
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designer as was the case for the first six participants.  From observations of the 

system in use, it became very clear that the interface was not easy to use for 

someone who had no previous knowledge of the system or how it worked on a 

technical level.  Therefore, it was crucial to identify which aspects of the main GUI 

(in the Adaptation Plugin) could be redesigned in order to help the therapist run the 

sessions.  Again, during a pilot study there is not adequate time for a full redesign, so 

prioritized aspects of the GUI to adjust had to be identified.  This resulted in adding 

two new visual indicators on the main window: one to identify which targets needed 

calibration and one to describe the state of the incoming data (both marker and 

tangible object).  For more details on the implementation of the new GUI 

components, please refer to Appendix B2. 
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CHAPTER 5 

EVALUATION OF HAMRR 

In order to test the efficacy of the previously identified design constraints and the 

resulting system, HAMRR was tested with eight patients.  The initial six patients 

were split across two sites at Rehabilitation Institute of Chicago and Emory 

University.  These sessions were completed under minimal supervision by Nicole 

Lehrer and myself.  The final two subjects were recruited at Emory exclusively and 

the sessions were conducted in person by a physical therapist on site with Nicole 

Lehrer and myself observing remotely via Skype.  All subjects were able to complete 

the protocol, but the final two subjects required more assistance than the initial six.  

Section 5.1 presents results of the patient assessments. Section 5.2 reviews system 

stability and usability results. Section 5.3 summarizes the larger conclusions that 

the results present. 

 

5.1 Patient Assessments 

 

5.1.1 Patient Demographics 

 

Eight total subjects were recruited for the study.  The first stage of the study was 

comprised of six subjects, three at Emory and three at RIC.  After the completion of 

this phase of the study, two additional subjects were recruited with more moderate 

impairment (in contrast to the mostly mild subjects recruited with the first phase of 

the study.  Each subject’s demographics can be seen in Table 2. 
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Table 2. Patient Demographics 
Subject Age Months Post Stroke 

1 63 14 
2 69 44 
3 65 31 
4 47 26 
5 56 28 
6 49 18 
7 50 15 
8 44 13 

 

All subjects had a right-sided hemiparesis stroke (and were right hand dominant 

pre-stroke) between six months to five years before the study. Prior to entrance into 

the study, each subject was screened along the Montreal Cognitive Assessment83 

(score >25), Geriatric Depression Scale84 (score <10), range of motion assessments 

(Shoulder: at least 45 degrees flexion, abduction, and rotation; Elbow: ROM at least 

90 degrees of flexion/extension; Forearm: at least 20 degrees of pronation or 

supination from neutral position; Wrist: at least 20 degrees extensions at any point 

in range with forearm pronated and supported and wrist in full flexion; Fingers: at 

least 10 degrees active extension of metacarpophalangeal and interphalangeal joint 

of the thumb and any two fingers) a sensory perception test (testing for color, 

shape, pitch and timbre perception) and the seated portion of the Upper Extremity 

Fugl Meyer Assessment (FMA)85 (score between 30 and 56). 
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5.1.2 Clinical Assessments 

 

Before (the Pre Test), immediately after (the Post Test) and one month after (the 

One Month Follow Up) the protocol, a series of clinical measurements were 

assessed.  The Wolf Motor Function Test was used to assess movement at the 

shoulder, elbow and hand.  The sitting portion of the Upper Extremity Fugl Meyer 

Assessment was used to assess reflexes, sensation, pain and motor function of the 

affected upper extremity. The Quality of Movement section of the Motor Activity Log 

was used to assess how well the subject was using the affected upper extremity 

during the activities of daily living.  The measurements of each of these features can 

be found in Table 3. A two-tailed T-Test, with a confidence interval of 95% was 

utilized to assess group changes in clinical scores between Pre and Post as well as 

Pre and One Month Follow Up.  The results of these tests can also be seen in Table 3.  

Subject 6 was unable to attend the one-month follow up session, and thus does not 

have data from this time point. 
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Table 3. Pre-Post Clinical Score Comparisons 

Subject 

Pre 
FMA 
(/66) 

Post 
FMA 
(/66) 

1 mo. 
FMA 

(/66) 

Pre 
WMFT 

FA 
(/5) 

Post 
WMFT 

FA 
(/5) 

1 mo. 
WMFT 

FA 
(/5) 

Pre 
WMFT 
TT (s) 

Post 
WMFT 
TT (s) 

1 mo. 
WMFT 
TT (s) 

Pre 
MAL 
(/5) 

Post 
MAL 
(/5) 

1 mo. 
MAL 
(/5) 

1 37 42 44 3.73 3.93 3.93 47.40 42.86 43.08 3.64 3.07 3.32 

2 50 58 57 3.67 3.87 3.80 59.10 47.10 44.08 2.44 3.02 2.96 

3 47 56 62 3.93 4.47 4.73 41.34 37.51 36.86 4.38 4.71 4.41 

4 47 52 55 4.60 4.80 4.87 26.61 26.98 23.79 3.88 3.63 4.04 

5 44 50 46 4.33 4.87 4.20 32.26 31.66 32.54 2.48 2.96 3.15 

6 37 43 NA 3.50 3.40 NA 246.87 117.23 NA 2.96 3.50 NA 

7 30 34 32 2.73 2.93 3.07 692.75 590.76 576.82 1.18 2.43 2.73 

8 29 32 29 2.73 2.87 2.80 986.46 917.15 973.74 0.98 1.13 1.13 

tValue  8.205 3.050  3.215 2.191  -2.167 -1.404  1.600 1.721 
pValue  *0.0000 *0.023  *0.015 t0.071  t0.067 0.210  t0.154 t0.135 

(*)Significant scores (p<0.05); (t)trending scores (p<0.2) 
 

The Fugl Meyer Assessment and Functional Ability portion of the Wolf Motor Test 

both improved (when comparing the pre test to the post test) at the group level with 

p values less than 0.05.  The group level improvement for the Time portion of the 

Wolf Motor Functional Ability Test (between the pre and post test) was not 

significant, but found to be trending with a p value less than 0.1.  The change in the 

Motor Activity Log was not found to be significant, but slightly trending with a p 

value less than 0.2 

 

Overall, the comparison of the clinical scores between the pre test and the one-

month follow up do not show the same significant changes.  The change in Fugl 

Meyer Assessment scores was found to still be significant with a p value of 0.023.  

The difference in the Functional Ability Test of the Wolf Motor Function Test was 

found to be trending with a p value of 0.071.  The change in the Total Time portion 

of the Wolf Motor Function Test was not found to be significant or trending.  The 
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Motor Activity Log showed similar trending changes (p value less than 0.2) as the 

pre versus post-test comparison. 

 

5.1.3 Kinematic Assessments 

 

In addition to the clinical assessments, a series of kinematic measurements were 

made.  All of these measurements were primarily from the analysis of the wrist and 

torso markers, with some minimal help from the chair pressure sensors. The chair 

sensors, as will be described in more detail later, were somewhat helpful in 

identifying when participants were starting a reach with their back fully supported 

by the chair (a basic indication of minimal to no compensation at the start of the 

reach). These kinematic measurements were made while the subject performed a 

series of tasks during the Pre, Post and One Month Follow Up, as well as during all of 

the Training Monitoring sessions.  The design and selection of tasks was chosen to 

represent a distribution of system trained and untrained tasks. 

 

5.1.3.1 Task Descriptions 

 

Task 1 – Key Turn / Untrained / Pre, Post and One Month Follow Up 

 

For this task, the Wolf Motor Test key turn object was placed at the subject’s 

midline, but rotated 90 degrees such that the key resembled the motion required to 

start a car.  The subject was instructed to reach to grasp with key (with a pincer 
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grasp) and rotate the key away from their body with the furthest rotation possible 

(the key would start perpendicular to the plane of the table and end up parallel to 

the table).  The subject performed three of these reaches, with the therapist 

resetting the key after each reach. 

 

Task 2 – Transport Over a Barrier / Semi-Trained / Pre, Post and One Month Follow 

Up 

 

For this task, a barrier (a paper towel roll) was placed at the middle table target 

location and the patient was instructed to transport the cylindrical transport object 

from the midline location to the far ipsilateral location, moving the object over the 

barrier.  The subject was instructed to perform five round trips (the object was 

moved in each direction five times). For analysis purposes these round trips were 

divided into two groups based on the direction of the movement: Forward (Midline 

to Far Ipsilateral) and Reverse (Far Ipsilateral to Midline) 

 

Task 3 – Transport Against Gravity / Trained / Training Monitoring 

 

For this task, the subject was instructed to transport the cylindrical object between 

an off the table platform at the midline table location to an on the table platform at 

the ipsilateral table location, resting at the rest pad in between sequential reaches.  

The subject was allowed to complete the tasks as many times as needed, but the task 

was stopped if an allotted amount of time was taken or the subject knocked or 
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dropped the cylinder to a location that the subject was not able to reach without 

assistance.  The subject was instructed to complete two complete transports (round 

trips).  For analysis purposes these round trips were divided into two groups based 

on the direction of the movement: Up (Ipsilateral on the table to Midline off of the 

table) and Down (Midline off of the table to Ipsilateral on the table). 

 

Task 4 – Reach to Grasp a Cone / Trained / Pre, Training Monitoring, Post, One 

Month Follow Up 

 

For this task, a cone was setup at the midline target location.  The subject was 

instructed to reach and grasp the cone 10 times.  This task was performed at the 

beginning of every training session. 

Task 5 – Reach to Touch and Elevated Surface / Semi-Trained / Training Monitoring 

 

For this task, a flat surface (resembling a button) was affixed to the top of an off of 

the table target receptacle, which was placed at the ipsilateral target location.  The 

touch required was similar to that of the training button object, but the surface was 

elevated to a height similar to the cylinder’s height when using the off of the table 

target platform.  The subject was instructed to reach to touch the button surface 

with any fingers, excluding the thumb.  This task was completed five times. 
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5.1.3.2 Feature Descriptions 

 

Across these features, a series of kinematic measurements were made by the system 

as well as some made by Nicole Lehrer and myself from patient video observations 

(for features that could not be assessed through the raw data alone).  What follows 

is a description of these features (Shorthand numerical labels are provided for 

brevity in subsequent data tables). Table 4 shows the tasks from which these 

features were evaluated. 

Table 4. Feature Analysis Summary 
 

Key 

Transport 
Over a 
Barrier 

Transport 
Against/With 

Gravity Cone 
Reach to 

Touch 
F1 X     
F2 X     
F3 X     
F4 X   X  
F5 X X X   
F6 X X X X  
F7 X     
F8 X X X X  
F9  X    

F10  X X   
F11   X   
F12    X  
F13    X  
F14    X  
F15    X  
F16    X  
F17    X  

An “X” represents that the task was analyzed for that feature.  Grey features were 
removed from analysis for this discussion. 
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Key Completion (F1) 

 

This feature was a qualitative evaluation made by myself and Nicole Lehrer when 

reviewing the videos of each subject completing the key turn task in order to 

determine if the key turn task was completed.  This measure was necessary as the 

key object was not instrumented with any sensors and thus the grasp and complete 

rotation of the key could not be detected through the raw data alone. 

 

Time Until Grasping the Key (F2) 

 

This feature measured the total time from the moment the subject’s wrist began to 

move from the starting position to the moment the subject grasped the key.  

Because of the lack of sensing on the key, the measurement was determined visually 

by watching a recorded video of the subject completing the task.  The camera frame 

rate was used to estimate the value of this time measurement. 

 

Time Until Releasing the Key (F3) 

 

This feature measured the total time from the moment the subject’s wrist left the 

rest pad to the moment that the subject released their hand from a grasp of the key. 

As with feature F2, due to a lack of sensing on the key itself, the timing information 

was determined visually by watching a recorded video of the subject completing the 

task. 
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Time Until 5% Velocity Max (F4)  

 

This feature was predominantly used as the main measure of the time required to 

reach for an object.  This feature was also used in the AMRR system study.  The 

feature measures the total time from the start of the reach (the subject’s wrist 

leaving the rest pad) to the moment at which the total velocity reaches 5% of the 

peak velocity achieved during the reach.  This measurement was determined by 

identifying the motion capture frames in which the reach started and concluded 

(with 5% of the maximum velocity) and converting the difference into time given 

the fairly constant frame rate of the motion capture cameras. 

 

Path Ratio (F5) 

 

As has been previously discussed, studying the dynamics of multiphase movement 

can be very complex as even non-impaired subjects will perform the tasks with 

variability.  Therefore, path ratio was used as a way to compare trajectory efficiency 

during a reach that was part of a complex multi-phase transport task.  This measure 

integrated the total speed of the reach over the entire reach in order to determine 

the total distance of the path taken by the wrist marker during the task.  This total 

path distance was then compared to the straight-line distance (determined using 

the calibrated wrist marker location recorded for each location) as a ratio.  As the 

ratio nears one, the total path taken more resembles the straight-line shortest 

distance path between targets. 
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Number of Speed Phases until 5% Velocity Max (F6) 

 

The feature was also used in AMRR.  It is a measurement of the smoothness of the 

velocity profile that counts the number of local minima found in the velocity profile 

between the location of the maximum velocity and the end of the reach.  If a person 

were to reach in one smooth movement, then the number of additional phases 

would be zero. 

 

Number of Speed Phases until Key Grasp (F7) 

 

The determination of the number of extra speed phases for the key turn task was 

determined slightly differently than for other tasks.  The core idea is the same in 

counting the number of local minima in the speed profile between the maximum of 

the velocity peak and the end of the reach.  However, in this case the end of the 

reach was determined visually by watching the video of the participant completing 

the task.  This was done because the key object was not instrumented, and therefore 

the tangible grasp of the key could not be detected from the data alone.  Therefore, 

the point of grasp was located in the video, and this point was converted to a camera 

frame number to match with the motion capture data.  This conversion could be 

done because the start of the data archiving and the start of the video recording 

were the same.  However, some issues were encountered with this feature since 

dropping frames of data would lead to a mismatch between the video time and the 

data frame.  More will be discussed on this issue later. 
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Torso Movement Sum (F8) 

 

This measure provides a basic evaluation of compensation during a reach by 

summing the distance traveled (the distance between the location of the centroid of 

the rigid body from the centroid location of the rigid body at the start of the reach) 

for each frame of the reach.  This measure was selected as a more stable alternative 

to angle orientation measurements, which had some noise problems (which will be 

discussed later). 

 

In order to filter some of the results, cases in which the subject was already 

compensating at the beginning of the reach needed to be removed from analysis as 

they would not provide an accurate measure of the compensation.  Therefore, the 

pressure sensitive chair data information was used.  During each rest calibration, in 

addition to the location of the wrist marker, the applied pressure to each chair 

sensor is recorded.  During each rest calibration the subject is instructed to, as best 

as possible, sit up straight with their back against the chair.  It was presumed that 

most forms of compensation would require leaning away from the chair, and 

therefore reduce the total amount of pressure applied to the chair.  In order to 

determine if the subject was not compensating at the start of the reach, it was 

ensured that the starting chair pressure was at least 50% of the calibrated rest chair 

pressure.  In addition, the starting chair pressure total had to be greater than 1000 

(if no pressure is applied to the chair, the total would be 552).  These thresholds 

were determined from analyzing the movements of non-impaired subjects using the 
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system.  If the subject’s chair data passed both of these thresholds, then the torso 

movement was analyzed, otherwise the analysis was not performed on that reach. 

 

Transport Over Barrier Completion Rating (F9) 

 

Similar to F1, this feature as a rating determined by Nicole Lehrer and myself upon 

watching each subject complete the transport over barrier task.  While the 

transportable cylinder had built in sensors, the grasp analysis was only binary and 

wouldn’t provide information on how well the task was completed. 

 

Total Time Until Completion (F10) 

 

This time feature was only used for the transportation tasks.  This feature measures 

the time from the start of the reach to the deposit of the object.  In order to 

determine where the object deposit occurred some additional reach segmentation 

was conducted.  For each reach, the velocity profile was analyzed to find the main 

phase of the reach towards the object as well as the main phase of moving the object 

to its second location.  From this second overall phase, the location of the “5% 

Velocity Max” was found and marked as the end of the reach.  Therefore, the total 

time until completion measures the time from the start of the movement until 5% of 

the velocity max of the second overall phase. 
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Transport Against and With Gravity Completion Rating (F11) 

 

This feature is similar to F1 and F9, except it is applied to the training monitoring 

task in which the subject transports an object between an off the table and on the 

table location. 

 

Cone Grasp Completion Rating (F12) 

 

This feature is similar to F1, F9, and F11 except it is applied to the task of the subject 

reaching to grasp a cone. 

 

Maximum Horizontal Trajectory Error (F13) 

 

For each single object task (as well as the object approach portion of a 

transportation task), a reference trajectory was collected.  This reference trajectory 

represented the average trajectory path of the wrist marker if a non-impaired 

subject were to complete the task.  These references were collected from a group of 

non-impaired, age-matched subjects.  This feature finds the maximum horizontal 

deviation from the reference that the subject had during a reach, as a measure of 

overall spatial efficiency of the reach.   This feature originated from AMRR. For the 

purposes of analysis, this feature was only used with single object tasks, where 

spatial efficiency was evaluated in complex tasks through path ratio. 
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Maximum Vertical Trajectory Error (F14) 

 

This feature is very similar to F13, except this feature measures the maximum 

vertical error during a reach. 

 

Peak Speed (F15) 

 

This feature measured the maximum speed of the velocity profile created during a 

reach.  This feature is important to analyze as different attributes of patient 

impairment can come across in the speed, such as non-controlled, ballistic 

movement (seen with very high peak speeds) or difficulty completing the task (seen 

with lower peak speeds).  Similar to the trajectory error features, for the purposes of 

analysis, this feature was only used with single object tasks.  For complex tasks, total 

completion was used as a higher-level measure of the speed of the task.  This feature 

was also originally part of the AMRR system. 

 

Bellness Normalized Area (F16) 

 

This feature was also taken from the AMRR system.  The feature measures the 

“bellness” of the velocity profile, which provides an indication of the overall 

smoothness of the reach.  This feature is coupled with the number of additional 

phases feature.  While the phase number feature provides a measure of the number 

of additional phases in the reach, it does not provide any information on the 
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magnitude of the additional phases.  This feature is a ratio of the distance (integral 

of the velocity profile) from the end of the first phase to the end of the reach to the 

distance from the peak speed to the end of the reach.  This value will range from 0 to 

1, with zero representing a bell curve without additional phases. 

 

Jerkiness (F17) 

 

This feature, also used in AMRR, determines the jerk cost of the reach, which is a 

further measure of the smoothness.  With this feature one concerning issue was 

found. 

 

Upon analysis of the data, it was found that the result of the jerkiness analysis (the 

same methodology and analysis as the AMRR system) was very sensitive to peak 

speed.  During the pre test, Subject 4 attempted to complete the cone reaches as fast 

as possible.  While very fast, these subject’s reaches were smooth and completed in 

one phase.  However the jerkiness results for this task for this subject were the 

highest seen in the entire study.  Therefore in the future, a new jerkiness measure 

may be required, but for the scope of this study, Subject 4’s jerkiness (and peak 

speed) data was removed from analysis. 
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5.1.3.3 Task and Feature Selection for Analysis 

 

From the entire set of previously described tasks and kinematic features, a subset of 

tasks and features were selected for analysis.  Overall, since the AMRR system had 

already verified many of the mixed reality approaches to single object tasks, the 

focus of the HAMRR analysis was to look at higher level features of the complex 

tasks and see how these related to clinical score progression.  The cone tasks were 

also kept for analysis as this task was used throughout AMRR and would provide a 

general understanding of progression in low-level kinematics.   

 

Removal of Key Turn Task 

 

The key turn task turned out to provide too much noisy data for reasonable analysis.  

Initially, the desire was to measure the amount of wrist rotation during the key turn 

task.  Therefore, a small four marker rigid body was used in place of the single wrist 

marker, so that angle orientation information could be extracted.  However, the use 

of this second rigid body (coupled with multiple sources of occlusion of the torso 

marker, the key turn box obstructing the wrist markers, and the wrist rotation 

sometimes rotating too many markers away from view of the cameras) led to 

markers being dropped and swapped.  This resulted in all of Subject 1 and Subject 

8’s key turn task data being unusable, and numerous unusable reaches from the 

other subjects as well.  While this did not impact the kinematic analysis that was 

done by observing the video, it was difficult to connect these results to the raw data 
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due to gaps of data missing during marker occlusion.  Therefore, it was noted that a 

new sensing solution is needed for this task, but for the scope of this study, the all 

data (motion capture and video-based) would be removed from analysis. 

 

Removal of Task Completion Ratings 

 

As previously discussed, Nicole Lehrer and I completed a series of task completion 

ratings for the tasks in order to determine if each subject completed the task.  

However, it was noticed that this feature did not provide much information as most 

subjects completed the tasks.  In addition, trained therapists did not complete these 

ratings, and thus the value of these ratings is questionable. 

 

Removal of Reach To Touch Task 

 

The reach to touch task was designed as a semi-trained task that could be included 

in the training monitoring sessions.  It represented a hybrid of tasks that the subject 

saw in training.  However, in practice, the task was not as helpful in assessing 

progress.  The main issue with this task was the distance between the rest pad and 

the target surface (the effective distance the subject would reach over) was very 

small.  For subjects with larger hands, the wrist marker moved a very small distance 

during the reach.  Therefore, these short distances provided predominantly 

unusable data as every reach looked very efficient (since the amount of data 

collected during a reach was so small). 
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5.1.3.4 Kinematic Analysis Results 

 

The first analysis completed to look at group level changes in kinematics was to run 

a paired p-test for each task.  Tables 5-7 present the p values for group level changes 

in each feature of the task comparing between the pre and post test as well as the 

pre and one month follow up test. 

 
Table 5. Group Level Kinematic Changes for Transport Over a Barrier Task Forward 
(Moving Midline to Far Ipsilateral) 

 F5 F6 F8 F9 F10 
Pre vs Post 0.5327432 0.3903811 0.1887622 0.16082208 0.3526443 

Pre vs 1 Mo. 0.3142627 0.5037976 0.2920075 0.07558682 0.6022861 
 
 
Table 6. Group Level Kinematic Changes for Transport Over a Barrier Task Reverse 
(Moving Far Ipsilateral to Midline) 

 F5 F6 F8 F9 F10 
Pre vs Post 0.7561348 0.6215233 0.4932472 0.08527752 0.9756226 

Pre vs 1 Mo. 0.04789909 0.117275 0.227445 0.36321747 0.3157943 
 
 
Table 7. Group Level Kinematic Changes for Cone Task 

 F4 F6 F8 F13 F14 F15 F16 F17 
Pre vs 
Post 

0.823903 0.781255 0.140980 0.228067 0.145943 0.183444 0.508163 0.0877553 

Pre vs 1 
Mo. 

0.210963 0.325946 0.323446 0.708468 0.182413 0.231653 0.506570 0.2571927 

 
 

As can be seen in the table, there were no significant changes found in the Transport 

Over a Barrier task or Cone Grasp task.  This is true for both the pre/post 

comparisons and pre/one-month-follow up comparisons.  However, some features 

were found to have trending changes.  The torso movement sum was found to have 

a trending decrease with a p value less than 0.2.  Similarly, vertical trajectory error 
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was found to have a trending decrease (both between pre and post as well as pre 

and one month follow up).  Jerkiness was also found to have a decreasing trend 

(with a p value less than 0.1), however, this result may be skewed by the 

performance of Subject 4, who completed the pre-test very quickly and thus had a 

very high jerkiness value. 

 

Floor Effect with Subjects 3, 4 and 5 

 

One of the possible reasons why the kinematics did not show significant group 

changes was because a subset of the subjects had good functionality at the 

beginning of the study, and were not provided enough of a challenge by the system 

and therefore a floor effect was found in the their kinematic data. 

 

Subjects 3, 4 and 5’s pre test clinical scores show that each entered the study with 

good functionality (Their Wolf Motor Function Test Functional Ability scores were 

above about 4 and their Fugl Meyer Assessment scores were greater than 44).  Each 

subject’s good functional ability at the start of the study is also reflected in their 

kinematics when comparing their measurements with non-impaired subjects. 

 

As seen in Table 8, the majority of the pre test measurements for Subjects 3, 4 and 5 

are within one standard deviation of the average value recorded when non-

impaired subjects completed the task.  However, when looking at Table 9 it can be 

seen that the other subjects, while having some overlap with the non-impaired 
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population, have more features that begin outside of the range of non-impaired 

measurements, and thus, have more room from improvement in kinematic values. 

 

Table 8. Pre Test Values for Subjects 3, 4 and 5 
 Control    
 Avg – Std Dev Avg + Std Dev Subject 3 Pre Subject 4 Pre Subject 5 Pre 

Cone      
F4 (s) 0.8021 1.2075 1.105 0.616* 0.892 

F6 0 1 0.375 0.2 0 
F8 (mm) 0  1158.4763 2401.575 719.542 2545.99 

F13 (mm) 0  24.1236 16.60175 13.22988 16.01672 
F14 (mm) 0 30.3495 26.939925 30.4144 26.0203 
F15 (m/s) 0.5693 0.8503 0.783055 1.24422* 0.923484** 

F16 0 0.0718 0.054 0.0077046 0 
F17 (mm2/f5) 0 0.0367 0.02339013 0.0818959* 0.0236854 
Trans. Barr. 

Fwd. 
     

F5 1 1.468641 1.3608 1.376 1.2789 
F6 0 1 0.2 0 0 

F10 (s) 1.63562 2.43178 3.248 2.322 2.426 
F8 (mm) 0 547.65 4091.5 984.63 2815.7 

Trans. Barr.  
Rev. 

     

F5 1 1.401036 1.3359 1.415 1.373 
F6 0 1 1.2 0 0.2 

F10 (s) 1.81915 2.68125 2.752 1.794** 2.438 
F8 (mm) 0 1200.04 3146.9 540.33 2826.8 

Grey cells mark features that were measured within one standard deviation of non-
impaired averages for that feature. (*) Subject 4 attempted to complete the task as 
possible. (**) While this feature is less than the non-impaired range, the therapists 
did not view reaching too fast as a detriment to the performance of the task. 
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Table 9. Pre Test Values for Subjects 1, 2, 6, 7 and 8 

 Control      
 Avg – Std 

Dev 
Avg + Std 

Dev 
Subject 1 

Pre 
Subject 2 

Pre 
Subject 6 

Pre 
Subject 7 

Pre 
Subject 8 

Pre 
Cone        
F4 (s) 0.8021 1.2075 1.462 1.4255 2.146 2.408 3.6725 

F6 0 1 1.1 1.1111 4.5 4.9 6.5 
F8 (mm) 0 1158.4763 10668.84 3965.21 14303.41 47592.44 NA 

F13 
(mm) 

0 24.1236 20.7201 22.63711 35.7324 43.8571 45.0115 

F14 
(mm) 

0 30.3495 43.1093 29.2522 50.7228 108.206 183.2075 

F15 
(m/s) 

0.5693 0.8503 0.631827 0.6417711 0.691672 0.662963 0.470585 

F16 0 0.0718 0.134352 0.12073067 0.325525 0.439106 0.4146125 
F17 

(mm2/f5) 
0 0.0367 0.0125567 0.01646311 0.0606767 0.0582684 0.0221745 

Trans. 
Barr. 
Fwd. 

       

F5 1 1.468641 1.4418 1.4854 1.5835 1.5847 2.3195 
F6 0 1 0.6 2.6 1.3333 6.8 8.75 

F10 (s) 1.63562 2.43178 4 5.082 4.2067 9.202 10.373 
F8 (mm) 0 547.65 14466 4915.8 6744.1 73671 NA 
Trans. 
Barr. 
Rev. 

       

F5 1 1.401036 1.5685 1.4229 1.6243 1.8286 2.0456 
F6 0 1 1.8 0.4 2.3333 8.2 6.75 

F10 (s) 1.81915 2.68125 3.854 4.334 4.34 8.85 6.7625 
F8 (mm) 0 1200.04 10345 2016.2 9513.2 66296 NA 

Grey cells mark features that were measured within one standard deviation of non-
impaired averages for that feature.  
 

Removal of Subject 8 Data 

 

Part of the second phase of testing of HAMRR involved the recruitment of two more 

impaired subjects with the previously discussed goal to see how the system could 

address their needs.  However in the case of subject 8, the system was not able to 

accurately capture the performance data.  This occurred mainly because of marker 
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occlusion issues that would appear during excessive body compensation and would 

result in the loss of data frames and thus noisy data.  In addition, the subject had 

difficulty in completing the transportation tasks, which resulted in a subset of the 

total data expected for the task.  These two factors combined result in a shortage of 

data to look at for this subject, which suggests the need for better sensing solutions 

for this level of impairment as well as more adaptable, easier to complete 

transportation tasks.  Therefore, for the purposes of the remaining analysis, Subject 

8’s data was removed from the discussion to focus on the remaining subjects. 

 

Review of Subjects 1, 2, 6 and 7 

 

As previously discussed, Subjects 3, 4 and 5 showed good functionality in their 

clinical scores and starting kinematic measurements that were within non-impaired 

variation.  However, the starting kinematic measurements of the other subjects 

(excluding 8 as previously discussed) indicated possible room from improvement. 

 

Therefore, a kinematics review was conducted for each of these subjects.  Since 

looking at these subjects with the time samples collected would provide too small of 

a sample size to perform group level analysis with this specific subset of subjects, a 

more general analysis approach was taken to assess if any individual changes were 

seen in kinematic features. 

 

 



 146 

Individual Subject Kinematics Analysis Approach 

 

By looking at the kinematics on an individual level, the ability to run statistics to 

determine the significance of change between pre and post or the one-month follow 

up is eliminated because of the small sample size.  Therefore the goal of this analysis 

was to identify any interesting trends in the data that might provide insight for 

future analysis and system design. 

 

The first step was to identify a subset of the data in which the change in feature 

values between pre and post was worth further review.  The approach was to look 

at the changes in the average value of a feature between pre and post and see if the 

average of the post value was beyond the bounds of the pre average value including 

its positive and negative standard deviation range.  The features that displayed this 

type of change were selected for further analysis.  Tables 10-13 show the percent 

change between pre and post for the features that had a decrease or increase 

beyond the variance of the pre test.  In selecting the features to analyze both 

features that improved and worsened were considered. 

 

The second step, once the previously described subset of data was identified, was to 

look at the standard deviation of the pre and post data.  As an additional criterion 

for identifying interesting change between pre and post was for the standard 

deviation of the post to be less than that of the pre.  If the standard deviation were to 

decrease from pre to post, this would indicate a more consistent change in the 
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kinematic measure.  With these two criteria combined, not only would the change 

represent movement beyond the variance of the pre test, but the posttest values 

would also be more consistent than the pre.   Tables 10-13 display the features that 

decrease in variance between pre and post. 

 

Table 10. Subject 1 Kinematic Results 
 Subject 1 
 

Pre/Post 
Change (%) Improve? 

Decrease in 
Variance? 

Training 
Monitoring 

Trend 
Linear Model 

(p<0.05*) 
Cone      

F4 2.56     
F6 54.55 -    
F8 -45.23 ++ Yes Trans. Up Linear* 

    Cone Quadratic* 
F13 30.20 --  Cone Linear 
F14 24.73 + Yes   
F15 6.30 - Yes   
F16 8.80 + Yes   
F17 23.15 - Yes   

Trans. Barr. 
Fwd. 

     

F5 1.6604     
F6      

F10 -14.65 ++  Trans. Down Quadratic* 
F8 -54.33 ++ Yes Trans. Down Quadratic* 

    Trans. Up Linear* 
    Cone Linear* 

Trans. Barr. 
Rev. 

     

F5 -1.39  Yes   
F6 -44.44 + Yes   

F10 -21.07 ++  Trans. Down Cubic* 
F8 -72.03 ++ Yes Trans. Down Linear* 

    Trans. Up Quadratic 
    Cone Quadratic* 

(++) Improve with post values outside of variance of pre test. (+) Improve, but post 
values are not outside of pre test variance. (-) Worsens, but not beyond variance of 
pre-test. (--) Worsens with post values outside of variance of pre test. 
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Table 11. Subject 2 Kinematic Results 
 Subject 2 
 

Pre/Post 
Change (%) Improve? 

Decrease in 
Variance? 

Training 
Monitoring 

Trend 
Linear Model 

(p<0.05*) 
Cone      

F4 -10.84 + Yes   
F6 -46 + Yes   
F8 -53.97 ++ Yes Trans. Down Linear* 

    Cone Linear* 
F13 -22.31 + Yes   
F14 19.4425 - Yes   
F15 -1.26  Yes   
F16 -55.34 + Yes   
F17 -14.02 + Yes   

Trans Barr 
Fwd 

     

F5 -8.43 ++ Yes Trans. Down  
F6 -53.85 ++  Trans. Down Linear 

    Cone Linear* 
F10 -25.7 ++  Trans. Down Linear* 

    Trans. Up Linear* 
F8 -41.05  Yes Trans. Down Linear* 

    Cone Linear* 
Trans Barr 

Rev 
     

F5 -3.81 ++ Yes Trans. Up  
F6 (0.4 to 0) + Yes   

F10 -14.58 ++ Yes Trans. Down Quadratic* 
    Trans. Up Linear* 

F8 -33.01 ++ Yes Trans. Down Quadratic* 
    Trans. Up Linear* 
    Cone Quadratic* 

(++) Improve with post values outside of variance of pre test. (+) Improve, but post 
values are not outside of pre test variance. (-) Worsens, but not beyond variance of 
pre-test. (--) Worsens with post values outside of variance of pre test. 
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Table 12. Subject 6 Kinematic Results 
 Subject 6 
 

Pre/Post 
Change (%) Improve? 

Decrease in 
Variance? 

Training 
Monitoring 

Trend 
Linear Model 

(p<0.05*) 
Cone      

F4 -52.84 ++ Yes Cone Quadratic* 
F6 -80 ++ Yes Cone Linear* 
F8 -67.31 ++ Yes Trans. Down Linear* 

    Cone Cubic* 
F13 -23.69 +    
F14 -39.25 ++ Yes Cone Linear* 
F15 14.09 ++ Yes Cone  
F16 -59.24 ++  Cone Linear* 
F17 -43.60 ++  Cone Cubic* 

Trans Barr 
Fwd 

     

F5      
F6      

F10      
F8      

Trans Barr 
Rev 

     

F5 -6.92 ++ Yes Trans. Down Cubic* 
    Trans. Up  

F6 -35.17 + Yes   
F10 -45.85 ++ Yes Trans. Down Linear* 

    Trans. Up Linear* 
F8 -57.60 ++ Yes Trans. Down Linear* 

    Trans. Up Linear* 
(++) Improve with post values outside of variance of pre test. (+) Improve, but post 
values are not outside of pre test variance. (-) Worsens, but not beyond variance of 
pre-test. (--) Worsens with post values outside of variance of pre test. 
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Table 13. Subject 7 Kinematic Results 
 Subject 7 
 

Pre/Post 
Change (%) Improve? 

Decrease in 
Variance? 

Training 
Monitoring 

Trend 
Linear Model 

(p<0.05*) 
Cone      

F4 20.35 --  Cone  
F6 34.69 --  Cone Cubic* 
F8 -60.21 ++ Yes Cone Linear* 

F13 -46.34 ++ Yes Cone Quadratic* 
F14 -41.86 ++ Yes Cone Cubic 
F15      
F16 -7.07 +    
F17 -43.53 ++ Yes Cone Linear* 

Trans Barr 
Fwd 

     

F5 2.77  Yes   
F6 17.65 -    

F10 4.65  Yes   
F8 -39.56 ++ Yes   

Trans Barr 
Rev 

     

F5 -5.06 + Yes   
F6 -39.02 ++    

F10 27.63 ++    
F8      

(++) Improve with post values outside of variance of pre test. (+) Improve, but post 
values are not outside of pre test variance. (-) Worsens, but not beyond variance of 
pre-test. (--) Worsens with post values outside of variance of pre test. 
 
 
Results 

 

Based on this type of analysis, it can be seen that Subjects 1, 2, 6 and 7 do have 

features that move beyond the variance of their pre test and further decrease in 

variance.  Subjects 2 and 6 show the best results with almost all of their features 

showing improvement, and most improved beyond the variance of their pre-test 

with decrease post test variance.  Subject 7, the most impaired subject in this group 
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shows more inconsistent results with some features in the cone task worsening with 

decreasing variance.  This inconsistency is likely related to the observations seen 

with Subject 8 in the system’s current inability to adequately address moderate 

impairment users.  

 

Inconsistencies can also be seen in Subject 1, however there may be extra factors 

affecting the results of Subject 1’s pre versus post test results.  About half way 

through the study, the subject began having personal issues that affected 

performance.  In addition to emotional distress, the subject often reported being 

very tired from having to pack and move.  Since the study already had a limited 

number of subjects, we were reluctant to remove this subject’s results.  However the 

inconsistent kinematics seen may be a result of these external factors. 

 

Inconsistency can also be seen in Tables 14-16, which shows the results for Subject 

3, 4, and 5.  As previously shown, these subjects predominantly began the study 

with kinematic measures within the range of non-impaired measurements.  The 

inconsistent changes in kinematic measures seen in Tables 14-16 could be an 

indication that HAMRR did not provide enough of a challenge for more mildly 

impaired participants.  This is an important consideration for future work. 

 

In addition to seeing many features improve for this subset of subjects, it can be 

seen that while there may be inconsistencies in the lower level features of the cone 
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task, there is more consistent improvement seen in the higher-level features of the 

complex transport over a barrier task. 

 

Analyzing Trends Within Subjects 

 

In addition to assessing the pre post comparisons for individual subjects, we 

decided to look at the data sampled during the training monitoring sessions to see if 

the data overall trended in the direction indicated by the change in pre and post 

kinematic values. 

 

Therefore, from the subset of Subjects 1, 2, 6, and 7’s data (that had post data 

outside the variance of the pre test as well as decreasing variance) pre and posttest 

feature measurements were compared with the same feature in training monitoring 

tasks.  The selected trends to analyze were chosen based on visual inspection of the 

data.  If the overall trend of the training monitoring data seemed to fit the change 

between pre and post, then it was used in the subsequent analysis.  In other words, 

the training monitoring task feature data had to visually look like it was increasing 

or decreasing with an increasing or decreasing pre to post change respectively.  The 

training monitoring features that were compared with the pre and post features can 

be seen in Tables 10-13. 

 

In order to determine the significance of the trend, linear models were applied to 

the raw data, with each feature being a function of the session number it was 
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collected on (0 = Pre Test; 6 = First Training Monitoring Session; 9 = Second 

Training Monitoring Session; 12 = Third Training Monitoring Session; 15 = Fourth 

Training Monitoring Session; 16  = Post Test).  Only a linear, quadratic and cubic 

model were applied as it was viewed that the limited amount of data would not 

support conclusions from higher order models.  Each model was applied to the data, 

and the lowest order model that had a non-significant lack of fit (p > 0.05) was 

selected.  Once the model was selected, the significance of the slope of the model 

was assessed (p < 0.05).  The results of the model selection can be seen in Tables 10-

13. 

 

From this analysis, it can be shown that many of the pre to post comparisons do not 

seem to be aberrations, but in fact have trending data.  Therefore, this seems to 

indicate for the features identified, that there is a possibility for these features to 

improve with training, given that the starting impairment level of the subject is 

closer to Subjects 1, 2, 6 and 7 rather than 3, 4 and 5.  It also seems to indicate, given 

the decreases in variance, that the feedback has the capability to have a stylizing 

effect on lower level and higher-level features. 

 

Due to the small sample size used to form the model, it is difficult to use the models 

as predictive tools to determine what effect more training may have had on the 

subject.  However, because different models are found to fit the data significantly 

(and the distribution of possible trending improvement is varied), the training 

seems to provide different kinematic challenges for each subject. 
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Table 14. Subject 3 Kinematic Results 
 Subject 3 
 

Pre/Post 
Change (%) Improve? 

Decrease in 
Variance? 

Training 
Monitoring 

Trend 
Linear Model 

(p<0.05*) 
Cone      

F4 9.77 -- Yes Cone Quadratic* 
F6 -20 + Yes   
F8 -12.48 + Yes   

F13 7.94 -    
F14 -7.10 + Yes   
F15 -11.82 ++ Yes Cone Quadratic* 
F16 17.97 -    
F17 -35.12 ++ Yes Cone Quadratic* 

Trans Barr 
Fwd 

     

F5 3.72 -- Yes Trans. Up  
F6 100 -    

F10 -8.07 + Yes   
F8 -26.50 ++ Yes Trans. Down Linear* 

    Trans. Up Linear* 
    Cone Linear* 

Trans Barr 
Rev 

     

F5 6.67 --  Trans. Up  
F6 -50 + Yes   

F10 -1.09  Yes   
F8 -23.03 + Yes   

(++) Improve with post values outside of variance of pre test. (+) Improve, but post 
values are not outside of pre test variance. (-) Worsens, but not beyond variance of 
pre-test. (--) Worsens with post values outside of variance of pre test. 
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Table 15. Subject 4 Kinematic Results 
 Subject 4 
 

Pre/Post 
Change (%) Improve? 

Decrease in 
Variance? 

Training 
Monitoring 

Trend 
Linear Model 

(p<0.05*) 
Cone      

F4 **     
F6 (0.2 to 0.4) -    
F8 10.71 - Yes   

F13 12.67 -    
F14 -9.21 + Yes   
F15 **     
F16 (0.01 to 0.03) -  Cone Cubic* 
F17 **     

Trans Barr 
Fwd 

     

F5 7.65 -- Yes   
F6      

F10 -30.06 ++ Yes Trans. Up Linear* 
F8 -47.69 + Yes   

Trans Barr 
Rev 

     

F5 9.12 --    
F6 (0 to 0.2) -    

F10 12.60 -- Yes Trans. Down Linear 
    Trans. Up Cubic* 

F8 -61.89 ++ Yes Trans. Down Quadratic* 
    Trans. Up  
    Cone Quadratic* 

(++) Improve with post values outside of variance of pre test. (+) Improve, but post 
values are not outside of pre test variance. (-) Worsens, but not beyond variance of 
pre-test. (--) Worsens with post values outside of variance of pre test. (**) Subject 4 
attempted to complete the cone tasks as fast as possible and thus his data has been 
removed for time based features have been removed. 
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Table 16. Subject 5 Kinematic Results 
 Subject 5 
 

Pre/Post 
Change (%) Improve? 

Decrease in 
Variance? 

Training 
Monitoring 

Trend 
Linear Model 

(p<0.05*) 
Cone      

F4 9.87 - Yes   
F6 (0 to 1) -    
F8 -29.36 ++ Yes Trans. Down Linear 

    Cone  
F13 -11.47 + Yes   
F14 12.17 - Yes   
F15 -13.22 ++ Yes Cone Cubic* 
F16 (0 to 0.06) -  Cone  
F17 -9.84 +    

Trans Barr 
Fwd 

     

F5 -1.19     
F6      

F10 6.60 -    
F8 -16.67 + Yes   

Trans Barr 
Rev 

     

F5 -1.07  Yes   
F6 (0.2 to 0) + Yes   

F10 7.55 - Yes   
F8 -56.67 ++ Yes Trans. Down  

    Trans. Up Linear* 
    Cone  

(++) Improve with post values outside of variance of pre test. (+) Improve, but post 
values are not outside of pre test variance. (-) Worsens, but not beyond variance of 
pre-test. (--) Worsens with post values outside of variance of pre test. 
 
 
Kinematic Correlations with Clinical Scores 
 
 
In addition to looking at both clinical scores and kinematics individually, it was 

desired to see if there were any correlations between them.  This analysis was 

completed at the group level, both including all subjects as well as isolating subjects 

1, 2, 6 and 7.  Since the clinical scores only have one value per component and the 



 157 

features had multiple trials per pre and posttest, the average value of each feature 

was compared with each clinical score to assess correlation.  This analysis was only 

completed for the complex task (transport over a barrier) as the previous HAMRR 

study had already shown correlation with low level kinematic features of the cone 

task with clinical scores.  A Pearson correlation coefficient and significance was 

generated for each group comparison and can be found in Tables 17-28. 

 

Table 17. Transport Over a Barrier Forward Pre Test Kinematics Correlations with 
Clinical Scores (All subjects) 

 Torso Movement 
Sum Total Time Speed Phases Path Ratio 

 Corr. pVal Corr. pVal Corr. pVal Corr. pVal 
MAL -0.7241 0.0657 -0.8552 0.0068 -0.8827 0.0037 -0.6831 0.0618 
FMA -0.7891 0.0349 -0.7950 0.0184 -0.7613 0.0282 -0.6966 0.0549 

WMFT 
TT 

-0.9454 0.0013 0.9548 0.0002 0.9656 0.0001 0.8907 0.0030 

WMFT 
FAS 

-0.8251 0.0223 -0.9455 0.0004 -0.9032 0.0021 -0.7506 0.0319 

 
Table 18. Transport Over a Barrier Forward Pre Test Kinematics Correlations with 
Clinical Scores (Subjects 1, 2, 6 and 7) 

 Torso Movement 
Sum Total Time Speed Phases Path Ratio 

 Corr. pVal Corr. pVal Corr. pVal Corr. pVal 
MAL -0.8167 0.1833 -0.9480 0.0520 -0.9785 0.0216 -0.6864 0.3136 
FMA -0.7336 0.2664 -0.5269 0.4731 -0.4440 0.5560 -0.5261 0.4739 

WMFT 
TT 

0.9306 0.0694 0.9184 0.0816 0.9006 0.0994 0.8126 0.1874 

WMFT 
FAS 

-0.9547 0.0453 -0.9556 0.0444 -0.9394 0.0606 -0.7634 0.2367 
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Table 19. Transport Over a Barrier Forward Post Test Kinematics Correlations with 
Clinical Scores (All subjects) 

 Torso Movement 
Sum Total Time Speed Phases Path Ratio 

 Corr. pVal Corr. pVal Corr. pVal Corr. pVal 
MAL -0.5613 0.2465 -0.5723 0.2353 -0.5623 0.2455 -0.2351 0.6538 

FMA -0.8304 0.0407 -0.7550 0.0827 -0.7562 0.0819 -0.7115 0.1129 

WMFT 
TT 

0.9952 0.0000 0.9732 0.0011 0.9936 0.0001 0.7671 0.0751 

WMFT 
FAS 

-0.8581 0.0288 -0.9187 0.0096 -0.8839 0.0194 -0.7177 0.1083 

 
Table 20. Transport Over a Barrier Forward Post Test Kinematics Correlations with 
Clinical Scores (Subjects 1, 2, 6 and 7) 

 Torso Movement 
Sum Total Time Speed Phases Path Ratio 

 Corr. pVal Corr. pVal Corr. pVal Corr. pVal 
MAL -0.9886 0.0961 -0.9998 0.0117 -1.0000 0.0018 -0.8909 0.3002 

FMA -0.8062 0.4031 -0.7210 0.4874 -0.7061 0.5009 -0.9516 0.1989 

WMFT 
TT 

0.9962 0.0556 0.9990 0.0288 0.9978 0.0422 0.9179 0.2597 

WMFT 
FAS 

-0.9910 0.0854 -1.0000 0.0010 -0.9998 0.0124 -0.8984 0.2895 

 
Table 21. Transport Over a Barrier Reverse Pre Test Kinematics Correlations with 
Clinical Scores (All subjects) 

 Torso Movement 
Sum Total Time Speed Phases Path Ratio 

 Corr. pVal Corr. pVal Corr. pVal Corr. pVal 
MAL -0.7316 0.0616 -0.8253 0.0116 -0.7734 0.0244 -0.7920 0.0191 

FMA -0.8121 0.0265 -0.8042 0.0161 -0.8967 0.0025 -0.9239 0.0010 

WMFT 
TT 

0.9671 0.0004 0.8498 0.0075 0.9283 0.0009 0.9598 0.0002 

WMFT 
FAS 

-0.8298 0.0209 -0.9512 0.0003 -0.9182 0.0013 -0.8811 0.0038 
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Table 22. Transport Over a Barrier Reverse Pre Test Kinematics Correlations with 
Clinical Scores (Subjects 1, 2, 6 and 7) 

 Torso Movement 
Sum Total Time Speed Phases Path Ratio 

 Corr. pVal Corr. pVal Corr. pVal Corr. pVal 
MAL -0.8224 0.1776 -0.9183 0.0817 -0.7842 0.2158 -0.6071 0.3930 

FMA -0.7656 0.2344 -0.6408 0.3592 -0.8272 0.1728 -0.9432 0.0568 

WMFT 
TT 

0.9596 0.0404 0.9648 0.0352 0.9744 0.0256 0.9260 0.0740 

WMFT 
FAS 

-0.9745 0.0255 -0.9874 0.0126 -0.9754 0.0246 -0.8984 0.1016 

 
Table 23. Transport Over a Barrier Reverse Post Test Kinematics Correlations with 
Clinical Scores (All subjects) 

 Torso 
Movement Sum Total Time Speed Phases Path Ratio 

 Corr. pVal Corr. pVal Corr. pVal Corr. pVal 
MAL 0.1384 0.7937 -0.8552 0.0068 -0.8146 0.0138 -0.7933 0.0188 

FMA -0.6142 0.1945 -0.7195 0.0442 -0.8310 0.0106 -0.8162 0.0135 

WMFT 
TT 

0.7971 0.0576 0.9640 0.0001 0.9869 0.0000 0.9423 0.0005 

WMFT 
FAS 

-0.7872 0.0631 -0.7300 0.0398 -0.7847 0.0211 -0.7120 0.0476 

 
Table 24. Transport Over a Barrier Reverse Post Test Kinematics Correlations with 
Clinical Scores (Subjects 1, 2, 6 and 7) 

 Torso Movement 
Sum Total Time Speed Phases Path Ratio 

 Corr. pVal Corr. pVal Corr. pVal Corr. pVal 
MAL 0.8702 0.3280 -0.9680 0.0320 -0.7207 0.2793 -0.6455 0.3545 

FMA -0.8810 0.3138 -0.4601 0.5399 -0.8477 0.1523 -0.9565 0.0435 

WMFT 
TT 

0.7894 0.4208 0.9082 0.0918 0.9768 0.0233 0.8719 0.1281 

WMFT 
FAS 

-0.7559 0.4544 -0.6894 0.3107 -0.9248 0.0752 -0.8012 0.1988 
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Table 25. Transport Over a Barrier Forward Change in Kinematics Correlations with 
Change in Clinical Scores (All subjects) 

 Torso Movement 
Sum Total Time Speed Phases Path Ratio 

 Corr. pVal Corr. pVal Corr. pVal Corr. pVal 
MAL -0.5820 0.2256 0.4778 0.3378 0.2823 0.5878 -0.2908 0.5762 

FMA 0.6046 0.2036 -0.4268 0.3987 -0.5715 0.2361 -0.4318 0.3926 

WMFT 
TT 

0.9697 0.0014 -0.5638 0.2439 -0.6380 0.1728 -0.0966 0.8555 

WMFT 
FAS 

0.4165 0.4114 0.4038 0.4272 0.0934 0.8603 0.0376 0.9437 

 
Table 26. Transport Over a Barrier Forward Change in Kinematics Correlations with 
Change in Clinical Scores (Subjects 1, 2, 6 and 7) 

 Torso Movement 
Sum Total Time Speed Phases Path Ratio 

 Corr. pVal Corr. pVal Corr. pVal Corr. pVal 
MAL -0.6366 0.5607 0.4530 0.7007 0.3223 0.7911 -0.0429 0.9727 

FMA 0.8261 0.3811 -0.9292 0.2410 -0.9721 0.1507 -0.9910 0.0856 

WMFT 
TT 

0.9625 0.1750 -0.8800 0.3150 -0.8040 0.4054 -0.5337 0.6416 

WMFT 
FAS 

Nan Nan Nan Nan Nan Nan Nan Nan 

 
Table 27. Transport Over a Barrier Reverse Change in Kinematics Correlations with 
Change in Clinical Scores (All subjects) 

 Torso Movement 
Sum Total Time Speed Phases Path Ratio 

 Corr. pVal Corr. pVal Corr. pVal Corr. pVal 
MAL 0.4145 0.4139 -0.3440 0.4041 -0.4766 0.2325 -0.5093 0.1973 

FMA 0.5027 0.3095 -0.3600 0.3811 -0.2443 0.5598 -0.1788 0.6718 

WMFT 
TT 

0.4513 0.3690 0.1657 0.6949 0.1789 0.6716 0.4179 0.3028 

WMFT 
FAS 

0.5140 0.2969 0.0976 0.8182 -0.0435 0.9186 0.2849 0.4941 
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Table 28. Transport Over a Barrier Reverse Change in Kinematics Correlations with 
Change in Clinical Scores (Subjects 1, 2, 6 and 7) 

 Torso Movement 
Sum Total Time Speed Phases Path Ratio 

 Corr. pVal Corr. pVal Corr. pVal Corr. pVal 
MAL 0.7450 0.4649 -0.6929 0.3071 -0.6481 0.3519 -0.7561 0.2439 

FMA 0.9989 0.0300 0.6537 0.3463 0.7786 0.2214 0.1364 0.8636 

WMFT 
TT 

0.1830 0.8828 0.9160 0.0840 0.4883 0.5117 0.9587 0.0413 

WMFT 
FAS 

0.2350 0.8490 0.3914 0.6086 -0.2481 0.7519 0.6970 0.3030 

 

The pre test values for both directions of the transport over a barrier task showed 

significant correlations with the pre test clinical scores when all subjects were 

considered.  In addition, fewer correlations were found when comparing the 

posttest features and clinical scores of both directions of the transport over a 

barrier task.  Even though these tasks are part of the same activity (each task 

represents a different direction in which the transportable object was moved), the 

correlations are inconsistent when compared between the posttest results of both 

directions of the transport over a barrier task.  In addition, when changes in both 

directions of the transport over a barrier task are compared with changes in the 

clinical scores, minimal to no correlations are found.  For each of these comparisons, 

when isolating Subjects 1, 2, 6 and 7, fewer correlations were found than when 

looking at the whole group of subjects.  Therefore it is inconclusive whether these 

features were adequate measures of impairment.  The ability of the system to 

capture these high level features in variable complex movements may not have been 

as clear or stable as was needed.  Further, it is possible that these features are 
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combined together in very complex ways to improve performance of complex tasks 

and this combination cannot be captured by single feature analysis. 

 

Therapist Ratings 

 

As previously discussed, during each training monitoring session, the therapist 

recorded videos of the subject performing a set of tasks, and then rated the videos 

along provided criteria.  The goal in analyzing the ratings was to see if they 

correlated with any of the features of a complex task (which in the training 

monitoring sessions was transporting an object between an off the table and on the 

table location) as well as the cone grasp task (since this was used throughout 

training as well as previously discussed analysis). 

 

For each trial rated, the first score was based on a modified FAS, which rated the 

therapist’s overall initial impression.  The range of values were such that a 1 

represented that the subject could not complete the task and a 5 represented that 

the quality of movement appeared to be similar to non-impaired movement.  In 

addition to the overall initial rating, component ratings were also completed.  For 

the cone, these included: Trajectory (Accuracy of moving the hand from the start to 

end position during the reaching phase), Compensation (Excessive shoulder 

elevation or abduction and/or torso flexion, rotation, or lateral flexion), and 

Manipulation (Opposition between thumb and at least two fingers about the 

diameter of the object).  The transport task also had these ratings, but in addition 
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included: Transport (Translating an object from one location to another while 

carried by the hand) and Release (Extension of fingers and thumb to remove hand 

from object following deposit).  All of these component ratings were rated on a scale 

of 1-4.  Finally, each task was rated with a final overall rating.  This used the same 

overall rating scale as the initial overview rating, but was completed after 

completing all of the component ratings for a particular task. 

 

In order to assess correlations between the ratings and kinematic features, the 

ratings for a particular set of reaches were averaged and measurements for each 

kinematic feature were averaged as well.  Pearson correlation coefficients were 

generated for these correlations and are show in Tables 29-31. 

 

Table 24. Cone Task Kinematics Correlations with Therapist Ratings 
 F4 F13 F14 F6 F15 F16 F17 F8 

 R
2
 pVal R

2
 pVal R

2
 pVal R

2
 pVal R

2
 pVal R

2
 pVal R

2
 pVal R

2
 pVal 

Initial Overall -0.84 0.00 -0.63 0.00 -0.55 0.00 -0.89 0.00 0.67 0.00 -0.91 0.00 -0.56 0.00 -0.88 0.00 

Trajectory -0.80 0.00 -0.41 0.02 -0.37 0.04 -0.82 0.00 0.63 0.00 -0.83 0.00 -0.37 0.04 -0.73 0.00 

Compensation -0.88 0.00 -0.65 0.00 -0.55 0.00 -0.91 0.00 0.65 0.00 -0.85 0.00 -0.39 0.03 -0.95 0.00 

Manipulation -0.87 0.00 -0.55 0.00 -0.64 0.00 -0.92 0.00 0.64 0.00 -0.91 0.00 -0.49 0.00 -0.92 0.00 

Final Overall -0.84 0.00 -0.62 0.00 -0.56 0.00 -0.89 0.00 0.66 0.00 -0.91 0.00 -0.57 0.00 -0.88 0.00 

 
Table 25. Transport Down Kinematics Correlations with Therapist Ratings 

 F3 F5 F6 F8 
 R

2
 pVal R

2
 pVal R

2
 pVal R

2
 pVal 

Initial Overall -0.851 0.000 -0.755 0.000 -0.844 0.000 -0.859 0.000 

Trajectory -0.691 0.000 -0.361 0.059 -0.602 0.001 -0.707 0.000 

Compensation -0.957 0.000 -0.733 0.000 -0.914 0.000 -0.918 0.000 

Manipulation -0.791 0.000 -0.711 0.000 -0.776 0.000 -0.757 0.000 

Transport -0.463 0.013 -0.367 0.055 -0.418 0.027 -0.515 0.005 

Release -0.665 0.000 -0.400 0.035 -0.621 0.000 -0.642 0.000 

Final Overall -0.851 0.000 -0.755 0.000 -0.844 0.000 -0.859 0.000 
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Table 26. Transport Up Kinematics Correlations with Therapist Ratings 
 F3 F5 F6 F8 
 R

2
 pVal R

2
 pVal R

2
 pVal R

2
 pVal 

Initial Overall -0.774 0.000 -0.591 0.001 -0.758 0.000 -0.754 0.000 

Trajectory -0.717 0.000 -0.445 0.018 -0.699 0.000 -0.642 0.000 

Compensation -0.852 0.000 -0.722 0.000 -0.875 0.000 -0.842 0.000 

Manipulation -0.744 0.000 -0.781 0.000 -0.696 0.000 -0.807 0.000 

Transport -0.589 0.001 -0.478 0.010 -0.563 0.002 -0.634 0.000 

Release -0.613 0.001 -0.660 0.000 -0.604 0.001 -0.744 0.000 

Final Overall -0.774 0.000 -0.591 0.001 -0.758 0.000 -0.754 0.000 

 
 

Within the cone task, strong correlations (coefficient > 0.7 or < -0.7) are found 

between all of the ratings and reach time, number of speed phases, normalized area, 

and torso compensation.  This could begin to indicate that these features correlate 

the most with how a therapist would visually rate a reach.  In contrast, the features 

that measured changes in trajectory and peak speed (which do not show strong 

correlations) may have been features that the system observed but were not 

noticed, or deemed relatively important, by the therapist.  One possibility is that the 

camera used to record the videos provided only one, profile view of the subject 

completing the reach, and therefore, it may have limited perspective to 

comprehensively see trajectory error.  Further, when training the therapists with 

the system, it was noticed that in relation to the speed of a subject completing a task, 

each therapist would encourage the subject to complete the task quickly (they 

would not penalize a subject for completing the task too quickly), whereas the 

system had a range of speed it trained the subject within, and would provide 

negative feedback if the subject reached above this range.  In addition, weak 

correlations were found with the jerkiness feature.  This may be due to therapists 
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using other indicators (such as number of phases and the magnitude of those 

phases) as metrics to assess unsmooth movement.  Also it is likely difficult to see 

jerkiness in a video from afar.  Therefore, it will require further investigation to 

better understand if the trajectory, peak speed and jerkiness features are too 

sensitive within the system or if they are truly characterizing aspects of the subject’s 

performance that are too fine for the therapist to want to or be able to observe.  In 

addition, it should be determined if the video capture is reducing the ability of the 

therapist to observe fine features.  For example, a therapist may need to the 

capability to focus on fine features to do the rating instead of a video showing the 

whole movement. 

 

Within the transportation tasks, it was noted that overall, the Transport and Release 

do not seem to correlate strongly with the kinematic features.  This is interesting 

because the system was not able to provide detailed feedback about each of these 

aspects.  The transport phase efficiency was only considered as a part of a larger 

overall feature such as path ratio, and no training was provided on the release of the 

object.  Resultantly, the selected features that were used to assess the kinematics 

may not be adequately capturing the overall aspects that therapist can assess 

visually.  When looking at the correlations with the path ratio feature, it is noted that 

there are limited, inconsistent correlations with the therapist ratings.  This result 

may provide some uncertainty in regards to value of the path ratio feature in its 

current configuration within the system.  It would be interesting to investigate this 

further to see if other features may correlate better with the ratings.  However, the 
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presence of strong correlations with other components of the ratings seem to 

suggest there is some connection between the existing kinematic features and how a 

therapist rates the performance of a subject, and therefore supports their utility 

moving forward with the design of the system.  It is also possible that the therapist 

may be observing some combination of these features that simple features like path 

ratio may not capture adequately, which would call for more complex quantitative 

features. 

 

5.1.4 Subject Survey Results 

 

At the completion of each training monitoring session, the subject was asked a 

series of questions in regards to their experience using the system.  These questions 

ranged in assessing general reactions to using the system and its perceived utility 

(as well as identifying components that may have been difficult to understand or 

interact with) to assessing their own progress.  The responses were a combination 

of Likert scale and free response.  All of the results were logged and saved as part of 

the other training monitoring data on the iPad app. 

 

All subjects reported back that the amount of therapy was either too little or just 

enough, further highlighting the lack of challenge that could be provided with the 

existing protocol paths.  This is reflected as well in the subjects’ responses to a 

question about the challenge of the training tasks, in which all subjects (including 

the more impaired subjects) reported that the system challenge ranged from neutral 
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to very easy.  All subjects also reported liking using the system, with two neutral 

responses recorded at individual training monitoring sessions for Subjects 2 and 4.  

Most subjects reported using their affected arm more during the study, with only 

Subject 7 reporting consistent affected arm usage to that previous to using the 

system.  Subjects 7 & 8 reported neutral to decreasing effects on their energy levels 

after using the system, which seems to suggest that the provided challenge many 

not have been perceived to be beneficial, but they were still physically demanding.  

Finally, all subjects reported neutral to better moods after using the system. 

 

The conclusions that can be drawn from these questionnaire results are limited, 

however the system does show promise to encourage compliance and desire to use 

the system.  It seems that the subjects overall did not feel that the system was able 

to provide them with a desired challenge level, regardless of starting impairment 

level even though some reported decreased energy after using the system.  

Therefore it seems that not enough challenge is being provided to higher 

functioning users and not the right challenge type is being provided to more 

impaired subjects. 

 

5.2 System Stability and Usability Results 

 

Overall the system was able to complete eight full protocols both under control of 

the system designers as well as physical therapists.  Subjects were able to 

successfully setup the system on their own and control the flow of demos and tasks 
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through the embedded table buttons.  Some minimal assistance was needed to apply 

the torso rigid body below the shoulder, and some subjects needed assistance 

moving the chair in the correct position.  These assistance steps were minimal and 

safely represented help that a caregiver or family member could easily provide.  

However, some stability and user experience issues were noted that will present 

good indicators for future work. 

 

5.2.1 Marker Based Tracking of Complex Movement with Limited Cameras is not 

Adequate for Complex Task Interactive Training 

 

In the design process of HAMRR, motion capture through OptiTrack provided the 

most expedient way to capture detailed information based on the existing code from 

AMRR and team experience.  It was a beneficial decision to move ahead with this 

type of hardware sensing, however there were problems observed. 

 

As has been previously discussed, the original torso tracking solution was to utilize 

the Kinect for marker-less tracking.  However, due to the noise seen in early 

iterative tests this solution was removed.  Due to the lack of time to test the 

replacement marker solution, occlusion and angle orientation estimation errors 

could not be assessed properly. 

 

In addition, frequent marker swap was found during use of the transportable 

cylinder, which would cause the interactive training to stop (as the system was 
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looking for the correct marker configuration).  As subjects would lift the cylindrical 

object out of the view of the markers or any other occlusions would occur, there was 

a significant chance marker swap would occur.  This was likely a problem due to 

using an older version of Tracking Tools.  For more details on the marker-based 

problems, please refer to Appendix B3. 

 

5.2.2 Tangible Objects Necessitate Sensing of Interaction 

 

The tangible objects provided stable data to the system in regards to object 

manipulation.  Occasionally an object’s hardware would malfunction, but it could be 

quickly replaced in the middle of the session by a staff member or therapist by using 

the interface provided by the Sensing Plugin. 

 

While most tangible object interactions were found to be stable, the transportable 

cone (which was designed as a quick solution to allowing subjects with more 

impaired had aperture to transport an object) proved to be problematic in use.  

Since the object did not have any active physical sensors, as previously discussed, 

the “grasp” of the object was detected by the speed and location of the wrist marker.  

However, with more impaired subjects, the reach was completed in two main 

stages: the patient got their hand near the object and then adjusted the hand to 

grasp.  The system interpreted the completion of the first step as a grasp and thus 

misleading grasp success feedback was provided to the subject.  This object and 

interaction will need to be reconsidered in the future. 
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5.2.3 HAMRR is Lacking a Manner to Report Errors  

 

When the system was under the control of the two system designers, problems that 

arose could be diagnosed on the spot due to the nature of the knowledge of how the 

system worked and was built.  However, this was not true of therapists using the 

system.  Therefore, some documentation was created to explain the use of the 

system and source of common problems, but this was not enough as Nicole and I 

had to be on Skype throughout the sessions to debug problems live.  This seems to 

indicate that the system would benefit from a standardized way of reporting errors 

to the controller along with clear directions for resolving them. 

 

5.2.4 The Existing Interface is Not Easily Usable by Therapists 

 

While the therapist was able to use the system interface on their own, it lead to a 

significant amount of time and documentation to explain how the interface should 

be used.  This was not ideal for a situation in which the therapist needed to be 

quickly trained how to use the system so additional subjects could be recruited.  

Many times the interface led to confusion and frustration, which would detract from 

the time available to the patient and would highlight frustrations that the subject 

might be having with the training.  This is a very important factor, which must be 

addressed in the future for anyone that will control the system.  Therapist and 

patient time is extremely valuable and that time needs to be maximized with the 

system if HAMRR is to provide any benefit.  Therefore rethinking the user 
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experience (including that of the therapist) should be a top priority of the next 

system iteration.  

 

5.3 Discussion of Results 

 

From these results, it seems promising that unsupervised INR training can be 

feasible and has the potential to induce functional improvement.  All of the subjects 

were able to complete the protocol (Subject 6 was not able to attend the One Month 

Follow Up session and some adaptations needed to be made to Subject 7 and Subject 

8’s protocols to accommodate their more moderate impairment).  Also significant 

group level changes were observed in the clinical scores assessed before and after 

the study. 

 

5.3.1 Inconclusive Connection of Training to ADLs 

 

The retention of the improvements in clinical scores (assessed one month after the 

completion of the study) was not found to be as conclusive as the pre to post 

comparisons and will require further investigation.  While there was not retention 

in clinical score assessed improvement, most subjects reported using their affected 

limb more during the study.  The full scope of this increased use is hard to 

determine from the patient surveys, but may indicate some training benefit to 

increasing confidence in the use of the impaired limb.  However, determining if this 
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increase in confidence is due to HAMRR or just the increase in physical therapy will 

need to be determined. 

 

5.3.2 Training Showed Promise to Integrate Component and Complex Training 

 

The unsupervised training provided by HAMRR has shown some promise that 

movement quality improvements can be correlated with functional improvements.  

While this was not seen significantly at the group level, when looking at individual 

subjects (especially Subjects 1, 2, 6 and 7) there are promising trends in kinematic 

features that, with further exploration, may be found to correlate with functional 

improvement measures. The indications of integrating component and complex 

training with HAMRR also suggest the benefit of reductionist hierarchies and 

constructivist learning protocols to structuring interaction scenarios for physical 

therapy.  

 

Previous work with AMRR has already shown how kinematics can be used to 

evaluate impairment for simple repetitive tasks.  However, the presence of some 

strong trends within individual subjects may suggest that particular kinematic 

measures could serve as a good starting point to assess patient impairment of 

complex tasks through kinematics and thus inform individualized protocol 

composition. 
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5.3.3 Provided Protocols Need More Opportunity for Adaptations to Patient 

Performance 

 

The variability of the individual subject kinematic trends do seem to indicate that 

INR training needs to be highly customized to patient needs, both in terms of tasks 

provided and how these tasks are trained over the course of a protocol.  This 

stresses the need for physical adaptability of objects and system components as well 

as more adaptable training protocols.  It is possible that with more adaptable 

protocols, stronger correlations between movement quality and functional 

improvement may be found, but this will require further investigation.  The 

significance of the trends (through applied models) shows promise that individual 

progression may be able to be assessed throughout a training protocol within 

individual features in order to make more adaptive training decisions. 

 

5.3.3.1 Accommodating More Impaired Subjects 

 

While Subjects 7 and 8 were able to complete the overall protocol with some 

adjustments (mainly the introduction of the transportable cone object) the system 

was not able to consistently address their needs.  While observing Subject 8’s use of 

the system, it became clear that number of reaches within an individual day was too 

tiring, and thus the physical therapist needed to cut many of the sessions short.  The 

physical therapist provided the feedback that the order and amount of 

transportable tasks should be reconsidered, as currently, there were too many and 
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they were typically weighted towards the end of the session (where Subject 8 was 

becoming too fatigued to attempt the tasks).  Future protocols should make sessions 

lengths more dynamic based on fatigue levels and the most challenging tasks should 

not be held until the end of the session. 

 

5.3.3.2 Accommodating Mildly Impaired Subjects 

 

As seen in the inconsistent results of Subjects 3, 4 and 5, it seems very likely that 

HAMRR was not able to provide an appropriate challenge for more mild impaired 

subjects.  This issue is also confirmed by the reported challenge of the tasks in the 

patient survey results.  Therefore, there is a need for future protocols to look for 

other dimensions of adaptability where additional challenge can be added. 

 

5.3.4 Hybrid Kinematic and Therapist Evaluations are Possible 

 

HAMRR, through the training monitoring sessions, has also shown that monitoring 

of therapy progress and related protocol adaptation can be achieved through 

therapist and computer hybrid evaluations.  While these correlations will we 

require further investigation as previously discussed, the methodology by which 

they were collected and integrated was supported by this study. As mentioned 

previously, further investigation will be required to see if slopes of applied linear 

models and the correlation of these features with therapist ratings can provide 

adequate metrics to make adaptation decisions.  Preliminary work at this time has 
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already begun to show the possibility of correlating kinematics with therapist 

ratings to produce a decision tree model for rating component level performance of 

a simple task.50 

 

5.3.5 Sensing Infrastructure Was Not Able to Adequately Capture Features in Some 

Complex Tasks 

 

As previously discussed, the key turn task data was very noisy and became unusable 

in the overall analysis of HAMRR.  The marker setup of rigid bodies in the camera 

space in conjunction with frequent marker occlusion of the torso or wrist markers 

(sometimes just due to the natural rotation of a key) created gaps in the data that 

eliminated significant portions of the reach.  It is still very important for subjects to 

be assessed with an untrained task to see how elements of training may be 

transferring to other activities, but the current sensing infrastructure needs to be 

addressed first. 

 

5.3.6 HAMRR Was Easy to Use by the Patients, but Not by the Therapist 

 

Overall, patients were able to setup and use the system very easily.  Each subject 

was able to follow onscreen instructions to setup the objects in the table at the start 

of each session.  In addition, in nearly every case, the subjects skipped replaying 

demos very early on in the protocol.  However, it was found that some instructions 

became over repetitive for the subjects. 
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In contrast, the system was not easily usable by the therapist for Subject 7 and 8’s 

sessions.  While some training and documentation was provided on the use of 

HAMRR, the interface was not easy to use or as helpful as it needed to be (even with 

the previously discussed improvements added before the second stage of the pilot 

study).  The system did not provide sufficient information to the therapist on its 

current state or how to diagnose and recover from a system error.  This led to 

frustration both for the therapist and subject.  The control of HAMRR lacked from 

the application of experience design and in future work the control should be 

redesigned significantly. 

 

5.3.7 The Modular Architecture was Able to Support New Additions to the System 

 

The need to introduce a new transportable cone object to HAMRR was quickly 

supported by both modular code and hardware design.  Changes to the Adaptation 

control GUI also benefitted from the modular design of the Adaptation Plugin code.  

The previously described problems with these components were not the result of 

the architecture (software or hardware) but rather a lack of experience design 

considerations (both for therapy and user control). 

 

5.3.8 HAMRR Should be Progressed Forward with Identified Issues Addressed 

 

Overall, it seems promising that INR systems that use a reductionist hierarchy 

approach to structuring feedback and interaction scenarios, combined with 
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constructivist learning protocols focused on aggregate learning show promise to 

provide many key benefits.  They can help maintain engagement over longer 

protocols as was evidence by the compliance and completion of HAMRR protocols.  

They can induce integrated active learning of movement components and related 

complex tasks as shown by the promising improvements clinical scores and 

individual trends in kinematic measures.  Finally, given that these promising 

improvements were found in a minimally supervised environment with a fixed 

protocol, it suggests that the overall impact of unsupervised INR could be very 

beneficial with more reactive adaptation capabilities. 
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CHAPTER 6 

FUTURE DIRECTIONS: SYSTEM REDESIGN, FUTURE ADDITIONS, AND PROJECT 

MANAGEMENT 

With the desire to progress the system development further in the future, here are 

some considerations that reflect lessons learned in the application of the original 

design constraints through integrated design approaches for a complex INR system.  

These considerations represent ideas that should be incorporated with the 

previously presented design constraints to create an improved design methodology.  

Section 6.1 presents suggestions for code stability and extensibility improvements.  

Section 6.2 presents suggestions for improving and standardizing the system 

architecture.  Section 6.3 presents suggestions for improving the hardware of the 

system.  Section 6.4 presents user experience improvements.  Section 6.5 presents 

specific user experience ideas for creating opportunities for the patients to express 

their own creativity.  Section 6.6 presents suggested changes for the existing 

therapy protocols while Section 6.7 shows how automated adaptation may fit within 

the system.  Section 6.8 provides reflections and suggestions for project 

management within an interdisciplinary team. 

 

6.1 Code Stability and Extensibility Improvements 

 

The code design and work should ultimately be released as an open source project.  

The sensing, analysis and feedback paradigms (as well as overall architecture) that 

have been thoroughly tested could prove to be of use to other neurorehabilitation 
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applications as well as other interactive systems.  Before this code is released, 

improvements should be made to improve the code's stability and allow future 

users to extend the code more easily. 

 

6.1.1 A Modular Architecture Needs to be Supported by Clear Delineation of Plugin 

to Plugin Communication 

 

As has been discussed in software design approaches, having a clear architecture 

can help support cohesive and fast, iterative development. As a result, considerable 

time was spent on determining how the plugins would be split functionally as part 

of the overall architecture design.  Once the functionally separate plugins were 

identified, the next stage of the design was to identify how the plugins would 

communicate with one another.  In order to support modular components, the 

communication between plugins should be standardized so that new plugins can 

receive and send data using tested and integrated communication methods. 

 

The two main communication methods used by HAMRR were protocols and 

notifications.  Protocols allow methods to be implemented by a different class than 

the caller.  Notifications are real time events that get posted, and any class can 

subscribe to the notifications to respond to the event.  Currently, the protocols are 

used primarily for one-off commands (such as control commands from the 

adaptation plugin) while notifications are used for real-time, low-level 
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communication (such sending frames of camera data).  This structure was a great 

start and allowed plugins to easily send and access needed information. 

 

In order to further support the modular architecture, protocols should be used 

further to access specific information from other plugins that is currently sent as 

data objects. What I propose is that the data object sent via NSNotification should 

just notify the receiving class that a new frame of data is ready.  Then the receiving 

class calls a protocol (implemented by the sender class) to access specific data.  

Currently the “observer class” has to import external header files to parse the data 

object on it’s own. 

 

As an example of this implementation,  I present the example of the Sensing Plugin 

sending updated data to the Motion Analysis Plugin.  In the updated 

implementation, the Sensing Plugin would broadcast a notification that a new frame 

of data is ready (once it parsed the incoming multicast data from OptiTrack).  The 

Motion Analysis Plugin, being a subscriber of this notification, would call a series of 

functions within a Camera Data Frame protocol, implemented by the Sensing Plugin, 

in response.  The functions would act as “getters” and return specific values for the 

X, Y and Z location of the wrist marker (among other data from the camera data 

frame as well). (Figure 22)  In this way, the Motion Analysis plugin doesn’t have to 

know anything of the data structure of the marker data.  It only needs to know when 

a new frame of data is available and a means to access specific parts of that new 

data. 
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A similar methodology should also be applied to how the Adaptation Plugin sends 

commands to other plugins.  Please refer to Appendix B4 for more details. 

 
Figure 22 – Revised data communication between plugins. 
 

6.1.2 Tangible Plugin Should Implement Flexible Interfaces for Increased Modularity 

 

Modularity is also important at the hardware level.  Given the session-to-session 

changes in objects used for the therapy protocol, both the system and therapist may 

want to interchange or replace objects frequently.  The Tangible Plugin needs to 

support this flexibility.  Currently, due to instabilities seen in initial testing, the 

Tangible Plugin was configured such that serial ports only open and close once at 

program open and quit respectively.  As a result, once a port was opened it was 

configured for a particular object and could not be reconfigured for another object 

until the program was restarted.  Not only is this limited from a modularity 

perspective, but it is also a bad user experience design.  Therefore, in order to 

improve this design, interfaces should be flexible such that a port opens and a 

unique data parser can be assigned to the port.  That way the manner in which the 
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data is parsed is not linked to the opening or closing of a port, and thus, once a port 

is open, any sequence of data parsers can be attached to the port as needed.  For 

more details on implementation details, see Appendix B5. 

 

In the development of the system, many problems were encountered when 

developing the Tangible Plugin interface for receiving data from the tangible objects.  

If there was ever a crash from any of the plugins, the serial ports were not closed 

properly, and as a result, the computer would need to be forcefully shutdown and 

restarted.  To avoid this problem at the time, it became necessary to run DASH as a 

compiled app and incorporate functions for a clean exit that could respond to 

thrown exceptions or commands to quit the program to safely close the ports.  As a 

result of the problems seen in the stability of the serial port communication, the 

Tangible Plugin was configured such that only a fixed number of ports could be 

opened every time DASH was started. This ensured that a specific port could only be 

opened once and it would have to be safely closed via the port closing resulting from 

quitting HAMRR.  While this created stability that reduced the number of crashes 

and also vastly improved the recovery time from a crash, it was not an ideal solution 

for the long term.  
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6.1.3 Existing Abstracted Interfaces Should be Utilized Further for Better Code 

Generalization 

 

As I was writing the HAMRR Analysis program code, I was also exploring in detail 

the applicability of design pattern models to my work.  As a result, the HAMRR 

Analysis code already shows an example of the benefit of abstracted interfaces. 

 

When I was designing the code for the analysis program, I decided that the highest 

level of functional difference was a set of data.  Since there were no features that 

were analyzed across sets, it made sense to only be concerned with sets of data at 

the highest level.  As was previously discussed, each set represents a group of trials 

in which the tasks and feedback parameters were the same.  Therefore, each set 

(HABaseSet) would most likely differ in how it defined trials (which reach states it 

provided) as well as the analysis algorithms that would need to be conducted on a 

particular trial.  Therefore a group of analysis classes were created.  They were all 

subclasses of HABaseSetAnalysis.  Therefore, each instance of HABaseSet needed to 

have a particular instance of HABaseSetAnalysis (the type of the instance was 

defined by the type of set loaded from the database).  The same was done for the 

set’s trial segmentation algorithms (HABaseTrialSegmentation) and initialization 

algorithms (HABaseSetInitializers).  Therefore, with this design, the set specific 

algorithms could be defined at runtime and were tied to a specific implementation 

of a HABaseSet sub-class. 
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However, while this design is a step in the right direction, there are some code 

refactoring steps to take place.  By separating all of the set specific algorithms into 

generalized interfaces, there really isn’t a need for subclasses of HABaseSet (like 

HASetLevel2 and HASetLevel3).  Currently, the only difference is in how the set 

saves and loads segmentation files as well as saving evaluation results to file.  

However, these could also be abstracted to a general interface, such that there is 

general HASaveSegmentation (which could likely be combined with the 

HABaseTrialSegmentation class) and HASaveFeatures class, which specific 

subclasses for set unique needs.  This would remove two unnecessary, general 

classes and instead provide more specific, encapsulated classes, which again would 

support future re-design and extensibility. 

 

6.1.4 Class Responsibilities Should be Refined to be More Specific 

 

As previously discussed, the macro-scale functional decomposition was a combined 

effort of the design team in coming up with a design where large-scale functionality 

could be divided into individual plugins.  However, the concepts of modularity and 

functional decomposition change when looking within a plugin, which is where most 

of my work existed.  Currently, there are many classes that hold too many 

responsibilities and therefore if code needed to change (which is an inevitability in 

iterative design), changes to features in one class could be hard to separate from 

other features in the same class. 
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As an example from a plugin I was solely responsible for (Adaptation Plugin) is 

ADMainController.  As previously discussed, this class serves as the main class for 

the Adaptation Plugin.  When looking at this class, the following functionalities can 

be identified: control video recorded program (setup and send commands), trigger 

start up functions, trigger opening ports, handle incoming NSNotifications, parse 

and translate incoming table button input, trigger specific demo videos, determine 

which demos need to be played (and remember which ones have already played), 

make sure all plugins are notified of the details of an upcoming set, trigger the 

tangible object socket test, trigger the manual stop of a set, and parse incoming 

sensing data stream states.  What results is a class with over 2000 lines of code with 

too varied responsibilities.  To further highlight why this is a problem, for example, 

if changes were needed for the sequencing of demos, changes would have to be 

made in the ADMainController, which if not careful, could impact other 

functionalities of the main class of the plugin.  This is a design that should be 

corrected by functionally separating out some of the pieces of ADMainController 

into separate classes (as a start): video recorded handler, a startup command class, 

an incoming notification class, an outgoing notification class, a demo controller and 

a stop command class.  In this way, the functionality is a little but more separated 

and it allows for easier extensibility.  If someone wants to change how the 

Adaptation Plugin calls for specific demos, those changes could be encapsulated 

within the demo controller (and it’s related classes).  In addition, this also makes it 

easier for someone to remove functionality.  If demos are not required for a specific 
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application of the code, then a null demo controller could be put in place, and none 

of the other code needs to change. 

 

6.1.5 Template Design Pattern Should be Utilized Within Motion Analysis for Quick 

Extensions 

 

The Motion Analysis plugin, which is responsible for all data analysis and drives the 

live interaction, needs to also be updated for better modularization.  Primarily this 

should be done to allow for easy extension of the reach states. The reach states 

should be encapsulated as they are one of the key areas of difference between each 

analysis engine (real time, Level 2 and Level 3). (Figure 23)  Not only would this 

further highlight the reach states (across analysis) that are the same or similar, and 

thus could be refactored, but it would also allow for someone to input their own 

reach states much easier. 
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Figure 23 – Encapsulate reach states in templates.  With this redesign, new 
combinations of reach states can use existing template code (grey) and only modify 
what is new (blue) 
 
 
To implement this change, a Template Method approach should be taken.  This 

approach would create a general skeleton for an algorithm and allow subclasses to 

implement specific parts of the algorithm in general.  Therefore, a sequence of reach 

states would be represented as a general template and each subclass (a real time 

subclass, a Level 2 subclass, a Level 3 subclass and so on) would defer to the general 
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implementation or override with its own implementation as needed.  Then, each 

analysis engine would be represented by a specific implementation of a template.  In 

terms of extensibility, this would allow a future designer to create unique reach 

state implementations which could be a hybrid of proven effective reach states used 

by HAMRR and new reach states. 

 

Furthermore it is advised that these reach states should be moved into their own 

individual state objects.  The main parent state class, would have a common function 

to process an incoming data frame.  Then, each state would have their own rules to 

process that frame and determine if a specific state transition should occur.  If a 

transition needs to happen, the specific state class would update the active state of 

the analysis engine, so that new data frames would be processed by that state object 

as well.  In this way, each motion analysis engine does not have to be concerned 

with the specifics of a particular state, and thus, this variability is encapsulated.  This 

would allow a future designer to extend these states or add their own, with minimal 

changes to the analysis engine. 

 

6.1.6 Data Structures Should Anticipate Future Development Changes 

 

A common software design theme discussed thus far has been to anticipate changes.  

This includes not only writing code that can be easily extended in the future for new 

applications (such as in the discussed example of the transportable cone), but also 

ensuring that the existing code can work with future changes to other components.   
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One of the areas where this idea is key is with the data objects.  Through out the 

code (Sensing Plugin, Tangible Plugin, Motion Analysis Plugin and Adaptation 

Plugin) data is stored into data objects.  These objects typically just hold properties 

for each value of the data object, with minimal other helper classes.  One of the main 

set of helper classes is in the implementation of the NSCoding protocol.  The 

NSCoding protocol provides methods that must be defined to save an instance of an 

object to file.  The process of saving and loading an instance of a class to or from file 

is very straightforward, until the structure of the data class changes.  The change in 

the data class is inevitable through out the design and testing process as new 

features could be added to or removed from the analysis.  Therefore, legacy data 

objects suddenly don’t work with newer code iterations. 

 

As an example, the HAMRR Analysis program saves instances of HABaseTrial (and 

its child classes) to file in order to save all of the segmentation points and applied 

filters for a trial so that these features do not need to be re-identified in the future.  

Saving these features as a serialized object works because there is really not a need 

to edit any of these features out side of the context analysis program (in other 

words, for example, there wouldn’t be a need to leverage an XML viewer to edit the 

location of segmentation points of a trial).  Therefore, saving the features as a 

serialized object does not need to change.  However, as the analysis program was 

being developed, it was also being used to start testing the analysis process to 

identify any problems during the development.  As a result, new segmentation and 

filter features were being added and, as a result, made legacy serialized objects 
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outdated.  Therefore, as a result, older data objects could not be loaded, which even 

in the testing phase of the analysis program, required some segmentation to be 

completed again.  This is not ideal for any iterative design work-flow. 

 

Instead, along with the serialized object properties should be some encoded 

information representing the version of the serialized object.  This feature should be 

checked first and a resulting decoder should be selected to unpack the data into an 

appropriate data object, with non-serialized features being initialized with default 

values.  Then, when these data objects are saved, they could either be saved with the 

most recent encoder, or a legacy encoder so the data object could work with older 

versions.  In the case of the HAMRR analysis program, there was no need to 

maintain a legacy program, so old data objects should be saved under the latest 

encoder so that future serialization problems are lessened. 

 

6.1.7 The Adaptation Plugin Should Support the Hierarchy of User Interactions  

 

As the main control component of the system, the Adaptation Plugin needs to 

support the interactions of the user who is controlling the system.  This requires, as 

a designer, thinking about the high level interactions that a user wants and how 

lower level code components will perform the commands.  The same methodology 

should be applied to the code.  The high-level controller classes should just interact 

with a high level interface, or façade.  This standardizes the details that are part of a 



 191 

large command (such as “Start Set”) and thus organizes the code into more stable 

components. 

 

For example, currently, the ADMainController has a function called 

“runStartUpFunctions” that has a series of calls that need to be executed when 

HAMRR starts up, after all of the plugins have been loaded by DASH. This function: 

 

1. Triggers the loading of a scenario file, if a scenario file is successfully loaded, 

the function calls continue. 

2. Send an NSNotification to the Motion Analysis Plugin with the patient ID to 

load the calibration files for that subject 

3. Query the database (Archiving Plugin) to see if this session was previously 

left incomplete.  If so, return the set ID from which to resume. 

4. Notify the Tangible Plugin to open the ports 

5. Notify the Visual Feedback Plugin of the current number of sets in the 

session, to update the session progress bar shown to the patient. 

 

Separating for a second some of the previously reviewed over-reaching functions of 

the ADMainController class, it will continue to be true that at system start up, a 

series of function calls to various plugins will be necessary.  However, the variability 

of these steps and their specific implementation (which will be application specific, 

and thus, a good candidate for encapsulation) should not be part of the main 

controller class.  Rather, a generalized Façade should be created such that macro-
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commands (such as Start Session) can be called by the ADMainController class, but 

the specific implementation and calls to other plugins, can be handled by a separate 

class.  This further strengths the modularity.  A future designer looking to extend the 

code knows that a “Start Session” function is crucial to implement, but can update 

the specific calls within an encapsulated class. 

 

The same methodology could be applied to the function that is called at the start of a 

set: “startSet”.  Currently this function 

 

1. Ensures there is a valid Session and Set ID for the next set 

2. Checks to see if a specific demo needs to be played, and if so, triggers that 

demo (Which is a protocol connected with the Visual Feedback plugin) 

3. If necessary, it triggers a reminder of the starting location of the 

transportable object, as well as the directionality of a multi-object task. 

4. Calls a series of specific protocols to different plugins (Tangible, Audio 

Feedback, Visual Feedback, Motion Analysis and Archiving) to setup prior to 

running a live set 

5. Starts the video recording 

6. Starts the set (via a protocol connected to Motion Analysis) 

 

Similar to the “runStartUpFunctions” example, here are a series of steps that are 

application specific, but represent a macro-command that will be important across 

applications (“What features need to be configured or ran before a live interactive 
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set begins).  Again, ADMainController shouldn’t have to implement these specific 

calls.  Rather, these specific calls should be abstracted to the Façade class under a 

more general “Start Set” function.  Therefore, the ADMainController stays more 

modular.  It does not need to know what specifically constitutes starting a set, but 

rather that starting a set is an important step in the interaction. 

 

6.1.8 Code Modularity Within a Plugin Requires Inner Class Communication 

Optimizations 

 

Similar to the previous discussion on standardizing the style of communication 

between plugins, a similar review is necessary of the communication within a 

plugin.  Just as the previous mentioned suggestions for between plugin 

communications allow for large scale modularity such that plugins remain more 

separate and contained, modularity within plugins is equally important for code 

extensibility.  Thus communication between classes and the flow of function calls 

should be considered closely. 

 

Using the Adaptation Plugin as an example, there are currently circular function 

calls, in which a high level class depends on a low level class, which in turn, depends 

on a high level class.  This entangles functionality quickly and makes debugging and 

extensions difficult. 
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For example, when the ADMainController executes “runStartUpFunctions,” as 

previously discussed, it makes a call to ADScenarioController to attempt to load a 

new scenario.  At the end of this function, a call is made back to ADMainController to 

initialize the archiving file (which notifies the Archiving Plugin of the current Patient 

Id, Session Id).  This leads to a problem called dependency rot.  In this example, a 

high level component (ADMainController) depends on a low level component 

(ADScenarioController), which in turn depends on a high level component 

(ADMainController).  If any changes were made to the higher level class 

(ADMainController) it could unknowingly have consequences for higher level 

classes in more indirect ways.  Plus, the ADScenarioController now requires that an 

instance of ADMainController exists.  While this many not be an issue in some 

applications, in this specific example, a low level class (ADScenarioController) is 

adding an additional constraint that not only is the high level class required, but the 

implementation of a specific function is required. 

 

To avoid this problem in the future, the high level classes should dictate when 

information or algorithms are needed from low-level classes.  Therefore, in the 

previous example, instead of the ADScenarioController calling back to the 

ADMainController to initialize the archiving, the ADMainController should know to 

initialize the archiving if a scenario file was successfully loaded.  As previously 

described, this is another step that should be wrapped up within the macro-call 

façade.  Thus, two problems are eliminated simultaneously: more variable steps are 
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encapsulated in an interface and low level classes have less dependency on high 

level classes. 

 

6.1.9 Data File Types Should be Easily Accessible and Reliably Organized 

 

As previously discussed, two of the main users of INR system are the therapists and 

system designers.  Both of these users will require access to the data after an 

interactive session is completed.  They may also wish to script automated scenario 

files or make changes to the sensitivity of the training.  In all of these cases, data files 

representing these details are required for the system to load.  For the ease of use of 

the therapist and design team, these files should be easily accessible and organized. 

 

As has been reviewed, HAMRR currently uses five different file types: 

 

1. XML – All scenario files are composed as XML files.  The HAMRR Composer 

writes scenarios to XML files and the Adaptation Plugin loads scenarios from 

XML files. 

2. Serialized Objects – All marker calibration information is saved as a 

serialized object (from the Motion Analysis Plugin) and trial segmentation 

and applied filter information is saved as a serialized object (from the 

HAMRR Analysis program). 

3. pLists – pLists are used throughout the Visual Feedback plugin to load and 

play appropriate content, especially for the on screen demos. 
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4. SQLite database – The Archiving Plugin saves all data frames and resulting 

analysis, as well as calibrations and control information (ADScenarioData 

information) to a table separated database. 

5. Text Files - All of the sensitivities (for tasks and feedback parameters) as well 

as task reference trajectory information is loaded from text files. 

 

For most of these file types, there was a specific reason for its selection: 

 

1. XML allows for easy review of the structure of the data, which made sense for 

the structured data information from ADScenarioData.  In addition, if the 

scenario paths need to be edited by a therapist in future applications, 

multiple external programs can edit XML files. 

2. Serialized objects don’t allow for easy review outside of the program, but are 

reliable to save from the program.  Therefore, calibration data and trial 

segmentation points, which were not needed outside of the program, could 

be saved and loaded safely and quickly. 

3. pLists, like XML files, provided an easily viewed and editable structure to 

data. 

4. SQLite provides a very organized and reliable way to save data, which is 

crucial for the data results of the system in use.  Similar to XML and pLists, 

SQLite is easily viewable outside of the HAMRR program by external 

programs. 
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As can be seen, these file types offer a fair amount of flexibility, however the one 

excluded file type (text files) can be problematic.  Text files, on their surface, are 

easy to understand.  They can be filled out, separated with a character (such as a 

comma or tab) and easily loaded and parsed by a program.  While this was 

advantageous for me in quickly being able to load sensitivity files, text files can 

provide problems if not composed with the correct structure.  For example, if 

specific values are space separated and the program is expecting tab separation, the 

incoming data parse will be incorrect.  As another example, sometimes blank lines at 

the end of a file can also create problems in parsing the incoming values.  Therefore, 

while they initially seemed like the easiest way to load information (such that it 

could be edited outside of the program), it is not the most stable solution.  Rather, 

for system control information, pLists would be a better solution.  These file types 

can still readily be editable outside of the HAMRR program, but they inherently have 

a more standardized, clean structure than text files. 

 

6.1.10 Design for System Assessment to Provide Information for Future Design 

Iterations 

 

While it is incredibly important that patient data is archived in a manner that is 

robust and in an easily accessible format, the same approach should be taken to 

system state information. Because of the strength and ease of extensibility of the 

database structure, more information should be archived that can allow for not only 

later analysis of patient performance, but also of system performance.  In an 
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adaptive system, many times changes to protocol will be made in response to errors 

found or sensitivity tweaks that were not previously encountered.  This requires 

making changes to the state of the system for that particular user, but these changes 

may not be applicable for all users of the system.  These variable changes in system 

state are very important for system designers to assess the performance of the 

system. 

 

Within the Adaptation Plugin, a component was developed to write simple log 

messages to file.  However, this component was not developed very far as 

development priorities were pushed in other directions.  Related to the previous 

discussion of having a standardized way for plugins to report errors to the control 

plugin, the control plugin in turn should also have a way to save these reported 

errors to a log 

 

6.2 System Architecture Improvements 

 

6.2.1 Code Architecture Could be Further Improved with Standardized Plugin 

Templates. 

 

From my work in developing many of the plugins that were used by HAMRR, it was 

clear that the initial functional decomposition design was quite comprehensive.  

While some additions were needed within plugin, none of the additions required the 

inclusion of a new plugin or splitting a plugin into two functionally separate plugins.  
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Therefore, the overall hierarchy architecture suggested should be utilized further.  

And, in order again to support long term code modularity and extensibility  by 

retaining what was found to be successful of the current architecture, plugin 

templates should be created for future developers. 

 

Inputs 

 

Each Input plugin will represent taking raw sensor data from a varying number of 

pieces of hardware, possibly providing some low level data filtering and analysis, 

and proving access to this processed data for other plugins. 

 

The input plugin will have some dependence on what type of hardware sensor is 

being used (in terms of the type of data connection and the style and format of data 

sent from the hardware).  In this case, if the developer wants to user serial inputs, it 

would be beneficial to have an API to create a new serial input within the existing 

Tangible Plugin structure. 

 

The low level analysis and data parsing will be hardware specific as well.  Extensible 

interfaces should be created for both so the developer has the ability to use an 

exiting data parsing method, or implement their own. 

 

Finally, the template should provide a standardized way to report (via 

NSNotification) that data is ready to be processed by other plugins.  Frame rates will 
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differ for hardware, therefore it will be up to the designer how often data is 

provided to the rest of the system.  Along with the NSNotification, should be 

protocols for accessing the data contained within, along the examples provided in 

section A1.  Therefore, this input can be used by any other plugin without significant 

modification of the code in other plugins.  Examples are shown in Figures 24 and 25. 

 
Figure 24 – Example Sensing Plugin template 
 
 

 
Figure 25 – Example Tangible Plugin template 
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Analysis 

 

Each analysis plugin will represent taking data objects from the Inputs plugins, 

conducting detailed analysis on the data within, and providing access to the 

resulting analysis data to other plugins. 

 

The Analysis template should have a class for receiving the standardized data 

objects.  It will be up to the designer to determine what to do with the received 

objects. 

 

A template for HAMRR development should provide an API for utilizing the existing 

analysis.  This API would provide access to an interactive reach state as well as the 

results of various analysis types.  It would also allow for a designer to create their 

own analysis type by extending reach state templates (as previously described). 

 

Finally, the analysis plugin template should provide a standardized data output 

object, similar to the input data object.  A standard NSNotification would be 

provided, with necessary protocols to access data values.  Again, it would be up to 

the developer to determine how often these data object notifications would be sent 

out from the analysis plugin. An example of this template can be seen in Figure 26. 
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Figure 26 – Example Motion Analysis Plugin template 
 

Outputs 

 

Each output plugin will represent taking resulting data analysis and providing some 

feedback based on those results.  While I will not discuss in detail what a template 

might look like for a feedback engine (since I was not involved in the feedback 

plugin development), I will leave my comments to interfacing an output plugin with 

the rest of the program. 

 

Similar to how an Analysis Plugin handles the notification from and Input Plugin, an 

Output Plugin would receive a notification from the Analysis plugin.  Therefore, to 

an Output plugin template, a general class should be provided to receive the 

Analysis notifications.  Once again, in a similar fashion to the Analysis plugin, the 
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Output plugin would have generalized protocols to get access to the results of the 

analysis without having to know the structure of the data. 

 

All of these suggestions would also be true for implementing an archiving output 

plugin.  It would received generalized notifications (a template should once again 

provide a class for receiving these notifications), access the updated data via 

protocols, and save the data to an SQLite database.  An API here would be very 

helpful to allow for easy creation of and access to a database file.  An example of the 

template can be seen in Figure 27. 

 

 
Figure 27 – Example of Archiving Plugin template 

 

Control 

 

The control plugin represents a master interface for the whole program.  It should 

have standardized protocols for each style of plugin (an input protocol, to be 
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implemented by input plugins, an analysis protocol for analysis plugins and an 

output protocol for output plugins).  Depending on the application, there many need 

to be some more differentiation of the protocols, but this would provide a basic 

start.  In addition, related to the control plugin, each other type of plugin should 

provide a standardized method to report errors to the control plugin (as previously 

discussed).  Accordingly, the template should provide a class to implement protocols 

from other plugins as well as a class to call protocols to be implemented by other 

plugins.  The template should also provide general sensitivity data object, similar to 

the data and analysis object, so there is a standardized way to access sensitivity and 

task data.  Finally, a generalized GUI controller class should also be provided, with 

access to key sensitivity, task and error information.  The developed could then use 

this provided information in any way desired. An example of this template can be 

seen in Figure 28. 

 

 
Figure 28 – Example of the Adaptation Plugin template 
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By implementing templates, or APIs of existing plugin implementations, quick 

extensions to code are possible.  The template provides a suggestion for overall 

system development, plus it provides a standardized (and thus stable) 

communication method between plugins.  Plugin communication was something 

that needed constant testing during the development of the system.  With the 

formation of templates and the standardization of the communication between 

plugins, this testing would be minimized.  Developers could add content with the 

assurance of the form of the incoming and outgoing data.  Within each plugin, by 

providing an API, we are able to leverage tested and usable code.  When building the 

HAMRR Analysis program, I wanted to use a fair amount of the analysis functions 

from the hospital system, since these methods have been substantially tested and 

validated.  However, these analysis algorithms expected a specific data type 

implementation, which was not used in HAMRR.  Therefore, substantial time and 

testing was required to make sure the analysis algorithms were implemented 

correctly.  If an API existed for AMRR analysis, this inclusion of analysis methods 

would have been smoother with less uncertainty if prove analysis would work in a 

new context.  Therefore, future developers should be able to leverage the existing 

input, analysis, output and control code that has been tested and validated within 

the HAMRR pilot study. 

 

Related to the idea of further modulation and the creation of templates, the 

modularity of code does not necessarily mandate the utilization of DASH.  The 
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selection of DASH, as referenced earlier, was done due to its ability to stably and 

reliably handle visual feedback development.  It allowed for clean ways to interface 

with OpenGL drawing.  In addition, beyond this capability, it kept all the same 

functionality of Objective-C code.  The fact that DASH is structured to run multiple 

plugins of code certainly reinforced the design idea to functionally decompose the 

HAMRR system into modular units.  In addition, by having macro-level functional 

decomposition based plugins, it ensured less overlap in people’s work.  This 

working within a plugin usually had limited chances to negatively impact other 

people’s code.  Of course plugin communication issues could arise, but very rarely 

were team members editing the same classes simultaneously. 

 

6.3 System Hardware Improvements 

 

6.3.1 Move Away from Reflective Marker Tracking, Especially When Camera 

Numbers are Reduced 

 

Now that a substantial amount of data has been collected with eight subjects, it was 

shown that the end point is still a very crucial input as many levels of data could be 

extracted from this one input.  However, an OptiTrack system is not a practical idea 

for moving forward with home based sensing solutions.  It was a design selection 

made to keep the system development moving forward with the compromise that 

for the first iteration of HAMRR, it would provide the most reliable data for the 

team.  
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However, for the reasons identified in the Results chapter, this sensing setup should 

be quickly replaced.  Not only can it lead to some of the noise previously identified, 

but also it is a heavily proprietary solution that requires consistent upgrades 

(requiring continual financial commitment) to use the latest software capabilities of 

the tracking system. 

 

Therefore, computer vision solutions that will not be interrupted by, or can 

compensate for, occlusion will be key.  The hybrid solution of introducing sensing in 

the chair really only provides a basic sense of how a patient is sitting in a chair.  As 

was shown, it could be used as a very basic indicator to see if a patient began a reach 

with compensation (if compensation is to be defined as torso movement away from 

the back of the chair). However, significant compensation will take a patient off of 

the chair (as was seen consistently in more impaired subjects), and thus eliminate 

the utility of these sensors.  Plus it requires instrumenting another aspect of 

someone’s home, which is not ideal.  Thus solutions for torso tracking that can 

utilize a single camera setup would be optimal. 

 

6.4 User Experience Improvements 

 

6.4.1 The Design Team Should Have Remote Access to the System 

 

In order to support the iterative design workflow framework, the design team will 

need to access the software of the system frequently to make adjustments and fixes 
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in response to needs that arise.  For the majority of the HAMRR testing protocol one 

of the main system designers was on site to oversee the study.  Each person had a 

deep knowledge of how the system worked, including its code, and could make 

updates in a very straightforward manner with the system.  However, when the 

system was controlled by a therapist for two subjects, the previously described 

workflow was invalid.  Further more, expecting the therapist to make code updates 

is incorrect and does not benefit the needs of the therapist as a user of the system 

(monitoring the performance of the patient). 

 

During the therapist led portion of the study, when issues or suggestions arose, 

making changes to the system required e-mailing project files that then the 

therapist needed to build or put in the correct directory while one of the design 

team members talked through the process.  This led to confusion and consumed a 

fair amount of time to complete.  One solution to this would be to leverage a remote 

desktop access such that a system designer could log in and make the necessary 

changes in-between patient sessions.  Another possibility would be to create a 

network access point within the system itself along with a remote client program to 

interface with the system.  This solution, however, would require more time to 

develop the client and may only work as a debugging tool to remotely view the state 

of different program components. 

 

Providing remote access could also be a way for the design team to get data files 

from patient sessions.  In the HAMRR study, the anonymous data files were added to 
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a password protected Dropbox account.  However, this required the therapist to 

manually add the files to the Dropbox account.  While this procedure overall was not 

very difficult for the therapist to complete, it’s still an added step that should be 

removed.  It would be better, for example, for the program to automatically add 

saved database files to the Dropbox directory.  Or, depending on the style of remote 

access developed, the design team could log into the system and pull the data 

manually. 

 

Due to network restrictions at the site, we were not able to smoothly implement a 

remote desktop solution as it was felt the therapist would still need to make changes 

to system settings to establish the remote desktop connection.  However, in 

retrospect, these changes required (cycling on and off the wireless connection) 

would be much simpler than any other procedure.  Therapist would have to turn off 

the wireless (one step), answer an incoming call from a remote desktop client (one 

step) and then turn off the wireless once the updates were complete (inverse of first 

step). 

 

6.4.2 The System Should Incorporate Standardized System Error Reporting for the 

Therapist and System Designers 

 

Designing an experimental complex system that leverages iterative design cycles 

implies multiple short-term tests of integrated components, each with their own 

respective development timeline.  Therefore, the design team always strives to 
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minimize system bugs, they can be inevitable.  As a result, designs should be put in 

place to maximize the information available to characterize a problem.  In a system 

like HAMRR, this can be further complicated because an error can come from any 

one of the plugins.  Also, just because an error occurred, does not mean that all other 

parts of the system will be impacted.  Thus, portions of the live interactive use of the 

system may appear fine, while there is a larger issue building underneath. 

 

Therefore, all problems and system errors need to be easily and clearly brought to 

the attention of the testing design team, as well as the user (including the system 

designer, therapist and patient).  Currently, as previously discussed, there is a 

framework in place to report the patient when noise enters the OptiTrack data 

stream and how to correct the problem.  However, for more internal system 

problems, a similar approach should be taken. 

 

Similar to standardizing communication between plugins, in future designs, there 

should be a standard way to report errors.  The Control plugin (in this case the 

Adaptation Plugin) should be configured to be the default handler of all error 

messages and all the other plugins should have standardized ways to report errors.  

For example, if noise is found in the incoming data signal, the Sensing Plugin should 

have a set way to inform the Adaptation Plugin that a problem is occurring.  Then, 

the Control Plugin should have a manner in which to respond to the events, which 

should result in an instructional message on the screen for the user or therapist to 

respond to.  If the Archiving Plugin had an issue in saving the data to file, the 
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Adaptation Plugin should be notified such that the system controller could assess if 

the set needs to be completed again.  In the redesign of future plugins, this should be 

a mandatory piece.  Along with the functional decomposition, should be a parallel 

design of what problems may arise from each function, and which of these problems 

need to be reported up to the main control plugin.  In the case of HAMRR, the 

Adaptation Plugin could handle these incoming errors and functionality could be 

created to handle each differently from stopping a set and creating an onscreen 

prompt to silently logging the issue to file in the background.  In either case, each 

plugin should be aware of possible problems and should notify any control plugin of 

this issue. 

 

6.4.3 Don’t Compromise on Core Principles That Can Affect the Patient Therapy 

Experience 

 

In the previously discussed example of quickly developing and integrating a new 

transportable cone object for smaller hand apertures, an iterative design approach 

was used: a perfect solution could not be achieved in the development time allowed, 

so priorities had to be identified such that the system could keep working and 

collecting informative data.  In the case of the transportable cone, this meant 

removing the data streaming from the object as it was interfering with the stability 

of turning on and off and IR light at the top of the cone.  It was decided that tracking 

the location of the object computationally (and therefore, not requiring the therapist 
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to focus on this) was more important than training a grasp.  However, this created a 

discontinuity in experience. 

 

The cone and transportable cone are nearly the same in appearance, and thus it 

would be expected by the user that their behaviors are the same within the context 

of the training task.  However, this became clearly identified as not true by the 

patients who used this object.  In the case of the stationary cone, task completion is 

determined by a combination of factors including the pressure exerted on the 

object.  However, in the case of the transportable cone, this data was not available, 

and thus task completion was defined as proximity of the hand to the object.  This 

introduced some confusion, both to the patient and therapist, about why a success 

cue was given so quickly for one object and not the other.  There was a discontinuity 

in the training experience.  However, it was known from the past AMRR study that 

tangible data is crucial for assessing task completion.  This is especially true for 

more impaired subjects, who were the users that were in mind for the design of this 

new object.  Therefore, an incorrect decision was made in this iterative process, and 

more emphasis should have been placed in ensuring the object could provide some 

reliable tangible data for assessing basic task completion. 

 

Therefore, in the future, some basic indication of physical interaction should always 

be a requirement for task success.  It doesn’t necessarily need to be a complex, 

grasp-classifying model, but it should provide, at minimum, a basic, binary 

indication of grasp.  Therefore, as the transportable cone was initially designed, two 



 213 

simple sensors to detect opposable grasp would be an adequate starting point.  Due 

to a late change in the electronics design as well as a lack of a full testing 

environment, this wireless protocol could not be tested fully, and thus needed to be 

removed.  Looking forward, this idea should be revisited and refined for integration 

with the transportable cone. 

 

6.4.4 Design a GUI to Support the User Experience of the Therapist, a Primary User 

of the System 

 

While the system was overall successful in running multiple patients through the 

protocol, it became a challenge when trying to train other therapists to use the 

system.  The main control interface, implemented in the Adaptation Plugin, while 

allowing access to all of the necessary sensitivity features, did not do this in an 

efficient way.  The design of the interface did not consider the usage needs or time 

constraints of a therapist.  Instead the interface designed for a system designer to 

use who had full knowledge of all of the system details. However, as previously 

discussed, the therapist needs to be considered a primary user of the system.  

 

A key user experience observation is that a physical therapist’s attention needs to be 

focused on the patient and the subtleties of their movement; not on how the system 

is performing and what buttons need to be pressed next to continue the therapy 

protocol.  In the future, the GUI should be completely redesigned to maximize 

limited allowable focus and minimal required knowledge to run the system. 
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6.4.4.1 Create a Functional Decomposition Hierarchy 

 

Similar to the approach that was taken to designing the overall system architecture 

and identifying where individual plugins could be separated, a similar approach to 

the GUI should be utilized. When designing the next interface, significant time 

should be given to collaborate with therapists (especially those who have already 

used the system) to understand what information is absolutely essential, and which 

controls are not.  Some of this information has been gathered from the second round 

of patient sessions at Emory. My suggestion is to break down the controls into tiers 

of necessity: Real-time controls, Debug Controls and Set Controls. 

 

First of all, the Real Time controls should be reduced to three categories: “What am I 

running?”, “What is the state of the data?”, and master start and stop controls.  These 

three themes seemed to be the most important during therapist ran sessions.  “What 

am I running” refers to understanding where in the protocol the patient currently is 

as well as which feedback streams are currently on and their sensitivity.  Secondly, 

“What is the state of the data” refers to clear indications of the noise level of the 

incoming data and clear instructions of what to do if there is a problem with the 

incoming data.  Finally, there needs to be quick access to a start and stop control.  If 

the patient needs to break during a session or a hardware or software bug comes up 

and needs to be solved, these controls are necessary. 
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The second tier of controls should be Debug Controls.  This represents a set of 

controls that only needs to be accessed if something goes wrong with the system.  

Within this category should be the demo controls (skip demos, turn off demos, only 

use demo prompts).  On and off controls for using the wristband sensor and using 

torso feedback should also be included.  The selection of these components comes 

from observations of therapist use of the system.  If DASH needed to be restarted, 

therapists need easy access to skipping unnecessary demos and getting quickly to 

the correct set in the protocol to quickly recover from any problems.  Secondly, 

when there were problems with the interactive sets, they usually were due to noise 

in the rest calibration and wrist pad sensor or noise in the torso calibration, using 

the markers or chair data.  Therapist should have quick access to turning these off if 

they are incorrectly interfering with the interactive sessions. 

 

Finally, in the third tier are the detailed Set controls.  These are all the parameters 

that the Motion Analysis, Visual Feedback and Audio Feedback plugin use during an 

interactive set.  These need to be grouped into intuitive categories, with more 

detailed and clear labels than what the current HAMRR GUI window provides.  The 

labels need to be presented using language and units that are quickly intelligible by 

a controlling therapist. 
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6.4.4.2 Address the Needs of the User in a Form That is Efficient for That Specific 

User 

 

Significant time and design went in to building feedback environments that could 

efficiently convey complex yet structured information to the patient on their 

performance of the reach.  Similar consideration needs to be given the therapist (as 

a key user of the system) and how information can be efficiently presented to them. 

 

When designing the proposed new tiers of controls, there should also be an 

emphasis to use a “Show, Don’t Tell” approach to the design.  Instead of an interface 

of just numbers and pull down selectors, parameters and their resulting effects 

should be shown in a visual or auditory way to directly demonstrate what each 

parameter does.  There should be an interactive set preview window that will 

quickly play back all of the feedback (tangible, audio and visual) so that the therapist 

can directly see what the upcoming set will look like.  Currently, the therapist has to 

make another mapping transformation in their mind so the sequence progresses 

from: physical space consideration to abstract parameter in the system to resulting 

effect on the interactive set.  The middleman here should be removed so the 

therapist can intuitively change sets.  This would also help empower the therapist to 

diagnose problems should they occur. 

 

In conjunction with this “Show, Don’t Tell” approach to the task and feedback 

environment settings, this should also be applied to error reporting.  When the 
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system was tested under therapist control, it still required a system designer to 

diagnose problems remotely over a Skype call.  While this may be unavoidable for 

some detailed code bugs, this should not be the case for higher-level sensing or 

functionality issues.  The GUI interface needs to clearly communicate what the error 

in the interaction is, as well was, suggestions for how to diagnose the problem 

further or directly fix the problem.  Over time, the therapist who ran HAMRR was 

able to identify some problems automatically, but a GUI that could bootstrap this 

process and have therapists feeling further empowered to use the system, by 

reducing the amount of troubleshooting required on their part, would be beneficial. 

An example of a possible new mock up can be seen in Figure 29. 

 
Figure 29. Example updated control GUI 
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6.4.4.3 Design Interfaces with Continuity in Mind by Creating Design Guidelines 

 

As previously mentioned, it is important to maintain a uniformity in experience 

across systems.  This is especially true for INR, where the likelihood of one system 

being able to address all training needs across systems is very low.  Therefore, both 

the physical interface and virtual (GUI and patient experience) interface should 

provide a continuous experience across systems.  There are many examples of this 

work used in other applications, including Apple where a set of human interface 

design guidelines have been proposed for the apps installed on their devices.86 

 

While it will not be described in detail here (as it is beyond the scope of my work), 

many of the feedback design principles that were validated in AMRR were continued 

in HAMRR.  Therefore, if AMRR and HAMRR were to be tested in a continuum, it is 

likely that the user would be able to transfer some experience of the feedback and 

tasks from one system to the other.  However, the testing of AMRR and HAMRR 

were separated by a significant amount of time. They were also tested with different 

sites.  Therefore, continuous experience in terms of the user interface for the system 

controls was not considered at all.  However, moving forward, it will be important to 

consider the interface that the therapist uses to control the system and how similar 

design choices can be made for other systems.   As has been previously described, 

the resources available to therapists are limited, and therefore a continuous 

experience would limit the amount of time needed for training.  Similarly, the 

interface with system controls by the patient (table buttons and demo buttons) 
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should be considered moving forward as well to see if these interactions are 

valuable to re-implement in future systems.  Therefore, overall, it may be beneficial 

for the design team to identify design guidelines before future development to 

ensure that this continuity of experience is not lost. 

 

6.4.5 Enhance the Patient Experience of Controlling the System and its Setup 

 

In order for HAMRR to be closer to a system that can be reliably implemented in the 

home, the start up and shut down procedure needs to be streamlined.  This process 

was initially developed such that by turning on the computer, the necessary 

programs would start-up automatically and begin the appropriate session.  

However, this code was ultimately not used as it was determined better for the 

system to be tested in a semi-supervised clinical environment first before going to 

the home.  However, the user experience of a simple system startup and shutdown 

should explored more in the future, as it would not only benefit the patient 

autonomy using the system, but would also improve the user experience of the 

therapist using the system. 

 

6.5 Support the Human Experience and Allow the User to Provide Input to the 

Experience Narrative (Reach for the Higher Levels of the Hierarchy of Needs) 

 

In my observations of the patients using the system, there was noticed to be a 

distinct lack of human presence, which seemed to be a detriment.  As a system 
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controller and tester, my role required me to remain mostly invisible during the 

sessions.  The protocol was structured to see how easily the patient could setup and 

run the system on their own.  I would intervene only if I saw something going wrong 

with the system that was not possible to be fixed by the patient.  However, it was 

clear with some of the patients I saw that the interaction with the computer wasn’t 

enough.  As experience design would suggest, the patients come in as anyone would 

to the study: with their own concerns, stories, questions and experiences.  Currently, 

the system was setup such that the interactions were very controlled, and therefore 

limited.  While variables needed to be controlled in the first implementation of a 

semi-supervised system, this user experience is not ideal in moving the system 

forward long term. This is not to suggest that teleconferencing is the solution.  

However, the abstract therapy environment and narrative needs to be grounded.  

 

6.5.1 Provide the Patient with Interfaces for Reflection 

 

The patient should be encouraged to reflect on long-term progression with the 

system and where challenges occurred, and how they were overcome.  I think there 

is an opportunity, with the iPad app developed by Nicole Lehrer, to make programs 

not only for therapist review, but also for patients to log their own progression in 

interesting ways.  The disparity of the little one-hour notch in someone’s 24-hour 

day that they use the system needs to be acknowledged.  There are so many contexts 

that could be helpful for the patient to reflect on during their use of the system and 

improvement in ability.  A reflection interface could also be a collaborative tool to 
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use with friends and family as well to appreciate their sense of progression of the 

patient and provide another means of motivation and support. 

 

6.5.2 Support the Ability of the Patients to Ultimately Create Their Own Training 

Experiences 

 

An additional part to the solution of supporting the human experience more is to 

review how the system fulfills (or doesn’t) the Hierarchy of Needs 22.  The Hierarchy 

of Needs was originally a theory of factors for human motivation created by 

Abraham Maslow.  The model provides a proposed ranking of needs that humans 

strive for, and they a structured in such a way that the lower level needs must be 

reached first before striving for the higher level needs.  This model provided a 

similar way to think about system design.  Analogues for the human psychology 

model can be found, starting at the lowest level (Functionality) and culminating in 

the highest level (Creativity). 

 

One of the limitations of HAMRR, was it did not consider the whole hierarchy.  As 

the model suggests, if the system is not functional, then there is no need to consider 

any higher level aspects.  HAMRR, as previously discussed, was design with 

functionality and reliability at the forefront and as a result impacted many decisions 

on the hardware, software and experience.  As a result of an emphasis of 

functionality and reliability, less importance was given to usability.  Some core 

usability aspects were considered (such as system setup), but they were created 
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under the assumption that a system controller would be available to provided 

assistance if needed.  However, the highest levels of the hierarchy (Proficiency and 

Creativity) were considered to an even lesser extent.  Some proficiency was 

considered through the design of the protocols to assist patients in becoming more 

adept at completing complex tasks.  However, limited considerations were given to 

help connect this gained proficiency with ADLs, which is where I propose the 

“Creativity” level lies. 

 

A user of the system should be provided with opportunities for creativity.  With 

proficiency in the system, the patient should be allowed to use the system provided 

tools to create their own training experiences.  Due to the proposed long term use of 

the system, proficiency will be likely in many users (and signs of proficiency in 

HAMRR were already noticed with the more mild impaired subjects).  Therefore, 

with this experience gained in the system, the patient should be empowered to set 

their own goals and thus impact their daily life in the manner they desire. 

 

6.6 Considerations for Adjustments to Existing Therapy Protocols 

 

What follows is a discussion of suggestions for changes to the path protocols and 

where automated adaptation might fit in this landscape.  The following also 

provides many examples of the process of iterative design.  Decisions with 

underlying constraints were made based on available information and the desire to 

progress the system forward to collect data with stroke patients, and therefore, 
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learn more about INR design.  As will be shown, in each case a decision was made 

and, as a result of making that decision and collecting data, new design concepts can 

be presented now for future work that may not have been possible during the initial 

design of HAMRR. 

 

6.6.1 Introduce Further Variation to Increase Challenge 

 

The current protocol paths were composed under the constraint that challenge 

could be introduced through target type, target location and sensitivity of feedback.  

This was a design decision to limit the variables to introduce challenge and progress 

the development forward so more data could be collected.  It has been found that 

these paths did not challenge the highest performing patients enough. However, 

preliminarily, the paths seem to successfully connect all the levels of feedback, as 

subjects were able to understand their meaning based on responses to a 

questionnaire provided to the subjects. Therefore, additional dimensions in which 

challenge can be introduced should be identified within the existing paths, as a 

starting point.  One of these dimensions should be randomization.  Currently, the 

patient experiences sets of repetitive reaches, meaning that within a set, the five 

reaches are exactly the same.  This is crucial early on in the training to build motor 

learning skills and build a relationship with the feedback environments.  However, 

for the more advanced users, randomization within a set could offer a bit more 

challenge.  An example of this would be to have every trial randomly select one of 

the objects in the table for the next reach.  This could be limited to a certain type of 
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object or range across multiple types.  Later on in the training it would be more of a 

challenge to have a patient form a new motor plan on demand based upon a target 

object the system randomly suggests.  This randomization may need some structure 

so that it conformed to a pre-determined overall number of reaches to each target 

for a given session. 

 

6.6.2 More Impaired Participants Require a Redesign of Task Sequence and Training 

Dosage 

 

In addition to thinking about how scenarios could be increased in difficulty, 

considerations need to be given to how scenarios could be made easier as well for 

more impaired subjects.  It was observed with one of the patients that 100 reaches 

is really a challenge to complete in an hour of time, and many times fatigue would 

set in halfway through the scenario.  Therefore, shorter scenarios may need to be 

considered in the future.  Similarly, the most challenging tasks of a scenario should 

not be held exclusively till the end of the scenario.  While it is good to start a day of 

training with easy tasks to build confidence and work towards more complex 

activity, scenarios need to consider that fatigue is increasing as the scenario 

progresses.  Therefore, some complex tasks should be introduced early in the 

scenario as well to have the patient attempt the tasks with minimal fatigue.  This 

may help build some confidence in being able to complete the task.  Also, by not 

weighting the end of sessions with complex tasks, the patient may leave a session 
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with more confidence and optimism if they are provided the opportunity to 

reinforce the progress they have made with easier tasks. 

 

6.6.3 Automated Instructions that Facilitate Training Should Vary Just Supervision 

Should Vary 

 

As presented earlier, in INR design the dimension of supervision should vary such 

that a user can transition from a fully supervised clinical space to a non-supervised 

home environment.   In a similar way, the automated demos that are presented to 

the user should also evolve over time.  For the first iteration, the design of the 

demos sided cautiously in the direction of repeating things multiple times.  It was 

the first time we tested the automated demos with patient populations, and we were 

unsure what would be clear and what would be more confusing, especially given the 

vast difference between design team development of the system and patient use of 

the system.   Overall, with more advanced users it became clear that the instructions 

were boring.  So much so, that some would not pay attention to the demo, and as a 

result do the first reach or two incorrectly.  For the more advanced users, the 

number of demos and prompts should reduce and change.  The instructions could be 

mixed up, for example, where one set provides a text prompt, and another set 

provides a short visual prompt in the form of the media feedback we want to see 

their reaches result in (like a straight path of rocks).  By varying the text instructions 

with media prompts, this might induce some problem solving and keep advanced 

users from getting bored. 
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6.6.4 Maintain an Introductory Set of Sessions Under Full Supervision 

 

The utilization of the first three training sessions was very beneficial.  It offered a 

transition from following a therapist’s instructions to interacting with an automated 

system.  Not only did this allow the patient to feel a little more comfortable in 

interacting with a new system, but it also provided the therapist an opportunity to 

see how the system was reacting to their movement. 

 

6.6.5 Sensitivity Values Should be Re-Evaluated with the Existing Set of Collected 

Data 

 

The sensitivity values should be revisited for tasks. In the process of iterative design 

of the system, the initial values for all of HAMRR’s sensitivities came from the tested 

values of AMRR.  From here, adjustments were made as needed based on both non-

impaired and impaired testing.  As a starting point, only a high and low sensitivity 

value were created for each system parameter.  During the pilot test, it was 

observed that the low and high sensitivity are still too low for really high 

functioning patients. Therefore, through experimentation and further review of the 

collected data, more sensitive parameters should be identified to create a new 

higher sensitivity setting.  Also, the creation of a medium sensitivity may be 

advisable in conjunction with the protocol adjustments previously suggested for 

more impaired patients. 
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6.6.6 Complex Tasks Should Maintain Coherence of Experience of Integrating 

Components 

 

The complex task of lifting and transporting an object against gravity was the most 

complex task provided by the training protocols.  In an attempt to break this task 

into training components, I created training sequences that divided the reach, grasp 

and lift phase of the overall task from the actual transport portion of the task.  The 

idea behind this design was to have the patient become comfortable with grasping 

and lifting an object with weight before moving the object across the table. 

 

During the pilot study, it was noticed that separating the lift training on its own 

within the protocol did not seem to provide the desired effect.  It was observed that 

some patients would break up the phases of a transport task by hesitating when 

grasping the object and lifting it in an artificial way to the height to which they were 

trained to raise the object up.  It would probably make more sense to remove the 

isolated lift tasks and instead introduce a new challenge dimension of progressively 

more difficult transportable objects.  Patients could begin with a lightweight 

transportable cone (such as the current transportable cone) and progress to heavier 

and wider hand aperture grasp objects.  In this manner, complex tasks could still be 

introduced early on in the training to maintain the feedback and task fading, but the 

improper training of an isolated lift would be removed.  If a better solution was 

determined for training the lift exclusively, that trained a grasp as part of a fluid lift 

movement, that task could be substituted in as well. 
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6.7 Automated Adaptation Should be Included 

 

As was shown in the results, kinematic improvement was incredibly variable across 

subjects and the current protocols were not able to provide the appropriate 

challenge for each patient. AMRR showed the benefit of providing interactive 

feedback and integrative training under constant supervision of the therapist.  

Therefore, moving forward in the design of HAMRR, more finite adaptation should 

be included, but it needs to be automated to support the system’s fading of 

supervision. 

 

While the therapy protocols had limitations as previously discussed, it would not be 

possible to identify appropriate manners to integrate or design for automated 

adaptation without the knowledge gained from the fixed, controlled protocols.  Now 

that these protocols (designed with the primary goal of forming reductionist 

hierarchies through integrative training) have been tested and successes and 

limitations have been identified (as previously discussed), avenues for automated 

adaptation can be discussed. 

 

6.7.1 Overview of Current Approaches to Automated Adaptation 

 

Currently there are a few major approaches to adapting training within the context 

of stroke therapy. 
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6.7.1.1 Therapist Control 

 

One category of adaptive technology in stroke rehabilitation systems is therapist-

controlled systems, like AMRR.  These are systems in which the task type and 

sensitivity are set by a therapist who continuously or periodically observes the 

therapy.87-90 There are also many examples of telerehabilitation systems that, while 

the therapy is performed in the patient’s home, the therapy requires constant 

therapist telepresence.91,92 

 

6.7.1.2 Reactive Sensitivities 

 

Another category of rehabilitation systems feature reactions to a previous activity’s 

performance.  The IIT-Robot93, Braccio di Ferro robot94 and ADAPT system95 have 

methods to evaluate patient performance based on extracted features that are 

utilized to evaluate patient progression within a task.  Changes in this evaluation are 

then connected to methods to update the task challenges for the next trial such that 

the challenge is at an appropriate level for the patient at a given moment in time. 

 

6.7.1.3 Decision Networks 

 

One of the more unique approaches to adaptation with rehabilitation tools found 

comes from a system developed by Kan et al for upper limb reaching tasks.96 This 

system utilizes Partially Observable Markov Decision Process (POMDP) to model the 
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patient’s progress through therapy. 97 This model requires that there are a finite set 

of states, actions and observations and a probability distribution of transitions 

between states. POMDP was utilized because the developers viewed the 

measurement as uncertain and some observations to be unobservable, such as 

fatigue.  So instead, fatigue was modeled as a probability of belief states.  This model 

was also utilized because the developers believed that a given action will not always 

have the same result given a starting state, but they could begin to estimate the 

probabilities and rewards of outcomes.  The model also allowed for incorporating 

the history of which actions were found to be most effective. 

 

Given a state, the decision of which action to take took into account fatigue, the 

furthest target distance achieved by the patient, the stretch beyond current ability 

the action would require and the learning rate of the patient.  The observations 

were set as time to reach the target, the ability to stay within a path, and the 

compensatory movement of the patient.  On top of this, through the use of reward 

functions, the system was “motivated” to keep certain challenge parameters high 

while maximizing patient control and minimizing compensation.  The resulting 

space was very complex, having an estimated 3,000 states.  But when using the 

model, it had a 90% therapist agreement when changing task parameters and a 43% 

therapist agreement when deciding to stop the task due to fatigue. This 

methodology could be applicable to music instruction as well, as there could be a set 

of decisional and observational criteria for progressing through lessons as well as 

motivating the algorithm to keep the challenge level appropriate.  
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6.7.2 Application of Decision Networks to HAMRR 

 

Decision networks seem to be the best next logical step for automated adaptation.  

Each state would represent a configuration of the system (including task and 

feedback environment settings). Starting states could be pre-composed based on an 

initial patient profile and therapist ranking of priorities.  Then the rules for the 

transition between states could be set based on a combination of current and long 

term patient assessment as well as rules for task variability and feedback 

environment progression.  For example, if a therapist wanted to prioritize 

trajectory, the system would shift the probability towards states with an emphasis 

on trajectory training.   

 

Based on the overall progression of the patient, the selected object would be based 

on current difficulty and as well as the desire to introduce some variability in the 

protocol, which was already tested within the HAMRR pilot study. For example, if 

the training were beginning, a higher probability would be given to utilizing a flat 

object.  If the patient had been using the flat object for quite a few sets in a row, a 

higher probability could be given to a different location or a different type of object.   

 

The transition between states could also be dictated by the need to fade in-between 

feedback levels, and thus higher probabilities might be given to the lower feedback 

levels early in training, with some focus on fading between them.  Again, this fading 
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rule was established in the HAMRR pilot study, thus giving a good basis for 

exploring automated approaches to application of this rule.   

 

Finally, much like the example research project suggested, fatigue could be assessed.  

By looking at current performance, if a sustained decline was detected, either a 

different task could be introduced for variability or the session could be ended to 

avoid exhaustion and frustration.  As previously described, this was a key limitation 

of the standardized, inflexible sessions that were tested.  There was no way to react 

to problems, such as fatigue, except by making changes manually to the following 

session’s protocol.  Therefore, beginning to determine a metric to assess frustration 

or fatigue would be a really important feature to add, which would not only have 

direct benefit to within-session adaptations, but also longer-term changes across 

sessions.  With all of these examples, the therapist could still have some oversight in 

adjusting sensitivity parameters that could affect the state transition probabilities, 

and in all cases should have oversight.   

 

At this point some confirmation has been received about components of the 

protocols that worked, and others that need refinement.  Therefore, from an 

iterative design perspective, automation should be introduced to these protocols 

with the previously identified rules that were confirmed in the pilot study.  

However, there are still remaining questions of dosage and the appropriate timing 

for an adaptation to a protocol.  Therefore, therapist input will still be valuable and 
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necessary to help answer some of these unknowns simultaneously with collecting 

data to create better automated protocol adaptation decisions. 

 

6.8 Considerations for Implementation of INR Within an Interdisciplinary Team 

 

The design and implementation of HAMRR has not only provided suggestions for 

system and user experience improvements, but also opportunities to reflect on the 

nature of interdisciplinary collaboration design within INR. 

 

6.8.1 INR Requires an Aggressive and Pro-Active Testing Schedule 

 

Looking back on the project development cycle, there was a lack of organized 

regular user testing of the system, and this is crucial in any aggressive iterative 

design flow.  As previously discussed, small studies were run to test the feedback 

clarity and get a basic sense of the usability of the system.  However, more should 

have been done. 

 

The challenge with INR is that, ultimately, the best test of the system is with actual 

stroke patients.  However, this does not mean that iterative testing should be 

avoided and held until the end of development.  Rather, small tests with non-

impaired subjects should be held frequently.  It should be part of the design plan to 

identify moments in which test of iterations of a prototype can be conducted. 
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When developing HAMRR, the design and development mainly fell within structure 

that most closely resembled a Waterfall Model22.  In this structure, stages of 

development primarily move forward in a linear fashion: one stage leads to the next.  

Overall, this is how HAMRR developed: Requirements led to Design, which led to 

Implementation, which lead to Verification and Maintenance.  One of the reasons 

that the Waterfall Model fell into place naturally was most likely due to the main 

form of verification for INR: patient user testing. 

 

The reason to bring outside people into the system frequently is to provide an 

outside perspective.  Designers of a system know, at a very high resolution, how 

their systems work.  This comprehensive knowledge, however, can bias their testing 

of their own systems.  Even if non-impaired subjects cannot replicate characteristic 

movements of a stroke patient, their input and responses will still help to identify 

problems in the design or implementation before a significantly more expensive 

patient testing period. 

 

6.8.1.1 Code Design Approaches Can Provide Testing Methodologies 

 

Code development paradigms can be looked to for examples of establishing regular 

testing protocols.  Test Driven Development work-flows are setup to identify tests 

for code functionality, before the code is even written.  Similarly, test for 

components should be identified early on and throughout the development, as 
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suggested by engineering design as well, so that small user tests can be setup 

effective and efficiently, and validation of components can be drastically improved. 

 

6.8.1.2 Move System-Wide Iterative Development to Spiral Method 

 

Similarly, the use of a Spiral Method would also be advisable.22 In this model, on the 

way from the start of development to release, multiple cycles are completed of: 

 

1. Determining objectives 

2. Identifying and resolving risks 

3. Development and Testing 

4. Plan next iteration 

 

While each stage is completed in each cycle, the implications of the stage different 

depending on where in the overall development timeline the stage is attempted. 

 

6.8.1.3 The Design Team Needs Constant Access to a Full Toolset for Testing 

 

In order to support a productively aggressive user testing schedule, the design team 

needs consistent access to a full mock up of the system for debugging purposes.  In 

the development of HAMRR, two full systems were built and sent to the testing sites.  

Within the lab at ASU, was a prototype system that had many legacy hardware 

components that did not accurately represent the full system.  This made it very 
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difficult to test new components before the later portion of the study with more 

impaired subjects.  Many components of the transportable cone had to be tested in 

isolation, and even then, this did not consider the majority of connections that 

needed to be tested.  Part of the solution is better code modularity, as previously 

described, which would likely limit the time to extend code for new components as 

well as lessen the opportunity for code conflicts.  However, if the full system was 

available, it is likely that the grasp training discontinuity problem could have been 

identified sooner and a possible solution could have been approached. 

 

6.8.2 Apply a Modular Architecture Approach to Understanding the Research Goals 

of INR Design and Development 

 

Just as it has been suggested that code development should be modularized within a 

predesigned, more stable architecture, research questions of INR should be 

modularized the same way.  Any INR system will have overall research questions, 

such as in regards to the usability of the system and if it has any significant clinical 

benefit.  However, within INR system development research, there will also be other 

sub-questions in regards to the stability and utility of a new sensing hardware or 

computational algorithm. 

 

These research questions need to be properly categorized to identify what needs to 

be tested with a complete system or with an isolated component as well as what can 

be tested with normal or impaired subjects.  By doing so, the development team can 
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begin to form an experimental architecture to see where the individual, more 

specific, research questions originate and how they combine within the larger 

questions.  Many times, a team leader may have an innate sense of this space, but a 

more public representation or model would be beneficial for the cohesiveness and 

productivity of a team. 

 

This organization can standardize how individual components need to be tested as 

well as optimize how they will be tested.  In addition, it will clarify what is still 

unknown after component level testing, and therefore, what will need to be 

discovered with comprehensive patient-system testing.  This can also be helpful to 

spur more system component level iterations as questions that can be identified 

with isolated testing are made explicit, and thus will strengthen aspects of these 

components prior to their integration.  Finally, by seeing how these research 

questions combine, project creep can be more easily avoided.  By looking at the 

landscape of questions to answer and how they reflect in various stages of testing, 

components that appear to be more problematic or require a different set of 

resources than what are available can be efficiently shelved or removed. 

 

6.8.2.1 Example Framework 

 

This framework would begin with identifying what are the Large Research 

Questions.  As INR is inherently research driven, its design and implementation will 

have many large goals for questions to answer throughout the design and 



 238 

implementation process.  Within each Large Research Question, will be at least one 

(but possibly many) Sub Research Questions.  These questions begin to break down 

the larger question into specifics that can be implemented and tested.  Thus, from 

these Sub Research Questions will come specific Implementations.  (Figure 30) 

 
Figure 30 – Example generalized knowledge framework. Large Research Questions 
(LRQs) are broken down into Sub Research Questions (SRQs) with appropriate 
Implementations (Is) attached. 

 

It is very important for the entire design team to see this space.  Each team member 

will have their own research questions, however when co-developing on a complex 

integrated system, it is very important for each person to see how their research fits 

within the overall system design context. The modeling of research questions and 

implementations will also allow the team to make informed decisions during 

iterative design cycles in regards to which questions have a higher priority, and as a 

result, which implementations will have priority.  It will also show which 

components are absolutely necessary and which can be cut. (Figure 31) 
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Figure 31 – Example prioritized generalized knowledge framework. Research, and 
thus development priorities, can be identified.  It is also helpful to identify which 
implementations have already been completed or can leverage significant existing 
code (grey squares). 
 

From this map, it is important to consider each implementation within the overall 

system architecture that the team develops.  It is possible that some parts of the 

implementation are already complete, or that implementation will require 

modifications to multiple plugins or components.  This information should be 

readily available to the team so that designers can see the interdependency of 

specific components as well as remaining work to be completed.   

 

Most importantly, with each added implementation, consideration should be given 

for the addition/connection criteria.  Similar to the Test Driven Development 

philosophy, each implementation (before design and building begins) should 

identify the metrics and tests needed to test its validity.  This reinforces the idea of 

the designer understanding that they are not developing in isolation and may need 

to address specific implementation criteria based on underlying research questions.  
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As a crucial part of identifying these validation metrics, each implementation should 

further define what components can be tested in isolation and what components 

need to be tested after being integrated into the whole system.  Further definition 

should also be provided as to which of these tests (isolated or integrated) can be 

completed with non-impaired subjects or with impaired subjects.  In this way, not 

only is a given designer required to think about their work in context of the larger 

system, but also each member of the team has a big-picture overview of where each 

questions and implementation fits within the system and where respective 

priorities lie. 

 

6.8.3 Documentation and Dissemination Should Support Cohesive Team Iterative 

Design 

 

Iterative design in an academic environment can be a challenge.  By nature of 

academia, team members are only involved with projects for finite periods of time 

(with very specific focuses) before moving on to other projects or institutions.  

Therefore, the design team will be in flux, as well as individual component 

development. This emphasizes again the need for a stable architecture.  As 

previously shown, this is not to say that the architecture can never change, but it 

should be the most stable aspect of the system development so that it can keep 

development moving forward with components in flux. 
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Similar to the suggestion of maintaining an architecture of research questions, there 

needs to be an architecture of development history.  There should be a standardized 

way in which team members can document their progress and demonstrate how 

their components work.  As with any group, the team member flux can be 

completely unannounced in academia and therefore a team cannot wait for a 

culminating paper or thesis to summarize and pass on to future team members all of 

the knowledge gained.  Instead, to minimize risks of losing information or having 

significant development delays, research and development work should be 

documented along the way.  In addition, this documentation should be written in the 

language of the team.  In other words, papers that are released to the general public 

may present ideas in a certain way to bring a wide audience into the domain of the 

team.  However, this step is not needed internally.  For example, code should be 

documented along the way (which could also offer each team member a further 

chance to debug and refactor code).  In addition, simple documentation should be 

created for how to run a GUI interface (again, by merely writing this process down, 

another opportunity is afforded to think critically about the GUI interactions).  

There will certainly be pressure during tight design iteration cycles where this may 

seem like a lower priority, and in development processes such as agile code 

development it is not given, accordingly, significant importance.   However, the 

documentation of progress should be just as integral as writing new lines of code.  

Instead of writing one summary document at the end of the process, the document 

should grow and live with the project and a core technical, utility language should 

be agreed upon by the team to efficiently share this knowledge.  In addition, this 
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documentation does not have to follow the literal connotation of the word and 

provide text documents of explanation.  When possible, the “documentation” should 

be functional.  An example of this, connection back to a previous suggestion, is an 

API.  By creating an API for a plugin, a top level summary is provided of the key 

inputs and outputs.  This would already provide a good starting point to 

understanding the code as well as immediate opportunities to develop on top of the 

code, which could bootstrap a developer’s understanding of how the plugin 

functions. 

 

By coming up with a method for documentation and dissemination, team members 

can also stay on the same page.  Ideally, team meetings would hold this 

responsibility, but even so, complex systems require a wide and varied team.  

Evolving documentation would ensure that team members could get a detailed, 

comprehensive glance at a component to address immediate questions.  Each team 

should come to a consensus in the early stages of the design of what this 

documentation should look like and how often it should be presented.  Team 

members should also understand, especially in an academic context, that their work 

will be developed beyond themselves.  Someone else should be able to (and 

undoubtedly will need to) pick up this work and continue.  Comprehensive 

development of documentation will help this along. 
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6.8.4 Build Systems for Future Designers’ Iterations 

 

Similar to the previous point, systems need to be designed for iterations beyond the 

initial team.  Given that it can be difficult to identify proper requirements for one 

system iteration, let alone speculative future iterations, this point may be relatively 

dismissed.  However, it should be given serious consideration, and categorized in 

multiple time scales. 

 

First, systems should be designed to give immediate feedback (both to the direct 

user and outside design teams) when problems occur.  Users should have the ability 

and tools to document problems or errors in a smooth streamlined way.  As 

previously discussed, INR system should have some automated way of documenting 

computational problems.  In addition, GUI interface for live or later annotations to 

the user are extremely helpful.  INR systems are experimental, and due to their 

experimental nature, problems are bound to occur that were never accounted for in 

the initial design.  This is not to say designers of INR should not look to eliminate 

problems or bugs, but all members of the INR development and implementation 

should realize that they are part of an experimental process.  And instead of casting 

this as a limiting pall over the experiment, it should be utilized.  Systems should 

have integrated ways to document when things went wrong or when suggestions 

for future improvements are made.  That way they can be fairly time synced with 

the data and use of the system and designers, in the short term, can make 

adjustments for immediate iterations. 
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However, longer-term interactions with the system should also be considered.  The 

life of the project should extend beyond the initial team.  This can be done through 

the previously discussed documentation and error reporting.  In addition, there 

should be a push to make the code open source.   There is certainly a competitive 

nature to scientific research, similar to corporate developments, in which there is a 

push to be the first one with a solution.  However, there is more value for people to 

learn from one another and not waste time reinventing the wheel, in order to 

advance stroke rehabilitation research faster.  For example, motion analysis 

algorithms, and its architecture (after incorporating the previously discussed 

changes), should be available to others with documentation about what it can do.  

This grows the vitality of the original project in unique directions and affords more 

opportunities for the code and hardware to be tested and refined.  HAMRR code has 

already been extended to look at specific effects of audio feedback on different 

kinematic attributes of a reaching movement.98 This mandates, however, that code 

be developed in modular, scalable ways.  It will be difficult for outside groups to 

interface with or utilize code that is highly entangled for one specific application.  

Widely disseminated, efficiently modularized code, with documentation and 

presentation of results, could be a huge push forward for INR design as well as other 

complex system design. 
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CHAPTER 7 

A GENERAL MODEL FOR INTERACTIVE SYSTEM DESIGN 

The work previously shown has demonstrated the complex space that INR design 

must consider, and through the specific details of HAMRR design and evaluation 

process, how interdisciplinary research and integrated design (utilized within 

iterative design) is crucial to form comprehensive solutions. The Toyota model for 

Set Based Design71 exemplifies the strength of iterative design within a complex 

application space.  In order to standardize comprehensive approaches to INR 

design, implementation and evaluation, a similar model should be developed for INR 

research.  As a conclusion to this work, and a starting point for more generalizable 

applications, I present a synthesized model for INR that highlights and synthesizes 

approaches and considerations previously presented for reflections on improved 

complex system design. 

 

7.1 The Inherent Complexity and Necessity of the Complex Space 

 

As was demonstrated, INR exists within a complex space of dichotomies (Figure 2).  

INR systems must balance human and digital components as well as physical and 

computation.  In addition, the varying nature of these relationships will most likely 

need to be addressed across an ecosystem of INR systems that are not only 

individually flexible and extendible, but are designed with overarching ideas of 

continuity. 
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In addition, there are three crucial users of INR systems that each need their own 

complete user experience needs met.  Patients require an enriching training 

experience that can help form individual models for self-assessment and 

generalization of skills towards ADLs regardless of current ability.  Therapists 

require assistive tools to maximize their therapy time with patients and assist in 

forming detailed, consistent assessments of patient impairment.  System designers, 

as members of the iterative process, need constant information about the system 

performance as well as reflections on other users’ experiences in order to maintain 

and improve the system. 

 

In order to address this space of human and technological constraints, 

interdisciplinary fields (beyond neurorehabilitation exclusively) should form robust 

design constraints for how interactive learning could maximally be implemented 

through task experience, assessment, and feedback design.  As discussed, in order to 

determine the optimal combinations of designs addressing these factors for a given 

implementation requires iterative design approaches as well as critical 

considerations for modularity in hardware and software components. 

 

7.1.1 Embrace the Complex Design Space and Flow Between Space of Possibilities 

and Specific Implementation 

 

While the previous considerations of the complex INR design space are required to 

be addressed, this complexity can also provide a benefit.  As the Set Based Design 
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(SBD) method highlights, problems in iterative design can result from honing in on a 

solution too finitely and too quickly and spending any remaining design time on 

making the solution work for a given problem.99 Rather, the SBD method suggests to 

gradually hone ideas from a full consideration of the possible solutions. 

 

This approach is especially crucial for identifying solutions to improve or replace 

implementations that have been found to reach their limit of returns.  When this 

limit is identified, designers can take a step up from a finite solution, to the more 

complex possibility space to identify where a new hybrid solution might exist. 

 

7.1.1.1 Applicability to Improving HAMRR’s Sensing Infrastructure 

 

As suggested, one of the key hardware limitations in the current design of HAMRR is 

the ability of the OptiTrack cameras to properly track complex movements within 

the more variable, confined tabletop space.  Therefore it is suggested to replace this 

solution as properly tracking and assessing complex movements will be crucial for 

transitioning training from the system to activities in the home. 

 

Therefore, in this example, a limit to the return that OptiTrack can provide has been 

reached and a more appropriate solution needs to be found.  Instead of honing in 

further on the OptiTrack sensing solution and working to see if this hardware setup 

can be modified to improve the sensing capability, the design should take a step 

towards the more complex space of possibilities and see where new integrative 
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ideas might be found.  Work at Carnegie Mellon University has begun to see how 

computer vision solutions might provide more robust sensing in a home 

environment.  However, this form of tracking may not be enough, and instead, an 

integrative approach that couples computer vision sensing with the embedding 

sensing in the system’s physical setup and training objects may be the most robust. 

 

7.1.1.2 Applicability to Improving Protocol Adaptation 

 

It has been demonstrated that the fixed protocols were able to test and provide 

promising results for how feedback environments and varying complexity tasks 

should be utilized to structure training from simple reach to touch interactions to 

complex task training.  However, because the paths were fixed and could not react 

to evolving patient task performance, many patients found the protocols to either be 

not challenging enough or, for the more impaired participants, prohibitively difficult 

to complete.  In this example, the limit of returns of fixed path protocols has been 

reached.  Previously identified interactive training rules have been verified through 

the pilot studies, but more responsive adaptation is required. 

 

Again, instead of honing in on the fixed path solution and modifying it try and 

improve its efficacy, the design should take a setup up in complexity toward the 

more varied solution space. 
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As previously presented, automated adaptation has already begun to be 

demonstrated in INR systems through reactive sensitivities, and more interestingly, 

decision networks.  The applicability of these approaches and their integration with 

the identified interactive training rules should be explored. 

 

However, it may also be appropriate to look further in the complex possibility space 

to see from where else adaptive training decisions might be made.  Since INR 

systems have multiple users, what can each of these users provide to improving 

adaptive protocols?  What information can the therapist provide (at different time 

scales depending on supervision levels) to strengthen adaptation decisions? Or, 

more interestingly, what can the patient himself or herself provide to make 

adaptation decisions? 

 

As previously discussed, one of the limits of the user experience of HAMRR was an 

inability to address higher levels of the user experience to encourage patient 

proficiency and creativity.  What if HAMRR was able to demonstrate and empower 

the patient to not only self-assess their own individual movements, but also think 

critically and understand the form of creating their own training protocols?  Future 

system designs should look to informing protocol adaptations by allowing a 

proficient user to identify their own goals and create their own training protocols 

utilizing all of the tools available during interactive training.   
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Thus, benefits of taking a step back in the design to the more varied space of 

possibilities can be demonstrated.  Not only can this methodology provide solutions 

where previously a limit had been reached, but it can also provide more 

comprehensive solutions that improve multiple aspects of the system design and 

user experience. 

 

7.1.2 Embrace the Complex Space of the Design Team 

 

It should not be overlooked that comprehensive INR design not only requires 

considering integrative design and interdisciplinary research, but requires that 

these be achieved through a highly interdisciplinary team. Therefore, not only is the 

complex contextual research and design space important for INR, but the 

integration of a design team will directly impact the success of the overall design. 

 

Therefore it is crucial for the INR design process to consider this complex design 

team space.  As previously discussed, an understanding of how research ideas 

connect across members of a team and integrate implementations within an overall 

system architecture is critical to understand.  I propose that this is especially true 

for academic research projects.  The implementation of SBD within Toyota leverages 

the presence of increased resources that likely does not exist in the same magnitude 

in academia.  Within Toyota, this mainly manifests itself in the form of increased 

personnel to specialize in a particular part of the iterative process or suppliers who 
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can focus on a specific implementation, and therefore, provide multiple solutions to 

a particular system component.99 

 

This industry flexibility does not necessarily exist within academia.  Rather, teams 

are inherently smaller and specializations are many times defined within research 

goals or contained graduate degree applications.  The result is a dynamic team that 

has to balance larger, long-term research questions with highly specific and 

motivated implementations. 

 

However, just as was presented in regards to the complex research and design space 

of INR, the complexity of a design team is not something that should purely be 

addressed, but should also be leveraged in order to come to comprehensive, truly 

integrative solutions.  When a research question or implementation reaches its limit 

and its returns are diminishing, the design teams needs to take a step up and look at 

the space of possibility within the team and the research questions that the 

interdisciplinary team are able to define.  This approach and utilization of the 

complex design team expertise and focus is fully integral to fading back and forth 

between a complex design space and specific implementations. 

 

7.2 Address Complexity Through Modularization 

 

In order to simultaneously address and leverage a complex design space, I propose 

that modularity is key.  To implement an integrative, iterative design approach 
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(which has been previously proposed as integral to INR) and flow back and forth 

between the complex space of possibilities and specific implementations requires 

modularity, or the ability to define solutions within components and have the 

flexibility to combine and redefine these components as necessary. 

 

7.2.1 Utilize Hierarchical, Functional Decomposition Approaches to Identify Key 

Components 

 

As has been previously discussed, functional decomposition approaches should be 

used to identify sufficient, yet integrative, development components.  These 

components should be considered within a relative hierarchy to understand how 

these components should be developed and, importantly, integrated.  This requires 

that modularity be used within all of the complex aspects of INR design. 

 

7.2.1.1 Modularity in Software 

 

As has been emphasized throughout this dissertation (and my work), modularity in 

code design is crucial.  Modular plugins within a flexible overall architecture 

supports faster iteration and integration as well as provide malleable structures that 

can be extended for future applications.  Thinking of the task experience, 

assessment, feedback, and user experience created design constraints for software 

modules to be developed. 
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The benefit of HAMRR’s plugin structure has already been demonstrated.  

Components could be developed in parallel by multiple developers and maintained 

as such.  As iterative design identified one solution over another, code could be 

extended to accommodate new solutions (such as the transportable cone) with 

limited need to think about how this fits within the overall system architecture.  

Rather, focus was spent on how the new solution fits within an individual plugin 

(which was already connected within a stable architecture). 

 

7.2.1.2 Modularity in Hardware 

 

One aspect that has not been discussed in great detail, but should be pursued 

further, is the benefit of modularity in INR hardware.  As has been discussed, task 

design needs to address varying patient ability while simultaneously maintaining a 

consistent end goal of training a complex task.  HAMRR’s design demonstrated the 

strength of utilizing rapid prototyping methods and cheap electronics to create 

modular task objects that can cover a range of patient ability.  This development 

work also allowed for the quick design and implementation of a hybrid object that 

would be usable by more impaired patients.  This approach should be pushed even 

further.   

 

Coupled with adaptations and sensitivity changes within the system, hardware 

should be utilized as an additional adaptation component.  Objects could have 

different aperture requirements or physical weights that would assist in making 
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tasks more challenging in the physical space.  The location of an object on a table 

could be modularized to explore training in multiple body spaces. 

 

Similarly, as hardware will largely be space and context specific, sensing solutions 

should also be designed as modular components.  The transition between marker-

based sensing and computer vision solutions should be flexible such that it does not 

impact the overall training experience and can be selected based on the 

environment.  As previously discussed, continual technologic improvement and 

evolution will continually provide new components, and modular hardware design 

will be able to react to these new solutions quickly. 

 

7.2.1.3 Modularity in Assessments 

 

As previously discussed, INR systems (and experimental hardware and software 

solutions in general) will likely provide more detailed, yet experimental, measures 

of user performance or progression.  These new measurements represent the 

benefit of introducing technologies in the complex space of INR, however they 

should be validated with the breadth of existing knowledge from traditional 

measures.  Therefore, assessments should also be designed in a modular fashion, to 

span the range of validated measures as well as integrating multiple sources of 

assessment (across all users).  These modular, yet integrated assessments provide 

the most complete picture of user progression, and therefore will be crucial in 

making comprehensive adaptation decisions that leverage multiple sources of 
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assessment. In addition integrated assessments may also provide benefit in 

standardizing traditional qualitative measurements.100 

 

7.2.1.4 Modularity in User Experience 

 

Just as has been discussed with software and hardware, user experience can also be 

modeled with modularity.  INR systems need to address a spectrum of therapist 

supervision (both in terms of type and amount), adaptation, and user control. The 

therapist interface should be designed within modules as well, such that 

development within a system can be streamlined, but also to help maintain 

continuity across systems. 

 

For example, the usage of the system by the therapist should be broken down into a 

functional decomposition (much like the larger code design) in order to best 

understand how an interface could be created.  The notion of designing an interface 

with a user in mind can only be tested so much before its implementation, which 

necessitates being able to reach to design changes to the interface as observations 

are made.  Therefore, identifying how an interface could be modularized is crucial. 

 

Similarly, modularity in user experience also connects to the idea of the patient 

creating their own therapy protocols. If therapy protocols (representing the 

combination of interactive training constraints, tasks and feedback environments) 

were designed in a modular fashion, then these same modules could be presented to 
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the patient as tools to meet their own self-identified training goals.  Therefore, as a 

start, HAMRR identified some crucial components to structuring interactive training 

in an unsupervised environment.  The next large step is to see how automation and 

patient input might improve the automation decision.  

 

7.2.1.5 Modularity in Design Team Goals 

 

As previously discussed, an academic environment does not have the specialization 

resources that an industry development team may have available.  Therefore it is 

crucial that each member be able to innately see the connection between 

implementation, their own respective research question, and the larger research 

questions of the group.  Therefore, seeing how larger research questions break 

down into components that can be developed and prioritized is important. 

 

The SBD method also demonstrates the importance of defining and refining from 

sets of solutions, not just a singular concept.99 In a highly integrated, complex design 

as INR (where individual team members may be focusing on specific 

implementations) a designer needs to therefore know how their implementation 

integrates with the overall system design, as the solution for a particular 

component, may need to make certain considerations for its integration within the 

system.  As the SBD method suggests, the solutions for complex system design may 

not be contained within individual modules, but rather, across the integration of 

modules.  Therefore, identifying the larger research project as a collection of 
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modules can not only simplify the development space, but also help ensure that 

solutions maximize both individual performance metrics and larger research goals. 

 

A development strength can also directly result from this approach, as an individual 

with the larger research framework in mind, now thinks about how their 

component integrates with the larger system.  I propose that this would not only 

help the design team be more integrative (in that members have a sense of large 

scale system goals and how components integrate) but would also strengthen 

individual development as a module cannot be exclusively developed in isolation.  

This approach helps reduce the integration errors that might result if the process of 

integration and development are maintained as separate processes completed in 

series. 

 

7.2.1.6 Maintain an Architecture that can Accommodate Parallel Module 

Development 

 

As a result of the functional decomposition process, functional modules should be 

identified, but connections and larger concepts of architecture should be identified 

as well.  In order to iterate and develop in parallel, there needs to be some baseline 

understanding of how these modules fit together.  HAMRR demonstrated plugins 

that fit within specific categories to maintain a flow of data through the system.  This 

architecture could be extended if needed, but each module was developed with a 

basic understanding of the larger context with which it fit. 
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7.3 Strengthen Future Design Iterations from Exploration of Possible Solutions 

 

Another strength that the SBD method presents is the idea that time invested 

refining from a set of multiple solutions is not wasted, but rather supports the 

development of future iterations by creating a knowledge-base of the solution 

possibility space. 

 

As has been discussed, INR requires the use of iterative design, and due to its design 

in academia being inherently research-based, forming a knowledge base for future 

improvement and extension is important.  In addition to creating the previously 

presented modules for understanding the connection of research questions, 

iterative design needs to be supported by previously gained information. 

 

Therefore, dissemination of knowledge gained is crucial.  Members of a team need 

an understanding of the advances that have been made at the system level.  

Depending on the integration of components, knowledge of advances at components 

may be crucial as well.  As discussed, this requires an internal language and 

documentation method for team members to utilize so information can be shared 

efficiently and effectively. 

 

Furthermore, this also presents a design consideration to build systems for future 

designers.  Systems should be developed with the mindset that iterative design will 

move beyond their work (especially in academia where a specific program goal may 
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be met before the work of the larger project is done).  This further reinforces the 

idea of design with modularity: support the refinement and extension of the system 

not only within the cycle of preparing for a pilot study, but for other extensions that 

may not yet be identified. 

 

7.4 Maintain an Aggressive, Prioritized Iterative Testing Schedule 

 

Testing and evaluating within iterative design is crucial to form an aggregating 

knowledge base.   INR development should prioritize and understand the evolution 

of testing, such that non-impaired and impaired participants can help to the 

maximal benefit.   

 

As SBD suggests, iterative testing through gradual solution refinement should 

iterate on larger ideas before iterating on specifics.99 This concept is equally true in 

INR.  As presented, just because a pilot study begins, does not mean the iterative 

testing process ends.  Therefore, iterative testing will and should occur at multiple 

time scales throughout the process of design, implementation and evaluation.  

However, more detailed component adjustments should be made through iteration 

late in the development cycle as opposed to changing large-scale ideas during the 

pilot study.  If large concepts need to be readdressed, this may be symptomatic of 

improper iterative testing.  Therefore, not only should iterative testing be frequent, 

but also it needs to be prioritized both in terms of required participant population 

and granularity of testing. 



 260 

7.5 Extending the Model Beyond INR 

 

The proposed methodology and synthesized model is not limited to INR but rather 

is applicable to other complex interactive systems. The need for approaches to 

complex system design will become ever more pressing.  As the Internet of Things 

begins to rapidly introduce more sensing hardware possibilities, a deluge of 

available data will continue to flow.  Therefore the challenge will be to create 

systems that can provide unified experiences with truly empowering information at 

the integration of all of the hardware and software. 

 

One immediate next step is to look at how the interactive training paradigms of 

HAMRR might be used in other learning applications.  I have already begun to 

consider what a mobile guitar tutor might look like and how this experience might 

allow for individualized guitar instruction through an iPad app.  This exploration 

was begun as part of my comprehensive exam for the Media Arts and Sciences 

program. 

 

7.5.1 Example Application within Guitar Instruction App 

 

One of the specific areas of the guitar instruction concept that I was interested in 

was how to show long-term progression to a user.  Much like physical therapy, it can 

many times be very easy to focus on the short term gains made in learning an 

instrument and lose the overall sense of progression.  This can especially be true 
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during days of frustrations and seemingly slow progress.  I began to think about 

how a user might have a sense of overall progression of their long term learning 

gains by purposefully recording their journey.  The same exploration would be 

interesting for INR applications.  How can a stroke survivor come to an appreciation 

of the results of their day-to-day therapy in the context of the long rehabilitation 

process?  Here again, the idea of identifying modules for user information and 

making a first iteration attempt at how this information might integrate within the 

overall form of the experience was key. 

 

Another area that the guitar instruction app exploration had me thinking about is 

how users can feel empowered to create their own practice sessions.  I proposed 

that initially, the app would suggest a modular structure of dividing 30-60 minutes 

of practice time into structured, focused pieces.  Then once the user had gained 

competency, the user could connect these pieces however they wished to create 

their own practice sessions based on their desired goals.  As previously discussed, a 

similar idea would be interesting to explore for INR. 

 

7.5.2 Creation of an Academic Project Management Tool 

 

I would also be interested in seeing how the proposed ideas for modularizing team 

research goals could drive the development of a novel productivity tool for 

academic technology research projects.  As was discussed, academic research 

environments provide very unique collaborative spaces and designing a 
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productivity tool that would help manage the many research, designing and testing 

requirements and interests of each team member could be very beneficial for other 

collaborative workspaces. 

 

7.5.3 Overall Emphasis on Inclusion of Prospective Users 

 

One of the key areas where I would like to push the methodology furthest is in its 

inclusion of the users in the system to help define the scope and functionality of the 

system.  In academic research, it feels as if many times there is a top down approach 

to development where the grander ideas come from larger research and we as 

system designers provide something that we think will be beneficial to a 

prospective user.  It could be very easily argued that my methodology resembles 

this top down approach.  However, I would readily like to enhance this approach 

and ensure it is always a hybrid, integrating the contextual multi-domain research 

with collaborative design with users (which for INR would include patients, 

therapists and system designers). 
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APPENDIX A  

DETAILED CODE CLASS DESCRIPTIONS  
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The following appendix includes detailed class descriptions for each of the plugins. 

A1. Sensing Plugin 

Design and Implementation by Michael Baran, using an OptiTrack parsing library 

from Joseph Junker 

 

 
Sensing Plugin class diagram 
 
This plugin was designed to organize incoming sensor data into objects and send it 

out such that other modules could use the data.  Therefore, the flow of data within 

the Sensing Plugin is mainly in one direction, with the majority of the data flowing 

out to other plugins.  However, since it is the main gateway for the chair sensor 

system and system dialog buttons, it also contains interfaces to send messages 

(primarily on and off commands) out to the hardware. 
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SEController 

 

SEController is the main controller class of the plugin.  It has a couple of core 

functional responsibilities.  This class monitors the status of each input data stream 

(OptiTrack, chair sensors and Kinect).  This entails not only checking if any data 

frames are being received, but also ensures that the data streams are valid, in the 

case of the OptiTrack.  Since the Tracking Tools does not support single marker 

labeling, and the wrist marker worn by the patient is a single marker, each data 

frame needs to be check to see if there are the proper amount of markers seen in the 

space at any given moment.  More details will be discussed about this feature later. 

 

This class is also the main interface for other plugins in some key manners.  First it 

updates local copies of data objects (containing key OptiTrack, chair sensor and 

Kinect data information) and broadcasts the objects to subscribers via 

NSNotification.  It also handles incoming commands (sent via NSNotification and 

implemented protocols) from other plugins and routes those commands to 

hardware (the chair sensors, object sockets and table demo buttons). 

 

OptiTrackAppDelegate 

 

The OptiTrackAppDelegate is the main handler for the incoming data from Tracking 

Tools.  This class interfaces with a separate data parser library written in C by 



 274 

Joseph Junker, which cleanly unpacks the data sent by Tracking Tools into 

C/Objective-C objects.  This simplifies the process of extracting desired features 

from the data packet, which extends the usability of this code to other applications.  

In fact, this module was developed for a separate project and was later integrated 

into the HAMMR code due to it’s demonstrated utility.  OptiTrackAppDelegate takes 

the parsed data objects from the library and checks the information contained 

within.  It verifies that the count of the total number of markers seen in the space is 

valid.  In other words, it checks to see if there are noise or ghost markers as well as if 

valid markers are missing or occluded from camera view.  If the total marker count 

is correct, it takes the parsed data and stores it into an instance of SEOptiTrackData.  

If the total marker count is incorrect, the class then attempts to identify from where 

the marker or multiple markers are missing (the wrist, the torso or the 

transportable cylinder object).  If it can identify where the marker is missing from 

and make a guess as to where the wrist, torso or object is, it will still update and 

instance of SEOptiTrackData.  If the class cannot safely guess where the missing 

markers are, it will notify SEController that improper data packets are being 

received from TrackingTools, and SEController will broadcast this warning out via 

NSNotification. 

 

SEGUIController 

 

The SEGUIController class was a component added in for debugging purposes as 

well as manual control of the table object sockets and dialog buttons.  The class 
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controls a small GUI with buttons to send on and off related commands to the 

hardware inside the table.  These were the same commands that were sent in 

response to NSNotification and protocol input to SEController previously described, 

except the GUI provided manual control. 

 

SESerialInput 

 

SESerialInput is the base class for interfacing with a data stream USB serial input. It 

abstracts some of the specific properties and general functions needed to initialize a 

serial port, read from the port and write to the port. 

 

SEChairSerial : SESerialInput 

 

SEChairSerial overrides SESerialInput’s read data from port function to have its own 

unique way to parse incoming chair data into individual sensor readings.  It stores 

these individual readings into an instance of SEChairData. 

 

SEDialogRestSerial : SESerialInput 

 

SEDialogRestSerial overrides SESerialInput’s read data from port function to have 

its own unique way to parse the incoming data from the Arduino controlling the 

table buttons and object sockets.  It stores the parsed data into an instance of 

SEDialogRestData. 
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SEFrameData 

 

SEFrameData is the main data object class that packages together all of the parsed 

data objects from each incoming data stream.  It contains an instance of: 

 

 SEOptiTrackData – Contains all parsed marker location information 

 SEChairData – Contains all parsed chair sensor data 

 SEDialogRestData – Contains all parsed data from table buttons and table 

object sockets 

 

A2. Tangible Plugin 
 
Design and Implementation by Michael Baran, using data parsing functions by 

Margaret Duff; All original tangible object code by Margaret Duff; Modifications by 

Assegid Kidane and Michael Baran 

 

 
Tangible Plugin class diagram 
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TFController 

 

TFController is the main class of the tangible plugin.  It contains instances of all of 

the data objects, which it updates and broadcasts out via NSNotification to 

subscribers.  The controller also opens and configures specific serial ports based on 

protocol input.  When a specific object port is needed to be active (with incoming 

data from the object), TFController sets an opened port as it’s primary port and 

sends all communication messages to that port.  TFController also checks to see if 

the correct objects are connected in specific ports.  The class receives a list of 

expected objects and a particular port via protocol and checks each port for the 

corresponding object.  This check utilizes a handshake method in which 

TFController sends a specific message to the object port with the expectation of an 

object specific message back in response. 

 

The other main function of TFController is to handle all commands for data 

streaming and object light feedback during live system interactions.  TFController 

receives analysis objects via notification, and depending upon the state of particular 

variables within that data object, it sends specific commands to the active object 

port.  These commands are specific to a particular feedback environment.  During 

real time feedback, white, yellow and red colors are shown in the object in response 

to live trajectory error.  However, during level 2 and level 3 feedback, only a white 

light go prompt is provided at the start of the reach.  TFController knows which 

feedback environment is chosen via protocol, and then sends specific messages to 
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the objects based on the feedback environment and transition in specific state 

variables. 

 

TFGUIController 

 

TFGUIController was created as a debugging interface to be able to manually send 

messages to all of the objects at all locations on the table. 

 

TFFrameData 

 

TFFrameData is the main data class for all of the parsed tangible object input data.  

It contains an instance of: 

 

• TFVirtualData: Parsed data from the flat, planar objects 

• TFButtonData: Parsed data from the slightly elevated button object 

• TFConeData: Parsed data from the cone object 

• TFLiftData: Parsed data from the cylindrical lift object 

 

Each data object contains the reading from each sensor in the object, as well as an 

interaction success variable that indicates if the objects has been successfully 

touched or grasped. 
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TFSerialInput 

 

TFSerialInput is the base class that abstracts parameters and functions needed for 

initializing a serial port as well as reading from and writing to the port.  This base 

class is extended into object specific classes: 

 

• TFVirtualSerial parses data into TFVirtualData 

• TFButtonSerial parses data into TFButtonData 

• TFConeSerial parses data into TFConeSerial 

• TFLiftSerial parses data into TFLiftSerial 

• TFLiftSocketSerial parses data from lift object socket 

 

Each subclass has a unique manner to parse incoming data into its corresponding 

object specific data class.  It also has a unique manner in which to check if the object 

has seen a successful interaction based on the readings taken from the object 

sensors.  TFLiftSocketSerial is different from the other classes, in that it only parses 

data from the object in response to the hand shaking method to check if the object is 

successfully connected in the correct socket.  Otherwise, there is no significant data 

stream to parse as the main object interaction data comes from the TFLiftSerial. 
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A3. Motion Analysis Plugin 
 
Design by Michael Baran 

Implemented by: Rajaram Singaravelu and Michael Baran, using analysis functions 

from Yinpeng Chen and Long Cheng 

 

 
Motion Analysis class diagram 
 
 
MAAppController 

 

MAAppController is the main class of the Motion Analysis Plugin.  It loads object 

based references from file as well their corresponding sensitivity parameters.  

Based on input from the Adaptation Plugin, it will update specific local task 

sensitivities from the loaded reference parameters. 
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During live use of the system, it routes incoming data (from both the Sensing Plugin 

and Tangible Plugin) to the selected analysis engine.  Similarly, it will also route data 

appropriately when a calibration is being conducted. 

 

MACalibration 

 

MACalibration is an engine that handles marker-based calibrations.  It takes routed 

incoming marker data and generates key calibration features, which it stores into 

MACalibrationData objects.  It also writes calibration data to file for later use.  

Similarly, it loads calibration data that was previously saved.  MACalibration also 

controlled a small interface for performing a calibration by selecting the target to 

calibrate. 

 

MARealTime 

 

MARealTime is the real time task analysis engine.  It analyzes each frame of camera 

data to determine the current reach state of the interaction.  It also routes data to 

real time analysis classes for the calculation of frame specific features.  MARealTime 

compiles the resulting frame analysis and features and stores them into data 

objects.  These data objects are then broadcasted via NSNotification.  MARealTime 

also monitors the live interactions to see if the all the reaches for a given set have 

been completed.  Once these tasks have been completed, MARealTime sends out a 

corresponding NSNotification. 
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MALevel2 

 

MALevel2 is the analysis engine for Level 2 tasks.  It is very similar to MARealTime 

in terms of its functionality.  The main differences are in terms of reach state specific 

analysis and the types of post reach analysis conducted. 

 

MALevel3 

 

MALevel3 is the analysis engine for Level 3 tasks.  It is very similar to MALevel2, 

with similar corresponding differences previously described. 

 

MARealTimeRecord 

 

MARealTimeRecord is the analysis engine used exclusively for recording data.  

Incoming data is passed though frame based analysis, the results are stored in data 

objects, and the data objects are broadcasted out for archiving purposes.  In the case 

of this analysis engine, no reach states are utilized. 

 

MATherapistReview 

 

MATherapistReview is an extension of MALevel2.  This analysis engine is used 

exclusively during training monitoring sessions.  The real-time interactivity needed 

during a training monitoring session is very similar to that required during a level 2 
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task, except no post task feedback is required.  Therefore a specific analysis engine 

was created for the purposes of training monitoring tasks. 

 

MATarget 

 

MATarget is a data object that holds the entire target specific information, included 

reference based sensitivities and target calibrations. 

 

MALevel3Reference 

 

MALevel3Reference is a data object which, similar to MATarget, holds level 3 

reference based sensitivities which are unique to a particular combination of two 

objects, as well as the sequence of the objects (aka, which object is interacted with 

first) 

 

MALevel2AnalysisData 

 

MALevel2AnalysisData is a data object that holds the results of post level 2 set 

analysis. 
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MALevel2ClassifierData 

 

MALevel2ClassifierData is a data object that holds the results of the application of 

level 2 classifiers to a set of data from a level 2 task. 

 

MALevel2FeedbackData 

 

MALevel2FeedbackData is a data object that holds feedback specific parameters for 

which feedback streams to turn on, as well as their respective sensitivity, based on 

the results of level 2 classifier analysis. 

 

MALevel3AnalysisData 

 

MALevel3AnalysisData is a data object that holds the results of post level 3 set 

analysis. 

 

MALevel3FeedbackData 

 

MALevel3FeedbackData is a data object that holds feedback specific parameters for 

which feedback streams to turn on, as well as their respective sensitivity, based on 

the results of level 3 classifier analysis. 
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MATrialFrameData 

 

MATrialFrameData is the base data object that holds all the frame-based features for 

real time task analysis. 

 

MALevel2FrameData : MATrialFrameData 

 

MALevel2FrameData is an extension of MATrialFrameData that adds on additional 

level 2 task specific frame based features. 

 

MALevel3FrameData : MATrialFrameData 

 

MALevel3FrameData is an extension of MATrialFrameData that adds on additional 

level 3 task specific frame based features. 

 

MACalibrationData 

 

MACalibrationData is a data object that contains all of the features generated during 

a marker-based calibration. 
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MABinTrajectoryFeatures 

 

MABinTrajectoryFeatures is a data object that holds key post-reach features used in 

the generation of post reach summary visual feedback. 

 

cmath 

 

cmath is a collection of C functions that perform core mathematical computations 

used in the higher-level frame based analysis.  This class was taken from the AMRR 

code. 

 

FeatureNorm 

 

FeatureNorm is responsible for taking input marker location data and normalizes 

the distance of the marker from a trajectory reference based on the value of set zero 

zone and hull space dimensions. 

 

MATrajectoryFeatures 

 

MATrajectoryFeatures calculates frame based features used primarily in real time 

interactions, but are also used as a part of higher level analysis seen in Level 2 and 3.  

These features include the marker’s position along a target rotation axis, real-time 

speed, and torso compensation. 
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MALevel2Classifiers 

 

MALevel2Classifiers contains a collection of functions that are applied at the 

completion of a level 2 task to categorize the movement quality of a set of reaches. 

 

MALevel3Classifiers 

 

MALevel3Classifiers contains a collection of functions that are applied at the 

completion of a level 3 task to categorize the movement quality of a set of reaches. 

 

MALevel2XibController 

 

MALevel2XibController was a GUI controller created for debugging purposes to 

manually trigger level 2 visual and audio feedback to test communication between 

the Motion Analysis and feedback plugins. 
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A4. Archiving Plugin 
 
Design by Michael Baran 

Implementation by Rajaram Singaravelu and Loren Olson 

 

 
Archiving Plugin class diagram 
 
 
ARMainController 

 

ARMainController represents the main class of the Archiving Plugin.  It serves as the 

main interface for all incoming communications (both NSNotifications and 

protocols).  Depending on the type of analysis being completed by the Motion 

Analysis plugin (this type is set by and incoming protocol), the incoming data frames 

are routed to a corresponding buffer with it’s own respective save method.  

ARMainController also triggers queries to the database to determine if a session 

about to begin is incomplete and if so, where the session left off. 
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ARTrialFrameController 

 

ARTrialFrameController routes the incoming data into specific buffers.  There is one 

buffer for each data frame type.  This class also executes the save of each buffer to a 

database table. 

 

ARDirectoryController 

 

ARDirectoryController handles the directory location for saving a database file. 

 

ARSqlController 

 

ARSqlController creates each database table.  It also sets the specific details of each 

SQL query as well as controlling the specifics of how data is saved to the table. 

 

ARSqlDataModel 

 

ARSqlDataModel creates the data table structure for the database.  The structure is 

determined by the class properties of the object that is to be saved. 
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ARTrialBuffer 

 

ARTrialBuffer is the class used for each data frame buffer.  It provides additional 

helper functions for establishing a buffer beyond the core features of 

NSMutableArray. 

 

A5. Adaptation Plugin 
 
Design and Implementation by Michael Baran 
 
 

 
Adaptation Plugin class diagram 
 
 
ADMainController 

 

ADMainController is the main class of the adaptation plugin.  It controls multiple 

protocols for communication with other plugins (primarily used to setup the 

properties and sensitivities held within other plugins).  It is also the primary 
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handler of both outgoing and incoming NSNotifications for other communications 

with plugins.  The class interfaces with RVR (a video recording program) so that 

video recording can start and stop with the corresponding start and stop of 

interactive training sets.  The class also triggers some one-off session start features 

such as the playing of a tangible socket demo, checking of the objects connected at 

each socket and instruction the Tangible Plugin in regards to which objects are at 

each port.  The class also processes incoming data frames from the sensing plugin to 

check their state and to then update the GUI with each data streams state. 

 

ADMainController houses the main set used at startup of HAMRR.  This function 

triggers multiple functions, including the loading of a scenario file, loading marker 

calibrations and querying the database for which set of the session to start first.  

Similarly, the plugin also resets key parameters when a set is complete in 

preparation for the next set to begin.  In order to determine if the interaction of a 

current set is complete, and thus move on to the next set, ADMainController listens 

via NSNotification for “all complete” messages from other plugins in order to 

determine if all of the plugins are ready for the next set to begin. 

 

ADMainController also receives, and parses, incoming data from the table buttons 

and interprets the results in terms of the progression or replay of demos as well as 

the progression of training sets.  Similarly, the class also serves as the main control 

behind the playback and sequencing of demo videos.  It determines which, if any, of 

the full demos (which are a full detailed video walkthrough of the task or feedback) 
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are needed.  It checks to see if a full demo for a particular task or feedback element 

of the upcoming set has been played.  If not, ADMainController notifies the Visual 

Feedback Plugin (via NSNotification) that a particular full demo needs to be played.  

If the full demo has been played previously in the current session, it notifies the 

Visual Feedback Plugin to play a specific demo prompt (a text only reminder of an 

aspect of the task or feedback).  Relatedly, ADMainController also keeps track if 

feedback streams have been turned off in between sets.  If it detects this feedback 

transition, it notifies the Visual Feedback plugin to notify the patient via a text 

prompt that a particular feedback stream will not be presented. 

 

ADDialogButtonProcessor 

 

ADDialogButtonProcessor provides a method for parsing incoming data frames 

from the table buttons to determine the input selection from the patient. 

 

ADSetTransitionController 

 

ADSetTransitionController contains methods to determine if specific plugins have 

all reported that they have completed their respective functions.  This is needed to 

determine if the next set can be started. 
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ADDemo 

 

ADDemo holds information on the total demos available and if the specific demos 

have been previously played during the session. 

 

ADGUIController 

 

ADGUIController controls the main GUI interface of HAMRR.  This interface allows a 

system controller to manually update sensitivity parameters as well as key set task 

parameters. 

 

ADScenarioController 

 

ADScenarioController loads an XML file and parses the contained information into 

ADScenarioData objects.  It updates ADParameterController with sensitivities 

contained within a specific set’s corresponding ADScenarioData instance.  

ADScenarioController also monitors the sequence of sets in terms of which one 

should be selected at the start of a session, which one is next, and when a session is 

done (all sessions are complete).  At one time, the class had additional log 

capabilities, but this component’s development was abandoned after it was 

determined that the information contained in the log would not be of high priority. 
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ADScenarioData 

 

ADScenarioData is the main sensitivity data object.  It holds all of the highest-level 

task and sensitivity parameters for a given interactive set. 

 

ADParameterController 

 

ADParameterController loads all task sensitivities (excluding reference trajectories) 

from file and sorts then into specific dictionaries for later access.  It updates the 

sensitivities of specific parameter objects based on the values contained within the 

corresponding ADScenarioData object for a given set. 

 

ADParameterMain 

 

ADParameterMain contains abstract functions used in subclass parameter objects, 

which is primarily the manner in which sensitivity parameter values are loaded 

from file. 

 

ADMotionAnalysisConstants : ADParameterMain 

 

ADMotionAnalysisConstants holds parameters that are not sensitivity specific.  

These parameters are usually held constant across patients and sessions. 
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ADSpeedSensitivityParameters : ADParameterMain 

 

ADSpeedSensitivityParameters holds all speed related sensitivity parameters. 

 

ADTrajectorySensitivityParameters : ADParameterMain 

 

ADTrajectorySensitivityParameters holds all trajectory related sensitivity 

parameters including rest and grasp zones and trajectory zero zones and hulls. 

 

ADGraspSensitivityParameters : ADParameterMain 

 

ADGraspSensitivityParameters holds all object interaction related sensitivity 

parameters. 

 

ADTorsoSensitivityParameters : ADParameterMain 

 

ADTorsoSensitivityParameters holds all torso compensation related sensitivity 

parameters. 

 

ADLevel2SensitivityParameters : ADParameterMain 

 

ADLevel2SensitivityParameters holds all level 2 classifier related sensitivity 

parameters. 
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ADLevel3SensitivityParameters : ADParameterMain 

 

ADLevel3SensitivityParameters holds all level 3 classifier related sensitivity 

parameters. 

 

ADLevel2LocationParameters 

 

ADLevel2LocationParameters represents the object that actually stores the values 

found with ADLevel2SensitivityParameters.  It was created so that object location 

specific sensitivity values could be specified for the level 2 classifiers. 

 

ADLevel3LocationParameters 

 

ADLevel3LocationParameters represents the object that actually stores the values 

found in the sensitivity parameter classes.  It represents how each parameter is 

defined for low and high sensitivity.  It originally had the capability to hold a 

medium sensitivity value as well, but this feature was removed when binary 

sensitivity was decided for the final implementation of HAMRR. 

 

Adaptation Plugin GUI 

 

The Adaptation Plugin GUI serves as the main GUI for the use of HAMRR.  It is 

divided into three main panels and a header. 
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A6. HAMRR Composer 
 
Design and Implementation by Michael Baran 
 

 
HAMRR Composer Class Diagram 
 
 
HCMainController 

 

HCMainController instantiates and connects the main components of the composer 

program. 

 

HCXibController 

 

HCXibController controls the GUI interface to create and edit scenario XML files.  

The GUI has controls for each of the parameters within ADScenarioData.  Scenarios 

can be crafted by adding, removing or editing sets. 
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HCDirectoryController 

 

HCDirectoryController creates and maintains the directory for where the scenario 

XML files are loaded from and saved to. 

 

HCScenarioLoader 

 

HCScenarioLoader contains the methods to load XML files and parse the information 

into ADScenarioData objects. 

 

HCScenarioSaver 

 

HCScenarioSaver is the converse of HCScenatioLoader: it contains the methods to 

save ADScenarioData objects into XML files. 
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A7. HAMRR Analysis Program 

Design by Michael Baran 

Implementation by Michael Baran, using some functions by Rajaram Singaravelu and 

Yinpeng Chen 

 
 

 
HAMRR Analysis Class Diagram 
 
 
HAAppDelegate 

 

HAAppDelegate is the main class of the analysis program.  It loads all of the 

sensitivities from file (similar to the functionality seen in the Motion Analysis 

Plugin).  It selects which database table to load based upon the selected analysis 

type.  It also queries the database to load data.  HAAppDelegate also create an object 

that represents a set of data, and update the object with appropriate sensitivity 

values based on corresponding sensitivity values loaded from an ADScenarioData 

object. 
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HADatabaseController 

 

HADatabaseController handles all queries and functions related to pulling data from 

the database. 

 

HAInitializers 

 

HAInitializers contains all of the methods to load reference trajectory specific 

information used in later analysis. 

 

HAVideoController 

 

HAVideoController controls a small video GUI window for playback of patient 

recorded videos.  It automatically loads the corresponding video for the current data 

se that is being analyzed in the main GUI. 

 

HAGUIController 

 

HAGUIController controls the main GUI interface for the analysis program.  It has 

specific controls to load database files and select a particular set, as well as a 

property within the set, to visualize.  It has a table view that controls the main 

segmentation points for the trials within a set.  Another table view is used to show 

the results of the trial and set-level evaluations.  The HAGUIController also has the 
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main controls to segment and analyze a set.  It also features a separate table view to 

add different data filters to the set of data.  Finally, there are controls to load 

separate calibrations that what is contained in the main loaded database file.  This 

feature is required for when a calibration wasn’t completed during a session or if 

the calibration was capture incorrectly. 

 

Visualization Classes: Implemented by Loren Olson 

 

Utilized by HAGUIController are a series of classes implemented by Loren Olson to 

assist in the visualization of data in a graph.  These classes translate data 

magnitudes into the range of pixels within a window and handle all of the plot 

drawing.  In addition to these base classes, I added a small functionality component 

to visually zoom into a range of data based on mouse input. 

 

HABaseSet 

 

HABaseSet is the main data object that contains all of the necessary data and 

parameters for a given set.  It contains all of the data frames for a set.  It holds the 

rest and target calibrations for a set.  It also holds the corresponding 

ADScenarioData object, which is loaded from the database.  It holds instances of a 

trial segmentation object, a set initialization object and a set analysis object.  This 

class also contains the main methods to write data, including analysis results, to file 

as well as methods to load previous applied segmentations and filters. 
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HABaseSet : HASetLevel2 

 

HASetLevel2 is a subclass of HABaseSet.  It has a level 2 specific initialization object, 

set analysis object, and trial segmentation object.  It also has unique methods to save 

evaluation features and save/load segmentation points. 

 

HABaseSet : HASetLevel3 

 

HASetLevel3 is a subclass of HABaseSet. It has a level 3 specific initialization object, 

set analysis object, and trial segmentation object.  It also has unique methods to save 

evaluation features and save/load segmentation points. 

 

HADataFilters 

 

HADataFilters provide class methods for applying the following filters: median, data 

shift (shifting a selection of data by a uniform amount), average smoothing, and 

peak removal (removing data between two points and replacing the data with 

interpolation between two points). 
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HAFilterSelection 

 

HAFilterSelection is the specific object that represents an applied filter.  It contains 

the filter selection as well as general methods to apply and revert applied filters.  It 

also contains the methods to save the details of applied filters to file. 

 

HALevel2Classifiers 

 

HALevel2Classifiers contains all of the level 2 classifier analysis methods. 

 

HALevel3Classifiers 

 

HALevel3Classifiers contains all of the level 3 classifier analysis methods. 

 

HABaseSetAnalysis 

 

HABaseSetAnalysis contains all of the core analysis methods for a set of data.  It is 

primarily used to analyze level 1 task as well as sets of data that were collected 

using the MARealTimeRecord analysis engine. 
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HALevel2SetAnalysis : HABaseSet 

 

HALevel2SetAnalysis is a subclass of HABaseSet.  It overrides the base analysis 

methods with specific implementations for level 2 analysis. 

 

HALevel3SetAnalysis : HABaseSet 

 

HALevel3SetAnalysis is a subclass of HABaseSet.  It overrides the base analysis 

methods with specific implementations for level 3 analysis. 

 

HABaseTrialSegmentation 

 

HABaseTrialSegmentation is the base class for the core segmentation methods for a 

trial. 

 

HALevel2TrialSegmentation 

 

HALevel2TrialSegmentation is a subclass of HABaseTrialSegmentation.  It overrides 

some of the segmentation methods with specific implementations for segmenting 

level 2 trials. 
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HABaseSetInitializers 

 

HABaseSetInitializers contains all of the core methods for initializing a base set of 

data.  Primarily it is used to separate the data into trials and run some normalization 

of the data. 

 

HALevel2SetInitializers : HABaseSetInitializers 

 

HALevel2SetInitializers is a subclass of HABaseSetInitializers and overrides some 

methods for level 2 specific initialization. 

 

HALevel3SetInitializers : HABaseSetInitializers 

 

HALevel3SetInitializers is a subclass of HABaseSetInitializers and overrides some 

methods for level 3 specific initialization. 

 

HABaseTrial 

 

HABaseTrial is the main data object that holds all of the data and pertinent 

parameters for a trial of data.  It contains the location for all of the segmentation 

points for the trial.  It also contains all of the raw data for the whole trial.  It also 

holds all of the results for trial level and set level evaluations.  HABaseTrial also 
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holds an array of applied filters for the trial.  It also contains the methods to save 

trial properties to file. 

 

HALevel2Trial : HABaseTrial 

 

HALevel2Trial extends HABaseTrial to hold level 2 specific trial evaluations. 

 

HALevel3Trial : HABaseTrial 

 

HALevel3Trial extends HABaseTrial to hold level 3 specific trial evaluations. 

 

HABaseTrialEvalFeatures 

 

HABaseTrialEvalFeatures contains the results of all of the base trial evaluations. 

 

HALevel2TrialEvalFeatures : HABaseTrialEvalFeatures 

 

HALevel2TrialEvalFeatures contains the results of all of the level 2 trial evaluations. 

 

HALevel3TrialEvalFeatures : HABaseTrialEvalFeatures 

 

HALevel3TrialEvalFeatures contains the results of all of the level 3 trial evaluations.
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APPENDIX B  

SYSTEM DESIGN AND IMPLEMENTATION DETAILS  
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B1. Design and Implementation of a Transportable Cone 

 

Because all of the objects were 3D printed, a new, basic object could be created in 

minimal time.  The stationary cone design was modified only slightly so that it could 

now interface with the transportable object table sockets at the base as well as 

contain a battery, XBee, two FSRs and a single IR led at the top.  Since this was a 

prototype, the functionality was stripped down to the core essentials: the system 

needs to know where the object is in the table space at various moments (IR light) 

and it would be helpful to detect a grasp of the object (two FSRs).  These decisions 

were made in order to keep the study moving forward and collect data from more 

impaired subjects.  The quick creation of a new object demonstrates the validity 

utilizing prototyping tools, as previously discussed, in the iterative development of 

an INR system. 

 

From the perspective of the HAMMR code, the integration of this new object only 

required a few straightforward changes due to the modular design of the software 

architecture. Within the Tangible Plugin, a new tangible object TFSerialInput was 

extended so that it could use all of the standardized input, output and data 

processing functions.  TFFrameData was extended to include the new FSR sensor 

data from the transportable cone.  Within the Adaptation Plugin, the new object was 

added to the list of possible objects (through ADScenarioData) to use in training.  

This also allowed HAMRR Composer to include it in composed sets, and therefore 
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easily replace all of the instances of transportable cylinder in previously composed 

protocol paths.   

 

Within the Motion Analysis Plugin, some adjustments were made to the analysis 

reach states and calibration procedures.  Much like the cylindrical lift object, the 

system needs to know where the transportable cone is in space to determine if the 

patient had configured the space properly as well as lifted the object high enough in 

certain training tasks.  With the cylindrical lift object, this is done through the four 

markers attached to the top surface.  However, this same design could not be 

completed with the transportable cone. TrackingTools cannot differentiate and label 

individual markers.  They have to be part of a rigid body, requiring at least three 

markers to be grouped together in a physically stable orientation.  If this were 

created for the top of the cone, it would be cumbersome and prevent the patient 

from sliding their hand over the top of the cone to grasp.  Therefore, the 

transportable cone was designed with a single IR light on top of the cone that could 

be turned on and off by HAMRR during certain reach states.    During this time, two 

loose markers would be seen by HAMRR, but it would check to see that one was 

within a target calibration, and the other was within a rest zone calibration 

(assuming that before a reach starts the locations of these two points would be very 

distinct).  If both of these conditions were true, the IR light atop the cone would be 

shut off, and the reach states would progress as normal since the system was now 

seeing the correct number of markers in the space. If after a fixed amount of time, 

the conditions were not met, an instructional prompt would be presented on the 
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screen instructing the patient to double check the transportable cone location and 

move it to where it needed to be.  As can be shown, because the software of HAMRR 

was modular and extensible along the previously mentioned guidelines of software 

design, the new object was integrated into the code with minimal new code written.  

However, improvements to the motion analysis component would be an important 

consideration for future work. 

 

Before the object and updated code was released for patient testing, it went through 

a series of internal tests with the design team.  In the testing of the object, one 

problem was encountered.  When data was streaming out of the object from the FSR 

sensors, it was difficult to timely and reliably communicate messages to the object.  

In other words, if the object was actively streaming out data, it would sometimes 

miss an “IR Off” command from the Tangible Plugin, and thus stall the progression of 

the live interaction during a set of activity as the Sensing Plugin then saw two loose 

markers (one for the wrist and one for the cone) in the space, where there should 

only be one (just the wrist marker), and therefore stopped the set thinking there 

was errant noise in the camera data.  After significant testing to try and improve the 

speed of sending and receiving messages, it was decided to remove the data 

streaming from the object completely.  This provides an example of utilizing 

engineering design approaches within iterative design.  Engineering design 

conducts validation of systems with clear metrics.  In this case, the metric was 

known for what delays in the interaction of the system are acceptable and which are 

not.  The transportable cone data streaming created too much of a lag to be useable.  
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We suspected that the lag was due to a wireless communication protocol that was 

different from the other wireless communication used in HAMRR.  This new method 

was chosen due to the simplicity of the hardware electronics required to build the 

new object, however the team had no previous experience with this form of 

communication within the context of HAMRR.  Therefore, in order to keep the study 

moving forward and because two sensors will not provide the same detailed grasp 

information that could come from a larger array of sensors, the data streaming was 

removed. The ability to automatically track the object in the space was deemed 

much more important than tracking the grasp of the object for the completion of this 

phase of the study.  As a result the grasp conditions for interactive training for the 

object were modified to be based on the total speed and location of the wrist marker 

with respect to the object. 

 

B2. Adaptation Control GUI Redesign Details 

 

The HAMRR interface, which is part of the Adaptation Plugin, was built to offer a GUI 

interface to the underlying parameters of the therapy experience.  However, it was 

never built with any user in mind, other than one of the system designers.  As can be 

seen in the previous discussion of how the user experience was connected to 

software functional decomposition, there was minimal discussion of the therapist as 

a primary user.  This was a result of the many design iterations that needed to be 

directed elsewhere and the momentum that was building towards having a system 

designer run the system for the six-patient study in order to get the cleanest data in 
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the shortest amount of time. However, it became clear that an additional two 

subjects, who were more impaired, would be helpful to add to the study but one of 

the system designers would not be present to run the system.  As experience design 

approaches with the therapist in mind were not used in the initial design of the GUI, 

the experience of the therapist controlling them system had to be reviewed in detail 

and resulting changes to the system needed to be made. 

 

First, an increase in documentation was required, accompanied with in-person 

training to use the system.  This required walking through the system and creating a 

detailed textual summary describing, step-by-step, how to run HAMRR. This level of 

detail was required as the therapists had low technological experience and needed 

the HAMRR system instructions presented in context of Mac OS interface 

instructions. As a result, it became readily clear that the interface was not ideal and 

in fact could provide some unnecessary confusion.  However, a full GUI redesign was 

not practical in the time between the two study sections.  Therefore, a priority was 

given to clarifying the setup of the system, and mainly the need to calibrate different 

objects, which were identified as the two primary interactions the therapist would 

need to conduct.  

 

Currently, HAMRR requires a calibration of a patient touching or grasping an object 

to run any analysis for reaches to that particular object.  Therefore, the therapist 

needs to calibrate each target that is used during the session.  While there is a text 

print out guide to tell the therapist which objects will be used in each session, there 
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was difficulty encountered translating this information to the calibration interface 

within the Sensing Plugin.  Therefore, since the Adaptation Plugin loads pre-

composed scenarios, with the target selection pre-set, this information could be 

used to assist the therapist. 

 

An iteration on the GUI design was made in which within the calibration interface, 

the targets that required calibration were highlighted in a blue color, and the objects 

that had been successfully calibrated were green.  Therefore, the therapist could 

quickly see which objects had been calibrated and which ones still needed to be 

completed.   

 

In addition, tangible data was added as a requirement for calibrating an object.  

Previously, the system controller had to visually confirm that the object was 

properly engaged when conducting a calibration.  Since the therapist would already 

have their focus in multiple directions, it was decided to make tangible data part of 

the calibration success.  Therefore, the patient needed to be successfully touching or 

grasping the object when calibrating.  In terms of the new calibration interface, if the 

calibration process was underway but the object was not successful engaged, the 

target was highlighted yellow in the GUI.  Once the patient successfully touched or 

grasped the object, the calibration would complete and the target in the GUI would 

update to green. 
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B3. Problems Encountered with Torso Tracking 

 
In the previous AMRR study, torso compensation was measured by monitoring the 

angle orientations of the marker rigid body plate worn on the back of the patient.  

Through these measurements, the system could determine the maximum lean or 

twist of the rigid body plate from a calibrated starting orientation. 

 

The idea of torso tracking with HAMRR was the same.  Once the Kinect torso 

tracking component was eliminated from the system, a rigid body plate was 

introduced for subjects of HAMRR to wear slightly below their left shoulder.  This 

location was chosen as a place on the front of the body (so it could be seen by the 

array of cameras) that was least susceptible to movement (twisting or leaning that 

could occur as a natural byproduct of the movement and therefore was not body 

compensation that should be measured).  A simple compensation algorithm was 

created that would determine the difference in angle orientation for a given frame of 

data in comparison to the orientation of the plate at the calibrated rest position.  

While this was conceptually the same as the AMRR system, there were some crucial 

differences and oversights that lead to problems. 

 
 
Location of the Rigid Body and Occlusion 
 
 
 
In initial testing of the rigid body, while the stability of the rigid body during non-

compensating reaching movements was deemed acceptable, the rigid body markers 
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were found to become occluded with severe compensation, which was especially 

noted when testing the system with the more impaired subjects.  Even in more mild 

compensating cases, some minor occlusion was found as well. 

 

The main problem in both cases was the inconsistency in Tracking Tools ability to 

find the rigid body again once the occlusion was removed.  In most cases, the rigid 

body could be found, and normal data recording proceeded.  However, in some 

cases, when the rigid body was once again identified by the cameras, Tracking Tools 

would incorrectly find a double or “ghost marker” in place of one of the markers of 

the rigid body.  This caused the system to pause the data recording as it thought 

there was a different rigid body in the space than what it was expecting to see. 

 

 
Truncated reach due to marker occlusion.  A noise peak marks where data was 
dropped from a key turn task. 
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Determining the Starting Orientation of the Rigid Body 
 
 
One issue that was not found until late data analysis was that determining the 

starting orientation of the torso rigid body plate was entirely reliant upon the 

orientation in which the rigid body was in upon creating the rigid body in Tracking 

Tools.  When creating a rigid body in Tracking Tools, a group of markers are 

selected and the program automatically assigns the current orientation as the zero 

orientation (each axis of rotation reports a rotation angle of 0 degrees).  However, 

this was not known during testing of the system, and therefore a protocol for 

maintaining consistent orientation of the rigid body during calibration was not 

enforced.  This means that orientation (and therefore reported angle rotations) 

would have different magnitudes and directions based on the different orientations 

the object might have had during calibration of the object. 

 

Determining the Current Orientation of the Rigid Body 

 

Upon detailed review of the data, the angle rotation data had frequent large shifts. 

The angle rotation data would show significant jumps in the data that did not follow 

possible logical magnitudes (such as factors of pi).  Upon further analysis, it was 

found that the version of Tracking Tools used reports angle orientation quaternions 

different than traditional orientation estimations.  Therefore, the standard 

quaternion to angle estimations functions were incorrect and would report false and 
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inconsistent angle orientations that could not simply be fixed by removing the shifts 

(as the shifts were very inconsistent in magnitude and occurrence). 

 

 
Example of angle rotation shift.  This example demonstrates how inconsistent the 
shift was and hides the original signal of torso rotation about the x axis. 
 
 
Momentary Occlusion Leading to Marker Swap 

 

During most training procedures there were five markers in the space: one on the 

wrist and four on the torso plate worn below the left shoulder.  If the task called for 

transporting the cylindrical object, then this number increased to nine, with four 

new markers located on the cylindrical object. 

 

The problems seen with this setup, combined with the Tracking Tools software, 

were two fold.  First, Tracking Tools is not able to track unique individual markers.  

The software is built to track unique rigid bodies.  In the design of the system, we 
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looked to avoid putting a rigid body on the wrist in order to not encumber the 

patient during reaching activities (and as seen in the noisy nature of the key turn 

data, which used a wrist-worn rigid body, the use of a rigid body does not 

exclusively eliminate problems).  However, the Tracking Tools software will report 

3D position of all markers in the camera space, regardless if it is part of a rigid body 

or not.  Therefore, an algorithm was designed to check each marker to see if it was 

part of a defined rigid body (a given marker had the same location as one in a 

defined rigid body).  If a marker did not satisfy the check, then it must be the wrist 

marker.  The concept of this solution will hold true if no noise is introduced into the 

space (such as from an errant reflective material).  However, more frequent was 

marker confusion when a rigid body left and re-entered the camera space. 

 

Many times when a subject would significantly compensate (or the transportable 

cylinder object was lifted above the camera space) markers were not detectable by 

the cameras.  When the rigid body would come back in view, one of the markers was 

not drawn in the correct position with respect to the rest of the markers.  Rigid 

bodies are defined with fairly rigid geometries, and therefore when this mis-

position occurred, the system did not think it was the correct rigid body.  This 

resulted in five “loose” markers in the space.  This could be remedied by a staff 

member by temporarily covering and uncovering the markers, but obviously was 

not a procedure that could be completed by the subject.  With more impaired 

subjects, who will provide movements that can lead to frequent occlusions, a better 

tracking solution will be needed. 
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B4. Implementation Details for Standardizing Communication Between Plugins 

 

Overall, the communication between plugins was structured in the following way.  

Protocols were used for setup of the plugins (for example, when the Adaptation 

Plugin needed to communicate updated sensitivities to Motion Analysis or either of 

the feedback plugins) and notifications were used for real-time, low-level 

communication (such as processed frames of data from the Sensing or Tangible 

Plugin).  This structure seemed to be very clear and stable and should be a standard 

fixture of HAMRR plugins.  However, further abstraction should be introduced. 

 

Currently, there are NSNotifications used which also include data objects 

(SEFrameData, TFFrameData, MATrialFrameData, MACalibrationData).  In the case 

of each, as soon as an update is made to these data objects, they get sent out to a 

group of subscribers.  This is a slightly modified version of the Observer Pattern, 

which in this case the Subject is not aware of the specific Observers, since the 

Subscribers just connect to a particular NSNotification via a unique name.  This 

model was a reliable way to send real-time data to a variety of plugins without the 

Subject needing to know who needs the data, which helps with extensibility and 

should be maintained going forward. 

 

However, as previously discussed within each of these NSNotifications is a data 

object.  Typically, the Observer would receive the object and then unpack the object 

based upon specific needs.  For example, the MARealTime analysis engine would 
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receive a SEFrameData object and get the value of particular properties (such as the 

X, Y and Z location of the wrist marker) for its own analysis purposes.  However, this 

required that the MARealTime class had to know how the SEFrameData was 

composed, and as a direct result, had to import the header file for the SEFrameData 

class.  This begins to tangle up the plugins together and may limit future 

extensibility if a future developer wanted to develop their own analysis module. 

 

What I propose is that an NSNotification should be sent out to notify subscribers 

that a new frame of data is available.  Those subscribers can then use a 

predetermined protocol to get the information from the updated data frame from 

the plugin responsible for controlling the data.  

 

As an example of this implementation, let’s return to the previous example of the 

Sensing Plugin sending updated data to the Motion Analysis Plugin.  In the updated 

implementation, the Sensing Plugin would broadcast a notification that a new frame 

of data is ready (once it parsed the incoming multicast data from OptiTrack).  The 

Motion Analysis Plugin, being a subscriber of this notification, would call a series of 

functions within a Camera Data Frame protocol, implemented by the Sensing Plugin, 

in response.  The functions would act as “getters” and return specific values for the 

X, Y and Z location of the wrist marker (among other data from the camera data 

frame as well).  
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The benefit of this setup is that now the Motion Analysis Plugin does not need to 

know how the data is structured within the Sensing Plugin.  It is still beneficial for 

the Sensing Plugin to separate data into objects so that it can cleanly be parsed and 

accessed.  However, in the new implementation, all the Motion Analysis Plugin 

needs to know is that by using the functions in the Camera Data Frame protocol, the 

values for specific properties will be returned.  It no longer needs to know how the 

data is stored.  Rather it knows, by calling the functions within the protocol, the 

values will be returned.  Now, instead of importing multiple header files that are 

data object implementation specific, it can import just one header file from the 

Sensing Plugin that defines the protocol. 

 

It is important to note that the overall NSNotification flow of information should be 

maintained.  First it sets up a model such that every time a new frame is updated it 

is broadcasted, and therefore Observers can respond to new information 

automatically on a frame by frame basis. This is crucial for HAMRR as the marker 

camera frame is the main clock of the HAMRR interaction experience.  Secondly, the 

Sensing Plugin and Tangible Plugin should not need to be concerned with where 

specifically the data is going.  These plugins are designed to parse raw data streams 

into organized structures and notify other plugins when new data is ready.  

Therefore, maintaining NSNotifications, coupled with protocols, would maintain the 

benefit of NSNotification timing with the option for easier extensibility. 
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A similar review of the protocols currently in use is also required.  Currently, 

protocol are used as a way for the Adaptation Plugin to update other plugins with 

new sensitivities or one-off commands.  These protocols are typically called 

between sets or at the start of a session, and therefore are called with significantly 

less frequency than the NSNotifications.  This difference in frequency was one of the 

primary reasons protocols were used.  In addition, by implementing a protocol, a 

class is required to have implementations for all of the contained methods, which 

supports code stability.  However, there were some limitations in the way protocols 

were used within HAMRR. 

 

Similar to the NSNotification implementations, with many of the protocols there are 

included data objects, of which the implementing class needs to know the structure.  

For example, before a set begins, the Adaptation Plugin uses the 

ADParametersProtocol to have the Motion Analysis Plugin update its current 

sensitivity values based on those required by a particular set (represented by an 

ADScenarioData object).  Currently, each method within this protocol passes along 

one of the ADParameterMain sub-classes.  Similar to the limitation of the current 

NSNotification implementation, this requires the Motion Analysis plugin to 

understand the structure of an Adaptation Plugin data object. 

 

What I propose is very similar to what was proposed to clean-up the use of 

NSNotification: the Adaptation Plugin should notify specific plugins that a set is 

about to begin and in response, each plugin should ask the Adaptation Plugin for 
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needed sensitivity values.  Protocols should still be used, as this will help ensure that 

each plugin is asking for all of the values it needs, plus it requires the Adaptation 

Plugin to specifically communicate with each specific plug in, thus helping to ensure 

that each plugin is receiving the important comment.  However, slightly different 

protocols should be implemented. 

 

The Adaptation Plugin should have a standard protocol to notify specific plugins 

that the set is about to begin.  Then, in implementing this protocol, each plugin 

should ask the Adaptation Plugin for specific sensitivity values, which are going to 

be plugin specific.  The Adaptation Plugin shouldn’t dictate which sensitivity 

parameters need to implemented, it should instead give plugin a prompt to update 

any sensitivity values prior to starting a set.  Therefore, the Adaptation Plugin would 

implement a series of protocols to return sensitivity values back to the calling 

plugins.  In this way, there is further plugin code separation (just as with the 

suggestion for the new NSNotification implementations), which helps future 

extensibility.  Plus this will also make the protocols more contained and specific.  In 

contrast many of the current protocols are not completely implemented by a 

particular plugin as not all of the contained methods are relevant, which is 

indicative of a bad design.  Clearer use of protocols would help remove this 

ambiguity. 

 

 

 



 324 

B5. Implementation Details for Increasing Flexibility in Tangible Plugin Data Parsing 
Interface 
 
 
In the development of the system, many problems were encountered when 

developing the Tangible Plugin interface for receiving data from the tangible objects.  

If there was ever a crash from any of the plugins, the serial ports were not closed 

properly, and as a result, the computer would need to be forcefully shutdown and 

restarted.  To avoid this problem at the time, it became necessary to run DASH as a 

compiled app and incorporate functions for a clean exit that could respond to 

thrown exceptions or commands to quit the program to safely close the ports.  As a 

result of the problems seen in the stability of the serial port communication, the 

Tangible Plugin was configured such that only a fixed number of ports could be 

opened every time DASH was started. This ensured that a specific port could only be 

opened once and it would have to be safely closed via the port closing resulting from 

quitting HAMRR.  While this created stability that reduced the number of crashes 

and also vastly improved the recovery time from a crash, it was not an ideal solution 

for the long term.  

 

 
Current Tangible Plugin setup with fixed ports 
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First of all, fixed serial port openings should be removed.  While this increased 

software stability, it does not make complete sense from a user’s perspective.  If 

there is an error in the port opening or if an object needs to be swapped from the 

table, DASH needs to be restarted so fresh port openings can be created.  This is not 

ideal to have to restart a program to use a new functionality, especially for an aspect 

of the system that should remain very flexible (therapists may want to change object 

types on demand). 

 
In order to fix this, all of the ports should be opened at the start of DASH, and then 

when a new object is selected, a new data-parsing component (which is the main 

difference between object types) should be assigned to that port. Currently, the two 

are linked.  By opening a port, the manner in which the incoming data is parsed is 

also fixed.  This does not allow for the swapping of a button with a cone, for 

example.  Again, when completing the first iteration of the system, it was valued 

more important to find the most stable solution and keeping the object selection at 

each port fixed for a given session was held as a design constraint. 
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Tangible Plugin with flexible ports 
 
 
However, moving forward, it may be more desirable to transitions between objects 

at a particular port during the session.  As previously discussed, the fundamental 

difference between serial ports is how the incoming data is parsed.  For the most 

part, all other port properties are the same, the only difference being that almost all 

of the tangible objects communicate at a baud rate of 115200, except for the 

transportable cone (57600) and, though it is handled by the Sensing Plugin, the 

table buttons (9600).  Therefore, given that a port had been opened at a particular 

address with a configured baud rate, the data parsing is the only remaining 

difference.  Therefore, instead of creating multiple sub-classes of TFSerialInput, a 

general “TFDataParser” class should be created with specific implementations for 

each data parse type.  Therefore, for example, there would be a 

TFVirtualDataParser, TFButtonDataParser, TFConeDataParser, TFLiftObjectParser, 

and TFLiftConeDataParser.  Each of these classes would provide a unique method 
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that, given a supplied opened port, could unpack the data accordingly, and update 

an appropriate data object.  This properly encapsulates the opening and closing of 

the port (which can be a risky operation at times, as previously described), from the 

parsing of incoming data. 

 

With this procedure, all ports could still be opened once at the beginning of the 

program, but throughout a session a new data parser could be attached to each port 

to handle objects differently.  The only time a port would need to be closed, is if the 

lift cone object were to be used in place of the lift cylinder object during a session.  

However, this situation is unlikely, as the baud rate of this object could always be 

updated since it was a temporary design. 

 

However, if more objects were being designed with variable baud rates, a method to 

close and re-open a port with new properties would be required.  In this case, there 

should be a separate class for returning an open port with desired properties.  This 

way the risky operation of opening and closing a port could be separated from other 

functionalities.  This code could even be wrapped in try/catch blocks for further 

warning and stability. 
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APPENDIX C  

IRB APPROVAL FORMS  
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APPENDIX D 

PHYSICAL THERAPY JOURNAL PERMISSIONS 
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