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ABSTRACT 

The most recent reauthorizations of No Child Left Behind and the Individuals with 

Disabilities Education Act served to usher in an age of results and accountability within 

American education. States were charged with developing more rigorous systems to 

specifically address areas such as critical academic skill proficiency, empirically 

validated instruction and intervention, and overall student performance as measured on 

annual statewide achievement tests. Educational practice has shown that foundational 

math ability can be easily assessed through student performance on Curriculum-Based 

Measurements of Math Computational Fluency (CBM-M). Research on the application of 

CBM-M’s predictive validity across specific academic math abilities as measured by 

state standardized tests is currently limited. In addition, little research is available on the 

differential effects of ethnic subgroups and gender in this area. This study investigated 

the effectiveness of using CBM-M measures to predict achievement on high stakes tests, 

as well as whether or not there are significant differential effects of ethnic subgroups and 

gender. Study participants included 358 students across six elementary schools in a large 

suburban school district in Arizona that utilizes the Response to Intervention (RTI) 

model. Participants’ CBM-M scores from the first through third grade years and their 

third grade standardized achievement test scores were collected. Pearson product-moment 

and Spearman correlations were used to determine how well CBM-M scores and specific 

math skills are related. The predictive validity of CBM-M scores from the third-grade 

school year was also assessed to determine whether the fall, winter, or spring screening 

was most related to third-grade high-stakes test scores. 
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Chapter 1 

Introduction and Literature Review 

The past decade in American education has seen a significant shift in emphasis, 

from a more process oriented perspective to one where results and accountability have 

become the prevailing standards (Reschly & Bergstrom, 2009). Following the 2002 

reauthorization of the No Child Left Behind legislation (NCLB, 2002), states were 

charged with putting more rigorous systems in place to specifically address critical 

academic skill development, empirically validated instruction and intervention 

techniques, and overall student performance as measured on annual statewide 

achievement tests. Furthermore, the 2004 reauthorization of the Individuals with 

Disabilities Education Act (IDEA) afforded state departments of education the option of 

utilizing instructional processes based on “the child’s response to scientific, research-

based interventions” (IDEIA, 2004; Public Law 108-446) in the diagnosis of specific 

learning disabilities. This evidence-based process is referred to as Response to 

Intervention (RTI). 

 The tool used within RTI systems for screening and progress monitoring is 

Curriculum-Based Measurement (CBM; Shinn, 2008), and the most commonly used 

CBM with the greatest amount of research support is the measure of reading fluency 

(Shinn, 2008; Thurber, Shinn, & Smolkowski, 2002). Reading fluency is commonly 

believed to be one of the best overall predictors of general reading proficiency during the 

primary school years (Reschly, Busch, Betts, Deno, & Long, 2009; Shinn, 2008). Other 

CBMs, such as those for math, have not been researched as thoroughly even though they 
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are being used more and more as key components of RTI systems (Fuchs, Fuchs, 

Yazdian, & Powell, 2002; Shinn, 2008; Thurber et al., 2002; Vaughn & Fuchs, 2003). 

Response to Intervention 

Response to Intervention is a tiered instructional system that typically begins with 

universal screenings in reading, writing, and math that are meant to assist educators in the 

identification of students who are at risk for low academic achievement (Anderson, Lai, 

Alonzo, & Tindal, 2011; Fuchs & Fuchs, 2001; Reschly & Bergstrom, 2009). This, in 

turn, leads to the implementation of evidence-based interventions designed to provide 

further support for struggling students while monitoring for progress. Although RTI 

systems with as many as five tiers are known to exist, the three-tier paradigm is the most 

common (Barnes & Harlacher, 2008; Reschly & Bergstrom, 2009).  

Tier one is universal in scope and consists of quality instruction and behavioral 

supports in the general education classroom. Tier two is marked by a schedule of small-

group, evidence-based interventions for students who are found to be performing 

significantly below their same-aged peers in one or more academic skill areas (e.g., early 

reading or math failure). Students who fail to respond to the prescribed interventions are 

then moved to tier three. Depending on the model of RTI being endorsed by a particular 

school district, tier three may be comprised of more intensive, individualized 

interventions (Hughes, 2008), a comprehensive psychoeducational evaluation by a 

multidisciplinary team (Wodrich & Schmitt, 2006; Wodrich, Spencer, & Daly, 2006), or 

both (Fuchs, Mock, Morgan, & Young, 2003). In any case, tier three is where a 

determination is ultimately made regarding eligibility for specialized instruction. In some 
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models of RTI, being assigned to tier three is, in and of itself, synonymous with special 

education eligibility (Reschly, 2005; Shinn, 2005). 

It should be noted that one of the major challenges with any attempts to define, 

elaborate on, or even effectively implement RTI systems is a lack of national 

standardization (Hughes, 2008; Reynolds, 2008). As such, there exists substantial 

variation in RTI paradigms from state to state and from district to district (Barnes & 

Harlacher, 2008; Berkeley, Bender, Peaster, & Saunders, 2009). For instance, in some 

RTI systems tier one includes more than just the expectation of quality instruction and 

support, and so at-risk students begin receiving small-group supplemental instruction in 

the classroom immediately (Hughes, 2008). Contrast this with Fuchs and Fuchs (2001), 

who endorsed an RTI model where tier one had at-risk students being identified through 

universal screening and then subsequently being monitored for eight weeks in the 

absence of any interventions in order to find the subset of students that did not respond 

adequately to the general education curriculum. Additionally, it is important to remember 

that in the most recent reauthorization of the Individuals with Disabilities Education Act 

(IDEIA, 2004; Public Law 108-446) states are provided the option of specific learning 

disability identification through either insufficient progress following the adequate 

implementation of an RTI system or the finding of a significant discrepancy between 

aptitude and achievement. As a result, considerable variation still exists in exactly how 

RTI is utilized.  

States and/or local education agencies (LEAs) that have adopted a particular RTI 

model either utilize it exclusively for the task of determining special education eligibility 

or as a pre-referral strategy to be implemented prior to a full psychoeducational 
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evaluation. Comprehensive RTI systems are currently used as the sole determinant of 

disability diagnosis in fourteen states, including Colorado, Iowa, and Florida (Reschly & 

Bergstrom, 2009; Reynolds & Shaywitz, 2009; Zirkel, 2013), while a host of experts 

endorse the complementary approach in which a shift to tier three leads to full evaluation 

(Fuchs et al., 2003; Kavale, Kauffman, Bachmeier, & LeFever, 2008; Reynolds, 2008; 

Reynolds & Shaywitz, 2009; Swanson, 2008; Wodrich & Schmitt, 2006; Wodrich et al., 

2006). 

RTI: A Brief History 

Although the actual term “response to intervention” only emerged as recently as the 

late 1990s to the early 2000s (Reschly & Bergstrom, 2009), the paradigm itself is quite 

old (Gresham, 2007; Swanson, 2008) and is being used more and more in schools as a 

pre-referral strategy. RTI emerged out of the research base on assessment and 

interventions, which has its roots in fields such as applied behavior analysis, instructional 

science, and behavioral consultation (Gresham, 2007; Reschly & Bergstrom, 2009). The 

basic concept, originally meant as a means to further clarify the definition of learning 

disabilities, has been discussed in the literature for many decades (Swanson, 2008; see 

also Weiderholt, 1974). The research supporting the core tenets of RTI continued to 

expand with the development of behavior assessment and intervention techniques in the 

1960’s and 1970s. Hence, they share several key features such as direct, measurable 

behavioral observation performed in naturalistic settings and efficient, reliable 

measurement tools with short retest turn-around capability (Reschly & Bergstrom, 2009). 

Throughout the past two decades many different studies and meta-analyses have provided 

consistent empirical support for the benefits of the instructional, behavioral, and 
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intervention programs found within RTI systems (Kavale, 1990, 2005, 2007; Kavale & 

Forness, 1999; VanDerHeyden, Witt, & Gilbertson, 2007). For instance in their research, 

VanDerHeyden, Witt, and Gilbertson (2007) sought to analyze the RTI system as an 

integrated, dynamic, problem-solving procedure as implemented by real frontline 

educational professionals rather than paid research associates. They found that properly 

applied RTI systems resulted in fewer psychoeducational evaluations, decreased 

disproportionality through increased decision-making accuracy, and substantially lowered 

district expenditures.        

Around the time that RTI began to emerge in the applied literature, U.S. educational 

policy was being closely reviewed in order to confront persistent nationwide complaints 

such as low reading achievement levels, low overall academic performance comparative 

to other countries, a wide variation in special education practices, and the failure to 

implement evidence-based curricula and interventions (Reschly, 2008). As a result, a 

variety of research agencies made policy recommendations aimed at increasing 

accountability and achieving better overall results through the use of empirically 

supported educational practices (see A New Era: Revitalizing Special Education for 

Children and Their Families, 2002; Bradley, Danielson, & Hallahan, 2002; National 

Reading Panel, 2000). This perceived need for policy change was instrumental to the 

2002 reauthorization of the Elementary and Secondary Education Act now known as No 

Child Left Behind (NCLB, 2002), which contained several key provisions that helped to 

promote the advancement of RTI methodologies. These included (a) the frequent 

assessment of educational outcomes, (b) accountability for the results of those 

assessments, (c) the required use of empirically validated instruction and intervention 
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techniques, and (d) methods aimed at the early identification of academic skill deficits 

(NCLB, 2002; Reschly & Bergstrom, 2009). Subsequently, the 2004 reauthorization of 

IDEA would end up being consistent with many of these provisions. In this way, NCLB 

essentially became the system of accountability through which IDEIA would be 

supported (Tilly, 2008). 

As previously mentioned, it was through the 2004 IDEA reauthorization that the 

detection of a severe discrepancy between aptitude and achievement was no longer 

mandatory in order to diagnose a specific learning disability. Consequently, RTI was 

introduced into the legislation as a viable option by which learning disabilities could be 

diagnosed (Jacob & Hartshorne, 2007; Wodrich & Schmitt, 2006). This development 

catapulted RTI into the national education consciousness and currently, it is being 

developed for implementation in all states either as the sole requirement for SLD 

placements or as a pre-referral intervention system to be used in conjunction with 

psychoeducational evaluations (Berkeley et al., 2009; Reschly & Bergstrom, 2009). 

Key Features of RTI  

Response to Intervention is comprised of economical and pragmatic tools that are 

grounded in the concept of prevention. Preventative practices such as early detection and 

early intervention are endorsed across virtually all health professions as the most 

effective way to reduce the prevalence and severity of a given ailment. In the domain of 

RTI the chief “ailments” to be identified are academic in nature. Regardless of the wide 

variation in RTI design and utilization, there are still core features consistently found to 

be present (Gibbons, 2008; Reschly & Bergstrom, 2009; VanDerHayden et al., 2007).  



 7 

The tools and processes typically employed within RTI systems are as follows: (a) 

service delivery occurs in a multi-tiered format in which the intensity of intervention is 

directly proportionate to the needs of the student; (b) educational and behavioral goals 

and benchmarks are clearly identified; (c) universal screenings in reading, math, and 

sometimes writing are generally performed three times a year to identify students who 

may be at risk academically and/or behaviorally; (d) the universal screenings, in 

combination with can’t do/won’t do assessments (VanDerHeyden & Witt, 2008), help to 

determine students’ needs by identifying gaps between expected and actual performance, 

(e) actual interventions employed are evidence-based; and (f) the CBM progress 

monitoring data is frequently compared to appropriate benchmarks and projected goals. 

Curriculum-Based Measurement 

Curriculum-Based Measurement assessments are a systematic means of quantifying 

the growth of students’ basic academic skill competence in a short amount of time (Deno, 

1985). This is done by capturing a particular academic behavior such as basic math 

computational fluency, oral reading fluency or written expression with brief, standardized 

measurement tools that are grade-level appropriate and constructed from content rooted 

in the district’s general curriculum (Hintze, 2009; Shinn, 2008). To illustrate by way of 

an example, one commonly used type of CBM is for math computational fluency. The 

procedure involves simply giving a student a math probe consisting of a single page of 

math problems (see Appendix B) where performance is measured in total digits correct 

per two minutes. This scoring method is distinct from total answers correct in that credit 

is actually being given for each digit that is in the correct place value. This quick, two-

minute assessment produces potentially valuable information about how a student 
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compares to his or her peers with regard to the specific performance objectives of a 

particular curriculum. This information can then be utilized in a number of ways, such as 

assessment of the retention of critical academic skills and level of material mastery, 

problem identification, differentiated intervention development, and intervention progress 

monitoring (Hintze, 2009).  

In an early research review, Marston (1989) focused on CBM as a much needed 

alternative to traditional models of academic assessment and decision-making due to 

problematic issues on both the technical and social policy levels. Marston argued that 

among the thousands of standardized psychometric instruments available, there were 

many published reports of substantial challenges with regard to technical adequacy, 

especially when considering their use on children with disabilities and the unacceptable 

risk of potentially flawed methods of special education placement. He further argued that 

issues of time, expense, and a demonstrated lack of consistent decision-making criteria 

from school to school subverted best efforts to reliably and validly meet students’ 

educational needs. Marston went on to make a case for CBM as a technically sound 

measure of student performance that is directly related to curricula, is sensitive to 

improvement in academic achievement over time, and is a reliable, valid measure of 

basic skill content areas. 

As the hinge on which formal evaluative decisions pivot, the information provided 

by CBM is essential to any effective RTI service delivery. In this context, CBMs produce 

much of the “data” in data-based decision making, which is the hallmark of all RTI 

models. They are a particularly useful method of assessment because they are brief, 

sensitive to short-term growth, and are able to be repeated with regular frequency 



 9 

(Hintze, 2009). In addition, they now have some thirty years of research supporting their 

validity (Deno, 1985; Fletcher, Denton, & Francis, 2005; Reschly, Busch, Betts, Deno, & 

Long, 2009; Shinn, 2008). There is also a substantial amount of research suggesting that 

student achievement outcomes improve when teachers use CBM data to shape 

differentiated instructional strategies (Stecker & Fuchs, 2000; Stecker, Fuchs, & Fuchs, 

2005). This is much easier done with CBMs because of their formative nature; that is, 

they allow teachers to better adjust any modifications to instruction more fluidly 

throughout the year in order to ensure greater academic success in a shorter period of 

time (Fore, Boone, Lawson, & Martin, 2007).  

Educators and other direct stakeholders such as administrators and school 

psychologists need this type of practical, efficient, and continuous measurement 

capability (Jiban & Deno, 2007) to better equip them in their efforts to use evidence-

based practice that ensures the biggest possible effect size with the smallest possible 

intrusion on instruction time. This is particularly relevant within current education policy 

and law, as NCLB, the IDEA, and the President’s Commission on Excellence in Special 

Education (United States Department of Education Office of Special Education and 

Rehabilitative Services, 2002) all include CBM as an important part of broader evidence-

based preventative practices. In addition, Ysseldyke and his colleagues included CBM as 

a crucial competency for best practices in School Psychology: A Blueprint for Training 

and Practice III (Ysseldyke, Burns, Dawson, Kelley, Morrison, Ortiz, Rosenfeld, & 

Telzrow, 2006; 2008) when they emphasized accountability through data-based decision 

making and the application of scientific methodologies. 
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Curriculum-Based Measurement for Universal Screening 

In the current age of accountability and inadequate educational budgets, cost-

effective and efficient formative assessment methods such as CBMs are crucial tools to 

have in order to better instruct, screen, intervene, and monitor according to students’ 

instructional needs (Erickson, Ysseldyke, Thurlow, & Elliot, 1998). This is particularly 

relevant when it comes to national and statewide tests of academic achievement. Having 

a fast and durable way to assess basic academic skills that can also be predictive of 

student performance on high-stakes standardized tests is important for several reasons 

(Helwig, Anderson, & Tindal, 2002), not the least of which being that such standardized 

tests are large in scale, time-consuming, and are usually only administered once a year. 

Curriculum-Based Measurements afford educators the ability to take academic snapshots 

of their students’ conceptual understanding of key skill areas throughout the school year, 

thereby guiding efforts to properly differentiate instruction, implement interventions or 

re-teach a topic altogether if needed. Further, CBM data can provide additional evidence 

for a school’s adequate yearly progress (Helwig et al., 2002). In general, CBM is 

considered a key part of “general school improvement efforts” and as such, it is vitally 

important that it be closely aligned with curriculum and instruction if it is expected to 

lead to positive educational outcomes (Elliott, Huai, & Roach, 2007; Shinn, 2008). 

Curriculum-based measurements generally take on several key roles in decision 

making processes regarding academic progress and competence, such as (a) universal 

screenings conducted in order to identify which students are in need of intervention 

support; (b) can’t do/won’t do assessments, which are meant to tease out the subset of 

students who fall below benchmark due to motivational factors; (c) identifying an 
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accurate instructional level for students who are in need of supports; (d) intervention 

progress monitoring for the purpose of increasing, decreasing or changing a given 

intervention strategy; (e) curriculum evaluation, and (f) evaluation of instructional quality 

(Deno, 2003; Shinn, 2008). However, the most common use of CBM is for universal 

screening purposes (Ikeda et al., 2008). 

When considering CBM as part of an RTI system, universal screening is a key 

feature of tier one and represents an initial, proactive effort to identify and track students 

who are at risk of academic failure (Ikeda et al., 2008). This stands in contrast to the 

traditional “wait-to-fail” model in which struggling students do not begin receiving 

intervention until the point of significant distress with regard to academic health (Deno, 

2003; Vaughn & Fuchs, 2003). During universal screening, all students are assessed in 

one or more academic skill areas and data is generated that indicates the presence or 

absence of a problem as dictated by local, empirically derived standards known as 

benchmarks (Glover & Albers, 2007; Shinn, 2008). In the event that a problem is 

detected, further investigation is then warranted to see if the performance deficit amounts 

to a legitimate educational need. If such a need is identified, the student is then moved to 

tier two and provided with the necessary supports. 

Curriculum-Based Measurements in Reading 

There are, of course, several academic skill areas that can be assessed during 

universal screening (e.g., reading, written expression, math, spelling), but the most 

commonly researched and utilized CBM is the oral reading fluency assessment (ORF; 

Jiban & Deno, 2007; Poncy, Skinner, & Axtell, 2005; Reschly et al., 2009; Shinn, 2008; 

Thurber et al., 2002). A preponderance of the research on ORF supports it as a valid and 



 12 

reliable indicator of generalized reading skills and a predictor of future reading 

proficiency (Poncy et al., 2005; Reschly et al., 2009; Shinn, 2008).  

In a meta-analytic study investigating the magnitude and variability of ORF CBM 

reliability estimates obtained in 28 studies from 1993 to 2008, Yeo (2011) found a high 

mean estimated average alternate-form reliability (r = .89), which was close to the mean 

alternate-form reliability estimate found in Marston’s (1989) review (r = .90). Similarly, 

Wayman and colleagues (2007) reviewed research studies on the technical adequacy of 

reading CBM conducted from 1981 to 2005. They reported that a majority of findings 

showed strong correlations between ORF, basic reading proficiency, and reading 

comprehension. They further reported that ORF has received consistent support as being 

more strongly related to reading comprehension than are measures designed to 

specifically assess comprehension. The only exception was found in the first grade, 

where a considerable floor-effect was detected, and in the intermediate grades (e.g., 5th 

and 6th), where correlations tended to decrease. In general though, correlations between 

ORF and state standardized tests ranged from .60 to .80 across studies (Wayman, 

Wallace, Tichá, & Espin, 2007).   

Shapiro and colleagues (2006) also reviewed literature examining the relationship 

between ORF measures and state assessment outcomes in eight different states and found 

that, on average, the reported correlations fell within the .60 to .75 range, which suggests 

a strong link between ORF and statewide reading goals. Furthermore, their own analysis 

on the relationship between ORF and student outcomes on Pennsylvania state 

assessments (Shapiro et al., 2006) revealed similar results, with reported correlations in 

the .62 to .69 range. Paleologos and Brabham (2011) analyzed the relationship between 
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DIBELS ORF scores and performance on the nationally normed Stanford-10 and found 

correlation coefficients ranging from .23 to .60 for proficient readers and coefficients up 

to .65 for non-proficient readers, which suggests that CBMs may be especially useful in 

identifying struggling students. Overall, such comprehensive support clearly establishes 

ORF measures as important instructional tools for educators to have at their disposal 

(Reschly et al., 2009). 

Although CBM research in the state of Arizona is generally limited, Wilson (2005) 

conducted a study in the Arizona’s Instrument to Measure Standards (AIMS) technical 

report that analyzed the correlation of DIBELS oral reading fluency benchmark scores to 

AIMS test performance on a sample of third-grade students (N = 241). The results 

indicated a strong positive linear relationship with an obtained correlation of .74 for the 

overall group, which was also consistent with related reading CBM research. Devena 

(2013) also conducted a study on a sample of third-graders (N = 321) from four schools 

to determine if ORF was effective in predicting high-stakes reading test scores in 

Arizona. One result from that study showed medium to large correlations equal to or 

higher than .34, indicating a positive linear relationship between reading CBM and the 

reading portions of the AIMS/Stanford-10 Dual Purpose Assessment (DPA) with the 

strongest correlations occurring with the spring screenings. Meanwhile, such an overall 

consensus on determining a similarly valid and efficient task to measure math proficiency 

is considerably less robust (Jiban & Deno, 2007). 

Curriculum-Based Measurement in Mathematics 

Mathematics CBM assessments are typically comprised of three core skill areas of 

focus: (a) early numeracy, (b) computation, and (c) applications. Of these, computational 
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fluency CBMs, which involve working math problems within a two to four minute time 

limit, receive the most research attention (Foegen, Jiban, & Deno, 2007). Thurber, Shinn, 

and Smolkowski (2002) conducted a confirmatory factor analytic study on 207 fourth 

grade students to investigate what constructs CBM-Ms actually measure validly relative 

to a range of other mathematics measures. Their findings identified a two-factor model of 

mathematics featuring computation (execution of concepts, strategies, and facts) and 

applications (applied word problems, measurement, etc.) as distinct yet related constructs. 

As expected, they found that CBMs constructed with computation items correlated more 

highly with the computation factor (median coefficients of .82), although they also 

correlated, albeit lower, with applications (median coefficients of .44). Their results also 

showed CBM-M as a measure of computation with high alternate form reliability 

(correlations between .90 and .92). This is consistent with other research supporting the 

reliability and validity of math CBM data in general (Burns, 2004; VanDerHeyden & 

Burns, 2005).  

In a recent review on the critical elements needed for effective practices in RTI for 

mathematics, Lembke, Hampton, and Beyers (2012) reported that for students in earlier 

primary grades (e.g., first through third), math CBMs are typically based on counting, 

numeracy, and simple operations skills, while CBMs for the upper grades have more 

advanced concepts, such as algebraic components, integrated into their content. The 

former method of CBM-M development referred to utilizes robust indicators, which is 

when items are constructed with material more representative of the core mathematics 

areas of proficiency (Foegen, Jiban, & Deno, 2007). With this approach, measures do not 

so much represent a particular curriculum per se, but are characterized by select 
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proficiency criteria. This can be contrasted with the curriculum sampling method used 

more on CBM-M development for intermediate to older grades, in which the measure is 

made from a representative sample of what is typically found in the year’s mathematics 

curriculum. As such, research on CBM-M for earlier primary grades has been entirely 

focused on robust indicators of numeration (Foegen, Jiban, & Deno). Thus, when 

analyzing the relationship between early math computational fluency and core areas of 

mathematical proficiency it would be expected that there would be significant 

associations, but that the relationship would be strongest for numeration. 

In a review of research, Foegen, Jiban, and Deno (2007) identified some 578 

articles that were generally related to CBM, which they then reduced to the 160 articles 

that featured empirical research results. Out of these, only 29 (18%) addressed 

mathematics measures. They reported that alternate-form reliability estimates for 3rd 

through 5th grade students ranged from .72 to .93, with a majority of those estimates 

coming in above .80. They also found that internal consistency estimates were greater 

than .90 in all of the studies reviewed, and that validity coefficients were found to range 

from moderate (r =.35) to strong (r =.87). Overall, their findings indicated that technical 

adequacy tended to be stronger for the 4th and 5th grade than it was for the 3rd grade 

(Graney, Missall, Martínez, & Bergstrom, 2009). Further, they reported that in the studies 

they reviewed, the relationships between CBM-M and state achievement tests tended to 

fall in the .50 to .70 range, which is more modest than for CBM-R (.60 to .80), but very 

similar to correlations reported for commercially available achievement tests of 

mathematics (Foegen et al., 2007; Salvia, Ysseldyke, & Bolt, 2007). 
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 As more and more states continue to develop and adopt RTI models (Berkeley et 

al., 2009; Reschly & Bergstrom, 2009), expanding the research base on CBM in math 

continues to be an urgent need in the effort to provide formative assessments that have 

stronger reliability and validity for this vital academic skill area (Foegen et al., 2007; 

Vaughn & Fuchs, 2003) as the search for “technically and theoretically appropriate 

measures, largely resolved in CBM of reading, remains active in mathematics” (Foegen 

et al., 2007, p. 137). 

Math Curriculum-Based Measures and Screening Time of Year Growth Rates 

In general, the type of mathematics CBM used for fall, winter, and spring 

screenings can vary between single or combined computation items that are timed from 2 

to 4 minutes and scored by total digits correct. On these differing types of CBM-M 

forms, research has shown that they have demonstrated an average test-retest reliability 

of .87, as well as alternate form reliability coefficients from .66 to .91(Thurber et al., 

2002; Tindal, Marston, & Deno, 1983). Further, Marston (1989) has reported concurrent 

validity correlations in the .42 to .45 range. Researchers have looked at within-year 

growth patterns on math CBMs associated with universal screenings throughout the 

school year and whether they demonstrate consistent rates of improvement across the 

benchmark assessments. Results showed that the observed trends were somewhat 

inconsistent, but that students tended to show more growth from the winter screening to 

spring screening as contrasted with the period from fall to winter (Graney, Missall, 

Martínez, & Bergstrom, 2009), implying general growth patterns leading to a stronger 

overall spring showing. This is consistent with similar studies on time of year growth 

rates for reading CBM, which has shown that longer intervals between ORF screenings 
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and standardized tests tend to produce weaker correlations, with the winter and spring 

administration typically demonstrating the strongest relationship (Baker, Smolkowski, 

Katz, Fien, Seeley, Kame'enui, & Beck, 2008; Roehrig, Petscher, Nettles, Hudson, & 

Torgesen, 2008; Shapiro, Keller, Lutz, Santoro, & Hintze, 2006; Wanzek, Roberts, 

Linan-Thompson, Vaughn, Woodruff, & Murray, 2010). 

Curriculum-Based Measurement and Standardized State Testing 

Pursuant to ARS 15-741, the Arizona State Board of Education is mandated to 

implement academic content standards and to measure student achievement against those 

standards annually. Curriculum-Based Measurements are often referred to as being 

analogous to taking a students’ “academic temperature”. If this is so, then the annual 

standardized tests used by states to measure achievement standards can be thought of as 

the “full physical examination”. One such test utilized in the state of Arizona is the 

Stanford-10 (Harcourt Educational Measurement, 2003), which is currently one of the 

assessments being used for meeting national and state standards in academics as 

implemented by the No Child Left Behind Act (Statistics Solutions, 2012). The second 

test is the Arizona Instrument to Measure Standards (AIMS), which is given in reading, 

writing, math, and science. The math portion of the AIMS is comprised of several skill-

specific content standards: Number and Operations, Data Analysis, Probability and 

Discrete Mathematics, Patterns, Algebra and Functions, Geometry and Measurement, and 

Structure and Logic. Not only are students required to pass the AIMS in order to graduate 

from high school, state legislation was recently enacted (ARS, 15-101) mandating a 

passing score on the third-grade reading portion of the AIMS as a prerequisite to fourth-

grade advancement. 
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As reported earlier, recent research comparing the relationship of reading CBMs to 

the AIMS and the Stanford-10 (Devena, 2013; Wilson, 2005) produced results consistent 

with good overall predictive capability. However, there has not been any such research 

on the relationship between math CBMs and the Arizona high-stakes tests. 

Although research support for a comparably effective math-screening tool is not 

nearly as extensive as it is for reading (Fuchs, Fuchs, Yazdian, & Powell, 2002; Shapiro 

et al., 2006; Shinn, 2008; Thurber et al., 2002), some of the available results are 

encouraging (Clarke, Smolkowski, Baker, Fien, Doabler, & Chard, 2011; Jiban & Deno, 

2007). For instance, Shapiro and colleagues (2006) examined the relationship between 

CBMs of reading and math computation and Pennsylvania’s state achievement test, as 

well as with the Stanford-9 norm-referenced achievement test. The researchers utilized a 

stratified random sample of second through fifth grade students drawn from six 

elementary schools in a Pennsylvania school district. For the math analyses (N = 475) 

they found moderate significant correlations between CBMs of math computational 

fluency and student outcomes on Pennsylvania’s state achievement test, with average 

reported coefficients in the .50 to .53 range. Further, a regression analysis went on to 

show that the winter screening served as the strongest predictor to test scores, while also 

indicating that the fall screening was the weakest overall predictor. The outcome of 

analyses of CBM-M with the Stanford-9 produced moderate to strong correlations that 

ranged from .45 to .72. 

Clarke and colleagues (2011) conducted research on the efficacy of an early 

mathematics intervention program and produced results supporting the moderate 

concurrent and predictive validity of CBM-Ms. These results are consistent with findings 
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from several other studies on math CBMs that likewise show a moderate correlation to 

various types of standardized achievement tests (Foegen et al., 2007; Jiban & Deno, 

2007; Thurber et al., 2002). Jiban and Deno (2007) investigated the technical adequacy of 

grade level CBM-M and CBM-R toward predicting outcomes on third (n = 35) and fifth 

(n = 49) grade standardized math tests in Minnesota. Results showed weak reliability of a 

one-minute CBM-M at predicting third grade standardized test performance, while 

demonstrating a greater reliability of scores (.65 to .86) for the fifth grade. When scores 

from two one-minute CBM-M administrations were aggregated, moderate correlations 

were obtained for both grade levels. Meanwhile, regression analyses showed that the 

math and reading CBMs each made significant unique contributions toward explaining 

performance but that together they explained 52% of the variance in fifth grade test 

performance and 27% for third grade. 

In a 2002 study Helwig, Anderson, and Tindal examined the predictive value of a 

noncomputational conceptual math CBM task on the performance of eighth-grade general 

education students (N = 171) from eight western school districts on a computer adaptive 

state math achievement test. The researchers correlated the eighth grade CBM-M scores 

with scores on a high-stakes test and found that the math probes used in their research 

were successful to 87% accuracy at predicting which students would meet the state math 

standards, with correlations ranging from .61 to 80. While this kind of result is promising, 

a substantial challenge still remains in that conceptual, as opposed to computational, 

CBMs tend to be much more involved, requiring much more time and energy to score 

and analyze. For this reason, more research is needed to identify and support the use of 

faster and easier to use math CBMs. 
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Curriculum-Based Measurement and Differential Effects across Subgroups 

The previously noted changes in federal special education policy and law (IDEA, 

2004; NCLB, 2002) and the resulting shift in America’s educational focus from a process 

oriented approach to one of accountability, as measured by high-stakes testing, has 

helped to drive the increased use of CBM as a tool to monitor student progress on state 

academic standards. Despite this fact, a decade later there is still relatively little available 

research on the differential effects of CBM across gender and ethnic subgroups (Adkins, 

2013), with most of the research being focused on oral reading fluency, neglecting math 

almost entirely. Further, there is even less research still on ethnic and gender differences 

related to performance on state standardized tests of mathematics. As a result, the data 

made available for this study was utilized to investigate relevant differential effects 

across gender and ethnicity. 

Gender Differences 

One area worthy of investigation is the purported gap in math achievement between 

males and females (Beal, 1999) and how this presents on CBM-M performance data 

(MacMillan, 2001). While it has been historically reported in the research (Beal) that 

boys perform better than girls in math and science, Sadker (1999) observed that this gap 

has been rapidly decreasing over the past 30 years. Further, Cole (1997) conducted a 

meta-analysis on several national and international research studies covering math 

achievement in grades four through 12 and found that gender differences in math 

performance are trivial in grades four through six, but that on average, males begin to 

perform significantly better than females between the 8th and 12th grades. These results 

are also supported by Leahey and Guo (2001), who found that while boys and girls start 
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on an even plane during the early elementary school years, boys exhibit more accelerated 

math achievement in the middle school years. In order to see how findings like these 

might be supported or refuted by CBM-M performance data, MacMillan (2001) 

investigated scores from nearly 1500 second to seventh-grade students using Many-

Faceted Rasch Measurement (Linacre, 1994), which is a model of analysis specifically 

designed to assist with performance assessments and paired comparisons. MacMillan was 

able to determine that there were no significant gender differences across grade levels on 

CBM-M math scores in the sample. However, these results were obtained over a decade 

ago and, just as with ethnicity, there remains the need for further research on the 

relationship between gender and both curriculum-based measures and standardized 

achievement testing in math. 

Tsui (2007) reported that from the period of 1990 to 2003, boys and girls from the 

fourth, eighth, and twelfth grades were found to perform comparably in mathematics 

overall. This trend remained consistent into the 2012 surveys, where the only overall 

statistically significant math achievement gain reported was for 13 year-old female 

students (National Center for Educational Statistics, 2013). Other studies have reported 

that girls tend to achieve higher classroom grades in math, while boys tend to obtain 

higher scores on standardized math tests (Arroyo, Burleson, Tai, Muldner, & Woolf, 

2013; Hyde, Lindberg, Linn, Ellis, & Williams, 2008). Despite a respectable amount of 

evidence to the contrary, stereotypes persist that girls have inferior mathematical ability 

compared to boys (Hyde, et al., 2008). Historically, these beliefs have been attributed to 

gender differences purported to favor males in the area of basic spatial reasoning, 

including the ability to perform mental rotations (Casey, Nuttall, Pezaris, & Benbow, 
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1995), as well as an affective component related to reports that as they progress through 

school, girls develop increasingly more negative attitudes toward mathematics in general 

(Hyde et al., 2008; Royer & Walles, 2007). While there is no lack of research examining 

gender differences in mathematics, there is very little literature addressing these 

differences with regard to CBM-M and high stakes state testing in the new era of RTI 

since the reauthorization of IDEA. 

Ethnic Differences 

The work of 21st Century educators, administrators, and school psychologists is 

largely based in public schools that are becoming increasingly more diverse (Espinosa, 

2005; Kranzler, Flores, & Coady, 2010; Ortiz, 2006; Sullivan & Kucera, 2011). For 

instance, during the period between 1972 and 2007, Hispanics represented the fastest 

growing minority presence in American schools, and by 2007 a little more than 20% of 

students in the 5 to 17-year-old age group had a non-English home language (Kranzler et 

al., 2010). This trend in population shift is uniquely represented in the state of Arizona. 

Demographic information from the 2013-2014 academic year shows that Hispanic 

students currently represent up to 44% of the total statewide school-age population 

(Arizona Department of Education, 2014), which is in line with recent U.S. Census 

Bureau estimates that Hispanics made up some 30 percent of the overall state population 

in 2012 and that, overall, some 43 percent of the Arizona population considered 

themselves to be members of an ethnic minority group (Nintzel, 2013). While student 

populations become more ethnically diverse, the teaching force remains predominantly 

middle-class and White (Whitebook, 2003). This growing discrepancy between the 

student body and school personnel underscores the need for all educators to be 
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knowledgeable about ethnic differences in educational attainment (Espinosa, 2005), 

including testing outcomes. This fact may be especially relevant in the state of Arizona 

moving forward, as reports indicate that the growth of the Hispanic population alone has 

doubled since the early 1990s. In fact, it is reported that Hispanics will be a minority-

majority population within the next 15 to 20 years (Nintzel, 2013). 

When considering this ongoing population shift, it is important to take into account 

the well-documented ethnic differences in academic performance, in general (James, 

Jurich, & Estes, 2001; Morgan & Mehta, 2004; Nyberg, McMillan, O’Neill-Rood, & 

Florence, 1997), with the reported history of lower academic functioning among some 

minority students (Dozier & Barnes, 1997), as well as the over-identification of ethnic 

minorities in special education in the Unites States (Donovan & Cross, 2002; Elliot & 

Fuchs, 1997; Scott, Boynton-Hauerwas, & Brown, 2014). Research has shown that ethnic 

minorities obtain significantly lower scores on standardized achievement tests (Adkins, 

2013; Sattler, 2008). A major factor considered to contribute to this trend has been test 

content bias (Bell, Lentz, & Graden, 1992); past research has identified a substantial 

number of standardized tests as assessing content that did not match classroom 

curriculum content (Bell, Lentz, & Graden, 1992; Good & Salvia, 1988). Adkins (2013) 

investigated the potential presence of bias in ORF probes as it pertained to their 

predictive relationship with computer-based standardized state testing. Results of that 

study detected the presence of racial predictive bias among ORF probes in the prediction 

of reading comprehension testing outcomes. Conversely, there is also literature that 

supports CBM within a culturally responsive RTI system as being a potentially valuable 

tool to utilize in order to generate data that is more in step with students’ acquisition of 
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current curricula regardless of demographic distinctions such as gender and ethnicity 

(Hernández-Finch, 2012; Hosp & Madyun, 2007; Klingner & Edwards, 2006; Stecker, 

Fuchs, & Fuchs, 2005; VanDerHeyden, Witt, & Gilbertson, 2007). In a 2012 review of 

studies addressing RTI’s effect on culturally and linguistically diverse students, 

Hernández-Finch concluded that although more research is needed to strengthen the 

research base on culturally responsive RTI, there are methods of promise emerging, such 

as appropriately researched CBM tools that are more aligned to local norms. More 

relevant to the current study, VanDerHeyden and colleagues (2007) examined the 

technical merits of the System to Enhance Educational Performance (STEEP) CBMs for 

both reading and math on the identification of students for special education across 

ethnicity and gender in a Southern Arizona school district. They analyzed implementation 

of STEEP in five of the district schools across two successive years and found that 

ethnically diverse students were not disproportionately identified for special education 

when compared to school baseline data. Further, they found no statistically significant 

gender differences with regard to special education identification.  

The research literature addressing the presence of bias in reading CBM has had 

widely varying results (Hosp, Hosp, & Dole, 2011). However, there remains the need for 

further research as it pertains to ethnicity, CBM-M (Scott et al., 2014), and standardized 

state testing in math. In considering the current state of Response to Intervention and 

culturally diverse students, Hernández-Finch (2012) called for further research beyond 

the subject of reading to be conducted more frequently. Furthermore, Batsche (2007) 

spoke to the importance of disaggregating data in order to properly investigate different 
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predictable outcomes in educational research based on groupings, such as ethnicity, and 

other categories that are featured in No Child Left Behind. 

The High Value of Math Literacy 

The assessment of mathematics proficiency is especially important because an 

increasing amount of research indicates that mathematics is a core cognitive competency 

that should rank at least as highly as reading in level of importance (Clements & Sarama, 

2008), as basic mathematics proficiency has proved to be integral to many daily life skills 

(e.g., consumer behaviors, household budgeting, and technical work demands) and has 

become a benchmark for obtaining a high school diploma (Minskoff & Allsopp, 2003). In 

a 2004 study, Duncan, Claessens, and Engel were able to show positive correlations not 

only between preschool reading skills and later elementary reading ability, but also 

between preschool mathematics skills and later math ability. More importantly though, 

they were able to demonstrate that while early reading skills only predicted later reading, 

early math skills were predictive of both later math and later reading abilities (Clements 

& Sarama, 2008). Further, research has also indicated that poor development of math 

skills in the primary grades is predictive of significant math difficulties in secondary 

school, and that this contributes to an increased risk of negative outcomes in adulthood 

(Delazer, Girelli, Grana, & Domahs, 2003; Jordan, Kaplan, Locuniak, & Ramineni, 2007; 

Mazzocco & Thompson, 2005). Results such as these are congruent with Fogen and 

colleagues (2007), who noted that the scope and sequence of mathematics curricula are 

more extensive and complex when compared to reading, requiring the ongoing mastery 

of key competencies (e.g., numerical operations, geometry, measurement, probability, 

algebraic functions, etc.) within and across all grade levels (Fogen, et al.).  
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Taking into consideration the increasing technological demands of the 21st Century, 

attaining competency in mathematics is more critical than ever, and has serious impact 

potential well beyond the classroom (Baglici et al., 2010; Mazzocco & Thompson, 2005). 

Today, there is an ever-widening range of occupations requiring some level of math 

literacy, which has been shown to increase the likelihood of successful employment 

(Mazzocco & Thompson, 2005; Patton, Cronin, Bassett, & Koppel, 1997; Saffer, 1999). 

Moreover, the National Science Board (2003) has reported math and science proficiency 

as necessary skills in careers that currently have the highest rate of growth. 

In a 2000 review of national math proficiency test scores, the National Center for 

Educational Statistics (NCES) found that just 22% of U.S. fourth-grade students scored at 

or above the proficient level (Manzo & Galley, 2003). This figure went up to 31% in 

2003, and jumped to 36% in 2005. In the most recent report, an estimated 40% of fourth-

graders scored at or above the proficient level (NCES, 2005; 2013). Although this trend is 

promising and demonstrates a level of consistent improvement, American student 

progress in mathematics remains sluggish compared to the rest of the industrialized 

world. These results still leave much to be desired, and poor mathematics achievement 

remains a national concern (Clarke et al., 2011; Jordan et al., 2007; National Mathematics 

Advisory Panel, 2008). Recent reports from the Trends in International Mathematics and 

Science Study (TIMSS, 2012) and the tri-annual Program for International Student 

Assessment (PISA), released by the Organization for Economic Cooperation and 

Development (OECD, 2010) illustrate this concern at the international level. 

The TIMSS focuses on mathematics achievement among fourth- and eighth-grade 

students from participating countries (Mullis, Martin, Foy, & Arora, 2012). Overall, U.S. 
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fourth-grade students ranked 11th out of 50 participating nations while U.S. eighth-

graders ranked 9th out of 42 nations (TIMSS, 2012). The PISA (OECD, 2010), on the 

other hand, assesses the state of students’ acquired knowledge in the areas of reading, 

mathematics, and science as they near the end of compulsory schooling; in 2009 this 

program analyzed the results of an international sample of 15-year-old students from 64 

countries. While U.S. students performed within the average range in reading and 

science, they were below average in math literacy, ranking just 31st in mathematics 

performance. On a scale of six possible levels of mathematics proficiency, with level six 

being the highest, only 27% of U.S. students scored at or above level four (Fleischman, 

Hopstock, Pelczar, & Shelley, 2010; OECD, 2010), which correlates to students being 

capable of completing higher order tasks such as carrying out sequential processes, as 

well as problem solving using visual and spatial reasoning in novel situations. This stands 

in contrast to the reported 32% of students from the other OECD countries that scored at 

or above level four (Fleischman et al., 2010, p. 20). Following the release of the 2010 

PISA report, U.S. Secretary of Education Arne Duncan commented that, “being average 

in reading and science—and below average in math—is not nearly good enough in a 

knowledge economy where scientific and technological literacy is so central to sustaining 

innovation and international competitiveness” (United States Department of Education, 

2010, p. 1). In another major study, Peterson, Woessmann, Hanushek, and Lastra-Anadón 

(2011) of the Harvard Kennedy School analyzed international math performance, but 

with an additional state by state breakdown. They found that Arizona students only 

scored at 26.3 percent proficiency, below the U.S. average of 32.2 percent. 
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In a recent report submitted to congress, Schacht (2009) outlined the need to further 

bolster advancements in areas such as math and science in order for the U.S. to remain 

globally competitive. In fact, it has been estimated that technological progress is 

responsible for up to one-half of the economic growth in the U.S. and that failing to 

further cultivate this progress would contribute to increased competitive pressures in the 

international marketplace (Schacht, 2009). Peterson and colleagues (2011) calculated that 

if current trends persist it could cost the U.S. up to 75 trillion dollars over the next 80 

years. As such, the proper development of technological prowess necessitates a sharp 

focus on what is, arguably, a key source of human intellectual capital at the primary and 

secondary school levels, and this is underlined by a clear need for continued 

improvement of student math performance in the United States. 

To this end, in addition to mandates such as NCLB (2002) the Bush administration 

also created the National Mathematics Advisory Panel (NMAP, 2006) for the sole 

purpose of making expert, research-based recommendations aimed at overhauling the 

current delivery system in mathematics education so that the U.S. will not, “…relinquish 

its leadership in the 21st Century” (NMAP, 2008, p. xi). However, they ultimately 

concluded that, “international and domestic comparisons show that American students 

have not been succeeding in the mathematical part of their education at anything like a 

level expected of an international leader” (NMAP, 2008, p. xii). Of the many 

recommendations that they submitted in their final report, the NMAP endorsed the 

regular use of reliable and valid CBMs to monitor math achievement, particularly in the 

primary grades. 
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Study Purpose 

There is evidence that CBMs are reliable and efficient tools with which to assess 

key academic skill areas (VanDerHeyden et al., 2007), thus allowing educators to closely 

monitor student progress and implement interventions when needed. Further, CBMs are 

less expensive, can be administered more frequently than annual standardized tests, and 

can be directly related to school and district curriculum (Elliott, et al., 2007); this is 

critical in order to help close the gap between actual and expected math literacy when 

needed, which in turn, would help to improve overall student performance on annual state 

standardized testing. More evidence is needed regarding the concurrent and predictive 

validity of CBMs in comparison to standardized achievement testing. The purpose of this 

study is to expand the research base on the validity of math CBM assessments by 

investigating universal screening measures of computational fluency and how well they 

predict performance on state standardized tests of academic achievement in Arizona, as 

well as to investigate whether there are any significant differential effects for ethnic or 

gender differences and how the screening time of year relates to student success on high 

stakes tests. 

Research Questions and Hypotheses 

The research questions and hypotheses for this study are as follows: 

Research Question 1: What is the relationship between general CBM-M 

computational math fluency screening scores and general performance on 

standardized mathematics tests given in Arizona? 

Hypothesis 1a: Following from the available literature, it is hypothesized that there 

will be a significant correlation with moderate to strong effect sizes between general 
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CBM-M computational math fluency screening scores and general performance on 

the math standard score from Arizona’s Instrument to Measure Standards. 

Hypothesis 1b: It is further hypothesized that there will be a significant correlation 

with moderate to strong effect sizes between general CBM-M computational math 

fluency screening scores and general performance on the Stanford-10 mathematics 

scores. 

Research Question 2: What is the relationship between CBM-M computational math 

fluency screening scores and composite skill areas assessed by Arizona’s state math 

measure including: (a) Number and Operations; (b) Data Analysis, Probability, and 

Discrete Mathematics; (c) Patterns, Algebra, and Functions; (d) Geometry and 

Measurement; and (e) Structure and Logic?  

Hypothesis 2a: Following from the available literature, it is expected that there will 

be a moderate relationship between CBM-M computational math fluency screening 

scores and each of the composite skill areas assessed on the AIMS test math portion.  

Hypothesis 2b: It is further hypothesized that the third grade CBM-M screening 

scores will have the strongest predictive validity and that the Number and Operations 

strand will, likewise, show the strongest strength of relationship compared to the 

other strands. 

Research Question 3: What is the relationship between general CBM-M 

computational math fluency screening scores and general performance on 

standardized Arizona state mathematics tests when students are disaggregated by 

gender? 
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Hypothesis 3: Following from the available literature, it is hypothesized that there 

will not be significant differences in the observed predictive validity of general CBM-

M computational math fluency screening scores and general performance on 

standardized Arizona state mathematics tests when disaggregating by gender across 

grade levels. 

Research Question 4: What is the relationship between general CBM-M 

computational math fluency screening scores and general performance on 

standardized Arizona state mathematics tests when students are disaggregated by 

ethnicity?  

Hypothesis 4: Following from the available literature, it is hypothesized that there 

will not be significant differences in the observed predictive validity of general CBM-

M computational math fluency screening scores and general performance on 

standardized Arizona state mathematics tests when disaggregating by ethnicity. 

Research Question 5: How does universal math screening time of year relate to 

student success on high stakes tests? 

Hypothesis 5a: There will be a stronger relationship between CBM-M computational 

math fluency scores and performance on standardized Arizona state mathematics tests 

when analyzing the winter and spring screening data per grade level and a weaker 

relationship with the fall screenings.  

Hypothesis 5b: It is further expected that there will be a significantly stronger 

relationship between third grade spring CBM-M math fluency scores and Arizona 

state mathematics test scores than with either the fall or winter of the third grade. 
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Chapter 2 
 

METHOD 

Participants 

The participants in this study were 410 students selected from 46 third-grade 

classrooms out of six elementary schools in a large Arizona district. The chosen 

elementary schools were the only schools in the participating district with the data 

necessary to conduct the present study. A seventh elementary school had to be removed 

from consideration after it was discovered that the probes had been scored incorrectly 

(using total answers correct, rather than total digits correct). The focus of the current 

study was placed on typical students in the interest of achieving greater generalizability 

of the results; consequently, all students from the sample designated as being in special 

education were also excluded from the study because the archival data did not provide 

information as to specific category of special education eligibility. Thus, a total of 52 

cases were removed from the study due to special education eligibility, bringing the final 

sample set to 358 students. The sample was 52.8% male and 47.2% female. The ethnic 

background of participants was 70.1% White, 19.3% Hispanic, 3.1% Black, 1.1% 

American Indian or Alaskan Native, 3.6% Asian, .6% Native Hawaiian or Other Pacific 

Islander, and 2.2% were listed as Two or More Races. As reported by the participating 

school district, the 2013-2014 district-wide gender and racial breakdown was 50.7% 

male, 49.3% female, 67.4% White, 20% Hispanic, 3.8% Black, 2.4% Native American or 

Alaskan Native, 5.1% Asian, .23% Native Hawaiian or Other Pacific Islander, and 1.2% 

were listed as Two or More Races. Tables 1 and 2 show the relevant participant and 

participating school district demographic information. 
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According to the American Psychological Association (APA, 2003), race is defined 

as a socially constructed category in which specific identification is determined through 

stereotypical physical characteristics such as skin color or hair type. In contrast, ethnicity 

is referred to as “the acceptance of the group mores and practices of one’s culture of 

origin and the concomitant sense of belonging” (APA, 2003, p. 9). Thus, for the purposes 

of the present study it was determined that the term “ethnicity” was more meaningful 

with regard to the essential characteristics associated with student cultural identity.  

Table 1 
 
Study Participant Demographic Variables  

Demographic Variable n Percent 

Gender   

     Female 169 47.2 
     Male 189 52.8 
Ethnicity   
     White 251 70.1 
     Hispanic 69 19.3 
     Black/African American 11 3.1 
     American Indian/Alaskan Native 4 1.1 
     Asian 13 3.6 
     Native Hawaiian/Other Pacific Islander 2 0.6 
     Two or more races 8 2.2 
N = 358 
 
Table 2 
 
Participating School District Demographic Variables  

Demographic Variable n Percent 

Gender   

     Female 12397 49.3 
     Male 12774 50.7 
Ethnicity   
     White 16958 67.4 
     Hispanic 5022 20.0 
     Black/African American 951 3.8 
     American Indian/Alaskan Native 594 2.4 



 34 

     Asian 1290 5.1 
     Native Hawaiian/Other Pacific Islander 58 0.23 
     Two or more races 298 1.2 
N = 25171 

Instruments 

System to Enhance Educational Performance (STEEP). The STEEP (Witt, 

2002) is a research-based CBM system of academic skill probes designed for universal 

screening, intervention, and progress monitoring. For the purposes of this study, the 

STEEP math probes consisted of 1st through 3rd grade-level measures ranging from 40 to 

49 items that are focused on fluency in single and double digit addition, subtraction or a 

combination thereof depending on the grade level. These universal screening measures 

are two minute long individually administered probes that are scored according to total 

place-value digits correct.  

The instructional standard used for interpreting performance on the math probes 

follows from Deno and Mirkin (1977) at 20–40 digits correct for grades 1–3 as indicating 

performance relative to same-aged peers being at or above the 16th percentile 

(VanDerHeyden et al., 2007). Categorically, results fall into one of three rankings: 

Frustrational, Instructional, and Mastery. In practice, these benchmark criterion scores 

indicate whether a student has a substantial need for math supports, may need basic 

numeration and operations support or is experiencing no difficulties with basic math 

fluency, respectively. Children who score within the Frustrational range are rescreened 

with what is referred to as a can’t do/won’t do assessment, where some type of reinforcer 

is provided in an effort to determine whether a student’s below benchmark score was the 

result of low motivation or a legitimate skill deficit. The student is administered the same 

math fluency probe that was used in the original screening, except this time the examiner 
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tells them that if they can improve upon their previous score they will be given a reward 

(Witt & VanDerHeyeden, 2007). As a general practice, students in the current study were 

administered the can’t do/won’t do trial when necessary and the higher score was 

recorded in the data. 

 The reliability and validity of math CBM data is very well supported in the applied 

research (see Burns, 2004; VanDerHeyden & Burns, 2005). In their 2005 study on the 

use of STEEP CBM math data to guide primary level mathematics instruction, 

VanDerHeyden and Burns found Cohen’s d coefficients in the .47 to .92 range, indicating 

moderate to strong effect sizes (VanDerHeyden & Burns, 2005). Table 3 shows the math 

computational fluency end of the year benchmark scores for elementary students. 

Table 3 
 
STEEP Math Computational Fluency End of the Year Digits Correct Benchmarks for 
Elementary School  

 Grade Level 

Proficiency Level First-Third Fourth-Sixth  

Frustrational  0-19 0-39 
Instructional  20-39 40-79 
Mastery  40+ 80+ 

 

Stanford Test of Achievement, Tenth Edition (Stanford-10).  The Stanford-10 

(Harcourt Educational Measurement, 2003) is a research-based, nationally norm-

referenced, multiple choice achievement test first published in 1926. It provides 

information on student performance in core academic areas such as reading, language, 

and mathematics. This test (Harcourt Educational Measurement, 2003) yields several 

different types of scores, including raw scores, percentiles, scaled stanine scores, and 
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grade equivalent scores. As with any standardized assessment, the scaled scores and 

percentile rankings are of most interest because these allow educators and researchers to 

compare student performance against the set of same aged peers who took the test at the 

same time. Stanford-10 math items only yield a single standard score and are not divided 

into subskill areas as with the AIMS. 

The individual questions comprising the Stanford-10 (Harcourt Educational 

Measurement, 2003) were drafted based on national and state instructional standards, as 

well as content-specific classroom curricula. Experts then generated the assessment 

blueprints from which testing professionals and practicing teachers would create the 

complete test items. A test blueprint assigns the percentage of questions that should 

measure each test concept. Finally, measurement specialists, content experts, and testing 

editors screened and finalized the test items (Harcourt Educational Measurement). 

The Stanford-10 has strong reliability evidence supporting it. For instance, the 

Reading section of the Stanford-10 received an alpha reliability rating of .87, the Math 

section .80-.87, and the Language section .78-.84. Past research has also reported 

reliability coefficients (K-R20 and alternate form) in the .80-.90 range for the total math 

cluster and math multiple-choice portion of the test (Burns, VanDerHeyden, & Jiban, 

2006). Although the Stanford-10 was designed for students from kindergarten through the 

twelfth grade, the state of Arizona only utilizes stand-alone administrations of the test for 

grades two and nine. However, the items from the Stanford-10 are embedded within the 

third, fourth, and eighth-grade administrations of AIMS tests to provide a dual purpose 

assessment featuring both norm-referenced and criterion-referenced components 

(Arizona Department of Education, 2013). The math portion of the Stanford-10 is 
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comprised of 25 items; however, while the results are reported as separate standard 

scores, 15 out of the 25 Stanford-10 items map on to the five main content strand areas of 

the AIMS test and contribute to both sets of scores reported by the Arizona Department 

of Education. Stanford-10 norm-referenced scores from the current study were obtained 

using the 2007 spring norms (Arizona Department of Education, 2013). 

Arizona’s Instrument to Measure Standards (AIMS). In the state of Arizona, the 

data obtained from the Stanford-10 items is used in conjunction with the AIMS test as a 

Dual Purpose Assessment (DPA; Arizona Department of Education, 2014) to more 

thoroughly measure levels of pupil achievement for statewide accountability purposes. 

The AIMS is an assessment designed to measure student proficiency in the areas of 

reading, writing, math, and science that is required by state and federal law (Arizona 

Department of Education, 2014). It is administered in grades 3 through 8, as well as high 

school, and is designed to measure performance on content standards, which were 

adopted in March 2003 for reading, June 2008 for mathematics, June 2004 for writing, 

and March 2005 for science (Arizona Department of Education, 2013). Reading and math 

are assessed on all AIMS administrations through the 12th grade. All skill areas, save 

written expression, are administered in a multiple-choice format. Student performance is 

then scored at one of four different proficiency levels for each content area, “Falls Far 

Below Standards”, “Approaches Standards”, “Meets Standards”, or “Exceeds Standards”. 

In addition, students obtain standardized scores as well as percentile rankings in relation 

to national norms. High school students must pass the AIMS as a requirement for 

graduation (Arizona Department of Education, 2012). 
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The most recent technical report for the AIMS test (Arizona Department of 

Education, 2013) indicates that the AIMS Reading/Language and Mathematics tests for 

the third, fourth, and eighth grades are used as dual-purpose assessments, meaning that a 

combination of both criterion-referenced scores based on state standards and nationally 

norm-referenced scores are generated based on student performance. Arizona teachers, 

curriculum specialists, and administrators made contributions to both test item 

development and the interpretation of results. Overall internal consistency reliability 

estimates for the spring 2013 AIMS assessment were calculated to be within the .82 to 

.93 range for the criterion-referenced items and within the .59 to .85 range for the norm-

referenced items (Arizona Department of Education, 2013). 

Including the Stanford-10 items, the third-grade AIMS math portion was made up 

of 76 operational items, of which 66 were divided among the five main content strands 

comprising Arizona’s academic standards for mathematics, solely contributing to the 

AIMS standard score. The remaining 10 items contributed solely to the Stanford-10 

standard score, thus allowing for a dual purpose assessment. According to the state item 

map of specifications, the Number and Operations strand (28 items) features the highest 

number of loaded test items in the earlier grades, while Data Analysis, Probability, and 

Discrete Mathematics (8 items), Patterns, Algebra, and Functions (11items), Geometry 

and Measurement (12 items), and Structure and Logic (7 items) feature fewer loaded 

items in the earlier grades that subsequently increase in the upper grades (Arizona 

Department of Education, 2013; D’Agostino, 2010). 
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Procedure 

Data was gathered on the math computational fluency scores for study participants’ 

first, second, and third grade school years in order to assess the strength of relationship 

between CBM-M scores and the selected assessment results. The Arizona State 

University Institutional Review Board (IRB; see Appendix B) approved this study as 

exempt. The participating school district then agreed to allow access to its archival data, 

which included STEEP-CBM-M universal screening, Stanford-10, and AIMS scores 

from 2010 to 2013. This data was collected from two separate online, internal district 

databases; one is known as Arizona RTI (AZRTI), and it supplied the math computational 

fluency screening scores from each school. The other database is called Datacentral. This 

database included the demographic information, Arizona’s Instrument to Measure 

Standards Dual Purpose Assessment (AIMS DPA) scores, as well as Stanford-10 

mathematics scores for the sample set. Information was gathered on the mathematics 

portion of the Stanford-10 and AIMS DPA performance at the end of the students’ third 

grade year, along with relevant demographic variables. The AIMS DPA was 

administered during the month of April in the participants’ third grade year. 

Ideally, participants would have received CBMs of math computational fluency in 

the fall, winter, and spring. However, review of the data sources revealed that the 

participating schools had different math screening/collection procedures, which 

unavoidably led to some missing data points. For instance, one school did not administer 

a second grade winter screening. Fall screenings would have been completed 

approximately two to four weeks after the start of the school year, while the winter 

screenings were completed in December/January. The spring screenings were completed 
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in April/May approximately two to four weeks before the end of the school year. Math 

fluency screening probes were given and scored by school personnel trained in their 

administration. 

To be included in the analysis, participants were required to have at least one first, 

one second, and one third-grade universal screening probe, as well as mathematics 

component scores from both the SAT-10 and AIMS DPA assessments administered in 

the third grade year. Missing data points on the math computational fluency probes were 

corrected using the regression formula, linear trend at point, which replaces missing 

values with the predicted value for that point. In total, there were 3,222 data points, out of 

which 28 percent were missing. Participants who had missing data were retained to 

ensure an accurate data sample, as the removal of non-random participants can cause 

distribution skewness (Tabachnick & Fidell, 1996; Devena, 2013). 



 41 

Chapter 3 
 

RESULTS 
 

Power Analysis 

 In order to determine the achieved power for this study based on a set sample size, 

the G*Power software package (Faul, Erdfelder, Buckner, & Lang, 2009) was employed 

to perform post hoc power analyses for each type of test being utilized following from 

Cohen (1992), who outlined four essential parameters for statistical analysis including 

statistical power (1 – β), significance criterion (α), sample size (n), and effect size (q). 

Typically, three of these are known and subsequently used to derive the fourth (Cohen, 

1988, 1992). Each statistical test in the present study retained an individual alpha level of 

.05 because each research question was generated based on meaningful interpretations of 

the data. The power analyses were performed post hoc due to unexpected limitations in 

the data sources, which ended data collection at the current sample set size before a priori 

analyses were completed. 

The power analyses illustrated in Figure 1 were conducted across a range of 

possible effect sizes for research questions numbered one through four. Results of an 

exact model, two-tailed test for a given sample size (N = 358) where the null correlation 

was set at zero showed adequate power achieved from the lower critical r value of .10 for 

research questions one and two such that, when employing effect size conventions found 

in the literature (Cohen, 1969; Faul et al., 2009), to detect a relatively small effect size (q 

= .10) the given sample revealed a statistical power of .47, and a power of 1.0 for 

detecting both moderate (q = .30) and large (q = .50) effect sizes. Research questions 
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three and four required a z-test model, two-tailed test for two independent Pearson r’s 

from the same sample set split by gender (Female N = 169; Male N = 189) and then 

ethnicity (White Students N = 251; Combined Non-White Students N = 107) that 

likewise showed adequate power achieved from critical z value 1.96. Thus, the given 

sample disaggregated by gender revealed a statistical power of .15 for detecting a 

relatively small effect (q = .10), a power of .80 for detecting a moderate effect size (q = 

.30), while power exceeded .99 for the detection of a large effect size (q = .50); in much 

the same way, when the sample was disaggregated by ethnicity the analysis revealed 

statistical powers of .14, .73, and .99, respectively. Subsequently, the sample size of 358 

was found to provide sufficient power for the current study because a majority of the 

effect sizes found in the CBM literature range from moderate to large. 

 

Figure 1. Post Hoc Power Analyses for Given Sample Size (N = 358) and Sample Size 
Split by Gender and Ethnicity: Research Questions 1-4. 
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To address research question number five, a z-model, post hoc, two-tailed test for 

the correlation between two dependent Pearson r’s with a common index was conducted. 

When the observed correlations were entered into the analysis, achieved power for the 

given sample size of 358 was .36. This relatively lower power measure was likely due to 

a negligible difference between the observed correlations and the fact that the measures 

being compared were highly correlated with one another. 

Sample Characteristics  

Means and standard deviations were calculated for select demographic variables 

relevant to this study. Table 4 shows the means and standard deviations for grade 1, grade 

2, and grade 3 math computational fluency scores. On average, scores were similar for 

females and males across the three grade levels. Scores were more variable across 

ethnicity, with Asian and White scores being the highest across the first two years, while 

Asian and African American scores were the highest for the third grade. Hispanic and 

African American student scores were lowest in grade 1; students with two or more races 

scored the lowest in grade 2, and American Indian/Alaskan Native, Hispanic, and 

students with two or more races had the lowest scores for grade 3. 

Table 4 
 
Means and Standard Deviations of Math Computational Fluency Scores  

 Grade 1  Grade 2  Grade 3  
 _________________________ ___________________________ __________________________ 

Demographic Variable M  SD M SD M SD 

Gender        

     Female 26.19 7.27 42.05 12.29 22.10 12.13 
     Male 26.50 7.41 46.09 16.04 22.94 12.65 
Ethnicity       
     White 27.17 7.01 46.25 14.23 23.70 11.95 
     Combined Non-White Ethnicity 24.44 7.76 39.33 14.07 19.84 13.05 
     Hispanic 22.73 5.41 37.23 12.86 16.99 10.06 
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     Black/African American 22.05 5.52 39.21 14.15 25.89 17.64 
     American Indian/Alaskan Native 25.72 6.36 40.86 10.97 12.19 10.38 
     Asian 34.11 12.74 52.79 17.59 34.32 16.54 
     Native Hawaiian/Other Pacific Islander 24.34 0.94 41.67 5.18 16.91 6.00 
     Two or more races 26.05 8.48 34.39 10.37 17.04 7.61 
Total 26.35 7.34 44.18 14.52 22.54 12.40 
N = 358; Highest Possible Probe Scores: 1st Grade: 56; 2nd Grade: 91; 3rd Grade: 86 
 

Table 5 shows the means and standard deviations of Stanford-10 mathematics 

component scores and AIMS DPA mathematics scaled score by select demographic 

variables.  Across demographic variables, student performance on the SAT-10 math 

component scores and AIMS DPA math scaled scores displayed a pattern that was 

generally consistent with the math computational fluency scores presented above. 

Females and males achieved similar scores across the two measures; Asian and White 

students obtained the highest scores on both measures. Hispanic students had the lowest 

average score on the SAT-10 while American Indian/Alaskan Native students had the 

lowest average score in the AIMS DPA math portion. The combined Non-White ethnicity 

participants had to be collapsed into one category since there were too few students of 

each group with which to complete analyses of the individual ethnic categories. While the 

Asian group did show higher math scores, on average, than the other groups, the total 

number of Asian participants (n =13) made it necessary to combine them with the other 

Non-White participants. However, when collapsed into one category, the combined Non-

White ethnicity group still averaged lower scores than White students, overall. 
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Table 5 
 
Means and Standard Deviations of High Stakes Test Scores According to Select 
Demographic Variables 

 Stanford-10 Math SS AIMS-DPA Math SS 
 ________________________________ ________________________________ 

Demographic Variable M SD M SD  

Gender     
     Female 647.59 42.11 394.59 47.78 
     Male 651.66 40.65 401.16 48.82 
Ethnicity     
     White 658.71 37.45 407.12 46.10 
     Combined Non-White Ethnicity 628.70 42.55 376.79 47.09 
     Hispanic 622.49 39.73 369.45 43.40 
     Black/African American 627.55 39.33 375.36 35.47 
     American Indian/Alaskan Native 628.25 49.07 338.50 30.90 
     Asian 656.92 50.81 420.08 58.73 
     Native Hawaiian/Other Pacific Islander 625.50 33.23 386.50 40.31 
Note. AIMS DPA = Arizona Instrument to Measure Standards Dual Purpose Assessment; SS = Scale 
Score; SAT-10 = Stanford Achievement Test-10th Edition DPA Items. N = 358 
 
Data Analysis 

Pearson product-moment correlations were calculated to determine the degree to 

which select predictive variables and the corresponding criterion variables were linearly 

related in the study sample (Green & Salkind, 2011). Often in the research literature, the 

statistical significance of a coefficient is also interpreted as an effect size; that is, 

significant outcomes being construed as big effects and non-significant outcomes as 

being small, unimportant effects. This approach is problematic, however, because 

sometimes effects that are the same size can come out as highly significant, and at other 

times non-significant. Meanwhile, trivial effects can sometimes come out as highly 

significant, while important effects can register as non-significant. This occurs due to the 

fact that tests of statistical significance tend to confound the magnitude of impact and the 

size of the sample, which are two independent pieces of information. Thus, statistical 

significance, in and of itself, provides very little information as to the practical 
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significance or the relative impact of an effect size and so should never be used as the 

only measure of how much a relationship “matters” (Valentine & Cooper, 2003). As a 

result, R2 coefficients were also calculated and interpreted in order to determine the 

overall effect size, or strength of relationship between math computational fluency 

screening scores and standardized state achievement math scores, as well as selected 

individual composite strands (Valentine & Cooper, 2003).  

It was necessary to consider the two assumptions that underlie the Pearson 

correlation significance test; (a) that the variables are bivariately normally distributed, 

and (b) that the cases are a random sampling from the population and scores for one case 

are independent of the scores on the other cases (Green & Salkind, 2011). Scatterplots for 

the variables of comparison were generated in order to rule out non-linear relationships 

that might attenuate r (Cohen, Cohen, West, & Aiken, 2003). A majority of the 

scatterplots showed a generally positive linear relationship between variables, save for 

research question two (See Appendix A for several examples). The statistical program 

used for this study calculated the strand criterion scores for research question two as 

discrete rather than continuous quantitative variables due to limited item sets within the 

individual strands as compared to the CBM-Ms, indicating a violation of the normal 

distribution assumption. To address this in the analysis, correlations for research question 

one were reported with Spearman’s rank coefficients in place of Pearson’s r’s in order to 

necessarily treat the strand scores as ordinal-level rather than interval-level data. 

Cohen (1988) suggested benchmarks for interpreting the R2 effect size in the 

behavioral sciences (see also Valentine & Cooper, 2003) whereby an R2 of .01 is 
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considered to represent a small effect, an R2 of .09 is considered to represent a medium-

sized effect, while large effects are generally considered equal or larger to an R2 of .25. 

When the comparisons were disaggregated by ethnicity and gender, respectively, 

Fisher’s r to z transformation (Fisher, 1921) was applied in order to allow for comparison 

of the actual correlation values; this was due to the fact that r-values are not normally 

distributed (Howell, 2013). Steiger’s z-test (Steiger, 1980) was used following Fisher’s r 

to z transformation to determine the difference between the independent correlations 

(Weaver & Wuensch, 2013). Fisher’s r to z transformation was also used when 

comparing the strength of relationship between the screening times of year for the third 

grade and standardized test results. Following this, Hotelling’s t-test (Hotelling, 1931) 

was used to assess the difference between dependent correlations with a common index 

measure (Weaver & Wuensch, 2013). 

First Research Question 

The first research question addressed the relationship between general CBM-M 

computational math fluency screening scores and total performance on standardized 

Arizona state mathematics tests. 

Pearson product-moment correlations were calculated to investigate the 

relationship between CBM-M math computational fluency scores and AIMS and 

Stanford-10 math composite scores calculated from the third grade DPA administration, 

as well as the intercorrelation between grade-level fluency performances in order to 

determine whether observed differences were due to chance. As a measure of effect size, 

R2 coefficients were then calculated to assess the strength of relationship between the 

AIMS and Stanford-10 math portions and math computational fluency scores across 
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screenings and grade level. The results of the correlation analysis are provided in Table 6. 

As expected, all grade-level correlations were significant after controlling for Type 1 

Error at .05. 

Table 6 

Means, Standard Deviations, and Correlations between Arizona Instrument to Measure 
Standards Dual Purpose Assessment Math Scores with Math Computational Fluency 
Measures 

Variable M SD 1 2 3 4 5 6 7 8 9 

AIMS Math  398.06 48.37 .35* .35* .23* .56* .47* .47* .49* .43* .55* 
1. F Grade 1 13.96 9.17  .71* .49* .42* .27* .23* .45* .40* .35* 
2. W Grade 1 28.36 9.04   .59* .49* .36* .38* .47* .46* .40* 
3. S Grade 1 36.74 7.44    .42* .17* .32* .34* .44* .31* 
4. F Grade 2 32.67 15.46     .65* .63* .64* .49* .60* 
5. W Grade 2 47.48 16.12      .69* .51* .35* .56* 
6. S Grade 2 52.40 18.03       .55* .48* .61* 
7. F Grade 3 16.54 13.08        .66* .72* 
8. W Grade 3 22.33 12.85         .68* 
9. S Grade 3 28.75 15.78          

Note. AIMS = Arizona Instrument to Measure Standards Dual Purpose Assessment; F = Fall: W = Winter; 
S = Spring. * p < .05. N = 358 

 
Table 7 shows the resulting R2 coefficients derived from the correlations listed 

above. In general, as students moved through each grade level screening the coefficient 

and effect size magnitudes increased, with similar results occurring among the second 

and third grade CBM-M administrations. The first grade fall and winter both had the 

same moderate effect size, r(356) = .35, 90% CI [.27, .42], p < .05, with 12% of the 

variance in AIMS math being accounted for by its linear relationship with each 

corresponding CBM-M performance. The strongest overall association was observed 

with the second grade fall CBM-M administration, r(356) = .56, 90% CI [.50, .62], p < 

.05, with 31% of the variance in AIMS math being accounted for by its linear relationship 

with math computational fluency. The third grade spring CBM-M administration also 
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saw a strong association, r(356) = .55, 90% CI [.49, .61], p < .05, with 30% of the 

variance in AIMS math being accounted for by computational fluency. The weakest 

association occurred in the first grade spring, where 5% of the variance in the AIMS math 

was accounted for by CBM-M performance, r(356) = .23, 90% CI [.15, .31], p < .05. 

Table 7 

Means, Standard Deviations, and R2 between Arizona Instrument to Measure Standards 
Dual Purpose Assessment Math Scores with Math Computational Fluency Measures 

Variable M SD 1 2 3 4 5 6 7 8 9 

AIMS Math  398.06 48.37 .12 .12 .05 .31 .23 .22 .24 .18 .30 
1. F Grade 1 13.96 9.17  .50 .24 .18 .07 .05 .20 .16 .12 
2. W Grade 1 28.36 9.04   .35 .24 .13 .14 .22 .21 .16 
3. S Grade 1 36.74 7.44    .18 .03 .10 .12 .19 .10 
4. F Grade 2 32.67 15.46     .42 .40 .41 .24 .36 
5. W Grade 2 47.48 16.12      .48 .26 .12 .31 
6. S Grade 2 52.40 18.03       .30 .23 .37 
7. F Grade 3 16.54 13.08        .44 .52 
8. W Grade 3 22.33 12.85         .46 
9. S Grade 3 28.75 15.78          

N = 358 
 

Table 8 shows the correlations between the Stanford-10 math scores and math 

computational fluency scores across all three grade level screenings. Similar to the AIMS 

results, all grade-level correlations were significant after controlling for Type 1 Error at 

.05. 

Table 8 

Means, Standard Deviations, and Correlations between Stanford Achievement Test-10th 
Edition DPA Math Component Scores with Math Computational Fluency Measures 

Variable M SD 1 2 3 4 5 6 7 8 9 

SAT-10 
Math 

649.74 41.34 .30* .28* .19* .51* .43* .45* .43* .35* .48* 

1. F Grade 1 13.96 9.17  .71* .49* .42* .27* .23* .45* .40* .35* 
2. W Grade 1 28.36 9.04   .59* .49* .36* .38* .47* .46* .40* 
3. S Grade 1 36.74 7.44    .42* .17* .32* .34* .44* .31* 
4. F Grade 2 32.67 15.46     .65* .63* .64* .49* .60* 
5. W Grade 2 47.48 16.12      .69* .51* .35* .56* 
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6. S Grade 2 52.40 18.03       .55* .48* .61* 
7. F Grade 3 16.54 13.08        .66* .72* 
8. W Grade 3 22.33 12.85         .68* 
9. S Grade 3 28.75 15.78          

Note. Stanford Achievement Test-10th Edition DPA Standard Scores; F = Fall: W = Winter; S = Spring. 
* p < .05. N = 358 
 

Table 9 shows the R2 coefficient for each of the SAT-10 correlations. Moderate to 

strong relationships can be noted across all grade-level CBM-M administrations. 

Consistent with AIMS results, the strongest associations occurred in the second grade fall 

screening, r(356) = .51, 90% CI [.44, .57], p < .05, with 26% of the variance in the SAT-

10 math score being accounted for by CBMs of computational fluency, and third grade 

spring, r(356) = .48, 90% CI [.41, .54], p < .05, with 23% of variance accounted for. The 

weakest relationship was once again found to be the first grade spring administration, 

r(356) = .19, 90% CI [.11, .27], p < .05, with 4% of the variance in the SAT-10 math 

score being accounted for by the computational fluency CBM. 

Table 9 

Means, Standard Deviations, and R2 between Stanford Achievement Test-10th Edition 
Math DPA Component Scores with Math Computational Fluency Measures 

Variable M SD 1 2 3 4 5 6 7 8 9 

SAT-10 
Math 

649.74 41.34 .09 .08 .04 .26 .18 .20 .18 .12 .23 

1. F Grade 1 13.96 9.17  .50 .24 .18 .07 .05 .20 .16 .12 
2. W Grade 1 28.36 9.04   .35 .24 .13 .14 .22 .21 .16 
3. S Grade 1 36.74 7.44    .18 .03 .10 .12 .19 .10 
4. F Grade 2 32.67 15.46     .42 .40 .41 .24 .36 
5. W Grade 2 47.48 16.12      .48 .26 .12 .31 
6. S Grade 2 52.40 18.03       .30 .23 .37 
7. F Grade 3 16.54 13.08        .44 .52 
8. W Grade 3 22.33 12.85         .46 
9. S Grade 3 28.75 15.78          

N = 358 
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Second Research Question 

The second research question addressed the relationship between CBM-M 

computational math fluency screening scores and composite skill areas assessed by 

Arizona’s state math measures including: (a) Number and Operations; (b) Data Analysis, 

Probability, and Discrete Mathematics; (c) Patterns, Algebra, and Functions; (d) 

Geometry and Measurement; and (e) Structure and Logic. This analysis was specific to 

the AIMS because the Stanford-10 assessment only yields a single standard score and is 

not divided into math subskills areas. 

Spearman’s rank coefficient was calculated in place of Pearson’s r for question 

one to assess the relationships between math computational fluency by grade level and 

standardized scores on the specific math skills measured by the AIMS DPA. The 

computational fluency scores across the three years were correlated with the individual 

AIMS DPA math score components. As indicated above, this was done because 

scatterplot analysis indicated a violation of the assumption of normalcy, which was 

primarily due to the fact that there are substantially fewer items making up each strand 

area relative to the item count on the math fluency measures. In other words, as a 

function of the test blueprint, the measurement scale underlying these variables was 

ordinal rather than interval due to the discrete nature of the strand scores and so an 

alternative analysis was necessary to make the correction (Green & Salkind, 2011). The 

probability of generating statistically significant test results increases as the number of 

tests increases (Type I Error), so Holm’s Sequential Bonferroni Procedure was used to 

control for Type I Error across the multiple correlations (Abdi, 2010). The resulting 



 52 

correlation coefficients and R2 coefficients were assessed in order to determine the 

strength of relationship across comparisons. 

A mean value was calculated for first, second, and third grade from the CBM-M 

values collected across the three years. The grade means were correlated with the AIMS 

DPA math score components in order to determine whether observed differences were 

due to chance. As a measure of effect size, R2 coefficients were then calculated to assess 

the strength of relationships between math computational fluency by grade level and 

standardized scores on the specific math skills measured by the AIMS DPA. The results 

of the correlation analysis are provided in Table 10. Mean score analysis shows that 

participants’ scores were highest for Number and Operations and lowest for Structure and 

Logic. As expected, all grade-level mean correlations were significant after controlling 

for Type 1 Error at .05. This accurately reflected the results from all of the individual 

correlations, which also showed a majority as being significant at the P <.01 level. 

Table 10 
 
Means, Standard Deviations, and Spearman’s Correlations between Arizona Instrument 
to Measure Standards Dual Purpose Assessment Math Strand Scores and Mean Scores of 
Math Computational Fluency by Grade Level  

   CBM-M Year 
   ________________________________________________________________ 

AIMS DPA Math Score Component M SD Grade 1  Grade 2  Grade 3  

Number and Operations 21.01 4.98 .35* .54* .50* 
Data Analysis, Probability, and Discrete 
Mathematics 

5.97 1.72 .20* .40* .38* 

Patterns, Algebra, and Functions 8.64 2.11 .27* .47* .48* 
Geometry and Measurement 9.38 1.89 .25* .44* .41* 
Structure and Logic 4.90 1.71 .26* .43* .42* 
      
Note. AIMS DPA = Arizona Instrument to Measure Standards Dual Purpose Assessment; CBM-M = 
Curriculum Based Measurement in Math Fluency. * p < .01. N = 358 
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Table 11 shows the resulting R2 coefficients derived from the listed correlations. 

In general, as students moved from first to second grade the coefficient and effect size 

magnitudes increased, while results between the second and third grade were found to be 

similar. The strongest overall association occurred in the second grade, r(356) = .54, 90% 

CI [.48, .60], p < .01, with 29% of the variance in AIMS Number and Operations being 

accounted for by its linear relationship with the corresponding CBM-M performance. The 

third grade also saw a strong association with the Number and Operations strand, r(356) 

= .50, 90% CI [.43, .56], p < .01, with 25% of variance accounted for by a linear 

relationship with computational fluency. The weakest associations consistently occurred 

in the first grade. For instance, only 4% of the variance in the Data Analysis, Probability, 

and Discrete Mathematics strand was accounted for by its relationship to CBM-M 

performance, r(356) = .20, 90% CI [.12, .28], p < .01. 

Table 11 
 
Means, Standard Deviations, and derived R2 coefficients between Arizona Instrument to 
Measure Standards Dual Purpose Assessment Math Strand Scores and Mean Scores of 
Math Computational Fluency by Grade Level  

   CBM-M Year 
   ________________________________________________________________ 

AIMS DPA Math Score Component M SD Grade 1 Grade 2  Grade 3  

Number and Operations 21.01 4.98 .12 .29 .25 
Data Analysis, Probability, and Discrete 
Mathematics 

5.97 1.72 .04 .16 .14 

Patterns, Algebra, and Functions 8.64 2.11 .07 .22 .23 
Geometry and Measurement 9.38 1.89 .06 .19 .17 
Structure and Logic 4.90 1.71 .07 .18 .18 
      
N = 358 
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Third Research Question 

The third research question addressed the relationship between general CBM-M 

computational math fluency screening scores and total performance on standardized 

Arizona state mathematics tests when students were disaggregated by gender.  

Pearson product-moment correlations were calculated for each sample to assess 

the relationships between math computational fluency scores from the first through third-

grade screenings and the standardized scores for AIMS DPA and Stanford-10 math tests. 

The alpha level for each test was set in an effort to maintain the error rate at .05. Fisher’s 

r to z transformation was used to convert the correlation coefficients to z scores with a 

mean of zero and a standard deviation of one in order to allow for comparison of the 

actual correlation values. Steiger’s z-test was then used to determine the difference 

between the two independent correlations. Table 12 shows the correlations between 

CBM-M computational fluency scores and the math scores from both standardized tests 

for both genders. The results show that when the sample was analyzed after being 

disaggregated by gender, most of the correlations between math screening performances 

and both sets of standardized test scores were found to be significant, which is consistent 

with the previous research. 

Table 12 
 
Correlations between Math Computational Fluency and High Stakes Test Scores by 
Gender 

CBM-M Administration M SD AIMS Math  SAT-10 Math  

Female      
     First Grade Fall  13.43 8.84 .31* .27* 
     First Grade Winter  28.30 9.59 .32* .25* 
     First Grade Spring  36.83 7.24 .20* .21* 
     Second Grade Fall  29.62 12.58 .53* .39* 
     Second Grade Winter  46.11 14.70 .46* .38* 
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     Second Grade Spring  50.43 16.80 .39* .40* 
     Third Grade Fall  15.54 11.89 .48* .40* 
     Third Grade Winter  22.19 13.18 .39* .35* 
     Third Grade Spring  28.55 15.11 .49* .47* 
Male      
     First Grade Fall  14.43 9.46 .38* .33* 
     First Grade Winter  28.42 8.53 .38* .31* 
     First Grade Spring  36.65 7.64 .26* .17 
     Second Grade Fall  35.40 17.22 .59* .52* 
     Second Grade Winter  48.70 17.23 .48* .47* 
     Second Grade Spring  54.16 18.93 .54* .48* 
     Third Grade Fall  17.44 14.04 .49* .46* 
     Third Grade Winter  22.44 12.58 .47* .35* 
     Third Grade Spring  28.94 16.39 .59* .48* 

Note. CBM-M = Curriculum Based Measurement in Math Fluency; AIMS DPA = Arizona Instrument to 
Measure Standards Dual Purpose Assessment; SAT-10 = Stanford Achievement Test-10th Edition DPA 
Items. * p < .01. Females n = 169, Males n = 189 

 
The Fisher’s r to z transformations of math fluency and standardized math test 

correlation scores by gender are given in Table 13. Steiger’s z-test was then employed as 

an inferential measure to determine whether the value of the difference between the 

gender correlation coefficients was statistically significant. However, there were no 

significant differences between respective gender correlations across all grade level math 

screenings. Only the second grade spring Steiger’s z-test approached significance (p = 

.07) for gender correlational differences. 

Table 13 
Results of Steiger’s z-Test on Differences in Pearson r Coefficients for Gender. 

CBM-M Administration AIMS SAT-10 

 Stieger’s Z P Value Stieger’s Z P Value 

     First Grade Fall  0.74 .46 0.62 .54 
     First Grade Winter  0.64 .52 0.61 .54 
     First Grade Spring  0.59 .56 0.39 .70 
     Second Grade Fall  0.82 .41 1.54 .12 
     Second Grade Winter  0.24 .81 1.03 .30 
     Second Grade Spring  1.80 .07 0.93 .35 
     Third Grade Fall  0.12 .90 0.69 .49 
     Third Grade Winter  0.92 .36 0.00 1.00 
     Third Grade Spring  1.33 .18 0.12 .90 
* Significant Difference: Two-Tailed p < .025 
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Fourth Research Question 

The fourth research question addressed the relationship between general CBM-M 

computational math fluency screening scores and general performance on standardized 

Arizona state mathematics tests when students were disaggregated by ethnicity. 

Due to limits in the available data, multiple comparisons across each of the 

ethnicity categories was not feasible due to an unbalanced allocation ratio in the power 

analysis. This would have required sample sizes for each sample beyond what the present 

data set could adequately satisfy. As a result, the data set was split in such way that all of 

the ethnic minority students were collapsed together into a single category, distinct from 

White students. After disaggregating the data set by the two ethnic categories, Pearson 

product-moment correlations were calculated for each sample to assess the relationships 

between math computational fluency scores from the first through the third-grade 

screening scores and the standardized scores for AIMS DPA and Stanford-10 math 

domains. The alpha level for the test was set in an effort to maintain the error rate at .05. 

Fisher’s r to z transformation was used to convert the correlation coefficients to z scores 

with a mean of zero and a standard deviation of one in order to allow for comparison of 

the actual correlation values. Steiger’s z-test was then used to determine the difference 

between each pair of independent correlations. 

Table 14 shows the correlations for both ethnicity categories between math 

computational fluency and the standardized math scores. All correlations were significant 

at the .01 level for non-White ethnic groups, but for White students, the first grade spring 

administration was non-significant when correlated with AIMS math and none of the first 
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grade CBM-M administrations for White students were significant when correlated with 

the Stanford-10 selected items. 

Table 14 
 
Correlations between Math Computational Fluency and High Stakes Test Scores by 
Ethnicity 

CBM-M Administration M SD AIMS Math  SAT-10 Math  

White      
     First Grade Fall  15.25 8.66 .17* .12 
     First Grade Winter  29.32 8.52 .21* .12 
     First Grade Spring  36.94 7.90 .16 .12 
     Second Grade Fall  35.08 15.66 .55* .48* 
     Second Grade Winter  50.01 15.54 .43* .36* 
     Second Grade Spring  53.67 17.46 .48* .44* 
     Third Grade Fall  18.05 12.72 .45* .39* 
     Third Grade Winter  23.30 12.44 .42* .33* 
     Third Grade Spring  29.74 15.60 .54* .48* 
Combined Non-White Ethnicity      
     First Grade Fall  10.93 9.67 .61* .50* 
     First Grade Winter  26.11 9.83 .54* .47* 
     First Grade Spring  36.27 6.28 .44* .37* 
     Second Grade Fall  27.02 13.44 .50* .45* 
     Second Grade Winter  41.56 15.97 .45* .43* 
     Second Grade Spring  49.42 19.06 .44* .43* 
     Third Grade Fall  13.02 13.31 .50* .43* 
     Third Grade Winter  20.03 13.54 .42* .33* 
     Third Grade Spring  26.46 16.04 .55* .47* 

Note. CBM-M = Curriculum Based Measurement in Math Fluency; AIMS DPA = Arizona Instrument to 
Measure Standards Dual Purpose Assessment; SAT-10 = Stanford Achievement Test-10th Edition DPA 
Items.* p < .01. White Students n = 251, Combined Non-White Ethnicity n = 107 
 

Table 15 lists the Fisher’s r to z transformations of math fluency and standardized 

math test correlation scores by ethnicity. As in the gender analysis, Steiger’s z-test was 

employed as an inferential measure to determine whether the value of the difference 

between the ethnicity correlation coefficients was statistically significant or due to chance 

factors. The ethnicity differences for the first grade CBM-M administrations, as 

correlated with both state standardized scores, were found to be significantly different at 

the two-tailed .025 level; however, no other significant differences were observed. 
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Table 15 
Results of Steiger’s z-Test on Differences in Pearson r Coefficients for Ethnicity. 

 AIMS SAT-10 

CBM-M Administration Stieger’s Z P Value Stieger’s Z P Value 

     First Grade Fall  4.60 .00* 3.67 .00* 
     First Grade Winter  3.35 .00* 3.33 .00* 
     First Grade Spring  2.66 .01* 2.29 .02* 
     Second Grade Fall  0.59 .56 0.33 .74 
     Second Grade Winter  0.21 .83 0.71 .48 
     Second Grade Spring  0.43 .67 0.11 .91 
     Third Grade Fall  0.55 .58 0.41 .68 
     Third Grade Winter  0.00 1.00 0.00 1.00 
     Third Grade Spring  0.12 .90 0.11 .91 
* Significant Difference: Two-Tailed p < .025 

Fifth Research Question 

The fifth research question addressed how the universal CBM-M screening time 

of year related to student success on high stakes tests. 

The means, standard deviations, and Pearson product-moment correlations were 

calculated to assess the relationships between the first through third-grade math CBM 

fluency screening scores and the standardized scores for AIMS DPA and Stanford-10 

math tests. Mean score analysis was conducted for all screening times across all grade 

levels. A mean value was also calculated for fall, winter, and spring from the values 

collected across each given grade level and Fisher’s r to z transformation was used to 

convert the third grade mean correlation coefficients to z scores with a mean of zero and a 

standard deviation of one in order to allow for comparison across all of the actual 

correlation values. The Hotelling’s t-test was then used to assess of the difference 

between dependent correlations with one common measure. The third grade was selected 

for this portion of the analysis by virtue of the chronological proximity of both the 
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screening and standardized test administrations. Holm’s Sequential Bonferroni Procedure 

was used to control for Type I Error across the multiple correlations (Abdi, 2010). 

Table 16 shows the means, standard deviations, and correlation coefficients 

calculated between math fluency probe administration time and results on the AIMS DPA 

and SAT-10 math portions. Mean score analysis shows an overall increase in math 

computational fluency scores for all grade levels across screenings. However, the largest 

score decrease occurred over the summer between the second grade spring and third 

grade fall administrations. On average, the participants scored within the STEEP end of 

year Instructional range for math calculation fluency by the winter and spring screenings, 

with only the second grade winter and spring administrations meeting or exceeding the 

Mastery range of 40 or greater place-value digits correct threshold for the end of year. 

Consistent with previous findings, moderate to strong significant correlations were 

observed between all CBM-M screening times of year and both state standardized math 

scores. 

Table 16 

Correlations between Math Computational Fluency Probe Administration Time and High 
Stakes Test Scores 

CBM-M Administration M SD AIMS Math SAT-10 Math 

First Grade Fall  13.96 9.17 .35* .31* 
First Grade Winter  28.36 9.04 .35* .28* 
First Grade Spring  36.74 7.44 .23* .19* 
Second Grade Fall  32.67 15.46 .56* .51* 
Second Grade Winter  47.48 16.12 .47* .43* 
Second Grade Spring  52.40 18.03 .47* .45* 
Third Grade Fall  16.54 13.08 .49* .43* 
Third Grade Winter  22.33 12.85 .43* .35* 
Third Grade Spring  28.75 15.78 .55* .48* 
All Grades Fall Mean 21.06 10.43 .59* .52* 
All Grades Winter Mean 32.72 9.80 .56* .48* 
All Grades Spring Mean 39.30 11.22 .56* .50* 



 60 

Note. CBM-M = Curriculum Based Measurement in Math Fluency; AIMS DPA = Arizona Instrument to 
Measure Standards Dual Purpose Assessment; SS = Scale Score; SAT-10 = Stanford Achievement Test-
10th Edition DPA Items. * p < .01. N = 358 

 
The R2 coefficients for each of the listed correlations are shown in Table 17. 

Moderate to strong relationships can be noted across all grade-level CBM-M 

administrations with the strongest effect sizes being observed in the second and third 

grade. The listed effect sizes are identical to research question number two. 

Table 17 
 
R2 Coefficients between Math Computational Fluency Probe Administration Time and 
High Stakes Test Scores 

CBM-M Administration M SD AIMS Math SAT-10 Math 

First Grade Fall  13.96 9.17 .12 .10 
First Grade Winter  28.36 9.04 .12 .08 
First Grade Spring  36.74 7.44 .05 .04 
Second Grade Fall  32.67 15.46 .31 .26 
Second Grade Winter  47.48 16.12 .22 .18 
Second Grade Spring  52.40 18.03 .22 .20 
Third Grade Fall  16.54 13.08 .24 .18 
Third Grade Winter  22.33 12.85 .18 .12 
Third Grade Spring  28.75 15.78 .30 .23 
All Grades Fall Mean 21.06 10.43 .35 .27 
All Grades Winter Mean 32.72 9.80 .31 .23 
All Grades Spring Mean 39.30 11.22 .31 .25 

N = 358 
After applying the Fisher r to z transformation, Hotelling’s t-test was employed as 

an inferential measure to determine whether the value of the differences between 

dependent correlations with a common index measure for the third grade screening times 

of year were statistically significant. The third grade screening times of year were chosen 

for analysis because they displayed consistently strong relationships to state standardized 

outcomes and also because, when considering the present research question, it would not 

be possible to distinguish between the predictive validity of the CBM-M screening 

administration times from the earlier years and the natural maturational process that 
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students go through as they gain more academic experience. The results are displayed in 

Table 18. 

Table 18 
 
Results of Hotelling’s t-Test on Third Grade Math Computational Fluency 
Administrations 
 AIMS SAT-10 

Comparison Hotelling’s T P Value Hotelling’s T P Value 

Fall—Winter 1.59 1.58 2.03 2.08* 
Fall—Spring 1.83 1.82 1.45 1.44 
Winter—Spring 3.40 3.33* 3.49 3.43* 
*Two-tailed critical is 1.96 for p < .05 and 2.58 for p < .01. N = 358 
 

The correlation differences between the winter and spring computational fluency 

screenings with the AIMS math score were significant, Z = 3.33, p < .01. In addition, the 

correlation differences between the fall and winter screenings with the SAT-10 score 

were significant, Z = 2.08, p < .05, as were the correlation differences between the winter 

and spring screenings with the SAT-10, Z = 3.43, p < .01. 
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Chapter 4 
 

DISCUSSION 
 

Research Summary 

The RTI model is intended to enable educators to identify students who have 

needs in fundamental academic skill areas found to be associated with overall classroom 

success, and to provide them with the necessary supports in order to close any potential 

gaps between deficiency and proficiency (Clarke et al., 2011). Response to Intervention 

also plays a key role in special education identification since the reauthorization of IDEA 

in 2004 (Lembke, Hampton, & Beyers, 2012). Additionally, in recent decades 

educational policy in the United States has become increasingly focused on results and 

accountability as measured primarily by standardized, high-stakes test scores. (Minskoff 

& Allsopp, 2003). 

As a systematic means of quantifying the growth of students’ basic academic skill 

sets, CBMs are essential to any RTI service delivery because they provide an efficient 

and cost-effective method of collecting a large number of meaningful data points. Math 

computational fluency CBMs are used within the RTI system to determine which 

students may benefit from math interventions because students struggling with basic 

mathematical concepts may experience a much more difficult time in passing math 

courses and performing well on standardized tests, all of which could lead to academic 

failure (Clarke et al., 2011; Minskoff & Allsopp, 2003). Most statewide achievement tests 

are first administered at the end of the third grade (Keller-Margulis, Shapiro, & Hintze, 

2008), so it is important to understand the correlation between CBM scores from earlier 

grades to third grade test performance in order to better identify academically at-risk 
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students as early as possible (Keller-Margulis et al., 2008). In addition, third grade 

standardized test results are becoming increasingly more critical, with some states, such 

as Arizona for example, mandating that failure in the third grade will result in grade 

retention. Although this law is currently only in effect for reading (ARS, 15-101), it could 

be extended to other academic areas in the future. Being able to look at CBM-M scores as 

one valid predictor of how students may perform on state standardized math tests would 

provide further evidence that there is an adequate correlation between what these brief 

probes measure and what is being taught in the classroom, which in turn would help to 

validate their use as an evidence-based practice (Keller-Margulis et al., 2008). Previous 

research has identified moderate to strong relationships between CBM-M data and state 

standardized test performance in Pennsylvania (Shapiro et al., 2006) and Minnesota 

(Jiban & Deno, 2007). While studies such as these have provided promising results, there 

still remains a limited amount of applied research focused on math CBMs, especially 

when compared to the available empirical support for analogous measures of oral reading 

fluency (Jiban & Deno, 2007; Keller-Margulis et al., 2008). 

The present study was conducted to further explore the relationship between 

CBMs of math computational fluency and high stakes standardized testing performance 

by analyzing the predictive validity of CBM-M universal screening probe administrations 

on the math portions of Arizona’s state standardized tests, the AIMS DPA and Stanford-

10. In addition, this study assessed the relationship between math computational fluency 

and specific areas of mathematics, such as number sense, operations, geometry, and 

algebraic knowledge. Finally, the study also investigated whether any particular CBM-M 

screening time of year had a stronger relationship to high-stakes testing than the others. 
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The participants in this study were 358 students selected from six elementary 

schools in a large suburban Arizona school district. The measures used were the first 

through third grade math computational fluency universal screening probes from the 

System to Enhance Educational Performance (STEEP), and the mathematics portions of 

the AIMS DPA and Stanford-10, including the five math blueprint strands from the 

AIMS test: Number and Operations; Data Analysis, Probability, and Discrete 

Mathematics; Patterns, Algebra, and Functions; Geometry and Measurement; and 

Structure and Logic. 

Standardized Math Testing 

   Conclusions. Scaled scores from the state and national standardized math tests 

administered in Arizona were correlated with participants’ first through third grade math 

CBM computational fluency screening scores in order to determine the presence of a 

significant relationship that is not due to chance. Following this, R2 coefficients were 

calculated as a measure of effect size for those relationships. It was hypothesized that that 

there would be significant correlations of moderate to strong effect size (R2’s ranging 

from .09 to .25) between general computational math fluency screening scores and 

performance on the AIMS and Stanford-10 scores. 

As hypothesized, there were significant correlations observed between math 

computational fluency across all three grades and results on the AIMS test. Further, 

moderate to strong effect sizes were also observed with the CBM-M screening scores, 

accounting for 12 to 30 percent of the variance in AIMS performance. The one exception 

to this was the first grade spring screening. Similarly, there were also significant 

correlations found between all three years of math computational fluency screenings and 
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Stanford-10 performance. Again, moderate to strong effect sizes of 9 to 26 percent of 

variance accounted for were detected in most of the associations, with the exception of 

weaker relationships demonstrated in the first grade winter and spring screenings. 

Implications. These findings support prior research suggesting that 

computational fluency CBM has overall good predictive capability for standardized state 

test performance (Foegen, Jiban, & Deno, 2007; Shapiro et al., 2006). Similar to Shapiro 

and colleagues, while the observed correlations may not have been as strong as is 

typically seen for reading (Devena, 2013) they still tended to be statistically significant 

with effect sizes in the moderate to strong range. Based upon these results, student 

performance on early primary math computational fluency measures could be effectively 

interpreted in conjunction with other data to identify individuals who may need support 

in mathematics or to forecast a student’s potential performance on high-stakes state 

testing and remediate as necessary. This, in turn, could lead to fewer referrals for special 

education evaluation and play an integral part in getting students the intervention support 

that they need in a shorter amount of time (VanDerHeyden & Witt, 2008).  

Specific Areas of Math 

Conclusions. The key math strands from the AIMS test were correlated with 

participants’ first through third grade math computational fluency screening scores in 

order to determine the presence of a significant relationship that is not due to chance. 

Following this, R2 coefficients were calculated as a measure of effect size for those 

relationships. It was hypothesized that there would be a moderate relationship (i.e., R2’s ~ 

.09) between computational math fluency screening scores and the composite skill areas, 

that the third grade screening scores would have the strongest predictive validity among 
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the screenings, and that compared to the other strands, the strongest strength of 

relationship would be observed with Number and Operations.  

As hypothesized, all grade-level mean correlations were statistically significant 

with coefficients between .20 and .54. However, the third grade screenings did not 

demonstrate the strongest predictive validity evidence, as both the second and third grade 

screenings were quite comparable in terms of effect size across the strands. This could be 

due to the similarity between the relatively higher level of operation complexity inherent 

in the second and third grade fluency probes as compared to the simple facts found on the 

first grade probe. The first grade screenings exhibited the weakest predictive validity 

overall. As expected though, among the other strands the strongest relationship across all 

three grade levels was shown with Number and Operations. This is likely due to the fact 

that the math computational fluency screening probes for first, second, and third grade 

tend to be developed via the robust indicators method (Foegen, Jiban, & Deno, 2007), 

meaning they are constructed out of the grade-appropriate areas of arithmetic proficiency. 

These would be simple numeration and operations concepts, and not components from 

areas such as geometry, probability or algebra (Lembke, Hampton, & Beyers, 2012). 

Implications. These results support prior findings suggesting that there is 

moderate predictive capability demonstrated with CBM-M (Foegen, Jiban, & Deno, 

2007; Shapiro et al., 2006), while adding additional support to an area with a historically 

limited body of research (Jiban & Deno, 2007; Keller-Margulis et al., 2008). When 

considering the use of early computational fluency measures as a means to identify 

specific math areas where struggling students need support, it is important to understand 

the limits of their technical adequacy to that end. Based on results of the current study, 
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while first grade data is moderately related to the Number and Operations area, it is 

weakly related to the other areas. However, correlated scores from the second and third 

grade measures demonstrate moderate to strong effect sizes with all five of the math areas 

assessed on the AIMS test, which may be useful to consider when gathering data for a 

remediation plan. Further, with second and third grade scores being so comparably 

related, the opportunity is there to put interventions into place prior to a struggling 

student’s first high-stakes test administration. 

Standardized Math Testing by Gender 

Conclusions. After disaggregating the data set by gender, the scaled scores from 

Arizona’s state standardized math tests were correlated with participants’ first through 

third grade math computational fluency screening scores in order to determine the 

presence of a significant relationship. Fisher’s r to z transformation was used to convert 

the correlation coefficients to z scores in order to allow for comparison of the actual 

correlation values. Steiger’s z-test was then used as an inferential measure to determine 

whether any differences between independent gender correlations were statistically 

significant. It was hypothesized that there would not be significant differences between 

the male and female correlations.  

The means and standard deviations for males and females on both the AIMS and 

Stanford-10 were approximate in this sample and did not suggest a disparity in 

performance between the genders. Consistent with previous results from this study, all 

correlations across grade level and genders were significant except for the male first 

grade spring screening. These results support the present hypothesis, as the Steiger’s z-

test did not reveal any significant differences between respective gender correlations for 
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math computational fluency with both the Stanford-10 and AIMS scores across grade the 

levels. 

Implications. These results support the current trend in gender achievement 

research literature indicating that boys and girls are more evenly matched in the area of 

math during the elementary grades than has been previously reported (Cole, 1997; 

Leahey & Guo, 2001; Tsui, 2007), while running contrary to the notion that girls score 

significantly lower than boys on standardized testing (Arroyo et al., 2013; Hyde et al., 

2008). As there is very little literature specifically addressing gender differences with 

regard to CBM-M and high stakes state testing, these results provide a beneficial 

contribution by showing that math computational fluency scores for males and females 

may have approximately equivalent predictive validity for state test performance. It also 

suggests that math computational fluency data from the early elementary school years can 

be used with equal confidence for both males and females in helping to identify support 

needs in the early elementary years. 

Standardized Math Testing by Ethnicity 

Conclusions. After the data set was disaggregated by ethnicity, the scaled scores 

from Arizona’s state standardized math tests were correlated with participants’ first 

through third grade math computational fluency screening scores in order to determine 

the presence of a significant relationship. Fisher’s r to z transformation was used to 

convert the correlation coefficients to z scores in order to allow for comparison of the 

actual correlation values. Steiger’s z-test was then used as an inferential measure to 

determine whether any differences between independent ethnicity correlations were 

statistically significant, indicating real differences between the groups. It was 
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hypothesized that there would not be significant differences in the observed predictive 

validity of computational math fluency screening scores and performance on standardized 

Arizona statewide mathematics tests when disaggregating by ethnicity. 

A review of the means and standard deviations for White and combined ethnicity 

students on both the AIMS and Stanford-10 showed differences in test scores, with White 

students scoring higher on the AIMS and SAT-10, on average, than did the other 

combined ethnic groups. Consistent with previous results from this study, most 

coefficients across grade levels and ethnic categories were significant with the exception 

of the correlations between White students’ AIMS and the first grade spring screening, as 

well as their SAT-10 correlations to all three first grade screenings. 

The Steiger’s z-test for this analysis did show significant group differences 

reflected between the respective ethnicity correlations for all three first grade screening 

administrations and both the Stanford-10 and the AIMS math test scores. This suggests 

that, to a significant degree, combined Non-White students’ scores on math 

computational fluency from the first grade screenings were more strongly related to their 

AIMS and SAT-10 performance than were the White students’ scores. As such, the 

present hypothesis is only partially supported. However, this portion of the result could 

be construed as trivial since previous findings have indicated that the first grade 

screenings tend to exhibit weak to moderate predictive validity for both tests, overall. In 

addition, these observed differences are not surprising considering that they occurred 

when all of the first grade correlations for the combined ethnicity group were statistically 

significant while most correlations for White students were non-significant. Moreover, 
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there were no observed group differences between analogous test correlations for any of 

the second and third grade screenings.  

Implications. These results partially support the research literature on ethnic 

differences in achievement by showing that despite lower, on average, standardized test 

performance (Bell, Lentz, & Graden, 1992), CBM-M may be able to generate data that is 

more in step with students’ acquisition of curricula regardless of gender and ethnicity 

(VanDerHeyden et al., 2007). Similar to gender, there is relatively little literature 

addressing ethnic differences with regard to CBM-M and high stakes state testing; these 

obtained results suggest that second and third grade math computational fluency scores 

for White students and other ethnic groups may have approximately equivalent predictive 

validity for state test performance, which in turn demonstrates the potential usefulness of 

early math computational fluency data to locate at-risk students regardless of reported 

ethnic identity. This is also promising because if used to its full potential in a culturally 

responsive RTI system, data on CBM-M performance could play a part in reducing the 

disproportionality of ethnically diverse students being placed in special education. These 

results should be interpreted with some caution, however, because due to inadequate 

numbers, students identified as Asian represented only 3.6 percent of the total sample and 

12 percent of the ethnically diverse sample. As such, they were included in the combined 

ethnically diverse category with registered mean scores higher than other subgroups on 

both CBM-M and the standardized tests, which may have impacted the results. 

Time of Year 

Conclusions. In order to investigate which screening times of year demonstrate 

the strongest relationship to standardized testing outcomes, the scaled scores of the 
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standardized math tests (Stanford-10 and AIMS) were correlated with participants’ first 

through third grade math computational fluency screening scores. Following this, R2 

coefficients were calculated as a measure of effect size for those relationships. A mean 

score analysis was conducted for all screening times across each grade level, showing an 

overall increase in math computational fluency scores for all grade levels across 

screenings. Fisher’s r to z transformation was used to convert coefficients from the third 

grade screenings to z scores. Hotelling’s t-test was then used to assess of the difference 

between dependent correlations with a common measure. It was hypothesized that there 

would be a stronger correlation between math fluency scores and test performance when 

analyzing the winter and spring screening data per grade level and a weaker correlation 

with the fall screenings. It was further expected that there would be a significantly 

stronger correlation with the third grade spring math fluency scores and Arizona 

statewide mathematics test performance than with either the fall or winter of the third 

grade scores. 

Results of the correlation analysis between math screening times and the math 

scaled scores were all statistically significant with moderate to strong effect sizes, as 

reported in research question number two. Across all three of the grade levels and for 

both state tests the results were mixed. For example, several of the fall correlations 

demonstrated effect sizes that were comparable to or bigger than winter and spring 

correlations. Winter computational fluency scores generally had the smallest effect sizes 

to the AIMS DPA and SAT-10 math component scale scores, which did not support the 

first part of the current hypothesis. 
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The remaining portion of the hypothesis was partially supported. When 

examining the relationship between the third grade CBM-Ms and the standardized test 

scores on both the AIMS and the SAT-10, the spring correlations displayed the strongest 

relationship to testing outcomes in the third grade, the fall displayed the second strongest, 

and the winter the weakest. On the AIMS test, only the difference between the winter and 

spring correlations was significant, indicating that the spring screening is significantly 

more predictive than the winter screening, but not significantly more predictive than the 

fall. On the SAT-10, both the difference between the fall and winter screenings, as well 

as the winter and spring screenings were statistically significant, while the difference 

between the fall and spring screenings was non-significant. This further indicates that 

both the spring and fall screenings have significantly more predictive capability than the 

winter screening, but that the spring does not demonstrate any more predictive capability 

than the fall. 

Implications. These results are consistent with previous research that has 

reported somewhat inconsistent findings among CBM screening times of year for reading 

(Adkins, 2013; Devena, 2013) and overall growth rates with regards to CBM-M 

screening performance, while still suggesting that the strongest growth, in general, 

typically occurs between the winter and the spring screenings (Graney et al., 2009). It 

should be noted, however, that best practice for RTI systems still calls for three universal 

screening administrations per year (Reschly & Bergstrom, 2009) and that the clearest 

picture of performance and need only really come into focus when many data points are 

taken in aggregate, with no single score holding more weight than the others. Still, when 

it comes to more detailed interpretations of collected data over the course of a school 
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year, it could be beneficial for RTI teams to take fall and spring screening scores into 

greater consideration when identifying needs and planning remediation strategies aimed 

at improving test performance. 

Limitations and Future Research Direction 

Several limitations and directions for future research should be noted for the 

current study. One limitation was the use of a single standardized dual purpose 

assessment with which to assess the predictive validity of math computational fluency on 

the individual test strands. Standardized tests vary considerably across the remaining 

states (Shapiro et al., 2006), and these findings may not generalize to other versions. It is 

also important to note that, including the 15 featured Stanford-10 questions, there are 66 

items making up the math portion of the AIMS with each individual strand being only 

briefly represented item-wise, as was demonstrated in the initial scatterplot analysis (see 

Figure 2 in Appendix A). Consequently, this limited item content compromises the 

internal reliability of the individual strand areas themselves. 

Another limitation is that there was an unavoidable overlap between the AIMS 

DPA and Stanford-10 scores in that 15 of the Stanford-10 items were used to calculate 

both standardized test results. Consequently, it was not possible to draw specific 

conclusions based on norm-referenced versus criterion-referenced testing outcomes. 

Further, only the Stanford-10 math portion as paired with the AIMS DPA was 

investigated. Therefore, the predictive validity of using CBM-M on the full Stanford-10 

battery may be different, as there would be a substantially higher number of items. Future 

research could look at CBM-M as it relates to a full, stand-alone administration of the 

Stanford-10 in order to generate more concrete results.  
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 In addition, Arizona recently discontinued the AIMS test as its measure of state 

educational standards. As of this writing, the Arizona Department of Education has 

chosen Arizona’s Measurement of Educational Readiness to Inform Teaching (AzMerit) 

as the replacement measure, and it will be administered for the first time during the 

month of April 2015. In future research endeavors, it would be useful to conduct a similar 

analysis with this updated Arizona assessment to determine if current findings are 

consistent across different measures. Moreover, it would also be more beneficial to 

address the relationship between math computational fluency and the different skill areas 

of mathematics using broader measures of each particular subcomponent.  

Another limitation of this study had to do with the ability to generalize findings to 

a wider population of students, as the analysis featured a general education sample from 

six elementary schools in just one school district. Consequently, the sample was 

demographically limited in its regional and national representation. Further, as the 

number of ethnically diverse students in the sample was small compared to the number of 

White students, the non-White students were collapsed into one category. This combined 

ethnicity category included Asian students, who had higher score outcomes, on average, 

than the students from other ethnic backgrounds, which could have had an effect on the 

results. Future research along these lines should take steps to employ a more 

representative sample with an adequate number of diverse students in order to ensure 

broader generalizability and strength of findings. In addition to this, it would be 

beneficial if future studies were able to assess longitudinal differences to see if trends 

reported in the research vary in upper grade levels. 
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The data set for this study was built from archival data and so it was not possible 

to control for extraneous variables such as the actual time of administration across 

schools, which could potentially impact the relationship between math computational 

fluency and high stakes test performance. To avoid this kind of limitation, future research 

should exact more control on time of administration in order to ensure higher confidence 

in the observed results. 

Another limitation of this study was the fact that the only CBM-M information 

available was screening data. This is a direct reflection of how little attention CBMs of 

math receive compared to oral reading fluency. By itself, a single CBM fluency score is 

insufficient for the purpose of making educational decisions for students. The bigger 

picture on student performance and potential need only truly comes into focus when an 

appropriate amount of data is aggregated and analyzed for problem solving. Future 

research would greatly benefit from having an abundance of progress monitoring math 

computational fluency data points in addition to screening data. 

Finally, there were several missing scores in the available data used to compile 

the sample set for this study, necessitating the replacement of those missing values with 

calculated predicted values. This could have had an impact on the overall results as 

compared to an intact data set with no missing values. Future research should take care to 

minimize the need for statistically generated scores by ensuring that there are minimal 

missing data pieces. Taken altogether, these limitations require a cautious interpretation 

of the research results. 
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Conclusion 

At its core, like all psychological research, this study was about behavior. More 

specifically, it was about assessing simple response capabilities as potential determinants 

of more complex response capabilities. Thought of in this sense, we can reduce our 

fundamental understanding of CBM, high stakes standardized testing or any type of 

ability assessment as an evaluation of the current status of an individual’s behavioral 

repertoire within a selected domain. The depth and breadth of a desired evaluation is 

directly proportionate to practical factors such as item count, item type, adequacy of test 

design, time availability, etc., and exists on a continuum with instruments as 

circumscribed as CBM on one end and meticulously constructed standardized 

instruments on the other. For the purpose of identifying which students in a given school 

population may need intervention support in order to prevent them from falling behind in 

the curriculum, CBM is well supported in the research as simple and effective. As such, if 

it has been consistently demonstrated that CBM targets the appropriate fundamental skill 

sets by which to accurately forecast future challenges, it should follow that CBM can also 

likewise provide some information about the likelihood of certain testing behaviors, 

which could prove to be very useful to educators and students everywhere.  

The challenge addressed in these pages has been the relative dearth of research on 

math computational fluency CBM and whether it can consistently demonstrate the same 

kind of utility as its oral reading fluency counterpart (Shapiro et al., 2006), which is 

important because of the valuable resource allocations that hinge on the interpretation of 

this and other such data. Limitations notwithstanding, the obtained results were generally 

congruent with previous research and provide further support for the usefulness of CBM-
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M to identify students at risk of academic failure and potentially poor outcomes on high 

stakes test performance. The findings showed that 2-minute samples of math computation 

ability recorded in the fall and spring of the second and third grade years have a moderate 

to strong relationship to student performance on both normative and criterion referenced 

standardized math assessments given in Arizona regardless of gender and ethnicity. 

This study contributes to the empirical research base supporting the use of CBM-

M as a predictor of statewide assessments in mathematics. With the collection of a simple 

instance of behavior, a plan for remediation can be initiated that is aimed at building a 

more efficient and effective behavioral repertoire for the mathematics domain. In this 

way, simple behavior has far reaching possibilities and ceases to be so simple after all. 
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APPENDIX A 

SCATTERPLOT ANALYSIS 
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Figure 2. Scatterplot depicting the relationship between first grade fall math computational 
fluency scores and the AIMS Math Strand #3: Patterns, Algebra, and Functions scores as an 
example of the violation of normality assumption via discrete interval-level data in research 
question #1. 

 

 
Figure 3. Scatterplot depicting a general linear relationship between second grade fall math 
computational fluency scores and AIMS Scores for research questions 2 & 5. 
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Figure 4. Scatterplot depicting a general linear relationship between second grade fall math 
computational fluency scores and Stanford-10 Scores for research questions 2 & 5. 
 

 
Figure 5. Scatterplot depicting a general linear relationship between female third grade 
spring math computational fluency scores and AIMS Scores for research question # 3. 
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Figure 6. Scatterplot depicting a general linear relationship between male third grade spring 
math computational fluency scores and AIMS Scores for research question # 3. 

 

 
Figure 7. Scatterplot depicting a general linear relationship between female second grade 
spring math computational fluency scores and Stanford 10 Scores for research question # 3. 
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Figure 8. Scatterplot depicting a general linear relationship between male second grade 
spring math computational fluency scores and Stanford 10 Scores for research question # 3. 

 

 
Figure 9. Scatterplot depicting a general linear relationship between White student third 
grade spring math computational fluency scores and AIMS Scores for research question # 4. 
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Figure 10. Scatterplot depicting a general linear relationship between Non-White student 
third grade spring math computational fluency scores and AIMS Scores for research 
question # 4. 

 
Figure 11. Scatterplot depicting a general linear relationship between White student second 
grade spring math computational fluency scores and Stanford 10 Scores for research 
question # 4. 
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Figure 12. Scatterplot depicting a general linear relationship between Non-White student 
second grade spring math computational fluency scores and Stanford 10 Scores for 
research question # 4. 
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STEEP Math Computational Fluency CBM Probe, Grade 1 
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©iSTEEP          Grade 1   Student                                                                      Addition:  Two 1-digit numbers, sums to 10 S5301
Licensed to Scottsdale USD ELL Students Only July 1, 2010 to June 30, 2011
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STEEP Math Computational Fluency CBM Probe, Grade 2 
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©iSTEEP    Grade 2 Student                                            Addition: 1 to 2-digit number plus 1 to 2-digit number: no regrouping S5302
Licensed to Scottsdale USD ELL Students Only July 1, 2010 to June 30, 2011
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STEEP Math Computational Fluency CBM Probe, Grade 3 
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©iSTEEP          Grade 3 Student                                                            Multiple Skills:  Addition and Subtraction Problems S5303
Licensed to Scottsdale USD ELL Students Only July 1, 2010 to June 30, 2011
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