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ABSTRACT

The rate at which new malicious software (Malware) is created is consistently

increasing each year. These new malwares are designed to bypass the current anti-

virus countermeasures employed to protect computer systems. Security Analysts

must understand the nature and intent of the malware sample in order to protect

computer systems from these attacks. The large number of new malware samples

received daily by computer security companies require Security Analysts to quickly

determine the type, threat, and countermeasure for newly identified samples. Our

approach provides for a visualization tool to assist the Security Analyst in these tasks

that allows the Analyst to visually identify relationships between malware samples.

This approach consists of three steps. First, the received samples are processed by

a sandbox environment to perform a dynamic behavior analysis. Second, the reports

of the dynamic behavior analysis are parsed to extract identifying features which are

matched against other known and analyzed samples. Lastly, those matches that are

determined to express a relationship are visualized as an edge connected pair of nodes

in an undirected graph.
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Chapter 1

INTRODUCTION

1.1 Problem Statement

Malware is a common portmanteau derived from malicious software. It is a general

term that describes any software that is designed to infiltrate a computer system for

misuse and or hostile gains [17]. The rate at which new malware is detected is steadily

accelerating. Figure 1.1 below shows McAfee reporting that nearly 12 million new

malware samples were reported in Q4 of 2012 alone, with an average rate of 100,000

new malwares per day.

Figure 1.1: State of Malware 2013 [25]

The enormous volume of malware samples that must be categorized, analyzed,

and ultimately protected against is overwhelming considering the work that must

be performed by an Analyst for each sample. More tools are required to empower

Security Analysts in their efforts to process, and if necessary analyze, the deluge of

malware samples that are received daily.
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Additionally, it is essential that the Analyst’s time be spent examining those

samples that are of the higher priority, rather than replicating work on derivative

malwares or samples that are already handled by the current threat defense strategies.

[6] echoes the need for tools that can assist the Analyst in the decision to focus on

those malware samples that require more attention, such as the ones that are found to

be more novel and not mere mutations of known malwares that have been disguised

using obfuscation techniques.

1.2 Approach

The focus of this research has been to create a tool that can aid an Analyst in the

process of examining large volumes of malware samples. The proposed approach is

to enable the Analyst with a visualization tool to examine the relationship between

multiple malware samples.

The visualization of the relationships is generated by clustering together the se-

lected features extracted from the dynamic behavior analysis of the malware samples.

The dynamic analysis is done within a Sandbox environment that has been config-

ured to monitor the activity of applications as they are installed and execute on the

system.

The relationships are then presented using an undirected graph. From that graph

the Analyst may navigate and infer the significance of the relationships that are found

within the samples. Unique patterns are automatically extracted to bring them to

the analyst attention such as Complete Graphs and the set of samples that show zero

correlation.

The added ability to detect the relationships between malwares and readily dis-

play this information to the Analyst will aid in the decision making process and in

determining which malwares must be assigned a higher analysis priority.
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[17] makes the following observation regarding the detection of unique malwares,

“based on insight that most new malicious samples are simple syntactic variations

of existing malware, and hence, a way to ascertain the maliciousness of an unknown

sample is to check if it is sufficiently similar to any known malware”.

The approach has been designed with the objective of being a flexible tool with

the use case dynamically defined by the Analyst. The relationships that are identified

are not meant to classify all known families in the data set. As stated by [23], the

relationships are meant to “...aid the investigator in obtaining qualitative and quan-

titative understanding of large amounts of ... data by providing him with reasonably

good similarity groups. The method should be used in close interaction with theory

and intuition.” As is ever the case with tools, the tool is not meant to accomplish the

task without interaction from the operator. The tool is meant to enhance the ability

of the operator or Analyst.
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Chapter 2

BACKGROUND

2.1 Malware

As previously stated, Malware is a common term to describe malicious software

that is designed to exploit and harm computer system. There are multiple types of

malware that differ based on their intended targets and attacks. [5] categorizes com-

mon malware types as the following: Virus, Trojan Horse, Worm, Adware, Spyware,

Zombie(Bot-ware).

As noted in the introduction, the rate of malware creation is accelerating. In

addition to the repacking of existing malware to prevent their detection by signature

based deterrent systems, new malwares are becoming increasing easy to create with

the use of automated builders that allow users of limited ability to create new malware

samples with a tailored attack vector and objectives. The Zeus crimeware toolkit and

Spy Eye are two builders that are easily obtained for a small fee to allow an attacker

to create new malwares [34].

2.2 Malware Analysis Techniques

In order to analyze a malware sample an analyst has two options, either static

analysis or dynamic analysis.

2.2.1 Static Analysis

Static analysis consists of any analysis that can be done to identify and understand

the malware sample without allowing the sample to execute. Common tools used

4



during static malware analysis, that will be introduced below, are hash functions,

string extraction, packer identification, and disassembly.

A common step when analyzing a malware sample is to compute a hash value

for the sample. The hash function computes a unique number based on the malware

sample. This can be used to identify the malware in the future regardless of the

file name, and as such is very useful when recording results, compiling notes, and

comparing with online databases. A hash value computed using a method such as

MD5 or SHA1 will positively identify only those files that are exactly the same as

the file from which the hash value was generated. However if the malware sample is

altered, the hash file will no longer be valid. Fuzzy hashing has been implemented to

attempt to address the case in which an analyst would like to know if two programs

are nearly the same. Fuzzy hashing creates a series of hash values from different

locations within the binary data of the sample [12]. The result is that two fuzzy

hashes can be compared to easily determine if two pieces of software are identical

or very similar. A popular tool used to perform the fuzzy hashing computation is

SSDEEP [20].

String detection is another simple tool that can help to identify useful information

contained within the sample. String detect can be run in Unix environments from

the command line using the strings command, or on Windows using the Strings app

from Sysinternals from Microsoft. Strings returned from this analysis can help the

Analyst determine if the file has been encrypted, or give details about IP addresses

to which the malware is attempting to connect.

Additionally, the Analyst can use PEiD to determine what type of packer, cryp-

tor, or compiler has been used to try to hide the contents of the malware, these are

discussed in more detail in section 2.3. If the packer or compiler are correctly de-
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tected, the Analyst can use this information help unpack and disassemble the malware

sample.

Disassembly is the most difficult of the static analysis approaches discussed in

this section. It consists of using a tool such as IDA Pro to break the program down

into its assembly instructions. The Analyst must then examine these instructions to

understand what action the program is attempting to execute. Add-ons to IDA Pro

such as Fast Library Identification and Recognition Technology (FLIRT) can identify

standard library functions in the assemble code [15]. This helps the Analyst to more

easily read and parse the disassembled program.

2.2.2 Dynamic Analysis

Dynamic analysis extends what can be learned from the static analysis of the

malware by allowing it to execute and observing what the malware does during exe-

cution.

Precautions should be taken when executing a malware sample. The objective of

the malware is to do harm, as such the execution and observation of the malware is

typically done within a sandbox environment to isolate the sample. The sandbox will

typically present the malware with a virtual machine on which to execute. The sand-

box is used to limit the risk of infection to other computers on the local network. The

virtual machine is used because it is simple to reset a virtual machine to its previous

snapshot state. This allows all the samples to be tested under similar conditions.

There are multiple different Sandboxes available to the user such as CWSandbox [9],

Anubis [3],and Truman [35].

During the observation, the Analyst may choose which changes are observed in

the system to determine how the malware is infecting or attacking the virtual ma-
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chine. The tools typically consist of system call monitors, file monitors, and network

monitors.

The system calls are made when an application makes requests to the OS. [32]

discusses how the CWSandbox is set up to hook the system calls that are made by

the executing malware sample. Each call is first recorded to a log file and then passed

on to the kernel to allow the execution to take place. Following execution, this log

file can be examined to determine the behavior of the sample as it executed in the

virtual machine.

A file monitor can be used to determine which files have been accessed or changed

by the malware during execution. This can either be accomplished by examining the

change of state of the virtual machine prior to infection and following infection, or

by using tools such as Tripwire that look for changes in hash values of the files in the

virtual machine.

A network monitor can be installed inside or outside of the virtual machine. The

role of this monitor is to determine what requests are made to the network and what

traffic is received.

These generated logs can be combined to create an understanding of the changes

the malware is affecting on the system. This analysis is often times more time costly

than static analysis because the malware must be given time and resources to execute.

However, the advantage of using the dynamic analysis over the static analysis is that

many of the techniques that are used to hide and protect the malware from analysis,

as discussed in section 2.3 below, are not effective against dynamic analysis because

the malware will ultimately need to run on a system and effect changes if it is to do

harm.

With that advantage in mind, dynamic analysis typically performs poorly in the

presence of triggers. These triggers can be as simple as a date or time. If the malware
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is executed and monitored during a period that does not coincide with a previously

determined date or time the sample can perform harmless operations that would

not be flagged as malicious. Furthermore, the sample may lay dormant and await

an external trigger from a command and control node as is often found in botnet

operation. Unless the malware is being actively analyzed when, or possibly following,

the broadcast of the trigger command, no malicious activity may be observed. [27]

utilizes a system to perform dynamic execution of an executable. During execution

the program creates a snapshot when it encounters a branching point. If it is found

that the executable attempts to exit prematurely due to the lack of an external

trigger, the program is able to back track and mimic the presence of the trigger. By

performing this process multiple times a more complete analysis can be generated

with or without the presence of the external triggers.

Generally, the techniques discussed below in section 2.3 are very effective at dis-

guising the true identify of the malware application when only static analysis is used.

[28] was able to reliably mask the detection of a set of worms using a series of ob-

fuscation steps. The authors concluded that using the obfuscation was sufficient to

bypass the static detection, however they do state that the presence of the jumbled

code produced after the obfuscation steps are applied would also serve to identify

that the sample is malicious. While it may be different than the remainder of the

samples in the set, it is not sufficient to infer malicious intent. Many commercial ap-

plications employ obfuscation to protect their intellectual property[22]; it was for this

purpose that obfuscation was created. These obfuscated programs are not malicious,

simply protected from open attempts to disassemble. [28] concedes that the dynamic

analysis is preferable to static analysis when handling of an obfuscated sample.
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2.3 Malware Anti-Analysis Techniques

Creators of malware are aware that their software must compete with Antivirus

technologies. In order to allow their malware programs to continue to be affective,

the malware needs to be able to infect in spite of the presence of Antivirus software

on the target computers. Antivirus tools typically seek to identify and quarantine a

malware program using a combination of signature detect, static analysis, and behav-

ior heuristics. In order to evade these defensive strategies the malware community

has produced tools to allow the malware creator to easily manipulate the malware

application allowing for the creation of many variants of a single application without

altering the underlying execution of the original malware. The creation of a large

number of variants allows the malware creator to periodically release different vari-

ants that are unique to the view of the antivirus software. This allows the malware

creator to stay ahead of the detection and response of the antivirus response. The

following techniques are common evasion tactics that are used in the creation and

hardening of variants of malware applications [29].

2.3.1 Metamorphism / Polymorphism

These techniques seek to alter the execution and structure of the program without

affecting the outcome of the applications. By altering the structure and execution

flow of the program the malware is able to evade antivirus software using pattern

recognition designed to detect the malware such as Intrusion Prevention Systems

(IPS) and Data Leakage Prevention (DLP) systems [29].

In order to bypass the pattern recognition the malware can change the structure

of the original application [16]. This can be done by changing the types of the loops

used in the software, swapping and renaming registers, reordering instructions, and

9



changing the methods of variable assignments. Figure 2.1 shown below, illustrates

how a simple while loop can be easily converted into three different loop types without

modifying the outcome.

Figure 2.1: Equivalent Loop Types [29]

By combining different techniques between each variant the author creates code

that is different than the previous version. These changes make it difficult to detect

the original pattern of the program and alter the signature that is known to the

antivirus software.

Additionally, the author can add a polymorphic step. A polymorphic malware

seeks to further evade antivirus systems by combining an encrypted code block with

multiple different decryptors. This allows the malware to constantly change its ap-

pearance which is fairly frustrating to static analysis [16]. The polymorphic decryptor

block is mutated for new targets using code obfuscation techniques such as junk code

insertion [30]. The process of generating new decryptor blocks is illustrated in Fig-

ure 2.2
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Figure 2.2: Polymorphic Virus Structure [30]

2.3.2 Noise Insertion

Noise insertion is utilized in standard code obfuscation. The effect is to add

garbage code that is either redundant, performs no function, or has no impact on

the code [29][30]. For example the following operations presented in Figure 2.3 are

equivalent to having performed no operation.

Figure 2.3: No Op and Reversible Dead Code Samples [30]
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In spite of having no effect on the function of the originally authored code these

garbage statements modify the binary sequence of the malware. These techniques,

borrowed from code obfuscation, alter the signature of the malware and make the

process of reverse engineering difficult; thereby increasing the demand on the antivirus

systems and the Analysts.

2.3.3 Crypters

Crypters refers to the approach of encrypting malware’s binary data and only

decrypting the data during runtime [29], while this technique is very similar to the

approach used in polymorphism it is not the same. Crypters can be thought of as

subset of polymorphism because the mutating decryption step is not assumed. The

decryption step can be refined to only execute on the portions of the code that are

currently required for execution. This allows the code to remain hidden and only

reveal portions of the code in memory during execution in an attempt to frustrate

memory inspection/dump analysis.

Figure 2.4: Examples of Crytper Tools [29]
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In addition to offering encryption, Crypter tools generally offer the packers, as

described below, and binders which allow for additional payloads to be carried by

the malware [14]. The tools are simple to use often only requiring the author to

select options [29] as shown in above in Figure 2.4. This enables an author to develop

a malware package that is able to penetrate target systems and then reuse that

application as a delivery vehicle for various payloads.

2.3.4 Protectors

Protectors is a general label for tools that add “anti-debugging” protection to

an application. [29] states that these tools were originally developed by commercial

companies to protect online games and DRM technology. A popular tool, that has

been developed to protect commercial software, that has now found a home among

malware creators is the Themida Advanced Windows Software Protection System

from Orleans Technologies [29]. This and other tools allow the application to identify

the presence of virtual machines or other debugging technologies. When these are

detected the malware has the option of handling their presence by choosing to execute

alternate routines. This behavior can defeat the attempts of an Analyst using a

sandbox to perform a dynamic behavior analysis of the malware sample [29].

2.3.5 Packers

Packers are another example of tools that were originally developed to serve a

benign, or commercial application. The Packer is used to shrink the size of the

application’s binary file. The packer compresses the binary file which requires the

analyst to unpack the file prior to attempting to perform a static analysis of the file.

The Packer also has the added benefit of making the malware package smaller which

makes it easier to hide within other applications [29]. According to [29] the UPX is

13



currently the most popular packer in use. UPX is also a commercial application that

was not originally developed for the malware community such as Themida mentioned

above.

Aside from the ability to shrink the application’s binary, some packers also enable

polymorphism where “...the malware binary is structurally different every time the

packer version is executed” [29]. The advantage the Packer gives the malware sample

over the antivirus system is the ability to subvert the signature and hash based

detection mechanisms.
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Chapter 3

RELATED APPROACHES

Presented below are two approaches that have been previously proposed to cluster

together malware samples. While the idea of grouping samples together is shared by

our approach, the scale, implementation, and objectives of these approaches differ

from our own.

3.1 SMIT

The Symantec Malware Indexing Tree (SMIT) [17] recognizes the need for tools

to help deal with the overwhelming number of new malware samples that are received

daily by antivirus companies. The first step in analyzing a new sample is to determine

whether or not the sample is malicious. SMIT attempts to make this classification

by determining if the new malware sample is similar to a previously know malicious

malware samples.

The similarity metric is based on a function call graph. The function call graph

was chosen because “a program’s functionality is mostly determined by the library or

system calls it invokes, its function-call graph provides a reasonable approximation

to the program’s run-time behavior [17].” The call graphs are generated using a

disassembler during static analysis. The static analysis approach was chosen based

on the time penalty incurred in using the dynamic analysis. The function call graph

is chosen as the feature due to its resilience in the presence of obfuscation and evasion

techniques. [17] states that the use of high-level structure, such as the call graph, is

one way to overcome the obfuscation that has a greater effect on the syntax of the

program.
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The function call graph is traversed using a customized version of the “Hungarian

method”. This method was modified to apply a bias to nodes that have neighboring

nodes that had already been matched. The metric is ultimately computed using an

approach similar to inter-graph edit distance.

The results of the graph traversal is to return the closest match to the already

know samples in the database. If the result is found to be sufficiently similar then it

can be implied that the new malware sample is indeed malicious.

3.2 peHash

The peHash [38] approach attempts to solve the problem of how to identify and

cluster multiple samples of a single malware “specimen”. [38] states that the honey

pots generate massive amounts of unique samples because “self-modifying malware

is able to generate new polymorphic instances of itself with different message digest

sums.” The object of the peHash is to generate a hash function that is based on the

structural data that can be used to cluster malware samples in order to identify those

samples that are generated from the same polymorphic malware base.

The structural hash is generated using a combination of the image characteristics,

target subsystem, stack commit size, and heap commit size [38]. The image char-

acteristics refer to general settings like whether or not the PE is a DLL. The target

subsystem identifies which subsystem will run the malware; such as GUI or CLI. The

stack and heap commit sizes are both based on the initial allocation. Only those

attributes that can be easily derived from the binary without detailed analysis are

used in the hash to ensure that the computation complexity is low to allow for fast

operation.
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The authors of [38] show that by clustering based on this simple hashing function

they are able correctly cluster samples from large data sets. The peHash clustering

was shown to perform on par with current antivirus signature approaches.

The paper does concede the following, “It is, however, obvious that peHash cannot

be used to cluster variants of malware families as for that the code structure itself

would have to be analyzed.” The code structure was assumed to be packed and or

encrypted. Due to the previously mentioned performance constraint, peHash does

not attempt to perform more in depth analysis, such as those that could be provided

from a dynamic behavior analysis.
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Chapter 4

APPROACH

As stated in the introduction, our objective is to provide a tool to empower the

Security Analyst/Researcher. In order for the Analyst to better understand the in-

teraction and evolution of malware, we propose the following system to detect and

visualize potential relationships between malware samples. The system is guided and

defined by the Analyst. The analyst is allowed to define, update, and or modify the

parameters that define the relationships, the data sets used to determine relationships,

and the layout and emphasis of the resulting graphs.

This tool allows the Analyst to quickly visualize,understand, and make conclusions

concerning the relational information of many malware samples. [21] reported that

30,000 variants of the Beagle malware were recorded in a three month time during

2007. Due to the high volume of data that must be analyzed and considered when

studying malware relationships it is imperative that the Analyst be given tools that

are able to abstract and present the data for fast digestion, such as the visualization

of relationships presented here in. The large number of variants bias the analysis

towards a dynamic behavior analysis which is more suited to detection of variants

than static analysis [38].

Because the nature of the behavior patterns of malware can shift between types

and families the development of the tool has followed an Analyst-centric design in

which the Analyst is able to manipulate and direct the detection and visualization

of the sample sets. The system presented in Figure 4.1 and in the following sections

seeks to fulfill these needs by allowing the Analyst to define the criteria for the
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detected relationships while remaining flexible in the display and analysis of those

relationships.

Figure 4.1: Approach Flow Diagram

4.1 Data Collection

In order to analyze malware to understand the relationships between samples, a set

of samples must be made available. There are generally two methods for collecting a

set of malware samples. The samples can either be collected using honeypot methods

or collected via malware sharing services.

Honeypots are systems that are set up to lure external attacks. The Honeypot is

set up to study the attacks and the tools by listing services with known vulnerabilities

[8]. These honeypot systems are segmented into two types; Passive and Active [10].

The Active system is set to delibrately link with malicious URLs to seek out malware

infections. The Passive systems wait for the malware to attack the computer. The

Passive Honeypot may be configured with a high or low level of interaction. The

low-interaction Honeypot runs as an emulated service. The setup varies based on

the number of vulnerable services that are emulated. Since the services are emulated

they are easy to deploy and scale [4]. The high-interaction Honeypot configures a

real system. The systems are more responsive to the malware attack but are more

difficult to deploy and maintain [4].

Malware sharing websites provide free sharing services. These websites collect

submissions gathered from disk forensics, honeypots and other sources such as web

crawlers. The sites include websites such as VXHeaven and VirusSign.
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Malware samples have been obtained from two separate locations for testing and

evaluation. These samples were obtained from 3rd party repositories. The first set of

151 samples was obtained from safegroup.pl. This is a Polish forum that maintains

a repository of malware samples. A further 2000 samples were then obtained from

VirusSign.com which contains are large number of samples that are freely available

following the acquisition of an account.

4.2 Dynamic Analysis

The samples must first be analyzed in order to identify the features that will be

used to determine the relationships. Dynamic analysis was chosen to prevent obfusca-

tion from confounding the analysis, and to provide a more detailed set of features. The

dynamic analysis of the malware is performed using the Cuckoo Sandbox. Cuckoo is

an open-source project that started in 2010. The software has remained open-source

to preserve its flexibility and creativity [14]. For example, the user is able to create

additional analysis modules that can be injected into the Cuckoo framework to allow

for customized analysis of the malware behavior.

Figure 4.2 shown below provides a brief overview of the layout of the Cuckoo

system. The host machine is responsible for starting each of the virtual machines

that are used to capture the malware’s execution behavior. Once the sample has

completed its analysis period on the virtual machine the results are reported back

to the host machine to await action from the user. The virtual machines that were

created as the analysis environment in this case are running an un-patched version of

Windows XP.
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Figure 4.2: Cuckoo’s System Arhitecture [14]

The Cuckoo sandbox is set up to monitor the changes made to the operating

system running on the virtual machine. Cuckoo records all changes that are made

to the file system, memory, network traffic, and periodic screenshots. During the

execution the sandbox generates behavior logs. The behavior logs contain the win32

API calls that are executed on the virtual machine while the malware is executing.

The memory dump that is retrieved from the virtual machine is processed using

Volatility. Volatility is an open source collection of tools used in the analysis of

memory files. In addition to the dynamic analysis performed by Cuckoo in this

example, the sandbox can also be configured to perform basic static analysis on the

malware samples. The static analysis includes extraction of hashes, signatures, and

extracted strings.

The analysis reports have been configured to focus on the win32 API calls and

file access, creation, and deletion. These attributes of the reported logs were chosen

as the focus of the attribute matching because they are the most likely to appear in
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the majority of the analysis logs of the malware samples in the test collection, while

maintaining a descriptive representation of the malware’s execution behavior.

The results returned from Cuckoo are presented in a variety of formats that are

configurable by the user. The current setup returns the report in an html format that

is simple to read and navigate for an overview of the observed behavior. The first

portion of this report is presented below as an example in Figure 4.3.

Figure 4.3: Sample Generated HTML Report from Cuckoo

In addition to the html overview, CSV log files, and json files are generated. The

features extracted from the Cuckoo reports are retrieved from the json files.
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Algorithm 1 Feature Extraction

Objective: Extract data from Cuckoo Reports:
while not end of log file do

read category type
if category is FileSystem then

add file name to File Access list
end if
if category is System then

add function name and attributes API call list
end if

end while

The json logs are parsed to extract each element of the behavior logs. The log

elements are labeled with categories that denote the type of behavior that is recorded

from the dynamic analysis. The parsing focuses on extracting the calls to the “Sys-

tem” and “FileSystem”. System types correspond to the function calls made by the

malware sample. The FileSystem types are generated for all accesses to the files in-

cluding opening, creation, modification, and deletion. After each json log is processed

the key features that are used during the relationship analysis are logged into a csv

file to conserve memory and provide for future auditing.

4.3 Feature Clustering

In order to allow the analysis to be continually flexible and defined by the Analyst

the features that are compared are isolated based on the type of feature. The primary

features that are used during the clustering process are the file accesses and win32 API

calls. This allows the relationships between the samples to be defined solely on the

interactions with the file system or the interactions with the API calls. Additionally,

these features can be combined to define the relationship based on a weighted average

of these features.

The files that are accessed by the malware are clustered based on the file name.

The strength of the relationship between two malwares with respect to the file access
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is determined by the total number of shared file accesses that are performed by the

files. For examples, if two files each perform 10 file accesses during their execution and

8 of those are common to both malware samples then a strong correlation between

the samples is assumed. The Analyst defines the minimum coverage threshold. All

pairs of samples that are found to exceed this Analyst defined threshold are marked

as having a relationship. The relationships are stored as an edge with an associated

weight that can be filtered in real time during the visualization phase.

Algorithm 2 Feature Clustering: File Access

Objective: Identify similar File Accesses:
procedure MatchFileAccess(FileName)

matchCount = 0
for i = 0 to FileAccessListSize do

if FileName = File at i then
increment matchCount

end if
end for
if matchCount>threshold then

Return true
else

Return false
end if

end procedure
for i = 0 to SampleListSize do

Count shared file accesses MatchFileAccess Procedure
if sharedF ileAccessCount>Threshold then

Add relation
end if

end for

The file access list that is extracted for each malware sample is compared against

all other samples in the set. The comparisons are made between each malware pair.

The comparisons are not assumed to be commutative. This implies that a relationship

may be identified between samples 1 and 2 but not between 2 and 1. Both cases

are checked due to the varying length of the file access lists. Based on the type of

malware that the Analyst is attempting to investigate the file access list may contain
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the essential information required to define the relationship. One such example is the

Sality virus. [31] found that the Sality virus created and deleted files in the Windows

System Directory. By monitoring these file access patterns they were able to establish

the Behavior pattern that identified the Sality virus.

The calls to the win32 API functions are grouped together into sequences of calls

along with their parameters. The win32 API calls are clustered as groups using n

sequential entries. This pattern is referred to as a system access pattern, and is

similar to the use of n-gram as mentioned in [1]. The motivation behind using this

system access pattern is to minimize the effect of anti-analysis techniques that were

previously described such as polymorphism, obfuscation, and NOP code injection.

As was also the approach with the file access, the strength of the correlation between

two malwares is found by comparing the number of matching system access patterns

performed by each malware.
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Algorithm 3 Feature Clustering: Win32 API Calls

Objective: Identify similar Win32 API call sequences:
procedure NLengthPattern(CallList, n)

accessPattern = null
for i = 0 to n do

extract API call from CallList
append API call to accessPattern

end for
Return accessPattern

end procedure
procedure MatchAccesPatterns(nLengthAccessPattern)

matchCount = 0
Generate list of n length API call sequence: NLengthPattern procedure
for i = 0 to AccessPatternLIstSize do

testPattern = construct n length API call sequence: NLengthPattern pro-
cedure

if nLengthAccessPattern = Pattern at i then
increment matchCount

end if
end for
if matchCount>threshold then

Return true
else

Return false
end if

end procedure
for i = 0 to SampleListSize do

Count similar system access patterns: MatchAccesPatterns Procedure
if matchedAccessPatternCount>Threshold then

Add relation
end if

end for

The same algorithm structure that was used to compare the file access is repeated

when comparing the win32 API calls. The comparison is only modified to use the

system access pattern instead of the single file name. Again as with the file access

pattern the relationships are not assumed to be commutative.

The system access pattern was introduced following the evaluation of the more

naive method employed in the file access pattern. Initial tests attempted to identify

the coverage of the individual API calls between two samples. This approach produced
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many false relationships. The sequential API calls in the system access pattern were

found to be useful to both subvert the attempted obfuscation processes and reduce

the occurrences of the false matches based on the API calls. This approach was

seemingly vindicated by the results reported by [21], in which the authors found that

software plagiarism detection methods were able to produce similar results to the

malware clustering techniques presented by [7]. The Plagiarism detectors [2, 37, 39]

mentioned by [21] use sequences of API calls that are captured during the program

execution.

The correlation strength derived for both the file accesses and the system access

patterns are evaluated to determine if a relationship exists between the two mal-

ware samples. The presence of a relationship is determined based on the analyst’s

configuration. The relationship can be defined by the file accesses, or the system

access patterns, or both the file accesses and system access patterns. In either case

the correlation is compared to the analyst defined threshold values. If both types of

attributes are enabled then a weighting value is applied to determine the influence

of both attribute sets. The weighting value is set using a vertical slider so that it

is simple for the Analyst to visualize the level of influence that one feature type has

over the other as seen in Figure 4.4.

Figure 4.4: Analyst Defined Feature Thresholds and Combining Weights
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For each identified relationship an entry is added to the malware samples relative

log file. This file holds a list of all malware samples with which the current sample

has found a relation. In addition to the sample ID the strength of the relationship

is stored. These files are later used to generate adjacency matrices for use in the

visualization tool and graph analysis. The storage of these log files allow for quicker

execution of the visualization and graph analysis portions of the approach.

The initial implementation was developed around a small test set of samples. In

this case the extracted features and their derived relationships were held in memory

throughout the execution of the program. However as the size of the sample set

increased, memory quickly became a limiting factor. To address this issue the features

and established relations for each sample are written to the hard drive. This forces

the application to be more IO intensive but allows it to handle the data set of 2000+

samples that occupies roughly 80GB of storage space on the hard drive.

These file access and system call features that are currently used in the feature

clustering to establish the malware relationships could be readily expanded to include

DLL access, network queries, and Registry access. Additionally, mutexes generated by

the executing sample can be extracted from the memory snapshot using the Volatility

tool. [11] has concluded that the occurrence of known mutexes is sufficient to identify

the presence of the Sality virus.

4.4 Visualization Tool

In order to visualize the relationships between the analyzed malware samples, a

standard graph view was chosen. The graph view consists of nodes and edges. A node

is created for each malware sample added to the tool. The edges are added between

each node in which a relationship is detected. This allows the Analyst to easily view

the number of samples to which a single malware connects. The graph is presented
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with undirected edges to show associated relationships and to prevent the inference

of a hierarchy of the relationship between the samples. The graph is derived from

an adjacency matrix. An adjacency matrix contains n x n elements. The elements

of the matrix are marked with a non zero edge weight where an edge exists between

two nodes. A simple adjacency matrix is shown in fig:AdjacenyMatrix.

Figure 4.5: Adjaceny Matrix for a 6 Node Graph (Wikipedia)

The adjacency matrix is generated at run time by compiling the relative logs from

the Feature Clustering phase. These logs are stored with each sample. The log file is

parsed and an edge is added to the adjacency matrix for each sample found to have

a connection to the current malware. In addition to using the matrix to generate

the visual representation of the sample relations, the matrix can be analyzed when

looking to extract patterns from the graph as discussed in the following section.

The visualization of the relationship has been enabled using two approaches. The

first approach is integrated in the tool using VTK. The second exports the relation-

ships in real-time to Gephi.

The Visualization Toolkit (VTK) [36] is an open-source library to produce 3D

computer graphics. VTK is available from Kitware which also offers a C# wrapped

version that was used in this application. Basic navigation has been enabled within

the Visualization windows in which the user can zoom using the mouse’s scroll wheel

29



and is able to translate the graph using the middle mouse button. The graphs pre-

sented using the VTK windows are limited in the interactivity and are static in that

they cannot be further processed once rendered by the application. VTK is a general

purpose library for visualization. This means that while VTK is able to render the

graph, it is not its strongest feature. For this reason Gephi is the preferred visualiza-

tion method.

Gephi is free graph visualization platform [13]. Through the use of an extending

plugin the nodes and edges of the graph can be written to Gephi using the cURL

library. All the features that are available in the VTK renderings are available in

the Gephi based viewer. There are numerous advantages gained by adding support

for a feature rich application such as Gephi. Among these advantages are the ability

to dynamically reorganize the layout, change color schemes, perform filtering, and

save the test data. Additionally, the graphs generated in Gephi are subjectively more

visually appealing.

Figure 4.6: Sample Graph with Malwares Samples Color Coded by Family
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The relationships between the samples are plotted in a graph to allow the Analyst

to visualize how the relationships interact. [33] refers to this as exploring through

visualization. She says “Visualization for exploring can be imprecise. It’s useful

when you’re not exactly sure what the data has to tell you and you’re trying to get

a sense of the relationships and the patters contained within it for the first time.”

This is the primary motivation behind the development of a tool to visualize the

relationships between malwares. In the case of the Analyst trying to understand a

new batch of samples; the classification, intent, and countermeasures for each sample

may be unknown. The goal of the visualization tool is to provide the Analyst with

a fast method to form a hypothesis of the relationships that is at the same time

flexible to allow the Analyst to explore how the relationships interact. [33] further

states “The best data visualizations are ones that expose something new about the

underlying patterns and relationships contained within the data. Understanding those

relationships and being able to observe them is key to good decision making.”

The speed at which the Analyst is able to get a grasp of the relationships, and

patterns of relationships, that exist within the sample sets directly affects the volume

and quality of analysis that the Analyst is able to perform. With regard to the value

of visualizations [19] said “Finally, and perhaps most importantly, visualizations give

us access to actionable insight. It is not until we have access to the knowledge within

the data that we can actually act on it.”

In order for the Analyst to be able to perceive the relationships drawn by the

graph, it is necessary to arrange the graph in a manner that is visually pleasing.

When a large number of samples are rendered in the visualization tool using a random

placement of nodes and edges the effect is a noisy graph that is not easy to understand

or analyze. [18] submits that graphs are more aesthetically pleasing when the number

of edge crossings are minimized and the nodes are evenly distributed. Automatic
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layout tools are applied to arrange the nodes and edges to enhance the aesthetics

of the graph and aid the Analyst in the perception of the underlying relationship

interactions.

Force-Directed layouts were found to generate graphs that are simpler to analyze,

these layouts are computed using energy minimization to balance attractive and re-

pulsive forces of the system. The attractive forces describe the strength of the force

that draws two nodes together. This attraction is determined by the edge weights

that are defined by our similarity metric. The repulsive force is used to push the

nodes into the unoccupied spaces. The Yifan Hu and OpenOrd implementations

of Force-Directed layouts have been employed to improve the analysis of the rela-

tionships found during the relationship generation. The Yifan Hu [18] force-directed

layout performs edge collapsing to merge two adjacent nodes. When nodes are merged

their edges are combined and given a cumulative weight. This allows the graph to

be decluttered and more easily presented to the Analyst. The OpenOrd [24] force-

directed layout allows for selective edge cutting to reduce the the occurrences of edge

crossings. Figure 4.7 provides three examples to illustrate the effect of the Yifan Hu

and OpenOrd Force-Directed layouts on a random node arrangement.
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Figure 4.7: Random Node Arrangement, Yifan Hu Force-Directed Layout,
OpenOrd Force-Directed Layout

Large sets of thousands of malware samples that have need to be processed daily

contain an overwhelming amount of information pertaining to the relationships, at-

tributes, and classifications of the samples. As stated above, the proper exploration

of the malware relationships, and the understanding there of, that leads to good and

timely decision and actions is facilitated through the use of the flexible visualization

tool. This provides the Analyst with the optimal end result; the fast, accurate, ac-

tionable decisions that correctly handle the threats posed by the incessant advent of

new malwares.

4.5 Analysis Examples

As previously mentioned, a significant goal of the visualization tool is to assist the

Analyst in the task of sorting and analyzing the large volume of malware samples.

One aspect of this goal is to help the Analyst prioritize which samples should receive a

higher analysis priority. This is necessitated by the large number of samples that are

received daily that require the analysis and attention of an Analyst. The examples
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shown below are extracted from a test set consisting of approximately 300 malware

samples.

The malware samples presented in Figure 4.8 show those samples that have an

edge count of zero. The lack of the edges are indicative of samples that exhibit

no relation to the other samples available in the analysis set. These samples were

unique in both their file access patterns and system access patterns. This lack of

correlation with other malwares may indicate a unique attack vector. Due to the lack

of overlap with the other samples, and previously analyzed malwares, the need for

further attention from the Analyst is high. The unique nature of the attack vector

may be indicative of a potential danger that the current defense strategies will not

overlap the intended target of the malware.

Figure 4.8: Samples That Show No Shared Characteristics with the Sample Set

The following cluster of malware samples shown in Figure 4.9 can be interpreted

as an example on which an Analyst needs to focus attention based on the highly

connected relationship it exhibits. This example shows a single malware that has

performed the same file access as 98 other malware samples. This offers the analyst
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two scenarios. In the first scenario none of the samples with which the central node

are connected have been analyzed, in this case the Analyst would likely be able to

deprioritize the analysis of this malware based on the knowledge that its attack vector

is already encapsulated in the known attacks of the previously analyzed malwares.

Alternatively, if none of the associated malwares have currently been analyzed then

the Analyst would be able to prioritize the analysis of the central node due to the

fact that by quarantining the files that are accessed by one malware the effect of the

attacks of many could also be neutralized.

Figure 4.9: Highly Connected Sample

The relationship presented in Figure 4.10 shows a Clique Graph. A Clique is a

pattern in which every vertex pair is connected. This special case is indicative of a

set of malwares that are highly correlated. This case is of particular interest because

it allows for the extraction of highly correlated groups of malwares from the superset.

The Clique is a known pattern that can be extracted from graphs. Even though the

problem of clique identification is known to be NP-complete, the extraction of these
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cliques merits the effort due to the fact that the subsets may be difficult to see or

interpret when contained in the larger data set.

Figure 4.10: Large Clique Relationship Example

Among samples that were found to be members of the clique in Figure 4.10 the

following names were identified using Kapersky and Microsoft:

Sample ID Kapersky Name Microsoft Name

975 HEUR.Trojan.Win32.Generic Trojan.Win32/Rimecud.A

969 Trojan.Win32.Agent.adebm PWS.Win32/Uospry.A

913 HEUR.Trojan.Win32.Generic Backdoor.Wind32.Bifrose.1Z

1002 Trojan.Win32.Agent.adebm PWS.Win32/Uospry.A

Table 4.1: Identified Malwares from Clique Graph

In this example, there are two instance where a malware is identified that has two

different static signatures. Additionally, the files that are accessed by these samples

are shown to be similar which was not apparent based on the report tables generated

by automated tools such as the one shown in Figure 4.3.
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4.6 Types of Relationship Graphs Derived from Clusters

Check boxes have been added to the applications control dialog box to allow

the analyst to define which types of relationship graphs should be displayed in the

visualizations windows, as seen below in Figure 4.11. Additionally, in order to speed

up repeated analysis of data sets the graphs are written to a csv file that can be

reloaded. Once reloaded, a new set of graphs can be generated based on the chosen

set of relationship graph types selected by the analyst.

Figure 4.11: Application Dialog Box

The following connection types can be extracted from the graph relations using

the applications dialog box controls:

4.6.1 Zero Connection

In this case the graph shows the set of samples that exhibit zero correlations with

the other malware samples in the set. This type of relationship may be indicative

of a new malware sample. In this case the attack vector is unique in that it does
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not overlap with any of the previously known samples in the analysis set. Based on

the other malwares that were used in the relationship set, this could indicate that

additional attention is required of the Analyst.

4.6.2 Clique

In this relationship each node of the sub graph is connected to all other nodes

in the sub graph. This type of relationship is consistent with samples that are the

same or similar in nature. Samples which have been modified to subvert known

hash signatures (variants) would likely manifest themselves as completely connected

graphs.

Algorithm 4 Clique Extraction

Objective: Identify fully connected relationships within the network graph.
Place all nodes in the graph with n edges into the clique subset
Identify node in clique subset with least matches
while Disconnected node exists do

remove disconnected node from clique subset.
Identify node in subset with least matches.

end while

The cliques are identified by filtering the relationships to remove all nodes that

do not meet the minimum number of connected edges. The remaining nodes are then

exhaustively scanned to remove nodes that are not connected to the remaining nodes

in the set. The set is pruned until all non fully connected nodes are removed from

the graph.

4.6.3 Most Connected

This graph displays the node that has the most connections with other samples

in the analysis set. This can be used to identify samples that have the low or high

analysis priority based on the other samples with which it is associated. The low
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case would occur when the other samples have been analyzed and the high priority

case would be flagged when the majority of the connected samples have not been

previously analyzed.

Algorithm 5 Most Connected

Objective: Identify the node with the most identified relationships.
Place all nodes in the graph with n edges into the clique subset
maxEdgeCount = 0
for i = 0 to nodeCount do

if nodeEdgeCount>maxEdgeCount then
maxEdgeCount = nodeEdgeCount

end if
end for
Extract the node with the most connected edges.

To extract the node with the most edges the full set of nodes is traversed. The

node that is found to have the highest number of edges is extracted. In the case of

multiple nodes having the max number of edges all nodes are drawn.

4.6.4 All

This is the default mode for the graph relationships. This mode simply displays

all of the samples with their relationship connections from analysis set. The Analyst

is free to navigate and browse but no special attention is called to any relationship

in the set.

Additional relationships that could be further explored from the graphs include

Trees, Embeddedness, Centrality, and Dispersion.

4.7 Applications of Relationships

The ability to select the type of relationship from the analysis of the full undirected

graph is provided to help the Analyst select subsets of data on which to focus atten-

tion. A large volume of data can be represented using the undirected graph. While
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this has the advantage of giving an Analyst an overview of the general relationships

in the data set, it can also serve as a detriment by hiding the desired information and

patterns beneath the rendering of the graph.

Following a perusal of the overview of the full graph, the user may choose to focus

attention only on those sample that show a strong relational bond with other samples.

In this case the user may select to extract all the cliques of a given strength from the

graph.

The ultimate goal of this approach is to develop a tool that could be used to aid

a user in the analysis of many malware samples by helping the Analyst to allocate

time. The ability to target the desired relationships and extract them from a larger

set allows the user to more quickly find the samples required for the analysis, thereby

conserving time that can be used to more productively analyze additional malware

samples.
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Chapter 5

EVALUATION

5.1 Evaluation Approach

The goal of the application is to aid the Analyst in the processing and prioritization

of a large amount of malware samples. This is done by allowing an Analyst to quickly

view the relationships exhibited by a malware with other samples. By viewing the

relationships the Analyst is free to execute the task of analysis and countermeasures

with the informed view of how a sample or groups of samples are connected.

In order to evaluate the approach, the relationships identified via the clustering

of the extracted execution attributes must be validated to show that they are able to

indicate when two or more similar malwares are present and correlated. The relation-

ship of the malwares is treated as a binary classification, in which each malware in

the sample set is either related or not related to the next. Treating the relationships

as binary decisions allow for the generation of a confusion matrix to evaluate the

correctness of the relationships as a whole across the sample set.

Figure 5.1: 2x2 Confusion Matrix
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The confusion matrix consists of four classification: True Positive (TP), False

Negative (FN), False Positive (FP), and True Negative (TN). The predicted class

in the vertical columns of the matrix is derived from the relationships produced by

our attribute clustering approach. The actual class in the horizontal columns of

the matrix are derived from the CARO formatted name generated by Microsoft, as

reported by VirusTotal. The Computer Antivirus Research Organization (CARO)

name is a naming scheme which consists of multiple components, the two primary

components considered in this analysis are the Type and the Family.

Figure 5.2: Example Naming Scheme for Caphaw from Microsoft [26]

The confusion matrix is populated using the actual and predicted classifications

for the relationships in the sample set. All possible combinations of the samples in

the test set are compared using the CARO name and edge state. The True Positive

is identified when two samples are reported to have the same CARO name and are

found to have a relationship established by our clustering analysis. The False Positive

case is identified when the approach inaccurately assigns a relationship but the CARO

names are different. The False Negative case is generated when the approach fails

to identify a relationship yet the CARO names of the samples are the same. The

True Negative case is found when the approach correctly determines no relationship

is present and this is confirmed by the CARO names being different.
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The accumulated results of the confusion matrix are used to compute the Sensitiv-

ity and the Specificity. Sensitivity gives a measure of the number of relationships that

have been correctly classified by the approach. Sensitivity is computed as follows:

Sensitivity = TP/(TP + FN) (5.1)

Whereas the Sensitivity focuses on the positive identification cases, the Specificity

is used to measure the negative cases. The Specificity is the inverse Sensitivity in that

it reports the percentage of the cases that are not related that were reported as such.

The Sensitivity and Specificity are plotted using an ROC space plot. The Re-

ceiver Operating Characteristic (ROC) plot is used to show how the Sensitivity and

Specificity vary based on the thresholds of the experiments. The Sensitivity is plot-

ted along the y axis also known as the True Positive Rate (TPR). The Specificity is

presented along the x axis and as the False Positive Rate (FPR), which is computed

as FPR = 1-Specificity. Points that are plotted along the diagonal of the ROC space

show a poor classification result. The diagonal of the space represents the results of

a random guess.

The Sensitivity and Specificity are measures that are applied to the relationships

that are generated for the test set as a whole. The coverage per family and type of

malware is also computed as a percentage based on the number of the known samples

from each family and type that are found to be related by the approach.

5.2 Evaluation Results

The relationships identified by the approach are evaluated using both the type

and the family as identified by the Microsoft name. The test set consists of 1060

samples. In this set there are known to be 164 separate families from 17 different

types of malware.
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5.2.1 Evaluation of Relationships by Type

The results are evaluated across three different types of experiments. The first

experiment considers only the similarity between the malwares based on their file

accesses. The second experiment considers the similarities based solely on the Win32

API function calls. The third experiment identifies the relationship using both the

API function calls and the file accesses.

Figure 5.3: ROC Space for Evaluation by Type

The results in the ROC space are presented for each of the three experiment types.

Each experiment is conducted over 5 separate thresholds to evaluate the varying

degree of the true relationships identified. When evaluating the relationships based

on the type, the Sensitivity shows that in all cases the relationships were able to

correctly classify the type of malware. However, the strength of the Sensitivity is low

showing that the actual proportion of the correctly identified relationships is weak.

The varying of the threshold used to determine a relationship in the classifier has

little impact on the strength of the classification. This is observed by the fact that
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the distance between each point and the diagonal line only changes slightly as the

threshold level is modified.

The objective of the approach is primarily focused on the identification of the

malwares with similar features that are defined by the Analyst. The strength of the

Sensitivity in the ROC serves to show that this similarities can also be used to identify

a rough approximation of the type of malware that is being analyzed.

In addition to the values shown in the ROC space, the values in the confusion

matrix can be used to compute the Negative Predictive Value (NPV). The NPV

shows the proportion of the true negatives that are identified as unrelated. In all

cases the NPV was about 85%, showing that when a malware pair is determined to

be unrelated it is done so with a high confidence.

Figure 5.4: Percent of Sample by Types Marked as Related

Additionally, the coverage of the individual groups can be observed by calculating

the percentage of each group that were found to be related. The above graph illus-

trates that coverage using both the file and the function attributes to identify similar

malwares. From this it can be seen that the function attributes performed better

than the file attributes when trying to identify malwares of a similar type.
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5.2.2 Evaluation of Relationships by Family

The same approach from the previous section is taken to evaluate the relationships

based on the malware family using three different types of experiments. The first

experiment considers only the similarity between the malwares based on their file

accesses. The second experiment considers the similarities based solely on the Win32

API function calls. The third experiment identifies the relationship using both the

API function calls and the file accesses.

Figure 5.5: ROC Space for Evaluation by Family

The experiments from the type category were repeated using the malware family

to evaluate the relationship. The Sensitivity scores increase as compared to those

reported when the relationships are evaluated by the type. The scores reported when

evaluating based on the malware family show that the relationships produced by our

approach are able to more accurately discriminate the family of malware.

In addition to the improved Sensitivity rates reported while evaluating based on

the malware family, the NPV rates also improve to over 95% in all cases. Again, as
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was seen in the evaluation based on the type, those sample pairs that are found to

not be related are most likely accurately classified as such.

Figure 5.6: Percent of Samples by Family Marked as Related

The coverage of the families in the set shows a high degree of success. However,

in many cases the coverage drops to 0%. This is seen in many of the families that are

underrepresented in the test set. For example, Rovnix in the figure above, reports a

0% coverage of the detected relationships. Rovnix was only found twice in the sample

set. As such, a near miss in identifying the relationship of a single couple prevented the

set of Rovnix samples from being linked, where as with other families there exists the

possibility of more easily identified relationships through other members ultimately

linking the family of samples together via a chain.
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Chapter 6

FUTURE WORK

6.1 Limitations

While a motivating factor behind our approach is to present the Analyst with the

option to prevent spending time in analysis of redundant samples, the implementation

itself has not been designed with execution speed as a primary goal. Other approaches

such as [17, 6] were designed to be fast and scalable to be used on large sets of

data. The tool created in this implementation requires approximately 720 seconds to

perform the relationship analysis on 1000 samples.

A further limitation of the current system depends on the fact that all the samples

in the database are malwares that can be executed on Microsoft Windows systems.

No testing has been done to attempt to integrate samples from heterogeneous data

sets.

Additionally, this phase of the project focused solely on establishing the relation-

ships based on the file accesses and the Win32 API calls. Focusing solely on these

two sets of features of the dynamic analysis of the malware samples discards much

of the valuable data collected concerning the DLL accessess, Registry modifications,

Network queries, and Mutex allocations which have been shown by [11] to contain

unique identifying features to malware families.

Furthermore, the current dynamic analysis has only allowed for a single pass per

sample. No efforts have been made to verify that the dynamic analysis will generate

the same feature sets for each sample if they are allowed to execute multiple times.

Indeed [27] indicates that the analysis will record new and unique features based on
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the varying conditions found during the dynamic analysis, even though the analysis

is performed using a clean virtual machine. Likewise an instance of a sample has

not been purposely replicated and matched against itself repeatedly to verify the

relationship is consistently identified.

6.2 Recommended Improvements

The current mechanism used during the identification and clustering of the rela-

tionships between the malware samples utilizes a series of linked lists. For example,

when analyzing the system calls a list is created for each function to store its argu-

ments. Additional lists are then constructed for all the files that are accessed by the

samples. The result of loading the analysis information into the memory structures

is an excessive use of memory during the loading and analysis phases.

A more appropriate and scalable approach would be to load the features for each

sample into a database. This would allow for a more efficient means of storing the

information than using the series of linked lists that is currently employed. Addition-

ally, the ability to do queries against the database would allow for a simplification of

the attribute clustering steps. Transitioning from the current method to a database

approach would likely deliver an improved performance, a reduction in memory con-

sumption, and expandability.

In order to allow the tool to continue to be useful it needs to have the ability

to accept new definitions for the attribute clustering and relationship extraction. In

order to facilitate this the application needs to allow the user to create plugins that

can be added to the tool. This would allow the Analyst to adapt the tool to the

specific needs of the analysis. Allowing for this kind of flexibility and modularity

would expand the usefulness and life cycle of the visualization tool.
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The current evaluation was done on a limited set of malware samples; approxi-

mately 2000 were used as of this writing. Essentially the task of the visualization tool

is to perform a basic method of data mining by extracting, clustering, and visualizing

the relationship between malware samples attributes. Additional data samples would

allow for more in-depth analysis of these relations. Additionally, the presence of many

more relations are likely not visible due to their lack of connecting relations that could

be observed had additional samples been used in the set. Due to the structure of the

application and its heavy memory footprint, the current data set was not actively

expanded.

Validation of the current and future relationship patterns could be expedited if the

dataset malware samples contained more prior knowledge indicating which samples

were in fact variants of each other. The ground truth would allow for a rapid testing

of current and new attribute clustering metrics and relational patterns. The current

dataset was collected from public databases without prior analysis and as such no

knowledge concerning existing variations and malicious intentions were known or

assumed.

An additional analysis and visualization that would help the Analyst to under-

stand the evolution of the malware samples would be the construction of a phyloge-

netic tree. The tree would be comprised of related samples with ancestry determined

by the first recorded observation date reported by AV scanners.

A further characteristic that would be useful in the analysis of malware sets would

be the context of the sample collection. It could be very illuminating to visualize the

composition of collected sets based on the type of institution and geographic location.
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Chapter 7

CONCLUSIONS

The objective of the approach that has been presented is to provide a malware

Analyst an additional tool that can be used to aid in the identification of relationship

between malware samples. The tool does not attempt to classify or identify malware

based on the attributes or effects. Rather, the ideal outcome is to provide the Analyst

with an easy to identify set of malware samples that share common features. With

that in mind the evaluation of the relationships showed a good correlation between

the related samples and the known malware families.

Additionally, the evaluation of the relationships showed that the metrics provided

a very strong negative predictive value. This is of greater importance to the perfor-

mance of the tool than the ability to classify a sample into a particular family or type,

because it allows the Analyst insight into which malwares may be related outside of

the classified families and minimizes the presentation of erroneous relationships.

Similar approaches mentioned in Chapter 3 include SMIT and peHash. Both

SMIT and peHash attempt to cluster together similar malware samples. Both of these

approaches rely on a static analysis of the malware sample to extract the features that

are used to determine the similarity of two samples. A common problem with relying

solely on static analysis is that it is more difficult to detect similar malwares samples

due to the many obfuscating and other protecting measures that are applied to the

malwares as stated in Chapter 2. The authors of peHash acknowledged this difficulty

by stating “peHash cannot be used to cluster variants of malware family as for that

the code structure itself would have to be analyzed”[38]. SMIT concedes that the

similarities that are detected by their approach rely on the function call graph which
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attempts to approximate the real time behavior of the sample. Both these approaches

acknowledge that more in-depth knowledge of the behavior and structure of a malware

sample can be derived from using dynamic behavior analysis. The disadvantage to

using the dynamic analysis is time required to execute and analyze the sample in

real-time.

Our approach contributes to those previous approaches, such as SMIT and pe-

Hash, by utilizing the features extracted from the dynamic analysis of the malware’s

behavior. This analysis allows our approach to observe patterns of behavior that are

obscured from the static analysis by the anti-analysis techniques employed by the

authors of the malwares. Rather than replacing the results produced by the static

analysis, the relationships identified by the dynamic analysis may be used in tandem

to allow for deeper insights by the Analyst. Additionally, the tool presents the An-

alyst with a graph to visualize all the extracted relationships. The Analyst is also

free to manipulate that graph data to extract sub graphs that relate to the desired

analysis scenario.

As our approach is based solely on the features and characteristics that are ex-

tracted by the dynamic analysis. It is unique in comparison to the other approaches

presented in Chapter 3. Other approaches not mentioned in Chapter 3 may also

utilize the features extracted from the dynamic analysis of the malware such as [6],

however these approaches first attempt to establish an abstraction of the dynamic

analysis features to reduce the feature space, this is referred to as a “Behavior Pro-

file” by [6]. We further add to the “Behavior Profile” through the use of the system

access patters which were shown to perform nearly as well as the “Behavior Profile”

by [21]. These other approaches typically are acting in a classification mode and rely

on a pre-trained classifier or rigid structure. The tool presented here has been config-

ured to remain flexible so that the Analyst can control the relationship definitions at
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run-time, thereby allowing it to be defined based on the use case presented by each

analysis scenario.

To our knowledge the approach presented here is novel in the following aspect.

The system preserves the full feature set provided by the dynamic analysis and it is

available to be used during the relationship analysis. The system presents a flexible

user defined approach to the relationship definition that is able to change with each

execution of the application. Our approach doesn’t seek to classify all related samples

belonging to a given family or variant, but rather, to provide a visualization tool to

allow the Analyst to form conclusions from these relationships that may not be ap-

parent given a simple classification. The visualization is able to be manipulated using

automatic layout adjustment tools, user defined edges, drag-drop, and group labeling

to allow the Analyst to continually define and redefine the viewpoint through which

the relationships are examined. Furthermore, the system provides graph extraction

tools to allow the Analyst to extract sub-graphs that are found to correlate to desired

related groups.

In summary, the system presented here fulfills its objectives through the following

actions: malware features are extracted from reports generated using dynamic analy-

sis, flexible attribute clustering is defined by the Analyst at runtime, visualization of

sample relationships via an undirected graph, and user defined relationship extraction

through graph patterns. The graph based visualization tool has been shown to be

able to extract basic relationships from a set of unclassified malware samples. Using

this information the Analyst is able to approach the set of samples with additional

insight into how to best allocate analysis resources for maximum effectiveness. This

knowledge allows the Analyst to avoid the sinking of additional time in the analysis

of a set of variants of a single malware by identifying cliques of samples in the graph,
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or to identify unique samples with no known correlation to the other samples in the

database through the identification of disconnected nodes.
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